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Preface

After decades of development, automation and intelligence increase significantly in
the process industry, and key technologies continue tomake breakthroughs. In the era
of “New Industrial Revolution”, it is of great significance to use modern information
technology to promote intelligent manufacturing with the goal of safety, efficiency,
and green. Obviously, safety has always been the lifeline of intelligent and optimized
manufacturing in process industries.

With the increasing requirements for production safety and quality improvement,
process monitoring and fault diagnosis have gained great attention in academic
research and even in industrial applications. The widespread use of sensor networks
and distributed control systems have facilitated access to a wealth of process
data. How to effectively use the data generated during the production process
and the process mechanism knowledge for process monitoring and fault diagnosis
is a topic worth exploring for the large and complex process industrial systems.
Fruitful academic results have been produced recently and widely used in the actual
production process.

The authors of this book have devoted themselves to the theoretical and applied
research work on data-driven industrial process monitoring and fault diagnosis
methods formany years. They are deeply concernedwith the flourishing development
of data-driven fault diagnosis techniques. This book focuses on both multivariate
statistical process monitoring (MSPM) and Bayesian inference diagnosis. It intro-
duces the basicmultivariate statisticalmodelingmethods, aswell as the authors’ latest
achievements around the practical industrial needs, includingmulti-transitionprocess
monitoring, fault classification and identification, quality-related fault detection, and
fault root tracing.

The main contributions given in this book are as follows:
(1) Soft-transition-based high-precision monitoring for multi-stage batch

processes: Most batch processes obviously have several operation stages with
different process characteristics. In addition, their data present obvious three-
dimensional features with strong nonlinearity and time variability. So it is difficult to
apply multivariate statistical methods directly to the monitoring of batch processes.
This book proposes a soft-transition-based fault detection method. First, a two-step
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stage division method based on Support Vector Data Description (SVDD) is given,
then a dynamic soft-transition model of transition stages is constructed; finally, the
monitoring in the original measurement space is given for each stage. Compared
with the traditional method, the advantages of the proposed method are reflected
in the following techniques: improvement of soft-transition process design, statistic
decomposition, and fusion indicator monitoring. It just greatly increase the accuracy
of batch process fault detection.

(2) Fault classification and identification for batch process with variable produc-
tion cycle: Batch processes inevitably are subject to the changes in initial condi-
tions and the external environment, which can cause changes in production cycles.
However, current monitoringmethods for batch processes generally require the equal
production cycle and a complete production trajectory. Therefore, variable cycle
and unknown values estimation in complete trajectory become the bottleneck for
improving the diagnostic performance. This book gives a fault diagnosis method for
batch processes based on kernel Fisher envelope analysis. It builds envelope surface
models for normal conditions and all known fault condition, respectively. Then online
fault diagnosis strategy is proposed based on these surface models. Further, the
fusion of kernel Fisher envelope analysis and PCA is proposed for fault diagnosis
of batch process. It effectively solves the fault classification and identification of
unequal-length batch production process.

(3)Quality-related fault detectionwith fusion of global and local features: The key
of manufacture is to guarantee the final product quality, yet it is difficulty or extreme
cost to acquire quality information in real time. Therefore, it is great practical to
monitor the process variables that have an impact on the final quality output in roder
to further enable quality-related fault detection and diagnosis. This book proposes an
idea of quality-related projectionwith the fusion of global and local features to obtain
the correlation between quality variables and process variables. It is well known that
the partial least squares projection algorithm looks for global structural change infor-
mation based on the process covariance maximization direction. The local preserva-
tion projection, or manifold learning approach can exactly maintain the local neigh-
borhood structure and achieve nonlinear mapping by using linear approximation.
The proposed fusion approach constructs potential geometric structures containing
both global and local information, extracts meaningful low-dimensional structural
information to represent the relationship between high-dimensional process variables
and quality data. Thus, it effectively achieves the detection of quality-related faults
for strongly nonlinear and strongly dynamic processes.

(4) Bayesian fault diagnosis and root tracing combined with process mechanism:
Due to the complex interrelationships among system components, same fault source
may have different manifestation signs in the different process variables. The tradi-
tional contribution graph in multivariate statistical monitoring is inefficiency in fault
root tracing. This book proposes an uncertainty knowledge expression inference
model, named probabilistic causal graph model, based on probability theory and
graph theory. It intuitively and accurately reveals the qualitative and quantitative
relationships between process variables. Then a framework for fault diagnosis and
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root tracking based on the proposed model is given. Different modeling and infer-
ence techniques are given for the discrete and continuous system, respectively. So, the
inference can perform real-time dynamic analysis of discrete alarm states or contin-
uous process variables. The forward inference predicts the univariate andmultivariate
alarms or fault events, while the reverse implements the accurate fault root tracing
and localization.

The book consists of 14 chapters divided into four parts:
Part I, Chaps. 1–4, is devoted to mathematical background. Chapter 1 gives the

basic knowledge about process monitoring measure, common detection indicator,
and its control limit. Chapters 2–3 focus on the basic multivariate statistical methods,
including principal element analysis (PCA), partial least squares (PLS), canonical
correlation analysis (CCA), canonical variable analysis (CVA), and Fisher discrim-
inant analysis (FDA). To help readers learn the above theoretical methods, Chap. 4
gives a detailed introduction to the Tennessee Eastman (TE) continuous chem-
ical simulation platform and the penicillin semi-batch reaction simulation platform.
Readers can collect appropriate process data and conduct corresponding simulation
experiments on these simulation platform.

Part II, Chaps. 5–8, are organized around the main contributions 1 and 2 of this
book. Various improved fault detection and identification methods are given for
batch process. Chapters 5–6 are given for contribution 1 aiming at the high-precision
process monitoring of with many stages process, based on Support Vector Data
Description (SVDD) soft-transition process, and fusion index design based on statis-
tics decomposition. Chapters 7–8 are given for contribution 2 aiming at the fault iden-
tification for complex batch process with unequal cycle, based on the kernel Fisher
envelope surface analysis and local linear embedded Fisher discriminant analysis,
respectively.

Part III, Chaps. 9–12, are organized around the main contribution 3 of this book.
To improve the statistical model between process variables and quality variables
with nonlinear correlation, two different strategies are considered. First, under the
idea of global and local feature fusion, the manifold structure are considered to
extract the nonlinear correlations between them effectively. A unified framework of
spatial optimization projection is constructed based on the effective fusion of two
types of performance indices, global covariance maximization and local adjacency
structure minimization. A variety of different performance combinations are given
in Chaps. 9–11: QGLPLS, LPPLS and LLEPLS, respectively. Another strategy is to
consider the nonlinearity as uncertainty, then robust L1-PLS is proposed in Chap. 12.
It enhances the robustness of PLS method based on the latent structure regression
with L1. The effectiveness and applicability of the above combination methods are
discussed.

Part IV, Chaps. 13–14, are organized around the main contribution 4 of the book.
The known industrial process flow structure is integrated with the industrial data
analytic, and the qualitative causal relationships among process variables are estab-
lished bymultivariate causal analysis methods. The quantitative causal dependencies
among process variables are characterized by conditional probability density esti-
mation under this network structure. So, Bayesian causal probability graph model
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of complex systems is realized for process variable failure prediction and reverse
tracing. The specific implementation of the Bayesian inference, respectively, in
discrete alarm variable analysis and continuous process variable analysis are given
in this book.

Fault detection and diagnosis (FDD) is one of the core topics in modern complex
industrial processes. It attracts the attention of scientists and engineers from various
fields such as control, mechanics, mathematics, engineering, and automation. This
book gives an in-depth study of various data-driven analysis methods and their appli-
cations in process monitoring, especially for data modeling, fault detection, fault
classification, fault identificatoin, and fault reasoning. Oriented toward the industrial
big data analytic and industrial artificial intelligence, this book integratesmultivariate
statistical analysis, Bayesian inference, machine learning, and other intelligent anal-
ysismethods. This book attempts to establish a basic frameworkof complex industrial
process monitoring suitable for various types of industrial data processing, and gives
a variety of fault detection and diagnosis theories, methods, algorithms, and various
applications. It provides data-driven fault diagnosis techniques of interest to advanced
undergraduate and graduate students, researchers in the direction of automation and
industrial safety. It also provides various applications of engineering modeling, data
analysis, and processing methods for related practitioners and engineers.
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Chapter 1
Background

1.1 Introduction

Fault detection and diagnosis (FDD) technology is a scientific field emerged in the
middle of the twentieth century with the rapid development of science and data
technology. It manifests itself as the accurate sensing of abnormalities in the man-
ufacturing process, or the health monitoring of equipment, sites, or machinery in a
specific operating site. FDD includes abnormality monitoring, abnormal cause iden-
tification, and root cause location. Through qualitative and quantitative analysis of
field process and historical data, operators andmanagers can detect alarms that affect
product quality or cause major industrial accidents. It is help for cutting off failure
paths and repairing abnormalities in a timely manner.

1.1.1 Process Monitoring Method

In general, FDD technique is divided into several parts: fault detection, fault isolation,
fault identification, and fault diagnosis (Hwang et al. 2010; Zhou andHu 2009). Fault
detection is determining of the appearance of fault. Once a fault (or error) has been
successfully detected, damage assessment needs to be performed, i.e., fault isolation
(Yang et al. 2006). Fault isolation lies in determining the type, location, magnitude,
and time of the fault (i.e., the observed out-of-threshold variables). It should be noted
that fault isolation is not to isolation of specific components of a system with the
purpose of stopping errors from propagating. In a sense, fault identificationmay have
been a better choice. It also has the ability to determine its timely change. Isolation
and identification are commonly used in the FDD process without strict distinction.
Fault diagnosis determines the cause of the observed out-of-threshold variables in
this book, so it is called as fault root tracing. During the process of fault tracing,
efforts are made to locate the source of the fault and find the root cause.
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2 1 Background

Fig. 1.1 Classification of fault diagnosis methods

FDD involves control theory, probability statistics, signal processing, machine
learning, and many other research areas. Many effective methods have been devel-
oped, and they are usually classified into three categories, knowledge-based, analyt-
ical, and data-driven (Chiang et al. 2001). Figure1.1 shows the classification of fault
diagnosis methods.

(1) Analytical Method
The analytical model of the engineering system is obtained based on the mathemati-
cal and physical mechanism. Analytical model-based method represents to monitor
the process real time according to the mathematical models often constructed from
first principles and physical characteristics. Most analytical measures contain state
estimation (Wang et al. 2020), parameter estimation (Yu 1997), parity space (Ding
2013), and analytical redundancy (Suzuki et al. 1999). The analytical method appears
to be relatively simple and usually is applied to systems with a relatively small num-
ber of inputs, outputs, and states. It is impractical for modern complex system since it
is not easy to establish an accurate mathematical model due to its complex character-
istics such as nonlinearity, strong coupling, uncertainty, and ultra-high-dimensional
input and output.
(2) Knowledge-Based Method
Knowledge-based fault diagnosis does not require an accurate mathematical model.
Its basic idea is to use expert knowledge or qualitative relationship to develop the fault
detection rules. The common approaches mainly include fault tree diagnosis (Hang
et al. 2006), expert system diagnosis (Gath andKulkarn 2014), directed graphs, fuzzy
logic (Miranda and Felipe 2015), etc. The application of knowledge-based models
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strongly relies on the complete process empirical knowledge.Once the information of
the diagnosed object is known from expert experience and historical data, a variety of
rules for appropriate reasoning is constructed. However, the accumulation of process
experience and knowledge are time-consuming and even difficult. Therefore, this
method is not universal and can only be applied to engineering systems which people
are familiar with.
(3) Data-Driven Method
Data-driven method is based on the rise of modern information technology. In fact,
it involves a variety of disciplines and techniques, including statistics, mathematical
analysis, and signal processing. Generally speaking, the industrial data in the field are
collected and stored by intelligent sensors. Data analysis can mine the hidden infor-
mation contained in the data, establish the data model between input and output, help
the operator to monitor the system status in real time, and achieve the purpose of fault
diagnosis. Data-driven fault diagnosis methods are be divided into three categories:
signal processing-based, statistical analysis-based, and artificial intelligence-based
(Zhou et al. 2011; Bersimis et al. 2007). The commonality of these methods is
that high-dimensional variables are projected into the low-dimensional space with
extracting the key features of the system. Data-driven method does not require an
accurate model, so is more universal.

Both analytical techniques and data-drivenmethods have their ownmerits, but also
have certain limitations. Therefore, the fusion-driven approach combining mecha-
nistic knowledge and data could compensate the shortcomings of a single technique.
This book explores the fault detection, fault isolation/identification, and fault root
tracing problems mainly based on the multivariate statistical analysis as a mathemat-
ical foundation.

1.1.2 Statistical Process Monitoring

Fault detection and diagnosis based onmultivariate statistical analysis has developed
rapidly and a large number of results have emerged recently. This class of method,
based on the historical data, uses multivariate projection to decompose the sample
space into a low-dimensional principal element subspace and a residual subspace.
Then the corresponding statistics are constructs to monitor the observation variables.
Thus, this method also is called latent variable projection method.

(1) Fault Detection
The common multivariate statistical fault detection methods include principal com-
ponent analysis (PCA), partial least squares (PLS), canonical correlation analysis
(CCA), canonical variables analysis (CVA), and their extensions. Among them, PCA
and PLS, as the most basic techniques, are usually used for monitoring processes
with Gaussian distributions. These methods usually use Hotelling’s T2 and Squared
Prediction Error (SPE) statistics to detect variation of process information.
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It is worth noting that these techniques extract the process features by max-
imizing the variance or covariance of process variables. They only utilize the
information of first-order statistics (mathematical expectation) and second-order
statistics (variance and covariance) while ignoring the higher order statistics (higher
order moments and higher order cumulants). Actually, there are few processes in
practice that are subject to the Gaussian distribution. The traditional PCA and PLS
are unable to extract effective features from non-Gaussian processes due to omitting
the higher order statistics. It reduces the monitoring efficiency.

Numerous practical production conditions, such as strong nonlinearity, strong
dynamics, and non-Gaussian distribution, make it difficult to directly apply the basic
multivariatemonitoringmethods. To solve these practical problems, various extended
multivariate statistical monitoring methods have flourished. For example, to deal
with the process dynamics, dynamic PCA and dynamic PLS methods have been
developed, which take into account the autocorrelation and cross-correlation among
variables (Li and Gang 2006). To deal with the non-Gaussian distribution, indepen-
dent component analysis (ICA) methods have also been developed (Yoo et al. 2004).
To deal with the process nonlinearity, some extended kernel methods such as kernel
PCA (KPCA), kernel PLS (KPLS), and kernel ICA (KICA) have emerged (Cheng
et al. 2011; Zhang and Chi 2011; Zhang 2009).
(2) Fault Isolation or Identification
Acommonapproach for separating faults is the contributionplot. It is an unsupervised
approach that uses only the process data to find fault variables and does not require
other prior knowledge. Successful separation based on the contribution plot includes
the following properties: (1) each variable has the same mean value of contribution
under the normal operation and (2) the faulty variables have very large contribution
values under the fault conditions, compared with other normal variables. Alcala
and Qin summarized the commonly contribution plot techniques, such as complete
decomposition contributions (CDC), partial decomposition contributions (PDC), and
reconstruction-based contributions (RBC) (Alcala and Qin 2009, 2011).

However, contribution plot usually suffers from the smearing effect, a situation in
which non-faulty variables show larger contribution values, while the contribution
values of the fault variables are smaller.Westerhuis et al. pointed out that one variable
may affect other variables during the execution of PCA, thus creating a smearing
effect (Westerhuis et al. 2000). Kerkhof et al. analyzed the smearing effect in three
types of contribution indices, CDC, PDC, and RBC, respectively (Kerkhof et al.
2013). Itwas pointed that smearing effect is caused by the compression and expansion
operations of variables from the perspective of mathematical decomposition. So it
cannot be avoided during the transformation of data frommeasurement space to latent
variable space. In order to eliminate the smearing effect, several new contribution
indices are given based on dynamically calculating average value of the current and
previous residuals (Wang et al. 2017).

If the historical data collected have been previously categorized into separate
classes where each class pertains to a particular fault, fault isolation or identification
can be transformed into pattern classification problem. The statistical methods, such
as Fisher’s discriminant analysis (FDA) (Chiang et al. 2000), have also been success-
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fully applied in industrial practice to solve this problem. It assigns the data into two or
more classes via three steps: feature extraction, discriminant analysis, and maximum
selection. If the historical data have not been previously categorized, unsupervised
cluster analysis may classify data into separate classes accordingly (Jain et al. 2000),
such as the K-Means algorithm.More recently, neural network and machine learning
techniques imported from statistical analysis theory have been receiving increasing
attention, such as support vector data description (SVDD) covered in this book.
(3) Fault Diagnosis or Root Tracing
Fault root tracing based on Bayesian network (BN) is a typical diagnostic method
that combines the mechanism knowledge and process data. BN, also known as prob-
abilistic network or causal network, is a typical probabilistic graphical model. Since
the end of last century, it has gradually become a research hotspot due to its superior
theoretical properties in describing and reasoning about uncertain knowledge. BN
was first proposed by Pearlj, a professor at the University of California, in 1988, to
solve the problem of uncertain information in artificial intelligence. BN represents
the relationships between the causal variable is the form of directed acyclic graphs.
In the fault diagnosis process of an industrial system, the observed variable is used as
node containing all the information about the equipment, control quantities, and faults
in the system. The causal connection between variables is quantitatively described
as a directed edge with the conditional probability distribution function (Cai et al.
2017). Fault diagnosis procedure with BNs consists of BN structure modeling, BN
parameter modeling, BN forward inference, and BN inverse tracing.

In addition to the probabilistic graphical model such as BN, the development
of other causal graphical model has developed vigorously. These progresses aim at
determining the causal relationship among the operating units of the system based
on hypothesis testing (Zhang and Hyvärinen 2008; Shimizu et al. 2006). The gener-
ative model (linear or nonlinear) is built to explain the data generation process, i.e.,
causality. Then the direction of causality is tested under some certain assumptions.
The most typical one is the linear non-Gaussian acyclic model (LiNGAM) and its
improved version (Shimizu et al. 2006, 2011). It has the advantage of determining
the causal structure of variables without pre-specifying their causal order. All these
results are serving as a driving force for the development of probabilistic graphical
model and playing a more important role in the field of fault diagnosis.

1.2 Fault Detection Index

The effectiveness of data-driven measures often depends on the characterization of
process data changes. Generally, there are two types of changes in process data:
common and special. Common changes are entirely caused by random noise, while
specials refer to all data changes that are not caused by common causes, such as
impulse disturbances. Common process control strategies may be able to remove
most of the data changes with special reasons, but these strategies cannot remove
the common cause changes inherent in the process data. As process data changes
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are inevitable, statistical theory plays an important role in most process monitoring
programs.

By defining faults as abnormal process conditions, it is easy to know that the
application of statistical theory in the monitoring process actually relies on a reason-
able assumption: unless the system fails, the data change characteristics are almost
unchanged. This means that the characteristics of data fluctuations, such as mean and
variance, are repeatable for the same operating conditions, although the actual value
of the data may not be very predictable. The repeatability of statistical attributes
allows automatic determination of thresholds for certain measures, effectively defin-
ing out-of-control conditions. This is an important step to automate the process
monitoring program. Statistical process monitoring (SPM) relies on the use of nor-
mal process data to build process model. Here, we discuss the main points of SPM,
i.e., fault detection index.

In multivariate process monitoring, the variability in the residual subspace (RS)
is represented typically by squared sum of the residual, namely the Q statistic or the
squared prediction error (SPE). The variability in the principle component subspace
(PCS) is represented typically by Hotelling’s T2 statistic. Owing to the complemen-
tary nature of the two indices, combined indices are also proposed for fault detection
and diagnosis. Another statistic that measures the variability in the RS is Hawkins’
statistic (Hawkins 1974). The global Mahalanobis distance can also be used as a
combined measure of variability in the PCS and RS. Individual tests of PCs can also
be conducted (Hawkins 1974), but they are often not preferred in practice, since one
has to monitor many statistics. In this section, we summarize several fault detection
indices and provide a unified representation.

1.2.1 T2 Statistic

Consider the sampled data with m observation variables x = [x1, x2, . . . , xm] and n
observations for each variable. The data are stacked into a matrix X ∈ Rn×m , given
by

X =

⎡
⎢⎢⎢⎣

x11 x12 · · · x1m
x21 x22 · · · x2m
...

... · · · ...

xn1 xn2 · · · xnm

⎤
⎥⎥⎥⎦ , (1.1)

firstly, the matrix X is scaled to zero mean, and the sample covariance matrix is equal
to

S = 1

n − 1
XTX . (1.2)

An eigenvalue decomposition of the matrix S,
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S = P̄Λ̄ P̄
T = [P P̃] diag{Λ, Λ̃} [P P̃]T. (1.3)

The correlation structure of the covariancematrix S is revealed,where P is orthog-
onal. (P PT = I , in which, I is the identity matrix) (Qin 2003) and

Λ = 1

n − 1
TTT = diag{λ1, λ2, . . . , λk}

Λ̃ = 1

n − 1
T̃

T
T̃ = diag{λk + 1, λk + 2, . . . , λm}

λ1 ≥ λ2 ≥ · · · ≥ λm,

k∑
i=1

λi >

m∑
j=k+1

λ j

λi = 1

N − 1
tTi t i ≈ var(t i )

when n is very large. The score vector t i is the i-th column of T̄ = [T, T̃ ]. The PCS is
Sp = span{P} and the RS is Sr = span{ P̃}. Therefore, the matrix X is decomposed
into a score matrix T̄ and a loading matrix P̄ = [P, P̃], that is

X = T̄ P̄
T = X̂ + X̃ = T PT + T̃ P̃

T = X P PT + X
(
I − P PT

)
, (1.4)

The sample vector x can be projected on the PCS and RS, respectively:

x = x̂ + x̃ (1.5)

x̂ = P PTx (1.6)

x̃ = P̃ P̃
T
x = (

I − P PT
)
x. (1.7)

Assuming S is invertible and with the definition

z = Λ− 1
2 PTx. (1.8)

The Hotelling’s T2 statistic is given by Chiang et al. (2001)

T2 = zT z = xTPΛ−1PTx. (1.9)

The observation vector x is projected into a set of uncorrelated variables y by
y = PTx. The rotation matrix P directly from the covariance matrix of x guarantees
that y is correspond to x.Λ scales the elements of y to produce a set of variables with
unit variance corresponding to the elements of z. The conversion of the covariance
matrix is demonstrated graphically in Fig. 1.2 for a two-dimensional observation
space (m = 2) (Chiang et al. 2001).

The T2 statistic is a scaled squared 2-norm of an observation vector x from its
mean. An appropriate scalar threshold is used to monitor the variability of the data in
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Fig. 1.2 A graphical illustration of the covariance conversion for the T2 statistic

Fig. 1.3 An elliptical
confidence region for the T 2

statistic

the entirem-dimensional observation space. It is determined based on an appropriate
probability distribution with given significance level α. In general, it is assumed that

• the observations are randomly sampled and subject to a multivariate normal dis-
tribution.

• the mean vector and covariance matrix of observations sampled in the normal
operations are equal to the actual ones, respectively.

Then the T2 statistic follows a χ2 distribution with m degrees of freedom (Chiang
et al. 2001),

T2
α = χ2

α(m). (1.10)

The set T2 ≤ T2
α is an elliptical confidence region in the observation space, as

illustrated in Fig. 1.3 for two process variables. This threshold (1.10) is applied to
monitor the unusual changes. An observation vector projected within the confidence
region indicates process data are in-control status, whereas outside projection indi-
cates that a fault has occurred (Chiang et al. 2001).

When the actual covariance matrix for the normal status is not known but instead
estimated from the sample covariance matrix (1.2), the threshold for fault detection
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is given by

T2
α = m(n − 1)(n + 1)

n(n − m)
Fα(m, n − m), (1.11)

where Fα(m, n − m) is the upper 100α% critical point of the F-distribution with
m and n − m degrees of freedom (Chiang et al. 2001). For the same significance
level α, the upper in-control limit in (1.11) is larger (more conservative) than that in
(1.10). The two limits approach each other when the amount of observation increases
(n → ∞) (Tracy et al. 1992).

1.2.2 Squared Prediction Error

TheSPE indexmeasures the projection of the sample vector on the residual subspace:

SPE := ‖x̃‖2 = ‖(I − P PT)x‖2. (1.12)

The process is considered as normal if

SPE ≤ δ2α, (1.13)

where δ2α denotes the upper control limit of SPE with a significant level of α. Jackson
and Mudholkar gave an expression for δ2α (Jackson and Mudholkar 1979)

δ2α = θ1

⎛
⎝ zα

√
2θ2h20

θ1
+ 1 + θ2h0(h0 − 1)

θ2
1

⎞
⎠

1/h0

, (1.14)

where

θi =
m∑

j=k+1

λi
j , i = 1, 2, 3, (1.15)

h0 = 1 − 2θ1θ3
3θ2

2

, (1.16)

where k is the number of retained principal components and zα is the normal deviation
corresponding to the upper percentile of 1 − α. Note that the above result is obtained
under the following conditions.

• The sample vector x follows a multivariate normal distribution.
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• In deriving the control limits, an approximation is made to this distribution that is
valid when θ1 is very large.

• This result holds regardless of the number of principal components retained in the
model.

When a fault occurs, the fault sample vector x consists of the normal part super-
imposed on the faulty part. The fault causes the SPE to be larger than the threshold
δ2α , which results in the fault being detected.

Nomikos and MacCregor (1995) used the results in Box (1954) to derive an
alternative upper control limit for SPE.

δ2α = gχ2
h;α (1.17)

where

g = θ2/θ1, h = θ2
1 /θ2. (1.18)

The relationship between SPE threshold (1.14) and (1.17) is as follows: Nomikos
and MacCregor (1995)

δ2α
∼= gh

(
1 − 2

9h
+ zα

√
2

9h

)3

1.2.3 Mahalanobis Distance

Define the following Mahalanobis distance which forms the global Hotelling’s T2

test:

D = XTS−1X ∼ m(n2 − 1)

n(n − m)
Fm,n−m, (1.19)

where S is the sample covariance of X . When S is singular with rank(S) = r <

m, Mardia discusses the use of the pseudo-inverse of S, which in turn yields the
Mahalanobis distance of the reduced-rank covariance matrix (Brereton 2015):

Dr = XTS+X ∼ r(n2 − 1)

n(n − r)
Fr,n−r (1.20)

where S+ is the Moore-Penrose pseudo-inverse. It is straightforward to show that

the global Mahalanobis distance is the sum of T2 in PCS and T2
H = xT P̃Λ̃

−1
P̃

T
x

(Hawkins’ statistic Hawkins 1974) in RS:

D = T2 + T2
H . (1.21)
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When the number of observations n is quite large, the globalMahalanobis distance
approximately obeys the χ2 distribution with m degrees of freedom:

D ∼ χ2
m . (1.22)

Similarly, the reduced-rank Mahalanobis distance follows:

Dr ∼ χ2
r . (1.23)

Therefore, faults can be detected using the correspondingly defined control limits
for D and Dr .

1.2.4 Combined Indices

In practice, better monitoring performance can be achieved in some cases by using a
combined index instead of two indices to monitor the process. Yue and Qin proposed
a combined index for fault detection that combines SPE and T2 as follows: Yue and
Qin (2001):

ϕ = SPE(X)

δ2α
+ T2(X)

χ2
l;α

= XTΦX, (1.24)

where

Φ = PΛ−1PT

χ2
l,α

+ I − P PT

δ2α
= PΛ−1PT

χ2
l,α

+ P̃ P̃
T

δ2α
. (1.25)

Notice that Φ is symmetric and positive definite. To use this index for fault detec-
tion, the upper control limit of ϕ is derived from the results of Box (1954), which
provides an approximate distribution with the same first two moments as the exact
distribution. Using the approximate distribution given in Box (1954), the statistical
data ϕ is approximated as follows:

ϕ = XTΦX ∼ gχ2
h , (1.26)

where the coefficient

g = tr(SΦ)2

tr(SΦ)
(1.27)

and the degree of freedom for χ2
h distribution is
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h = [tr(SΦ)]2
tr(SΦ)2

, (1.28)

in which,

tr(SΦ) = l

χ2
l;α

+
∑m

i=l+1 λi

δ2α
(1.29)

tr(SΦ)2 = l

χ4
l;α

+
∑m

i=l+1 λ2
i

δ4α
(1.30)

After computing g and h, for a given significance level α, a control upper limit
for ϕ can be obtained. A fault is detected by ϕ if

ϕ > gχ2
h;α, (1.31)

It is worth noting that Raich and Cinar suggest another combined statistic (Raich
and Cinar 1996),

ϕ = c
SPE(X)

δ2α
+ (1 − c)

T2(X)

χ2
l;α

, (1.32)

where c ∈ (0, 1) is a constant. They further give a rule that the statistic less than 1
is considered normal. However, this may lead to wrong results because even if the
above statistic is less than 1, it is possible that SPE(X) > δ2α or T2(X) > χ2

l;α (Qin
2003).

1.2.5 Control Limits in Non-Gaussian Distribution

Nonlinear characteristics are the hotspot of current process monitoring research.
Many nonlinear methods such as kernel principal component, neural network, and
manifold learning arewidely used in the component extraction of processmonitoring.
The principal component extracted by such methods may be independent of the
Gaussian distribution. Thus, the control limits of the T2 and Q statistical series
are calculated by the probability density function, which can be estimated by the
nonparametric kernel density estimation (KDE) method. The KDE applies to the
T2 and Q statistics because they are univariate although the processes represented
by these statistics are multivariate. Therefore, the control limits for the monitoring
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statistics (T2 and SPE) are calculated from their respective PDF estimates, given by

∫ ThT2 ,α

−∞
g(T2)dT2 = α

∫ ThSPE,α

−∞
g(SPE)dSPE = α,

(1.33)

where

g(z) = 1

lh

l∑
j=1

K

(
z − z j
h

)

K denotes a kernel function and h denotes the bandwidth or smoothing parameter.
Finally, the fault detection logic for the PCS and RS is as follows:

T2 > ThT2,α or TSPE > ThSPE,α, Faults

T2 ≤ ThT2,α and TSPE ≤ ThSPE,α, Fault-free.
(1.34)
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Chapter 2
Multivariate Statistics in Single
Observation Space

The observation data collected from continuous industrial processes usually have
two main categories: process data and quality data, and the corresponding industrial
data analysis is mainly for the two types of data based on the multivariate statistical
techniques. Process data are collected by distributed control system (DCS) in real
time with frequent sampling (its basic sampling period usually is 1s). For example,
there are five typical variables in the process industries: temperature, pressure, flow
rate, liquid level, and composition. Among them, temperature, pressure, flow rate,
and liquid level are process variables. However, it is difficult to acquire the real-time
quality measurement in general due to the limitation of quality sensors. Usually, the
quality data are obtained by taking samples for laboratory test and their sampling
frequency is much lower than that of process data. For example, product composi-
tion, viscosity, molecular weight distribution, and other quality-related parameters
need to be obtained through various analytical instruments in the laboratory, such as
composition analyzers, gel permeation chromatography (GPC), or mass spectrome-
try.

Process data and quality data belong to two different observation spaces, so the
corresponding statistical analysis methods are correspondingly divided into two cat-
egories: single observation space and multiple observation spaces. This book intro-
duces the basic multivariate statistical techniques from this perspective of observa-
tion space. This chapter focuses on the analysis methods in single observation space,
including PCA and FDA methods. The core of these methods lies in the spatial pro-
jection oriented to different needs, such as sample dispersion or multi-class sample
separation. This projection could extract the necessary and effective features while
achieving the dimensional reduction. The next chapter focuses on the multivariate
statistical analysis methods between two-observation space, specifically including
PLS, CCA, and CVA. These methods aim at maximizing the correlation of variables
in different observation spaces, and achieve the feature extraction and dimensional
reduction.

© The Author(s) 2022
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18 2 Multivariate Statistics in Single Observation Space

2.1 Principal Component Analysis

As themodern industrial production system is becoming larger andmore complex, the
stored historical data not only has high dimensionality but also has strong coupling
and correlation between the process variables. This also makes it impractical to
monitor so many process variables at the same time. Therefore, we need to find
a reasonable method to minimize the loss of information contained in the original
variables while reducing the dimension of monitoring variables. If a small number
of independent variables can be used to accurately reflect the operating status of
the system, the operators can monitor these few variables to achieve the purpose of
controlling the entire production process.

Principal component analysis (PCA) is one of the most widely used multivari-
ate statistical algorithm (Pan et al. 2008). It is mainly used to monitor the process
data with high dimensionality and strong linear correlation. It decomposes high-
dimensional process variables into a few independent principal components and
then establishing a model. The extracted features constitute the projection principal
component subspace (PCS) of the PCA algorithm and this space contains most of
the changes in the system. The remaining features constitute the residual subspace,
which mainly contains the noise and interference during the monitoring process
and a small amount of system change information (Wiesel and Hero 2009). Due
to the integration of variables, PCA algorithm can be able to overcome the overlap-
ping information caused bymultiple correlations, and achieve dimensional reduction
of high-dimensional data, simultaneously. It also highlights the main features and
removes the noise and some unimportant features in the PCS.

2.1.1 Mathematical Principle of PCA

Suppose data matrix X ∈ Rn×m , where m is the number of variables and n is the
number of observations for each variable. Matrix X can be decomposed into the sum
of outer products of k vectors (Wang et al. 2016; Gao 2013):

X = t1 pT1 + t2 pT2 + · · · + tk pTk , (2.1)

where t i is score vector, also called the principal component of the matrix X , and
pi is the feature vector corresponding to the principal component, also called load
vector. Then (2.1) can also be written in the form of matrix:

X = T PT. (2.2)

Among them, T = [t1, t2, . . . , tk] is called the score matrix and P =
[ p1, p2, . . . , pk] is called the load matrix. The score vectors are orthogonal to each
other,
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tTi t j = 0, i �= j. (2.3)

The following relationships exist between load vectors:

{
pTi p j = 0, i �= j
pTi p j = 1, i = j

(2.4)

It is shown that the load vectors are also orthogonal to each other and the length
of each load vector is 1.

Multiplying the left and right sides of (2.2) by load vector pi and combining with
(2.4), we can get

t i = X pi . (2.5)

Equation (2.5) shows that each score vector t i is the projection of the original data
X in the direction of the load vector pi corresponding to t i . The length of the score
vector t i reflects the coverage degree of the original data X in the direction of pi .
The longer the length of t i , the greater the coverage degree or range of change of the
data matrix X in the direction of pi (Han 2012). The score vector t i is arranged as
follows :

‖t1‖ > ‖t2‖ > ‖t3‖ > · · · > ‖tk‖ . (2.6)

The load vector p1 represents the direction in which the data matrix X changes
most, and load vector p2 is orthogonal to p1 and represents the second largest direc-
tion of the data matrix X changes. Similarly, the load vector pk represents the direc-
tion in which X changes least. When most of the variance is contained in the first r
load vectors and the variance contained in the latterm − r load vectors is almost zero
which could be omitted. Then the data matrix X is decomposed into the following
forms:

X = t1 pT1 + t2 pT2 + · · · + tr pTr + E

= X̂ + E = T PT + E,
(2.7)

where X̂ is principle component matrix and E is the residual matrix whose main
information is caused by measurement noise. PCA divides the original data space
into principal component subspace (PCS) and residual subspace (RS). These two
subspaces are orthogonal and complementary to each other. The principal component
subspace mainly reflects the changes caused by normal data, while the residual
subspace mainly reflects the changes caused by noise and interference.

PCA is to calculate the optimal loading vectors p by solving the optimization
problem:

J = max
p �=0

pTXTX p
pT p

. (2.8)

The number r of principal components is generally obtained by cumulative percent
variance (CPV). Use eigenvalue decomposition or singular value decomposition of
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the covariance matrix of X and obtain all the eigenvalues λi . CPV is defined as
follows:

CPV =

r∑
i=1

λi

n∑
i=1

λi

. (2.9)

Generally, when the CPV value is greater than or equal to 85%, the corresponding
number r is obtained.

2.1.2 PCA Component Extraction Algorithm

There are two algorithms to implement PCA component extraction. Algorithm 1
is based on the singular value decomposition (SVD) of the covariance matrix and
Algorithm 2 obtains each principal component based on Nonlinear Iterative Partial
Least Squares algorithm (NIPALS), developed by H. Wold at first for PCA and later
for PLS (Wold 1992). It gives more numerically accurate results compared with the
SVD of the covariance matrix, but is slower to calculate.

The PCA dimensional reduction is illustrated by simple two-dimensional random
data. Figure2.1 shows the original random data sample in two-dimensional space.
Figure2.2 is a visualization with principal axis and confidence ellipse of the original
data. The green ray gives the direction with the largest variance of the original data
and the black ray shows the direction of second largest variance.

PCA projects the original data X from the two-dimensional space into one-
dimensional subspace along the direction of maximum variance direction. The
dimensional reduction is shown in Fig. 2.3.

Fig. 2.1 Two-dimensional
raw random data
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Algorithm 1 SVD-based component extraction algorithm
Input:
Data matrix X .

Output:
r principal components.

[S1] Normalize the original data set X = [
xT(1), xT(2), . . . , xT(n)

]T ∈ Rn×m , in which x =
[x1, x2, . . . , xm ] ∈ R1×m , with zero mean one variance.
[S2] Calculate the covariance matrix S of the Normalized data matrix X :

S = 1

n − 1
XXT. (2.10)

[S3] Find the eigenvalues and eigenvectors of the covariance matrix S using eigenvalue decom-
position:

|λi I − S| = 0

(λi I − S) pi = 0.
(2.11)

[S4] Sort the eigenvalues from large to small and determine the first r eigenvalues based on the
CPV index. Construct the corresponding eigenvector matrix P = [ p1, p2, . . . , pr ] according to
the eigenvectors D = (λ1, . . . , λr ).
[S5] Calculate the score matrix T based on the following relationship:

X = T P . (2.12)

[S6] The normalized data matrix X is decomposed as follows:

X = X̂ + E = T PT + X̃ . (2.13)

where X̂ is the principal component part of the data and X̃ is the residual part.
return r principal components

Fig. 2.2 Visualization of the
change principal axis and
confidence ellipse of the
original data
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Algorithm 2 NIPALS-based component extraction algorithm
Input:
Data matrix X .

Output:
r principal components.
[S1] Normalize the original data X .
[S2] Set i = 1 and choose a column x j from X and mark it as t1,i , that is, t1,i = x j .
[S3] Calculate the load vector p1

p1 = XT t1,i
tT1,i t1,i

. (2.14)

[S4] Normalize p1,

pT1 = pT1∥∥ p1∥∥ . (2.15)

[S5] Calculate the score vector t1,i+1,

t1,i+1 = X p1
pT1 p1

. (2.16)

[S6] Compare the t1,i and t1,i+1. If
∥∥t1,i+1 − t1,i

∥∥ < ε, and go to S7, where ε > 0 is a very small
positive constant. If

∥∥t1,i+1 − t1,i
∥∥ ≥ ε, set i = i + 1 and go back to S3.

[S7] Calculate the residual E1 = X − t1 pT1 , replace X with E1 and return to S2 to calculate the
next principal component t2 until the CPV value meets the requirements.
[S8] r principal components are obtained, namely:

X = t1 pT1 + t2 pT2 + · · · + tr pTr + X̃ = T PT + X̃, (2.17)

return r principal components

2.1.3 PCA Base Fault Detection

PCA can be applied to solve all kinds of data analysis problems, such as exploration
and visualization of high-dimensional data sets, data compression, data preprocess-
ing, dimensional reduction, removing data redundancy, and denoising. When it is
applied to the field of FDD and the detection process is divided into offline modeling
and online monitoring.

(1) Offline modeling: use the training data to construct a principal component anal-
ysis model and calculate the monitored statistics, such as SPE and T2, and its
control limits;

(2) Online monitoring: when a new sample vector x is obtain, it can be decomposed
into projections on PCS and RS (Zhang et al. 2017),
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Fig. 2.3 Dimensional
reduction results
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x = x̂ + x̃

x̂ = P PTx

x̃ = (I − P PT)x,

(2.18)

where x̂ is the projection of the sample x in PCS and x̃ is the projection of the
sample in RS. Calculate the statistics, SPE (1.12) on RS and T2 (1.9) on PCS
of new sample x, respectively. Compare the statistics of new sample with the
control limits obtained from the training data. If the statistics of the new sample
exceeds the control limit, it means that a fault has occurred, otherwise the system
is in the normal operation.

x̂ and x̃ are not only orthogonal (x̂T x̃ = 0) but also still statistically independent

(E
(
x̂T x̃

)
= 0). So, there are natural advantages to apply PCA algorithm to process

monitoring. The flowchart of PCA based fault detection is shown in Fig. 2.4. In
general, the fault detection process based onmultivariate statistical analysis is similar
as that of PCA, only the statistical model and statistics index are different.

2.2 Fisher Discriminant Analysis

Industrial processes are heavily instrumented and large amounts of data are collected
online and stored in computer database. A lot of data are usually collected during out-
of-control operations.When the data collected during an out-of-control operation has
been previously diagnosed, the data can be classified into separate categories, where
each category is related to a specific fault. When the data has not been diagnosed
before, cluster analysis can help diagnose the operation of collecting data, and the data
can be divided into a new category accordingly. If hyperplanes can separate the data
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Fig. 2.4 PCA-based fault detection

in the class, as shown in Fig. 2.5, these separation planes can define the boundaries
of each fault area. Once a fault is detected using the online data observation, the fault
can be diagnosed by determining the fault area where the observation is located.
Assuming that the detected fault is represented in the database, the fault can be
correctly diagnosed in this way.

2.2.1 Principle of FDA

Fisher discriminant analysis (FDA), a dimensionality reduction technique that has
been extensively studied in the pattern classification domain, takes into account the
information between the classes. For fault diagnosis, data collected from the plant
during in the specific fault operation are categorized into classes, where each class
contains data representing a particular fault. FDA is a classical linear dimensional-
ity reduction technique that is optimal in maximizing the separation between these
classes. Themain idea of FDA is to project data from a high-dimensional space into a
lower dimensional space, and to simultaneously ensure that the projectionmaximizes
the scatter between classes while minimizing the scatter within each class. It means
that the high-dimensional data of the same class is projected to the low-dimensional
space and clustered together, but the different classes are far apart.

Given training data for all classes X ∈ Rn×m , where n and m are the number of
observations and measurement variables, respectively. In order to understand FDA,
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Fig. 2.5 Two-dimensional comparison of FDA and PCA

it is first necessary to define various matrices, including the total scatter matrix, intra-
class (within-class) scatter matrix, and inter-class (between-class) scatter matrix. The
total scatter matrix is

St =
n∑

i=1

(x(i) − x̄) (x(i) − x̄)T , (2.19)

where x(i) represents the vector of measurement variables for the i-th observation
and x̄ is the total mean vector.

x̄ = 1

n

n∑
i=1

x(i). (2.20)

The within-scatter matrix for class j is

S j =
∑

x(i)∈X j

(
x(i) − x̄ j

) (
x(i) − x̄ j

)T
, (2.10)

where X j is the set of vectors x(i) which belong to the class j and x̄ j is the mean
vector for class j :

x̄ j = 1

n j

∑
x(i)∈X j

x(i), (2.22)



26 2 Multivariate Statistics in Single Observation Space

where n j is the number of observations in the j-th class. The intra-class scatter
matrix is

Sw =
p∑

j=1

S j , (2.23)

where p is the number of classes. The inter-class scatter matrix is

Sb =
p∑

j=1

n j
(
x̄ j − x̄

) (
x̄ j − x̄

)T
. (2.24)

It is obvious that the following relationship always holds:

St = Sb + Sw. (2.25)

Themaximum inter-class scattermeans that the sample centers of different classes
are as far apart as possible after projection (max vTSbv). The minimum intra-class
scatter is equivalent to making the sample points of the same class after projection to
be clustered together as much as possible (min vTSwv, |Sw| �= 0), where v ∈ Rm .

The optimal FDA project w is obtained by

J = max
w �=0

wTSbw

wTSww
. (2.26)

Both the numerator and denominator have project vector w. Considering that w
and αw, α �= 0 have the same effect, Let wTSww = 1, then the optimal objective
(2.26) becomes

J = max
w

wTSbw

s.t. wTSww = 1.
(2.27)

Firstly, let’s consider the optimization of first FDA vector w1. Solving (2.27) by
Lagrange multiplier method.

L(w1, λ1) = wT
1 Sbw1 − λ1(w

T
1 Sww1 − 1)

Find the partial derivative of L with respect to w1.

∂L

∂w1
= 2Sbw1 − 2λ1Sww1

The first FDA vector is equal to the eigenvectorsw1 of the generalized eigenvalue
problem.

Sbw1 = λ1Sww1 → S−1
w Sbw1 = λ1w1. (2.28)
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The first FDA vector boils down to finding the eigenvector w1 corresponding to
the largest eigenvalue of the matrix S−1

w Sb.
The second FDA vector is captured such that the inter-class scatter is maximized,

while the intra-class scatter is minimized on all axes perpendicular to the first FDA
vector and the same is true for the remaining FDA vectors. The kth FDA vectors is
obtained by

S−1
w Sbwk = λkwk,

whereλ1 ≥ λ2 ≥ · · · ≥ λp−1 andλk indicate the degree of overall separability among
the classes by projecting the data onto wk .

When Sw is invertible, the FDA vector can be computed from the generalized
eigenvalue problem. This is almost always true as long as the number of observations
n is significantly larger than the number of measurements m (the case in practice). If
the Sw matrix is not invertible, you can use PCA to project data into m1 dimensions
before executing FDA, in which m1 is the number of non-zero eigenvalues of the
covariance matrix St .

The first FDA vector is the eigenvector associated with the largest eigenvalue, the
second FDA vector is the eigenvector associated with the second largest eigenvalue,
and so on. The large eigenvalue λk shows that when the data in classes are projected
onto the associated eigenvector wk , there is a large overall separation of class means
relative to the variance of the class, and thus, a large degree of separation among
classes along the direction of wk . Since the rank of Sb is less than p and at most
p − 1 eigenvalues are not equal to zero. The FDA provides a useful ordering of
eigenvectors only in these directions.

When FDA is used as a pattern classification, the dimensionality reduction
technique is implemented for all classes of data at the same time. Denote Wa =
[w1,w2, . . . ,wa] ∈ Rm×a . The discriminant function can be deduced as

g j (x) = − 1

2

(
x − x̄ j

)T
Wa

(
1

n j − 1
WT

a S jWa

)−1

WT
a

(
x − x̄ j

) + ln
(
pi

)

− 1

2
ln

[
det

(
1

n j − 1
WT

a S jWa

)]
.

(2.29)
FDA can also be used to detect faults by defining an additional class of data on

top of the fault class, i.e., data collected under normal operating conditions. The
reliability of fault detection using (2.29) depends on the similarity between the data
from normal operating conditions and the fault class data in the training set. Fault
detection using FDA will yield small miss rates for known fault classes when a
transformation W exists such that data from normal operating conditions can be
reasonably separated from other fault classes.



28 2 Multivariate Statistics in Single Observation Space

2.2.2 Comparison of FDA and PCA

As two classical techniques for dimensionality reduction of a single data set, PCA
and FDA exhibit similar properties in many aspects. The optimization problems of
PCA and FDA, respectively, formulated mathematically in (2.8) and (2.26), can also
be captured as

JPCA = max
w �=0

wTStw

wTw
(2.30)

JFDA = max
w �=0

wTStw

wTSww
(2.31)

In the special case, Sw = a I, a �= 0, their vector optimization results are iden-
tical. This would occur if the data for each class could be described by a uniformly
distributed ball (i.e., without a dominant direction), even if these balls had different
sizes. The difference between these two techniques only occurs when the data used to
describe either class appears elongated. These elongated shapes occur on highly cor-
related data sets, for example, the data collected in industrial processes. Thus, when
FDA and PCA are applied to process data in the same way, the FDA vectors and
the PCA loading vectors are significantly different. The different objectives of (2.30)
and (2.31) show that the FDA has superior performance than PCA at distinguishing
among fault classes.

Figure2.5 illustrates a difference between PCA and FDA. The first FDA vector
and the PCA loading vector are almost perpendicular. PCA is to map the entire data
set to the coordinate axis that is most convenient to represent the data. The mapping
does not use any classification information inside the data. Therefore, although the
entire data set ismore convenient to represent after PCA (reducing the dimensionality
and minimizing the loss of information), it may become more difficult to classify. It
is found that the projections of red and blue are overlapped in the PCA direction, but
separated in the FDA direction. The two sets of data become easier to distinguish (it
can be distinguished in low dimensions, reducing large amount of calculations) by
FDA mapping.

To illustrate more clearly the difference between PCA and FDA, the following
numerical example of binary classification is given.

x1 = [5 + 0.05µ(0, 1); 3.2 + 0.9µ(0, 1)] ∈ R2×100

x2 = [5.1 + 0.05µ(0, 1); 3.2 + 0.9µ(0, 1)] ∈ R2×100

X = [x1, x2] ∈ R2×200,

whereµ(0, 1) ∈ R1×100 is a uniformly distributed randomvector on [0, 1]. X is a two-
mode data and its projection of FDA and PCA is shown in Fig. 2.6. The distribution
of the data in the classes is somewhat elongated. The linear transformation of the
data on the first FDA vector separates the two types of data better than the linear
transformation of the data on the first PCA loading vector.
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Fig. 2.6 Two-dimensional data projection comparison of FDA and PCA

Both PCA and FDA can be used to classify the original data after dimension-
ality reduction. PCA is an unsupervised method, i.e. it has no classification labels.
After dimensionality reduction, unsupervised algorithms such as K-Means or self-
organizing mapping networks are needed for classification. The FDA is a supervised
method. It first reduces the dimensionality of the training data and then finds a linear
discriminant function. The similarities and differences between FDA and PCA can
be summarized as follows.

1. Similarities

(1) Both functions are used to reduce dimensionality;
(2) Both assume Gaussian distribution.

2. Differences

(1) FDA is a supervised dimensionality reduction method, while PCA is unsu-
pervised;

(2) FDA dimensionality reduction can be reduced to the number of categories
k − 1 at most, PCA does not have this restriction;

(3) FDA is more dependent on the mean. If the sample information is more
dependent on variance, the effect will not be as good as PCA;

(4) FDA may overfit the data.
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Chapter 3
Multivariate Statistics Between
Two-Observation Spaces

As mentioned in the previous chapter, industrial data are usually divided into two
categories, process data and quality data, belonging to different measurement spaces.
The vast majority of smart manufacturing problems, such as soft measurement, con-
trol,monitoring, optimization, etc., inevitably requiremodeling the data relationships
between the two kinds ofmeasurement variables. This chapter’s subject is to discover
the correlation between the sets in different observation spaces.

The multivariate statistical analysis relying on correlation among variables gener-
ally include canonical correlation analysis (CCA) and partial least squares regression
(PLS). They all perform linear dimensionality reduction with the goal of maximizing
the correlation between variables in twomeasurement spaces. The difference are that
CCA maximize correlation, while PLS maximize covariance.

3.1 Canonical Correlation Analysis

Canonical correlation analysis (CCA) was first proposed by Hotelling in 1936
(Hotelling 1936). It is a multivariate statistical analysis method that uses the cor-
relation between two composite variables to reflect the overall correlation between
two sets of variables. The CCA algorithm is widely used in the analysis of data cor-
relation and it is also the basis of partial least squares. In addition, it is also used in
feature fusion, data dimensionality reduction, and fault detection (Yang et al. 2015;
Zhang and Dou 2015; Zhang et al. 2020; Hou 2013; Chen et al. 2016a, b).
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3.1.1 Mathematical Principle of CCA

Assuming that there are l dependent variables y = (y1, y2, . . . , yl)
T and m indepen-

dent variables x = (x1, x2, . . . , xm)T. In order to capture the correlation between the
dependent variables and the independent variables, n sample points are observed,
which constitutes two data sets

X = [x(1), x(2), . . . , x(n)]T ∈ Rn×m

Y = [
y(1), y(2), . . . , y(n)

]T ∈ Rn×l

CCA draws on the idea of component extraction to find a canonical component u,
which is a linear combination of variables xi ; and a canonical component v, which
is a linear combination of yi . In the process of extraction, the correlation between
u and v is required to be maximized. The correlation degree between u and v can
roughly reflect the correlation between X and Y .

Without loss of generality, assuming that the original variables are all standardized,
i.e., each column of the data set X and Y has mean 0 and variance 1, the covariance
matrix of cov(X,Y) is equal to its correlation coefficient matrix, in which,

cov(X,Y) = 1

n

[
XTX XTY
YTX YTY

]
=

[
Σ xx Σ xy

ΣT
xy Σ yy

]

PCA is analyzed for Σ xx or Σ yy , while CCA is analyzed for Σ xy

Now the problem is how to find the direction vectors α and β, and then use them
to construct the canonical components:

u = α1x1 + α2x2 + · · · + αmxm
v = β1y1 + β2y2 + · · · + βl yl ,

(3.1)

where α = [α1,α2, . . . ,αm]T ∈ Rm×1, β = [β1,β2, . . . ,βl ]T ∈ Rl×1, such that the
correlation between u and v is maximized. Obviously, the sample means of u and v

are zero, and their sample variances are as follows:

var(u) = αTΣ xxα

var(v) = βTΣ yyβ
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The covariance of u and v is

cov(u, v) = αTΣ xyβ.

One way to maximize the correlation of u and v is to make the corresponding corre-
lation coefficient maximum, i.e.,

max ρ(u, v) = cov(uv)√
var(u)var(v)

. (3.2)

In CCA, the following optimization objective is used:

JCCA = max < u, v >= αTΣ xyβ

s.t. αTΣ xxα = 1;βTΣ yyβ = 1.
(3.3)

This optimization objective can be summarized as follows: to seek a unit vectorα on
the subspace of X and a unit vector β on the subspace of Y such that the correlation
between u and v is maximized. Geometrically, ρ(u, v) is again equal to the cosine
of the angle between u and v. Thus, (3.3) is again equivalent to making the angle ω
between u and v take the minimum value.

It can be seen from (3.3) that the goal of the CCA algorithm is finally transformed
into a convex optimization process. The maximum value of this optimization goal is
the correlation coefficient of X and Y , and the corresponding α and β are projection
vectors, or linear coefficients. After the first pair of canonical correlation variables
are obtained, the second to kth pair of canonical correlation variables that are not
correlated with each other can be similarly calculated.

The following Fig. 3.1 shows the basic principle diagram of the CCA algorithm:
At present, there are two main methods which include eigenvalue decomposition

and singular value decomposition for optimizing the above objective function to
obtain α and β.

Fig. 3.1 Basic principle diagram of the CCA algorithm
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3.1.2 Eigenvalue Decomposition of CCA Algorithm

Using the Lagrangian function, the objective function of (3.3) is transformed as
follows:

max JCCA(α,β) = αTΣ xyβ − λ1

2
(αTΣ xxα − 1) − λ2

2
(βTΣ yyβ − 1). (3.4)

Set ∂ J
∂α

= 0 and ∂ J
∂β

= 0, then

Σ xyβ − λ1Σ xxα = 0

ΣT
xyα − λ2Σ yyβ = 0.

(3.5)

Let λ = λ1 = λ2 = αTΣ xyβ, and multiply (3.5) to the left by Σ−1
xx and Σ−1

yy ,
respectively, and get:

Σ−1
xx Σ xyβ = λα

Σ−1
yy Σyxα = λβ.

(3.6)

Substituting the second formula in (3.6) into the first formula, we can get

Σ−1
xx Σ xyΣ

−1
yy Σyxα = λ2α (3.7)

From (3.7), we can get the largest eigenvalue λ and the corresponding maximum
eigenvector α only by eigenvalue decomposition of the matrix Σ−1

xx Σ xyΣ
−1
yy Σ yx . In

the similar way, the vector β can be obtained. At this time, the projection vectors α
and β of a set of canonical correlation variables can be obtained.

3.1.3 SVD Solution of CCA Algorithm

Let α = Σ−1/2
xx a, β = Σ−1/2

yy b, and then we can get

αTΣ xxα = 1 → aTΣ−1/2
xx Σ xxΣ

−1/2
xx a = 1 → aTa = 1

βTΣ yyβ = 1 → bTΣ−1/2
yy Σ yyΣ

−1/2
yy b = 1 → bTb = 1

αTΣ xyβ = aTΣ−1/2
xx Σ xyΣ

−1/2
yy b.

(3.8)
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In other words, the objective function of (3.3) can be transformed into as follows:

JCCA(a, b) = argmax
a,b

aTΣ−1/2
xx Σ xyΣ

−1/2
yy b

s.t. aTa = bTb = 1.
(3.9)

A singular value decomposition for matrix M yields

M = Σ−1/2
xx Σ xyΣ

−1/2
yy = Γ ΣΨ T,Σ =

[
Λκ 0
0 0

]
(3.10)

where κ is the number of principal elements or non-zero singular values, and κ ≤
min(l,m), Λκ = diag (λ1, . . . ,λκ), λ1 ≥ · · · ≥ λκ 0.

Since all columns of Γ and Ψ are standard orthogonal basis, aTΓ and Ψ Tb are
vectors with only one scalar value of 1, and the remaining scalar value of 0. So, we
can get

aTΣ−1/2
xx Σ xyΣ

−1/2
yy b = aTΓ ΣΨ Tb = σab. (3.11)

From (3.11), it can be seen that aTΣ−1/2
xx Σ xyΣ

−1/2
yy b maximizes actually the left

and right singular vectors corresponding to themaximum singular values ofM . Thus,
using the corresponding left and right singular vectors Γ and Ψ , we can obtain the
projection vectors α and β for a set of canonical correlation variables, namely,

α = Σ−1/2
xx a

β = Σ−1/2
yy b.

(3.12)

3.1.4 CCA-Based Fault Detection

When there is a clear input-output relationship between the two types of data mea-
surable online, CCA can be used to design an effective fault detection system. The
CCA-based fault detection method can be considered as an alternative to PCA-based
fault detection method, and an extension of PLS-based fault detection method (Chen
et al. 2016a).

Let

J s = Σ−1/2
xx Γ (:, 1 : κ)

Ls = Σ−1/2
yy Ψ (:, 1 : κ)

J res = Σ−1/2
xx Γ (:,κ + 1 : l)

Lres = Σ−1/2
yy Ψ (:,κ + 1 : m).
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According to CCA method, JT
s x and LT

s y are closely related. However, in actual
systems, measurement variables are inevitably affected by noise, and the correlation
between JT

s x and LT
s y can be expressed as

LT
s y(k) = ΛT

κ J
T
s x(k) + vs(k), (3.13)

where vs is the noise term and weakly related to JT
s x. Based on this, the residual

vector is
r1(k) = LT

s y(k) − ΛT
κ J

T
s x(k). (3.14)

Assume that the input and output data obey the Gaussian distribution. It is known
that linear transformation does not change the distribution of random variables, so
the residual signal r1 also obeys the Gaussian distribution and its covariance matrix
is

Σr1 = 1

N − 1

(
LT
s Y − ΛT

κ J
T
s X

) (
LT
s Y − ΛT

κ J
T
s U

)T = Iκ − Λ2
κ

N − 1
. (3.15)

Similarly, another residual vector can be obtained

r2(k) = JT
s x(k) − ΛκLT

s y(k). (3.16)

Its covariance matrix is

Σr2 = 1

N − 1

(
JT
s U − ΛκLT

s Y
) (

JT
s U − ΛκLT

s Y
)T = Iκ − Λ2

κ

N − 1
. (3.17)

It can be seen from formula (3.15)–(3.16) that the covariance of residual r1 and r2
are the same. For fault detection, the following two statistics can be constructed:

T2
1(k) = (N − 1)rT1 (k)

(
Iκ − Λ2

κ

)−1
r1(k) (3.18)

T2
2(k) = (N − 1)rT2 (k)

(
Iκ − Λ2

κ

)−1
r2(k). (3.19)

3.2 Partial Least Squares

Multiple linear regression analysis is relatively common and the least square method
is generally used to estimate the regression coefficient in this type of regression
method. But the least square technique often fails when there is multiple correlation
between the independent variables or the number of samples is less than the number of
variables. So the partial least square technique is developed to resolve this problem.
S. Wold and C. Albano et al. proposed the partial least squares method for the
first time and applied it to the field of chemistry (Wold et al. 1989). It aims at
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the regression modeling between two sets of multi-variables with high correlation
and integrates the basic functions of multiple linear regression analysis, principal
component analysis, and canonical correlation analysis. PLS is also called the second-
generation regression analysis method due to its simplification model in the data
structure and correlation (Hair et al. 2016). It has developed rapidly and widely used
in various fields recent years (Okwuashi et al. 2020; Ramin et al. 2018).

3.2.1 Fundamental of PLS

Suppose there are l dependent variables (y1, y2, . . . , yl) andm independent variables
(x1, x2, . . . , xm). In order to study the statistical relationship between the dependent
variable and the independent variable, n sample points are observed, which consti-
tutes a data set

(
X = [x1, x2, . . . , xm] ∈ Rn×m , Y = [y1, y2, . . . , yl] ∈ Rn×l

)
of the

independent variables and the dependent variables.
To address the problems encountered in least squares multiple regression between

X and Y , the concept of component extraction is introduced in PLS regression
analysis. Recall that principal component analysis, for a single data matrix X , finds
the composite variable that best summarizes the information in the original data. The
principal component T in X is extracted with the maximum variance information of
the original data:

max var (T ) , (3.20)

PLS extracts component vectors t i and ui from X andY , whichmeans t i is a linear
combination of (x1, x2, . . . , xm), and ui is a linear combination of (y1, y2, . . . , yl).
During the extractingof components, in order tomeet the needs of regression analysis,
the following two requirements should be satisfied:

(1) t i and ui carry the variation information in their respective data set as much as
possible, respectively;

(2) The correlation between t i and ui is maximized.

The two requirements indicate that t i and ui should represent the data set X and
Y as well as possible and the component t i of the independent variable has the best
ability to explain the component ui of the dependent variable.

3.2.2 PLS Algorithm

The most popular algorithm used in PLS to compute the vectors in the calibration
step is known as nonlinear iterative partial least squares (NIPALS). First, normalize
the data to achieve the purpose of facilitating calculations. Normalize X to get matrix
E0 and normalize Y to get matrix F0:
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E0 =
⎡

⎢
⎣

x11 · · · x1m
...

...
...

xn1 · · · xmn,

⎤

⎥
⎦ , F0 =

⎡

⎢
⎣

y11 · · · y1l
...

...
...

yn1 · · · xnl .

⎤

⎥
⎦ (3.21)

In the first step, set t1 (t1 = E0w1) to be the first component of E0, and w1

is the first direction vector of E0, which is a unit vector, ‖w1‖ = 1. Similarly, set
u1 (u1 = F0c1) to be the first component of F0, and E0 is the first direction vector
of F0, which is a unit vector too, ‖c1‖ = 1.

According to the principle of principal component analysis, t1 and u1 shouldmeet
the following conditions in order to be able to represent the data variation information
in X and Y well:

max var (t1)

max var (u1)
(3.22)

On the other hand, t1 is further required to have the best explanatory ability for
u1 due to the needs of regression modeling. According to the thinking of canonical
correlation analysis, the correlation between t1 and u1 should reach the maximum
value:

max r (t1, u1) . (3.23)

The covariance of t1 and u1 is usually used to describe the correlation in partial
least squares regression:

max Cov (t1, u1) = √
var (t1) var (u1)r (t1, u1) (3.24)

Converting to the normal mathematical expression, t1 and u1 is solved by the
following optimization problem:

max
w1,c1

〈E0w1, F0c1〉

s.t

{
wT

1w1 = 1

cT1 c1 = 1.

(3.25)

Therefore, it needs to calculate the maximum value of wT
1 E

T
0 F0c1 under the

constraints of ‖w1‖2 = 1 and ‖c1‖2 = 1.
In this case, the Lagrangian function is

s = wT
1 E

TF0c1 − λ1
(
wT

1w1 − 1
) − λ2

(
cT1 c1 − 1

)
. (3.26)

Calculate the partial derivatives of s with respect to w1, c1, λ1, and λ2, and let
them be zero

∂s

∂w1
= ET

0 F0c1 − 2λ1w1 = 0, (3.27)
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∂s

∂c1
= ET

0 F0w1 − 2λ2c1 = 0, (3.28)

∂s

∂λ1
= − (

wT
1w1 − 1

) = 0, (3.29)

∂s

∂λ2
= − (

cT1 c1 − 1
) = 0. (3.30)

It can be derived from the above formulas that

2λ1 = 2λ2 = wT
1 E

T
0 F0c1 = 〈E0w1, F0c1〉 (3.31)

Let θ1 = 2λ1 = 2λ2 = wT
1 E

T
0 F0c1, so θ1 is the value of the objective function of

the optimization problem (3.25). Then (3.27) and (3.28) are rewritten as

ET
0 F0c1 = θ1w1, (3.32)

FT
0 E0w1 = θ1c1. (3.33)

Substitute (3.33) into (3.32),

ET
0 F0FT

0 E0w1 = θ21w1. (3.34)

Substitute (3.32) into (3.33) simultaneously,

FT
0 E0ET

0 F0c1 = θ21c1. (3.35)

Equation (3.34) shows that w1 is the eigenvector of matrix ET
0 F0FT

0 E0 with the
corresponding eigenvalue θ21. Here, θ1 is the objective function. If we want to get
its maximum value, w1 should be the unit eigenvector of the maximum eigenvalue
of matrix ET

0 F0FT
0 E0. Similarly, c1 should be the unit eigenvector of the largest

eigenvalue of the matrix FT
0 E0ET

0 F0.
Then the first components t1 and u1 are calculated from the direction vectors w1

and c1:
t1 = E0w1

u1 = F0c1.
(3.36)

The regression equations of E0 and F0 is found by t1 and u1:

E0 = t1 pT1 + E1

F0 = u1qT
1 + F∗

1

F0 = t1rT1 + F1.

(3.37)
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The regression coefficient vectors in (3.37) are

p1 = ET
0 t1

‖t1‖2

q1 = FT
0u1

‖u1‖2

r1 = FT
0 t1

‖t1‖2
.

(3.38)

E1, F∗
1 and F1 are the residual matrices of the three regression equations.

Second step is to replace E0 and F0 with residual matrices E1 and F1, respec-
tively. Then find the second pair of direction vectors w2, c2, and the second pair of
components t2 and u2:

t2 = E1w2

u2 = F1c2

θ2 = wT
2 E

T
1 F1c2.

(3.39)

Similarly, w2 is the unit eigenvector corresponding to the largest eigenvalue of
matrix ET

1 F1FT
1 E1, and c2 is the unit eigenvector of the largest eigenvalue of matrix

FT
1 E1ET

1 F1. Calculate the regression coefficient

p2 = ET
1 t2

‖t2‖2

r2 = FT
1 t2

‖t2‖2
.

(3.40)

The regression equation is updated:

E1 = t2 pT2 + E2

F1 = t2rT2 + F2.
(3.41)

Repeat the calculation according to the above steps. If the rank of X is R, the
regression equation can be obtained:

E0 = t1 pT1 + · · · + t R pTR
F0 = t1rT1 + · · · + t R rTR + FR .

(3.42)

If the number of feature vectors used in the PLS modeling is large enough, the
residuals could be zero. In general, it only needs to select a(a � R) components
among them to form a regression model with better prediction. The number of prin-
cipal components required for modeling is determined by cross-validation discussed
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in Sect. 3.2.3. Once the appropriate component number is determined, the external
relationship of the input variable matrix X as

X = T PT + X̄ =
a∑

h=1

th pTh + X̄ . (3.43)

The external relationship of the output variable matrix Y can be written as

Y = U QT + Ȳ =
a∑

h=1

uhqT
h + Ȳ . (3.44)

The internal relationship is expressed as

ûh = bh th, bh = tThuh/tTh th . (3.45)

3.2.3 Cross-Validation Test

In many cases, the PLS equation does not require the selection of all principal com-
ponents for regression modeling, but rather, as in principal component analysis, the
first d(d ≤ l) principal components can be selected in a truncated manner, and a
better predictive model can be obtained using only these d principal components.
In fact, if the subsequent principal components no longer provide more meaningful
information to explain the dependent variable, using too many principal components
will only undermine the understanding of the statistical trend and lead to wrong
prediction conclusions. The number of principal components required for modeling
can be determined by cross-validation.

Cross-validation is used to prevent over-fitting caused by complex model. Some-
times referred to as the circular estimation, it is a statistically useful method for
cutting data sample into smaller subset. This is done by first doing the analysis on
a subset, while the other subset is used for subsequent confirmation and validation
of this analysis. The subset used for analysis is called the training set. The other
subset is called validation set and generally separated from the testing set. Two
cross-validation methods often used in practice are K -fold cross-validation (K-CV)
and leave-one-out cross-validation (LOO-CV).

K-CV divides the n original data into K groups (generally evenly divided), makes
each subset of data into a validation set once separately. The rest of the K − 1 subsets
are considered as the training set, so K-CV will result in K models. In general, K is
selected between 5 and 10. LOO-CV is essentially N-CV. The process of determining
the number of principal components will be described in detail using LOO-CV as
an example.
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All n samples are divided into two parts: the first part is the set of all samples
excluding a certain sample i (containing a total of n − 1 samples) and a regression
equation is fitted with this data set using d principal components; The second part is
to substitute the i th sample that was just excluded into the fitted regression equation
to obtain the predicted value ŷ(i) j (d), j = 1, 2, . . . , l of y j . Repeating the above test
for each i = 1, 2, . . . , n , the sum of squared prediction errors for y j can be defined
as PRESS j (d).

PRESS j (d) =
n∑

i=1

(
yi j − ŷ(i) j (d)

)2
, j = 1, 2, . . . , l. (3.46)

The sum of squared prediction errors of Y = (y1, . . . , yl)
T can be obtained as

PRESS(d) =
l∑

j=1

PRESS j (d). (3.47)

Obviously, if the robustness of the regression equation is not good, the error is large
and thus it is very sensitive to change in the samples, and the effect of this perturbation
error will increase the PRESS(d) value.

On the other hand, use all sample points to fit a regression equation containing d
components. In this case, the fitted value of the i th sample point is ŷi j (d). The fitted
error sum of squares for y j is defined as SS j (d) value

SS j (d) =
n∑

i=1

(
yi j − ŷi j (d)

)2
. (3.48)

The sum of squared errors of Y is

SS(d) =
l∑

i=1

SSj (d) (3.49)

Generally, PRESS(d) is greater than SS(d) because PRESS(d) contains an unknown
perturbation error and the fitting error decreaseswith the increase of components, i.e.,
SS(d) is less than SS(d − 1). Next, compare SS(d − 1) and PRESS(d). SS(d − 1)
is the fitting error of the regression equation that is fitted with all samples with d
components; PRESS(d) contains the perturbation error of the samples but with one
more component. If the d component regression equation with perturbation error
can be somewhat smaller than the fitting error of the d − 1 component regression
equation, it is considered that adding one component td will result in a significant
improvement in prediction accuracy. Therefore, it is always expected that the ratio
of PRESS(d)

SS(d−1) is as small as possible. The general setting
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PRESS(d)

SS(d − 1)
≤ (1 − 0.05)2 = 0.952. (3.50)

IF PRESS(d) ≤ 0.952SS(d − 1), the addition of the component is considered ben-
eficial. And conversely, if PRESS(d) > 0.952SS(d − 1), the new addition of com-
ponents is considered to have no significant improvement in reducing the prediction
error of the regression equation.

In practice, the following cross-validation index is used. For each dependent vari-
able y j , define

Q2
d j = 1 − PRESS j (d)

SS j (d − 1)
. (3.51)

For the full dependent variable Y , the cross-validation index of component td is
defined as

Q2
d = 1 − PRESS(d)

SS(d − 1)
. (3.52)

The marginal contribution of component td to the predictive accuracy of the
regression model has the following two scales (cross-validation index).

(1) Q2
d > 1 − 0.952 = 0.0975, the marginal contribution of td component is signif-

icant; and
(2) For k = 1, 2, . . . , l, there is at least one k such that Q2

dj > 0.0975 holds, at which
point the addition of component td leads to a significant improvement in the
prediction accuracy of at least one dependent variable yk . Therefore it can also
be argued that adding component td is clearly beneficial.
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Chapter 4
Simulation Platform for Fault Diagnosis

The previous chapters have described the mathematical principles and algorithms
of multivariate statistical methods, as well as the monitoring processes when used
for fault diagnosis. In order to validate the effectiveness of data-driven multivariate
statistical analysismethods in the field of fault diagnosis, it is necessary to conduct the
corresponding fault monitoring experiments. Therefore this chapter introduces two
kinds of simulation platform,TennesseeEastman (TE) process simulation systemand
fed-batch Penicillin Fermentation Process simulation system. They are widely used
as test platforms for the process monitoring, fault classification, and identification of
industrial process. The related experiments based on PCA, CCA, PLS, and FDA are
completed on the TE simulation platforms.

4.1 Tennessee Eastman Process

The original TE industrial process control problem was developed by Downs and
Vogel in 1993. It is used for the open and challenging control-related topics including
multi-variable controller design, optimization, adaptive and predictive control, non-
linear control, estimation and identification, process monitoring and diagnosis, and
education. TE process model is established according to the actual chemical process.
It has been widely used as a benchmark for control and monitoring research process.
Figure4.1 shows the flow diagram of TE process with five major units: reactor,
condenser, compressor, vaporliquid separator, and stripper. Four kinds of gaseous
material A, C, D, and E are input for reaction. In addition, a small amount of
inert gas B is contained besides the above feeds. The final products are three liquid
including G, H , and F , where F is the by-product.
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Fig. 4.1 Tennessee Eastman process

A(g) + C(g) + D(g) → G(liq), product G

A(g) + C(g) + E(g) → H(liq), product H

A(g) + E(g) → F(liq), by-product

3D(g) → 2F(liq), by-product

Briefly, TE process consists of two data modules: XMV module containing 12
manipulated variables (XMV(1)-XMV(12):x23 − x34) and XMEASmodule consist-
ing of 22 process measured variables (XMEAS(1)-XMEAS(22):x1 − x22) and 19
component measured variables (XMEAS(23)-XMEAS(41):x35 − x53), as listed in
Tables4.1 and 4.2.

In this book, the code provided is available on the website online at http://depts.
washington.edu/control/LARRY/TE/download.html. Also, the code and data sets
can be downloaded. The Simulink simulator allows an easy setting and generation
of the operation modes, measurement noises, sampling time, and magnitudes of
the faults. It is thus very helpful for the data-driven process monitoring study. 21
artificially disturbances (considered as faulty operations for fault diagnosis problem)
in the TE process are shown in Table4.3. In general, the entire TE data consists of
training set and testing set, and each set includes 22 kinds of data under different
simulation operations. Each kind of data has sampled measurements on 53 observed
variables.

In the data set given in the web link above, d00.dat to d21.dat are training sets, and
d00_te.dat to d21_te.dat are testing sets. d00.dat and d00_te.dat are samples under

http://depts.washington.edu/control/LARRY/TE/download.html
http://depts.washington.edu/control/LARRY/TE/download.html
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Table 4.1 Monitoring variables in the TE process(x1 − x34)

No. Variable name Units No. Variable name Units

x1 A feed (stream 1) kscmh x18 Stripper temperature ◦C
x2 D feed (stream 2) kgh−1 x19 Stripper steam flow kgh−1

x3 E feed (stream 3) kgh−1 x20 Compress work KW

x4 A and C feed (steam 4) kscmh x21 Reactor cooling water
outlet temperature

◦C

x5 Recycle flow (stream 8) kscmh x22 Condenser cooling water
outlet temperature

◦C

x6 Reactor feed rate (stream 6) kscmh x23 D feed flow valve (stream
2)

%

x7 Reactor pressure kPa gauge x24 E feed flow valve (stream
3)

%

x8 Reactor level % x25 A feed flow valve (stream
1)

%

x9 Reactor temperature ◦C x26 A and C feed flow valve
(stream 4)

%

x10 Purge rate (stream 9) kscmh x27 Compressor recycle valve %

x11 Product separator
temperature

◦C x28 Purge valve (stream 9) %

x12 Product separator level % x29 Separator pot liquid flow
valve (stream 10)

%

x13 Product separator pressure kPa gauge x30 Stripper liquid product
flow valve (stream 11)

%

x14 Product separator
underflow (stream 10)

m3h−1 x31 Stripper steam valve %

x15 Stripper level % x32 Reactor cooling water flow
valve

%

x16 Stripper pressure kPa gauge x33 Condenser cooling water
flow valve

%

x17 Stripper underflow (stream
11)

m3h−1 x34 Agitator speed

the normal operation conditions. The training samples of d00.dat are sampled under
25h running simulation. The total number of observations is 500. The d00_te.dat
test samples are obtained under 48h running simulation, and the total number of
observation data is 960. d01.dat–d21.dat (for training) and d01_te.dat–d21_te.dat
(for testing) are sampled with different faults, in which the numerical label of the
data set are corresponding to the fault type.

All the testing data set are obtained under 48h running simulation with the faults
introduced at 8h. A total of 960 observations are collected, in which the first 160
observations are in the normal operation. It is worth to point out that the data sets
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Table 4.2 Monitoring variables in the TE process(x35 − x53)

No. Variable name Stream No. Variable name Stream

x35 Composition A 6 x45 Composition E 9

x36 Composition B 6 x46 Composition F 9

x37 Composition C 6 x47 Composition G 9

x38 Composition D 6 x48 Composition H 9

x39 Composition E 6 x49 Composition D 11

x40 Composition F 6 x50 Composition E 11

x41 Composition A 9 x51 Composition F 11

x42 Composition B 9 x52 Composition G 11

x43 Composition C 9 x53 Composition H 11

x44 Composition D 9

Table 4.3 Disturbances for the TE process

IDV Process variable Tape

1 A/C feed ratio, B composition constant (stream 4) Step

2 B composition, A/C feed ratio constant (stream 4) Step

3 D feed temperature (stream 2) Step

4 Reactor cooling water inlet temperature Step

5 Condenser cooling water inlet temperature Step

6 A feed loss (stream 1) Step

7 C header pressure loss−reduced availability (stream 4) Step

8 A, B, C feed composition (stream 4) Random

9 D feed temperature (stream 2) Random

10 C feed temperature (stream 4) Random

11 Reactor cooling water inlet temperature Random

12 Condenser cooling water inlet temperature Random

13 Reaction kinetics Slow drift

14 Reactor cooling water valve Sticking

15 Condenser cooling water valve Sticking

16 Unknown Unknown

17 Unknown Unknown

18 Unknown Unknown

19 Unknown Unknown

20 Unknown Unknown

21 Valve position (stream 4) Constant
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once generated by Leoand et al. (2001) is widely accepted for process monitoring
and fault diagnosis research. The data sets are smoothed, filtered, and normalized.
The monitored variables are variables x1 − x53.

4.2 Fed-Batch Penicillin Fermentation Process

Fed-batch fermentation processes are widely used in the pharmaceutical industry.
The yield maximization is usually considered as the main goal in the batch fermen-
tation processes. The different characteristics of batch operation from the continu-
ous operation include strong nonlinearity, non-stationary conditions, batch-to-batch
variability, and strong time-varying conditions. These features result that the yield
is difficult to predict. Therefore, the fault detection, classification, and identification
of batch/fed-batch processes shows more difficulties compared with the continuous
TE process.

The model of fed-batch penicillin fermentation process is described by Birol et al.
(2002)

X = f (X, S,CL , H, T )

S = f (X, S,CL , H, T )

CL = f (X, S,CL , H, T )

P = f (X, S,CL , H, T, P)

CO2 = f (X, H, T )

H = f (X, H, T ),

where X, S, CL , P, CO2, H and T are biomass concentration, substrate concen-
tration, dissolved oxygen concentration, penicillin concentration, carbon dioxide
concentration, hydrogen ion concentration for pH

([
H+])

, and temperature, respec-
tively. The corresponding detailed mathematical model is given in Birol et al. (2002).

The research group with the Illinois Institute of Technology has developed a
dynamic simulation of penicillin production based on an unstructured model, Pen-
SimV2.0. Thismodel has been used as a benchmark for statistical processmonitoring
studies of batch/fed-batch reaction process. The flow chart of the fermentation pro-
cess is depicted in Fig. 4.2. The fermentation unit consists of a fermentation reactor
and a coil-based heat exchange unit. The pH and temperature are automatically con-
trolled by two PID controllers by adjusting the flow rates of acid/base and cold/hot
water. The glucose substrate is fed continuously into the fermentation reactor in
open-loop operation in the fed-batch operation mode.

Fourteen variables are considered in PenSim V2.0 model, shown in Table4.4: 5
input variables (1–4, 14) and 9 process variables (5–13). Since variables 11–13 are
not measured online in industry, only 11 variables are monitored here.
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Fig. 4.2 Flow chart of the penicillin fermentation process

Table 4.4 Variables in penicillin fermentation process

No. Variable

1 Aeration rate (L/h)

2 Agitator power input (W)

3 Substrate feed rate (L/h)

4 Substrate feed temperature (K)

5 Dissolved oxygen concentration (% saturation)

6 Culture volume (L)

7 Carbon dioxide concentration (mmol/L)

8 pH

9 Temperature in the bioreactor (K)

10 Generated heat (kcal/h)

11 Cooling water flow rate (L/h)

12 Penicillin concentration

13 Biomass concentration

14 Substrate concentration

4.3 Fault Detection Based on PCA, CCA, and PLS

This section tests the effectiveness of various multivariate statistical methods for the
TE process. Faults in the standard TE data set are introduced at the 160 sampling.
For comparison purposes, the normal operation data d00_te is chosen as to train the
statistical model and faulty operation data d01_te-d21_te is used to test model and



4.3 Fault Detection Based on PCA, CCA, and PLS 51

detect fault. In the experiments for the PCA and PLS methods, the process variable
matrix X consists of process variables (XMEAS (1–22)) and manipulated variables
(XMV (1–11)). XMEAS (35) is used as the quality variable matrix Y for PLS. In the
CCA experiment, the process variables (XMEAS (1–22)) are used as one data set,
and the manipulated variables (XMV (1–11)) as another data set.

The fault detection rate (FDR) and false alarm rate (FAR) are defined as follows:

FDR = No.of samples(J > Jth | f �= 0)

total samples( f �= 0)
× 100

FAR = No.of samples(J > Jth | f = 0)

total samples( f = 0)
× 100.

(4.1)

Experiment and model parameters are determined as follows. The principal com-
ponents of PCA are determined by the cumulative contribution of 90%. The number
of principal components of PLS is selected as 6. T2 and Q statistics are used to
monitor process faults. It should be noted that in the monitoring of CCA, (3.18) and
(3.19) are used as monitoring indices and the corresponding monitoring results are
slightly different. For 21 fault types, the FDR for PCA, CCA, and PLS based on the
control limit with 99% confidence level are shown in Table4.5. It can be seen that
the multivariate statistical methods listed in this section (including PCA, CCA, and
PLS) can accurately detect the significant process faults.

Figures4.3, 4.4, and 4.5 show the different monitoring results base on PCA, CCA,
and PLS model for typical faults IDV(1), IDV(16), and IDV(20), respectively. Here,
the black line is the statistic calculated from the real-time data and the red line is the
normal statistic threshold from the offline model calculation.

It is easy to find thatCCAhas better detection for certain fault types fromTable4.5,
such as faults IDV(10), IDV(16), IDV(19), and IDV(20). The monitoring results for
faults IDV(16) and IDV(20) are shown in Figs. 4.4 and 4.5. Why does CCA show
better detection capabilities than the other two methods in certain faults? Let’s check
the setting of process variable X for three methods. In contrast to PCA and PLS,
CCA splits its X-space directly into two parts and extracts the latent variables by
examining the correlation between these two parts, i.e., the latent variables extracted
by CCA can better characterise the changes in the process.

4.4 Fault Classification Based on FDA

To further test the effectiveness of fault classification, samples from the 161th to the
700th of the 21 fault data sets and the normal data sets are used for training FDA
model. The corresponding data from the 701th to the 960th samples are used to test
FDA model and its classification ability. FDA in Sect. 2.2 is a classical method to
validate the classification effect and identify the fault types. The following distance
metric index is introduced to further quantify the difference between different faults:
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Table 4.5 FDRs of PCA, CCA and PLS

PCA CCA PLS

IDV T2 SPE T2
1 T2

2 T2 SPE

1 99.13 99.88 99.38 99.63 99.75 99.38

2 98.38 95.13 95.63 96.13 98.63 97.75

3 1.00 3.00 0.25 0.50 3.75 1.88

4 50.88 99.88 100.00 97.38 40.63 96.88

5 23.75 23.88 100.00 100.00 25.50 25.88

6 99.00 100.00 100.00 100.00 99.25 100.00

7 100.00 100.00 100.00 83.00 99.13 100.00

8 97.00 86.25 87.00 92.25 96.88 96.75

9 1.50 2.00 0.13 0.13 2.13 2.25

10 27.88 36.13 78.75 79.38 57.00 31.25

11 52.50 61.63 77.00 56.88 41.88 65.75

12 98.38 90.25 97.00 99.00 99.00 96.75

13 93.75 95.13 94.38 94.25 95.50 94.25

14 99.88 98.88 100.00 99.88 99.88 100.00

15 1.25 2.00 0.63 0.75 4.50 1.13

16 12.13 36.25 85.00 86.63 29.75 19.25

17 79.50 95.88 91.38 95.25 80.13 89.75

18 89.13 90.50 89.50 89.50 89.50 89.50

19 11.63 16.50 84.38 84.25 1.63 13.38

20 31.13 52.75 70.38 75.50 41.75 45.38

21 41.25 48.75 26.63 36.88 56.38 43.00

D2 = ∥∥ FDAi − FDA j

∥∥ ,

where FDAi denotes the FDA feature vector of the i th fault.
The simulation results are shown in Fig. 4.6. The 22 kinds of data (including the

normal operation and 21 faulty operation) can be roughly divided into two major
categories: the first category is the faults that are significantly different from other
faults, which contains faults IDV(2) (line with ♦), IDV(6) (line with ∗), and IDV(18)
(line with ◦); the other category is the set of faults whose characteristics are relatively
close to each other.

The faults IDV(1), IDV(2), IDV(6), and IDV(20) are further analyzed. The FDA
results for fault classification are shown in Fig. 4.7. The D2 indices for these faults
vary considerably, as the classification results clearly illustrated. Conversely, certain
faults have very small differences inD2 indices. For example, faults IDV(4), IDV(11),
and IDV(14) have the similar FDA D2 indices, shown in Fig. 4.8. These faults are
difficult to classify accurately based on FDA model, as shown in Fig. 4.9.



4.4 Fault Classification Based on FDA 53

Fig. 4.3 PCA, CCA, and
PLS monitoring results for
IDV(1)
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Fig. 4.4 PCA, CCA, and
PLS monitoring results for
IDV(16)
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Fig. 4.5 PCA, CCA, and
PLS monitoring results for
IDV(20)
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4.5 Conclusions

Two kinds of simulation platforms are introduced for verifying the statistical moni-
toringmethods and several experiments based on the traditional methods, PCA, PLS,
CCA, and FDA, are finished. These basic experiments illustrate the characteristics of
several methods and their fault detection effects. Actually, there are lots of improved
methods to overcome the shortcomings and deficiencies of the original multivari-
ate statistical analysis methods. Each method has its own conditions and scope of
application. No one method completely outperforms the others in terms of perfor-
mance. Furthermore, data-based fault detection methods need to be combined with
the actual monitoring objects, and existing methods need to be improved accord-
ing to its knowledge and characteristics. So this book focus on the fault detection
(discrimination) strategies for batch processes and strong nonlinear systems.
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Chapter 5
Soft-Transition Sub-PCA Monitoring
of Batch Processes

Batch or semi-batch processes have been utilized to produce high-value-added prod-
ucts in the biological, food, semi-conductor industries. Batch process, such as fer-
mentation, polymerization, and pharmacy, is highly sensitive to the abnormal changes
in operating condition. Monitoring of such processes is extremely important in order
to get higher productivity. However, it is more difficult to develop an exact monitor-
ing model of batch processes than that of continuous processes, due to the common
natures of batch process: non-steady, time-varying, finite duration, and nonlinear
behaviors. The lack of exact monitoring model in most batch processes leads that
an operator cannot identify the faults when they occurred. Therefore, effective tech-
niques for monitoring batch process exactly are necessary in order to remind the
operator to take some corrective actions before the situation becomes more danger-
ous.

Generally, many batch processes are carried out in a sequence of steps, which are
called multi-stage or multi-phase batch processes. Different phases have different
inherent natures, so it is desirable to develop stage-based models that each model
represents a specific stage and focuses on a local behavior of the batch process.
This chapter focuses on the monitoring method based on multi-phase models. An
improved online sub-PCA method for multi-phase batch process is proposed. A
two-step stage dividing algorithm based on support vector data description (SVDD)
technique is given to divide the multi-phase batch process into several operation
stages reflecting their inherent process correlation nature. Mechanism knowledge is
considered firstly by introducing the sampling time into the loading matrices of PCA
model, which can avoid segmentation mistake caused by the fault data. Then SVDD
method is used to strictly refine the initial division and obtain the soft-transition sub-
stage between the stable and transition periods. The idea of soft-transition is helpful
for further improving the division accuracy. Then a representative model is built
for each sub-stage, and an online fault monitoring algorithm is given based on the
division techniques above. This method can detect fault earlier and avoid false alarm
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Fig. 5.1 Batch-wise
unfolding

because of more precise stage division, comparing with the conventional sub-PCA
method.

5.1 What Is Phase-Based Sub-PCA

The general monitoring for batch process is phase/stage-based sub-PCA method,
which divides the process into several phases (Yao and Gao 2009). The phase-based
sub-PCA consists of three steps: data matrix unfloding, phase division, and sub-
PCA modeling. Now the details of them are introduced.

1. Data Matrix Unfolding
Different from the continuous process, the historical data of batch process are
composed of a three-dimensional array X(I × J × K ), where I is the number of
batches, J is the number of variables, and K is the number of sampling times. The
original data X should be conveniently rearranged into two-dimensional matrices
prior to developing statisticalmodels. Two traditionalmethods arewidely applied:
the batch-wise unfolding and the variable-wise unfolding, with the most used
method is batch-wise unfolding. The three-dimensional matrix X should be cut
into K time-slice matrix after the batch-wise unfolding is completed.
The three-dimensional process data X(I × J × K ) is batch-wise unfolded into
two-dimensional forms Xk(I × J ), (k = 1, 2, . . . , K ). Then a time-slice matrix
is placed beneath one another, but not beside as shown in Fig. 5.1 (Westerhuis
et al. 1999; Wold et al. 1998). Sometimes batches have different lengths, i.e. the
sampling number K are different. The process data need to be aligned before
unfolding. There are many data alignment methods raised by former researchers,
such as directly filling zeros to missing sampling time (Arteaga and Ferrer 2002),
dynamic time warping (Kassida et al. 1998). These unfolding approaches do not
require any estimation of unknown future data for online monitoring.
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2. Phase Division
The traditionalmultivariate statistical analysismethods are valid in the continuous
process, since all variables are supposed to stay around certain stable state and
the correlation between these variables remains relatively stable. Non-steady-
state operating conditions, such as time-varying and multi-phase behavior, are
the typical characteristics in a batch process. The process correlation structure
might change due to process dynamics and time-varying factors. The statistical
model may be ill-suited if it takes the entire batch data as a single object, and the
process correlation among different stages are not captured effectively. So multi-
phase statistic analysis aims at employing the separate model for the forthcoming
period, instead of using a single model for the entire process. The phase division
plays a key role in batch process monitoring.
Many literature divided the process into multi-phase based on mechanism knowl-
edge. For example, the division is based on different processing units or dis-
tinguishable operational phases within each unit (Dong and McAvoy 1996;
Reinikainen and Hoskuldsson 2007). It is suggested that process data can be
naturally divided into groups prior to modelling and analysis. This stage division
directly reflects the operational state of the process. However, the known prior
knowledge usually are not sufficient to divide processes into phases reasonably.
Besides, Muthuswamy and Srinivasan identified several division points accord-
ing to the process variable features described in the form of multivariate rules
(Muthuswamy and Srinivasan 2003). Undey and Cinar used an indicator vari-
able that contained significant landmarks to detect the completion of each phase
(Undey and Cinar 2002). Doan and Srinivasan divided the phases based on
the singular points in some known key variables (Doan and Srinivasan 2008).
Kosanovich, Dahl, and Piovoso pointed out that the changes in the process vari-
ance information explained by principal components could indicate the division
points between the process stages (Kosanovich and Dahl 1996). There are many
results in this area but not give a clear strategy to distinct the steady phase and
transition phase (Camacho and Pico 2006; Camacho et al. 2008; Yao and Gao
2009).

3. Sub-PCA Modeling
The statisticalmodels are constructed for all the phases after the phase division and
are not limited to PCA methods. Here, sub-PCA is representatively one of these
sub-statistical monitoring methods. The final sub-PCA model of each phase is
calculated by taking the average of the time-slice PCA models in the correspond-
ing phase. The number of principal components of each phase are determined
based on the relative cumulative variance.
The T 2, SPE statistics and their corresponding control limits are calculated
according to the sub-PCA model. Check the Euclidean distance of the new data
from the center of each stage of clustering and determine at which stage the new
data is located. Then, the corresponding sub-PCA model is used to monitor the
new data. Fault warning is pointed according to the control limits of T2 or SPE.
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5.2 SVDD-Based Soft-Transition Sub-PCA

Industrial batch process operates in a variety of status, including grade changes,
startup, shutdown, and maintenance operations. Transitional region between neigh-
boring stages is very common in multistage process, which shows the gradual
changeover from one operation pattern to another. Usually the transitional phases
first show basic characteristic that are more similar to the previous stable phase and
then more similar to the next stable phase at the end of the transition. The different
transition phases undergo different trajectories from one stable mode to another, with
change in characteristics that are more pronounced in sampling time and more com-
plex than thosewithin a phase. Therefore, valid processmonitoring during transitions
is very important. Up to now, few investigations about transition modeling and mon-
itoring have been reported (Zhao et al. 2007). Here, a new transition identification
and monitoring method base on the SVDD division method is proposed.

5.2.1 Rough Stage-Division Based on Extended Loading
Matrix

The original three-dimensional array X(I × J × K ) is first batch-wise unfolded
into two-dimensional form Xk . By subtracting the grand mean of each variable over
all time and all batches, unfolding matrix Xk is centered and scaled.

Xk = [Xk − mean (Xk)]

σ (Xk)
, (5.1)

where mean (Xk ) and σ(Xk) represent the mean value and the standard variance
of matrix Xk , respectively. The main nonlinear and dynamic components of every
variable are still left in the scaled matrix.

Suppose the unfolding matrix at each time-slice is Xk . Project it into the principle
component subspace by loading matrix Pk to obtain the scores matrix T k :

Xk = T k PT
k + Ek, (5.2)

where Ek is the residual. The first few components in PCA which represent major
variation of original data set Xk are chosen. The original data set Xk is divided into
the score matrix X̂k = T k PT

k and the residual matrix Ek . Here, X̂k is PCA model
prediction. Some useful techniques, such as the cross-validation, have been used to
determine the most appropriate retained numbers of principal components. Then the
loading matrix Pk and singular value matrix Sk of each time-slice matrix Xk can be
obtained.
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As the loading matrix Pk reflects the correlations of process variables, it usually
is used to identify the process stage. Sometimes disturbances brought by measure-
ment noise or other reasons will lead wrong division, because the loading matrix
just obtained from process data is hard to distinguish between wrong data and tran-
sition phase data. Generally, different phases in the batch process could be firstly
distinguished according to the mechanism knowledge.

The sampling time is added to the loading matrix on order to divide the process
exactly. The sampling time is a continuously increasing data set, so it must also be
centered and scaled before added to the loading matrix. Generally, the sampling time
is centered and scaled not along the batch dimension like process data X , but along
the time dimension in one batch. Then the scaling time tk is changed into a vector
tk by multiplying unit column vector. So the new time-slice matrix is written as
P̂k = [Pk, tk], in which tk is a 1 × J column vector with repeated value of current
sampling time. The sampling timewill not change toomuchwith the ongoing of batch
process, but have an obvious effect on the phase separation. Define the Euclidean
distance of extended loading matrix P̂k as

∥
∥
∥ P̂ i − P̂ j

∥
∥
∥

2 = [

P i − P j , t i − t j
] [

P i − P j , t i − t j
]T

= ∥
∥P i − P j

∥
∥
2 + ∥

∥t i − t j
∥
∥
2
.

(5.3)

Then the batch process can be divided into S1 stages using K -means clustering
method to cluster the extended loading matrices P̂k .

Clearly, the Euclidean distance of the extended loading matrix P̂ i includes both
data differences and sampling time differences. The data at different stages differ
significantly in sampling time. Therefore, when noise interference makes the data
at different stages present the same or similar characteristics, the large differences
in sampling times will keep the final Euclidean distance at a large value. This is
because the erroneous division data is very different in sampling time from the data
from the other stages, while the data from the transition stage has very little variation
in sampling time. We can easily distinguish erroneous divisions in the transition
phase from those caused by noise.

5.2.2 Detailed Stage-Division Based on SVDD

The extended time-slice loading matrices P̂k represent the local covariance infor-
mation and underlying process behavior as mentioned before, so they are used in
determining the operation stages by proper analyzing and clustering procedures.
The process is divided into different stages and each separated process stage con-
tains a series of successive samples. Moreover, the transition stage is unsuitable to
be forcibly incorporated into one steady stage because of its variation complexity of
process characteristics. The transiting alteration of process characteristics imposes
disadvantageous effects on the accuracy of stage-based sub-PCA monitoring mod-
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els. Furthermore, it deteriorates fault detecting performance if just a steady transition
sub-PCA model is employed to monitor the transition stage. Consequently, a new
method based on SVDD is proposed to separate the transition regions after the rough
stage-division which is determined by the K -means clustering.

SVDD is a relatively new data description method, which is originally proposed
by Tax and Duin for the one-class classification problem (Tax and Duin 1999, 2004).
SVDD has been employed for damage detection, image classification, one-class pat-
tern recognition, etc. Recently, it has also been applied in the monitoring of continu-
ous processes. However, SVDD has not been used for batch process phase separating
and recognition up to now.

The loading matrix of each stage is used to train the SVDD model of transition
process. SVDD model first maps the data from original space to feature space by a
nonlinear transformation function, which is called as kernel function. Then a hyper-
sphere with minimum volume can be found in the feature space. To construct such
a minimum volume hypersphere, the following optimization problem is obtained:

min ε (R, A, ξ) = R2 + C
∑

i

ξi

s.t.
∥
∥
∥ P̂ i − A

∥
∥
∥

2 ≤ R2 + ξi , ξi ≥ 0,∀ i,

(5.4)

where R and A are the radius and center of hypersphere, respectively, C gives the
trade-off between the volume of the hypersphere and the number of error divides. ξi
is a slack variable which allows a probability that some of the training samples can
be wrongly classified. Dual form of the optimization problem (5.4) can be rewritten
as

min
∑

i

αi K
(

P̂ i , P̂ i

)

−
∑

i, j

αi ,α j K
(

P̂ i , P̂ j

)

s.t. 0 ≤ αi ≤ Ci ,

(5.5)

where K
(

P̂ i , P̂ j

)

is the kernel function, and αi is the Lagrange multiplier. Here,

Gaussian kernel function is selected as kernel function. General quadratic program-
mingmethod is used to solve the optimization question (5.5). The hypersphere radius
R can be calculated according to the optimal solution αi :

R2 = 1 − 2
n

∑

i=1

αi K
(

P̂ i , P̂ i

)

+
n

∑

i=1, j=1

αi ,α j K
(

P̂ i , P̂ j

)

(5.6)

Here, the loading matrices P̂k are corresponding to nonzero parameter αk . It
means that they have effect on the SVDD model. Then the transition phase can be
distinguished from the steady phase by inputting all the time-slice matrices P̂k into
SVDD model. When a new data P̂new is available, the hyperspace distance from the
new data to the hypersphere center should be calculated firstly
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D2 =
∥
∥
∥ P̂new − α

∥
∥
∥

2 = 1 − 2
n

∑

i=1

αi K
(

P̂new, P̂ i

)

+
n

∑

i=1, j=1

αi ,α j K
(

P̂ i , P̂ j

)

.

(5.7)

If the hyperspace distance is less than the hypersphere radius, i.e., D2 ≤ R2, the
process data P̂new belongs to steady stages; else (that is D2 > R2), the data will be
assigned to transition stages. The whole batch is divided into S2 stages at the detailed
division, which includes S1 steady stages and S2 → S1 transition stages.

The mean loading matrix P̄ s can be adopted to get sub-PCA model of sth stage
because the time-slice loading matrices in one stage are similar. P̄ s is the mean
matrix of the loading matrices Pk in sth stage. The principal components number
as can be obtained by calculating the relative cumulative variance of each principal
component until it reaches 85%. Then themean loadingmatrix is modified according
to the obtained principal components. The sub-PCA model can be described as

⎧

⎪⎪⎨

⎪⎪⎩

T k = Xk P̄ s

X̄k = T k P̄
T
s

Ēk = Xk − X̄k .

(5.8)

The T2 and SPE statistic control limits are calculated:

T2
α,s,i ∼ as,i (I − 1)

(I − as,i )
Fas,i ,I−as,i ,α

SPEk,α = gk�
2
hk ,α, gk = vk

2mk
, hk = 2m2

k

vk
,

(5.9)

wheremk and vk are the mean and variance of all batches data at time k, respectively,
as,i is the number of retained principal components in batch i(i = 1, 2, . . . , I ), and
stage s. I is the number of batches, α is the significant level.

5.2.3 PCA Modeling for Transition Stage

Now a soft-transition multi-phase PCA modeling method based on SVDD is pre-
sented according to the mentioned above. It uses the SVDD hypersphere radius to
determine the range of transition region between two different stages. Meanwhile, it
introduces a concept of membership grades to evaluate quantitatively the similarity
between current sampling time data and transition (or steady) stage models. The
sub-PCAmodels for steady phases and transition phases are established respectively
which greatly improve the accuracy of models. Moreover, they reflect the charac-
teristic changing during the different neighboring stages. Time-varying monitoring
models in transition regions are established relying on the concept of membership
grades, which are the weighted sum of nearby steady phase and transition phase sub-
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models. Membership grade values are used to describe the partition problem with
ambiguous boundary, which can objectively reflect the process correlations changing
from one stage to another.

Here, the hyperspace distance Dk,s is defined from the sampling data at time
k to the center of the sth SVDD sub-model. It is used as dissimilarity index to
evaluate quantitatively the changing trend of process characteristics. Correlation
coefficients λl,k are given as the weight of soft-transition sub-model, which are
defined, respectively, as

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

λs−1,k = Dk,s + Dk,s+1

2
(

Dk,s−1 + Dk,s + Dk,s+1
)

λs,k = Dk,s−1 + Dk,s+1

2
(

Dk,s−1 + Dk,s + Dk,s+1
)

λs+1,k = Dk,s−1 + Dk,s

2
(

Dk,s−1 + Dk,s + Dk,s+1
) ,

(5.10)

where l = s − 1, s, and s + 1 is the stage number, which represent the last steady
stage, current transition stage, and next steady stage, respectively. The correlation
coefficient is inverse proportional to hyperspace distance. The greater the distance,
the smaller the effect of the hyperspatial distance. The monitoring model for the
transition phase of each time interval can be obtained from the weighted sum of the
sub-PCA models, i.e.,

P ′
k =

s+1
∑

l=s−1

λl,k P̄ l . (5.11)

The soft-transition PCAmodel in (5.11) properly reflects the time-varying transit-
ing development. The score matrix T ′

k and the covariance matrix S′
k can be obtained

at each time instance. The SPE statistic control limit is still calculated by (5.9). Dif-
ferent batches have some differences in transition stages. The average T2 limits for
all batches are used to monitor the process in order to improve the robustness of the
proposed method. The T2 statistical control limits can be calculated from historical
batch data and correlation coefficients.

T2
α

′ =
s+1
∑

l=s−1

I
∑

i=1

λl,i,k

T2
αs,i

I
, (5.12)

where i (i = 1, 2, . . . , I ) is the batch number, T2
αs,i

is the sub-stageT2 statistic control
limit of each batch which is calculated by (5.9) for sub-stage s.

Now the soft-transitionmodel of each time interval in transition stages is obtained.
The batch process can be monitored efficiently by combining with the steady stage
model given in Sect. 5.2.2.
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5.2.4 Monitoring Procedure of Soft-Transition Sub-PCA

The whole batch process has been divided into several steady stages and transition
stage after the two steps stage-dividing, shown in Sects. 5.2.1 and 5.2.2. The new soft-
transition sub-PCA method is applied to get detailed sub-model shown Sect. 5.2.3.
The details of modeling steps are given as follows:

(1) Get normal process data of I batches, unfold them into two-dimensional time-
slice matrix, then center and scale each time-slice data as (5.1).

(2) Perform PCA on the normalized matrix of each time-slice and get the loading
matrices Pk , which represent the process correlation at each time interval. Add
sampling time t into the loading matrix to get the extended matrices P̂k .

(3) Divide the process into S1 stages roughly using k-means clustering on extended
loadingmatrices P̂k . Train the SVDD classifier for the original S1 steady process
stages.

(4) Input again the extended loading matrices P̂k into the original SVDD model to
divide explicitly the process into S2 stages: the steady stage and the transition
stage. Then retrain the SVDDclassifier for these new S2 stages. Themean loading
matrix P̄ s of each new steady stage should be calculated and the sub-PCAmodel
is built in (5.8). The correlation coefficients λl,k are calculated to get the soft-
transition stage model S′

k in (5.11) for transition stage t .
(5) Calculate the control limits of SPE and T2 to monitor new process data.

The whole flowchart of improved sub-PCA modeling based on SVDD soft-
transition is shown in Fig. 5.2. The modeling process is offline, which is depending
on the historical data of I batches.

The following steps should be adopted during online process monitoring.

(1) Get a new sampling time-slice data xnew, center and scale it based on the mean
and standard deviation of prior normal I batches data.

(2) Calculate the covariance matrix xTnewxnew, the loading matrix Pnew can be
obtained based on singular value decomposition. Then add sampling time tnew
into it to obtain the extended matrix P̂new. Input the new matrix P̂new into the
SVDD model to identify which stages the new data belongs to.

(3) If current time-slice data belongs to a transition stage, the weighted sum loading
matrix P ′

new is employed to calculate the score vector tnew and error vector enew,

tnew = xnew P ′
new

enew = xnew − x̄new = xnew
(

I − P ′
new P ′T

new

) (5.13)

Or if it belongs to a steady one, the mean loading matrix P̄ s would be used to
calculate the score vector tnew and error vector enew,
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Fig. 5.2 Illustration of soft-transition sub-PCA modeling

tnew = xnew P̄ s

enew = xnew − x̄new = xnew
(

I − P̄ s P̄
T
s

)

.
(5.14)

(4) Calculate the SPE and T2 statistics of current data as follows:

T2
new = tnew S̄s tTnew

SPEnew = eneweTnew.
(5.15)

(5) Judge whether the SPE and T2 statistics of current data exceed the control limits.
If one of them exceeds the control limit, alarm abnormal; if none of them does,
the current data is normal.
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5.3 Case Study

5.3.1 Stage Identification and Modeling

The Fed-Batch Penicillin Fermentation Process is used as a simulation case in this
section. A detailed description of the Fed-Batch Penicillin Fermentation Process is
available in Chap.4. A reference data set of 10 batches is simulated under nominal
conditions with small perturbations. The completion time is 400h. All variables are
sampled every 1h so that one batch will offer 400 sampling data.

The roughdivision result basedonK-meanmethod is shown inFig. 5.3.Originally,
the batch process is classified into 3 steady stage, i.e. S1 = 3. Then SVDD classifier
with Gaussian kernel function is used here for detailed division. The hypersphere
radius of original 3 stages is calculated, and the distances from each sampling data
to the hypersphere center are shown in Fig. 5.4.

As can be seen from the Fig. 5.4, the sampling data between two stages, such as
the data during the time interval 28–42 and 109–200, are obviously out of the hyper-
sphere. That means the data at this two time regions have significant difference from
that of other steady stage. Therefore, these two stages are considered as transition
stage. The process was further divided into 5 stages according to the detailed SVDD
division, shown in Fig. 5.5
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Fig. 5.3 Rough division result based on K-mean clustering
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Fig. 5.5 Detailed process division result based on SVDD

It is obviously that the stages during the time interval 1–27, 43–109 and 202–400
are steady stages. The hyperspace distance of stage 28–42, 109–200 exceeded the
radius of hypersphere obviously, so the two stages are separated as transition stage.
Then the new SVDD classifier model is rebuilt. The whole batch process data set
is divided into five stages using the phase identification method proposed in this
chapter, that is S2 = 5.
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5.3.2 Monitoring of Normal Batch

Monitoring results of the improved sub-PCA methods for the normal batch are pre-
sented in Fig. 5.6. The blue line is the statistic corresponding to online data and the
red line is control limit with 99% confidence, which is calculated based on the normal
historical data. It can be seen that as a result of great change of hyperspace distance
at about 30h in Fig. 5.4, the T2 control limit drops sharply. The T2 statistic of this
batch still stays below the confidence limits. Both of the monitoring systems (T2 and
SPE) do not yield any false alarms. It means that this batch behaves normally during
the running.

5.3.3 Monitoring of Fault Batch

Monitoring results of the proposed method are compared with that of traditional
sub-PCA method in order to illustrate the effectiveness. Here two kinds of faults
are used to test the monitoring system. Fault 1 is the agitator power variable with a
decreasing 10% step at the time interval 20–100. They are shown in Figs. 5.7 and 5.8
that SPE statistic increases sharply beyond the control limit in both methods, while
T2 statistic which in fact reflects the changing of sub-PCA model did not beyond the
control limit in traditional sub-PCAmethod. That means the proposed soft-transition
method made a more exact model than traditional sub-PCA method.
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Fig. 5.6 Monitoring plots for a normal batch
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Fig. 5.7 The proposed soft-transition monitoring for fault 1
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Fig. 5.8 The traditional Sub-PCA monitoring for fault 1
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Fig. 5.9 Projection in
principal components space
of the proposed method
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Fig. 5.10 Projection in
principal components space
of the traditional sub-PCA
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The differences between these two methods can be seen directly at the projection
map, i.e. Figs. 5.9 and 5.10. The blue dot is the projection of data in the time interval
50–100 to the first two principal components space, and the red line is control limit.
Figure5.10 shows that none of the data out of control limit using the traditional sub-
PCA method. The reason is that the traditional sub-PCA does not divide transition
stage. The proposed soft-transition sub-PCA can effectively diagnose the abnormal
or fault data, shown in Fig. 5.9.

Fault 2 is a ramp decreasing with 0.1 slopes which is added to the substrate feed
rate at the time interval 20–100. Online monitoring result of the traditional sub-PCA
and proposed method are shown in Figs. 5.11 and Fig. 5.12. It can be seen that this
fault is detected by both two methods. The SPE statistic of the proposed method is
out of the limit about at 50h and the T2 values alarms at 45h. Then both of them
increase slightly and continuously until the end of fault.
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Fig. 5.11 Proposed Soft-transition monitoring results for fault 2
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Fig. 5.12 The traditional Sub-PCA monitoring for fault 2

It is clearly shown in Fig. 5.12 that the SPE statistic of traditional sub-PCA did not
alarmuntil about 75h,which lags far behind that of the proposedmethod.Meanwhile,
the T2 statistic has a fault alarm at the beginning of the process. It is a false alarm
caused by the changing of process initial state. In comparison, the proposed method
has fewer false alarms, and the fault alarm time of the proposed method is obviously
ahead of the traditional sub-PCA.
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Table 5.1 Monitoring results of FA for other faults

Fault
ID

Var.
No.

Fault
type

M/S
(%)

Fault
time (h)

Soft-transition sub-PCA Trad. sub PCA (Camacho
and Pico 2006)

Time
(SPE)

Time
(T2)

FA Time
(SPE)

Time
(T2)

FA

1 2 Step −15 20 20 28 0 20 none 9

2 2 Step −15 100 100 100 0 100 101 1

3 3 Step −10 190 190 199 0 190 213 11

4 3 Step −10 30 48 45 0 81 45 5

5 1 Step −10 20 20 20 0 20 48 1

6 1 Step −10 150 150 151 0 150 151 2

7 3 Ramp −5 20 28 40 0 28 41 1

8 2 Ramp −20 20 31 45 0 44 34 6

9 1 Ramp −10 20 24 30 0 21 28 10

10 3 Ramp −0.2 170 171 171 0 170 173 3

11 2 Ramp −20 170 181 195 0 177 236 1

12 1 Ramp −10 180 184 188 0 185 185 2

The monitoring results for other 12 different faults are presented in Table5.1. The
fault variable No. (1, 2, 3) represents the aeration rate, agitator power and substrate
feed rate, respectively, as shown in Chap.4. Here FA is the number of false alarm
during the operation life.

It can be seen that the false alarms of the conventional sub-PCA method is obvi-
ously higher than that of the proposed method. In comparisons, the proposed method
shows good robustness. The false alarms here are caused by the little change of the
process initial state. The initial states are usually different in real situation, which
will lead to the changes in monitoring model. Many false alarms are caused by these
little changes. The conventional sub-PCA method shows poor monitor performance
in some transition stage and even can’t detect these faults because of the inaccurate
stage division.

5.4 Conclusions

In a multi-stage batch process, the correlation between process variables changes as
the stages are shifted. It makes MPCA and traditional sub-PCA methods inadequate
for process monitoring and fault diagnosis. This chapter proposes a new phase iden-
tification method to explicitly identify stable and transitional phases. Each phase
usually has its own dynamic characteristics and deserves to be treated separately.
In particular, the transition phase between two stable phases has its own dynamic
transition characteristics and it is difficult to identify.
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Two techniques are adopted in this chapter to overcome the above problems.
Firstly, inaccurate phase delineation caused by fault data is avoided in the rough
division by introducing sampling times in the loading matrix. Then, based on the
distance of the process data to the center of the SVDD hypersphere, transition phases
can be identified from nearby stable phases. Separate sub-PCA models are given for
these stable and transitional phases. In particular, the soft transition sub-PCA model
is a weighted sum of the previous stable stage, the current transition stage and the
next stable stage. It can reflect the dynamic characteristic changes of the transition
phase.

Finally, the proposed method is applied to the penicillin fermentation process.
The simulation results show the effectiveness of the proposed method. Furthermore,
the method can be applied to the problem of monitoring any batch or semi-batch
process for which detailed process information is not available. It is helpful when
identifying the dynamic transitions of unknown batch or semi-batch processes.
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Chapter 6
Statistics Decomposition and Monitoring
in Original Variable Space

The traditional process monitoring method first projects the measured process data
into the principle component subspace (PCS) and the residual subspace (RS), then
calculates T2 and SPE statistics to detect the abnormality. However, the abnormality
by these two statistics are detected from the principle components of the process.
Principle components actually have no specific physical meaning, and do not con-
tribute directly to identify the fault variable and its root cause. Researchers have
proposed many methods to identify the fault variable accurately based on the projec-
tion space. The most popular is contribution plot which measures the contribution
of each process variable to the principal element (Wang et al. 2017; Luo et al. 2017;
Liu and Chen 2014). Moreover, in order to determine the control limits of the two
statistics, their probability distributions should be estimated or assumed as specific
one. The fault identification by statistics is not intuitive enough to directly reflect the
role and trend of each variable when the process changes.

In this chapter, direct monitoring in the original measurement space is investi-
gated, in which the two statistics are decomposed as a unique sum of the variable
contributions of the original process variables, respectively. The monitoring of the
original process variables is direct and explicit in the physical meaning, but it is
relatively complicated and time consuming due to the need to monitor each vari-
able in both SPE and T2 statistics. To address this issue, a new combined index is
proposed and interpreted in geometric space, which is different from other com-
bined indices (Qin 2003; Alcala and Qin 2010). The proposed combined index is
an intrinsic method. Compared with the traditional latent space methods, the com-
bined index-based monitoring does not require the prior distribution assumption to
calculate the control limits. Thus, the monitor complexity is reduced greatly.
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6.1 Two Statistics Decomposition

According to the traditional PCA method, the process variables x could be divided
into two parts: principal component x̂ and the residual e:

x = t PT + e=x̂ + e, (6.1)

where P is thematrix associatedwith the loadingvectors that define the latent variable
space, t is the score matrix that contains the coordinates of x in that space, and e is
the matrix of residuals. T2 and SPE statistics are used to measure the distance from
the new data to the model data. Generally, T2 and SPE statistics should be analyzed
simultaneously so that the cumulative effects of all variables can be utilized.However,
most of the literatures have only considered the decomposition of T2. Therefore, this
chapter considered the SPE statistical decomposition to obtain the original process
variables monitored in T2 and in the SPE statistical space.

6.1.1 T2 Statistic Decomposition

The statistic can be reformulated as follows:

T2 := D = tΛ−1 tT = x PΛ−1PTxT = xAxT =
J∑

i=1

J∑

j=1

ai, j xi x j ≥ 0, (6.2)

where A = PΛ−1PT ≥ 0, Λ−1 is the inverse of the covariance matrix estimated
from a reference population, and ai, j is the element of matrix A.

One of the T2 statistic decompositions (Birol et al. 2002) is given as follows:

D =
J∑

k=1

ak,k
2

[(
xk − x∗

k

)2 + (
x2k − x∗2

k

)]

=
J∑

k=1

ak,k
[(
x2k − x∗

k xk
)]

=
J∑

k=1

cDk .

(6.3)

The x∗
k is given as follows:

x∗
k = −

∑N
j=1
j �=k

ak, j x j

ak,k
,



6.1 Two Statistics Decomposition 81

where the cDk is the decomposed T2 statistic of each variable xk . Next, the T2 statistic
of each variable xk can be calculated as follows:

cDk = ak,k
[(
x2k − x∗

k xk
)]

. (6.4)

The detailed T2 statistic decomposition process is not shown in here, details can
be found in Alvarez et al. (2007, 2010).

6.1.2 SPE Statistic Decomposition

The SPE statistic, which reflects the change of the random quantity in the residual
subspace, also has a quadratic form:

SPE := Q = eeT = x
(
I − P PT

) (
I − P PT

)T
xT

= xBxT =
J∑

i=1

J∑

j=1

bi, j xi x j ,
(6.5)

where B = (
I − P PT

) (
I − P PT

)T
, bi, j is the element ofmatrix B, and bi, j = b j,i .

Similar to the decomposition of T2 statistic, SPE statistics can also be decomposed
into a series of new statistic of each variable.

Firstly, the SPE statistic Q can be reformulated in terms of a single variable xk :

Q = Qk=bk,k x
2
k +

⎛

⎝2
J∑

j=1, j �=k

bk, j x j

⎞

⎠ xk +
J∑

i=1,i �=k

J∑

j=1, j �=k

bi, j xi x j . (6.6)

The minimum value of Qk can be calculated as

∂Qk

∂xk
= 2bk,k x

∗
k + 2

J∑

j=1, j �=k

bk, j x j = 0 ⇒ x∗
k = −

J∑

j=1, j �=k

bk, j x j/bk,k (6.7)

Qmin
k = −bk,k x

∗2
k +

J∑

i=1,i �=k

J∑

j=1, j �=k

bi, j xi x j . (6.8)

The difference between the SPE statistic of xk and Qmin
k is

Q − Qmin
k = bk,k

(
xk − x∗

k

)2
. (6.9)

The sum of the Qmin
k for k = 1, 2, . . . , J is



82 6 Statistics Decomposition and Monitoring in Original Variable Space

J∑

k=1

Qmin
k =

J∑

k=1

⎛

⎝−bk,k x
∗2
k +

J∑

i=1,i �=k

J∑

j=1, j �=k

bi, j xi x j

⎞

⎠

= (J − 2)Q +
J∑

k=1

bk,k
(
x2k − x∗2

k

)
.

(6.10)

The SPE statistic obtained from (6.10) can be evaluated as the sum of the contri-
butions of each variable xk :

Q =
J∑

k=1

bk,k
2

[(
xk − x∗

k

)2 + (
x2k − x∗2

k

)]

=
J∑

k=1

bk,k
[(
x2k − x∗

k xk
)]

=
J∑

k=1

qSPE
k .

(6.11)

The original process variables of the SPE statistic are used to monitor the system
status:

qSPE
k = bk,k

[(
x2k − x∗

k xk
)]

. (6.12)

So the novel SPE statistic can be evaluated as a unique sum of the contributions
of each variable qSPE

k (k = 1, 2, . . . , J ), which is used for original process variable
monitoring.

6.1.3 Fault Diagnosis in Original Variable Space

Similar to other PCSmonitoring strategies, the proposed original variablemonitoring
technique consists of two stages that are executed offline and online. Firstly, the
control limits of the two statistics (T2 and SPE) for each time interval are determined
by reference population of normal batches in the offline stage. Next, two statistics
are calculated at each sampling during the online stage. If one of statistics exceeds
the established control limit, then a faulty mode is declared.

The historical data of the batch process are composed of a three-dimensional array
X(I × J × K ), where I , J , and K are the number of batches, process variables, and
sampling times, respectively. The three-dimensional process data must be unfolded
into two-dimensional forms Xk(I × J ), k = 1, 2, . . . , K before performing thePCA
operation. The unfolding matrix Xk is normalized to zero mean and unit variance in
each variable. The main nonlinear and dynamic components of the variable are still
left in the scaled data matrix Xk .
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The normalized data matrix Xk is projected into principal component subspace
by loading matrix Pk to obtain the scores matrix T k :

Xk = T k PT
k + Ek,

where Ek is the residual matrix. The two statistics associated with the i th batch for
the j th variable in kth time interval are defined as cDi, j,k and q

SPE
i, j,k .

The control limit of a continuous process can be determined by using the kernel
density estimation (KDE) method. Another method has been used for calculating
the control limit for batch process, which is determined by the mean and variance of
each statistic (Yoo et al. 2004; Alvarez et al. 2007). The mean and variance of cDi, j,k
are calculated as follows:

c̄Dj,k =
I∑

i=1

cDi, j,k/I

var
(
cDj,k

) =
I∑

i=1

(cDi, j,k − c̄Dj,k)
2
/(I − 1).

(6.13)

The control limit of statistic cDi, j,k is estimated as

climit
j,k = c̄Dj,k + λ1

(
var

(
cDj,k

))1/2
, (6.14)

where λ1 is a predefined parameter. Similarly, the control limit of statistic is

q limit
j,k = q̄SPE

j,k + λ2
(
var

(
qSPE
j,k

)) 1
2 , (6.15)

where λ2 is a predefined parameter,

q̄SPE
j,k =

I∑

i=1

qSPE
i, j,k/I

var(qSPE
j,k ) =

I∑

i=1

(qSPE
i, j,k − q̄SPE

j,k )
2
/(I − 1).

(6.16)

As above, the control limit calculation is very simple. Although the calculation
increases, the extra calculations canbeperformedoffline, there is no restriction during
the online monitoring stage. The proposed monitoring technique corresponding to
the offline and online stages is summarized as follows:

A. Offline Stage

1. Obtain the normal process data of I batches X , unfold them into two-dimensional
time-slice matrix Xk , and then normalize the data.
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2. Perform the PCA procedure on the normalized matrix Xk of each time slice and
obtain the loading matrices Pk .

3. Calculate the statistics cDi, j,k and q
SPE
i, j,k of each variable in all the interval times for

all batches, then calculate the variable contributions at each time interval using
(6.4) and (6.12).

4. The control limits of statistics cDi, j,k and q
SPE
i, j,k are estimated as (6.14) and (6.15).

B. Online Stage

1. Collect new sampling time-slice data xnew, and then normalize based on the mean
and variance of prior normal I batches data (modeling data).

2. Use Pk to calculate the new statistics cDi, j,k and q
SPE
i, j,k of new sampling, and judge

whether these statistics exceed the control limit. If one of them exceeds the control
limit, then fault identification is performed to find the faulty variable that exceeds
the control limit much greater than others; if none of them exceeds the control
limit, then the current data are normal.

6.2 Combined Index-Based Fault Diagnosis

The monitoring method in the original process variables can avoid some of the
disadvantages of traditional statistic approach in the latent variable space, such as
indirectly monitoring (Yoo et al. 2004). However, the original variable monitoring
method is relatively complicated due to the monitoring of each variable in both
SPE and T2 statistics. It means that each variable should be monitored twice, which
increases the calculation. Thus, a new combined index, composed of the SPE and T2

statistics, is proposed to decrease monitoring complexity.

6.2.1 Combined Index Design

In this section, we use symbol X(I × J ) to substitute the unfolding process data
matrix Xk(I × J ) for general analysis. Similarly, Pk, T k, Ek are substituted by
P, T, E. The process data X could be decomposed into PCS and RS when perform-
ing PCA:

X = T PT + E = X̂ + E, (6.17)

where X̂ is the PCS and E is the RS. If the principal number is m, then a PCS with
m-dimension and a RS with (J − m)-dimension can be obtained. When new data x
are measured, they are projected into the principal subspace:

t = x P . (6.18)
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Fig. 6.1 Graphical representation of T2 and SPE statistics

The principal component (PC) score vector t(1 × m) is the projection of new data
x in the PCS. Subsequently, the PC score vector is projected back into the original
process variables to estimate the process data x̂ = t PT. The residual vector e is
defined as

e = x − x̂ = x
(
I − P PT) . (6.19)

Residual vector e reflects the difference between new data x and modeling data
X in the RS. A graphical interpretation of T2 and SPE statistics is shown in Fig. 6.1.

Todescribe the statistics clearly in the geometry, the principal component subspace
is taken as a hyperplane. The SPE statistic checks the model validity by measuring
the distance between the data in the original process variables and its projection onto
the model plain. Generally, the T2 statistic is described by the Mahalanobis distance
of the project point t to the projection center of normal process data, which aims to
check if the new observation is projected into the limits of normal operation. The
residual space is perpendicular to the principal hyperplane. The SPE statistic shows
the distance from the new data x to the principal component hyperplane.

A new distance index ϕ from the new data to the principal component projection
center of the modeling data is given in the following. It can be used for monitoring
instead of the SPE and T2 indicators. Consider the singular value decomposition
(SVD) of the covariance matrix Rx = E

(
XTX

)
for given normal data X ,

Rx = UΛUT,

whereΛ = diag{λ1,λ2, . . . ,λm, 0J−m} is the eigenvalue of Rx . Theoriginal loading
matrix U J×J is a unitary matrix and UUT = I . Each column of the unitary matrix
is a set of standard orthogonal basis in its span space. The basis vectors of principal
component space and residual space divided from matrix U are orthogonal to each
other. Furthermore,

U = [P, Pe], (6.20)

where P ∈ RJ×m is the loading matrix. Pe ∈ RJ×(J−m) can be treated as the loading
matrix of residual space. Thus, P and Pe are presented by U as follows:

P = UF1, Pe = UF2, (6.21)
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where

F1 =
[

Im
0J−m

]

J×m

, F2 =
[

0m
I J−m

]

J×m

, (6.22)

where Im and I J−m are the m and J − m dimension unit matrices, respectively, and
0m and 0J−m are the m and J − m dimension zero matrices, respectively. Further-
more, the SPE and T2 statistics are denoted by U :

e = x
(
I − P PT

) = x
(
UUT − UF1FT

1U
T
)

= x
(
UUT − UE1UT

) = xU (I − E1)UT = xUE2UT,
(6.23)

where

E1 =
[

Im 0m,J−m

0J−m,m 0J−m

]
, E2 =

[
0m 0m,J−m

0J−m,m I J−m

]
. (6.24)

Define y = xU , then

SPE := Q = eeT = xUE2UTUE2UTxT

= xUE2UTxT = yE2 y
T =

J∑

i=m+1

y2i .
(6.25)

Similarly, we can describe the T2 statistic as follows:

T2 := D = tΛ−1
m tT = x PΛ−1

m PTxT

= xUF1Λ
−1
m FT

1U
TxT = xUΛ

−1
UTxT

= yΛ−1 yT =
m∑

i=1

y2i σ
2
i ,

(6.26)

where
Λ−1

m = diag{σ2
1,σ

2
2, . . . ,σ

2
m}, Λ−1 = [Λ−1

m , 0(J−m)×(J−m)].

The new combined index could be obtained directly by composing the two statis-
tics as

ϕ = D + Q =
m∑

i=1

y2i σ
2
i +

J∑

i=m+1

y2i . (6.27)

It is proved via mathematical illustration that the two decomposed statistics can
be geometrically added together directly. This result demonstrates that T2 and SPE
statistic can be combined primarily and that is an intrinsic property. Thus, the com-
bined index is a more general and geometric representation compared with the other
combined index. The monitoring strategy with the novel index is introduced in the
next subsection.



6.2 Combined Index-Based Fault Diagnosis 87

6.2.2 Control Limit of Combined Index

In Sect. 6.1, the T2 and SPE statistics are decomposed into two new statistics for each
variable. To reduce the calculation of process monitoring, the two new statistics are
combined into a new statistic ϕ to monitor the process.

ϕi, j,k = cDi, j,k + qSPE
i, j,k, (6.28)

where ϕi, j,k is the combined statistic at sampling time k for the j th variable. The
method mentioned in Sect. 6.1.3 can be used to calculate the control limit of the new
statistic,

ϕlimit
j,k = ϕ̄ j,k + κ

(
var

(
ϕ j,k

))1/2
, (6.29)

where κ is a predefined parameter, and

ϕ̄ j,k =
I∑

i=1

ϕi, j,k/I

var
(
ϕ j,k

) =
I∑

i=1

(
ϕi, j,k − ϕ̄ j,k

)2
/(I − 1).

(6.30)

The online process monitoring can be performed according to comparing the new
statistic and its control limit. There are several points to highlight for readerswhen the
proposed control limit is used. Firstly, the mean and variance may be inaccurate for a
small number of samples. As a result, a sufficient number of training samples should
be collected during the offline stage. Secondly, the predefined parameter is important
and it is designed by the engineers according to the actual process conditions. The
tuning method regarding κ is similar to the Shewhart control chart. Equation (6.29)
illustrates that the effect of variance depends on the predefined parameter κ and
the fluctuation of control limits also relies on it on each sample. For example, the
control limit is smooth when κ is selected to be a smaller value, and the control limit
fluctuates when κ is selected to be a larger value.

If the combined statistic of the new sample has a significant difference from those
of the reference data set, then a fault is detected.As a result, a fault isolation procedure
is set up to find the fault roots. This fault response process is one of advantages in
original process variable monitoring as each variable has a unique formulation and
physical meaning. The proposed monitoring steps are similar as that in Sect. 6.1.2.
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6.3 Case Study

A fed-batch penicillin fermentation process is considered in case study, and its
detailed mathematical model is given in Birol et al. (2002). A detailed description
of the fed-batch penicillin fermentation process is available in Chap.4.

6.3.1 Variable Monitoring via Two Statistics Decomposition

Firstly, the original process variable monitoring algorithm mentioned in Sect. 6.1.2
is tested. The monitoring results of all variables would be interminable and tedious,
so only several typical variables are shown here for demonstration or comparison.
The monitoring result of variable 1 in a test normal batch is shown in Fig. 6.2. None
of the two statistics (cD1,k and qSPE

1,k ) exceeds its control limit, and the statistics (cDj,k
and qSPE

j,k , j = 2, . . . , 11 ) of all the other variables do not exceed the control limits
as well. The monitoring results of other variables are similar to that of variable 1, so
we omitted them due to the restriction of the book length. These results show that
proposed algorithm do not have a false alarm when it is used to monitor the normal
batch.

Next, the fault batch data are used to test the proposed monitoring algorithm of
the original process variables, and two types of faults are chosen here.

Fault 1: step type, e.g., a 20% step decrease is added in variable 3 at 200–250h.

Fig. 6.2 Original variables monitoring for normal batch (variable 1)
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Fig. 6.3 Monitoring result for Fault 1 (variable 1)

The monitoring results are shown as follows. Figure6.3 shows the monitoring
result of variable 1 for fault 1, the statistics changes obviously during the fault
occurrence. However, the statistics do not exceed the control limit, i.e., the process
status exhibits changes, but variable 1 is not the fault source. The monitoring results
of variables 2, 4, 8, 9, and 11 are almost the same as the result of variable 1, and
these results are not presented here.

The monitoring results of variable 3 and variable 5 are shown in Figs. 6.4 and 6.5,
respectively. Both of the variable statistics exceed the control limit at the sampling
time 200h. Regarding the other variables of 6, 7, and 10, the statistics of these
variables also exceed the control limit, and the simulation results of these variable
are nearly the same as that of variable 5 (the results are not presented here).

The question is: which variable is the fault source, variable 3, 5, or others? From
the amplitude of Figs. 6.4 and 6.5, it is easy to see that the two statistics for variable
3 exceed the control limits to a much greater extent than those for variable 5 and
other variables. In particular, the Q statistic of variable 3 is 40 times greater than
its control limit. From this perspective, variable 3 can be concluded to be the fault
source, as it makes contribution to the statistics obviously. Note that there is no
smearing effect in the proposed method. The smearing effect means that non-faulty
variables exhibit larger contribution values, while the contribution of faulty variables
is smaller. Because the statistics are decomposed into a unique sum of the variable
contributions, each monitoring figure is plotted against the decomposed variable
statistics. Furthermore, the proposed method may identify several faulty variables if
they have larger contributions at close magnitudes.
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Fig. 6.4 Monitoring result for Fault 1 (variable 3)

Fig. 6.5 Monitoring result for Fault 1 (variable 5)
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Fig. 6.6 Relative contribution rate of Rc for Fault 1

To confirm the monitoring conclusion, the relative statistical contribution rate of
the j th variable at time k is defined as

R j,k
c = cDj,k/

J∑

j=1

cDj,k

R j,k
q = qSPE

j,k /

J∑

j=1

qSPE
j,k .

The relative statistic contribution rates of 11 variables are shown in Figs. 6.6
and 6.7. It is clear that variable 3 is the source of Fault 1. It is found that variables
9, 10, and11 still have the higher contribution when the fault is eliminated because
the fault in variable 3 causes the change of the other process variables. The effects
on whole process still continue, even if the fault is eliminated, and the fault variable
evolves from the original variable 3 to other process variables.

Fault 2: ramp type, i.e., fault involving a ramp increasing with a slope of 0.3 in
variable 3 at 20–80 h.

The two monitor statistics of variable 3 are shown in Figs. 6.8 and 6.9. It can be
seen that both of the two statistics exceed the control limits at approximately 50h.
The alarming time lags relative to the fault occurrence time (approximately 20h) are
found because this fault variable changes gradually.When the fault is eliminated after
80h, the relationship among the variables changes back to normal. The T2 statistic
obviously declines under the control limit, while the SPE statistic still exceeds the
control limit because the error caused by Fault 2 still exists.
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Fig. 6.7 Relative contribution rate of Rq for Fault 1

Fig. 6.8 Fault 2 monitoring by c statistic (variable 3)
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Fig. 6.9 Fault 2 monitoring by q statistic (variable 3)

6.3.2 Combined Index-Based Monitoring

The same test data in Sect. 6.3.1 are used to test monitoring effectiveness of the new
combined index. Considering a normal batch, the monitoring result of ϕ statistic is
shown in Fig. 6.10. Variable 1 is still monitored in this section, as was the case in
Sect. 6.3.1 for comparison. It is shown that the new index ϕ of variable 1 is far below
its control limit, as is the case for the new index values of the other variables. This
method shows some good performances, and the number of false alarms is zero in
normal batch monitoring. The new index is more stable than the two statistics, and
it is easy to observe for operators.

Fault 1: step type, e.g., a 20% step decrease is added in variable 3 at 200–250h.
The new statistic ϕ of variable 1 does not exceed the control limit in Fig. 6.11,

although it changes from 200h to 250h during the fault. The values of new statistic
ϕ of variables 2, 4, 8, 9, and 11 also do not exceed the control limit. The corre-
sponding monitoring statistics are omitted here. Thus, these variables have no direct
relationship with the fault variable, i.e., they are not the fault source.

Furthermore, the monitoring results of variables 3 and 5 are shown in Figs. 6.12
and 6.13, respectively. The value statistics of variables 3 and 5 exceed their control
limits obviously, as well as those of variables 6, 7, and 10. As discussed in Sect. 6.3.1,
one can see that the statisticϕ of variable 3 changes to a greater extent than other vari-
ables, so variable 3 is the potential fault source. This result shows that the proposed
approach is an efficient technique for fault detection.
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Fig. 6.10 Original variables monitoring based on combined index for normal batch (variable 1)

Fig. 6.11 Fault 1 monitoring based on combined index (variable 1)
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Fig. 6.12 Fault 1 monitoring based on combined index (variable 3)

Fig. 6.13 Fault 1 monitoring based on combined index (variable 5)
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The relative contribution of the new statistic is used to confirm the fault source,
which is defined as

Rk
ϕ = ϕ j,k/

J∑

j=1

ϕ j,k .

The relative contribution of variable 3 is nearly 100%, as shown in Fig. 6.14. So
variable 3 is confirmed as the fault source. It is found that variables 9, 10, and 11 still
have a higher contribution when the fault is eliminated because the fault in variable
3 causes the change of the other process variables and the effect on whole process
still continues, even if the fault is eliminated.

Note that the relative contribution plot (RCP) is an auxiliary tool to locate the
fault roots. It is only used for comparison with the proposed monitoring method to
confirm diagnostic conclusions. Furthermore, the RCP is completely different from
the traditional contribution diagram in this work. The RCP in this work is calculated
using the original process variables, i.e., there is no smearing effect of the RCP.
The contribution of each variable is independent of the other variables. Therefore,
the proposed method is a novel and helpful approach in terms of original process
variable monitoring. Furthermore, the color map of the fault contribution is intuitive.
As a result, the map will promote the operator’s initiative to find the fault source,
and engineers can find some useful information to avoid more serious accidents.

Fault 2: ramp type, i.e., fault involving a ramp increasing with a slope of 0.3 in
variable 3 at 20–80h.

Fig. 6.14 Relative contribution rate of ϕ statistic for Fault 1
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Fig. 6.15 Fault 2 monitoring of variable 3 by ϕ statistic

Themonitoring result of variable 3 is shown in Fig. 6.15. It can be seen that the new
statistic ϕ exceeds the control limit at approximately 50h, and then it falls below the
control limit after 80h. The result shows that the combined index can detect different
faults.

6.3.3 Comparative Analysis

The monitoring performances of different methods are compared. Several perfor-
mance indices are given to evaluate the monitoring efficiency. False alarm (FA) is
the number of false alarms during the operation life. Time detected (TD) is the
time that the statistic exceeds the control limit under the fault operation, which can
represent the sensitivity.

The monitoring results of the proposed method are compared with that of the
traditional sub-PCA method (Lu et al. 2004) in latent space and the soft-transition
sub-PCA (Wang et al. 2013) to illustrate the effectiveness. The FA and TD results
for other 12 faults are presented in Tables6.1 and 6.2, respectively. Fault variable
numbers (1, 2, and 3) represent the aeration rate, agitator power, and substrate feed
rate, as shown in Chap.4. The fault type and occurring time for the variables are
given in Table6.1, and those input conditions are as same as those in Sects. 6.3.1
and 6.3.2.
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Table 6.1 Monitoring results of FA for other faults

Fault
ID

Var.
No.

Fault
type

M/S
(%)

Fault
time
(h)

Original
variables
monitoring

Trad. sub-PCA
(Lu et al. 2004)

Soft sub-PCA
(Wang et al.
2013)

c q ϕ FA FA

1 2 Step −15 20 0 0 0 9 0

2 2 Step −15 100 0 173 0 1 0

3 3 Step −10 190 0 95 0 11 0

4 3 Step −10 30 0 57 0 5 0

5 1 Step −10 20 0 0 0 1 0

6 1 Step −10 150 16 0 0 2 0

7 1 Ramp −5 20 2 1 0 1 0

8 2 Ramp −20 20 4 0 0 6 0

9 1 Ramp −10 20 2 0 1 10 0

10 3 Ramp −0.2 170 1 0 0 3 0

11 2 Ramp −20 170 4 0 0 1 0

12 1 Ramp −10 180 2 0 0 2 0

It can be seen from Table 6.1 that there are multiple false alarms applying the tra-
ditional sub-PCA method to detect faults, while the original process variable moni-
toring method shows less false alarms based on the combined index ϕ in this chapter.
Among the three indices of the original spatial monitoring, the c and q statistics may
have a large number of false alarms for different reasons, but the new combined index
ϕ is more accurate because it can balance the two indices.

Table6.2 indicates that the original process variable monitoring has accurate and
timely detection results comparing with the other two detection methods. The detec-
tion delay is more than 10h for Fault 4, 7, 8 and 11 in the traditional sub-PCA and
the soft-transition sub-PCA. Such a delay is inconceivable in a complex industrial
process. While the difference between the detected time and the real fault time for
the proposed approach is less than 10h, except for fault 4. This result is helpful
and meaningful in practice. As a result, the proposed approach could provide more
suitable process information to operators. Thus, the proposed monitoring method
based on a combined index shows advantages of rapid detection and fewer false
alarms compared with the traditional or soft-transition sub-PCA approaches, whose
monitoring operation is in the latent space but not the original measurement space.
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Table 6.2 Comparing the time of fault detected

Fault
ID

Fault
time
(h)

Original process
variables monitoring

Trad. sub-PCA
(Lu et al. 2004)

Soft-trans. sub-PCA
(Wang et al. 2013)

c q ϕ SPE T2 SPE T2

1 20 20 20 20 20 None 20 28

2 100 100 100 100 100 101 100 100

3 190 191 190 190 190 213 190 199

4 30 45 45 45 81 45 48 45

5 20 20 20 20 20 48 20 20

6 150 151 150 150 150 151 150 151

7 20 27 26 25 28 41 28 40

8 20 30 26 26 44 34 31 45

9 20 24 22 23 21 28 24 30

10 170 171 170 170 170 173 171 171

11 170 179 175 175 177 236 181 195

12 180 184 182 182 185 185 184 188

6.4 Conclusions

A new multivariate statistical method for the monitoring and diagnosis of batch
processes, which operates on the original process variables, was presented in this
chapter. The proposed monitoring method is based on the decomposition of the T2

and SPE statistics as a unique sum of each variable contribution. However, problems
may arise if the number of variables is large when the original process variables
technique is applied. To reduce the workload of the monitoring calculation, a new
combined indexwas proposed.Amathematical illustrationwas given to prove that the
two decomposed statistics can be added together directly. Compared to the traditional
PCAmethod in latent space, the proposed method is sufficiently direct, and only one
statistical index is utilized, thereby decreases the calculation burden.

The new original variable space monitoring method can detect a fault with a clear
result based on each variable. The fault source can be determined directly from the
statistical index rather than using the traditional contribution plot. Furthermore, the
control limit of the new combined statistics is very simple, and it does not need to
assume that it follows some probability distribution. The simulation results show
that the new combined statistics can detect the fault efficiently. As the new statistic
index is the combination of two decomposed statistics, it can avoid many problems
introduced by the use of a single statistic, such as false alarms or missing alarms.
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Chapter 7
Kernel Fisher Envelope Surface for
Pattern Recognition

It is found that the batch process is more difficultly monitored compared with the
continuous process, due to its complex features, such as nonlinearity, non-stable
operation, unequal production cycles, and most variables only measured at the end
of batch. Traditional methods for batch process, such as multiway FDA (Chen 2004)
and multi-model FDA (He et al. 2005), cannot solve these issues well. They require
complete batch data only available at the end of a batch. Therefore, the complete
batch trajectorymust be estimated real time, or alternatively only themeasured values
at the current moment are used for online diagnosis. Moreover, the above approaches
do not consider the problem of inconsistent production cycles.

To address these issues, this chapter presents the modeling of kernel Fisher enve-
lope surface (KFES) and applies it to the fault identification of batch process. This
method builds separate envelope models for the normal and faulty data based on
the eigenvalues projected to the two discriminant vectors of kernel FDA. The high-
lights of the proposed method include the kernel project aiming at the nonlinearity,
data batch-wise unfolding, envelope modeling aiming at unequal cycles, and new
detection indicator easily for online implementation.

7.1 Process Monitoring Based on Kernel Fisher Envelope
Analysis

7.1.1 Kernel Fisher Envelope Surface

Consider the batch-wise data matrix with I batches, i.e.,

X(k) = [
X1(k), X2(k), . . . , X I (k)

]T
,
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where X i consists of ni (i = 1, . . . , I ) row vectors and each row vector is a sample
vector X i

j (k), j = 1, . . . , ni acquired at time k and batch i . Each batch has the same
sampling period but different operation cycles, i.e., batch i has ni (i = 1, 2, . . . , I )
sampling point. Suppose K is the largest sampling moment among all batches, i.e.,
K = max [n1, n2, . . . , nI ].

LetΦ(x) be a nonlinear mapping rule that maps the sample data from the original
space X into the high-dimensional space F. Suppose that each batch is treated as a
class, then thewhole data set canbe categorized as I classes. Theoptimal discriminant
vector w is obtained using the exponential criterion function in the feature space F.
Since computing Φ(x) is not always feasible, a kernel function can be introduced,

K (xi , x j ) =< Φ(xi ),Φ(x j ) >= Φ(xi )TΦ(x j ). (7.1)

This kernel function is introduced to allow the dot product in F without directly
computing Φ. According to the principle of reproducing kernel, any solution w ∈ F
of discriminant vector must lie in the span of all training samples of w:

w =
n∑

(i=1)

αiΦ(xi ) = Φα, (7.2)

where xm,m = 1, . . . , n, n = n1 + n2 + · · · + nI is the row vector of X . Φ(x) =
[Φ(x1), . . . , Φ(xn)];α = (α1,α2, . . . αn)

T. The eigenvalues Ti j are obtained by
projecting the sampled values Φ(xij ) in space onto w.

Ti j = wTΦ(xij ) = αTΦTΦ(xij )

= αT[Φ(x1)TΦ(xij ), . . . , Φ(xi )TΦ(xij )]
= αTξi

j .

(7.3)

The kernel sample vector ξi
j is defined as follows:

ξi
j = [K (x1, xij ), K (x2, xij ), . . . , K (xn, xij )]T. (7.4)

Consider the projection of within-class mean vectormΦ
i , i = 1, . . . , I , the kernel

within-class mean vector μi is obtained as

μi =
⎡

⎣ 1

ni

ni∑

j=1

K (x1, xij ), . . . ,
1

ni

ni∑

j=1

K (xn, xij )

⎤

⎦

T

. (7.5)

Then the kernel between-class scatter matrix K b is
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K b =
I∑

i=1

ni
n

(μi − μ0)(μi − μ0)
T. (7.6)

Similarly, consider the projection of overall mean vector mΦ
0 to the discriminant

vector w, the kernel overall mean vector μ0 and between-class scatter matrix Kw

can be calculated as

μ0 =
⎡

⎣1

n

n∑

j=1

K (x1, x j ), . . . ,
1

n

n∑

j=1

K (xn, x j )

⎤

⎦

T

(7.7)

Kw = 1

n

I∑

i=1

ni∑

j=1

(ξi
j − μi )(ξ

i
j − μi )

T. (7.8)

The discriminant function with the objective of maximizing between class and
minimizing within class is equivalent to

max J (α) = tr(αTK bα)

tr(αTKwα)

= tr(αT(V bΛbVT
b )α))

tr(αT(VwΛwVT
w)α)

,

(7.9)

where K b = V bΛbVT
b and Kw = VwΛwVT

w are eigenvalue decompositions of
between-class and within-class scatter matrices, respectively. To construct the enve-
lope surface model, it is usually assumed that two discriminant vectors are obtained,
namely, the optimal discriminant vector and the suboptimal discriminant vector. The
kernel sampling vector for sampling point k of batch i is ξi

k, which is projected onto
the two discriminant vectors to obtain the eigenvalues T 1

ik and T 2
ik .

The eigenvalue vectors of all batch at time k in the first two projection direction
are

[
T 1
1k, T

1
2k, . . . , T

1
I k

]
and

[
T 2
1k, T

2
2k, . . . , T

2
I k

]
. Their means of the two eigenvalue

vectors are mean1(k) and mean2(k), respectively. Define that

max1(k) = max
[|T 1

1k − mean1(k)|, · · · , |T 1
I k − mean1(k)|

]

max2(k) = max
[|T 2

1k − mean2(k)|, · · · , |T 2
I k − mean2(k)|

]
,

(7.10)

where max(k) is the larger between max1(k) and max2(k), for all k = 1, 2, . . . , K ).
Then the envelope surface in high-dimensional space is

(xk − mean1(k))
2 + (yk − mean2(k))

2 = max (k)2(k = 1, 2, . . . , K ), (7.11)

where (xk, yk) is a projection of original data in the feature space, i.e., xk is the
eigenvalue in the optimal discriminant direction and yk is the eigenvalue in the
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suboptimal discriminant direction. Equation (7.11) gives the envelope surface with
the maximum variation which allows the eigenvalues at different sampling times for
this kind of data.

Unequal Cycle Discussion

Suppose the production period of each batch is different, i.e., ni is varying with
the batch i . The envelope surface model is similar as described above, but the dif-
ference lies in the composition of the eigenvalue vector. As a simple example, it
is known that there are I batches of data in a training data set, and the sampling
moment k for each batch varies from 1 to K , K is the largest sampling moment of
all batches. Suppose only batch i does not reach the maximum sampling moment K ,
k = 1, . . . , ni , ni ≤ K . The corresponding eigenvalue vectors are

[
T 1
1k, T

1
2k, . . . , T

1
I k

]

and
[
T 2
1k, T

2
2k, . . . , T

2
I k

]
if k = 1, . . . , ni . When the time increases k = ni +

1, . . . , K , the eigenvalue vectors are
[
T 1
1k, T

1
2k, · · · T 1

(i−1)k, T
1
(i+1)k, . . . , T

1
I k

]
and

[
T 2
1k, T

2
2k, · · · T 2

(i−1)k, T
2
(i+1)k, . . . , T

2
I k

]
. Obviously, the parameters in envelope sur-

face model (7.11), max(k), max1(k), and max2(k) are time varying with k.

7.1.2 Detection Indicator

Define the detection indicators as follows:

P1(k) = |T 1
k − mean1(k)|

max(k)

P2(k) = |T 2
k − mean2(k)|

max(k)

T (k) = (T 1
k )2 + (T 2

k )2,

(7.12)

where T 1
k and T 2

k are the eigenvalues obtained by mapping the real-time sampling
vector xk onto the discriminant vector in the higher dimensional space. When the
trajectory of eigenvalues at that moment is contained within the envelope surface,
there must be P1(k) < 1 and P2(k) < 1 holds. If the difference between the new
batch of data and the training data for this type of envelope surface model is large,
the Gaussian kernel function used in the kernel Fisher criterion is almost zero, such
that T 1

k =0, T 2
k =0, i.e., T (k) = 0. Thus, for a given measured data, using the above

indicators, a judgement can be made. When P1(k) < 1, P2(k) < 1, and T (k) = 0
does not occur, the data sampled at that moment belong to this mode type. When
T (k) = 0 occurs consistently, it indicates that the sampled data does not belong to
this mode type.
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It is assumed that it has been determined from the normal operating envelope
surface model that the batch of data is faulty at some point. Fault identification is
carried out using fault envelope surface models. Consider one of the fault envelope
surface models, if P1(k) < 1, P2(k) < 1, and no T (k) = 0, then the batch fault is in
current fault type. If T (k) = 0 appears consistently in each envelope model, then the
fault that exists may be a new one. When that fault occurs multiple times, the pattern
type needs to be updated and an additional envelope model need to be constructed
for new fault.

The fault identification using the proposed kernel Fisher envelope surface analysis
(KFES) is given as follows. Its fault monitoring flowchart is shown in Fig. 7.1.

Fault Monitoring Algorithm Based on KFES
Step 1: Collect the historical data with S fault categories. Construct S envelope

surface models for each category based on the description in Sect. 7.1.1:

(xk − meanS
1 (k))

2 + (yk − meanS
2 (k))

2=maxS(k)2, (k = 1, 2, . . . , K ). (7.13)

Then store all the model parameters meanS
1 (k), meanS

2 (k), and maxS(k), (k =
1, 2, . . . , K ). Thus, the envelope model library Env − model(S, k) is constructed.

Step 2: Sample the real-time data xk . After normalization, the kernel sampling
vector ξk is obtained.

Step 3: Under the known S fault envelope surface model at time k, project the
kernel sampling vector ξk of xk in the direction of the discriminant vectors. Calculate
the corresponding project eigenvalues T 1

k , T
2
k and detection indicators. If PS

1 (k) <

1, PS
2 (k) < 1, and T S(k) �= 0, then the fault belongs to category S.
Step 4: If detection indicators in Step 3 are not satisfied for all known fault type,

it is possible that a new fault has occurred. When that unknown fault lasts for a

Fig. 7.1 Fault monitoring
flowchart based on fault
envelope surface model
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period of time, the model library needs to be updated. The envelope surface for this
new fault is modeled according to the accumulated new batch data as Step 1, and
augmented into the model library.

7.1.3 KFES-PCA-Based Synthetic Diagnosis in Batch
Process

The basic idea of synthetic diagnosis integrates the advantage of KFES and PCA.
It builds a multiway PCA model for normal operating in the historical database
and calculates the monitoring statistics T2 and SPE of PCA model and their control
limits. ThemultiwayPCA is used for fault detection. For the fault data in the historical
database, the KFES is modeled for known fault categories. The KFES analysis is
used for fault identification. Themodeling and onlinemonitoring process of synthetic
diagnosis is shown in Fig. 7.2.

The normal operating data and S classes fault data were obtained from the histor-
ical data set. Firstly, the normal operating condition data X(I × J × K ) is expanded
into two-dimensional matrix X(I × J K ) in the time direction. After normalization,
the data is unfolding again as Y(I K × J ) in the batch direction. Perform multiway
PCA on the matrix to obtain score matrix T (I K × R) and load matrix P(J × R),
where R is the number of principal components. Then calculate the control limits of
the statistics T2 and SPE.

Fig. 7.2 Process monitoring flowchart based on KFES-PCA
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Instead of using contributionmaps, kernel Fisher envelope surface analysis is used
for fault diagnosis. Assume that there are S classes in the fault data set. The envelope
surface model is first constructed for each fault type. When the new data xnew,k is
obtained, it should be judged whether the current operation is normal by PCAmodel.
If the T2 and SPE exceed the control limits, and the fault is detected. Then we can
identify the type of fault by KFES model library. If the eigenvalues do not satisfy the
indicators in all the known fault models, this fault seems to be new. As long as enough
data toKFESmodeling are collected, update the new fault model in themodel library.

Process Monitoring Algorithm Based on KFES-PCA
A. Offline Modeling

Step 1: Develop an improved multiway PCA model for normal operating con-
ditions data, calculate the statistics T2 and SPE, and determine the corresponding
control T2

lim and SPElim based on the score matrix T (K I × R) and load matrix
P(J × R) obtained from the normal model.

Step 2: Apply KFES analysis to the fault data and construct a fault envelope for
each type of fault separately. Find the optimal discriminant weight matrix Wα, the
mean mean1(k), mean2(k), and maximum max (k) of the eigenvalue vectors.

Step 3: Store T2
lim and SPElim, the discriminant weight matrix Wα for each fault

type, the mean mean1(k), mean2(k), and the maximum max (k) of the eigenvalues.

B. Online Monitoring
Step 1: Normalize the new batch of data xnew,k (J × 1) at the kth sampling

moment.
Step 2: Calculate the value of statistics T2 and SPE and determine if they are over

the limit, if not, back to the first step. Otherwise proceed to the next step.
Step 3: The known fault envelope surface model is used for fault identification

at that moment. xnew,k (J × 1) is the sampling data obtained at the first k sampling
moment, normalized and projected onto the discriminant weight matrix Wα of the
kernel Fisher envelope model to obtain the eigenvalues T 1

k and T 2
k . The eigenvalues

are substituted into the index, P1(k) < 1, P2(k) < 1, and no T (k) = 0, and the fault
is in this fault type.

Step 4: If a fault has been detected based on step 2, but it does not belong to
any known fault type obtained from step 3, this indicates that a new fault may have
occurred. When that unknown fault has occurred several times, the mode type needs
to be updated and the envelope surface model for that fault needs to be augmented
with the accumulated batches of new faults in an offline situation.
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7.2 Simulation Experiment Based on KFES-PCA

The fed-batch penicillin fermentation simulation platform is used to verify the effec-
tiveness of theKFES-PCAmethod for fault diagnosis here. Eleven variables affecting
the fermentation reaction were selected for modeling, and these variables were air
flow, stirring power, substrate flow acceleration rate, temperature, etc. Three simula-
tion failure types were selected as shown in Table7.1. The total data sets (including
50 batches) were generated from the Pensim 2.0 simulation platform with 1h sam-
pling interval, consisting of 20 batches of normal operation, 10 batches of bottom
flow acceleration rate drop failure, 10 batches of agitation power drop failure, and 10
batches of air flow drop failure. The normal operation data are obtained at different
product cycles, one batch with 95h, two batches with 96h, two batches with 97h,
three batches with 98h, five batches with 99h, and seven batches with 100h. Simi-
larly, change the reaction duration of each batch, and change the time and amplitude
of the failure occurrence. The failure batch data are collected.

Figure7.3a–d gives the envelope surface of the kernel Fisher discriminant enve-
lope model under the normal operation and three known fault operations offline
trained, respectively. Here the x-axis and y-axis represent the direction of the opti-
mal and suboptimal discriminant vector, and the z-axis represents time.

The traditional monitoring methods, such asMPCA andMFDA, require the mod-
eling batches to be of equal length. However, the duration of the different batches
tends to change in practice. Therefore, the data of different batches must be pre-
processed with equal length when using these methods. The proposed KFES-PCA
method unfolds the data in the batch direction during the preprocessing, which can
simply cope with the unequal batches of data and therefore easily performed in
practice.

The following experiments are designed to perform the online detection with the
known fault and new unknown fault data, respectively. The two batches of test data
are not included in the training data in order to obtain a valid validation. In addition,
a comparative validation using the conventional contribution map method and the
improved MFDA method is also carried out (Jiang et al. 2003).

Table 7.1 Types of faults in penicillin fermentation processes

Fault number Fault type

1 Base flow rate down (step)

2 Agitator power down (step)

3 Air flow down (step)
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(a) normal envelope surface (b) fault 1 envelope surface

(c) fault 2 envelope surface (d) fault 3 envelope surface

Fig. 7.3 Envelope surface for normal and three fault operations

7.2.1 Diagnostic Effect on Existing Fault Types

Experiment 1: Step Drop Fault at Stirring Power
A fault batch data is regenerated for testing with the stirring power drop fault. The
fault occurs at 50h with a step disturbance of −12% in magnitude until the process
ends. The sampled data is first monitored based on T2 and SPE statistics, as shown
in Fig. 7.4. It can be seen that T2 and SPE continues to exceed the limit from 50h to
process end. A failure can be detected when it occurs at 50h. Table7.2 records the
indicators when it is diagnosed using the envelope surface model of fault 2. It shows
that there are P1(k) < 1, P2(k) < 1, and no T (k) = 0 with time through from 50h to
100h. So it is concluded that this fault of testing batch belongs to fault 2. Figure7.5
shows the diagnosis results based on each envelope surface model. It can also be
seen that the fault matches with the second type of fault, a mixing power drop fault.

The contribution plot is used to analyze the testing data at 50h, as shown inFig. 7.6.
It is found that the second variable contributes significantly to both the statistics T2

and SPE. This also diagnoses that the fault belongs to fault 2. Therefore, the envelope
surface model is equally successful in diagnosing the fault type when compared with
the contribution plot method.
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(a) T
2

(b) SPE

Fig. 7.4 Monitoring statistics of KFES-PCA method: experiment 1

Table 7.2 The indicators detected in fault 2 envelope surface: experiment 1

k 50 51 52 53 54 55 56 57 · · · 100

T 1
k 0.044 0.025 0.028 −0.011 0.032 0.062 0.110 0.083 · · · −0.005

T 2
k −0.159 −0.145 −0.233 −0.141 −0.173 −0.205 −0.271 −0.202 · · · −0.241

P1 (k) < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 · · · < 1

P2 (k) < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 · · · < 1

The comparison experiment is finished based on the improved MFDAmethod, as
shown in Fig. 7.7. The horizontal coordinate is time. The vertical coordinate is fault
type, where 0 represents the normal operation, and 1, 2, 3, and 4 correspond to fault
1, fault 2, fault 3, and unknown fault, respectively. It can be seen that the improved
MFDA has a relatively high rate of misdiagnosis and its diagnosis result is not ideal.

Experiment 2: Step Drop Fault at Air Flow
The testing fault is air flow drop failure and testing data is regenerated with the failure
which occurred in 58h, and its amplitude is −10% step disturbance until the process
ends. The monitoring statistics T2 and SPE are given in Fig. 7.8. The T2 and SPE
continue to exceed the control limits from 58h to the end, so a fault is detected at
58h in real time.

Figure7.9 is the monitoring result using the proposed envelope surface model.
Table7.3 records the indicators when using the envelope surface model of fault 3.
It can be seen that there are P1(k) < 1, P2(k) < 1, and no T (k) = 0 between 58h
and 100h, so it is judged that the fault which occurred in this testing batch belongs
to fault 3. Figure7.9 shows all the diagnosis results with different envelope surface
models. It can also be seen that this fault matches with the model of fault 3, i.e., the
air flow drop fault.
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(a) fault 1 envelope surface

(b) fault 2 envelope surface (c) fault 3 envelope surface

Fig. 7.5 Fault diagnosis based on envelope surfaces: experiment 1

(a) T 2 contribution (b) SPE contribution

Fig. 7.6 Contribution plot to statistics T2 and SPE at 50h

The contribution plot of the sampling data at 58h is shown in Fig. 7.10, where
variables 1, 4, 6, and 8 contribute more to the statistic T2. The variable 3 contributed
more to the statistic SPE. The diagnosis result is not significant. Therefore, the
envelope surface method can successfully diagnose faults that are not diagnosed by
the contribution plot.
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Fig. 7.7 Fault diagnosis based on improved MFDA: experiment 1

(a) T2 (b) SPE

Fig. 7.8 Monitoring statistics of KFES-PCA method: experiment 2

The comparison results of the improved MFDA method are given in Fig. 7.11.
It shows a relatively higher rate of misdiagnosis and its diagnosis result is not very
satisfactory, compared with the proposed KFES-PCA.
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(a) fault 1 envelope surface

(b) fault 2 envelope surface (c) fault 3 envelope surface

Fig. 7.9 Fault diagnosis based on envelope surfaces: experiment 2

Table 7.3 The indicators detected in fault 3 envelope surface: experiment 2

k 58 59 60 61 62 63 64 65 · · · 100

T 1
k −0.110 −0.110 −0.171 −0.133 −0.220 −0.182 −0.100 −0.054 · · · −0.066

T 2
k −0.237 −0.162 −0.259 −0.141 −0.393 −0.378 −0.273 −0.332 · · · −0.295

P1 (k) < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 · · · < 1

P2 (k) < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 · · · < 1

(a) T2 contribution (b) SPE contribution

Fig. 7.10 Contribution plot to statistics T2 and SPE at 58h: experiment 2
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Fig. 7.11 Fault diagnosis based on improved MFDA: experiment 2

7.2.2 Diagnostic Effect on Unknown Fault Types

Experiment 3: Slope Drop Fault at Air Flow Rate
Here a new fault is used to test the diagnosis ability of the proposed KFES-PCA
method. The slope faults different from the known three fault types are considered.
The test fault is a ramp fault in which the air flow rate drops by−15% at 50h. Firstly,
the T2 and SPE statistics are used to detect this new fault. Figure7.12 shows that the
T2 and SPE statistics both detect this fault in time at 50h.

(a) T2 (b) SPE

Fig. 7.12 Monitoring statistics of KFES-PCA: experiment 3



7.2 Simulation Experiment Based on KFES-PCA 115

Table 7.4 The indicator detected in fault 3 envelope surface: experiment 3

k 50 51 52 53 54 55 56 57 · · · 100

T 1
k 0 0 0 0 0 0 0 0 · · · 0

T 2
k 0 0 0 0 0 0 0 0 · · · 0

T (k) 0 0 0 0 0 0 0 0 · · · 0

(a) fault 1 envelope surface (b) fault 2 envelope surface

(c) fault 3 envelope surface

Fig. 7.13 Fault diagnosis based on different envelope surfaces: experiment 3

The known envelope surface models are used to diagnose this fault. Table7.4
records that all the indicators are zero when the envelope surface model of fault 3 is
used for diagnosis. Itmeans that no fault 3 has occurred. The same indicator results are
obtained from the envelope surface models of other known faults. Figure7.13 gives
the diagnosis result under the different envelope surface models. So this fault does
not belong to the known fault category and is diagnosed as a new fault. Therefore,
the proposed method realizes the real-time diagnosis for unknown faults.

The diagnosis result of improved MFDA method is given in Fig. 7.14. It can be
seen that the improved MFDA does not make a timely and correct diagnosis when
the fault occurs. It gives a wrong diagnosis result, fault type 3. The correct result is
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Fig. 7.14 Fault diagnosis based on improved MFDA: experiment 3

reported until 63h. This fault is diagnosed as a new fault, and there is a 13h delay.
Therefore, the improved MFDA method failed to identify new faults.

7.3 Conclusions

This chapter describes a monitoring method based on KFES-PCA for batch pro-
cesses. The production cycles of batch processes are often unequal, and monitoring
methods for batch processes generally require batch data with consistent production
cycles. Although data preprocessing can result in equal cycles, these methods can
result in the loss of important information about faults. In addition, many existing
monitoring methods often require a complete production trajectory for online mon-
itoring, and filling or estimating unknown values inevitably leads to a decrease in
diagnostic performance. To address the above two problems, the modeling process
of the KFES method is described in detail and an online monitoring flowchart is pre-
sented. Furthermore, a batch fault diagnosis method integrating the KFES and the
improved PCA method is proposed. The method is applied to a penicillin fermenta-
tion simulation platform and compared with the traditional contribution map method
and the improved MFDA method. The results show that the proposed method has
better monitoring performance, and it can diagnose faults early and effectively and
has the ability to identify unknown faults.
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Chapter 8
Fault Identification Based on Local
Feature Correlation

Industrial data variables show obvious high dimension and strong nonlinear corre-
lation. Traditional multivariate statistical monitoring methods, such as PCA, PLS,
CCA, and FDA, are only suitable for solving the high-dimensional data processing
with linear correlation. The kernel mapping method is the most common technique
to deal with the nonlinearity, which projects the original data in the low-dimensional
space to the high-dimensional space through appropriate kernel functions so as to
achieve the goal of linear separability in the new space. However, the space projection
from the low dimension to the high dimension is contradictory to the actual require-
ment of dimensionality reduction of the data. So kernel-based method inevitably
increases the complexity of data processing. For this reason, we have proposed
another kind of nonlinear processing approach based on the manifold learning, a
class of unsupervised model that seeks to describe data sets as low-dimensional
manifold embedded in high-dimensional spaces. It characterizes the original data as
a low-dimensional manifold to achieve the goal of nonlinear correlation processing.
This strategy is consistent with the goal of dimensionality reduction. Furthermore,
manifold learning fits the nonlinear correlation by means of piecewise linearization
in an intuitive sense. It has significantly less complexity compared to the kernel
mapping method.

This chapter carries out the pattern classification techniques for multivariate vari-
ables with strong nonlinear correlation and applies them to the fault identification of
batch process. Two kinds of pattern classification methods are given in this chapter:
(1) kernel exponential discriminant analysis (KEDA): this method addresses the non-
linear correlation properties amongmulti-variables at two levels, kernel mapping and
exponential discrimination, respectively. It can significantly improve the classifica-
tion accuracy compared with the traditional FDA method. (2) The fusion method is
based on manifold learning and discriminant analysis: two different fusion strate-
gies, local linear exponential discriminant analysis (LLEDA) and neighborhood-
preserving embedding discriminant analysis (NPEDA), are given, respectively. Here
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locally linear embedding (LLE) is a popular algorithm of manifold learning. They
both combine the advantage of global discriminant analysis with the local structure
preserving. LLEDA is a parallel strategy to find a trade-off projection vector between
the local geometric structure preserving and the global data classification. NPEDA
is a cascaded strategy whose dimensionality reduction process is implemented in
two serial steps. The two methods emphasize the intrinsic structure of the data while
utilizing the global discriminant information, so they have better classification than
the traditional EDAmethod. Finally, a kind of hybrid fault diagnosis scheme is given
for the complex industrial process, which consists of PCA-based fault detection,
hierarchical clustering-based pre-diagnosis, and LLEDA-based final identification.

8.1 Fault Identification Based on Kernel Discriminant
Exponent Analysis

8.1.1 Methodology of KEDA

The kernel exponent discriminant analysis (KEDA) is also a discriminative classifi-
cation method, which aims to find a series of discriminant vectors that can transform
the data into the kernel space and achieve the greatest separation between different
types of data in the projection direction.

Consider the batch process data set with I batches, i.e.,

X(k) = [X1(k), X2(k), . . . , X I (k)]T,

where X i consists of ni , i = 1, . . . , I row vectors, and each row vector is a sample
vector X i

j (k), j = 1, . . . , ni acquired at time k and batch i . According to the analysis
from equations (7.1)–(7.9) in Sect. 7.1.1, the optimization function of kernel Fisher
discrimination analysis (KFDA) is given as follows,

max J (α) = tr(αTK bα)

tr(αTKwα)

= tr(αT(V bΛbVT
b )α))

tr(αT(VwΛwVT
w)α)

,

(8.1)

where K b = V bΛbVT
b and Kw = VwΛwVT

w are eigenvalue decompo-
sitions of between-class and within-class scatter matrices, respectively.
Λb = diag(λb1,λb2, . . . ,λbn), and Λw = diag(λw1,λw2, . . . ,λwn) are the
eigenvalues, V b = (vb1, vb2, . . . , vbn), and Vw = (vw1, vw2, . . . , vwn) are the
corresponding eigenvectors. The basic objective is to maximize the between-class
distance and minimize the with-class distance simultaneously during the projection.
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In order to improve the discrimination accuracy further, the discriminant function
(8.1) is exponentiated:

max J (α) = tr(αT(V b exp(Λb)VT
b )α)

tr(αT(Vw exp(Λw)VT
w)α)

= tr(αT exp(K b)α)

tr(αT exp(Kw)α)
.

(8.2)

The optimization problem (8.2) is transferred to the following generalized eigenvalue
problem:

exp(K b)α = Λ exp(Kw)α

or

exp(Kw)−1 exp(K b)α = Λα,

(8.3)

where Λ is the eigenvalue and α is the corresponding eigenvector. The discrimi-
nant vectors are calculated from (8.3). Usually, the first two vectors, optimal, and
suboptimal ones are selected for dimensionality reduction.

The within-class and between-class scatter matrices are exponentiated in KEDA.
Consider the general property of exponential function, ex > x for any x > 0, so the
scatter matrix of KEDA is greater than KFDA. It means KEDA has better discrimi-
natory capability than KFDA.Moreover, if the amount of sample data is less than the
number of variables, the rank of within-class scatter matrix is less than the dimension
of variables. Now thewithin-class scattermatrix is singular, and its inversion does not
exist. But both the within-class and between-class scatter matrices are exponentiated
in KEDA. The exponentiated matrices must be full rank, so the singular problem
caused by small samples is solved. Thus from this view, the KEDA method not only
solves the small sample problem, but also efficiently classifies the sample data into
different categories, which helps to improve the classification accuracy.

Let’s consider the nonlinear mappingΦ(xik) of original sample xik and project it to
the optimal and suboptimal discriminant directions, respectively. Then the eigenval-
ues T i (k) = [T 1

ik, T 2
ik]T and T 2

ik are obtained, which represent the projection values
in the optimal and suboptimal discriminant directions. Usually, the data in the same
class shows the similar project eigenvalues in the direction of selected discrimination
vectors. If the test data matches with the known fault class, it has maximum projec-
tion eigenvalue under this model, obviously nonzero. If the test data does not match
with this class, the eigenvalue is small even close to zero. It is unrealistic to judge
the data type simply based on the magnitude of eigenvalues. So difference degree D
between two projection values T i (k) and T j (k) is defined as follows:

Di, j (k) = 1 − (T i (k))TT j (k)

‖T i (k)‖2
∥
∥T j (k)

∥
∥
2

. (8.4)

The smaller the difference D, the higher the model matched.
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The KEDA-based fault classification and identification process for batch process
is given as follows:

Step 1: Data preprocess. The three-dimensional data set X (L × J × K ) is batch-
wise unfolded into two-dimensional data X (LK × J ), normalized along the time
in the batch cycle and variable-wise re-arranged.
Step 2: Kernel projection. The original data X is mapping to a high-dimensional
feature space via a nonlinear kernel function, and the kernel sampling data ξi

j =
[K (x1, xij ), K (x2, xij ), . . . , K (xn, xij )]T are obtained.
Step 3: KEDAmodeling. The optimal kernel discriminant vectors are solved from
the discriminant function equation (8.3). Project the sample data ξi

j to the selected
kernel discriminant vectors and calculate the corresponding eigenvalues Ti (k).
Step 4: Test calculation. The test sample x j,new(k) is collected and the correspond-
ing eigenvalues T i,new(k) according to the known S classes model are calculated,
respectively.
Step 5: Fault identification. The class of test data can be determined by calculating
the difference degree between test sample and trained data (8.4).

8.1.2 Simulation Experiment

The proposed KEDA was used for fault identification in the penicillin fermentation
process mentioned in Sect. 4.2. Here nine process variables were considered for
monitoring and three faults are shown in Table8.1. The data were generated by the
penicillin simulator when the amplitude and time of fault are changed. A total of
40 batches were selected as the training data set: 10 batches for normal and known
3 faults. The KEDA method with Gaussian kernel function was used to find the
optimal discriminant vectors for each type of model, and four different models were
obtained.

Experiment 1: Data classification Figures8.1, 8.2, 8.3, and 8.4 show the classi-
fication comparison of KFDA and KEDA for penicillin data: normal data and three
types of fault data. When the test data are different from the known four types, the
projections are also separated from each other. But the KFDA shows weaker clas-
sification performance: some faults are closer together and the boundaries are not
easily distinguishable, such as fault 3 data (red �) and test fault data (black �) in
Figs. 8.1 and 8.3. However, the KEDA works better for classifying these data, and

Table 8.1 Description of the fault type of penicillin process

No. Faults Types

1 Bottom logistics decline Step

2 Decreased power of the mixer Step

3 Decreased airflow Step
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Fig. 8.1 Two-dimensional classification visualization: KFDA method

the red and black parts are classified clearly in Figs. 8.2 and 8.4. These plots show
that the between-class and within-class distances have increased for different types
of data in KEDA, but the between-class distance has increased by a larger magnitude
than the within-class distance. So the different types of data can be better separated.

Experiment 2:Fault-type identificationLet’s consider the testingdata set,which
also consists of the four types of data and an unknown fault data. Table8.2 gives
the eigenvalues of the four testing data calculated based on the KEDA model of
fault 2. The eigenvalues are obtained by projecting the testing data to the selected
optimal discriminant directions. If there is a large difference between the testing data
and the training data, then the value of ‖ u − v ‖2 is large and the exponentiated
Gaussian kernel function, K (u, v) = exp(−‖ u − v ‖2/(2σ)2), is almost close to
zero. However, sometimes the fault occurrence eigenvalues are not close to zero, as
shown in Table8.2. At this case, the eigenvalues of the test data need to be analyzed
further.

It is impossible to show the values at any sampling instance, so we further analyze
the statistical characterizes of eigenvalues projected to the optimal discrimination
direction of known model. If the eigenvalue of testing data follows a normal distri-
bution in a model, the testing data belongs to this kind of model. Conversely, if the
eigenvalue does not follow a normal distribution, it means that the testing data does
not match with this model. Figures8.5, 8.6, and 8.7 give the statistical analysis of
the testing data (normal, faults 1 and 3) in the known fault 3 model. The eigenvalue
of fault 3 follows a normal distribution in the fault 3 model, while the normal data
or fault 1 data do not follow a normal distribution.
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Fig. 8.2 Two-dimensional classification visualization: KEDA method

Fig. 8.3 Three-dimensional classification visualization: KFDA method
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Fig. 8.4 Three-dimensional classification visualization: KEDA method

Table 8.2 The eigenvalues of test data in fault 2 model

Sampling
instant

Eigenvalues of test data (Tk)

Normal Fault 1 Fault 2 Fault 3 New fault

53 0.148 −0.148 −0.203 0 0

54 0.194 −0.194 0.0090 0 0

55 0.448 0 0.1660 0 0

56 0.187 0 0.1020 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

79 0.079 0 −0.024 0 0

80 0.103 0 −0.075 0 0

81 0.108 0 −0.084 0 0

82 0.041 0 −0.059 0 0

Moreover, the difference degree between test data and known model is used to
determine the type of fault. The results are shown in Table8.3. Since some of the
test data have zero eigenvalues in the known model, and the denominators in the
definition (8.4) are zero, the different degree cannot be calculated and expressed as
“–”. The difference degree is small if the test data belongs to the known type model,
and large if the test data does not belong to the model. It is found that the test data
has the smallest different degree in the matching model.



126 8 Fault Identification Based on Local Feature Correlation

Fig. 8.5 The eigenvalues of test normal data in fault 3 model

Fig. 8.6 The eigenvalues of test fault 1 data in fault 3 model
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Fig. 8.7 The eigenvalues of
test fault 3 data in fault 3
model

Table 8.3 The difference degree of test data in different models

Type of test data Normal model Fault 1 model Fault 2 model Fault 3 model

Normal 0.516679 0.669503 1.448272 1.630094

Fault 1 – 0.223966 – 1.578313

Fault 2 – 0.632128 0.550645 1.194915

Fault 3 – – – 0.553784

New fault 1.120218 – – 1.137496

8.2 Fault Identification Based on LLE and EDA

The new dimensionality reduction approach based on the combination of EDA and
LLE is proposed with two different combination performances, Local Linear Expo-
nential Discriminant Analysis (LLEDA) and Neighborhood-Preserving Embedding
Discriminant Analysis (NPEDA). This fusion idea combines the global discrimi-
nant analysis with local structure preservation during the dimensionality reduction
process. LLEDAandNPEDAare solved by different optimization objectives, respec-
tively, and the corresponding maximum values are derived to reduce the computa-
tional complexity. They both exhibit the good local preservation and global dis-
crimination capabilities. The nonlinear analytics is transformed into an equivalent
neighborhood holding problem based on the idea of piecewise linearization.

Themain difference between the twomethods is that LLEDA is a parallel strategy
whereas NPEDA is a cascading strategy. LLEDA focuses on the global supervised
discrimination balanced with local nonlinear dimensionality reduction. It finds a
balanced projection vector between the local geometry and the data classification
and results in an optimal subspace projection of the samples. When faults are diffi-
cult to distinguish, LLEDA method can improve the identification rate by adjusting
the trade-off parameter between the global index and the local index. NPEDA is a



128 8 Fault Identification Based on Local Feature Correlation

cascading strategy where the dimensionality reduction process is implemented in
two successive steps: the first aims at maintaining the local geometric relationships
and reconstructing each sample point using a linear weighted combination of near-
est neighbors, the second at performing discriminant analysis on the reconstructed
sample.

8.2.1 Local Linear Exponential Discriminant Analysis

The basic idea of LLEDA is to project the samples into the optimal discriminant space
while maintaining the local geometric structure of the original data. The schematic
diagram is shown in Fig. 8.8. LLEDA combines the advantages of LLE and EDA,
which extracts the global classification information while compressing the dimen-
sionality of the feature space without destroying local relationships. It finds a bal-
ance between global supervised discrimination and local preservation of nonlinearity
through an adjusted trade-off parameter.

Consider the original data being mapped into a hidden space F via function A.
An explicit linear mapping from X to Y , Y = ATX is constructed to circumvent the
out-of-sample problem. The original LLE problem is written as follows:

min ε(Y) =
n

∑

j=1

∣
∣
∣
∣
∣
y j −

k
∑

r=1

Wjr y jr

∣
∣
∣
∣
∣

2

=‖ Y(I − W) ‖2

= tr(Y(I − W)(I − W)TYT)

= tr(ATXMXTA).

(8.5)

The LLEDA problem is proposed with the following objective function:

max J (A) = tr
(

AT exp(Sb)A
)

tr
(

AT exp(Sw)A
) − μ · tr (

ATXMXTA,
)

(8.6)

where μ is a trade-off parameter that balances the intrinsic geometry and global
discriminant information. In general, (8.6) is equivalently transformed into an opti-
mization problem with constraint,

max J (A) = tr
(

AT exp(Sb)A
) − μ · tr(ATXMXTA)

s.t. AT exp(Sw)A = I,
(8.7)

where A = [a1, a2, . . . , an]. (8.7) is solvedby introducing theLagrangianmultiplier:

L1(ai ) = aTi
(

exp(Sb) − μXMXT
)

ai + θ(1 − aTi exp(Sw)ai ), (8.8)
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Fig. 8.8 The schematic diagram of LLEDA

where θ is Lagrangian multiplier. According to the zero gradient in L1(ai ) with
respect to ai , we have

(exp(Sb) − μXMXT)ai = θ exp(Sw)ai
or

(exp(Sw)−1(exp(Sb) − μXMXT)ai = θai ,

(8.9)

where θ is treated as a generalization eigenvalue. The discriminant matrix A is made
up of the corresponding eigenvectors of the first d largest eigenvalues in (8.9).
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8.2.2 Neighborhood-Preserving Embedding Discriminant
Analysis

NPEDA is also to find a series of discriminative vectors and map the samples into a
new space. The sample point is represented linearly by their neighbors tomaintain the
local geometry as much as possible during the projection process. The schematic dia-
gram is shown in Fig. 8.9. NPEDA is a cascade strategy in which the dimensionality
reduction process is divided into two successive steps, the first aiming at maintaining
local geometric relationships and the second aiming at a discriminant analysis in
which each sample point is reconstructed by a linearly weighted combination of its
neighbors.

Rewrite the between-class scatter matrix Sb and the within-class scatter matrix
Sw under the explicit linear mapping Y = ATX :

Fig. 8.9 The schematic diagram of NPEDA
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Sb =
c

∑

i=1

ni ( ȳi − ȳ)2 =
c

∑

i=1

ni
(

AT x̄i − AT x̄
)2

= AT

(
c

∑

i=1

ni (x̄i − x̄)(x̄i − x̄)T

)

A

= AT

(
c

∑

i=1

1

ni
(xi1 + · · · + xini )(x

i
1 + · · · + xini )

T − 2n x̄ x̄T + n x̄ x̄T
)

A

= AT

⎛

⎝

c
∑

i=1

ni∑

j,k=1

1

ni
xij x

iT
k − ni x̄ x̄T

⎞

⎠ A

= AT (

XBXT − n x̄ x̄T
)

A

= ATX
(

B − 1

n
eeT

)

XTA,

(8.10)

where x̄i = 1
ni

∑ni
j=1 x

i
j , ȳ =

∑c
i=1 ni ȳ

i
∑c

i=1 ni
, x̄ =

∑c
i=1 ni x̄

i
∑c

i=1 ni
= 1

n

∑c
i=1 ni x̄

i ; e =
[1, 1, . . . , 1]T with dimension n, and

Bi j =
⎧

⎨

⎩

1

nk
xi and x j ∈ k-th class.

0 otherwise.

Sw =
c

∑

i=1

ni∑

j=1

( yij − ȳi )2 =
c

∑

i=1

ni∑

j=1

(

ATxij − AT x̄i
)2

= AT

⎛

⎝

c
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i=1

⎛

⎝

ni∑
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⎞

⎠ A

= AT
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xij x
iT
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i x̄iT

⎞
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⎠ A

= AT
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⎝

c
∑

i=1

(

X i X
T
i − 1

ni
X i (ei e

T
i )XT

i

)
⎞

⎠ A

= AT
c

∑

i=1

(X i Li X
T
i )A,

(8.11)

where Li = I − 1
ni
ei eTi , I is unit matrix, and ei = [1, 1, . . . , 1]T with dimension ni .

The discriminant vectors A∗ are solved by the following optimization problem:

A∗ = argmax

∣
∣ATX(B − 1

n ee
T)XTA

∣
∣

∣
∣AT ∑c

i=1(X i LiXT
i )A

∣
∣
. (8.12)
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Considering that the original data is reconstructed by its neighbors less than ε:

n
∑

j=1

‖ x j −
k

∑

r=1

W jr x jr ‖2< ε,

where ε is a small positive number. W is reconstruction mapping matrix such that
∑k

r=1 W ir = 1. Then

∥
∥
∥
∥
∥
xi −

k
∑

r=1

W ir xir

∥
∥
∥
∥
∥

2

=
∥
∥
∥
∥
∥

k
∑

r=1

(W ir x I − W ir xir )

∥
∥
∥
∥
∥

2

= ∥
∥QiW i

∥
∥
2
,

where Qi = [xi − xi1, xi − xi2, . . . , xi − xir ].
Matrix W can be solved by Lagrange multiplier.

L2 = 1

2

∥
∥QiW i

∥
∥
2 − λi

[
k

∑

r=1

W ir − 1

]

∂L2

∂W i
= QT

i QiW i − λi E = C iW i − λi E = 0,

where W i = λiC
−1
i E,C i = QT

i Qi , E = [1, 1, . . . , 1]T with dimension k.
Considering

k
∑

r=1

W ir = ETW i = 1 =⇒ ETλiC
−1
i E = 1 =⇒ λi = (ETC−1

i E)−1,

we have

W i = λiC
−1
i E = C−1

i E

ETC−1
i E

.

The sample point is reconstructed by the optimal weights W , i.e., x j =
∑k

r=1 W jr x jr . It is linearly represented by its neighbors by maintaining the local
geometry in the dimensionality reduction process. Substitute it into (8.12) and
NPEDA optimization is revised as follows:

A∗ = argmax
A

∣
∣
∣AT exp

(

(
∑k

r=1 W ir xir )(B − 1
n ee

T)(
∑k

r=1 W ir xir )T
)

A
∣
∣
∣

∣
∣
∣AT exp

(
∑c

i=1(
∑k

r=1 W jrX i
jr )Li (

∑k
r=1 W jrX i

jr )
T
)

A
∣
∣
∣

= argmax
A

∣
∣AT exp(Snb)A

∣
∣

∣
∣AT exp(Snw)A

∣
∣
.

(8.13)
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Equation (8.13) is equivalently to solve the maximum eigenvalue of the generalized
eigenvalue decomposition problem:

exp(Snb)A = σ exp(Snw)A

or

exp(Snw)−1 exp(Snb)A = σA,

(8.14)

where σ is the generalized eigenvalue and the linear transformation matrix A
of NPEDA is the eigenvector corresponding to the first d largest eigenvalues of
(exp(Snw))−1 exp(Snb).

8.2.3 Fault Identification Based on LLEDA and NPEDA

In this section, the LLEDA and NPEDA methods are implemented for fault identi-
fication with monitoring flowchart, as shown in Fig. 8.10. The fault recognition rate
(FCR) is introduced to test the identification effectiveness. FCR of fault model i is
defined as the percentage of test data identified in this corresponding model out of
the total number of samples tested:

FCR(i) = ni,identi f y
nall

× 100%, (8.15)

where ni,identi f y denotes the sample size identified as fault i and nall denotes the
sample size of all samples of fault i . The identification process is given as follows,

1. Process data are collected under the normal and faulty conditions, and standard-
ized.

2. The between-class scatter matrix Sb and the within-class scatter matrix Sw are
calculated by the LLEDA (or NPEDA) method, respectively.

3. The discriminant vector A is obtained bymaximizing the between class dispersion
matrix Sb and minimizing the with class dispersion matrix Sw.

4. The discriminant function g(x) of the online data x is observed by the projection
of discriminant vector A in the normal model:

g(x) = − 1

2
(x − x̄i )TA

(
1

ni − 1
AT exp(Siw)A

)−1

AT(x − x̄i )

+ ln(c) − 1

2
ln

[

det

(
1

ni − 1
AT exp(Siw)A

)]

.

(8.16)

If the value of the discriminant function exceeds the normal limitation, a fault
occurs.

5. The fault type of online data can be determinedwhen its posterior probability value
is maximum. The posterior probability of data x in fault ci class is calculated as
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Fig. 8.10 Flowchart of fault identification with LLEDA and NPEDA methods

P(x ∈ ci |x) = P(x|x ∈ ci )P(x ∈ ci )
∑c

i=1 P(x|x ∈ ci )P(x ∈ ci )
, (8.17)

where P(x ∈ ci ) is the prior probability and P(x|x ∈ ci ) is the conditional prob-
ability density function of the sample x:

P(x|x ∈ ci ) = exp[− 1
2 (x − x̄i )TAPq AT(x − x̄i )]

(2π)
m
2 [ 1

ni−1 A
T(

∑

x∈ci (x − x̄i )(x − x̄i )T)A] 1
2

, (8.18)

where Pq = [ 1
ni−1 A

T(
∑

x∈ci (x − x̄i )(x − x̄i )T)A]−1.

8.2.4 Simulation Experiment

Multi-classification methods, FDA, EDA, LLE+FDA, LLEDA, and NPEDA, were
carried to evaluate the classification performance in TE simulation platform. TE
operation lasted for 48h, with faults occurring in the 8thh and sampled every 3min.
400 training data were selected for building the classification model and 400 testing
data for evaluating the performance of the model. Three different types of faults were
considered: faults 2, 8, and 13. Fault 2 refers to a step change in the B component feed
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with the A�C feed ratio remaining constant. Fault 8 refers to a random change in the
A, B and C feed component variables. Fault 13 refers to a slow drift in the reaction
dynamics. Here faults 8 and 13 are difficult identified due to its random variation and
slow drift. The training and testing data for the three types of faults were projected
onto the first and second eigenvectors, respectively, by different methods and the
classification results are shown in Fig. 8.11.

Table8.4 shows the identification rate for faults 2, 8, and 13 under different classi-
fication methods. Here the number of discrimination directions, i.e., reduction order,
is considered from 1 to 10. It is shown that the identification rates are improved
with increasing the number of discrimination vectors. The recognition rate for fault
2 is high, almost close to 100%. The recognition rate for faults 8 and 13 gradually
increases as the number of discrimination vectors increases. NPEDA and LLEDA
show higher recognition rates on faults 2, 8, and 13, compared with other methods,
such as FDA and LLE+EDA.

Figure8.12 shows the posterior probability values for the different test data under
the LLEDA and NPEDA methods. The larger posteriori probability values mean the
higher possibility of the test data belong to this category. Furthermore, the diagnostic
results are related to the classification capability. If the classification performance is
good, higher identification rate is achieved.

8.3 Cluster-LLEDA-Based Hybrid Fault Monitoring

8.3.1 Hybrid Monitoring Strategy

Generally, the data collected from an actual industrial process are unlabeled and
initially undiagnosed. It isworth noting that theLLEDAmethodperformswell in fault
identification, but it is a supervised algorithm that requires the known classification
of the historical data set. To overcome this problem, the supervised LLEDA method
is extended into an unsupervised learning method by introducing the cluster analysis
method. The cluster method can obtain the fault data category information which is
input to LLEDA modeling module as a prior. To make better use of the proposed
cluster-LLEDA classification method, a hybrid fault monitoring strategy is given, as
shown in Fig. 8.13.

Figure8.13 indicates that the hybrid fault monitoring strategy is mainly divided
into three parts, historical data analysis, fault model library establishment, and
online detection and fault identification. First, the historical data of industrial pro-
cesses is roughly detected by PCA to label the fault data. Then hierarchical clustering
technique is used to classify the process data detected as fault into different types.
The model library is established for all fault types by LLEDA, which further extracts
the fault features and obtain fine identification. Finally, the online detection and fault
identification are realized.

The procedure of historical data analysis part is summarized as follows:
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Fig. 8.11 Projection of different fault data on the first two feature vectors
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Table 8.4 Comparison of identification rate for faults 2, 8, and 13

Reduction
order

Fault No. FDA EDA LLE+FDA LLEDA NPEDA

1 Fault 2 1 1 1 1 1

Fault 8 0.4425 0.2125 0.4625 0.2125 0.2125

Fault 13 0.415 0.6875 0.4175 0.6875 0.6875

2 Fault 2 1 1 1 1 1

Fault 8 0.3525 0.475 0.48 0.4175 0.475

Fault 13 0.36 0.6325 0.3475 0.6875 0.6325

3 Fault 2 1 1 1 1 1

Fault 8 0.4375 0.67 0.3825 0.5975 0.67

Fault 13 0.29 0.55 0.3375 0.6275 0.55

4 Fault 2 1 1 1 0.9925 1

Fault 8 0.47 0.8325 0.425 0.705 0.8325

Fault 13 0.2825 0.6575 0.295 0.565 0.6575

5 Fault 2 1 1 995 1 1

Fault 8 0.625 0.8825 0.4875 0.815 0.8825

Fault 13 0.53 0.6375 0.3025 0.5975 0.6325

6 Fault 2 1 1 1 1 1

Fault 8 0.664 0.9325 0.62 0.895 0.9325

Fault 13 0.5125 0.7225 0.25 0.6225 0.7225

7 Fault 2 1 1 9925 1 1

Fault 8 0.695 0.8925 0.6 0.9125 0.8925

Fault 13 0.49 0.7425 0.2425 0.725 0.7425

8 Fault 2 1 1 9825 1 1

Fault 8 0.7275 0.88 0.7075 0.885 0.88

Fault 13 0.4775 0.74 0.2275 0.7125 0.74

9 Fault 2 1 1 0.99 1 1

Fault 8 0.745 0.88 0.6575 0.89 0.88

Fault 13 0.49 1 0.995 1 1

10 Fault 2 0.99 1 0.995 1 1

Fault 8 0.7625 0.8725 0.5825 0.8825 0.8725

Fault 13 0.47 0.735 0.225 0.7125 0.735

1. Collect and standardize the normal process data from theDCS historical database.
2. Analyze the collected process data by PCA to extract the independent principle

components, establish PCA model of the normal operation, and calculate the
statistics of the data.

3. Calculate the statistics T2 and SPE and their control limit.
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Fig. 8.12 Diagnosis results of faults 2, 8, and 13 by LLEDA and NPEDA methods

Fig. 8.13 Hybrid fault detection and diagnosis information process

The procedure of fault model library establishment is summarized as follows:

1. Performhierarchical clustering analysis on the abnormal operation data and divide
them into different fault categories.

2. Calculate the between-class and within-class scatter matrices Sb and Sw, find the
corresponding projection vector A based on LLEDA method, and establish the
fault model library for all fault classes.

The procedure of online detection and fault identification is summarized as fol-
lows:
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1. Sample the real-time data and standardize it.
2. Perform the discriminant analysis based on LLEDA method, project the sample

data to the projection direction, and extract the feature vector.
3. Project the sample data to the projection vector A based on the normal model

and judge the current operation is normal or abnormal by observing whether the
discriminant function exceeds the limit.

4. If a fault occurs, calculate the posterior probability in each fault model to identify
the fault type. If the sample data is not in the existing fault category, this new fault
will be modeled and introduced into the fault model library.

Clustering Analysis The hierarchical clustering algorithm is more widely used and
has the advantages of simple calculation, fast and easy to obtain similar results, with-
out knowing the number of clusters in advance (Saxena et al. 2017). The clustering
starts with n samples each as a class, specifies the distance between samples and the
clustering between classes. Then the two closest classes are merged into a new class,
and the distance between the new class and the other classes are calculated. Repeat
the merging process between the two closest classes, and the number of classes
is reduced by one after each merging. The merging will stop until all samples are
merged into one class or a certain condition is met.

The class is denoted by G in the cluster analysis. Suppose class G has m samples
denoted by the column vector xi (i = 1, 2, . . . ,m), di j is the distance between xi
and x j , and DKL is the distance between two different categories GK and GL . The
squared distance DKL between GK and GL is defined as follows:

D2
K L = 1

nKnL
Σxi∈GK ,x j∈GL d

2
i j . (8.19)

The recursive formula for between-class squared clustering is

D2
ML = nK

nM
D2

K J + nK

nM
D2

L J . (8.20)

The inconsistency coefficient Y is used to determine the final number of clusters
c. Here Y is a matrix of (n − 1) × 4, where the first column is the mean of all link
lengths (i.e., merging class distances) involved, the second column is the standard
deviation of all the related link lengths, the third column is the number of related
links, and the fourth column is the inconsistency coefficient.

For the links obtained by the kth merging class, the inconsistency coefficient is
calculated as follows:

Y (k, 4) = (Z(k, 3) − Y (k, 1))

(Y (k, 2))
, (8.21)

where the input Z(n−1)×3 is a matrix of systematic clustering trees. Under the con-
dition that guarantees the number of classes as small as possible, the change of the
inconsistency coefficient determines the final value of classes number.
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8.3.2 Simulation Study

The experiment uses the Tennessee Eastman (TE) process to evaluate the effective-
ness of the proposed hybrid method.

Experiment 1: Failure Initial Screening and Classification The TE data set
was first detected by the PCA method, and the fault detection results are shown in
Fig. 8.14, the final T2 and SPE statistics obtained were 0.4951 and 0.6882, respec-
tively. The specific detection is shown in Table8.5. The results show that the recog-
nition rate of faults 1, 2, 6, 7, 8, 12, 13, 14, 17, and 18 is high, and the recognition
rate of other faults is low. This indicates that the significant faults can be detected,
while the potential faults cannot be detected.

Therefore, PCA-based fault detection methods can only coarsely split the data
set and detect significant faults. Potential faults can be identified with a high fault
identification rate only in the case of known fault categories. In the coarse separation
stage of historical data, the fault data can be identified not only by PCA method,
but also by improved PCA or other fault detection methods to further improve the
identification rate.

After the historical data analysis, the fault data set is collected and clustered into
different fault classes by using the hierarchical clustering method. According to the
inconsistency coefficient, the final number of fault classes is 10. As the fault type is
in a large number, it is difficult to display the classified fault data together in a tree
diagram. As example, we select the faults 1, 2, and 6 to demonstrate the clustering
effect of the hierarchical cluster analysis algorithm. Fault 1 is a step change in the
A/C feed ratio with component B remaining unchanged, while fault 2 is a step change
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Fig. 8.14 Fault detection based on PCA
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Table 8.5 Fault recognition rate based on PCA

Fault No. T2 SPE Fault No. T2

Fault 1 0.995 0.9988 Fault 12 0.9875 0.99

Fault 2 0.9825 0.9925 Fault 23 0.9513 0.9625

Fault 3 0.0225 0.2675 Fault 14 0.9988 1

Fault 4 0.41 1 Fault 15 0.0488 0.2625

Fault 5 0.2625 0.5025 Fault 16 0.2325 0.6937

Fault 6 0.99 1 Fault 17 0.8013 0.975

Fault 7 1 1 Fault 18 0.8912 0.9375

Fault 8 0.975 0.9825 Fault 19 0.0675 0.5913

Fault 9 0.0362 0.235 Fault 20 0.3738 0.735

Fault 10 0.4163 0.7638 Fault 21 0.3775 0.6687

Fault 11 0.5212 0.8163
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Fig. 8.15 Hierarchical cluster analysis

in component B with the A/C ratio remaining unchanged. Fault 6 is a step change in
the feed loss of A. The hierarchical clustering tree diagram is given Fig. 8.15. The
final number of categories is three according to the inconsistency coefficient, which
is consistent with the actual classification.

Now the fault data have been divided into 10 classes by hierarchical cluster anal-
ysis. Obviously, the dimension is high and its visualization effect is poor. In order to
improve the visualization effect and reflect the change trend and the interrelationship
between each variable at the same time, the parallel coordinate visualization method
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Fig. 8.16 Parallel coordinate visualization of fault data
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Fig. 8.16 (continued)

is selected. It is a visualization technique that allows the high-dimensional variables
to be represented by a series of axes parallel to each other. The value of the variables
is corresponding to the positions on the axes.

The visualization results for each type of fault data are shown in Fig. 8.16. The
blue dash in each subplot indicates the normal data and the other color dashes indicate
different fault data. Since each variable in the TE data has a corresponding actual
physicalmeaning, the type of fault can be judged by comparing the other color dashes
with the blue dash in each variable. These faults can be labeled for establishing the
fault model library.

Experiment 2: LLEDA-based Fault Identification The fault identification
method used here is LLEDA, which increases the distance between different classes
and improves the classification ability even if fault samples are small. Here faults 4,
8, and 13 are selected as example to show the identification results. Fault 4 is a minor
fault, which is manifested in the step change of the inlet temperature of the reactor
cooling water, but the other 50 variables are still in a stable state, and the change
is less than 2% compared with the normal data. Fault 13 refers to the slow drift of
reactor kinetic constants when the fault occurs, which will cause a violent reaction
of each variable, and the final product G is always in a fluctuating state. Fault 8 refers
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Fig. 8.17 Projection of different fault data on feature vectors

to the change of random variables of A, B, and C feed ingredients when the fault
occurs.
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Fig. 8.18 Diagnosis results of fault 4, 8, and 13 by LLEDA methods

To better observe the classification in spatial structure, the training data and testing
data of the three faults are projected onto the first three feature vectors by different
methods. The classification results are shown in Fig. 8.17.

Figure8.18 shows the posterior probability values of different test data by LLEDA
method under different models. The posterior probability values are larger when the
samples belong to category i . The colored bars indicate the diagnostic result, i.e.,
probability values, in which color bar from bottom to top is corresponding to the
probability values 0–1 (white indicates that the probability of identification is 0 and
red indicates that the probability value of identification is 1.) In this way, the fault
identification results are visualized. The diagnosis result is related to the classification
ability. The better classification performance leads to a higher fault recognition rate.
Here fault 13 is in poor classification owing to the small number of feature vectors.
The recognition rate of faults can be improved by increasing the number of feature
vectors.

8.4 Conclusion

This chapter presents three discriminant analysis methods, KEDA, LLEDA and
NPEDA, that can handle nonlinearities and avoid small sample data problems. Nor-
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mal and faulty datamodels are developed, and thesemodels are used to checkwhether
abnormal behavior occurs, and variance-based performance metrics are used to iden-
tify the type of data tested. Especially, two new supervised dimensionality reduction
methods, LLEDA and NPEDA, are proposed which combines the advantages of
local linear embedding and exponential discriminant analysis methods, taking into
account both global and local information. The nonlinear data is piecewise linearized
by maintaining the internal structure during the extraction of the eigenvalues. They
overcome the singularity problemofwithin-class scattermatrices, and therefore show
good performance for the small sample problem.

Furthermore, the hybrid process monitoring and fault identification algorithm is
proposed in this chapter, which effectively combines the PCA initial detection, the
classification of hierarchical clustering, and the discriminative analysis of LLEDA.
This hybrid method ensures the monitoring and diagnosis is performed directly on
the collected data without a priori knowledge.
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Chapter 9
Global Plus Local Projection to Latent
Structures

Owing to the raised demands on process operation and product quality, the mod-
ern industrial process becomes more complicated when accompanied by the large
number of process and quality variables produced. Therefore, quality-related fault
detection and diagnosis are extremely necessary for complex industrial processes.
Data-driven statistical process monitoring plays an important role in this topic for
digging out the useful information from these highly correlated process and quality
variables, because the quality variables are measured at a much lower frequency and
usually have a significant time delay (Ding 2014; Aumi et al. 2013; Peng et al. 2015;
Zhang et al. 2016; Yin et al. 2014). Monitoring the process variables related to the
quality variables is significant for finding potential harm that may lead to system
shutdown with possible enormous economic loss.

PLS is a typical multivariate statistical analysis technique in two coordinate space,
which is well suitable for the quality-related fault detection and process monitor-
ing. However, actual industrial data are often with the features of strong nonlinear
dynamic and coupled, etc. PLS method only considers the static linear mapping
between multiple sources of data, so it is difficult to achieve accurate detection
results by directly applying PLS. It becomes an important direction how to intro-
duce the local structure-preserving capability to the global structure projection of
PLS, in order to extract the complex features of industrial data. This idea of global
structure and local structure fusion can usually be implemented by two strategies,
plus and embedding. This chapter focuses on the idea of plus, global, and local
partial least squares (GLPLS) which is introduced first. Global plus local projec-
tion to latent structure (GPLPLS) method is further proposed, and three different
performance functions are given from the projection requirements of input measure-
ment space and output measurement space, separately or simultaneously. The next
two chapters focus on the idea of embedding, two different embedding methods,
locality-preserving partial least squares (LPPLS) and local linear embedded projec-
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tion of latent structure (LLEPLS), are proposed, which use LPP and LLE as local
structure-preserving technique, respectively.

9.1 Fusion Motivation of Global Structure and Local
Structure

Currently, partial least squares (PLS), which is one of those data-driven methods
(Severson et al. 2016; Ge et al. 2012; Li et al. 2010; Zhao 2014; Zhang and Qin
2008), is widely used because of its advantages in extracting the latent variables by
establishing the relationship between input and output space for quality-relevant pro-
cess monitoring (Qin 2010). It maintains the maximum correlation between quality
and process variables and has better quality-related fault detection capability. How-
ever, the nature of PLS is a linear projection, which is not applicable for nonlinear
systems. It uses only global structural informationwith information such asmean and
variance and performs poorly in systems with strong local nonlinear characteristics.

Nonlinear PLS methods can be divided into two categories: external nonlinear
PLS models and internal nonlinear PLS models, as shown in Fig. 9.1.

External nonlinear PLS models are used as a class of nonlinear PLS models that
introduce nonlinear transformations in the input and/or output variables. An exam-
ple is kernel partial least squares (KPLS) (Rosipal and Trejo 2001; Godoy et al.
2014; Rosipal and Trejo 2001), which is used to describe the nonlinear relationship
between the independent variables and for extending the linear relationship between
the inputs and outputs. KPLS effectively solves the nonlinear problem between the
principal components for input space and output space, but the selection of kernel
function is more difficult in practical applications. Similarly, the kernel concurrent
canonical correlation analysis (KCCCA) algorithm is proposed for quality-relevant
nonlinear process monitoring that considers the nonlinearity in the quality vari-
ables (Zhu et al. 2017). Kernel-based methods map the original data into a (possibly

Fig. 9.1 Outer and inner model presentation for linear PLS decomposition
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high-dimensional) Hilbert space (eigenspace), but the projection in the eigenspace
is complex, the direction and length of the projection cannot be determined, and the
choice of kernel function is not straightforward.

Inner nonlinear PLS model is where the internal linear model between latent vari-
ables is replaced by a nonlinear model, but its external model remains unchanged,
such as quadratic partial least squares (QPLS) (Wold et al. 1989), spline function
PLS (SPLS) (Wold 1992), and neural network PLS (NNPLS) (Qin and McAvoy
1992, 1996) approaches. Recursive nonlinear PLS (RNPLS) models are built by
extending the input and output matrices on top of PLS (Li et al. 2005); nonlinear
PLS (NPLSSLT) based on the slice transformation (SLT) can be used for nonlinear
correction, where SLT-based segmented linear mapping functions are used to con-
struct nonlinear relationships between input and output score vectors (Shan et al.
2015); and nonlinear iterative partial least square algorithm (NIPALS) is improved
by assuming that the score vector is a linear projection of the original variables in
the internal nonlinear PLS, at the cost of increased computational complexity and
optimization complexity.

PLS methods have nonlinearities in both the outer model and the inner model.
An example is the orthogonal nonlinear PLS method (O-NLPLS) which considers
orthogonal correlated nonlinearities between the input and output variables (Doymaz
et al. 2003). This method retains the orthogonality properties of the PCAmethod due
to the fact that it is based on a neural network architecture. Similarly, RBF network is
used to identify the nonlinearity of the input variables and to establish the nonlinear
relationship between the input and output variables (Zhao et al. 2006; Shimizu et al.
2006).

The different linear PLS representations are mathematically equivalent. How-
ever, using different nonlinear PLS methods results in different performance and
characteristics. Existing nonlinear PLS methods have some shortcomings, such as
the problem of choosing kernel functions or latent structures for unknown nonlinear
systems; the problem of increasing computational complexity when using neural
networks for nonlinear mapping; and the lack of a superior PLS decomposition algo-
rithm. Therefore, how to simplify the nonlinear PLS modeling problem is an urgent
need to be solved.

Considering that PLS and its extended algorithms only focus attention on the
global structural information and cannot extract the local adjacent structural infor-
mation of the data well, they are not suitable for the extraction of nonlinear features.
Therefore, the local linearizationmethod for dealingwith nonlinear problems is taken
into account. In recent years, locality-preserving projections (LPP) (He and Niyogi
2003; He et al. 2005), which belong to the manifold learning method have been
proposed to solve the local adjacent structural feature problem and effectively make
up for this deficiency. In addition, there are many other manifold learning methods,
such as isometric feature mapping (Tenenbaum et al. 2000), local linear embedding
(LLE) (Roweis and Saul 2000), Laplace feature map (Belkin and Niyogi 2003), etc.

Manifold learning methods preserve the local features by projecting the global
structure to an approximate linear space, and by constructing a neighborhood graph
to explore the inherent geometric features and manifold structure from the sample
data sets. But these methods cannot consider the overall structure and lack a detailed
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analysis and explanation of the correlation between process and quality variables.
Therefore, combining the global projection methods, such as PLS, and the manifold
learning method, such as LPP and LLE, has become a new topic of concern for a
growing number of engineers.

Regarding the combination of global and local information, Zhong et al. proposed
a quality-related global and local partial least squares (GLPLS) model (Zhong et al.
2016). The GLPLS method integrates the advantages of the LPP and PLS methods,
and extracts meaningful low-dimensional representations from the high-dimensional
process and quality data. The principal components in GLPLS preserve the local
structural information in their respective data sheets as much as possible. However,
the correlation between the process and quality variables is not enhanced, and the
constraints of LPP are removed in the optimization objective function. Therefore,
the monitoring results are seriously affected.

After further analysis of the geometric characteristics of LPP and PLS, a new
integrationmethod called the locality-preserving partial least squares (LPPLS)model
that was proposed by Wang et al. pays more attention to the locality-preserving
characteristics (Wang et al. 2017). LPPLS can exploit the underlying geometrical
structure,which contains the local characteristics, in input andoutput space.Although
themaximization of correlation degree between the process and quality variables was
considered, the global characteristics were converted into a combination of multiple
local linearized characteristics and were not expressed directly. In many processes,
the linear relationship may be the most important, and the best way is to describe it
directly rather than through a combination ofmultiple local linearized characteristics.

9.2 Mathematical Description of Dimensionality Reduction

9.2.1 PLS Optimization Objective

PLS algorithm is used to model the relationship between the normalized
data sets X = [x(1), x(2), . . . , x(n)] ∈ Rn×m (x = [x1, x2, . . . , xm]T) and Y =
[ y(1), y(2), . . . , y(n)]T ∈ Rn×l ( y = [y1, y2, . . . , yl ]). X is the process variable and
Y is the quality variable.m and l are the dimensionality of the input and output spaces,
and n is the number of samples. X and Y are decomposed as follows:

X = T PT + X̄ (9.1)

Y = U QT + Ȳ , (9.2)

where T = [t1, t2, . . . , td ] ∈ Rn×d , and U = [u1, u2, . . . , ud ] ∈ Rn×d are the score
matrices of X and Y , respectively. P = [ p1, p2, . . . , pd ] ∈ Rm×d and Q =
[q1, q2, . . . , qd ] ∈ Rl×d are the load matrices of X and Y . X̄ ∈ Rn×m and Ȳ ∈ Rn×l

are the residual matrices of X and Y . d is the number of latent variables. The weight
vectors w and c are derived by the NIPALS algorithm such that the covariance of
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score vectors t and u is maximized.

max cov(t, u) = √
Var(t)Var(u)r(t, u)

= √
Var(Xw)Var(Yc)r(Xw,Yc).

(9.3)

Equation (9.3) is actually equivalent to solving the following optimization problem:

max
w,c

< Xw, Yc >

s.t. ‖w‖ = 1, ‖c‖ = 1
(9.4)

or
JPLS = maxwTXTYc

s.t. ‖w‖ = 1, ‖c‖ = 1.
(9.5)

9.2.2 LPP and PCA Optimization Objectives

LPP aims to project points in space X into low-dimensional space Φ =[
φT(1),φT(2), . . . ,φT(n)

]T ∈ Rn×d(d < m,φ = [φ1, . . . ,φd ]) via the projection
matrix W = [w1, . . . ,wd ] ∈ Rm×d , that is,

φ(i) = x(i)W , (i = 1, 2, . . . , n). (9.6)

The optimal mapping of the input space can be obtained by solving the following
minimization problem:

JLPP(w) = min
1

2

n∑

i, j=1

||φi − φ j ||2sxi j

= min
(
wTXTDxXw − wTXTSxXw

)

s.t. wTXTDxXw = 1,

(9.7)

where Sx = [sxi j ] ∈ Rn×n is the neighboring relationship matrix between xi and x j .
Dx = [dxi j ] is a diagonal matrix, dxii = ∑

j
sxi j , and

sxi j =
⎧
⎨

⎩
e
− ||x(i)−x( j)||2

2δ2x , x(i) and x( j) ∈ “neighbors”

0, otherwise
(9.8)

δx is the neighbors parameter.Compute the “neighbors” of x(i) and x( j)byK-nearest
neighbors method.
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The LPP problem (9.7) in space X is updated as follows:

JLPP(w) = max wTXTSxXw

s.t. wTXTDxXw = 1.
(9.9)

The local structure information of X is contained in the matrices XTSxX and
XTDxX . The magnitude of the diagonal element values indicates the magnitude of
the role of the corresponding variables in preserving the local structure. The non-
diagonal elements correspond to the correlation between the observed variables.
Similarly, the optimization problem for PCA can be expressed as follows:

JPCA(w) = maxwTXTXw

s.t. wTw = 1.
(9.10)

Based on the similarity of the optimization goals of LPP and PCA, combined
with the component extraction idea of PCA included in PLS, we naturally consider
fusing the LPP features into PLS toweaken the limitation of PLS, lack of local feature
extraction capabilities. The simplest feature fusionmethod is to re-synthesize the two
optimization goals, such as the GLPLS (Zhong et al. 2016), into a new optimization
goal through some trade-off parameters.

9.3 Introduction to the GLPLS

GLPLS method is given in this chapter to obtain the relationship between the quality
and measurement variables while maintaining the local characteristics as much as
possible. Themain idea is to integrate the LPPmethod to preserve the local structural
characteristics and the PLSmethod to perform the relevant quality statistical analysis.
As a result, GLPLS method is able not only to identify the latent characteristics
direction for both the measurement and the quality data space but also to preserve
(to the greatest extent possible) the local structural characteristics in the two hidden
subspaces.

Consider both the manifold structure for process variables X and the product
output variables Y by introducing parameters λ1 and λ2 to control the trade-off
between the extraction of the global and local features. Therefore, the objective of
GLPLS-based method is defined as

JGLPLS(w, c) = argmax{wTXTYc+ λ1w
Tθxw + λ2cTθyc}

s.t. wTw = 1, cTc = 1,
(9.11)

where θx = XTSxX and θy = YTSyY represent the local structure information of
process variables and quality variables, respectively. Sx , Sy , D1, and D2 are the local
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feature parameter of the LPP algorithm. Parameters λ1 and λ2 are used to control the
weight coefficients between global and local features.

It can be found from (9.11) that the objective function of GLPLS contains the
objective function of the PLS algorithm wTXTYc and a part of the optimization
problem of LPP algorithm wTXTSxXw and cTYTSyYc.

The optimization function (9.11) seems to be a good combination of the PLS algo-
rithm global characteristics and the LPP algorithm local persistence characteristics.
Is that really the case? Let us analyze the solution of the optimization problem first.
To solve the optimization objective function (9.11), the following Lagrange function
is introduced:

ψ(w, c) =wTXTYc+ λ1w
Tθxw + λ2cTθyc

− η1(w
Tw − 1) − η2(cTc− 1).

(9.12)

Then, according to the conditions for extremum, (9.11) is resolved as follows
(Zhong et al. 2016):

JGLPLS(w, c) = η1 + η2. (9.13)

Let λ1 = η1,λ2 = η2, w is best projection vector, which is the corresponding
eigenvector of the largest eigenvalue (I − θx )

−1 XTY
(
I − θy

)−1
YTX , c is best

projection vector, which is the corresponding eigenvector of the largest eigenvalue
(I − θy)

−1YTX(I − θx )
−1XTY , that is,

(I − θx )
−1XTY(I − θy)

−1YTXw = 4η1η2w

(I − θy)
−1YTX(I − θx )

−1XTYc = 4η1η2c.
(9.14)

Equation (9.13) shows that the optimal solution of GLPLS is η1 + η2, but in the
actual calculation process (9.14), the optimal solution obtained by GLPLS algorithm
is η1η2. Obviously, in most cases, the conditions for maximizing η1 + η2 and η1η2
are different.

In order to explain the reason for this result, we once again return to the GLPLS
optimization objective (9.11). Equation (9.11) is a global (PLS) and local (LPP)
feature combination optimization problem. It is undeniable that this combination
is reasonable to a certain extent. However, the latent variables of PLS are chosen
to manifest their variation as much as possible, and the correlation between latent
variables is as strong as possible. But the LPP method only needs to keep the local
structure information as much as possible when constructing its latent variables. In
other words, although the local features of the process variables (x(θx = XTSx X))
and the quality variables ( y(θy = YTSyY )) are enhanced, the correlation between
the local features is not enhanced. Therefore, this direct combination of global and
local features may lead to erroneous results.

In the GLPLS method, the LPP is used to maintain local structural features.
Locally linear embedding (LLE) is also a commonly used manifold learning algo-
rithm. Like the LPP algorithm, the LLE algorithm also converts a global nonlinear
problem into a combination of multiple local linear problems by maintaining local
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structural information, but the LLE algorithm has fewer adjustable parameters than
the LPP algorithm. Therefore, the LLE algorithm is another good solution to the
problem of a strongly local nonlinear process system. The LLE algorithm has been
briefly introduced in Chap.11, and its optimization objective function is transformed
into a general maximization form. Therefore, in the next section, we combine the
PLS method and the LLE/LPP method in a new way, trying to maintain the global
and local structural information of the process variables and quality variables at the
same time, and enhance the correlation between them.

9.4 Basic Principles of GPLPLS

9.4.1 The GPLPLS Model

According to the Taylor series expansion, a nonlinear function can be written as
follows:

F(Z) = A(Z − Z0) + g(Z − Z0), (9.15)

where A(Z − Z0) and g(Z − Z0) represent the linear part and the nonlinear part,
respectively. In many real systems, especially near the balance point (Z0), the linear
part is primary and the nonlinear part is secondary. The PLS method is difficult to
model nonlinear systems well. Because the PLSmethod uses the linear dimensional-
ity reductionmethod PCA to obtain the principal components, which only establishes
the relationship between the linear part of the input variable space (X) and the output
variable space (Y ). In order to obtain a better model with local nonlinear features, the
KPLS model (Rosipal and Trejo 2001) maps the original data to a high-dimensional
feature space, while the LPPLS model (Wang et al. 2017) transforms nonlinear fea-
tures into a combination of multiple local linearized features. Both of these methods
can solve some nonlinear problems. However, the feature space of the KPLS model
is not easy to determine, and themain linear part of the LPPLSmodel is more suitable
to be directly described by global structural features.

In fact, the PLS optimization (9.5) includes two goals for the selected latent
variable: one is that the latent variable contains variance varying as much as possible
and the other is that the correlation between the latent variables of the input space
and the output space is as strong as possible. Although the GLPLS model combines
global and local feature information, the combination of the two is not coordinated.
How does one combine the two features to maintain the same objective? According
to the expression of a nonlinear function (9.15), the input and output spaces can
both be divided into two parts: the linear and nonlinear parts. By introducing local
structure information, the nonlinear part can be transformed into a combination of
multiple local linear problems.

Inspired by the role of the PCA model (wTXTXw) in the PLS model (wTXTYc)
and the limitation of the GLPLS algorithm, this section proposes a novel dimen-
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sionality reduction method. It combines global (PCA) and local (LLE/LPP) features
to extract latent variables of nonlinear systems. Therefore, the input space X or the
output space Y is mapped to the new feature space X F and Y F , respectively. The new
feature space contains a global linear subspace and multiple local linear subspaces.
Use the new feature space X F and Y F to replace the original space X and Y , respec-
tively. Consequently, a new objective function of the global plus local projection
to latent structure (GPLPLS) method is shown in the following new optimization
objective

JGPLPLS(w, c) = argmax{wTXT
FY F c}

s.t. wTw = 1, cTc = 1,
(9.16)

where X F and Y F satisfy X F = X + λxθ
1
2
x and Y F = Y + λyθ

1
2
y .

It is found that the new feature spaces X F and Y F are both divided into linear part

(X , Y ) and nonlinear part (λxθ
1
2
x , λyθ

1
2
y ), similar as (9.15). Figure9.2 shows the prin-

ciple of the GPLPLS method. Here Xglobal and Y global are the corresponding linear
part in the input space and the output space, respectively. They will be projected to
the dimensionality reduction space by the traditional global projection method, PLS.
X local and Y local are the corresponding nonlinear parts, which will be dimensionality
reduction projected by the local-preserving projection method (LPP).

Fig. 9.2 The schematic diagram of the GPLPLS method
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The core of extracting the principle components is PCA. So the linear model of
X and Y is established by (9.16). It actually contains two relations: one relationship
is that the input and output spaces are divided into “score” and “load” (external rela-
tionship), and the other relationship is the relationship between the latent variables
of the input space and output space (internal relationship). These two relationships
can also be seen from the schematic diagram (Fig. 9.2) of the GPLPLS model. Obvi-
ously, we can keep only the internal model, or the external model, or retain the local
structure information of the internal model and the external model at the same time.
Therefore, by setting four different values of λx and λy , four different optimization
objective functions can be set as follows:

(1) PLS optimization objective function: λx = 0,λy = 0.
(2) GPLPLSx optimization objective function: λx > 0,λy = 0.
(3) GPLPLSy optimization objective function: λx = 0,λy > 0.
(4) GPLPLSx+y optimization objective function: λx > 0,λy > 0.

9.4.2 Relationship Between GPLPLS Models

The optimization objective function of the GPLPLSmethod is given by (9.16). There
are three GPLPLS models according to different values of λx and λy . What is the
relationship between the three GPLPLS models? What is the difference between
their modeling? These issues will be discussed in this section.

Suppose the original relationship is Y = f (X). Local linear embedding or local-
preservingprojection canbe regarded as the equilibriumpoint of system linearization.
From this perspective, the models with different combinations of λx and λy are as
follows:

(1) PLS model: Ŷ = A0X .
(2) GPLPLSx model: Ŷ = A1[X, xzi ].
(3) GPLPLSy model: Ŷ = A2[X, f (xl j )].
(4) GPLPLSx+y model: Ŷ = A3[X, xzi , f (xl j )].
Here xzi (i = 1, 2, . . . , kx ) and yl j = f (xl j )( j = 1, 2, . . . , ky) are the local feature
points of the input space and output space, respectively. A0, A1, A2, and A3 are the
model coefficient matrices. Obviously, PLS uses a simple linear approximation of
the original system. This approximation effect is generally not good for a nonlinear
relatively strong system.TheGPLPLSuses themethod of spatial local decomposition
and approximates the original system with the sum of multiple simple linear models.
GPLPLSx or GPLPLSy is a special case of GPLPLSx+y . It seems that these three
combinations have embraced all the possible GPLPLS models. Let us go back to the
GPLPLSx+y model’s optimization function again.
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JGPLPLSx+y (w, c) = argmax
w,c

{wT
(
X + λxθ

1
2
x

)T (
Y + λyθ

1
2
y

)
c}

= argmax
w,c

{
wTXTYc+ λxw

Tθ
1
2 T
x Yc

+ λyw
TXTθ

1
2
y c+ λxλyw

Tθ
1
2 T
x θ

1
2
y c

}

s.t. wTw = 1, cTc = 1.

(9.17)

Obviously, (9.17) contains two coupled components (θ
1
2 T
x Y and XTθ

1
2
y ), which

represent the correlation between the linear primary part and the nonlinear part. In
some cases, these coupled components may have a negative impact on modeling.
On the other hand, in addition to the external relationship between the input and
output space which can be extended to a combination of linear and nonlinear, the
internal relationship between the input and output space (the final model) can also be
described as a combination of linear and nonlinear. Therefore, it is natural that we can
model the linear and nonlinear parts without considering the coupling component
between the two parts. Correspondingly, there is no need to consider the coupling
component between the linear and nonlinear parts in the optimization function of the
model. Therefore, the optimization objective of the following GPLPLSxy model can
be obtained:

JGPLPLSxy(w, c) = argmax{wTXTYc+ λxyw
Tθ

1
2 T
x θ

1
2
y c}

s.t. wTw = 1, cTc = 1.
(9.18)

Among them, λxy parameters control the trade-off between global and local features.

9.4.3 Principal Components of the GPLPLS Model

In this section, we will introduce how to obtain the principal components of the
GPLPLS model. In order to facilitate the comparison with the traditional linear PLS
model, denoted by E0F = X F and F0F = Y F . The optimization objective functions
of four GPLPLS models are included in the following optimization objectives:

JGPLPLS(w, c) = argmax{wTXT
FY F c+ λxyw

Tθ
1
2 T
x θ

1
2
y c}

s.t. wTw = 1, cTc = 1,
(9.19)

where at least one of [λx ,λy] and λxy is nonzero. The steps of obtaining latent
variables of the GPLPLS model (9.19) are as follows.

First, the Lagrangian multiplier factor is introduced to transform the objective
function (9.19) into the following unconstrained form:
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Ψ (w1, c1) =wT
1 E

T
0F F0F c1 + λxyw

T
1θ

1
2 T
x θ

1
2
y c1

− λ1(w
T
1w1 − 1) − λ2(cT1 c1 − 1).

(9.20)

Let (∂Ψ )/(∂w1) = 0 and (∂Ψ )/(∂c1) = 0, we can find the optimal solution of
w1 and c1. Then the objective function (9.19) is transformed as

[
ET

0F F0F + λxyθ
1
2 T
x θ

1
2
y

]T [
ET

0F F0F + λxyθ
1
2 T
x θ

1
2
y

]
w1 = θ2w1 (9.21)

[
FT

0F E0F + λxyθ
1
2 T
y θ

1
2
x

]T [
FT

0F E0F + λxyθ
1
2 T
y θ

1
2
x

]
c1 = θ2c1, (9.22)

where θ = wTXT
FY F c+ λxyw

Tθ
1
2 T
x θ

1
2
y c. The target vectorsw1 and c1 are calculated

from (9.21) and (9.22). After obtaining the target vector (that is, the direction vector
of the latent variables), the latent variables t1 and u1, the load vectors p1 and q1, and
the residual matrices E1 and F1 can be calculated as follows:

t1 = E0Fw1, u1 = F0F c1 (9.23)

p1 = ET
0F t1

‖t1‖2
, q1 = FT

0F t1
‖t1‖2

(9.24)

E1F = E0F − t1 pT1 , F1F = F0F − t1qT
1 . (9.25)

Similar to the PLS method, the other latent variables of the GPLPLS model can
be obtained by continuing to decompose the residual matrices Ei L and Fi L (i =
1, 2, . . . , d − 1). Usually, the first d latent variables are used to produce a better
predictive regression model and d can be determined by the cross-validation test
(Zhou et al. 2010).

The above is the establishment of the GPLPLSmodel and its principal component
extraction process. Now let’s compare GPLPLS model with the GLPLS model.

First of all, GPLPLS likes the GLPLS method at the main idea, i.e., to combine
local and global structural features (covariance). Obviously, the GPLPLS method
integrates global and local structural features better than the GLPLS method. Dif-
ferent from the GLPLS method, the GPLPLS method not only maintains the local
structural features, but also extracts the relevant information in the input space and
output space as much as possible. Therefore, the GPLPLS method can extract the
largest global correlation as much as possible, while extracting the local structural
correlation between process and quality variables.

Compared with the LPPLS method (Chap.10) and LLEPLS method (Chap. 11),
all the characteristics of the LPPLS method are described by local features. This
indiscriminate description has advantages in strongly nonlinear systems, but it may
not necessarily have advantages in linearly dominant but locally nonlinear systems.
The GPLPLS method proposed in this chapter is a process aimed at linear advan-
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tages, but it still maintains some nonlinear relationships. It integrates global features
(covariance) and nonlinear correlation (multivariance) as much as possible.

9.5 GPLPLS-Based Quality Monitoring

9.5.1 Process and Quality Monitoring Based on GPLPLS

The GPLPLS-based monitoring method is very similar to the PLS method. The
common monitoring indicators of PLS are T2 and SPE. In Chap.11, it has been
explained in detail that SPE statistics is not suitable for monitoring residual space
of PLS. Therefore, in this chapter, the process monitoring based on the GPLPLS
methoduses statistics tomonitor the principal component subspace and the remaining
subspace. The monitoring process is also divided into two parts: offline training and
online monitoring. The detailed process is as follows.

The input space X and the output space Y of the GPLPLS model are mapped to
a low-dimensional space defined by a small number of latent variables [t1, . . . , td ].
The decomposition of E0F and F0F is as follows:

E0F =
d∑

i=1

t i pTi + E0L = T PT + E0F

F0F =
d∑

i=1

t iqT
i + F0L = T QT + F0F ,

(9.26)

where T = [t1, t2, . . . , td ] is the score matrix. P = [ p1, . . . , pd ] and Q =
[q1, . . . , qd ] are the loadmatrices of the process variable E0F and the quality variable
F0F , respectively. Use E0F instead of t i :

T = E0F R =
(
I + λx S

1
2
x

)
E0R, (9.27)

where R = [r1, . . . , rd ] is the decomposition matrix, and

r i =
i−1∏

j=1

(
In − w j pTj

)
wi .

It is noted that E0F contains the results of locality-preserving learning. Operations
(9.26) and (9.27) are executable during themodel training.But the data is sampled real
time during the process of online monitoring. The individual real-time data cannot
be constructed for the transformational matrix Sx or Sy for the locality learning.



160 9 Global Plus Local Projection to Latent Structures

Considering the practical application of (9.26) and (9.27), they should be transformed
as the decomposition of normalized matrices E0 and F0,

E0 = T 0PT + Ē0 (9.28)

F0 = T 0 Q̄
T + F̄0 = E0R Q̄

T + F0, (9.29)

where T 0 = E0R, Ē0 = E0 − T 0PT, and Q̄ = T+
0 F0.

During the online monitoring for new samples x and y (standardized data), an
oblique projection is introduced in the input space x:

x = x̂ + xe (9.30)

x̂ = RPTx (9.31)

xe = (I − RPT)x. (9.32)

The statistics T2
pc and T2

e of the principal component space and the remaining
subspace are calculated as follows:

t = RTx (9.33)

T2
pc := tTΛ−1 t = tT

{
1

n − 1
TT

0T 0

}−1

t (9.34)

T2
e := xTe Λ

−1
e xe = xTe

{
1

n − 1
xTe xe

}−1

xe, (9.35)

where Λ and Λe are covariance matrices. T2
pc and T

2
e are statistics with the threshold

Thpc,α and The,, respectively. Considering the statistics T2
pc and T

2
e are not obtained

through normalized data E0, and the output variables may not obey the Gaussian
distribution. Therefore, the corresponding thresholds cannot be calculated from F-
distribution. So their probability density functions should be estimated first by non-
parametric kernel density estimation (KDE) (Lee et al. 2010).

The fault diagnosis logic based on the GPLPLS model is as follows:

T2
pc > Thpc,α Quality-relevant faults

T2
pc > Thpc,α or T2

e > The,α Process-relevant faults

T2
pc ≤ Thpc,α and T2

e ≤ The,α Fault free

(9.36)

The process monitoring of GPLPLS algorithm with multiple input and multiple
output data is as follows:

(1) Standardize the original data X andY . Calculate T 0, Q̄, and R based onGPLPLS
algorithm (9.28) and (9.29). Determine the number of principal components d
by cross-validation.
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(2) Construct the input remaining subspace xe.
(3) The thresholds are calculated according to the non-parametric KDE estimation,

and the fault diagnosis is performed with the detection logic (9.36).

9.5.2 Posterior Monitoring and Evaluation

Many quality-related process monitoring methods have been verified on the well-
known TE process simulation platform. The goal of most methods is to make the
quality-related alarm rate as high as possible, but the reasonability of monitoring
result seems to receive little attention. Therefore, similar to the performance evalua-
tion index of the control loop,we introduce a posteriormonitoring assessment (PMA)
index to evaluate the reasonability of quality-related alarm rate. PMA is defined as
follows:

PMA = E
(
y2N

)

E
(
y2F

) , (9.37)

where E(·) is the mathematical expectation, yN and yF are the output data of the
training data set and the output data of the fault data set, respectively. It is noted
that they are both normalized by the mean and standard deviation of yN . PMA → 1
indicates that the quality of the fault data is close to normal operation; PMA > 1
indicates the data quality is better than the normal. Moreover, PMA far from 1means
that the quality is very different from the normal, and the corresponding quality-
related index T2 (PLS method) or T2

pc (GPLPLS method) should be higher, and the
others should be lower.

However, the widespread controllers reduce the impact of certain failures, espe-
cially small fault. So a single PMA indicator cannot truly reflect the dynamic changes,
two PMA indicators are adopted to describe dynamic and steady-state effects, respec-
tively,

PMA1 = min

{
E

(
Y 2

N (k0 : k1, i)
)

E
(
Y 2

F (k0 : k1, i)
)

}

, i = 1, 2, . . . , l (9.38)

PMA2 = min

{
E

(
Y 2

N (k2 : n, i)
)

E
(
Y 2

F (k2 : n, i)
)

}

, i = 1, 2, . . . , l, (9.39)

where k = 0, 1, 2 is constant. It is noted that the worst strategy is selected in order
to ensure the rationality of the evaluation. Moreover, the two PMA indicators are
only used to test whether the previous fault detection results are reasonable. Their
evaluations are objective but not indicate whether the fault is quality related, com-
pared with the detection based on GPLPLS model. The quality testing is necessary
for further diagnosis.
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9.6 TE Process Simulation Analysis

Process monitoring and fault diagnosis based on the GPLPLS model are tested on
the TE simulation platform. The monitoring performance of several models, such
as PLS, a concurrent projection to the latent structures (CPLS) (Qin 2012), and
GPLPLS, are compared. The input and output spaces are projected and decomposed
into five subspaces inCPLS: input principle subspace, input residual subspace, output
principle subspace, output residual subspace, and joint input-output subspace. Just
focusing on the quality-related faults, the principle and residual subspaces of input are
replaced by the input remaining subspace xe in CPLS model, and the corresponding
monitoring statistics are replaced by T2

e . The output principle and residual subspaces
in the CPLS model are not considered in order to highlight process-based quality
monitoring. Two different data sets are used from (Zhang et al. 2017) and (Wang
et al. 2017).

9.6.1 Model and Discussion

The input matrix is composed of process variables [XMEAS(1:22)] and manipulated
variables [XMV(1:11), except XMV(5) and XMV(9)]. The output matrix is com-
posed of mass variable [XMEAS (35), XMEAS (36)]. The training data is normal
data IDV(0) and the test data is 21 fault data IDV(1-21). The threshold is calculated
based on the confidence level 99.75% (see equation (1.10) for detail).

The simulation parameters of the GPLPLS model, especially the GPLPLSxy

model) are kx = 22, ky = 23,λx = λy = 0,λxy = 1, k0 = 161. Note that the local
nonlinear structure features are extracted by the LLE method. Number of princi-
pal components of PLS, CPLS, and GPLPLS models are 6, 6, and 2, respectively,
determined by the cross-validation method. k1 = n = 960, k2 = 701. The detection
results including FDR, FAR, and indicator PMA are listed in Table9.1.

With these two PMA indices in Table9.1, 21 faults are divided into two
types: quality-independent faults (PMA1 > 0.9 or PMA1 + PMA2 > 1.5 ) including
IDV(3,4,9,11,14,15,19) and quality-related faults. Furthermore, the quality-related
faults are further subdivided into four types:

Type 1: fault has a slight impact on quality, [IDV(10,16,17, and 20)], 0.5 < PMAi <

0.8 i = 1, 2.

Type 2: fault is quality recoverable, [IDV(1,5, and 7)], PMA1 < 0.35 and PMA2 >

0.65.

Type 3: fault has a serious impact on quality, [IDV(2, 6, 8, 12, 13, and 18)], PMAi <

0.1 i = 1, 2.

Type 4: fault causes the output variables to drift slowly, [IDV(21)].



9.6 TE Process Simulation Analysis 163

Table 9.1 FDRs of PLS, CPLS, GPLPLSxy , and PMA

IDV PLS CPLS GPLPLSxy PMA

T2
pc T2

e T2
pc T2

e T2
pc T2

e PMA1 PMA2

1 99.63 99.88 84.13 99.75 35.00 99.75 0.2040 0.6930

2 98.50 97.25 94.75 98.25 74.00 97.88 0.0660 0.0580

3 1.00 0.88 0.13 1.13 0.25 1.25 0.7720 0.8670

4 19.13 100.00 7.25 100.00 0.50 100.00 0.8880 0.9277

5 22.00 100.00 17.38 100.00 13.25 100.00 0.3018 0.9461

6 99.25 100.00 98.25 100.00 96.88 100.00 0.0029 0.0026

7 100.00 100.00 97.88 100.00 26.00 100.00 0.1439 0.9721

8 96.00 97.00 76.13 97.88 72.63 97.88 0.0596 0.0951

9 0.50 1.00 0.38 1.63 0.38 0.75 0.8977 0.8465

10 26.38 82.63 16.38 84.63 17.50 84.75 0.5888 0.5064

11 26.63 75.75 8.13 77.13 1.50 77.25 0.7830 0.6956

12 97.50 99.88 83.75 99.75 71.88 99.88 0.0404 0.0232

13 94.88 95.00 88.00 95.13 75.50 95.25 0.0229 0.0208

14 91.50 100.00 20.88 100.00 0.38 100.00 1.0721 0.8580

15 1.25 1.38 1.25 2.88 3.13 3.25 0.9027 0.5710

16 20.13 37.63 9.13 44.00 8.63 44.00 0.7770 0.5355

17 77.38 96.63 36.50 97.00 8.75 96.63 0.6443 0.6862

18 89.38 90.13 89.00 89.88 87.00 90.13 0.0049 0.0037

19 0.50 41.13 0.00 39.00 0.00 36.13 0.9453 0.8859

20 30.50 90.75 20.13 88.25 12.50 90.25 0.6700 0.7366

21 41.88 47.63 37.25 45.75 21.25 50.75 0.2342 0.1063

This classification is not only a preliminary result depending on the choice of
parameters k0, k1, and k2, but it also has a reference value. All methods show the
consistent results for the serious quality-related faults, which are not discussed in the
next fault detection analysis.

9.6.2 Fault Diagnosis Analysis

Form the above results, it is found that for some faults, their detection results are
not consistent with different methods, including quality-recoverable faults, slight
quality-related faults, and quality-independent faults. The detailed analysis for the
three situations is given below. For all the monitoring graphs, the horizontal axis
represents the sample, the vertical axis represents the statistics (the picture above
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(a) IDV(1) (b) IDV(5) (c) IDV(7)

Fig. 9.3 Output prediction for IDV(1), IDV(5), and IDV(7) using the GPLPLSxy method

represents T2
pc, the picture below represents T2

e ), and the red dotted line is the thresh-
old with confidence level 99.75%. The blue line is the actual monitoring value. For
all prediction graphs, the horizontal axis represents the sample, the vertical axis rep-
resents the output value, the blue dashed line is actual value, and the green line is for
the prediction.

(1) Quality-recoverable fault
Quality-recoverable faults include IDV(1), IDV(5), and IDV(7). They are all step-

change faults, but the feedback or cascade controller can reduce their effect on qual-
ity during the actual process. Therefore, the quality variables in the faults IDV(1),
IDV(5), and IDV(7) should return to normal. The output prediction is shown in
Fig. 9.3. As an example, the corresponding fault monitoring results for IDV(7) are
shown in Fig. 9.4 which correspond to the PLS, CPLS, and GPLPLSxy models,
respectively. Here the statistics T2

pc and T2
e detected the input space for process-

related faults. For the GPLPLSxy model, the value of the T2
pc statistic returns to the

normal value, while the T2
e statistic still maintains a high value. This means that

these faults are quality-recoverable faults. PLS and CPLS reported that these faults
are quality-related faults but give many false alarms, especially for IDV(7). The sta-
tistical value of T2

pc is also very close to the threshold, but still exceeds the threshold.
They still indicated the fault alarm even when the operation have returned to normal
under the controller. They fail to grasp the essence of the fault detection problem

(a) PLS (b) CPLS (c) GPLPLSxy

Fig. 9.4 PLS, CPLS, and GPLPLSxy monitoring results for IDV(7)
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(a) IDV(4) (b) IDV(11) (c) IDV(14)

Fig. 9.5 Output prediction for IDV(4), IDV(11), and IDV(14) using the GPLPLSxy method

with recoverable quality. In this case, the GPLPLSxy method can accurately reflect
the process and quality changes.

(2) Quality-independent fault
Quality-independent faults include IDV(4), IDV(11), and IDV(14), but they are

related to process. All these faults are related to the reactor cooling water, and these
interferences hardly affect the quality of output products. The corresponding output
quality prediction of GPLPLSxy methods is shown in Fig. 9.5. Themonitoring results
for IDV(14) by PLS, CPLS, and GPLPLSxy methods are shown in Fig. 9.6. In the
GPLPLSxy model, T2

pc are almost under the threshold, which indicates that these
faults are not related to quality. But for PLS and CPLS models, these faults are
detected both in T2

pc and T 2
e . In other words, PLS or CPLS model shows that these

interferences are related to quality. Compared with PLS, CPLS method can filter
out fault alarm to a certain extent in T2

pc, but still has higher alarm than GPLPLSxy .
For quality-independent fault, PLS and CPLS have a high detection rate, but fails to
indicate the quality-independent faults.

(3) Slight quality-related faults
Faults, such as IDV(10), IDV(16), IDV(17), and IDV(20), have a slight impact

on quality. Few people study this type of failure. Their quality-related alarm rates
are similar to quality-recoverable faults. Although they are quality related, they have
little impact on quality. Their T 2

pc value of related monitoring statistics is relatively

(a) PLS (b) CPLS (c) GPLPLSxy)

Fig. 9.6 PLS, CPLS, and GPLPLSxy monitoring results for IDV(14)
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(a) IDV(16) (b) IDV(17) (c) IDV(20)

Fig. 9.7 Output predicted values for IDV(16), IDV(17), and IDV(20) using the GPLPLSxy method

(a) PLS (b) CPLS (c) GPLPLSxy)

Fig. 9.8 PLS, CPLS, and GPLPLSxy monitoring results for IDV(20)

small. To some extent, these faults can also be regarded as failures that have nothing
to do with quality. Many methods, such as the PLS method, fail to detect them
accurately. The output prediction values of GPLPLSxy models are shown in Fig. 9.7.
The monitoring results of the three models for fault IDV(20) are shown in Fig. 9.8. It
can be seen that themonitoring results of the GPLPLSxy model are themost accurate,
and the PLS and CPLS models give false alarm results. In the GPLPLSxy model,
process changes better match quality changes.

From the three situations analyzed above, it can be seen that the GPLPLS method
can filter harmful alarm situations. It can be used for minor quality-related failures,
quality-unrelated failures, and quality-recoverable failures. There are two possible
reasons for the good fault diagnosis performance of the GPLPLS method: first, the
principal component of theGPLPLSmethod is based on the global features of nonlin-
ear local structural features, and the method enhances its nonlinear mapping ability.
Secondly, the GPLPLS method uses a non-Gaussian threshold, which makes it pos-
sible to process the signal that does not necessarily satisfy the Gaussian assumption.
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9.6.3 Comparison of Different GPLPLS Models

For the same data set above, the FDRs of the other three GPLPLSx , GPLPLSy , and
GPLPLSx+y models (local nonlinear structural features are all extracted by the LLE
method) are shown in Table9.2, where K = [kx , ky]. It can be seen from the table
that the results of thesemethods are very good, and consistent conclusions are drawn.
Especially the FDR ofGPLPLSx+y model and theGPLPLSxy model are very similar.

In order to discuss these models more clearly, fault IDV (7) is selected for further
analysis. It can be seen from Table9.2 that the monitoring results of IDV(7) by the
GPLPLSy model are obviously inconsistent with other methods. T2 statistics give a
higher alarm (79.25%). According to the previous analysis, this alarm is an annoying
false alarm. The other three models have relatively low alarm rates for fault IDV (7),
near 26%, which means that the monitoring effect is very good. The possible reason
for false alarm is that theGPLPLSy model only enhances the local nonlinear structure
characteristics in the output space. It is linear to the input space and the output space

Table 9.2 FDRs of GPLPLS methods with LLE local feature

IDV GPLPLSx GPLPLSy GPLPLSx+y GPLPLSxy
kx=16 ky=16 K = [22, 24] K = [22, 23]

T2
pc T2

e T2
pc T2

e T2
pc T2

e T2
pc T2

e

1 35.50 99.75 38.75 99.75 35.13 99.75 35.00 99.75

2 70.75 98.38 95.13 98.13 74.00 98.38 74.00 98.38

3 0.00 1.38 1.00 1.25 0.25 1.13 0.25 1.38

4 0.00 100.00 1.25 100.00 0.50 100.00 0.50 100.00

5 10.75 100.00 19.25 100.00 13.25 100.00 13.25 100.00

6 96.13 100.00 98.75 100.00 96.88 100.00 96.88 100.00

7 23.50 100.00 79.25 100.00 26.25 100.00 26.00 100.00

8 68.63 97.88 81.88 97.88 72.63 97.88 72.63 97.88

9 0.00 1.50 0.75 1.38 0.38 1.13 0.38 1.25

10 13.88 84.75 21.13 84.75 17.50 84.38 17.50 84.50

11 0.88 77.50 2.88 77.00 1.50 76.63 1.50 76.75

12 68.25 99.88 87.00 99.75 71.88 99.88 71.88 99.88

13 72.63 95.25 88.00 95.13 75.50 95.13 75.50 95.25

14 0.00 100.00 3.25 100.00 0.50 100.00 0.38 100.00

15 0.88 2.50 1.38 3.50 3.13 1.63 3.13 1.63

16 7.13 45.38 12.88 43.50 8.63 42.63 8.63 43.75

17 1.88 96.88 11.38 97.00 8.88 96.75 8.75 96.88

18 86.38 90.00 88.88 90.00 87.00 90.00 87.00 89.88

19 0.00 38.25 0.00 38.50 0.00 37.75 0.00 37.38

20 8.63 90.63 22.50 89.75 12.50 90.50 12.50 90.38

21 14.00 52.75 31.63 44.25 21.25 49.63 21.25 50.25
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is nonlinear. Process monitoring results may be better. However, the input space of
the TE simulation process may also have strong nonlinearity, which leads to the
poor monitoring results of GPLPLSy model, and the other three models show higher
consistency with this type of fault.

The above results of theGPLPLSmodels are obtained by combiningwith the LLE
method to retain local nonlinear structural features. Below, the monitoring results of
the GPLPLS model combined with another local retention algorithm LPP method
are given, as shown in Table9.3, where Σ = [σx ,σy]. It can be seen that Table9.3
gives consistent conclusions, so the analysis will not be performed here.

Many methods have the similar fusion idea of global projection and local preserv-
ing, such asGLPLS, LPPLS, and others. Thesemethods all need to adjust parameters,
and different parameters have different results. In order to be as consistent as possible
with the existing results of other methods, we chose the same data set in Wang et al.
(2017) for the following tests.

Table 9.3 FDRs of GPLPLS methods with LPP local feature

IDV GPLPLSx GPLPLSy GPLPLSx+y GPLPLSxy
kx=16 ky=16 K = [22, 24] K = [22, 23]
σx = 2 σx = 0.05

∑ = [2, 1] ∑ = [0.05, 1.3]
T2
pc T2

e T2
pc T2

e T2
pc T2

e T2
pc T2

e

1 49.00 99.75 61.13 99.75 47.63 99.75 41.75 99.75

2 56.38 98.38 94.88 98.13 46.75 98.38 60.00 98.38

3 0.13 1.25 0.75 1.75 0.50 1.25 0.25 1.25

4 0.38 100.00 1.38 100.00 0.50 100.00 0.38 100.00

5 12.88 100.00 19.63 100.00 13.75 100.00 12.75 100.00

6 96.75 100.00 99.13 100.00 97.00 100.00 96.88 100.00

7 26.00 100.00 56.75 100.00 27.13 100.00 26.63 100.00

8 71.50 97.88 85.25 97.88 72.63 97.88 72.00 97.88

9 0.25 1.00 1.00 1.50 0.38 1.25 0.38 1.25

10 18.25 84.00 21.50 84.75 18.38 84.25 18.00 84.25

11 2.00 76.75 3.00 77.13 2.38 77.00 1.88 77.00

12 71.25 99.88 88.38 99.75 71.75 99.88 71.63 99.88

13 75.13 95.25 84.75 95.13 75.75 95.25 75.63 95.25

14 0.25 100.00 8.75 100.00 0.38 100.00 0.50 100.00

15 2.75 1.75 1.50 3.13 3.38 1.88 2.75 1.88

16 9.13 42.88 9.75 45.00 9.50 43.00 9.13 43.00

17 5.63 97.00 14.25 96.88 7.50 97.00 5.50 97.00

18 86.75 89.88 89.38 90.00 86.88 89.88 86.75 89.88

19 0.00 36.75 0.13 39.00 0.00 37.13 0.00 37.13

20 10.25 90.38 25.13 89.38 11.75 90.38 11.25 90.38

21 20.38 49.50 29.50 43.63 20.88 49.00 20.88 49.38
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In the following comparison experiment, input variable matrix X is com-
posed of process variables [XMEAS (1 : 22)] and 11 manipulated variables
[XMEAS (23 : 33)] except XMV (12). The quality variable matrix Y includes
XMEAS (35) and XMEAS (38). The model parameters based on the combination
of manifold learning algorithm and PLS are set as follows:

(1) The GLPLS model: δx = 0.1, δy = 0.8, kx = 12, ky = 12.
(2) The LPPLS model: δx = 1.5, δy = 0.8, kx = 20, ky = 15.
(3) The GPLPLS model: kx = 11, ky = 16 (mainly refers to the GPLPLSxy

model).
Table9.4 lists the FDR values of different quality-related monitoring methods,

corresponding to PLS, CPLS, GLPLS, and GPLPLS models, and the correspond-
ing detection threshold is calculated with confidence level of 99.75%. The last two
columns are FDRs calculated based on the PMA value of this data set.

It can be seen from Tables9.1 and 9.4 that although the data sets are different, the
results of PMA are similar. Therefore, the quality-related monitoring results should
be similar, and it is obvious that the GPLPLS model gives consistent conclusions.
The higher FDR of other models than GPLPLS is due to not good to distinguish

Table 9.4 FDRs comparison for different quality-related methods

IDV PLS CPLS GLPLS GPLPLS PMA1 PMA2

1 99.13 96.13 99.75 66.75 0.20 0.68

2 98.00 81.25 97.63 92.75 0.07 0.06

3 0.38 0.50 1.13 0.50 0.77 1.19

4 0.63 0.13 98.88 0.25 0.89 1.02

5 21.88 20.38 21.38 17.63 0.30 1.04

6 99.25 99.25 99.38 96.38 0.00 0.00

7 36.75 35.63 83.63 27.75 0.14 1.03

8 92.50 87.75 93.38 74.88 0.06 0.07

9 0.63 0.38 0.75 0.00 0.90 0.81

10 30.00 28.00 23.13 13.88 0.59 0.81

11 1.38 0.25 53.50 0.38 0.78 0.76

12 87.50 84.75 87.75 75.50 0.04 0.03

13 93.88 85.00 95.25 79.75 0.02 0.02

14 33.50 1.63 96.88 0.00 1.07 0.77

15 0.63 0.75 1.50 0.50 0.90 0.57

16 14.25 12.63 9.00 8.00 0.78 0.53

17 56.00 37.13 96.75 1.63 0.64 0.70

18 88.00 88.00 90.25 86.75 0.01 0.00

19 0.00 0.00 2.50 0.00 0.95 0.75

20 26.63 27.75 36.25 10.25 0.67 0.78

21 29.88 24.50 44.38 8.63 0.23 0.09
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whether these faults are quality related. Although GLPLS has similar fusion idea
of global feature and local structure, its weak monitoring performance is caused by
the inappropriate parameters and model construction. Because it is difficult to select
suitable parameters, the parameter determination method is still an open issue.

In summary, GPLPLS model shows good monitoring performance. It is suitable
for the combination of global structure and local structure features, so the output
prediction results and fault monitoring results of the model are better than other
models.

9.7 Conclusions

This chapter proposes a new statistical monitoring model based on the global plus
local projection to latent structure (GPLPLS) model. This model not only main-
tains the global and local structural characteristics of the data, but also pays more
attention to the correlation between the extracted principal components. First, the
GLPLS method is introduced, and it is pointed out that the model construction of
this method is unreasonable, and then the GPLPLS method is proposed to maintain
the global and local features with a new structure. Then a monitoring model based
on the GPLPLS method is established, and the monitoring performance of the pro-
posed method is verified on the TE process simulation platform. The results show
that compared with PLS, CPLS, and GLPLS, GPLPLS method has better process
monitoring performance for quality-related fault.
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Chapter 10
Locality-Preserving Partial Least
Squares Regression

This chapter proposes another nonlinear PLS method, named as locality-preserving
partial least squares (LPPLS),which embeds thenonlinear degenerative and structure-
preserving properties of LPP into the PLS model. The core of LPPLS is to replace
the role of PCA in PLS with LPP. When extracting the principal components of t i
and ui , two conditions must satisfy: (1) t i and ui retain the most information about
the local nonlinear structure of their respective data sets. (2) The correlation between
t i and ui is the largest. Finally, a quality-related monitoring strategy is established
based on LPPLS.

First, the geometric interpretation of PCA in PLS and LPP is introduced. LPPLS
model and LPPLS-based quality-related process monitoring method are proposed.
Here three different types of LPPLS models are also given in the same framework,
facing three nonlinear cases: nonlinearly correlated in the input space X or the out-
put space Y , as well as between them. A typical algorithm for extracting principal
components is derived. Then, the feasibility and effectiveness of LPPLS method is
verified by artificial 3-D data and Tennessee Eastman Process simulations.

10.1 The Relationship Among PCA, PLS, and LPP

For thenormalizeddata sets of process variables X = [
xT(1), xT(2), . . . , xT(n)

]T ∈
Rn×m (x ∈ R1×m) and quality variable Y = [

yT(1), yT(2), . . . , yT(n)
]T ∈ Rn×l

( y ∈ R1×l), where m and l are the dimension of the process and quality variables
spaces, and n is the number of samples, the principal component extraction of PCA,
LPP, and PLS is actually equivalent to the following constrained optimization prob-
lem.

© The Author(s) 2022
J. Wang et al., Data-Driven Fault Detection and Reasoning for Industrial Monitoring,
Intelligent Control and Learning Systems 3,
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JPCA(w) = maxwTXTXw (10.1)

s.t.wTw = 1

JLPP(w) = max wTXTSxXw (10.2)

s.t. wTXTDxXw = 1

JPLS(w, c) = maxwTXTYc (10.3)

s.t.wTw = 1, cTc = 1

The meaning of related variables such as w, c has been given in Chap.9. Also, in
Chap.9, to weaken the limitations of PLS’s lack of local feature extraction capa-
bilities, the input space X and the output space Y , are mapped into a new feature
space X F and Y F that includes a global linear subspace and a plurality of local linear
subspaces. Consequently, the following new optimization objective function of the
global plus local projection to latent structures (GPLPLS) method is immediately
obtained using the feature space XF or YF to replace the original space X or Y ,

JGPLPLS(w, c) = argmax{wTXT
FY F c}

s.t. wTw = 1, cTc = 1,
(10.4)

where X F = X + λxθ
1
2
x , Y F = Y + λyθ

1
2
y .

Although adding local features to the global features makes the GPLPLS model
show excellent performance in fault detection, the GPLPLS model does not fully
implement local feature extraction or its local features are only extracted approxi-
mately. The main reason is that the constraint condition of the GPLPLSmodel is still
the constraint condition of PCA or PLS. Of course, this combination way generally
cannot guarantee the constraints of PCA and LPP at the same time.

Only the nonlinear part of the function is described by the local features, and the
linear part is still characterized by the traditional covariancematrix in Chap.9. In fact,
the characteristics of the linear part can also be described by local characteristics.
In this way, we can regard the linear part and the nonlinear part as a whole, thereby
avoiding unnecessary parameter trade-offs. In the following context, we attempt to
analyze the differences and similarities between PCA and LPP.

The local characteristics of X of LPP are contained in the matrices XTSxX and
XTDxX . To study the similarity of LPP and PCA, the matrix Sx and Dx are decom-

posed into S
1
2 T
x S

1
2
x and D

1
2 T
x D

1
2
x , respectively. Then LPP criteria (10.2) is further

transformed as
JLPP(w) = max wTXT

MXMw

s.t.wTMT
x Mxw = 1,

(10.5)

where Mx = D
1
2
x X , XM = S

1
2
x X .

Comparing (10.5) and (10.1), it can be found that the structure in themathematical
description of the optimization problem of LPP and PCA is similar. “PCA selects
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a subspace consisting of the eigenvectors corresponding to the largest eigenvalues
of the global covariance matrix, while LPP selects a subspace consisting of the
eigenvectors corresponding to the smallest eigenvalues of the local covariancematrix
(He et al. 2005)”. Therefore, LPP can replace PCA in the PLS decomposition process,
thus achieving the preservation of strong local nonlinearity.

PCA is used to extract a set of components that transforms the original data X
to a set of t-scores T in the PLS criteria (10.3) of forming latent variables. PCA
and PLS only extract global linear features and therefore do not reflect the local
information of the sample and its nonlinear features. Actually PCA is not the only
method of extracting principle components. LPP, converting the global nonlinearity
into a combination of multiple local linearities, also can be used for extracting prin-
ciple components. Therefore, LPP is suitable for systems with strong local nonlinear
features.

10.2 LPPLS Models and LPPLS-Based Fault Detection

10.2.1 The LPPLS Models

Based on (10.3), the two criteria for selecting latent vectors ui and t i for PLS are as
follows:

(1) The linear variation on latent vectors is manifested as much as possible;
(2) The correlation between is as strong as possible.

The optimization objective for extracting the first component pairs (t1, u1) is

JPLS(w1, c1) =maxwT
1 X

TYc1

s.t. wT
1w = 1, cT1 c1 = 1.

(10.6)

The optimization objective (10.6) is used for fast extraction of principal com-
ponents in PLS. Define E0 = X , F0 = Y , then the latent variables t1 and c1 are
calculated by t1 = E0w1 and u1 = F0c1, where c1 and w1 are the eigenvectors
corresponding to the maximum eigenvalues of the following matrices.

ET
0 F0FT

0 E0w1 = θ21w1 (10.7)

FT
0 E0ET

0 F0c1 = θ21c1. (10.8)

Considering the similarity between LPP and PCA discussed in the previous
section, LPP is used to extract the principle components (10.3) in PLS decompo-
sition instead of PCA, i.e., the LPPLS model. Three LPPLS models (types I, II, and
III) are developed to address the different nonlinear relationships.
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The type I LPPLS model is given to deal with this case where the input space X
has a nonlinear relationship and the correlation between the input X and the output
Y is linear. The principal components of the input space X of the type I LPPLS are
extracted by LPP and the principal components of the output space Y are extracted
by PCA. The optimization objectives are as follows:

JLPPLSI(w, c) = maxwTXT
MYc

s.t. cTc = 1,wTMT
x Mxw = 1.

(10.9)

The type II LPPLSmodel is given to deal with the nonlinearly correlation between
the input space X and output space Y , but linearly correlation in the input space X .
The principal components in input space X are extracted by PCA and the principal
components of the output space Y are extracted by LPP. The optimization function
is

JLPPLSII(w, c) = maxwTXTYM c

s.t. wTw = 1, cTMT
yM yc = 1

(10.10)

in which

YM = S
1
2
y Y , Sy = S

1
2 T
y S

1
2
y

M y = D
1
2
y Y , Dy = D

1
2 T
y D

1
2
y

where Sy and Dy are similar as the Sx and Dx and it has a different neighbors
parameter δy in (9.8).

The type III LPPLSmodel is given for the nonlinear correlation between the input
space X and the output space Y as well as among the input spaces X . In this case,
the principal components of the input space X and output space Y are both extracted
by the LPP. Its corresponding optimization objective function is

JLPPLSIII(w, c) = maxwTXT
MYM c

s.t. wTMT
x Mxw = 1, cTMT

yM yc = 1.
(10.11)

The criteria for the selection of latent vectors ui and t i for type III LPPLS are as
follows:

(1) The nonlinear variation on the latent vector is manifested as much as possible;
(2) The correlation between latent vectors is as strong as possible.

Discussion one of the aims of is to choose factors ui and t i that better represent the
nonlinear variation of the factor changes. GLPLS’s optimization objective is given
in (10.12) (Zhong et al. 2016).

JGLPLS(w, c) =max
{
wTXTYc+ β1w

TXT
MXMw + β2cTYT

MYM c
}

s.t. wTw = 1, cTc = 1,
(10.12)
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where the parameters β1 and β2 are the trade-off between global and local feature
extraction. Here the embedding properties and data screening of LPP are removed
because the constraints wTXTDxXw = 1 and cTYTDyYc = 1 of LPP are removed
in (10.12). GLPLS model is a fusion of the PLS model with the partial LPP model.
“The best vectors w and c from (10.12) ensure maximum correlation (PLS) and
relative or local optimal data filtering and embedding capabilities for X andY (Zhong
et al. 2016)”. On the other hand, wTXTSxXw and cTYTSyYc are only used to
introduce the local features in the input and output space, but not the correlation
features between them. However, the LPP model is fully embedded in the LPPLS
model. It is embedded in the outer layer, inner layer or both of the PLS model, i.e.,
three types of LPPLS models. At the same time, the correlation information in the
input and output spaces is retained.

Type III LPPLS is used as an example to show the extracting of principal com-
ponents. Supposed the first component pairs is (t1, u1). Define E0L = XM and
F0L = YM in order to facilitate comparison with the traditional linear PLS.

First, the optimization (10.11) for the first component pair (t1, u1) is converted
into an unconstrained problem by the Lagrangian multiplier,

Ψ (w1, c1) = wT
1 E

T
0LF0L c1 − λ1(w

T
1 M

T
x Mxw1 − 1) − λ2(c1TNT

yN yc1 − 1).

(10.13)

Let ∂Ψ
∂w1

= 0 and ∂Ψ
∂c1

= 0, then the optimal pair of w1 and c1 is obtained

ET
0LF0L c1 = 2λ1MT

x Mxw1 (10.14)

FT
0LE0Lw1 = 2λ2NT

yN yc1. (10.15)

Equations (10.14) and (10.15) are respectively multiplied by wT
1 and cT1 on the

left, then,
θ1 := 2λ1 = 2λ2 = wT

1 E
T
0LF0L c1 = cT1 F

T
0LE0Lw1. (10.16)

Comparing (10.11) and (10.16), it is found that θ1 is the objective function value.
Substitute (10.16) into (10.14) and (10.15), and the relationship between w1 and c1
is obtained,

w1 = 1

θ1
(MT

x Mx )
−1ET

0LF0L c1 (10.17)

c1 = 1

θ1
(NT

yN y)
−1FT

0LE0Lw1. (10.18)

Substitute (10.18) into (10.14) and substitute (10.17) into (10.15), the following
equations about the first vector pair are obtained,
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(MT
x Mx )

−1ET
0LF0L(NT

yN y)
−1FT

0LE0Lw1 = θ21w1 (10.19)

(NT
yN y)

−1FT
0LE0L(MT

x Mx )
−1ET

0LF0L c1 = θ21c1. (10.20)

The optimal weight vectors w1 and c1 is obtained by the maximum eigenvalue of
(10.19) and (10.20). Now the potential variables u1 and t1 are calculated as follows:

t1 = E0Lw1, u1 = F0L c1.

Calculation of the load vector:

p1 = ET
0L t1

‖t1‖2 , q̄1 = FT
0L t1

‖t1‖2 .

Residual matrixes E1L and F1L are

E1L = E0L − t1 pT1 , F1L = F0L − u1q̄T
1 .

The first optimal weight vector w1 of PLS (10.7) is the eigenvectors of matrix
ET

0 F0FT
0 E0, while in LPPLS (10.19), it is corresponding to the eigenvectors of

matrix
(
MT

x Mx
)−1

ET
0LF0L

(
NT

yN y
)−1

FT
0LE0L . The optimization problem with

maximum eigenvalue in (10.19)are very similar to the traditional linear PLS. There-
fore, the traditional NIPALS technique is convenient to extract the remaining prin-
ciple components.

The other latent variables are calculated based on the residual matrices Ei L and
Fi L , i = 1, 2, . . . , d − 1.

t i+1 = Ei Lwi+1, ui+1 = Fi L ci+1,

where wi+1 is the eigenvector corresponding to the maximum eigenvalue θ2i+1 of
matrix (MT

x Mx )
−1ET

i LFi L (NT
yN y)

−1FT
i LEi L .

Similarly, ci+1 is the eigenvector corresponding to the maximum eigenvalue
of(NT

yN y)
−1FT

i LEi L (MT
x Mx )

−1ET
i LFi L . Then,

pi+1 = ET
i L t i+1

‖t i+1‖2 , q̄ i+1 = FT
i L t i+1

‖t i+1‖2 .

Finally, d latent variables of LPPLS are determined using the cross-validation
method.
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10.2.2 LPPLS for Process and Quality Monitoring

X and Y is projected to a low-dimensional space by latent variables (t1, . . . , td).
The neighboring mapping of original data E0L and F0L is decomposed as follows:

E0L =
d∑

i=1

t i pTi + E = T PT + Ē

F0L =
d∑

i=1

t iqT
i + F = T Q̄

T + F̄,

(10.21)

where T = [t1, t2, . . . , td ] are the latent score vectors. P = [ p1, . . . , pd ] and Q̄ =
[q̄1, . . . , q̄d ] are load matrices for E0L and F0L , respectively. T is represented by
the neighboring mapping data E0L ,

T = E0L R = S
1
2
x E0R, (10.22)

where R = [r1, . . . , rd ] ,
ri =

i−1∏

j=1

(
In − w j pTj

)
wi

Similarly as GPLPLS method, (10.21) and (10.22) are difficult to apply in prac-
tice since the locality transformation matrix S cannot be obtained during the online
measurements. So they are changed to the direct decomposition of E0 and F0,

E0 = S
− 1

2
x (T PT + Ē) = T 0PT + E′ (10.23)

F0 = S
− 1

2
y (S

1
2
x T 0 Q̄

T + F̄), (10.24)

where T 0 = E0R, E′ = S
− 1

2
x Ē.

Process and quality monitoring for new scaled and mean-centered data samples
x and y is performed by the oblique projection of the input data x.

x = x̂ + xe

x̂ = RPTx

xe = (
I − PRT

)
x.

(10.25)

The residual space still contains much variation information (Qin and Zheng 2012),
but it is not the main focus of LPPLS. To facilitate the comparison with traditional
monitoring methods, this chapter will directly adopt traditional fault monitoring
indices without any modification. The T 2 and Q statistics are defined,
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t = RTx

T2 = tTΛ−1 t = tT
(

1

n − 1
TT

0T 0

)−1

t

Q = ‖xe‖2 = xT(I − PRT)x,

(10.26)

where Λ is the sample covariance matrix. The matrix X̃ or E0L of type III LPPLS
is not a scaled and mean-centered one. Moreover in nonlinear systems, the output
variables may not obey the Gaussian distribution even if the input variables obey
it. So the control limits of the statistics of T2 and Q are not computed according to
the F and χ2 distributions. It should be calculated based on their probability density
functions obtained by non-parametric kernel density estimation method (Lee et al.
2004).

Remark 10.1 The LPPLS decomposition (10.23) is similar to linear PLS, but its

residual space E′ is related to the locally preserved projectionmatrix S
1
2
x . It is difficult

to obtain the locally retained projection matrix S
1
2
x for new data during online fault

detection. But its covariance matrix Λ of the samples and the statistics of T2 and Q

(10.26) are not directly related to the locally retained projection matrix S
1
2
x which is

a useful feature for online monitoring

Although matrix SL := S
− 1

2
y S

1
2
x ∈ Rn×n is constant, the regression equation

(10.24) cannot be used for output projections. As mentioned above, the first rea-

son is that the locally preserved projection matrices S
1
2
x and S

1
2
y for the new data

are difficult to obtain. Another is that direct application of least squares solution
SR = E+

0 SLE0 may lead to poor prediction performance. The prediction perfor-
mance directly determines whether a model needs to be updated in practice. The
regression equation can be constructed based on F0 and T 0 based on (10.23),

F0 = T 0QT + F̃. (10.27)

Remark 10.2 In the special case of SL = I , (10.24) and (10.27) are equal. In most
cases, the regression coefficients ( Q̄ and Q) are significantly different. But consider-
ing both Q̄ and Q are least squares solutions for any type of regression equation, so
the regression errors F̄ and F̃ are equivalent in theory. Therefore, the latter regres-
sion equation (10.27) can be used to predicts the corresponding output of the new
input data.
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Fig. 10.1 Projection results of PLS, and LPPLS models for S-curve data set with Y = 2x1 − x3.
Type I LPPLS model is used
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Fig. 10.2 Projection results of PLS, and LPPLS models for Swiss roll data set with Y = x1x3.
Type III LPPLS model is used

10.2.3 Locality-Preserving Capacity Analysis

Here two three-dimensional artificial data sets are used to explain the locality-
preserving capacity of LPPLS, S-curves and Swiss roll. They are common to validate
the performance of manifold learning algorithm.

X1 = [x1; x2; x3]
= [cos(α),− cos(α)]; 5v1; [sin(α), 2 − sin(α)]

X2 = [x1; x2; x3]
= [t cos(t); 2v3; tsin(t)] ,

where α = (1.5v2 − 1)/π, t = 3π/2(1 + 2v4). v1, v2, v3 and v4 are uniformly dis-
tributed on (0, 1). Two kinds of output function is defined as y = 2x1 − x3 (linear)
and y = x1x3 (nonlinear).

1000 sample points are randomly generated in the 3-D space [x1, x2, x3], and
the dimensionality reduction process for PLS and LPPLS model is performed. The
projection results of the two models in two dimensions are shown in Figs. 10.1 and
10.2, respectively.

The projection results show that PLS does not preserve the local structural infor-
mation for the S-curves and Swiss roll. In other words, the data is not correctly
classified by color. However, LPPLS preserves the local structural features and has
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good classification results. LPPLSmodel improves the local preserving capability of
PLS model; moreover, LPPLS can better discriminate the boundary features. Thus,
LPPLS method can be used to detect faults related to output variables in systems
with strong nonlinearity.

10.3 Case Study

Validation of the proposed LPPLS-based fault detection method is performed on the
Tennessee Eastman Process simulation platform (Lyman and Georgakis 1995). TEP
is described in detail in the article found in (Lee et al. 2006). The related data sets
are downloaded from “http://web.mit.edu/braatzgroup/links.html”. PCA (Dunia and
Qin 1998; Good et al. 2010) and other global-local preserving projections methods
(Luo 2014; Bao et al. 2016; Luo et al. 2016) did not merge any information in the
output space, so only the LPPLSmethod and two quality-relatedmonitoringmethods
(PLS method and GLPLS method) are compared.

10.3.1 PLS, GLPLS and LPPLS Models

The input variable matrix X = [x1, x2 · · · , x33]T consists of 22 process variables
(XMEAS(1:22):=x1 : x22) and 11manipulated variables (x23 : x33) exceptXMV(12).
The quality variable matrix Y = [y1; y2] is composed of the componentsG of stream
9 and the components E of stream 11, i.e., XMEAS (35) (y1) and (38) (y2). The
training set is the normal data IDV(0) containing 960 samples. The test set is the
fault data IDV(1:21). Each fault data have 960 samples (the first 160 samples are
normal and the last 800 samples are faulty). The model parameters are δx = 1.5,
δy = 0.8, Kx = 20 and Ky = 15, where Kx and Ky are the adjacent parameters
in the input space and output space, respectively. Regression coefficients obtained
by PLS, GLPLS, and LPPLS models are shown in Table10.1. The relative errors
of training are shown in Fig. 10.3. Here the relative error is calculated as error =
(yi − yi,tr )/yi , i = 1, 2 and yi,tr is the corresponding output of the training model.

The training error in Fig. 10.3 shows that the training results of the PLS, GLPLS,
and LPPLS models satisfy the modeling requirements. The output prediction exper-
iments of these models are finished under all the fault conditions (i.e., the test data
set), and similar prediction abilities are obtained for most cases. Give fault IDV(21)
as an example, the output prediction of three models are shown in Fig. 10.4. y1 and
y2 are at the top and bottom of these figures, respectively. Fault IDV(21) is caused
by a slow drift in the output variables to drift slowly (Lee et al. 2006), but the pre-
diction performances of three methods still are good even in this fault case. So the
generalization capability of three models is verified.

http://web.mit.edu/braatzgroup/links.html
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Table 10.1 Regression coefficients of PLS, GLPLS, and LPPLS models

PLS GLPLS LPPLS

y1 y2 y1 y2 y1 y2
18.1489 −0.7162 13.6677 −3.0777 212.8754 −77.0014

x1 −0.0593 0.0855 0.0387 0.0392 −0.0496 0.0932

x2 0.0000 0.0000 0.0001 0.0000 −0.0001 0.0000

x3 −0.0001 0.0000 0.0000 0.0000 −0.0001 0.0000

x4 0.0261 −0.0149 0.1011 −0.0058 0.0271 −0.0182

x5 −0.0055 0.0015 0.0058 0.0046 0.0000 0.0030

x6 0.0003 −0.0009 0.0041 0.0000 −0.0056 −0.0007

x7 −0.0009 0.0000 −0.0009 0.0003 −0.0002 −0.0003

x8 −0.0013 0.0000 −0.0125 0.0003 −0.0061 −0.0003

x9 −0.0656 0.0229 −0.1396 −0.0028 −0.1016 0.0447

x10 −0.0946 0.0128 −0.0293 0.0440 −0.4048 0.0257

x11 0.0223 −0.0027 0.0240 −0.0007 0.0296 0.0000

x12 −0.0009 0.0002 −0.0008 −0.0008 −4.0733 1.5519

x13 −0.0009 0.0000 −0.0005 0.0002 0.0003 −0.0001

x14 0.0005 0.0002 0.0018 −0.0001 0.0000 0.0001

x15 0.0007 −0.0004 −0.0004 0.0001 −0.8701 0.5530

x16 −0.0011 0.0001 −0.0009 0.0004 −0.0031 0.0002

x17 0.0007 0.0000 0.0016 −0.0001 −0.2341 0.0077

x18 0.0101 −0.0051 −0.0220 0.0039 −0.0251 −0.0167

x19 0.0001 −0.0001 0.0005 0.0000 0.0001 −0.0001

x20 −0.0001 −0.0020 0.0076 −0.0025 −0.0005 −0.0012

x21 0.0145 0.0035 0.0949 0.0218 −0.0094 0.0074

x22 0.0044 −0.0036 0.0152 0.0026 −0.0033 −0.0054

x23 −0.0043 0.0008 0.0017 0.0069 −0.0047 0.0010

x24 −0.0040 −0.0019 0.0106 −0.0030 −0.0044 −0.0024

x25 −0.0006 0.0009 −0.0001 0.0005 0.0001 0.0005

x26 −0.0003 −0.0002 0.0000 0.0008 0.0006 −0.0003

x27 −0.0053 −0.0039 −0.0095 −0.0027 −0.0146 −0.0042

x28 −0.0007 0.0003 −0.0034 −0.0003 0.0011 0.0002

x29 −0.0003 0.0001 −0.0003 −0.0003 1.3836 −0.5273

x30 0.0003 −0.0002 −0.0002 0.0000 0.3753 −0.2391

x31 0.0004 −0.0005 −0.0004 −0.0001 0.0054 0.0007

x32 −0.0017 −0.0004 0.0046 −0.0017 0.0022 −0.0010

x33 −0.0007 0.0002 0.0001 −0.0001 −0.0990 0.0037
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Fig. 10.3 Relative errors of PLS, GLPLS, and LPPLS models
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Fig. 10.4 Prediction results for IDV(21) of PLS, GLPLS, and LPPLS models

10.3.2 Quality Monitoring Analysis

The T2 statistic represents the mapping between process variables and quality vari-
ables for PLS and its related methods. The alarm in T2 statistic indicates a quality-
related fault. In contrast, the Q statistic represents only the residuals in the input
space, therefore, its alarm indicates that the fault is not quality related. Table10.2
gives the monitoring FDR whose control limits are calculated with confidence level
99.75%, respectively.

The product quality consists of component G (XMEAS(35)) and component E
(XMEAS(38)). Faults IDV(3,4,9,11,14,15,19) have almost no effect on product qual-
ity, but the remaining faults cause significant changes in the quality variables. The
FDR results of the LPPLS method match the above actual TPE case, which detects
quality-related faults with much higher accuracy than the PLS and GLPLS models
(e.g., IDV(5) and IDV(12) in Table10.2). In this section, the performance for fault
detection is further examined based on three fault scenarios, including disturbance
of reactor cooling water, disturbance of condenser cooling water, and a constant
position of the steam 4 valves.
Experiment 1: Disturbance in Reactor Cooling Water (Quality-Independent
Fault)
The faults related to the reactor cooling water are IDV (4), IDV (11), and IDV (14).
As mentioned above, they have little effect on the product quality but are process
related. The results of monitoring the variation of the reactor cooling water are
shown in Fig. 10.5. Here IDV (14) is given for example in order to compare with
other quality-related methods, such as GPLPLS given in Chap.9.
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Table 10.2 FDR of PLS, GLPLS, and LPPLS models

PLS GLPLS LPPLS

T2 Q T2 Q T2 Q

IDV(1) 99.13 99.38 99.75 99.38 98.63 99.38

IDV(2) 98.00 98.25 97.63 98.25 98.13 97.88

IDV(3) 0.38 0.13 1.13 0.63 0.50 0.13

IDV(4) 0.63 86.00 98.88 67.00 0.25 85.88

IDV(5) 21.88 16.00 21.38 22.25 99.63 100.00

IDV(6) 99.25 100.00 99.38 100.00 100.00 100.00

IDV(7) 36.75 100.00 83.63 100.00 37.63 100.00

IDV(8) 92.50 94.00 93.38 97.13 92.25 94.75

IDV(9) 0.63 0.50 0.75 0.88 0.63 0.50

IDV(10) 30.00 4.38 23.13 26.63 49.00 31.00

IDV(11) 1.38 57.88 53.50 52.50 2.88 59.00

IDV(12) 87.50 91.00 87.75 97.88 95.50 97.50

IDV(13) 93.88 93.00 95.25 94.25 94.13 93.88

IDV(14) 33.50 100.00 96.88 99.88 2.50 100.00

IDV(15) 0.63 0.38 1.50 0.88 0.75 0.25

IDV(16) 14.25 3.13 9.00 12.50 53.38 38.75

IDV(17) 56.00 85.38 96.75 85.25 52.75 86.50

IDV(18) 88.00 89.25 90.25 89.88 87.88 89.25

IDV(19) 0.00 4.13 2.50 1.63 3.25 7.88

IDV(20) 26.63 34.00 36.25 35.38 28.13 34.00

IDV(21) 29.88 39.75 44.38 33.75 42.38 38.63
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Fig. 10.5 PLS, GLPLS, and LPPLS monitoring for IDV(14)
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The faults related to the reactor cooling water will cause the variation of reactor
temperature, but the reactor temperature is controlled by a cascade controller. So any
disturbances, including step fault IDV(4), random fault IDV(11), and valve sticking
disturbances IDV(14), do not affect the product quality. Table10.2 shows the fault
detection rates for the PLS, GLPLS, and LPPLS methods. The Q statistics of all
three methods detect these process-related faults in the input space with higher FDR.
The FDR values for LPPLS for the T2 statistic are much smaller than other methods,
which indicates that these faults are quality-independent. Fault IDV(14) is a special
case. When the traditional analysis methods, such as filtering or PLS, are applied to
this fault, most information about the fault feature are lost. This leads to this fault
is difficult to detect in the input space, thus preventing it from detecting the fault
in the input space. Now Let’s check the detection result for fault IDV(14). FDR in
the T2 statistic for PLS and GLPLS model are 33.5% and 96.88%, far higher than
LPPLS. It means that PLS and GLPLS distinguish fault IDV(14) as quality related.
The FDR of LPPLS in T2 statistic is 2.5%, near to that of GPLPLS (Tables9.2 and
9.3). So LPPLS can effectively filter the quality-irrelevant faults, similar as GPLPLS
method.
Experiment 2: Disturbance in Condenser Cooling Water (Quality-Related
Fault)
These faults include the quality-related faults IDV (5) and IDV (12). The fault IDV
(5) is caused by a step change in the cooling water flow rate of the condenser. Since
the series controller compensates for this step change, the separator temperature
returns to setpoint. The PLS and GLPLS have similar predicted results, returning to
the setpoint 10h after the fault. But LLPLS-based monitoring provides a persistent
alarm in statistic (T2) (Fig. 10.6). “The persistence of the fault detection statistic is
demonstrated by the fact that it continues to alert the operator to process anomalies
even though all process variables appear to have returned to their normal values,
especially important in quality-related process fault detection (Lee et al. 2006)”.
In fact, the disturbance in condenser cooling water, such as its flow rate, always
affects the output quality. It should be pointed that the cooling water flow rate of the
condenser plays an important role both in the output quality and the safety of the
chemical plant. This fault cannot be eliminated by the series controller and should
be alarming. Although the controller can compensate the variations caused by this
fault, the process-related monitoring in Q statistic, (Fig. 10.6), provides a consistent
alarm. Experimental results show that the PLS and GLPLS models do not actually
capture the source of the fault, while LPPLS does.
Experiment 3: Constant Position in Valve of Steam 4
Fault IDV (21) due to the slow output drift has been little studied. The sensitivity of
fault detection is related to the magnitude of the mass drift. Therefore, fast detection
of fault IDV(21) is beneficial for quality control. The process monitoring results
are shown in Fig. 10.7. For GLPLS, LPPLS, and PLS, this fault is fully detected
as quality-related after about 650, 720, and 780 samples, respectively. LPPLS and
GLPLS detect the fault IDV(21) faster than PLS method.

The following conclusions are drawn from the above experiments.
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Fig. 10.6 PLS, GLPLS, and LPPLS monitoring for IDV(5)
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Fig. 10.7 PLS, GLPLS, and LPPLS monitoring for IDV(21)

• PLS is a linear model, so it cannot accurately identify some faults for the strong
nonlinear systems.

• GLPLS and LPPLS shows better extracting for nonlinear correlation by introduc-
ing the locality-preserving ability of LPP strategy.

• GLPLS aims at preserving the local features in the input space and output space,
but lacks the correlation between them. GLPLS is actually a linear PLS plus partial
locality preserving, in which the role of LPP is not fully reflected. This may lead
to the false detection or missed detection in fault detection.

• LPPLS makes full use of the LPP algorithm to achieve local nonlinear structure
preservation. It decomposes the global nonlinear problem into a combination of
multiple local linear problems by introducing local structure information. There-
fore, LPPLS establishes an more effective model for the nonlinear correlation
between the input space and the output space compared with GLPLS.

10.4 Conclusions

In this chapter, theLPPLS statisticalmodel is proposed and theLPPLS-based quality-
related fault detection and prediction is given. LPPLS not only retains the local
information of the original data, but also maintains the correlation between X and
Y to the maximum extent, thus achieving accurate prediction of quality variables.
The LPPLS encapsulates the excellent detection performance for locally nonlinear
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systems, due to the local feature extraction ability controlled by two parameters, δx
and δy . Experiment results on the artificial three-dimensional data sets, S-curve and
Swiss roll, show that LPPLSmaintains local structural features well. The experiment
results on TEP simulator show that LPPLS extracts the local nonlinear features more
effectively and has better fault detection performance than PLS and GLPLS models.
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Chapter 11
Locally Linear Embedding Orthogonal
Projection to Latent Structure

Quality variables are measured much less frequently and usually with a significant
time delay by comparison with the measurement of process variables. Monitoring
process variables and their associated quality variables is essential undertaking as it
can lead to potential hazards thatmay cause system shutdowns and thus possibly huge
economic losses. Maximum correlation was extracted between quality variables and
process variables by partial least squares analysis (PLS) (Kruger et al. 2001; Song
et al. 2004; Li et al. 2010; Hu et al. 2013; Zhang et al. 2015). In order to deal with the
nonlinear correlation of industrial data, this chapter proposes another two nonlinear
PLS methods, named as Local Linear Embedded Projection of Latent Structure
(LLEPLS). LLEPLS is an oblique projection on the input data space. By further
decomposing the LLEPLS model, Local Linear Embedded Orthogonal Projection
of Latent Structure (LLEOPLS) is proposed which the orthogonal projection on the
input space is obtained. LLEPLS or LLEOPLS also extracts the maximum relevant
information and preserves the local nonlinear structure between input and output
simultaneously.

LLEPLS or LLEOPLS project the input and output space into three subspaces
from the view of statistical analysis: (1) joint input-output subspace, aiming at finding
the nonlinear relationship between the input and output. It also can be used for qual-
ity prediction. (2) output-residual subspace, aiming at monitoring the quality-related
fault which cannot be predicted from the process data. (3) orthogonal input-residual
subspace, aiming at identifying whether the predictable fault is quality related.
The corresponding monitoring strategies are established based on the LLEPLS and
LLEOPLS model, respectively.
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Fig. 11.1 Outer- and
inner-model presentation for
PLS decomposition

11.1 Comparison of GPLPLS, LPPLS, and LLEPLS

PLS has a better performance compared to PCA in quality-relevant faults. As shown
in Fig. 11.1, the output space (Y ) and input space (X) are decomposed for the PLS
model. Here the external relationship is the “foundation” and the internal relationship
is the “result”. For nonlinear PLS, the desired “results” cannot be obtained by internal
structure adjustment (Zhang and Qin 2008), if the external relationships are linear.
Therefore, it is possible to build better internal relationships by starting with the
analysis of external relationships. The nonlinear function usually is approximated
by a series of locally weighted linear model. For example, (Wang et al. 2014; Yin
et al. 2016, 2017) use the locally weighted projection regression (LWPR) or few
univariate regressions to learn the nonlinearity of external relationships. This PLS
regression can be considered asmulti-KPLS regressionwithGaussian kernel to some
extent.

The location-preserving partial least squares (LPPLS) model (given in Chap.10)
is another external nonlinear PLS model and its structure is relatively simple com-
pared to the KPLSmodel (Wang et al. 2017). However, the LPPLSmodel has at least
two limitations. The first one is that the local geometric structure (uniform weights)
cannot be preserved better, or the σ parameter (Gaussian weights) (Kokiopoulou and
Saad 2007) is difficult to be selected properly. The second is an oblique decomposi-
tion of the measurement process variables. The LPPLS model extracts the principal
components and retains local structure by locality-preserving projection (LPP). LLE,
another nonlinear dimensionality reduction technique, transforms the global nonlin-
ear problem into a combination of several local linear problems by introducing local
geometric information. Compared with LLEmethod, the local preserving strategy of
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LPP is more complex, and its parameters (Gaussian weights)are more and not easy
to tuned.

The global plus local projection to latent structure (GPLPLS) (given in Chap.9)
integrates the advantages of PLS and LLE methods. The distinctive feature of the
GPLPLS model is that the local nonlinear features are enhanced by LLE in the PLS
decomposition (Zhou et al. 2018). GPLPLS uses the strategy of plus but not embed-
ding, in which the new feature space is divided into linear part (global projection) and
nonlinear part (local preserving). It confirms that the LLE plus PLS algorithm is able
to perform the decomposition of the input and output space, and effectively preserve
the local geometric structure. However, this combination needs further research, such
as how to combine more effectively, how to make the orthogonal decomposition be
completed, and also how to quantitatively evaluate the monitoring effect.

Based on the above analysis, Local Linear Embedded Projection of Latent Struc-
ture (LLEPLS) is proposed. It extracts themaximumcorrelation information between
input and output, at the same time reveals and preserves the intrinsic nonlinear struc-
ture of the original data. The principal components of the input space (or measured
variables space) extracted by LLEPLS still contain the variations orthogonal to Y .
These variations are output irrelevant and do not contribute to the output prediction.
Moreover, LLEPLS is an oblique projection on the input space. Orthogonalization
is an alternative solution for these issues. Then the local linear embedded orthogo-
nal projection to latent structure (LLEOPLS) model is proposed in order to explain
further the LLEPLS prediction model and detect quality-related faults. LLEOPLS
eliminates the T 2 statistic including variations orthogonal to the output. LLEOPLS
differs significantly from other existing nonlinear PLS models in orthogonal projec-
tions with local geometric structure preservation and less easily fixed parameters.

11.2 A Brief Review of the LLE Method

Given the normalized data set X = [
xT(1), xT(2), . . . , xT(n)

]T ∈ Rn×m ,
(x = [x1, x2, . . . , xm] ∈ R1×m) of the model, where n is the sampling time and m is
the number of input variables. LLE algorithm introduces the local structural infor-
mation and transforms the global nonlinear problem into a combination of multiple
local linear problems. It is outstanding at the locally nonlinear processes.

The size of neighborhood kx is crucial for the local geometric structure. According
to the distance measures such as Euclidean distance, the K nearest neighbors (KNN)
of the sample can be selected (Kouropteva et al. 2002),

kx,opt = argmin
kx

(1 − ρ2Dx Dφx
), (11.1)

where Dx and Dφx denotes the distance matrices (between point pairs) in X and
�x (�x given in (11.4)), and ρ denotes the standard linear correlation coefficient
between Dx and Dφx .
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Next, the kx nearest neighbors of the sample x(i) can be obtained. Then x(i) can
be linearly expressed based on its the kx nearest neighbors x( j) by the following
optimization object,

J (Ax ) = min
n∑

i=1

∥∥∥
∥∥∥
x(i) −

kx∑

j=1

ai j,x x( j)

∥∥∥
∥∥∥

2

s.t.
kx∑

j=1

ai j,x = 1,

(11.2)

where [ai j,x ] := Ax ∈ Rn×kx , (i = 1, 2, . . . , n, j = 1, 2, . . . , kx ) denotes theweight
coefficients. Usually, points belonging to the space X are projected onto a new

low-dimensional reduced space �x = [
φT

x (1),φ
T
x (2), . . . ,φ

T
x (n)

]T ∈ Rn×d , (d <

m, φx ∈ R1×d) determined by the following optimization:

JLLE(W) = min
n∑

i=1

∥∥∥∥
∥∥
φx (i) −

kx∑

j=1

ai j,xφx ( j)

∥∥∥∥
∥∥

2

s.t. �T
x�x = I .

(11.3)

In order to further analysis, a linear mapping matrix W = [w1, . . . ,wd ] ∈ Rm×d is
introduced with the guarantee of local embedding,

φx (i) = x(i)W , (i = 1, 2, . . . , n). (11.4)

where w j , j = 1, . . . , d denotes the projection vector. Then the optimization (11.3)
is rewritten as

JLLE (W) = min tr
(
WTXTMT

x MxXW
)

s.t. WTXTXW = I,
(11.5)

where Mx = (I − Ax ) ∈ Rn×n . SVD operation is performed on M x in order to
simplify the dimensionality reduction problem,

Mx = [
U x Ū x

]T
[
Sx 0
0 0

] [
V x

V̄ x .

]

Then, the minimum value problem (11.5) is changed as follows:

JLLE(W) = max tr
(
WTXT

MXMW
)

s.t. WTXTXW = I,
(11.6)
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where XM :=
[
S−1
x 0
0 0

] [
V x

V̄ x

]
X = SVx X . Generally, LLE should chose the reduced

dimension d in (11.3) in advance, but PCA can determine the corresponding dimen-
sion based on the specific criteria such as the cumulative contribution. The optimiza-
tion problem (11.6) is further rewritten,

JLLE (w) = maxwTXT
MXMw

s.t. wTXTXw = 1,
(11.7)

where w ∈ Rm×1. The criteria of determining the number of principal components
in PCA can be directly applied to LLE. Based on the SVD algorithm, the matrix XM

is decomposed into a “load matrix” Pd = [ p1, p2, . . . , pd ] and a “score matrix”
T d = [t1, t2, . . . , td ]

XT
MXM = [Pd0 Pr0]

[
Λd

Λr

] [
Pd0

Pr0

]

and defined Pd = Pd0/‖X Pd0‖, Pr = Pr0/‖X Pr0‖, and

XM = T d PT
d + T r PT

r

= Pd PT
d XM + (

I − Pd PT
d

)
XM ,

(11.8)

where T d = XM Pd , T r = XM Pr .
It is observed from (11.7) and (11.8) that the projection direction of LLE can be

obtained bymaximizing the variance. Thus, the LLE constructs a newPLS regression
with the local geometric structure-preserving ability according to the component
extraction criteria.

Variance (factor variation) is used to extract the latent variables in PLS algorithm.
It transforms the original data X and Y into a set of t-scores T and u-scores U .
The latent factors T and U are chosen by maximizing the factor variation. It aims
at using fewer dimensions but retaining more features of the original data. PLS
is a linear dimensionality reduction technique, but does not explore the intrinsic
structure of original data. It is not conducive to data classification, but may make
data mixed together. The phenomena that may occur with PLS are given in Fig. 11.2,
similar as the PCA. Figure11.2a shows a two-mode data space X and Fig. 11.2b
give its first principal component t1 in PCA. The contribution of the first principal
component of t1 is 99%. As shown in Fig. 11.2b, the blue ′o′ and black ′∗′ points in
the one−dimensional coordinate system are mixed together. The second principal
component is discarded due to its small contribution although it maintains the local
geometric structure.
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Fig. 11.2 PCA
decomposition and its project
of a two-mode data space
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11.3 LLEPLS Models and LLEPLS-Based Fault Detection

11.3.1 LLEPLS Models

In order to extract the first component pair (t1, u1), the traditional PLS optimization
is expressed as

JPLS (w1, c1) = maxwT
1 X

TYc1

s.t. wT
1w1 = 1, cT1 c1 = 1.

(11.9)

Define E0 = X and F0 = Y . The PLS latent variables t1 and c1 of are obtained from
t1 = E0w1 and u1 = F0c1. Here c1 and w1 are the eigenvectors corresponding to
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the maximum eigenvalues of matrices,

ET
0 F0FT

0 E0w1 = θ21w1 (11.10)

FT
0 E0ET

0 F0c1 = θ21c1. (11.11)

Locality linearly embedded partial least squares (LLEPLS) is proposed to opti-
mize the function as follows:

JLLEPLS (w1, c1) = maxwT
1 X

T
MYM c1

s.t. wT
1 X

TXw1 = 1, cT1Y
TYc1 = 1

(11.12)

in which,

YM =
[
S−1
y 0

0 0

] [
V y

V̄ y

]
Y = SVyY

M y = I − Ay = [
U y Ū y

]T
[
Sy 0
0 0

] [
V y

V̄ y,

]

where Ay is accompanied by its neighbors with different parameters ky , similar as
Ax . Sy, V y and U y are also similar to Sx , V x and U x .

The criteria of LLEPLS component decomposition and latent factors extraction
are given as follows:

(1) The latent factors ui and t i are chosen to maximize the nonlinear variation of
the factors (by local linear embedding).

(2) The correlation between potential factors ui and t i should be as strong as pos-
sible.

Then, the latent variable calculation process of LLEPLS model is given as fol-
lows. Denote E0L = XM and F0L = YM , similar as the traditional linear PLS. The
constrained optimization problem (11.12) is transformed by introducing a Lagrange
multiplier vector,

Ψ (w1, c1) =wT
1 E

T
0 LF0 L c1 − λ1

(
wT

1 X
TXw1 − 1

)

− λ2
(
cT1Y

TYc1 − 1
)
.

(11.13)

The optimal w1 and c1 is solved by ∂Ψ
∂w1

= 0 and ∂Ψ
∂c1

= 0. Next, the optimization
problem (11.13) is solved by the maximum eigenvalue problem,

(
XTX

)−1
ET

0 LF0 L
(
YTY

)−1
FT

0 LE0 Lw1 = θ21w1 (11.14)

(
YTY

)−1
FT

0 LE0 L
(
XTX

)−1
ET

0 LF0 L c1 = θ21c1. (11.15)

The first optimal weight vector w1 in the conventional linear PLS (11.10) is cor-
responding to the matrix ET

0 F0FT
0 E0. For the LLEPLS (11.14), the optimal w1 is
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Fig. 11.3 Outer- and inner-model presentation for LLEPLS decomposition

derived from the correspondingmatrix
(
XTX

)−1
ET

0 LF0 L
(
YTY

)−1
FT

0 LE0 L . These
matrices are particularly similar. The extraction and modeling of the residual com-
ponents can be done by traditional PLS methods.

It is worth pointing out that the columns of the input space X and/or the output
space Y may not be full rank. The inverse of XTX and/or YTY does not exist. Similar
as the Sx in (11.6), the corresponding matrix inverse can be obtained for X and/or Y .
It does not affect the following analysis, so both cases will be treated indiscriminately
in the rest of this chapter.

The first d components are obtained to predict the regression model, where d is
determined by cross-validation tests. Similar to the outer- and inner-model presen-
tation for PLS decomposition, the corresponding LLEPLS decomposition is shown
in Fig. 11.3. It is found that that the new feature space X F and Y F are both con-
structed by the nonlinear part, i.e., the local structure information. Compared with
the decomposition of GPLPLS shown in Fig. 9.2, the global linear part is eliminated.

11.3.2 LLEPLS for Process and Quality Monitoring

The linear localization embedding in the low-dimensional space of X andY is formed
by few latent variables (t1, . . . , td) in the LLEPLS model. The neighborhood map-
pings of E0L and F0L are decomposed as follows:
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E0 L =
d∑

i=1

t i pTi + Ē0 L = T PT + Ē0 L

F0 L =
d∑

i=1

t iqT
i + F̄0 L = T QT + F̄0 L ,

(11.16)

where T = [t1, t2, . . . , td ] denotes the score vectors, P = [
p1, . . . , pd

]
and Q =[

q1, . . . , qd

]
denote the loading matrices of E0L and F0L , respectively. Score T is

represented in terms of the neighboring mapping data E0L ,

T = E0 L R = SVx E0R, (11.17)

where R = [r1, . . . , rd ], and

r i =
i−1∏

j=1

(In − w j pTj )wi .

Equations (11.16) and (11.17) are difficult to directly apply in practice due to the
calculation of locality-preserving matrix S, so the decomposition for the scaled and
mean-centered E0 and F0 are given,

E0 = T 0PT + Ē0 (11.18)

F0 = T 0 Q̄
T + F̄0

= E0R Q̄
T + F̄0, (11.19)

where T 0 = E0R, Q̄ = T+
0 F0.

Now let’s consider the monitoring of new samples x and subsequently on y. First
the samples are scaled and mean-centered, an oblique projection is derived on the
input data space x.

x = x̂ + xe

x̂ = PRTx

xe = (
I − PRT

)
x.

(11.20)

The statistics T 2 and Q are calculated as follows:

t = RTx

T2 = tTΛ−1 t = tT
(

1

n − 1
TT

0T 0

)−1

t

Q = ‖xe‖2 = xT
(
I − PRT

)
x,

(11.21)

where Λ is the sample covariance matrix.
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The space of measured variables, i.e., input space, is divided into two subspaces:
score subspace and residual subspace. LLEPLS detects the quality-related faults by
the T2 statistic in the score subspace and detects the quality-irrelevant faults by Q-
statistics in the residual subspace. The PLS scores which constitute the T2 statistic
still includes the variation orthogonal to Y . Therefore, LLEPLS still has deficiencies
in the quality-related fault detection.

11.4 LLEOPLS Models and LLEOPLS-Based Fault
Detection

As demonstrated in (Li et al. 2010), (Ding et al. 2013), the standard PLS performs
a diagonal decomposition of the measured process variables. The LLEPLS model
(11.16) also is a oblique decomposition operation (11.20) on the measured process
variables, which is similar to the standard PLS model. Thus, the major part of the
measured process variablesmay include variations orthogonal to the output variables.
In other words, the principle component still include the output irrelevant variation,
and the residual part may include a large of output-related variation. In addition,
the number of principal components is often dependent on the operator’s decision
and is likely to cause the problems of component redundancy. In order to solve
these problem, it is necessary to further decompose the LLEPLS model in equation
(11.18) and get an orthogonal decomposition for the measured process variables. In

this model, the regression coefficient R Q̄
T
in equation (11.19) are used to describe

the relationship between E0 and F0. Performing the SVD operation on R Q̄
T
to

obtain orthogonal decomposition,

R Q̄
T = U pcSpcVT

pc, (11.22)

where Spc contains all non-zero singular values in descending order. V pc and U pc

are the corresponding right and left singular vectors. Then,

F0 = E0U pcSpcVT
pc + F̄0

= T pc QT
pc + F̄0,

(11.23)

where T pc = E0U pc, Q pc = V pcSpc. The output-residual subspace F̄0 indicates
an unpredictable output but may include some variation.

Furthermore, E0 decomposes into two orthogonal subspaces by T pc.

E0 = Ê0 + Xe

= T pcUT
pc + E0

(
I − U pcUT

pc

)
,

(11.24)

where Ê0 := T pcUT
pc and Xe = E0

(
I − U pcUT

pc

)
. Xe denotes the orthogonal

input-residual subspace. The new data samples x and subsequently y are
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orthogonal projected on the input data space x for process and quality monitoring,

x = x̂ + xe

x̂ = U pcUT
pcx

xe = (
I − U pcUT

pc

)
x

t pc = U pcx

ye = y − Q pc t pc.

(11.25)

The LLEOPLS model is given in (11.23) and (11.24) with many parameters to be
determined in prior. The selection of the optimal parameters has been described for
LLE (Kouropteva et al. 2002). The optimal parameters [kx , ky] of LLEOPLS model
is determined by simultaneously considering the characteristics of the LLE itself and
the relationship between the input and output spaces. The following optimization is
given for determining the parameters [kx , ky]:

[
kx , ky

]
opt = argmin

kx ,ky

(
1 − ρ2Dx Dφx

+ 1 − ρ2Dy Dφy

+1 − ρ2D ŷ Dy

∣∣∣
train

+ 1 − ρ2D ŷ Dy

∣∣∣
pre

)
,

(11.26)

where ŷ = Q pc t pc. ·|train and ·|pre are the training data set and the testing data
sets, respectively. The first two terms in (11.26), 1 − ρ2Dx Dφx

and 1 − ρ2Dy Dφy
, aim

at evaluating the geometric similarity between the embedding space and the high-
dimensional space. The last two terms, 1 − ρ2D ŷ Dy

and 1 − ρ2D ŷ Dy
, indicate the effect

of the model which indirectly reflects the role of the first two terms. Cross-validation
is used to ensure the training results of the model. The last term is the most important
part in (11.26),

[
kx , ky

]
opt = argmin

kx ky

(
1 − ρ2D ŷ Dy

∣∣∣
pre

)
. (11.27)

A generalized LLEOPLS model with the optimal parameters kx and ky can be
used to monitor the operation of the system. The T2 statistics can monitor the output-
related score (T pc), output-residual part and input-residual part,

T2
pc = tTpcΛ

−1
pc t pc = tTpc

{
1

n − 1
TT

pcT pc

}−1

t pc

T2
e = xTe Λ

−1
x,exe = xTe

{
1

n − 1
XT

e Xe

}−1

xe

T2
y,e = yTe Λ

−1
y,e ye = yTe

{
1

n − 1
YT

eY e

}−1

ye,

(11.28)



200 11 Locally Linear Embedding Orthogonal Projection to Latent Structure

where Λpc, Λx,e and Λy,e denotes the sample covariance matrices. Y e := F̄0 =
F0 − T pc QT

pc.
The T pc of theLLEOPLSmethod is not obtained froma scaled andmean-centered

matrix E0L . The control limits of the T2 statistical series usually are calculated based
on the probability density function estimated by the non-parametric KDE method.
The T2

pc and T2
e statistics both are univariate although the processes represented by

these statistics are multivariate. Then the control limits for the monitoring statistics
(T2

pc, T
2
e and T2

y,e) are obtained from the corresponding PDF estimation,

∫ Thpc,α

−∞
g(T2

pc)dT
2
pc = α

∫ Thxe ,α

−∞
g(T2

e)dT
2
e = α

∫ Thye ,α

−∞
g(T2

y,e)dT
2
y,e = α,

where

g(z) = 1

lh

l∑

j=1

K
(
z − z j
h

)
,

where K(·) and h are kernel function and its bandwidth or smoothing parameter,
respectively.

Finally, the fault detection logic for the output-residue subspace is given,

T2
y,e > Thye,α Unpredictable output faults

T2
y,e ≤ Thye,α Fault-free in unpredictable output.

(11.29)

T2
y,e includes the output information, so it is suitable for monitoring the output-

residual subspace. But this posteriori quality monitoring is not the focus. Instead,
process-based quality monitoring is of greater interest. Fault detection logic for the
input space is (Zhou et al. 2018):

T2
pc > Thpc,α Quality-relevant faults

T2
pc > Thpc,α or T2

e > Thxe,α Process-relevant faults

T2
pc ≤ Thpc,α & T2

e ≤ Thxe,α Fault-free.

(11.30)

Themonitoring process of LLEOPLS algorithm for the complex industrial system
is given as follows:
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1. The original data X and Y is scaled to zero mean and unit variance.
2. The LLE and PLS optimization objectives ((11.4) and (11.9)) are combined. Then

perform the LLEPLS operation for X and Y to yield T 0, Q̄ and R as well as the
output-residual subspace Y e, based on (11.18) and (11.19).

3. The number of LLEPLS factors d is determined by cross-validation.

4. Perform SVD on R Q̄
T
. Further access to U pc, T pc and Q pc.

5. Build the input-residual subspace Xe.
6. Calculate the control limits (11.28) and finish the fault monitoring according to

the fault detection logic (11.30).

11.5 Case Study

The fault detection strategy based on the proposed LLEPLS and LLEOPLS model
is performed on the Tennessee Eastman Process (TEP) simulation platform (Lyman
and Georgakis 1995). To better demonstrate the effectiveness and rationality of the
proposed monitoring strategy, the PLS monitoring strategy and the concurrent pro-
jection to latent structure (CPLS) model (Qin and Zheng 2012) are compared. With
the CPLS algorithm, the input and output spaces are projected into five subspaces:
the input-principle subspace, the input-residual subspace, the output-principle sub-
space, the output-residual subspace, and the joint input-output subspace. When only
the monitoring capability of quality-related faults is considered, the input-residual
subspace replaces the input-residual and -principle subspace in the CPLS model.
The T2

e replaces the corresponding monitoring strategy. In order to emphasize the
process-based quality monitoring, the output-residual subspace in LLEOPLS model
will not be considered. Similarly, the output-principle and -residual subspaces in
CPLS model are not considered.

11.5.1 Models and Discussion

All process measurement variables (XMEAS (1:22)) and manipulation variables
(XMV (1:11)) form the input variables matrix X . The quality variable matrix Y con-
sists of XMEAS (35) and (38). The training data set is normal data IDV(0) and the
texting data consists of the 21 fault data IDV(1-21). The optimal parameters of LLE-
PLS and LLEOPLS are kx = 24 and ky = 20. The number of principal components
of the PLS, CPLS, LLEPLS, and LLEOPLS models are 6, 6, 5, and 5, respectively.

From the analysis of previous Chaps. 9 and 10, it is known that faults IDV(3,4),
IDV(9,11), IDV(14,15), and IDV(19) had almost no effect on product quality but
other faults produced significant variations in quality variables when select compo-
nent G (XMEAS(35)) and component E (XMEAS(38)) as product quality variables.
The FDR and FAR of PLS, LLEPLS, CPLS, and LLEOPLS at the control limit
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Table 11.1 FDR of PLS, LLEPLS, CPLS, and LLEOPLS

PLS CPLS LLEPLS LLEOPLS

IDV T2 Q T2 T2
e T2 Q T2

pc T2
e PQAR

1 99.13 99.38 96.13 99.88 84.88 99.25 29.63 99.75 28.25

2 98.00 98.25 81.25 98.25 92.88 97.00 78.50 98.25 77.00

3 0.38 0.13 0.50 1.25 0.50 0.25 0.50 1.75 0.88

4 0.63 86.00 0.13 100.00 0.50 1.25 0.25 100.00 0.25

5 21.88 16.00 20.38 100.00 22.38 13.75 14.13 100.00 21.88

6 99.25 100.00 99.25 100.00 99.75 99.75 97.00 100.00 95.25

7 36.75 100.00 35.63 100.00 36.63 47.50 25.25 100.00 33.88

8 92.50 94.00 87.75 97.88 88.00 87.38 77.38 97.88 75.38

9 0.63 0.50 0.38 1.25 1.00 0.38 0.38 1.88 0.88

10 30.00 4.38 28.00 86.25 28.38 16.63 14.50 88.25 17.13

11 1.38 57.88 0.25 77.50 1.13 10.13 1.38 77.75 1.38

12 87.50 91.00 84.75 99.88 87.13 85.50 75.13 99.88 81.00

13 93.88 93.00 85.00 95.25 92.75 89.13 85.00 95.25 85.13

14 33.50 100.00 1.63 100.00 0.13 96.38 0.13 100.00 0.00

15 0.63 0.38 0.75 2.50 0.38 2.88 1.75 3.88 0.25

16 14.25 3.13 12.63 89.38 17.88 10.38 7.63 91.25 8.63

17 56.00 85.38 37.13 96.88 4.50 66.38 2.00 96.75 5.63

18 88.00 89.25 88.00 90.13 87.75 88.38 87.50 90.25 86.38

19 0.00 4.13 0.00 91.13 0.13 0.13 0.38 91.38 0.25

20 26.63 34.00 27.75 90.38 22.75 19.88 11.25 90.88 4.38

21 29.88 39.63 24.50 43.88 33.50 19.63 16.25 53.75 16.75

with confidence level 99.75% are shown in Tables11.1 and 11.2, respectively. Based
on the two tables, the monitoring results for LLEOPLS are a little different from
the other monitoring results which are almost the same as FAR, such as IDV(14)
and IDV(17). They are considered as quality-related faults in the method of PLS.
However, LLEOPLS method indicates that they are quality-irrelevant faults.

Which monitoring results are more credible? The following is given to assess
whether the final result of the fault detection is reasonable by quantifying the posterior
quality alarm rate (PQAR).

PQAR = No. of samples ({|(Y F )|} > 3 | f �= 0)

total samples ( f �= 0)
× 100, (11.31)

where Y F are the scaled and mean-centered data, which is the output data of the
fault cases. The PQAR is also given in Table11.1. The 21 faults are divided into two
categories by PQAR. Type I is quality-independent (PQARi < 6, i = 1, 2, . . . , 21),
including IDV(3,4,9,11,14,15,17,19,20). Type II is quality-relevant faults, and further
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Table 11.2 FAR of PLS, LLEPLS, CPLS, and LLEOPLS

PLS CPLS LLEPLS LLEOPLS

IDV T2 Q T2 T2
e T2 Q T2

pc T2
e

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.63

2 0.00 0.00 0.00 0.00 0.63 0.63 0.63 0.00

3 0.00 0.63 0.00 0.00 0.63 0.00 0.63 3.13

4 0.00 0.00 0.00 0.63 0.00 0.63 0.63 0.63

5 0.00 0.00 0.00 0.63 0.00 0.63 0.63 0.63

6 0.00 0.63 0.00 0.00 0.00 0.63 0.00 0.00

7 0.00 0.63 0.00 0.00 0.00 0.00 0.63 0.00

8 0.00 0.00 0.63 0.00 0.00 0.00 0.63 0.00

9 1.25 0.00 0.63 0.63 0.63 0.00 0.00 0.63

10 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.00

11 0.00 0.00 0.00 0.63 0.00 0.63 0.63 0.63

12 0.00 0.00 0.63 0.63 0.00 0.00 1.25 0.63

13 0.00 0.00 0.63 0.00 0.00 0.00 0.00 0.00

14 0.00 0.00 0.00 0.00 0.63 0.00 0.63 0.00

15 0.00 0.63 0.00 0.00 0.00 0.63 0.63 0.63

16 1.25 0.00 2.50 2.50 3.13 0.00 1.25 1.25

17 0.00 0.00 0.00 0.00 0.00 0.63 0.00 0.63

18 0.00 0.63 0.00 0.63 0.63 0.63 0.00 1.25

19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.63

20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

21 1.25 0.63 0.00 2.50 0.63 0.63 0.63 1.88

classified into three categories: IDV(16) has a slight effect on quality; IDV(1, 2, 5,
6, 7, 8, 10, 12, 13, 18) has a serious effect on quality; and IDV(21) causes a slow
drift of the output variable. Apparently, the LLEOPLS method achieves a consistent
conclusion (T2

pc). That is, theLLEOPLSmodel can eliminate the quality-independent
interference alarms better. However, there are still some differences in alarm rates
between PQAR and T2

pc, such as IDV (5), IDV (7), and IDV (20). What causes
this difference? Next, the differences between the LLEOPLS method and the other
methods are further analyzed based on the PQAR and T 2

pc alarm rates.

11.5.2 Fault Detection Analysis

The differences in fault detection results are discussed for the PLS (CPLS)model and
the LLEPLS (LLEOPLS)model, respectively. Several cases exist for output variables
or process variables with no faults or minor faults (IDV(3,9,15)). Both approaches
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Fig. 11.4 PLS, LLEPLS, CPLS, and LLEOPLS monitoring result for IDV(1) and the output pre-
dicted values

provide consistent conclusions. For other faults, there are some differences in their
diagnostic results. For two failure cases, including quality-recoverable failures and
quality-irrelevant failures, the analysis is as follows. Subplots (a-d) of Figs. 11.4,
11.5 and 11.6 are monitoring result based on the statistics T2

pc and T2
e , respectively.

The blue line shows the monitored value and the red dashed line shows the control
limit of 99.75%. In the corresponding subplots (e) and (f) give the output prediction,
where the blue dashed line is the measurement value and the green line is predicted
value.

Experiment 1: Quality-Recoverable Faults

Consider the fault IDV(1), IDV(5), IDV(7). All these fault conditions are step faults,
but the in-process feedback controller or cascade controller can compensate the
changes in the output variables; therefore, the product quality variables under the fault
condition IDV (1), IDV (5), and IDV (7) tend to return to normal. The monitoring
results of IDV (1) are shown in Fig. 11.4 by the PLS, LLEPLS, CPLS, LLEOPLS
methods.

It is easy to find that the T2
e statistics in CPLS and LLEOPLS method can detect

the process-related faults. The T2
pc statistic of the LLEOPLS model returns back to

the control limit which indicates that those faults are quality recoverable. Existing
work in the literatures reports the high detection rates of these faults. For example,
PLS, CPLS, and LLEPLS methods give many false alarms based on T2 for IDV(1).
In this case, the LLEOPLSmethod can accurately reflect the changes in both process
variables and quality variables.
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Fig. 11.5 PLS and LLEPLS monitoring result for IDV(17) and the output predicted values
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Fig. 11.6 PLS and LLEPLS monitoring result for IDV(20) and the output predicted values
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For IDV(1), a huge difference between FDR(T2) and PQAR can be observed. On
the one hand, FDR(T2 or T2

pc) is based on the principal components of the process
variables (without time delay), while PQDR is obtained based on the actual output
values (with time delay). They are not equivalent. Moreover, considering that the
data used for modeling are under normal operating, but not under fault conditions.
The nonlinearity feature may not be fully excited (i.e., these nonlinearities appear
to be linear in the normal and steady operation). When fault occurs, nonlinearity is
fully excited and may lead to false alarms and missed alarms due to the inability
of the original model to predict the output. In fact, T2 is considered to monitor the
quality-related fault, which implies the assumption that the output of the system can
still be well predicted by the model in case of a failure. Although the variation of the
predicted value of the PLS model (XMEAS(38)) follows the variation of the actual
output value, the predicted value is too largewhich results in amuch larger FDR (T2 in
the PLS, CPLS, and LLEPLS models) than the PQAR. Nevertheless, the monitoring
results of CPLS and LLEPLS are closer to reality by the orthogonalization strategy
and the local linear embedding strategy.

Experiment 2: Quality-Irrelevant Faults

Fault IDV(4,11,14,17,19,20) are quality-irrelevant, in which IDV(4), IDV(11),
IDV(14), and IDV(17) are considered as quality-independent but process related.
The monitoring results and output predictions for IDV(17) are shown in Fig. 11.5.
As shown in Fig. 11.5e, f, the PLS model cannot predict the output values well while
the LLEPLS model can predict the output values very accurately. So many false
alarms generated by T2 of the PLS method. There are two possible reasons: PLS
model does not map the nonlinear functions well, and its principal components con-
tain the variations orthogonal to the output variables. Although CPLS improves the
orthogonal part of PLS, its nonlinearity extracting ability is still poor. In contrast,
the LLEPLS model captures the nonlinear structure well and filters out these false
alarms by LLE.

IDV(20) is another touchstone for fault detection. Themonitoring results and their
output predictions are shown in Fig. 11.6. The detection of all methods is not good
based on PQAR, but LLEOPLS method is the best. It is found from the predicted
results that LLEPLSmodel can predict the output variation well. With the removal of
the orthogonal component, there remains a question why T2

pc still fails to yield con-
sistent results. One of the underlying reasons is that the nonlinear dynamics excited
by IDV(20) cannot be well described by the parameters [kx , ky] = [24, 20], which
in turn leads to a wrong classification. Another reason could be the different con-
trol limits between PQDR and T2

pc. The statistical results of PQDR are obtained by
assuming that the output variables obey a Gaussian distribution, and subsequently,
their control limits are determined by a threefold standard deviation criterion. How-
ever, the 99.75% control limit of T2

pc was obtained by non-parametric estimation.
This differs from the results of the Gaussian assumption. The control limit of T2

pc
with confidence level 99.75% for the non-parametric KDE is 9.9583, but under the
Gaussian assumption is 12.0708). In fact, the monitoring results of T2

pc of LLEOPLS
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(e) PQAR of IDV(21)
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Fig. 11.7 PQAR and the corresponding LLEOPLS monitoring results

show that most of the alarms are transient alarms and few are continuous, where the
transient alarms may be caused by noise.

Experiment 3: Other Quality-Related Faults

For other quality-related faults, the FDA results are essentially the same for these
methods given in Table11.1. However, the FDA results are significantly different
for IDV(2), IDV(8), IDV(21), etc. The superiority of the proposed method is further
verified by comparing the PQARof IDV(2), IDV(8), IDV(21). Themonitoring results
are shown in Fig. 11.7. Although fault IDV(2) and IDV(8) are quality-related, the
quality certainly meets the production requirements even in these fault condition.
So the quality-related alarm is not higher. The monitoring results of the proposed
LLEOPLS method are consistent with PQAR.

11.6 Conclusions

Nonlinear regression modeling and analysis is a particularly tricky task. LLEPLS
model transforms the nonlinear regression problem into a combination of multiple
local linear regression problems using the local linear embedding feature. It not only
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allows the local properties of the original data to be preserved, but also allows the
correlation between the input space and the output space to be maximized, further
accurately predicting the quality variables. While the T2

pc statistic of LLEPLS model
contains the orthogonal variation of the output. In order to eliminate it, the input
space of LLEPLS is further orthogonally decomposed, and the corresponding sta-
tistical criteria are established, i.e., LLEOPLS is obtained. The characteristics of the
LLEOPLS model with nonlinear mapping and orthogonal decomposition are further
clarified by comparing with the PLS, CPLS, and LLEPLSmodels in TEP benchmark
simulation. Simulation results show that the LLEOPLS model is more effective for
nonlinear systems and yields better (more consistent) fault detection performance,
compared with the PLS, CPLS, and LLEPLSmodels. Although LLEOPLS has good
quality-related monitoring performance for nonlinear processes, it has some limi-
tations, such as that the low-dimensional manifold in which the sampled data are
located is linear and that the noise subjects to Gaussian distribution. These are the
directions of our further research.
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Chapter 12
New Robust Projection to Latent
Structure

In many actual nonlinear systems, especially near the equilibrium point, linearity is
the primary feature and nonlinearity is the secondary feature. For the system that
deviates from the equilibrium point, the secondary nonlinearity or local structure
feature can also be regarded as the small uncertainty part, just as the nonlinearity can
be used to represent the uncertainty of a system (Wang et al. 2019). So this chapter
also focuses on how to deal with the nonlinearity in PLS series method, but starts
from an different view, i.e., robust PLS. Here the system nonlinearity is considered
as uncertainty and a new robust L1-PLS is proposed.

The traditional PLS and its nonlinear improvement methods are usually to maxi-
mize the covariance between the input and output data, i.e., the square of L2 norm.
L2 norm has the feature of clear physical meaning and convenient calculation, and its
solution are unique unbiased and dense. While it is powerless for systems with rich
local features such as nonlinear systems or uncertain systems. The proposed robust
L1-PLS aims at the robustness of the feature extraction and the regression coeffi-
cients. This method maintains the signal relative size during the feature extraction.
Moreover, it guarantees the features are robust to outliers in the global statistical
view and sensitive to the local structure information.

12.1 Motivation of Robust L1-PLS

Many robust PLS methods have been developed to increase the robustness of tradi-
tional PLSmethod recently.Branden (2004) andHubert (2008) replaced the empirical
variance-covariance matrix in PLS by a robust covariance estimator, and used the
minimumcovariance determinant (MCD) estimator and the reweightedMCDestima-
tor (RMCD) for low-dimensional data sets. Turkmen (2013) proposed the influence
function analysis for the robust PLS estimator. Currently, the existing robust PLS
methods use robust covariance estimation techniques with the identification of mul-
tivariate outliers to maintain robustness (Fortuna et al. 2007; Filzmoser 2016). These
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methods actually perform with a potential assumption that the signal is subject to
Gaussian distribution, which is not satisfied for many industrial processes. Usually
the industrial data are full of lots of outliers and follow either heavy-tailed distribu-
tion (Doman’ski 2019) or multipeak distribution (Wang 2000). In other words, the
statistical properties of this kind of data cannot be described by the robust covariance
matrix estimation. Furthermore, outliers may contain very important information, so
the outliers cannot be simply deleted or replaced (Liu et al. 2018). The data also have
some nondominant local structure features besides the outliers. Robust covariance
estimation methods also do not handle the small uncertainty correctly.

Recently, a robust PCA (RPCA) (Kwak 2008) and a robust sparse PCA (RSPCA)
(Meng et al. 2012) were proposed, which the two methods maximized the L1 norm
rather than the square of L2 norm of the input data. Experiments showed that they
are efficient and robust for the data with inherent uncertainty and outliers. However,
the two improved RPCA methods do not obtain any useful information from the
output quality variables, so it is difficult to directly apply them to quality-relevant
process monitoring and fault diagnosis (Zhou et al. 2018). The monitoring system
will automatically alarm if a fault is detected whether it affects the product quality
or not. Many alarms do not make sense for the final production quality.

It is known that the least absolute deviation (LAD) regression is often better than
the least squares (LS) regression for non-Gaussian signals, especially those with a
heavy-tailed distribution. While LAD regression is immune to outliers. Moreover,
the solution of LAD regression is not unique, and it is necessary to introduce the
optimal technique to obtain an optimal solution. So the LAD regression of high-
dimensional system is a time-consuming task. To improve the efficiency of the LAD
algorithm, the idea of partial least squares (PLS) regression is used to extend the
conventional LAD regression to partial LAD regression. The PLS-based monitoring
method decomposes the process space through the correlation between the quality
and the process variables, which can reflect the quality-relevant product changes in
the process variables (Wang et al. 2017; Zhou et al. 2018).

In order to enhance the robustness of the PLS method in a new way, this chapter
proposes a novel dual robustness projection to latent structure regression method
based on the L1 norm, L1-PLS. The optimization objective during the principle
components extraction in the PLS method is a square of L2 norm, i.e., the least
squares regression problem. L1-PLS use the L1 norm maximization to replace the
square of the L2 norm maximization in the traditional PLS methods. The L1 norm
penalty terms are added to the direction vectors in the latent structure construction.
Moreover, the partial LAD regression is used to obtain the regression coefficients.
Therefore, the L1-PLS regression method achieves dual robust capabilities including
robust principle components and regression coefficients. On the other hand, the L1

norm optimization target also has the certain capability of local structural feature
retention, compared with the L2 norm optimization goal.

L1-PLS is distinguished from other existing robust PLS methods in several
respects:
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(1) The noises, outliers, and local structure features generally enter the system
through the direction vectors, and the L1 norm can maintain the relative size
of the original signal; its direction vectors are robust to outliers and contain
more local structure features even if there is no preprocessing of outliers. This
facilitates the L1 norm to obtain the global and local features of the system at
the same time without destroying the integrity of the samples;

(2) The L1-PLS method with the L1 norm penalty term to the direction vectors can
obtain the sparse principle components, and filter out the disturbance variables
or those sparse PCs that are robust to disturbance variables;

(3) The regression coefficients are obtained by the partial LAD regression. The
corresponding regression model is also robust to outliers or uncertainties, and
the model has better predictive performance.

12.2 Introduction to RSPCA Method

Consider the input data X= [x(1), · · · x(n)] ∈ Rm×n , where x = [xi , · · · xm]; m and
n are the dimensionality of the input data and the size of the input matrix. The
traditional PCAmethod aims to find the d(d < m) dimensional linear subspace with
the largest input data variance. The objective function is as follows:

W∗ = argmax
∥
∥WTX

∥
∥
2

2 , s.t.WTW = Id , (12.1)

where W = [

wT
1 , . . . ,w

T
d

]T ∈ Rm×d is weight matrix. ‖.‖2 represents the L2 norm
of a matrix or vector.

However, the principal components based on the PCA are usually a linear com-
bination of the original variables usually with the non-zero weights. The non-zero
weight results in that many irrelevant variables are included in the final model and
cause unnecessary interference. Therefore, the spare PCA (SPCA) method was pro-
posed to achieve the sparse expression of the principal components as much as
possible (Liu 2014). Its objective function is

W∗ = argmax
∥
∥WTX

∥
∥
2

2 , s.t. WTW = Id , ‖W‖1 < s, (12.2)

where ‖.‖1 is the L1 normof amatrix or vector. It is introduced as constraint or penalty
term to enhance the sparsity of the principal components. s is the number of non-zero
weights. The L1 norm penalty term (‖W‖1 < s) realizes the sparse expression of the
direction vector.

Figure12.1 shows the amplifying effect curve of L1 norm and L2 norm on noise.
The blue dotted line is the square of the L2 norm (for one-dimensional data, it is
equivalent to the L2 norm), and the red line is the L1 norm. Obviously, the L2 norm
has an inhibitory effect on the data in |x | ≤ 1 and has an enlarged effect on the data
in |x | > 1. The L1 norm maintains the relative size of the original data and has a



214 12 New Robust Projection to Latent Structure

Fig. 12.1 The expanding
effects of the L1 norm and
L2 norm curve

relatively small expansion effect on all data. In order to further improve the robustness
of SPCA, the RSPCA method is proposed to reduce the sensitivity of the principal
components to outliers. The L2 norm in the objective function is substituted by L1

norm (Zou et al. 2006). The optimization function of RSPCA is given as follows:

w∗ = argmax
∥
∥XTw

∥
∥
1, s.t. wTw = 1, ‖w‖1 < s. (12.3)

Here the optimization problem is a form of L1 norm maximization with an L1

norm penalty term simultaneously. In order to obtain the principal components of
the RSPCA method, the optimal direction vector w∗ is calculated by Algorithm 3.

The convergence of Algorithm 3 and the rationality of the obtained sparse direc-
tion vectors have been theoretically verified (Zou et al. 2006). However, Algorithm
3 indicates that the sparseness of the data needs to be given in prior during the cal-
culation of the sparse direction vector. Generally speaking, the sparsity of input data
is unknown and it contains uncertainty. More importantly, the RSPCA method can-
not be directly applied to quality-related process monitoring. Therefore, this chapter
introduces the L1 norm into the PLS method.

12.3 Basic Principle of L1-PLS

Thedouble robust projection to latent structure (L1-PLS)method is given based on the
L1 norm, aiming at improving the robustness of the traditional PLSmethod. The PLS
method extracts principal components from the input space and output space, and the
principal components should satisfy the following conditions: carry the maximum
variation information (representation) of their respective variable spaces as much as
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Algorithm 3 RSPCA algorithm for one sparse PC
Input:

Data matrix X , sparsity s.
Output:

The s sparse PC w∗.
1: Initialization w(0) ∈ R1×m , set w(0) = w(0)

‖w(0)‖2 , and k = 0.

2: Let v = (v1, . . . , vm)T = ∑n
i=1 pi (t)X i , where pi (k) =

{

1, wT(k)X i ≥ 0

− 1, wT(k)X i < 0
and X i is the

i th column of the matrix X . Let γ be the (s + 1) largest element in |v| .
3: Let β = (β1, . . . ,βm)T, where βi = sgn(vi )(|vi | − γ)+, i = 1, . . . ,m, and (z)+ =

{

z, x > 0

0, x ≤ 0
, sgn(z) =

⎧

⎪⎨

⎪⎩

1; z > 0

0; z = 0

− 1; z < 0

. Make w(k + 1) = β
‖β‖2 , and k = k + 1.

4: If w(k) �= w(k + 1), return to Step 2; otherwise continue to Step 5.

5: If there is i such that wT(k)X i = 0 and sgn
(
∑m

j=1

∣
∣w(k) j X j,i

∣
∣

)

�= 0, then let wT(k)+�w

‖wT(k)+�w‖2
and return to Step 2; otherwise continue to Step 6; �w is a small non-zero random vector.

6: Set w∗ = w(k) and stop iteration.
7: return w∗;

possible, and the degree of correlation between different variable spaces is as large
as possible (correlation). Take the extraction of the first principal component as an
example. The PLS method is expressed as follows:

ET
0 F0FT

0 E0w1 = θ2w1

FT
0 E0ET

0 F0c1 = θ2c1,
(12.4)

where w1 and c1 are the direction vector of the principle components t1 and u1. The
optimization problem (12.4) is transformed into finding the unit direction vectors
w1 and c1 corresponding to the maximum eigenvalue θ2 of matrices ET

0 F0FT
0 E0

and FT
0 E0ET

0 F0, respectively. It can be seen that the solution of (12.4) satisfies the
requirements about the representation and correlation in PLS method.

Then, multiply both sides of the equation (12.4) by wT
1 and cT

1
, respectively, and

obtain
wT

1 E
T
0 F0FT

0 E0w1 = θ2, s.t.wT
1w1 = 1

cT1 F
T
0 E0ET

0 F0c1 = θ2, s.t.cT1 c1 = 1.
(12.5)

To simplify further, we can get

w∗
1 = argmax

∥
∥wT

1 E
T
0 F0

∥
∥
2

2 , s.t. wT
1w1 = 1

c∗
1 = argmax

∥
∥cT1 F

T
0 E0

∥
∥
2

2 , s.t. cT1 c1 = 1.
(12.6)

The optimal problem of the traditional PLS (12.4) is expressed as L2 norm optimiza-
tion in (12.6). w∗

1 and c∗
1
are the optimal direction vectors.
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It is known that the noise is flowed into the regression model through the direction
vector ( w1 and c1 ) in most cases, which affects the estimation of the regression
parameters in the PLS method. Similar as the idea of equation (12.3), we replace the
maximization of the L2 norm in the objective function (12.6) with the maximization
of L1 norm. Moreover, the L1 norm penalty term is added to the direction vector.
Therefore, the objective function of the L1-PLS method based on the L1 norm is
given as follows:

w∗
1 = argmax

∥
∥wT

1 E
T
0 F0

∥
∥
1 , s.t. wT

1w1 = 1, ‖w1‖1 < s1

c∗
1 = argmax

∥
∥cT1 F

T
0 E0

∥
∥
1 , s.t. cT1 c1 = 1, ‖c1‖1 < s2,

(12.7)

where s1 and s2 are the sparsity of input spatial data and output spatial data, respec-
tively.

According to the above analysis, although the direction vectors (w1 and c1) in
(12.4) contains the correlation between the input data E0 and the output data F0,
fortunately, they can be solved separately in (12.7). Therefore, Algorithm 3 also is
suitable for the solution of (12.7) by replacing the corresponding input data matrix
X with ET

0 F0 and FT
0 E0, respectively. It is noted that the solution of w1 and c1 are

independent but not jointed by Algorithm 3.
Once the optimal direction vectors w1 and c1 are obtained, the score vectors in

the latent space, i.e., the first principle component pair, t1 and u1 can be calculated

t1 = E0w1, u1 = F0c1. (12.8)

Next, the regression coefficients (loading vectors) of F0 and E0 to t1 will be
established. In the traditional PLS model, the regression coefficients p1 and q1 are
estimated by least squares, namely,

p1 = ET
0 t1/‖t1‖2

q1 = FT
0 t1/‖t1‖2. (12.9)

Similarly, least squares estimation is also susceptible to outliers, and the least
absolute deviation (LAD) method is introduced to deal with this problem. Therefore,
in order to further improve the robustness, LAD regression is used to solve the
regression coefficients in the L1-PLS algorithm, namely,

p∗
1

= argmin
∥
∥E0 − t1 pT1

∥
∥
1

q∗
1

= argmin
∥
∥F0 − t1qT

1

∥
∥
1,

(12.10)

where p∗
1 and q∗

1
are the optimal loading vectors of (12.10).

Obviously, the essence of (12.10) is also the form of L1 norm.When there are few
outliers, it is not necessary to use the norm to solve the regression coefficient. Due
to the direction vector has been solved by maximizing the L1 norm, the influence of
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the outlier has been reduced, and as can be seen from Fig. 12.1. When the outlier is
small, the L2 norm and the L1 norm have the same effect.

Calculate the residual matrix E1 and F1:

E1 = E0 − t1 pT1 , F1 = F0 − t1qT
1 (12.11)

Similar as the extraction of the first principal components pair, the other prin-
cipal components are calculated iteratively by decomposing the residuals Ei and
Fi (i = 1, . . . , d − 1). The extraction of principal components is stopped until the
model determined by the extracted principal components satisfies the desired require-
ments.

The dual robustness of the L1-PLS algorithm is reflected in the following two
aspects:

1. Different from the PLS algorithm, Algorithm 3 is used to calculate the direction
vector each time. By maximizing the L1 norm in the objective function, and
adding the L1 norm penalty term to the direction vector, the robustness of the L1-
PLS algorithm is improved. This achieves the robustness of principal component
extraction.

2. In the case of many outliers, the regression coefficients can be calculated using
least absolute estimation, which can overcome the shortcomings of least squares
estimation that is easily affected by outliers, and further enhance the robustness
of the L1-PLS algorithm.

12.4 L1-PLS-Based Process Monitoring

It is found that only the calculation process of the direction vector w1 and c1 (12.7)
or the regression coefficient p1 and q1 (12.10) is improved in the L1-PLS method,
and other steps are not affected. Therefore, the monitoring process based on the L1-
PLS method is the same as the PLS method. In the process monitoring based on the
L1-PLS method, the T2 and T2

e statistics are still used to monitor the principal com-
ponent subspace and the remaining subspace. Then, the L1-PLS-based monitoring is
described in detail in Algorithm 4 (offline process training) and Algorithm 5 (online
process monitoring). The corresponding flowchart is shown in Fig. 12.2.

In Algorithms 4 and 5, Λ and Λe represent the sample covariance matrix. The
non-parametric kernel density estimation (KDE) method (1.33) is used to estimate
the corresponding control limits of T2 and T2

e .
There is still a key problem in the implementation of Algorithm 4: the sparsity

degree s1 and s2 need to be given in prior. There are two common strategies to deter-
mine s1 and s2. (1) The first one is the variable importance in prediction (VIP)method
(Farrés et al. 2015). It judges whether the variable is an irrelevant variable based on
theVIP score of the j th predicted value of the response variable. Usually, the “greater
than ε” criterion is used as the selection criterion. More precisely, the threshold ε
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Algorithm 4 L1-PLS method for Offline process training
Input:
Normal data sets X = [x1, . . . , xm ] ∈ Rn×m ,Y = [y1, . . . , yl ] ∈ Rn×l , sparsity s1 and s2.

Output:
The control limits T2

lim and T2
e,lim.

(1) Normalized X and Y as E0 and F0,
(2) For i = 1, . . . , d (d is obtained by cross-validation):
(2.1) Apply Algorithm 3 to the projected matrices ET

i−1Fi−1 and FT
i−1Ei−1

to get the direction vectors wi and ci , respectively.
(2.2) Calculate the score vectors: t i = Ei−1wi , ui = Fi−1ci .
(2.3) Calculate the load vectors:

p1 = ET
0 t1/‖t1‖2

q1 = FT
0 t1/‖t1‖2

or
p∗
1 = argmin

∥
∥E0 − t1 pT1

∥
∥
1

q∗
1 = argmin

∥
∥F0 − t1qT1

∥
∥
1

(2.4) Calculate the Residual matrix: Ei = Ei−1 − t i pTi , Fi = Fi−1 − ui qTi .
(3) Describe t i with the original matrix E0: T = E0R,

R = [r1, . . . , rd ] , in which r i =
i−1∏

j=1
(In − w j p j

T)wi .

Ê = T PT = E0RPT

Ē = E0 − Ê = E0(In − RPT)

(4) For a normalized data sample x, calculate its estimate, residual and the corresponding PC
value.

x̂ = RPTx

t = Rx

e = x − x̂ =
(

I − RPT
)

x

(5) Calculate the statistics T2 and T2
e :

T2 := tΛ−1 tT = t(
1

n − 1
TTT )−1 tT

T2
e := eΛ−1

e eT = e(
1

n − 1
Ē
T
Ē)−1eT

return T2
lim and T2

e,lim;

should be adjusted based on the distribution of the overall data in different situations.
(2) The second strategy is the selectivity ratio method (Branden and Hubert 2004).
The variable selection ratio is calculated according to the ratio of the interpretation of
the X variable on the Y target projection component to the residual variance. Then F
test is performed to define the boundary between important variables and irrelevant
variables. Since the VIP method is simple and easy to implement, the VIP method
is selected to determine the sparsity s1 and s2 here.



12.4 L1-PLS-Based Process Monitoring 219

Algorithm 5 L1-PLS method for Online process monitoring
Input:
New normalized data sets xnew and ynew .

Output:
Online process monitoring results.
(1) Calculate the new score vectors: tnew = xnewR.
(2) Calculate the new prediction matrix and new residual:

x̃new = tnew PT = xnewRPT

enew = xnew − x̃new = xnew(In − RPT).

(3) Calculate the new statistics T 2
new and T 2

e,new:

T 2
new = tnewΛ−1 tTnew = tnew

{
1

n − 1
TTT

}−1

tTnew

T2
e,new := enewΛ−1

e eTnew = enew

{
1

n − 1
Ē
T
Ē

}−1

eTnew

(4) Compare T 2
new and T 2

e,new with the corresponding control limits T2
lim and

T2
e,lim.

return Online process monitoring results.

It is worth noting that the role of sparsity is to achieve variable selection. If the
established system model contains many irrelevant variables, giving the sparsity is
helpful to limit the number of irrelevant variables, so as to realize L1-sparse-PLS.
However, if the sparsity of the input data is uncertain, the sparsity degree s1 and s2
can be set equal to the variable number in the input and output space, respectively,
to eliminate the uncertainty caused by the sparsification. In this view, the proposed
L1-PLS method is uniformly called as L1-(S)PLS method based on the different
sparsity.

12.5 TE Simulation Analysis

In this simulation, the input variable X is composed of 31 variables [XMEAS(1:22)]
and [XMV(1:11) (except XMV(5) and XMV(9))]. The output variable Y consists
of the quality components G (XMEAS(35)) and H (XMEAS(36)). Two simulation
examples are used to verify the effectiveness of theL1-PLSmethod for fault detection.
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Fig. 12.2 The Flow chart of Algorithms 4 and 5

12.5.1 Robustness of Principal Components

The robustness of the L1-PLS method is mainly implemented on the direction vec-
tors, which directly reflects the robustness of the PCs. The variation of the PC struc-
ture caused by outliers therefore is the focus of robustness analysis. Here results
of PLS and RPLS methods are given for comparison. The input and output data
(X ∈ R960×31,Y =∈ R960×2) are sampled from the TE process under the normal
operation for training data. In order to test further the proposed L1-PLS, the outliers
are added in the input space in the following form:

X(k) = X∗(k) + Ξ j (k), (12.12)

where X∗(k) is the kth normal sample (k = 1, 2, . . . , 960) Ξ j is the j-th randomly
generated outlier that obey Gaussian distribution Ξ j ∼ N (0, 2000). For ease of ver-
ification, three kinds of repeatable outliers that are generated using a specific random
seed are added to the training set,
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Fig. 12.3 The relative change rates of t1 using PLS and L1-PLS

Ξ 1(12) = [−71.294, 4.929, 35.199,−0.100]T for x14:17
Ξ 2(140) = [4.164,−16.912,−66.307]T for x29:31
Ξ 3(200) = [−1.960, 42.969, 77.737,−19.239,−72.776, 7.439]T for x1:6.

Outlier Ξ1(12) means that only the 14, 15, 16, and 17th variables at the 12th
sample time X (12) are abnormal, and the other variables at other sample times are
still normal. The other two outliers have similar meanings.

The sparsity s1 and s2 in theL1-PLSmethodare set to 31 and2.The sparsity is equal
to the variable number of input and output space, respective. In other words, the L1-
PLS method can reflect the changes in all variables. The components numbers d are
determined using cross-validation. They are 6, 6, and 2 for PLS, RPLS, and L1-PLS
methods, respectively. The principle components are ti = ∑n

j=1 wi j x j , i = 1, . . . , d,
in which wi j is the j th element of ri . The coefficients wi j are used to reflect whether
the outliers affect the principle components. The relative rates of change (RRC)
indices are defined as follows:

RRC1,i = max{|wi j,normal − wi j,outliers |}
RRC2,i = ||wi,normal − wi,outliers ||1, (12.13)

where wi,normal = [wi j ]normal and wi,outliers = [wi j ]outliers are the normalized coef-
ficient vectors with normal samples and adding outliers samples for the ith PC,
respectively.

RRC1 represents the maximum absolute deviation of the two coefficient sets,
which indicates the worst changes of the normalized wi j . RRC2 represents the sum
of the absolute deviations of the two coefficient sets, which indicates the overall
change of the normalized wi j .

The normalized coefficient wi j values of the first two PCs (t1 and t2) of the PLS,
RPLS and L1-PLS methods are shown in Figs. 12.3 and 12.4. The corresponding
indices RRCi , i = 1, 2 are given in Table12.1 (a smaller value is better).
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Fig. 12.4 The relative change rates of t2 using PLS and L1-PLS

Table 12.1 RRCi of t1 and t2 of the PLS, L1-PLS and L1-SPLS methods

PLS RPLS L1-PLS

t1 t2 t1 t2 t1 t2

RRC1 0.919 0.349 0.005 0.040 0.110 0.121

RRC2 7.093 1.247 0.016 0.130 0.368 0.329

It can be seen from Figs. 12.3–12.4 and Table12.1 that no matter which method
is used, the outliers will always affect the structure of the PCs to some extent. In
general, the outliers have a large adverse effect on the PCs extraction of the PLS
method, and thus results in the largest change in its PC structures. With the robust
covariance estimation method, the outliers have little effect on the PCs extraction
of the RPLS method. L1-PLS method only uses the L1 norm to be insensitive to
outliers, without any outliers processing. Outliers that cause changes in the structure
of its two PCs are nearly identical and within an acceptable range, whether in the
RRC1 or RRC2. The samples considered to be outliers may be a true reflection of
the system state when the data set follows a heavy-tailed distribution (Doman’ski
2019). It is more important to retain all the samples to extract the PCs, although the
outliers have a certain influence on the direction vectors.

By further analyzing the structure of t1 and t2, it can be easily found that the
extracted PCs by those methods are quite different. In order to better explain the
structural differences of t1 and t2 in differentmethods, IDV(14) is taken as an example
for in-depth analysis. The typical process variable monitoring results of IDV(14) are
given in Fig. 12.5, in which, x9, x21 and x30 have similar monitoring results. Among
the t1 and t2, the sum of the absolute weights for x9, x21 and x30 of the PLS method
(0.062) is more than twice that of the L1-PLS method (0.025).

These weight differences do not significantly affect the output prediction and the
monitoring performance in the normal operation. But these differences are amplified
in the fault modes. For example, consider the monitoring under the fault modes
IDV(14) and IDV(17). The role of x21 and x30 (especially x30) in the PLS method is
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Fig. 12.5 Typical process variable monitoring results of IDV(14)

exaggerated, leading to incorrect predictions and quality-relevant monitoring results
(see Figs. 12.6 and 12.7). Correspondingly, the L1 norm can better maintain the
relative size of those variables, therefore, the role of x21 and x30 in the extracted PCs
is not exaggerated. In other words, the extracted PCs by the L1 norm better capture
the relationship between the input space and output space.

12.5.2 Robustness of Prediction and Monitoring Performance

The robustness of the principal components of the L1-PLS method is discussed in
the previous section. But the number of principal components of the three methods
is different, which only reflects one aspect of the robustness. Now, the robustness of
prediction performance and monitoring is analyzed further, especially the prediction
performance directly reflects the quality of the model. There are 21 types of faults in
the TE process. The fault IDV(21) is a fault that the output drifts slowly, caused by the
constant change of the steam valve position. So it does not reflect the robustness of
themodel. Therefore, the first 20 faults are analyzed in this simulation experiment. In
this simulation, the sparsity in the L1-SPLS model is determined by the VIP method:
input space s1 = 14, output space s2 = 2.

Experiment 1: Prediction Performance Analysis

In this experiment, the L1-PLS model shows good output prediction results for the
20 fault data sets. L1-PLS(outliers) and PLS(outliers) mean that the two models
are trained by the normal operation data with adding outliers, described in previous
Sect. 12.5.1. In order to illustrate the above conclusions more clearly, four faults
IDV(7), IDV(14), IDV(17), and IDV(18) are selected to compare the prediction per-
formance of the PLS model and the L1-PLS model. The output prediction results are
good for all fault modes, but the four faults come from four different fault types, and
the results of the L1-PLS model and the PLS model are quite different. Figures12.6
and 12.7 give the output prediction results of the fault IDV(7), IDV(14), IDV(17),
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Fig. 12.6 Output predicted values for IDV(7), IDV(14), IDV(17), and IDV(18) using PLS(outliers)

and IDV(18). The horizontal axis represents data samples, and the vertical axis rep-
resents output values. The blue dashed line is the actual output value, and the green
is the predicted output value.

In these prediction and monitoring diagrams, the first 160 samples are normal
data, and the last 800 samples are data under different fault modes. The output pre-
diction of fault IDV(7) shows a consistent conclusion under the step-change fault.
The feedback controller or cascade controller reduces the impact of faults and abnor-
mal values on product quality. For the other three types of fault IDV(14), IDV(17),
and IDV(18), there are some differences in their output prediction results. When
the system is under the normal operation, the PLS and L1-PLS models have the
same good prediction results. However, after adding outliers, the PLS method can-
not accurately predict the output (Fig. 12.6), while the L1-PLS method still quickly
detects the output changes and makes correct predictions (Fig. 12.7). In particular,
for faults IDV(17) and IDV(18), the PLS method gives a serious wrong predictions.
Experiments show that the prediction performance of the L1-PLS method is better
than PLS. Even if the data is contaminated by outliers, L1-PLS can still predict the
output accurately. In other words, the L1-PLS model has stronger robust prediction
performance.
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Fig. 12.7 Output predicted values for IDV(7), IDV(14), IDV(17), and IDV(18) using L1-
PLS(outliers)

Experiment 2: Monitoring Performance Analysis

The robustness of monitoring performance is mainly verified by the accuracy of
fault detection. The detection indices are FDR and FAR (4.1), the control limit is
calculated with the confidence level 99.75% for both PLS and L1-PLS methods. The
FAR results of the two models are basically same, this indicates that the proposed
L1-PLS method does not increase the risk of false alarms, so it is not analyzed in this
section. Table12.2 lists the FDR results of the first 20 faults without adding outliers,
corresponding to the models PLS, L1-PLS and L1-SPLS respectively. Table12.3
shows the FDR results of 20 faults after adding outliers, corresponding to the models
PLS (outliers), L1-PLS (outliers), and L1-SPLS (outliers).

For serious quality-related faults IDV(2), IDV(6), IDV(8), IDV(12), IDV(13), and
IDV(18), the six models give consistent results. Therefore, these faults are not ana-
lyzed in this chapter. For other types of faults, their results are very different, including
the quality-irrelevant faults, the quality-recoverable faults, and slight quality-related
faults. The detailed analysis of the three situations is given below. In the monitoring
figures of this section, the blue line represents the value of the statistic, where the
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Table 12.2 FDRs of PLS, L1-PLS, and L1-SPLS

PLS L1-PLS L1-SPLS

IDV T2 T2
e T2 T2

e T2 T2
e

1 99.63 99.75 60.00 99.75 31.38 99.75

2 98.50 98.25 98.25 98.38 98.25 98.38

3 1.00 1.38 0.75 1.75 0.50 1.75

4 19.13 100.00 0.88 100.00 0.00 100.00

5 22.00 100.00 18.38 100.00 17.13 100.00

6 99.25 100.00 98.38 100.00 98.13 100.00

7 100.00 100.00 68.75 100.00 31.38 100.00

8 96.00 97.88 89.00 97.88 88.50 97.88

9 0.50 1.13 0.25 1.38 0.38 1.38

10 26.38 84.25 19.13 85.38 15.63 85.38

11 26.63 76.50 1.13 77.88 0.88 77.88

12 97.50 99.88 84.00 99.88 84.00 99.88

13 94.88 95.13 82.13 95.25 82.25 95.25

14 91.50 100.00 0.38 100.00 0.00 100.00

15 1.25 2.63 1.00 3.75 0.63 3.75

16 20.13 42.75 9.00 46.13 7.00 46.13

17 77.38 96.75 10.00 97.00 1.63 97.00

18 89.38 90.13 88.75 90.13 88.75 90.13

19 0.50 34.50 0.13 37.88 0.00 37.88

20 30.50 90.50 20.75 90.38 19.00 90.38

upper curve is T2, and the lower is T2
e . The system alarms if the blue line exceeds

the red control limit.

Case 1: Quality Irrelevant Fault

It can be found fromTable12.2 that very low alarm values are given for faults IDV(3),
IDV(9), IDV(15), and IDV(19). However, the alarm values of the L1-PLS and L1-
SPLS models are lower, which indicates that fewer false alarms will occur during
the monitoring. It can also be seen from the corresponding Figs. 12.8, 12.9, 12.10,
12.11, and 12.12, the alarm points of the latter two models are much less. For faults
IDV(4), IDV(11), and IDV(14), they are all related to the reactor cooling water and
hardly affect the quality of output products. The PLS model gives a higher alarm
value, which may lead to serious false alarms, while the L1-PLS model effectively
avoids these alarms and reduces the number of false alarms. In addition, the L1-PLS
model eliminates most of the false alarms in the monitoring Figs. 12.8, 12.9, 12.10,
and the L1-SPLS model almost eliminates all false alarms.

When adding outliers, the PLSmodel provides the samewrong results for quality-
irrelevant faults. The specific FDR values are shown in Table12.3. However, the
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Table 12.3 FDRs of PLS(outliers), L1-PLS(outliers), and L1-SPLS(outliers)

PLS(outliers) L1-PLS(outliers) L1-SPLS(outliers)

IDV T2 T2
e T2 T2

e T2 T2
e

1 99.88 99.75 28.38 99.75 36.63 99.75

2 98.63 98.25 98.00 98.25 98.25 98.25

3 3.25 0.88 0.13 1.13 0.63 1.13

4 7.63 100.00 0.25 100.00 0.00 100.00

5 24.88 27.88 14.75 28.38 16.88 28.38

6 99.75 100.00 98.38 100.00 98.25 100.00

7 100.00 100.00 59.88 100.00 29.50 100.00

8 96.50 97.75 84.50 97.88 88.00 97.88

9 0.88 0.88 0.00 1.00 0.38 1.00

10 37.50 77.63 11.00 80.50 15.25 80.50

11 16.00 73.75 0.50 74.75 0.88 74.75

12 95.88 99.25 78.50 99.25 83.63 99.25

13 95.50 95.00 80.25 95.25 82.00 95.25

14 89.75 100.00 0.00 100.00 0.00 100.00

15 4.38 0.50 0.13 0.88 0.75 0.88

16 33.88 28.38 4.50 35.13 6.25 35.13

17 76.88 96.63 6.13 96.63 1.50 96.63

18 90.00 89.88 88.00 89.88 88.63 89.88

19 1.13 28.38 0.00 30.00 0.00 30.00

20 36.50 77.13 15.63 77.75 19.75 77.75
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Fig. 12.8 PLS, L1-PLS and L1-SPLS monitoring results for IDV(4)
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Fig. 12.9 PLS, L1-PLS and L1-SPLS monitoring results for IDV(11)
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Fig. 12.10 PLS, L1-PLS and L1-SPLS monitoring results for IDV(14)

0 100 200 300 400 500 600 700 800 900 1000
sample

0

10

20

30

T
2

PLS for IDV(15)

0 100 200 300 400 500 600 700 800 900 1000
sample

0

20

40

60

80

T
e2

0 100 200 300 400 500 600 700 800 900 1000
sample

0

5

10

15
T

2
L1-PLS for IDV(15)
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Fig. 12.11 PLS, L1-PLS and L1-SPLS monitoring results for IDV(15)
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Fig. 12.12 PLS, L1-PLS and L1-SPLS monitoring results for IDV(19)

monitoring effect of the L1-PLS model is still very good, for fault IDV(9), IDV(14),
and IDV(19). The detection rate has been reduced to 0, whichmeans that false alarms
are completely eliminated in these cases. Therefore, the L1-(S)PLS model will not
interfere with the fault monitoring results after adding outliers. It should be noted that
the monitoring performance of the L1-PLS model after adding outliers (Table12.3)
is better than the normal conditions (Table12.2). The possible reason is outliers, and
the total noise in the input data becomes larger. The L1-PLS method can filter out
noise more effectively during themodeling. Therefore, the establishedmodel is more
accurate and the monitoring performance is improved.

Case 2: Quality-Recoverable Fault

Faults IDV(1), IDV(5), and IDV(7) are quality-recoverable faults. The prediction
value should tend to return to normal, but the statistic should be kept at a higher
value. Figure12.13 shows the monitoring results of the three models on the fault
IDV(1). It can be seen that both the L1-PLS and L1-SPLS model methods give the
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Fig. 12.13 PLS, L1-PLS and L1-SPLS monitoring results for IDV(1)
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Fig. 12.14 PLS, L1-PLS and L1-SPLS monitoring results for IDV(5)
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Fig. 12.15 PLS, L1-PLS and L1-SPLS monitoring results for IDV(7)

correct alarm results. In the PLS model, the value of the statistic exceeds the control
limit, so a false alarm is generated in the process monitoring. For the fault IDV(5),
it is also a process-related fault. It can be seen from Tables12.2 and 12.3 that the
fault detection rates of the L1-PLS and L1-SPLS models are lower than the PLS
model, which means that the monitoring results are more accurate. Figures12.14
and 12.16, respectively, show the monitoring diagrams of the three models for the
fault IDV(5) in the normal case (without adding outliers) and with adding outliers.
For fault IDV(7), the corresponding monitoring results are shown in Fig. 12.15. The
PLS model gives completely wrong result, while the results of the other two models
are more accurate.

The detection result for fault IDV(1) obtained by the L1-PLS (outliers) model
seems to be better than the L1-PLS model, and the monitoring results are more rea-
sonable. In addition, for the fault IDV (5), although the monitoring results of the
L1-PLS and L1-SPLS (outliers) models may not be ideal, as shown in Fig. 12.14.
The T2

e statistics of the L1-PLS and L1-SPLS models can detect the input space
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Fig. 12.16 PLS(outliers), L1-PLS(outliers) and L1-SPLS(outliers) monitoring results for IDV(5)
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Fig. 12.17 Typical process variable monitoring results of IDV(5)

process-related faults. But the PLS (outliers), L1-PLS (outliers) and L1-SPLS (out-
liers) models gave wrong results (Fig. 12.16).

There are two possible reasons for this phenomenon. Firstly, the outliers were
added directly without being regulated by the dynamic system, so its influence on the
extraction of the principal components cannot be determined directly. Secondly, the
typical process dynamics corresponding to fault IDV(5) is shown in Fig. 12.17. Only
the variable 31 is a step change in all the monitored variables, and the rest gradually
returns to the normal under the action of controller. In terms of the composition of the
principal components, the contribution of variable 31 to the principal components is
small. Therefore, its role is more in the residual space in the normal case (without
adding outliers). After the outlier is added, its contribution to the principal component
increases, which means its role in the residual space is weakened. It in turn causes
the monitoring indicators in the residual space to return back to normal. On the other
hand, the percentage of its contribution to the principal component is still small,
so the monitoring indicators on the principal metric space also do not significantly
reflect its characteristics.

Case 2: Slight Quality Related Fault

Fault IDV (16) and IDV (17) have a slight impact on quality, which means that they
have almost no impact on output quality. Figure12.18 shows themonitoring results of
the three models after adding outliers. The fault monitoring results of PLS (outliers)
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Fig. 12.18 PLS(outliers), L1-PLS(outliers), and L1-SPLS(outliers) monitoring results for IDV(17)

model is very bad, there have beenmany false positives. The L1-PLS (outliers) model
and L1-SPLS (outliers) model effectively reduce these false alarms. It can also be
seen from the corresponding FDR that themonitoring results of the L1-PLS (outliers)
model and the L1-SPLS (outliers) model are more reasonable.

It can be seen from the above comparison results that even if outliers are added
to the input data, the monitoring results of the L1-(S)PLS model have also been
greatly improved. In other words, the L1-(S)PLS model improves the robustness
performance and fault detection performance.

12.6 Conclusions

This chapter proposes a quality-related statisticalmonitoringmethodof double robust
projection to latent structure (L1-PLS), which enhances the robustness of the PLS
algorithm from two aspects. On the one hand, the L1-PLS method replaces the L2

norm in the objective function with the L1 norm, and adds the L1 norm penalty term
to the direction vector; On the other hand, the regression coefficient of the L1-PLS
algorithm can also be obtained by the L1 norm. Therefore, the L1-PLS algorithm
has double robustness. Then a monitoring model based on the L1-PLS method is
established, the robust performance and monitoring performance are verified on the
TE process simulation platform. The results show that the L1-PLS method has better
robustness and better performance in process monitoring and fault diagnosis.
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Chapter 13
Bayesian Causal Network for Discrete
Variables

Ensuring the safety of industrial systems requires not only detecting the faults, but
also locating them so that they can be eliminated. The previous chapters have dis-
cussed the fault detection and identification methods. Fault traceability is also an
important issue in industrial system. This chapter and Chap. 14 aim at the fault
inference and root tracking based on the probabilistic graphical model. This model
explores the internal linkages of system variables quantitatively and qualitatively, so
it avoids the bottleneck of multivariate statistical model without clear mechanism.
The exacted features or principle components of multivariate statistical model are
linear or nonlinear combinations of system variables and have not any physicalmean-
ing. So the multivariate statistical model is good at fault detection and identification,
but not at fault root tracking.

Bayesian network (BN) can estimate and predict the potentially harmful factors
of the general system, but its structure learning has some deficiencies when it is
applied to the complex system, such as complex training mechanism and variable
causalities. In order to simplify the network structure, lots of assumptions should
be presupposed and it inevitably causes the loss of generality. Usually, a generative
model (linear or nonlinear) is built to explain the data generating process, i.e., the
causalities. A variety of causal discovery methods have been proposed recently to
find the causalities (Hyvärinen et al. 2010; Hong et al. 2017). The most classical
method is the linear non-gaussian acyclic model (LiNGAM) (Shimizu et al. 2010),
in which the full structure of BN is identifiable without pre-specifying a causal order
of the variables. The improved LiNGAM method is proposed to estimate the causal
order of variables without any prior structure knowledge and provide better statistical
performance (Shimizu et al. 2011). The nonlinear causality of a pair of variables is
discovered in Johnson and Bhattacharyya (2015), where the proposed method shows
a limitation when dealing with the multivariate variables.

The above approaches exploit the complexity of the marginal and conditional
probability distributions in one way or the other. Despite the large number of meth-
ods for bivariate causal discovery have been proposed over the last few years, their
practical performance has not been studied systematically. These methods have yet
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to be applied to the actual industrial systems which usually do not meet the linear
and bivariate assumptions. To address the above issues, this chapter proposes a more
generalized multivariate post-nonlinear acyclic causal model for the complex indus-
trial process. The proposed multivariate post-nonlinear acyclic causal model, named
as Bayesian Causal Network (BCN), can easily find the multi-variables causality. It
shows more compact structure and consistency with mechanism, compared with the
traditional BN structure. In addition, it avoids the complex learning mechanism of
traditional BN, so is easier to implement without compromising accuracy.

13.1 Construction of Bayesian Causal Network

It is known that there aremanyways to describe the system characteristic according to
the observational data and expert knowledge, such as graphmodel (Hipel et al. 2011),
neural network model (Li et al. 2016), fuzzy model (Jiang et al. 2015). The graph
model is composed of points and lines to describe the system structure and the causal
relationships among variables. It provides an effective method for studying various
systems, especially the complex systems. Bayesian network, a typical graph model,
is the main method to deal with the knowledge representations and uncertainties
based on the probability theory. It builds the causality and probability within the
process components and the system variables from the prior knowledge and process
data. BN consists of the structure learning and the parameter learning, in which the
structure learning aims at determining the causalities within system variables and the
parameter learning aims at revealing the quantitative relationship of these causalities.
Bayesian network has been applied to fault diagnosis, financial analysis, automatic
target recognition, military, and many other areas (Zhu et al. 2017).

13.1.1 Description of Bayesian Network

Bayesian network, also known asBeliefNetwork or directed acyclic graphicalmodel,
is a probabilistic graphical model. It first proposed by Judea Pearl in 1985 (Pearl
1986). It is an uncertainty processing model that simulates the causal relationship
in the human reasoning process, and its network topology is a directed acyclic
graph (DAG). The nodes in the directed acyclic graph represent the random vari-
ables, including the observable variables, hidden variables, unknown parameters,
etc. Variables or propositions that are believed to have a causal relationship (or
non-conditional independence) are connected by arrows (in other words, the arrow
connecting two nodes represents whether the two random variables have a causal
relationship or are not conditionally independent). If two nodes are connected by a
single arrow, it means that one of the nodes is “cause” and the other is “effect”, a
conditional probability value is used to describe the causality degree quantitatively.
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Fig. 13.1 Bayesian network
example

For example, assume that node A directly affects node B, then A → B. The
arrow from A to B is used to establish a directed arc (A, B) from node A to node B,
and the weight (its connection strength) is determined by the conditional probability
P(B|A). In short, a BN is formed by drawing the random variables in a directed
graph according to whether they are conditionally independent. It usually uses circle
to represent the random variables (nodes) and arrow to represent the conditional
dependencies. Figure13.1 gives a simple Bayesian network (Ishak et al. 2011).

13.1.2 Establishing Multivariate Causal Structure

Model-based causal discovery assumes a generative model to explain the data gener-
ating process. When the existing knowledge about the data model is unavailable, the
assumedmodel should be sufficiently general so that it can be adapted to approximate
the real data generation process. Furthermore, the model should be identified such
that it could distinguish the causes from the effects. A nonlinear and multivariable
system always possesses the following three characteristics (Chen et al. 2018):

1. The multivariate causalities are usually nonlinear.
2. The final target variable is affected by its cause variables and some noise who is

independent from the causes.
3. Sensors or measurements may introduce nonlinear distortions into the observed

value of the variables.

To discover the causality of multivariable in complex industrial systems, a more gen-
eralized multivariate post-nonlinear acyclic causal model with inner additive noise is
proposed. The model is in the form of graph theory and Bayesian network structure.
Assume that there is a DAG to represent the relationship among multiple observed
variables. Mathematically, the generating process of X i is

X i = fi,2( fi,1(P Ai ) + ei ), (13.1)

where the observed variables X i ,i = {1, 2, . . . , n} are arranged in a causal order,
such that no later variable causes any earlier variable. P Ai is the direct cause of
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X i . fi,1 denotes the nonlinear effect of this cause, and fi,2 denotes the invertible
post-nonlinear distortion in variable X i . ei is the independent disturbance which is
a continuous-valued random variable with non-gaussian distributions of non-zero
variances. Model (13.1) satisfies the aforementioned three characteristics: function
fi,1 accounts for the nonlinear effect of the causes P Ai ; ei is the noise effect during the
transmission from P Ai to X i ; invertible function fi,2 reflects the nonlinear distortion
caused by the sensor or measurement.

Randomly select a pair of variables X i and X j , i , j = {1, 2, . . . , n}. Assume that
the pair (X i , X j ) has the causal relation X i → X j . It’s data generating process can
be described in a generated model,

X j = f j,2( f j,1(X i ) + e j ), (13.2)

where e j is independent from X i . Define si � f j,1(X i ), s j � e j , and si is indepen-
dent from s j .

Rewrite the generating process X i → X j as follows:

X i = f −1
j,1 (si ),

X j = f j,2(si + s j ).
(13.3)

X i and X j in (13.3) are post-nonlinear (PNL) mixtures of independent sources si
and s j . The PNLmixing model can be seen as a special case of the general nonlinear
independent component analysis (ICA) model. Here we use nonlinear ICA method
to solve this problem (13.3).

Generally there are two possibility to describe the causal relation between any
two random variables X i and X j , (X i → X j or X j → X i ). We should identify the
correct relation by judgingwhich one satisfies the assumedmodel (13.2). If the causal
relation is X i → X j (i.e., X i and X j satisfy the model (13.2)), we can invert the
data generating process (13.2) to recover the disturbance e j , which is expected to be
independent from X i . Two steps are used to examine the possible causal relationships
between variables.

In the first step, recover the disturbance e j corresponding to the assumed causal
relation X i → X j based on the constrained nonlinear ICA. If this causal relation
holds, there exist nonlinear functions f −1

j,2 and f j,1 such that

e j = f −1
j,2 (X j ) − f j,1(X i ), (13.4)

where e j is independent from X i . Thus perform nonlinear ICA using the structure
in Fig. 13.2 and the outputs of system are

Y i = X i ,

Y j = e j = g j (X j ) − gi (X i )).
(13.5)
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Fig. 13.2 Constrained
nonlinear ICA system used
to verify if the causal relation
X i → X j holds

The nonlinearities gi and g j is modeled by Multi-layer perceptrons (MLP’s), and
the parameters in gi and g j are learned by making Y i and Y j as independent as
possible, i.e., minimizing the mutual information between Y i and Y j ,

I (Y i ,Y j ) = H(Y i ) + H(Y j ) − H(Y), (13.6)

where H(Y) is the joint entropy of Y = (Y i ,Y j )
T ,

H(Y) = −E
[
log pY (Y)

]

= −E
[
log pY (X) − log |J |]

= H(X) + E
[
log |J |] .

(13.7)

The joint density of Y = (Y i ,Y j )
T is pY (Y) = pX (X)/|J |. J is the Jacobian

matrix of the transformation from (X i , X j ) to (Y i ,Y j ), i.e.,

J = ∂(Y i ,Y j )

∂(X i , X j )
,

|J | =
∣∣∣∣
1 0
g′
i g

′
j

∣∣∣∣ = ∣∣g′
j

∣∣ .
(13.8)

Substitute (13.7) and (13.8) into (13.6), we have

I (Y i ,Y j ) = H(Y i ) + H(Y j ) − E[log |J |] − H(X) (13.9)

= −E
[
log pY i (Y i )

] − E
[
log pY j (Y j )

] − E
[
log

∣∣g′
j

∣∣] − H(X),

(13.10)

where H(X) does not depend on the parameters in gi and g j and can be considered as
constant. The minimization problem (13.10) is solved by gradient-descent methods,
and the details of the optimization are skipped.

In the second step, verify if the estimated disturbance Y j is independent from
the assume cause Y i based on the statistical independence test. The kernel-based
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statistical test is adopted with the significance level = 0.01 (Giga 2014). Denote the
test statistic as testi→ j . If testi→ j > test j→i , it indicates that Y i and Y j are not
independent, that is X i → X j does not hold. Repeat the above procedure with X i

and X j exchanged to verify if X j → X i holds. If testi→ j < test j→i , it concludes
that X i causes X j . gi and g j provide an estimate of f j,1 and f −1

j,2 , respectively.
For a complex system, there are n process variables. Following a test sequence,

X1 → X2, X1 → X3, . . . , Xn−1 → Xn , the N group statistics should be tested,

N = n + (n − 1) + (n − 2) + · · · + 1 = n(n − 1)

2
. (13.11)

The total computation is in direct proportion to 2 × N . As the number of variables
increases, the amount of computation will increase as well. The measured statistics
in the positive order (or in the reverse order) are stored as

A = [testX1→X2 , testX1→X3 , . . . , testXn−1→Xn ],
B = [testX2→X1 , testX3→X1 , . . . , testXn→Xn−1].

(13.12)

Comparing the corresponding elements of the vectors A and B, the causal direc-
tion of this pair of variables is determined according to the smaller statistic. Once the
causality of all variables is found based on the above cyclic search, integrate them
into a DAG.

13.1.3 Network Parameter Learning

The multivariate causality model gives a framework similar to the Bayesian net-
work to find the internal structure of the complex systems. Its graphical structure
expresses the causal interactions and direct/indirect relations as probabilistic net-
works. Its parameter represents the intensity of the complex inter-relationships among
the cause-effect variables.

Consider a finite set U = {X1, . . . , Xn} of discrete random variables where each
variable X i may take on several discrete status fromafinite set.ABayesian network is
an annotated directed acyclic graph that encodes a joint probability distribution over
a set of random variables U . Formally, the Bayesian network for U is constructed as
a pair B =< G,Θ >. G is a directed acyclic graph whose vertices is correspond to
the random variables X1, . . . , Xn .Θ is the parameters set that quantifies the network
with θi jk = p(xki )|pa j

i and
∑

k θi jk = 1, where xki is the discrete status of X i and
pa j

i is one of components in the complete parent set P Ai of X i in G. Every variable
X i is conditionally independent of its non-descendants given its parents (Markov
condition). The joint probability distribution over set U is
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PB(X1, . . . , Xn) =
n∏

i=1

PB(X i |P Ai ) =
n∏

i=1

θX i | ∏ P Ai . (13.13)

The parameters of the causality Bayesian network are mainly learned from the
statistics analysis of sample data. Themaximum likelihood estimationmethod (MLE)
is one of the most classical and effective algorithms in parameter learning.

Give a data set D = {D1, . . . , DN } of all Bayesian network nodes. The goal of
parameter learning is tofind themost probable values forΘ . These values best explain
the data set D, which can be quantified by the log likelihood function logp(D|θ),
denoted LD(θ). Assume that all samples are drawn independently from the underly-
ing distribution. According to the conditional independence assumptions, we have

LD(θ) = log
n∏

i=1

qi∏

j=1

ri∏

k=1

θ
ni jk
i jk , (13.14)

where qi is the number of combinations of the parent nodes pa j
i , ri is the number

of the node Xi status. ni jk indicates how many elements of D contain both xki and
pa j

i . If the data set D is complete, MLE method can be described as a constrained
optimization problem,

max LD(θ),

st.gi j (θ) =
ri∑

k=1

θi jk − 1 = 0,∀i = 1, . . . , n,∀ j = 1, . . . , qi .
(13.15)

Its global optimum solution is

θi jk = ni jk
ni j

, (13.16)

where ni j = ∑
k=1,...,ri ni jk .

13.2 BCN-Based Fault Detection and Inference

The complete monitoring model is established via combining the multivariate causal
structure and the Bayesian parameters learning. The qualitative and quantitative
relationships among the process variables are revealed to the greatest extent. Then
this model is forward used to accurately predict the operation status and detect faults
of the critical process variables (i.e., forward inference). Similarly, it also can be
inversely used to find the source of the faults (i.e., backward inference). The overall
block diagram of the proposed method is shown in Fig. 13.3.

Causality network prediction or inference is to calculate the probability of the
hypothesis variables at certain status according to the network topology and con-
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Fig. 13.3 Overall design
block diagram

ditional probability distribution of the evidence variable. An inference or query
P(Q = q|E = e0) is to calculate the posterior probability of a query variable Q
being at its specific value q in the condition of given evidence e0 for node E.

There are many existing network inference algorithms, such as variable elimina-
tion algorithm and junction tree algorithm (JT). These algorithms utilize the hypoth-
esis variables and specific independence relations induced by the evidence in BN
to simplify the updating task. JT implements the inference procedure in four steps
(Borsotto et al. 2006),

1. Cluster the nodes into several cliques;
2. Connect the cliques to form a junction tree;
3. Propagate information in the network;
4. Answer a query.

The inference starts from a root clique. The core step of message propagation
consists of a message collection phase and a distribution phase. The cliques of the
junction tree are connected by separators such that the so-called junction tree prop-
erty holds. When a message is passed from one clique X to another clique Y , it is
mediated by the separate set S between the two cliques. Every conditional probabil-
ity distribution of the original BN is associated with a clique such that the domain of
the distribution is a subset of the clique domain (we use the notation dom(φ) to refer
to the domain of a potential φ). The set of distributions φX associated with a clique
X are in standard junction tree architectures combined to form the initial clique X .

φX =
∏

φεφX

φ. (13.17)

For a clique, a potential or a message is a mapping from the value assignments of
the nodes to the set [0, 1.0]. Amessage pass from X toY occurs with two procedures:
projection and absorption based on the Hugin architecture (architecture is proposed



13.2 BCN-Based Fault Detection and Inference 241

by Jensen et al. 1990). The projection procedure saves the current potential and
assigns a new one to S:

φold
S ← φS, andφS ←

∑

X\S
φX . (13.18)

The absorption procedure assigns a new potential to Y using both the old and the
new tables of S,

φY ← φY
φS

φold
S

, (13.19)

where φS is the current separator potential, φ
old
S is the old separator potential, φX is

the clique potential for X , φY is the clique potential for Y .
The query answering step has two procedures. First, the marginalization proce-

dure calculates the joint probability of Q and E = e0 : P(Q, E = e0) = ∑
X{Q} φX .

Second, the normalization procedure calculates the inference result,

P(Q = q|E = e0) = P(Q = q, E = e0)∑
Q P(Q, E = e0)

. (13.20)

The fault of operational variables is an intervention that has various effects on the
production process. The main task in fault detection is to predict the system output
and detect whether a fault occurs. The object of causal inference is to find the real
root cause under the faulty intervention.

13.3 Case Study

In order to evaluate the performance of the proposed method, the experiment results
are reported from three aspects: the causal direction identification of multi-variables,
network parameter learning, and probability inference.

13.3.1 Public Data Sets Experiment

Four published data sets proposed by Mooij and Janzing (Leoand et al. 2001) are
used to test the effectiveness of the nonlinear multivariate causal model. The cause-
effect pairs are available at http://webdav.tuebingen.mpg.de/cause-effect/, which is
considered as the benchmark for testing causal detection algorithms. The four data
sets are (1) the ground altitude and temperature sampled at 349 stations, US; (2)
census income data set which contains weighted census data extracted from the
1994 and 1995 current population surveys conducted by the U.S. Census Bureau.

http://webdav.tuebingen.mpg.de/cause-effect/
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(a) data set 1 (b) data set 2 (c) data set 3 (d) data set 4

Fig. 13.4 Scatter plots of four data sets, a–d corresponding to data sets (1)–(4), respectively

Table 13.1 Independence test statistics under different assumption of causal directions

Causal assumption x → y y → x

#1 1.7 × 10−3 6.5 × 10−3

#2 1.2 × 10−4 6.7 × 10−4

#3 3.5 × 10−3 8.1 × 10−3

#4 2.2 × 10−3 5.7 × 10−3

Table 13.2 Causal results of the public data sets

Data sets #1 #2 #3 #4

Data information x: altitude
y: temperature

x: age
y: wage per hour

x: age
y: heart rate

x: population
y: infant
mortality rate

Real direction x → y x → y x → y x → y

Test results x → y x → y x → y x → y

True or false True True True True

The variables include age and wage per hour; (3) the attribute information (age and
heart rate) from Cardiac Arrhythmia database; (4) the population with sustainable
access to improved drinkingwater sources (%) total, and the infant mortality rate (per
1000 live births) both sexes, 2006. Each data set consists of two random variables
which their cause-effect relationship is known. The four data sets have different
attributes, which is sufficient to show the general and comprehensive nature of the
data.

Figure13.4 gives the scatter plots of the selected data sets (1)–(4). Table13.1
shows the statistics of independence test on x and y for data sets (1)–(4) under
different assumption of causal directions. The statistics are calculated separately
based on these different assumptions.Comparing the test statistics under twodifferent
assumption in Table13.1, the causal direction of each set all are determined as x →
y. Table13.2 summarizes the causal results obtained by the multivariate causality
model. It is found that the test results are consistent to the real causal relationship.
We can conclude that the proposed method can correctly identify the causal direction
regardless the diversity of data.
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Fig. 13.5 The network
Bnet0 from the mechanism
analysis

13.3.2 TE Process Experiment

In order to illustrate the applicability of the proposed method in the actual complex
industrial process, the network topology of TE process is established and used to
predict the alarm variables. TE platform simulates an actual chemical process, a
detailed description of the TE process is given in Chap. 4.

Experiment 1: Build Causal Structure
In this experiment, eight important process variables are selected to calculate their

causality in order to facilitate the result visualization. From the mechanism analysis
of TE process, it is known that when the reactor feed X2 increases, the material is
first entered into the reactor, so the reactor level X4 must increase. So the reactor
feed X2 directly affects the reactor level X4. The temperature of cooling water X8

and the reactor feed X2 are the main factors of affecting the reactor temperature
X5. The reactor pressure X3 changes synchronized with the reactor temperature X5

according to the general physical principle. In addition, once the chemical reaction in
the reactor is more intense, the compressor module power X7 will be synchronized
to strengthen due to the sequential loop. At the same time, the reactor pressure X3

also has an obvious influence on the recovered flow X1 and the material level X6

in the separator. Now the initial structure of the causality network is built based
on the mechanism analysis (including the expert prior knowledge and the intuitive
correlation analysis of process variable), named as Bnet0 shown in Fig. 13.5.

The pre-defined fault is random variations in A, B, C compositions in stream 4.
The corresponding data of eight variables are collected from the simulation platform.
The reaction length is 700h to ensure that the data is sufficient to reflect the system
process. 500 sampling data are obtained after the equal time decimating. The causal
direction of the paired variables is shown in Table13.3. Three different causality
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Table 13.3 Causal direction of TE variables

Variables information Statistic (positive/reverse) Causal direction

X2: Reactor feed rate
X5: Reactor temperature

5.7 × 10−6/8.2 × 10−6 X2 → X5

X5: Reactor temperature
X8: Reactor cooling water
outlet temperature

7.1 × 10−6/2.9 × 10−6 X8 → X5

X2: Reactor feed rate
X4: Reactor level

3.4 × 10−4/8.5 × 10−4 X2 → X4

X5: Reactor temperature
X7: Compress work

7.3 × 10−4/9.2 × 10−4 X5 → X7

X3: Reactor pressure
X5: Reactor temperature

7.6 × 10−5/4.5 × 10−5 X5 → X3

X3: Reactor pressure
X6: Product separator level

2.9 × 10−6/3.9 × 10−6 X3 → X6

X1: Recycle flow
X3: Reactor pressure

6.6 × 10−6/2.7 × 10−6 X3 → X1

(a) Bnet1 (b) Bnet2 (c) Bnet3

Fig. 13.6 The network compare: a Bnet1, b Bnet2, c Bnet3

models are compared, including (1) Bnet1, the proposed multivariate post-nonlinear
acyclic causal model, shown in Fig. 13.6a; (2) Bnet2, an alternative network obtained
from the traditional BN structure learning method-K2 algorithm which needs to set
the node order, shown in Fig. 13.6b; (3) Bnet3, the network structure learned with
the expectation maximization (EM) algorithm, shown in Fig. 13.6c.

Comparing the process analysis structure Bnet0 and Bnet1 determined by the
proposed Bayesian Causal Network, it is found that Bnet1 is exactly consistent to
Bnet0. The structure determined using the proposed method exactly matches the
mechanismand expert knowledge,which indicates that the causal structure is credible
and accurate. However, Bnet2 and Bnet3 learned from the traditional BN methods
are not consistent with the mechanism. They show a big gap from the actual physical
relationship. It demonstrates that the general BN learning method fails when it is
applied to the complex nonlinear systems, while the proposed multivariate causality
model proves its superiority.
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Table 13.4 Threshold setting for alarm status in different variables

Alarm
status

X1
(km3/h)

X2
(km3/h)

X3
(kPa)

X4
(%)

X5
(◦C)

X6
(%)

X7
(KW)

X8
(◦C)

1 <31 <46 < 2789 < 62.5 < 122.7 < 45 < 268 <

102.25

2 31–32 46–47 2789–
2796

62.5–
63.8

122.7–
122.87

45–47.2 268–
272.3

102.25–
102.41

3 32–33 47–48.3 2796–
2802

63.8–66 122.87–
122.93

47.2–
52.2

272.3–
274

102.41–
102.55

4 33–34 48.3–
49.5

2804–
2809

66-66.8 122.93–
123.2

52.2–53 274–280 102.55–
102.7

5 > 34 > 49.5 > 2809 > 66.8 > 123.2 > 53 > 280 > 102.7

Experiment 2: Parameter Learning Once the TE network structure is deter-
mined, the alarm prediction model can be obtained by parameter learning of this
causality structure network. In general, the process alarm event can be divided into
five-alarm levels, namely, high-high alarm (HH), high alarm(H), normal(N), low
alarm(L) and low-low alarm(LL), corresponding to the number 1,2,3,4,5. The first
step is to discretize the continuous variables into five-alarm levels by setting different
thresholds, shown in Table13.4.

Here the MLE algorithm is adopted to learn the network parameters and get a
complete probability table. Suppose that the initial probability of the alarm level in
the normal condition is theoretically divided equally. Then the conditional proba-
bility values for all variables are calculated based on the BN parameter learning.
Considering two root nodes X2 and X8, their corresponding probabilities for five
status are 0.0843, 0.2211, 0.4704, 0.2026 and 0.0217, respectively. The probability
of other descendant variables as shown in Fig. 13.7. Hot plot is used to show the
probability since the precise value has nothing meaning for the alarm prediction and
inference. The color represents the probability range between 0 and 1.

It should be concerned with the probability value of close to 1. These are the key
points in determining the inference results. When the probability is less than 0.5, the
result situation will not likely appear in the actual inference. Figure13.7a shows the
probability of X5 under the combined action of X2 and X8. The abscissa is the status
condition of X8 and X2, and the ordinate is the probability value for five-alarm status
of X5 displayed in corresponding color. P(X5 = 1|X8 = 1, 2 and X2 = 1) ≈ 1 in
the lower left corner of Fig. 13.7a. It means that X5 occurs the low-low alarm with
the probability close to 1 when X2 and X8 are in the low-low alarm status. P(X5 =
5|X8 = 4, 5 and X2 = 5) ≈ 1 in the upper right corner of Fig. 13.7a. It means that
X5 occurs the high-high alarm with the probability close to 1 when X2 and X8 are
in the high-high alarm status. These inference results are consistent with the actual
mechanism.

Figure13.7b–e reflects the probability relationship between bivariate variables.
Figure13.7b shows the probability of X4 under the action of X3. P(X4 = 5|X3 =
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Fig. 13.7 Conditional probability of the descendant variables: a P(X5|X8, X2), b P(X4|X3), c
P(X3|X5), d P(X7|X5), e P(X1|X3), f P(X6|X3)
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Table 13.5 Alarm level prediction of compress work X7

No. X2 X8 X5 X7 X̂7 Max Prob.

1 1 2 1 2 1 0.4571

2 2 1 2 1 1 0.6501

3 1 2 2 2 2 0.7627

4 2 1 2 2 2 0.6729

5 1 2 2 1 1 0.6896

6 3 3 2 3 1 0.8760

7 3 3 2 3 3 0.6344

8 3 3 3 2 2 0.8563

9 3 3 2 3 2 0.3454

10 2 3 3 3 3 0.5073

11 3 3 3 2 3 0.4432

12 3 2 3 3 3 0.5696

13 4 3 4 4 3 0.3128

14 3 4 4 4 4 0.6284

15 4 5 5 5 5 0.7557

16 4 3 4 4 5 0.3783

17 5 5 4 4 4 0.7947

18 4 5 4 4 4 0.8325

19 5 4 5 4 5 0.6454

20 5 4 4 5 5 0.8113

5) ≈ 1 in the upper right corner. It means that the probability of X4 occurs the
high-high alarm with the probability close to 1 when X3 in the high-high alarm
status. However, P(X4 = 1|X3 = 5) = 0 in the lower right corner. It means that X4

occurs the high-high alarm with the probability close to 0 when X3 in the low-low
alarm statue. P(X4 = 1 and X4 = 2|X3 = 2) ≈ 0.5 in the green area. It means the
probability of X4 occurs the low alarm or low-low alarm almost same when X3 in
the low alarm status. Similarly, the inference results obtained from Fig. 13.7c–e are
consistent with the mechanism.

Experiment 2: Alarm Prediction Alarm prediction is a top-down inference
according to the evidences inference conclusion. The probabilistic analysis calcu-
lates the likelihood of each status for the result variable may occur. The discrete
status corresponding to the maximum probability is the alarm prediction result.

Using the established multivariate causality network model, compress work X7 is
predicted when its parent variables X2, X8 and X5 are known. The prediction results
for model Bnet1 are shown in Table13.5, where X̂7 is the prediction value of X7.

The total prediction accuracy for the 20 simulation experiments is 75%. When
the maximum probability of the predicted value is greater than 0.5, the prediction
result is confident. Furthermore, the predictions with a high probability is consistent
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with the true status. When the maximum probability of the predicted value is less
than 0.5, the prediction result is not believable and accurate. The mis-predictions
confuse between the adjacent status, such as the normal status 2 and Low alarm 3 (or
high alarm 2). The simulation results show that the multivariate causality network
can find the intrinsic relationships among various process variables, and give precise
fault or alarm prediction.

13.4 Conclusions

This chapter proposes a multivariate causality model to analyze the causal direction
of multivariable and final determine the network topology. The proposed method
can describe the system structure more accurate than the traditional BN structure
learning method especially when the industrial process is high complex. Combined
with the network parameters learning and evidence inference technique, an accurate
monitoring and alarm prediction can be performed. The validity of the proposed
method is verified via the public data set and TE process. An compact network
structure and confident alarm prediction are obtained for the TE process based on the
causal analysis and probability inference. Both the methodology and the simulation
results show that the proposed multivariate causality model has great value for the
process industry modeling and monitoring.

There are some issues worth further discussion. The computing efficiency of
the proposed multivariate post-nonlinear acyclic causal modeling method should be
considered when solving the large-scale causal analysis problems in the real world.
Developing the efficient algorithm to find the causal relationship ofmultiple variables
based on the general functional causal models is still an important topic. To improve
the computational efficiency, a feasible solution is to limit the complexity of the
causal structure, such as decreasing the number of direct causes of each variable.
Moreover, a smart optimization procedure instead of the exhaustive search should
be considered further.
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Chapter 14
Probabilistic Graphical Model for
Continuous Variables

Most of the sampled data in complex industrial processes are sequential in time.
Therefore, the traditional BN learning mechanisms have limitations on the value of
probability and cannot be applied to the time series. Themodel established inChap. 13
is a graphical model similar to a Bayesian network, but its parameter learningmethod
can only handle the discrete variables. This chapter aims at the probabilistic graphical
model directly for the continuous process variables, which avoids the assumption of
discrete or Gaussian distributions.

This chapter expands the previouswork inChap.13 from the randomdiscrete vari-
ables to the random continuous variables. In addition to enhancing the effect of causal
structure and parameter learning on the continuous variables, kernel density estima-
tion is used to construct the node association strength of the causal graph network
in the form of probability density. The conditional probability density is obtained
from the mathematical operation between the low-dimensional probability density
and the high-dimensional joint probability density. This non-parametric estimation
method directly estimates the probability density of continuous variables and avoids
the limitations of traditional Gaussian assumptions. Moreover, this chapter strictly
derives the evaluation indicators for theKDE estimation quality. The proposed causal
learning mechanism does not have any restrictions, such as linear, nonlinear, or dis-
tribution functions. It establishes an accurate causal probability graphical model to
detect faults and find the root cause of the fault.

14.1 Construction of Probabilistic Graphical Model

14.1.1 Multivariate Casual Structure Learning

The first step of building a graphical model is to construct a causal topological rela-
tionship. The causal hypothesis model is a post-nonlinear model. It can determine the

© The Author(s) 2022
J. Wang et al., Data-Driven Fault Detection and Reasoning for Industrial Monitoring,
Intelligent Control and Learning Systems 3,
https://doi.org/10.1007/978-981-16-8044-1_14

251

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8044-1_14&domain=pdf
https://doi.org/10.1007/978-981-16-8044-1_14


252 14 Probabilistic Graphical Model for Continuous Variables

causal relationship between multiple variables through hypothesis testing. Detailed
information can be found in Chap.13 (Chen et al. 2018).

Consider a model which represents the causal relationship between variables.
Here a generative model is used to explain the data generation process. When the
existing mechanism of the data model cannot be determined, the hypothetical model
should be sufficiently versatile so that it can be adapted to approximate the actual
data generation process. In addition, the model should be identified so that cause and
effect can be distinguished.

In order to discover the causality of multiple variables in a complex system, a
more generalized multivariable nonlinear acyclic causal model with internal addi-
tive noise is given same as Chap.13. The model adopts the form of graph theory and
Bayesian network structure. Assume that a directed acyclic graph (DAG) represents
the relationship between multiple observed variables. Select a pair of variables Xi

and X j ,i, j = {1, 2, . . . , n} from the system, respectively. If Xi is X j ’s parent node
and its data generating process is described in a post-nonlinear(PNL) mixing model.
The generation process of Xi is X j = f j,2

(
f j,1 (Xi ) + e j

)
, where fi,1 denotes the

nonlinear effect of the causes, and fi,2 denotes the invertible post-nonlinear distortion
in variable Xi . e j is the independent disturbance. Here it is applicable to a combina-
tion of hypothesis testing and nonlinear independent component analysis (ICA) to
solve this problem (Shimizu et al. 2011). To describe in simplified language, it can
be divided into two steps:

1. The nonlinear ICA method with constraints is used to calculate the interference
e j corresponding to the assumed causality Xi → X j ;

2. The statistical independence test is used to determine the independent relationship
between the estimated interference e j and the assumed cause Xi .

For any pair of variables in the system, two causal assumptions can be made.
The causality is assumed positive and negative, and the direction of the causality is
determined by comparing the statistical information obtained by calculation. After
n (n − 1) hypotheses and tests, the causality of all system variables is determined
finally. Therefore, this multivariate nonlinear acyclic causal modeling method will
not have the limitation of Bayesian network structure learning. It can effectively
establish the causal structure of the process.

14.1.2 Probability Density Estimation

Section14.1.1 completed the construction of the causal structure of the model. The
complete graph model also should include the quantitative relationships between
nodes which is described as probabilistic connection of nodes here. The probability
density of the node variable is determined by the non-parametric probability den-
sity estimation method. Because the child node is affected by its parent node, the
probabilistic connection relationship manifests itself in the conditional probability
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density. Kernel Density Estimation (KDE) is a prominent method to estimate the
non-parametric probability density. The explicit form of the density function is the
main advantage of KDE method (Chen et al. 2018).

Let X1, X2, X3, . . . , Xn be a set of samples of the random variable X . Its density
function f (x), x ∈ R, X is unknown. The distribution density function f (x) can be
derived from its corresponding cumulative distribution function F(x),

f (x) = dF(x)

dx
≈ F(x + h) − F(x − h)

2h
, (14.1)

where h > 0 is the window width. The empirical distribution function Fn(x) =
1
n

∑
i I (Xi ≤ x) is used to estimate F(x). Substitute it into (14.1),

f̂ (x) = dF(x)

dx
≈ F(x + h) − F(x − h)

2h

= 1

2nh

∑

i

I (x − h < Xi ≤ x + h)

= 1

nh

∑

i

K0

(
Xi − x

h

)
.

(14.2)

(14.2) gives the KDE for f (x) with a window width h and a kernel function
K0 = 1

2 I (|u| ≤ 1).
The more general kernel density estimate is

f̂ (x) = 1

nh

n∑

i

K

(
Xi − x

h

)
, (14.3)

where f̂ (x) gives the estimate of the probability density function. n, h, K are the
number of samples, window width and kernel function.

Conditional probability density calculation requires additional mathematical
operations. Similarly, consider two random sample sets X1, X2, X3, . . . , Xn and
Y1,Y2,Y3, . . . ,Yn , where X is cause variable and Y is effect variable. The joint
probability density of x and y is defined as

f̂ (x, y) = 1

n

n∑

i=1

1

h1h2
K

(
x − Xi

h1
,
y − Yi
h2

)
, (14.4)

where h1 and h2 are the window width corresponding to the cause variable x and the
effect variable y, respectively.

According to the definition of conditional probability, the conditional density
f (y|x) is obtained as follows:
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Table 14.1 Common kernel functions

Number Kernel function Expression

1 Uniform 1
2 I (|u| ≤ 1)

2 Triangle (1 − |u|)I (|u| ≤ 1)

3 Gaussian 1√
2π
exp(− 1

2μ2)

4 Epanechnikov 3
4 (1 − μ2)I (|u| ≤ 1)

f (y|x) = f (x, y)

f (x)
. (14.5)

The kernel function here affects the precision of kernel density estimation. How
to select an appropriate kernel function is an important issue. Usually, the follow-
ing properties should be considered: symmetry, non-negative, and normality (Zeng
et al. 2017). The mathematical description of common kernel functions is given in
Table14.1(Jiang and Nicholas 2014).

It can be seen from the KDE expression that the kernel function K , sample size n
and its window width h are the main contributing factors of f (x). Once the number
of samples n is fixed, K and h directly affect the accuracy of the system model
parameters. Furthermore, the effectiveness of fault detection and root cause diagnosis
will fluctuate directly. Therefore, in order to estimate the probability density more
accurately and improve the estimation quality of KDE, a KDE evaluation criterion
is given in the next section. There are already data showing that the choice of kernel
function has a negligible effect on the result of kernel density estimation (Silverman
1998), so the optimization of K is not considered here.

14.1.3 Evaluation Index of Estimation Quality

According to the definition of kernel density, consider the following two cases: (1) the
value of the window width h is very large. The average compression transformation
x−Xi
h can remove the local details of the probability density function, which results in

the smoothness of probability density estimation curve. A relatively low resolution
is shown at this case, and the estimation deviation is enlarged; (2) the value of the
window width is very small. On the contrary, the influence of the randomness of
probability density will increase, and the important characteristics of density will
be masked. It causes the larger fluctuation of density estimation and the stability is
easy to be deteriorated. The estimation variance is too large at this case (Jiang and
Nicholas 2014).

The requirements about the accurate estimation includemuch closer to the true val-
ues and remaining stable for different observations. These two attributes are described
by the estimated deviation and variance which are given as



14.1 Construction of Probabilistic Graphical Model 255

Bias{ f̂ (x)} = E[ f̂ (x)] − f (x)

Var{ f̂ (x)} = E[ f̂ (x)]2 − [E f̂ (x)]2. (14.6)

The probability density function of the child nodes in the causal model is affected
by the parent nodes. Its probability density usually is multidimensional. Consider a
two-dimensional kernel density function f (x, y) as an example. Its deviation and
variance are

Bias{ f̂ (x, y)} = E

[
f̂ (x, y)

]
− f (x, y)

Var{ f̂ (x, y)} = E

[
f̂ (x, y)

]2 −
[
E f̂ (x, y)

]2
.

(14.7)

Here the mean square integral error (MISE) is introduced as the evaluation index
of KDE. TheMISE index has an unique advantage to evaluate the difference between
the estimated function and the true function. At the same time, it also guarantees the
fitness and smoothness of kernel estimation.

One-dimensional MISE is defined as

MISE[ f̂ (x)] = E

∫ [
f̂ (x) − f (x)

]2
dx . (14.8)

Two-dimensional MISE is defined as

MISE[ f̂ (x, y)] = E

∫∫ [
f̂ (x, y) − f (x, y)

]2
dxdy. (14.9)

The above MISE indices are simplified as, and the details can be found from the
supporting information in Chen et al. (2018),

MISE[ f̂ (x)] =
∫

Var( f̂ (x)) +
∫

Bias2( f̂ (x))dx

= 1

nh

∫
K 2(t)dt + 1

4
h4

[∫
t2K (t)dt

]2 ∫
[ f ′′(x)]2dx

(14.10)

MISE[ f̂ (x, y)] = 1

nh1h2

∫
K 2(t)dt + 1

4
h41h

4
2

×
[∫

t2K 2(t)dt

]2 ∫∫
(∇ f (x, y))2dxdy.

(14.11)

It is found from (14.10) and (14.11) that the values of the functions
∫
K 2 (t) dt

and
∫
t2K (t) dt are related to the kernel function K . They are not difficult to calcu-

late if the mathematical expression of kernel function is substituted into the above
equations. Generally speaking, windowwidth h has a greater impact onMISE value,
so optimizing h is critical. Here (14.10) and (14.11) are also used as optimization
objectives to find the best window width h.
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For one-dimensional probability density, let d
(
MISE

[
f̂ (x)

])
/dh = 0. Then

hopt = 5

√ ∫
K 2(t)dt

n[∫ t2K (t)dt]2 ∫
f ′′(x)2dx

. (14.12)

For two−dimensional probability density, let

∂MISE[ f̂ (x, y)]
∂h1

=h31h
4
2

(∫
t2K (t)dt

)2 ∫∫
(∇ f (x, y))2dxdy

− 1

nh21h2

∫
K 2(t)dt

=0,

∂MISE[ f̂ (x, y)]
∂h2

=h32h
4
1(

∫
t2K (t)dt)2

∫∫
(∇ f (x, y))2dxdy

− 1

nh22h1

∫
K 2(t)dt

=0.

(14.13)

Then

hopt1 = 5

√ ∫
K 2(t)dt

nh52(
∫
t2K (t)dt)2

∫∫
(∇ f (x, y))2dxdy

hopt2 = 5

√ ∫
K 2(t)dt

nh51(
∫
t2K (t)dt)2

∫∫
(∇ f (x, y))2dxdy

.

(14.14)

If the kernel function is predetermined,
∫
K 2(t)dt

(
∫
t2K (t)dt)2 = C(k) is a constant. Usually

the true probability density functions f (x) and f (x, y) are unknown. The estimated
probability density function (14.3) and (14.4) are substituted into (14.12) and (14.14),
respectively. Then the optimal parameter h for one-dimensional estimation or h1 and
h2 for two-dimensional estimation are obtained.

14.2 Dynamic Threshold for the Fault Detection

Generally speaking, the process variables show obvious difference in their measure-
ments in the normal operation and faulty operation. Then themeasurement difference
must be reflected in the probability density distribution. System failure detection is
to find their differences based on the appropriate thresholds. Here, it is not feasible
to use the confidence interval of the normal state to directly distinguish the fault. The
actual process data are usually accompanied by a lot of noise, the distribution is not
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ideal even in the normal operation. Therefore, its confidence cannot be completely
described as a constant horizontal line. The constant confidence line is further diffi-
cult to distinguish the normal operation and the fault operation. Therefore, the idea of
dynamic threshold is introduced. Fused Lasso (FL) method is common to denoise in
the field of signal processing. Here it is used to design the dynamic confidence limits.
It can provide the required reasonable range for each node based on the normal data.

The Fused Lasso Signal Approximator (FLSA) aims at eliminating noise and
smoothing data (Bensi et al. 2013). The real-valued observations y = βx is obtained
by finding the sequence β1, . . . ,βN that minimizes the criterion,

JFL = 1

2

N∑

k=1

( yk − βkxk)
2 + λ1

N∑

k=1

|βk | + λ2

N∑

k=2

|βk − βk−1|, (14.15)

where λ1 and λ2 are tuning parameters, x1, . . . , xN is the feature variables. The
objective of JFL consists of three parts: 1

2

∑N
k=1

(
yk − βkxk

)2
is the traditional index

of the least squares algorithm. It strives for the regression accuracy of themodel for all
the existedmeasurements [xk, yk]. The last two partsλ1

∑N
k=1 |βk | + λ2

∑N
k=2 |βk −

βk−1| encourages the sparsity of regression coefficients and their differences. The
parameters λ1 and λ2 are adjusted to trade-off the regression accuracy and denoising
power. (14.15) is totally a denoising problem if λ1 = 0 .

Here the hidden Markov model (HMM) and the maximum likelihood estima-
tion method are used for optimization calculation. The HMM posits an emission
probability Pr

(
yk |βk

)
that is a standard normal distribution, and a transition proba-

bility Pr
(
βk+1|βk

)
that is double exponential with parameter λ2 (where Pr denotes

probability).
The Viterbi algorithm is a typical dynamic programming algorithm for this HMM

problem, which the detailed description be found in (Rabiner et al. 1989). The objec-
tive function (14.15) is rewritten as maximization in a more general form,

JFL =
N∑

k=1

ek(βk) − λ2

N∑

k=2

d(βk,βk−1), (14.16)

where ek(b) = ∑R
i=1 yikvi (b).

Denote the variable sequences (x1, x2, . . . , xk) as the shorthand x1:k . Rewrite the
criterion (14.16) as follows:

JFL = max
β1:N

[
N∑

k=1

ek(βk) − λ2

N∑

k=2

d(βk,βk−1)

]

= max
βN

[eN (βN )] + max
β1:(N−1)

[
N−1∑

k=1

ek(βk) − λ2

N∑

k=2

d(βk,βk−1)

] (14.17)

and
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fN (βN ) := max
β1:(N−1)

[
N−1∑

k=1

ek(βk) − λ2

N∑

k=2

d(βk,βk−1)

]

=max
βN−1

[eN−1(βN−1) + λ2d(βN ,βN−1)]

+ max
β1:(N−2)

[
N−2∑

k=1

ek(βk) − λ2

N−1∑

k=2

d(βk,βk−1)

]

.

(14.18)

The definitions of functions fN−1(βN−1), fN−2(βN−2), . . . , f2(β2) are similar
to fN (βN ). The maximization problem is solved further iteratively. It is summarized
by introducing the intermediate functions with k ranging from 2 to N ,

δ1(b) := e1(b)

ψk(b) := argmax
b̃

[δk−1(̃b) − λ2|b − b̃|]
fk(b) := δk−1(ψk(b)) − λ2|b − ψk(b)|

δk := ek(b) + fk(b).

(14.19)

The functions ψk(·) take part in the backward pass of the algorithm. This back-
ward pass computes β̂1, . . . , β̂N through a recursion identical to that of the Viterbi
algorithm for HMMs:

β̂N = argmax
b

{δN (b)}
β̂k = ψk+1(β̂k+1) f or k = N − 1, N − 2, . . . , 1.

(14.20)

So far, the above FL theory is implemented to obtain the dynamic threshold of
the data model. During the process of fault detection, the KDE estimated probability
values are the input variable of the FLSA algorithm for smoothing. The influence of
data noise on the estimated probability density function is eliminated and a credible
threshold is found to distinguish the normal operation and the faulty operation.

14.3 Forward Fault Diagnosis and Reverse Reasoning

Detailed theoretical supports have been supplemented enough in last section, includ-
ing the construction of probability graph models, the selection of probability den-
sity estimation evaluation indicators and parameter optimization, and the setting of
dynamic thresholds for fault detection. The establishedmodel structure is determined
by the causal direction between operating units, which represents the qualitative rela-
tionship between nodes. The non-parametric KED estimation is used to obtain the
parameters of the graph model, i.e., the causal probability relationship. Probability
can quantitatively describe the dependence between process variables. The evalu-
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Fig. 14.1 The overall framework

ation index of the probability relationship estimation is derived and calculated to
ensure the accuracy of the graphical model.

Now this section combines and implements the above theoretical methods into
a certain fault detection and diagnosis framework, which can be used to diagnose
abnormal events in the system and locate the root cause of the fault. The overall
framework of the proposed method is represented in Fig. 14.1.

The main steps for fault detection and root tracing are summarized based on the
detail flow chart in Fig. 14.2,

1. Construct a cause-effect network structure for the selected process variables from
the industrial process;

2. List all the probability density functions that need to be estimated, including
one-dimensional densities for root nodes, multidimensional joint densities, or the
corresponding conditional probability densities for child nodes;

3. Estimate the (conditional) probability densities of each node based on KDE
method;

4. Calculate the dynamic threshold for the health status of each node by input all the
density values to FLSA;

5. Collect test data and detect whether faults occur compared with the dynamic
threshold;

6. Reverse reasoning based on the graph model in the case of failure. Starting from
the faulty node, check which parent nodes of the faulty node is faulty in turn.
Remove all non-faulty parent nodes and clarify the fault propagation path until
the fault root is found.
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Fig. 14.2 Flowchart for detecting and tracing faults

Fig. 14.3 The casual
structure of partial TE
process

14.4 Case Study: Application to TEP

The proposed methods are verified on Tennessee Eastman (TE) process simulator.
The TE process contains a total of 52 process variables and measurement variables.
Eight variables in the reactor module are selected to test the causal structure, same as
Chap.13. The physicalmeanings of these variables are listed inTable14.2.According
to the causal analysis method, it is not difficult to obtain the causal relationship
between eight variables (the detail analysis also can be found in Chap. 13). The
corresponding topology is shown in Fig. 14.3.
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Table 14.2 Process manipulated variables

Variable (Symbol in the Fig. 3) Physical meaning Units

x1(v5) Recycle flow km3/h

x2(v6) Reactor feed rate km3/h

x3(v7) Reactor pressure kPa

x4(v8) Reactor level %

x5(v9) Reactor temperature ◦C
x6(v12) Product separator level %

x7(v20) Compress work KW

x8(v21) Reactor cooling water outlet
temperature

◦C

List all the probability density function and conditional probability density of
nodes in the causal graph. In total, f (x2), f (x8), f (x4|x2), f (x5|x8), f (x7|x5),
f (x3|x5), f (x1|x3), f (x6|x3) need to be estimated. Here the root nodes x2 and x8
have one-dimensional probability density function. Optimize the window width h to
obtain an accurate probability estimate.

The training data set contains 960 samples in the normal operation. These data are
used to obtain the KDE of the model. Combine the causal structure constructed in the
previous step to get a complete graphical model. Fault IDV(4) is a minor fault which
is used as a test sample to verify the effectiveness and sensitiveness of the proposed
method to minor faults. The fault IDV(4), a step change of the reactor cooling water
inlet temperature, is introduced in the middle of the reaction. Then 960 samples are
obtained as the testing data set, in which the first 480 samples are normal and the
following 480 are faulty data.

In order to be able to trace the root cause of the fault, the child nodes must be
selected here to test the fault. Randomly select one of the child nodes x7 of the graph-
ical model as the experimental object. According to the causal structure, it is easy to
see that x7 is directly related to x5. Here x5 is the parent node of x7, so first calculate
the conditional probability density f (x7|x5). Figure14.4 gives the graphical repre-
sentation of the probability relationship between these two variables. Figure14.4a
depicts the probability density of normal data and fault data as a function of sampling
time. Based on the fusion lasso method, the obtained KDE estimation is used as a
rough signal for denoising and restoration. The crossed line in Fig. 14.4b represents
the KDE recovered after denoising, which is set as the dynamical threshold. It can
be clearly seen that after about 480 samples, the conditional probability of x7 has
exceeded the normal limit. Based on the FLSAmethod, the obtained KDE estimation
is used as a rough signal for denoising and restoration.

Fault tracing refers to finding the root cause of failure in x7. The existing graph
model can clearly show the causal relationship between nodes, so the propagation
path of the fault can be easily analyzed. Carry out the reverse reasoning based on
the established causal structure parameter model. Start from the failure variable and
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(a) 3D plot of joint probability density of x7 and x5

(b) Conditional probability of x7 under x5 corresponds to
the sampling time

Fig. 14.4 Conditional probability of x7 under x5

calculate the probability density function of its parent node in turn. The probability
density curves obtained under normal and fault conditions are compared to determine
whether the variables on each path are faulty. Continue this step until finding the root
cause of the failure. In order to conversely infer the roots of fault x7, it is necessary to
calculate f (x5|x8), f (x5|x2), f (x2), f (x8) separately. Simulation results are shown
in Fig. 14.5.

From the detection result graph, the true propagation path of the fault can be
analyzed. The test shows that the root of the fault is x8. Corresponding to the physical
meaning of the variable, the root cause is the temperature of the cooling water, and
fault IDV(4) is a step change in the temperature of the cooling water. The result is
consistent with the actual process.
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Fig. 14.5 Conditional
probability densities of x5
under x8, x5 under x2;
probability densities ofx2,x8

(a) Conditional probability density of x5 under x8

(b) Conditional probability density of x5 under x2

(c) Probability density of x8

(d) Probability density of x2
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14.5 Conclusions

This chapter proposes a probability graph model directly for the continuous pro-
cess variables aiming at the fault detection and root tracing. The model structure is
determined by the causal relationship, and the probability relationship in the model
is determined by the KDE method. For the child nodes in the causal structure, i.e.,
variables affected by other nodes, the conditional probability density functions are
calculated based on the multidimensional joint probability density and the low-
dimensional probability density. It reflects the strength relationship of the causal
connection between the variables. An MISE index is rigorously derived to evalu-
ate the estimation accuracy of KDE and optimize the KDE parameters. A dynamic
threshold is constructed based on the FLSA algorithm to check the change of prob-
ability density, further to detect the fault. The experiment results in the TE process
show that the proposed method not only accurately detects the occurrence of the
failure, but also succeeds in finding its root cause.
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