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Preface

This handbook represents the first comprehensive collection of research topics in the
field of digital face manipulation and detection by a wide variety of experts from
various research areas including computer vision, pattern recognition, biometrics and
media forensics, among others. While being of primary interest to researchers in said
fields, it appeals to a broad readership by providing detailed theoretical explanations
to fundamentals as well as in-depth investigations of current research topics along
with comprehensive experimental evaluations.

In Part I of this handbook, the reader is provided with introductory overview
chapters focusing on the topics of face image and video manipulations and detection
(Chap. 1), the impact of different manipulations and alteration methods on face
recognition systems (Chap. 2) and general multimedia forensics before the deep
learning era (Chap. 3). These chapters serve as points of entry addressing readers
wishing to gain a brief overview of the current state of the art.

Part II deals with the generation ofmanipulated face content and its security impli-
cations on face recognition, including DeepFakes (Chaps. 4 and 5), face morphing
(Chap. 6), adversarial face images (Chap. 7) and audio-to-video face generation
(Chap. 8). Subsequently, Part III elaborates on face manipulation detection tech-
niques, containing dedicated chapters on different state-of-the-art detection methods
for synthetically generated face images (Chap. 9), DeepFakes videos (Chaps. 10–
14), morphed face images (Chaps. 15 and 16) and retouched face images (Chap. 17).
Chapters in Part II and III delve deeper into the topics of digital face manipulation
and detection and are oriented towards advanced readers.

Eventually, Part IV focuses on further topics including the use of facemanipulation
for privacy enhancement and the detection thereof (Chap. 18), practical challenges of
face manipulation in remote scenarios (Chap. 19) as well as social and ethical issues
(Chap. 20). Finally, in a concluding chapter authored by different contributors to this
handbook, open research problems and future trends are summarised (Chap. 21).

We would like to express our thanks to the editors of the Springer book series
Advances in Computer Vision and Pattern Recognition. We also would like to
thank all of the authors for the smooth cooperation and their excellent contri-
butions to this handbook. The work on this handbook was supported by the

v
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German Federal Ministry of Education and Research and the Hessian Ministry
of Higher Education, Research, Science and the Arts within their joint support
of the National Research Center for Applied Cybersecurity ATHENE and the
projects PRIMA (H2020-MSCA-ITN-2019-860315), TRESPASS-ETN (H2020-
MSCA-ITN-2019-860813), BIBECA (MINECO/FEDER RTI2018-101248-B-I00)
and COSTCA16101 (MULTI-FORESEE). Finally, we would like to thank our fami-
lies and friends for their support and encouragement while we were working on this
handbook.

Darmstadt, Germany
Madrid, Spain
Madrid, Spain
Gjøvik, Norway

Christian Rathgeb
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Part I
Introduction



Chapter 1
An Introduction to Digital Face
Manipulation

Ruben Tolosana, Ruben Vera-Rodriguez, Julian Fierrez, Aythami Morales,
and Javier Ortega-Garcia

Abstract Digital manipulation has become a thriving topic in the last few years,
especially after the popularity of the term DeepFakes. This chapter introduces the
prominent digital manipulations with special emphasis on the facial content due to
their large number of possible applications. Specifically, we cover the principles of
six types of digital face manipulations: (i) entire face synthesis, (ii) identity swap,
(iii) face morphing, (iv) attribute manipulation, (v) expression swap (a.k.a. face reen-
actment or talking faces), and (vi) audio- and text-to-video. These six main types of
face manipulation are well established by the research community, having received
the most attention in the last few years. In addition, we highlight in this chapter
publicly available databases and code for the generation of digital fake content.

1.1 Introduction

Traditionally, the number and realism of digital facemanipulations have been limited
by the lack of sophisticated editing tools, the domain expertise required, and the
complex and time-consuming process involved [2–4]. For example, an early work
in this topic [5] was able to modify the lip motion of a subject speaking using a

The present chapter is an updated adaptation of the journal article [1].
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4 R. Tolosana et al.

different audio track, by making connections between the sounds of the audio track
and the shape of the subject’s face. However, from the original manual synthesis
techniques up to now, many things have rapidly evolved. Nowadays, it is becoming
increasingly easy to automatically synthesise non-existent faces or manipulate a real
face (a.k.a. bonafide presentation [6]) of one subject in an image/video, thanks to:
(i) the accessibility to large-scale public data and (ii) the evolution of deep learning
techniques that eliminate many manual editing steps such as Autoencoders (AE)
and Generative Adversarial Networks (GAN) [7, 8]. As a result, open software and
mobile applications such as ZAO1 and FaceApp2 have been released opening the
door to anyone to create fake images and videos, without any experience in the field.

In this context of digital face manipulation, there is one term that has recently
dominated the panorama of social media [9, 10], becoming at the same time a great
public concern [11]: DeepFakes.

In general, the popular term DeepFakes is referred to all digital fake content
created by means of deep learning techniques [1, 12]. It was originated after a Reddit
user named “deepfakes” claimed in late 2017 to have developed a machine learning
algorithm that helped him to swap celebrity faces into porn videos [13]. The most
harmful usages of DeepFakes include fake pornography, fake news, hoaxes, and
financial fraud [14]. As a result, the area of research traditionally dedicated to general
media forensics [15–18], is being invigorated and is now dedicating growing efforts
for detecting facial manipulation in image and video [19, 20].

In addition, part of these renewed efforts in fake face detection are built around
past research in biometric presentation attack detection (a.k.a. spoofing) [21–23]
and modern data-driven deep learning [24–27]. Chapter 2 provides an introductory
overview of face manipulation in biometric systems.

The growing interest in fake face detection is demonstrated through the increas-
ing number of workshops in top conferences [28–32], international projects such
as MediFor funded by the Defense Advanced Research Project Agency (DARPA),
and competitions such as the Media Forensics Challenge (MFC2018)3 launched by
the National Institute of Standards and Technology (NIST), the Deepfake Detec-
tion Challenge (DFDC)4 launched by Facebook, and the recent DeeperForensics
Challenge.5

In response to those increasingly sophisticated and realistic manipulated content,
large efforts are being carried out by the research community to design improved
methods for face manipulation detection [1, 12]. Traditional fake detection methods
in media forensics have been commonly based on: (i) in-camera, the analysis of the
intrinsic “fingerprints” (patterns) introduced by the camera device, both hardware
and software, such as the optical lens [33], colour filter array and interpolation [34,
35], and compression [36, 37], among others, and (ii) out-camera, the analysis of

1 https://apps.apple.com/cn/app/id1465199127.
2 https://apps.apple.com/gb/app/faceapp-ai-face-editor/id1180884341.
3 https://www.nist.gov/itl/iad/mig/media-forensics-challenge-2018.
4 https://www.kaggle.com/c/deepfake-detection-challenge.
5 https://competitions.codalab.org/competitions/25228.

http://dx.doi.org/10.1007/978-3-030-87664-7_2
https://apps.apple.com/cn/app/id1465199127
https://apps.apple.com/gb/app/faceapp-ai-face-editor/id1180884341
https://www.nist.gov/itl/iad/mig/media-forensics-challenge-2018
https://www.kaggle.com/c/deepfake-detection-challenge
https://competitions.codalab.org/competitions/25228


1 An Introduction to Digital Face Manipulation 5

the external fingerprints introduced by editing software, such as copy-paste or copy-
move different elements of the image [38, 39], reduce the frame rate in a video [40,
41], etc. Chapter 3 provides an in-depth literature review of traditional multimedia
forensics before the deep learning era.

However, most of the features considered in traditional fake detection methods
are highly dependent on the specific training scenario, being therefore not robust
against unseen conditions [2, 16, 26]. This is of special importance in the era we live
in as most media fake content is usually shared on social networks, whose platforms
automatically modify the original image/video, for example, through compression
and resize operations [19, 20].

This first chapter is an updated adaptation of the journal article presented in [1], and
serves in this book as an introductory part of the most popular digital manipulations
with special emphasis to the facial content due to the large number of possible harmful
applications, e.g., the generation of fake news that would provide misinformation in
political elections and security threats [42, 43], among others. Specifically, we cover
in Sect. 1.2 six types of digital face manipulations: (i) entire face synthesis, (ii)
identity swap, (iii) face morphing, (iv) attribute manipulation, (v) expression swap
(a.k.a. face reenactment or talking faces), and (vi) audio- and text-to-video. These
six main types of face manipulation are well established by the research community,
receiving most attention in the last few years. Finally, we provide in Sect. 1.3 our
concluding remarks.

1.2 Types of Digital Face Manipulations

1.2.1 Entire Face Synthesis

This manipulation creates entire non-existent face images. These techniques achieve
astonishing results, generating high-quality facial images with a high level of realism
for the observer. Fig. 1.1 shows some examples for entire face synthesis generated
using StyleGAN. This manipulation could benefit many different sectors such as
the video game and 3D-modelling industries, but it could also be used for harmful
applications such as the creation of very realistic fake profiles on social networks in
order to generate misinformation.

Entire face synthesis manipulations are created through powerful GANs. In gen-
eral, a GAN consists of two different neural networks that contest with each other in
a minimax game: the Generator G that captures the data distribution and creates new
samples, and the Discriminator D that estimates the probability that a sample comes
from the training data (real) rather than G (fake). The training procedure for G is to
maximise the probability of D making a mistake, creating, therefore, high-quality
fake samples. After the training process, D is discarded and G is used to create fake
content. This concept has been exploited in the last years for the entire face synthesis,
improving the realism of the manipulations as can be seen in Fig. 1.1.

http://dx.doi.org/10.1007/978-3-030-87664-7_3
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One of the first popular approaches in this sense was ProGAN [44]. The key idea
was to improve the synthesis process growing G and D progressively, i.e., starting
from a low resolution, and adding new layers that model increasingly fine details as
training progresses. Experiments were performed using the CelebA database [45],
showing promising results for the entire face synthesis. The code of the ProGAN
architecture is publicly available in GitHub.6 Later on, Karras et al. proposed an
enhanced version named StyleGAN [46] that considered an alternative G architec-
ture motivated by the style transfer literature [47]. StyleGAN proposes an alternative
generator architecture that leads to an automatically learned, unsupervised separation
of high-level attributes (e.g., pose and identity when trained on human faces) and
stochastic variation in the generated images (e.g., freckles, hair), and it enables intu-
itive, scale-specific control of the synthesis. Examples of this type of manipulations
are shown in Fig. 1.1, using CelebA-HQ and FFHQ databases for the training of the
StyleGAN [44, 46]. The code of the StyleGAN architecture is publicly available in
GitHub.7

Finally, one of the prominent GAN approaches is StyleGAN2 [48], and Style-
GAN2 with adaptive discriminator augmentation (StyleGAN2-ADA) [49]. Training
a GAN using too little data typically leads to D overfitting, causing training to
diverge. StyleGAN2-ADA proposes an adaptive discriminator augmentation mech-
anism that significantly stabilises training in limited data regimes. The approach
does not require changes to loss functions or network architectures, and is applicable
both when training from scratch and when fine-tuning an existing GAN on another
dataset. The authors demonstrated that good results are possible to achieve by using
only a few thousand training images. The code of the StyleGAN2-ADA architecture
is publicly available in GitHub.8

Based on these GAN approaches, different databases are publicly available for
research on the entire face synthesis manipulation. Table 1.1 summarises the main
publicly available databases in the field, highlighting the specific GAN approach
considered in each of them. It is interesting to remark that each fake image may be
characterised by a specific GAN fingerprint just like natural images are identified
by a device-based fingerprint (i.e., PRNU). In fact, these fingerprints seem to be
dependent not only of the GAN architecture, but also to the different instantiations
of it [50, 51].

In addition, as indicated in Table 1.1, it is important to note that public databases
only contain the fake images generated using the GAN architectures. In order to
be able to perform real/fake detection experiments on this digital manipulation
group, researchers need to obtain real face images from other public databases
such as CelebA [45], FFHQ [46], CASIA-WebFace [53], VGGFace2 [54], or Mega-
Face2 [55] among many others.

6 https://github.com/tkarras/progressive_growing_of_gans.
7 https://github.com/NVlabs/stylegan.
8 https://github.com/NVlabs/stylegan2-ada-pytorch.

https://github.com/tkarras/progressive_growing_of_gans
https://github.com/NVlabs/stylegan
https://github.com/NVlabs/stylegan2-ada-pytorch
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Table 1.1 Entire face synthesis: Publicly available databases

Database Real images Fake images

100K-Generated-Images (2019) [46] – 100,000 (StyleGAN)

10K-Faces (2019) [52] – 10,000 (–)

DFFD (2019) [24] – 100,000 (StyleGAN)
200,000 (ProGAN)

iFakeFaceDB (2019) [26] – 250,000 (StyleGAN)
80,000 (ProGAN)

100K-Generated-Images (2020) [48] – 100,000 (StyleGAN2)

100K-Generated-Images (2020) [49] – 100,000 (StyleGAN2-ADA)

R
ea

l
F
ak

e

Fig. 1.1 Real and fake examples of the Entire face synthesis manipulation group. Real
images are extracted from http://www.whichfaceisreal.com/ and fake images from https://
thispersondoesnotexist.com

We provide next a short description of each public database. In [46], Karras et al.
released a set of 100,000 synthetic face images, named 100K-Generated-Images.9

This database was generated using their proposed StyleGAN architecture, which was
trained using the FFHQ dataset [46].

Another public database is 10K-Faces [52], containing 10,000 synthetic images
for research purposes. In this database, contrary to the 100K-Generated-Images
database, the network was trained using photos of models, considering face images
from a more controlled scenario (e.g., with a flat background). Thus, no strange
artefacts created by the GAN architecture are included in the background of the
images. In addition, this dataset considers other interesting aspects such as ethnicity
and gender diversity, as well as other metadata such as age, eye colour, hair colour
and length, and emotion.

9 https://github.com/NVlabs/stylegan.

http://www.whichfaceisreal.com/
https://thispersondoesnotexist.com
https://thispersondoesnotexist.com
https://github.com/NVlabs/stylegan
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Fig. 1.2 Examples of a fake
image created using
StyleGAN and its improved
version after removing the
GAN-fingerprint information
with GANprintR [26]

(a) Fake (b) Fake after GANprintR

Recently, Dang et al. introduced in [24] a new database named Diverse Fake Face
Dataset (DFFD).10 Regarding the entire face synthesis manipulation, the authors cre-
ated 100,000 and 200,000 fake images through the pre-trained ProGAN and Style-
GAN models, respectively.

Neves et al. presented in [26] the iFakeFaceDB database. This database comprises
250,000 and 80,000 synthetic face images originally created through StyleGAN and
ProGAN, respectively. As an additional feature in comparison to previous databases,
and in order to hinder fake detectors, in this database, the fingerprints produced by
the GAN architectures were removed through an approach namedGANprintR (GAN
fingerprint Removal), while keeping very realistic appearance. Figure 1.2 shows an
example of a fake image directly generated with StyleGAN and its improved version
after removing the GAN-fingerprint information. As a result of the GANprintR step,
iFakeFaceDB presents a higher challenge for advanced fake detectors compared with
the other databases.

Finally, we highlight the two popular 100K-Generated-Images public databases
released by Karras et al. [48, 49], based on the prominent StyleGAN2 and
StyleGAN2-ADA architectures. The corresponding fake databases trained using the
FFHQ dataset [46] can be found in their GitHub.11,12

This section has described the main aspects of the entire face synthesis manipula-
tion. For a complete understanding of fake detection techniques on this face manip-
ulation, we refer the reader to Chap.9.

1.2.2 Identity Swap

This manipulation consists of replacing the face of one subject in a video (source)
with the face of another subject (target). Unlike the entire face synthesis, where
manipulations are carried out at image level, in identity swap the objective is to gen-
erate realistic fake videos. Figure 1.3 shows some visual image examples extracted

10 http://cvlab.cse.msu.edu/dffd-dataset.html.
11 https://github.com/NVlabs/stylegan2.
12 https://github.com/NVlabs/stylegan2-ada.

http://dx.doi.org/10.1007/978-3-030-87664-7_9
http://cvlab.cse.msu.edu/dffd-dataset.html
https://github.com/NVlabs/stylegan2
https://github.com/NVlabs/stylegan2-ada
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Fig. 1.3 Real and fake examples of the Identity Swap manipulation group. Face images are
extracted from videos of Celeb-DF database [56]

from videos of Celeb-DF database [56]. In addition, very realistic videos of this
type of manipulation can be seen on Youtube.13 Many different sectors could benefit
from this type of manipulation, in particular, the film industry.14 However, on the
other side, it could also be used for bad purposes such as the creation of celebrity
pornographic videos, hoaxes, and financial fraud, among many others.

Two different approaches are usually considered for identity swap manipulations:
(i) classical computer graphics-based techniques such as FaceSwap,15 and (ii) novel
deep learning techniques known as DeepFakes, e.g., the recent ZAOmobile applica-
tion,16 and the popular FaceSwap17 and DeepFaceLab18 software tools. In general,
for each frame of the source video, the following stages are considered in the gen-
eration process of the identity swap video [57]: (i) face detection and cropping, (ii)
extraction of intermediate representations, (iii) synthesis of a new face based on some
driving signal (e.g., another face), and finally (iv) blending the generated face of the
target subject into the source video, as shown in Fig. 1.3. For each of these stages,
many possibilities could be considered to improve the quality of the fake videos. We

13 https://www.youtube.com/watch?v=UlvoEW7l5rs.
14 https://www.youtube.com/c/Shamook/featured.
15 https://github.com/MarekKowalski/FaceSwap.
16 https://apps.apple.com/cn/app/id1465199127.
17 https://github.com/deepfakes/faceswap.
18 https://github.com/iperov/DeepFaceLab.

https://www.youtube.com/watch?v=UlvoEW7l5rs
https://www.youtube.com/c/Shamook/featured.
https://github.com/MarekKowalski/FaceSwap
https://apps.apple.com/cn/app/id1465199127
https://github.com/deepfakes/faceswap
https://github.com/iperov/DeepFaceLab
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Table 1.2 Identity swap: Publicly available databases

Database Real videos Fake videos

1st generation

UADFV (2018) [58] 49 (Youtube) 49 (FakeApp)

DeepfakeTIMIT (2018) [11] – 620 (faceswap-GAN)

FaceForensics++ (2019) [20] 1000 (Youtube) 1000 (FaceSwap)
1000 (DeepFake)

2nd generation

DeepFakeDetection (2019) [66] 363 (Actors) 3068 (DeepFake)

Celeb-DF (2019) [56] 890 (Youtube) 5639 (DeepFake)

DFDC Preview (2019) [59] 1131 (Actors) 4119 (Multiple)

DFDC (2020) [67] 23,654 (Actors) 104,500 (Multiple)

DeeperForensics-1.0 (2020) [60] 50,000 (Actors) 1000 (DeepFake)

WildDeepfake (2020) [61] 3805 (Internet) 3509 (DeepFake)

describe next the main aspects considered in publicly available fake databases. For
more details about the generation process, we refer the reader to Chaps.4, and 14.

Since publicly available fake databases such as the UADFV database [58], up to
the latest Celeb-DF, DFDC, DeeperForensics-1.0, andWildDeepfake databases [56,
59–61], many visual improvements have been carried out, increasing the realism of
fake videos. As a result, identity swap databases can be divided into two different
generations. Table 1.2 summarises the main details of each public database, grouped
in each generation.

Three different databases are grouped in the first generation. UADFV was one of
the first public databases [58]. This database comprises 49 real videos fromYoutube,
which were used to create 49 fake videos through the FakeApp mobile application,19

swapping in all of them the original face with the face of Nicolas Cage. There-
fore, only one identity is considered in all fake videos. Each video represents one
individual, with a typical resolution of 294 × 500 pixels, and 11.14 s on average.

Korshunov and Marcel introduced in [11] the DeepfakeTIMIT database. This
database comprises 620 fake videos of 32 subjects from the VidTIMIT database [62].
Fake videos were created using the public GAN-based face-swapping algorithm.20

In that approach, the generative network is adopted from CycleGAN [63], using the
weights of FaceNet [64]. The method Multi-Task Cascaded Convolution Networks
is used for more stable detections and reliable face alignment [65]. Besides, the
Kalman filter is also considered to smooth the bounding box positions over frames
and eliminate jitter on the swapped face. Regarding the scenarios considered in
DeepfakeTIMIT, two different qualities are considered: (i) low quality (LQ) with
images of 64 × 64 pixels, and (ii) high quality (HQ) with images of 128 × 128

19 https://www.malavida.com/en/soft/fakeapp/.
20 https://github.com/shaoanlu/faceswap-GAN.

http://dx.doi.org/10.1007/978-3-030-87664-7_4
http://dx.doi.org/10.1007/978-3-030-87664-7_14
https://www.malavida.com/en/soft/fakeapp/
https://github.com/shaoanlu/faceswap-GAN
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pixels. Additionally, different blending techniques were applied to the fake videos
regarding the quality level.

One of the most popular databases is FaceForensics++ [20]. This database was
introduced in early 2019 as an extension of the original FaceForensics database [68],
which was focussed only on expression swap. FaceForensics++ contains 1000 real
videos extracted from Youtube. Regarding the identity swap fake videos, they were
generated using both computer graphics and DeepFake approaches (i.e., learning
approach). For the computer graphics approach, the authors considered the pub-
licly available FaceSwap algorithm21 whereas for the DeepFake approach, fake
videos were created through the DeepFake FaceSwap GitHub implementation.22

The FaceSwap approach consists of face alignment, Gauss–Newton optimization
and image blending to swap the face of the source subject to the target subject. The
DeepFake approach, as indicated in [20], is based on two autoencoders with a shared
encoder that is trained to reconstruct training images of the source and the target
face, respectively. A face detector is used to crop and align the images. To create
a fake image, the trained encoder and decoder of the source face are applied to the
target face. The autoencoder output is then blended with the rest of the image using
Poisson image editing [69]. Regarding the figures of the FaceForensics++ database,
1000 fake videos were generated for each approach. Later on, a new dataset named
DeepFakeDetection, grouped inside the 2nd generation due to its higher realism, was
included in the FaceForensics++ framework with the support of Google [66]. This
dataset comprises 363 real videos from 28 paid actors in 16 different scenes. Addi-
tionally, 3068 fake videos are included in the dataset based on DeepFake FaceSwap
GitHub implementation. It is important to remark that for both FaceForensics++
and DeepFakeDetection databases different levels of video quality are considered, in
particular: (i) RAW (original quality), (ii) HQ (constant rate quantization parameter
equal to 23), and (iii) LQ (constant rate quantization parameter equal to 40). This
aspect simulates the video processing techniques usually applied in social networks.

Several databases have been recently released, including them in the 2nd gener-
ation due to their higher realism. Li et al. presented in [56] the Celeb-DF database.
This database aims to provide fake videos of better visual qualities, similar to the
popular videos that are shared on the Internet,23 in comparison to previous databases
that exhibit low visual quality for the observer with many visible artefacts. Celeb-DF
consists of 890 real videos extracted from Youtube, and 5639 fake videos, which
were created through a refined version of a public DeepFake generation algorithm,
improving aspects such as the low resolution of the synthesised faces and colour
inconsistencies.

Facebook in collaboration with other companies and academic institutions such
as Microsoft, Amazon, and the MIT launched at the end of 2019 a new challenge
named theDeepfakeDetection Challenge (DFDC) [59]. They first released a preview
dataset consisting of 1131 real videos from 66 paid actors, and 4119 fake videos.

21 https://github.com/MarekKowalski/FaceSwap.
22 https://github.com/deepfakes/faceswap.
23 https://www.youtube.com/channel/UCKpH0CKltc73e4wh0_pgL3g.

https://github.com/MarekKowalski/FaceSwap
https://github.com/deepfakes/faceswap
https://www.youtube.com/channel/UCKpH0CKltc73e4wh0_pgL3g
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Later on, they released the complete DFDC dataset comprising over 100K fake
videos using 8 different face- swapping methods such as autoencoders, StyleGAN
and morphable-mask models [67].

Another interesting database is DeeperForensics-1.0 [60]. The first version of
this database (1.0) comprises 60K videos (50K real videos and 10K fake videos).
Real videos were recorded in a professional indoor environment using 100 paid
actors and ensuring variability in gender, age, skin colour, and nationality. Regarding
fake videos, they were generated using a newly proposed end-to-end face-swapping
framework based on Variational Autoencoders. In addition, extensive real-world
perturbations (up to 35 in total) such as JPEGcompression,Gaussian blur, and change
of colour saturation were considered. All details of DeeperForensics-1.0 database,
together with the corresponding competition, are described in Chap. 14.

Finally, Zi et al. presented in [61] WildDeepfake, a challenging real-world
database for DeepFake detection. This database comprises 7314 videos (3805 and
3509 real and fake videos, respectively) collected completely from the internet. Con-
trary to previous databases, WildDeepfake claims to contain a higher diversity in
terms of scenes and people in each scene, and also in facial expressions.

To conclude this section, we discuss at a higher level the key differences among
fake databases of the 1st and 2nd generations. In general, fake videos of the 1st
generation are characterised by: (i) low-quality synthesised faces, (ii) different colour
contrast among the synthesised fake mask and the skin of the original face, (iii)
visible boundaries of the fake mask, (iv) visible facial elements from the original
video, (v) low pose variations, and (vi) strange artefacts among sequential frames.
Also, they usually consider controlled scenarios in terms of camera position and light
conditions. Many of these aspects have been successfully improved in databases of
the 2nd generation, not only at visual level, but also in terms of variability (in-
the-wild scenarios). For example, the recent DFDC database considers different
acquisition scenarios (i.e., indoors and outdoors), light conditions (i.e., day, night,
etc.), distances from the subject to the camera, and pose variations, among others.
Figure1.4 graphically summarises the weaknesses present in identity swap databases
of the 1st generation and the improvements carried out in the 2nd generation. Finally,
it is also interesting to remark the larger number of fake videos included in the
databases of the 2nd generation.

This section has described the main aspects of the identity swap digital manip-
ulation. For a complete understanding of the generation process and fake detection
techniques, we refer the reader to Chaps. 4, 5, and 10–14.

http://dx.doi.org/10.1007/978-3-030-87664-7_14
http://dx.doi.org/10.1007/978-3-030-87664-7_4
http://dx.doi.org/10.1007/978-3-030-87664-7_5
http://dx.doi.org/10.1007/978-3-030-87664-7_10
http://dx.doi.org/10.1007/978-3-030-87664-7_14
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stIdentity Swap: 1  Generation

ndIdentity Swap: 2  Generation

Low-Quality Synthesised Faces Colour Contrast in the Fake Mask

Visible Elements from Original Video Strange Artifacts between Frames

Visible Boundaries in the Fake Mask

High Pose Variations

Scenarios: Indoors and Outdoors Light Conditions: Day, Night, etc.

Distance from the Camera

Weaknesses  that limit the naturalness and facilitate fake detection

Improvements  that augment the naturalness and hinder fake detection

Fig. 1.4 Graphical representation of the weaknesses present in Identity Swap databases of the
1st generation and the improvements carried out in the 2nd generation, not only at visual level, but
also in terms of variability (in-the-wild scenarios). Fake images are extracted from: UADFV and
FaceForensics++ (1st generation) [20, 58]; Celeb-DF and DFDC (2nd generation) [56, 59]

1.2.3 Face Morphing

Face morphing is a type of digital face manipulation that can be used to create
artificial biometric face samples that resemble the biometric information of two or
more individuals [70, 71]. This means that the new morphed face image would be
successfully verified against facial samples of these two or more individuals creating
a serious threat to face recognition systems [72, 73]. Figure 1.5 shows an example
of the face morphing digital manipulation adapted from [70]. It is worth noting that
face morphing is mainly focussed on creating fake samples at the image level, not
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FakeReal Real

(a) Subject 1 (b) Face Morphing c) Subject 2

Fig. 1.5 Example for a Face morphing image (b) of subject 1 (a) and subject 2 (c). This figure
has been adapted from [70]

video such as identity swap manipulations. In addition, as shown in Fig. 1.5, frontal
view faces are usually considered.

There has been recently a large amount of research in the field of face morphing.
Comprehensive surveys have been published in [70, 74] including both morphing
techniques and also morphing attack detectors. In general, the following three con-
secutive stages are considered in the generation process of face morphing images: (i)
determining correspondences between the face images of the different subjects. This
is usually carried out by extracting landmark points, e.g., eyes, nose tips, mouth,
etc.; (ii) the real face images of the subjects are distorted until the corresponding
elements (landmarks) of the samples are geometrically aligned; and (iii) the colour
values of the warped images are merged, referred to as blending. Finally, postpro-
cessing techniques are usually considered to correct strange artefacts caused by
pixel/region-based morphing [75, 76].

Prominent benchmarks have been recently presented in the field of face morph-
ing. Raja et al. has recently presented an interesting framework in order to address
serious open issues in the field such as independent benchmarking, generalizability
challenges and considerations to age, gender, and ethnicity [77]. As a result, the
authors have presented a new sequestered dataset and benchmark24 for facilitating
the advancements of morphing attack detection. The database comprises morphed
and real images constituting 1800 photographs of 150 subjects. Morphing images
are generated using 6 different algorithms, presenting a wide variety of possible
approaches.

In this line,NISThas recently launched theFRVTMORPHevaluation.25 This is an
ongoing evaluation designed to obtain an assessment on morph detection capability
with two separate tasks: (i) algorithmic capability to detect face morphing (mor-
phed/blended faces) in still photographs, and (ii) face recognition algorithm resis-

24 https://biolab.csr.unibo.it/fvcongoing/UI/Form/BenchmarkAreas/BenchmarkAreaDMAD.
aspx.
25 https://pages.nist.gov/frvt/html/frvt_morph.html.

https://biolab.csr.unibo.it/fvcongoing/UI/Form/BenchmarkAreas/BenchmarkAreaDMAD.aspx
https://biolab.csr.unibo.it/fvcongoing/UI/Form/BenchmarkAreas/BenchmarkAreaDMAD.aspx
https://pages.nist.gov/frvt/html/frvt_morph.html
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tance against morphing. The evaluation is updated as new algorithms and datasets
are added.

Despite these recent evaluations, we would like to highlight the lack of public
databases for research. To the best of our knowledge, the only publicly available
database is the AMSL Face Morph Image dataset26 [78]. This is mainly produced
due to most face morphing databases are created from existing face databases. As a
result, the licenses can not be easily transferred which often prevents sharing.

This section has briefly described the main aspects of face morphing. For a com-
plete understanding of the digital generation and fake detection techniques, we refer
the reader to Chaps. 2, 6, 15, and 16.

1.2.4 Attribute Manipulation

This manipulation, also known as face editing or face retouching, consists of modi-
fying some attributes of the face such as the colour of the hair or the skin, the gender,
the age, adding glasses, etc. [79]. This manipulation process is usually carried out
through GAN such as the StarGAN approach proposed in [80]. One example of this
type of manipulation is the popular FaceApp mobile application. Consumers could
use this technology to try on a broad range of products such as cosmetics andmakeup,
glasses, or hairstyles in a virtual environment. Figure 1.6 shows some examples for
the attribute manipulation generated using FaceApp [81].

Despite the success of GAN-based frameworks for face attribute manipula-
tions [80, 82–88], few databases are publicly available for research in this area, to
the best of our knowledge. Themain reason is that the code of most GAN approaches
are publicly available, so researchers can easily generate their own fake databases
as they like. Therefore, this section aims to highlight the latest GAN approaches in
the field, from older to closer in time, providing also the link to their corresponding
codes.

In [86], the authors introduced the Invertible Conditional GAN (IcGAN)27 for
complex image editing as the union of an encoder used jointly with a conditional
GAN (cGAN) [89]. This approach provides accurate results in terms of attribute
manipulation. However, it seriously changes the face identity of the subject.

Lample et al. proposed in [83] an encoder-decoder architecture that is trained
to reconstruct images by disentangling the salient information of the image and
the attribute values directly in the latent space.28 However, as it happens with the
IcGAN approach, the generated images may lack some details or present unexpected
distortions.

26 https://omen.cs.uni-magdeburg.de/disclaimer/index.php.
27 https://github.com/Guim3/IcGAN.
28 https://github.com/facebookresearch/FaderNetworks.

http://dx.doi.org/10.1007/978-3-030-87664-7_2
http://dx.doi.org/10.1007/978-3-030-87664-7_6
http://dx.doi.org/10.1007/978-3-030-87664-7_15
http://dx.doi.org/10.1007/978-3-030-87664-7_16
https://omen.cs.uni-magdeburg.de/disclaimer/index.php
https://github.com/Guim3/IcGAN
https://github.com/facebookresearch/FaderNetworks
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Fig. 1.6 Real and fake examples of the Attribute Manipulation group. Real images are extracted
from http://www.whichfaceisreal.com/ and fake images are generated using FaceApp

An enhanced approach named StarGAN29 was proposed in [80]. Before the Star-
GAN approach, many studies had shown promising results in image-to-image trans-
lations for two domains in general. However, few studies had focussed on handling
more than two domains. In that case, a direct approach would be to build differ-
ent models independently for every pair of image domains. StarGAN proposed a
novel approach able to perform image-to-image translations for multiple domains
using only a single model. The authors trained a conditional attribute transfer net-
work via attribute-classification loss and cycle consistency loss. Good visual results
were achieved compared with previous approaches. However, it sometimes includes
undesired modifications from the input face image such as the colour of the skin.

Almost at the same timeHe et al. proposed in [82] attGAN,30 a novel approach that
removes the strict attribute-independent constraint from the latent representation, and
just applies the attribute-classification constraint to the generated image to guarantee
the correct change of the attributes. AttGAN provides state-of-the-art results on
realistic attribute manipulation with other facial details well preserved.

One of the latest approaches proposed in the literature is STGAN31 [84]. In gen-
eral, attribute manipulation can be tackled by incorporating an encoder-decoder or
GAN. However, as commented Liu et al. [84], the bottleneck layer in the encoder-
decoder usually provides blurry and low quality manipulation results. To improve
this, the authors presented and incorporated selective transfer units with an encoder-
decoder for simultaneously improving the attribute manipulation ability and the
image quality. As a result, STGAN has recently outperformed the state of the art
in attribute manipulation.

Finally, we would like to highlight two recent attribute manipulation approaches
that are currently achieving also very realistic visual results: RelGAN and SSC-

29 https://github.com/yunjey/stargan/blob/master/README.md.
30 https://github.com/LynnHo/AttGAN-Tensorflow.
31 https://github.com/csmliu/STGAN.

http://www.whichfaceisreal.com/
https://github.com/yunjey/stargan/blob/master/README.md
https://github.com/LynnHo/AttGAN-Tensorflow
https://github.com/csmliu/STGAN
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GAN [90, 91]. RelGAN improves multi-domain image-to-image translation,
whereas SSCGAN injects the target attribute information into multiple style skip
connection paths between the encoder and decoder in order to incorporate global
facial statistics.

Despite the fact that the code of the most attribute manipulation approaches are
publicly available, the lack of public databases and experimental protocols results
crucial when comparing among different manipulation detection approaches, other-
wise it is not possible to perform a fair comparison among studies. Up to now, to the
best of our knowledge, the DFFD database [24] seems to be the only public database
that considers this type of facial manipulations. This database comprises 18,416 and
79,960 fake images generated through FaceApp and StarGAN approaches, respec-
tively.

This section has briefly described the main aspects of the face attribute manipu-
lation. For a complete understanding of this digital manipulation group, we refer the
reader to Chap. 17.

1.2.5 Expression Swap

This manipulation, also known as face reenactment, consists of modifying the facial
expression of the subject. Although different manipulation techniques are proposed
in the literature, e.g., at image level through popular GAN architectures [84], in this
group we focus on the most popular techniques Face2Face and NeuralTextures [92,
93], which replaces the facial expression of one subject in a video with the facial
expression of another subject. Figure 1.7 shows some visual examples extracted from
FaceForensics++ database [20]. This type ofmanipulation could be usedwith serious
consequences, e.g., the popular video of Mark Zuckerberg saying things he never
said.32

To the best of our knowledge, the only available database for research in this area
is FaceForensics++ [20], an extension of FaceForensics [68].

Initially, the FaceForensics database was focussed on the Face2Face
approach [93]. This is a computer graphics approach that transfers the expression of
a source video to a target video while maintaining the identity of the target subject.
This was carried out through manual keyframe selection. Concretely, the first frames
of each video were used to obtain a temporary face identity (i.e., a 3D model), and
track the expression over the remaining frames. Then, fake videos were generated
by transferring the source expression parameters of each frame (i.e., 76 Blendshape
coefficients) to the target video. Later on, the same authors presented in FaceForen-
sics++ a new learning approach based on NeuralTextures [92]. This is a rendering
approach that uses the original video data to learn a neural texture of the target
subject, including a rendering network. In particular, the authors considered in their
implementation a patch-based GAN-loss as used in Pix2Pix [94]. Only the facial

32 https://www.bbc.com/news/technology-48607673.

http://dx.doi.org/10.1007/978-3-030-87664-7_17
https://www.bbc.com/news/technology-48607673
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Fig. 1.7 Real and fake examples of theExpression Swapmanipulation group. Images are extracted
from videos of FaceForensics++ database [20]

expression corresponding to the mouth was modified. It is important to remark that
all data is available on the FaceForensics++ GitHub.33 In total, there are 1000 real
videos extracted from Youtube. Regarding the manipulated videos, 2000 fake videos
are available (1000 videos for each considered fake approach). In addition, it is
important to highlight that different video quality levels are considered, in particu-
lar: (i) RAW (original quality), (ii) HQ (constant rate quantization parameter equal
to 23), and (iii) LQ (constant rate quantization parameter equal to 40). This aspect
simulates the video processing techniques usually applied in social networks.

In addition to the Face2Face and NeuralTexture techniques considered in expres-
sion swap manipulations at video level, different approaches have been recently
proposed to change the facial expression in both images and videos. A very popular
approach was presented in [95]. Averbuch-Elor et al. proposed a technique to auto-
matically animate a still portrait using a video of a different subject, transferring the
expressiveness of the subject of the video to the target portrait. Unlike Face2Face
and NeuralTexture approaches that require videos from both input and target faces,
in [95] just an image of the target is needed. In this line, recent approaches have been
presented achieving astonishing results in both one-shot and few-shot learning [96–
98].

33 https://github.com/ondyari/FaceForensics.

https://github.com/ondyari/FaceForensics
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Fake

Real

Identity

Input Audio

Input Text This is an example of text-to-video 
digital face manipulation

Fig. 1.8 Real and fake example of theAudio-to-Video and Text-to-Video facemanipulation group

1.2.6 Audio-to-Video and Text-to-Video

A related topic to expression swap is the synthesis of video from audio or text.
Figure 1.8 shows an example for the audio- and text-to-video face manipulation.
These types of video face manipulations are also known as lip-sinc DeepFakes
[99] or audio-driven facial reenactment [100]. Popular examples can be seen on the
Internet.34

Regarding the synthesis of fake videos from audio (audio-to-video), Suwa-
janakorn et al. presented in [101] an approach to synthesise high-quality videos
of a subject (Obama in this case) speaking with accurate lip sync. For this, they used
as input to their approach many hours of previous videos of the subject together with
a new audio recording. In their approach, they employed a recurrent neural network
(based on Long Short-Term Memory, LSTM) to learn the mapping from raw audio
features to mouth shapes. Then, based on the mouth shape at each frame, they syn-
thesised high-quality mouth texture, and composited it with 3D pose alignment to
create the new video to match the input audio track, producing photorealistic results.

In [102], Song et al. proposed an approach based on a novel conditional recurrent
generation network that incorporates both image and audio features in the recurrent
unit for temporal dependency, and also a pair of spatial-temporal discriminators for
better image/video quality. As a result, their approach can model both lip and mouth
together with expression and head pose variations as a whole, achieving much more
realistic results. The source code is publicly available in GitHub.35 Also, in [103],
Song et al. presented a dynamic method not assuming a subject-specific rendering
network like in [101]. In their approach, they are able to generate very realistic fake
videos by carrying out a 3D face model reconstruction from the input video plus a
recurrent network to translate the source audio into expression parameters. Finally,

34 https://www.youtube.com/watch?v=VWMEDacz3L4.
35 https://github.com/susanqq/Talking_Face_Generation.

https://www.youtube.com/watch?v=VWMEDacz3L4
https://github.com/susanqq/Talking_Face_Generation


20 R. Tolosana et al.

they introduced anovel video renderingnetwork and adynamic programmingmethod
to construct a temporally coherent and photorealistic video. Video results are shown
on the Internet.36

Another interesting approach was presented in [104]. Zhou et al. proposed a
novel framework called Disentangled Audio-Visual System (DAVS), which gener-
ates high-quality talking face videos using disentangled audio-visual representation.
Both audio and video speech information can be employed as input guidance. The
source code is available in GitHub.37

Regarding the synthesis of fake videos from text (text-to-video), Fried et al. pro-
posed in [105] a method that takes as input a video of a subject speaking and the
desired text to be spoken, and synthesises a new video in which the subject’s mouth is
synchronised with the newwords. In particular, their method automatically annotates
an input talking-head video with phonemes, visemes, 3D face pose and geometry,
reflectance, expression, and scene illumination per frame. Finally, a recurrent video
generation network creates a photorealistic video that matches the edited transcript.
Examples of the fake videos generated with this approach are publicly available.38

Finally, we would like to highlight the work presented in [100], named Neural
Voice Puppetry. Thies et al. proposed an approach to synthesise videos of a target
actor with the voice of any unknown source actor or even synthetic voices that can be
generated utilising standard text-to-speech approaches, achieving astonishing visual
results.39

To the best of our knowledge, there are no publicly available databases and bench-
marks related to audio- and text-to-video fake detection content. Research on this
topic is usually carried out through the synthesis of in-house data using publicly
available implementations like the ones described in this section.

This section has briefly described the main aspects of the audio- and text-to-video
face manipulation. For a complete understanding of this digital manipulation group,
we refer the reader to Chap.8.

1.3 Conclusions

This chapter has served as an introduction of the most popular digital face manipu-
lations in the literature. In particular, we have covered six manipulation groups: (i)
entire face synthesis, (ii) identity swap, (iii) face morphing, (iv) attribute manipula-
tion, (v) expression swap (a.k.a. face reenactment or talking faces), and (vi) audio-
and text-to-video. For each of them, we have described the main principles, publicly
available databases, and code for the generation of digital fake content.

36 https://wywu.github.io/projects/EBT/EBT.html.
37 https://github.com/Hangz-nju-cuhk/Talking-Face-Generation-DAVS.
38 https://www.ohadf.com/projects/text-based-editing/.
39 https://justusthies.github.io/posts/neural-voice-puppetry/.

http://dx.doi.org/10.1007/978-3-030-87664-7_8
https://wywu.github.io/projects/EBT/EBT.html
https://github.com/Hangz-nju-cuhk/Talking-Face-Generation-DAVS
https://www.ohadf.com/projects/text-based-editing/
https://justusthies.github.io/posts/neural-voice-puppetry/
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For more details about digital face manipulation and fake detection techniques,
we refer the reader to Parts II and III of the present book. Finally, Part IV describes
further topics, trends, and challenges in the field of digital face manipulation and
detection.
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Chapter 2
Digital Face Manipulation in Biometric
Systems

Mathias Ibsen, Christian Rathgeb, Daniel Fischer, Pawel Drozdowski,
and Christoph Busch

Abstract Biometric technologies, in particular face recognition, are employed in
many personal, commercial, and governmental identity management systems around
the world. The processing of digitally manipulated face images within a face recog-
nition system may lead to false decisions and thus decrease the reliability of the
decision system. This necessitates the development of manipulation detection mod-
ules which can be seamlessly integrated into the processing chain of face recogni-
tion systems. This chapter discusses the impact of face image manipulation on face
recognition technologies. To this end, the basic processes and key components of bio-
metric systems are briefly introduced with particular emphasis on facial recognition.
Additionally, face manipulation detection scenarios and concepts of how to integrate
detection methods to face recognition systems are discussed. In an experimental
evaluation, it is shown that different types of face manipulation, i.e. retouching, face
morphing, and swapping, can significantly affect the biometric performance of face
recognition systems and hence impair their security. Eventually, this chapter provides
an outlook on issues and challenges that face manipulation poses to face recognition
technologies.
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Fig. 2.1 Examples of digital face manipulation: original face image (left), a slightly retouched face
image with increased eye size, slimmed nose, and cheeks (middle), and face image with a cat filter
(right)

2.1 Introduction

The facial image of a subject can be altered, i.e.manipulated, in the digital domain
such that the resulting digitally manipulated face image contains altered (biometric)
features of the subject in a manipulated form. Digital face manipulation algorithms
have advanced rapidly in recent years [50, 53]. In the scientific literature, numerous
methods which can be used to alter facial images, e.g. swapping [40], morphing
[43], or retouching [35], have been proposed for various application scenarios, e.g. in
the film industry. Due to their popularity, face manipulation algorithms are already
available in free web and mobile applications (apps). They typically allow their users
to easily manipulate facial images or videos. Existing apps provide a huge variety
of face manipulations ranging from funny filters to alterations in facial shape and
texture; see Fig. 2.1 for examples.

Manipulated facial images which look realistic may lead to a loss of trust in digital
content and can cause further harmby spreading false information [50].Moreover, the
automated processing ofmanipulated facial imagesmay lead to false decisions, e.g. in
a biometric system. For instance, face recognition performance might be impacted
by the aforementioned manipulations. Face recognition technologies are employed
for identity management in numerous application areas, e.g.mobile devices, access
control, forensics, or surveillance [24, 54].

Face image manipulations might be applied for different reasons,
e.g. beautification, by innocent users who have no intention of manipulating
an image to impair the security of a face recognition system. However, they may
also be applied by malicious users with the goal of interfering with the operation
of a face recognition system. Such attacks are referred to as presentation attacks
[19, 27]. Digital face image manipulation can be seen as presentation attacks in
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the digital domain.1 Face recognition systems have been shown to be particularly
vulnerable to presentation attacks [32], e.g. printouts of facial images or 3D masks.
Presentation attacks are either performed with the aim of identity concealment,
i.e. an attacker tries not to be recognized, or impersonation, i.e. an attacker tries to be
recognized as somebody else (target subject). Researchers have already shown that
both types of attacks are feasible with the help of digital face image manipulation
[50]. In many cases, only slight alterations of original facial images are necessary
to achieve alarmingly high attack success rates. This poses serious security risks to
face recognition systems.

Recently, numerous methods for detecting facial image manipulations have been
proposed, see [50, 53] for comprehensive surveys. Saidmanipulation detectionmeth-
ods can be applied in face recognition systems in order to protect against attacks
based on manipulated face images. Moreover, detection methods may be specifi-
cally designed for integration into the processing chain of face recognition systems
for different application scenarios.

This introductory chapter provides a brief overview of biometric face recognition.
The potential impacts of the digital face image manipulation on facial recognition
technologies are discussed, alongwith an empirical evaluation on a database compris-
ing common digital face alterations using state-of-the-art face recognition systems.
In addition, different face imagemanipulation detection scenarios and the integration
of detection modules into biometric systems are described.

This chapter is organized as follows: Sect. 2.2 briefly introduces the key processes
of generic biometric systems, in particular, face recognition. Subsequently, Sect. 2.3
discusses potential impacts of face imagemanipulation on the biometric performance
of face recognition as well as detection scenarios. Experimental case studies are
presented in Sect. 2.4. Finally, a summary and outlook are given in Sect. 2.5.

2.2 Biometric Systems

Biometric systems aim at establishing or verifying the identity or demographic
attributes of individuals. In the international standard ISO/IEC 2382-37 [18], “bio-
metrics” is defined as: “automated recognition of individuals based on their biological
and behavioural characteristics.” Humans possess, nearly universally, physiological
characteristics which are highly distinctive and can, therefore, be used to distinguish
between different individuals with a high degree of confidence. Prominent biomet-
ric characteristics are fingerprint, face, or iris. For a comprehensive introduction to
biometrics, the interested reader is referred to [20] and the handbook series [4, 24,
26, 39, 51].

1 In certain scenarios, digital face image manipulations can also be applied to perform presentation
attacks at enrolment which may be referred to as backdoor attacks.
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2.2.1 Processes

Generally, an automated biometric recognition system consists of: (1) a capture
device (e.g. a camera), with which the biometric samples (e.g. facial images) are
acquired; (2) a database which stores the biometric information and other personal
data; (3) signal processing algorithms, which estimate the quality of the acquired
sample, pre-process and extract the distinguishing features from it; and (4) compari-
son and decision algorithms, which enable ascertaining of similarity of two biometric
samples by comparing the extracted feature vectors and establishing whether or not
the two biometric samples belong to the same source.

During enrolment, a biometric capture device generates a reference sample of an
individual, proceeds to pre-process it, and extracts a feature vector which is stored
as a reference template. At the time of authentication, a probe sample is captured,
processed in the same way, and the resulting probe template is compared against a
reference template of a claimed identity (verification) or up to all stored reference
templates (identification).2 As a result, a (set of) biometric comparison score(s) is
compared against a pre-defined threshold yielding acceptance or rejection decision.
These processes are illustrated in Fig. 2.2.

In a biometric authentication attempt, two algorithmic errors may occur [17]:

• False Match: The comparison decision of “match” for a biometric probe and a
biometric reference that belong to different biometric capture subjects.

• FalseNon-Match: The comparison decision of “non-match” for a biometric probe
and a biometric reference that belong to the same biometric capture subject and
of the same biometric characteristic.

The probabilities of each of these erroneous decision outcomes are defined as:

• False Match Rate (FMR ): The proportion of the completed biometric non-mated
comparison trials that result in a false match.

• False Non-Match Rate (FNMR ): The proportion of the completed biometric
mated comparison trials that result in a false non-match.

TheFMR and theFNMR aremeasured at a certain decision threshold of the system.
A change of the decision threshold usually results in a decrease of one of the error

DecisionComparison

Database

Feature
extraction

Pre-
processingSensor

Authentication

Biometr ic
characteristic

Score Accept

Reject

Enrolment

Fig. 2.2 Overview of a biometric recognition system

2 This chapter focuses on biometric verification systems performing one-to-one comparisons.
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rates at a cost of increasing the other. In other words, there exists a fundamental trade-
off between system security (FMR) and convenience (FNMR) which is commonly
illustrated by a detection error trade-off (DET) plot. The operation point where the
FMR is equal to theFNMR is commonly referred to as Equal Error Rate (EER), which
is often used as a single representative value to compare the biometric performance
obtained by different algorithms.

2.2.2 Face Recognition

Face recognition systems are typically designed to process facial images captured
with visible imaging sensor,3 i.e.RGB colour cameras. In the pre-processing stage,
face detection and face alignment is performed. Subsequently, face sample quality is
estimated [46] and feature extraction is performed. For a long period of time, hand-
crafted feature extractors, e.g.Local Binary Patterns [1] and Gabor filters [47], were
predominately used. Said methods apply texture descriptors locally and aggregate
extracted features into an overall face descriptor. A large variety of such systems has
been proposed in the scientific literature, see [24, 25]. In contrast, current face recog-
nition technologies utilize deep learning and massive training datasets to learn rich
and compact representations of faces [15, 29]. The recent developments inDeepCon-
volutional Neural Networks (DCNNs) have led to breakthrough advances in facial
recognition accuracy. DCNNs are usually trained using differentiable loss functions.
A face embedding in the latent space is represented as a fixed-length real-valued
vector. The dissimilarity of such feature vectors can be effectively estimated through
simple distance measures, e.g.Euclidean distance. State-of-the-art face recognition
systems have already surpassed human-level performance [34, 49] even on uncon-
strained (captured “in-the-wild” or with low image quality) face databases, e.g. the
well-known Labeled Faces in the Wild (LFW) dataset [23].

2.3 Digital Face Manipulation in Biometric Systems

Advances in image manipulation software and machine learning technologies have
made it easier to realistically manipulate face images. Some digital face manipula-
tions are expected to impact the biometric performance of a face recognition system
as they e.g. can cause severe changes in facial appearance or obscure parts of a face.
Hence, methods capable of accurately detecting such manipulations are needed in
order to mitigate their negative impacts on biometric systems. Development of such
detection methods remains an open challenge.

3 There are also face recognition systems which utilize other sensors, e.g. depth sensors for 3D face
recognition.
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Fig. 2.3 Examples where the face of a digitally manipulated image is inaccurately detected

2.3.1 Impact on Biometric Performance

Digitally manipulated images may be introduced into a biometric system during
enrolment or authentication and in systems where images are not captured live
by a biometric capture device. It has been demonstrated that some manipulations
(e.g.morphed images) [10, 41] can be used by attackers to circumvent the security
of the system, whereas other manipulations usually carried out by bona fide users
like slight retouching has little to no security implications [36]. While manipulated
images can be a problem from a security-point-of-view, it can be of interest from a
usability perspective, and in some applications of face recognition systems, that face
recognition systems are robust to common manipulations in the digital domain. This
can for instance, be relevant if images from socialmedia are used in a face recognition
system, as it is likely that users have manipulated the images without any intention
of interfering with the operation of a face recognition system. Despite the intentions
of digitally manipulating a face image, such images can impact different modules of
a face recognition system if processed:

Face detection Digital face manipulations which occlude parts of a face or add
additional texture information (e.g. synthetic tattoos) are likely to affect a face
recognition system’s ability to detect a face accurately. Facial manipulations can
cause detection schemes to detect multiple faces or inaccurately determine the
region of interest, i.e. the face (examples are given in Fig. 2.3). If a face cannot be
properly detected, reliable recognition cannot be guaranteed.

Quality estimation It is expected that manipulations where part of a face is
occluded, in general, will obtain a lower estimated face quality score than faces
without occlusions. For other manipulations which aim at impersonation, it is not
expected that the manipulation will have a significant effect on the quality score.
If some types of digital manipulations receive a significantly lower quality score
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than bona fide images, quality estimation might be used to prevent the enrolment
of such manipulated samples into the face recognition system database.

Comparison and feature extraction Digital facial manipulations are expected to
impact the features extracted from facial images and affect the comparison scores
of mated and non-mated comparison trials. The expected behaviour depends on
the type of manipulation applied. For beautification and identity concealment, it is
expected that the performance significantly drops when a face is severely manip-
ulated or when occlusions occur over key areas such as the periocular region. For
manipulations that aim at impersonation, it is expected that themanipulated image
becomes more similar to the target identity than the source identity. Similarly, for
manipulations that aim at merging multiple identities into a single image, it is
expected that the similarity score is high for all individuals contributing to the
merged image.

The impact of digital face manipulations on face recognition systems depends
on the type and severity of the manipulation applied. For manipulations that only
alter few aspects of a facial image e.g. lighting condition and slight beautification, it
is not expected that the manipulation has a big impact as modern face recognition
systems are robust to such minor changes. For manipulations where a large part of a
face is occluded, the FNMRof the system is expected to be affected significantly. For
manipulations where a face is swapped with another individual’s face, it is expected
that the swapped face image becomes less similar to the source identity and more
similar to the target identity. For high-quality morphed images, it is expected that the
system will falsely accept multiple individuals.

2.3.2 Manipulation Detection Scenarios

Several detection algorithms have been proposed to improve the robustness of face
recognition systems to facial manipulations and to prevent image forgery. These
algorithms can be integrated into the existing face recognition systems and be used to
check the authenticity and integrity of imagery. In face recognition systems, detection
algorithms can be used to prevent that facial images, which have been manipulated,
are stored during enrolment or used during authentication.

For detectingmanipulated face images, there are two different detection scenarios:

1. No-reference detection
2. Differential detection

In no-reference detection, a single suspected image is given as input to the detec-
tion algorithm and analyzed. Thereupon, a detection score is produced and used
to determine whether the image is bona fide or manipulated. In differential detec-
tion, both the suspected image and a trusted live capture are used to determine if
the suspected image has been manipulated. No-reference detection is considered a
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Fig. 2.4 Categorisation of face manipulation detection schemes

more difficult problem and usually less accurate (see e.g. [28]). The possibility to
use differential detection in face recognition systems arises due to the availability
of pairs of images (reference and probe) during authentication, which is often not
the case in traditional image forensics where usually only a single image or video
is available. Despite the often superior performance of differential detection algo-
rithms, no-reference detection is still important in forensic scenarios when a trusted
live capture is not available. A conceptual overview of the two detection scenarios
is shown in Fig. 2.4.

Several algorithms for detecting digital manipulated face images have been pro-
posed e.g. [21, 33, 37, 40, 42, 45, 55]. In general, the existingmanipulation detection
schemes use (1) texture analysis, (2) digital forensics, or (3) deep-learning techniques
to detect manipulated images. The use of texture descriptors has shown promising
results e.g. for no-reference morphing attack detection as reported in [44]. Similarly,
forensics-based detection methods, e.g.methods which analyze Photo Response
Non-Uniformity (PRNU), have been shown to be useful for detecting some types of
digital manipulations and have, for instance, been applied to detect retouched [36]
and morphed images [7]. The features used in detection schemes based on digital
forensics or texture analysis are often highly dependent on the training scenario and
struggle to generalize well to unseen conditions and variations in post-processing.
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Fig. 2.5 Integration of manipulation detection and biometric recognition

Therefore, many state-of-the-art approaches utilize deep learning-based models, or
features extracted from such models to detect manipulated face images. As indicated
in [36] information fusion, like combining detection scores frommultiple algorithms,
can lead to amore robust detection system. For amore comprehensive overviewof the
current state-of-the-art in detecting manipulated face images, the reader is referred
to [2, 35, 43, 50, 52] and to the third part of this handbook.

Figure2.5 shows one possible integration of a manipulation detection algorithm
into a face recognition system.As illustrated, the output of themanipulation detection
and biometric recognition system can be fused together and used to make the final
decision. Information fusion is usually based on either decision-level or score-level
fusion. For decision-level fusion, the binary decision outputs of the manipulation
detection and biometric system are used to determine the authentication output. For
instance, a successful authentication output could be given only if neither of the sys-
tems rejects the input image. For score-level fusion, the scores produced by the two
systems are combined and used together with a threshold value to determine the final
authentication output. Chingovska et al. [5] investigated the impact of applying dif-
ferent score-level and decision-level fusion techniques for integrating a presentation
attack detection algorithm with a biometric recognition system and concluded that
there almost always was a trade-off between recognition and detection performance.

Another approach for making face recognition systems robust is to create algo-
rithms capable of inverting the facial manipulations, i.e. remove the manipulation.
Some authors have proposed algorithms capable of inverting specific manipulations,
e.g. [11, 55].

2.4 Experiments

In this section, the vulnerability of two state-of-the-art face recognition systems
towards three types of digital manipulations (retouching, morphing, and face swap-
ping4) is evaluated.

4 Face swapping is also some times referred to as identity swapping in the literature.
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2.4.1 Experimental Setup

For the evaluation, one open-source and one commercial face recognition system are
used. As the open-source system ArcFace [8] is used with theMTCNN face detector
[56] for pre-processing. Due to terms of use, the used commercial system cannot be
named explicitly and will henceforth be referred to as COTS.

To create an appropriate database, a subset of constrained facial images from the
FERET [30] and FRGCv2 [31] database are manipulated using six different tools.

The changes imposed by the tools for the different manipulations are described
below:

Retouching For the generation of retouched images, InstaBeauty [16] and Fotorus
[14] are used. Both are proprietary software that offer features for beautifying
facial images. Although the beautification operations performed by these and
similar apps vary, common manipulations are smoothing of the skin, slimming of
the nose, and enlargement of the eyes. Additionally, other manipulations might
occur when beautifying an image e.g. enlargement of the mouth and slimming of
the chin.

Morphing For the generation of morphs FaceFusion [9] andUBOMorpher [3, 12]
are used. For FaceFusion a version which uses the landmarks of dlib [22] and
Delaunay triangles is applied. Certain regions (e.g. eyes, nostrils, and hair) of the
first face image are blended over the morph to hide potential artefacts. The UBO
Morpher tool generates amorphed image by triangulation, warping, and blending.
For finding landmarks for this tool, dlib are used. To avoid artefacts in the area
outside of the face region, the morphed image generated by UBO Morpher is
copied to the background of one of the original face images. Images generated by
UBO Morpher might show artefacts at the border lines of the blended areas. In
this evaluation and for both morphing tools, a single image is generated from the
facial images of two different subjects and an equal weighting factor [12] of 0.5
is used for both blending and warping.

Face swap For the generation of face swapped images, fewshot-face [13] and sim-
ple_faceswap [48] are used. fewshot-face is a GAN-based approach capable of
swapping a face using only a few target images; in the database used in this chapter
a maximum of two target images was used to generate each face swapped image.
simple_faceswap is a simple landmark-based approach which uses the landmarks
detected by dlib to perform face swapping.

Example images generated using the above tools are shown in Fig. 2.6. For the gen-
eration of the swapped and morphed face images it was ensured that both individuals
used to create the manipulated image were of the same gender. Additionally, to avoid
artefacts, it was ensured that for the generation of the morphed images only one of
the facial images contained glasses.

An overview of the total number of biometric comparisons in the generated
database is given in Table2.1. Note that formorphing and swappingwhere themanip-
ulated image has been created from the facial images of two subjects, we only make



2 Digital Face Manipulation in Biometric Systems 37

Su
bj

ec
t

2
M

an
ip

ul
at

ed
Su

bj
ec

t
1

(a) Face swap (b) Morphing (c) Retouching

Fig. 2.6 Example images from the generated database

comparisons to the probe image(s) of the subject from which the area outside the
face region is from. For instance, to create a mated comparison for the swapped and
morphed face images in Fig. 2.6, a probe image from subject 1 is used. For the mated
comparisons for retouching, morphing, and swapping, the used probe images have
not been manipulated.

To evaluate the impact of the manipulations, standardized and other well-known
metrics and visualizations are used. For visualizing the distributions of comparisons
scores, probability density functions (PDFs) are used, and the scores produced by the
algorithms are converted to similarity scores and normalized to the range [0, 1]. The
degree of separation between two distributions is quantified using the decidability
measure d ′ [6] which is calculated as follows:
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Table 2.1 Number of biometric comparisons for the generated database

Scenario Number of comparisons

Bona fide mated 2251

Retouching mated 4502

Morphing mated 4502

Face swap mated 4502

Bona fide non-mated 497,838

d ′ = |μmated − μnon-mated|√
1
2 (σ

2
mated + σ 2

non-mated)

Biometric recognition performance is visualized usingDET-curves which plot the
FNMRversus the FMR at different decision thresholds. Furthermore, the FNMR at a
fixed operational threshold corresponding to 0.1% FMR is highlighted; this security
level is relevant for numerous real deployments of biometric recognition systems
[38]. Finally, the equal error rate (EER ), i.e. the point atwhich theFMR andFNMR are
equal, is reported.

2.4.2 Performance Evaluation

This section investigates the effect of the different types of digital manipulations in
the generated database (Sect. 2.4.1) on two state-of-the-art face recognition systems.

The PDFs and estimated decision thresholds at a fixed FMRof 0.1% for the
manipulated and bona fide images in the generated database are shown in Fig. 2.7.
It can be observed that the comparison scores of the manipulated images, for both
ArcFace and COTS , are situated in-between the bona fide mated and non-mated
score distributions. Furthermore, it can be observed that the score distribution for
the retouched images is closest to the bona fide mated distribution, whereas face
swapping is closest to the bona fide non-mated distribution. These observations are
expected since retouching only moderately alters a face whereas for face swapping
the original face identity has been replaced with the identity of another individual.
From the plot, it can be observed that morphing, in general, decreases the comparison
score more than retouching, but less than face swapping. Interestingly, from Fig. 2.7,
it can be observed that the comparison scores for COTS on the swapped face images
are significantly higher than the bona fide non-mated scores. When looking at the
bona fide mated score distributions in Fig. 2.7 (most notable for COTS) two separate
peaks can be observed, which is caused by using two different databases in the
evaluation—the FRGCv2 database contains more unconstrained probe images than
the FERET data.
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Fig. 2.8 DET-curves for performance scores of the manipulated and bona fide images

From the DET-curves in Fig. 2.8, it can be observed that face swapping has a
big impact on the classification errors of both tested face recognition systems which
is expected as face swapping changes the original face identity and as such makes
the resulting identity less similar to the original identity. In contrast, retouching and
morphing only have a moderate impact on the classification errors. For morphed
images, this is a potential issue since the identity of multiple individuals contributes
to a morphed image. As shown in other works, e.g. [10], morphed images can pose a
security threat if accepted into a face recognition systemas it is likely that the different
individuals contributing to a morphed image can use the morph for authentication.
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Table 2.2 Biometric performance results for ArcFace and COTS. FNMR is calculated at FMR=
0.1%. Values for FNMR and EER in the table are in %

Type ArcFace COTS

EER FNMR d ′ EER FNMR d ′

Bona fide 0.0004 0.0000 6.8386 0.0003 0.0000 20.4373

Retouching 0.4886 0.4887 6.7672 0.4664 0.4665 13.7155

Morphing 0.4970 1.7548 4.8792 0.1555 0.2888 10.2725

Face swap 5.8418 47.4678 2.9846 2.7765 20.7685 3.8780

Therefore, the system should ideally reject all mated comparisons where one of the
images contains either a swapped or a morphed face.

In Table2.2, the biometric performance scores are shown for ArcFace andCOTS .
The table shows good separability (high d ′) between the bona fide non-mated scores
and the mated scores obtained for both the bona fide and retouched images. Least
separation (lowest d ′) is achieved between the bona fide non-mated score distribu-
tion and the mated score distribution for the face swapped images. The performance
metrics reported in the table indicate that both systems are robust to bona fide images
and that face swapping has the biggest impact on the comparison scores of the sys-
tems. More specifically, it can be observed that at an operational threshold where
FMR= 0.1%, approximately 47.5 and 20.8% of the mated comparisons for the face
swapped images are rejected for ArcFace and COTS, respectively. The results show
that, at best, less than half of the face swapped images are rejected, which suggest
a need for algorithms capable of detecting swapped face images. For the retouched
and morphed images, only moderate performance degradation can be observed. For
morphed images, this means that state-of-the-art face recognition systems cannot
reliably detect and reject morphing attacks. Therefore, several authors have pro-
posed dedicated algorithms for detecting morphed images, although this remains a
challenging problem [28].

2.5 Summary and Outlook

This chapter addressed the impact of digital face image manipulations on face recog-
nition technologies. Considering the wide prevalence of face manipulation software,
in particular for mobile devices and border control, face recognition systems have to
cope with manipulated images. It was shown that face recognition systems can be
robust to certain types of manipulations, i.e. biometric performance is maintained,
while others may seriously reduce recognition capabilities. Therefore, the usabil-
ity (related to the false non-match rate) and the security (related to the false match
rate) of face recognition systems are impaired by digitally manipulated face images.
Besides face manipulation techniques considered in this chapter, numerous face
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image manipulation techniques have been proposed for different fields of applica-
tion. The forthcoming chapters of this book will describe many of those in detail.

Additionally, this chapter emphasized the need for reliable face manipulation
detection methods to be integrated into face recognition systems. To this end, an
overview of different concepts for the integration of face manipulation detection into
the processing chain of a face recognition system was provided. Many of the subse-
quent chapters proposemethods for reliable detection of different facemanipulations
which represent a current research challenge. Beyond that, some of the forthcom-
ing chapters will provide more details on how to combine face recognition and face
image manipulation detection effectively.
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Chapter 3
Multimedia Forensics Before the Deep
Learning Era

Davide Cozzolino and Luisa Verdoliva

Abstract Image manipulation is as old as photography itself, and powerful media
editing tools have been around for a long time. Using such conventional signal pro-
cessing methods, it is possible to modify images and videos obtaining very realistic
results. This chapter is devoted to describe the most effective strategies to detect
the widespread manipulations that rely on traditional approaches and do not require
a deep learning strategy. In particular, we will focus on manipulations like adding,
replicating, or removing objects and present themajor lines of research inmultimedia
forensics before the deep learning era and the rise of deepfakes. The most popular
approaches look for artifacts related to the in-camera processing chain (camera-based
clues) or the out-camera processing history (editing-based clues). We will focus on
methods that rely on the extraction of a camera fingerprint and need some prior infor-
mation on pristine data, for example, through a collection of images taken from the
camera of interest. Then we will shift to blind methods that do not require any prior
knowledge and reveal inconsistencies with respect to some well-defined hypotheses.
We will also briefly review the most interesting features of machine learning- based
methods and finally present the major challenges in this area.

3.1 Introduction

Digital imagemanipulation has a long history, and nowadays several powerful editing
tools exist that allow creating realistic results that can easily fool visual scrutiny. Very
common operations are adding, replicating, or removing objects, as in the examples
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Pristine Image Splicing Inpainting Copy-move

Fig. 3.1 Examples of image manipulations carried out using conventional media editing tools.
First row: adding an object (splicing), removing an object (inpainting), and duplicating an object
(copy-move). Second row: corresponding binary ground truths that indicate the pixels that have
been modified in the image

of Fig. 3.1. A new object can be inserted by copying it from a different image
(splicing), or from the same image (copy-move). Instead, an existing object can be
deleted by extending the background to cover it (inpainting). Some suitable post-
processing, like resizing, rotation, and color adjustment, can also be applied to better
fit the object to the scene, both to improve the visual appearance and to guarantee
coherent perspective and scale.

In the last few years, there has been intense research toward the design of methods
for reliable image integrity verification [63]. Some tools discover physical inconsis-
tencies [39, 41], regarding, for example, shadows or illumination or perspective,
which may also be noticed by an attentive observer. In most cases, however, well-
crafted forgeries leave no visible traces and appear semantically correct. Nonethe-
less, digital manipulations typically modify the underlying statistics of the original
source, leaving a trail of traces which, although invisible to the eye, can be exploited
by pixel-level analysis tools. In fact, each image is characterized by a number of
features which depend on the different phases of its history, from the very same
acquisition process to the internal camera processing (e.g., demosaicing and com-
pression), to all external processing and editing operations (see Fig. 3.2). Therefore,
by studying possible deviations of such features from their expected behavior, one
can establish with good confidence whether image integrity has been violated.

Based on this general principle, a certain number of approaches have been pro-
posed. For example, the acquisition process leaves on each image a “camera finger-
print”, the photo-response non-uniformity noise (PRNU), unique for each specific
device. Armed with this fingerprint, one can reliably discover and localize various
types of attacks. It is also possible to use model-specific rather than device-specific
features, related to manufacturing choices (like the color filter array) and in-camera
processing (like the demosaicing algorithm) peculiar of each brand and model. As
for external processing, the lion’s share is taken by methods exploiting the proper-
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Fig. 3.2 An image is captured using an acquisition systemwhose basic components are represented
in this figure (in-camera processing); the image can then be edited in several ways (out-camera
processing)

ties of JPEG compression. Indeed, after a forgery is performed, the image is very
often saved again in a JPEG compressed format. Therefore, by studying anomalies in
DCT coefficients due, for example, to double quantization, or JPEG grid misalign-
ments, integrity violation can be detected and localized. Finally, a very common
form of forgery involves copy-moving image regions to duplicate or hide objects.
The presence of identical regions in the image represents by itself a distinctive feature
indicating manipulation, which may be discovered efficiently by several approaches,
even in the presence of rotation, resizing, and other geometric distortions. Turning to
videos, very simple manipulations consist in deleting or replicating entire frames. Of
course, also in this case it is possible to insert or hide objects usingmore sophisticated
editing tools [52].

This chapter will present an overview of some of the most effective tools for
image forgery detection and localization that have been proposed before the rise
of deep learning. In particular, we will focus on passive methods that look at the
image content and disregard the associated metadata information. The most popular
approaches look for artifacts related to the in-camera processing chain (camera-based
clues) or the out-camera processing history (editing-based clues). These approaches
often follow a model-based paradigm typically relying on statistical analyses or are
based on handcrafted features and apply more classical machine learning tools. Each
method relies on its own set of hypotheses, which may or may not hold for a specific
manipulation, thereby limiting its applicability to a subset of cases. For example, the
camera PRNUcan be reliably estimated only if the camera itself is available or a large
number of images taken from it. Likewise, methods thought for copy-move discovery
are obviously ineffective in the presence of a splicing. Some of them are much more
general, since they are based on detecting anomalies in the noise residuals.
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A defining property of the approaches proposed so far is the prior knowledge they
rely upon, which impacts their suitability for real-world applications. First, we will
describe PRNU-based methods that require a collection of images taken from the
camera of interest. Then we will present blind methods, where no prior knowledge
is required. Finally, we will give a short review of machine learning-based methods
which rely on a suitable training set comprising both pristine and manipulated data.

3.2 PRNU-Based Approach

Manufacturing imperfections in the silicon wafer used for the imaging sensor gen-
erate a unique sensor pattern, called photo- response non-uniformity (PRNU) noise.
It is specific to each individual camera, stable in time, and independent of the scene.
All images acquired by a given camera bear traces of its PRNU pattern, hence it
can be considered as a sort of camera fingerprint and used for source attribution
tasks, as well as for image forgery detection. If a region of the image is tampered
with, the corresponding PRNU pattern is removed, which allows one to detect the
manipulation.

PRNU-based forgery detection was first proposed in [49], and it is based on two
main steps: (i) the PRNU pattern is estimated off-line from a large number of images
taken from the camera, and (ii) the target image PRNU is estimated at test time, by
means of a denoising filter, and compared with the reference (see Fig. 3.3). This
approach relies on some important prior knowledge, since it assumes the availability
of a certain number of images taken from the device itself. On the other hand, it is
an extremely powerful approach, since it can detect every type of attack: whenever
an anomaly arises due to the absence of the camera fingerprint, manipulation can be
detected.

Beyond this standard methodology, there are several alternatives proposed in the
literature. It is possible to model the strong spatial dependencies present in an image
through a Markov Random Field so as to make joint rather than isolated decisions
[16], or to rely on discriminative randomfields [12] andmulti-scale analysis [43]. It is
worth noting that the PRNU-based approach can be also extended to blind scenarios,
where no prior information about the camera is known provided a suitable clustering
procedure identifies the images which share the same PRNU [20, 21]. It is even
possible to recover some information about PRNU by estimating it from a single
image or a group of frames in a video [51, 53, 60].

In the following, we will describe the basic approach proposed in [14]. Let y be
a digital image, defined on a rectangular lattice �, with yi the value at site i ∈ �,
observed at the camera output, either as a single color band or the composition of
multiple color bands. Let us assume in a simplified model [37] that y can be written
as1

y = (1 + k)x + θ = xk + x + θ (3.1)

1 All the operations are intended pixel-wise.
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Fig. 3.3 PRNU-based forgery localization procedure. Top: the device PRNU pattern is estimated
by averaging a large number of noise residuals. Bottom: the image PRNU pattern is estimated by
denoising, and compared with the reference pattern: the low values in the correlation field suggest
a possible manipulation

where x is the ideal noise-free image, k the camera PRNU, and θ an additive noise
term which accounts for all types of disturbances. The PRNU k is the signal of
interest, very weak w.r.t. both additive noise θ and the ideal image x . In this context
also, the image x plays the role of unwanted disturbance, since our goal is to decide
whether or not the image PRNU comes from the camera under test so as to detect
possible forgeries. To increase the signal-to-noise ratio, we can subtract from y an
estimate of the ideal image x̂ = f (y) obtained through denoising, in order to compute
the so-called noise residual

r = y − x̂ = yk + (x − y)k + (x − x̂) + θ = yk + n (3.2)

where, for convenience, k multiplies the observed image y rather than the unknown
original x , and the small difference term (x − y)k has been included, together with
the denoising error (x − x̂) and other disturbances in a single noise term n.

In the following, we describe in more detail the image integrity verification pro-
cedure proposed in [14] which comprises the following basic steps:

• estimation of the camera PRNU (off-line);
• computation of image noise residual and of derived statistics;
• sliding-window pixel-wise forgery detection test.

3.2.1 PRNU Estimation

As a preliminary step, the true camera PRNU pattern should be reliably estimated.
This requires that either the target camera, or a large number of photos taken by it,
is available. Note that the PRNU is a deterministic signal, as opposed to the other
image components, and it can be easily estimated starting from the noise residuals. In
addition, one can take care of usingmostly uniform images (e.g., off-focus pictures of
a cloudy sky) to further improve accuracy or to use fewer images to obtain the same
performance. In these conditions, the maximum likelihood estimate of the PRNU
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from M given images is computed in [14] as

̂k =
M

∑

m=1

ymrm

/ M
∑

m=1

y2m (3.3)

where the weights ym account for the fact that dark areas of the image present
an attenuated PRNU and hence should contribute less to the overall estimate. Of
course, this is only an estimate, however, for the sake of simplicity, we will neglect
the estimation error and will assume to know the camera PRNU perfectly, that is
̂k = k.

3.2.2 Noise Residual Computation

In the second step of the algorithm, we compute the noise residual r and suppress
most of the scene content by subtracting a denoised version of the image itself:

r = y − f (y) = y − x̂ (3.4)

where f denotes a denoising algorithm. Even in the best case, with perfect denoising,
x̂ = x , the remaining noise term is likely to dominate r which, therefore, will be only
weakly correlatedwith the camera PRNU. In the presence of textured areas, however,
denoising is typically less accurate and some signal components leak into the residual
contributing to reducing the operative SNR, to the point of making detection virtually
impossible. Especially in these areas, the effectiveness of the denoising algorithm
becomes crucial for the overall performance.

3.2.3 Forgery Detection Test

Assuming z = yk, the detection problem can be formulated as a binary hypothesis
test between hypothesis H0 and H1. Under hypothesis H0 the camera PRNU is absent,
hence the pixel has been tampered, while under hypothesis H1, PRNU is present,
hence the pixel is genuine:

{

H0 : ri = ni
H1 : ri = zi + ni

(3.5)

Notice that, since we focus on the detection of forgeries, denoted by the absence of
the PRNU, the role of two hypotheses is inverted w.r.t. what is usual. The true and
estimated pixel classes will be denoted by ui and ûi , both defined in {0, 1}, while the
detection test is based on the normalized correlation index between rWi

and zWi
, the

restrictions of r and z, respectively, to a window Wi centered on the target pixel:
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ρi = corr(rWi
, zWi

) = (rWi
− rWi

) � (zWi
− zWi

)

‖rWi
− rWi

‖ · ‖zWi
− zWi

‖ (3.6)

where � denotes inner product, and the usual definitions hold for mean, norm, and
inner product

x = 1

K

K
∑

i=1

xi , ‖x‖2 =
K

∑

i=1

x2i , x � y =
K

∑

i=1

xi yi (3.7)

Pixel labeling is obtained by comparing the decision statistic with a threshold γ1

ûi =
{

0 ρi < γ1
1 otherwise

(3.8)

To ensure the desired false acceptance rate (FAR), which is a small probability that
a tampered pixel is identified as genuine, the threshold is set using the Neyman-
Pearson approach. The pdf of ρ under hypothesis H0 is estimated by computing the
correlation between the camera PRNU and a large amount of noise residuals coming
from other cameras, and using standard density fitting techniques. To obtain reliable
estimates, rather large square blocks should be used; a dimension of 128× 128 pixels
represents a good compromise [14].

Once the desired FAR is fixed, the objective is to minimize the false rejection rate
(FRR), which is the probability that a genuine pixel is declared tampered. This is not
an easy task, since under hypothesis H1, the decision statistic is influenced by the
image content. In fact, even in the absence of forgery, the correlation might happen
to be very low when the image is dark (since y multiplies the PRNU), saturated
(because of intensity clipping), or in very textured areas where denoising typically
does not perform well and some image content leaks into the noise residual. One
possible solution to this problem is to include a “predictor” [14], which based on
local images features, such as texture, flatness, and intensity, computes the expected
value ρ̂i of the correlation index under hypothesis H1. When ρ̂i is too low, indicating
that, even for a genuine pixel, one could not expect a correlation index much larger
than 0, the pixel is labeled as genuine, the less risky decision, irrespective of the
value of ρi . Therefore, the test becomes

ûi =
{

0 ρi < γ1 AND ρ̂i > γ2
1 otherwise

(3.9)

The second threshold γ2 is chosen heuristically by the user and separates, in practice,
reliable regions from problematic ones. It is worth underlining that the refined deci-
sion test (3.9) can only reduce the false rejection rate but does not increase (actually
it might reduce) the probability of detecting an actual forgery. In addition, the choice
of the threshold itself is not obvious and can significantly impact the performance.
Note also that the final binary map needs some post-processing operations to remove
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random errors and better define the shape of the forgery. This is typically done by
means of morphological filtering.

3.2.4 Estimation Through Guided Filtering

As already highlighted in the previous section, a major issue with PRNU-based
analysis is the impossibility to perfectly denoise the image. As a consequence, the
noise residual contains traces of the image content that increase the false acceptance
rates. To address this problem, it is possible to improve the denoising algorithm
as done in [15], where wavelet-based denoising has been replaced by a nonlocal
approach. Another possibility is to rely on the use of guided filtering [17], a strategy
that turns out to be especially helpful when small forgeries are present.

In order to better understand this approach, we will elaborate some more on
Eq. (3.6) and introduce some simplifications. First of all, we neglect themeans (which
are typically negligible) and, considering that the terms at the denominator serve only
to normalize the correlation, focus on the scalar product on the numerator. Remember
that z = yk is the camera PRNU multiplied point-wise by the input image and,
likewise, r = hy + n is the noise residual, with h the observed PRNU which might
or might not coincide with k. Therefore, if we divide all terms point-wise by y, we
obtain the quantity

τi = 1

|Wi |
∑

j∈Wi

r j
y j

z j
y j

= 1

|Wi |
∑

j∈Wi

(

h j + n j

y j

)

k j (3.10)

By defining a new noise field η = nk/y, and introducing generic weights ωi j ,
Eq. (3.10) becomes

τi =
∑

j∈Wi

ωi j (h j k j + η j ) (3.11)

This can be interpreted as the linear filtering of the image hk affected by the additive
noise η. In Eq. (3.10), the weights are all equal to one 1/|Wi |, hence, a simple boxcar
filtering is carried out.

Assuming that thewhole analysiswindow is homogeneous, either genuine (h = k)
or forged (h �= k) and, for the sake of simplicity, that y is constant over the window,
so that E[ηi ] = σ 2

η , we can characterize the random variable τ as

E[τ ] =
{ 〈

k2
〉

i h = k
0 h �= k

(3.12)

VAR[τ ] = σ 2
η

∑

j

ω2
i j (3.13)
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where
〈

k2
〉

is the power of the camera PRNU estimated over Wi . In this condition,
using uniformweightsωi j = 1/|Wi | is indeed optimal, as itminimizes the variance of
the estimate, and maximizes the probability of deciding correctly. However, if some
of the predictor pixels are not homogeneous with the target, that is, forged instead of
genuine or vice versa, the estimatewill suffer a systematic bias, namely themeanswill
not be 0 or

〈

k2
〉

anymore, but some intermediate values, heavily affecting the decision
performance. In this case, the uniform weights are no more optimal, in general, and
one should instead reduce the influence of heterogeneous pixels by associating a small
or even null weight with them. This is exactly the problem of small-size forgeries.
By using a large analysis window with fixed weights, we happen to include pixels
of different nature, and the decision variable becomes strongly biased and basically
useless, even in favorable (bright, smooth, and unsaturated) areas of the image. If
we could find and include in the estimation only predictors homogeneous with the
target, all biases would disappear, at the cost of an increased estimation variance.

The bias/variance trade-off is indeed well-known in the denoising literature. This
problem has received a great deal of attention, recently, in the context of nonlocal
filtering, where predictor pixels are weighted based on their expected similarity with
the target. The similarity, in its turn, is typically computed by comparing patches
of pixels centered on the target and the predictor pixels, respectively. This approach
cannot work with our noise-like input image, r z, as it lacks the structures necessary
to compute a meaningful similarity measure. However, we can take advantage of
the original observed image y, using it as a “pilot” to compute similarities, and
applying the resulting weights in the actual filtering of the r z field. This basic idea
is implemented in [17] by means of guided filtering, a recently proposed technique
which implements nonlocal filtering concepts by leveraging heavily on the use of a
pilot image associated with the target image [34].

In Fig. 3.4, we show the detection performance, measured in terms of probability
of detection PD versus probability of false alarm (PFA), obtained when a square
forgery is placed at the center of the image. The performance obtained with the plain
boxcar filter (left) and guided filtering (right) is almost the same when large forgeries
are considered (128× 128 pixels). However, guided filtering becomesmore andmore
preferable as the forgeries become smaller, up to the limiting case of 48 × 48 pixels.
This is also clear from the examples shown in Fig. 3.5, where the correlation field
shows the ability of guided filtering to detect even very small forgeries, which are
completely lost using boxcar filtering.

3.3 Blind Methods

Blind approaches do rely exclusively on the media asset under analysis and reveal
inconsistencies with respect to somewell-defined hypotheses. In particular, they look
for a number of specific artifacts originated by in-camera or out-camera processing
(Fig. 3.2). For example, the demosaicing algorithm is typically different for different
camera models. Therefore, when a manipulation involves the composition of parts
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Boxcar filtering Guided filtering

Fig. 3.4 ROCs obtained with boxcar filtering (left) and guided one (right) by varying the forgery
size. Each ROC is the upper envelope of pixel-level (PD, PFA) points obtained as the algorithm
parameters vary. We used a test set of 200 uncompressed 768 × 1024-pixel images with a square
forgery at the center, drawn at random from a different image

Image Ground Truth Boxcarfiltering Guided filtering Forged
Pristine

Fig. 3.5 Comparison between boxcar and guided filtering. From left to right: forged image, ground
truth, and the correlation field computed using boxcar and guided filtering

of images acquired from different models, demosaicing-related spatial anomalies
arise. Likewise, the out-camera editing process may introduce a specific correlation
or disrupt fingerprint-like camera-specific patterns. Of course, most of these traces
are very subtle and cannot be perceived at a visual inspection. However, once prop-
erly emphasized, they represent a precious source of information to establish digital
integrity.
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For example, most digital cameras use a color filter array (CFA), with a periodic
pattern, so that each individual sensor element records light only in a certain range of
wavelengths (i.e., red, green, and blue). The missing color information is then inter-
polated from surrounding pixels, an operation known as demosaicing. This process
introduces a subtle periodic correlation pattern in all acquired images. Whenever a
manipulation occurs, this periodic pattern is perturbed. In addition, since CFA con-
figuration and interpolation algorithms are specific to each camera model [8, 11],
when a region is spliced in a photo taken by another camera model, its periodic
pattern will appear anomalous. One of the first methods to exploit these artifacts was
proposed by Popescu and Farid [57] back in 2005, based on a simple linear model
to capture periodic correlations. Of course, periodic signals produce strong peaks
in the Fourier domain. The problem can be also recast in a Bayesian framework, as
proposed in [29], obtaining a probability map in output which allows for fine-grained
localization of image tampering.

In the following, we will describe blind approaches that rely on noise patterns,
compression, and editing artifacts.

3.3.1 Noise Patterns

Instead of focusing on a specific camera artifact, a more general approach is to
highlight noise artifacts introduced by the whole acquisition process, irrespective of
their specific origin. The analysis of local noise level may help reveal splicings, as
shown in [50, 56], because different cameras are characterized by different intrinsic
noise.

To define expressive features that are able to capture traces left locally by in-
camera processing, in [23] the high-pass noise residual of the image is used and
then co-occurrence-based features are extracted to capture local correlations. These
features, known as rich models, are inspired by the work done in steganalysis [30],
which pursue a very similar goal, i.e., detecting hidden artifacts in the signal. These
features have been used successfully in a supervised learning setting for the detection
task of the first IEEE IFS-TC Image Forensics Challenge [19, 20]. To form the noise
residual image, r , only a linear high-pass filter of the third order has been considered
of all the models proposed in [30]. In formulas

ri j = xi, j−1 − 3 xi, j + 3 xi, j+1 − xi, j+2 (3.14)

where x and r are the original image and the noise residual, respectively, and i, j
indicate spatial coordinates. The next step is to compute residual co-occurrences
along the vertical and horizontal directions. First of all, residuals are quantized, using
a very small number of bins to obtain a limited feature length and then truncated as

r̂i j = truncT (round(ri j/q)) (3.15)
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Fig. 3.6 Block diagram for computing residual co-occurrences: high-pass filtering, quantization-
truncation operation, and the computation of the co-occurrence histogram

with q the quantization step and T the truncation value. Co-occurrences are computed
on four pixels in a row, that is,

C(k0, k1, k2, k3) =
∑

i, j

I (̂ri, j = k0, r̂i+1, j = k1, r̂i+2, j = k2, r̂i+3, j = k3)

where I (A) is the indicator function of event A, equal to 1 if A holds and 0 otherwise.
The homologous column-wise co-occurrences are pooled with the above based on
symmetry considerations. A block diagram is presented in Fig. 3.6.

Different from [30], the normalized histograms are passed through a square-root
non-linearity, to obtain a final feature with unitary L2 norm. In fact, in various con-
texts, such as texture classification and image categorization, histogram comparison
is performed by measures such as χ2 or Hellinger that are found to work better than
the Euclidean distance. After square rooting, the Euclidean distance between features
is equivalent to the Hellinger distance between the original histograms. We consider
two different scenarios for image forgery localization, supervised and unsupervised.
In both cases, we will follow an anomaly detection rule, building a model for the
host-camera features based on a fraction of the image under analysis.

• Supervised scenario. In this case, the user is required to select a bounding box,
whichwill be subject to the analysis, while the rest of the image is used as a training
set. In Fig. 3.7, we show some examples where some specific areas of the images
are selected and then analyzed. The analysis is carried out in sliding-window
modality, using blocks of size W × W , from which the normalized histogram of
co-occurrences, h, is extracted. The N blocks taken from the training area are used
to estimate in advance mean μ and covariance � of the feature vector:
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ForgedPristine

Fig. 3.7 Detecting noise artifacts in supervised modality. If a suspicion region is present, the
analysis can be restricted to the region of interest (RoI), and the rest of the image is used as a
reference for the pristine data

μ = 1

N

N
∑

n=1

hn (3.16)

� = 1

N

N
∑

n=1

(hn − μ)(hn − μ)T (3.17)

Then, for each block of the test area, the associated feature h′ is extracted, and its
Mahalanobis distance w.r.t. the reference feature μ is computed

D(h′,μ;�) = (h′ − μ)T�−1(h′ − μ) (3.18)

Large distances indicate blocks that deviate significantly from the model. In the
output map provided to the user, each block is given a color associated with the
computed distance. Note that the user may repeat the process several times with
different bounding boxes, implying that a meaningful analysis can be conducted
even in the absence of any initial guess on the presence and location of a forgery.

• Unsupervised scenario. In this case, after the feature extraction phase, carried out
on the whole image with unit stride, we rely on an automatic algorithm to jointly
compute the model parameters and the two-class image segmentation and resort
to a simple expectation-maximization (EM) clustering.
As input, we need the mixture model of the data, namely the number of classes,
their probabilities, π0, π1, . . ., and the probability model of each class. For us, the
number of classes is always fixed to two, corresponding to the genuine area of the
image (hypothesis H0) and the tampered area (hypothesis H1). We will consider
two cases for the class models:
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1. both classes are modeled as multivariate Gaussian

p(h) = π0N(h|μ0,�0) + π1N(h|μ1,�1)

2. class H0 is modeled as Gaussian, while class H1 is modeled as Uniform over
the feature domain �,

p(h) = π0N(h|μ0,�0) + π1α1I(�)

We note explicitly that the Gaussian model is only a handy simplification, lacking
more precise information on the feature distribution. The first model is conceived
for the case when the forged area is relatively large w.r.t. the whole image. There-
fore, the two classes have the same dignity, and can be expected to emerge easily
through the EM clustering. The block-wise decision statistic is the ratio between
the two Mahalanobis distances.
When the forged region is very small, instead, the intra-class variability,mostly due
to image content (e.g., flat vs. textured areas) may become dominant w.r.t. inter-
class differences, leading to wrong results. Therefore, we consider the Gaussian-
Uniform model, which can be expected to deal better with these situations, and in
fact has been often considered to account for the presence of outliers, e.g., [58].
Note that, in this case, the decision test reduces to comparing the Mahalanobis
distance from the Gaussian model with a threshold λ as already done in [64].
Typically, forgeries are quite small with respect to the dimension of the image and
often the latter model gives more satisfying results (some examples are shown in
Fig. 3.8). This idea has been extended to videos in [54] where the noise residuals
of consecutive frames are analyzed and suitable features are extracted to discover
traces of both intra-frame and inter-frame manipulations.

ForgedPristine

Fig. 3.8 Detecting noise artifacts in unsupervised modality (splicebuster). A clustering algorithm
is used to distinguish pristine data from forged ones
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3.3.2 Compression Artifacts

Exploiting compression artifacts is a very powerful tool in image forensics. Most
images are compressed using JPEGcoding standard andwhenever an image is edited,
it will be subjected to a new compression step. An early popular approach is to
exploit the so-called block artifact grid (BAG). In fact, because of the block-wise
JPEG processing, discontinuities appear along the block boundaries of compressed
images, giving rise to a distinctive and easily detected grid-like pattern [26]. In the
presence of splicing or copy-move manipulations, the BAGs of inserted object and
host image typically mismatch, enabling detection [45, 47].

Another commonandvery effective approach relies on double compression traces.
In fact, when a JPEG-compressed image undergoes a local manipulation and is
compressed again, double compression artifacts appear all over the image except
in the forged region [48]. These artifacts change depending on whether the two
compressions are spatially aligned or not [10, 13]. Other methods [32, 44, 55] look
for anomalies in the statistical distribution of the original DCT coefficients assumed
to comply with the Benford law. More specifically, this empirical law states that the
probability distribution of the first digits of DCT coefficients is logarithmic:

p(d) = log10

(

1 + 1

d

)

(3.19)

If the image is modified, for example, double compressed, it will not follow anymore
such distribution. In Fig. 3.9, we show an example of DCT coefficient histogram for a
single compressed image and a double compressed one, together with the distribution
of the first 14 AC coefficients of the DCT block.

DCT coefficients histograms First digit histograms 

Fig. 3.9 Histograms relative to the first 14 AC coefficients in the DCT block. On the left, the
histograms for single and double compression. The single compression image satisfies the Laplacian
distribution; this does not happen for the double compressed image. On the right, the histograms of
the first digits for single and double compressed images. In the first case, the distribution follows
Benford’s law, while double compressed images deviate from such distribution
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Another approach relies on the so-called JPEG ghosts [27] that arise in the manip-
ulated area when two JPEG compressions use the same quality factor (QF). To high-
light ghosts, the target image is compressed at all QFs and analyzed. This approach
is also at the basis of the so-called Error Level Analysis (ELA), widely used by
practitioners for its simplicity. A further direction is to exploit the model-specific
implementations of the JPEG standard, including customized quantization tables
and post-processing steps [40]. For example, in [1] model-specific JPEG features
have been defined, called JPEG dimples. These artifacts are caused by the specific
procedure used when converting real to integer values, e.g., ceil, floor, and rounding
operator, and represent a very discriminant clue for images saved in JPEG format.

Exploiting compression artifacts for detecting videomanipulation is also possible,
but it is muchmore difficult because of the complexity of the video coding algorithm.
Traces of MPEG double compression were first highlighted in the seminal paper by
Wang and Farid for detecting frame removal [65]. In fact, the de-synchronization
caused by removing a group of frames introduces spikes in the Fourier transform
of the motion vectors. A successive work by [62] tried to improve the double com-
pression estimation especially in the more challenging scenario when the strength of
the second compression increases and proposed a distinctive footprint, based on the
variation of the macroblock prediction types in the reencoded P-frames.

3.3.3 Editing Artifacts

When an image is manipulated, for example, by adding an object, it typically needs
several post-processing steps to fit the new context well. These include geomet-
ric transformations, like rotation and scaling, contrast adjustment, and blurring, to
smooth the object-background boundaries. Therefore, many papers focus on detect-
ing these basic operations as a proxy for possible forgeries. Some methods [42, 56]
try to detect traces of resampling, always necessary in the presence of rotation or
resizing by exploiting periodic artifacts. Other approaches focus on anomalies on the
boundaries of objects when a composition is performed [25] or on blurring-related
inconsistencies [3].

A very commonmanipulation consists in copy-moving image regions to duplicate
or hide objects. Of course, the presence of identical regions is a strong hint of forgery,
but clones are often modified to disguise traces, and near-identical natural objects
also exist, which complicate the forensic analysis. Studies on copy-move detection
date back to 2003, with the seminal work of Fridrich et al. [31]. Since then, a large
amount of the literature has grown on this topic. Effective and efficient solutions are
now available which allow for copy-move detection even in the presence of rotation,
resizing, and other geometric distortions [18]. The common pipeline for copy-moves
methods is based on three main steps (see Fig. 3.10):

• feature extraction: a suitable feature is computed for each pixel of interest, express-
ing the image behavior in its neighborhood;
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Sparse Feature
Extraction

Matching
Filtering &

Post-Proces.

Dense Feature
Extraction

Fig. 3.10 Block diagram relative to copy-move forgery detection methods. The top stream is
relative to key-point-based methods, while bottom stream is relative to dense-based methods. Both
methodologies have three steps: a feature extraction, a matching search, and a filtering and post-
processing step

• matching: the best matching of each pixel is computed, based on the associated
feature;

• post-processing: the offset field, linking pixels with their nearest neighbors, is
filtered and processed in order to reduce false alarms.

Somemethods [2, 61] extract image key-points and characterize thembymeans of
suitable local descriptors, such as Scale-Invariant FeatureTransform (SIFT), Speeded
Up Robust Feature (SURF), Local Binary Pattern (LBP), and other variants of these
local features. They are very efficient, but work only for additive forgeries, and not on
occlusive ones that typically involve smooth regions. This performance gap is shown
in the extensive evaluation carried out in [18] and motivates the importance to work
on a block-based approach that analyzes the whole image. Of course, in this case
the major problem is complexity, since all pixels undergo the three phases of feature
extraction, matching, and post-processing. First of all, it is important to use features
that are robust to some common forms of distortion in order to deal for example
with rotated and/or rescaled duplications. Circular harmonic transforms, such as
Zernike moments and polar sine and cosine transforms, are well-suited to provide
rotation invariance [22, 59]. As for scale-invariance, research has mostly focused on
variations of the Fourier-Mellin transform, based on a log-polar sampling.

Besides feature selection, the literature has devotedmuch attention to thematching
step. In fact, an exhaustive search of the best matching (nearest neighbor) feature
is prohibitive due to its huge complexity. A significant speed-up can be obtained
by adopting some approximate nearest-neighbor search strategy, like kd-trees or
locality-sensitive hashing. Nonetheless, computing the nearest-neighbor field (NNF)
is too slow for the large images generated by today’s cameras. A much better result
can be obtained, however, by exploiting the strong regularity exhibited by theNNFsof
natural images, where similar offsets are often associated with neighboring pixels, as
done in PatchMatch [5], a fast randomized algorithm which finds dense approximate
nearest neighbor matches between image patches. The basic algorithm described
above finds only a single nearest-neighbor, and does not deal with scale changes and
rotations, hence in [22] it has been proposed to add first-order predictors to the zero-
order predictors used in PatchMatch, so as to deal effectively also with linear object
deformations. In Fig. 3.11, we show some results of this approach that can effectively



62 D. Cozzolino and L. Verdoliva

Fig. 3.11 Examples of inpaintingmanipulated images with binary masks obtained using the dense-
based copy-move detection algorithm proposed in [23]

deal both with additive manipulations and occlusive ones, typically carried out using
inpainting methods.

Extensions to videos have been also proposed both for detection and localization
[9, 24], the main issue being complexity, handled in [24] through a multi-scale
processing and parallel implementation of a 3D version of the modified version of
PatchMatch [22].

3.4 Learning-Based Methods with Handcrafted Features

These methods are based on machine learning and need large datasets of pristine and
manipulated images. An important step is the definition of suitable features that help
to discriminate between pristine and manipulated images, then a classifier is trained
on a large number of examples of both types. The choice of the features depends
on which type of traces one wants to discover. For example, some features have
been devised to detect specific artifacts, especially those generated by double JPEG
compression [14, 35, 38].

However, more precious are the universal features, based on suitable image statis-
tics, which allow detecting many types of manipulations. Major efforts have been
devoted to finding good statistical models for natural images in order to select the
features that guarantee the highest discriminative power. In order to single out statis-
tical fluctuations caused by manipulation operations, it is important to first remove
the semantic image content, to be regarded as noise [7]. The pioneering work of
Farid and Lyu [28], back in 2003, proved the potential of statistics-based features
extracted from the high-pass bands of the Wavelet domain. These features capture
subtle variations in the image micro-textures and prove effective in many applica-
tion fields beyond image forensics. Other approaches work on residuals in the DCT
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domain [36] or in the spatial domain [46, 66]. Particularly effective, again, are the
features extracted from the high-pass filtered version of the image and that are on
the co-occurrence of selected neighbors [30] (see Fig. 3.6).

As an alternative to the two-class problem, it is also possible to learn only from
pristine images and then look for possible anomalies. Since cameras of the same
model share proprietary design choices for both hardware and software, they will
leave similar marks on the acquired images. Therefore, in [64] it was proposed
to extract local descriptors from same-model noise residuals to build a reference
statistical model. Then, at test time, the same descriptors are extracted in sliding-
window modality from the target noise residual and compared with the reference.
Strong deviations from the reference statistics suggest the presence of amanipulation.

3.5 Conclusions

Multimedia forensics has been an active research area for a long time and many
approaches have been proposed to detect classic manipulations. PRNU-based meth-
ods represent verypowerful tools, however, theyneed a certain amount of data coming
from the camera in order to reliably estimate the sensor fingerprint. In addition, it is
important to note that the internal pipeline of new cameras is changing, with more
sophisticated software and hardware. For example, the introduction of new coding
schemes and new shooting modes makes the classic sensor noise estimation less
reliable [4] and calls for new ways of detecting the camera traces.

A major appeal of blind methods is that they do not require further data besides
those under test. However, methods based on very specific details depend heavily
on their statistical model, and mostly fail when the hypotheses do not hold. This
happens, for example, when these images are posted on social networks and undergo
a global resizing and compression. The final effect is to disrupt some specific clues
and impairing sharply the performance of most methods, as shown in [63]. Copy-
move detectors, instead, are more reliable, even in the presence of post-processing,
but can only detect cloning and some types of inpainting. On the contrary, methods
based on noise patterns are quite general, and robust to post-processing, as they
often do not depend on explicit statistical models but look for anomalies in the
noise residual. Interestingly, many recent deep learning-based methods rely on these
basic concepts [63]. For example, some of them include a constrained first layer that
performs high-pass filtering of the image, in order to suppress the scene content and
allow to work on residuals.

As for machine learning-based methods, they can achieve very good detection
results: in the 2013 challenge the accuracy was around 94% [19]. However, perfor-
mance depends heavily on the alignment between training set and test data. It is very
high when training and test sets share the same cameras, same types of manipulation,
same processing pipeline, like when a single dataset is split in training and test or
cross-validation is used. As soon as unrelated datasets are used, the performance
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drops sometimes to random guesses. Lack of robustness limits the applicability of
learning-based approaches to very specific scenarios.

Moreover, a skilled attacker, aware of the principles on which forensic tools work,
may enact some counter-forensic measure on purpose to evade detectors [6, 33].
Therefore, the integration of multiple tools, all designed to detect the same type of
attack but under different approaches, may be expected to improve performance,
and especially robustness with respect to both casual and malicious disturbances.
In support of this hypothesis, it is worth mentioning that the winners of the First
IEEE Image Forensics Challenge resorted to the fusion of multiple tools both for the
detection and the localization tasks [19, 20] and similar approaches are routinely used
also for deep learning-based solutions.More in general, most of the key concepts and
problems encountered in the context of AI-based forensics were already present and
investigated in classicalmultimedia forensics, which therefore represents a necessary
starting point for new advances.
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Chapter 4
Toward the Creation and Obstruction
of DeepFakes

Yuezun Li, Pu Sun, Honggang Qi, and Siwei Lyu

Abstract AI-synthesized face-swapping videos, commonly known as DeepFakes,
is an emerging problem threatening the trustworthiness of online information. The
need to develop and evaluate DeepFake detection algorithms calls for large-scale
datasets. However, current DeepFake datasets suffer from low visual quality and do
not resemble DeepFake videos circulated on the Internet. We present a new large-
scale challenging DeepFake video dataset, Celeb-DF, which contains 5, 639 high-
quality DeepFake videos of celebrities generated using an improved synthesis pro-
cess. We conduct a comprehensive evaluation of DeepFake detection methods and
datasets to demonstrate the escalated level of challenges posed by Celeb-DF. Then
we introduce Landmark Breaker, the first dedicated method to disrupt facial land-
mark extraction, and apply it to the obstruction of the generation of DeepFake videos.
The experiments are conducted on three state-of-the-art facial landmark extractors
using our Celeb-DF dataset.
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4.1 Introduction

Arecent twist to the disconcerting problemof online disinformation is falsifiedvideos
created by AI technologies, in particular, deep neural networks (DNNs). Although
fabrication and manipulation of digital images and videos are not new [15], the use
of DNNs has made the process to create convincing fake videos increasingly easier
and faster.

One particular type of DNN-based fake video, commonly known as DeepFakes,
has recently drawn much attention. In a DeepFake video, the faces of a target indi-
vidual are replaced by the faces of a donor individual synthesized by DNN models,
retaining the target’s facial expressions and head poses. Since faces are intrinsically
associated with identity, well-crafted DeepFakes can create illusions of a person’s
presence and activities that do not occur in reality, which can lead to serious political,
social, financial, and legal consequences [10].

With the escalated concerns over DeepFakes, there is a surge of interest in devel-
oping DeepFake detection methods recently [1, 18, 29, 30, 37, 40–42, 47, 48, 61],
with an upcoming dedicated globalDeepFakeDetection Challenge.1 The availability
of large-scale datasets of DeepFake videos is an enabling factor in the development
of the DeepFake detection method. To date, we have the UADFV dataset [61], the
DeepFake-TIMIT dataset (DF-TIMIT) [26], the FaceForensics++ dataset (FF-DF)
[47]2, the Google DeepFake detection dataset (DFD) [14], and the Facebook Deep-
Fake detection challenge (DFDC) dataset [12].

However, a closer look at the DeepFake videos in existing datasets reveals stark
contrasts in visual quality to the actual DeepFake videos circulated on the Internet.
Several common visual artifacts that can be found in these datasets are highlighted in
Fig. 4.1, including low-quality synthesized faces, visible splicing boundaries, color
mismatch, visible parts of the original face, and inconsistent synthesized face orien-
tations. These artifacts are likely the result of imperfect steps of the synthesis method
and the lack of curating of the synthesized videos before included in the datasets.
Moreover, DeepFake videos with such low visual qualities can hardly be convincing,
and are unlikely to have a real impact. Correspondingly, high detection performance
on these datasets may not bear strong relevance when the detection methods are
deployed in the wild.

In the first section, we present a new large-scale and challenging DeepFake video
dataset,Celeb-DF,3 for the development and evaluation of DeepFake detection algo-
rithms. There are in total 5, 639DeepFake videos, correspondingmore than 2million
frames, in the Celeb-DF dataset. The real source videos are based on publicly avail-
able YouTube video clips of 59 celebrities of diverse genders, ages, and ethnic
groups. The DeepFake videos are generated using an improved DeepFake synthesis
method. As a result, the overall visual quality of the synthesized DeepFake videos
in Celeb-DF is greatly improved when compared to existing datasets, with signifi-

1 https://deepfakedetectionchallenge.ai.
2 FaceForensics++ contains other types of fake videos. We consider only the DeepFake videos.
3 http://www.cs.albany.edu/~lsw/celeb-deepfakeforensics.html.

https://deepfakedetectionchallenge.ai
http://www.cs.albany.edu/~lsw/celeb-deepfakeforensics.html
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Fig. 4.1 Visual artifacts of
DeepFake videos in existing
datasets. Note some common
types of visual artifacts in
these video frames,
including low-quality
synthesized faces (row 1 col
1, row 3 col 2, row 5 col 3),
visible splicing boundaries
(row 3 col 1, row 4 col 2,
row 5 col 2), color mismatch
(row 5 col 1), visible parts of
the original face (row 1 col 1,
row 2 col 1, row 4 col 3), and
inconsistent synthesized face
orientations (row 3 col 3).
This figure is best viewed in
color
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cantly fewer notable visual artifacts. Based on theCeleb-DFdataset and other existing
datasets, we conduct an evaluation of current DeepFake detection methods. This is
the most comprehensive performance evaluation of DeepFake detection methods to
date. The results show that Celeb-DF is challenging to most of the existing detection
methods, even though many DeepFake detection methods are shown to achieve high,
sometimes near perfect, accuracy on previous datasets.

In the second section, we describe a white-box method to obstruct the creation
of DeepFakes based on disrupting the facial landmark extraction, i.e., Landmark
Breaker. The facial landmarks are key locations of important facial parts includ-
ing tips and middle points of eyes, nose, mouth, eyebrows as well as contours; see
Fig. 4.2. Landmark Breaker attacks the facial landmark extractors by adding adver-
sarial perturbations [17, 54], which are image noises purposely designed to mis-
lead DNN-based facial landmark extractors. Specifically, Landmark Breaker attacks
facial landmark heat-map prediction, which is the common first step in many recent
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Fig. 4.2 The overview of Landmark Breaker on obstructing DeepFake generation by disrupting the
facial landmark extraction. The top row shows the original DeepFake generation, and the bottom
row corresponds to the disruption after facial landmarks are disrupted. The landmark extractor we
use is FAN [7] and the “Heat-maps” is visualized by summing all heat-maps. Note that training
of the DeepFake generation model is also affected by disrupted facial landmarks, but is not shown
here

DNN-based facial landmark extractors [7, 45, 50]. We introduce a new loss func-
tion to encourage errors between the predicted and original heat-maps to change the
final locations of facial landmarks. Then we optimize this loss function using the
momentum iterative fast gradient sign method (MI-FGSM) [13].

Training the DNN-based DeepFake generation model predicates on aligned input
faces as training data, which are obtained by matching the facial landmarks of input
face to a standard configuration. Also, in the synthesis process of DeepFakes, the
facial landmarks are needed to align the input faces. As Landmark Breaker dis-
rupts the essential face alignment step, it can effectively degrade the quality of the
DeepFakes, Fig. 4.2.

We conduct experiments to test Landmark Breaker on attacking three state-of-
the-art facial landmark extractors (FAN [7], HRNet [50], and AVS-SAN [45]) using
the Celeb-DF dataset [31]. The experimental results demonstrate the effectiveness of
Landmark Breaker in disrupting the facial landmark extraction as well as obstruct-
ing the DeepFake generation. Moreover, we perform ablation studies for different
parameter settings and robustness with regards to image and video compression.

The contribution of this section is summarized as follows:

• We propose a new method to obstruct DeepFake generation by disrupting facial
landmark extraction. To the best of our knowledge, this is the first study on the
vulnerabilities of facial landmark extractors, as well as their application to the
obstruction of DeepFake generation.

• Landmark Breaker is based on a new loss function to encourage the error between
predicted and original heat-maps and optimize it using momentum iterative fast
gradient sign method.

• We conduct experiments on three state-of-the-art facial landmark extractors and
study the performance under different settings including video compression.
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4.2 Backgrounds

4.2.1 DeepFake Video Generation

Although in recent years there have been many sophisticated algorithms for gen-
erating realistic synthetic face videos [6, 8, 11, 20, 21, 23, 27, 44, 52, 53, 55,
56], most of these have not been in the mainstream as open-source software tools
that anyone can use. It is a much simpler method based on the work of neural image
style transfer [32] that becomes the tool of choice to create DeepFake videos in scale,
with several independent open-source implementations, e.g.,FakeApp,4 DFaker,5

faceswap-GAN,6 faceswap,7 and DeepFaceLab.8 We refer to this method as
the basic DeepFake maker, and it is underneath many DeepFake videos circulated
on the Internet or in the existing datasets.

The overall pipeline of the basic DeepFake maker is shown in Fig. 4.3 (left).
From an input video, faces of the target are detected, fromwhich facial landmarks are
further extracted. The landmarks are used to align the faces to a standard configuration
[22]. The aligned faces are then cropped and fed to an auto-encoder [25] to synthesize
faces of the donor with the same facial expressions as the original target’s faces.

The auto-encoder is usually formedby twoconvolutional neural networks (CNNs),
i.e., the encoder and the decoder. The encoder E converts the input target’s face to
a vector known as the code. To ensure the encoder capture identity-independent
attributes such as facial expressions, there is one single encoder regardless of the
identities of the subjects. On the other hand, each identity has a dedicated decoder
Di , which generates a face of the corresponding subject from the code. The encoder
and decoder are trained in tandem using uncorresponded face sets of multiple sub-
jects in an unsupervised manner, Fig. 4.3 (right). Specifically, an encoder-decoder
pair is formed alternatively using E and Di for the input face of each subject, and
to optimize their parameters to minimize the reconstruction errors (�1 difference
between the input and reconstructed faces). The parameter update is performed with
the backpropagation until convergence.

The synthesized faces are then warped back to the configuration of the original
target’s faces and trimmed with a mask from the facial landmarks. The last step
involves smoothing the boundaries between the synthesized regions and the original
video frames.Thewhole process is automatic and runswith littlemanual intervention.

4 https://www.malavida.com/en/soft/fakeapp/.
5 https://github.com/dfaker/df.
6 https://github.com/shaoanlu/faceswap-GAN.
7 https://github.com/deepfakes/faceswap.
8 https://github.com/iperov/DeepFaceLab.

https://www.malavida.com/en/soft/fakeapp/
https://github.com/dfaker/df
https://github.com/shaoanlu/faceswap-GAN
https://github.com/deepfakes/faceswap
https://github.com/iperov/DeepFaceLab
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Fig. 4.3 Synthesis (left) and training (right) of the basic DeepFake maker algorithm. See texts for
more details

4.2.2 DeepFake Detection Methods

Since DeepFakes become a global phenomenon, there has been an increasing interest
in DeepFake detection methods. Most of the current DeepFake detection methods
use data-driven deep neural networks (DNNs) as a backbone.

Since synthesized faces are spliced into the original video frames, state-of-the-art
DNN splicing detection methods, e.g., [5, 33, 63, 64], can be applied. There have
also been algorithms dedicated to the detection of DeepFake videos that fall into
three categories. Methods in the first category are based on inconsistencies exhibited
in the physical/physiological aspects in the DeepFake videos. The method in the
work of [30] exploits the observation that many DeepFake videos lack reasonable
eye blinking due to the use of online portraits as training data, which usually do not
have closed eyes for aesthetic reasons. Incoherent head poses in DeepFake videos
are utilized in [61] to expose DeepFake videos. In [2], the idiosyncratic behavioral
patterns of a particular individual are captured by the time series of facial landmarks
extracted from real videos are used to spot DeepFake videos. The second category of
DeepFake detection algorithms (e.g., [29, 37]) use signal-level artifacts introduced
during the synthesis process such as those described in the Introduction. The third
category of DeepFake detection methods (e.g., [1, 18, 41, 42]) are data-driven,
which directly employ various types of DNNs trained on real and DeepFake videos,
not relying on any specific artifact.

4.2.3 Existing DeepFake Datasets

DeepFake detection methods require training data and need to be evaluated. As such,
there is an increasing need for large-scale DeepFake video datasets. Table4.1 lists
the current DeepFake datasets.
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Table 4.1 Basic information of various DeepFake video datasets

Dataset # Real # DeepFake Release Date

Video Frame Video Frame

UADFV 49 17.3k 49 17.3k 2018.11

DF-TIMIT-LQ 320a 34.0k 320 34.0k 2018.12

DF-TIMIT-HQ 320 34.0k

FF-DF 1,000 509.9k 1,000 509.9k 2019.01

DFD 363 315.4k 3,068 2,242.7k 2019.09

DFDC 1,131 488.4k 4,113 1,783.3k 2019.10

Celeb-DF 590 225.4k 5,639 2,116.8k 2019.11
aThe original videos in DF-TIMIT are from Vid-TIMIT dataset

UADFV: The UADFV dataset [61] contains 49 real YouTube and 49 DeepFake
videos. The DeepFake videos are generated using the DNN model with FakeAPP.

DF-TIMIT: The DeepFake-TIMIT dataset [26] includes 640 DeepFake videos gen-
eratedwithfaceswap-GAN and is based on theVid-TIMITdataset [49]. The videos
are divided into two equal-sized subsets: DF-TIMIT-LQ and DF-TIMIT-HQ, with
synthesized faces of size 64 × 64 and 128 × 128 pixels, respectively.

FF-DF: The FaceForensics++ dataset [47] includes a subset of DeepFakes videos,
which has 1, 000 real YouTube videos and the same number of synthetic videos
generated using faceswap.

DFD: The Google/Jigsaw DeepFake detection dataset [14] has 3, 068 DeepFake
videos generated based on 363 original videos of 28 consented individuals of various
genders, ages, and ethnic groups. The details of the synthesis algorithm are not
disclosed, but it is likely to be an improved implementation of the basic DeepFake
maker algorithm.

DFDC: The FacebookDeepFake detection challenge dataset [12] is part of the Deep-
Fake detection challenge, which has 4, 113 DeepFake videos created based on 1, 131
original videos of 66 consented individuals of various genders, ages, and ethnic
groups.9 This dataset is created using two different synthesis algorithms, but the
details of the synthesis algorithm are not disclosed.

Based on release time and synthesis algorithms, we categorize UADFV, DF-
TIMIT, and FF-DF as the first generation of DeepFake datasets, while DFD, DFDC,
and the proposed Celeb-DF datasets are of the second generation. In general, the
second generation datasets improve in both quantity and quality over the first gener-
ation.

9 The full set of DFDC has not been released at the time of CVPR submission, and information is
based on the first-round release in [12].
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4.3 Celeb-DF: the Creation of DeepFakes

The Celeb-DF dataset is comprised of 590 real videos and 5, 639 DeepFake videos
(corresponding to over two million video frames). The average length of all videos
is approximately 13 seconds with the standard frame rate of 30 frame-per-second.
The real videos are chosen from publicly available YouTube videos, corresponding
to interviews of 59 celebrities with diverse distribution in their genders, ages, and
ethnic groups.10 56.8% subjects in the real videos are male, and 43.2% are female.
8.5% are of age 60 and above, 30.5% are between 50 and 60, 26.6% are in their 40s,
28.0% are in their 30s, and 6.4% are younger than 30. 5.1% are Asians, 6.8% are
African Americans, and 88.1% are Caucasians. In addition, the real videos exhibit a
large range of changes in aspects such as the subjects’ face sizes (in pixels), orien-
tations, lighting conditions, and backgrounds. The DeepFake videos are generated
by swapping faces for each pair of the 59 subjects. The final videos are in MPEG4.0
format.

4.3.1 Synthesis Method

The DeepFake videos in Celeb-DF are generated using an improved DeepFake syn-
thesis algorithm, which is key to the improved visual quality as shown in Fig. 4.4.
Specifically, the basic DeepFake maker algorithm is refined in several aspects tar-
geting the following specific visual artifacts observed in existing datasets.

Low resolution of synthesized faces: The basic DeepFake maker algorithm gener-
ates low-resolution faces (typically 64 × 64 or 128 × 128 pixels). We improve the
resolution of the synthesized face to 256 × 256 pixels. This is achieved by using
encoder and decoder models with more layers and increased dimensions. We deter-
mine the structure empirically for a balance between increased training time and
better synthesis result. The higher resolution of the synthesized faces is of better
visual quality and less affected by resizing and rotation operations in accommodat-
ing the input target faces, Fig. 4.5.

Color mismatch: Color mismatch between the synthesized donor’s face with the
original target’s face in Celeb-DF is significantly reduced by training data augmen-
tation and post- processing. Specifically, in each training epoch, we randomly per-
turb the colors of the training faces, which forces the DNNs to synthesize an image
containing the same color pattern with the input image. We also apply a color trans-
fer algorithm [46] between the synthesized donor face and the input target face.
Figure4.6 shows an example of the synthesized face without (left) and with (right)
color correction.

10 We choose celebrities’ faces as they aremore familiar to the viewers so that any visual artifacts can
be more readily identified. Furthermore, celebrities are anecdotally the main targets of DeepFake
videos.
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Fig. 4.4 Example frames from the Celeb-DF dataset. The left column is the frame of real videos
and the right five columns are corresponding DeepFake frames generated using different donor
subject

64 × 64 128 × 128 256 × 256

Fig. 4.5 Comparison of DeepFake frames with different sizes of the synthesized faces. Note the
improved smoothness of the 256 × 256 synthesized face, which is used in Celeb-DF. This figure is
best viewed in color
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Fig. 4.6 DeepFake frames using synthesized face without (left) and with (right) color correction.
Note the reduced color mismatch between the synthesized face region and the other part of the face.
Synthesis method with color correction is used to generate Celeb-DF. This figure is best viewed in
color
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Fig. 4.7 Mask generation in existing datasets (top two rows) and Celeb-DF (third row). a Warped
synthesized face overlaying the target’s face. bMask generation. c Final synthesis result

Inaccurate face masks: In previous datasets, the face masks are either rectangular,
which may not completely cover the facial parts in the original video frame, or the
convex hull of landmarks on eyebrows and lower lip, which leaves the boundaries
of the mask visible. We improve the mask generation step for Celeb-DF. We first
synthesize a face with more surrounding context, so as to completely cover the
original facial parts after warping. We then create a smoothness mask based on the
landmarks on eyebrows and interpolated points on cheeks and between lower lip and
chin. The difference in mask generation used in existing datasets and Celeb-DF is
highlighted in Fig. 4.7 with an example.
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Temporal flickering: We reduce temporal flickering of synthetic faces in the Deep-
Fake videos by incorporating temporal correlations among the detected face land-
marks. Specifically, the temporal sequence of the face landmarks are filtered using
a Kalman smoothing algorithm to reduce imprecise variations of landmarks in each
frame.

4.3.2 Visual Quality

The refinements to the synthesis algorithm improve the visual qualities of the Deep-
Fake videos in the Celeb-DF dataset, as demonstrated in Fig. 4.4. We would like to
have a more quantitative evaluation of the improvement in the visual quality of the
DeepFake videos in Celeb-DF and compare with the previous DeepFake datasets.
Ideally, a reference-free face image quality metric is the best choice for this purpose.
However, unfortunately, to date there is no suchmetric that is agreed upon andwidely
adopted.

Instead, we follow the face in-painting work [51] and use the Mask-SSIM score
[36] as a referenced quantitative metric of the visual quality of synthesized DeepFake
video frames. Mask-SSIM corresponds to the SSIM score [57] between the head
regions (including face and hair) of the DeepFake video frame and the corresponding
original video frame, i.e., the head region of the original target is the reference for
visual quality evaluation. As such, low Mask-SSIM score may be due to inferior
visual quality as well as changes of the identity from the target to the donor. On
the other hand, since we only compare frames from DeepFake videos, the errors
caused by identity changes are biased in a similar fashion to all compared datasets.
Therefore, the numerical values of Mask-SSIM may not be meaningful to evaluate
the absolute visual quality of the synthesized faces, but the difference betweenMask-
SSIM reflects the difference in visual quality.

The Mask-SSIM score takes value in the range of [0, 1] with higher value corre-
sponding to better image quality. Table4.2 shows the average Mask-SSIM scores for
all compared datasets, with Celeb-DF having the highest scores. This confirms the
visual observation that Celeb-DF has improved visual quality, as shown in Fig. 4.4.

Table 4.2 Average Mask-SSIM scores of different DeepFake datasets. Computing Mask-SSIM
requires exact corresponding pairs of DeepFake-synthesized frames and original video frames,
which is not the case for DFD and DFDC. For these two datasets, we calculate the Mask-SSIM on
videos that we have exact correspondences for, i.e., 311 videos in DFD and 2, 025 videos in DFDC

Datasets UADFV DF-TIMIT FF-DF DFD DFDC Celeb-DF
LQ HQ

Mask 0.82 0.80 0.80 0.81 0.88 0.84 0.92
-SSIM
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4.3.3 Evaluations

In Table4.3, we list individual frame-level AUC scores of all compared DeepFake
detection methods over all datasets including Celeb-DF, and Fig. 4.10 shows the
frame-level ROC curves of several top detection methods on several datasets.

Comparing different datasets, in Fig. 4.8, we show the average frame-level AUC
scores of all compared detection methods on each dataset. Celeb-DF is in general
the most challenging to the current detection methods, and their overall performance
on Celeb-DF is lowest across all datasets. These results are consistent with the dif-
ferences in visual quality. Note that many current detection methods predicate on
visual artifacts such as low resolution and color mismatch, which are improved in
the synthesis algorithm for the Celeb-DF dataset. Furthermore, the difficulty level
for detection is clearly higher for the second generation datasets (DFD, DFDC, and
Celeb-DF, with average AUC scores lower than 70%), while some detectionmethods
achieve near-perfect detection on the first generation datasets (UADFV, DF-TIMIT,
and FF-DF, with average AUC scores around 80%).

In terms of individual detection methods, Fig. 4.9 shows the comparison of aver-
age AUC score of each detection method on all DeepFake datasets. These results
show that detection has also made progress with the most recent DSP-FWA method
achieves the overall top performance (87.4%).

As online videos are usually recompressed to different formats (MPEG4.0 and
H264) and in different qualities during the process of uploading and redistribution,

Table 4.3 Frame-level AUC scores (%) of various methods on compared datasets. Bold faces
correspond to the top performance

Methods↓
Datasets→

UADFV
[61]

DF-TIMIT [26] FF-DF
[47]

DFD [14] DFDC
[12]

Celeb-
DF

LQ HQ

Two-stream [63] 85.1 83.5 73.5 70.1 52.8 61.4 53.8

Meso4 [1] 84.3 87.8 68.4 84.7 76.0 75.3 54.8

MesoInception4 82.1 80.4 62.7 83.0 75.9 73.2 53.6

HeadPose [61] 89.0 55.1 53.2 47.3 56.1 55.9 54.6

FWA [29] 97.4 99.9 93.2 80.1 74.3 72.7 56.9

VA-MLP [37] 70.2 61.4 62.1 66.4 69.1 61.9 55.0

VA-LogReg 54.0 77.0 77.3 78.0 77.2 66.2 55.1

Xception-raw
[47]

80.4 56.7 54.0 99.7 53.9 49.9 48.2

Xception-c23 91.2 95.9 94.4 99.7 85.9 72.2 65.3

Xception-c40 83.6 75.8 70.5 95.5 65.8 69.7 65.5

Multi-task [40] 65.8 62.2 55.3 76.3 54.1 53.6 54.3

Capsule [42] 61.3 78.4 74.4 96.6 64.0 53.3 57.5

DSP-FWA 97.7 99.9 99.7 93.0 81.1 75.5 64.6
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Fig. 4.8 Average AUC
performance of all detection
methods on each dataset
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Table 4.4 AUC performance of four top detection methods on original, medium (23), and high
(40) degrees of H.264 compressed Celeb-DF, respectively

Original c23 c40

FWA 56.9 54.6 52.2

Xception-c23 65.3 65.5 52.5

Xception-c40 65.5 65.4 59.4

DSP-FWA 64.6 57.7 47.2

it is also important to evaluate the robustness of detection performance with regards
to video compression. Table4.4 shows the average frame-level AUC scores of four
state-of-the-art DeepFake detection methods on original MPEG4.0 videos, medium
(23), and high (40) degrees of H.264 compressed videos of Celeb-DF, respectively.
The results show that the performance of each method is reduced along with the
compression degree increased. In particular, the performance of FWA andDSP-FWA
degrades significantly on recompressed video, while the performance of Xception-
c23 and Xception-c40 is not significantly affected. This is expected because the latter
methods were trained on compressed H.264 videos such that they are more robust in
this setting (Fig. 4.10).
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Fig. 4.10 ROC curves of six state-of-the-art detection methods (FWA, Meso4, MesoInception4,
Xception-c23, Xception-40, and DSP-FWA) on four largest datasets (FF-DF, DFD, DFDC, and
Celeb-DF)

4.4 Landmark Breaker: the Obstruction of DeepFakes

4.4.1 Facial Landmark Extractors

The facial landmark extractors detect and locate key points of important facial parts
such as the tips of the nose, eyes, eyebrows, mouth, and jaw outline. Earlier facial
landmark extractors are based on simple machine learning methods such as the
ensemble of regression trees (ERT) [22] as in the Dlib package [24]. The more
recent ones are based on CNN models, which have achieved significantly improved
performance over the traditional methods, e.g., [7, 19, 45, 50, 58, 65]. The current
CNN-based facial landmark extractors typically contain two stages of operations.
In the first stage, a set of heat-maps (feature maps) are obtained to represent the
spatial probability of each landmark. In the second stage, the final locations of facial
landmarks are extracted based on the peaks of the heat-maps. In this work, wemainly
focus on attacking the CNN -based facial landmark extractors because of their better
performance.

4.4.2 Adversarial Perturbations

CNNs have been proven vulnerable against adversarial perturbations, which are
intentionally crafted imperceptible noises aiming to mislead the CNN-based image
classifiers [4, 17, 28, 34, 38, 39, 43, 54, 60, 62], object detectors [9, 59], and
semantic segmentation [3, 16]. There are two attack settings: white-box attack,where
the attackers can access the details ofCNNs, andblack-box attack,where the attackers



4 Toward the Creation and Obstruction of DeepFakes 85

do not know the details of CNNs. However, to date, there is no existing work to attack
CNN-based facial landmark extractors using adversarial perturbations. Compared to
the attack to image CNN-based classifiers, which aims to change the prediction of a
single label, disturbing facial landmark extractors are more challenging as we need
to simultaneously perturb the spatial probabilities of multiple facial landmarks to
make the attack effective.

4.4.3 Notation and Formulation

Let F denote the mapping function of a CNN-based landmark extractor of which
the parameters we have access to, and {h1, · · · , hk} = F(I) be the set of heat-maps
of running F on input image I. Our goal is to find an image Iadv , which can lead
the prediction of landmark locations to a large error, while visually similar to as
original image I. The difference Iadv − I is the adversarial perturbation. We denote
the heat-maps from the perturbed image as {ĥ1, · · · , ĥk} = F(Iadv).

To this end, we introduce a loss function that aims to enlarge the error between
predicted heat-maps and original heat-maps while constraining the pixel distortion
in a certain budget as

argminIadv L(Iadv, I) = ∑k
i=1

h�
i ĥi

‖hi‖‖ĥi‖ ,
s.t. ||Iadv − I||∞ ≤ ε,

(4.1)

where ε is a constant. We use cosine distance to measure the error as it can naturally
normalize the loss range in [−1, 1]. Minimizing this loss function increases the error
between predicted and original heat-maps, which will disrupt the facial landmark
locations.

4.4.4 Optimization

We use the gradient MI-FGSM [13] method to optimize problem Eq.(4.1). Specifi-
cally, let t denote the iteration number and Iadv

t denote the adversarial image obtained
at iteration t . The start image is initialized as Iadv

0 = I. Iadv
t+1 is obtained by considering

the momentum and gradient as

mt+1 = λ · mt + ∇Iadv (L(Iadv
t ,I))

||∇Iadv (L(Iadv
t ,I))||1 ,

Iadv
t+1 = clip{Iadv

t − α · sign(mt+1)},
(4.2)

where ∇Iadv (L(Iadv
t , I)) is the gradient of L with respect to the input image Iadv

t at
iteration t ; mt is the accumulated gradient and λ is the decay factor of momentum;
α is the step size and sign returns the signs of each component of the input vector;
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clip is the truncation function to ensure the pixel value of the resulting image is in
[0, 255]. The algorithm stops when the maximum number of iterations T is reached
or the distortion threshold ε is reached. The overall algorithm is given in Algorithm1.

Algorithm 1 Overview of Landmark Breaker

Require: landmark extractor F; input image I; perturbed image Iadv ; maximal iteration number T
1: Iadv

0 = I, t = 0,m0 = 0
2: while t ≤ T and ||Iadv

t+1 − I||∞ ≤ ε do

3: mt+1 = λ · mt + ∇Iadv (L(Iadv
t ,I))

||∇Iadv (L(Iadv
t ,I))||1 ,

4: Iadv
t+1 = clip{Iadv

t − α · sign(mt+1)}
5: t = t + 1
Ensure: Adversarial perturbed image Iadv

t

4.4.5 Experimental Settings

Landmark Extractors. Landmark Breaker is validated on three state-of-the-art
CNN-based facial landmark extractors, namely FAN [7], HRNet [50], and AVS-
SAN [45]. FAN11 is constructed by multiple stacked hourglass structures, where
we use one hourglass structure for simplicity. HRNet12 is composed by parallel
high-to-low resolution sub-networks and repeats the information exchange across
multi-resolution sub-networks. AVS-SAN13 first disentangles face images to style
and structure space, which is then used as augmentation to train the network. We use
implementations of all three methods trained on WLFW dataset [58].

Datasets. To demonstrate the effectiveness of Landmark Breaker on obstructing
DeepFake generation, we conduct experiments on the Celeb-DF dataset [31], which
contains high-quality DeepFake videos of 59 celebrities. Each video contains one
subject with various head poses and facial expressions. We choose this dataset as
the pretrained DeepFake models are available to us, which can be used to test our
method.

In our experiment, we utilize theDeepFakemethod described in [31] to synthesize
fake videos using original and adversarial images, respectively. We randomly select
6 identities, corresponding to 36 videos in total. Since the adjacent frames in a video
show little variations, we apply Landmark Breaker to the key frames of each video,
i.e., 600 frames in total, for evaluation. Since the Celeb-DF dataset does not have the
ground truth of facial landmarks, we use the results of HRNet as the ground truth
due to its superior performance.

11 https://github.com/hzh8311/pyhowfar.
12 https://github.com/HRNet/HRNet-Facial-Landmark-Detection.
13 https://github.com/TheSouthFrog/stylealign.

https://github.com/hzh8311/pyhowfar
https://github.com/HRNet/HRNet-Facial-Landmark-Detection
https://github.com/TheSouthFrog/stylealign


4 Toward the Creation and Obstruction of DeepFakes 87

Input image Aligned face Synthesized face Warping back

O
ri

gi
na

l
A

dv
er

sa
ri

al

Landmarks

SSIM I SSIMWNME

Fig. 4.11 Evaluation pipeline. SSIMI denotes the image quality of the adversarial image referred
to as the original image, while SSIMW denotes the image quality of the corresponding synthesized
image. NME denotes the distance of facial landmarks on adversarial image and ground truth

Evaluations.We use twometrics to evaluate Landmark Breaker, namelyNormalized
Mean Error (NME) [50] and Structural Similarity (SSIM) [57]. The relation of these
metrics are shown in Fig. 4.11.

– NME is the average Euclidean distance between landmarks on adversarial image
and the ground truth,which is then normalized by the distance between the leftmost
key point in the left eye and the rightmost key point in the right eye. Higher
NME score indicates less accurate landmark detection, which is the objective of
Landmark Breaker.

– The SSIM metric simulates perceptual image quality. We use this indicator to
demonstrate that Landmark Breaker can affect the visual quality of DeepFake. As
shown in Fig. 4.11, we compute SSIM of original and adversarial input images
(SSIMI )14 and then compute the SSIM of the synthesized results (SSIMW ). The
lower score indicates the image quality is degraded. Ideally, the attacking method
should have large SSIMI such that the adversarial perturbation does not affect
the quality of input image, and small SSIMW such that the synthesis quality is
degraded.

Baselines. To better analyze Landmark Breaker, we adapt other two methods
FGSM [54] and I-FGSM [17] from attacking image classifiers to our task. Specif-
ically, the FGSM is a single-step optimization method as Iadv

1 = clip{Iadv
0 − α ·

sign(∇Iadv
0

(L(Iadv
0 , I))},while I-FGSM is an iterative optimization method without

considering momentum as Iadv
t+1 = clip{Iadv

t − α · sign(∇Iadv (L(Iadv
t , I))}. The

step size α and iteration number T of I-FGSM are set as the same in Landmark

14 We employ mask-SSIM [36] to measure the quality inside a region of interest determined by face
detection.
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Breaker. We use these two adapted methods as our baseline methods, which are
denoted as Base1 and Base2, respectively.

Implementation Details. Following the previous works [35, 60], we set the maxi-
mum perturbation budget ε = 15. The other parameters in Landmark Breaker are set
as follows: The maximum iteration number T = 20; the step size α = 1; the decay
factor is set as λ = 0.5.

4.4.6 Results

Table4.5 shows the NME and SSIM performance of Landmark Breaker. The land-
mark extractors shown in the leftmost column denote where the adversarial pertur-
bation is from and the ones shown in the top row denotes which landmark extractor
is attacked. “None” denotes no perturbations are added to the image. Landmark
Breaker can notably increase the NME score and decrease the SSIMW score in
white-box attack (e.g., the value in the row of “FAN” and the column of “FAN”),
which indicates Landmark Breaker can effectively disrupt facial landmark extraction
and subsequently affect the visual quality of the synthesized faces. We also compare
Landmark Breaker with two baselines Base1 and Base2 in Table4.6. We can observe
the Base1 method merely has any effect on the NME performance but can largely
degrade the quality of adversarial images compared to Base2 and Landmark Breaker
(LB). The Base2 method can also achieve the competitive performance with Land-
mark Breaker in NME but is slightly degraded in SSIM.

Following existing works attacking image classifiers, [13, 54], which achieves
the black-box attack by transferring the adversarial perturbations from a known
model to an unknown model (transferability), we also test the black-box attack using
the adversarial perturbation generated from one landmark extractor to attack other
extractors. However, the results show that the adversarial perturbations have merely
any effect on different extractors.

As shown in Table4.5, the transferability of Landmark Breaker is weak. To
improve the transferability, we employ the strategies commonly used in black-box
attacks on image classifiers: (1) Input transformation [60]: we randomly resize the
input image and then pad around with zero at each iteration (denoted as LBtrans);
(2) Attacking mixture [60]: we alternatively use Base2 and Landmark Breaker to
increase the diversity in optimization (denoted as LBmix ). Table4.7 shows the results
of a black-box attack, which reveals that the strategies effective in attacking image
classifiers do not work on attacking landmark extractors. This is probably due to the
mechanism of landmark extractors being more complex than image classifiers, as
the landmark extractors need to output a series of points instead of labels, and only
a minority of points shifted do not affect the overall prediction.
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Table 4.5 The NME and SSIM scores of Landmark Breaker on different landmark extractors. The
landmark extractors shown in leftmost column denote where the adversarial perturbation is from
and the ones shown in the top row denote which landmark extractors are attacked

NME↑
Attacks FAN HRNet AVS-SAN

None 0.03 0.00 0.09

FAN 0.87 0.05 0.09

HRNet 0.04 0.87 0.09

AVS-SAN 0.06 0.04 0.92

SSIM

Attacks SSIMI ↑ SSIMW ↓
FAN HRNet AVS-SAN

FAN 0.81 0.68 0.89 0.89

HRNet 0.78 0.89 0.67 0.88

AVS-SAN 0.78 0.87 0.87 0.69

Table 4.6 The NME and SSIM performance of different attacking methods

NME↑
Attacks FAN HRNet AVS-SAN

None 0.03 0.00 0.09

Base1 0.05 0.04 0.10

Base2 0.85 0.88 0.92

LB 0.87 0.87 0.92

SSIMI ↑ / SSIMW ↓
Attacks FAN HRNet AVS-SAN

Base1 0.52/0.73 0.46/0.71 0.49/0.69

Base2 0.88/0.71 0.88/0.70 0.86/0.73

LB 0.81/0.68 0.78/0.67 0.78/0.69

4.4.7 Robustness Analysis

We study the robustness of Landmark Breaker toward three extractors under image
and video compression. Note that image compression considers the spatial correla-
tion, while video compression also considers the temporal correlation.

Image compression. We compress the adversarial images to quality 75% (Q75) and
50% (Q50) usingOpenCV and then observe the variations in the performance of each
method. Table4.8 shows the NME and SSIM performance of each method under
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Table 4.7 The NME and SSIM performance of black-box attack. See text for details

NME↑
Attacks FAN HRNet AVS-SAN

None 0.03 0.00 0.09

FAN
LBtrans 0.22 0.03 0.09

LBmix 0.24 0.04 0.09

HRNet
LBtrans 0.04 0.10 0.09

LBmix 0.04 0.14 0.09

AVS-SAN
LBtrans 0.04 0.03 0.55

LBmix 0.05 0.03 0.56

SSIM

Attacks SSIMI ↑ SSIMW ↓
FAN HRNet AVS-SAN

FAN
LBtrans 0.91 0.88 0.94 0.94

LBmix 0.90 0.86 0.94 0.93

HRNet
LBtrans 0.92 0.95 0.94 0.95

LBmix 0.90 0.95 0.91 0.94

AVS-SAN
LBtrans 0.89 0.94 0.93 0.82

LBmix 0.88 0.93 0.93 0.81

different compression levels. Compared to the two baseline methods, Landmark
Breaker is more robust against image compression. Another observation is that the
attacks on AVS-SAN exhibit high robustness, where the performance of NME and
SSIM is only slightly degraded. In contrast, the attacking performance on HRNet
drops quickly with compression. Figure4.12 (left) plots the trend of each method.

Video compression. As the videos arewidespread on the Internet, we also investigate
the robustness against video compression. We create a video using the adversarial
images using the codec in MPEG4 (denoted as C) and then separate the videos into
frames to test the performance. We also perform double compression to the MPEG4
videos using the codec inH264 (denoted asC2). Table4.8 also shows the performance
against video compression, which has the same trend as in image compression.
Compared to the baseline methods, Landmark Breaker is more robust. Also, the
attacks on AVS-SAN exhibit strong robustness even after double compression C2,
on the other hand, the attacks on HRNet are vulnerable against video compression;
see Fig. 4.12 (right). Note the curve of Base1 and LB are fully overlapped in the last
plot.



4 Toward the Creation and Obstruction of DeepFakes 91

Table 4.8 The NME and SSIM performance of different attacking methods under different image
compression (IC) and video compression (VC) levels

NME↑
Attacks FAN HRNet AVS-SAN

None
Base1 0.05 0.04 0.10

Base2 0.85 0.88 0.92

LB 0.87 0.87 0.92

IC

Q75
Base1 0.05 0.04 0.10

Base2 0.64 0.10 0.90

LB 0.77 0.24 0.91

Q50
Base1 0.05 0.03 0.10

Base2 0.50 0.05 0.88

LB 0.70 0.10 0.89

VC

C
Base1 0.05 0.03 0.10

Base2 0.44 0.10 0.88

LB 0.72 0.41 0.90

C2
Base1 0.05 0.03 0.10

Base2 0.26 0.06 0.83

LB 0.60 0.20 0.89

SSIMI ↑ / SSIMW ↓
Attacks FAN HRNet AVS-SAN

None
Base1 0.52/0.73 0.46/0.71 0.49/0.69

Base2 0.88/0.71 0.88/0.70 0.86/0.73

LB 0.81/0.68 0.78/0.67 0.78/0.69

IC

Q75
Base1 0.56/0.75 0.47/0.72 0.51/0.71

Base2 0.90/0.74 0.93/0.94 0.87/0.74

LB 0.84/0.70 0.85/0.85 0.80/0.70

Q50
Base1 0.59/0.76 0.55/0.75 0.52/0.71

Base2 0.89/0.76 0.93/0.95 0.87/0.74

LB 0.84/0.71 0.88/0.92 0.80/0.70

VC

C
Base1 0.57/0.76 0.52/0.74 0.52/0.71

Base2 0.90/0.78 0.92/0.94 0.87/0.74

LB 0.84/0.71 0.84/0.79 0.80/0.71

C2
Base1 0.58/0.76 0.52/0.74 0.53/0.72

Base2 0.91/0.85 0.93/0.95 0.88/0.76

LB 0.85/0.73 0.84/0.87 0.82/0.72
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Fig. 4.12 The performance of eachmethod on different landmark extractors under image and video
compression

4.4.8 Ablation Study

This section presents ablation studies on the impact of different parameters on Land-
mark Breaker.

Step size. We study the impact of step size α on the performance of NME and SSIM
scores. We set the step size α from 0.5 to 1.5. The results are plotted in Fig. 4.13.
We observe that the NME score increases first and then decreases, which is because
the small step size does not disturb the image enough within the maximum iteration
number and then the large step size may not precisely follow the gradient descent
direction. Moreover, a larger step size can degrade the input image quality, which
also leads to the degradation of the synthesized image.

Maximum iteration number. We then study the impact of the maximum iteration
number T on the performance of NME and SSIM. We vary the maximum iteration
number T from 14 to 28 and illustrate the results in Fig. 4.13. From the figure, we
observe that theNME score is increased and SSIM is decreasedwith iteration number
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Fig. 4.13 Ablation study of Landmark Breaker regarding the performance with different step sizes
and iteration numbers

increasing. Since the distortion budget constraint, the curve becomes flat after about
17 iterations. Note that several curves are fully overlapped in the plot.

4.5 Conclusion

This chapter describes our recent efforts toward the creation and obstruction of Deep-
Fakes. Section4.1 describes a new challenging large-scale dataset for the develop-
ment and evaluation of DeepFake detection methods. The Celeb-DF dataset reduces
the gap in the visual quality of DeepFake datasets and the actual DeepFake videos
circulated online. Based on the Celeb-DF dataset, we perform a comprehensive per-
formance evaluation of current DeepFake detection methods, and show that there
is still much room for improvement. Section4.2 describes a new method, namely
Landmark Breaker, to obstruct the DeepFake generation by breaking the prerequisite
step—facial landmark extraction. To do so, we create the adversarial perturbations
to disrupt the facial landmark extraction, such that the input faces to the DeepFake
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model cannot be well aligned. Landmark Breaker is validated on Celeb-DF dataset,
which demonstrates the efficacy of Landmark Breaker on disturbing facial land-
mark extraction. We also study the performance of Landmark Breaker under various
parameter settings.
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Chapter 5
The Threat of Deepfakes to Computer
and Human Visions

Pavel Korshunov and Sébastien Marcel

Abstract Deepfake videos, where a person’s face is automatically swapped with a
face of someone else, are becoming easier to generate with more realistic results. The
concern for the impact of thewidespread deepfake videos on the societal trust in video
recordings is growing. In this chapter, we demonstrate how dangerous deepfakes are
for both human and computer visions by showing how well these videos can fool
face recognition algorithms and naïve human subjects. We also show how well the
state-of-the-art deepfake detection algorithms can detect deepfakes and whether they
can outperform humans.

5.1 Introduction

Recent advances in automated video and audio editing tools, generative adversarial
networks (GANs), and social media allow creation and fast dissemination of high-
quality tampered video content. Such content already led to appearance of deliberate
misinformation, coined “fake news,” which is impacting political landscapes of sev-
eral countries [3]. A recent surge of videos, often obscene, in which a face can be
swapped with someone else’s using neural networks, so-called Deepfakes,1 are of a
great public concern.2 Accessible open-source software and apps for such face swap-
ping (see Fig. 5.1 for illustration of the process) lead to large amounts of synthetically
generated deepfake videos appearing in social media and news, posing a significant
technical challenge for detection and filtering of such content. Some of the latest

1 Open source: https://github.com/deepfakes/faceswap.
2 BBC (Feb 3, 2018): http://www.bbc.com/news/technology-42912529.
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Fig. 5.1 Process of generating deepfake videos

approaches to detect deepfakes demonstrate encouraging accuracy, especially if they
are trained and evaluated on the same datasets [17, 21].

At this stage, the research on deepfakes is still a relatively immature field, however
the main research questions are already clear:

1. How to increase the amount of data with different types of deepfakes?
2. Can deepfakes fool automated face recognition?
3. Can deepfakes fool human visual system?
4. Can deepfakes be effectively detected?

In this chapter, we cover all the above research questions by (i) extending the pool
of available deepfake datasets, (ii) demonstrating vulnerability of face recognition
to deepfakes, (iii) presenting the results of subjective assessment of human ability
to detect deepfakes, and (iv) showing the abilities and challenges of state-of-the-art
deepfake detection approaches.

5.2 Related Work

The first approach that used a generative adversarial network to train amodel between
pre-selected two faces was proposed by Korshunova et al. [12]. Another related
work with even a more ambitious idea was to use long short-term memory (LSTM)-
based architecture to synthesize a mouth feature solely from an audio speech [24].
Right after these publications became public, they attracted a lot of publicity. Open-
source approaches replicating these techniques started to appear, which resulted in
the Deepfake phenomena.
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(a) By Google (b) DeepfakeTIMIT (c) By Facebook (d) Celeb-DF

Fig. 5.2 Examples of deepfakes (faces cropped from videos) in different databases

Many databases with deepfake videos (see examples in Fig. 5.2) were created to
help develop and train deepfake detection methods. One of the first freely available
databases was based on VidTIMIT [10], followed by the FaceForensics database,
which contained deepfakes generated from 1′000 YouTube videos [20] and which
later was extended with a larger set of high-resolution videos provided by Google
and Jigsaw [21]. Another recently proposed 5′000 videos-large database of deepfakes
generated from YouTube videos is Celeb-DF [14]. But the most extensive and the
largest database to date with more than 100K videos (80% of which are deepfakes) is
the dataset from Facebook [5], which was available for download to the participants
in the recent Deepfake Detection Challenge hosted by Kaggle.3

These datasets were generated using either the popular open-source code,4 e.g.,
DeepfakeTIMIT [10], FaceForensics [20], and Celeb-DF [14], or the latest methods
implemented by Google and Facebook for creating deepfakes (see Fig. 5.2 for the
examples of different deepfakes). This availability of large deepfake video databases
allowed researchers to train and test detection approaches based on very deep neural
networks, such as Xception [21], capsules networks [18], and EfficientNet [17],
whichwere shown to outperform themethods based on shallowCNNs, facial physical
characteristics [2, 13, 26, 27], or distortion features [1, 28].

5.3 Databases and Methods

Table5.1 summarizes the databases of deepfake videos that we have used in the
experiments presented in this chapter. The database by Google and Jigsaw and DF-
Mobio databasewere split into three approximately equal in size subsets, for training,
validation, and testing. The authors of Celeb-DF dataset predefined file lists for
training and testing subsets but there was no validation set provided. DeepfakeTIMIT

3 https://www.kaggle.com/c/deepfake-detection-challenge.
4 https://www.kaggle.com/c/deepfake-detection-challenge/discussion/121313.

https://www.kaggle.com/c/deepfake-detection-challenge
https://www.kaggle.com/c/deepfake-detection-challenge/discussion/121313
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Table 5.1 Databases of deepfakes

Database Number of swapped
identities

Original videos Deepfakes

DeepfakeTIMIT5 32 320 640

DF-Mobio database 72 31 950 14 546

FaceForensics 1000 1000 1000

from Google and Jigsaw approx. 150 360 3068

from Facebook not large 23 849 95 396

Celeb-DF 1711 590 5639

was also split only into two subsets: training and testing, due to its small size. From the
Facebook dataset, we manually selected 120 videos, which we used in the subjective
evaluation.

5.3.1 DeepfakeTIMIT

TheDeepfakeTIMIT5 is one of the first databases of deepfakes thatwe have generated
by using videos from a VidTIMIT database, which contains short video clips of 43
subjects shot in a controlled environment when they are facing camera and reciting
predetermined short phrases. Deepfakes were generated using open-source code6

for 16 pairs of subjects selected based on how similar their visual appearance is,
including mustaches or hair styles.

DeepfakeTIMIT contains two types of deepfakes (see examples in Fig. 5.3), the
lower quality (LQ) fakes where a GAN model was trained to generate 64 × 64
size images and a higher quality (HQ), where GAN was trained to generate 128 ×
128 images. The generated faces were placed in the target video using automated
blending techniques that relied on histogram normalization and selective masking
with Gaussian blur.

5.3.2 DF-Mobio

DF-Mobio7 dataset is also generated by us and is one of the largest databases available
with almost 15K deepfake and 31K real videos (see Table5.1 for the comparison
with other databases). Original videos are taken from Mobio database [15], which
contains videos of a single person talking to the camera recorded with a phone or a

5 https://www.idiap.ch/dataset/deepfaketimit.
6 https://github.com/shaoanlu/faceswap-GAN.
7 https://www.idiap.ch/dataset/dfmobio.

https://www.idiap.ch/dataset/deepfaketimit
https://github.com/shaoanlu/faceswap-GAN
https://www.idiap.ch/dataset/dfmobio
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(g) Original 1 (h) Original 2 (i) LQ swap 1 (j) HQ swap 1 (k) LQ swap 2 (l) HQ swap 2

Fig. 5.3 Screenshot of the original videos fromVidTIMIT database and low- (LQ) and high-quality
(HQ) DeepfakeTIMIT videos

Fig. 5.4 Screenshots of the original videos and a deepfake swap from DF-Mobio database

laptop. The scenario simulates the participation in a virtual meeting over Zoom or
Skype.

The original Mobio database contains 31K videos from 152 subjects but deep-
fakes were generated only for manually pre-selected 72 pairs of people with similar
hairstyles, facial features, facial hair, and eyewear. Using GAN-based face-swapping
algorithm based on the available code6, for each pair, we generated videos with
swapped faces from subject one to subject two and visa versa (see Fig. 5.4 for video
screenshot examples).

The GAN model for face swapping was trained on face size input of 256 × 256
pixels. The training images were generated from laptop-recorded videos at 8 fps,
resulting in more than 2K faces for each subject, the training was done for 40K
iterations (about 24 hours on Tesla P80 GPU). The availability of this database to
public is pending a publication.

5.3.3 Google and Jigsaw

To make this dataset, Google and Jigsaw [23] (see Table5.1 for the comparison with
other databases)workedwith paid and consenting actors to record hundreds of videos.
Using publicly available deepfake generation methods, Google then generated about
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3K of deepfakes from these videos. The resulting videos, real and fake, comprise
the contribution, which was created to directly support deepfake detection efforts.
As part of the FaceForensics++ [21] benchmark, this dataset is now available, free
to the research community, for developing synthetic video detection methods.

5.3.4 Facebook

For construction of Facebook database, a data collection campaign [6] (see Table5.1
for the comparison with other databases) has been carried out where participating
actors have entered into an agreement to the use and manipulation of their likenesses
in the creation of the dataset. Diversity in several axes (gender, skin tone, age, etc.)
has been considered and actors recorded videos with arbitrary backgrounds thus
bringing visual variability. A number of face swaps were computed across subjects
with similar appearances, where each appearance was inferred from facial attributes
(skin tone, facial hair, glasses, etc.). After a given pairwise model was trained on two
identities, each identity was swapped onto other’s videos.

For our experiments, we have manually looked through many videos of Facebook
database and pre-selected 60 deepfake videos, split into five categories depending of
how fake they look to an expert eye, with the corresponding 60 original videos (see
examples in Fig. 5.5).

We use this manually selected subset of the videos in the subjective evaluations
aimed to study the level of difficulty human subjects have in recognizing different
types of deepfakes. We also use the same videos to evaluate deepfake detection
systems and compare their performance with the human subjects.

(f) Very easy (g) Easy (h) Moderate (i) Difficult (j) Very difficult

Fig. 5.5 Cropped faces from different categories of deepfake videos of Facebook database (top
row) and the corresponding original versions (bottom row)
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5.3.5 Celeb-DF

Celeb-DF (v2) [14] dataset contains real and deepfake synthesized videos having
similar visual quality on par with those circulated online. The Celeb-DF (v2) dataset
is greatly extended from the previous Celeb-DF (v1), which only contained 795
deepfake videos.

The v2 of the database contains more than 5K deepfakes and nearly 2K real
videos, which are based on publicly available YouTube video clips of 59 celebrities
of diverse genders, ages, and ethic groups. The deepfake videos are generated using
an improved deepfake synthesis method [14], which essentially is an extension of
methods available online1, similar to the one used to generate both FaceForensics and
DF-Mobio databases. The authors of the Celeb-DF database claim that their modi-
fied algorithm improves the overall visual quality of the synthesized deepfakes when
compared to existing datasets. The authors also state that Celeb-DF is challenging to
most of the existing detection methods, even though many deepfake detection meth-
ods are shown to achieve high, sometimes near perfect, accuracy on previous datasets.
No consent was obtained for the videos, because the data is from the celebrities of
the YouTube videos.

5.4 Evaluation Protocols

In this section, we explain how we evaluate face recognition and deepfake detection
systems and what kind of objective metrics we compute.

5.4.1 Measuring Vulnerability

We use DeepfakeTIMIT database to evaluate vulnerability of face recognition. For
the licit non-tampered scenario, the original VidTIMIT videos for the 32 subjects for
which we have generated corresponding deepfake videos. In this scenario, we used
two videos of the subject for enrollment and the other eight videos as probes, for
which we computed the verification scores.

Using the scores, for each possible threshold θ , we compute commonly used
metrics for evaluation of classification systems: false accept rate (FAR), which is the
same as false match rate (FMR) and false reject rate (FRR), which is the same as
false non-match rate (FNMR).8 These rates are generally defined as follows:

8 Strictly speaking, FRR and FNMR are not the same but are equivalent in our evaluations, since
we are not concerned with such preprocessing errors like failure to enroll.
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FAR(θ) = |{hneg | hneg ≥ θ}|
|{hneg}|

FRR(θ) = |{h pos | h pos < θ}|
|{h pos}| ,

(5.1)

where h pos is a score for original genuine samples and hneg is a score for the tampered
samples.

Threshold at which these FAR and FRR are equal leads to an equal error rate
(EER), which is commonly used as a single value metric of the system performance.

To evaluate vulnerability of face recognition to deepfakes, in tampered scenario,
we use deepfake videos (10 for each of 32 subjects) as probes and compute the corre-
sponding scores using the enrollment model from the licit scenario. To understand if
face recognition perceives deepfakes to be similar to the genuine original videos, we
report the FAR metric computed using EER threshold θ from licit scenario. If FAR
value for deepfake tampered videos is significantly higher than the one computed
in licit scenario, it means the face recognition system cannot distinguish tampered
videos from originals and is therefore vulnerable to deepfakes.

5.4.2 Measuring Detection

We consider deepfake detection as a binary classification problem and evaluate the
ability of detection approaches to distinguish original videos from deepfake videos.
All videos in DF-Mobio and Google datasets were proportionally split into training,
validation, and test subsets. For Celeb-DF database, only training and test subsetwere
provided, so the test set was used in place of validation when necessary. Similarly,
DeepfakeTIMIT was also split into tow training and test subsets due to its smaller
size.

The result of a deepfake detection is a set of probabilistic scores where the values
close to zero correspond to deepfakes and those that are close to one correspond to
genuine videos.

We define the threshold θ f ar on the validation set to correspond to the FAR value
of 10%, which means 10% of fake videos are allowed to be misclassified as genuine.
Using this threshold θ f ar on the scores of the test set will result in test FAR and FRR
values. As a single value metric, we can then use the half total error rate (HTER)
defined as

HTER(θ f ar ) = FARtest + FRRtest

2
. (5.2)

In addition to reporting FAR, FRR, and HTER values for the scores of the test
set, we also report the area under the curve (AUC) metric, which is a popular metric
for evaluation of classification system and is often used in the deepfake detection
literature.
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5.5 Vulnerability of Face Recognition

As examples of face recognition systems, we used publicly available pre-trained
VGG [19] and Facenet [22] architectures. We used the fc7 and bottleneck layers of
these networks, respectively, as features and used cosine distance as a classifier. For
a given test face, the confidence score of whether it belongs to a pre-enrolled model
of a person is the cosine distance between the average feature vector, i.e., model, and
the feature vector of a test face. Both of these systems are state-of-the-art recognition
systems with VGG of 98.95% [19] and Facenet of 99.63% [22] accuracies on labeled
faces in the wild (LFW) dataset.

We conducted the vulnerability analysis of VGG- and Facenet-based face recog-
nition systems on low-quality (LQ) and high-quality (HQ) face swaps in Deepfake-
TIMIT database. The results are presented in Table5.2. In a licit scenario when only
original non-tampered videos are present, both systems performed very well, with
EER value of 0.03% for VGG and 0.00% for Facenet-based system. Using the EER
threshold from licit scenario,we computed FARvalue for the scenariowhen deepfake
videos are used as probes. In this case, for VGG the FAR is 88.75% on LQ deep-
fakes and 85.62% on HQ deepfakes, and for Facenet the FAR is 94.38% and 95.00%
on LQ and HQ deepfakes, respectively. To illustrate this vulnerability, we plot the
score histograms for high-quality deepfake videos in Fig. 5.6. The histograms show
a considerable overlap between deepfake and genuine scores with clear separation
from the zero-effort impostor scores (the probes from licit scenario).

From the results, it is clear that both VGG- and Facenet-based systems cannot
effectively distinguish GAN-generated and swapped faces from the original ones.
The fact that more advanced Facenet system is more vulnerable is also consistent
with the findings about presentation attacks [16].

5.6 Subjective Assessment of Human Vision

Since the resulted videos produced by automated deepfake generation algorithms
vary drastically visually, depending on many factors (training data, the quality of the
video for manipulation, and the algorithm itself), we cannot label all deepfakes into

Table 5.2 Vulnerability analysis of VGG and Facenet-based face recognition (FR) systems on
low-quality (LQ) and high-quality (HQ) deepfakes in DeepfakeTIMIT database. EER value (Test
set) is computed in a licit scenario without deepfakes. Using the corresponding EER threshold, FAR
value (Test set) is computed for the scenario when deepfake videos are used as probes

Dataset VGG-based FR Facenet-based FR

version EER (%) FAR (%) EER (%) FAR (%)

LQ deepfake 0.03 88.75 0.00 94.38

HQ deepfake 0.03 85.62 0.00 95.00
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(a) VGG-based face recognition

(b) FaceNet-based face recognition
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Fig. 5.6 Histograms showing the vulnerability of VGG- and Facenet-based face recognition to
high-quality face swapping on low- and high-quality Deepfakes



5 The Threat of Deepfakes to Computer and Human Visions 107

Fig. 5.7 Screenshot of one step of subjective evaluation (the video is courtesy of Facebookdatabase)

one visual category. Therefore, we have manually looked through many videos of
Facebook database3 and pre-selected 60 deepfake videos, split into five categories
depending on how clearly fake they look, with the corresponding 60 original videos
(see examples in Fig. 5.5).

The evaluation was conducted using QualityCrowd 2 framework [9] designed for
crowdsourcing-based evaluations (Fig. 5.7 shows a screenshot of a typical evaluation
step). This framework allows us to make sure subjects watch each video fully at least
once and are not able to skip any question. Prior to the evaluation itself, a display
brightness test was performed using a method similar to that described in [8]. Since
deepfake detection algorithms typically evaluate only the face regions cropped using
a face detector, to have a comparable scenario, we have also shown to the human
subjects cropped face regions next to the original video (see Fig. 5.7).

Each of the 60 naïve subjects who participated in the evaluation had to answer
the question after watching a given video: “Is face of the person in the video real
or fake?” with the following options: “Fake,” “real,” and “I do not know.” Prior to
the evaluation, the explanation of the test was given to the subjects with several test
video examples of different fake categories and real videos. The 120 were also split
in random batches of 40 each to reduce the total evaluation time for one subject, so
the average time per one evaluation was about 16 minutes, which is consistent with
the standard recommendations.

Due to privacy concerns, we did not collect any personal information from our
subjects such as age or gender. Also, the licensing conditions of Facebook database3

restricted the evaluation to the premises of Idiap Research Institute, which signed the
license agreement not do distribute data outside. Therefore, the subjects consisted of
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PhD students, scientists, administration, and management of Idiap. Hence, the age
can be estimated to be between 20 and 65 years old and the gender distribution to be
of a typical scientific community.

Unlike laboratory-based subjective experimentswhere all subjects canbeobserved
by operators and its test environment can be controlled, the major shortcoming of
the crowdsourcing-based subjective experiments is the inability to supervise par-
ticipants behavior and to restrict their test conditions. When using crowdsourcing
for evaluation, there is a risk of including untrusted data into analysis due to the
wrong test conditions or unreliable behavior of some subjects who try to submit
low-quality work in order to reduce their effort. For this reason, unreliable workers
detection is an inevitable process in crowdsourcing-based subjective experiments.
There are several methods for identifying the “trustworthiness” of the subject but
since our evaluation was conducted within premises of a scientific institute, we only
used so-called “honeypot” method [8, 11] to filter out scores from people who did
not pay attention at all. Honeypot is a very easy question that refers to the video the
subject just watched in the previous steps, e.g., “what was visible in the previous
video?” with obvious answers that test if a person even looked at the video. Using
this question, we filtered out the scores from five people from our final results, hence
we ended up with 18.66 answers on average for each video, which is the number of
subjects commonly considered in subjective evaluations.

5.6.1 Subjective Evaluation Results

For each deepfake or original video, we computed the percentage of answers that
were “certain and correct,” when people selected “Real” for an original or “Fake” for
a deepfake, “certain and incorrect” (selected “Real” for a deepfake or “Fake” for an
original) and “uncertain,” when the selection was “I do not know.”We have averaged
those percentages across videos in each category to obtain the final percentages,
which are shown in Fig. 5.8a. From the figure, we can note that the pre-selected
deepfake categories, on average, reflect the difficulty level of recognizing them. The
interesting result is the low number of uncertain answers, which means people tend
to be sure when it comes to judging the realism of a video. And it also means people
can be easily spoofed by a good quality deepfake video, since only in 24.5% cases
“well done” deepfake videos are perceived as fakes, even though these subjects
already knew they are looking for fakes. In the scenario, when such deepfake would
be distributed to an unsuspected audience (e.g., via social media), we can expect
the number of people noticing it to be significantly lower. Also, it is interesting to
note that even videos from “easy” category were not as easy to spot (71.1% correct
answers) compared to the original videos (82.2%). Overall, we can see that people
are better at recognizing very obvious examples of deepfakes or real unaltered videos.

To check whether the difference between videos from the five deepfake categories
is statistically significant based on the subjective scores, we performed ANOVA
test with the corresponding box plot shown in Fig. 5.8b. The scores were computed



5 The Threat of Deepfakes to Computer and Human Visions 109

Fig. 5.8 Subjective answers
and median values with error
bars from ANOVA test for
different deepfake categories

for each video (and per category when applicable) by averaging the answers from
all corresponding observers. For each correct answer, the score is 1 and for both
wrong and uncertain answers the score is 0. Please note that the red lines in Fig. 5.8b
correspond to median values, not average, which what we plotted in Fig. 5.8a. The
p-value of ANOVA test is below 4.7e − 11, which means the deepfake categories are
significantly different on average. However, Fig. 5.8b shows that “easy,” “moderate,”
and “difficult” categories have large scores variations and overlap, which means
some of the videos from these categories are perceived similarly. It means some
of the deepfake videos could be moved to another category. This observation is
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Fig. 5.9 Average scores with confidence intervals for each video in every video category

also supported by Fig. 5.9 which plots the average scores with confidence intervals
(computed using student’s t-distribution [7]) for each video in the deepfake category
(12 videos each) and originals (60 videos).

5.7 Evaluation of Deepfake Detection Algorithms

For the example of machine vision, we took two state-of-the-art algorithms: based
on Xception model [4] and EfficientNet variant B4 [17] shown to be performing
very well on different deepfake datasets and benchmarks [21]. We pre-trained these
models for 20 epochs each on theGoogle and Jigsaw dataset database [21] andCeleb-
DF [14] to demonstrate the impact of different training conditions on the evaluation
results. If evaluated on the test sets of the same databases they were trained on, both
Xception and EfficientNet classifiers demonstrate a great performance as shown in
Table5.3. We can see that the area under the curve (AUC), which is the common
metric used to compare the performance of deepfake detection algorithms, is almost
at 100% in all cases.

We evaluated these models on the 120 videos we used in the subjective test.
Since these videos come from Facebook database, they can be considered as unseen
data, which is still an obstacle for many DNN classifiers, as they do not generalize
well on the unseen data the fact also highlighted in the recent Facebook Deepfake
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Table 5.3 Area under the curve (AUC) value on the test sets of Google and Celeb-DF databases
of Xception and EfficientNet models

Model Trained on AUC (%) on Test set

Xception Google database 100.00

Xception Celeb-DF database 100.0

EfficientNet Google database 99.99

EfficientNet Celeb-DF database 100.0

(a) EfficientNet trained on Google (b) EfficientNet trained on Celeb-DF

(c) Xception trained on Google (d) Xception trained on Celeb-DF
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Fig. 5.10 The detection accuracy (the threshold corresponds to FAR 10% on development set of
the respective database) for each video category from subjective test by Xception and Efficient
models pre-trained on Google and Celeb-DF databases

Detection Challenge [25]. To compute performance accuracy, we need to select
threshold. We chose the threshold corresponding to the false accept rate (FAR) of
10%selected on the development set of the respective database.We selected threshold
basedonFARvalue as oppose to equal error rate (EER) commonly used in biometrics,
becausemany practical deepfake detection or anti-spoofing systems have a lowbound
requirement on FAR value. In our case, FAR of 10% is quite generous.

Figure5.10 demonstrates the evaluation results of pre-trained Xception and Effi-
cientNet models on the videos from the subject test averaged for each deepfake
category and originals (when using threshold corresponding to FAR = 10%). In the
figure, blue bar corresponds to the percent of correctly detected videos in the given
category, and the orange bar corresponds to the percent of incorrectly detected. The
results for algorithms are very different from the results of the subjective test (see
Fig. 5.8a for the evaluation results by human subjects). The accuracy of the algorithms
has no correlation to the visual appearance of deepfakes. The algorithms “see” these
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Fig. 5.11 ROC curves with the corresponding AUC value of Xception and Efficient models pre-
trained on Google and Celeb-DF databases evaluated on all the videos from subjective test

videos very differently from how humans perceive the same videos. To a human
observer, the result may even appear random. We can even notice that all algorithms
struggle the most with the deepfake videos that were easy for human subjects. It is
evident that the choice of threshold and the training data have major impact on the
evaluation accuracy. However, when selecting a deepfake detection system to use
in practical scenario, one cannot assume an algorithm’s perception will have any
relation to the way we think the videos look like.

If we remove the choice of the threshold and the pre-selected video categories and
simply evaluate the models on the 120 videos from the subjective tests, the receiver
operating characteristic (ROC) curve and the corresponding AUC values are pre-
sented in Fig. 5.11. From this figure, we can note that ROC curves look “normal,”
as typical curves for classifiers that do not generalize well on unseen data, espe-
cially taking into account excellent performance on the test sets shown in Table5.3.
Figure5.11 also shows that human subjects were more accurate at assessing this set
of videos since the corresponding ROC curve is consistently higher with the highest
AUC value of 87.47%.

5.8 Conclusion

In this chapter, we presented several publicly available databases of deepfake videos,
including two DeepfakeTIMIT and DF-Mobio generated and provided by us. We
demonstrated that the state-of-the-art VGG and Facenet-based face recognition algo-
rithms are vulnerable to the Deepfake videos and fail to distinguish such videos from
the original ones with up to 95.00% equal error rate.



5 The Threat of Deepfakes to Computer and Human Visions 113

We also conducted a subjective evaluation on 120 different videos (60 deepfakes
and 60 originals) manually pre-selected from the Facebook database, which demon-
strated that people are confused by good quality deepfakes in 75.5% of cases.

On the other hand, the evaluated state-of-the-art deepfake detection algorithms
(based on Xception and EfficientNets (B4 variant) neural networks pre-trained on
Google or Celeb-DF datasets) show very different perception of deepfakes compared
to human subjects. The algorithms struggle to detect many videos that look obvi-
ously fake to humans, while some of the algorithms (depending on the training data
and the selected threshold) can accurately detect videos that are difficult for peo-
ple. The experiments also demonstrate that deepfake detection algorithm struggle to
generalize to unknown set of videos, for which they were not trained for.

The continued advancements in development of face swapping techniques will
result in more challenging deepfake, which will be even harder to detect by the exist-
ing algorithms. Therefore, new databases and approaches that can better generalize
on unseen and realistic deepfakes need to be developed in the future. The arms race
between deepfake generation and detection methods is in full swing.
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Chapter 6
Morph Creation and Vulnerability
of Face Recognition Systems to Morphing

Matteo Ferrara and Annalisa Franco

Abstract Face recognition in controlled environments is nowadays considered
rather reliable, and very good accuracy levels can be achieved by state-of-the-art
systems in controlled scenarios. However, even under these desirable conditions,
digital image alterations can severely affect the recognition performance. In partic-
ular, several studies show that automatic face recognition systems are very sensitive to
the so-called facemorphing attack, where face images of two individuals aremixed to
produce a new face image containing facial features of both subjects. Face morphing
represents nowadays a big security threat particularly in the context of electronic
identity documents because it can be successfully exploited for criminal intents, for
instance to fool Automated Border Control (ABC) systems thus overcoming security
controls at the borders. This chapter will describe the face morphing process, in an
overview ranging from the traditional techniques based on geometry warping and
texture blending to the most recent and innovative approaches based on deep neural
networks. Moreover, the sensitivity of state-of-the-art face recognition algorithms to
the face morphing attack will be assessed using morphed images of different quality
generated using various morphing methods to identify possible factors influencing
the probability of success of the attack.

6.1 Introduction

Face morphing is generally described as a seamless transition transforming a facial
image into another. Morphing was initially proposed as an image generation tech-
nique for computer graphics applications [1] or psychological studies [2, 3].However,
only in recent years it has emerged as a potential and severe security thread for Face
Recognition Systems (FRS). The main risk deriving from face morphing is espe-
cially related to the adoption of automatic face-based identity verification in various
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applications like civilian identitymanagement,MachineReadable TravelDocuments
(eMRTD), or visa management. A possible attack in relation to the use of MRTD in
Automated Border Control (ABC) gates has been firstly identified in [4] and later
confirmed by several research works. Identity verification at an ABC relies on the
comparison of a live captured probe face image with a digital face image stored in
an eMRTD such as an e-passport. If a morphed image, which is similar enough to
the face of the two parent subjects, can be included in an eMRTD, then two persons
can share the document. In this scenario, a criminal could exploit the passport of
an accomplice with no criminal records to overcome the security controls. In more
details, the subject with no criminal records (i.e., the accomplice) could apply for an
eMRTDby presenting themorphed face photo; if the image is not noticeably different
from his/her face, the police officer accepts the photo and releases the document (see
Fig. 6.1).

The attack will be successful if the morphed image contemporarily meets two
conditions.

• It is able to fool the human expert, i.e., the morphed face must be very similar
to the accomplice who applies for the document and no elements (e.g., morphing
artifacts) of the image should raise suspicions;

• the image fools at the same time the FRS used for automatic identity verification,
meaning that the morphed face can be successfully matched with both subjects
(criminal and accomplice).

Some studies confirm that morphed faces can be very realistic and able to fool
human experts [5–7]. It is well known, in fact, that unfamiliar face recognition is a

Passport Issuance ABC Verifica on

Regular
ppassport with
morphed face

iimage

Morphed image

Fig. 6.1 The face morphing attack in the eMRTD scenario. The morphed ID photo delivered to the
officer is very similar to the applicant, but also contains facial features of a different subject
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hard task for humans and it becomes evenharderwhen it has to be accomplishedbased
on a small-size id photo such as the one used by the citizens to apply for an identity or
travel document. This photo is generally obtained by printing a high-quality digital
image on photographic paper (typical size is 3.5 cm × 4.5 cm) and is then scanned
to be included into the document. This printing and scanning process (P&S) hides
many small details of the image (e.g., artifacts introduced by the morphing process)
thus making it more difficult for human examiners to spot the attack attempt.

Figure 6.2 shows two examples of morphing. In the first case (top row), the
morphed image (b) is obtained with an almost equal contribution of the two subjects
(a) and (c); the result is quite similar to subject (a) but a human expert could notice
some differences. In the second example, the morphed image (e) has been generated
from (d) and (f), but with a stronger contribution of subject (d). Visually the morphed
image is almost indistinguishable from the accomplice (d) and is very unlikely that
it would raise some suspicion by the officer. Both these morphed images, (b) and (d),
contain enough information of the “criminal” subject to fool commercial FRSs.

(d) (e) (f)

(a) (b) (c)

Fig. 6.2 Two example of morphed images: b obtained from the subjects (a) and (c); e obtained
from the subjects (d) and (f)
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It is worth noting that in case of successful attack, the document issued is perfectly
regular; the attack does not consist of altering the document content but in deceiving
the officer while issuing the document. The document released will thus pass all the
integrity checks (optical and electronic) performed at the gates.

This attack is made possible in practice by the procedure adopted in several
countries where there is no live enrolment for facial images and citizens apply for
the document by providing an IDphoto printed on photographic paper. The trust chain
is thus broken since citizens could intentionally alter the image content by different
possible digital image manipulations [5], even with criminal intents. Switching to
live enrolment would certainly be the most effective solution, but its adoption by
all the involved countries is very unlikely; moreover, we have to consider the huge
number of documents already issued since the introduction of eMRTDs, which still
represent a potential risk. In fact, governmental agencies already reported a few real
morphing attack attempts and recent news confirm that the criticalities related to the
morphing attack have reached a wide public audience [8–10]. Estimating the real
extent of this phenomenon is hard, due to the practical impossibility of spotting the
cases of successful attack. Unfortunately, the analysis of the vulnerability of FRSs
to morphing attack, discussed later in this chapter, is not encouraging and confirm
once again that designing effective countermeasures is quite urgent.

This chapter is organized as follows. Section 6.2 describes the face morphing
generation algorithms, presenting both traditional landmark-based approaches, as
well as innovative solutions based on deep learning. Section 6.3 analyzes and
discusses the vulnerability of commercial FRSs to morphing attack; finally, Sect. 6.4
draws some concluding remarks.

6.2 Face Morphing Generation

Nowadays, the generation of amorphed image has become quite an easy and inexpen-
sive task. Open-source solutions are publicly available, such as for instance general
image processing software with specific plugins (e.g., the GAP plugin for GIMP
[11]). Moreover, a number of free or commercial tools (e.g., FaceMorpher [12] or
FantaMorph [13]), as well as applications for mobile devices or online services are
available. Interested readers can refer to [14] for a comprehensive review of publicly
available morphing tools. It is however worth noting that the images obtained with
these fully automated systems are usually affected by the presence (more or less
accentuate) of clearly visible artifacts that would probably cause a rejection of the
image by the human officer during the document issuing process. As discussed later
in this chapter, the creation of a high quality and credible morphed image usually
requires an accuratemanual intervention aimed at removing themost relevant defects
and make the image undistinguishable from a bona fide one.
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6.2.1 Landmark Based Morphing

Landmark-based approaches for facemorphing allow synthesizing afluid andgradual
transformation from one image to another by exploiting facial landmark points in the
involved images. Reference points usually correspond to prominent facial compo-
nents such as mouth, nose, eyes or eyebrows, and approximately outline their shape.
Such reference points can be either manually annotated or automatically determined
using facial landmark detection algorithms such as Dlib [15], which is the most
widely used for this purpose. Of course, the effort needed in the two cases is different,
and manual annotation is a boring and time-consuming task; on the other hand, if
properly executed, manual landmark labeling usually provides more precise land-
mark locations and achieves a better image coverage. Automatic landmark detection
algorithms, in fact, usually adopt standard facial models that consider the central
part of the face and the chin but ignore for instance the forehead region. As we will
discuss later, the accuracy of landmark detection has a direct impact on the quality
and effectiveness of the generated morphed images.

Starting from the facial landmarks, the morphing process can be generally
described as follows. Let I0 and I1 be the two parent images to morph and let P0 and
P1 be the two sets of correspondence points in I0 and I1, respectively. For most of
the landmark-based approaches, the transformation between the two images is ruled
by the so-called morphing factor, a parameter α representing a weighting factor for
the two images. The morphing process is therefore generating a set of intermediate
frames M = {Iα, α ∈ R, 0 < α < 1} representing the transformation of the first
image (I0) into the second one (I1) as shown in Fig. 6.3. Note that, to obtain realistic
results, the two images need to be aligned in advance (e.g., by overlaying the eye
centers).

In general, each frame is a weighted linear combination of I0 and I1 (based on α

value), obtained by combining (i) geometric warping [16] of the two images based
on correspondence points and (ii) texture blending.

Formally:

Iα(p) = (1 − α) · I0
(
wPα→P0(p)

) + α · I1
(
wPα→P1(p)

)
, (6.1)

where

• p is a generic pixel position;
• α is the weight factor, representing the contribution of image I1 to the morphing

(α = 0.3 indicates that the morphed image will be obtained for the 30% from I1
and 70% from I0);

• Pα is the set of correspondence points aligned according to the weight factor α;
• wPB→PA(p) is a warping function.

Several warping techniques have been proposed in the literature [17]. A common
approach consists in representing the two sets of points (PA and PB) by means of
topologically equivalent (i.e., no folding or discontinuities are permitted) triangular



122 M. Ferrara and A. Franco

(f)(e)(d)

(c)(b)(a)

Fig. 6.3 Morphing of image I0 (a) to I1 (f). b, c, d and e) are intermediate frames, obtained by the
morphing procedure, gradually moving from I0 to I1. The correspondence points and the triangular
meshes are highlighted in red and blue, respectively.

meshes (see Fig. 6.3) and computing local spatial transformations that map each
warped triangle to the corresponding original one [18]. Note that the meshes are
constrained to cover the whole images and not to cause self-intersection (i.e., each
pixel position is contained in exactly one mesh). A triangular mesh can be derived
from a set of points via Delaunay triangulation [19]. Given a generic pixel position
p in the warped image, the transformation used to map p onto the original image I
is the local transformation corresponding to the warped triangle that contains p (see
Fig. 6.4).

The set of aligned correspondence points Pα in Eq. (6.1) is computed as follows
(see Fig. 6.5):

Fig. 6.4 Example of image warping using triangular meshes. The point p in the warped image is
mapped into the original image using the inverse mapping of triangle � b2b3b4 into � a2a3a4
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Fig. 6.5 On the left, P0 (red circles) and P1 (blue squares) are the corresponding points of images
in Fig. 6.3a and f, respectively. On the right, the region containing points ui and vi is zoomed to
show point ri corresponding to morphed frame I0.4 (see Eq. (6.2) and Fig. 6.3c)

Pα = {ri |ri = (1 − α) · ui + α · vi ,ui ∈ P0, vi ∈ P1}. (6.2)

A more general formulation of the morphing process has been proposed in [20];
here geometric warping and image blending are ruled by two different factors.
Equation (6.1) can be generalized as follows:

IαB ,αW (p) = (1 − αB) · I0
(
wPαW →P0(p)

) + αB · I1
(
wPαW →P1(p)

)
, (6.3)

where αB and αW are the blending and warping factors, respectively.
The effects of blending andwarping are shown in Fig. 6.7where two very different

subjects have been selected (see Fig. 6.6) to highlight the influence of αB and αW .
From a visual point of view, the result from different combinations is overall quite
similar, but the effects produced on the probability of success of the attack by the
possibility of acting separately on geometry warping and image blending have to be
carefully considered. Several studies in fact show that, in the context of face recogni-
tion, humans aremore sensitive to texture than to geometry [21]; the study [20] reveals
that the same holds for FRSs, as confirmed by the experimental results reported in
Sect. 3.2. Assigning different weighting factors to texture blending and geometry
warping during the face morphing process significantly increases the chances of
success, especially in the presence of look-alike subjects.

The automatic generation of morphed images can produce some visible artifacts
that might be easily spotted by a human observer, thus drastically reducing the proba-
bility of success of the face morphing attack. The adoption of automatically detected
facial landmarks, further increase the probability of artifacts in case of inaccurate
point identification. The following visible artifacts are generally detectable:
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Fig. 6.6 Images I0 and I1
used to generate the morphed
images in Fig. 6.7

(a) (b)

• Macroscopic ghost artifacts in the face surrounding area (see Fig. 6.8a). Facial
landmarks are usually exclusively located in the facial region, and no reference
points are considered for hairs, ears, and ecc. No accurate warping is therefore
carried out for these regions, and the blending process produces therefore visible
artifacts due to different characteristics (e.g., hair style or background) of the two
contributing images.

• Minor artifacts close to the facial reference points (eyes, eye brows, mouth, nose,
chin, and nostrils) mainly due to insufficient or inaccurate landmarks. Typical
patterns are double edges or double reflections on irises (see Fig. 6.9a).

Awidely used solution to remove themacroscopic artifacts in the face surrounding
area is background substitution; the background region is typically replaced by the
corresponding region of one of the parent images (the one with the highest blending
factor), after a proper alignment (see Fig. 6.8b). An additional step is recommended
in this case, aimed at equalizing the skin color before background substitution. In fact,
due to different illumination conditions or skin color between the two face images,
the retouching result could be unsatisfactory, in particular when the facial landmarks
do not include the forehead region, thus causing a strong edge with the central face
region. To overcome this issue, the histogram matching method described in [22]
could be applied.

The second category of artifacts is more difficult to address, and no effective
automatic solutions have been identified so far. At present, only a very carefulmanual
post-processing is able to remove them, with a combination of low-level image
processing operations such small region cloning from the contributing images, direct
painting or edge smoothing (see Fig. 6.9b). Of course, this manual intervention is not
trivial and requires some practice to achieve a good result. However, manual post-
processing is a key element for the success of the morphing attack, in particular to
fool human experts, which could quite easily spot morphing artifacts if not carefully
removed.
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Fig. 6.7 Morphed images obtained with different blending and warping factors by combining
Fig. 6.6a (I0) and Fig. 6.6b (I1)

6.2.2 Deep Learning-Based Face Morph Generation

The face morphing approaches presented in the previous section provide a precise
control on the morphing process in relation for instance to the contribution of the
two subjects in the resulting image. On the other hand, since the process relies on
facial landmarks, an inaccurate detection of such reference points, as well as the lack
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(a) (b)

Fig. 6.8 Morphed image obtained from the two subjects in Fig. 6.3 with macroscopic artifacts in
the region around face; b morphed image in (a) after automatic background substitution

(a)

(b)

Fig. 6.9 a Small artifacts in the eye region, with double edge effect and multiple light reflections
in the iris; b eye region after manual post-processing for artifact removal

of reference points in specific face regions, determine in most cases the presence
of some ghost artifacts in the morphed image, which a human expert observing the
image could spot quite easily. As mentioned above, the realization of an “ideal”
morphed image requires a difficult and time-consuming manual post-processing
aimed at removing all visible artifacts. To overcome this limitation, some innovative
solutions for face morphing generation have been recently proposed, with the aim of
fully automating the generation process. In particular, a few recent works in the liter-
ature exploit the potential of Generative Adversarial Networks (GAN) to synthesize
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morphed images by sampling the two contributing facial images in the latent space,
without requiring preliminary landmark extraction and alignment.

GANs are based on the combined action of two different agents, a generator and
discriminator. The first one, the generator G, produces samples from a distribution
which should be ideally indistinguishable from the training distribution. The discrim-
inator D is trained to determine if the incoming samples are drawn from the real set of
training images or are fake samples generated by G. The training process gradually
improves the samples produced by the generator G, which learns the most effective
way to fool the discriminator.

The first approach for GAN-based face morphing generation, called MorGAN,
was proposed in [23]. The network architecture is inspired by the work [24] where
the Bidirectional Generative Adversarial Network (BiGAN) is introduced. In addi-
tion to the generator G from the standard GAN framework BiGAN includes an
encoder E which maps data x to latent representations z. The BiGAN discriminator
D discriminates not only in data space (x versus G(z)), but jointly in data and latent
space (tuples (x, E(x)) versus (G(z), z), where the latent component is either an
encoder output E(x) or a generator input z. The idea is that the BiGAN encoder
E should learn to invert the generator G, even if the two modules cannot directly
“communicate”. This architecture is adapted by the authors of [23] to the problem of
face morph generation. The generator is split into two components, complementary
inverse to each other, and the discriminator is trained to distinguish between joint
pairs (samples from the encoder and samples from the decoder). The main limitation
of the MorGAN approach is the limited size of the generated morphed images, 64
× 64 pixels, which is quite far from the resolution needed to fulfill the ISO/ICAO
quality standards (minimum inter-eye distance of 90 pixels) and to successfully fool
commercial FRSs. This last aspect is confirmed in [25] where the authors evaluate
the vulnerability of state-of-the-art face recognition systems to MorGAN morphed
images.

The same work [25] focuses on the generation of high-quality morphed images,
with the aimof overcoming the key limitation of theMorGANapproach. In particular,
the authors propose the adoption of StyleGAN [26] for morphing generation. Given
the latent code L1 of the face, StyleGAN maps the inputs to an intermediate latent
space through the mapping network. Themapping layer consists of 8 fully connected
layers serially connected. The approach synthesizes a data-subject-specific morphed
face by forcing a strategy to embed the face image into the latent space. The subject-
specific embedded latent space passes through the synthesis network consisting of
18 layers, thus obtaining a representation in 18 latent spaces (dimension 512) which
is further concatenated. The loss function driving the embedding measures the simi-
larity between the input image and the reconstructed image. The images of the two
contributing subjects are both processed according to the procedure described above
and a weighted average (to recall the idea of morphing factor) of the corresponding
latent codes is computed to obtain the morphed image latent code, which is finally
passed through the synthesis network to generate the high-resolution morphed image
(1024 × 1024).
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The morphing approach based on StyleGAN has been successively improved by
the same authors in [27]where theMIPGAN (Morphing through Identity Prior driven
GAN) approach is presented. The introduction of a loss function aimed at preserving
the identity of the generated morphed image, through enforced identity priors repre-
sents the main element of novelty. Given the images of the two contributing subjects,
the corresponding latent vectors are first computed using a latent prediction network.
The morphed image latent vector is again obtained by a weighted average of the two
input vectors and is finally passed through the synthesis network to obtain a morphed
image of size 1024 × 1024. The last step consists of a final optimization stage based
on the identity preserving loss function. The authors propose two different versions
of MIPGAN, obtained using two versions of StyleGAN, [26] and [28], respectively.
TheMIPGAN approach achieves interesting results in terms of efficacy of the attack,
as shown by the results reported in the next section.

Besides image resolution, another important aspect to consider is the similarity
of the morphed image to the two contributing subjects. From this point of view,
the landmark-based approaches certainly allow to better preserve the identity of the
two contributing subjects and to control quite easily (via the morphing factor) the
similarity of the resulting morphed images to one of the two individuals. GAN-based
approaches seem to have less control on this aspect, even when an identity preserving
loss function is adopted. Even if the morphed images generated using GAN-based
approaches can fool automatic FRSs, we believe that further work is needed to make
the generated images able to fool the human expert.

6.3 Vulnerability of Face Recognition Systems to Face
Morphing

In this section, we describe the experiments carried out using three commercial face
recognition SDKs (referred to as SDK1, SDK2, and SDK3) which provided top
performance in the “Face Recognition Vendor Test (FRVT)—1:1 Verification” [29,
30]; the names of the SDKs cannot be disclosed, and the results will be therefore
presented in anonymous form.

In order to simulate a realistic attack to an ABC system, the operational threshold
of the face recognition software have been fixed according to the Frontex guidelines
[31]. In particular, for ABC systems operating in verification mode, the face recog-
nition algorithm has to ensure a False Acceptance Rate (FAR) equal to 0.1% and a
False Rejection Rate (FRR) lower than 5%. During the experimentation, for each
SDK, the security threshold indicated in the corresponding documentation to achieve
FAR= 0.1% has been used. Since we focus on morphing attacks, the performance is
evaluated in terms of Mated Morph Presentation Match Rate (MMPMR) [32] with
the aim to quantify the percentage of morphing attacks able to fool the SDKs. To
this purpose the MMPMR for all SDKs have been measured by comparing morphed
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face images against probe images of both subjects involved in the generation of the
morphed image.

6.3.1 Data Sets

The SDKs have been evaluated on five data sets:

• BIOLAB-1.0 [5]: it contains 80 morphed images generated using the GIMP soft-
ware [11, 33] after a manual labeling of the facial reference points and a first
manual alignment based on eyes superimposition; a final manual retouch was
carried out to remove visible artifacts. For each morphed image, it contains two
probe images, one for each parent subject.

• MorphDB [34]: the aim of this dataset is to reproduce the typical scenario where
the ID photo is provided by the citizens printed on photographic paper and then
scanned by the officer during the issuing process. It contains 100 morphed images
generated using theSqirlzMorph 2.1 software [35]with facial landmarks automat-
ically detected and a morphing factor in the range [0.3;0.4]. After the generation,
the morphed images have been manually retouched to remove visible artifacts
introduced by the morphing procedure. The P&S images have been created by
printing the digital version on high quality photographic paper by a professional
photographer and scanned at 300 DPI. For each morphed image, it includes a
variable number of probe images of the two parent subjects.

• SOTAMD [36]: it contains 5748 high quality images for benchmarking under
realistic conditions. The dataset consists of facial images from subjects of various
ethnicities, age-groups, and both genders. After a careful subject pre-selection,
the morphed images have been created using seven different morphing algorithms
and applying manual post-processing to remove visible artifacts. Moreover, the
images have been also printed and scanned. For each morphed image, it includes
10 probe images, for each contributing subject, captured under a simulated ABC
gate operational scenario presentingmore variationswith respect to other datasets.

• AMSL [37]: a dataset containing images from the Face Research Lab London Set
[38]. 2175 morphed face images were generated using the morphing approach
described in [39]. All imagesweremodified in theway to complywith the require-
ments of the ICAO portrait quality standard for eMRTD [40] and to fit on a chip of
an eMRTD including cropping, down-scaling, and JPEG compression. For each
morphed image, it contains two probe images, one for each subject.

• B&W [20]: a dataset containing morphed images automatically generated by
separately varying the blending and the warping factors αB and αW to evaluate
their importance in fooling face recognition systems. It contains 560 morphed
images for each combination of αB and αW and for each of them, a probe image
for each contributing subject.
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BIOLAB-1.0, MorphDB, and SOTAMD datasets are available for testing on
the Bologna Online Evaluation Platform (BOEP) [41] hosted in the FVC-onGoing
framework [42, 43].

6.3.2 Results

Table 6.1 reports the single MMPMR of the three SDKs and their average on all
datasets (except for B&W data set whose results are reported below).

For all SDKs, the most difficult datasets seem to be both BIOLAB-1.0 and AMSL
with an average MMPMR of 95.0 and 92.7%, respectively. This is probably due to
a combination of different elements:

• morphingfactor—both BIOLAB-1.0 and AMSL datasets contain symmetric
morphed images (i.e., morphing factor equal to 0.5) while MorphDB dataset
contains asymmetric morphed images generated with a morphing factor in the
range [0.3;0.4] and SOTAMD dataset contains morphed images generated with
two different morphing factors (0.3 and 0.5);

• facial landmarks manually labeled—to generate BIOLAB-1.0 morphed images,
the facial landmarks have been manually selected, while automatically detected
facial landmarks have been used to generate MorphDB and SOTAMD morphed
images;

• forehead landmarks—BIOLAB-1.0 morphed images have been generated using
also landmarks manually labeled on the hairline (see Fig. 11 in [5]) which have
not been used to generate the other databases;

• facial outer region substitution—as shown in Fig. 6.3, the intermediate morphed
frames could present double exposure effects outside the facial region (e.g., back-
ground, hair, shoulders, and body). To make morphed images more realistic and
therefore more difficult to be detected, usually a retouching is applied. MorphDB
and SOTAMD morphed images have been automatically retouched by replacing

Table 6.1 MMPMR of the three SDKs on different data sets

Database Format Morphed
images

Probe
images
per
parent
subject

SDK1 (%) SDK2 (%) SDK3 (%) AVG
(%)

BIOLAB-1.0 Digital 80 1 98.75 96.25 90.00 95.00

MorphDB Digital 100 Variable 78.00 60.00 50.00 62.67

P&S 74.00 59.00 50.00 61.00

SOTAMD Digital 2045 10 69.10 50.81 46.41 55.44

P&S 3703 69.89 42.07 44.64 52.20

AMSL Digital 2175 1 99.08 94.25 84.78 92.70
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the pixels outside the face region with those of the accomplice image, while
BIOLAB-1.0 morphed images have been manually retouched.

• probe images—to simulate an ABC gate operational scenario, in the SOTAMD
database, the morphed images are compared against face images acquired using
ABC gates. Such images present different lighting conditions, and some of them
have been acquired as grayscale images. Such differences could decrease the
chance to fool the SDKs.

As the SOTAMD dataset [36] presents meta-data regarding the characteristics of
the parent subjects used for morphing (e.g., gender) and of the morphing generation
pipeline (e.g., morphing approach), theMMPMRof the three SDKs and their average
on different subsets are reported in Tables 6.2 and 6.3 (digital and P&S versions,
respectively).

Some interesting results can be observed, in relation to the main attributes
characterizing the database images:

• gender—the chance of fooling SDKs for female subjects looks on average higher
than for male subjects (about 10% better on both digital and P&S versions).

• post-processing—as expected manual retouching increases the probability of
fooling the SDKswith respect to automatic post-processing, even if the difference
is not so evident (about 5% better on both digital and P&S versions).

• morphingalgorithm—SDKs exhibit different behaviors as the morphing algo-
rithm changes; algorithms C02 and C01 present a higher change to fool SDKs

Table 6.2 MMPMR of the three SDKs on digital version of SOTAMD subsets

Attribute Subset #
Morphed
images

SDK1 (%) SDK2 (%) SDK3 (%) AVG
(%)

Gender Female 876 71.69 58.33 53.42 61.15

Male 1169 67.15 45.17 41.15 51.15

Post processing Automatic 1575 67.87 49.46 45.78 54.37

Manual 470 73.19 55.32 48.51 59.01

Morphing algorithm C01 325 79.08 64.92 55.08 66.36

C02 200 91.00 82.00 62.00 78.33

C03 400 65.00 43.75 40.75 49.83

C05 420 67.38 46.90 45.24 53.17

C06 400 61.75 40.00 40.50 47.42

C07 300 61.33 44.00 43.67 49.67

Morphing factor 0.3 1035 47.54 25.89 22.32 31.92

0.5 1010 91.19 76.34 71.09 79.54

Morph quality High 1059 89.99 76.11 66.19 77.43

Low 986 46.65 23.63 25.15 31.81
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Table 6.3 MMPMR of the three SDKs on P&S version of SOTAMD subsets

Attribute Subset #
Morphed
images

SDK1 (%) SDK2 (%) SDK3 (%) AVG
(%)

Gender Female 1661 71.76 49.91 50.87 57.52

Male 2042 68.36 35.70 39.57 47.88

Post processing Automatic 1453 66.83 37.72 45.42 49.99

Manual 2250 71.87 44.89 44.13 53.63

Morphing algorithm C01 500 79.80 53.00 57.60 63.47

C02 500 95.00 79.00 57.40 77.13

C03 1264 60.21 28.64 34.97 41.27

C05 939 68.26 38.45 43.66 50.12

C06 500 62.40 35.00 45.20 47.53

Morphing factor 0.3 1853 49.00 23.48 22.23 31.57

0.5 1850 90.81 60.70 67.08 72.86

Morph quality High 1920 90.73 64.90 63.39 73.00

Low 1783 47.45 17.50 24.45 29.80

Image compression Uncompressed 380 82.37 67.89 51.32 67.19

Compressed 3323 68.46 39.12 43.88 50.49

Table 6.4 MMPMR of SDK 1 on B&W data set for each combination of αB and αW . Different
values are represented by different blue levels (the darker, the greater)

0 0.1 0.2 0.3 0.4 0.5

0 1.4% 1.6% 2.1% 2.7% 4.3% 4.5%

0.1 5.4% 7.7% 8.4% 9.8% 11.1% 11.6%

0.2 18.0% 20.2% 22.3% 25.0% 27.1% 29.8%

0.3 40.5% 46.4% 49.6% 55.0% 58.6% 61.8%

0.4 73.0% 79.3% 82.7% 86.4% 88.9% 90.4%

0.5 93.0% 95.2% 96.6% 97.5% 97.7% 97.9%

with respect to algorithms C06, C07, and C03. Please refer to [36] for a detailed
description of the different morphing algorithms.

• morphingfactor—as expected symmetric morphing (morphing factor equals to
0.5) fools the SDKs more easily (more than 40% better on both digital and P&S
versions) than asymmetric morphing (morphing factor equals to 0.3).

• morph quality—as expected high quality morphs are more difficult to detect than
low quality morphs (about 45% better on both digital and P&S versions).

• image compression—the uncompressed images present a higher probability to
fool SDKs with respect to the compressed version (about 15% better).
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Tables 6.4, 6.5, 6.6, and 6.7 report the MMPMR of the three SDKs and their
average onB&Wdata set. For all SDKs blending andwarping present a very different
impact on the probability of success of the attack, while geometric modifications
obtained increasing the warping factor αW do not heavily affect recognition accuracy
(see ranges αB ∈ [0; 0.1], αW ∈ [0.4; 0.5]), an opposite behavior is observed for
the blending factor αB (αB ∈ [0.4; 0.5], αW ∈ [0; 0.1]). Hence, for a criminal it
would be much more convenient to create a morphed image with αB = 0.5 and
αW ∈ [0; 0.2] instead of using a balanced morphing factor in the range [0.2; 0.3] as

Table 6.5 MMPMR of SDK 2 on B&W data set for each combination of αB and αW . Different
values are represented by different blue levels (the darker, the greater)

0 0.1 0.2 0.3 0.4 0.5

0 1.4% 1.8% 2.1% 2.1% 3.0% 2.7%

0.1 3.6% 4.5% 5.7% 6.1% 7.0% 8.9%

0.2 9.3% 11.6% 15.7% 18.9% 23.8% 26.6%

0.3 27.1% 32.0% 38.4% 43.2% 47.7% 54.1%

0.4 50.9% 59.5% 66.4% 71.6% 76.3% 79.6%

0.5 72.0% 78.9% 85.0% 88.0% 91.1% 93.2%

Table 6.6 MMPMR of SDK 3 on B&W data set for each combination of αB and αW . Different
values are represented by different blue levels (the darker, the greater)

0 0.1 0.2 0.3 0.4 0.5

0 0.5% 0.9% 1.3% 1.1% 1.6% 2.1%

0.1 2.5% 3.0% 3.4% 4.6% 5.5% 7.0%

0.2 7.5% 9.8% 11.1% 13.2% 15.5% 18.6%

0.3 21.4% 23.9% 28.4% 33.0% 38.0% 42.5%

0.4 44.6% 51.3% 56.4% 61.1% 66.1% 69.3%

0.5 70.4% 75.5% 81.4% 85.9% 89.3% 91.6%

Table 6.7 Average MMPMR of the three SDKs on B&W data set for each combination of αB and
αW . Different values are represented by different blue levels (the darker, the greater). The green
region represents the most promising combinations of blending and warping factors to successfully
perpetrate the attack

0 0.1 0.2 0.3 0.4 0.5

0 1.1% 1.4% 1.9% 2.0% 3.0% 3.1%

0.1 3.8% 5.1% 5.8% 6.9% 7.9% 9.2%

0.2 11.6% 13.9% 16.4% 19.1% 22.1% 25.0%

0.3 29.7% 34.1% 38.8% 43.8% 48.1% 52.8%

0.4 56.2% 63.3% 68.5% 73.0% 77.1% 79.8%

0.5 78.5% 83.2% 87.7% 90.5% 92.7% 94.2%
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Fig. 6.10 Example images from the database used for the experiment. The morphed images are
obtained combining the two images I0 and I1 with different blending (αB ) and warping (αW ) factors

stated in [34, 44]. This choice would increase the chances of successful attack at the
border (from about 16–44 to 78–88%, on the average) keeping unaltered the chances
of fooling the human officer during the document issuing process. In fact, a visual
inspection of several generated morphs reveals that the difference between the two
images is imperceptible, in particular when look-alike subjects are involved (see the
example of Fig. 6.10). Moreover, we should always consider that human recognition
capabilities are surprisingly error-prone in front of unfamiliar faces [45] and small
appearance variations would probably be neglected. Finally, it is important to note
that the MMPMR values could be even higher because, in a real scenario, a criminal
would try to produce high quality morphed images, discarding the morphs with a
low probability of success and applying manual retouching to remove unrealistic
artifacts.

6.3.3 Deep Learning-Based Morphing Results

Currently no databases ofmorphed images generated byGANsare publicly available;
therefore, the vulnerability assessment we did only focus on images generated by
landmark-based approaches. However, as a reference, we think it is worth reporting
the preliminary results reported by the authors of the GAN-based approaches in their
paper [27].
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Table 6.8 MMPMR of a face recognition system on morphed images generated by GANs as
reported in [27]

Format Morph generation type

Facial landmark [46]
(%)

StyleGAN MIPGAN-I (%) MIPGAN-II (%)

Digital 100 64.68 94.36 92.93

P&S 97.64 61.72 92.97 80.56

P&S with compression 97.84 58.92 92.29 90.24

Table 6.8 compares the MMPMR of a state-of-the-art FRS on morphed images
generated by (i) GANs and (ii) a landmark-based morphing method [46]. While
StyleGAN generates morphed images with a low chance to fool the FRS (about
60%), the MIPGAN approach achieves interesting results in terms of efficacy of the
attack (about 90%) even if lower than the facial landmark method (about 98%).

On the other hand, even ifMIPGAN seems able to fool a FRS, some further efforts
are necessary to improve the similarity with the contributing subjects thus increasing
the effectiveness of the attack against human experts.

6.4 Conclusions

The general trust on automatic face recognition systems has recently been under-
mined by several possible kinds of attack, among which the face morphing is one of
themost insidious and difficult to address. Dealing with facemorphing is particularly
complex in the context of ePassports; FRS are requested to work at fixed operational
thresholds that guarantee a good trade-off between security and convenience in the
use of ABC gates. Unfortunately, at these thresholds, it is very hard for FRSs to reject
morphed images, thus making them quite vulnerable to the face morphing attack.
This is particularly true when themorphed facial image is accurately prepared, with a
manual intervention for facial landmark selection and artifact removal. Studies in the
literature show that humans are easily fooled by accuratemorphed images.Moreover,
the high success rate measured in this chapter for landmark-based morphing tech-
niques and the preliminary results reported in research papers for the GAN-based
approaches confirm that face morphing is a real security threat. Recently, several
research groups working on face recognition devoted significant efforts in designing
face morphing attack detection techniques but, as discussed in a later chapter, further
improvements are still needed to achieve good generalization capabilities.
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Chapter 7
Adversarial Attacks on Face Recognition
Systems

Ying Xu, Kiran Raja, Raghavendra Ramachandra, and Christoph Busch

Abstract Face recognition has been widely used for identity verification both in
supervised and unsupervised access control applications. The advancement in deep
neural networks has opened up the possibility of scaling it to multiple applications.
Despite the improvement in performance, deep network-based Face Recognition
Systems (FRS) are not well prepared against adversarial attacks at the deployment
level. The output performance of such FRS can be drastically impacted simply by
changing the trained parameters, for instance, by changing the number of layers,
subnetworks, loss and activation functions. This chapter will first demonstrate the
impact on biometric performance using a publicly available face dataset. Further to
this, this chapter will also present some strategies to defend against such attacks by
incorporating defense mechanisms at the training level to mitigate the performance
degradation. With the empirical evaluation of the deep FRS with and without a
defense mechanism, we demonstrate the impact on biometric performance for the
completeness of the chapter.

7.1 Introduction

Face recognition has been used in a large number of applications such as biometric
authentication, civilian ID management and border crossing. The recent success of
deep learning for recognition has led to very high biometric verification performance.
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As a result, several state-of-the-art face recognitionmodels such asVGGFace, Resid-
ual Networks (ResNet) and ArcFace have been extensively studied [2, 6]. The deeply
learnt models have focused on improving the biometric performance in the presence
of severe biometric sample quality degradation (i.e. face image) such as pose, illumi-
nation, expression, ageing and heterogeneity. With improved performance, the deep
models can be used for identification where a subject is probed within the learnt
models in a closed enrolment setting or for verification where the model is used to
extract the features from two images and thereupon compare them tomake a decision
based on a pre-computed threshold.

In a parallel direction, a number of potential attacks have been reported on deeply
learnt models for various tasks. The attacks range from simple perturbation in the
input image to advanced attacks where the parameters of the model are changed.
Such attacks lead to changing the robustness of the model; for instance, the changed
input may lead to circumventing the identification (i.e. avoid identification from a
black-list) or reaching a false match in a non-mated comparison trial. The attacks
can be conducted in three different manners where an attacker is fully aware of
the model’s operation, partially aware of the model’s operation and unaware of the
model’s operation, which fall under the categories white-box, black-box, and gray-
box attacks [3, 4, 10, 11, 17, 21, 37, 40]. Each of these attacks can have different
attack potential, and thus, not only making the deep models superior in terms of
performance is needed, but demanding the robustness to be improved.

Several works have investigated the vulnerabilities of deeply learnt FRS for var-
ious attacks [1, 5, 8, 12, 16, 19, 22, 26–29, 32, 34, 35, 39, 42]. In this chapter,
we provide a study on adversarial attacks on state-of-the-art deep Face Recognition
System (FRS) based on ArcFace [6] in an open-set protocol setting, i.e. the testing
set is unknown at the training level. We resort to such a protocol, given that most of
the deeply trained FRS may be deployed in scenarios with unknown testing images.
We provide a detailed analysis of the biometric implications when the attacks are
successful, making the systems result in a higher False Match Rate (FMR). Specif-
ically, when a threshold is set using a clean dataset for a fixed FMR, the attacks at
the image level lead to higher FMR.

A sample illustration of such impact using two chosen attacks—Fast Gradient
Sign Method (FGSM) and Projected Gradient Descent (PGD) poisoning attacks is
provided in Fig. 7.1 on a trained FRS using ArcFace [6]. As noted from the Fig. 7.1, a
FRS working on the pre-defined threshold (in this case τ = 0.4) for a fixed FMR =
0.1% will accept a score above such defined threshold in a non-mated comparison
trial. The implication of such an attack is that an attacker can use a poisoned image
to circumvent the verification process and thereby be verified as another subject.
Such a case can be foreseen when a person contained in a watch-list can avoid being
identified, putting the biometric FRS and, thereupon, the security at risk.

In order to fully illustrate the implications of such attacks, we employ FRGC
v2 dataset to generate the attacks with FGSM and PGD. We limit the focus of the
work to image level attacks under the assumption that the internals of the employed
network is unknown to the attacker. To validate the attack potential, we consider the
black-box attack setting on trained FRS models where the adversaries can attack
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Fig. 7.1 Illustration of increased False Match Rate due to fixed threshold based on the clean FRGC
v2 Dataset

using perturbed/poisoned images1 only at the testing/deploying stage. We use the
clean version of the FRGC v2 dataset (i.e. with no poisoning) and the corresponding
attack set to study the vulnerability. Further, we also re-train the model from scratch
using the poisoned (attack) data as adversarial examples to make the trained model
aware of such examples while learning. We further study the deep FRS models for
their biometric performance with the trained models with adversarial examples. To
provide an unbiased observation of the FRS, we employ disjoint training and testing
sets without any subject overlap throughout the experiments in this chapter.

We conduct one study where an attacker has the full freedom to poison the probe
data alone and another study where an attacker can also poison the enrolment data.
In both cases, we assume that neither the trained model nor the training data set are
available for the attacker to poison. Through empirical evaluations, we provide a
detailed analysis and note the observations for the completeness of the chapter.

The main contributions of this chapter are

• Provides a detailed taxonomy of the potential adversarial attacks on the FRS and
their applications.

• Provides empirical validation of vulnerability of the deeply learnt FRS model,
which is trained from scratch. The attacks are generated through two different
relevant and realizable approaches using Fast Gradient Sign Method (FGSM) and
Projected Gradient Descent (PGD).

• Provides a comparative evaluation of the deeply learnt FRS model against
commercial-off-the-shelf (COTS) FRS to benchmark the impact of the adversarial
attack in each case.

• Provides an evaluation of the robustness of FR models when the same is trained
with the adversarial examples using FGSM and PGD.

1 Both perturbed and poisoned images in this chapter refer to the same kind of attacks and are used
interchangeably.
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In the rest of this chapter, we first list out the taxonomy of the potential adversarial
attacks on FRS in Sect. 7.2 and provide the details on the chosen attacks for the
evaluation in Sect. 7.3. We then provide the details of the deeply learnt FRS in
Sect. 7.5 followed by the details on empirical evaluation in Sect. 7.6. We provide the
discussion on the observations in Sect. 7.8 and conclude the chapter with potential
research directions.

7.2 Taxonomy of Attacks on FRS

Szegedy et al. [33] illustrated the impact of small perturbations on the images for the
image classification problem and defeated state-of-the-art Deep Neural Networks
(DNNs) with high misclassification rates. These misclassified samples were named
adversarial examples that can impact the performance of the deep models. A number
of works have thereafter been proposed for creating such attacks, and the adversar-
ial attacks can be classified by the amount of knowledge an attacker has over the
model [3, 4, 10, 11, 17, 21]. Based on such knowledge, the attacks can be classified
[37, 40] as:

• White-box attack—assuming the complete knowledge of the target model, i.e. its
parameters, architecture, trainingmethod, and even in some cases, its training data.

• Gray-box attacks—having partial knowledge of the internal operations and param-
eters of the network.

• Black-box attacks—feeding a target model with the adversarial examples (during
testing) createdwithout knowing thatmodel (e.g. its training procedure or its archi-
tecture or parameters). Despite the limited knowledge of themodel, an attacker can
interact with such a model by utilizing the transferability of adversarial examples.

Motivated by such adversarial attacks, several works have investigated the impact
of such attacks on FRS and have provided various mitigation measures [1, 5, 8, 12,
16, 19, 22, 27–29, 32, 34, 35, 39, 42]. We provide an alternative taxonomy of such
adversarial attacks by categorizing them in two dimensions such as threat model
and perturbation. Figure7.2 presents the taxonomy under two such dimensions with
various sub-attacks. We provide a brief overview of the attacks for the convenience
of the reader in this section.

7.2.1 Threat Model

Wecould break down the threatmodel into four perspectives, adversarial falsification,
adversary’s knowledge, adversarial specificity and attack frequency,making different
attack examples fromvarious kinds of adversarial attack attributes groundondifferent
assumptions, the knowledge of the model, specificity and attack scenarios.
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Fig. 7.2 A taxonomy of potential adversarial attacks on FRS

(A) Adversarial Falsification

(i) False positive: A false positive attack rejects a true null hypothesis, also
called Type I Error, where a negative example is misclassified as a positive
class. Within the context of FRS, this error implies a comparison decision
of match for a biometric probe and a biometric reference from different
biometric capture subjects. For instance, a false match is when subject A is
identified or falsely verified as subject B, i.e. a zero-effort impostor accepted
in a non-mated comparison trial.

(ii) False negative:A false negative attackmakes the non-rejection of a false null
hypothesis, also called Type II Error, where a positive example is misclas-
sified as a negative class. In the context of FRS, this implies a comparison
decision of “non-match” for a biometric probe and a biometric reference
from the same biometric capture subject and the same biometric character-
istic. Alternatively, a subject A in a mated comparison trial is rejected by
the biometric system.



144 Y. Xu et al.

(B) Model Knowledge

(i) White-box attacks: A white-box attack gets all the information and param-
eters, including themodel architectures, model weights, activation functions
and all other hyper-parameters inside the machine learning model to attack,
and generates adversarial samples based on the gradient of the given model.

(ii) Black-box attacks: A black-box attack generates adversarial samples only
by the knowledge of the inputs and the outputs of a neural network model.
For example, when an adversarial image is provided to the model, a label or
a confidence score corresponding to another class of image is returned based
on the chosen model. Black-box attacks can be divided into transfer-based,
score-based and decision-based attacks. An evolutionary attack method for
query-efficient adversarial attacks in the decision-based black-box setting
[7] is proposed to optimize attack objective function in a black-box manner
through queries only.

(iii) Grey-box attacks: A grey-box attack is an intermediate attack that lies
between former and latter attacks. Typically in grey-box attacks, an attacker
can exploit partial knowledge of models, inputs and outputs of a neural
network model.

(C) Adversarial Specificity

(i) Targeted attacks: The targeted attack changes the output classification of
input to the desired one. For example, many different attacks can be con-
ducted to be verified or identified as another subject. Dodging attacks is such
kind of attacks where the face can be accessorized with glasses or makeup
to be identified as another subject [32].

(ii) Untargeted attacks: The goal of an untargeted attack is to lead the neural
network to misclassify the inputs. An attacker can simply employ similar
approaches of wearing a mask, glasses [32], makeup [42] or have expres-
sions [22] to impersonate another subject, typically an enrollee within the
enrolment dataset.

(D) Attack Frequency

(i) One-time attack: A one-time attack takes only one time to raise the adver-
sarial examples. A number of different approaches can be used for circum-
venting the FRS, for instance, creating a face image through deepfakes [16,
27, 34].

(ii) Iteration attack: An iterative attack takes multiple times to upgrade the
adversarial examples. A potential use case of such attacks can be in creating
amorphed face image by combining two face images iterativelywith various
morphing factors until a successful verification is obtained [25, 36].

Perturbation
Adding perturbations on face images is an easy but effective attack on FRS. Adver-
sarial examples could be generated by adding a small imperceptible perturbation to
deceive both humans and the model. Although larger perturbations can be added to
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the face images, this will lead to producing non-human figures, and the applicability
of such perceptible perturbations can only fool FRS but not the human operators if
such a system is monitored by one. The perturbation could be categorized in three
different sets based on factors of perturbation scope, perturbation limitation, and
perturbation measurement.

(A) Perturbation Scope

(i) Individual perturbation: Individual attacks produce various perturbations
for each clean input. For instance, a face image may be blurred, added pixel-
level noises, masked portions of the face to create the adversarial sample [1,
12].

(ii) Universal perturbation:Universal attacks generate a universal perturbation
for the entire data set. Although these attacks are very effective, an attacker
needs to avail the entire dataset to devise a good perturbation model to fool
the FRS effectively [1, 12, 19, 41].

(B) Perturbation Limitation

(i) Optimized perturbation: An optimized perturbation aims to minimize the
perturbation in order to prevent humans from recognizing the perturbation,
in the meantime, to fool the FRS [29, 39].

(ii) Constraint perturbation: A constraint perturbation, on the other hand, sets
perturbation as a diminutive constraint, for instance, in a chosen area of the
face [5, 24].

(C) Perturbation Density

(i) Dense adversarial attack: Dense adversarial attacks perturb the image over
all the pixels in one image [3].As the perturbations are spread over the image,
these attacks can be effective, but when the perturbation level is increased,
the image structure may change, making them irrelevant attack samples
mainly due to loss of visual fidelity.

(ii) Sparse adversarial attack: A sparse adversarial attack means only partial
positions are considered, regardless of those immaterial pixels. The adver-
sarial model would choose which parts should be attacked. Perturbation
factorization [8] was proposed to enable sparse, dense adversarial attacks.

(D) Perturbation Measurement

(i) �p-norm: �p-norm is used to define the magnitude of perturbations which
is denoted as ‖x‖p on a vector x and is defined as

‖x‖p = p

√
√
√
√

i=1
∑

n

|vi |p (7.1)

where p defines the norm. The one-norm (also known as the L1-norm,
�1-norm, or mean norm), where p equals 1, is defined as the sum of the
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absolute values of its components. The two-norm (also known as the L2-
norm, �2-norm, least-squares norm or mean norm), where p equals 2, is
defined as the square root of the sum of the squares of the absolute values of
its components. The infinity norm (also known as the L∞-norm, �∞-norm,
max norm, or uniform norm), where p equals∞, is defined as the maximum
of the absolute values of its components.

(ii) Psychometric perceptual adversarial similarity score (PASS): A novel
Perceptual Adversarial Similarity Score (PASS) [28] is a new measure to
quantify adversarial images. It is proposed to bemore consistent with human
perception than prior �p-norm measurements and to serve as a similarity
measure to quantify how adversarial a misclassified image is. It supports
many transformations, including small translations and rotations, which
result in images that are perturbed to observable extents compared to their
original counterparts while still appear to be reasonable samples of the same
images.

7.3 Poisoning Attacks on FRS

Although several attacks can be found in the literature, we focus on “Adversarial
Falsification” attacks under which both False Non-Match Rate (FNMR) and False
Match Rate (FMR) are impacted. Further, we restrict ourselves to Black-box setting
where the knowledge of the model is limited and create the attacks using perturba-
tions (or poisoning). Two kinds of perturbations such as Fast Gradient Sign Method
(FGSM) and Projected Gradient Descent (PGD) [11] attacks are considered in this
chapter, mainly due to lower attack generation cost in terms of time and effort. Dif-
ferent variants of the same attacks can be found in the literature, but they generally
take a longer time to generate, and we restrict our focus to realizable attacks in terms
of the time required to generate the attack itself. We provide a brief overview of the
attack generation mechanism for both attacks in this section.

7.3.1 Fast Gradient Sign Method

The Fast Gradient Sign Method (FGSM) [11] is a linear perturbation of non-linear
models. It uses the gradients of the neural network to create adversarial examples.
The perturbation is defined as

η = εsign (�x J (θ, x, y)) ,

where θ is the parameters of a model, x and y are the input to the model and the
labels associated with x respectively, J (θ, x, y) represents the cost used to train the
neural network and ε is the perturbation factor. The optimalmax-norm η is defined by
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linearizing the cost function around the current value of θ . The adversarial image is
produced by adding η to the original input image. The neural networks are designed
by leveraging the gradients to optimize the learning. The FGSM attack generation
simply uses the gradient of loss of the input data and adjusts the input data in such a
way that the loss is maximized.

7.3.2 Projected Gradient Descent

The idea of Projected Gradient Descent (PGD) [11] is essentially a saddle point prob-
lem as the composition of an inner maximization problem and an outer minimization
problem. The basic formulation of PGD is denoted as

min
θ

E(x,y)∼D(max
δ∈S

L(θ, x + δ, y)).

D represents an underlying data distribution over pairs of examples x and cor-
responding labels y. The θ is the set of model parameters and L(θ, x, y) is the
loss function. The goal of PGD algorithm is to find parameters θ that minimize the
empirical riskE(x,y)∼D(L(θ, x, y)). A set of allowed perturbations S is introduced to
formalize the manipulative power of the adversary for each data point x . S captures
perceptual similarity between images in the classification tasks. The goal of the inner
maximization problem is to find a perturbation δ ∈ S of a given data point x that
achieves the highest loss. While the outer minimization problem aims to find the
model parameters to minimize the adversarial loss. PGD algorithm can start from
random perturbations in the ball of interest decided by �∞-norm around a sample and
repeatedly take s steps of α size till convergence. Random starts would help PGD to
solve local optima within the objective.

7.4 Carlini and Wagner (CW) Attacks

The general idea of CW algorithm [3] is the typical adversarial attack which utilizes
the adversarial loss and the image distance loss. The former loss ensures the adver-
sarial images to fool the classification models while the latter one is used to control
the perturbation of the adversarial examples. The CW attack could be formulated as

minimize ‖δ‖
p
+ c · f (x + δ) (7.2)

such that x + δ ∈ [0, 1]n (7.3)
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c is a constant that differs between models. The author of CW used binary search to
choose c. δ is the small change that the CW algorithm adds to mystifies the classifier.
Given xi , δi is defined as

δi = 1

2
(tanh (wi ) + 1) − xi ,

tanh(wi ) is introduced to meet the request of box constraint Eq. (7.3).
Object function f is chosen as

f (x ′) = max(max
i �=t

Z(x ′)i − Z(x ′)t ,−k),

which chooses the difference of two probability values or the confidence parameter
k. By setting the value of−k, the user could specify the confidence of the adversarial
attack. This chapter focuses on open-set verification protocols by simply extracting
the embeddings and comparingwith cosine distance, and thereforewedonot consider
this attack further.

A sample illustration of FGSM and PGD perturbation is shown in Fig. 7.3. As
noted from Fig. 7.3, perturbation factor ε directly influences the perceptual quality of
the image. While higher perturbation factors may result in stronger attacks, one has
to focus on visual appearance to make the attack not obvious to human perception.

(a) FRGC Clean (b) FGSM = 0.1 (c) FGSM = 0.5 (d) PGD = 0.1 (e) PGD = 0.5

(f) FRGC Clean (g) FGSM = 0.1 (h) FGSM = 0.5 (i) PGD = 0.1 (j) PGD = 0.5

Fig. 7.3 Adversarial attack examples of FGSM and PGD with ε = 0.1 and ε = 0.5 where ε is the
strength of the perturbation. As noted from the illustration, FGSMattack degrades the visual appear-
ance quality of the image when the perturbation factor ε is increased while the visual appearance
is still tolerable with the PGD even with a larger ε
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7.5 ArcFace FRS Model

Of the number of models available for large-scale training data, both the softmax-
loss-based methods [2] and the triplet-loss-based methods [30] can achieve high
recognition performance. However, both the softmax loss and the triplet loss have
some drawbacks for scalability issues. The size of the linear transformation matrix
W ∈ R

d×n increases linearly with the identities number n, and the learned features
are separable for the closed-set classification problem but not discriminative enough
for the open-set face recognition problem which is typical for face recognition. As
for the triplet loss, the combinatorial explosion in the number of face triplets is
especially for large-scale datasets, leading to a significant increase in the number
of iteration steps. Semi-hard sample mining is a quite difficult problem for effec-
tive model training, which depends on the availability of large-scale data. Based on
these two motivations, we choose to employ ArcFace deep FRS due to its superior
performance as demonstrated in various works [6].

In this work, we choose to employ the ResNet101 architecture and Additive
AngularMarginLoss (ArcFace) loss to directly benefit from the discriminative power
of the face recognitionmodelwithoutmuchoverheadon trainingprocess [6].ArcFace
utilizes the arc-cosine function to calculate the angle between the current feature and
the target weight. ArcFace directly optimizes the geodesic distance margin under
the exact correspondence between the angle and arc in the normalized hypersphere.
Specifically, we extract 512 dimensional embeddings for all the experiments.

We first validate the choice of ResNet101 network and ArcFace loss using the
publicly available LFW [13], CFP-FP [31], AgeDB-30 [20]. Based on the accuracy
obtained on these datasets, we fix the architecture choices and then use it for all our
experiments on FRGC v2 dataset [23].

7.6 Experiments and Analysis

In this section, we list the details of the dataset, attack generation and the set of FRS
analysis conducted. We employ False Non-Match Rate (FNMR) at a False Match
Rate (FMR) of 0.1% and Equal Error Rate (EER) to report the performance of FRS
and supplement the results using the Detection Error Trade-off (DET) curves when
applicable.

7.6.1 Clean Dataset

Considering the focus of this work on FRS, we choose a state-of-art FR dataset–
FRGCv2 dataset [23] specifically to report the open-set verification experiments.
Our choice is based on two factors (1) FRGCv2 dataset presents a mix of images that
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closely resemble the biometric enrolment and probe dataset and are not significantly
degraded, impacting the model’s performance due to noise (2) by splitting the FRGC
dataset into disjoint sets, we can illustrate the performance on open-set verification
protocols.We, therefore, evaluate the attack potential on the deeply learnt FRSmodel
corresponding to the protocol known as Experiment-1 [23]. We have reorganized
the dataset to have 222 subjects in the training set and validation set (randomly
subsampled in each training epoch) and the rest of the non-overlapping subjects in
the disjoint testing test. Care has been exercised not to overlap any subjects in the
training set and testing set. The database is first processed to detect the face region,
and then the facial images are aligned [6]. Each image in all three sets is further
resized to 112 × 112 pixels for training the model and testing the model.

7.6.2 Attack Dataset

We generate the attack dataset corresponding to all three subsets, such as training,
validation and testing set of FRGC v2 dataset. We generate two kinds of attacks such
as FGSM attacks and PGD attacks as both of these attacks can retain the similarity
of the face region despite adding the noise to the image.2

7.6.2.1 Attack Dataset—FGSM Perturbations

Using the clean version of the FRGC dataset (i.e. non-poisoned), we generate the
FGSM attack dataset for all three subsets of training, validation and testing set. We
employ Torchattack library3 to generate the attack dataset for FGSM. We specifi-
cally use the FGSM model from Torchattack library to generate the attacks with a
perturbation factor of ε = 0.1 and ε = 0.5.4 Although we have experimented with
various ε, we choose the perturbation factor of ε = 0.1 based on the stronger attack
potential while not degrading the image’s visual appearance. It should, however, be
noted that the ε < 0.1 is still effective to attack FRS with a limited success rate.

7.6.2.2 Attack Dataset—PGD Perturbations

Similar to FGSM attacks, we use the clean version (i.e. non-poisoned) of the FRGC
dataset to generate a PGD attack dataset for all three subsets of training, validation
and testing set.We employ the Torchattack library to generate the PGDattack dataset.

2 CW attacks take larger time for generation, and we do not consider CW attacks in this work as
their practical applicability in our study is limited.
3 https://adversarial-attacks-pytorch.readthedocs.io/en/latest/attacks.html.
4 https://github.com/Harry24k/adversarial-attacks-pytorch.

https://adversarial-attacks-pytorch.readthedocs.io/en/latest/attacks.html
https://github.com/Harry24k/adversarial-attacks-pytorch
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In the lines of FGSM attacks, we employ generate the attacks with a perturbation
factor of ε = 0.1 and ε = 0.5.

7.6.2.3 COTS Evaluation

In order to first understand the impact of poisoning (perturbation) attacks,we evaluate
the biometric performance using the COTS system.5 We employ testing partition
of clean FRGC data and testing partition of poisoned data with FGSM and PGD
attacks to verify the recognition performance. We first evaluate the performance
of COTS FRS using clean FRGC data against clean data. We further evaluate the
performance of COTS FRS by enrolling clean FRGC data and probed using PGD
and FGSM attacks generated with ε = 0.1. The attacks generated with ε = 0.5 do
not compromise the FRS as the FRS rejects them as Failure-to-Extract, and we do
not report the error rates for such a setting.

We note from the Table7.1 that COTS FRS6 is not sensitive to the poisoned data
and provides ideal biometric performance irrespective of clean or poisoned data. Our
assertion of this observation is that the version of the COTS FRS does not employ
deep networks and thus makes it robust against poisoning attacks. However, as the
COTS FRS does not disclose the algorithm, we cannot fully confirm our hypothesis.

7.6.3 FRS Model for Baseline Verification

We train the ArcFace deep learning model from scratch using the training set and
verify the model’s performance using the disjoint validation set. We carry out the
training for 100 epochs with a learning rate of 0.01 with ArcFace loss [6] to avoid
overfitting due to limited sample size. The trained model is further used to extract the
embedding of length 512 on the testing set, and the similarity between two images
is computed using the cosine distance in our baseline performance evaluation. We
employ the False Non-Match Rate (FNMR) at False Match Rate (FMR) of 0.01 for
validating the model on the validation set. The performance reported in this chapter
further on is only on the testing set of the FRGCv2 dataset and corresponding attack
sets for FGSM and PGD attacks.

7.6.4 FRS Baseline Performance Evaluation

The trainedmodel on FRGCv2 training dataset is first evaluated to obtain the baseline
performance on the FRGC testing set, FGSM attack testing set and PGD attack

5 Neurotech Verilook—Version 11.1—https://www.neurotechnology.com.
6 We do not present the DET curves as the EER=0% for chosen COTS SDK.

https://www.neurotechnology.com
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Table 7.1 Performance of FRS without attacks, with FGSM attacks and PGD attacks

EER (%) FNMR (%) EER (%) FNMR (%)

@ FMR = 0.1% @ FMR = 0.1%

Deep FRS Cosine Euclidean

Similarity Distance

FRGC Clean 4.18 13.54 6.21 42.68

FGSM probe
attacks

8.08 39.44 6.59 74.04

PGD probe
attacks

7.45 31.98 7.20 84.32

COTS FRS

EER (%) FNMR (%)

FRGC Clean 0 0

FGSM probe
attacks

0 0

PGD probe
attacks

0 0
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Fig. 7.4 Baseline DETs on FRS trained on clean FRGC, probed with FRGC clean data, FGSM
and PGD attack data

testing set. The results obtained from baseline evaluation are presented in Fig. 7.4a.
For reporting the performance, we extract the embedding of length 512 from the
trained FRS and then employ cosine similarity to obtain the comparison score. As
noted fromTable7.1 and the correspondingDET can be found in Fig. 7.4a, the trained
model performs best when the data is clean (i.e. without attack), resulting in an Equal
Error Rate (EER) of 4.18%.
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7.6.4.1 Baseline Evaluation with Euclidean Distance

In order to study the variance of performance with distance measure on the FRS
model, we also conduct the same analysis using the Euclidean distance measure
to obtain the comparison scores. As it can be observed from Fig. 7.4b, there is a
performance drop when the embeddings are compared using the Euclidean distance
illustrating the dependence of distance measure in deep FRS. This aspect can be
attributed to the training mechanism optimized for cosine similarity, and thus it is
not surprising to see the drop in the performance. Table7.1 presents the obtained
error rates using the Euclidean distance with a baseline EER of 6.21% when the
model is presented with no attacks.

7.6.4.2 Impact of Increased Perturbations

Further, we also study the impact of the perturbation strength on FRS by poisoning
the images with a perturbation factor ε of 0.5. Specifically, we poison the probe
images and use them to probe against clean FRGC enrolment. Figure7.5a presets the
DETs corresponding to these experiments and it can be noted from the Fig. 7.5a that
such attacks lead to a significant number of false matches and false non-matches.
A similar observation can be made for the comparison of embeddings using the
Euclidean distance as depicted in Fig. 7.5b. Further, to illustrate the impact of such
attacks with a high degree of poisoning, we present the distribution shifts Fig. 7.6.
As one can note, such attacks lead to very high false rejects and a small number
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Fig. 7.5 Baseline DETs on FRS trained on clean FRGC and tested on FRGC clean data, FGSM
and PGD attack data with ε = 0.5
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(c) With PGD Probe Attacks

Fig. 7.6 Illustration of increased False Non-Match Rate due to fixed threshold based on the clean
FRGC v2 Dataset and probed with highly perturbed images ε = 0.5

Table 7.2 Performance of FRS with FGSM and PGD attacks with larger perturbation (ε = 0.5)

EER (%) FNMR (%) EER (%) FNMR (%)

@ FMR = 0.1% @ FMR = 0.1%

Cosine Euclidean

FGSM probe
attacks

24.72 86.20 18.44 89.28

PGD probe
attacks

15.05 65.46 24.81 74.50

of false matches. Table7.2 presets the performance obtained in terms of EER and
FNMR@FMR=0.1% to illustrate the degradation of FRS.

The attacks with such amount of poisoning may not benefit the attacker to be
falsely verified against another identity, making them not highly lucrative for the
attackers targeting false acceptance. However, such attempts for verification using
highly poisoned images may easily help the attacker to be not identified in a watch-
list where the FRS does not obtain a high enough comparison score to cross the
pre-determined threshold. It can be asserted with a high degree of confidence that
this kind of attacks may not be attractive as they distort the images to a high degree.

7.6.5 FRS Performance on Probe Data Poisoning

Considering that an attacker is unable to change the enrolment set, we also provide
another study where the attacker can only change the data at the probe level. The
critical assumption here is that an attacker can get hold of images from social media
sites that may not be of optimal quality for biometric use cases. Using such images,
an attacker can generate the poisoning such that the FRS can still accept the attack
images. In order to achieve this, we retain the original FRGC clean data as an enrol-
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ment set and use the FGSM and PGD attacks at the probe level. Figure7.4 presents
the change in performance when the probe images are alone attacked where the poi-
soned data succeeds in verifying against the enrolment set. This can be both seen as
the robustness of the network to noisy data and also as a weakness in distinguishing
the poisoned attack images.

7.6.6 FRS Performance on Enrolment Data Poisoning

While we have assumed that an attacker is unable to access the enrolment set in the
earlier set of experiments, we also consider another scenario where the attacker is
fully capable of poisoning the enrolment dataset. We consider a scenario where an
attacker can poison the enrolment database using FGSM attacks and probe against
PGD attacks. As illustrated in Fig. 7.7a and b, under such a scenario of poisoned
enrolment set, the attack succeeds in obtaining a reasonable biometric performance.
However, these attacks may not be highly realistic when secure mechanisms are used
to protect the enrolment data, as seen in most of the operational systems. Despite
limited success, this set of experiments shows that the FRS are vulnerable if the
enrolment set is compromised, and this aspect needs further investigation.
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Fig. 7.7 DETs for clean FRGC enrolment poisoned with versus attack probe images with higher
perturbations (ε = 0.5)
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7.7 Impact of Adversarial Training with FGSM Attacks

As the performance of the FRS under adversarial attacks can change, in this section,
we analyze if training the FRS with adversarial samples can improve the accuracy.
While different strategies for mitigating the adversarial attacks starting from having
detection schemes [18] to training the FRS with adversarial samples [9, 38], we
simply resort to train the FRS model with the adversarial samples using both per-
turbation factors of ε = 0.1 and ε = 0.5. To account for the generalisability towards
both FGSM and PGD attacks, we train a FRS network by incorporating the FGSM
and PGD adversarial samples into the training data.

Figure7.8 depicts the performance obtained using the FRS trained with FGSM +
PGD attacks on the various testing sets. As it can be noted, the FRS, despite having
low accuracy when the adversarial samples are presented under open-set evaluation
protocol, performance is restored to similar accuracy simply by incorporating the
adversarial samples in the training set. It is interesting to note that the adversarially
trainedmodel performs equally well with the embeddings compared using Euclidean
distance, unlike the model trained with clean data under similar settings as shown
in the Fig. 7.9. Although this indicates the robustness of the trained model when
adversarial samples are provided, a detailed analysis is further needed.

Further, we also evaluate the performance of the adversarially trained FRS for
cross-poisoning attacks corresponding to Sect. 7.6.5. The obtained performance is
presented in the Fig. 7.9 and the performance is also listed in Table7.3. It can be
evidently noted that adversarial training can help in addressing the cross-poisoning
attacks to a greater extent. In the lines of previously noted results, it canbe seen that the
adversarial training also improves the performance for comparison scores obtained
with the Euclidean distancemeasure for measuring the dissimilarity between embed-
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Fig. 7.8 ROC graphs for adversarial trained FRS with FGSM+PGD attack data
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Fig. 7.9 ROC graphs for adversarial trained FRS with FGSM+PGD attack data and increased
poisoning

Table 7.3 Performance of FRS trained with adversarial examples when probed with attack images
from FGSM and PGD attack generation

EER (%) FNMR (%) EER (%) FNMR (%)

@ FMR = 0.1% @ FMR = 0.1%

Cosine Euclidean

FRGC Clean 4.18 13.54 6.21 42.68

FGSM Probe
Attacks

4.65 22.20 4.37 22.04

PGD Probe
Attacks

4.37 23.18 4.70 24.81

dings. Further, to illustrate the advantage of the adversarial training in observing
the shift in distribution between mated and non-mated comparison scores, we also
present the obtained distributions in Fig. 7.10. As it can be noted from Fig. 7.10, the
distribution of mated and non-mated comparison becomes very identical to baseline
system performance when no attacks are conducted, as shown in Fig. 7.1a.

7.8 Discussion

With the set of all experiments conducted in this work under the open-set protocols
for biometric verification using a deep model, we observe that the FRS are generally
vulnerable to poisoning/perturbation attacks. Although the deep FRS are sensitive to
a different degree based on the degree of poisoning of images, both FGSM and PGD
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Fig. 7.10 Distribution shift inmated and non-mated comparison scores as a result of the adversarial
training in a combined manner using PGD+FGSM samples on cross-poisoning attacks

attacks can adversely affect the false match and false non-match decisions, both of
which have a significant operational impact if deployed. We noted that the baseline
performance of FRS degrades when the clean data alone (despite capture noises such
as bad illumination, pose and expression) is used. The performance of the systems
further degrades when the cross-poisoning attacks are carried out, specifically when
the attacker can manipulate the images in the enrolment set and probe with images
of significant attack degree. Unlike the deep FRS, we also note that the COTS FRS is
insensitive to such attacks, but due to limited knowledge on the employed algorithm
in COTS, one cannot conclude on what contributes to its robustness.

However,we also note that by simply retraining the entire networkwith adversarial
examples, we can improve the baseline performance of the deep FRS and alsomake it
robust to cross-poisoning attacks. One key benefit of such an approach is the limited
overhead on the network design where one can simply reuse the network. While on
the other hand, the deep FRS may still remain sensitive to the newer attacks if such
examples are not seen by the network during the training phase. Alternatively, one
can simply add another layer to the FRSnetworkwhich can detect adversarial attacks,
which is a common practice in presentation attack detection. On the downside of such
design is the additional overhead of design of the network and no guarantee that these
adversarial sample detection module would scale to newer and unknown attacks. In
another direction, stricter constraints canbe imposed to eliminate the non-conforming
images according to quality standards as defined by ISO/IEC standards—29794-5
[14, 15] should such systems be deployed. Such observations and arguments lead
us to critically analyze the deep FRS for various factors and study the generalizing
ability to diverse adversarial attacks on FRS. This can be an interesting direction for
future works for mitigating the adversarial threats on deep FRS.



7 Adversarial Attacks on Face Recognition Systems 159

7.9 Conclusions and Future Directions

Despite the impressive accuracy obtained with deep models for various face recog-
nition tasks, they are vulnerable to various kinds of attacks. In this chapter, we have
presented various adversarial attacks that can negatively impact the biometric perfor-
mance of face recognition systems. Further, we have chosen two relevant adversarial
attacks based on the poisoning of the images at both probe level and enrolment level.
The chosen attacks were thoroughly evaluated using a state-of-art face dataset to
illustrate the impact of the poisoning attacks on deep network-based face recogni-
tion. This chapter specifically illustrated the impact on biometric performance in
terms of false match and false non-match decisions when such poisoned data is used
for attacks. Further, this chapter also illustrated the use of adversarial examples to
make the deep models robust towards such poisoning attacks.

Future works in this direction can also combine the poisoning attacks with the
parameter level attacks to verify the impact on biometric performance. Another
potential direction is to study the model and parameter protection mechanisms to
avoid white-box attacks.
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Chapter 8
Talking Faces: Audio-to-Video Face
Generation

Yuxin Wang, Linsen Song, Wayne Wu, Chen Qian, Ran He,
and Chen Change Loy

Abstract Talking face generation aims at synthesizing coherent and realistic face
sequences given an input speech. The task enjoys a wide spectrum of downstream
applications, such as teleconferencing, movie dubbing, and virtual assistant. The
emergence of deep learning and cross-modality research has led to many interesting
works that address talking face generation. Despite great research efforts in talking
face generation, the problem remains challenging due to the need for fine-grained
control of face components and the generalization to arbitrary sentences. In this
chapter, we first discuss the definition and underlying challenges of the problem.
Then, we present an overview of recent progress in talking face generation. In addi-
tion, we introduce some widely used datasets and performance metrics. Finally, we
discuss open questions, potential future directions, and ethical considerations in this
task.
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8.1 Introduction

Talking face generation aims at synthesizing a realistic target face, which talks in cor-
respondence to the given audio sequences. Thanks to the emergence of deep learning
methods for content generation [1–3], talking face generation has attracted significant
research interests from both computer vision [4–8] and computer graphics [9–14].

Talking face generation has been studied since 1990s [15–18], and it was mainly
used in cartoon animation [15] or visual-speech perception experiments [16]. With
the advancement of computer technology and the popularization of network services,
new application scenarios emerged. First, this technology can help multimedia con-
tent production, such as making video games [19] and dubbing movies [20] or TV
shows [21].Moreover, the animated characters enhance human perception by involv-
ing visual information, such as video conferencing [22], virtual announcer [23], vir-
tual teacher [24], and virtual assistant [12]. Furthermore, this technology has the
potential to realize the digital twin of real person [21].

Talking face generation is a complicated cross-modal task, which
requires the modeling of complex and dynamic relationships between audio and
face. Existing methods typically decompose the task into subproblems, including
audio representation, face modeling, audio-to-face animation, and post-processing.
As the source of talking face generation, voice contains rich content and emotional
information. To extract essential information that is useful for talking face anima-
tion, one would require robust methods to analyze and comprehend the underlying
speech signal [7, 12, 22, 25–28]. As the target of talking face generation, face mod-
eling and analysis are also important. Models that characterize human faces have
been proposed and applied to various tasks [17, 22, 23, 29–33]. As the bridge that
joins audio and face, audio-to-face animation is the key component in talking face
generation. Sophisticated methods are needed to accurately and consistently match a
speaker’s mouth movements and facial expressions to the source audio. Last but not
least, to obtain a natural and temporally smooth face in the generated video, careful
post-processing is inevitable.

Toward conversational human-computer interaction, talking face generation
requires techniques that could generate realistic digital talking faces thatmake human
observers feeling comfortable. As highlighted in Uncanny Valley Theory [34], if an
entity is anthropomorphic but imperfect, its non-human characteristics will become
the conspicuous part that creates strangely familiar feelings of eeriness and revul-
sion in observers. The requirement poses stringent requirements on the talking face
models, demanding realistic fine-grained facial control, continuous high-quality gen-
eration, and generalization ability for arbitrary sentence and identity. In addition, this
also prompts researchers to build diverse talking face datasets and establish fair and
standard evaluation metrics.
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8.2 Related Work

In this session, we discuss relevant techniques employed to address the four sub-
problems in talking face generation, namely, audio representation, face modeling,
audio-to-face animation, and post-processing.

8.2.1 Audio Representation

It is generally believed the high-level content information and emotional information
in the voice are important to generate realistic talking faces. While original speech
signal can be directly used as the input of the synthesis model [25], most methods
prefer more representative audio features [7, 12, 22, 26–28]. A pre-defined analysis
method or a pre-trainedmodel is often used to extract audio features from the original
speech, and then the obtained features are used as the input to the face generation
system. Four typical audio features are illustrated in Fig. 8.1.

Mel-spectrum features are commonly used in speech-related multimodal tasks,
such as speech recognition. Considering that human auditory perception is only
concentrated on specific frequencies, methods can be designed to selectively filter
the audio frequency spectrum signal to obtainMel-spectrum features.Mel-frequency

(a)

(c) (d)

(b)

Fig. 8.1 Illustration of four commonly used audio features. a Original speech signal, b spectrum
feature, c phoneme (English International Phonetic Alphabet (IPA)), and dMel-frequency cepstrum
coefficients (MFCC)
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cepstrum coefficients (MFCC) can be obtained by performing Cepstrum analysis on
the Mel-spectrum features. Prajwal et al. [26] used Mel-spectrum features as audio
representation to generate talking face, while Song et al. [7] used MFCC.

Noise in the original audio signal could corrupt the MFCC. Some methods thus
prefer to extract text features that are related to the content of the speech. These
methods often borrow models from specific speech signal processing tasks such as
automatic speech recognition (ASR) or voice conversion (VC). The automatic speech
recognition (ASR) task aims at converting speech signals into corresponding text.
For example, DeepSpeech [35, 36] is a speech-to-text model, which can transform an
input speech frequency spectrum to English strings. Das et al. [27] took DeepSpeech
features as the input to the talking face generation model. From the perspective of
acoustic attributes, a phoneme is the smallest speech unit. It is considered that each
phoneme is bounded to a specific vocalization action. For example, there are 48
phonemes in the English International Phonetic Alphabet (IPA), corresponding to 48
different vocal patterns. Quite a few methods [12, 28] use phoneme representation
to synthesize talking face. The voice conversion (VC) task aims at converting non-
verbal features such as accent, timbre, and speaking style between speakers while
retaining the content features of the voice. Zhou et al. [22] used a pre-trained VC
model to extract text features to characterize the content information in the speech.

8.2.2 Face Modeling

The human’s perception of the quality of talking videos is mainly constituted by their
visual quality, lip-sync accuracy, and naturalness. To generate high-quality talking
face videos, the synchronization of 2D/3D facial representationswith the input audios
play an important role. Many geometry representations of human faces have been
explored in recent years, including 2D/3D face modeling.

2D Models. 2D facial representations like 2D landmarks [17, 22, 29–31], action
units (AUs) [32], and reference face images [23, 31, 33] are commonly used in talk-
ing face generation. Facial landmark detection is defined as the task of localizing
and representing salient regions of the face. As shown in Fig. 8.2, facial landmarks
are usually composed of points around eyebrows, eyes, nose, mouth, and jawline.
As a shape representation of the face, facial landmark is a fundamental component
in many face analysis and synthesis tasks, such as face detection [37], face verifica-
tion [38], face morphing [39], facial attribute inference [40], face generation [41],
and face reenactment [29]. Chen et al. [37] showed that aligned face shapes provide
better features for face classification. The proposed joint learning of face detection
and alignment greatly enhances the capability of real-time face detection. Chen et
al. [38] densely sampled multi-scale descriptors centered at dense facial landmarks
and used the concatenated high-dimensional feature for efficient face verification.
Seibold et al. [39] presented an automatic morphing pipeline to generate morphing
attacks, by warping images according to the corresponding detected facial landmarks



8 Talking Faces: Audio-to-Video Face Generation 167

Fig. 8.2 Illustration of 106 facial landmarks. The landmarks are detected and marked in green.
Best viewed zoomed in. The original pictures are obtained from the Internet

and replacing the inner part of the original image. Di et al. [41] presented that the
information preserved by landmarks (gender in particular) can be further accentuated
by leveraging generative models to synthesize corresponding faces. Lewenberg et
al. [40] proposed an approach that incorporates facial landmark information for input
images as an additional channel, helping a convolutional neural network (CNN) to
learn face-specific features for predicting various traits of facial images. Automatic
face reenactment [42] learns to transfer facial expressions from the source actor to the
target actor. Wayne et al. proposed ReenactGAN [29] to reenact faces by the facial
boundaries constituted by facial landmarks. Conditioned on the facial boundaries,
the reenacted face images become more robust to challenging poses, expressions,
and illuminations.

Action units are the fundamental actions of facial muscles defined in the Facial
Action Coding System (FACS) system [32]. The combination of AUs can character-
ize comprehensive facial expression features,which can be used in expression-related
face analysis and synthesis, e.g., facial expressions recognition [32], and facial ani-
mation [43]. For example, Pumarola et al. [43] introduced a generative adversarial
network (GAN) [1] conditioning on action units annotations to realize controllable
facial animation with robust expressions and lighting conditions.

3DModels. Some exiting methods exploit the 3D geometry of human faces like 3D
landmarks [44, 45], 3D point cloud [46], facial mesh [47], facial rigs [13], and facial
blendshapes [48–50] to generate talking face videos with diverse head gestures and
movements.

Before the emergence of deep convolution networks (DCN) and GAN [1] in face
image generation, 3D morphable face model (3DMM) is commonly deployed as a
general face representation and a popular tool to model human faces. In 1999, Blanz
and Vetter [44] proposed the first 3DMM that shows impressive performance. In
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Fig. 8.3 Illustration of sampled faces of basel facemodel (BFM) proposed by Paysan et al. [45]. The
mean together with the first three principle components of the shape (left) and texture (right) PCA
model. The figure shows the mean shape and texture, along with their components with plus/minus
five standard deviations σ . A mask with four manually chosen segments (eyes, nose, mouth, and
rest) is used in the fitting to extend the flexibility. The image is adopted from Paysan et al. [45]

2009, the first publicly available 3DMM model, also known as basel face model
(BFM), is released by Paysan et al. [45]. These face models inspire the research
of 3DMM and its applications on many computer vision tasks related to human
faces. For instance, Cao et al. [51] proposed the FaceWarehouse model and Bolkart
and Wuhrer [52] proposed the Multilinear face model. Both models capture the
geometry of facial shapes and expressions. Cao et al. [51] released a RGBD dataset
of 150 subjects, each with 20 expressions. Bolkart et al. [52] released a dataset of
100 subjects, each with 25 expressions. Sampled faces of Basel Face Model (BFM)
are shown in Fig. 8.3.

These methods model the facial shapes and expressions in a linear space, neglect-
ing the nonlinear transformation of facial expressions. Li et al. [48] proposed the
FLAME model that enables the nonlinear control on 3D face model by incorporat-
ing the linear blendshapes with eyes, jaw, and neck joints. To tackle the challenges
like large head poses, appearance variations, inference speed, and video stability
in 3D face reconstruction, Guo et al. proposed 3DFFA [49] and its improved vari-
ant, 3DFFA_V2 [50]. Apart from the 3D Face Morphable Model, other 3D models
like face rigs [13], 3D point cloud [46], facial mesh [47], and customized computer
graphic face model are also applied in 3D face representation.

With the advances of 3D face models, a variety of applications are enabled, such
as face recognition [53], face reenactment [42], face reconstruction [54], face rota-
tion [55], visual dubbing [56], and talking face generation [57]. Blanz et al. [53]
showed that the cosine distance between two face images’ shape and color coeffi-
cients estimated by a 3D face model can be used for identification. Thies et al. [58]
proposed the first real-time face reenactment system by transferring the expression
coefficients of a source actor to a target actor while preserving person-specificness.
Gecer et al. [54] employed a large-scale face model [59] and proposed a GAN-based
method for high-fidelity 3D face reconstruction. Zhou et al. [55] developed a face
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rotation algorithm by projecting and refining the rotated 3D face reconstructed from
the input 2D face image by 3DDFA [49]. Kim et al. [56] presented a visual dubbing
method that enables a new actor to imitate the facial expressions, eyemovements, and
head movements of one actor only from its portrait video. Thies et al. [57] presented
that the learned facial expression coefficients from speech audio features extracted
by DeepSpeech [36] can animate a 3D face model uttering the given speech audio.
In general, these 3D models are not publicly released due to copyright restrictions.

8.2.3 Audio-to-Face Animation

To synthesize realistic and natural talking faces, it is crucial to establish the corre-
spondence between the audio signal and the synthesized face. To improve the visual
quality, lip-sync accuracy, and naturalness of talking videos, different methods have
been explored in recent years, including 2D/3D-basedmodels and video frame selec-
tion algorithm.

Audio-Visual Synchronization. Quite a few methods construct the correspondence
between phonemes and visemes and use search algorithms to map audios to mouth
shapes during the testing phase [12, 17, 28]. The pipeline is illustrated in Fig. 8.4.
Specifically, they divide speech into pre-defined minimum audio units (phonemes),
which naturally correspond to the smallest visual vocalization methods (visemes).
In this way, a repository of phoneme-viseme pairs can be established from training
data. After that, each sentence can be decomposed into a sequence of phonemes,
correspond to a sequence of visemes during the testing phase. The video will be
further synthesized from visemes by generation or rendering. The visemes here can
be the facial landmarks related to the vocalization [17], or the pre-defined 3D face
model controller coefficients [12, 28]. In this framework, defining phoneme-viseme
pairs and finding a search-stitching algorithm are two critical steps. Considering
coarticulation, Bregler et al. [17] split each word into a sequence of triphones, and
established a corresponding relationship with the eigenpoint position of the lips and
chin. Yao et al. [28] established the relationship between the phonemes obtained by
the p2fa [60] algorithm and the controller coefficients obtained by the parameter-
ized human head model [61]. They proposed a new phoneme search algorithm to
quickly find the best phoneme subsequence combination and stitch the corresponding
expression coefficients to synthesize the speaking video.

Other researchers designed an encoder-decoder structure, taking in audio and
speaker images, outputting the generated target faces [5, 25, 62]. Specifically, as
shown in Fig. 8.5a, the designed model is a combination of two encoders taking in
audio and face images as input for two different modalities, and a decoder generating
an image synchronized with the audio while preserving the identity information of
the input images. In this system, two encoders are, respectively, responsible for
encoding the audio content information and the facial identity information. The
decoder following is responsible for decoding the fused multi-modality features into
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Fig. 8.4 Pipeline of phoneme-viseme correspondencemethod for talking face generation. Phoneme
is firstly mapped to viseme according to an established phoneme-viseme correspondence. Images
are further synthesized based on visemes
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Fig. 8.5 Pipelines of twomethods for talking face generation. As shown in (a), an encoder-decoder
structure is used to generate the target face by taking in the audio features and images. As shown
in (b), the relationship between the audio features and specific intermediate features is established
first, and then the corresponding face is generated based on the intermediate features

a face image with the corresponding mouth shape and face identity. The encoders
and the decoder are usually trained end-to-end simultaneously. This kind of method
makes full use of encoder-decoder structure and multimodal fusion to generate target
images. In this way, researchers often design specific models and losses to realize
the disentanglement of speaking content and speaker identity. For example, Zhou
et al. [5] used a pre-trained word classifier to force the content information to be
forgotten in the identity encoding process, and the content information obtained
from images and audio were constrained as close as possible.
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Othermethods choose to first establish the relationship between audio features and
intermediate features pre-defined by face modeling methods and then generate the
corresponding faces from the intermediate features [22, 31], as shown in Fig. 8.5b.
The intermediate features mentioned here can be the pre-defined facial landmarks or
the expression coefficients of the 3D face model.

For 2D-based generationmethods, facial landmarks are often used as sparse shape
representation. Suwajanakorn et al. [31] used a recurrent neural network (RNN)
to map the MFCC features to the PCA coefficients of the facial landmarks. The
corresponding face image is thus generated from the reconstructed facial landmarks
with the texture information provided by the face images. Zhou et al. [22]mapped the
voice content code and the identity code to the offset of the facial landmarks relative
to a face template, and then generated the target image through an image-to-image
network. For 3D-based methods, the facial expression parameters are often used as
the intermediate representation. Fried et al. [12] used the facial expression parameters
of the human head model as intermediate features and designed a neural renderer to
generate the target video. Wiles et al. [63] established a mapping from audio features
to the latent code in a pre-trained face generationmodel to achieve audio-driven facial
video synthesis. Guo et al. [64] used a conditional implicit function to generate a
dynamic neural radiance field from the audio features, and then synthesized video
using volume rendering. The main difference between these methods (as shown in
Fig. 8.5b) and the aforementioned phoneme-viseme search methods (as shown in
Fig. 8.4) is the use of regression models for replacing pre-constructed phoneme-
viseme correspondence. The former can obtain more consistent correspondence in
the feature space.

Some researchers designed specific models to ensure audio-visual synchroniza-
tion. Chung et al. [65] proposed a network, as shown in Fig. 8.6, taking in audio
features and face images sequence as input, outputting the lip-sync error. This struc-
ture is often used in talking face model training [26, 66] or evaluation [25, 27]. A
specific model was designed by Agarwal et al. [67] to detect the mismatch between
phoneme and viseme to determine whether the video has been modified.

Synthesis Based on 2D Models. At the early stage of 2D-based talking face gen-
eration, videos are generated based on a pre-defined face model or composition of
background portrait video and mouth images. Lewis [15] associated the recognized
phonemes from synthesized speeches with mouth positions to animate a face model.
Bregler et al. [17] designed the first automatic facial animation system that automat-
ically labels phonemes in the training data and morphs these mouth gestures with
the background portrait video. Cosatto and Graf [23] described a system to animate
lip-synced head model from the phonetic transcripts by retrieving images of facial
parts and blend them onto a whole face image.

With the popularity of the multidimensional morphable model (MMM), Ezzat
et al. [68] designed a visual speech model to synthesize a speaker’s mouth trajec-
tory in MMM space from the given utterance and an algorithm to re-composite the
synthesized mouths onto the portrait video with natural head and eye movement.
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audio feature

SyncNet
Synchronized

or not?

Fig. 8.6 Illustration of the pipeline of SyncNet [65]. The network predicts whether the input audio
and face images are synchronized

Chang and Ezzat [69] animated a novel speaker with only a small video corpus (15 s)
by transferring an MMM trained on a different speaker with a large video corpus
(10–15 min).

Inspired by the successful application of the hidden Markov model (HMM)
in speech recognition, many HMM-based methods, such as R-HMM [18], LMS-
HMM [70], andHMMI [71], were proposed since talking face generation can be seen
as an audio-visual mapping problem. Different from these HMM-basedmethods that
use a single-state chain, a coupled hidden Markov model (CHMM) approach [19]
was used tomodel the subtle characteristics of audio and videomodalities. To exploit
the capability of HMM in modeling the mapping from the audio to visual modali-
ties, Wang et al. [72] proposed a system to generate talking face videos guided by
the visual parameter trajectory of lip movements produced from the trained HMM
according to the given speech audio.

Due to the advancement of using RNN and long short term memory (LSTM),
HMM is gradually replaced by LSTM in learning the mapping from the audio to
the visual modality. For instance, Fan et al. [24] trained a deep bidirectional LSTM
to learn the regression model by minimizing the error of predicting visual sequence
from audio/text sequence, outperformed their previous HMM-based models. Suwa-
janakorn et al. [31] trained a time-delayed LSTM model to learn the mapping from
theMel-frequency cepstral coefficients (MFCC) features of an audio sequence to the
mouth landmarks of a single frame.

The quality of human face synthesis improves dramatically with the recent
advances of GAN-based image generator, such as DCGAN [2], PGGAN [73],
CGAN [3], StyleGAN [74] and StyleGAN2 [75]. In 2014, Goodfellow et al. pro-
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posed GAN [1] and demonstrated its ability in image generation by generating low-
resolution images after training on datasets like MNIST [76], TFD [77] and CIFAR-
10 [78]. Then, DCNs with different architectures are developed in GAN to generate
images of higher resolution for specific domains. For instance, DCGAN [2] applied
the layered deep neural network and PGGAN [73] learned to generate images in a
coarse-to-fine manner by gradually increasing the resolution of generated images. In
the context of image generation of human faces, a conditional CycleGAN [79] and
FCENet [80] were developed to generate face images with controllable attributes like
hair and eyes. While facial attributes can be precisely controlled by input condition
codes, the image resolution is not high (128 × 128) and many facial details are miss-
ing. To generate high-resolution face images, Karras et al. proposed StyleGAN [74]
and StyleGAN2 [75] to generate face images with a resolution up to 1024 × 1024
pixels, where coarse-grained style (e.g., eyes, hair, lighting) and fine-grained style
(e.g., stubble, freckles, skin pores) are editable. To edit facial attributes more pre-
cisely, some GAN-based models [79, 80] were proposed to modify the generated
high-resolution face images where fine-grained attributes like eyes, nose size, and
mouth shape can be controlled by input condition codes. The design of 2D-based
talking face video synthesis models is inspired by some related synthesis tasks like
image-to-image translation [81, 82], high-resolution face image generation [74], face
reenactment [29], and lip reading [65].

Inspired by GAN [1], many methods [4–8] improve the generated video qual-
ity from different aspects. Chen et al. designed a correction loss [4] to synchro-
nize changes of lip and speech. Zhou et al. [5] proposed an adversarial network
to disentangle the speaker identity from input videos and the word identity from
input speeches to enable arbitrary-speaker talking face generation. To improve both
the image and video realism, Chen et al. [6] designed a dynamic adjustable pixel-
wise loss to eliminate the temporal discontinuities and subtle artifacts in generated
videos. Song et al. [7] proposed a conditional recurrent generation network and a
pair of spatial-temporal discriminators that integrate audio and image features for
video generation. These GAN-based studies mainly concentrate on the talking face
video generation of the frontal face and neutral expressions. The development of
GAN-based human face generation and editing methods on head poses [83] and
facial emotions [84] influences the research in talking face generation. For instance,
Zhu et al. [8] employed the idea of mutual information to capture the audio-visual
coherence and design a GAN-based framework to generate talking face videos that
are robust to pose variations. Taking into account the speaker’s emotions and head
poses, Wang et al. [85] released an audio-visual dataset that contains various head
poses, emotion categories, and intensities. They also proposed a baseline to demon-
strate the feasibility of controlling emotion categories and intensities in talking face
generation.

Synthesis Based on 3DModels. In the early days of the talking face generation, 3D
representation is often used to represent the mouth or face of the driven speaker. For
instance, in 1996, a 3D model of lips with only five parameters was developed to
adapt lip contours of various speakers and any speech gesture [16]. Wang et al. [88]
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proposed to control a 3D face model with the head trajectory and articulation move-
ment predicted by an HMM model. Interestingly, after several years’ exploration of
applying deep learning in talking face generation, especially the recent advances of
DCN and GAN, many methods return to 3D representation by integrating 3DMM
and other 3D face models. For instance, Pham et al. [9] introduced a 3D blendshape
model animated by 3D rotation and expression coefficients predicted only from the
input speech. Karras et al. [10] presented a network that animates the 3D vertex
coordinates of a 3D face model with different emotions from the input speech and
emotional codes. Taylor et al. [11] developed a real-time system that animates active
appearance model (AAM), CG characters, and face rigs by retargeting the face rig
movements predicted from the given speech. Fried et al. [12] proposed a parametric
head model to provide the position of retargeting the mouth images to the back-
ground portrait video. Edwards et al. [13] presented a face-rig model called JALI
that mainly concentrates on the JAw and LIp movements. By making use of JALI,
Zhou et al. [14] proposed a deep learning method to drive the JALI or standard
FACS-based face rigs by the JALI and viseme parameters predicted from a 3-stage
LSTM network. Recently, a series of methods explore the potential of deep learning
techniques in learning the nonlinear mapping from audio features to facial movement
coefficients of 3DMM. For instance, Thies et al. [57] introduced a small convolu-
tional network to learn the expression coefficients of 3DMMfrom the speech features
extracted by the DeepSpeech [35]. This method does not pay much attention to large
head poses, head movements and requires a speaker-specific video renderer. Song
et al. [33] presented an LSTM-based network to eliminate speaker information and
predict expression coefficients from input audios. This method is robust to large pose
variations and the head movement problem is tackled by the designed frame selec-
tion algorithm. Different from this method that retrieves head poses from existing
videos, Yi et al. [89] tried to solve the head pose problem by directly predicting the
pose coefficients of 3DMM from the given speech audio. Chen et al. [90] introduced
a head motion learner to predict the head motion from a short portrait video and
the input audio. To eliminate the visual discontinuity brought by the apparent head
motion, a 3D face model is used due to its stability. In Fig. 8.7, representative works
of talking face generation in recent years are listed in chronological order.

Video Frame Selection Algorithm. Note that the mouth texture in the training
videos is abundant, video frame selection algorithms are designed to facilitate the
synthesis of talking face videos by selecting frames from existing videos according
to the input audios or mouth motion representations. The selected video frames can
provide the texture of the whole face [31, 33] or only mouth areas [23].

Currently, generation based on 2D face representation (e.g., DCN and GAN) and
3D face representation (e.g., 3DMM) dominates the field of talking face synthesis.
Before the emergence of these techniques, talking face generation mainly rely on 3D
models and select video frames with matched mouth shapes. For instance, Cosatto et
al. [23] introduced a flexible 3D head model used to composite facial parts’ images
retrieved by sampled mouth trajectories. Chang et al. [69] proposed a matching-by-
synthesis algorithm that selects new multidimensional morphable model (MMM)
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2017,
Suwajanakorn et al.

2017,
Jamaludin et al.

2018,
Chen et al.

2018,
Zhou et al.

2019,
Chen et al.

2021,
Zhou et al.

2017,
Karras et al.

2017,
Taylor et al.

2018,
Zhou et al.

2019,
Zhou et al.

2019,
Fried et al.

2019,
Thies et al.

2019,
Vougioukas et al.

2020,
Song et al.

2020,
Prajwal et al.

2D-based

3D-based

……

……

2021,
Ji et al.

Fig. 8.7 Representative works of talking face generation in recent years (since 2017). The methods
above the timeline are based on 2D models, from left to right are [4–6, 25, 26, 31, 62, 86]. The
methods below the timeline are based on 3D models, from left to right are [10–12, 14, 22, 33, 57,
87]. The generated images of these methods are adopted from corresponding papers. Best viewed
by zooming on the screen

prototype images from driving speaker’s videos. Wang et al. [72] introduced an
HMM trajectory-guided approach as a guide to select an optimal mouth sequence
from the training videos. Liu andOstermann [91] presented a unit selection algorithm
to retrieve mouth images from a speaker’s expressive database characterized by
phoneme, viseme, and size.

The research on frame selection algorithms is still active even with the impressive
talking face generation performance brought by deep learning and 3DMM tech-
niques. For example, Fried et al. [28] introduced a dynamic programming method
to retrieve expressions in the parameter space by visemes inferred from the input
transcript. Suwajanakorn et al. [31] designed a dynamic programming algorithm to
retrieve background video frames according to the input audio. How well the input
audio volume matches the eye blink as well as head movement is considered in the
frame selection algorithm.

8.2.4 Post-processing

The generated talking faces may not be of high quality or natural enough due to
various reasons. This requires researchers to do introduce post-processing steps,
such as refinement and blending, to further enhance the naturalness of the videos.
For instance, Jamaludin et al. [62] first obtained a talking face generation model
that produced blurred faces and then trained a separate CNN to sharpen the blurred
images. Bregler et al. [17] pointed out the necessity to blend the generated faces
into a natural background, and the importance of animate the chin and jawlines, not
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just the mouth region to improve realism. There exist many methods that apply a
static video background [4, 5, 8, 68]. For some news program translation or movie
dubbing applications [21, 26], the natural video results can be obtained by blending
the generated face back into the original background.

8.3 Datasets and Metrics

8.3.1 Dataset

In recent years, increasingly more audio-visual datasets have been released, promot-
ing the development of talking face generation. These datasets can be used for lip
reading, speech reconstruction, and talking face generation. We divide these datasets
into two categories according to the collection environment. (1) Indoor environment,
where speakers recite the specified words or sentences. (2) In-the-wild environment,
where speakers talk in the scene closer to the actual applications, such as speech video
and news program video. In this section, we summarize commonly used audio-visual
datasets and their characteristics.

Indoor Environment. Datasets collected in the indoor environment often exhibit
consistent settings and lighting conditions, when the speakers read the specified
words or sentences.

GRID [92] is a multi-speaker audio-visual corpus consisting of audio and video
recordings of 1000 sentences spoken by each of 34 speakers. TCD-TIMIT [93] con-
sists of audio and video footages of 62 speakers reading a total of 6913 phonetically
rich sentences. Three of the speakers are professionally-trained lip speakers, with
the assumption that trained speakers can read better than ordinary speakers. Video
footage was recorded from the frontal view and 30◦ pitch angle. CREMA-D [94] is
a dataset of 7442 original clips from 91 actors. The speakers are composed of 48
men and 43 women from different races and nationalities, ranging in age from 20 to
74 years old. They speak 12 sentences using one of six different emotions and four
different emotion levels. However, all the datasets mentioned above do not consider
emotional information. Wang et al. [85] released a high-quality audio-visual dataset
that contains 60 actors and actresses talking with eight different emotions at three
different intensity levels. All clips in MEAD are captured at seven different view
angles in a strictly controlled environment.

In-the-Wild Environment. Other datasets are often derived from news program
videos or speech videos. They are closer to actual application scenarios, with more
abundant words, more natural expressions, and more speakers.

Suwajanakorn et al. [31] downloaded 14h of Obama weekly address videos from
YouTube for experiments. LRW [95], LRS2 [96], LRS3 [97] datasets are all designed
for research on lip reading. Lip reading is defined as understanding speech content by
visually interpreting the movements of the lips, face, and tongue when normal sound
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Table 8.1 Summary of audio-visual datasets commonly used for talking face generation

Dataset Environment Identity Hours Year

GRID [92] Indoor 34 27.5 2006

CREMA-D [94] Indoor 91 11.1 2014

TCD-TIMIT [93] Indoor 62 11.1 2015

MEAD [85] Indoor 60 40 2020

Obama weekly
address [31]

Wild 1 14 2017

LRW [95] Wild Hundreds of 173 2016

LRS2 [96] Wild Hundreds of 224.5 2018

LRS3 [97] Wild Thousands of 438 2018

VoxCeleb1 [98] Wild 1251 352 2017

VoxCeleb2 [99] Wild 6112 2400 2018

is not available. This is similar to the inverse task of talking face generation. LRW
consists of about 1000 utterances of 500 words, spoken by hundreds of speakers. All
videos are about 1.16 s in length, and the duration of each word is also given. LRS2
expands the content of the speech fromwords to sentences, consisting of thousands of
spoken sentences from BBC television, where each sentence is up to 100 characters
in length. LRS3 contains thousands of spoken sentences fromTED and TEDx speech
videos.

VoxCeleb1 [98] collects celebrity videos uploaded by users from YouTube,
which contains over 100,000 utterances for 1251 celebrities. VoxCeleb2 [99] fur-
ther expands the data volume, which contains over 1 million utterances for 6112
celebrities. VoxCeleb2 can be used as a supplement for VoxCeleb1 because it has no
overlap with the identities in the VoxCeleb1. Datasets mentioned in this section are
summarized in Table 8.1.

8.3.2 Metrics

It is challenging to evaluate the naturalness of generated talking faces. People often
have very strict requirements on the quality and naturalness of the generated talking
face. A slight flaw will be regarded as obviously unreal. On the one hand, this puts
high demands on themodels of talking face generation. On the other hand, it is crucial
to develop comprehensive evaluation metrics for talking face generation. Evaluation
metrics canbedivided into objective quantitative evaluation and subjective qualitative
evaluation.

Quantitative Evaluation. As mentioned above, people can easily find out when the
generated talking faces do not speak like real people from various aspects. Thus, the
quantitative evaluation also needs to measure from several different angles. In gen-
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eral, existing quantitative evaluation metrics mainly focus on the following aspects
of the generated video. (1) The generated videos should be of high quality. (2) The
mouth shape of the generated speaker should match the audio. (3) The speaker in the
synthesized video should be the same as the target person. (4) Eye blinking when
speaking should be natural.

Image quality evaluation metrics are commonly used in face generation tasks.
Peak signal-to-noise ratio (PSNR), defined via mean squared error, can reflect the
pixel-level difference between two images. However, there is still a considerable
gap between human perception and PSNR. Structural Similarity (SSIM) [100] mea-
sures the similarity of two images in terms of illuminance, contrast, and structure.
To evaluate the diversity of the generative model, Inception Score (IS) [101] is intro-
duced. Fréchet inception distance (FID) [102] is calculated by comparing the mean
and standard deviation of the two features produced by a pre-trained Inception-v3
model. However, these methods require reference images for evaluation. Cumulative
probability blur detection (CPBD) [103] is a non-reference image evaluation metric
used to evaluate the sharpness of images, while frequency domain blurrinessmeasure
(FDBM) [104] evaluates frequency domain blurriness based on the image spectrum.

Audio-lip synchronization is also an important indicator to measure the natural-
ness of talking face generation. Landmark distance (LMD) is defined as the mouth
landmark distance between generated and real reference images to measure the gen-
erated mouth shape. As mentioned in Sect. 8.2.3, the lip reading task learns the
mapping from face images to the corresponding text. Thus, the pre-trained lip read-
ing model can be used to calculate the word error rate (WER). For example, Vou-
gioukas et al. [105] calculated WER based on a LipNet [106] model pre-trained
on GRID [92]. Syncnet [65], the model specifically designed to judge audio-visual
synchronization, can also be borrowed [25, 27] to calculate Audio-Visual synchro-
nization metrics (AV Offset and AV confidence). A lower AV offset with higher AV
confidence indicates better lip synchronization. Recently, Chen et al. [107] proposed
a new lip-synchronization evaluation metric lip-reading similarity distance (LRSD)
from the perspective of human perception. Based on a newly proposed lip reading
model, they use the distance between features of generated video clips and ground
truth video clips to measure the audio-visual synchronization.

Some methods suffer from wrong or lost of speaker identity, that is, the gener-
ated speaker and the target speaker do not seem to be the same person. Therefore,
some metrics that measure identity preservation are also applied in the talking face
generation task. Often, a pre-trained face recognition model [108, 109] is used as
an identity feature extractor. Identity preservation is quantified by measuring the
distance between features. For instance, average content distance (ACD) [25, 27]
is calculated by measuring the similarity between FaceNet [108] features of the
reference identity image and the predicted image. Chen et al. [90] used cosine simi-
larity (CSIM) between embedding vectors of ArcFace [109] for measuring identity
mismatch.

Finally, the realisticness of blinking should also be considered. Vougioukas et
al. [25] proposed that the average blink duration and blink frequency from the gen-
erated video should be similar to that of natural human blinks. In specific, they
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Table 8.2 Summary of quantitative talking face metrics via four different degrees. The upward
arrows (↑) indicate higher values are better for that metric, while downward arrows (↓) mean lower
values are better

Degree Metrics

Image quality PSNR↑ SSIM↑ IS↑ FID↓ CPBD↑ FDBM↑
Audio-lip synchronization LMD↓ WER↓ AV (Offset)↓ AV (Confidence)↑ LRSD↓
Identity-preserved ACD↓ CSIM↑
Blink Duration Frequency

calculated the average duration and frequency to evaluate the naturalness of blink-
ing. Quantitative evaluation metrics mentioned in this section are summarized in
Table 8.2.

Qualitative Evaluation. Although the quantitative evaluation mentioned above can
provide a reference and filter out some obvious artifacts, the ultimate goal of talking
face is to fool real people. Therefore, the generated talking face still needs some
subjective feedback from people. Generally speaking, researchers usually design
user studies to allow real users to judge the quality of the generated videos.

8.4 Discussion

8.4.1 Fine-Grained Facial Control

Even if the speaker’s mouth movements naturally match the audio, one wishes to
establish the relationship between audio and other facial components, such as chins,
jawlines, eyes, head movements, and even teeth.

In fact, most of the current talking face generation methods do not consider the
correlation between audio and eyes. Vougioukas et al. [25] designed a blink gen-
eration network, using Gaussian noise vectors as input to generate eyes keypoints,
which can generate blinks of similar duration and frequency to real videos. Zhang et
al. [110] took eye blink signal and audio signal together as input to generate the cor-
responding talking face. Zhou et al. [22] learnedmapping from the audio information
to facial landmarks where eye landmarks are excluded. These methods are based on
the assumption that blinking is a random signal unrelated to the input audio. How-
ever, according to Karson et al. [111], listeners’ blink duration is related to talking
and thinking. Hömke et al. [112] also proposed that blinks are meaningfully rather
than randomly paced, although no visual information is processed. When it comes to
generation techniques, the movements of the eyes are generally modeled as part of
the emotional coefficients in 3D-based methods and as eye landmarks in 2D-based
methods. Shu et al. [113] leveraged user’s photo collections to find a set of reference
eyes and transfer them onto a target image. However, for now, it is still difficult to
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model the relationship between audio and eye movements. In other words, how to
generate more flexible and informative eyes is still an open question in talking face
generation task.

Another question iswhether the teeth generation is related to the input audio. From
the perspective of phoneme-viseme correspondence, each phoneme corresponds to
a set of teeth and tongue movements. However, as described in [31], the teeth are
sometimes hidden behind lips when speaking, which makes synthesis challenging.
There are also no teeth landmarks in 2D landmark definition. Even in most 3D head
models, the teeth are not explicitly modeled. Some researchers copy teeth texture
from other frames [58] or use teeth proxy [20, 114]. However, these methods may
cause blur or artifacts. Suwajanakorn et al. [31] achieved decent teeth generation by
combining low-frequency median texture and high-frequency details from a teeth
proxy image. Recently, some more accurate teeth models have been established, for
example, Velinov et al. [115] established an intra-oral scan system for capturing the
optical properties of live human teeth. Some new teeth editing methods have also
been proposed. For example, Yang et al. [116] realized an effective disentanglement
of an explicit representation of the teeth geometry from the in-mouth appearance,
making it easier to edit teeth.

The lips, eyes, and teeth mentioned above are all part of the human face. One
would also need to consider the generation of natural head movements. Most talking
face methods do not consider the problem of generating controllable head move-
ments without a pre-defined 3D model. Jamaludin et al. [62] only generated aligned
faces while Zhang et al. [110] took the head pose signal as the input signal explicitly.
Wiles et al. [63] can generate talking faces with different poses, but the head motion
is not decoupled from other facial expression attributes. Recently, some researchers
have proposedmethods to generate controllable head poses. Chen et al. [90] designed
a headmotion disentangler to decouple the headmovement in the 3D geometry space
and used the head motion and audio information of the current frame to predict the
head motion of the next frame. Similarly, Wang et al. [117] realized the decoupling
of motion-related information and identity-specific information by learning 3D key-
point representation. Zhou et al. [86] modularized audio-visual representations by
devising an implicit low-dimension pose code to generate pose-controllable talking
face videos.

For a realistic talking face, the emotion of the speaker should alsomatch the voice.
For example, a voice with an angry tone should correspond to an angry face. But
how to manipulate the emotion in 2D-based talking face generation is still an open
question. Some researchers exploit expression information from the voice to generate
talking faces [25, 118]. But they cannot explicitly control the emotional intensity of
the video. MEAD [85] is a talking face dataset featuring 60 people talking with eight
different emotions at three different intensity levels, which provides data support
for the generation of emotional talking faces. Ji et al. [87] decomposed speech into
emotion space and content space. With the disentangled features, emotional facial
landmarks and videos can be deduced.
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In Sect. 8.3.2, we mentioned several evaluation metrics for talking face genera-
tion, but these quantitative indicators still have limitations from the perspective of
human perception. We believe that talking face integrating eyes, teeth, head pose,
and emotion will be a more natural and human-like virtual person.

8.4.2 Generalization

The model generalization of a talking face system is mainly determined by the
dataset used to build the system and the applied techniques in designing the modules
of the system. The audio-visual datasets are contributed by two essential factors,
the phonetic dictionary size of the corpus and the diversity of speakers such as
gender, age, language, accent, and the speaker number. In the following, the model
generalization of recent talking face generation methods is analyzed by key factors,
e.g., corpus and speaker.

The small corpus size and speaker number of many audio-visual datasets might
limit themodel generalization. For example, the GRID dataset [92] contains very few
words. Although it is designed to cover the pronunciations of every single phoneme,
the limited vocabulary still lacks diverse diphones and triphones that encode sur-
rounding phonemes. Many audio-visual datasets contain very limited speaker diver-
sity, i.e., the speaker number of GRID [92] and RAVDESS [119] is fewer than 100
and these datasets do not contain diverse accents, head pose, movements, and emo-
tions. To alleviate the poor model generalization brought by audio-visual datasets,
Wang et al. [85] collected a large-scale dataset with different skin colors, emotions
and head poses.

With the development of GAN-based image generation methods, recent methods
can generate photo-realistic talking face videos with fewer and fewer portrait videos.
For instance, generating a high-fidelity fake video of BarackObama requiresmassive
training footage up to 14h in [31]. Though the generated videos of [31] are hard to
distinguish from the real ones, the requirement on training data is inapplicable in
many real-world application scenarios. Thus, many methods circumvent the training
data burden at the cost of generated video quality. For example, Thies et al. [57]
presented that transferring a trained model to an unseen speaker requires about only
2min of footage. Zhou et al. [22] presented that even a single static face image is
sufficient for generating talking videos with diverse head movements.

Another aspect of model generalization is the speaker’s identity. Suwajanakorn et
al. [31] built a speaker-specific 3D face model and trained a speaker-specific network
for Barack Obama to synthesize his forged videos. The applied speaker-specific
3D face model limits its generalization for other speakers. Then, Thies et al. [57]
proposed an audio-to-video pipeline that consists of a speaker-generalized network
to learn the mapping from the audio to expression parameters and a speaker-specific
video renderer to render photo-realistic video according to the 3D head model and
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learned expressions. To an unseen speaker, it still requires a 2 min portrait video to
fine-tune the speaker-specific renderer. The renderer parameters only optimize for
a specific speaker since it refines the speaker-specific texture rendered by 3DMM.
Recent methods [22, 33, 117] can generate talking video for unseen speakers without
any further finetuning and the testing set can even be as small as a short footage [33] or
a single image [22, 117]. Such model generalization is realized since these methods
do not optimize based on any speaker-specific prior knowledge.

8.5 Conclusion

With the advancement of face modeling methods and deep learning techniques,
especially generation models, academic researchers make it possible to generate
realistic talking faces. In turn, considering a wide range of practical applications,
talking face generation has also attracted increasing interest from industrial develop-
ers. This chapter has summarized the development of talking face generation from
different perspectives. Related work and recent progresses are discussed from the
perspectives of audio representation, face modeling, audio-to-face animation, and
post-processing. We have also listed commonly used public datasets and evalua-
tion metrics. Finally, we discussed some open questions in the task of talking face
generation.

Talking face generation techniques may be misused or abused for various malev-
olent purposes, e.g., fraud, aspersion, and dissemination of malicious propaganda.
Out of ethical considerations, the government and researchers should jointly detect
and combat harmful edited videos, and apply this technology without harming the
public interest. We believe that with the dual attention of academia and industry, the
generated videos will become more realistic with newly proposed models. In the
future, there will also be more practical applications conducive to the public.

8.6 Further Reading

Interested readers are referred to the following further readings:

• Chen et al. [107] for a benchmark designed for evaluating talking-head video
generation.

• Zhu et al. [120] for a survey on deep audio-visual learning.
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Part III
Digital Face Manipulation Detection



Chapter 9
Detection of AI-Generated Synthetic
Faces

Diego Gragnaniello, Francesco Marra, and Luisa Verdoliva

Abstract In recent years there have been astonishing advances inAI-based synthetic
media generation. Thanks to deep learning methods it is now possible to generate
visual data with a high level of realism. This is especially true for human faces.
Advanced deep learning tools allow one to easily change some specific attributes
of a real face or even create brand new identities. Although this opens up a large
number of new opportunities, just think of the entertainment industry, it also under-
mines the trustworthiness of media content and supports the spread of fake identities
over the internet. In this context, there is a fundamental need to develop robust and
automatic tools capable of distinguishing synthetic faces from real ones. The sci-
entific community is making a huge research effort in this field, proposing several
interesting approaches. However, a universal detector is yet to come. Fundamen-
tally, the research in this field is like a cat and mouse game, with new detectors that
are designed to deal with powerful synthetic face generators, while the latter keep
improving to produce more and more realistic images. In this chapter we will present
the most effective techniques proposed in the literature for the detection of synthetic
faces. We will analyze their rationale, present real-world application scenarios , and
compare different approaches in terms of accuracy and generalization ability.

9.1 Introduction

Among the many applications of generative adversarial networks (GANs), image
synthesis is one of the most investigated, and research in this field has shown a
great potential. Particularly impressive are the results that can be achieved in face
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Fig. 9.1 Fully synthetic face images generated by different GAN architectures. Top, from left
to right: images generated using the method proposed in [20], BEGAN [3], and ProGAN [25] at
two different resolutions. Bottom, images generated by StyleGAN [27] (left) and StyleGAN2 [28]
(right)

generation, with images of higher and higher resolution quality, as also shown by
the examples of Fig. 9.1 which depict the evolution of synthetic faces over time.
The visual appearance of the images generated by the latest GAN architectures is
so realistic that it deceives even the experienced and attentive observer. This raises
major concerns on the possible malicious use of such tools. For example, they can be
used to create fake profiles on social networks and, more in general, they can be used
to spread false information over the web. Therefore, it is urgent to develop automatic
tools that can reliably distinguish real content from synthetic content.

Despite their high visual quality, GAN images are characterized by specific arti-
facts left from the generation process that can be used to develop effective tools
for their detection. In some cases, their synthetic origin can be identified by visual
inspection due to the presence of semantic inconsistencies, such as color anomalies or
lack of symmetries. More generally, these images present invisible artifacts, closely
linked to the architecture of the generative network, which can be extracted through
appropriate processing steps. These artifacts represent very strong clues, which can
be exploited even when synthetic images appear perfectly realistic. In fact, GAN-
generated images have been shown to embed a sort of artificial fingerprints [36, 60],
specific to each individual GAN architecture. Such patterns also show themselves as
peaks in the Fourier domain, not present in the spectral distribution of natural images
[16, 18, 61] (see Fig. 9.2).

Many of the detectors proposed so far for GAN-generated faces explicitly use the
features described above, while others exploit them implicitly by relying on convo-
lutional neural networks suitably trained on very large datasets [52]. Typically, these
solutions show very good performance in distinguishing synthetic faces from real
ones. However, they often require that the training set include a sufficient number
of examples of the specific GAN architecture that generated images in the test set.
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Fig. 9.2 GAN fingerprints extracted in the spatial domain (left) and traces of synthetic images in
the frequency domain (right)

Hence, the limited generalization capability is a major problem for current GAN
image detectors. As new AI-based models for synthesizing faces are proposed by
the day, it is very important to propose solutions that can generalize to new unseen
examples. Likewise, robustness is a major challenge, as images are routinely com-
pressed and resized on social networks and valuable clues can be easily reduced or
destroyed.

In this chapter, after briefly reviewing the main GAN architectures for face gen-
eration, we carry out an analysis of the state-of-the-art detection techniques. We will
first present the notion of artificial fingerprints and then describe the major detec-
tion methods. We will also present an investigation on the performance of the most
promising detectors by testing their generalization and robustness ability on several
recent GAN architectures. Besides providing a baseline, this comparative analysis
allows us to single out some key features of successful solutions, clearing the way
for the design of new and more effective tools.

9.2 AI Face Generation

Progress on synthetic face generation has been possible thanks to the development
of deep learning techniques especially autoencoders and generative adversarial net-
works [20], but also the availability of large-scale public face datasets. Early works
were trained on very small face images dataset, while more recent ones rely on the
CelebA dataset [33], that includes more than 200k face images of 10k identities, its
extension CelebA-HQ with 30k images, and FFHQ [27] that comprises 70k high-
quality images collected from Flickr.

AI face generation methods can be roughly classified in the following categories:

• Fully synthetic faces: generated faces are synthesized completely from scratch.
Some examples have been already shown in Fig. 9.1. Beyond the availability of
high resolution face images, some specific strategies have been of key importance
to produce more accurate and realistic faces than those produced by the basic
GAN architecture [20]. Amajor breakthrough camewith the ProGAN architecture
proposed in [25], where high resolution has been achieved by growing both the
generator and discriminator progressively during the training process. Another
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Fig. 9.3 Images manipulated by changing a face attribute (left) and images where two identities
are fused together (right)

significant improvement can be found in several works that rely on style transfer
to gain more control in the synthesis process and that led to several successful
architectures: StyleGAN1 [27], StyleGAN2 [28] and the recent variant adaptive
discriminator augmentation (ADA) [26].

• Face attributes modification: beyond synthesizing faces from scratch, it is also
possible to modify an attribute of a real face, such as gender, age, skin, or hair
color. Conditional GANs represent a very effective tool to address this task and
many different approaches have been proposed in the literature and that allow a
surprisingly realistic result [32, 46, 51, 55, 62]. More sophisticated modifications
let to change the pose or the facial expression [49, 58]. In Fig. 9.3 (left), some
examples are shown. It is worth underlining that thesemanipulations do not change
the original identity of the involved subject. Some of these approaches can be found
in some mobile applications, such as the popular FaceApp2.

• Face blending: this category comprises methods that are able to fuse the identities
from two different face images. The resulting identity is neither non-existent nor
preserved, but the resulting facemixes both identities in one. InFig. 9.3 (right) some
examples of face identity blending3 are presented using the approach proposed in
[30].

9.3 GAN Fingerprints

Early work on synthetic media forensics has focused on extending successful
approaches and methods of real multimedia forensics to this new domain. In par-
ticular, device and model fingerprints represent formidable assets to perform a wide
array of forensic tasks, from source attribution to forgery detection and localization,
to blind image clustering. Device fingerprints have been first exposed in the seminal
work of Chen et al. [34] and Lukas [9]. Due to sensor imperfections, each camera

1 https://thispersondoesnotexist.com/.
2 https://play.google.com/store/apps/details?id=io.faceapp.
3 https://openai.com/blog/glow/.

https://thispersondoesnotexist.com/
https://play.google.com/store/apps/details?id=io.faceapp
https://openai.com/blog/glow/
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presents a so-called photo-response non-uniformity (PRNU) which leaves on each
acquired image traces that are unique of that device and stable in time. This image-
like pattern represents therefore a device fingerprint, which can be reliably estimated
from sample images of the device.

Given their potential, extending such tools to synthetic media has an obvious
appeal. The existence of “artificial” GAN fingerprints was first demonstrated in [36].
These fingerprints are extracted using the very same procedure adopted for real
fingerprints. More specifically, for a generic image Xi generated by a given GAN a
high-pass filter, i.e., a denoiser, is used to remove the semantic image content:

Ri = Xi − f (Xi ) (9.1)

Then, we assume the residual to be the sum of a non-zero deterministic component,
the fingerprint F , and a random noise component Wi

Ri = F +Wi (9.2)

Accordingly, the fingerprint is estimated by a simple average over the available
residuals

̂F = 1

N

N
∑

i=1

Ri (9.3)

As the number of averaged residuals grows, a weak but stable pattern emerges, which
characterizes uniquely the GAN architecture. The whole procedure is outlined in
Fig. 9.4. Once the GAN fingerprint has been extracted from 200 to 300 GAN images,
it can be compared by means of the normalized cross-correlation with the noise
residual extracted from the image under test. Experiments carried out in [36] prove

Fig. 9.4 Pipeline for GAN fingerprint extraction
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Fig. 9.5 Correlation of CycleGAN (left) and ProGAN (right) residuals with same/cross-GAN
fingerprints

that such fingerprints can be used to reliably tell apart real images from synthetically
generated ones, and also to attribute an image to its source GAN.

As an example, Fig. 9.5 shows the histograms of the correlation coefficients
between image residuals and fingerprint of two GAN architectures. On the left,
the GAN-A fingerprint is considered, with green/red colors indicating images gen-
erated from the same (GAN-A) or the other (GAN-B) network. The cross-GAN
histogram is evenly distributed around zero, indicating no correlation between gen-
erated images and unrelated fingerprints. On the contrary, the same-GAN histogram
is shifted around larger values, testifying of a significant correlation with the cor-
rect fingerprint. The behavior is very similar when GAN-B residuals are considered
and the roles are reversed, on the right. In both cases the two distributions are well
separated, allowing reliable discrimination.

In [60] fingerprint extraction is addressed by means of a supervised deep learn-
ing scheme, where the fingerprint maximizes the correlation with images generated
by the same-GAN. Under this setting, both image-like fingerprints, like in [36],
and compact vectorial fingerprints can be used. The sophisticated extraction process
further improves the performance. Moreover, the experiments prove that different
fingerprints arise not only due to different GAN architectures but also from small
differences in the training of the same architecture, enabling fine-grained model
authentication. Also, GAN fingerprints are shown to persist across different image
frequencies and patches and are not biased by GAN artifacts. Both [36] and [60] sug-
gest that the regular patterns observed inGANfingerprints are due to the up-sampling
operations typical of the synthesis network, while instance-level peculiarities depend
on the specific filters learned in training.

In [1, 28] attribution of GAN generated images to their source is pursued through
GAN inversion. The idea is to provide the test image as target to a set of generators.
The likely source is the generator that ensures the minimum reconstruction error. In
fact, a GAN architecture cannot perfectly generate a synthetic image that has been
produced by another GAN architecture nor it can perfectly reproduce a real image.
The projection-basedmethod of [28]was used to prove that an imagewas synthesized
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(a) (b) (c) (d)
target after 10 iter. after 150 iter. after 1000 iter.

Fig. 9.6 Target face (a) and generated faces at different iterations (b, c, d). In one case (top) the
GAN model is not able to perfectly reproduce the target real face, while it succeeds in perfect
reconstruction (bottom) with a target image generated by the GAN itself, that is, face (a) is identical
to (d)

by a specific GAN network.We show such a result in Fig. 9.6, where the target image
(a) and the output of theGANgeneration process at different iterations are shown.We
can observe that in one case (top figure) the GAN is not able to perfectly reproduce
the target face, since it is real, while in the second case the target face is perfectly
reproduced by the GAN generator (bottom figure), which demonstrates that it was
generated by that GAN model.

9.4 Detection Methods in the Spatial Domain

Most of the techniques that aim at distinguishing AI-generated faces from real ones
rely on some sort of artifacts, either visible, such as unnatural facial traits, or invisible,
like pixel-level statistical inconsistencies that suggest the presence of a generative
process. In this section we present detection approaches that work in the original
spatial domain. They all use a neural classifier, eventually, but differ for the nature
of the features on which the classification is based, handcrafted, or data-driven.

9.4.1 Handcrafted Features

Several handcrafted discriminative features have been proposed to detect generated
face images, typically based on the visual inspection of GAN imagery and on prior
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knowledge of the relevant architectures. In the following we describe the most com-
mon and effective ones.

• Face asymmetries. Synthetic faces are often characterized by unnatural asymme-
tries. Indeed, to the best of our knowledge, no specific constraint on symmetry is
imposed in the generation phase, probably because of technical difficulties. There-
fore, symmetry emerges only as a common feature of the training data and cannot
be ensured for all tiny details, however significant for a human observer. For exam-
ple, GAN images sometimes present eyes with different colors, or asymmetric
specular reflections, different earrings, or only on earrings, or ears with markedly
different characteristics (see Fig. 9.7). These artifacts are exploited in [39], where
simple features are built in order to capture them, such as the correlation between
the eyes in suitable color spaces. To exploit asymmetric corneal specular reflec-
tions a detector is proposed in [23] based on inconsistencies between light sources
reflected in the two eyes. However, this approach needs high-resolution images
in order to correctly segment the light spots in both eyes and then compare them,
which is not the case of most social networks. This problem is tackled in [22],
where a super-resolution module is used, trained to preserve generation artifacts.
After the resolution increase, a CNN is used which pools different feature maps
on the basis of facial key-points.

• Landmark locations. Just like for symmetry, no explicit constraint can be imposed
in the generation process to ensure the correct positioning of facial landmark
points. As a consequence, it may happen that all individual face parts are generated
with a high level of realism and with many details, but their relative locations
are unnatural. Based on this observation, the method proposed in [57] uses the
locations of the facial landmark points, like the tips of the eyes, nose, and the
mouth, as discriminative features for detection.

• Color features. GANs produce by design only a limited range of intensity values,
and do not generate saturated and/or under-exposed regions. While this is a good
property to ask of a photo, a large number of natural face images do present
extreme-valued pixels, and their absence suggests a synthetic origin. This fact
is exploited in [40] by measuring the frequency of saturated and under-exposed
pixels in each image. Turning to color, current GANs are known to not accurately
preserve the natural correlation among color bands. This property is exploited
in [31] where the chrominance components of the image are high-pass filtered
and their co-occurrence matrices are computed to form discriminative features
for detection. Indeed, co-occurrences of high-pass filtered images are popular
tools in image forensics since invisible artifacts are often present in the high-
frequency signal components [12]. Thus, co-occurrence matrices extracted from
the RGB channels are also used in [42] as the input of a CNN and, similarly,
in [2] co-occurrences across color bands are computed to capture discriminative
information.
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Fig. 9.7 Examples of GAN synthetic faces with visible artifacts. A generated face with asymmetric
earrings (left) and a face with eyes of different colors

9.4.2 Data-Driven Features

Deep networks, in particular ConvolutionalNeuralNetworks (CNNs), have proven to
adapt well to multimedia forensic tasks [48]. A first investigation of detectors based
on very deep networks is carried out in [35], where state-of-the-art pre-trained CNNs,
like Xception, Inception, and DenseNet, are shown to ensure excellent performance
for GAN image detection. In particular, they turn out to outperform CNN models
specifically tailored to forensics tasks and trained from scratch, especially in themost
challenging scenarios. More recently, Xception [11] has been used also in [15] as
the backbone of a strategy that includes an attention mechanism.

In [53], following an approach originally proposed in Deepxplore [45], detection
is based on the neurons’ activity at each layer of the network. Experiments carried out
on the challenging DFDC dataset show that the neurons’ activity provides detailed
information about the network behavior and leads to improved classification perfor-
mance and higher robustness against adversarial attacks. In [24] both detection and
attribution are pursued by means of a three-level hierarchical framework. The first
level distinguishes real images from manipulated ones, the latter are then classified
in the second level as retouched or generated from scratch, and these latter are finally
attributed to the generating GAN architecture in the third level. At each level, a CNN
is used for feature extraction and an SVM for classification.

GANarchitectures typically includes up-sampling stages, which produce a typical
checkerboard pattern. To exploit this trace, in [41] an ad hoc self-attentionmechanism
is proposed to replace plain global pooling in the final layers of the CNN.

9.5 Detection Methods in the Frequency Domain

The checkerboard pattern mentioned in the previous Section shows its traces very
clearly in the frequency domain. In fact, the up-sampling operations give rise
to quasi-periodic patterns which result in strong peaks in the image spectrum
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Fig. 9.8 A real image and its Fourier transform (left) a GAN image generated using starGAN [10]
and its Fourier transform (right). In this last case it is possible to observe clear peaks in the spectrum

(see again Fig. 9.2 for generic images and Fig. 9.8 for faces). Based on this observa-
tion, a detector is proposed in [61] which takes the frequency spectrum instead of
image pixels as input for a CNN. A frequency-domain analysis is also performed
in [18] to investigate the presence of artifacts across different network architectures,
datasets, and resolutions. Then, a CNN-based classifier is trained with Fourier spec-
tra taken from both real images and their synthetic versions obtained through an
adversarial autoencoder. Also [17] shows that GAN images do not faithfully mimic
the spectral distributions of natural images. Various generative architectures are con-
sidered, based both on GANs and autoencoders, and the spectra of the generated
images are compared with those of real ones. It results that the spectrum decay along
the radial dimension is markedly different in the two cases, with fake images that
exhibit higher energy at mid-high frequencies than real ones, which corresponds to
small-scale correlations. To exploit these findings, a KNN classifier is trained using
the energy spectral distribution as an input feature. Along the same line, in [16] a
parametric model is used to fit the decay function of the Fourier spectrum and a
classifier is trained on the fitting parameters. It is worth noting that both approaches
propose also countermeasures to limit the appearance of such spectral artifacts by
means of a simple post-processing [17] or a spectral loss to be used during GAN
training [16].

Frequency analyses have been also widely used to detect generated images shared
online. Indeed, images uploaded to the web are very often coded using the JPEG
standard, based on the Fourier-like discrete cosine transform (DCT). For synthetic
images, this compression stepmay reveal distinctive traces of the generation process,
absent in real images, which can be used for reliable detection. As an example,
for generated images, the most significant digit of the quantized DCT coefficients
violates the well-known Benford’s law. Based on this evidence, in [4] a compact
feature vector is extracted from the DCT coefficients and used to train a random
forest classifier. Frequency-aware features are learned in the DCT domain in [47] to
exploit both local and global frequency clues. On one hand, the proposed approach
learns the global DCT coefficients where it is easier to spot fake faces. On the other
hand, block-wise DCT frequency statistics are computed as complementary features
to improve detection.
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9.6 Learning Features that Generalize

Fully supervised approaches are typically very effectivewhen theGAN images under
test come from a model that is also present in training. However, often they fail to
generalize to data generated by new unseen models. This phenomenon has been
shown both in [29] and in [14], where some interesting experiments are carried out
that highlight the inability of both handcrafted and data-driven features to support
cross-dataset generalization. In the following we will review some of the methods
proposed so far to address this issue.

• Few-shot and incremental learning. In [14] a strategy based on few-shot learning
is proposed to increase transferability. An autoencoder with a bipartite hidden
layer is trained. Then, the input image is projected onto a latent vector where
the information needed to make the real/synthetic decision is disentangled from
the image representation. This allows for higher detection rates in cases where
only a few training samples of an unseen GAN architecture are available. In [38],
instead, an approach based on incremental learning is proposed to update the
detector to new data (i.e., new GAN architectures) made available at different
times. A few representative template vectors of the known architectures are kept in
a compactmemory. In thisway, the network can be re-trained onnewdata of a novel
architecture without forgetting the old ones. Despite the improved generalization,
these methods still require some examples of the new GAN architecture, which
could not be available in a real scenario.

• Augmentation. A different solution is proposed in [56]. The idea is to carry out
augmentation by Gaussian blurring so as to force the discriminator to learn more
general features while discarding noise-like patterns that impair the training. A
similar approach is followed in [54]where a standard pre-trainedmodel, ResNet50,
is further trained with a strong augmentation based on compression and blurring.
Experiments show that, even by training on a single GAN architecture, the learned
features generalize well to unseen architectures, datasets, and training methods.
The comparative analysis of [21], instead, shows that by avoiding any subsampling
in the first layer of the network ensures improved detection results. This finding
is also confirmed by studies on no-subsampling network architectures for more
general multimedia forensics tasks [37].

• Patch-based learning. A different perspective is adopted in [8] where a fully con-
volutional patch-based classifier with limited a receptive field is proposed. The
authors prove the importance of focusing on local patches rather than on the global
structure of the image, and hence ensemble the patch-wise decisions to obtain the
overall prediction.



202 D. Gragnaniello et al.

9.7 Generalization Analysis

Early techniques proposed for the detection of AI-generated faces were evaluated
in an ideal scenario in which both the training and testing samples were generated
by the very same AI (or small variations thereof). In this setting, even a simple
approach like a shallow CNN can reach almost perfect performance [2, 4, 18, 35,
42]. As already discussed in the previous section, the detection performance drops
on images generated by different GAN architectures. In this chapter, we will analyze
the ability of several AI face detectors to generalize on synthetic images that are not
used during training.

Following the protocol proposed in [54], we train all the detection methods on a
large dataset of pristine images from LSUN, while synthetic images are generated
using 20 ProGAN models [25], each trained on a different category, for a grand
total of more than 700k images. All images have a resolution of 256× 256 pixel
and a subset of 4k images are used for validation. The test dataset comprises both
same-resolution and higher resolution (1024× 1024) images generated by various
GANarchitectures: StyleGAN [27], StyleGAN2 [28], BigGAN [6], CycleGAN [62],
StarGAN [10], RelGAN [55], and GauGAN [44]. Then we have a large dataset of
real images both low-resolution and high-resolution ones, as specified in [21].

In this analysis, the following synthetic image detectors are considered: Xception
[35], SRNet [5], Spec [61],M-Gb [56], Co-Net [42],Wang2020 [54], PatchForensics
[8]. Beyond these methods that are specifically proposed for GAN image detection,
we also include SRNet that was instead originally proposed for steganalysis. In fact,
both steganalysis and image forensics have a very similar goal, i.e., detecting hidden
traces in the image, and methods proposed for steganalysis have often shown a great
potential also in forensics [52]. More specifically, to better preserve features related
to noise residual, SRNet avoids down-sampling in the first layers of the network.

To manage both low- and high-resolution images in the test phase, we adopt the
strategy proposed in the original papers. In particular, for M-Gb, FFD and Patch-
Forensics, the image is resized to the dimension of network input, meanwhile for
Spec the central clip of size 224× 224 is considered. The remaining techniques are
applied on the whole test image without clipping/resizing it since they include a
global average pooling. The list of the analyzed approaches and their test strategy
are summarized in Table 9.1.

Results are shown in Fig. 9.9 for low-resolution (top) and high-resolution (bottom)
images in terms of several performance metrics: area under the receiver-operating
curve (AUC), accuracy at the fixed threshold of 0.5, and probability of detection for
a 5% (Pd@5%) and 1% (Pd@1%) false alarm rate (FAR). Performance in terms
of AUC on low-resolution (LR) images are very good, considering that there is a
misalignment between training and testing data, with several methods exceeding
the 0.9 level. However, accuracy results are much less encouraging, since a fixed
threshold is used. Indeed, we noticed that each GAN architecture needs a different
threshold to be set. Hence, without sample images generated from a specific GAN, it
is hard to set the correct threshold. Considering the Pd@FARmetric, results become
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Table 9.1 List of the methods used in our analysis together with the test strategy, as proposed in
the original papers

References Acronym Test strategy

[35] Xception No cropping and no resizing

[5] SRNet No cropping and no resizing

[61] Spec Central cropping (224 × 224)

[56] M-Gb Resizing (128 × 128)

[42] Co-Net No cropping and no resizing

[15] FFD Resizing (299 × 299)

[54] Wang2020 No cropping and no resizing

[8] PatchForensics Resizing (299 × 299)

Fig. 9.9 Results of themethods under comparison in termsofAUC,Accuracy, Pd@5%andPd@1%
for all the tested methods on low-resolution (top) and high-resolution images (bottom)

worse, and only a few methods are able to ensure a good detection ability for high-
resolution images. It is interesting to observe that the ranking of the methods change
based on the specific metric.

9.8 Robustness Analysis

In this section we present a robustness analysis of the GAN detectors analyzed in
the previous section. In fact, it is important to understand to which extent these
detectors are affected by post-processing operations such as image compression or
resizing that is commonly applied when images are uploaded on a social network.
These operations could strongly reduce the low-level inconsistencies. For example
in Fig. 9.10 it is shown the spectrum of GAN images when resizing and compression
operations have been applied. One can observe that by reducing the size of the image
the peaks in the Fourier domain tend to vanish, while enlarging the image further
enhances those artifacts. Compression reduces the Fourier artifacts that completely
disappear if the quality factor is too low (below 70).
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Fig. 9.10 Fourier transform of a GAN image by varying its dimensions using different resizing
factors (top) and by applying JPEG compression at different quality levels (bottom)

Fig. 9.11 Results of themethods under comparison in terms of Pd@5%byvarying the JPEGquality
compression level and by resizing the images at different factors. LR images are both enlarged and
reduced in size, while HR images are only reduced

Figure9.11 reports the Pd@5% performance for low-resolution and
high-resolution images for varying compression factors and resizing scales. Sev-
eral methods suffer dramatic impairments as soon as they move away from the ideal
case of no compression and 100% scale. For example, we can notice that a 2x down-
sampling has a catastrophic effect, as justified by the fact that peaks completely
disappear in the Fourier spectrum (see again Fig. 9.10). The most robust methods
are those that benefit by a strong augmentation, in addition we can observe the good
performance of SRNet on compressed images. Overall these experiments suggest
that there is still much room for improvements with respect to the existing solutions,
especially in terms of robustness to compression and resizing.
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9.9 Further Analyses on GAN Detection

In this section we want to further investigate the performance of a good solution
for GAN detection so as to identify the key ingredients of the most promising solu-
tions. We consider as baseline the method proposed in [54], given the very good
performance shown in the previous experiments, and introduce the following varia-
tions: remove Imagenet pre-training (no-pretrain), include an initial layer for residual
extraction as often performed in image forensics strategies [52] (residual), do not
perform down-sampling in the first layer as suggested by [5] (no-down), perform a
stronger augmentation (strong-aug) by including Gaussian noise adding, geometric
transformations, cut-out, and brightness and contrast changes. In addition, for the
no-down variant, we also change the backbone network and replace ResNet50 with
Xception (Xception no-down) and Efficient-B4 (Efficient no-down).

Results for the various metrics are shown in Fig. 9.12, while Fig. 9.13 shows
results in terms of Pd@5% as a function of compression level and scaling factor.
We can notice that the solution that avoids down-sampling in the first block of the
architecture is very promising also in presence of resizing and compression. Instead
no significant improvement can be observed by adopting strong augmentation or
changing the backbone network. Note also the importance of the pre-training step
on imagenet especially to gain robustness to resizing and compression.

Finally, in Table9.2 we show the results for the baseline and the best variant over
all the different GAN architectures, also including ProGAN that was used in the
training step. We can notice that the best variant (no-down) provides an average gain
of about 15% in terms of accuracy and 14% in terms of Pd@5%. Overall accuracy
is always above 90% irrespective of the type of architecture. Finally, we added a
further experiment by adopting 23 StyleGAN2 different models in training. In this
last case performance are almost perfect with a further consistent improvement with
respect to our baseline.

These experiments confirm the importance of diversity to increase robustness,
like ImageNet pre-training, as already observed in steganalysis [59]. For the same

Fig. 9.12 Results of the baseline (Wang2020) and its variants in terms of AUC, Accuracy, Pd@5%
and Pd@1% for variants ofWang2020 on low-resolution (top) and high-resolution images (bottom)
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Fig. 9.13 Results of the baseline (Wang2020) and its variants in terms of Pd@5% by varying the
JPEG quality compression level and by resizing the images at different factors. LR images are both
enlarged and reduced in size, while HR images are only reduced

Table 9.2 Accuracy and Pd@5% for the baseline and the best variant that avoids down-sampling
in the first block

Accuracy/Pd@5% Wang2020
(baseline)

Best variant
(no-down)

On StyleGAN2
(no-down)

Low res. ProGAN 99.3/100.0 94.7/100.0 99.8/100.0

StyleGAN 75.9/73.9 93.7/93.1 99.9/100.0

StyleGAN2 71.5/69.0 92.2/88.8 99.9/100.0

BigGAN 59.2/45.2 93.5/92.0 96.5/99.4

CycleGAN 77.4/80.5 90.3/81.5 96.5/99.5

StarGAN 84.3/89.4 94.5/97.6 99.9/100.0

RelGAN 63.6/56.0 92.8/86.6 99.7/100.0

GauGAN 82.5/86.3 93.6/93.5 90.8/97.1

High res. ProGAN 99.7/100.0 97.1/100.0 99.7/100.0

StyleGAN(Cel.) 99.3/100.0 97.1/100.0 99.7/100.0

StyleGAN(FFHQ) 82.6/93.7 96.6/98.7 99.7/100.0

StyleGAN2 73.2/78.1 96.9/99.6 99.7/100.0

reason, image pre-processing like resizing to match the input size of the CNN should
be avoided. In fact, just like other forensics applications, the useful information lays in
pixel-level patterns spread all over the image. If size reduction is necessary, cropping
should always be preferred to resizing both during the training and test phase. Along
this same direction, the no-down variant is very promising and suggests to work on
full-resolution end-to-end processing to design better and more robust detectors, as
also proposed in [37] for image forgery detection. More importantly, they shed some
lights on the needs for well-designed evaluation protocols to assess the generalization
capabilities of AI-generated image detectors in real-world scenarios.



9 Detection of AI-Generated Synthetic Faces 207

9.10 Open Challenges

The advent of deep learning has given extraordinary impulse to both face manipu-
lation methods and forensic detection tools. We have seen that successful detectors
rely on inconsistencies at different levels, looking for both hidden and visible arti-
facts. One first important observation is that visual imperfections on faces will likely
disappear soon. Newer GAN architectures [28] already improved upon this aspect
by producing faces with even more details and highly realistic. Thus, relying exclu-
sively on these traces could be a losing strategy in the long term. Turning to generic
deep learning based-solutions, the main technical issue is probably the inability to
adapt to situations not seen in the training phase. Misalignment between training
and test, compression, and resizing are all sources of serious impairments and, at
the same time, highly realistic scenarios for real-world applications. Also, to deal
with the rapid advances in manipulation technology, deep networks should be able to
adapt readily to new manipulations, without a full re-training, which may be simply
impossible for lack of training data or entail catastrophic forgetting phenomena.

A more fundamental problem is the two-player nature of this research which is
common to many security-related fields. In fact, detection algorithms must confront
with the capacity of an adversary to fool them. This means that new solutions are
needed in order to cope with unforeseen attacks. This applies to any type of classifier
and is also very well known in forensics, where many counter-forensics methods
have been proposed in the literature in order to better understand weaknesses of
current approaches and help to improve them over time.

In the following, we analyze some works that have shown the vulnerabilities of
GAN detectors to different types of threats.

• Adding adversarial perturbations. It is well known, from the object recognition
field, that suitable slight perturbations can induce misclassification [50]. Follow-
ing this path, in [7] it has been investigated the robustness of GAN detectors to
imperceptible noise both in a white-box and in a black-box scenario. The authors
show that it is possible to generate appropriate adversarial perturbations so as to
misclassify fake images as real (see Fig. 9.14), but also the opposite. In addition,
they show that the attack can survive JPEG compression. Interestingly, it is also
possible to design an effective strategy in a black-box threat model when the adver-
sary does not have perfect knowledge of the classifier but is aware about the type
of classifier. A similar analysis is conducted in [19], where adversarial attacks are
designed to fool co-occurrence-based GAN detectors.

• Removing GAN fingerprints. Instead of adding noise, one can take a different
perspective and remove the specific fingerprints that are used to discriminate GAN
images from real ones. This approach is pursued in [43], where an autoencoder-
based strategy is proposed, that is trained using only real faces and is able to remove
the high-frequency components that correspond to the fingerprints of the models
used to generate synthetic images. At test time the autoencoder takes as input
synthetic face images and modifies them so as to spoof GAN detection systems.
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Fig. 9.14 A small and imperceptible adversarial perturbation can be added to the synthetic face
image in order to fool the detector

• Inserting camera fingerprints.Another possible direction to attack GAN detectors
is to insert the specific camera traces that characterize real images. In fact, real
images are characterized by their own device and model fingerprints, as explained
before. Such differences are important to carry out camera model identification
from image content but can also be used to better highlight anomalies caused
by image manipulations [52]. In [13] it is proposed a targeted black-box attack
that is based on a GAN architecture, able to insert specific real camera traces in
a synthetic images. In this way it is possible not only to fool a GAN detector
without any prior information on its architecture, but also to fool a camera model
identification algorithm, that will attribute the GAN image to the targeted camera
under attack.

It is worth observing that all these approaches generate face images that are visu-
ally indistinguishable from real ones. This makes clear that a good GAN detector
should always taken into account possible adversarial attacks and include proper
strategies to face them. Another issue for forensics deep learning-based methods is
interpretability. The black-box nature of these approaches makes it difficult to under-
stand the reason behind a certain decision. Hence it is important to develop strategies
that increase the level of understanding so as to improve its design and maybe also
increase robustness to possible malicious attacks.

Overall, we can conclude that AI synthetic face detection is not a trivial task and,
despite the huge effort made by the scientific community, we need to develop more
reliable tools, that should also include anti-forensics and adversarial attacks since
these techniques are widespread and can seriously impair the detection performance.
It is difficult to forecast whether detection tools will be able to ensure a good defense
against a bad use of synthetic content over the web or if active protection technology
will become necessary. However, we believe that developing reliable detectors that
possess good features in terms of generalization and robustness can represent a first
step to protect our society.
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Chapter 10
3D CNN Architectures and Attention
Mechanisms for Deepfake Detection

Ritaban Roy, Indu Joshi, Abhijit Das, and Antitza Dantcheva

Abstract Manipulated images and videos have become increasingly realistic due
to the tremendous progress of deep convolutional neural networks (CNNs). While
technically intriguing, such progress raises a number of social concerns related to
the advent and spread of fake information and fake news. Such concerns necessitate
the introduction of robust and reliable methods for fake image and video detection.
Toward this in this work, we study the ability of state-of-the-art video CNNs includ-
ing 3D ResNet, 3D ResNeXt, and I3D in detecting manipulated videos. In addition,
and toward a more robust detection, we investigate the effectiveness of attention
mechanisms in this context. Such mechanisms are introduced in CNN architectures
in order to ensure that robust features are being learnt. We test two attention mech-
anisms, namely SE-block and Non-local networks. We present related experimental
results on videos tampered by four manipulation techniques, as included in the Face-
Forensics++ dataset. We investigate three scenarios, where the networks are trained
to detect (a) all manipulated videos, (b) each manipulation technique individually, as
well as (c) the veracity of videos pertaining to manipulation techniques not included
in the train set.
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10.1 Introduction

Manipulated images date back to the creation of the first photograph in the year
1825 [18]. Related manipulation techniques have been widely driven by profit stem-
ming from identity theft, age deception, illegal immigration, organized crime, and
espionage, inflicting negative consequences on businesses, individuals, and politi-
cal entities. While forgery was associated with a slow, painstaking process usually
reserved for experts, we are entering new levels of manipulation of images and video,
where deep learning and related manipulation are streamlined to reduce costs, time,
and skill needed to doctor images and videos. Automated generation and manipu-
lation of audio, image and video bares highly exciting perspectives for science, art
and video productions, e.g., video animation, special effects, reliving already passed
actors.

While highly intriguing from computer vision perspective, deepfakes entail a
number of challenges and threats, given that (a) such manipulations can fabricate
animations of subjects involved in actions that have not taken place and (b) such
manipulated data can be circumvented nowadays rapidly via social media. Particu-
larly, we cannot trust anymore, what we see or hear on video, as deepfakes betray
sight and sound, the two predominantly trusted human innate senses [44]. Given that
(i) our society relies heavily on the ability to produce and exchange legitimate and
trustworthy documents, (ii) sound and images have recorded our history, as well as
informed and shaped our perception of reality, e.g., axioms and truths such as “I’ll
believe it when I see it.” “Out of sight, out of mind.” “A picture is worth a thousand
words”. (iii) Social media has catapulted online videos as a mainstream source of
information; deepfakes pose a threat of distorting what is perceived as reality. To
further fuel concern, deepfake techniques have become open to the public via phone
applications such as FaceApp1, ZAO2 and Wombo3. Further, digital identity4, asso-
ciated to the entire collection of information generated by a person’s online activity
including usernames and passwords, photographs, online search activities, birth date,
social security becomes highly vulnerable, with deepfakes entailing the premise to
inflict severe damage. Additional social threats [12, 17] can affect domains such as
journalism, education, individual rights, democratic systems and have intrigued a set
of journalists5, 6, 7, 8.

1 https://apps.apple.com/gb/app/faceapp-ai-face-editor/id1180884341.
2 https://apps.apple.come/cn/app/id146519927.
3 https://www.wombo.ai/.
4 https://www.indrastra.com/2018/01/Digital-Identity-Gateway-to-All-Other-Use-Cases-004-
01-2018-0034.html.
5 https://edition.cnn.com/interactive/2019/01/business/pentagons-race-against-deepfakes/.
6 https://www.nytimes.com/2019/11/24/technology/tech-companies-deepfakes.html.
7 https://www.theguardian.com/commentisfree/2018/jul/22/deep-fake-news-donald-trump-
vladimir-putin.
8 https://www.cnbc.com/2019/10/14/what-is-deepfake-and-how-it-might-be-dangerous.html.

https://apps.apple.com/gb/app/faceapp-ai-face-editor/id1180884341
https://apps.apple.come/cn/app/id146519927
https://www.wombo.ai/
https://www.indrastra.com/2018/01/Digital-Identity-Gateway-to-All-Other-Use-Cases-004-01-2018-0034.html
https://www.indrastra.com/2018/01/Digital-Identity-Gateway-to-All-Other-Use-Cases-004-01-2018-0034.html
https://edition.cnn.com/interactive/2019/01/business/pentagons-race-against-deepfakes/
https://www.nytimes.com/2019/11/24/technology/tech-companies-deepfakes.html
https://www.theguardian.com/commentisfree/2018/jul/22/deep-fake-news-donald-trump-vladimir-putin
https://www.theguardian.com/commentisfree/2018/jul/22/deep-fake-news-donald-trump-vladimir-putin
https://www.cnbc.com/2019/10/14/what-is-deepfake-and-how-it-might-be-dangerous.html
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We differentiate two cases of concern: the first one has to do with deepfakes being
perceived as real, and the second relates to real videos being misdetected for fake, the
latter referred to as “liar’s dividend”. Given such considerations, e.g., video evidence
becomes highly questionable.

Recent research on deepfake generation proposed approaches, where forged
videos are created based on a short video of the source person [30, 48], as well
as from a single ID photo [5] of the source person. In addition, fully synthesized
audio-video images are able to replicate synchronous speech and lip movement [46]
of a target person. Hence deepfakes coerce the target person in a video to reenact the
dynamics of the source person.

Twodeepfake-schemeshave evolved, corresponding toheadpuppetry (the dynam-
ics of a head from a source person are synthesized in a target person), as well as face
swapping (the whole face of a target person is swapped with that of a source person).
Lip syncing (the lip region of the target person is reenacted by the lip region of a
source person) falls in the first category. Currently such manipulations include sub-
tle imperfections that can be detected by humans and, if trained well, by computer
vision algorithms [3, 32, 33]. Toward thwarting such attacks, earlymultimedia foren-
sics based detection strategies have been proposed [3, 4, 16, 41]. Such strategies,
although essential, cannot provide a comprehensive solution against manipulated
audio, images, and video. Specifically, the detection of deepfakes is challenging for
several reasons: (a) it evolves a “cat-and-mouse-game” between the adversary and
the system designer, (b) deep models are highly domain-specific and likely yield
big performance degradation in cross-domain deployments, especially with large
train-test domain gap.

The manipulation scenario of interest in this work has to do with a face video
or expressions of a target person being superimposed to a video of a source person,
widely accepted and referred to as deepfake.

Contributions

Motivated by the above, this work makes following contributions.

(i) We compare state-of-the-art video based techniques in detecting deepfakes. Our
intuition is that current state-of-the-art forgery detection techniques [1, 8, 14,
19, 39, 40] omit a pertinent clue, namely, motion, by investigating only spatial
information. It is known that generativemodels have exhibited difficulties in pre-
serving appearance throughout generated videos, as well as motion consistency
[42, 51, 54, 57]. Hence, we here show that using 3D CNNs indeed outperforms
state of the art image-based techniques.

(ii) We show that such models trained on known manipulation techniques gener-
alize poorly to tampering methods outside of the training set. Toward this, we
provide an evaluation, where train and test sets do not intersect with respect to
manipulation techniques.

(iii) We determine the efficacy of two attention mechanisms, namely SE-block and
Non-local networks by comparing the number of parameters, inference time,
and classification performance for deepfake detection. We find that a non-local
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neural network indeed improves the classification accuracy of 3DCNNswithout
introducing significant computational overhead.

(iv) Lastly, we analyze the correlation matrix of learnt features, as well as activations
of Seg-Grad-Cam [53] to provide insight on how attention mechanisms work.

We note that this chapter extends the work of Wang and Dantcheva [60] by contri-
butions (iii) and (iv).

10.2 Related Work

A very recent survey has revisited image and video manipulation approaches and
early detection efforts [49]. An additional comprehensive survey paper [63] reviews
manipulations of images, graphs, and text.

Generative adversarial networks (GANs) [20] have enabled a set of face manipu-
lations including identity [28, 35], facial attributes [61], as well as facial expressions
[27, 34, 57–59].

10.2.1 Deepfake Detection

While a number of manipulation-detection-approaches are image-based [1, 40],
others are targeted toward video [3, 33, 41] or jointly toward audio and video [31].We
note that although some video-based approachesmight perform better than image-
based ones, such approaches are only applicable to particular kinds of attacks. For
example,many of them [3, 33]may fail, if the quality of the eye area is not sufficiently
good or the synchronization between video and audio is not sufficiently natural [32].

Image-based approaches are general-purpose detectors, for instance, the algo-
rithm proposed by Fridrich and Kodovsky [19] is applicable to both steganalysis and
facial reenactment video detection. Rahmouni et al. [39] presented an algorithm to
detect computer-generated images, which was later extended to detecting computer-
manipulated images. However, performance of such approaches on new tasks is
limited compared to that of task-specific algorithms [40].

Agarwal et al. exploited both facial identity as well as behavioral biometrics
information provided by the temporal component of videos to classify a video as real
or fake [2]. Cozzolino et al. used temporal facial features to learn behavior of a person
and use this as an identifier to compare characteristics in the presented video and
verify the claim of identity [15]. Guarnera et al. argued that deepfake videos contain a
forensic trait pertaining to the generativemodel used to create them. Specifically, they
showed that convolutional traces are instrumental in detecting deepfakes [22]. Khalid
and Woo [29] posed deepfake detection as an anomaly detection problem and used
variational auto-encoder for detecting deepfakes. Hernandez-Ortega [24] proposed
a deepfake detection framework based on physiological measurement, namely, heart
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rate using remote photoplethysmography (rPPG). Trinh et al. [50] utilized dynamic
representations (i.e., prototypes) to explain deepfake temporal artifacts. Sun et al.
[45] attempted to generalize forgery face detection by proposing a framework based
onmeta-learning. Tolosana et al. [49] revisited first and secondDeepFake generations
w.r.t. facial regions and fake detection performance.

We show in this work that such algorithms are indeed challenged, if confronted
with manipulation techniques outside of the training data.

Rössler et al. [40] presented a comparison of existing handcrafted, as well as
deep neural networks (DNNs), which analyzed the FaceForensics++ dataset and
proceeded to detect adversarial examples in an image-based manner. This was done
for (i) raw data, (ii) high quality videos compressed by a constant rate quantization
parameter equal to 23 (denoted as HQ), as well as (iii) low quality videos compressed
by a quantization rate of 40 (denoted as LQ). There were two training settings used:
(a) training on all manipulation methods concurrently, (b) individual training on each
manipulation method separately. These two settings refer to the first two scenarios
of interest in this work.

We summarize for training setting (a), which is the more challenging setting (as
indicated by lower related detection rates).

1. Raw data: It is interesting to note that the correct detection rates for all seven
compared algorithms ranged between 97.03 and 99.26%. The highest score was
obtained by the XceptionNet [13].

2. HQ: High quality compressed data was detected with rates, ranging between
70.97 and 95.73% (XceptionNet).

3. LQ: Intuitively low quality compressed data had the lowest detection rates with
55.98–81% (XceptionNet).

We here focus on the LQ-compression as the most challenging setting.
We note that reported detection rates pertained to the analysis of a facial area with

the dimension 1.3 times the cropped face. Analyzing the full frame obtained lower
accuracy.

A challenge, not being addressed byRössler et al. has to dowith the generalization
of suchmethods.When detection methods, as the presented ones are confronted with
adversarial attacks, outside of the training set, such networks are challenged. This
has to do with the third scenario of interest in this chapter.

10.2.2 Attention Mechanisms

Attention mechanisms are designed to identify and focus on salient information,
which can facilitate improved decisions. Deepfake videos are acquired in uncon-
trolled conditions and can include a number of artificially created objects in the
background (e.g., news-banners). We hypothesize that attention mechanisms are
instrumental in facilitating improved classification accuracy of a deepfake detector
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by enabling the model to focus on discriminative information. Additionally, visual-
ization of attention maps is beneficial in interpretation of the taken decision.

The understanding about attention can be derived fromNadaraya-Watson’s regres-
sion model [37, 62]. Given the paired training data {(x1, y1), (x2, y2)...(xn, yn)}, for
a given test example x , a regression model predicts the target value ŷ as

ŷ =
n∑

k=1

α(x, xk)yk (10.1)

i.e., the target value is a weighted average of training instances. Here, the weight
α(x, xk) signifies the relevance of training instance xk for making a prediction for x .
Attention mechanisms in deep models are analogous to Nadaraya-Watson’s regres-
sion model, as such models are similarly designed to learn a weighting function.

Attention models incorporate an encoder-decoder architecture, solving the pitfall
of auto-encoder by allowing the decoder to access the entire encoded input sequence.
Attention aims at automatically learning an attention weight, which captures the
relevance between the encoder hidden state, i.e., candidate state and the decoder
hidden state i.e., the query state. The seminal work on attention was proposed by
Bahdanau et al. [6] for a sequence-to-sequence modeling task. Attention modeling
has evolved to different types of attention based on the category of input and output,
as well as application domain. While the input of an attention model constitute an
image, sequence, graph, or tabular data and the output is represented by an image,
sequence, embedding, or a scalar. We note that attention can be categorized based
on the number of sequences, number of abstraction levels, number of positions, as
well as number of representations [11]. We proceed to explain such types in detail.

With respect to number of sequences, attention can be of three types, namely,
distinctive, co-attention, and self attention. While in distinctive attention candidate
and query states belong to two distinct input and output sequences, in self atten-
tion [38, 52] the candidate and query states belong to the same sequence. In contrast,
co-attention accepts multiple input sequences as input at the same time and jointly
produces an output sequence.

Considering number of abstraction, attention can be divided into two types
of levels, namely, single-level and multilevel. In single-level attention weights are
computed only for the original input sequence, whereas in multilevel there are lower
and higher level of abstraction, works can be organized in top-down or bottom-up
approaches.

While considering the number of positions, attention can be of two types,
soft/global and hard/local. Hard attention requires the weights to be binary; for
instance, a model that crops the image toward naturally discarding non-necessary
details [21]. A major limitation of hard attention is that it is implemented using
stochastic non-differentiable algorithms [7, 36]. As a result, models employing it
cannot be trained in an end-to-end manner. Deviating from this, models employing
soft attention take an image or video as input and soft-weigh the region of interest
[26, 55]. Soft weighing is ensured by employing either sigmoid or softmax after the
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Fig. 10.1 Schematic diagrams of a non-local block, b non-local block in the backbone architecture

attention gates. This allows weights to be real valued and the objective function to
be differentiable.

Based onnumberof representationswehavemulti-representational andmultidi-
mensional attention.While in the former different aspects of the input are considered,
in the latter focus is placed on determining the relevance of each dimension of the
input.

Finally, with respect to the type of architecture, related attention models can be
implemented as encoder-decoder, transformer, and memory networks. An encoder-
decoder based attentionmodel takes any input representation and reduces it to a single
fixed length, a transformer network aims to capture global dependencies between
input and output, and in memory networks facts that are more relevant to the query
are filtered out.

Application domains of attention include (i) natural language processing, (ii)
computer vision, (iii)multi-modal tasks, (iv) graphical systems, and (v) recommender
systems. Visual attention brings to the fore a vector of importanceweights; in order to
predict or infer one element, e.g., a pixel in an image, we estimate using the attention
vector how meaningful it is. In particular in this scenario, attention modules are
designed to indicate decisive regions of an input, for the task in hand. The output of
an attention module is a vector, representing relative importance. This vector is then
used to re-weight network parameters, so that pertinent characteristics have higher
weights. Consequently, an attention module boosts the model’s performance in a
targeted task. For this work we introduce a self attention, soft attention, single-level,
multidimensional attention for deepfake detection.

We proceed to describe two promising modules used extensively and successfully
in image andvideo processing applications, andwhichwe employ in this chapter, viz.,
non-local block, which is based on transformer network and squeeze and excitation
that is based on an encoder-decoder network.
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Table 10.1 Architecture of 3D ResNet-101 with non-local block

Layer name Output size Architecture

Conv_1 16× 112× 112 7× 7× 7, 3, stride (1, 2, 2)

Res_1 16× 56× 56 3× 3× 3 maxpool, stride 2⎛

⎜⎝
1 × 1 × 1, 64

3 × 3 × 3, 64

1 × 1 × 1, 256

⎞

⎟⎠ × 3

Res_2 8× 28× 28

⎛

⎜⎝
1 × 1 × 1, 128

3 × 3 × 3, 128

1 × 1 × 1, 512

⎞

⎟⎠ × 4

Res_3 4× 14× 14

⎛

⎜⎝
1 × 1 × 1, 256

3 × 3 × 43, 256

1 × 1 × 1, 1024

⎞

⎟⎠ × 23

Res_4 2× 7× 7

⎛

⎜⎝
1 × 1 × 1, 256

3 × 3 × 3, 256

1 × 1 × 1, 1024

⎞

⎟⎠ × 3

Non-local block 2× 7× 7 Fig. 10.1a

Avg pool & FC 1× 1× 1 Average pool and sigmoid

Non-local Block

The architecture of a non-local block [56] is based on the observation that convo-
lutional and recurrent operations process only a local neighborhood. Consequently,
these fail to capture long-range dependencies. To overcome this limitation of CNNs,
non-local block performs a non-local operation to compute feature responses (see
Fig. 10.1 and Table10.1). A non-local operation is characterized by computing the
response at a position as a weighted sum of features at all positions in the input
feature maps.

Given that video processing requires access to information in distant pixels in
space an time, computation of long-range dependencies is necessitated. Non-local
operations enable a CNN to capture long-range dependencies and thus are highly
beneficial in video processing. Formally, in the context of CNNs, a non-local oper-
ation is defined as

oi = 1

C(x)

∑

∀ j

p(xi , x j ) r(x j ), (10.2)

where x and o denote the input and output feature, respectively. p represents a
pairwise function that computes a relationship (e.g., affinity) between pixels i and
j . r signifies a unary function, which computes a representation of input feature at
pixel j . C(x) is a normalization factor and is set as C(x) = ∑

∀ j p(xi , x j ).
In this chapter, the default choices of p and r are used. g is a linear embedding

and is defined as g(x) = Wg x j . Pairwise function is defined as
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Fig. 10.2 a Residual block, b residual block after adding SE-block

Fig. 10.3 Schematic diagram of SE-block showcasing the squeeze and excitation function

p(xi , x j ) = eα(xi )
T β(x j ), (10.3)

where α(xi ) = Wαxi and β(x j ) = Wβx j are the associated embeddings. This pair-
wise function is called embedded Gaussian and primarily computes dot-product
similarity in the embedding space.

Squeeze and Excitation Block

The Squeeze and Excitation (SE) block [25] boosts the representational power of
a CNN by modeling inter-dependencies between channels of the features learnt by
it (see Fig. 10.2). As illustrated in Fig. 10.3, the SE-block comprises two operators:
squeeze and excitation.While the squeezeoperation aggregates features across spatial
dimensions and creates a global distribution of channel-level feature response, the
excitation operation is a self-gatingmechanism that generates a vector of per-channel
re-calibration weights. We proceed to define both operations.

Squeeze Operation. Let us assume that the input feature X ∈ RW×H×C is repre-
sented as X = [x1, x2, . . . xC ], where xi ∈ RW×H . The squeeze operation exploits
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(a) (b) (c) (d) (e)

Fig. 10.4 Sample frames from the FaceForensics++ dataset. From left to right: original source
(large) and target (small) images, deepfakes, face2face, faceswap, neuraltextures

global spatial information by squeezing X through global average pooling and cre-
ating a channel descriptor, z ∈ RC where i th element of z is calculated as

zi = Fsq(xi ) = 1

H × W

W∑

j=1

H∑

k=1

xi ( j, k). (10.4)

Excitation Operation. Exploits information acquired through squeeze operation to

model dependency among channels through gating with sigmoid activation. For-
mally, squeeze operation is defined the following.

a = Fex (z, w1, w2) = σ(w2δ(w1z)), (10.5)

where w1 ∈ R
C
r ×C , w2 ∈ RC× C

r . In this context a denotes the modulation weights
per-channel and δ denotes ReLU. The recalibrated feature is then computed as

x̃i = Fscale(xi , ai ) = ai xi

X̃ = [x̃1, x̃2, ....x̃C ]. (10.6)

We proceed to discuss the dataset (Fig. 10.4).

10.3 Dataset

The FaceForensics++ dataset [40] comprises 1000 talking subjects, represented in
1000 real videos. Further, based on these 1000 real videos, 4× 1000 adversarial
examples have been generated by following four manipulation schemes.



10 3D CNN Architectures and Attention Mechanisms for Deepfake Detection 223

1. Faceswap represents a graphic approach transferring a full face region from a
source video to a target video. Using facial landmarks, a 3D template model
employs blend-shapes to fit the transferred face. FaceSwap.9

2. Deepfakes has become the synonym for all face manipulations of all kind, it
origins to FakeApp10 and faceswap github.11

3. Face2face [48] is a facial reenactment system that transfers the expressions of a
source video to a target video, while maintaining the identity of the target person.
Based on an identity reconstruction, the whole video is being tracked to compute
per frame the expression, rigid pose, and lighting parameters.

4. Neuraltextures [47] incorporates facial reenactment as an example for a Neural-
Textures-based rendering approach. It uses the original video data to learn a neural
texture of the target person, including a rendering network that has been trained
with a photometric reconstruction loss in combination with an adversarial loss.
Only the facial expression corresponding to the mouth region is being modified,
i.e., the eye region stays unchanged.

10.4 Algorithms

We select three state-of-the-art 3D CNN methods, which have excelled in action
recognition. We proceed to briefly describe them.

• I3D [10] incorporates sets of RGB frames as input. It replaces 2D convolutional
layers of the original Inception model by 3D convolutions for spatio-temporal
modeling and inflates pre-trained weights of the Inception model on ImageNet as
its initial weight. Results showed that such inflation has the ability to improve 3D
models.

• 3D ResNet [23] and 3D ResNeXt are inspired by I3D, both extending initial
2D ResNet and 2D ResNeXt to spatio-temporal dimension for action recog-
nition. We note that deviating from the original ResNet-bottleneck block, the
ResNeXt-block introduces group convolutions, which divide the feature maps
into small groups. We also conducted experiments with the 3D ResNet modified
with squeeze-excitation blocks and non-local block, and the 3D ResNeXt modi-
fied with non-local block to investigate the effect of using self attention on these
networks.

Given the binary classification problem in this work, we replace the prediction layer
in all networks with a single neuron layer, which outputs one scalar value. All three
networks have been pre-trained on the large-scale human action dataset Kinetics-
400. We inherit the weights in the neural network models and further fine-tune the
networks on the FaceForensics++ dataset in all our experiments.

9 https://github.com/MarekKowalski/FaceSwap/.
10 https://www.fakeapp.com.
11 https://github.com/deepfakes/faceswap.

https://github.com/MarekKowalski/FaceSwap/
https://www.fakeapp.com
https://github.com/deepfakes/faceswap
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We detect and crop the face region based on facial landmarks, which we detect in
each frame using the method fromBulat and Tzimiropoulos [9]. Next, we enlarge the
detected region by a factor of 1.3, in order to include pixels around the face region.

10.5 Experiments

We conduct experiments on the manipulation techniques listed above with the algo-
rithms I3D, 3D ResNet and 3D ResNext aiming at training and detecting (a) all
manipulation techniques, (b) each manipulation technique separately, as well as (c)
cross-manipulation techniques. Toward this, we split train, test, and validation sets
according to the protocol provided in the FaceForensics++ dataset.

We use PyTorch to implement our models. The three entire networks are trained
end-to-end on 4 NVIDIAV100GPUs.We set the learning rates to 1e−3. For training,
I3D accepts videos of 64 frames with spatial dimension 224 × 224 as input. The size
of input of 3DResNet and 3DResNeXt are 16 frames of spatial resolution 112 × 112.
For testing, we split each video into short trunks, each of temporal size of 250 frames.
The final score assigned to each test video is the average value of the scores of all
trunks.

We also investigate the impact of two attention mechanisms on 3D ResNet,
namely, Squeeze-Excitation blocks and Non-local blocks. In the case of the 3D
ResNet with the Squeeze-Excitation (SE) blocks, the network is trained from scratch
as the SE blocks are incorporated in the bottleneck modules themselves. Despite this
addition not performing at par with the original 3D ResNet pre-trained on Kinetics,
training is more stable and obtains superior results compared to a 3D ResNet that
is trained on the dataset from scratch. Based on the limitations and advantages we
observe for the 3DResNet,we also investigate the impact of using the non-local block
in the 3D ResNeXt, which outperform the other 3D architectures in most cases after
this modification. We report in all experiments the true classification rates (TCR).

10.5.1 All Manipulation Techniques

Firstly we evaluate the detection accuracy of the three video CNNs (with and with-
out attention), and compare the results to image-forgery detection algorithms. For
the latter we have in particular the state-of-the-art XceptionNet [40], learning-based
methods used in the forensic community for generic manipulation detection [8, 14],
computer-generated vs. natural image detection [39] and face tampering detection
[1]. Given the unbalanced classification problem in this experiment (number of fake
videos being nearly four times the number of real videos), we use weighted cross-
entropy loss, in order to reduce the effects of unbalanced data.We observe that among
the unmodified 3D CNNs, the detection accuracy of I3D is the highest and it is also
the most computationally intense. The performance of 3D ResNet improves with



10 3D CNN Architectures and Attention Mechanisms for Deepfake Detection 225

Table 10.2 Detection of all four manipulation methods, LQ. TCR = True classification rate, DF
= deepfakes, F2F = face2face, FS = face-swap, NT = neuraltextures

Algorithm Train and test TCR

Steg. Features + SVM [19] FS, DF, F2F, NT 55.98

Cozzolino et al. [14] FS, DF, F2F, NT 58.69

Bayar and Stamm [8] FS, DF, F2F, NT 66.84

Rahmouni et al. [39] FS, DF, F2F, NT 61.18

MesoNet [1] FS, DF, F2F, NT 70.47

XceptionNet [13] FS, DF, F2F, NT 81.0

I3D FS, DF, F2F, NT 87.43

3D ResNet FS, DF, F2F, NT 83.86

3D ResNet (w/o pre-training) FS, DF, F2F, NT 54.96

3D ResNet (with SE) FS, DF, F2F, NT 80.0

3D ResNet (with non-local) FS, DF, F2F, NT 85.85

3D ResNeXt FS, DF, F2F, NT 85.14

3D ResNeXt (with non-local) FS, DF, F2F, NT 88.28

Table 10.3 AUC values of 3D ResNet and 3D ResNeXt endowed with attention

Algorithm AUC

3D ResNet 0.82

3D ResNet (w/o pre-training) 0.51

3D ResNet (with SE) 0.72

3D ResNet (with non-local) 0.86

3D ResNeXt (with non-local) 0.91

the introduction of the non-local block. The lack of pre-training does hamper the
performance of the 3D ResNet with the SE attention, however it performs signifi-
cantly better than the vanilla 3D ResNet which was initialized with random weights.
Interestingly, with the addition of the non-local block to the 3D-ResNeXt, its detec-
tion accuracy becomes the highest, surpassing I3D. Related results are depicted in
Table 10.2. We present the receiver operating characteristic curves (ROC curves) in
Fig. 10.5 and the area under the curve (AUC) in Table 10.3.

10.5.2 Single Manipulation Techniques

Weproceed to investigate the performances of all algorithms, when trained and tested
on single manipulation techniques. We report the TCRs in Table 10.4. Interestingly,
here the video-based algorithms perform similarly as the best image-based algo-
rithm. This can be due to the data-size pertaining to videos of a single manipulation
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Fig. 10.5 ROC curves pertaining to 3D ResNet and 3D ResNext endowed with attention mecha-
nisms for testing and training of all four manipulation methods

technique being smaller. I3D performed best among unmodified video-based meth-
ods. 3D ResNet with non-local block once again outperformed the pre-trained 3D
ResNet and the 3D ResNet with SE attention outperformed the randomly initialized
3D ResNet that was trained from scratch. The performance of 3D ResNeXt also
improved upon introduction of the non-local block, and in fact, it performed best
among all video-based methods.

Our experiments suggest that all detection approaches are consistently utmost
challenged on the GAN-based neuraltextures-approach. We note that neuraltex-
tures trains a unique model for each video, which results in a higher variation of
possible artifacts. While deepfakes similarly trains one model per video, a fixed
post-processing pipeline is used, which is similar to the computer-based manipula-
tion methods and thus has consistent artifacts that can be instrumental for deepfake
detection.

10.5.3 Cross-Manipulation Techniques

In our third experiment, we train the 3D CNNs and the attention-endowed models
with videos manipulated by 3 techniques, as well as the original (real) videos and
proceed to test on the last remaining manipulation technique, as well as original
videos. We show related results in Table 10.5. Naturally, this is the most challeng-
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Table 10.4 Detection of each manipulation method individually, LQ. TCR = True classification
rate, DF = deepfakes, F2F = face2face, FS = face-swap, NT = neuraltextures

Algorithm DF F2F FS NT

Steg. Features + SVM [19] 73.64 73.72 68.93 63.33

Cozzolino et al. [14] 85.45 67.88 73.79 78.00

Bayar and Stamm [8] 84.55 73.72 82.52 70.67

Rahmouni et al. [39] 85.45 64.23 56.31 60.07

MesoNet [1] 87.27 56.20 61.17 40.67

XceptionNet [13] 96.36 86.86 90.29 80.67

I3D 95.13 90.27 92.25 80.5

3D ResNet 91.81 89.6 88.75 73.5

3D ResNet (w/o pre-training) 58.80 73.60 59.20 56.50

3D ResNet (with SE) 81.70 77.00 75.90 66.25

3D ResNet (with non-local) 94.67 89.20 92.13 76.00

3D ResNeXt 93.36 86.06 92.50 80.50

3D ResNeXt (with non-local) 95.50 90.4 95.08 80.71

ing setting. At the same time, it is the most realistic one, because it is unlikely that
knowledge on whether and how videos have been manipulated will be provided.
Similar to the first experiment, we use weighted cross-entropy loss, in order to solve
the unbalanced classification problem. For the detection algorithms, one of the more
challenging settings in this experiment is when faceswap is the manipulation tech-
nique to be detected. We note that 3D ResNet with non-local block outperformed all
other networks in this scenario.

While face2face and faceswap represent graphics-based approaches, deepfakes
and neuraltextures are learning-based approaches. However, faceswap replaces the
largest facial region in the target image and involves advanced blending and color
correction algorithms to seamlessly superimpose source onto target. Hence the chal-
lenge might be due to the inherent dissimilarity of faceswap and learning-based

Table 10.5 Detection of cross-manipulation methods, LQ. TCR = True classification rate, DF =
deepfakes, F2F= face2face, FS= face-swap, NT= neuraltextures, NL= non-local, scratch=w/o
pre-training
Train Test 3D I3D 3D

ResNeXt
3D
ResNet
(scratch)

3D
ResNet
(with SE)

3D
ResNet
(with NL)

3D
ResNeXt
(with NL)

FS, DF, F2F NT 64.29 68.57 66.79 54.28 55.35 62.9 63.2

FS, DF, NT F2F 74.29 70.71 68.93 51.0 53.5 68.2 69.1

FS, F2F, NT DF 75.36 75.00 72.50 50.7 52.5 76.78 77.8

F2F, NT, DF FS 59.64 57.14 55.71 50.3 53.5 68.2 65.71
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Table 10.6 Number of parameters in 3D ResNet without and with attention

Algorithm No. of parameters

3D ResNet 85,249,216

3D ResNet with SE 94,303,808

3D ResNet with non-local 93,647,040

approaches, as well as due to the seamless blending between source and target,
different than face2face.

We note that humans easily detected manipulations affectedResNet by faceswap
and deepfakes and were more challenged by face2face and ultimately neuraltex-
tures [40]. This is also reflected in the performance of 3D ResNet and 3D ResneXt
with non-local block, which were most challenged by the videos manipulated by
neuraltextures.

10.5.4 Effect of Attention in 3D ResNets

We here analyze the correlation matrices between two layers (at the same depth)
for all the three variants of the 3D ResNet—the original 3D ResNet, the 3D ResNet
with squeeze-excitation and the 3D ResNet with non-local block (Fig. 10.6). The
high correlation observed in distinct patches in Fig. 10.6a indicates that the original
3D ResNet without attention possibly overfits to the data. The addition of squeeze-
excitation (Fig. 10.6b) improves upon this and a further improvement is seen with
the introduction of the non-local block in the 3D ResNet (Fig. 10.6c).

Both attention mechanisms, squeeze-excitation, and non-local block increase the
number of parameters in the 3D ResNet by around 10% (Fig. 10.6), however when
trained and tested on the whole dataset, we observe an improvement of 2% in the
true classification rate in case of the model with non-local block (Table 10.2). We
note that the 3D Resnet with SE attention could not be initialized with pre-trained
Kinetics weights, so for a fair comparison, a 3D ResNet trained on the dataset from
scratch was considered. Interestingly, without pre-trained weights, the vanilla 3D-
ResNet is unable to converge its training in most cases and was underfitting. The
training for the 3D ResNet with SE was more stable and yielded superior results
over most experiments. It is also interesting to observe that face2face challenges 3D
ResNet with non-local block more than the vanilla 3D ResNet. The exact reason
behind this was not certain, however, as pointed out before, it was one of the more
challenging scenarios for humans to detect as well [40]. In summary, 3D ResNet
with the non-local block outperforms predominantly all other 3D ResNet variants
(Table10.2–10.5).
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(a) 3D ResNet without attention (b) 3D ResNet with SE

(c) 3D ResNet with non-local

Fig. 10.6 Correlation matrices for the 3D ResNets

10.5.5 Visualization of Pertinent Features in Deepfake
Detection

We proceed to visualize features each of the 3D ResNet models are focusing on
for detecting of deepfakes by Grad-CAM [43]. We note that Grad-CAM finds the
final convolutional layer in a network and examines the gradient information flowing
into that layer. The output of Grad-CAM is represented by a heat map visualization
for a given class label, in our case deepfake detection. In particular, we visualize
five frames from a deepfake-video in Fig. 10.7, for each of the three variants of 3D
ResNet. Interestingly, we observe that 3D ResNet with both attention mechanisms
focuses stronger on the central part of a face, as compared to the original 3D ResNet.
It is alsoworth noting that the heat map for 3DResNet with non-local block is located
slightly higher than 3D Resnet with squeeze-excitation block, yielding the highest
accuracy.
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(a) 3D ResNet

(b) 3D ResNet with SE block

(c) 3D ResNet with non-local block

Fig. 10.7 Grad-CAM visualizations for the 3D ResNet models for the same video. The frames
are taken from the same fake video with a time step of 24. Red represents higher probability of the
region being manipulated

10.6 Conclusions

In this work we compared three state-of-the-art video-based CNNmethods in detect-
ing four deepfake-manipulation-techniques. The three tested methods included 3D
ResNet, 3D ResNeXt and I3D, which we adapted from action recognition. In addi-
tion, we tested two attention mechanisms. Despite the pre-training of mentioned
methods on the action recognition dataset Kinetics-400, the methods generalized
very well to deepfake detection. Experimental results showed that 3D/video CNNs
outperformed or performed at least similarly to image-based detection algorithms.

In addition, we observed that the incorporation of attention mechanisms in 3D
CNNs improved related detection accuracy and were beneficial in placing focus of
the models on areas of maximum manipulation in the forged videos.

Further, we noted a significant decrease in detection rates in the scenario, when
we detected a manipulation technique not represented in the training set. One reason
relates to the fact that networks lack an adaptation-ability to transfer learned knowl-
edge from one domain (trained manipulation methods) to another domain (tested
manipulation method). It is known that current machine learning models exhibit
unpredictable and overly confident behavior outside of the training distribution.

Futureworkwill involve the consideration of additional deepfake-techniques. Fur-
ther, we plan to develop novel deepfake detection approaches, which place emphasis
on appearance, motion as well as pixel-level-based generated noise, targeted to out-
smart the improving generation and manipulation algorithms.
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Chapter 11
Deepfake Detection Using Multiple Data
Modalities

Hanxiang Hao, Emily R. Bartusiak, David Güera, Daniel Mas Montserrat,
Sriram Baireddy, Ziyue Xiang, Sri Kalyan Yarlagadda, Ruiting Shao,
János Horváth, Justin Yang, Fengqing Zhu, and Edward J. Delp

Abstract Falsified media threatens key areas of our society, ranging from politics to
journalism to economics. Simple and inexpensive tools available today enable easy,
credible manipulations of multimedia assets. Some even utilize advanced artificial
intelligence concepts to manipulate media, resulting in videos known as deepfakes.
Social media platforms and their “echo chamber” effect propagate fabricated digital
content at scale, sometimeswith dire consequences in real-world situations.However,
ensuring semantic consistency across falsified media assets of different modalities
is still very challenging for current deepfake tools. Therefore, cross-modal analysis
(e.g., video-based and audio-based analysis) provides forensic analysts an opportu-
nity to identify inconsistencies with higher accuracy. In this chapter, we introduce
several approaches to detect deepfakes. These approaches leverage different data
modalities, including video and audio. We show that the presented methods achieve
accurate detection for various large-scale datasets.

11.1 Introduction

The rapid proliferation of easy-to-use machine learning tools contributes to an ever-
increasing amount of manipulated media. These tools enable users to create realistic
and believable face swaps in images and videos. They also convincingly alter or
replace audio tracks in videos. Some of these tools use machine learning (ML) and
deep learning (DL) techniques. Videos (with or without audio) generated with deep
learning methods are collectively referred to as the term deepfakes. Recently, many
methods have been developed to effectively detect these deepfake videos. Since most
of the deepfake videos still contain the artifacts that are caused by inaccurate face
swapping (i.e., splicing artifacts), [1, 2] propose to detect these manipulated videos
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by finding the temporal inconsistency of 3-D head pose and facial landmarks using
Support Vector Machine (SVM). Most of the deepfake generation tools are based
on the Generative Adversarial Networks (GANs). In [3, 4], several deep-learning-
based detectors are proposed to discriminate between authentic images and GAN-
generated images obtained from various GAN-based deepfake generators. In order
to improve the generalizability of the detection methods, [5] uses metric learning
and adversarial learning to enable to the deepfake detection method trained only
with authentic videos without the requirement of manipulated videos. Please refer
to [6–9] for the completed survey about the deepfake detection methods.

In this chapter, we present various methods to detect the manipulated videos by
leveraging different datamodalities (e.g., video, audio).Wefirst propose an approach
to detect deepfakes by utilizing spatiotemporal information present in videos. More
specifically, we use Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) to extract visual and temporal features fromvideo frame sequences
to accurately detect manipulations. This technique focuses on face swapping detec-
tion by examining the visual and temporal features of facial regions in each frame.
Some frames may contain blurry faces, hindering effective detection of manipu-
lations. To solve this issue, we utilize a novel attention mechanism to emphasize
reliable frames and disregard low-quality frames in each sequence.

Next, we present a method that analyzes audio signals to determine whether they
contain real human voices or fake human voices (i.e., voices generated by neural
acoustic and waveform models). Instead of analyzing the audio signals directly, the
proposed approach converts the audio signals into spectrogram images displaying
frequency, intensity, and temporal content and evaluates them with a CNN. We con-
vert the audio signals into spectograms in order to leverage frequency information
and provide amore amenable configuration of the data to a CNN.ACNNcan analyze
different frequency ranges more explicitly from a spectrogram, revealing artifacts in
certain frequency ranges. This method can also aid in a deepfake detection task in
which the audio as well as the visual content has been manipulated. Analysts can
use our method to verify the voice tracks of videos and flag them as manipulated if
either the audio analysis or the video analysis reveals manipulated content.

Finally, we extend the previous video-based and audio-based methods to detect
deepfakes using audio-video inconsistency. As mentioned previously, ensuring
semantic consistency across these manipulated media assets of different modali-
ties is still very challenging for current deepfake tools. For a photo-realistic deepfake
video, a visual analysis alone may not be able to detect the manipulations, but pairing
the visual analysis with audio analysis provides an additional avenue for authentic-
ity verification. Therefore, we also describe several existing methods to analyze the
correlations between lip movements and voice signals via phoneme-viseme mis-
matching and affective cues. These methods incorporate both video and audio data
modalities, which provide rich information for deepfake detection.

The remaining sections in this chapter are structured as follows. Section11.2 dis-
cusses a deepfake detection method that relies only on video content. Section11.3
presents amethod that introduces audio analysis to detect manipulated audio. Finally,
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Sect. 11.4 explores several methods to evaluate audio-video inconsistency for deep-
fake video detection, building off of the methods presented in Sect. 11.3.

11.2 Deepfake Detection via Video Spatiotemporal Features

With the fast development of deepfake techniques, deepfake videos seem more and
more realistic, causing viewers to struggle to determine their authenticity. However,
current deepfake techniques still suffer from temporal inconsistency issues, such as
flickering and unrealistic eye blinking. In this section, we introduce a deep learning-
based method to detect deepfakes by incorporating temporal information with video
frames.

Figure11.1 shows the block diagram of our spatiotemporal-based method. A
shared CNN model first encodes input video frames into deep features. CNNs have
achieved success in many vision tasks, such as image recognition and semantic seg-
mentation. In our case, we utilize these CNNmodels to extract features for deepfake
detection. In recent literature [10, 11], InceptionV3 [12], EfficientNet [13], Xception
model [14], or an ensemble of these models have been used to extract deepfake fea-
tures. Transfer learning is also used to fine-tune these models that are pretrained on
some large-scale image datasets (e.g., ImageNet [15]) to speed up training processes
and improve performance. We will compare the results achieved with these CNNs
in Sect. 11.2.6. A shared CNN model also reduces the number of parameters that
must be trained. This technique will force the model to extract the features that are
agnostic to the input video content and manipulation methods, which is important to
make the model generalize better to new deepfake videos.

Then, we input the features to a temporally aware network to leverage the rela-
tionship between frames. There are many types of temporally aware networks,
including Recurrent Neural Networks (RNNs), Long Short-TermMemory networks

Fig. 11.1 Overview of the spatiotemporal deepfake detection system
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(LSTMs) [16], and Gated Recurrent Units (GRUs) [17]. LSTMs and GRUs are
special kinds of RNNs that are capable of learning long-term dependencies across
sequences. For our deepfake detection task, a GRU will analyze CNN-extracted
features from video frames to accumulate useful information related to deepfake
artifacts. The GRU leverages temporal information implicitly to reveal deepfakes,
rather then being explicitly designed to focus on temporal inconsistencies. This fea-
ture will also prepare the model to generalize better to different types of deepfakes.
The result of the GRU is a new representation of the video in the latent space that
contains discriminating information from the entire video.

Next, we use a classifier to label a video as authentic or manipulated. For deep
learning models, people often use a multi-layer perceptron (MLP) (i.e., fully con-
nected layers) as a classifier along with batch normalization and Rectified Linear
Unit (ReLU).

11.2.1 Overview

In this section, we introduce the details of our video-based deepfake detection
approach. The main workflow commences with CNN-based face detection followed
by CNN-based facial feature extraction to determine a set of salient facial indicators
that will aid in manipulation detection. Then, the facial features are analyzed by an
Automatic Face Weighting (AFW) mechanism and a Gated Recurrent Unit (GRU)
network to extract meaningful features to verify videos as authentic or manipulated.
Additionally, a Boosting Network is used to aid the backbone network in learning to
discriminate between authentic and manipulated videos.

11.2.2 Model Component

The next few sections detail the architecture of the main ensemble network, which
consists of the CNN-based face detector, CNN-based feature extractor, AFW, and
GRU.

Face Detection. For our analysis, we focus on faces, which typically are the pri-
mary target of deepfakes. This means that face regions generally contain indicators
of a video’s true nature. Thus, the first step in our approach is to locate faces within
video frames. We use a Multi-task Cascaded Convolutional Network (MTCNN)
[18] for this task since it produces bounding boxes around faces and facial land-
marks simultaneously. MTCNN consists of three stages. In the first stage, a fully
convolutional network, called Proposal Network, generates a large number of face
bounding box proposals. In the second stage, another CNN, called Refine Network,
improves the output from the first stage by rejecting a large number of false propos-
als. The remaining valid proposals are passed to the third stage, where the bounding
boxes and facial landmark positions are finalized. Non-maximum suppression and
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bounding box regression are applied in every stage to suppress overlapping proposals
and refine the output prediction.

To speed up face detection, we downsample each video by a factor of 4 and
extract faces from 1 in every 10 frames. We also expand the margin of detected
face bounding boxes by 20 pixels to include possible deepfake artifacts around the
edges of faces and hairlines. After face detection, we resize all face occurrences to
224 × 224 pixels.

Face Feature Extraction. After detecting faces in the frames, we begin to train
our deepfake detectionmodel to identify authentic andmanipulated faces.We extract
features with another CNN and perform binary classification to determine if the faces
contain authentic or manipulated information. Because of the large amount of video
data that needs to be processed, we prioritize CNNs that are both fast and accurate
for this task. In the end, we chose to use EfficientNet-b5 [13] since it was designed
with neural architecture search to ensure it is both lightweight and highly accurate.

We further enhance EfficientNet by training it with the additive angular margin
loss (ArcFace) [19] as opposed to softmax and cross-entropy. ArcFace is a learnable
loss function that modifies the regular classification cross-entropy loss to ensure
a more efficient representation. It aims to enforce a margin between each class in
the latent feature space obtained from the previously mentioned CNN models. This
results in features that are forced to be highly discriminative, resulting in a more
robust classification.

Automatic Face Weighting. After classifying each frame as manipulated or not,
we have to determine a classification for the entire video. The straightforward option
is to simply average the classifications of the frames to come up with a video clas-
sification. However, this may not be the best option. Generally, face detectors are
accurate, but sometimes they incorrectly categorize background regions in images as
“faces”, which can impact frame-level and video-level classifications in downstream
applications. Additionally, there is no limit on the number of faces in a frame, of
which any number can be authentic or manipulated. Faces can also be blurry or noisy,
which further complicates direct averaging of frame predictions.

To address this issue, we propose an automatic face weighting (AFW)mechanism
that highlights the faces that reliably contribute to the correct video-level classifica-
tion while disregarding less reliable faces. This approach can be considered similar
to the attention mechanisms found in transformer networks [20]. We assign a weight
w j to the output label l j determined by EfficientNet for the j th extracted face. Using
these weights, we can calculate a weighted average of all the frames’ labels to obtain
a final classification for the video. Both labels l j and weights w j are estimated by
a fully connected linear layer that takes the EfficientNet features as input, meaning
that the EfficientNet features are used to determine a label for how much a face has
been manipulated (l j ) as well as how confident the network is of its classification
(w j ). The final output probability pw of a video being manipulated can be calculated
as

pw = σ

(∑N
j=1 w j l j∑N
j=1 w j

)
, (11.1)
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where w j and l j are the weight value and label obtained for the j th face region,
respectively, N is the total number of frames under analysis, and σ(.) refers to the
sigmoid function. To ensure that w j ≥ 0, we pass w j through a ReLU function.
We also perturb the values with a small value to avoid division by 0. This process
ensureswehave an adaptive approach to combine frame-level classifications to obtain
a video-level classification.

GatedRecurrentUnit. In thiswork, we chooseGatedRecurrentUnit (GRU) [17]
as the temporal-aware network. As previously mentioned, LSTM and GRU are spe-
cial kinds of RNNs. Both of them improve the original RNN using multiple gated
units to resolve the vanishing gradient issue in order to learn the long-term depen-
dencies across sequences. Due to the less complicated structure, we choose GRU
instead of LSTM to reduce the training time. GRU is used to analyze all previously
computed values in a temporal manner to evaluate the information learned over
time. More specifically, GRU operates on vectors describing each face detected in
a video, where the vectors consist of 1,048 facial features extracted with Efficient-
Net for frame j , the logit l j , the weight w j , and the probability of manipulation pw

computed with AFW.
The GRU consists of three stacked, bi-directional layers, and a uni-directional

layer with a hidden layer of 512. The final layer consists of a linear layer with a
sigmoid activation function to estimate a final probability, pRNN , which describes
the likelihood that the video is manipulated.

Weight Initialization. Each network of the overall ensemble is initialized with
weights in a manner that will help it best succeed. We use a pretrained MTCNN for
face detection. The EfficientNet face extractor is initialized with weights pretrained
on ImageNet, and the AFW and GRU are initialized with random weights. Before
training the entire ensemble in an end-to-end fashion, we train the EfficientNet with
the ArcFace loss on 2,000 batches of cropped faces selected randomly. Although this
initial training step is not necessary to increase the accuracy of the overall approach,
our experiments indicated that it aided the network in faster convergence with a more
stable training process. This step ensures the parameters passed onto the rest of the
network are more suited to our deepfake detection task.

Loss Function. The network utilizes three different loss functions. The first is
ArcFace loss, which operates on the output of EfficientNet. It is used only to update
the weights of EfficientNet to extract facial features based on batches of cropped
faces from randomly selected frames and videos. The second loss function is a binary
cross-entropy (BCE) loss, which operates on the AFW prediction pw. It is used to
update theweights associatedwith EfficientNet and theAFW. The third loss function
is another BCE, which operates on the GRU prediction pRNN . It is used to update
the weights of EfficientNet, the AFW, and the GRU. The ArcFace loss evaluates
frame-level classifications, while the BCE losses evaluate video-level predictions.
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11.2.3 Training Details

In this work, we train and evaluate the proposed method on the Deepfake Detec-
tion Challenge (DFDC) Dataset [21]. We split the dataset into training, validation,
and testing sets with the ratio of 3:1:1. Since our approach consists of many com-
ponents that rely upon each other, it is important to train each portion properly to
ensure the success of the overall ensemble. We train our facial feature extractor (i.e.,
EfficientNet), the AFW, and the GRU ourselves, but we do not train or update the
MTCNN. The entire ensemble is trained end-to-end with the Adam optimizer [22]
and a learning rate of 0.001.

Our method can only afford to evaluate one video at a time during training due
to the size of the network, the number of frames, and GPU computational limits.
However, the network parameters are updated after processing groups of videos.
EfficientNet is updated with the ArcFace loss after 256 random frames, and the
entire ensemble is updated with the BCE losses after 64 videos. During training, we
oversample videos that contain genuine, authentic faces to balance the dataset so that
the network is presented with balanced manipulated and authentic faces during the
training process.

11.2.4 Boosting Network

In order to further improve themodel performance,we alsoutilize a boostingnetwork.
The boosting network is a duplicate of the backbonewith a different objective. Instead
of minimizing BCE on class predictions, the boosting network strives to predict error
in the logit domain between predictions and the true classifications for both the AFW
and the GRU. More specifically, the output of the AFW layer is defined as

pbw = σ

(∑N
j=1(w j l j + wb

j l
b
j )∑N

j=1(w j + wb
j )

)
, (11.2)

where w j and l j refer to the weights and logits produced by the main network and
wb

j and lbj refer to the weights and logits produced by the boosting network for the
j th face region. N is the total number of frames under analysis, and σ(.) refers to
the sigmoid function. In a similar manner, the output of the GRU is defined as

pbRNN = σ(lRNN + lbRNN ), (11.3)

where lRNN refers to the logit produced by the GRU of the main network, lbRNN
refers to the logit produced by the GRU of the boosting network, and σ(.) refers
to the sigmoid function. The main network is trained on the training data, while
the boosting network is trained on the validation data. The main network and the
boosting network interact in the AFW layer and after the GRU.
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11.2.5 Test Time Augmentation

We leverage one other technique to enhance the performance of our approach: data
augmentation during testing. Data augmentation has been used in training to reduce
overfitting. However, in our experiments, we discover that using the following data
augmentation procedure during testing can reduce the incorrect and overconfident
predictions. Once the MTCNN identifies facial regions in a desired frame, we crop
the designated areas in the desired frame, in the previous two frames, and in the
following two frames. We repeat this for all frames in the test sequence, resulting in
five sequences of video frames depicting faces. Next, we randomly apply a horizontal
flip data augmentation to each sequence and run each of the sequences through our
full model. The final classification prediction for a video sequence is the average of
the five predictions on the shifted sequences. This technique decreases the number
of incorrect and overconfident predictions since averaging smooths out anomalous
predictions.

11.2.6 Result Analysis

We train and evaluate the proposed method on the Deepfake Detection Challenge
(DFDC) Dataset [21]. In addition, we make quantitative comparisons with Efficient-
Net [13], Xception [14], Conv-LSTM [10], and a modified version of Conv-LSTM
using the facial regions detected by MTCNN as input. For the EfficientNet [13]
and Xception [14] networks, the final prediction result of each video is obtained by
averaging the predictions of each frame.

We select a configuration for eachmodel based on the validation set with balanced
authentic/manipulated data. The corresponding Receiver Operating Characteristic
(ROC) and Detection Error Trade-off (DET) curves are shown in Fig. 11.2. Since the
Conv-LSTMmethod extracts the features based on the entire video frames, it cannot
effectively capture the manipulations that occur in facial regions. However, when we
use the detected facial regions instead of the entire frames as input, the detection per-
formance improves significantly. The two typical CNN models EfficientNet-b5 [13]
and Xception [14] have achieved good performance in manipulation detection based
on video frames. The results of the proposed method indicate that performance of
EfficientNet-b5 can be further improved by adding an Automatic Face Weighting
layer (AFW) and a Gated Recurrent Unit (GRU).

We also evaluate how the boosting network and data augmentation affects the
results in the testing phase. In order to do so, we use the log-likelihood error (the
lower the better) to represent the system performance, since log-likelihood score can
penalize heavily for being confident but wrong. The results are shown in Table11.1.
It demonstrates that by including both the boosting network and test augmentation
at the same time, the log-likelihood can be decreased to 0.321.
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(a) (b)

(c) (d)

Fig. 11.2 The manipulation detection performance comparison. Figures a and b are the ROC
curves obtained from validation and testing sets, respectively. Figures c and d are the DET curves
obtained from validation and testing sets, respectively

Table 11.1 The log-likelihood error results

Method Log-likelihood

Baseline 0.364

Baseline + Boosting network 0.341

Baseline + Boosting network + Test augmentation 0.321

11.3 Deepfake Detection via Audio Spectrogram Analysis

Visual content is just one data modality that can be altered. Audio attacks can be
used to spoof devices to gain access to personal records. They may also be used to
change the message delivered by a figure in a video. Such attacks may consist of
only newly synthesized audio to achieve a nefarious objective. Other times, falsified
audio may be used in deepfakes to sync with the newly generated faces (or just lips)
in the videos [23]. We need methods to analyze standalone audio signals as well as
signals that accompany visual content to verify the authenticity of the messages we
hear.



244 H. Hao et al.

A Genuine Audio Signal

A Synthesized Audio Signal

Fig. 11.3 Left column: Raw audio waveforms, where indicates an authentic audio signal
and indicates a synthesized audio signal. Right column: Spectrograms corresponding to the
raw audio waveforms, which serve as inputs to the CNN to classify the signals based on authenticity

In this section, we present a method that analyzes audio signals to determine
their authenticity. Our approach works by analyzing audio signals in the form of
spectrograms, as shown in Fig. 11.3, with a Convolutional Neural Network (CNN).
This work can prevent spoofing attacks by analyzing audio signals on their own, or
it can aid in the detection of deepfakes by adding audio analysis to a video analysis
as shown in Sect. 11.4.

11.3.1 Overview

We present a method that analyzes a few seconds of an audio signal and identifies
whether it is genuine human speech or synthesized speech. Figure11.4 depicts an
overview of our method. It consists of four main steps. First, we apply the Fourier
Transform to raw audio waveforms. Then, we use the resulting Fourier coefficients to
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Fig. 11.4 Proposed Method. The proposed approach applies the Fourier Transform to raw audio
signals to generate spectrogram “images”—the inputs to the CNN. The CNN classifies signals as
authentic or synthesized

construct spectrograms of the audio waveforms. Next, we analyze the spectrograms
with a CNN, and finally we classify audio signals as authentic or synthesized.

11.3.2 Dataset

For our experiments, we utilize the dataset [24] of the 2019 Automatic Speaker
Verification Spoofing and Countermeasures Challenge (ASVspoof2019) [25]. This
large-scale dataset contains 121,467 audio tracks. Some of the audio samples are
authentic and contain recordings of humans speaking. Other samples contain audio
to be used in spoofing attacks. The inauthentic audio samples were generated via
voice conversion (VC), speech synthesis (SS), and replay methods. Since our ambi-
tions focusmore on deepfake detection than spoofing attacks, we only consider audio
signals that have been synthetically generated to replicate human voices, which is
included in the VC and SS subsets. This data was generated with neural acoustic
models and Artificial Intelligence, including Long Short-Term Memory networks
(LSTMs) and Generative Adversarial Networks (GANs). For training and evaluat-
ing our CNN classifier, we utilize the official dataset split of the ASVspoof2019
challenge, which divides the full dataset into 25,380 training audio tracks, 24,844
validation tracks, and 71,243 testing tracks.

11.3.3 Spectrogram Generation

The first step in our audio verification method is to apply the Fourier transform
to raw audio signals. A Fast Fourier Transform (FFT) is a method that efficiently
computes the Discrete Fourier Transform (DFT) of a sequence. We utilize the FFT to
compute the Fourier coefficients of an audio signal under analysis. Then, we convert
the Fourier coefficients to decibels. The second step in our approach is to construct
spectrograms of the audio signals. We create spectrogram “images” of size 50x34
pixels to analyzewith our CNN. Examples of the spectrograms created for our dataset
are shown in Fig. 11.3.
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Spectrograms convey information about the intensity of an audio signal over time
and frequency. One axis depicts time and the other depicts frequency. The intensity
of an audio signal is represented via color at a specific time and frequency. Brighter
colors that are closer to shades of yellow indicate greater intensity and volume of
the audio signals. On the other hand, darker colors that are closer to shades of purple
or black indicate lower intensity and quieter volume of the audio signals. Although
these colors assist us in seeing the differences in intensity over time and frequency
of an audio signal, we do not use them in the spectrograms analyzed by the CNN.
After the spectrogram images are constructed, we remove the color and convert the
images to grayscale. We also normalize their values to prepare them for analysis by
the CNN.

11.3.4 Convolutional Neural Network (CNN)

Since our method analyzes spectrogram “images”, our CNN employs 2-D convolu-
tions. This is in contrast to a CNN that analyzes a raw audio waveform, which would
utilize 1-D convolutions across the 1-D sequence. By using 2-D convolutions to ana-
lyze spectrograms, our method incorporates intensity information over frequency
and time.

Table11.2 outlines the specifics of the network architecture. It mainly consists
of two convolutional layers. Next, it utilizes max pooling and dropout to introduce
regularization into the network and decrease the chances of overfitting. After two
dense layers and more dropout, the CNN produces a final class prediction, indicating
whether the audio signal is authentic or synthesized. We train the CNN for 10 epochs
using the Adam optimizer [26] and cross-entropy loss function.

Table 11.2 CNN Details. This table specifies the parameters of the developed CNN. Each row in
the table describes (from left to right) the function of the layer, its output shape, and the number of
parameters it introduces to the CNN. (N, H, W) refers to the number of feature maps produced by
the layer (N), along with their height H and width W

Layer Output shape (N, H, W) Parameters

conv1 (32, 48, 32) 320

conv2 (30, 46, 64) 18,496

max pooling (15, 23, 64) 0

dropout1 (15, 23, 64) 0

flatten1 (22080) 0

dense1 (128) 2,826,368

dropout2 (128) 0

dense2 (2) 258
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Table 11.3 Results. This table presents results achieved with the baseline random classifier and
our CNN approach

Method Accuracy (%) Precision (%) Recall (%) F-1 (%)

Baseline (random) 49.98 50.12 50.34 40.69

Proposed method 82.54 66.00 81.38 68.93

11.3.5 Experimental Results

Table11.3 summarizes the results of our method. We evaluate our results based on
accuracy, precision, recall, and F1-score. We also calculate Receiver Operator Char-
acteristic (ROC),DetectionErrorTrade-off (DET), andPrecision-Recall (PR) curves.
We demonstrate the success of our method over a random classifier, which serves
as a baseline for comparison. The random classifier randomly guesses whether an
audio signal is authentic or synthesized according to a uniform random distribution.
Results indicate that our method outperforms the baseline random classifier based
on all metrics.

Figure11.5 shows Receiver Operating Characteristic (ROC), Detection Error
Trade-off (DET), and Precision-Recall (PR) curves for our results in comparison
to the baseline. Our approach achieves a high ROC-AUC of 0.8975, which outper-
forms the baseline ROC-AUCof 0.5005. The PR-AUC exhibits similar behavior. Our
method achieves PR-AUC of 0.4611, while the baseline PR-AUC settles at 0.1024.
All metrics included in both the table and the figures indicate that our method accom-
plishes better verification of audio signals than the baseline for both the validation
and testing sets.

Considering that the testing dataset contains new audio attacks which were never
seen before in training and validation, these results are very promising. Analysis
of audio signals in the frequency domain formatted as spectrograms is effective
for an audio verification task. It can also be used as audio features for audio-video
inconsistency analysis in the following section.

11.4 Deepfake Detection via Audio-Video Inconsistency
Analysis

The previously mentioned audio analysis technique can aid in the detection of deep-
fake videos by extending the scope to include two different media modalities. For
videos in which only the audio has been altered, this method will complement a pixel
analysis method. For some realistic deepfakes, a visual analysis alone may not be
able to detect the manipulations, but pairing the visual analysis with audio analysis
provides an additional avenue for authenticity verification.
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Fig. 11.5 ROC,DET, PR curves. Figures a and b show theROCcurves obtained from the validation
and testing sets, respectively. Figures c and d show the DET curves obtained from the validation
and testing sets, respectively. Figures e and f show the PR curves obtained from the validation and
testing sets, respectively
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In this section, we discuss detecting deepfakes by analyzing the natural corre-
lations that manifest when lip movements are coherent with the voice in videos of
speakingpersons. Then, the absenceof such correlations in videoswill point to plausi-
ble manipulations. Several works [27, 28] have explored this direction. For example,
Korshunov et al. [27] propose to use lip keypoints obtained from 68-point facial land-
marks and audio Mel-frequency cepstrum to check their consistency. These lip and
audio features are concatenated together via Principal Component Analysis (PCA)
for dimensionality reduction. Then, we can use these features to train a classifier
(e.g., Gaussian mixture model, SVM, or LSTM) for deepfake detection.

However, simply concatenating the visual features and audio features does not
always work, especially due to the large variation of possible facial and head move-
ments and individual appearance differences. In the following sections, we will
describe several deepfake detection methods based on the work [28, 29] to provide
more reliable approaches using audio and video inconsistency analysis.

11.4.1 Finding Audio-Video Inconsistency via
Phoneme-Viseme Mismatching

Asdescribed earlier, current deepfake techniques are still not able to produce coherent
lip-syncmanipulated videos. To exploit this, Agarwal et al. [28] propose to explicitly
detect themismatch of phonemes and visemes. A phoneme is a distinct unit of human
speech, while viseme is the counterpart of a phoneme for lip movement. In their
work, they focus only on the close-mouth phoneme, such as the phoneme group of
M (e.g., mother), B (e.g., brother), and P (e.g., parent), since detecting closed lips
is more accurate than other lip movements. If the audio narrative text is available,
the closed-lip phoneme can be found directly through phonograms. If only audio
data is provided, there are tools available to transcribe the audio track into text, such
as the Speech-to-Text API from Google.1 After finding the closed-lip phoneme, we
describe an approach to detect the viseme.

Figure11.6 shows howwe detect the closed-lip viseme. 68-point facial landmarks
are first detected given a RGB frame using an online tool.2 As shown in Fig. 11.6,
the landmark points include both inner and outer loops of the lips. To find if the
lips are closed or open, we compute the two middle points of the upper and lower
lips and collect the intensities of the pixels along the line segment shown as the red
line in Fig. 11.6. Note that we use bilinear interpolation to obtain the pixel intensity
along the line segment. The right two plots in Fig. 11.6 show the corresponding pixel
intensity plot given the images on the left after converting to grayscale. We apply
moving average with a window size of 10 to smooth the plots. Then we find the local
maxima and local minima and their prominences, hi and li , using the MATLAB
function findpeaks for frame i . hi measures the intensity drop from upper lip to the

1 https://cloud.google.com/speech-to-text.
2 https://github.com/1adrianb/face-alignment.

https://cloud.google.com/speech-to-text
https://github.com/1adrianb/face-alignment
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Fig. 11.6 Viseme detection. The first row shows the viseme profile of open mouth and the second
row shows the case of closed mouth. The two images on the left are the original RGB images with
inpainted landmarks and profile line (red line). The two plots on the right are the corresponding
profile feature plots with local minima (blue triangle) and maxima (red triangle)

mouth interior, while li measures the intensity boost from mouth interior to lower
lip. To detect a closed-lip viseme, given the reference hr and lr from a ground truth
closed-lip frame, we measure the distance |li − lr | + |hi − hr |. If the distance is
smaller than a threshold value, it will be classified as a closed-lip viseme.

Given a closed-lip phoneme event at a specific event frame, we will first collect
several frames before and after the event frame. If there is at least one closed-lip
viseme that can be found in the selected frames, we consider the phoneme and
viseme to match. Otherwise, we consider the phoneme and viseme mismatched.
With this approach, we determine if the given video is deepfake or not by detecting
phoneme-viseme mismatching.

This approach explicitly finds phoneme-viseme mismatching to detect audio-
video inconsistency. However, it is not always necessary to explicitly find such a
mismatch. In the following section, we introduce a method that uses a deep learning
model to automatically detect deepfakes from audio and video data.
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11.4.2 Deepfake Detection Using Affective Cues

In this section, we will introduce a method based on [29] that does not rely on the
hand-designed audio and video features mentioned in Sect. 11.4.1. Instead, we will
guide the model to learn a latent space that disentangles the manipulated/authentic
data for both audio and video modalities. Different from the work in Sect. 11.2.1,
which learns a manipulated/authentic discriminative latent space for video only, the
presented work aims to find such a space for both audio and video, simultaneously.

Figure11.7 shows the block diagram of our presented method. Given an image
sequence, face features are extracted first using a CNN-based method, such as the
method previously shown in Sect. 11.2.1. To extract audio features, we can use the
same approach as proposed in Sect. 11.3 using spectrograms as audio features. Then,
we pass the video feature f and audio feature s to two separate CNN models (i.e.,
video and audio modality embedders) to map input features into a latent space that is
discriminative formanipulated/authentic data. Emotion features can also be extracted
from f and s using a pretrained Memory Fusion Network (MFN) [30]. MFN is a
deep learningmodel that aims to detect human emotion fromdifferent datamodalities
like facial expressions and speech. Similarly, we use two separate MFNs as video
and audio emotion embedders to map the input features into the latent space that
is discriminative for manipulated/authentic data. After obtaining the embeddings of
video and audio modality features (m f and ms) and the embeddings of video and
audio emotion features (e f and es), we compute the feature distance (e.g., Euclidean
distance or cosine distance) to determine if the input is a deepfake or not. There are
many loss functions that are applicable to obtaining a discriminative latent space for
the manipulated and authentic data, such as triplet loss [31] and ArcFace [19] (as
described in Sect. 11.2.1).

As described above, we show that instead of solely relying on video modality, we
can detect deepfakes using both audio and video modalities. These methods are more
robust to new attacks (i.e., new deepfake techniques) because they consider more

Fig. 11.7 Deepfake detection model using affective cues. The presented method extracts data
modality features and emotion features from both audio and video. Then the detection result is
obtained by jointly comparing the audio-video feature distances from data modality and emotion
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information. As deepfakes continue to become more realistic, focusing on multiple
data modalities can give us a better opportunity for accurate detection. Video and
audio datamodalities are not the onlymodalities that can assist in deepfake detection.
Other data modalities (e.g., video metadata [32]) are also useful to improve the
robustness of the detection algorithm.We believe that with the help ofmulti-modality
and cross-modality analysis, detection methods will be more robust against future
deepfake attacks.

11.5 Conclusion

In this chapter, we introduce several approaches that analyze deepfake features to
determine their authenticity. First, we design a deepfake detection method that relies
on spatiotemporal features obtained fromvideo frames. Then,we pivot to incorporate
an audio analysis to further improve our deepfake detection. We develop an audio-
based method to detect synthetic speech based on spectrogram analysis. Next, we
describe several methods that utilize both video frames and audio speech to detect
deepfakes via audio-video inconsistency. We show that the presented approaches
successfully identify deepfake videos from various large-scale datasets with high
accuracy. The true potential of deepfakes is still untapped. We continue to evolve
and innovate as new technology becomes available.
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Chapter 12
DeepFakes Detection Based on Heart
Rate Estimation: Single- andMulti-frame

Javier Hernandez-Ortega, Ruben Tolosana, Julian Fierrez,
and Aythami Morales

Abstract This chapter describes a DeepFake detection framework based on physi-
ological measurement. In particular, we consider information related to the heart rate
using remote photoplethysmography (rPPG). rPPGmethods analyze video sequences
looking for subtle color changes in the human skin, revealing the presence of human
blood under the tissues. This chapter explores to what extent rPPG is useful for
the detection of DeepFake videos. We analyze the recent fake detector named
DeepFakesON-Phys that is based on a Convolutional Attention Network (CAN),
which extracts spatial and temporal information from video frames, analyzing and
combining both sources to better detect fake videos. DeepFakesON-Phys has been
experimentally evaluated using the latest public databases in the field: Celeb-DF v2
and DFDC. The results achieved for DeepFake detection based on a single frame are
over 98%AUC (AreaUnder theCurve) on both databases, proving the success of fake
detectors based on physiological measurement to detect the latest DeepFake videos.
In this chapter, we also propose and study heuristical and statistical approaches for
performing continuous DeepFake detection by combining scores from consecutive
frames with low latency and high accuracy (100% on the Celeb-DF v2 evaluation
dataset). We show that combining scores extracted from short-time video sequences
can improve the discrimination power of DeepFakesON-Phys.

The present chapter is an updated adaptation of the conference paper [21].
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12.1 Introduction

DeepFakes have become a great public concern recently [5, 8]. The very popular term
“DeepFake” is usually referred to a deep learning-based technique able to create fake
videos by swapping the face of a subject with the face of another subject. This type of
digital manipulation is also known in the literature as Identity Swap, and it is moving
forward very fast [46].

Currently, most face manipulations are based on popular machine learning tech-
niques such as AutoEncoders (AE) [25] and Generative Adversarial Networks
(GAN) [15], achieving in general very realistic visual results, specially in the latest
generation of public DeepFakes [45], and the present trends [24]. However, despite
the impressive visual results, are current face manipulations also considering the
physiological aspects of the human being in the synthesis process?

Physiological measurement has provided very valuable information to many
different tasks such as e-learning [17], health care [31], human-computer interac-
tion [44], and security [29], among many other tasks.

In physical face attacks, a.k.a. Presentation Attacks (PAs), real subjects are often
impersonated using artefacts such as photographs, videos, makeup, and masks [13,
29, 38, 39]. Face recognition systems are known to be vulnerable against these
attacks unless proper detection methods are implemented [14, 19]. Some of these
detection methods are based on liveness detection by using information such as eye
blinking or natural facial micro-expressions [4]. Specifically for detecting 3D mask
impersonation, which is one of the most challenging type of attacks, detecting pulse
from face videos using remote photoplethysmography (rPPG) has shown to be an
effective countermeasure [20]. When applying this technique to a video sequence
with a fake face, the estimated heart rate signal is significantly different from the
heart rate extracted from a real face [12].

Seeing the good results achieved by rPPG techniques when dealing with physical
3D face mask attacks, and since DeepFakes are digital manipulations somehow simi-
lar to them, in this chapter, we hypothesize that fake detectors based on physiological
measurement can also be used againstDeepFakes after adapting themproperly.Deep-
Fake generation methods have historically tried to mimic the visual appearance of
real faces (a.k.a. bona fide presentations [1]). However, to the best of our knowl-
edge, they do not emulate the physiology of human beings, e.g., heart rate, blood
oxygenation, or breath rate, so estimating that type of signals from the video could
be a powerful tool for the detection of DeepFakes.

This chapter analyzes the potential of DeepFakesON-Phys, which was originally
analyzed in [21] for the detection of DeepFakes videos at frame level, and it is further
studied in this chapter for the detection at short-term video level. DeepFakesON-Phys
is a fake detector based on deep learning that uses rPPG features previously learned
for the task of heart rate estimation and adapts them for the detection ofDeepFakes by
means of a knowledge-transfer process, thus obtaining a novel fake detector based on
physiological measurement. This chapter also includes new additional experiments
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usingDeepFakesON-Phys, comparing the accuracies ofDeepFakedetectionbasedon
scores from single frames and on the temporal integration of scores from consecutive
frames.

In particular, the information related to the heart rate is considered to decide
whether a video is real or fake. DeepFakesON-Phys intends to be a robust solution
to the weaknesses of most state-of-the-art DeepFake detectors based on the visual
features existing in fake videos [3, 30] and also on the artefacts/fingerprints inserted
during the synthesis process [32], which are highly dependent on a specific fake
manipulation technique.

DeepFakesON-Phys is based on DeepPhys [6], a deep learning model trained
for heart rate estimation from face videos based on rPPG. DeepPhys showed high
accuracy even when dealing with challenging conditions such as heterogeneous illu-
mination or low resolution, outperforming classic handcrafted approaches. In [21],
we used the architecture of DeepPhys, but making changes to suit the approach for
DeepFake detection. We initialized the weights of the layers of DeepFakesON-Phys
with the ones from DeepPhys (meant for heart rate estimation based on rPPG) and
we adapted them to the new task using fine-tuning. This process allowed us to train
our detector without the need of a high number of samples (compared to training it
from scratch). Fine-tuning also helped us to obtain a model that detects DeepFakes
by looking into rPPG-related features from the images in the face videos.

In this context, in this chapter, we:

• Perform an in-depth literature review of DeepFake detection approaches with spe-
cial emphasis on physiological techniques, including the key aspects of the detec-
tion systems, the databases used, and the main results achieved.

• Describe DeepFakesON-Phys,1 a recent approach presented in [21] based on
the physiological measurement to detect DeepFake videos. Figure12.1 graphi-
cally summarizes DeepFakesON-Phys, which is based on the original architecture
DeepPhys [6], a Convolutional Attention Network (CAN) composed of two par-
allel Convolutional Neural Networks (CNN) able to extract spatial and temporal
information from video frames. This architecture is adapted for the detection of
DeepFake videos by means of a knowledge-transfer process.

• Include a thorough experimental assessment of DeepFakesON-Phys, considering
two of the latest public databases of the second DeepFake generation: Celeb-DF
v2 [28] and DFDC Preview [11]. We evaluated DeepFakesON-Phys doing both
analysis of fake detection at frame level and also at the short-term video level.
DeepFakesON-Phys achieves high-accuracy results in both evaluations, outper-
forming the state of the art. In addition, the results achieved prove that current face
manipulation techniques do not pay attention to the heart-rate-related physiologi-
cal information of the human being when synthesizing fake videos.

The remainder of the paper is organized as follows. Section12.2 summarizes
previous studies focused on the detection of DeepFakes. Section12.3 describes

1 https://github.com/BiDAlab/DeepFakesON-Phys.

https://github.com/BiDAlab/DeepFakesON-Phys
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Fig. 12.1 DeepFakesON-Phys architecture [21]. It comprises two stages: (i) a preprocessing step
to normalize the video frames, and (ii) a Convolutional Attention Network composed of Motion
and Appearance Models to better detect fake videos

DeepFakesON-Phys. Section12.4 summarizes all databases considered in the exper-
imental framework of this study. Sections12.5 and 12.6 describe the experimental
protocol and the results achieved in comparison with the state of the art, respectively.
Finally, Sect. 12.7 draws the final conclusions and points out future research lines.

12.2 Related Works

Different approaches have been proposed in the literature to detect DeepFake videos.
Table12.1 shows a comparison of the most relevant approaches in the area, paying
special attention to the fake detectors based on physiological measurement. For each
study, we include information related to the method, classifiers, best performance,
and databases for research. It is important to remark that in some cases, different
evaluation metrics are considered, e.g., Area Under the Curve (AUC) and accuracy
(Acc.), which complicate the comparison among studies. Finally, the results high-
lighted in italics indicate the generalization ability of the detectors against unseen
databases, i.e., those databases were not considered for training.Most of these results
are extracted from [28].

The first studies in the area focused on the visual artefacts existed in the first
generation of fake videos. The authors of [30] proposed fake detectors based on
simple visual artefacts such as eye color, missing reflections, and missing details in
the teeth areas, achieving a final 85.1% AUC.

Approaches based on the detection of the face warping artefacts have also been
studied in the literature. For example, [27, 28] proposed detection systems based
on CNN in order to detect the presence of such artefacts from the face and the
surrounding areas, being one of the most robust detection approaches against unseen
face manipulations.
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Table 12.1 Comparison of different state-of-the-art fake detectors. Results in italics indicate
the generalization capacity of the detectors against unseen databases. FF++ = FaceForensics++,
AUC = Area Under the Curve, Acc. = Accuracy, EER = Equal Error Rate.

Study Method Classifiers Best
performance (%)

Databases

Matern et al.
[30]

Visual Features Logistic
Regression MLP

AUC = 85.1 Own

AUC = 78.0 FF++ / DFD

AUC = 66.2 DFDC Preview

AUC = 55.1 Celeb-DF

Li et al. [27,
28]

Face Warping
Features

CNN AUC = 97.7 UADFV

AUC = 93.0 FF++ / DFD

AUC = 75.5 DFDC Preview

AUC = 64.6 Celeb-DF

Rossler et al.
[40]

Mesoscopic
Features
Steganalysis
Features Deep
Learning
Features

CNN Acc. � 94.0 FF++
(DeepFake, LQ)

Acc. � 98.0 FF++
(DeepFake, HQ)

Acc. � 100.0 FF++
(DeepFake,
RAW)

Acc. � 93.0 FF++
(FaceSwap, LQ)

Acc. � 97.0 FF++ (FaceSwap
,HQ)

Acc. � 99.0 FF++
(FaceSwap,
RAW)

Nguyen et
al. [33]

Deep Learning
Features

Capsule
Networks

AUC = 61.3 UADFV

AUC = 96.6 FF++ / DFD

AUC = 53.3 DFDC Preview

AUC = 57.5 Celeb-DF

Dang et al. [10] Deep Learning
Features

CNN + Attention
Mechanism

AUC = 99.4
EER = 3.1

DFFD

Dolhansky et al.
[11]

Deep Learning
Features

CNN Precision = 93.0
Recall = 8.4

DFDC Preview

Sun et al. [43] Deep Learning
Features

CNN AUC = 98.5 FF++

AUC = 61.4 Celeb-DF

AUC = 69.0 DFDC Preview

(continued)
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Table 12.1 (continued)

Study Method Classifiers Best
performance (%)

Databases

Sabir et al. [41] Image +
Temporal
Features

CNN + RNN AUC = 96.9
AUC = 96.3

FF++
(DeepFake, LQ)
FF++
(FaceSwap, LQ)

Trinh et al. [47] Image +
Temporal
Features

CNN AUC = 99.2 FF++

AUC = 68.2 Celeb-DF

Tolosana et al.
[45]

Facial Regions
Features

CNN AUC = 100.0 UADFV

AUC = 99.5 FF++
(FaceSwap, HQ)

AUC = 91.1 DFDC Preview

AUC = 83.6 Celeb-DF

Conotter et al.
[9]

Physiological
Features

– Acc. = 100 Own

Li et al. [26] Physiological
Features

LRCN AUC = 99.0 UADFV

Agarwal et al.
[3]

Physiological
Features

SVM AUC = 96.3 Own (FaceSwap,
HQ)

Ciftci et al. [7] Physiological
Features

SVM/CNN Acc. = 94.9
Acc. = 91.5

FF++
(DeepFakes)
Celeb-DF

Jung et al. [23] Physiological
Features

Distance Acc. = 87.5 Own

Qi et al. [35] Physiological
Features

CNN + Attention
Mechanism

Acc. = 100.0 FF++
(FaceSwap)

Acc. = 100.0 FF++

Acc. = 64.1 DFDC Preview

DeepFakesON-
Phys[21]

Physiological
Features

CAN AUC = 99.9 Celeb-DF v2
(Frame Level)

AUC = 98.2 DFDC Preview
(Frame Level)

AUC = 100 Celeb-DF v2
(Short-Term
Video Level)

Undoubtedly, fake detectors based on pure deep learning features are the most
popular ones: feeding the networks with as many real/fake videos as possible and
letting the networks to automatically extract the discriminative features. In general,
these fake detectors have achieved very good results using popular network archi-
tectures such as Xception [11, 40], novel ones such as Capsule Networks [33], and
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novel training techniques based on attentionmechanisms [10]. In particular, we high-
light the work presented in [43], focused on improving the generalization ability of
the models to detect DeepFake videos. The authors defined a Learning-To-Weight
(LTW) framework based onmeta-learning that is composed of two branches: the first
one performs binary detection, extracting features from the images and determining
if an image is real or a fake, while the second branch aims to assign domain-adaptive
weights to each sample, helping the model to extract more domain-general features.

Fake detectors based on the image and temporal discrepancies across frames
have also been proposed in (DeepFake) the literature [41, 47]. In [41], the authors
proposed a Recurrent Convolutional Network similar to [16], trained end-to-end
instead of using a pre-trained model. Their proposed detection approach was tested
using FaceForensics++ database [40], achieving AUC results above 96%.

In [47], Trinh et al. proposed a human-centered approach for detecting forgery in
face images. Their approach looked for temporal artefacts within DeepFake videos,
detecting them efficiently while providing explanations of DeepFake dynamics, use-
ful for giving useful information to supervising humans.

Although most approaches are based on the detection of fake videos using the
whole face, in [45], the authors evaluated the discriminative power of each facial
region using state-of-the-art network architectures, achieving interesting results on
DeepFake databases of the first and second generations.

We also pay special attention to the fake detectors based on physiological informa-
tion. The eye blinking rate was studied in [23, 26]. Li et al. [26] proposed Long-Term
Recurrent Convolutional Networks (LRCN) to capture the temporal dependencies
that existed in human eye blinking. Their method was evaluated on the UADFV
database, achieving a final 99.0% AUC. More recently, [23] proposed a different
approach named DeepVision. They fused the Fast-HyperFace [37] and EAR [42]
algorithms to track the blinking, achieving an accuracy of 87.5% over an in-house
database.

Fake detectors based on the analysis of the way we speak were studied in [3],
focusing on the distinct facial expressions and movements. These features were
considered in combinationwith Support VectorMachines (SVM), achieving a 96.3%
AUC over their own database.

Finally, fake detection methods based on the heart rate have been also studied
in the literature. One of the first studies in this regard was [9] where the authors
preliminarily evaluated the potential of blood flow changes in the face to distinguish
between computer-generated and real videos. Their proposed approachwas evaluated
using 12 videos (six real and fake videos each), concluding that it is possible to use
this metric to detect computer-generated videos.

Changes in the bloodflowhave also been studied in [7, 35] usingDeepFake videos.
In [7], the authors considered rPPG techniques to extract robust biological features.
Classifiers based on SVM and CNN were analyzed, achieving final accuracies of
94.9% and 91.5% for the DeepFakes videos of FaceForensics++ and Celeb-DF,
respectively.

Recently, in [35], amore sophisticated fake detector namedDeepRhythmwas pre-
sented. This approach was also based on features extracted using rPPG techniques.
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DeepRhythm was enhanced through two modules: (i) motion-magnified spatial-
temporal representation and (ii) dual-spatial-temporal attention. Thesemodules were
incorporated in order to provide a better adaptation to dynamically changing faces and
various fake types. In general, good results with accuracies of 100% were achieved
on FaceForensics++ database. However, this method suffers from a demanding pre-
processing stage, needing a precise detection of 81 facial landmarks and the use
of a color magnification algorithm prior to fake detection. Also, poor results were
achieved on databases of the second generation such as the DFDC Preview (Acc.
= 64.1%).

Regarding DeepFakesON-Phys originally presented in [21], in addition to the
proposal of a different DeepFake detection architecture, we enhanced previous
approaches, e.g. [35], by keeping the preprocessing stage as light and robust as possi-
ble, only composed of a face detector and frame normalization. To provide an overall
picture, we include in Table12.1 the results achieved with our proposed method in
comparison with key related works, showing the good results on both Celeb-DF v2
and DFDC Preview databases for the frame-level analysis and on Celeb-DF v2 for
the temporal integration of consecutive scores, AUC = 100%.

12.3 DeepFakesON-Phys

Figure12.1 graphically summarizes the architecture of DeepFakesON-Phys [21],
the proposed fake detector based on heart rate estimation. We hypothesize that rPPG
methods should obtain significantly different results when trying to estimate the sub-
jacent heart rate from a video containing a real face, compared with a fake face.
Since the changes in color and illumination due to oxygen concentration are sub-
tle and invisible to the human eye, we think that most of the existing DeepFake
manipulation methods do not consider the physiological aspects of the human being
yet.

The initial architecture of DeepFakesON-Phys is based on the DeepPhys model
described in [6], whose objective was to estimate the human heart rate using facial
video sequences. The model is based on deep learning and was designed to extract
spatio-temporal information fromvideosmimicking the behavior of traditional hand-
crafted rPPG techniques. Features are extracted through the color changes in users’
faces that are caused by the variation of oxygen concentration in the blood. Signal
processing methods are also used for isolating the color changes caused by blood
from other changes that may be caused by factors such as external illumination and
noise.

As can be seen in Fig. 12.1, after the first preprocessing stage, the Convolutional
Attention Network (CAN) is composed of two different CNN branches:

• Motion Model: it is designed to detect changes between consecutive frames, i.e.,
performing a short-time analysis of the video for detecting fakes. To accomplish
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this task, the input at a time t consists of a frame computed as the normalized
difference of the current frame I (t) and the previous one I (t − 1).

• Appearance Model: it focuses on the analysis of the static information on each
video frame. It has the target of providing theMotionModelwith information about
which points of the current frame may contain the most relevant information for
detecting DeepFakes, i.e., a batch of attention masks that are shared at different
layers of the CNN. The input of this branch at time t is the raw frame of the video
I (t), normalized to zero mean and unitary standard deviation.

The attention masks coming from the Appearance Model are shared with the
Motion Model at two different points of the CAN. Finally, the output layer of the
Motion Model is also the final output of the entire CAN.

In the original architecture [6], the output stage consisted of a regression layer for
estimating the time derivative of the subject’s heart rate. In our case, as we do not
aim to estimate the pulse of the subject, but the presence of a fake face, we change
the final regression layer to a classification layer, using a sigmoid activation function
for obtaining a final score in the [0,1] range for each instant t of the video, related to
the probability of the face being real.

Since the original DeepPhys model from [6] is not publicly available, instead
of training a new CAN from scratch, we decided to initialize DeepFakesON-Phys
with the weights from the model pre-trained for heart rate estimation presented
in [18], which is also an adaptation of DeepPhys but trained using the COHFACE
database [22]. This model also showed to have high accuracy in the heart rate esti-
mation task using real face videos, so our idea is to take benefit of that acquired
knowledge to better train DeepFakesON-Phys through a proper fine-tuning process.

Once we initialized DeepFakesON-Phys with the mentioned weights, we freeze
the weights of all the layers of the original CAN model apart from the new classifi-
cation layer and the last fully connected layer, and we retrain the model. Due to this
fine-tuning process, we take the benefit of the weights learned for heart rate estima-
tion, just adapting them for the DeepFake detection task. This way, we make sure
that the weights of the convolutional layers remain looking for information relative
to heart rate and the last layers learn how to use that information for detecting the
existence of DeepFakes.

12.4 Databases

Two different public databases are considered in the experimental framework of
this study. In particular, Celeb-DF v2 [28] and DFDC Preview [11], the two most
challenging DeepFake databases up to date. Their videos exhibit a large range of
variations in aspects such as face sizes (in pixels), lighting conditions (i.e., day,
night, etc.), backgrounds, different acquisition scenarios (i.e., indoors and outdoors),
distances from the subject to the camera, and pose variations, among others.
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These databases present enough images (fake andgenuine) tofine-tune the original
weights meant for heart rate estimation, obtaining new weights also based on rPPG
features but adapted for DeepFake detection.

12.4.1 Celeb-DF v2 Database

Celeb-DF v2 is one of the most challenging DeepFake databases up to date [28].
The aim of the Celeb-DF v2 database was to generate fake videos of better visual
quality compared with the previous UADFV database [26]. This database consists of
590 real videos extracted from YouTube, corresponding to celebrities with a diverse
distribution in terms of gender, age, and ethnic group. Regarding fake videos, a total
of 5,639 videos were created swapping faces using DeepFake technology. The final
videos are in MPEG4.0 format.

12.4.2 DFDC Preview

The DFDC database [11] is one of the latest public databases, released by Facebook
in collaboration with other companies and academic institutions such as Microsoft,
Amazon, and the MIT. In the present study, we consider the DFDC Preview dataset
consisting of 1,131 real videos from 66 paid actors, ensuring realistic variability in
gender, skin tone, and age. It is important to remark that no publicly available data
or data from social media sites were used to create this dataset, unlike other popular
databases. Regarding fake videos, a total of 4,119 videos were created using two
different unknown approaches for fakes generation. Fake videos were generated by
swapping subjects with similar appearances, i.e., similar facial attributes such as
skin tone, facial hair, and glasses. After a given pairwise model was trained on two
identities, the identities were swapped onto the other’s videos.

12.5 Experimental Protocol

Celeb-DF v2 and DFDC Preview databases have been divided into non-overlapping
datasets, development and evaluation. For the Celeb-DF v2 database, we consider
real/fake videos of 40 and 19 different identities for the development and evalua-
tion datasets, respectively, whereas for the DFDC Preview database, we follow the
same experimental protocol proposed in [11] as the authors already considered this
concern.

In this chapter, we followed two different strategies for DeepFake detection. First,
for Celeb-DF v2 and DFDC Preview, we perform detection based on single scores
obtained by DeepFakesON-Phys where the evaluation is carried out at a frame level
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as inmost previous studies [46], not video level, using the popular AUC and accuracy
metrics. Second, we also perform for Celeb-DF v2 videos temporal integration of
DeepFake detection scores combining the single scores from non-overlapped tem-
poral windows of T seconds to form a final fused DeepFake detection score. We
decided to combine the individual scores following three different strategies:

• Mean Score: The DeepFake detection scores of individual frames from each tem-
poral window (T seconds) are averaged to obtain the integrated score.

• Median Score: We computed the median of the individual DeepFake detection
scores into each temporal window (T seconds).

• QuickestChangeDetection (QCD): This is a statisticalmethod that first estimates
match and non-match distributions of the scores, i.e., real face and DeepFakes.
Then it tries to detect the specific moment in which the incoming detection scores
change from one type of distribution to the other. This approach needs prior data
in order to build the match and non-match distributions. Some variants of QCD
also require to know the probability of a DeepFake in advance, so we decided to
implement theMiniMaxQCD (MQCD) algorithm from [34], which only needs the
score distributions that we obtained in advance using a development data subset.

12.6 Fake Detection Results: DeepFakesON-Phys

This section evaluates the ability of DeepFakesON-Phys to detect some of the most
challenging DeepFake videos of the second generation from Celeb-DF v2 [28] and
DFDC Preview [11] databases.

12.6.1 DeepFakes Detection at Frame Level

Table12.2 shows the fake detection results for the case in which we perform an
analysis at frame level, following the traditional procedure in the literature [45, 46].
It is important to highlight that a separate fake detector is trained for each database. In
general, very good results are achieved in both DeepFake databases. For the Celeb-
DF v2 database, DeepFakesON-Phys achieves an accuracy of 98.7% and an AUC
of 99.9%. Regarding the DFDC Preview database, the results achieved are 94.4%
accuracy and 98.2% AUC, similar to the ones obtained for the Celeb-DF database.

Observing the results, it seems clear that the fake detectors have learnt to dis-
tinguish the spatio-temporal differences between the real/fake faces of Celeb-DF v2
andDFDCPreview databases. Since all the convolutional layers of the proposed fake
detector are frozen (the network was originally initialized with the weights from the
model trained to predict the heart rate [18]), and we only train the last fully connected
layers, we can conclude that the proposed detection approach based on physiological
measurement is successful using pulse-related features for distinguishing between
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Table 12.2 Comparison of different state-of-the-art DeepFake detectors with the frame-level
detection based on DeepFakesON-Phys. The best results achieved for each database are remarked
in bold. Results in italics indicate that the evaluated database (Celeb-DF or DFDC) was not used
for training

Study Method Classifiers AUC Results (%)

Celeb-DF [28] DFDC [11]

Yang et al. [48] Head pose features SVM 54.6 55.9

Li et al. [28] Face warping
features

CNN 64.6 75.5

Afchar et al. [2] Mesoscopic features CNN 54.8 75.3

Dang et al. [10] Deep learning
features

CNN +
Attention
mechanism

71.2 –

Tolosana et al. [45] Deep learning
features

CNN 83.6 91.1

Qi et al. [35] Physiological
features

CNN +
Attention
mechanism

– Acc. = 64.1

Ciftci et al. [7] Physiological
features

SVM/CNN Acc. = 91.5 –

Sun et al. [43] Deep learning
features

CNN 61.4 69.0

Trinh et al. [47] Image + Temporal
features

CNN 68.20 –

DeepFakesON-
Phys [21]

Physiological
Features

CNN +
Attention
Mechanism

AUC = 99.9
Acc. = 98.7

AUC = 98.2
Acc. = 94.4

real and fake faces. These results prove that the current face manipulation techniques
do not pay attention to the heart-rate-related physiological information of the human
being when synthesizing fake videos.

In Table12.2, we also compare the results achieved with the single score Deep-
Fake detection approach against other state-of-the-art DeepFake detection methods:
head pose variations [48], face warping artefacts [28], mesoscopic features [2], pure
deep learning features [10, 45], and physiological features [7, 35]. Results in ital-
ics indicate that the evaluated database was not used for training. Some of these
results are extracted from [28]. Note that the comparison is not always made under
the same datasets and protocols; therefore, it must be interpreted with care. Despite
of that, it is patent that DeepFakesON-Phys has achieved state-of-the-art results. In
particular, it has further outperformed popular fake detectors based on pure deep
learning approaches such as Xception and Capsule Networks [45] and also other
recent physiological approaches based on SVM/CNN [7].

Figure12.2 shows some examples of successful and failed detections when eval-
uating the fake detection at the frame level. In particular, all the failures correspond
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Fig. 12.2 Examples of successful and failed DeepFake detections. Top: sample frames of eval-
uated videos. Bottom: detection scores for each evaluated video (frame level). For the fake video
misclassified as containing a real face, the DeepFake detection scores present a higher mean com-
pared to the case of the fake video correctly classified as a fake

to fake faces generated from a particular video, misclassifying them as real faces.
Figure12.2 shows a frame from the original real video (top-left), one from a mis-
classified fake video generated using that scenario (top-middle), and another from
a fake video correctly classified as fake and generated using the same real and fake
identities but from other source videos (top-right).

Looking at the score distributions along time of the three examples (Fig. 12.2,
bottom), it can be seen that for the real face video (left), the scores are 1 for most
of the time and always over the detection threshold. However, for the fake videos
considered (middle and right), the score of each frame changes constantly, making
the score of some fake frames to cross the detection threshold and consequently
misclassifying them as real.

We believe that the failures produced in this particular case are propitiated by
the interferences of external illumination. rPPG methods that use handcrafted fea-
tures are usually fragile against external artificial illumination in the frequency and
power ranges of normal human heart rate, making it difficult to distinguish those
illumination changes from the color changes caused by blood perfusion. Anyway,
DeepFakesON-Phys is more robust to this kind of illumination perturbations than
handcrafted methods, thanks to the fact that the training process is data-driven, mak-
ing it possible to identify those interferences by using their presence in the training
data.

Nevertheless, it is important to remark that these mistakes only happen if we
analyze the results at frame level (traditional approach followed in the literature [46]).
In case we consider the temporal information available in short-time segments of the
video, e.g., in a similar way as described in [20] for continuous face anti-spoofing,
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DeepFakesON-Phys could achieve better detection results. This analysis at the short-
term video level (not frame level) is described in the next section.

12.6.2 DeepFakes Detection at Short-Term Video Level

With the objective of detecting the type of errors illustrated in Fig. 12.2, in this
section, we perform combination of the frame-level scores inside a temporal window
of variable length (T ) using three different combination strategies, i.e., mean score,
median score, and QCD score [34]. The output for each one of these combination
methods will be an individual DeepFake detection score for each temporal window.
Therefore, the analysis carried out in this section is at the short-term video level.

We evaluate these methods on Celeb-DF v2 considering values of T going from
5 to 15 seconds in order to have a relevant number of scores to combine inside each
time window. In this case, a DeepFake detection decision will be generated with a
Delay of T seconds (video segments are not overlapped in time in our experiments).
Additionally, the QCD algorithm also needs prior data in order to build the match
and non-match distributions. To compute those distributions, we use all the single
scores of 50 different time windows (25 real, 25 fake) from the evaluation dataset,
leaving them out of the final testing process and results included in this section.

Table12.3 shows the results for the evaluation of the DeepFake detector when
varying the duration of the temporal window T . QCD has shown to be the most
accurate integration method, obtaining the highest levels of AUC and accuracy even
with slightly shorter values of T than the other combination strategies.

It can be seen that, in general, the highest AUC (i.e., the best DeepFake detection
performance) is not obtained when using the largest T value, but lower ones (T
= 6-7 seconds). For example, for the QCD scores, we have achieved an AUC and
an accuracy of 100.0% using temporal windows of 6 seconds, while using higher
values of T makes performance to get slightly worse. With shorter values of T (less
of 5 s.), the small amount of available frame-level scores within each decision time
window may diminish the reliability of each combined score. On the other hand, the
combined scores obtained with large values of T may be less reliable as they are
more prone to errors due to variations inside each window.

Finally, we decided to test the evolution of the different strategies for temporal
integration of scores in cases like the one shown in Fig. 12.2 (right), where the single
frame-level scores vary constantly. With temporal integration of scores, we expect
to avoid that changeful behavior, obtaining more stable DeepFake detection results.

Figure12.3 shows the evolution of the different detection scores for a former
fail case video, both for single frame-level scores and for mean and QCD integrated
scores. The results in thefigure show that the temporal integrationof scores can reduce
the shakiness of the single scores (both for mean and QCD combinations), what is
translated into an improved AUC and accuracy rates like the ones seen in Table12.3.
Even though QCD scores have achieved the highest improvement in performance,
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Table 12.3 DeepFakes Detection at Short-Term Video Level. The study has been performed on
Celeb-DF v2, changing the length of the time window T of the video sequences analyzed. Values
are in %. The highest values of AUC for each type of combination of score are highlighted in bold

Mean score

Window Size T [s]
5 6 7 8 9 10 11 12 13 14 15

AUC [%]
99.97 99.98 99.99 99.97 99.98 99.96 99.97 99.98 99.97 99.97 99.93

Acc. [%]
99.24 99.47 99.47 99.24 99.46 99.15 99.32 99.63 99.14 99.06 99.37

Median score

Window Size T [s]
5 6 7 8 9 10 11 12 13 14 15

AUC [%]
99.97 99.98 99.99 99.97 99.98 99.96 99.97 99.98 99.97 99.97 99.93

Acc. [%]
99.24 99.47 99.47 99.24 99.46 99.15 99.32 99.63 99.14 99.06 99.37

QCD score

Window Size T [s]
5 6 7 8 9 10 11 12 13 14 15

AUC [%]
99.97 100.0 99.98 99.96 99.98 99.96 99.97 99.98 99.97 99.97 99.93

Acc. [%]
99.49 100.0 99.73 99.24 99.46 99.15 99.32 99.63 99.14 99.06 99.37

the mean scores also obtain the same stability benefits with the additional advantage
of not needing any previous knowledge of the real and fake scores distributions.

12.7 Conclusions

This chapter has evaluated the potential of physiologicalmeasurement to detectDeep-
Fake videos. In particular, we have described the recent DeepFake detector named
DeepFakesON-Phys, originally presented in [21]. DeepFakesON-Phys is based on
a Convolutional Attention Network (CAN) initially trained for heart rate estimation
using remote photoplethysmography (rPPG). The proposed CAN approach consists
of two parallel Convolutional Neural Networks (CNN) that extract and share tempo-
ral and spatial information from video frames.
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Fig. 12.3 Examples of successful temporal integration of frame-level scores. The figure shows
the single scores, the mean scores, and QCD integrated scores (T = 7 sec.) for a DeepFake video
of Celeb-DF v2. For the single frame-level score detection, the scores go over and under the
threshold causing numerous false acceptances. For the temporal integration strategies (short-term
video analysis), the mean detection score is under the threshold for the first temporal window
(successful DeepFake detection), but for the second window, the score crosses the threshold causing
a false acceptance. On the contrary, the QCD score is under the threshold for both temporal windows
thanks to its statistical nature

DeepFakesON-Phys has been evaluated using Celeb-DF v2 and DFDC Preview
databases, two of the latest andmost challenging DeepFake video databases. Regard-
ing the experimental protocol, each database was divided into development and eval-
uation datasets, considering different identities in each dataset in order to perform a
fair evaluation of the technology.

Two different evaluations have been performed using DeepFakesON-Phys, the
first one consisted in detecting DeepFakes using frame-level scores, proving the
soundness and competitiveness of the detection model with Area Under the Curve
(AUC) values of 99.9% and 98.2% for the Celeb-DF and DFDC databases, respec-
tively. These results have outperformed other state-of-the-art fake detectors based on
face warping and pure deep learning features, among others.

However, in some specific cases, the detection of DeepFakes using frame-level
scores has shown some instability that leads to misclassified DeepFakes and real
videos. To solve these issues, we have included a second evaluation on Celeb-DF
v2, in which we have performed temporal integration of the scores inside a temporal
window of T seconds (analysis at short-term video level). We have calculated three
different integrated scores: mean, median, and Quickest Change Detection (QCD)
scores. The results of this second evaluation have improved those obtained with
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the single scores (analysis at frame level), achieving both an AUC and an accuracy
of 100% when using the QCD score with a temporal window of T=6 seconds.
We can conclude that the experimental results of this study reveal that current face
manipulation techniques donot pay attention to the heart-rate-related or blood-related
physiological information.

Immediate work will be oriented to the analysis of the robustness of the proposed
fake detection approach against face manipulations unseen during the training pro-
cess [46], and the application of the proposed physiological approach to other face
manipulation techniques such as face morphing [36].
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Chapter 13
Capsule-Forensics Networks
for Deepfake Detection

Huy H. Nguyen, Junichi Yamagishi, and Isao Echizen

Abstract Several sophisticated convolutional neural network (CNN) architectures
have been devised that have achieved impressive results in various domains. One
downside of this success is the advent of attacks using deepfakes, a family of tools
that enable anyone to use a personal computer to easily create fake videos of someone
from a short video found online. Several detectors have been introduced to deal with
such attacks. To achieve state-of-the-art performance, CNN-based detectors have
usually been upgraded by increasing their depth and/or their width, adding more
internal connections, or fusing several features or predicted probabilities from mul-
tiple CNNs. As a result, CNN-based detectors have become bigger, consume more
memory and computation power, and require more training data. Moreover, there is
concern about their generalizability to deal with unseen manipulation methods. In
this chapter, we argue that our forensic-oriented capsule network overcomes these
limitations and is more suitable than conventional CNNs to detect deepfakes. The
superiority of our “Capsule-Forensics” network is due to the use of a pretrained
feature extractor, statistical pooling layers, and a dynamic routing algorithm. This
design enables the Capsule-Forensics network to outperform a CNN with a similar
design and to be from 5 to 11 times smaller than a CNN with similar performance.
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13.1 Introduction

Ever since the invention of photography, people have been interested in manipu-
lating photographs, mainly to correct problems in the photos or to enhance them.
Technology has advanced far beyond these basic manipulations and can now be used
to change the identities of the subjects or alter their emotions. The advent of deep
learning has enabled high-quality manipulated images and videos to be easily cre-
ated. Moreover, the popularity of social media has enabled massive amounts of data,
including personal information, news reports, images, and videos, to be created and
shared. The consequence is that people with malicious intent can easily make use
of these advanced technologies and data to create fake images and videos and then
publish them widely on social networks.

The requirements for manipulating or synthesizing videos were dramatically sim-
plified when it became possible to create forged videos from only a short video [22,
46] or even from a single ID photo [7] of the target subject. Suwajanakorn et al.’s
mapping method [42] has enhanced the ability of manipulators to learn the mapping
between speech and lip motion. State-of-the-art natural speech synthesizers can be
used with Suwajanakorn’s method to create a fake video of any person speaking
anything. Deepfakes [3] exemplify this threat—an attacker with a personal com-
puter and an appropriate tool can create videos of a person impersonating any other
person. Deepfake videos have been posted on YouTube with the challenge being
to spot them. In this chapter, we use the term “deepfake” to refer to this family of
manipulation techniques, not to a particular one. Several examples of high-quality
computer-generated images and deepfake ones are shown in Fig. 13.1.

Several countermeasures have been developed to detect fake images and videos.
Automatic feature extraction using convolutional neural networks (CNNs) has dra-

Fig. 13.1 Example computer-generated anddeepfake images. Images in top roware fully computer-
generated (from Digital Emily Project [6], from Dexter Studios [2], and was generated using Style-
GAN [21], respectively). Images in bottom row, left to right, were manipulated using deepfake [3],
Face2Face [46], and Neural Textures [45] methods, respectively
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matically improved detection performance [4, 36, 38]. Several methods are image-
based [4, 36, 54] while others work only on videos [5, 27, 38] or on video with
voice [24]. Although some video-based methods perform better than image-based
ones, they are only applicable to particular kinds of attacks. For example, some of
them [5, 27] may fail if the quality of the eye area is sufficiently good or the syn-
chronization between the video and audio parts is sufficiently natural [25]. In this
chapter, we limit our scope to image-based methods since our aim is to build a gen-
eral detector that can work with both generated/manipulated images and videos and
does not rely on any particular kind of attack.

Conventionally, the performance of a CNN can be improved by increasing its
depth [16], its width [52], and/or the number of inner connections [19]. Another
solution is to use multiple CNNs as is done in Zhou et al.’s two-stream network [54]
or to use feature aggregation (feature fusion) or output fusion (ensemble). The fusion
approach has been used in several competitions [13, 29]. This approach not only
improves network performance on seen data but also improves network performance
on unseen data. This has resulted in CNNs and groups of CNNs becoming bigger and
thus consuming more memory and computation power. Moreover, they may need
more training data, which are not always available when new attacks emerge. Rather
than making the network bigger, we took a different approach: redesign it to make it
more efficient in memory usage, detection accuracy, and generalization.

We previously reported “Capsule-Forensics” [32], a proof-of-concept capsule
network [39] designed especially for detectingmanipulated images andvideos. In this
work, we focused on explaining the theoretical aspect of Capsule-Forensics, which
was not fully discussed in our previous work [32]. We hypothesized that the special
design of the network makes it better able to detect deepfakes than a corresponding
CNN while keeping the network smaller. This special design includes:

• Afeature extractor,which is part of a pretrained image classificationCNN,prevents
the network fromoverfitting and improves its performance on both seen and unseen
attacks.

• A statistical pooling layer, which is used in each primary capsule of the network,
greatly reduces the number of parameters compared with the original capsule
network while improving performance on deepfake detection.

• A dynamic routing algorithm produces better fusion than the traditional feature
aggregation approach.

To sum up, our contribution is three-fold:

1. We provide a theoretical explanation of the Capsule-Forensics network on deep-
fake detection by verifying our hypothesis that its special design is the reason it
performs better than the corresponding CNN version.

2. We visualize the activation of each primary capsule as well as the routing weights
and thereby clarify which kind of information these capsules learn and how they
agreeon thefinal decisionof the entire network.This is a step toward explainability
of the Capsule-Forensics network.
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3. We introduce small deepfake detection benchmarks that focuses on detection
performance, number of parameters, and inference time for both seen and unseen
data.

The rest of this chapter is structured as follows. We first describe work related
to deepfakes, deepfake detection, and the challenges in deepfake detection. We also
give some background on capsule networks. Next, we describe theCapsule-Forensics
network. We also visualize the features the Capsule-Forensics network learns to
understand the differences between it and a conventional capsule network, which
learns the hierarchical relationships between object parts. Then, we describe several
experimentsweperformed to test our hypothesis that the special designof the network
makes it better able to detect deepfakes than a corresponding CNN while keeping
the network smaller. Finally, we conclude by discussing the meaning of our results
and mentioning future work.

13.2 Related Work

13.2.1 Deepfake Generation

Recent achievements demonstrate that deepfakes can reach a photo-realistic level.
Thies et al. demonstrated that expression transfer for facial reenactment can be per-
formed in real time [46]. Kim et al. demonstrated the transfer of a head pose along
with facial movements from an actor to another person [22]. Similarly, Tripathy et
al. devised a lightweight face reenactment method using a generative adversarial
network (GAN) [47]. Nirkin et al. presented a face swapping method that does not
require training on new faces [33], unlike the early deepfake methods [3]. Thies et al.
combined the traditional graphics pipeline with learnable components to deal with
imperfect 3D contents [45].

Work on deepfakes has gone beyond only the visual part. Suwajanakorn et al.
presented a method for learning the mapping between speech and lip movements
in which speech can also be synthesized, enabling creation of a full-function spoof
video [42]. Fried et al. demonstrated that speech can be easilymodified in any video in
accordancewith the intention of themanipulatorwhilemaintaining a seamless audio-
visual flow [15]. Averbuch-Elor et al. addressed a different problem—converting still
portraits into motion pictures expressing various emotions [7]. This work greatly
simplified the requirements for attackers: simply acquire a picture of the victim
(usually a profile picture on a social network or an ID photo). Zakharov et al. followed
up by improving the quality of videos generated using only a few input images [53].
Vougioukas et al. raised the bar by introducing a method for animating a facial image
from an audio track containing speech [48].
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13.2.2 Deepfake Detection

Thehandcrafted steganalysis-basedmethoddevelopedbyFridrich andKodovsky [14]
was used in early efforts to detect manipulated images. Noise residuals extracted
using handcrafted linear and nonlinear high-pass filters are fed into an ensemble
classifier. This approach was later implemented in a CNN by Cozzolino et al. [12].
Transfer learning is a common choice when a CNN pretrained on the ImageNet
dataset [37] is used [31, 36]. Nguyen et al. [31] used part of a pretrained VGG-19
network [41] as the feature extractor for their modular network while Rössler et al.
finetuned the XceptionNet network [11] on a deepfake dataset. Afchar et al. utilized
inception modules [43] to build a lightweight network [4] while Wang et al. utilized
a dilated residual network [49]. Bayar and Stamm presented a new convolutional
layer that helps a CNN adaptively learn manipulation detection features [10]. Zhou
et al. proposed using a two-stream network in which one stream takes RGB input
and the other takes steganalysis features and uses a triplet loss [54].

Videos provide more information than images for detection, especially when they
contain sound. Li et al. used eye blinking as a feature to detect deepfakes [27] while
Agarwal et al. used facial expressions andmovements [5]. Sabir et al. used a recurrent
neural network to additionally learn the temporal information [38]. Korshunov and
Marcel used several approaches for lip-syncing and dubbing detection to detect fake
videos [24].

In addition to binary classification, another major branch in digital media foren-
sics is locating manipulated regions in images. Besides “pure” segmentation-based
approaches [9, 30, 55], binary classification approaches are also applicable by using
a sliding window to locate manipulated regions [31, 36]. From a different viewpoint,
Li et al. introduced a method called face X-ray to detect the blending boundary
between real and fake regions [26]. They noted that blending methods have not
been advancing as rapidly as manipulation methods; therefore, focusing on blending
methods makes the detector more robust against unseen manipulations.

Several standardized datasets have been constructed to support deepfake detec-
tion, including the FaceForensics++ dataset [36], the Google Deepfake Detection
(DFD) dataset [1], the DeepFakeTIMIT dataset [25], the Celeb-DF dataset [28], the
Deepfake Detection Challenge dataset [13], and the DeeperForensics dataset [20].
We focused on the FaceForensics++ and Google DFD datasets as they cover several
well-known attacks, including Face2Face [46], FaceSwap [36], deepfake [3], and
Neural Textures [45] attacks (examples are shown in Fig. 13.1). We focused on the
image domain and treated videos as a set of separable frames.

13.2.3 Challenges in Deepfake Detection

There are several challenges in deepfake detection. Since deepfakes have altered
faces, most deepfake detection methods need to first detect and crop the face. The
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success of this step depends on the performance of the face detection method. Most
state-of-the-art deepfake datasets have annotated face regions, so researchers may
assume that cropped faces are available without considering the face detector’s per-
formance. Another challenge is the generalizability of the detector when an advanced
deepfake technique is introduced. Moreover, a large amount of appropriate training
data may not be available when a new attack appears, so detectors using large net-
works may be difficult to train. Another challenge is gaining user trust by convincing
them to accept the detection results. This requires visualizing the learned features
and/or focused regions of the detectors.

The performance of general CNNs can usually be improved by increasing their
depth, their width, and/or the number of inner connections. Multiple CNNs are com-
monly used for deepfake detection, especially in competitions [13, 29]. Fusion is
often used in the multiple-CNN approach, including feature aggregation (feature
fusion) and output fusion (ensemble). Consequently, these networks get bigger with
more parameters, consuming more memory and computation power. Since a larger
number of parameters usually requires more training data, dealing with new attacks
is difficult. Our Capsule-Forensics network was designed to overcome these limita-
tions.

13.2.4 Capsule Networks

“Capsule network” is not a new term as it was first introduced in 2011 by Hinton
et al. [17]. They argued that CNNs have limited ability to learn the hierarchical
relationships between object parts and introduced a more robust architecture com-
prising several “capsules.” However, they initially faced the same problem affecting
CNNs—limited hardware performance—and the lack of effective algorithms, which
prevented practical application of capsule networks. CNNs thus remained dominant
in this research field.

These problems were overcome when the dynamic routing algorithm [39] and its
variant—the expectation-maximization routing algorithm [18]—were introduced.
These breakthroughs enabled capsule networks to achieve better performance and
outperform CNNs on object classification tasks [8, 18, 39, 50, 51]. The agreements
between low- and high-level capsules, which encode the hierarchical relationships
between objects and their parts with pose information, enable a capsule network to
preserve more information than a CNN while using only a fraction of the data used
by a CNN.



13 Capsule-Forensics Networks for Deepfake Detection 281

13.3 Capsule-Forensics

13.3.1 Why Capsule-Forensics?

To overcome the weakness of conventional CNNs, we adapted the capsule network
concept [39],whichwas originally designed for computer vision tasks, tomake itwell
suited for deepfake detection. We named our adapted network “Capsule-Forensics.”
Its design takes advantage of transfer learning by using part of a pretrained CNN
(trained on the ImageNet dataset [37]) as the feature extractor. This helps the network
achieve high performance and have better generalizability. The feature aggregation
used in conventional CNNs was replaced with a modified version of the dynamic
routing algorithm. The use of a statistical pooling layer in each primary capsule
reduces the number of parameters while improving performance. The next two sec-
tions describe the processing flow and architecture. We performed several experi-
ments to verify the novelty of this design. The results are presented and discussed in
the Evaluation section.

13.3.2 Overview

The Capsule-Forensics based method comprises three processing units, as illustrated
in Fig. 13.2. The task performed in the pre-processing unit depends on the input. If
the input is video, the first step is to separate the frames. A face detection algorithm is
used to crop the facial area(s). The cropped face(s) are sent to the Capsule-Forensics
unit for classification. The detection result(s) are sent to the post-processing unit,
which works in accordance with the pre-processing one. If the input is an image,
nothing is done here. If the input is video, the scores of all frames are averaged. This
average score is the final output.

13.3.3 Architecture

The Capsule-Forensics network includes a feature extractor, several primary cap-
sules, and two output capsules (“real” and “fake”), as illustrated in Fig. 13.3. For

Pre-
processing processing

Post-Capsule-
Forensics

Fig. 13.2 Capsule-Forensics unit processing
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Fig. 13.3 Capsule-Forensics architecture. Blocks A, B, and C contain tunable hyperparameters

simplification, we use the same architecture for all primary capsules. Since we use
random weight initialization, their behaviors are not the same after training. The
number of primary capsules is a hyperparameter.

Each primary capsule has three parts: a 2D convolutional part, a statistical pooling
layer, and a 1D convolutional part. The statistical pooling layer has been proven to be
effective in detecting computer-generated images [31, 35] by learning the statistical
differences between the real and computer-generated images. For deepfakes, when a
part of a face image is swapped, the swapped face region may have different textures
and color patterns. The blending region between the swapped face region and the
remaining original face region may also contain artifacts. Thus, the statistics such
as mean and variance of each filter are useful for differentiating the swapped region
from the original one. Moreover, they help reduce the number of parameters by
omitting features that are not useful for deepfake detection.

The mean and variance of each filter are calculated in the statistical pooling layer.

• Mean:

μk = 1

H × W

H∑

i=1

W∑

j=1

Iki j

• Variance:

σ 2
k = 1

H × W − 1

H∑

i=1

W∑

j=1

(Iki j − μk)
2,

where k is the layer index, H and W are, respectively, the height and width of the
filter, and I is a two-dimensional filter array.
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The output of the statistical layer goes through the following 1D convolutional
part. Then it is dynamically routed to the output capsules. The final result is calculated
on the basis of the activation of the output capsules. The algorithm is discussed in
detail in the next section. For binary classification, there are two output capsules,
as shown in Fig. 13.3. Multi-class classification could be performed by adding more
output capsules, as discussed in Sect. 13.4.3.

The Capsule-Forensics source code has been published at https://github.com/nii-
yamagishilab/Capsule-Forensics-v2.

13.3.4 Dynamic Routing Algorithm

Different manipulation methods use different face regions, generating models, and
blending algorithms. Therefore, each primary capsule extracts different features
depending on the manipulation method, and they may work better on a particular
manipulation than on others. Furthermore, since the weights of the primary capsules
are initialized differently in training, the capsules learn different features for the same
input. These features need to be fused correctly to predict whether the input is real or
fake. For a capsule network, this fusion is done dynamically using a dynamic routing
algorithm. The “agreement” between all primary capsules is calculated and routed
to the appropriate output capsule (real or fake for binary classification). An example
of the routing weight vectors is visualized in Fig. 13.4. Since the primary capsules
may make different judgments and some of them may be wrong, this algorithm is
designed to find a consensus. The output probabilities are determined on the basis
of the activations of the output capsules.

Let us call the output vector of each primary capsule u(i) ∈ R
k and each output

vector capsule v( j) ∈ R
l . There arem primary capsules and n output capsules.W(i) ∈

R
l×k is thematrix used to route anu(i) to all v( j), and r is the number of iterations. The

dynamic routing algorithm is shown in Algorithm 1. A simple example is presented
in the Appendix.

Fig. 13.4 Visualization of the routing matrix C(2)ᵀ used to route the outputs of three primary
capsules to fake output capsule. Face2Face and FaceSwap methods are graphical based, so their
routing weights are similar. Deepfake method is deep learning based, so its routing weights are
different from the two graphical-based manipulation methods

https://github.com/nii-yamagishilab/Capsule-Forensics-v2
https://github.com/nii-yamagishilab/Capsule-Forensics-v2
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Algorithm 1 Dynamic routing between capsules.

procedure Routing(u(i),W(i), r )
Ŵ(i) ← W(i) + rand(size(W(i)))

û(i) ← Ŵ(i)squash(u(i)) � û(i) ∈ R
l

û(i) ← dropout(̂u(i))

for all output capsules j do
B( j) ← 0 � B( j) ∈ R

l×m

for r iterations do
for all output capsules j and all vector elements do

(c( j)
_,1, c

( j)
_,2, . . . , c

( j)
_,m) ← softmax(b( j)

_,1, b
( j)
_,2, . . . , b

( j)
_,m)

for all output capsules j do s( j) ← ∑m
i c( j)

:,i � û(i)

for all output capsules j do v( j) ← squash(s( j))
for all input capsules i and output capsules j do

B( j) ← B( j) + [
û(1) û(2) . . . û(m)

] � v( j)

return v( j)

We slightly improved the algorithm of Sabour et al. [39] by introducing two
regularizations: adding random noise to the routing matrix and adding a dropout
operation. They are used only during training to reduce overfitting. Their effective-
ness is discussed in the Evaluation section. Furthermore, a squash function (Eq. 13.1)
is applied to u(i) before routing to normalize it, which helps stabilize the training
process. The squash function is used to scale the vector magnitude to unit length.

squash(u) = ‖u‖22
1 + ‖u‖22

u
‖u‖2 (13.1)

In practice, to stabilize the training process, the random noise should be sampled
from a normal distribution (N (0, 0.01)), the dropout ratio should not be greater than
0.05 (we used 0.05 in all experiments), and two iterations (r = 2) should be used in
the dynamic routing algorithm. The two regularizations are used along with random
weight initialization to increase the level of randomness, which helps the primary
capsules learn with different parameters.

To calculate predicted label ŷ, we apply the softmax function to each dimension of
the output capsule vectors to achieve stronger polarization rather than simply using
the length of the output capsules [39]. The final results are the means of all softmax
outputs:

ŷ = 1

l

l∑

i

softmax(v(1)
i , v(2)

i , . . . , v(n)
i ), (13.2)

where ŷ is the predicted probabilities vector. Since there is no reconstruction in the
Capsule-Forensics method, we simply use the cross-entropy loss function and the
Adam optimizer [23] to optimize the network.
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13.3.5 Visualization

To illustrate how Capsule-Forensics works, we used a Capsule-Forensics network
with three primary capsules trained on the FaceForensics++ database [36]. For visu-
alization, we applied andmodified an open-source tool [34] implementing the guided
back propagation algorithm [40]. To visualize each primary capsule in this way, we
chose the latent features extracted before the statistical pooling layers since they still
had the 2D structure.

The activations of each capsule and of the whole network are illustrated in
Fig. 13.5. The differences in activation among capsules and between each capsule
and the whole network are also shown. The regions of interest mainly include the
eyes, nose, mouth region, and facial contours. Some capsules missed some of these
regions, and some failed to detect the manipulated input (i.e., the third capsule in
Fig. 13.6). Nevertheless, the final results mostly focused on the important regions
detected by all capsules due to agreement driven by the dynamic routing algorithm
between the other two capsules. A CNN using only the third primary capsule would
fail to detect the manipulated input.

The behavior of the Capsule-Forensics network for the deepfake detection prob-
lem differs from that of the original capsule network for the inverse graphics prob-
lem, in which the focus is on the spatial hierarchies between simple and complex
objects [17, 18, 39]. In the deepfake detection problem, abnormal appearances are
the key features, so each primary capsule is designed to capture them and communi-
cate its findings to the other capsules. This behavior is similar to that of jurors during
a trial, and the consensus judgment is the final detection result.

13.4 Evaluation

We conducted several experiments to test the detection performance of the Capsule-
Forensics network. After describing the datasets and metrics we used (Sect. 13.4.1
and 13.4.2), we discuss the effectiveness of the improvements introduced in this
chapter in comparison with our previous work [32]: larger input size, more primary
capsules, and dropout in the dynamic routing algorithm (Sect. 13.4.3). We then com-
pare several candidate feature extractors (Sect. 13.4.4) and evaluate the effectiveness
of the statistical pooling layer used in each primary capsule (Sect. 13.4.5). Finally,
we compare the detection performance of the improved Capsule-Forensics network
with that of a CNN on both seen and unseen attacks (Sect. 13.4.6 and 13.4.7, respec-
tively). For the CNNs, we used the corresponding version of the Capsule-Forensics
network using feature aggregation instead of the dynamic routing algorithm, the
multi-task learning network [30], the XceptionNet version used in FaceForensics++
work [36], and the EfficientNet network [44]. Among them, the multi-task learning
network is a generative classifier while the rest are discriminative classifiers. For the
multi-task learning network, in addition to ground-truth labels, segmentation masks
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Fig. 13.5 Activation of three capsules and entireCapsule-Forensics network (columns 2, 3, 4, and 5,
respectively) on images created using deepfake [3] (row 1), Face2Face [46] (row 3), FaceSwap [36]
(row 5), and Neural Textures [45] (row 7) methods and on a real image. Column 6 shows the
manipulated regions corresponding to the manipulated images in column 1. The first three columns
of rows 2, 4, 6, 8, and 10 show the differences between the activations of capsules 1 and 2, 1 and 3,
and 2 and 3 on the corresponding row above, respectively. The three last columns in order show the
differences between the activations of capsules 1, 2, and 3 and the activation of the whole network
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Fig. 13.6 Example case in which one capsule did not work correctly. First row shows activation
of whole network and of three capsules. Second row from left to right shows input image and
differences between activation of each capsule and of whole network. Although capsule 3 failed to
detect manipulated image, final result was correct due to agreement between other two capsules

of the manipulated regions are needed for training. When testing, since segmenting
manipulated regions is beyond the scope of this work, we used only its encoder part
to perform binary classification. For XceptionNet, we modified its fully connected
layer and trained it in two phases. For EfficientNet [44], which recently received a
high score in the Deepfake Detection Challenge, we used the B4 version (denoted
as EfficientNet-B4) which requires an input size of 380 × 380 pixels. The larger
versions (B5, B6, and B7) require larger inputs and have more parameters, making
it impossible to train them on a single-GPU machine.

For simplicity, we used only multi-class classification to compare the original
setting in our previous work [32] with the new setting in this work. For the remaining
experiments, we tested only binary classification. Except for the one discussed in
Sect. 13.4.7, all the evaluations were for performance on seen attacks.

13.4.1 Datasets

We used videos from the FaceForensics++ dataset [36], supplemented with the
Google DFD dataset [1]. We used all three levels of compression (none, moder-
ate, and high) and mixed them together to make multiple compression datasets for
our experiments. For training, we used version 1 of the FaceForensics++ dataset
including original videos and three corresponding manipulated videos created by
deepfake [3], Face2Face [46], and FaceSwap [36] methods. For testing, two sce-
narios were used: seen attacks and unseen attacks. For seen attacks, we used a test
set from version 1 of the FaceForensics++ dataset. For unseen attacks, we used test
videos created using Neural Textures [45] (unseen method), which was added in
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Table 13.1 Configuration of training, validation, and test sets fromFaceForensics++dataset version
1 (for seen attacks) [36]

Type Training set Validation set Test set

Real 720 × 3 vids
72, 000 × 3 imgs

140 × 3 vids
1, 400 × 3 imgs

140 × 3 vids
1, 400 × 3 imgs

Deepfake 720 × 3 vids
72, 000 × 3 imgs

140 × 3 vids
1, 400 × 3 imgs

140 × 3 vids
1, 400 × 3 imgs

Face2Face 720 × 3 vids
72, 000 × 3 imgs

140 × 3 vids
1, 400 × 3 imgs

140 × 3 vids
1, 400 × 3 imgs

FaceSwap 720 × 3 vids
72, 000 × 3 imgs

140 × 3 vids
1, 400 × 3 imgs

140 × 3 vids
1, 400 × 3 imgs

Table 13.2 Configuration of test sets for unseen attacks created using Neural Textures method [45]
and Google DFD dataset [1]

Type Neural textures (unseen method) Google DFD dataset (unseen data)

Real 0 vids 0 imgs 140 × 3 vids 1, 400 × 3 imgs

Fakes 358 × 3 vids 3, 580 × 3 imgs 3, 065 × 3 vids 30, 650 × 3 imgs

version 2 of the FaceForensics++ dataset, and the entire Google DFD dataset [1]
(unseen data).

We took the first 100 frames of the input video for the training set and the first 10
frames for the validation and test sets. FaceForensics++ dataset version 1 (for seen
attacks) was divided into a training set, a validation set, and a test set, as shown in
Table13.1. The test sets for unseen attacks are shown in Table13.2.

13.4.2 Metrics

We used four metrics in our evaluation:

• Classification accuracy = T P+TN
TP+TN+FP+FN , where TP, TN, FP, and FN are true posi-

tive, true negative, false positive, and false negative, respectively.
• Equal error rate (EER): common value when false positive rate (FPR) equals false
negative rate (FNR). FPR = FP

N (number of false positives divided by number of
negatives). FNR = FN

P (number of false negatives divided by number of positives).
• Half total error rate (HTER): HTER = FPR+FNR

2 .
• Attack presentation classification error rate (APCER): “proportion of attack pre-
sentations using the same PAI species incorrectly classified as bona fide presenta-
tions in a specific scenario.”1

1 ISO/IEC 30107-3 definition. Accessed at https://www.iso.org/obp/ui/#iso:std:iso-iec:19989:-1:
ed-1:v1:en:term:3.1.

https://www.iso.org/obp/ui/#iso:std:iso-iec:19989:-1:ed-1:v1:en:term:3.1
https://www.iso.org/obp/ui/#iso:std:iso-iec:19989:-1:ed-1:v1:en:term:3.1
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The thresholds used to determine whether the classification outputs were real or
fake were selected on the basis of the EERs calculated for the development sets.

13.4.3 Effect of Improvements

In thefirst experiment,wemeasured the effectiveness of the improvements introduced
here: larger input size, more primary capsules, and dropout in the dynamic routing
algorithm. Since Capsule-Forensics is not limited to binary classification, we also
evaluated its multi-class classification ability by changing the number of output
capsules, from “Real” and “Fake” capsules to “Real,” “Deepfake,” “Face2Face,” and
“FaceSwap” capsules. This modification is obvious and did not require substantial
changes to the network architecture.

As shown in Table13.3, using larger images improved performance substantially
as expected. The effect of random noise was limited. In our previous work [32], most
of the training sets were small, so random noise made a substantial contribution. In
this work, we used the first 100 frames instead of the first 10 for the training set, so
the set was ten times larger. Although the random noise did not result in improvement
in all cases, it still played an important role in reducing the HTER when combined
with dropout and increased the accuracy of multi-class classification. Increasing the
number of primary capsules also helped improve performance. The combination of
all three improvements achieved the best performance for both binary and multi-
class classification. We refer to this combination as “new setting” in Table13.3 to
distinguish it from the “original setting” (the setting used in our previous work [32]).

13.4.4 Feature Extractor Comparison

The feature extractor is an important part of the Capsule-Forensics network (block
A in Fig. 13.3). Rather than training a simple CNN from scratch along with the other
parts of the network, as is done in the traditional capsule network approach [39], we
used part of a pretrained CNN (trained on the ImageNet dataset [37]). We selected
three commonly used extractors as candidates:

• VGG-19 [41]: used from the beginning until the third max pooling layer.
• ResNet-50 [16]: used from the beginning until the end of the “conv3_x” layer.
• XceptionNet [11]: used from the beginning until the end of the first block of its
“middle flow.”

In addition to evaluating these candidates, we evaluated a simple CNN with three
convolutional layers as the feature extractor, like the ones used in conventional cap-
sule networks. The CNN was trained along with the other parts of the Capsule-
Forensics network. In addition, we also fine tuned the pretrained feature extractors
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Table 13.3 Performance of Capsule-Forensics with original [32] and new settings introduced here

Input size No. of
capsules

Random
noise

Dropout Binary clas-
sification
accuracy
(%)

Binary clas-
sification
HTER (%)

Multi-class
classifica-
tion
accuracy
(%)

Original setting [32]:

128 × 128 3 No No 87.45 15.41 85.89

128 × 128 3 Yes No 88.57 15.35 87.12

New setting:

300 × 300 3 No No 89.88 11.28 87.51

300 × 300 3 Yes No 90.86 11.29 87.54

300 × 300 10 No No 91.61 11.52 88.51

300 × 300 10 Yes No 91.32 12.07 89.98

300 × 300 3 No Yes 91.33 12.37 89.19

300 × 300 3 Yes Yes 91.19 11.93 88.44

300 × 300 10 No Yes 92.17 10.70 90.51

300 × 300 10 Yes Yes 92.00 10.64 91.22

(indicated by “FT” after their names) to check whether fine-tuning helps improve
overall performance. We tested the extractors on both the original and new settings
except for the simple CNN. It was tested on only the original setting since training
it on the new setting would consume a much greater amount of memory and take
much longer. The results are shown in Table13.4.

All the extractors performed better using the new setting. Fine-tuning did not help
much when using the new setting. Besides reducing memory usage and shortening
training time, using pretrained feature extractors resulted in better performance than
using a CNN extractor trained from scratch. These results support our hypothesis
that using a pretrained feature extractor contributes to the superiority of our Capsule-
Forensics network.

The ResNet-50 based feature extractor has the smallest number of parameters,
making it about ten times smaller than theVGG-19 andXceptionNet ones. TheVGG-
19 extractor with the new setting achieved the highest classification accuracy and
had the lowest HTER. For dealing with seen manipulations, if performance is more
important than the number of parameters, VGG-19 is the best choice. Otherwise,
ResNet-50 is more suitable.
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Table 13.4 Performance (in %) of feature extractors with and without fine-tuning (FT) with both
original and new settings

Feature extractor Training accuracy Test accuracy Test HTER No. of parameters

Original setting [32]:

Simple CNN 98.97 83.36 25.42 371,712

VGG-19 99.81 88.57 15.35 2,325,568

VGG-19 FT 99.54 90.08 12.49 2,325,568

ResNet-50 99.60 88.21 16.09 225,344

ResNet-50 FT 99.69 87.45 13.60 225,344

XceptionNet 99.58 85.52 19.10 2,720,736

XceptionNet FT 99.45 85.41 18.91 2,720,736

New setting:

VGG-19 99.83 92.00 10.64 2,325,568

VGG-19 FT 99.63 90.98 13.40 2,325,568

ResNet-50 99.17 90.59 14.60 225,344

ResNet-50 FT 99.69 90.14 14.94 225,344

XceptionNet 99.79 90.42 13.35 2,720,736

XceptionNet FT 99.84 91.39 10.85 2,720,736

13.4.5 Effect of Statistical Pooling Layers

In another experiment, we compared the performance and size of two versions of the
Capsule-Forensics network: one using and one not using a statistical pooling layer for
each primary capsule (block B in Fig. 13.3). Previous work [31, 35] suggested that
using a statistical pooling layer is effective for detecting computer-generated images.
For the version without statistical pooling layers, we replaced the 1D convolutional
layers with 2D ones and added an adaptive average pooling layer at the end of each
primary capsule. We hypothesized that the statistical pooling layer helps filter out
unnecessary information, i.e., information that is not relevant to deepfake detection.
Therefore, using a statistical pooling layer in each primary capsule helps reduce
feature size and improve performance. Moreover, reducing the feature size results in
a smaller routing matrix, which uses less memory and computation power. We used
the VGG-19 feature extractor in this experiment. The results are shown in Table13.5.

With both the original and new settings, using statistical pooling layers greatly
improved classification accuracy and reduced the HTER for the seen test set. More-
over, using them reduced the number of parameters by 400%. These results support
our hypothesis that using statistical pooling layers contributes to the superiority of
our Capsule-Forensics network. An interesting observation from the results is that
the number of parameters was independent of the input size (128 × 128 in the origi-
nal setting and 300 × 300 in the new setting). This is because both the statistical and
adaptive average pooling layers were designed to deal with variations in input size.
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Table 13.5 Performance (in %) with and without statistical pooling (SP) layer in primary capsules
for both original and new settings with VGG-19 feature extractor. (Number of parameters does not
include number for feature extractor.)

Settings Test accuracy Test HTER No. of parameters

Original setting [32]:

With SP layer 88.57 15.35 1,571,070

Without SP layer 83.51 15.78 6,689,280

New setting:

With SP layer 92.00 10.64 1,571,070

Without SP layer 87.70 11.65 6,689,280

13.4.6 Capsule-Forensics Network Versus CNNs: Seen
Attacks

In a third experiment,we compared the performanceof the dynamic routing algorithm
used in the Capsule-Forensics network with that of traditional feature aggregation
(block C in Fig. 13.3). The VGG-19 feature extractor was used in both cases.We also
evaluated the performance of the multi-task learning network [30], the XceptionNet
network, and theEfficientNet-B4 network [44]. It is important to note that this version
ofXceptionNet differs from the one used in our feature extractor (Sect. 13.4.4), which
was pretrained on the ImageNet dataset [37], with only part of it used. Since the
training dataset was imbalanced (the number of fake samples was three time the
number of real samples), we additionally evaluated the effect of using a weighted
softmax function during training. The experiment results are shown in Table13.6.

The effect of using a weighted softmax function is not clear. Since the dataset was
not heavily imbalanced, this result is reasonable. Although having the smallest num-
ber of parameters, the multi-task learning network had the worst performance. The
dynamic routing algorithm helped the Capsule-Forensics network achieve higher
performance, especially with the new setting. The numbers of parameters for the
Capsule-Forensics network and the corresponding CNN using feature aggregation
were almost the same, whereas the numbers for the EfficientNet-B4 and the Xcep-
tionNet networks were about 4.5 to 5.3 times larger. Moreover, the test accuracy of
the Capsule-Forensics network and the Efficient-B4 network was almost the same.
The large input size of the EfficientNet-B4 network (380 × 380 vs 300 × 300) might
be the reason for its lower HTER.

In addition to the results on themixed compression test set shown in Table13.6, we
also broke it down into three compression levels, as shown in Table13.7. There were
no substantial differences between the performances ofCapsule-Forensics,Xception-
Net, andEfficientNet-B4. Their performanceswere degraded fromno compression to
moderate compression to high compression. With their average accuracy about 84%,
detecting highly compressed deepfake videos was still challenging when most of the
deepfake artifacts were erased by the compression algorithm. Capsule-Forensics and
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Table 13.6 Performance (in %) of Capsule-Forensics using dynamic routing algorithm, its corre-
sponding CNN using the traditional feature aggregation approach, and the other baselines on seen
attacks. Number of parameters is for entire network, including feature extractor

Settings Test accuracy Test HTER No. of parameters

Original setting [32]:

Dynamic routing 88.57 15.35 2,796,889

Feature aggregation 86.26 15.15 2,798,059

New setting:

Dynamic routing 92.00 10.64 3,896,638

Feature aggregation 91.82 11.51 3,903,328

Multi-task
learning [30]

73.08 26.30 148,200

XceptionNet [36] 90.73 9.91 20,811,050

EfficientNet-B4 [44] 92.82 8.67 17,552,202

Using weighted softmax:

Dynamic routing 92.21 10.91 3,896,638

Feature aggregation 91.75 10.68 3,903,328

XceptionNet [36] 91.83 10.14 20,811,050

EfficientNet-B4 [44] 91.49 8.64 17,552,202

Table 13.7 Performance (in %) of Capsule-Forensics and other classifiers at three levels of com-
pression on the FaceForensics++ dataset.

Detector No compression Moderate compression High Compression

Accuracy HTER Accuracy HTER Accuracy HTER

Capsule-Forensics 97.27 3.87 94.62 6.42 84.11 21.64

Multi-task
learning [30]

81.12 17.80 69.23 25.94 68.86 35.19

XceptionNet [36] 96.12 4.80 92.82 7.60 83.25 17.33

EfficientNet-B4 [44] 98.37 2.50 95.50 4.88 84.96 18.62

EfficientNet handled the moderately compressed deepfake videos quite well, with
only about 3% degradation in accuracy compared with the uncompressed ones.

Using the Capsule-Forensics network can save a large amount of memory and
computation power compared with the amounts used by CNNs while maintaining
high performance even for compressed videos. This is important for applications
integrating a presentation attack detector into an Internet of things or a handheld
device that does not have powerful hardware to prevent unauthorized facial authen-
tication. The Capsule-Forensics network demonstrated it effectiveness against this
kind of attack [32].
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Table 13.8 Performance (in %) of three versions of Capsule-Forensics network, two versions of
the corresponding CNN, and other baselines on unseen attacks. Number of parameters is for entire
network, including feature extractor

Detectors Neural Textures Google DFD dataset No. of
parameters

Accuracy APCER Accuracy HTER

Capsule-Forensics
(VGG-19)

24.33 75.67 44.51 40.29 3,896,638

Capsule-Forensics
(ResNet-50)

37.93 62.07 64.98 40.89 1,796,414

Capsule-Forensics
(XceptionNet FT)

31.38 68.62 55.73 38.30 4,007,673

Feature aggregation
(VGG-19)

28.81 71.19 58.09 38.70 3,903,328

Feature aggregation
(ResNet-50)

24.00 76.00 62.48 37.70 1,803,104

Multi-task
learning [30]

44.69 55.31 78.74 42.21 148,200

XceptionNet [36] 26.79 73.21 47.29 40.37 20,811,050

EfficientNet-B4 [44] 31.55 68.45 58.63 34.23 17,552,202

13.4.7 Capsule-Forensics Network Versus CNNs: Unseen
Attacks

Detecting unseen attacks is a difficult problem in deepfake detection, especially for
machine-learning-based detectors. When the data distribution changes, the learned
features, and decision boundaries are usually no longer correct. Furthermore, large
networks with a large number of parameters tend to memorize the training data,
especially when the data amount is small. We expected that the Capsule-Forensics
network can be better generalized than large networks thanks to the statistical pooling
operation and dynamic routings of the primary capsules. To test this, we performed
one last experiment inwhichwe tested the detectors on a challenging unseenmanipu-
lation method, Neural Textures [45]. It is unlike any of the methods normally used to
create seen datasets.We also tested the detectors on a different large deepfake dataset,
the Google DFD dataset. We evaluated three new versions of the Capsule-Forensics
networkwith different feature extractors (VGG-19,ResNet-50 (lightweight) andfine-
tuned XceptionNet) and with two versions of a CNN using feature aggregation (with
VGG-19 and ResNet-50 feature extractors), the multi-task learning network [30],
the XceptionNet network [36], and the EfficientNet-B4 network [44].

As shown in Table13.8, all the detectors performed poorly on the Neural Textures
method, with APCERs greater than 50%. The three best detectors on seen attacks
(Capsule-Forensics using VGG-19, XceptionNet, and EfficientNet-B4—which are
discriminative classifiers) had theworst performances on thismethod. Themulti-task
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Fig. 13.7 Comparison between several versions of Capsule-Forensics network and CNNs for clas-
sification accuracy, inference time, and model size on Google DFD dataset [1]

learning network (which is a generative classifier) achieved the best results, followed
by the lightweight Capsule-Forensics network using the ResNet-50 feature extractor.
Theperformances of all detectorswere slightly better on theGoogleDFDdataset. The
Capsule-Forensics network using ResNet-50 again had the second highest accuracy,
below the multi-task learning network. Since the multi-task learning network was
specially designed to deal with unseen attacks, it was able to beat all the other
detectors. However, its drawback is poor performance on seen attacks, as seen in the
previous section.

Figure13.7 shows a comparison on the classification accuracy, inference time
(for one image), and model size of all detectors on the Google DFD dataset [1]. All
tests were done using a NVIDIA DGX Station machine. The Capsule-Forensics net-
work using the ResNet-50 feature extractor and its corresponding CNN using feature
aggregation had the second smallest sizes andwere the second fastest detectors. They
were a bit slower than the Capsule-Forensics network using the XceptionNet feature
extractor. Due to the design of the VGG-19 network, detectors using it as the fea-
ture extractor have the longest inference times (about twice the shortest times). The
XceptionNet-based detector had the largest size but had limited detection accuracy.
The EfficientNet-B4-based detector and the multi-task learning detector were the
two slowest ones. It is important to note that we measured only the inference time of
the encoder part of the multi-task learning detector for the binary classification task.
Although it has fewer parameters than the other detectors, some memory-related
operations slowed it down.

Although having limited performance on unseen attacks, this experiment demon-
strated that the Capsule-Forensics network is better able to detect deepfakes than
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CNNs. Between the two versions of the Capsule-Forensics network, if performance
on seen attacks is more important, using VGG-19 as the feature extractor is the better
choice. If performance on unseen attacks is more important, or a lightweight and fast
network is needed, using ResNet-50 as the feature extractor is the better choice.

13.5 Conclusion and Future Work

Our experiments demonstrated that the Capsule-Forensics network is better able to
detect deepfakes than conventional CNNs. Its use of a pretrained feature extractor,
statistical pooling layers, and a dynamic routing algorithm enables it to achieve better
performance with fewer parameters than corresponding CNNs. Furthermore, it has
better performance than other discriminative classifiers on unseen manipulations,
although further improvement is needed. Visualization of the activation of each cap-
sule enables the learned features to be analyzed. These promising results and the
understanding gained from the analysis should lead to further research on and devel-
opment of capsule networks, not only for digital forensics but also for many other
applications.

Future work includes enabling the Capsule-Forensics network to use temporal
information to detect fake videos and improving its generalizability (in other words,
reducing the gap between discriminative classifiers and generative classifiers).More-
over, deepfake datasets mostly contain images and videos containing only one or two
people. In reality, deepfake methods can be applied to a crowd; therefore, deepfake
detection in the wild is also an important research direction.
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13.6 Appendix

This appendix presents a simple example of the dynamic routing algorithm shown in
Algorithm1with three (m = 3) primary capsulesu(i) ∈ R

k, i = 1..3 and two (n = 2)
output capsules v(j) ∈ R

l , j = 1..2. All equations are written out in full.
There are three routingmatrices corresponding to the three primary capsules, each

represented by
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Ŵ(i) = W(i) + N ∀i
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with Ŵ(i) ∈ R
l×k,W(i) ∈ R

l×k,N(i) ∈ R
l×k,N(i)

∼ N (0, 0.01).

The next steps are to process u(i) to form û(i):

û(i) =

⎡
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û(i)
1

û(i)
2
...

û(i)
l

⎤
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⎞
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with u(i) ∈ R
k, û(i) ∈ R

l .

û(i) ← dropout(̂u(i)).

Then, two matrices B(1),B(2) ∈ R
l×3 corresponding to the two output capsules

are initialized:
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For r iterations do:
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,C( j) ∈ R

l×3.
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û(3)
l

⎤

⎥⎥⎥⎦

(� represents element-wise multiplication).
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1 û(3)
1 v( j)

1
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Finally, return v( j).
Figure13.4 is a visualization of C(2), where l = 4.
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Chapter 14
DeepFakes Detection:
the DeeperForensics Dataset
and Challenge

Liming Jiang, Wayne Wu, Chen Qian, and Chen Change Loy

Abstract Recent years have witnessed exciting progress in automatic face swap-
ping and editing. Many techniques have been proposed, facilitating the rapid devel-
opment of creative content creation. The emergence and easy accessibility of such
techniques, however, also cause potential unprecedented ethical and moral issues. To
this end, academia and industry proposed several effective forgery detection meth-
ods. Nonetheless, challenges could still exist. (1) Current facemanipulation advances
can produce high-fidelity fake videos, rendering forgery detection challenging. (2)
The generalization capability of most existing detection models is poor, particularly
in real-world scenarios where the media sources and distortions are unknown. The
primary difficulty in overcoming these challenges is the lack of amenable datasets
for real-world face forgery detection. Most existing datasets are either of a small
number, of low quality, or overly artificial. Meanwhile, the large distribution gap
between training data and actual test videos also leads to weak generalization ability.
In this chapter, we present our on-going effort of constructing DeeperForensics-1.0,
a large-scale forgery detection dataset, to address the challenges above. We discuss
approaches to ensure the quality and diversity of the dataset. Besides, we describe
the observations we obtained from organizing DeeperForensics Challenge 2020, a
real-world face forgery detection competition based onDeeperForensics-1.0. Specifi-
cally, we summarize thewinning solutions and provide some discussions on potential
research directions.
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14.1 Introduction

Face swapping has become an emerging topic in computer vision and graphics.
Indeed, many works [1, 4, 6, 41, 53, 76] on automatic face swapping have been pro-
posed in recent years. These efforts have circumvented the cumbersome and tedious
manual face editing processes, hence expediting the advancement in face editing.
At the same time, such enabling technology has also sparked legitimate concerns on
its potential for being misused and abused. The popularization of “DeepFakes” on
the Internet has further set off alarm bells among the general public and authorities,
in view of the conceivable perilous implications. Accordingly, countermeasures to
safeguard against these photorealistic fake videos become a dire need to be in place
promptly, especially innovations that can effectively detect videos that have been
manipulated.

Although academia and industry have contributed several effective face forgery
detection methods [54, 56, 63, 64, 93, 99], some challenges could still exist. First,
current face manipulation advances can produce high-fidelity fake videos, making
forgery detection challenging. Besides, the generalization capability of most exist-
ing detection models is poor, particularly in real-world scenarios where the media
sources and distortions are unknown. Meanwhile, the DeepFakes techniques will
keep evolving in the future. The better face editing quality will render forgery detec-
tion more challenging, entailing the increasing importance of the model generaliza-
tion.

In this chapter, we present our on-going efforts to address the challenges above.
The primary difficulty in overcoming these challenges is the lack of amenable
datasets.Working toward forgery detection, various groups have contributed datasets
(e.g., FaceForensics++ [81], Deep Fake Detection [13], and DFDC [23, 24]) com-
prising manipulated video footages. The availability of these datasets has undoubt-
edly provided essential avenues for research into forgery detection. Nonetheless, the
aforementioned datasets fall short in several ways. Videos in these datasets are either
of a small number, of low quality, or overly artificial. Understandably, these datasets
are inadequate to train a good model for effective forgery detection in real-world
scenarios. This is particularly true when current advances in human face editing are
able to producemore photorealistic videos than the ones in these datasets. On another
note, we observe a high similarity between training and test videos, in terms of their
distribution, in certain works [57, 81]. Their actual efficacy in detecting real-world
face forgery cases, which are much more variable and unpredictable, remains to be
further elucidated.

We believe that forgery detection models can only be enhanced when trained
with a dataset that is exhaustive enough to encompass as many potential real-
world variations as possible. To this end, we propose a large-scale dataset, named
DeeperForensics-1.0 [41], consisting of 60, 000 videos with a total of 17.6 million
frames for real-world face forgery detection. The main steps of our dataset construc-
tion are shown in Fig. 14.1. We set forth three yardsticks when constructing this
dataset: (1) Good quality. The dataset shall contain the videos that are more realistic
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Fig. 14.1 DeeperForensics-1.0 is a new large-scale dataset for real-world face forgery detection

and closer to the state-of-the-art DeepFakes video distributions. (Sections14.3.1 and
14.3.2) (2) Large scale. The dataset shall be made up of a large number of video sets.
(Section14.3.3) (3) High diversity. There shall be sufficient variations in the video
footages (e.g., compression, blurry, and transmission errors) to match those that may
be encountered in the real world (Sect. 14.3.3).

The major challenge in the preparation of this dataset is the lack of good-quality
video footages. Specifically, most publicly available videos are captured under an
unconstrained environment resulting in large variations, including but not limited
to suboptimal illumination, large occlusion of the target faces, and extreme head
poses. Importantly, the lack of the official informed consents from the video sub-
jects precludes the use of these videos, even for non-commercial purposes. On the
other hand, while some videos of manipulated faces are deceptively real, a larger
number remains easily distinguishable by human eyes. The latter is often caused by
model negligence toward appearance variations or temporal differences, leading to
preposterous and incongruous results.

We approach the aforementioned challenge from two perspectives. (1) Collect-
ing fresh face data from 100 individuals with informed consents (Sect. 14.3.1). (2)
Devising a novel end-to-end face swapping method, DeepFake Variational Auto-
Encoder (DF-VAE), to enhance existing videos (Sect. 14.3.2). In addition, we intro-
duce diversity into the video footages through the deliberate addition of distortions
and perturbations, simulating real-world scenarios. The DeeperForensics-1.0 dataset
also features a hidden test set, containing manipulated videos that achieve the high
deceptive ranking in user studies. The hidden test set is richer in distribution than
the publicly available training set, suggesting a better real-world forgery detection
setting.

Using the introduced DeeperForensics-1.0 dataset, we organized the Deeper-
Forensics Challenge 2020 [40] with the aim to advance the state of the art in face
forgery detection. Participants in this challenge were expected to develop robust
and generic methods for forgery detection in real-world scenarios. This chapter also
covers details of the DeeperForensics Challenge 2020, including the platform, eval-
uation metric, timeline, participants, results, etc. The winning solutions of top-3
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entries are included. We present discussions to take a closer look at the current status
and possible future development of real-world face forgery detection.

14.2 Related Work

In this section, we provide an overview of the current status of relevant studies
w.r.t.DeepFakes detection. The taxonomy of these works can be generally grouped
into four paradigms, namely DeepFakes generation methods, DeepFakes detection
methods, DeepFakes detection datasets, and DeepFakes detection benchmarks.

14.2.1 DeepFakes Generation Methods

The popularization of DeepFakes videos is attributed to the rapid development of
generative models. Existing state-of-the-art generative models are mainly built on
deep neural networks [26, 33, 48, 50, 74], showing impressive capability in capturing
high-level latent representations of visual data and synthesizing new images. Two
popular categories of generative models for face manipulation are auto-encoders
(AE) [33, 50] and generative adversarial networks (GAN) [26].

The vanilla AE [33] reconstructs images, aiming at learning latent codes in an
unsupervisedmanner, typically for dimensional reduction and feature learning.Auto-
encoders have been widely used to generate images since the development of varia-
tional auto-encoders (VAE) [49, 50]. Extensivewell-known off-the-shelf facemanip-
ulation software are based on auto-encoders, e.g., DeepFakes [4] and DeepFace-
Lab [1, 76]. These methods tend to learn the identity information for face manipula-
tion through the reconstruction process. However, they usually fit the specific domain
and cannot scale to multiple identities. The manipulation method DF-VAE [41] for
the DeeperForensics-1.0 dataset is based on variational auto-encoders. DF-VAE is an
end-to-end many-to-many face swapping method, which considers style matching
and temporal continuity for video manipulation.

Another category of generative models is GAN [26, 67, 79], where a generator
tries to fool a discriminator by refining the synthesized images continuously until
the discriminator fails to perceive them as fakes. GAN has been extensively applied
in face generation [43–45], image-to-image translation [17, 38, 39, 42, 104], style
transfer [36, 59], and semantic image synthesis [39, 42, 60, 75, 95]. For face manip-
ulation, the open-source DeepFakes software, faceswap-GAN [6], is a typical GAN-
basedmethod. It exploits adversarial losses to the denoising auto-encoder and applies
attention mechanisms to improve the clarity of the swapped faces. ReenactGAN [97]
introduced the notion of boundary latent space for robust many-to-one face reenact-
ment. Some recent GAN-based innovations were designed in the more challenging
face manipulation context, e.g., subject agnostic [72] and occlusion aware [53].
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14.2.2 DeepFakes Detection Methods

The development of face forgery detection approaches is constantly evolving along
with the advancement of face manipulation techniques. One of the early forgery
detection methods is [103]. They proposed a two-stream network for forgery detec-
tion. The initial system was trained to detect facial expression manipulations. Later
on, MesoNet was proposed in [10]. They introduced two different networks com-
posed of few layers in order to focus on the mesoscopic properties of the images.
This method was originally tested in their private database and has been proved to
be an effective approach in the FaceForensics benchmark [81]. A temporal-aware
framework for automatic fake video detection was discussed in [28]. They leveraged
the benefits of both convolutional neural networks (CNN) and recurrent neural net-
works (RNN). They integrated them into a single framework and averaged the results
for evaluation.

More recent forgery detection approaches mainly considered different artifacts
introduced during face manipulation. Some methods were based on visual artifacts,
e.g., face warping artifacts [56], dissonance of saturation [65], discrepancy between
the face and its context [73], region-based artifacts [87], and temporal inconsisten-
cies [91]. Some approaches considered noises fromgenerativemodels, e.g., GANfin-
gerprints [100], convolutional traces [27], and frequency-domain clues [78]. Others
exploited physiological signs as an important forgery detection basis. They utilized
eye blinking [55], head poses [99], heart rate [32], and emotions [68] as important
cues for effective face forgery detection.

Real-world face forgery detection, in which video sources and distortions are
highly unconstrained and unpredictable, remains less explored. Some studies [16,
54, 83, 93] have started to consider the model generalization issue for forgery
detection, which is crucial for real-world face forgery detection. The design of the
DeeperForensics-1.0 dataset [41] and the DeeperForensics Challenge 2020 [40] aims
to offer a benchmark and platform for a more systematic study about this problem.

14.2.3 DeepFakes Detection Datasets

Building a dataset for forgery detection requires a huge amount of effort on data
collection and manipulation. Early forgery detection datasets comprised images
captured under highly restrictive conditions, e.g., MICC_F2000 [11], Wild Web
dataset [101], and Realistic Tampering dataset [52].

Due to the urgent need for video-based face forgery detection, some research
groups have devoted their efforts to create video forensics datasets. UADFV [99]
contained 98 videos, i.e., 49 real videos from YouTube and 49 fake ones gener-
ated by FakeAPP [7]. DeepFake-TIMIT [51] manually selected 16 similar looking
pairs of people from VidTIMIT [82] database. For each of the 32 subjects, they
generated about 10 videos using low-quality and high-quality versions of faceswap-
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GAN [6], resulting in a total of 620 fake videos. Celeb-DF [57] included 408
YouTube videos, mostly of celebrities, from which 795 fake videos were synthe-
sized. FaceForensics++ [81] is the first large-scale face forensic dataset that con-
sisted of 4, 000 fake videos manipulated by four methods (i.e., DeepFakes [4],
Face2Face [86], FaceSwap [5], and NeuralTextures [85])), as well as 1, 000 real
videos from YouTube. Afterward, Google joined FaceForensics++ and contributed
Deep Fake Detection [13] dataset with 3, 431 real and fake videos from 28 actors.
Recently, Facebook invited 66 individuals and built the DFDC preview dataset [24],
which comprised 5, 214 original and tampered videos with three types of augmen-
tations.

To build the DeeperForensics-1.0 dataset, we invite 100 actors and collect high-
resolution (1920 × 1080) source data with these actors showing various poses and
expressions under different illuminations. 3DMM blendshapes [14] are taken as a
reference to supplement some exaggerated expressions. We obtain consents from all
the actors for using and manipulating their faces. A newly proposed end-to-end face
swapping method (i.e., DF-VAE) is exploited to improve the generated video quality.
Besides, seven types of perturbations at five intensity levels are applied to simulate
real-world scenes better. The dataset also includes a mixture of distortions to a single
video. In total, the DeeperForensics-1.0 dataset contains 60, 000 high-quality videos
with 17.6 million frames.

14.2.4 DeepFakes Detection Benchmarks

The FaceForensics benchmark [81] is a popular benchmark for facial manipula-
tion detection. The benchmark included six image-level face forgery detection base-
lines [10, 12, 18, 19, 25, 80]. TheFaceForensics benchmark added several distortions
to the videos by converting them into different compression rates. The benchmark
did not include different perturbation types or a mixture of them. Celeb-DF [57]
also provided a face forgery detection benchmark including seven methods [10, 18,
56, 64, 70, 99, 103] trained and tested on different datasets. In the aforementioned
benchmarks, the test set usually shares a similar distribution with the training set.
Such an assumption may inherently introduce biases and render the detection meth-
ods impractical for face forgery detection in real-world settings with much more
diverse and unknown fake videos.

The DeeperForensics-1.0 benchmark features a challenging hidden test set with
manipulated videos achieving high deceptive scores in user studies. The hidden test
set is richer in distribution than the publicly available training set to better simu-
late the real-world distribution. The benchmark includes the entries submitted to
the DeeperForensics Challenge 2020. The top-3 challenge winning solutions in this
benchmark are elaborated on in Sect. 14.4.5. Temporal information—a significant
cue for video forgery detection besides the single-frame quality—has been consid-
ered. In addition, readers are referred to [41] for more video-level forgery detection
baselines [15, 30, 34, 89, 92] in the DeeperForensics-1.0 benchmark.
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14.3 DeeperForensics-1.0 Dataset

This section introduces the DeeperForensics-1.0 dataset [41]. The dataset consists of
60, 000 videos with 17.6 million frames in total, including 50, 000 collected source
videos and 10, 000 manipulated videos. Toward building a dataset that is suitable for
real-world face forgery detection, DeeperForensics-1.0 is designed with the careful
consideration of quality, scale, and diversity. In Sects. 14.3.1 and 14.3.2, we discuss
the details of data collection and methodology (i.e., DF-VAE) to improve the quality
of data. In Sect. 14.3.3, we show our approaches to increase the scale and diversity
of samples.

14.3.1 Data Collection

Source data is the first factor that highly affects quality. Taking results in Fig. 14.2 as
an example, the source data collection increases the robustness of our face swapping
method to extreme poses, since videos on the Internet usually have limited head pose
variations.

We refer to the identity in the driving video as the “target” face and the identity
of the face that is swapped onto the driving video as the “source” face. Different
from previous works, we find that the source faces play a more critical role than the
target faces in building a high-quality dataset. Specifically, the expressions, poses,

YouTube Scource Target Swapped

Target SwappedCollected Source

Fig. 14.2 Comparison of face swapping results using an in-the-wildYouTube video or the collected
video as source data, with the same manipulation method and setting
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Fig. 14.3 Diversity in identities, poses, expressions, and illuminations in the collected source data
of DeeperForensics-1.0

and lighting conditions of source faces should be much richer in order to perform
robust face swapping. The data collection of DeeperForensics-1.0 mainly focuses
on source face videos. Figure14.3 shows the diversity in different attributes of the
collected source data.

We invite 100 paid actors to record the source videos. Similar to [13, 24], we
obtain consents from all the actors for using and manipulating their faces to avoid
the portrait right issues. The participants are carefully selected to ensure variability in
genders, ages, skin colors, and nationalities. We maintain a roughly equal proportion
w.r.t.each of the attributes above. In particular, we invite 55 males and 45 females
from 26 countries. Their ages range from 20 to 45 years old to match the most
common age group appearing on real-world videos. The actors have four typical
skin tones: white, black, yellow, and brown, with ratio 1:1:1:1. All faces are clean
without glasses or decorations.

A professional indoor environment is built for a more controllable data collection.
We only use the facial regions (detected and cropped by LAB [96]) of the source data;
thus, the background is neglected. We set seven HD cameras from different angles:
front, left, left-front, right, right-front, oblique-above, and oblique-below. The reso-
lution of the recorded videos is high (1920 × 1080). The actors are trained in advance
to keep the collection process smooth. We request the actors to turn their heads and
speak naturally with eight expressions: neutral, angry, happy, sad, surprise, con-
tempt, disgust, and fear. The head poses range from −90◦ to +90◦. Furthermore, the
actors are asked to perform 53 expressions defined by 3DMM blendshapes [14] (see
Fig. 14.4) to supplement some extremely exaggerated expressions.When performing
3DMM blendshapes, the actors also speak naturally to avoid excessive frames that
show a closed mouth.

In addition to expressions and poses,we systematically set nine lighting conditions
from various directions: uniform, left, top-left, bottom-left, right, top-right, bottom-
right, top, and bottom. The actors are only asked to turn their heads under the uniform
illumination, so the lighting remains unchanged on specific facial regions to avoid
many duplicated data samples recorded by the cameras set at different angles. In
total, the collected source data of DeeperForensics-1.0 comprise over 50, 000 videos
with around 12.6 million frames.
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Fig. 14.4 Examples of 3DMM blendshapes and the respective collected source data in
DeeperForensics-1.0

14.3.2 DeepFake Variational Auto-Encoder

To improve the quality of manipulated data in DeeperForensics-1.0, we consider
three key requirements in formulating a high-fidelity face swapping method: (1) The
method should be generic and scalable to generate a large number of videos with high
quality. (2) The problem of face style mismatch caused by the appearance variations
should be addressed. Some failure cases in existing datasets are shown in Fig. 14.5.
(3) Temporal continuity of generated videos should be taken into consideration.

Based on the aforementioned requirements, we propose DeepFake Variational
Auto-Encoder (DF-VAE), a learning-based face swapping framework. DF-VAE con-

Fig. 14.5 Examples of style mismatch problems in several existing face forensics datasets
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sists of three main parts, namely a structure extraction module, a disentangled mod-
ule, and a fusion module. The details of DF-VAE framework are introduced in this
section.

Disentanglement of structure and appearance. The first step of DF-VAE method
is face reenactment—animating the source face with similar expression as the target
face, without any paired data. Face swapping can be considered as a subsequent step
of face reenactment that performs fusion between the reenacted face and the target
background. For the robust and scalable face reenactment, we should disentangle
the structure (i.e., expression and pose) and appearance (i.e., texture, skin color, etc.)
representations of a face. This disentanglement is difficult since the structure and
appearance representations are far from independent.

Let x1:T ≡ {x1, x2, ..., xT } ∈ X be a sequence of source face video frames, and
y1:T ≡ {y1, y2, ..., yT } ∈ Y be the sequence of corresponding target face video
frames. We first simplify our problem and only consider two specific snapshots
at time t , xt , and yt . Let x̃t , ỹt , dt represent the reconstructed source face, the recon-
structed target face, and the reenacted face, respectively.

Consider the reconstruction procedure of the source face xt . Let sx denote the
structure representation and ax denote the appearance information. The face gen-
erator can be depicted as the posteriori estimate pθ (xt |sx , ax ). The solution of our
reconstruction goal, marginal log-likelihood x̃t ∼ log pθ (xt ), by a common varia-
tional auto-encoder (VAE) [50] can be written as follows:

log pθ (xt ) = DKL
(
qφ (sx , ax |xt ) ‖pθ (sx , ax |xt )

)

+L (θ, φ; xt ) ,
(14.1)

where qφ is an approximate posterior to achieve the evidence lower bound (ELBO)
in the intractable case, and the second RHS term L (θ, φ; xt ) is the variational lower
bound w.r.t.both the variational parameters φ and generative parameters θ .

In Eq. (14.1), we assume that both sx and ax are latent priors computed by the
same posterior xt . However, the separation of these two variables in the latent space is
rather difficult without additional conditions. Therefore, DF-VAE employs a simple
yet effective approach to disentangle these two variables.

The blue arrows in Fig. 14.6 demonstrate the reconstruction procedure of the
source face xt . Instead of feeding a single source face xt , we sample another source
face x ′ to construct unpaired data in the source domain. To make the structure rep-
resentation more evident, we use the stacked hourglass networks [69] to extract
landmarks of xt in the structure extraction module and get the heatmap x̂t . Then we
feed the heatmap x̂t to the Structure Encoder Eα , and x ′ to the Appearance Encoder
Eβ . We concatenate the latent representations (small cubes in red and green) and
feed it to the Decoder Dγ . Finally, we get the reconstructed face x̃t , i.e., marginal
log-likelihood of xt .

Therefore, the latent structure representation sx in Eq. (14.1) becomes a more evi-
dent heatmap representation x̂t , which is introduced as a new condition. The unpaired
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Fig. 14.6 The main framework of DeepFake Variational Auto-Encoder (DF-VAE). In training,
we reconstruct the source and target faces in blue and orange arrows, respectively, by extracting
landmarks and constructing an unpaired sample as the condition. Optical flow differences are
minimized after reconstruction to improve temporal continuity. In inference, we swap the latent
codes and get the reenacted face in green arrows. Subsequent MAdaIN module fuses the reenacted
face and the original background resulting in the swapped face

sample x ′ with the same identity w.r.t.xt is another condition, being a substitute for
ax . Equation (14.1) can be rewritten as a conditional log-likelihood:

log pθ

(
xt |x̂t , x ′) = DKL

(
qφ

(
zx |xt , x̂t , x ′) ‖pθ

(
zx |xt , x̂t , x ′))

+L
(
θ, φ; xt , x̂t , x ′) .

(14.2)

The first RHS term KL-divergence is non-negative, we get the following:

log pθ

(
xt |x̂t , x ′) ≥ L(θ, φ; xt , x̂t , x ′)

= Eqφ(zx |xt ,x̂t ,x ′)
[− log qφ

(
zx |xt , x̂t , x ′) + log pθ

(
xt , zx |x̂t , x ′)] ,

(14.3)

and L(θ, φ; xt , x̂t , x ′) can also be written as follows:

L
(
θ, φ; xt , x̂t , x ′) = − DKL

(
qφ

(
zx |xt , x̂t , x ′) ‖pθ

(
zx |x̂t , x ′))

+ Eqφ(zx |xt ,x̂t ,x ′)
[
log pθ

(
xt |zx , x̂t , x ′)] .

(14.4)

We let the variational approximate posterior be a multivariate Gaussian with a
diagonal covariance structure:

log qφ

(
zx |xt , x̂t , x ′) ≡ logN (

zx ;μ, σ 2I
)
, (14.5)

where I is an identity matrix. Exploiting the reparameterization trick [50], the non-
differentiable operation of sampling can become differentiable by an auxiliary vari-
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able with independent marginal. In this case, zx ∼ qφ

(
zx |xt , x̂t , x ′) is implemented

by zx = μ + σε where ε is an auxiliary noise variable ε ∼ N (0, 1). Finally, the
approximate posterior qφ(zx |xt , x̂t , x ′) is estimated by the separated encoders, Struc-
ture Encoder Eα and Appearance Encoder Eβ , in an end-to-end training process by
standard gradient descent.

We discuss the whole workflow of reconstructing the source face. In the target
face domain, the reconstruction procedure is the same, as shown by orange arrows in
Fig. 14.6. During training, the network learns structure and appearance information
in both the source and the target domains. It is noteworthy that even if both yt and
x ′ belong to arbitrary identities, our effective disentangled module is capable of
learning meaningful structure and appearance information of each identity. During
inference, we concatenate the appearance prior of x ′ and the structure prior of yt
(small cubes in red and orange) in the latent space, and the reconstructed facedt shares
the same structurewith yt and keeps the appearance of x ′. DF-VAE framework allows
concatenations of structure and appearance latent codes extracted from arbitrary
identities in inference and permits many-to-many face reenactment.

In summary, DF-VAE is a conditional variational auto-encoder [49] with robust-
ness and scalability. It conditions on two posteriors in different domains. In the
disentangled module, the separated design of two encoders Eα and Eβ , the explicit
structure heatmap, and the unpaired data construction jointly force Eα to learn struc-
ture information and Eβ to learn appearance information.

Style matching and fusion. To fix the obvious style mismatch problems as shown
in Fig. 14.5, we adopt a masked adaptive instance normalization (MAdaIN) module
in DF-VAE. We place a typical AdaIN [35] network after the reenacted face dt . In
the face swapping scenario, we only need to adjust the style of the face area to match
the original background. Therefore, we use a mask mt to guide AdaIN [35] network
to focus on style matching of the face area. To avoid boundary artifacts, we apply
Gaussian Blur to mt and get the blurred mask mb

t .
In our face swapping context, dt is the content input of MAdaIN, and yt is the

style input. MAdaIN adaptively computes the affine parameters from the face area
of the style input:

MAdaIN (c, s) = σ (s)

(
c − μ (c)

σ (c)

)
+ μ (s) , (14.6)

where c = mb
t · dt , s = mb

t · yt . With the low-cost MAdaIN module, we reconstruct
dt again by Decoder Dδ . The blurred maskmb

t is used again to fuse the reconstructed
image with the background of yt . At last, we get the swapped face dt .

The MAdaIN module is jointly trained with the disentangled module in an end-
to-end manner. Thus, by a single model, DF-VAE can perform many-to-many face
swapping with obvious reduction of style mismatch and facial boundary artifacts
(see Fig. 14.7 for the face swapping between three source identities and three target
identities). Even if there are multiple identities in both the source domain and the
target domain, the quality of face swapping does not degrade.
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Fig. 14.7 Many-to-many (three-to-three) face swapping by a singlemodel with obvious reduction
of style mismatch problems. This figure shows the results between three source identities and three
target identities. The whole process is end-to-end

Temporal consistency constraint. Temporal discontinuity of the fake videos gener-
ated by certain facemanipulationmethods leads to obvious flickering of the face area,
making them easy to be spotted by forgery detection methods and human eyes. To
improve temporal continuity, DF-VAE lets the disentangled module learn temporal
information of both the source face and the target face.

For simplification, wemake aMarkov assumption that the generation of the frame
at time t sequentially depends on its previous P frames x(t−p):(t−1). We set P = 1 to
balance quality improvement and training time.

To build the relationship between a current frame and previous ones, we further
make an intuitive assumption that the optical flows should remain unchanged after
reconstruction. We use FlowNet 2.0 [37] to estimate the optical flow x̃ f w.r.t. x̃t
and xt−1 and x f w.r.t.xt and xt−1. Since face swapping is sensitive to minor facial
details which can be greatly affected by flow estimation, we do not warp xt−1 by
the estimated flow like [94]. Instead, we minimize the difference between x̃ f and
x f to improve temporal continuity while keeping stable facial detail generation. To
this end, we propose a new temporal consistency constraint, which can be written as
follows:

Ltemporal = 1

CHW
‖x̃ f − x f ‖1, (14.7)

where C = 2 for a common form of optical flow.
We only discuss the temporal continuity w.r.t.the source face in this section. The

case of the target face is the same. If multiple identities exist in one domain, temporal
information of all these identities can be learned in an end-to-end manner.
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14.3.3 Scale and Diversity

The extensive data collection and the introduced DF-VAE method are designed to
improve the quality of manipulated videos in the DeeperForensics-1.0 dataset. In
this section, we mainly discuss the scale and diversity aspects.

The DeeperForensics-1.0 dataset contains 10, 000 manipulated videos with 5
million frames. We take 1, 000 refined YouTube videos collected by FaceForen-
sics++ [81] as the target videos. Each face of our collected 100 identities is swapped
onto 10 target videos; thus, 1, 000 raw manipulated videos are generated directly by
DF-VAE in an end-to-end process. Thanks to the scalability and multimodality of
DF-VAE, the time overhead of model training and data generation is reduced to 1/5
compared to the common DeepFakes methods, with no degradation in quality. Thus,
a larger scale dataset construction is possible.

To enhance diversity, we apply various perturbations existing in real scenes.
Specifically, as shown in Fig. 14.8, seven types of distortions defined in ImageQuality
Assessment (IQA) [58, 77] are included. Each distortion is divided into five intensity
levels.We apply random-type distortions to the 1, 000 rawmanipulated videos at five
different intensity levels, producing a total of 5, 000 manipulated videos. Besides, an
additional of 1, 000 robust manipulated videos are generated by adding random-type,
random-level distortions to the 1, 000 rawmanipulated videos. Moreover, in contrast
to other datasets [13, 51, 57, 81, 99], each sample of another 3, 000 manipulated
videos in DeeperForensics-1.0 is subjected to a mixture of more than one distortion
(examples shown in Fig. 14.8). The variety of perturbations improves the diversity
of DeeperForensics-1.0 to approximate the data distribution of real-world scenarios
better.

Fig. 14.8 Seven types of perturbations and the mixture of two (Gaussian blur, JPEG compression) /
three (Gaussian blur, JPEG compression, white Gaussian noise in color components) / four (Gaus-
sian blur, JPEG compression, white Gaussian noise in color components, color saturation change)
perturbations in DeeperForensics-1.0.
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14.3.4 Hidden Test Set

Several existing benchmarks [57, 81] have demonstrated high-accuracy face forgery
detection results using their proposed datasets. However, the sources and imposed
distortions of DeepFakes videos are much more variable and unpredictable in real-
world scenarios. Due to the huge biases introduced by a close distribution between
the training and test sets, the actual efficacy of these studies [57, 81] in detecting
real-world face forgery cases remains to be further elucidated.

An indispensable component of DeeperForensics-1.0 is its introduced hidden test
set, which is richer in distribution than the publicly available training set. The hid-
den test set suggests a better real-world face forgery detection setting: (1) Multiple
sources. Fake videos in the wild should be manipulated by different unknown meth-
ods; (2) High quality. Threatening fake videos should have high quality to deceive
human eyes; (3) Diverse distortions. Different perturbations should be taken into
consideration. The ground truth labels are hidden and are used on the host server to
evaluate the accuracy of detection models. The hidden test set will evolve by includ-
ingmore challenging samples along with the development of DeepFakes technology.

Overall, DeeperForensics-1.0 is a new large-scale dataset consisting of over
60, 000 videos with 17.6 million frames for real-world face forgery detection.Good-
quality source videos and manipulated videos constitute two main contributions of
this dataset. The high-diversity perturbations applying to the manipulated videos
enhance the robustness of DeeperForensics-1.0 to simulate real scenes. The dataset
has been released, free to all research communities, for developing face forgery
detection and more general human-face-related research.1,2

14.4 DeeperForensics Challenge 2020

In this section, we detail the DeeperForensics Challenge 2020 on real-world face
forgery detection, which aims at soliciting innovations to advance the state of the art
in DeepFakes detection. The challenge uses the DeeperForensics-1.0 dataset intro-
duced above, and the model evaluation is performed online on the current version of
the hidden test set. Participants are expected to devise robust and generic methods for
forgery detection in real-world scenarios. The challenge results constitute an essen-
tial part of the DeeperForensics-1.0 benchmark. We describe the detailed challenge
information and summarize the winning solutions to take a closer look at the current
status and possible future development of real-world face forgery detection.

1 GitHub (dataset and code): https://github.com/EndlessSora/DeeperForensics-1.0.
2 Project page: https://liming-jiang.com/projects/DrF1/DrF1.html.

https://github.com/EndlessSora/DeeperForensics-1.0
https://liming-jiang.com/projects/DrF1/DrF1.html
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14.4.1 Platform

The DeeperForensics Challenge 2020 is hosted on the CodaLab platform3 in con-
junction with ECCV 2020, the second Workshop on Sensing, Understanding, and
Synthesizing Humans.4 The online evaluation is conducted using Amazon Web Ser-
vices (AWS).5

First, participants register their teams on the CodaLab challenge website. Then,
they are requested to submit their models to the AWS evaluation server (with one 16
GB Tesla V100 GPU for each team) to perform the online evaluation on the hidden
test set. When the evaluation is done, participants receive the encrypted prediction
files through an automatic email. Finally, they submit the result file to the CodaLab
challenge website.

14.4.2 Challenge Dataset

The DeeperForensics Challenge 2020 employs the DeeperForensics-1.0 dataset [41]
that was proposed in CVPR 2020. The detailed information of this dataset has been
provided in Sect. 14.3. The evaluation of the challenge is performed online on the
current version of the hidden test set (Sect. 14.3.4).

All the participants using the DeeperForensics-1.0 dataset should agree to its
Terms of Use [9]. They are recommended but not restricted to train their algorithms
on DeeperForensics-1.0. The use of any external datasets should be disclosed and
follow the Terms of Use.

14.4.3 Evaluation Metric

Similar to Deepfake Detection Challenge (DFDC) [2], the DeeperForensics Chal-
lenge 2020 uses the binary cross-entropy loss (BCELoss) to evaluate the performance
of face forgery detection models:

BCELoss = − 1

N

N∑

i=1

[
yi · log (p (yi )) + (1 − yi ) · log (1 − p (yi ))

]
, (14.8)

where N is the number of videos in the hidden test set, yi denotes the ground truth
label of video i (fake: 1, real: 0), and p (yi ) indicates the predicted probability that
video i is fake. A smaller BCELoss score is better, which directly contributes to a

3 Challenge website: https://competitions.codalab.org/competitions/25228.
4 Workshop website: https://sense-human.github.io/index_2020.html.
5 Online evaluation website: https://aws.amazon.com.

https://competitions.codalab.org/competitions/25228
https://sense-human.github.io/index_2020.html
https://aws.amazon.com
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higher ranking. If the BCELoss score is the same, the one with less runtime will
achieve a higher ranking. To avoid an infinite BCELoss that is both too confident
and wrong, the score is bounded by a threshold value.

14.4.4 Timeline

The DeeperForensics Challenge 2020 lasted for nine weeks—eight weeks for the
development phase and one week for the final test phase.

The challenge officially started at the ECCV 2020 SenseHuman Workshop on
August 28, 2020, and it immediately entered the development phase. In the devel-
opment phase, the evaluation is performed on the test-dev hidden test set, which
contains 1, 000 videos representing general circumstances of the full hidden test set.
The test-dev hidden test set is used to maintain a public leaderboard. Participants can
conduct four online evaluations (each with 2.5h of runtime limit) per week.

The final test phase started on October 24, 2020. The evaluation is conducted on
the test-final hidden test set, containing 3, 000 videos (also including test-dev videos)
with a similar distribution as test-dev, for the final competition results. A total of two
online evaluations (each with 7.5h of runtime limit) are allowed. The final test phase
ended on October 31, 2020.

Finally, the challenge results were announced in December 2020. In total, 115
participants registered for the competition, and 25 teams made valid submissions.

14.4.5 Results and Solutions

Among the 25 teamswhomade valid submissions,many participants achieve promis-
ing results.We show the final results of the top-5 teams in Table14.1. In the following
subsections, we present the winning solutions of top-3 entries.

Table 14.1 Final results of the top-5 teams in the DeeperForensics Challenge 2020. The runtime
is shown in seconds.

Ranking TeamName UserName BCELoss↓ Runtime↓
1 Forensics BokingChen 0.2674 7690

2 RealFace Iverson 0.3699 11368

3 VISG zz110 0.4060 11012

4 jiashangplus jiashangplus 0.4064 16389

5 Miao miaotao 0.4132 19823
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Fig. 14.9 The framework of the first-place solution in the DeeperForensics Challenge 2020

• Solution of First Place

As shown in Fig. 14.9, the method designed by the champion team contains three
stages, namely Face Extraction, Classification, and Output.

Face Extraction. They first extract 15 frames from each video at equal intervals
using VideoCapture of OpenCV. Then, they use the face detector MTCNN [102] to
detect the face region of each frame and expand the region by 1.2 times to crop the
face image.

Classification. They define the prediction of the probability that the face is fake
as the face score. They use EfficientNet [84] as the backbone, which was proven
effective in the Deepfake Detection Challenge (DFDC) [2]. The results of three
models (EfficientNet-B0, EfficientNet-B1, and EfficientNet-B2) are ensembled for
each face.

Output. The final output score of a video is the predicted probability that the video
is fake, which is calculated by the average of face scores for the extracted frames.

Implementation Details. The team employs EfficientNet pre-trained on ImageNet
as the backbone. They select EfficientNet-B0, EfficientNet-B1, and EfficientNet-B2
for the model ensemble. In addition to DeeperForensics-1.0, they use some other
public datasets, i.e., UADFV [99], Deep Fake Detection [13], FaceForensics++ [81],
Celeb-DF [57], and DFDC Preview [24]. They balance the class samples with the
down-sampling mode. The code of the champion solution has been made publicly
available.6

– Training: Inspired by the DFDC winning solution, appropriate data augmentation
could contribute to better results. As for the data augmentation, the champion team
uses the perturbation implementation in DeeperForensics-1.0 [8] during training.
They only apply the image-level distortions: color saturation change (CS), color
contrast change (CC), local block-wise (BW), white Gaussian noise in color compo-
nents (GNC), Gaussian blur (GB), and JPEG compression (JPEG). They randomly
mix up these distortions with a probability of 0.2. Besides, they also try other data

6 https://github.com/beibuwandeluori/DeeperForensicsChallengeSolution.

https://github.com/beibuwandeluori/DeeperForensicsChallengeSolution
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Fig. 14.10 The framework of the second-place solution in the DeeperForensics Challenge 2020

augmentation [3], but the performance improvement is slim.The images are resized to
224 × 224. The batch size is 128, and the total training epoch is 50. They useAdamW
optimizer [62] with initial learning rate of 0.001. Label smoothing is applied with a
smoothing factor of 0.05.

– Testing: The testing pipeline follows the three stages in Fig. 14.9. They clip the
prediction score of each video in a range of [0.01, 0.99] to reduce the large loss
caused by the prediction errors. In addition to the best BCELoss score, their fastest
execution speed may be attributed to the use of the faster face extractor MTCNN and
the ensemble of three image-level models with fewer parameters.

• Solution of Second Place

Face manipulated video contains two types of forgery traces, i.e., image-level arti-
facts and video-level artifacts. The former refers to the artifacts such as blending
boundaries and abnormal textures within image, while the latter is the face jitter
problem between video frames. Most previous works only focused on artifacts in
a specific modality and lacked consideration of both. The team in the second place
proposes to use an attention mechanism to fuse the temporal information in videos
and further combine it with an image model to achieve better results.

The overall framework of their method is shown in Fig. 14.10. First, they use
RetinaFace [22] with 20% margin to detect faces in video frames. Then, the face
sequence is fed into an image-based model and a video-based model, where the
backbones are both EfficientNet-b5 [84] with NoisyStudent [98] pre-trainedweights.
The image-basedmodel predicts frame by frame and takes themedian of probabilities
as the prediction. The video-based model takes the entire face sequence as the input
and adopts an attention module to fuse the temporal information between frames.
Finally, the per-video prediction score is obtained by averaging the probabilities
predicted by the above two models.

Implementation Details. The team implements the proposed method via PyTorch.
All the models are trained on 8 NVIDIA Tesla V100 GPUs. In addition
to the DeeperForensics-1.0 dataset, they use three external datasets, i.e.,
FaceForensics++ [81], Celeb-DF [57], and Diverse Fake Face Dataset [21]. They
used the official splits provided by the above datasets to construct the training, val-
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idation, and test sets. They balance the positive and negative samples through the
down-sampling technique.
– Training: The second-place team uses the following data augmentations: Ran-
dAugment [20], patch Gaussian [61], Gaussian blur, image compression, random
flip, random crop, and random brightness contrast. They also employ the perturba-
tion implementation in DeeperForensics-1.0 [8]. For the image-based model, they
train a classifier based on EfficientNet-b5 [84], using binary cross-entropy loss as the
loss function. They adopt a two-stage training strategy for the video-based model.
In stage-1, they train an image-based classifier based on EfficientNet-b5. In stage-2,
they fix the model parameters trained in stage-1 to serve as face feature extractor and
introduce an attention module to learn temporal information via nonlinear transfor-
mations and softmax operations. The input of the network is the face sequence (i.e., 5
frames per video) in stage-2, and only the attention module and classification layers
are trained. The binary cross-entropy loss is adopted as the loss function. The input
size is scaled to 320 × 320. The Adam optimizer [47] is used with a learning rate of
0.0002, β1 = 0.9, β2 = 0.999, and weight decay of 0.00001. The batch size is 32.
The total number of training epochs is set to 20, and the learning rate is halved every
5 epochs.
– Testing: They sample 10 frames at equal intervals for each video and detect faces
by RetinaFace [22] as in the training phase. Then, the face images are resized to
320 × 320. Test-time augmentation (TTA) (e.g., flip) is applied to get 20 images (10
original and 10 flipped), which are fed into the network to get the prediction score.
They clip the prediction score of each video to [0.01, 0.99] to avoid excessive losses
on extreme error samples.

• Solution of Third Place

Similar to the second-place entry, the team in the third place also utilize the poor
temporal consistency in existing face manipulation techniques. To this end, they
propose to use a 3D convolutional neural network (3DCNN) to capture spatial-
temporal features for forgery detection. The framework of their method is shown in
Fig. 14.11.

Implementation Details. First, the team crops faces in the video frames using the
MTCNN [102] face detector. They combine all the cropped face images into a face
video clip. Each video clip is then resized to 64 × 224 × 224 or 64 × 112 × 112.
Various data augmentations are applied, including Gaussian blur, white Gaussian
noise in color components, random crop, random flip, etc. Then, they use the pro-
cessed video clips as the input to train a 3D convolutional neural network (3DCNN)
using the cross-entropy loss. They examine three kinds of networks, I3D [15], 3D
ResNet [29], and R(2+1)D [90]. These models are pre-trained on the action recogni-
tion datasets, e.g., kinetics [46]. In addition to DeeperForensics-1.0, they use three
external public face manipulation datasets, i.e., the DFDC dataset [23], Deep Fake
Detection [13], and FaceForensics++ [81].



14 DeepFakes Detection: The DeeperForensics Dataset and Challenge 323

Fig. 14.11 The framework of the third-place solution in the DeeperForensics Challenge 2020

14.5 Discussion

In this chapter,we have introduced a new large-scale dataset namedDeeperForensics-
1.0. The dataset facilitates the research of face forgery detection in real-world sce-
narios. We have also presented several methods that consider different potential
aspects in developing a robust face forgery detection model. Winning solutions of
the DeeperForensics Challenge 2020 have achieved promising performance.

In summary, there are three key points inspired by these methods that could
improve real-world face forgery detection. (1) Strong backbone. Backbone selec-
tion for a forgery detection model is important. The high-performance winning solu-
tions are based on state-of-the-art EfficientNet. (2) Diverse augmentations. Applying
appropriate data augmentations may better simulate real-world scenarios and boost
themodel performance. (3) Temporal information. Since the primary detection target
is the fake videos, temporal information can be a critical clue to distinguish the real
from the fake.

Despite the promising results, we believe that there is still much room for improve-
ment in the real-world face forgery detection task. (1) More suitable and diverse data
augmentations may contribute to a better simulation of real-world data distribution.
(2) Developing a robust detection method that can cope with unseen manipulation
methods and distortions is a critical problem. At this stage, we observe that the model
training is data-dependent. Although data augmentations can help improve the per-
formance to a certain extent, the generalization ability of most forgery detection
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models is still poor. (3) Different artifacts in the DeepFakes videos (e.g., checker-
board Artifacts and fusion boundary artifacts) remain rarely explored.

14.6 Further Reading

Interested readers are referred to the following further readings:

• [41] formore detailed information about theDeeperForensics-1.0 dataset andmore
detection baselines in theDeeperForensics-1.0 video forgery detection benchmark.

• [40] for more detailed information about the DeeperForensics Challenge 2020.
• [23, 31, 57, 81] for other closely related DeepFakes detection datasets.
• [66, 71, 88] for surveys on DeepFakes creation and detection.
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Chapter 15
Face Morphing Attack Detection
Methods

Ulrich Scherhag, Christian Rathgeb, and Christoph Busch

Abstract Morphing attacks pose a serious threat to face recognition systems, espe-
cially in the border control scenario. In order to guarantee a secure operation of
face recognition algorithms in the future, it is necessary to be able to reliably detect
morphed facial images and thus be able to reject them during enrolment or verifica-
tion. This chapter provides an overview of morphing attack detection algorithms and
metrics to measure and compare their performance. Different concepts of morphing
attack detection are introduced and state-of-the-art detection methods are evaluated
in a comprehensive cross-database experiments considering various realistic image
post-processings.

15.1 Introduction

Facial recognition systems have been found vulnerable to Morphing Attacks (MAs).
In these attacks, the facial images of two (or more) individuals are combined (mor-
phed) and the resulting morphed facial image is then presented during registration as
a biometric reference. If themorphed image is accepted, it is likely that all individuals
that contributed to themorphed facial image can be successfully authenticated against
it. Morphing attacks thus pose a serious threat to facial recognition systems, in partic-
ular in scenarios where the reference image is often provided in printed form by the
applicant. The vulnerability of facial recognition systems to faceMAs is already well
known [5, 29]. Many different approaches for Morphing Attack Detection (MAD)
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Fig. 15.1 Categorisation to no-reference and differential morphing attack detection scheme

have been proposed in the scientific literature. For a comprehensive survey on pub-
lished morphing attack detection methods the interested reader is referred to [29,
31]. An automated detection of morphed face images is vital to retain the security
of operational face recognition systems. According to [25], MAD systems can be
divided into two categories: no-reference or single image MAD and reference-based
or differential MAD. The corresponding scheme for single image MAD is shown in
Fig. 15.1a.

The image to be analysed is passed to the MAD system. First, features are
extracted, based on which a classifier decides whether the presented image is a
morph or bona fide. The single image MAD scheme can be used during enrolment
as well as during verification.

Differential MAD can be used in scenarios where another image, a Trusted Live
Capture (TLC), is available in addition to the suspected morph. For example, during
verification in an Automated Border Control (ABC) gate, when the probe image is
acquired in addition to the extracted reference image from the electronic travel doc-
ument (suspected morph). The schematic process of differential MAD is depicted in
Fig. 15.1b. In general, the same features are extracted from both provided images.
These are compared according to a fixed metric and the classifier uses this difference
to decide if the suspected morph is a morph or bona fide. This method has the advan-
tage that the additional information of the TLC is used for the decision. However, it
should be noted that in real scenarios TLCs are usually acquired in semi-supervised
environments, e.g. border gate, and therefore may show a lower quality and higher
variance compared to the suspected images.

This bookchapter is organised as follows: Sect. 15.2 brieflydiscusses relatedworks
on MAD. Section15.3 describes the considered MAD pipeline. The used database
is described in Sect. 15.4. MAD methods are presented in Sect. 15.5 and evaluated
in Sect. 15.6. Finally, a summary is given in Sect. 15.7.
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15.2 Related Works

In recent years, numerous approaches for the automated detection of MAs have been
presented. The majority of works is based on the single image scenario. The single
image MAD approaches can be categorised into three classes: texture descriptors,
e.g. in [20, 24, 26], forensic image analysis, e.g. in [23, 32], and methods based on
deep neural networks, e.g. in [7, 21]. These differ in the artefacts they can potentially
detect. A brief overview is given in Table15.1.

Differential MAD can be categorised into approaches that perform a biometric
comparison directly with the two facial images, e.g. in [30], and algorithms that
attempt to reverse the (potential) morphing process, e.g. in [6, 16]. In the former
category, features from both face images, the potentially morphed facial image and
the probe image, are extracted and then compared. The comparison of the two fea-
ture vectors and the classification as bona fide comparison or MA is usually done
using machine learning techniques. By specifically training these procedures for the
recognition of MAs, they can—in contrast to facial recognition algorithms—learn to
recognise specific patterns within the differences between the two feature vectors for
these attacks. This has already been demonstrated for features derived from general
purpose texture descriptors. While training a deep neural network from scratch in
order to learn discriminative features for MAD requires a high amount of training
data, pre-trained deep networks can be employed. The second type of differential
MAD procedure aims at reversing the morphing process in the reference image (“de-
morphing”) by using a probe image. If the reference image was morphed from two
images and the probe image shows a person contributing to the morph (the attacker),
the face of the accomplice would ideally be reconstructed, which would be rejected
in a subsequent comparison with the probe image using biometric face recognition;
if, on the other hand, a bona fide reference image is available, the same subject should
still be recognisable after the reversal of a presumed morph process with the probe
image, and thus the subsequent comparison of the facial recognition process should
be successful.

Despite promising results reported in many studies, the reliable detection of mor-
phed facial images is still an open research task [14]. In particular, the generalis-

Table 15.1 Categories of singe image MAD approaches and analysed artefacts

Category Analysed artefacts

Texture descriptors Smoothened skin texture, ghost artefacts/
half-shade effects (e.g. on pupils, nostrils),
distorted edges, offset image areas

Forensic image analysis Sensor pattern noise, compression artefacts,
inconsistent illumination or colour values

Deep-learning approaches All possible artefacts learned from a training
dataset
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ability and robustness of the published approaches could not yet be proven while
some results are hardly comparable and comprehensible. The vast majority of pub-
lications use internal databases of the respective research groups for training and
testing [27]. In addition, different evaluation metrics are used in the publications.
Since most implemented MAD procedures are not made publicly accessible, com-
parative independent evaluation of the detection performance is difficult. First efforts
towards benchmarking MAD algorithms have been made in [15, 22]. Furthermore,
most publications only use images from a single database andmorphs generated with
a single algorithm for training and testing, so that the generalisation capability of
the methods cannot be assessed across different databases and morphing methods.
In publications on differential MAD, the comparison images used often show a low
variance with respect to poses, facial expressions and illumination and are usually
produced shortly after the reference image—in real scenarios such as border con-
trol, a much higher variance is to be expected. In addition, many studies neglect the
probable application of image post-processing techniques by an attacker, such as
subsequent image sharpening, and the print-scan transformation [14].

15.3 Morphing Attack Detection Pipeline

The individualmodules of the pipeline considered forMADalgorithms are illustrated
in Fig. 15.2. The pipeline consists of the following 4 steps: data preparation, feature
extraction, feature preparation, and classifier training.

15.3.1 Data Preparation and Feature Extraction

For most feature extractors it is necessary to pre-process the face image beforehand.
The result of feature extractors depends on the resolution of the analysed image,
requiring a normalisation of the image size. Especially with the TLCs, variances in
position and pose may occur, which can be corrected by the data preparation. In
addition, it is useful, for example, for texture-based feature extractors, to crop the
image to the relevant facial area, ensuring that no information from the background
influences the feature vector.

Depending on the feature extractor selected and the configuration, the obtained
feature vector will contain different information, information not contained in the

Morph
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Preparation

normalised
images

Feature
Extraction

extracted
features

Feature
Preparation

normalised
features

Classifier
Training

Fig. 15.2 Design of MAD pipeline
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feature vector is not available to the algorithms in the further process. For example, if
a basic Local Binary Patterns (LBP) histogram is calculated, the feature vector will
not contain any spatial information. If, despite the use of LBP histograms, spatial
information is to be included in the feature vector, the image to be analysed can
be divided into cells, a histogram can be calculated for each cell and the resulting
histograms can be concatenated. Thus, spatial information in resolution of the cells
can be preserved, however, the length of the feature vector increases accordingly.

15.3.2 Feature Preparation and Classifier Training

Once the feature vectors have been created, they have to be prepared for the training
of the classifier. For example, many classifiers only accept one-dimensional input
data, requiringmulti-dimensional characteristics to be prepared accordingly. Further,
for differentialMADalgorithms, thismodule combines the feature vectors of the sus-
pected morph and the TLC. The choice of the combination method is arbitrary but
determines the length of the resulting feature vector as well as the contained infor-
mation. Most classifiers require normalised data for optimal training, thus feature
normalisation may be required.

In the last module classifiers are trained on basis of the previously prepared fea-
ture vectors. In order to achieve the best possible separation of the feature vectors
into classes, appropriate classifiers and parameters have to be chosen. The optimal
classifier and parameters depend on the information in the respective feature vectors.

15.4 Database

The face image database used in this work is based on the publicly available FERET
[19] and FRGC [18] face image databases. The creation of the database requires
3 categories of images: bona fide reference images, morph input images, and TLC
images. The bona fide reference images correspond to an unaltered passport image
and should meet the corresponding quality criteria. The morph input images are used
in pairs for the morphing process. These should be of passport image quality as well.
For the selection of the images in passport image quality, the guidelines standardised
in ISO/IEC 19794-5 [8] were followed. Consequently, only images with a closed
or minimally opened mouth and a neutral facial expression or a slight smile were
included. Images with reflecting glasses were discarded. The class of TLC images
corresponds to live recordings, for example, at an ABC gate. Therefore, the images
should not be of a controlled, high quality, as this cannot be expected from semi-
supervised capturing. For this class, all images not classified as suitable for passport
photos in the above pre-selection can be considered. Thus, these images may contain
variations in sharpness, lighting, facial expressions, pose, etc.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 15.3 Examples of reference and grey scale TLC images for FERET

Table 15.2 Composition of the database resulting from the image pre-selection

Database Subjects Male Female Bona fide Morph input TLC

FERET 530 330 200 530 530 791

FRGC 533 231 302 984 964 1726

The partitioning of the images into the classes passport image quality and TLC
qualitywas carried outmanually. In the FERETsubset,mainly different facial expres-
sions and slight rotations in the pose are included, examples are given in Fig. 15.3.
In the FRGC subset, the variances are more significant. In addition to different facial
expressions, different backgrounds, illuminations and focuses of the images can be
observed, examples are shown in Fig. 15.4.

Based on the two pre-sorted classes, the images are divided into three categories:
bona fide reference images, morph input images and TLC images. In order to create
realistic scenarios, the time of capture between the passport images and the probe
images is maximised as far as possible on the basis of the databases. Due to the large
differences in the number of images per subject between the databases, different
protocols are used for both databases. The composition of the resulting database is
listed in Table15.2.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 15.4 Examples of reference and grey scale TLC images for FRGC

15.4.1 Image Morphing

In order to enable the database to be used for evaluating the generalisability of
MAD algorithms towards differing morphing algorithms, four different morphing
algorithms are applied to construct the database, hereafter referred to as FaceFusion,1

FaceMorpher,2 OpenCV and UBO Morpher:

• FaceFusion is a proprietary morphing algorithm. Originally being an iOS app,
an adaptation for Windows which uses the 68 landmarks of Dlib and Delaunay
triangles was applied. After the morphing process, certain regions (eyes, nostrils,
hair) of the first face image are blended over themorph to hide artefacts. Optionally,
the corresponding landmarks of upper and lower lips can be reduced as described
in [12] to avoid artefacts at closed mouths. The created morphs have a high quality
and low to no visible artefacts. An example is shown in Fig. 15.5b.

• FaceMorpher is an open-source implementation using Python. In the version
applied for this work, the algorithm uses STASM for landmark localisation. Delau-
nay triangles, which are formed from the landmarks, are warped and blended. The

1 www.wearemoment.com/FaceFusion.
2 https://github.com/alyssaq/face_morpher.

www.wearemoment.com/FaceFusion
https://github.com/alyssaq/face_morpher
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(a) Subject 1 (b) FaceFusion (c) FaceMorpher

(d) OpenCV (e) UBO Morpher (f) Subject 2

Fig. 15.5 Examples of morphing face images a and f using all four algorithms (b)–(e)

area outside the landmarks is averaged. The generated morphs show strong arte-
facts in particular in the area of neck and hair. An example is shown in Fig. 15.5c.

• OpenCV is a self implemented morphing algorithm derived from “Face Morph
Using OpenCV”.3 This algorithmworks similar to FaceMorpher. Important differ-
ences between the algorithms are that for landmark detection Dlib is used instead
of STASM and that for this algorithm landmarks are positioned at the edge of the
image, which are also used to create morphs. Thus, in contrast to FaceMorpher,
the edge does not consist of an averaged image, but like the rest of the image, of
morphed triangles. However, strong artefacts outside the face area can be observed,
which is mainly due to missing landmarks. An example is shown in Fig. 15.5d.

• UBOMorpher is the morphing tool of University of Bologna, as used, e.g. in [6].
This algorithm receives two input images as well as the corresponding landmarks.
Dlib landmarks were used in this work. Themorphs are generated by triangulation,

3 www.learnopencv.com/face-morph-using-opencv-cpp-python.

www.learnopencv.com/face-morph-using-opencv-cpp-python
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Table 15.3 Number of comparisons per post-processing in the resulting database

Database Genuine
Comp. Bona
Fide Comp.

Impostor
comparisons

Morph
comparisons

Bona fide
samples

Morph
samples

FERET 791 418,966 791 530 529

FRGC 3,298 1,695,086 3,246 984 964

warping and blending. To avoid artefacts in the area outside the face, the morphed
face is copied to the background of one of the original images. Even if the colours
are adjusted, visible edges may appear at borderline of the blended areas. An
example is shown in Fig. 15.5e.

The morph input images are used to create the morphs. Morph pairs were formed
in a way to keep the ratio between morphs and bona fide images in balance. Two
parameters, namely, sex andwhether the subject wears glasses, are taken into account
for the construction of the morph pairs. Morphing subjects of different sexes usually
results in morphs with unnatural appearance. The creation of morphs with subjects of
different sex are not to be expected in the real scenario, thus they are excluded from
the database. Furthermore, it has been found, that if two subjects wearing glasses are
morphed, the resultingmorph contains double glasses. To avoid this kind of artefacts,
morph pairs are formed with at most one subject wearing glasses.

The morph pairs are formed within one face database, in order to enable a clear
separation of datasets during training and evaluation. Due to the different number of
morph input images per subject in both databases, different protocols are defined.
With each morphing tool morphs were created from all available morph pairs. The
morphs were created with a blending and warping factor of 0.5. However, due to
the automatic improvement processes of FaceFusion and UBOMorpher, the morphs
created by these algorithms are not symmetrical.

The properties of the resulting database are listed in Table15.3. For the evaluation
of differential MAD algorithms the number of bona fide comparisons and morph
comparisons is relevant, for single image MAD algorithms the number of bona fide
samples and morph samples, respectively. The values given are per post-processing,
quadrupling the actual number of passport images contained in the database.

15.4.2 Image Post-Processing

The passport images (morph and bona fide) and the TLC images are post-processed in
a different way. The TLC images are converted to greyscale, as some camera systems
used at border control are only providing monochrome images. Since the morphing
algorithms produce different, and sometimes recognisable, outputs, for example, by
partially normalising the images, all passport images (including the bona fides) are
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(a) original (b) resized (c) JPEG2000 (d) Print/Scan

Fig. 15.6 Examples of an original image and the three post-processing types

normalised. This also prevents from over-fitting to artefacts not present in a real
scenario, such as different image sizes between morphs and bona fides. During the
normalisation process, images are scaled to 960× 720 pixels, resulting in a face
region of 320× 320 pixels.

Depending on the process by which the facial image is inserted into the passport,
various post-processing steps are performed on the image. To reflect the realistic
scenarios, the database contains four different post-processing chains for all passport
photographs (Fig. 15.6):

• Unprocessed: The images are not further processed. In the text below referred to
as NPP (no post-processing). This serves as baseline.

• Resized: The resolution of the images is reduced by half, reflecting the average
size of a passport image. This pre-processing corresponds to the scenario that an
image is submitted digitally by the applicant.

• JPEG2000: The images are resized by half and then compressed using JPEG2000,
awavelet-based image compressionmethod that is recommended for EU passports
[4]. The setting is selected in a way that a target file size of 15KB is achieved.
This scenario reflects the post-processing path of passport images if handed over
digitally at the application desk.

• Print/Scan–JPEG2000 The original images (uncompressed and not resized) are
first printed with a high quality laser printer (Fujifilm Frontier 5700R Minlab
on Fujicolor Crystal Archive Paper Supreme HD Lustre photo paper) and then
scanned with a premium flatbed scanner (Epson DS-50000) with 300 dpi. A dust
and scratch filter is then applied in order to reduce image noise. Subsequently, the
images are resized by half and then compressed to 15 KB using JPEG2000.4 This
scenario reflects the post-processing path of passport images if handed over at the
application desk as a printed photograph.

4 Due to the glossy print, the scans exhibit a visible pattern of the paper surface, which is only partly
removed by the dust and scratch filter and results in stronger compression artefacts than for scans
of glossy prints.
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15.5 Morphing Attack Detection Methods

Different types of MAD methods are considered in a single image and differential
scenario. According to the previously described MAD pipeline, these use a similar
pre-processing and the same classification. For the feature extraction step different
types of texture descriptors are employed, including traditional algorithms as well
as gradient-based methods. In addition, deeply learned features are used.

15.5.1 Pre-Processing

In the pre-processing, face images are normalised by applying suitable scaling, rota-
tion and padding/cropping to ensure alignment with respect to the eyes’ positions.
Precisely, facial landmarks are detected applying the dlib algorithm [11] and align-
ment is performed with respect to the detected eye coordinates with a fixed position
and an intra-eye distance of 180 pixels. Subsequently, the normalised images are
cropped to regions of 160×160 pixels centred around the tip of the nose.

15.5.2 Feature Extraction

For the feature extraction step, three types of descriptors are considered: texture
descriptors, gradient-based descriptors, as well as descriptors learned by a deep
neural network.

Texture Descriptors: During the creation ofmorphed facial images, themorphing
process introduces changes into the image that can be used to detect said images.
In particular, these changes are reflected by faulty regions, such as overlapping
landmarks, which result in incorrectly distorted triangles, as shown in Fig. 15.7a.
Another error common to automated morphing algorithms is artefacts in the eye
region, which is particularly prone to errors due to the high contrast provided
by shadows and wrinkles, and the difficult detection of the iris. An example of
artefacts in the eye region is given in Fig. 15.7b. Furthermore, ghost artefacts can
be caused by landmarks that are too few or too poorly positioned. This happens
frequently in the area of the neck or hair, as visualised in Fig. 15.7c. In order to be
able to map this kind of image changes in feature vectors, texture descriptors can
be used. In this work, the suitability of LBP [1] and Binarized Statistical Image
Features (BSIF) [10] for detecting these artefacts is investigated.

By calculating the classical LBP histogram obtained from 3 LBP patches, any
local information contained in the image is discarded. To preserve local infor-
mation, the LBP image can be divided into cells, subsequently a histogram is
calculated for each cell. As a result, the length of the feature vector multiplies by
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the number of cells, but spatial information is obtained in resolution of the cell
division. An inevitable correlation exists between cell division, patch size, image
size and the resulting histogram. The finer the cell division and the larger the
patch, the fewer values can be calculated per cell and the sparser the histogram.
As the resolution increases, the number of values per cell increases as well. For
the applied patch sizes and the region of 160× 160 pixels, a subdivision into
4× 4 cells has shown to be appropriate, thus it is implemented in addition to the
LBP calculation without cell division.

As a further texture descriptor, BSIF is used. As for LBP, it has been shown that
the use of larger BSIF patches results in more robust systems, but using smaller
BSIF patches results in significantly higher performance [28]. In order to allow
a better comparison to BSIF with a patch size of 3× 3 pixels with 8 filters are
used. The resulting feature vector is of length 256. Also, to ensure comparability,
the same configuration as for LBP of division into 4× 4 cells is implemented.

Gradient-based Descriptors: Histograms of Oriented Gradients (HOG) [2, 13]
represents a gradient-based descriptor. For HOG, the definition of the parameters
influences the result of the histogram calculation, as well as the length and content
of the feature vector. In order to achieve a robust and general applicable HOG
extraction, recommended standard parameters5 are applied, namely 9 orientations,
8× 8 pixels per cell (which corresponds to 20× 20 cells for regions of 160× 160
pixels), and 3× 3 cells per block, resulting in a feature vector of length 26,244.

Deep Features: Machine learning algorithms, especiallyDeepConvolutionalNeu-
ral Networks (D-CNN), can be used to extract statistically significant features
from images in addition to hand-crafted feature extractors. The difficulty of this
approach is the dependence of the information represented in the extracted fea-
tures on the nature of the training data used to train the feature extractor. If the
wrong training data is chosen, this might cause an over-fitting of the feature
extractor, resulting in very good results on known data, which, however, cannot
be reproduced in a real use case on unknown data. In order to avoid this effect,
only D-CNN pre-trained for face recognition are applied in this thesis. These
networks have been trained to extract representative features from facial images,
without containing morphed facial images in the training process, thus implicitly
preventing an over-fitting to artefacts of a specific morphing algorithm. In the
implemented MAD pipeline the feature extractors of three different face recogni-
tion systems are used, which are described inmore detail in the following sections.

In the MAD pipeline the existing implementation6 of the authors of [3] is
utilised. In contrast to the previously mentioned methods, here the images are

5 The standard parameters are derived from the documentation of the used HOG implementation:
https://scikit-image.org/docs/dev/api/skimage.feature.html.
6 The corresponding source code can be found at:
https://github.com/deepinsight/insightface.

https://scikit-image.org/docs/dev/api/skimage.feature.html
https://github.com/deepinsight/insightface
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(a) Example of errors intro-
duced by incorrectly distorted
triangles

(b) Example of errors in eye re-
gion

(c) Example of errors in hair re-
gion

Fig. 15.7 Example of errors introduced by incorrect morphing

normalised using MTCNN and scaled to 112× 112 pixels, prior to training or
feature extraction. The authors offer several pre-trained models, in this pipeline
the model LResNet50E-IR,ArcFace@ms1m-refine-v1 is chosen, since, according
to the authors, it achieves themost stable performance on the tested databases. The
architecture of the selected network is, as the name suggests, a residual network
comprised of 50 layers. A residual network is characterised by shortcut connec-
tions between different layers, allowing the output of a previous layer (residuals)
to be processed as input on subsequent layers, simplifying the computationally
expensive training of very deep CNN.

15.5.3 Classification

In a single image MAD system, the detector processes only the suspected reference
image. For this detection approach, the extracted feature vectors are directly anal-
ysed. In contrast, in the differential detection systems, a trusted live capture from
an authentication attempt serves as additional source of information for the detec-
tor. This information is utilised by estimating the vector differences between feature
vectors extracted from processed pairs of images. Specifically, an element-wise sub-
traction of feature vectors is performed.

Support Vector Machines (SVMs) with Radial Basis Function (RBF) kernels
are used to distinguish between bona fide and retouched face images. In order to
train SVMs, the scikit-learn library [17] is applied. Since the feature elements of
extracted feature vectors are expected to have different ranges, data-normalisation is
employed. Data-normalisation turned out to be of high importance in cross-database
experiments. It aims to rescale the feature elements to exhibit a mean of 0 and a
standard deviation of 1. At the time of training, a regularisation parameter of C = 1
and a kernel coefficient Gamma of 1/n is used, where n represents the number of
feature elements.
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15.6 Experiments

To compare different MAD algorithms with each other, uniform evaluation methods
and metrics are essential. For the evaluation of the vulnerability of face recognition
systems against MAs, different metrics have been introduced in previous publica-
tions, e.g. [25], which will not be described further. To evaluate the performance of
MAD algorithms, each comparison is considered individually, since each morph has
to be detected separately. For this reason, the metrics defined in ISO/IEC 30107-
3 [9] for the performance reporting of presentation attacks can be used, namely,
Attack Presentation Classification Error Rate (APCER) and Bona Fide Presentation
Classification Error Rate (BPCER), which are defined as follows [9]:

• APCER: proportion of attack presentations using the same PAI species incorrectly
classified as bona fide presentations in a specific scenario.

• BPCER: proportion of bona fide presentations incorrectly classified as presenta-
tion attacks in a specific scenario.

In an effectiveMAD system, the resultingMAD scores ofMA and bona fide samples
should be clearly separable. For overlapping MAD score distributions, a trade-off
between security (low APCER) and high throughput (low BPCER) has to be found
by setting a corresponding decision threshold. The Detection Equal Error Rate (D-
EER) reflects the error rates in a single operating point where the APCER is equal
to the BPCER. Hereafter the D-EER will be used for measuring the performance of
MAD methods.

15.6.1 Generalisability

In the first experiment, the generalisability of MAD methods across heterogeneous
data sources in analysed. To this end, the MAD methods based on LBP and BSIF
texture descriptors are evaluated in a single image and a differential scenario. On
the one hand, this is done for a split of the FRGC dataset into a training and test
set. On the other hand, the entire FRGC dataset is used for training while testing is
performed on the FERET dataset. Obtained results are summarised in Table15.4. It
can be observed that D-EER values significantly increase in case the data source is
unknown. This holds for both, the single image and differential scenario when using
LBP and BSIF for the feature extraction. That is, MAD algorithms may overfit to
certain data sources which underlines the importance of evaluatingMADmethods in
cross-database experiments. In all of the following experiments, the FRGC database
will be used during the training stage and testing is performed on the FERET dataset.
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Table 15.4 Influence of unknown data sources on MAD methods

Training Test Single image Differential

Database Morphing
algorithm

Database Morphing
algorithm

LBP (%) BSIF (%) LBP (%) BSIF (%)

FRGC-
Train

OpenCV FRGC-
Test

OpenCV 5.2 3.5 3.9 4.7

FRGC OpenCV FERET OpenCV 22.4 20.1 28.8 18.1

15.6.2 Detection Performance

In the next experiment, the suitability of all feature extractors forMADis investigated.
Here, training is conducted on lowqualitymorphs (FaceMorpher andOpenCV)while
the testing is done on high quality morphs (FaceFusion, UBO Morpher) in order to
obtain amore challenging scenario. Table15.5 summarised the three best performing
MAD methods in the single image and differential scenario (best results marked
bold). For the single image scenario, the most competitive results are achieved when
usingHOG for feature extraction.However, obtainedD-EERs are still rather high, i.e.
reliable MAD appears more challenging in the single image scenario. In contrast,
for the differential MAD methods significantly lower D-EER can be obtained. In
particular, for the use of deep features D-EER values below 3% are achieved. Note,
that deep features have not been found suitable for the single image MAD. Hence, it
can be concluded that deep features are highly suitable for differential MAD which
has also been reported in [15, 30]. Focusing on single image MAD more elaborated
feature extractors are required to better distinguish between bona fide and morphed
face images.

Table 15.5 Performance of MAD algorithms

Training Test Single image Differential

Morphing
algorithm

Morphing
algorithm

LBP (%) BSIF (%) HOG (%) LBP (%) HOG (%) Deep
features
(%)

FaceMorpher FaceFusion 31.01 30.76 24.05 24.30 19.37 2.71

UBO
morpher

26.71 28.99 19.75 19.62 15.70 2.58

OpenCV FaceFusion 26.20 31.01 23.92 22.41 18.73 2.71

UBO
morpher

24.05 28.61 20.63 19.11 15.70 2.71



346 U. Scherhag et al.

15.6.3 Post-Processing

Eventually, the influence of considered image post-processings on the used MAD
methods is estimated. Here, training is performed on the original images and testing
on post-processed ones. It was found that resizing has negligible impact on MAD
performance of the considered methods. Table15.6 summarises the impact of image
compression using JPEG2000 for the best performing single image and differential
MADapproach. Focusing on the best single imageMADbased onHOG, a significant
increase ofD-EERvalues canbeobserved.Thismeans image compression negatively
impacts this single image MAD algorithm. Due to the compression, artefacts which
have been learned to distinguishmorphed images frombona fide imagesmight vanish
which is particularly the case for the used JPEG2000 algorithm. In contrast, deep
features turn out to be robust to image compression. This is the case since these are
extracted by a face recognitionmodelwhich has been trained to extract discriminative
face representations which are highly robust to such post-processings.

Finally, the impact of printing and scanning on theMADperformance is evaluated.
Corresponding results are summarised in Table15.7. Again, a significant drop in the
detection performance can be observed for the single image MAD method based on
HOG. The artefacts introduced by the printing and scanning process increase the
D-EER to a large extent. However, the differential MAD algorithm based on deep
features maintains detection performance for printed and scanned images.

Table 15.6 Influence of image compression on MAD methods

Morphing algorithm Single image Differential

Training Test HOG Deep features

FaceMorpher FaceFusion 28.2% (+4.1) 3.0% (+0.3)

UBO morpher 27.3% (+7.6) 3.1% (+0.5)

OpenCV FaceFusion 31.9% (+8.0) 2.7% (+-0)

UBO morpher 31.0% (+10.4) 2.7% (+-0)

Table 15.7 Influence of printing and scanning on MAD methods

Morphing algorithm Single image Differential

Training Test HOG Deep features

FaceMorpher FaceFusion 34.1% (+10) 1.3% (-1.4)

UBO Morpher 36.6% (+16.8) 3.2% (+0.6)

OpenCV FaceFusion 53.4% (+29.5) 1.4% (-1.3)

UBO Morpher 37.1% (+19.5) 3.1% (+0.4)
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15.7 Summary

MAs pose a high security risk to modern facial recognition systems in particular for
border control. To counteract this, reliable methods for MAD must be developed.
Various research groups from the fields of image processing and biometrics have
recently published scientific papers on this topic, and several publicly funded research
projects are currently dealing with this problem. However, research in this field is
still in its infancy and does typically not address the variance of the image data
available in border control scenarios. The development of MAD approaches that are
effective and robust in real-world scenarios will require a considerable amount of
future research as well as close collaborations with border guard agencies.

The majority of the MAD methods published so far—in particular the single
image MAD methods—aim at the detection of artefacts that can easily be avoided,
e.g. clearly visible ghost artefacts, double compression artefacts and changed image
noise patterns. Further, usually face images are taken from a single data source, i.e.
face image database.Hence, reported detection rates tend to be over-optimistic.MAD
approaches are, like any classification task, susceptible to over-fitting to training
data. When evaluating MAD approaches, images of which source and properties
differ from those of the training data, i.e. images from other databases and morphs
created with other techniques should be employed. In case of unknownMAs, i.e. face
images stem from different data sources and were created with unknown morphing
algorithms, the detection performance of MAD methods may significantly drop,
as shown in this work. Further, it was shown that post-processing steps applied to
reference images like printing/scanning and strong image compression may cause
drastic drops in the detection performance at least for single image MAD, since
artefacts caused by morphing vanish in the post-processed reference. In contrast to
many published works on MAD (see [29, 31]), the results reported in this work are
supported by external evaluations conducted in [15, 22].

In contrast, research should focus on the development ofMADmethods that detect
artefacts that are difficult to avoid. While the detection performance for differential
MAD based on deep features showed promising results in the experiments of this
work, the used datasets might not fully reflect real-world scenarios. For border con-
trol scenarios, MAD techniques need to be robust against print-scan transformations,
resizing and strong compression of reference images. Similarly, in the case of differ-
ential MAD, considerable variance of illumination, background, pose, appearance
(hair, beard, glasses, etc.) and ageing (up to 10 years for passports) can be expected in
probe images. In order to be applicable to these scenarios, MAD approaches should
be trained and evaluated on images exhibiting these characteristics.
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Chapter 16
Practical Evaluation of Face Morphing
Attack Detection Methods

Luuk Spreeuwers, Maikel Schils, Raymond Veldhuis, and Una Kelly

Abstract Face morphing is a technique to combine facial images of two (or more)
subjects such that the result resembles both subjects. In a morphing attack, this is
exploited by, e.g., applying for a passport with themorphed image. Both subjectswho
contributed to the morphed image can then travel using this passport. Many state-
of-the-art face recognition systems are vulnerable to morphing attacks. Morphing
attack detection (MAD) methods are developed to mitigate this threat. MAD meth-
ods published in literature are often trained on a limited number of or even a single
dataset where all morphed faces are created using the same procedure. The resulting
MAD methods work well for these specific datasets, with reported detection rates
of over 99%, but their performance collapses for face morphs created using other
procedures. Often even simple image manipulations, like adding noise or smooth-
ing cause a serious degradation in performance of the MAD methods. In addition,
more advanced tools exist to manipulate the face morphs, like manual retouching
or morphing artifacts can be concealed by printing and scanning a photograph (as
used in the passport application process in many countries). Furthermore, datasets
for training and testing MAD methods are often created by morphing images from
arbitrary subjects including even male-female morphs and morphs between subjects
with different skin color. Although this may result in a large number of morphed
faces, the created morphs are often not convincing and certainly don’t represent a
best effort attack by a criminal. A far more realistic attack would include careful
selection of subjects that look alike and create high quality morphs from images of
these subjects using careful (manual) post-processing. In this chapter we therefore
argue that for robust evaluation of MAD methods, we require datasets with mor-
phed images created using a large number of different morphing methods, including
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various ways to conceal the morphing artifacts by, e.g., adding noise, smoothing,
printing and scanning, various ways of pre- and post-processing, careful selection
of the subjects and multiple facial datasets. We also show the sensitivity of various
MAD methods to the mentioned variations and the effect of training MAD methods
on multiple datasets.

16.1 Introduction

A morphed face image is a combination of two or more face images, created in
a way that all contributing subjects are verified successfully against the morphed
image. Suppose A′ and B ′ are images of two distinct subjects A and B, shown
in Fig. 16.1a and b. With face morphing, the two images are combined to create
attack sample M , see Fig. 16.1c. If we perform identification tasks with state-of-the-
art facial recognition software, a good morph will generate high comparison scores
betweenmorphM and templates of subjects A and B. It is obvious that facemorphing
poses a severe threat to all processes where face recognition is used to establish the
identity of subjects, as first reported in [4]. Also human face recognition is vulnerable,
as reported by Robertson et al. [15].

Automated morphing attack detection can be the solution to this problem. The
morphing process leaves certain traces in the morphed image because the image is
locally stretched or compressed and the images are combined. In high qualitymorphs,
these textures differences are not visible to humans. Automated morphing attack
detection scenarios can be subdivided into two types; morphing attack detection
with or without a sample as reference. The scenario with reference sample means
that apart from the morphed image, also an image of one of the original contributing
subjects is available, which in principle makes morphing attack detection simpler.
In this research we primarily address automated morphing attack detection without
reference sample.

Many of the published methods for face morphing attack detection are developed
and tested using a single dataset with morphed and bona fide samples and often good
detection results are reported. However, the use of a single dataset and therefore a
single, specific way to generate morphed images, may result in a morphing attack
detection method that works well only for this specific type of face morphing. An
example is morphing attack detection based on so-called double JPEG compression
detection—detection of artifacts that occur because the morphed images are created
from JPEG compressed images and compressed again when they are stored. Such a
method will fail to detect morphed images if they are stored uncompressed.

The aim of this chapter is to demonstrate evaluation of morphing attack detection
methods using single datasets and cross dataset testing and sensitivity to several
simple morphing disguise techniques. It is based on research at the University of
Twente, Netherlands, published in [18, 19].

In the remainder of this chapter, first a brief overview of some related work on face
morphing attack detection is presented. Next, the creation of 4 datasets withmorphed
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(a) Face image A (b) Morph Mm (c) Face image B

Fig. 16.1 Bona fide face samples (left and right) and manual face morph (center). Images from
FRGC [11]

face images is described that are used to train and test morphing attack detection
methods. Multiple datasets are required to investigate cross dataset performance of
morphing attack detection. Subsequently, a morphing attack detection method based
on Local Binary Patterns (LBP) and a Support Vector Machine (SVM) is presented
which will be used as a representation of morphing attack detection methods that are
trained using a dataset with morphed and bona fide images. Next, two approaches
to disguise morphing: adding nose and scaling images are presented for which we
will investigate morphing attack detection robustness. Then, experiments and results
are presented concerning within and cross dataset performance of morphing attack
detection and robustness against morphing disguise and the effect of selection of
faces that look alike. Finally, conclusions are presented.

16.2 Related Work

In order to evaluate the performance of morphing attack detection methods, the
following metrics were introduced in ISO/IEC 30107-3 [2]:
Attack Presentation Classification Error Rate (APCER) Proportion of attack
presentations incorrectly classified as bona fide presentations.
Bona Fide Presentation Classification Error Rate (BPCER) Proportion of bona
fide presentations incorrectly classified as presentation attacks.

A bona fide sample refers to a non-morph and an attack sample refers to a morph.
The trade-off between APCER and BPCER can be represented in a Detection Error
Trade-Off (DET)-curve and also Equal Error Rates (EER) can be reported.

Currently,much publishedwork on facemorphing attack detection is based on tex-
tural feature classifiers, e.g., LBP features or features obtained using Convolutional
Neural Networks, followed by an SVM classifier or other, see, e.g., [13, 20]. Tested
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on single datasets of morphed face images good results are reported in literature.
Creation of good datasets with morphed face images is one of the most important
steps in the development of reliable face morphing attack detection methods. In [13]
450 morphed faces are created manually from a dataset comprised of 110 subjects.
The face region is detected with Viola Jones detection. Various features like LBP,
LBQ, 2DFFT (Fourier Transform) and BSIF filters are extracted. The combination
of BSIF [6] with 7× 7 and 12bit and SVM yields an Attack Presentation Classifica-
tion Error Rate (APCER) of 1.73%. The dataset of 450 morphs was split into three
subsets; training, testing, and validation. A problem with the dataset however is that
these sets are not split according to the original 115 subjects. This means a morph in
the training set may share a contributing subject with a morph in the test or validation
set. In [17] the experiments from [13] are repeated, but instead the morphing attack
detection process at a passport control is simulated by printing and scanning the
face images. Morphing attack detection performance was analyzed before and after
printing and scanning. It is found that printing and scanning images add noise and
granularity, causing a loss in morphing attack detection performance. The dataset
was split into training and testing sets without overlapping subjects. The reported
performances are in the order of 40% BPCER at 10% APCER.

Apart from the various ways to split data in training and test sets, there are also
various methods to create morphed images. The most popular method is based on the
detection of landmarks in faces, triangularization, and warping of the triangles. More
details are provided in Sect. 16.3. But there are various ways to define the landmarks
and triangulation and each of them leads to small differences in the created morphs.
It is also possible to create morphs manually using graphical software or to manually
or automatically post-process the created morphs. Again this leads to variations in
the types of morphs. Finally, also deep-learning methods for creation of face morphs
are being developed, again leading to different types of morphs, see, e.g., [3].

In the next sections, it will be demonstrated that using only a single dataset for
training and testing, even though it may be split into disjunct sets for training and
testing, may lead to far too optimistic performance results. If the morphing attack
detection methods are evaluated using datasets with morphed faces that were created
using a different procedure or the images aremanipulated by, e.g., adding some noise,
the performance tends to be much worse.

16.3 Creation of Morphing Datasets

For experimentswithmorphing attack detection a large number of facemorph images
is required.We use automated morphing algorithms to quickly generate morphs. The
dataset is split in a part for training and a part for testing with no overlap in subjects.
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16.3.1 Creating Morphs

Variousways exist to createmorphed face images.Nowadays,much research concen-
trates on the use of Generative Adversary Networks (GANs) for this purpose. How-
ever, the simpler landmark-based approaches still result in higher quality morphs.
Therefore in this chapter, we chose this method to create morphs.

To create a face morph, the first step is to extract landmarks from both face
images. For manual morphing the landmarks can be selected by hand, for automated
morphing we use an existing landmark localisation algorithm. For morphing it is
critical to know which parts in the image of one contributing subject correspond to
the parts of another. Therefore it is vital that landmarks are accurately extracted, if
they are placed incorrectly, it can lead to extremely poor morphs. There are several
landmark localisation algorithms available.We found that STASM [10] andDLIB [7]
result in highqualitymorphs. Figure16.2a showsSTASMlandmarks on a face sample
A′. A triangular mesh is defined over the landmarks using Delaunay Triangulation
[8] (Fig. 16.2b). Now each triangle can be related to its corresponding triangle from
the other contributing image. The triangles are morphed toward average triangles
located in the final morph Ma using an affine transformation.

A blending value α defines the weight of contribution of the involved subjects.
There are various ways of selecting α: we can set α = 0.5 so that both subjects
contribute equally to the morph or face recognition software can be used to set
α so that the morph generates approximately the same comparison score for both
contributing subjects. If the morph should resemble one of the subjects more than
the other (the passport application is considered more critical than the use of the
passport for automated border control), α can be set to a value of, e.g., 0.3 or 0.7.

The automatically generated morphs normally suffer from artifacts near the
boundaries of the face and around the eyes, nose and mouth, because of the lim-

(a) STASM Landmarks (b) Delaunay Triangulation

Fig. 16.2 Initial steps of the morphing process (images from FRGC [11])
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Table 16.1 Characteristics of the datasets, resolution is given in pixels Inter Eye Distance (IED)

Dataset Resolution
IED (pix)

Morph train
images

Bona fide train
images

Morph test
images

Bona fide test
images

FRGC 129 500 150 500 150

ARF 177 500 150 500 100

Feret Color 177 750 250 750 250

Feret Gray 60 500 200 500 200

ited number of landmarks. In our research on morphing attack detection, we only
used the inner part of the face.

When creatingmorphed face images, it is vital to save them in a lossless format like
“.png” to ensure the morphing attack detection methods do not detect compression
artifacts.

16.3.2 Datasets

We created four datasets with images of different quality and properties, originating
from different facial datasets: FRGC [11], ARF [9], Feret color and Feret gray [12].

An overview of the created datasets with information on resolution (Inter Eye
Distance, IED), number of training and testing images is given in Table16.1.

Note that the resolution of the Feret Gray dataset is much lower than the resolution
of the other datasets. This may impact morphing attack detection performance. Care
was taken to use different subjects for each of the subsets: Morph Train, Non-Morph
Train, Morph Test and Non-Morph Test. For all morphs, we used α = 0.5 for the
blending factor.

16.4 Texture-Based Face Morphing Attack Detection

To demonstrate the effects of within and cross dataset testing and concealing morph-
ing artifacts, we chose a simple example of a trained texture-based morphing attack
detection method. Even though BSIF filters perform better in literature, we chose
to use LBP to extract features as it is not trained and shows results close to that of
BSIF. With the use of landmarks the face region as shown in Fig. 16.3a is extracted
and resized to a fixed size. The face region is cut off at the top of the eyebrows and
somewhat below the mouth. With this region we ensure that the sides of the face
which often contain obvious morphing artifacts are not present in the face image. We
convert the image to gray scale and apply histogram equalization, enhancing image
contrast (Fig. 16.3b). Using the FRGC dataset we performed a parameter sweep for



16 Practical Evaluation of Face Morphing Attack Detection Methods 357

(a) Original cropped face (b) Gray, histogram equalised
cropped face

Fig. 16.3 Region of interest for LBP operator, the dashed lines show the areas for which local LBP
histograms are obtained

LBP parameters: uniform/non-uniform LBP, number of neighbors n and radius r .
We find that uniform LBP features with ”standard” parameters, (n = 8, r = 1) and a
3× 3 histogram result in a good performance. Increasing the number of histograms;
e.g., 4× 4 or 5× 5 layout, only slightly increases the performance but also the dimen-
sionality of the feature space increases. We therefore decided to use the “standard”
parameters. For uniform LBP, a single histogram contains 59 feature values, which
means for a 3× 3 layout the feature space has 531 dimensions. The SVM classifiers
are trained on between 650 and 1,000 samples.

16.5 Morphing Disguising

As pointed out earlier, often morphing attack detection methods are trained on a
single dataset with morphed images. This may result in a morphing attack detection
method that only detects a certain property of the morphing creation process. If the
morphing creation process is slightly disturbed, these methods will fail.

Here, we investigate two simple ways to disguise the morphing process: adding
Gaussian noise to the image and rescaling. In the first approach, a small amount of
Gaussian noise is added to the image, masking certain noise characteristics of the
morphing process that a morphing attack detection method may have learnt. The
noise is kept small, such that to the human eye it is barely noticeable, see Fig. 16.4.

In the second approach, the image is down-scaled using a scaling factor s and
then up-scaled again to its original resolution. In this way, some of the higher spatial
frequencies are lost alsomasking the typical noise characteristics ofmorphed images.
Examples of down-up scaled images are shown in Fig. 16.5. Again the manipulation
is barely noticeable to the human eye.

Another way to hide the artifacts of face morphing is to print the photograph
on paper and next scan it to obtain a digital photograph again. This is still common
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(a) Example of morph with
σ = 0.01

(b) Example of morph with
σ = 0.025

Fig. 16.4 Morphs with added Gaussian noise. The gray level range of the image is 0.1

(a) Example of a morph with
s = 0.8

(b) Example of a morph with
s = 0.5

Fig. 16.5 Down-up scaled morphs to disguise morphing

practice for passport application inmany countries, where the photographer prints the
photograph and the subject brings the printed photograph to themunicipality to apply
for a new passport. The printed photograph is scanned in order to obtain a digital
representation that is stored in the chip of the passport and is printed on the passport
data page. The effect of printing and scanning has been thoroughly investigated in [5],
where a significant decrease in morphing attack detection performance is reported.
If the morphing attack detection methods are also trained on printed and scanned
photographs, the performance improves again but is still significantly lower that on
digital-only images. The effect is very comparable to the effects of adding noise and
scaling we demonstrate in Sect. 16.6.
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16.6 Experiments and Results

In order to demonstrate the impact of a number of the described factors on the
performance of the LBP/SVM morphing attack detector, we present the following
experiments:

1. Within dataset performance
2. Cross dataset performance
3. Mixed dataset performance
4. Robustness against additive Gaussian noise
5. Robustness against down-up scaling
6. Selection of similar subjects

16.6.1 Within Dataset Performance

With this experiment we investigate if the morphing attack detection method we
used performs in line with the results reported in literature. Furthermore, we use the
performance as a baseline to compare the results of the other experiments with.

For each of the datasets listed in Table16.1 the SVM of the morphing attack
detector was trained on features extracted from the training set and the morphing
attack detection was determined using the test set.

The results are shown in the form of a DET-curve in Fig. 16.6. We can observe
that the performance for 3 of the 4 datasets is similar (EER 2.5–5%), while for the
low resolution Feret Gray set the results are poorer (EER= 17%). The reason for the
poorer results is likely that the image quality (resolution) of the Feret Gray dataset
is significantly lower.

The EER for the various datasets is shown in the top of Table16.2. The MAD
methods trained on the different datasets are called LBP-SVM1-LBP-SVM4.

The performance on the other datasets is in line with results reported in literature
(EER = 1.7% in [13]).

16.6.2 Cross Dataset Performance

Next the cross dataset morphing attack detection performance is determined. In
this experiment the SVMs are trained using the binary pattern features of the one
dataset and tested using the test set of another dataset. The experiments were only
conducted for the FRGC and ARF datasets and the results are shown in the middle
part of Table16.2.
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Fig. 16.6 DET-curve of LBP experiments on all datasets

Table 16.2 MAD performance reported as EER for within, cross and mixed dataset testing for
various datasets

MAD method Training set Test set Test proc. EER (%)

LBP-SVM1 FRGC FRGC Within 2.5

LBP-SVM2 ARF ARF Within 3

LBP-SVM3 Feret Color Feret Color Within 5

LBP-SVM4 Feret Gray Feret Gray Within 20

LBP-SVM1 FRGC ARF Cross 80

LBP-SVM2 ARF FRGC Cross 79

LBP-SVM5 FRGC+ARF FRGC+ARF Mixed 35

The cross dataset performances were much worse than the within dataset per-
formances, suggesting that indeed the morphing attack detector learnt features very
specific for the dataset it was trained on: the EER of the LBP-SVM1 and LBP-SVM2
methods increases to 80% resp. 79%.
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Fig. 16.7 Morphing attack detection performance for added Gaussian noise

16.6.3 Mixed Dataset Performance

In this experiment the SVMs are trained using 50% of both of the datasets FRGC
and ARF and tested using the test set of both datasets. The results are given at the
bottom of Table16.2. The EER for this mixed test set is equal to 35%.

The mixed dataset performance is better than the cross dataset performances,
suggesting that if multiple datasets are used for training, themorphing attack detector
becomes more robust. The performance is still much worse than the within dataset
performance, though.

16.6.4 Robustness Against Additive Gaussian Noise

In this experiment, we add Gaussian noise to the morphed images in order to disguise
artifacts generated by the morphing process. The standard deviation of the noise was
varied from 0.004 to 0.027, where the gray level range was normalized to 0.1. Only
within dataset performance is reported.

The results are depicted in Fig. 16.7. We can observe that for small σ of the
noise, the EER of the morphing attack detection is still around 5%, close to the
baseline experiment. When the noise increases, the EER increases to above 20% for
σ = 0.027. Note that even this noise will not be observed by human inspection, so
it seems morphing artifacts can quite successfully be disguised by adding a bit of
noise to the morphed images.

The experiments were done several times for different divisions of the data in
training and test sets. The error bars show the minimum and maximum EER values
obtained.
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Fig. 16.8 Morphing attack detection performance for down and up scaling with scaling factor s.

16.6.5 Robustness Against Scaling

In this experiment, the original face images are first down-scaled with a factor s and
then up-scaled again to their original resolution. In this way, some fine detail, i.e.,
high spatial frequency information is lost. Since morphing also influences (high)
frequency contents of the face images, it is likely that traces caused by morphing
can be obscured by this down-up scaling of the image. We investigated the impact
on the morphing attack detection performance for a scaling range of s = 0.5.0.95.
Only within dataset performance is reported.

The results are depicted in Fig. 16.8. We can observe that for s = 0.95, i.e., hardly
any high frequency information is lost, the EER of the morphing attack detection is
still around 5%, close to the baseline experiment. When the down scaling factor is
lower, the EER increases to above 12% for s = 0.5. Note that even for this scaling
factor, the difference to the original image will not be observed by human inspection,
so it seems morphing artifacts can successfully be disguised by down-up scaling as
well.

The experiments were done several times for different divisions of the data in
training and test sets. The error bars show the minimum and maximum EER values
obtained.

16.6.6 Selection of Similar Subjects

For this experiment, we created two sets of morphed faces. For the first set, arbitrary
images were used to createmorphswithout paying attention to the similarity between
the subjects. Indeed, even morphs between male and female subjects occur in this
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Fig. 16.9 Distance score distributions of morphs of arbitrary subjects (left) and of subjects selected
on their resemblance (right). The distance scores of the latter are much closer to those of bona fide
images

dataset. For the second set, the subjects used to create morphs were selected in such
a way that gender matched and according to the DLIB face recognition system [1]
they are reasonably similar. In Fig. 16.9 the distance scores of mated comparisons
(2 images of the same subject), non-mated comparisons (two different subjects) and
morph comparisons (a morph with an image of one of the contributing subjects)
are depicted. The DLIB face recognition system decides that two images originate
from the same subject if the distance score is below 0.6. In Fig. 16.9 on the left it
can be seen that for morphs from arbitrary subjects about 70% of the morphs are
accepted as genuine images, while for the morphs created from subjects selected
on their resemblance, nearly all morphs are accepted (Fig. 16.9 right). Of course,
criminals will attempt to create as good morphed face images as they can, thus the
2nd scenario is muchmore likely in practice. Therefore, it is important that morphing
attack detection systems should not only be evaluated using morphs created using
various different morphing methods, but also with morphs created from carefully
selected similar subjects representing a criminals best effort to create high quality
face morphs, see, e.g., [16].

16.7 The SOTAMD Benchmark

A very good attempt at creating a versatile benchmark for morphing attack detection
methods was developed in the framework of the European SOTAMD (State Of The
Art of Morphing attack Detection) project [14]. It includes morphed images created
using 7 different morphing algorithms with various post-processing methods includ-
ing manual post-processing for part of the dataset. In addition it includes printed
and scanned bona fide and morphed images using several print and scan protocols.
The subjects used to create morphs were selected based on various criteria including
facial recognition scores and human observation. In [14] several morphing attack
detection algorithms are tested. On the hardest tests, all these algorithms fail to pro-
vide acceptable results, which demonstrates the great challenge of reliable morphing
attack detection.
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16.8 Conclusion

Face morphing, the combination of two face images of distinct subjects into one
image that resembles both subjects, poses a serious threat to face recognition. In
several publications it is claimed that reliable morphing attack detection is possible.
We noticed that often morphing attack detection methods are developed and tested
using a single dataset with morphed face images. In this chapter we show that this
results in morphing attack detection that only works well for a single type of morph
or dataset. Using a LBP/SVMbasedmorphing attack detectionmethod that performs
well on a single dataset (around 2% EER), we show that for cross dataset testing,
the performance collapses resulting in an EER as high as 80%. Experiments with
mixed datasets suggest that morphing attack detection can be made more robust if
trained on multiple datasets. In addition, we show that the morphing artifacts that are
used as features for detection can be obscured by simple image manipulations like
adding Gaussian noise or down-up scaling the morphed images. The EER for within
dataset detection increased from below 5% to above 20% for adding noise and above
12% for down-up scaling. In both cases the manipulation was almost invisible to the
human observer.

We therefore argue thatmorphing attack detectionmethods should be tested exten-
sively on multiple datasets obtained from different sources and morphing methods
and a range of image manipulations. Furthermore, they should be tested on morphed
face images that were created from similar subjects rather than arbitrary subjects and
carefully post-processed in order to mimic a criminal’s best effort at creating high
quality facial morphs.
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Chapter 17
Facial Retouching and Alteration
Detection

Puspita Majumdar, Akshay Agarwal, Mayank Vatsa, and Richa Singh

Abstract On the social media platforms, the filters for digital retouching and face
beautification have become a common trend. With the availability of easy-to-use
image editing tools, the generation of altered images has become an effortless task.
Apart from this, advancements in the Generative Adversarial Network (GAN) leads
to creation of realistic facial images and alteration of facial images based on the
attributes. While the majority of these images are created for fun and beautification
purposes, they may be used with malicious intent for negative applications such as
deepnude or spreading visual fake news. Therefore, it is important to detect digi-
tal alterations in images and videos. This chapter presents a comprehensive survey
of existing algorithms for retouched and altered image detection. Further, multiple
experiments are performed to highlight the open challenges of alteration detection.

17.1 Introduction

Social media platforms have become the new source of information, and millions
of images and videos are uploaded and shared on these platforms on a daily basis.
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Fig. 17.1 Samples of different facial alterations. a Retouching b Makeup c DeepFakes, and
d Morphing

While uploading images or sharing them among individuals, the face images are
generally retouched/altered tomake them lookmore beautiful or appealing due to the
fascination toward few societal factors such as fair complexion and flawless skin [1].
As shown in Fig. 17.1, these alterations can either be in the formof simple retouchings
such as removal of pimples, age spots, and wrinkles to complex alterations such as
morphing or deepfake that change the geometric properties.

In cosmetic industries, facial retouching/alteration is commonlyused to sell beauty
products by making the seller (model) look more appealing in advertisements. These
advertisements convey the wrong information of obtaining a flawless appearance
upon using their beauty products, which in turn mislead people to use their beauty
products. Digitally retouched images can also adversely affect themindset of the gen-
eral population and can lead tomental stress [57]. It negatively affects the self-esteem
of the viewers by trying to follow the societal norm of pleasant appearance. This leads
to body dissatisfaction amongst women and sets unrealistic expectations among
them, which leads to various psychological and sociological issues. To cope with
the situation, some countries have enacted the “Photoshop Law” to label retouched
advertisement photos as retouched [48].

The effect of retouching on face recognition algorithms cannot be ignored. Several
countries require hard copy of photographs on identification documents such as
driver’s license and passports. Generally, people digitally retouch their images and
use the prints for application. These images are used to create the identification



17 Facial Retouching and Alteration Detection 369

documents and may serve as an enrollment image to be matched with real-time
query images of a subject. The real-time original images,whenmatchedwith enrolled
retouched images, degrade the identification performance [9, 53].

Apart from digital retouching, alterations on face images can be in the form of
(i) morphing, (ii) attribute modification via GANs, and (iii) deepfakes. In morphing,
a new face image is generated using the information available from two or more
source face images to conceal own identity or gain the identity of others [5, 44,
60]. GANs based techniques alter the local or global facial attribute of the input
face images [32, 33]. In deepfakes, altered videos are generated by face swapping
or facial reenactment techniques [56]. With the availability of online tools and apps
for performing these alterations flawlessly and effortlessly, anyone can create altered
samples.

The effect of altered images in facial recognition algorithms and their use for
spreading fake news is a major concern. It is shown that morphed images signifi-
cantly reduce the performance of face recognition algorithms, including commer-
cial systems and deep neural networks-based models [23, 44]. Their adverse effect
can be seen in the application of automatic border access through e-passport. Gen-
erally, while issuing e-passports, a hard copy of the photograph is required. The
user can provide the morphed photograph to fool both human examiner and auto-
matic face recognition algorithms. Apart from this, spreading fake news using deep-
fakes is a serious challenge. For example, deepfakes [55] can be used to create
fake videos that show celebrities in pornographic content by generating an individ-
ual’s face that closely matches with another face in the video. Fake videos of Mr.
Barack Obama were widely circulated on the Internet [64]. Often, generative mod-
els are used for creating such content and can be done in real-time by swapping
faces along with their facial expressions [70]. The problem becomes severe when
these altered images/videos are presented as evidence in the courts or are used dur-
ing political campaigns. It is therefore important to detect the altered face images
[10, 32, 33, 54].

The outline of this chapter is as follows. Section17.2 discusses the literature
of different algorithms proposed for the detection of retouched and altered images.
This section further provides the details of the databases proposed for retouching and
alteration detection. A thorough experimental evaluation of the performance of exist-
ing algorithms to detect retouched and altered images in cross-domain/manipulation
settings is discussed in Sect. 17.3. In Sect. 17.4, we highlight the open challenges
that require the attention of the research community and focused research efforts,
followed by the conclusion in Sect. 17.5.

17.2 Retouching and Alteration Detection—Review

In the literature, researchers have proposed different techniques for detecting facial
retouching and alterations. While retouching is done for an appealing appearance
without any ill intent, alterations such as morphing and face swap are generally
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Fig. 17.2 Categorization of facial alterations into unintentional and intentional adversary

done with malicious intent. Therefore, as shown in Fig. 17.2, we have segregated
the literature into unintentional and intentional adversary detection. In the following
subsections, we discuss the algorithms proposed for the detection of retouched and
altered images, followed by the details of the publicly available databases for the
same.

17.2.1 Digital Retouching Detection

Retouching on facial images can be performed digitally using easy-to-use image
editing tools or physically by applying facial makeups. Retouching is done for beau-
tification purposes, generally, without any malicious intent and can be categorized
as unintentional adversary. However, due to the adverse effect of self-acclaimed
ideal face complexion and an appealing appearance by retouching of face images
on social media applications, countries such as Israel, UK, and USA [25, 63, 65]
have enacted laws to regulate the use of retouched images. For the strict adhesion
of such laws, the successful detection of digitally retouched images is important. To
facilitate research in this direction, researchers have proposed different algorithms
to create retouched images and analyzed their effect on face recognition algorithms,
followed by designing different algorithms for its detection.

In 2011, Kee et al. [36] proposed an amalgamation of photometric and geometric
features for an effective retouching of face and body images. Later, Ferrara et al.
[22, 23] evaluated the impact of face retouching or beautification on commercial and
handcrafted features based face recognition algorithms. In the earlier work, Ferrara
et al. [23] have performed multiple levels of beautification and studied its impact on
the equal error rate (EER) of the commercial face recognition systems. It is shown
that even with the slight beautification, the EER of the system changes by ∼2%,
whereas heavy retouching can increase the EER by ∼17%. In 2016, Bharati et al.
[9] created one of the largest databases both in terms of the number of subjects and
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type of retouching mediums. The performance of commercial face recognition sys-
tems is evaluated on the proposed database. The authors have reported a difference
of ∼7.50% and ∼11% in the rank-1 recognition performance of the commercial
system and openBR [37], respectively. Further, an algorithm is proposed for detect-
ing retouched images using face patches as input in the deep Boltzmann machine
(DBM) for feature extraction and support vector machine (SVM) for binary classi-
fication. Experiments are performed on two databases and the proposed algorithm
achieved an overall accuracy of 87.10%on theND-IIITDdatabase and 96.20%on the
Celebrity database. These preliminary works highlight the challenges of recognizing
retouched face images. Bharati et al. [10] have further created a demography-based
retouched face database. The database contains subjects belonging to different gen-
der groups and ethnicity. The authors have also proposed a retouching face detection
algorithm based on supervised autoencoder. The experiments are performed with
both seen and unseen demographic ethnicity in the training and testing sets. The
Caucasian demographic subset yields the lowest detection performance even under
seen demographic experimental setting. The performance of the detection algorithm
is at-least 2% lower under unseen demographic experimental scenario than the seen
demographic scenario. Jain et al. [33] have used the softmax probabilities as the
features in the SVM classifier for retouched face detection. Recently, the authors
[32] have proposed a multi-level hierarchical framework for the detection of original
and altered images. Altered images are further classified into retouched and GANs
generated images. Rathgeb et al. [54] have proposed a differential detection approach
based on the assumption that while detecting a retouched image, a counter trusted
original image is also available. Three difference vectors are computed using texture
features, facial landmarks, and featured from deep neural networks. A support vector
machine classifier is trained on each difference vector, and a weighted fusion is per-
formed for decision. A critical drawback is the assumption of the availability of the
trusted source and its characteristics. While the previous works performed the binary
classification of original and retouched images, a recentwork byWang et al. [68] have
proposed a framework to first perform the retouching detection and later suggested
a possible undo operation to develop the unaltered image. For binary classification
dilated residual network is trained using heavy data augmentation techniques. On
the detected manipulated images, optical flow field is calculated for measuring the
pixel warping effect.

Another related field to digital retouching is facial cosmetics or makeup, i.e.,
physical retouching. According to multiple market reports, the business of cosmet-
ics is growing exponentially. For example, the US market growth is at the rate of
CAGR of 2.47% from the year 2015 to 2020 [67].Makeups drastically alter the facial
appearance of a person and are applied to various facial regions such as eyes, skin,
and lip. Similar to digital retouching, makeups also affect the performance of face
recognition algorithms. Several researchers have shown the impact of facial makeup
in the performance degradation of face recognition algorithms, including commercial
systems [18, 29, 62, 69]. To counter the impact of facial makeup on recognition, sev-
eral algorithms have been proposed to detect makeup images. Chen et al. [12] have
utilized the SVM and AdaBoost classifier trained on the fusion of shape and color
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features for detecting makeup images. Kose et al. [38] proposed an ensemble-based
technique, and Liu et al. [42] have used the entropy information combined with SVM
for makeup image detection. Kotwal et al. [39] have utilized the intermediate layer
features of deep convolutional neural network (CNN) for age-inducedmakeup detec-
tion. The authors have also proposed a new facial makeup database with both male
and female individuals. It is shown that the age-induced makeup can significantly
degrade the performance of face recognition network, namely LightCNN [72]. Apart
from the simple classification of images as with and without makeup, research works
have also been proposed for the removal of makeup to obtain non-makeup images.
Cao et al. [11] have proposed a generative adversarial network, namely, bidirectional
tunable de-makeup network (BTD-Net) for makeup removal. Arab et al. [6] have
proposed a two-level defense against the makeup-based alteration. In the first level,
images are first detected for makeup or non-makeup. Later, the makeup removal
algorithm is proposed utilizing Cycle generative adversarial network (Cycle GAN)
[74]. The authors have shown a significant improvement in the rank-1 face matching
accuracy through their makeup removal technique, surpassing several existing algo-
rithms, including BTD-Net. Rathgeb et al. [53] presented a survey of the impact of
beautification on face recognition algorithms and different detection techniques.

17.2.2 Digital Alteration Detection

Digital alterations, including morphing, GANs based alterations, and deepfakes
are performed with malicious intent and fall under the category of the intentional
adversary. With the advancements in computer vision and deep learning algo-
rithms, digitally altering/manipulating an image/video has become an easy task.
Altered/manipulated images raise serious concerns when used for illegal access,
spreading fake news during political campaigns, or as evidence in court. This has
attracted the attention of the research community, and several algorithms have been
proposed for the generation and detection of altered images. Agarwal et al. [5] have
prepared a large scale video-based face swap database using Snapchat. Face swap
is an alteration technique in which more than one individual can share a single
identity. The authors have shown the vulnerabilities of commercial face recognition
systems, and mobile unlocking algorithms against face swapped images. A novel
feature descriptor is also proposed to highlight the minute inconsistencies near eyes,
nose, and mouth regions. The feature descriptor is then fed into the SVM classifier
for binary classification. Other types of alterations include the creation of a new face
image by blending multiple faces based on the measurement of facial landmarks
[13, 58, 71]. The detection and blending of facial landmarks are performed using
different algorithms. In an early attempt to secure the face recognition algorithms
against such alterations, researchers have proposed different image features based
detection algorithms [34, 59, 61]. Recent detection algorithms against such alter-
ations are based on the characteristics of facial landmarks, head pose [3, 73] and
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Fig. 17.3 Illustrating the difference between the compressed and uncompressed frames extracted
from the original videos of the FaceForensics++ dataset [56]

eye blinking [35]. For detecting GANs based alterations, Jain et al. [32] proposed
a three-level hierarchical network, Digital Alteration Detection using Hierarchical
Convolutional Neural Network (DAD-HCNN). The proposed network not only dis-
tinguishes altered images from original ones but also classifies the images generated
using different models of GANs.

With the advancement of generative adversarial networks (GANs), the generation
of face swapping and morphing became an easy task. GANs lead to the generation
of high resolution manipulated face images such as deepfakes. In deepfakes, the face
of a person in a video is swapped with another person (face swapping), or someone’s
expression is animated over the person in the video (facial reenactment). Face swap-
ping techniques can be broadly divided into two groups: (i) computer graphics-based
techniques and (ii) deep neural network-based techniques. Computer graphics tech-
niques are based on detecting facial landmarks and merging these landmarks for the
generation of swapped faces. Deep neural network-based techniques automatically
identify the pose and other related information for swapped face generation. Tomoti-
vate research toward the detection of deepfakes, Facebook has recently organized
the Deepfake Detection Challenge (DFDC) [19]. Rossler et al. [56] have proposed
one of the largest databases (FaceForensics++) covering different manipulation types
generated using computer graphics-based techniques and GANs. The videos in the
proposed database are available in three different qualities. Figure17.3 shows the
difference between the compressed and uncompressed frames extracted from the
original videos. Authors have evaluated the performance of existing alteration detec-
tion algorithms and deep CNN models on the FaceForensics++ database. It is found
that XceptionNet [14] outperformed existing algorithms. It is observed that the detec-
tion of altered, compressed videos are challenging than uncompressed videos. Dang
et al. [17] have proposed an attention-based network utilizing the features of CNN
networks for fake detection. Kumar et al. [40] have utilized the patch-based ResNet
architecture for the detection of face manipulation videos. Recently, Ciftci et al. [15]
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have proposed to use biological signals for fake detection. However, the detection
algorithms developed to filter out the manipulated videos are itself observed to be
vulnerable against different alterations [3, 4, 27, 31]. This demands the need for the
development of robust fake detection algorithms. A detailed survey on deepfakes is
given in [47, 66].

17.2.3 Publicly Available Databases

Researchers have proposed multiple facial retouching and deepfake databases to
encourage research toward detection of altered images. The following discusses the
details of the databases proposed in the literature for retouching and deepfake detec-
tion.

Facial Retouching Databases

Bharati et al. [9] have prepared one of the largest database, the ND-IIITD database,
covering seven presets of retouching. Different preset variations are applied using
professional software, namely, Portraitpro Studio Max [50]. Retouching is applied
to important facial landmark regions such as eyes, lips, nose, and skin texture. Also,
relevant retouching operations are applied based on the gender of a person. For exam-
ple, in preset-1, some of the characteristics of retouching applied to females include
skin blush, smooth lips, eyes blue, and nose shorten. For males, the characteristics of
retouching include pulp lips, nose slim, shorten wrinkles, and forehead-sculpt. The
database contains original images of 325 identities of UND-B [24], on top of that,
seven presets are applied for the generation of a variety of retouched face images.
In total, the database contains 2600 original and 2275 retouched face images. The
authors also created a Celebrity database by downloading images from the Inter-
net. Images pairs labeled with retouched and non-retouched are used to create the
database. The database contains 330 images belonging to 165 celebrities. Later,
Bharati et al. [10] developed a demography based retouched face database using
two tools, namely, BeautyPlus [8] and Potraitpro Studio Max [50]. The database
contains subjects belonging to two gender groups, male and female, and three eth-
nicities, Indian, Chinese, and Caucasian. In total, the database contains 1200 original
and 2400 retouched images. Recently, Rathgeb et al. [52] proposed a retouched face
database with 800 retouched and 100 original images. Retouched images are created
using five different mobile apps. Table17.1 summarizes the details of the existing
facial retouching databases.

DeepFake Databases

In 2017, Agarwal et al. [5] proposed SWAPPED—Digital Attack Video Face
database. The database is prepared using Snapchat that swaps/stitches two faces
to create fake videos. The database contains 129 real and 612 fake videos of 110
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Table 17.1 Details of existing facial retouching databases

Database Images Subjects Retouching Tool

Real Retouched Male Female

ND-IIITD [9] 2600 2275 211 114 PortraitPro
Studio Max

Celebrity [9] 165 165 25 140 Unknown
(Online Sources)

MDRF [10] 1200 2400 300 300 BeautyPlus and
Potraitpro Studio
Max (v12)

Rathgeb et al.
[52]

100 800 50 50 Multiple Mobile
Apps

and 31 subjects, respectively. Li et al. [41] proposed the UADFV database with 49
real and 49 fake videos. The database is created using FakeApp mobile applica-
tion. A large scale database, namely, FaceForensics++ is proposed by Rossler et al.
[56]. The database contains 1000 real videos (downloaded from YouTube). Differ-
ent manipulation techniques are applied to the real videos to generate 4000 fake
videos. The database contains four different subsets of manipulated videos that are
generated using (i) computer graphics-based techniques and (ii) learning-based tech-
niques. Computer graphics-based techniques include FaceSwap (FS) and Face2Face
(F2F)while learning-based techniques includeDeepFakes (DF) and NeuralTextures
(NT). Each of the manipulation methods requires the source and target videos for the
generation of fake/altered videos. FaceSwap utilizes facial landmarks for the gener-
ation of a 3D shape model and swaps the facial regions by minimizing the difference
between the landmarks in the source and target subject. Post-processing is required to
smoothen out the blended regions and for color correction. While FaceSwap blends
two faces together, the Face2Face method transfers the expression from the source
video to the target video. Therefore, the swapped videos generated using FaceSwap
contains the identity of both source and target subjects while the target identity is
preserved in Face2Face. DeepFakes is an autoencoder based manipulation technique
with a shared encoder that is trained to reconstruct the source and target faces. GAN
loss is applied in the NeuralTextures method, and the mouth region is altered. This
method relies on tracked geometry for effective manipulation of the expression at the
mouth region. Later, a more advanced version of the database is released with more
realistic settings of the real-world scenario [28]. By utilizing 363 real videos of 28
paid actors, 3068 deepfake videos are generated. Both the above databases cover the
videos in three different qualities: (i) uncompressed (raw), (ii) low compression with
quantization factor set to 23 (high quality), and (iii) high compression with quanti-
zation factor set to 40 (low quality). Li et al. [43] presented a large scale DeepFake
video dataset, termed CelebDF, with high-quality DeepFake videos of celebrities.
The fake videos are generated using an advanced version of face swap algorithms.
The dataset contains a total of 590 real and 5639 fake videos. Recently, Facebook
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Table 17.2 Details of existing deepfake databases

Database Real Fake

Videos Source Videos Source

SWAPPED [5] 129 Real-time 612 Snapchat

UADFV [41] 49 Youtube 49 FakeApp

FaceForensics++ [56] 1000 Youtube 4000 FaceSwap, Face2Face,
NeuralTexture,
DeepFake

DeepFake Detection [28] 363 Real-time 3068 DeepFake

Celeb-DF [43] 590 Youtube 5639 DeepFake

DFDC [20] 21154 Actors 102000 DeepFake

WildDeepFake [75] 3805 Online 3509 DeepFake (Online)

has released the Deepfake Detection Challenge (DFDC) [20] database. It is one of
the largest databases containing more than 100,000 fake videos of 3426 actors. Zi et
al. [75] created the WildDeepfake database by collecting images from the Internet.
Table17.2 summarizes the details of the existing deepfake databases.

17.3 Experimental Evaluation and Observations

In the literature, algorithms proposed for detecting retouched and deepfake images
have shown high accuracywhen themodels are trained on a specific type of alteration
and evaluated on similar alterations. For instance, Jain et al. [33] have proposed a con-
volutional neural network framework for retouching detection by training the frame-
work on retouched and original images. The proposed framework is evaluated on the
ND-IIITD database. As reported in Table17.3, the framework achieved more than
99% accuracy. Similarly, in [56], we observe that existing algorithms perform well
when the models are trained on a specific type of manipulation (Table17.4). Here,
the authors used the FaceForensics++ database for detecting manipulated images.

The high performance of deep learning models to detect retouched and altered
images (Tables17.3 and 17.4) in the same domain/manipulation settings indicate that
deep models are able to learn distinguishable features when the distribution of the
evaluation dataset is similar to the training dataset. In other words, high performance
is observed when the training of deep models is done with some apriori knowledge
about the type of alterations performed on the images. However, in a real-world
scenario, it is not practical to assume such apriori knowledge. Therefore, in this
chapter, we highlight the challenges of retouching and alteration detection in a real-
world cross train-test alteration detection scenarios (i.e., when trained on one and
test on another).
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Table 17.3 Classification accuracy (%) for retouching detection on the ND-IIITD database and
comparison with existing reported results in literature [33]

Algorithm Accuracy

Kee and Farid [36] 48.80

Bharati et al. [9] (Unsupervised DBM) 81.90

Bharati et al. [9] (Supervised DBM) 87.10

Jain et al. [33] (Thresholding)—(64, 64, 3) 99.70

Jain et al. [33] (SVM)—(64, 64, 3) 99.42

Jain et al. [33] (Thresholding)—(128, 128, 3) 99.48

Jain et al. [33] (SVM)—(128, 128, 3) 99.65

• Cross-domain: Detecting altered images belonging to different domains
(retouched and manipulated).

• Cross manipulation: Detecting images generated using different types of manip-
ulations.

• Cross ethnicity: Detecting altered images belonging to different ethnicities.

Multiple experiments are performed to evaluate the performance of deep models for
retouching and alteration detection in the above three experimental settings. Experi-
ments are performed using two state-of-the-art deep models, namely, ResNet50 [30]
and XceptionNet [14]. Two popular databases from the literature, namely, ND-IIITD
face retouching database and FaceForensics++ database, are used for the experi-
ments. We have also used the IndianForensics database [46] for the cross ethnicity
experiment. Figure17.4 shows some sample images of the databases. Protocols to
perform the experiments and the implementation details are discussed below:

Experimental Protocol and Implementation Details: For the experiments, the
ND-IIITD database is divided into non-overlapping training and testing sets with
50% subject-wise partitioning corresponding to each retouched and original pre-
set [9]. Training sets of all the presets are combined to create a single training set.
Similarly, all the testing sets are merged together into a single testing set. For the
FaceForensics++ database, pre-defined protocol is followed for training, validation,
and testing partitioning [56]. The IndianForensics database [46] is divided into 50%
train-test splits for the experiments. Videos of the FaceForensics++ and IndianForen-
sics databases are divided into frames. 10 frames per video are extracted, and the
results are reported using frame based accuracy.

Pre-trained ResNet50 and XceptionNet models are fine-tuned by adding two fully
connected dense layers of 512 dimensions after the final convolutional layer. Models
are trained using Adam optimizer for 20 epochs with a batch size of 32. For the initial
10 epochs, the learning rate is set to 0.0001 and reduced by 0.1 after every 5 epochs.
Frames are extracted from the videos of the FaceForensics++ database and resized
to 128 × 128 resolution. The images of the ND-IIITD database are also resized
to 128 × 128 resolution. All the experiments are performed under TensorFlow 2.0
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Fig. 17.4 Sample images of the a ND-IIITD [9] b IndianForensics [46], and c FaceForensics++
[56] databases

environment on a DGX station with Intel Xeon CPU, 256 GB RAM, and four 32 GB
Nvidia V100 GPU cards.

17.3.1 Cross-Domain Alteration Detection

The aim of these experiments is to evaluate the generalizability of deep models to
detect altered images across different domains. In these experiments, models trained
on the ND-IIITD database are separately evaluated on the four face manipulation
subsets of the FaceForensics++ database (Deepfakes, Face2Face, FaceSwap, and
NeuralTextures), and vice versa. Experiments are performed on the uncompressed
subsets of the FaceForensics++ database to maintain uniformity with respect to the
compression factor of the images in both the databases. Compression introduces
artifacts that pose additional challenges to the detection algorithms. Therefore, to
solely analyze the challenges due to unseen alterations across different domains, the
compression factor of the images is kept consistent during the experiments.

Table17.5 shows the classification accuracy of deep models trained on different
manipulation types of the FaceForensics++ database and evaluated on the ND-IIITD
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Table 17.5 Classification accuracy (%) of the models trained on the FaceForensics++ database
and evaluated on the ND-IIITD database

DF F2F FS NT

ResNet50 49.95 49.95 48.59 50.21

XceptionNet 56.22 49.86 46.23 52.89

Table 17.6 Classification accuracy (%) of the model trained on the ND-IIITD database and eval-
uated on different manipulation types of the FaceForensics++ database

DF F2F FS NT

ResNet50 50.43 50.18 50.11 50.54

XceptionNet 53.50 52.00 48.68 53.11

database. It is observed that the models do not performwell and yield almost random
accuracy for retouching detection. Models trained on FaceSwap achieve the lowest
accuracy of 48.59% and 46.23%, with ResNet50 and XceptionNet, respectively.
The classification accuracy of the model trained on the ND-IIITD database and
evaluated separately on different subsets of the FaceForensics++ database is shown
in Table17.6. Similar to the previous scenario, it is observed that deep models do not
perform well in cross-domain settings. The degradation in performance is due to the
effect of the domain shift from the training set to the evaluation set.

17.3.2 Cross Manipulation Alteration Detection

Toobserve the performance of deepmodels for unseenmanipulation detection, exper-
iments are performedon theFaceForensics++database.This experiment is performed
to analyze the robustness of deep models by training them on a specific manipulation
type and evaluating on others. We have used four subsets of manipulated videos
(with different quality levels) of the FaceForensics++ database for the experiments.
Training and evaluation of the models are performed on a fixed quality level. For
example, models trained on the uncompressed videos of a specific manipulation type
are evaluated on the uncompressed videos of other manipulation types.

Table17.7 shows the classification performance of deepmodels for unseenmanip-
ulation detection. It is observed that most of the models do not perform well in cross
manipulation detection settings. Interestingly, there is minimal effect of compression
observed on the performance of deep models. Rather in some cases, it is observed
that the performance of deep models on the compressed videos is better than uncom-
pressed videos. For instance, models trained on FaceSwap (FS) when evaluated on
DeepFakes (DF) achieves 58.57% and 61.89% accuracy using ResNet50 and Xcep-
tionNet, respectively, on high compressed videos (compressed 40), while these mod-
els achieve 50.82% and 51.00% accuracy on uncompressed videos. It is our assertion
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Table 17.7 Classification accuracy (%) of the models trained on a specific type of manipulation
and evaluated on others of the FaceForensics++ database

Trained on No Compression Compressed 23 Compressed 40

F2F FS NT F2F FS NT F2F FS NT

DF ResNet50 53.54 49.46 58.57 51.18 50.04 51.71 54.04 53.75 52.86

XceptionNet 56.36 49.64 63.57 51.86 49.93 54.07 53.36 55.64 52.89

DF FS NT DF FS NT DF FS NT

F2F ResNet50 58.11 50.75 51.57 55.79 52.18 50.79 58.86 53.32 54.25

XceptionNet 63.11 51.18 51.61 59.96 51.68 52.86 58.96 52.96 54.25

DF F2F NT DF F2F NT DF F2F NT

FS ResNet50 50.82 53.07 50.00 51.04 52.32 50.18 58.57 51.36 50.29

XceptionNet 51.00 52.39 49.93 52.36 53.61 48.96 61.89 51.64 51.00

DF F2F FS DF F2F FS DF F2F FS

NT ResNet50 86.89 56.68 49.39 74.43 56.39 48.04 61.29 60.11 52.32

XceptionNet 91.32 67.00 49.75 76.68 58.57 48.61 61.89 61.50 50.79

that instead of learning the discriminative features to distinguish manipulated videos
from original ones, the models are learning the compression artifacts in compressed
videos for discrimination. Therefore better performance is achieved for low-quality
videos. It is also important to observe that the models trained on NeuralTextures
(NT) achieves high accuracy when evaluated on DeepFakes (DF), while the opposite
is not true. This raises several questions about the kind of information learned by
deep models for discrimination. All these observations open new research threads
toward developing sophisticated algorithms for unseen manipulation detection. It
further emphasizes the importance of the interpretability of deep models for a better
understanding of the obtained results.

17.3.3 Cross Ethnicity Alteration Detection

To observe the fairness of detection algorithms, experiments are performed on the
FaceForensics++ and IndianForensics databases, to analyze the performance of deep
models in cross ethnicity settings. The IndianForensics database contains 200 origi-
nal and 234 fake videos of Indian people. Fake videos are created by face swapping
using FSGAN [49]. Experiments are performed by training the models on the Indi-
anForensics database and evaluating on FaceSwap manipulated videos of the Face-
Forensics++ database and vice versa. The aim of these experiments is to evaluate
the performance of detection algorithms across Indian and non-Indian ethnicities.
Figure17.5 shows the classification accuracy for the same. ResNet50 and Xception-
Net models trained on the IndianForensics database yield an accuracy of 39.29%
and 39.79%, respectively, on detecting FaceSwap manipulated videos of the Face-
Forensics++ database. On the other hand, models trained on the FaceForensics++
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Fig. 17.5 Classification accuracy (%) of the models trained on the IndianForensics database and
evaluated on the FaceForensics++ database and vice versa

database yields an accuracy of 51.35% and 55.95% on the IndianForensics database
corresponding to ResNet50 and XceptionNet, respectively. The low detection accu-
racy indicates the effect of ethnicity on the performance of detection algorithms. A
similar effect of ethnicity on the alteration detection algorithms has been recently
shown by Mehra et al. [46].

17.4 Open Challenges

To develop robust alteration detection algorithms/systems which can be deployed in
the real world, we believe that the challenges discussed below require the attention
of the research community.

Generalizability of Detection Algorithms Across Different Domains: Retouch-
ing and deepfakes are different types of facial alterations that belong to different
domains of adversaries (unintentional and intentional). In the literature, various algo-
rithms/deep models have been proposed for their detection, and high performance is
achieved by training them separately, either for the task of retouching detection or
deepfakes detection. However, as mentioned in the previous section, in a real-world
scenario, the apriori knowledge of the type of alteration is not available. It is possible
that the images in the evaluation dataset are altered using some other image editing
tools and techniques which are not seen during the training process. The experiments
performed to evaluate the generalizability of deepmodels for cross-domain alteration
detection indicate that deep models do not perform well for detecting altered images
belonging to different domains of adversaries. Therefore, it is important to develop
generalizable algorithms that could handle the effect of domain shift between differ-
ent types of alterations.
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Robustness of Detection Algorithms Across Different Types of Manipulations:
Manipulations are performed using different computer vision-based techniques,
learning-based techniques, and using simple mobile applications. Due to the ease
of creating manipulated images/videos, social media platforms are now flooded with
altered content. With the advancement of technology, different types of manipulated
images are created on a daily basis and shared through social media platforms. It is
therefore important that the detection algorithms deployed on these platforms must
detect the altered images generated using new techniques. In a real-world scenario,
it is impractical to regularly update the deployed models with new types of manip-
ulated images/videos. Thus, the detection algorithms/models should be robust to
unseen manipulations as well.
Effect of Ethnicity on Detection Algorithms: Fairness in model predictions with
respect to different demographic groups or protected attributes (such as gender and
race) is important for the trustability and dependability of deep learning algorithms
[23, 42]. Therefore, in a real-world scenario, the detection algorithms must be fair
across different demographic groups. In other words, the performance of detec-
tion algorithms/deep models should be equal across different demographic groups.
Experiments performed to detect altered images in cross ethnicity settings indicate
that the performance of deep models degrades significantly when the altered images
belong to different ethnicities. This highlights the need for sophisticated detection
algorithms to overcome the challenges of cross ethnicity effect.

17.5 Conclusion

Face image alterations have a very diverse usage, ranging from beautification, to
getting unauthorized access, to even spreading fake news. Based on the intent, alter-
ations can be broadly classified into two categories: unintentional manipulations
which include makeup and retouching/beautification, and intentional manipulations
which includes deepfakes. Both these alterations significantly degrade the perfor-
mance of face recognition algorithms and have several adverse effects when used
with malicious intent. In this chapter, as the first contribution, we have provided
a comprehensive survey of the literature toward these manipulations. For both the
alterations, a summary of the relevant databases and detection techniques is provided.
The survey can help the research community to progress in the field of altered image
detection and to develop secure face recognition algorithms/systems.

The second contribution of this chapter aims at highlighting the open challenges
in facial alteration detection. In the literature, the detection algorithms are generally
evaluated by training and testing under the same domain (for instance, same alteration
type), and the algorithms have shown high detection accuracy. In this chapter, we
showcasemore diverse usage of the algorithms and performed several experiments to
evaluate the performance of two state-of-the-art deep convolutional network models
under those challenging unseen alteration detection settings. It is found that the
models that reported high accuracy for seen alteration settings failedmiserably under
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unseen alteration settings. We assert that the challenges discussed in this chapter and
the experimental results will help the research community in building robust and
generalizable detection algorithms deployable in the real world.
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Chapter 18
Detecting Soft-Biometric Privacy
Enhancement

Peter Rot, Peter Peer, and Vitomir Štruc

Abstract With the proliferation of facial analytics and automatic recognition tech-
nology that can automatically extract a broad range of attributes from facial images,
so-called soft-biometric privacy-enhancing techniques have seen increased inter-
est from the computer vision community recently. Such techniques aim to sup-
press information on certain soft-biometric attributes (e.g., age, gender, ethnicity)
in facial images and make unsolicited processing of the facial data infeasible. How-
ever, because the level of privacy protection ensured by these methods depends to a
significant extent on the fact that privacy-enhanced images are processed in the same
way as non-tampered images (and not treated differently), it is critical to understand
whether privacy-enhancing manipulations can be detected automatically. To explore
this issue, we design a novel approach for the detection of privacy-enhanced images
in this chapter and study its performance with facial images processed by three recent
privacy models. The proposed detection approach is based on a dedicated attribute
recovery procedure that first tries to restore suppressed soft-biometric information
and based on the result of the restoration procedure then infers whether a given probe
image is privacy enhanced or not. It exploits the fact that a selected attribute classifier
generates different attribute predictions when applied to the privacy-enhanced and
attribute-recovered facial images. This prediction mismatch (PREM) is, therefore,
used as a measure of privacy enhancement. In extensive experiments with three pop-
ular face datasets we show that the proposed PREMmodel is able to accurately detect
privacy enhancement in facial images despite the fact that the technique requires no
supervision, i.e., no examples of privacy-enhanced images are needed for training.
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18.1 Introduction

Recent advances in computer vision, machine learning, and artificial intelligence
have pushed the capabilities of automated recognition technology far beyond of
what was possible only a few years ago [1–4]. Using state-of-the-art recognition
techniques it is possible today to reliably link facial images to individuals and to
infer a wide variety of (soft-biometric) attributes, such as gender, age, ethnicity, kin
relations, or even health-related attributes, from images captured in less than ideal
conditions [5–8]. These advances have made it possible to deploy face recognition
technology across a number of application domains ranging from security, border
control, and criminal investigations to entertainment, mobile gadgets, social media,
autonomous driving, or even health services [9]. While the outlined developments
have brought about many societal benefits, increased security, and made a multi-
tude of everyday tasks considerably more convenient, the increased proliferation of
face recognition techniques also resulted in privacy concerns related to the possible
(mis)use of biometric (facial) data.

Driven by these concerns, a considerable amount of research is currently looking
at privacy mechanisms that can provide a trade-off between the utility of the data for
facial analytics on the one hand, and the privacy of individuals, on the other [10–13].
To comply with GDPR’s minimization principle,1 facial analytics needs to limit the
processing of information only to what is necessary in relation to the key utility of the
system. For instance, in face verification systems, where the key utility is to validate
an identity claim and user consent is typical only given for this specific use case,
automatic inference of potentially sensitive soft-biometric information should not
be possible. Nevertheless, recent research shows [14] that a multitude of sensitive
information can still be extracted from the data processed within common face verifi-
cation systems. This information can potentially be misused, without user’s consent
for other purposes (i.e., function creep) such as automatic targeted advertising, user
profiling, or discrimination.

Existingmechanismused for ensuring privacywith facial images are usually based
on deidentification technology [15, 16]. Such technology aims to conceal (suppress,
remove, or replace) potentially sensitive visual information in images with the goal
of privacy protection and can broadly be categorized into two distinct groups: (i)
techniques that target identity, and (i i) techniques that focus on soft-biometric infor-
mation. Solutions from the first group are useful for privacy protection when sharing
visual data captured by third parties on various services, e.g., Google StreetView,
where peoplemay appear in the captured data, orwhen analyzing surveillance footage
to protect the privacy of innocent bystanders. Solutions from the latter group also
referred to as deidentification techniques for soft-biometric identifiers [15, 17] or
(more recently) soft-biometric privacy-enhancing techniques [10, 18] are relevant,
e.g., in the context of social media, where people are in general willing to share their

1 GDPR Data Minimization Principle: https://ico.org.uk/for-organisations/guide-to-data-
protection/guide-to-the-general-data-protection-regulation-gdpr/principles/data-minimisation/#
data_minimisation.

https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/principles/data-minimisation/#data_minimisation
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/principles/data-minimisation/#data_minimisation
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/principles/data-minimisation/#data_minimisation
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images online with friends and families, but typically object to privacy intrusions
(e.g., targeted ads) facilitated by automatic processing of the uploaded images. In
such settings, soft-biometric privacy-enhancing techniques (or soft-biometric pri-
vacy models) that try to manipulate facial images in a way that makes automatic
extraction of facial attributes, such as age, gender, or ethnicity, challenging but pre-
serves the visual appearances of the input images as much as possible are highly
desirable. Such techniques are also at the heart of this chapter.

While a number of soft-biometric privacy models have been proposed in the lit-
erature over the years, many still rely (to some extent) on the concept of privacy
through obscurity, where (improved) privacy protection is ensured as long as the
privacy-enhanced images are processed in the same way as all others. If a poten-
tial adversary launches a reconstruction attack and tries to recover the suppressed
attribute information, the privacy protection may be rendered ineffective [19]. It is,
therefore, critical to understand to what extent privacy enhancement can be detected.
If an adversary is able to detect that an image has been tampered with, he/shemay use
specialized analysis tools, manual inspection, or other more targeted means of infer-
ring the concealed information. The detectability of privacy enhancement is, hence,
a key aspect of existing privacy models that to a great extent determines the level of
privacy protection ensured by privacy-enhanced images in real-world settings. How-
ever, despite its importance and implications for the deployment of soft-biometric
privacy models in real-world applications, this issue has not yet been explored in the
open literature.

In this chapter we try to address this gap and present a study centered around
the task of detecting image manipulations caused by soft-biometric privacy models.
Our goal is (i) to assess whether privacy enhancement can be detected automati-
cally, and as a result (i i) to provide insight into privacy risks originating from such
detection techniques. To facilitate the study, we develop a novel detection approach
that uses a super-resolution based procedure to first recover suppressed attribute
information from privacy-enhanced facial images and then exploits the PREdiction
Mismatch (PREM) of an attribute classifier applied to facial images before and after
attribute recovery to flag privacy-enhanced data. The proposed approach is evaluated
in extensive experiments involving three recent privacy models and three public face
datasets. Experimental results show that PREM is not only able to detect privacy
enhancement with high accuracy across different data characteristics and privacy
models used, but also that it ensures highly competitive results compared to related
detection techniques from the literature.

In summary, we make the following key contributions in this chapter:

• We introduce, to the best of our knowledge, the first technique for the detection
of soft-biometric privacy enhancement in facial images. The proposed technique,
called PREM, measures the Kullback–Leibler divergence between the predictions
of a soft-biometric attribute classifier applied to facial images before and after
attribute recovery. As we discuss in the chapter, PREM (i) exhibits several desir-
able characteristics, (i i) requires no examples of privacy-enhanced images for
training, and (i i i) is applicable under minimal assumptions.
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• We show, for the first time, that it is possible to detect privacy-enhanced facial
images with high accuracy across a number of datasets and privacy models, sug-
gesting that the detectability of privacy-related image tampering techniques rep-
resents a major privacy risk.

• We demonstrate the benefit of designing PREM in a learning-free manner through
comparative experiments with a related detection technique from the literature.

The rest of the chapter is structured as follows: Sect. 18.2 provides relevant back-
ground information, presents an overview of the state-of-the-art in soft-biometric
privacy-enhancing techniques, and elaborates on the importance of detecting face
manipulations caused by privacy enhancement. Section18.3 describes PREM and
discusses its characteristics. Section18.4 presents the experimental setup used for
the evaluation of the proposed detection approach and discusses results and find-
ings. Section18.5 concludes the chapter with a discussion of the key findings and
directions for future work.

18.2 Background and Related Work

This section provides background information on the topic of soft-biometric privacy
enhancement and reviews relevant prior work. A more comprehensive review of the
broader field of visual privacy and advances in the area of privacy protection with
facial images is presented in some of the excellent recent surveys on these topics,
e.g., [10, 15, 17, 20, 21].

18.2.1 Problem Formulation and Existing Solutions

Soft-biometric privacy enhancement can formally be defined as follows: given an
original face image, I ∈ R

w×h , where w and h are the image width and height in
pixels, and a soft-biometric attribute classifier ξa , where

ξa : I �→ {a1, a2, . . . , aN }, (18.1)

and the attribute labels {ai }Ni=1 correspond to classes {C1,C2, . . . ,CN}, the goal of
soft-biometric privacy enhancement, ψ , is to generate privacy-enhanced images,

Ipr = ψ(I ) ∈ R
w×h, (18.2)

from which ξa cannot correctly predict the class labels ai . Because the goal of ψ

is to conceal selected soft-biometric information from automatic classification tech-
niques without significantly altering the visual appearance of the images for human
observers, an additional constrained is commonly considered when designingψ , that
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is, that the privacy-enhanced images have to be as close as possible to the originals,
i.e., Ipr ≈ Ior , in terms of some target objective, for example, theMean SquaredError
(MSE) or Structural Similarity (SSIM). The goal of this constraint is to preserve the
utility of the data after privacy enhancement, e.g., to ensure that the privacy-enhanced
images can be shared with friends and family on the web, while making unsolicited
automatic processing infeasible.

From a conceptual point of view, existing soft-biometric privacy-enhancing tech-
niques can be categorized into the following two groups depending on whether they
try to induce:

• Misclassifications: Solutions from the first group typically rely on adversarial
perturbations (and related strategies) and enhance privacy by inducing misclassifi-
cations, i.e., ξa(Ipr ) �= ξa(Ior ), where an incorrect attribute class label is predicted
from Ipr with high probability.

• Equal class probabilities: Solutions from the second group most often rely on
(input-conditioned) synthesis models that enhance privacy by altering image char-
acteristics in such a way that equal class posteriors are generated by the consid-
ered attribute classifier ξa given a privacy-enhanced image Ipr , i.e., p(C1|Ipr ) ≈
p(C2|Ipr ) ≈ · · · ≈ p(CN |Ipr ).

18.2.2 Soft-Biometric Privacy Models

A considerable amount of research has been conducted on the topic of soft-biometric
privacy over recent years [12, 13, 18, 22–25]. Mirjalili and Ross [26], for instance,
presented a privacy-enhancing technique that suppresses gender information in face
images. The technique applies Delaunay triangulation over prominent facial land-
marks to represent input faces as a set of triangles. In the next step, the texture within
these triangles is modified in such a way that a targeted gender classifier produces
unreliable classification results, while the original texture appearance is preserved as
much as possible. The authors showed that such an approach leads to image pertur-
bations that efficiently suppress gender information but have only a minimal impact
on visual appearance and in turn on verification accuracy.

Another approach to soft-biometric gender privacywaspresented in [27].Here, the
authors proposed a so-called Semi-Adversarial Network (SAN) that utilizes condi-
tional image synthesis to suppress gender information in facial images. SANmodels
represent convolutional auto-encoders that are trained in an adversarial setting using
two discriminators, where the first aims to enforce gender privacy and the second
tries to retain verification accuracy (i.e., image similarities). The results reported by
the authors show that the SAN model is able to obscure a high degree of gender
information in facial images, while retaining the utility of the data for biometric
verification purposes. An extension of this work was also presented later with the
goal of improving the generalization capabilities of the initial SAN to unseen clas-
sifiers [23]. The main idea of the extended FlowSAN model is to utilize multiple



396 P. Rot et al.

SAN transforms successively with the aim of making the privacy enhancement less
dependent on a single target (gender) classifier. FlowSAN models were shown to
offer better generalization capabilities than the simpler one-stage SANs, while still
offering a competitive trade-off between privacy protection and utility preservation.

To make SAN models applicable beyond the (binary) problem of gender privacy,
Marialli et al. [12] proposed PrivacyNet [12], an advanced SAN model based on the
concept of Generative Adversarial Networks (GANs). Different from previous tech-
niques aimed at soft-biometric privacy, PrivacyNet was demonstrated to be capable
of privacy enhancement with respect to multiple facial attributes, including race,
age and gender. PrivacyNet, hence, generalized the concept of SAN-based privacy
enhancement to arbitrary combinations of soft-biometric attributes. The SAN-family
of algorithm falls into the second group of techniques discussed above and tries to
induce equal class probabilities with the considered attribute classifiers.

A misclassification-based approach to privacy enhancement of k facial attributes
via adversarial perturbations (k-AAP) was introduced by Chhabra et al. in [11].
The approach aims to infuse facial image with so-called adversarial noise with the
goal of suppressing a predefined set of arbitrary selected facial attributes, while
preserving others. k-AAP is based on the CarliniWagner L2 attack [28] and achieves
promising results with attribute classifiers that were included in the design of the
adversarial noise. The approach results in image perturbations (for most images)
that are efficient at obscuring attribute information for machine learning models but
are virtually invisible to a human observer. However, similarly as the original version
of SAN, k-AAP does not generalize well to arbitrary classifiers. The idea of flipping
facial attributes using adversarial noise was also explored in [22] where the authors
investigated the robustness of facial features perturbations generated by the Fast
Gradient Sign Method (FGSM) method [29].

While the techniques reviewed above try to manipulate facial images to ensure
soft-biometric privacy, recent research is also looking at techniques that try tomodify
image representation and suppress attribute information at the representation (or
feature) level [13, 18, 30–32]. However, such techniques are based on different
assumptions and relevant mostly in the context of biometric systems. In this work
we, therefore, focus only on the more general topic of image-level soft-biometric
privacy enhancement.

18.2.3 Detecting Privacy Enhancement

When evaluating soft-biometric privacy-enhancing techniques, the literature typi-
cally focuses on performance and the level of privacy protection the techniques can
offer. Other aspects are commonly of less interest and, as a results, are significantly
less explored. This leads to several interesting research questions, e.g., Towhat extent
can privacy enhancement be detected? Is it possible to flag facial images that have
been tampered with by privacy-enhancing techniques? While a considerable body
of work has been presented in the literature to detect traditional image tampering,
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e.g., [33–35], existing detection methods have mostly been investigated within the
digital forensics community. The problem of detecting privacy enhancement, on the
other hand, has not yet been explored in the literature. Because some privacy mod-
els are based on adversarial perturbations, this problem is also partially related to
adversarial-attack detection techniques [36–40]. However, since soft-biometric pri-
vacy enhancement also includes synthesis-based methods, data hidding solutions
and a wide variety of other approaches [10], the problem of detecting such image
modifications is considerably broader. In the remainder of the chapter, we present our
solution to the problem of privacy enhancement detection, which relies on a simple
attribute recovery procedure.

18.3 Tampering Detection Through Prediction Mismatch
(PREM)

In this sectionwe now describe the proposed approach for detecting privacy enhance-
ment (or tampering) in facial images.We focus on gender experiments in this chapter,
but the proposed approach is general and can be applied to arbitrary soft-biometric
attributes.

18.3.1 PREM Overview

Soft-biometric privacy enhancement aims to introduce minute changes into facial
images in such a way that the predictions of a selected attribute classifier become
unreliable,while the original appearance of the facial images is preserved as amuch as
possible.As a result, existing soft-biometric privacymodels commonly add (targeted)
high-frequency components to the input images, which are imperceivable to human
observers, but adversely affect the performance of automatic recognition techniques.
Based on these characteristics, we design a detection technique in this chapter that
tries to identify images that were tampered with by soft-biometric privacy models.

The main idea of our detection technique is illustrated in Fig. 18.1. At the core of
the technique is an attribute recovery procedure, χ(·), that tries to restore suppressed
attribute information from the given input image I . For unaltered facial images a
selected soft-biometric attribute classifier ζ is expected to produce similar predic-
tions before and after attribute recovery. For tampered images, on the other hand,
a mismatch is expected between the predictions generated from the input image I
and the corresponding attribute-recovered version Ire. This PREdiction Mismatch
(PREM) can then be exploited for detecting privacy enhancement. Details on PREM
are provided in the following section.



398 P. Rot et al.

Fig. 18.1 Overview of the proposed PREM techniques for the detection of soft-biometric privacy
enhancements in facial images. At the core of the detection technique is a super-resolution (SR)
based procedure that aims to restore suppressed attribute information. PREM exploits the mismatch
between the predictions of a selected attribute (gender in this work) classifier generated from the
original and attribute-recovered images to detect privacy enhancement. PREM is learning-free and,
hence, requires no examples of privacy-enhanced images

18.3.2 Super-Resolution for Attribute Recovery

To restore soft-biometric attributes fromprivacy-enhanced facial images,we consider
a simple super-resolution (or hallucination2) approach. Super-resolution can be seen
as a special type of restoration approach that selectively adds specific details (high-
frequency components) to low-resolution input images. Because the high-frequency
details are added in a selective manner based on learnt correspondences between
pairs of low- and high-resolution facial images, images subjected to super-resolution
are in essence remapped to a higher resolution, which impacts image characteristics,
including those infused by privacy enhancement. The use of super-resolution for
attribute recovery is further motivated by its success in mitigating the impact of
adversarial noise, which is also used as a privacy-enhancing mechanism by some of
the existing privacy models.

We propose a straight-forward two-step procedure to remove the effect of privacy
enhancement on the appearance and characteristics of facial images—see Fig. 18.2
for an illustration. In the first step, the input image, Ipr ∈ R

w×h is downscaled by a
factor s, i.e.,

I (s)
pr = fs(Ipr ), (18.3)

where fs(·) is a simple bilinear down-sampling function conditioned on s and I (s)
pr ∈

R
ws×hs is the downscaled image with ws < w and hs < h. This down-sampling step

acts as a low-pass filter that removes high-frequency information from the image
and is, therefore, expected to impact (high-frequency) image artifacts introduced
by the privacy models the most. In the second step, the procedure then restores the

2 Note that single image super-resolution techniques are referred to as face hallucination methods
when applied to facial images. This term illustrates the fact the high-frequency components are
hallucinated by the super-resolution model during up-sampling [41–43].
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Fig. 18.2 Overview of the proposed approach to attribute recovery through super-resolution (SR).
The privacy-enhanced image, Ipr is first downscaled to remove high-frequency components intro-
duced by the privacy models. High-frequency components are then selectively added back into the
restored image, Ire, through a super-resolution model

downscaled image to its original size (w× h) and recovers semantically meaningful
image details (with attribute information) through super-resolution-based upscaling,
i.e.,

Ire = hs(I
(s)
pr ) ∈ R

w×h, (18.4)

where hs is a super-resolution model that upscales images by a factor of s. The high-
frequency information that is lost with the down-sampling procedure is, to a certain
degree, reconstructed with the super-resolution model, such that the output image is
similar to the input. However, as illustrated in Fig. 18.2 the super-resolved image is
typically slightly smoother and contains hallucinated image details.

We denote the presented attribute recovery procedure as χ : Ipr �→ Ire and use
the state-of-the-art C-SRIPmodel from [43] for our implementation. Here, Ire stands
for the attribute-recovered images, shown on the right side of Fig. 18.2. We note at
this point, that the described recovery procedure is model agnostic, so any super-
resolution model could be used instead of C-SRIP with similar results. C-SRIP was
selected for our implementation because of its state-of-the-art performance and the
fact that it is publicly available.

18.3.3 Measuring the Prediction Mismatch

As suggested above, the proposed PREM detection technique exploits the fact that
for privacy-enhanced images, Ipr , a selected attribute classifier ξ generates different
posterior probabilities p(Ck |Ipr ) than for images subjected to the presented super-
resolution based attribute recovery procedure, p(Ck |Ire). Because we consider the
task of detecting privacy enhancements aimed at suppressing gender information
in facial images, similarly to [18, 23, 44, 45], the classes Ck are defined as Ck ∈
{Cm,C f }, where m denotes the male and f the female class. However, we note
that in general the same conceptual solution could be applied to arbitrary attribute
classes Ck . By comparing the posteriors, p(Ck |Ipr ) and p(Ck |Ire), it is possible
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Algorithm 1: Detecting soft-biometric privacy enhancement with PREM
Input: Input probe image I
Output: Detection score τ

1 Implement attribute recovery procedure χ based on SR model hs—Eqs. (18.3) and (18.4);
2 Attempt attribute recovery: Ire = χ(I );
3 Use ξ for classification over I and Ire;
4 Calculate detection score τ = DSK L—Eq. (18.5);
5 Determine whether I is tampered based on τ ;

to determine whether an image has been tampered with or not. In this work we
utilize a symmetric version of the Kullback–Leibler divergence [46] to compare the
distributions generated by the attribute classifier, i.e.,

DSK L(p, q) = DKL(p||q) + DKL(q||p), (18.5)

where

DKL(p||q) =
∑

x∈X
(p(x) − q(x)) log

(
p(x)

q(x)

)
, (18.6)

where p = p(Ck |Ipr ), q = p(Ck |Ire), X = Ck . To facilitate the detection of soft-
biometric privacy enhancement (or tampering), DSK L is used as a detection score τ

in our experiments. A decision whether the probe image I was tampered with or not
can be made based on the value of τ . DSK L is in general bounded by [0,∞], where
a value of 0 indicates that there is no difference between distributions.

18.3.4 PREM Summary and Characteristics

A high-level summary of the proposed PREM detection technique is given in Algo-
rithm 1. The techniques have several desirable characteristics, i.e.,

• Training free detection: Unlike competing techniques for image tampering detec-
tion, PREM is training-free and does not require any examples of privacy-enhanced
images for training. PREM relies solely on the fact that the output of a (in this
case gender) classifier changes after attribute recovery compared to the output
produced with the original face image. Thus, the detection scheme is expected to
work, across a wide range of privacy enhancement techniques as long as they are
based on the same assumptions, i.e., minimal changes in appearance compared to
the original images.

• Complementarity to supervised detection techniques: While the task of detect-
ing privacy enhancement in facial images is new, there are related tampering-
detection techniques that could be adopted for this task. Because these techniques
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typically rely on supervision [40, 47], PREMprovides complementary information
that can be combined with supervised techniques to further improve performance.

• Generality: The concept exploited by PREM is not limited to the described super-
resolution based recovery approach and can be implemented with any techniques
that is able to restore suppressed soft-biometric attributes. Thus, PREM can easily
accommodate more advance recovery schemes and is expected to benefit from
future advances in this problem area.

18.4 Experiments and Results

The experiments, presented in this section, aim at (i) evaluating the extent to which
soft-biometric privacy enhancement can be detected, (i i) analyzing the performance
of PREM in blue comparison to alternatives from the literature, (i i i) exploring the
complementarity of PREM and competing detection techniques, and (iv) providing
insight into the behavior of the technique and its limitations. As emphasized earlier,
we focus on privacy-enhancing techniques that are trained to suppress gender infor-
mation, which is also the most frequent attribute considered in the literature when
studying soft-biometric privacy models [18, 23, 44, 45].

18.4.1 Datasets and Experimental Setup

We use three publicly available face datasets for the experiments, i.e., Labeled Faces
in the Wild (LFW) [48], MUCT [49], and Adience [50]. The datasets come with
the necessary attribute labels (for gender in this case) and contain facial images
captured in unconstrained settings and in a wide variety of imaging conditions—a
few examples are shown in Fig. 18.3. Additionally, the datasets are commonly used
in research on soft-biometric privacy enhancement, e.g., [12, 18, 23, 30]) and are,
therefore, also selected for this work.

To have a consistent starting point for the experiments, all images are roughly
aligned, so that faces are approximately centered. Next, the facial region is cropped
to exclude background pixels and finally, the images are rescaled to a standard size of
224 × 224 pixels. Because gender classifiers are needed to train the soft-biometric
privacy models, one such classifier ζ is trained for each dataset using a gender-
balanced set of training images, i.e., around 5700 for LFW, 10400 for Adience and
3600 forMUCT. A separate set of images from each dataset is reserved for the testing
stage. This testing set does not overlap in terms of subjects with the training data.
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(a) LFW examples (b) MUCT examples (c) Adience examples

Fig. 18.3 Example images from the three datasets used in the experimental evaluation. The datasets
were captured in challenging and diverse (real world) imaging conditions posing a significant
challenge to both privacy enhancement as well as detection techniques

18.4.2 Utilized Privacy Models

We implement three recent soft-biometric privacy models for the experiments, i.e.,
the k-AAPapproach from [11], the FGSM-basedmethod from [51] and the FlowSAN
technique from [23]. FlowSAN can in general be implemented with different trade-
offs between the level of attribute suppression ensured and the preserved utility
of the facial images. We, therefore, consider two different model variants in our
experiments: (i) onewith a sequence of three SANmodels (i.e., FlowSAN-3), and (ii)
one with a sequence of five SANmodels (i.e., FlowSAN-5). The selected techniques
are utilized for the evaluation because of their state-of-the-art performance and the
fact that they rely on different privacy mechanisms. A few examples of the impact of
the privacy models on the visual appearance of selected facial images are presented
in Fig. 18.4. Note that the models result in visually different image manipulations.
While the appearance of the images processed with the adversarial techniques k-
AAP and FGSM is very close to the originals, the FlowSANmodels introduce larger
changes. However, these changes also help with the robustness of the models with
respect to unseen gender classifiers. We note that the appearance of the FlowSAN
enhanced images in Fig. 18.4 is a direct consequence of the design of the FlowSAN
models, which can be implemented to provide a trade-off between visual quality
and privacy protection—larger degradations ensure better privacy protection, while
higher quality images result in lower levels of privacy.

18.4.3 Implementation Details

Gender classifiers. A VGG16 model architecture [52] is used to implement the
gender classifiers ζ needed for the privacy enhancement. We adapt a pretrained
VGGFace2 [53] for gender classification by replacing the original softmax layer



18 Detecting Soft-Biometric Privacy Enhancement 403

Original k–AAP FGSM FlowSAN–3 FlowSAN–5

Fig. 18.4 Impact of the privacy models on the visual appearance of facial images. The adversarial
methods (k-AAP and FGSM) introduce only minor changes, whereas the FlowSAN models gen-
erated more pronounced appearance differences—note that these models are designed to be robust
to unseen classifiers, which is not the case with the adversarial techniques

Table 18.1 Values of hyper-parameters utilized for the implementation of the selected soft-
biometric privacy models

Model Strategy Parameters

k-APP Fixed parameters #Max iter.: 20, Learn. rate:
0.01, Init. const.: 1, 000

FGSM Value search Range: [0.9–0.51], #Epochs:
200, Epsilon: 0.5

FlowSAN Two versions #SANs in sequence: 3 and 5

with a two-class softmax. The models are then learned by fine tuning the last two
layers using theAdamoptimizerwith a learning rate of 0.001,momentaβ1 = 0.9 and
β2 = 0.999 and an ε value of 10−7. For the FlowSANmodels several such classifiers
are trained using different configurations of training data, as suggested in [54].

Super-resolution model. To implement the attribute recovery procedure, the C-
SRIP3 [43] super-resolution model is selected. The model is trained on the Casia
WebFace dataset [55]. For the recovery procedure, χ , images are first resized from
the original size of 224 × 224 to 64 × 64 pixels and then subjected to the super-
resolution model to upsample the images back to the initial image resolution.

Privacy models. The three soft-biometric privacy models selected for our experi-
ments, k-AAP, FGSMandFlowSAN(FlowSAN-5) rely on several hyper-parameters.
These are selected based on preliminary experiments and the suggestions made by
the authors of the models. Table18.1 provides a summary on the hyper-parameters
used in the experiments.

3 C-SRIP: https://lmi.fe.uni-lj.si/en/research/fh/.

https://lmi.fe.uni-lj.si/en/research/fh/
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18.4.4 Results and Discussions

PREM Evaluation. In the first series of experiments, we analyze the performance
of PREM with respect to the detection of privacy-enhanced images. To this end, we
use a gender-stratified test set of 698 privacy-enhanced and 698 original images for
each privacy model (k-APP, FGSM, FlowSAN-3 and FlowSAN-5) and each dataset
considered in the experiments. We partition the test images into 4 disjoint data splits,
over which we report results. Because privacy enhancement detection is framed as a
two-class classification problem in this work, we report results graphically in terms
of ReceivedOperating Characteristics (ROC) curves and quantitatively in the form of
the Area Under the ROC Curve (AUC). The 4 data splits are also utilized to generate
confidence intervals for the ROC curves.

Figure18.5 shows the averageROCcurves and corresponding confidence intervals
for this first experimental series.Because the performance differences across different
privacy models are small, the curves are presented on a semi-log scale for better
visualizations. AUC scores of the experiments are reported in Table18.2. As can be
seen, PREM achieves almost ideal detection performance for all privacy models on
theLFWandMUCTdatasets andwith averageAUCscores of 0.629 for k-AAP, 0.858
for FGSM, 0.775 for FlowSAN-3 and 0.793 for FlowSAN-5 also performs well on
Adience. The slightlyweaker results onAdience are a consequence of the challenging
imaging characteristics present in the dataset and are in line with observations made
in the open literature [18], where different models (addressing various tasks) perform
worse on this dataset.

Comparison with Competing Models. Note again that the task of detecting soft-
biometric privacy enhancement in facial images has not been explored widely in the

Fig. 18.5 ROC curves generated for the privacy enhancement detection experiments with the
proposed PREM detection approach: a on LFW, b on MUCT and c on Adience. Note that the
detection of the privacy enhancement is more successful on the LFW and MUCT, than on Adience,
which is a highly challenging face dataset captured in real-world settings
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Table 18.2 AUC scores (μ ± σ ) generated in the detection experiments. The learning-free (black-
box) PREM technique is compared against the recent (supervised) T-SVM approach to adversarial-
attack detection from [40]. Results are reported for white-box as well as black-box settings

Priv. Model Dataset PREM (ours) White-box Black-box Combined
(ours)

T-SVM T-SVM (A)† T-SVM (B)‡

k-AAP LFW 0.957 ± 0.005 0.984 ± 0.007 0.743 ± 0.013 0.984 ± 0.007 0.946 ± 0.020

MUCT 0.965 ± 0.005 0.534 ± 0.021 0.727 ± 0.030 0.534 ± 0.021 0.939 ± 0.024

Adience 0.629 ± 0.007 0.541 ± 0.007 0.604 ± 0.008 0.541 ± 0.007 0.638 ± 0.008

FGSM LFW 0.989 ± 0.003 0.955 ± 0.011 0.894 ± 0.013 0.921 ± 0.016 0.988 ± 0.006

MUCT 0.989 ± 0.003 0.852 ± 0.012 0.858 ± 0.015 0.552 ± 0.030 0.985 ± 0.007

Adience 0.858 ± 0.003 0.624 ± 0.009 0.595 ± 0.016 0.471 ± 0.014 0.831 ± 0.013

FlowSAN-3 LFW 0.987 ± 0.002 1.000 ± 0.000 1.000 ± 0.000 0.997 ± 0.002 0.996 ± 0.004

MUCT 0.993 ± 0.001 1.000 ± 0.000 1.000 ± 0.000 0.524 ± 0.020 1.000 ± 0.000

Adience 0.775 ± 0.002 1.000 ± 0.000 1.000 ± 0.000 0.609 ± 0.005 0.986 ± 0.003

FlowSAN-5 LFW 0.988 ± 0.001 1.000 ± 0.000 1.000 ± 0.000 0.998 ± 0.001 0.996 ± 0.004

MUCT 0.994 ± 0.001 1.000 ± 0.000 1.000 ± 0.000 0.531 ± 0.018 1.000 ± 0.000

Adience 0.793 ± 0.011 1.000 ± 0.000 1.000 ± 0.000 0.563 ± 0.005 0.988 ± 0.003
† T-SVM trained on FlowSAN-5 and training data from LFW
‡ T-SVM trained on k-AAP and training data from LFW

literature. However, because privacy enhancement techniques share some character-
istics with adversarial attacks, we select the recent state-of-the-art transformation-
based detection technique T-SVM from [40] as a baseline for the experiments and
compare it to the proposed PREM approach. T-SVM utilizes a combination of the
discrete wavelet transform (DWT) and the discrete sine transform (DST) to represent
input images and relies on a support vector machine (SVM) for privacy enhancement
detection. As such, it requires training data to be able to distinguish between origi-
nal and privacy-enhanced images. We, therefore, consider two distinct experimental
settings in the evaluations to compare PREM and T-SVM, i.e.,

• White-box setting: In this setting, unfiltered access to all privacy models is
assumed. Thus, T-SVM is trained separately for each privacy model using cor-
responding training images. The training part of LFW (i.e., around 5700 images)
is utilized to learn the detection model and the test part of LFW, MUCT and
Adience is used for the evaluation.

• Black-box setting: In this setting, access to some privacy-enhanced images is
assumed, but not to images of all considered privacy models. As a result, T-SVM
needs to generalize to unseen privacy models when trying to detect tampering.
Two different detection models are considered in the experiments. The first, T-
SVM (A), is trained for the detection of FlowSAN-5 enhanced images and only
on data from LFW. The second, T-SVM (B), is trained for detecting k-AAP based
enhancement, again only on LFW. Both models are tested on all datasets and with
all privacy models.
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The results in Table18.2 shows that in the white-box scenario T-SVM is compara-
ble to PREMonLFW in terms ofAUC scores for k-AAP and FGSM, but significantly
worse on the MUCT and Adience datasets. This observation suggests that despite
access to privacy-enhanced training images for all privacy models, the performance
of T-SVM is affected by the data characteristics, which is much less the case with the
proposed learning-free PREM technique. For the experiments with the FlowSAN
models, T-SVM offers ideal detection performance on all three datasets. PREM, on
the other hand, is very competitive on the images from LFW and MUCT, but per-
forms weaker on images from the Adience dataset. The presented results suggest
that the generalization ability of the white-box T-SVM technique is below PREM
despite access to privacy-enhanced training examples for each privacy model, which
are not required for PREM.

When examining the AUC scores for the black-box setting, we see that T-SVM
performs somewhat weaker than in the white-box scenario. T-SVM (A), trained with
FlowSAN-5 processed images, is still able to ensure ideal detection performance
for both FlowSAN variants on all three experimental datasets, but is less compet-
itive with images enhanced with k-AAP and FGSM. For these privacy models the
detection performance of T-SVM (A) drops slightly behind the white-box T-SVM
and considerably behind PREM. T-SVM (B), trained with k-AAP images of LFW,
is the least competitive and only able to match the performance of PREM for a few
selected cases involving LFW. These results clearly demonstrate the added value
of training-free privacy enhancement detection, where the detection performance is
not affected by the available training data, which otherwise considerably affects the
generalization capabilities of the detection techniques.

Combined Privacy Enhancement Detection. In the previous section we demon-
strated that PREM is able to detect privacy enhancement in facial images with high
accuracy. We also observed that the competing method, T-SVM, is highly competi-
tive on images where PREM performed weaker, e.g., with the FlowSAN models on
Adience. In this section, we, therefore, try to make use of the best of both worlds and
explore whether a combination of the two detection approaches can further improve
results. To make the experimental setup as challenging as possible, we assume a
black-box experimental setting for T-SVM (marked T-SVM (A) in Table18.2) and
train it with LFW images processed by FlowSAN-5. We then consider this model
with all other (unseen) privacy models and all three datasets.

Given an input face image I , both PREM and T-SVM produce a detection score,
τprem(I ) and τtsvm(I ), that is utilized to make a decision on whether images were
tampered with or not. Since the two detection models are independent, we combine
the computed detections scores using a product fusion rule of the following form:

τ = τβ
prem · τ

1−β
tsvm, (18.7)

where τ stands for the combined detection score and β represents a parameter that
balances the relative contribution of the two scores and is set to β = 0.5 in this work.

The detection results for the combined approach are presented on the right part
of Table18.2. As can be seen, the combination of the detection scores leads to a
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comparable detection performance to PREM for k-AAP and FGSM on images from
the LFW and MUCT datasets. Here, PREM convincingly outperformed T-SVM in
the comparative evaluation and the combined approach is able to match PREMs
AUC score with these privacy models. For privacy enhancement with the FlowSAN
models, the combination of the detection techniques again performs comparable to
the better performing of the two individual models on all experimental datasets.
Here, the combined detection approach achieves close to perfect performance (also
on Adience) and further improves on the initial capabilities of PREM, which was the
weaker of the two detection models on this dataset.

Overall, the results suggest that the combination of PREM and T-SVM is bene-
ficial for the detection of privacy enhancement and contributes toward more robust
performance across different privacy models and data characteristics. The concep-
tual differences between PREM and T-SVM allow the combined approach to capture
complementary information for the detection procedure and produce more reliable
detection scores across all experiments.

Visual analysis. In the last part of our evaluation, we conduct a qualitative anal-
ysis and investigate what data characteristics cause PREM to fail. A few examples
of face images, where PREM generated errors at a decision threshold that ensures
equal error rates (EERs) with the ROC curves from Fig. 18.5 is presented in Fig. 18.6.
Here, images in the top row correspond to cases where PREM failed to detect privacy
enhancement. As can be seen, these images contain visible image artifacts that can-
not be recovered using the super-resolution in based attribute recovery procedure,
resulting in minimal changes in the gender predictions and subsequently misdetec-
tions. Images in the bottom row represent examples that have been classified as
being privacy enhanced but in fact represent original unaltered faces. In most cases,

(a) k–AAP (b) FGSM (c) FlowSAN–3 (d) FlowSAN–5

Fig. 18.6 Visual examples of misdetections produced by PREM at a decision threshold corre-
sponding to the equal error rate (ERR) on the ROC curves from Fig. 18.5. Images in the top row
correspond to cases where PREM failed to detect the privacy enhancement and images in the bot-
tom row correspond to examples incorrectly flagged by PREM as being privacy enhanced. Example
results are reported for all privacy models considered in the experiments
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these images are of poorer quality (due to blur, noise, etc.) and get improved by our
attribute recovery procedure. As a result, the output of the gender classifier changes
sufficiently to incorrectly classify the images as being privacy enhanced.

18.5 Conclusion

In this chapter we studied the problem of soft-biometric privacy enhancement and
explored to what extent such privacy enhancement can be detected. To facilitate the
study we designed a novel approach for the detecting privacy enhancements in facial
images, called PREM. We evaluated PREM with three recent privacy enhancement
techniques and three experimental datasets. Our experimental results showed that
PREM was able to detect privacy enhancement with across all considered privacy
models and facial images of very different characteristics. These findings have con-
siderable implications for future research in privacy enhancement, e.g.,

• If privacy enhancement can be detected, the flagged imagesmay be processed with
alternative means and more elaborate analysis techniques. This type of processing
could invalidate the effect of privacy enhancement.

• Privacy-enhancing techniques need to come with privacy guarantees to ensure that
even after detection, privacy-enhanced images may not be misused. This points to
the need for formal soft-biometric privacy models [10] that allow to quantify the
level of privacy ensured. Such models have been considered with deidentification
techniques [56] but have not yet been explored in the literature for soft-biometric
privacy solutions.

As part of our future work, we plan to explore possibilities toward formal soft-
biometric privacy models that address some of the challenges outlined above and
offer privacy protection even if subjected to advanced means of processing.
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Chapter 19
Face Manipulation Detection in Remote
Operational Systems

Marc Michel Pic, Gaël Mahfoudi, Anis Trabelsi, and Jean-Luc Dugelay

Abstract In this chapter, we present the various categories of Face Manipulation
and their use within different remote operational systems. We then use the example
of remote identity document onboarding systems to illustrate how each category can
be used in practice to compromise such a system. After a definition of the different
Face Manipulation categories and the common algorithms used to produce them, we
go through the various manipulation detection algorithms and common image and
video forgery datasets. We then introduce some known counter-forensics methods
that can be used by an attacker to avoid detection. Knowing the detection methods
and the counter-forensic, we present how we can build up a safer system by using
the correct methods at the correct time. But also how knowledge about the tampering
process could be used to design the user experience to make the systems harder
to compromise. We complete this review by the standardisation effort and legal
aspect on the matter. And we conclude by discussing the remaining challenges and
perspectives for better use of nowadays detection methods in practical usage.

19.1 Introduction

The worldwide crisis of 2020 due to the COVID-19 pandemic changed our day-to-
day interaction significantly. It confirms the global trend of generalising the use of
remote operations, and we believe that this trend will continue in the coming years.
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Many remote technologies are heavily based on facial recognition, but also on the
more general behaviour and context analysis such as liveness challenges or even
verifying if a person is wearing a medical face mask. For those operational systems,
the ability to detect Face Manipulation is essential. We can classify those systems
into three main categories and many subcategories.

The first category is the systems with a direct Face Recognition need such as
Automated identity authentication like Automated Border Controls (ABCs) at Air-
ports and Remote face authentication systems. The second category is systems using
Indirect Face Recognition. Those would be used for tracking individuals across
one or many acquisition devices or detecting an individual in a specific area. The
last category would be the Face Behaviour Analysis Systems. Those aim at verify-
ing that a specific attended action/behaviour is performed by an identified person
andetecting an unexpected action/behaviour linked to a specific person or to detect
actions/behaviours in the context of a group of people.

In this chapter, we will illustrate the common kind of face manipulation and the
ways of securing an operational system against those. For the sake of clarity, we will
look at those attacks within the context of a remote identity document and person
acquisition scenario. Even though this does not fully embrace the many aspects of
the different remote operational systems, it will allow us to give a practical example
of all types of forgeries and means to secure such applications.

Wewill start by introducing a typical remote identity document onboarding system
andexplainwhichpart ismost likely to be attacked.Wewill discuss about the different
types of Facial Manipulation attacks and how they fit into our particular system. We
will then give a definition of each attack and present the common technologies and
methods to create those forgeries. After, we will present common face manipulation
detection methods and more general image manipulation detection algorithms. We
will also introduce datasets used to study those attacks and to train the detection
algorithms. Then, we will discuss some typical counter-forensic methods and how
one can design his/her system to reduce the chances of forgeries. Finally, we will
conclude with a discussion of the remaining challenges and perspectives for better
use of nowadays detection methods in practical usage.

19.2 Remote Identity Document Onboarding

For the rest of this article, we will place ourselves within the framework of a generic
remote identity document onboarding system. A brief overview of such a system is
given in Fig. 19.1.We can see that such systems are made of twomain steps. First, the
user is asked to take a picture/video of his/her ID document. Then, he is asked to take
a picture/video of himself/herself. The challenges for the system are then multiple.
It must first authenticate the ID documents. Then, it must verify that the user is the
owner of the document. Once all the verification steps are passed, the systems store
user information such as name and age. But also a picture of the user that will later
be used to authenticate him/her again when needed.
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Fig. 19.1 Generic Remote identity document onboarding system

Table 19.1 Attacks and associated scenario

Non-biometric Face swapping Face morphing De-identification

Live attack X X X

Portrait attack X X X

In such a scenario, an attacker could have three main strategies. He can try to
perform some kind of identity theft. Helped by someone else, they can create a
common biometry so the two people can later on share their identity. Or lastly, he
could try to create and use a completely fake identity for privacy concern or other.

Whatever his goal, he can only attack one or both parts of the system, i.e. the por-
trait during the document acquisition or his biometry during his self-portrait acqui-
sition. We will refer to this as support. We will call an attack during the self-portrait
acquisition a Living Person Attack and an attack during the document acquisition a
Portrait Attack.

Then, depending on his objective, hewill apply one ormany of the fourmain cate-
goriesofFaceManipulation.TheNon-BiometricFacemanipulation, FaceSwapping,
Face Morphing or Face De-Identification.

In the case of remote identity document onboarding, Non-Biometric Face manip-
ulation would typically be used to fool liveness challenges. Face Swapping would
serve in case of identity theft and might be used either for a Living Person Attack
or a Portrait Attack. Face Morphing would be employed to create a shared biometry,
which is typically used during a Portrait Attack. And finally, De-identification would
be used to create a synthetic identity for both a Living Person Attack and a Portrait
Attack. The manipulation and their associated supports are summed up in Table19.1.

In the next section, we will give a more precise definition of each attack and the
common algorithms used to perform them.
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19.3 Face Manipulation Algorithms

Here, we will first give a description of each category of attacks and give general uses
cases for each. Even though those attacks are conceptually different, nevertheless they
all target the face area, they are inherently based on the same tampering algorithm.
We will give a brief overview of the best-known tampering methods.

19.3.1 Categories of Attacks

Non-biometric manipulation

As stated, we observed an increasing used in systems such as the remote identity
document onboarding. Those systems imply some face-related controls (e.g. face
recognition behaviour). We define the non-biometric manipulations as any manipu-
lation of the face that does not alter biometric traits.

The first application of such manipulations takes place during liveness detection.
Liveness detection is often defined as the verification that the person in front of
the camera is indeed alive and interacting voluntarily. We wish to detect attempts
of fooling the systems with attacks such as photo presentation, screen presentation
and mask presentation. But also that the person is not forced to perform actions by
someone. Typical liveness challenges include eye-blinking, smile, head movements,
etc. Recent examples have shown the importance of such detection. It is possible to
create synthetic eye-blinking digitally without having to alter any biometric traits of
an individual.

When a proof of action or inaction is needed, such manipulations can also be
involved. For example, within the context of the COVID-19 crisis, verifying that a
taxi driver wore amedical maskwas necessary to allow him to drive a customer. Such
verification is not at all related to the biometry, but can suffer from a non-biometric
manipulation. When managing a large fleet, one might be the subject of attacks.

Those manipulations may not be as severe as identity theft or other. Though it
is important to acknowledge those as they are easy to achieve and can lead to more
problematic issues.

Face Swapping

Face swapping is a well-known technique that consists of the replacement of some-
one’s face in an image or a video. There exist two main kinds of face swapping. It
can either be applied on a portrait or to a live acquisition of a person [1].

The first case is what is usually called Face swapping and is typically used to
perform an identity theft. Applying it to a portrait does not reduce its usage to images
only. On Fig. 19.2, an example of a real-time face swapping is given for id document
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Fig. 19.2 Video Replacement of the portrait picture thanks to inverse fit swapping

Fig. 19.3 An example of deepfake by face reenactment. From left to right: target actor, pilot actor,
reenacted actor

portrait within a video stream. Face swapping is often realised with classical methods
[2] but can also use some more advanced deep learning techniques [3]. More details
will be given in Sect. 19.3.2.

When applied on a live acquisition of a person, Face swapping is often referred to
as Face Reenactment. The idea behind face reenactment is to animate a target face
according to a video of a source actor or with a given set of expressions. In a sense,
it can be used to perform non-biometric manipulation. Here, we are interested in the
specific case where an attacker would reenact the face of someone else.

Face swapping on a still portrait or using Face reenactment is mostly used to per-
form identity theft. It is a very versatile manipulation as it can be applied at different
stages of an operational system (Fig. 19.3).

Face Morphing

As described earlier, one can decide to perform a complete face replacement which
is commonly called a Face Swap. It is important to consider a face swapping as a
subset of a more general attack often called a face morphing.
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Fig. 19.4 Morphing with
various αb and αl (genuine
images from [6])

When performing a face swap, the attacker completely replaces the facial area.
In a Face Morph Attack, two parameters are introduced to both control the blending
factor αb of the two faces but also a deformation factor αl that aims at averaging
the two face shapes. By adding control over αb and αl , it enables to exploit a flaw
in common face recognition software. This attack was introduced in ref. [4] where
it was shown that using αb = 0.5, αl = 0.5 allows producing a composite face that
can later be used to authenticate two people using the same ID document. Later,
it has been shown in ref. [5] that αb seems to have a more significative impact on
various face recognition systems. Figure19.4 illustrates the effect of varying (αb, αl)

couples.
In general, we assume that the facemorphing can be produced before being printed

and scanned back to a digital format to hide any traces of manipulation. In a typical
remote onboarding scenario, it is important to keep in mind that those attacks exist.
In particular, if we intended to use the photo to later authenticate the user.

Face De-identification

The rapid development of GANs (see Sect. 19.3.2) has led to more advanced face
manipulation methods.

One good example is the advance in face de-identification methods which con-
sist in removing some or all biometric traits of an individual. Those came from an
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Fig. 19.5 From left to right, original identity, covering, blurring, pixelization, d-id

increasing concern about privacy as biometric authentication methods are becoming
more common, but also from new regulations such as the General Data Protection
Regulation (GDPR).

Three common methods were used before the introduction of the GAN-based
face manipulation, i.e. masking, blurring and pixelization [7]. An example of each
of those approach is given in Fig. 19.5.

Masking consists of covering the face with a graphic object (e.g. smiley) or a
plain colour. Blurring and pixelization use simple filtering applied to the face area
(e.g. Gaussian blur). These de-identification methods are simple and effective but
comewith some limitations. Firstly, the destructive approach produces an unpleasing
result. Secondly, it is possible to partially reverse some of those methods [8] (e.g.
de-blurring, de-pixelization and de-noising). And finally, these techniques do not
allow suppressing specific characteristics (e.g. age and ethnicity).More sophisticated
methods, using GANs, solve these problems. In ref. [9], the authors have been able
to completely suppress a source face biometry while preserving the visual aspect
of a face. The de-identified face is neither identifiable by a human nor by facial
recognition algorithms. Their method allows to automatically de-identify a face in
a video in real time. Using this technique, it is also possible to modify or remove
biometric characteristics such as the age [10], gender or ethnicity.

19.3.2 Common Face Manipulation Algorithms

Landmark-based face manipulation

Even though deep learning-based face manipulation algorithm performs extremely
well, there is still use cases where a more classical method is appropriate. One
advantage of classical methods is that they do not need training data and can most
of the time produce convincing results in real time.

Landmark-based methods usually come down to three simple steps. First, a face
detection algorithm is applied. Then salient face features, often called landmarks,
are extracted. And finally, the manipulation is performed.

In general, classical face manipulation algorithms used common landmark detec-
tion techniques like [11]. In such cases, those methods would only be used in simple
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2D cases, i.e. fixed portrait tampering. More advanced methods exist to perform
3D face alignment. In general, classical face manipulation algorithm used common
landmark detection techniques like [11]. In such cases, those methods would only
be used in simple 2D cases, i.e. fixed portrait tampering. More advanced methods
exist to perform 3D face alignment. They rely on a 3D mask synthesis which offers
very good results. They are particularly well suited to be applied to images and also
videos. One of the earliest methods [12] proposed to replace the face with a 3D
model. This 3D face is then edited to modify facial expressions. However, it was not
possible to make a real-time facial reenactment at that time. Newer methods yield
dense 3D alignment in real time such as [13–15]. In [16], the authors have success-
fully developed a facial reenactment system that allows editing a face in the video in
real time with a simple camera. They first detect facial expressions in a source and
the target video. Then, they generate a 3D model of the face of both the target and
the source video. Next, they transfer the facial expressions from the source to the
target 3Dmodel. Finally, they blend the 3Dmodel on the target video. This produces
very convincing results. Today, it is also possible to give life to a still image [17] by
transferring facial expressions from a pilot video and optionally the voice.

At the time of writing, those more advanced methods tend to be much more diffi-
cult to implement. Because of that, AI-based methods are usually preferred for their
ease of use. And thanks to the numerous existing face databases, many powerful
methods have been proposed.

AI-Based Face Manipulation

With recent advances in generative models (Variational Auto Encoders (VAEs) and
Generative Adversarial Networks )GANs)), Deep learning-based face manipulation
has received a lot of attention. In particular, with the apparition of the popular deep-
fakes. The term deepfake is a portmanteau word composed of the “deep” to refer to
“deep learning” and the word fake. The inventor of deepfake is an Internet user under
the pseudonym “deepfake”. He was inspired by a paper that proposed a method to
modify the environment of a video [18], and he applied it to faces. In this paper, Liu
et al. built a framework that uses VAEs and GANs to apply modifications on each
frame of a video.

The DeepFakes allow exchanging in a fast, automatic and realistic way a face in
a video. Nowadays, the term deepfake is also used to designate more generally a
“hyper-realistic” falsification of a video or audio signal.

The biggest danger is that it does not require special technical skills to make a
deepfake unlike the more complex landmark-based method. Nor is it necessary to
master complicated software. Today, anyone can make a deepfake.

The first deepfake method only used VAEs to replace a face in a video. A deep-
fake based on auto-encoders consists of using two auto-encoders and crossing the
decoders. An auto-encoder is a type of neural network used to reconstruct an image
from compressed information (called latent space) of the same image. In order to
build a deepfake, it is necessary to train one of the auto-encoders with images of faces
of a first individual and to train the other auto-encoder with images of the second
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individual. Then, once the training phase is complete, the decoders are swapped to
force the reconstruction of another face from the latent space. One of the important
points in this method of deepfake generation is that both auto-encoders need to share
the same encoder during the training stage.

But thanks to the various advances in GANs, in particular since the well-known
SyleGAN [19] introduced by NVDIA research team, many deep facial forgery meth-
ods are now based on this technology rather than on VAEs.

A deepfake based on GANs used the neural networks introduced in 2014 by Ian
Goodfellow [20]. In the same spirit as auto-encoders, a GAN is made of two distinct
parts, a generator G and a discriminator D. In the case of deepfake generations, the
role of the generator is to synthesise a video capable of deceiving the discriminator,
and the role of the discriminator is to determine whether the content proposed by the
generator is authentic or not.

Most recently, the authors of [21] were even able to remove the needs of the GAN
to be trained on a specific individual. Rather, they trained their network to animate
a single photo according to a source video. This last advance simplified even further
the sequence of processing attached to the creation of deepfakes for non-experts.

19.4 Detecting Face Manipulation

In many practical applications, it is possible to control some parts of the acquisition
process. Whether we can directly control the acquisition device or only access the
incoming streaming for the said device, it is important to look at the problematic of
Face Manipulation detection as a subset of image manipulation detection.

This does not mean that specialised detection should not be considered but rather
that they should be completed with additional methods. In this section, we will
introduce the common Face Manipulation detection method along with some more
general Image Manipulation detection algorithms.

We will also talk about how much the control of the acquisition device and the
definition of the User Interface can play a significant role in the detection of image
tampering.

19.4.1 Face Specific Methods

When we do know that the acquired media will contain a human face, ignoring
face-specific tampering detection method would be rather unwise.

Knowing that the acquired face cannot be considered as genuine, there exist many
methods that aim at exposing digital tapering. We will consider two main categories,
first the methods looking for weaknesses in the manipulation process and secondly
the methods that try to expose physical inconsistencies.
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Deepfake Detection Methods

With the increasing creation of deepfakes, many detection methods have been pro-
posed. In the literature, there are mainly three categories of deepfake detection meth-
ods: based on physiological analysis, based on image texture analysis and based on
automatic detection with artificial intelligence. As part of the physiological analysis,
Li et al. [22] observed some inconsistencies in the eye blinking in a deepfake video.
Using a Long-term Recurrent Convolutional Network (LCRN), they successfully
detected deepfake videos. In ref. [23], the authors determine whether a video is a
deepfake or not by analysing inconsistencies in head position. For detection methods
based on image or texture analysis, the authors mainly look for inconsistencies in
the optical flow [24] or the presence of artefacts [25]. Finally, approaches purely
based on a detection using artificial intelligence pass the frames of a video through
neural networks. The neural networks can be recurrent neural networks [26], 3D
convolutional networks [27], recurrent networks or an ensemble of them. Kumar et
al. [28] proposed a method dedicated to detect videos to which face reenactment has
been applied using [16]. They proposed an ensemble of 5 ResNets trained to identify
noise patterns or artefacts. Despite very good results and robustness at different lev-
els of video compression, their method cannot be used in real time. Megahed et al.
have described a method [29] for detecting face reenactment manipulations based on
Histogram of Oriented Gradient and SVM. Unfortunately, because of the significant
diversity of the different ways to generate a deepfake, it is very difficult to develop
a method suitable to detect all possible types of deepfake videos. Some methods
have been proposed to detect both deepfakes by face swapping and deepfakes by
face reenactment. In ref. [30], the authors trained two convolutional neural networks
to detect both swapped face videos and reenacted face videos. Despite encouraging
results, their methods are dependent on the training database and, therefore, do not
work very well on unseen types of deepfakes. In ref. [31], the authors also propose a
method based on deep learning to automatically detect deepfakes by looking at the
facial regions. Their method is robust to different levels of compression. However,
it is also very dependent on the training database. A model able to detect with a high
level of accuracy a type of deepfake can easily be fooled by a deepfake that has been
generated with another method. In addition to the variety of deepfakes generation
methods that make it difficult to generalise detection techniques, it is also impor-
tant to consider that the models must be robust to adversarial attacks. Indeed, in ref.
[32], it has been shown that it is possible to easily deceive a detector by injecting an
adverse noise into a video.

19.4.2 Face Agnostic Methods

Image forensic can be divided into two main categories, i.e. active and passive image
forgery detection. In passive image forgery detection, we have to authenticate an
image without any knowledge of the digital media. Whereas active forgery detection
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has access to at least a partial information about the image provenance and leverage
that knowledge to authenticate the media.

One can intuitively understand how active forgery detection is preferred as we can
pinpoint very specific properties of the image to assess its authenticity. As mentioned
earlier, in practical cases, we often have some controls on the acquisition device. This
can be used to our advantage as we can somewhat impose some constraints on the
acquired media to go from passive forgery detection to active forgery detection.

This allows us to add many layers of authentication on top of the previously men-
tioned face-specific detection methods and build a more confident prediction about
the image integrity.

Camera-based methods

The first category of image manipulation detection algorithm is based on the char-
acteristics and steps involved in the creation process of a digital image. A brief
overview of the acquisition pipeline is given in Fig. 19.6. Light passes through the
lenses before reaching the camera sensor. Sensors are not perfectly manufactured
and small defects can be used as fingerprints of a particular sensor. A widely known
fingerprint for camera model identification is the Photo Response Non Uniformity
(PRNU) which was first introduced in ref. [33]. A sufficient number of images from
one camera (about 50) allows us to produce a fingerprint which can then be used
to assess if an image comes from a specific camera. In some cases, the PRNU has
further been used to locate the digital tampering by searching for partial mismatch
of the fingerprint [34, 35].

Common camera sensors first separate the lights using what is called a Colour
Filter Array (CFA). This filter generally separates the information into three channels
(typically red, green and blue) which are later on interpolated to produce the full-
size image. This whole operation is known as image demosaicing. This operation
tends to leave correlation between the final pixels which can be used to detect digital
forgeries by locating the CFA grid and type. Because one sensor can only use one
specific CFA, the detection of portions of an image with either a misaligned CFA or
a mismatching type can inform of the presence of a digital tampering [36, 37].

Once the acquisition pipeline is complete, a final image pixel z can be roughly
modelled as

z = x + η (19.1)

where x was the true pixel value corrupted by some noise η. In reality, more elaborate
models than Eq.19.1 are used such as [38] when x is corrupted by various noises and
processes. Typical noise sources are the so-called shot noise (due to the way light
reaches the sensor) and read noise due to amplification, quantification, etc. On top
of that, different post-processing such as gamma correction or compression would
further corrupt the observed pixel x .
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Fig. 19.6 Simplified acquisition pipeline

Whatever the noise model used, one can make the assumption that the counterfeit
will not be able (or will not try) to reproduce a consistent noise across the image.
Many methods aim at exposing those inconsistencies [39].

Few other methods focus on other artefacts such as inconsistencies in chromatic
aberrations [40] and inconsistent camera response function [41, 42].

Pixel-based methods

Another class of image manipulation detection methods is the pixel-based method.
Instead of targeting parts of the acquisition pipeline, thosemethods rather try to target
some parts of the tampering process.

In fact, there exist a few common tampering categories: Image splicing where an
element from one image is inserted into another image; copy-Move where elements
are duplicatedwithin a single image; object-removal where objects are removed from
an image (typically using inpainting algorithms).

While producing a forged image, a digital artist often uses a combination of those
types of forgery and produce what we usually call a compositing.

Because the digital artist most likely wants his/her compositing to be convinc-
ing, he would use various techniques and post-processing to reach his goal. Think
of the production of a deepfake. As we mentioned, CNNs tend to produce blurry
results. A counterfeit might then want to enhance the quality of his deepfake by
applying a sharpening filter. Such post-processing is performed by the widely used
DeepFaceLab software for instance.Whatever the processing use, it will leave traces.

Most of the time, the detection of splicing forgeries relies on camera-based meth-
ods. In fact, in such forgeries, a large portion of the image may carry a significant
difference with respect to intrinsic camera properties. It is not unreasonable to sup-
pose that the spliced part might have gone through several post-processing such as
sharpening and Gaussian blurring. In those cases, some methods [43, 44] aim at
exposing those post-processing as a trace of image forgery.

For copy-move forgery, camera-based methods tend to be ill-suited as the dupli-
cated element will share most of the initial image properties. For this reason, there
exist many algorithms targeting copy-move forgery directly [45]. One challenge of
copy-move forgery detection is the presence of Similar but Genuine Object (SGO).
In the case of SGO, most algorithms tend to produce a high false positive rate [46].
This becomes a strong issue in the case of remote ID onboarding as pictures of ID
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documents contain many SGO. This has been addressed by a few previous papers
[47, 48] and has yet to be further developed with more work and more datasets.

Object-removal is a more specific attack and is less studied in the state of the art.
One reason is that most object-removal forgeries are performed either with direct
copy move or with inpainting algorithms, because current professional software
tends to use exemplar-based inpainting algorithms. Thus, object-removal can often
be detected with copy-move detection methods, but there exists research focussing
especially on Object-Removal [49, 50].

Format-Based Methods

The last category of image forgery detection algorithm is the format-based method.
Those algorithms make neither particular assumption on the acquisition pipeline nor
on the tampering process. Rather they aim at authenticating the format of a given
media.

In a system such as Fig. 19.7 (see Sect. 19.5.2), the acquisition pipeline is con-
trolled.

By assuming the acquisition process is secure, the authentication of the media
can be reduced to specify a check on the format properties. For instance, if the media
was a JPEG image sent with a quality factor of 95, one could verify that this property
did not change. One advantage of format-based methods is that they have proved to
be extremely effective and have been well studied.

For images, several approaches have been proposed for JPEG images. It is possible
with state-of-the-art methods to verify various properties such as the JPEG quality
factor [51] or the presence of a double compression [52].While less studied, methods
for analog video formats exist too.

19.4.3 Datasets

In this section, we will introduce the most common image and video tampering
datasets for both Face Manipulation and general tampering detection.

Images Datasets

A list of common image tampering datasets is given in Table19.2. This table is
far from being exhaustive and thus illustrates the wide availability of datasets. In
particular since 2019, three extremely largedatasets (PS-Battles [53],DEFACTO[54]
and IMD2020 [55]) have been publicly released containing all kinds of forgeries that
should allow researchers to properly evaluate, train or test their forensic algorithms.

On the other hand, there exist only a few datasets that are face specific. In 2017,
the FaceSwap dataset was released containing only face swap manipulations. They
used two different methods to develop the dataset. The Biometix datasets, released
in 2017, contained 1082 Face Morphing based on the FERET face dataset. In the
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Table 19.2 Image and face manipulation datasets and information

Dataset Manipulation Size

Columbia gray and colour [56] Splicing 1092

MICC F220 and F2000 [57] Copy-move 810

Casia v1 and v2 [58] Splicing, copy-move 6044

COVERAGE [46] Copy-move 100

Biometix [59] Face morphing 1082

FaceSwap [60] Face swapping 1,927

PS-Battles [53] All 102,028

DEFACTO [54] All 229,000

IMD2020 [55] All 72000

OpenMFC2020 [61] All 16,000

DEFACTO dataset, about eighty thousand face morphing are available. Apart from
those, we could cite the DSI-1 dataset for completeness, but it only contains about
25 tampered images.

Even thoughmost splicing detectionmethods are applicable to FaceManipulation
detection, we believe that more specific datasets would help in the development of
more specific methods.

Video Datasets

In contrary to image forgery datasets, there exist only a few general video tampering
datasets. Some common datasets are given in Table19.3. We believe that this is due
to the extremely large degrees of freedom when compressing a video that make it
difficult to produce a dataset that would suit everyone’s needs. Often, researcher ends
up crafting their own dataset depending on the feature they use.

Thanks to the initiative of the NIST, researchers now have access to a dataset of
about 1500 tampered video.

If we lack general-purpose video forgery datasets, many video datasets dedicated
to the detection of deepfake forgeries have been proposed. This imbalanced could
be explained by the dangers they represent against biometric authentication systems
but also by the fact that deepfake detection algorithms often operate blindly. Thus,

Table 19.3 General video tampering datasets

Dataset Manipulation Size

SULFA [62] Copy-move 10

MTVFD [63] Copy-move, splicing, frame swapping 30

OpenMFC2020 [61] Various 1,500
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Table 19.4 Deepfakes Datasets and informations

Dataset Fake videos Real videos Identity Methods Augmentation

UADFV 49 49 49 1 –

DeepfakeTIMIT 640 320 43 2 –

FaceForensics++ 4000 1000 – 4 2

Google DFD 3000 363 28 5 –

Celeb-DFD 5639 890 59 1 –

Deeper 1000 59000 100 1 7

DFDC 104500 23654 960 5 19

the large degree of freedom when creating the forgeries is considered as part of the
problem and the detection method should be able to work in all scenarios.

To the best of our knowledge, we count seven large datasets of deepfakes
(Table19.4). The most important and recent database is the one attached to the
Deepfake Detection Challenge (DFDC) [64]. The Deepfake Detection Challenge is
an international competition, launched in December 2019, to help the scientific com-
munity to develop new techniques to detect deepfakes. The competition closes at the
end of March 2020, and the winning solution achieved an accuracy score of 82%.

19.5 Counter-Forensics and Countermeasures

19.5.1 Counter-Forensics

We described many different tampering detection approaches. In a way, all those
methods implicitly assume that the attacker will perform a naive tampering which in
turn will leave many traces.

Though it is not unreasonable to assume so, it is important to also consider cases
where the attacker will try his/her best to hide traces of his forgery. This can go
from simply correcting incorrect EXIF metadata to directly target detection methods
described in Sect. 19.4.2.

For example, in ref. [65], the authors propose a method to suppress the PRNU of
an image and to replace it with the one of another camera. In ref. [66], the authors
showed that it was possible to mislead CFA-based algorithms. Other approaches try
to hide the forgery at the compression level such as [67], and some methods even
target specific forgeries such as [68].

Regarding face-specific methods, rapid advances in the realistic rendering of
deepfakes and GAN-based facial forgeries are strongly connected to the progress
of methods for detecting such contents. But as each new detection method reveals
a “weakness” in the synthesised content, it is then rapidly fixed in order to hide the
forged image or video from detection.
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First counter-forensic has corrected physical or physiological inconsistencies by
adding, in the case of deepfakes, a natural eye blink that was missing and in the
general case of face swapping, correcting the orientation of the face in relation to the
head. They also adjusted inconsistencies in colour, brightness or artefacts that can
randomly appear on a GAN-generated image.

Another powerful counter-forensic is the use of adversarial attacks. An adversarial
attack consists of adding a computed noise imperceptible to the human eye into the
image. This noise has a big impact on deep learning-based detectors [69]. Based
on this approach, several methods have been proposed to make a deepfake video
recognised as an original video by deep learning-based deepfake detectors [70, 71].
The authors of [32] have successfully generated a single adversarial attack thatmisled
three different deepfake detectors.

19.5.2 Countermeasures

Here, wewill take amoremacroscopic look at typical remote identity document veri-
fication systems and discuss howonewould use themethods described in Sect. 19.4.2
to ensure the integrity of the end media.

We will consider two main scenarios. In the first case, we have access to the
acquisition device and can somewhat control it as in Fig. 19.7. The captured media
is then sent over the network to some servers that will later have to authenticate it.

In the second scenario Fig. 19.8, we have no knowledge about the acquisition
device. A server simply receives a media that needs to be authenticated. In that case,
it is still possible by design to impose some constraints on the media such as the
format and size.

Controlled acquisition device

Whenever possible, it is always preferred to have some sort of control over the
acquisition process. The reason is that active detection methods are arguably more
effective than completely passive approaches.

In particular, within the scenario of Fig. 19.7, it is possible to use every single
category of detection algorithms described earlier which allows for a more reliable
decision.

Fig. 19.7 Controlled acquisition pipeline
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Fig. 19.8 Uncontrolled
acquisition pipeline

In such a case, we can assume that the attacker can perform his/her tampering
during three different stages. The first option is to attack the stream at the earliest
stage of the acquisition pipeline, i.e. at the driver level. Any electronic component of
a system is controlled by a piece of software called a driver. In the case of a camera,
the role of the driver would be to directly control the sensor to retrieve the raw image
data. It would then apply every basic image processing needed to pass forward a
readable RGB image, i.e. demosaicing, camera response function and some basic
noise filtering.

If the image is altered at the driver level and unless there is a known watermarking
algorithm used at a hardware level, camera-based detection algorithms are the way
to go. In fact, at this stage, the image is supposed to directly come from the sensor
and thus must fulfil some models such as the uniqueness of the CFA, a precise model
of the sensor noise and so on. As for every method, false positives are possible. But
repeated tampering detection by multiple methods at this stage must imply a deeper
analysis at a later stage of the system.

After passing the drivers, we receive an RGB-like image. The client is now in
charge of sending the media to a distant server. Because we should not assume the
network channel to be safe, as it could be subject to a man-in-the-middle attack,
for instance, it is then the last opportunity to inject knowledge on the media before
sending it on the network. Think of applying a specific JPEG/MPEG compression
adding a specificwatermark, etc. whichwill later be used to enhance the format-based
detection method for instance.

Once the media has reached the server and after applying format-based method
to verify the last known properties of the image. Pixel-based and more face-specific
methods can now be used to further confirm any previous detection that might have
occurred. It is fine to use such methods at the very end of the pipeline as they often
assume nothing about the properties of the acquisition device nor the format used in
case of a compression.

One major advantage of having control over the acquisition device is also the
possibility to interact with the user in some cases such as remote KYC. In that
scenario, it is possible to ask the user to performactions in order tomake the tampering
process harder. Suppose we ask the user to capture his ID document. We know that
the ID photo is a potential target for a counterfeit. We also know that to alter the
photo in real time, a precise detection of the face and some landmarks is needed.
One challenge of both face and landmark detection is the presence of an occluding
element in the face. Asking the user to hide part of the photo at some point might
make the automatic tampering algorithm to fail which could cause visible artefacts.
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Another strategy consists in making difficult the manipulation creation. This can
be applied only in some contexts. Ruiz et al. [72] proposed a method based on adver-
sarial attacks as a defense. By adding a specific noise in the image, they are able
to make that image unusable by a deepfake generator. In that sense, having a good
knowledge of the common tampering methods is necessary to develop more chal-
lenging user experiences for a counterfeit.

Uncontrolled acquisition device

As already mentioned, having control over the acquisition stage is preferable. It is
not always possible though and one might have to accept media from an unknown
source as in Fig. 19.8. But it does not mean that such a system must accept anything
as an input.

First of all, imposing a specific format for the incoming media is mandatory as
this already allows the use of specific format-based methods. Also, if the quality of
the media is sufficient enough, the blind camera-based method can still be applied.
As already pointed out, pixel-based methods are always a good option as they are
most of the time blind detections.

Unlike the controlled case, one should keep in mind that the counterfeit has all
the needed time to try and hide his/her manipulation. It is, thus, reasonable to assume
that he/she will try to apply as many counter-forensic methods as he/she can make
every decision algorithm less reliable.

As for the controlled case, asking the user to send pictures or video with specific
constraints (e.g. hiding part of the face) is a good idea, even though in this scenario
the counterfeit will have the time to correct visible artefacts.

A general rule of thumb for both scenarioswould be to impose asmany constraints
as possible to ensure that only really experienced counterfeit will be able to fool the
system.

Preventive Measures

When the context allows conceiving the initial ID document in order to prevent
specifically digital attacks on the portrait, different countermeasures can be taken
to facilitate the detection of manipulations. First strategies can be related to the
addition of semi-fragile watermarks [73] in the content, which will disappear during
an imagemanipulation and thus trigger a detection. The second category of strategies
is to secure the image thanks to cryptographic seal, based on perceptual hashes
[74, 75].
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19.6 Reference Framework, Standardisation and Legal
Aspects

Growing usage of remote identification generates growing types of frauds and grow-
ing needs for a safer environment. New regulations are emerging.

In France, a new reference framework, named PVID, describes the recommen-
dations to remotely acquire the identity of someone [76]. In its preliminary version,
it forbids limiting the control only to still images to authenticate a person. Rather,
the authentication must be performed based on a video stream. It also requires a
hybrid approach with both human and machine checks. This reference framework
is planned to be included in the French implementation of the E-IDAS, giving it a
European impact. PVID is supposed to be published in April 2021. It would probably
impose constraints on resolution, frame rate and perhaps bandwidth of the transmit-
ted video and will forbid any disruption of the video stream. It also imposes a double
verification process involving parallel humans and machines.

In Europe, the securityAgencyENISAhas published in February 2021 an analysis
of the Remote ID Proofing [77], in which they describe remote verification in several
cases with or without a human operator and in the context of a video acquisition to
prevent manipulation. They based their work on the 2018 document of German BSI
[78] which precise clearly the threats and attacks, but also the condition of success
of attacks.

In order to qualify the solutions proposed by vendors, some dedicated laboratories
begin to appear to test the capacities of manipulation detectors, with private large
sets of software or hybrid attacks. Comparable methodologies, tools and datasets
are clearly required in the next years to insure a global level of security against face
manipulations.

19.7 Conclusions

With the worldwide crisis of 2020 due to the COVID-19, we observed significant
adoption of remote technologies. We believe that this trend will continue and that
many systems will need to be able to confidently authenticate their end-users which
will come with an increasing use of face and behaviour recognition software.

In the meantime, the deepfakes visual quality has Improved, and in the future,
the deepfakes will be even more realistic by correcting all the imperfections they
still include. Nowadays, deepfakes are mainly used to create adult content or enter-
tainment videos. However, we believe that in the next few years, deepfakes will be
the most used way for attacking facial recognition systems. With those evolving
technologies, the creation of a forged media stream is becoming easier every day.

Wemust anticipate the use of those powerful technologies against any operational
systembased on face and behaviour recognition software. Thus, the detection of those
tampered media is becoming increasingly important.
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In this chapter, we introduced the four common FaceManipulation categories.We
described how each of these methods could be used against an operational system.
We focussed our attention on the example of a remote system for identity document
verification. It is an interesting use case as it gives many opportunities for an attacker
to fool the system. We also gave a brief overview of many detectors specific to faces,
general image manipulation detection methods but also some datasets for image and
video tampering detection. Then we introduced a few common counter-forensics
methods, but also countermeasures to increase the overall system reliability whether
the acquisition device is controlled or not. Finally, we discussed standardisation and
legal aspects covering such systems.

As of today, the detection of deepfakes and other attacks is far from being solved.
Looking at the bright side, we saw that many detection algorithms already exist. Even
though none of those can fully operate in a completely blind manner, most of them
can be used in amore active approach. This requires the overall system to be carefully
designed. A proper combination of all those tools may give powerful insights about
a given media integrity. We believe that most of the time, some constraints over
the media properties can be imposed. Completely blind detection algorithms are
welcomed but should not prevail.We encourage researchers to develop amore formal
definition of operational systems and to imagine precise lifecycles of digital media.
This would allow the development of more specific datasets, detection methods
and interpretability of such methods. This in turn would be extremely beneficial as it
would help to close the gap between theoretical research and operational applications.

We believe that Face Manipulation Detection must be included in the pipeline of
required processing for any official document. It could be organised in a way similar
to the ICAO Picture Compliance test for instance. We also recommend the stan-
dardisation of the tests and the methodologies to measure the efficiency of the Face
Manipulation Detection algorithms in order to obtain fair and efficient comparison
between vendors. This standardisation effort needs to take into account the various
strategies, contexts and goals described here, in order to define meaningful metrics.
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Chapter 20
Promises, Social, and Ethical Challenges
with Biometrics in Remote Identity
Onboarding

Katrin Laas-Mikko, Tarmo Kalvet, Robert Derevski, and Marek Tiits

Abstract Issuance of identity documents has commonly relied on face-to-face
customer onboarding. Checking a person’s physical presence and appearance has
been an essential part of identity enrolling procedures to avoid the risk of iden-
tity forgery. Yet, several weaknesses, including face morphing attacks, have been
identified in document issuing processes. In the context of the COVID-19 pandemic,
increasing internationalmobility, and agreater focus onuser convenience, established
onboarding rules and procedures have been disrupted. Solutions are being sought
which would eliminate the barriers that stem from physical distance while offering
at least equal or even better onboarding processes than in-person identity verification.
Recently, novel remote onboarding solutions have appeared on themarket. They vary
from human-assisted video identification procedures to biometric-based automated
verification procedures. The main social and ethical issues with biometrics in remote
identity onboarding are (1) the risk of harming integrity of personal identity and
misuse of it; (2) the risk of privacy invasion and function creep; (3) ethical issues that
are raising from algorithmically driven actions and decisions; and (4) public percep-
tion and social acceptance of technology. These non-technical requirements need to
be addressed in developing identity verification technologies based on biometrical
algorithms and security techniques.
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20.1 Introduction

Information and the concept of the “digital society” is the driving force for change in
the twenty-first century. Throughout this process, the advancement of technology is
a fundamental part of it and serves as a catalyst to enable a wide spectrum of new and
unique opportunities. Digitalisation is ubiquitous and takes a prominent role in our
daily lives. It can even be described as a “post-digital world” where digital solutions
are entirely bound up with our everyday lives and becomes inseparable [1]. In an
unprecedented “fourth revolution” of automation and digitalisation, which includes
the rise of such spheres as artificial intelligence (AI), virtual reality, the Internet of
Things (IoT) or big data analytics [2, 3], things that seemed to be as something from
science fiction just some decades ago (smartphones, internet or virtual reality) are
normal and essential part of our daily life today [1].

The advancement of technology promises enormous changes in the future. For
instance, in the field of communication “we are rapidly reaching a point where
computational algorithms can create nearly any form of human communication that
is, for all intents andpurposes, indistinguishable from reality” [4]. Some scholars even
go as far as to state that soon, hundreds of billions of devicesmight be communicating
with the internet [3], which is many times more than the entire human population.
Technology has also redefined what is considered possible and what the boundaries
are between physical and digital. Let us take digital nomads, for instance,who embark
on various forms of remoteness and use digital opportunities as a mediator between
technology and infrastructure [1, 5]. This digital lifestyle demonstrates that it has
never been easier to travel and work; where one could find themselves working from
a laptop in a coffee shop today and from a co-working space in another country a
week later [5].

With the increasing availability of different tools, forgery has also becomemassive
and widespread. As Boneh et al. have argued “the barrier to entry for manipu-
lating content has been lowering for centuries. Progress in machine learning is
simply accelerating the process” [4]. With the development of digital technology,
the ability to forge or manipulate data—including biometrics technology and its
realism—develops as well. In fact, there are hundreds of different technologies and
programmes available to forge or manipulate data. These can be spoofing attacks,
adversarial attacks or digital manipulation attacks [6]. Similarly, the topics of digital
security have become the cornerstone for further development of the information
society. Identity theft has become a significant concern for individuals, organiza-
tions, and businesses and has directed all relevant stakeholders to work on secure
digital identity solutions.

Until recently, government-issued identity documents, including strong electronic
identity which serves as a means for authentication or electronic signature, have
been exclusively issued as a part of a face-to-face customer onboarding process.
Checking a person’s physical presence has been an essential part of identity enrolling
procedures to avoid the risk of identity forgery. Yet, several weaknesses, including
face morphing attacks (digital image alterations), have been identified in document
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issuing processes. With synthetic media and artificial intelligence generated, like
‘deep fakes’, it is becoming increasingly difficult to identify a true identity from
a fake one. Various approaches are being applied to tackle this, including taking
the identity document photo in the application office, i.e., live enrolment. Even this
is a break with tradition for many countries and entails a sizeable overhaul in the
public sector, which can be reluctant to change and often lacks the necessary formal
methods that ensure a smooth transition. Behind the successful implementation of
live enrolment is proper risk management: covering technological, political, and
organizational risks, but also understanding cultural differences, potential ethical
challenges and addressing them [7].

It has also been suggested that in improving identity management and identity
documents, the focus should be primarily on breeder documents that generally lack
standardised and security features and are generally considered to be a weak link in
the government-issued identity documents chain. The introduction of biometric data
to the breeder documents or introduction of centralized biometric identity databases
would be technically feasible for establishing a stronger link between the birth
certificate and the respective document holder. As another solution, it has also been
suggested to issue identity cards instead of birth certificates to newborns immediately
from birth. This can be implemented relatively quickly, avoiding the costs of devel-
opment, international standardization and introduction of a completely new (breeder)
document. Again, the collection and processing of biometric data are clearly subject
to ethical and societal concerns, especially when the collection and use of infants’
biometric data is concerned [8].

Furthermore, increasing international mobility, the COVID-19 pandemic, and a
greater priority on user convenience poses a significant challenge to the established
onboarding rules and procedures. This is especially true when it comes to issuing a
national electronic identity or opening bank accounts internationally.A silver bullet is
being sought—the remote customer onboarding and identity verification solutions—
which would eliminate the barriers that stem from a physical distance while offering
at least equal or better onboarding processes than face-to-face identity verification
with the physical presence of a person.

In this chapter, we research the requirements of the different use-cases of remote
identity verification solutions for identity onboarding, including the main risks and
challenges from ethical, societal and privacy perspectives. We hypothesise that auto-
mated identity verification technologies based on biometric algorithms that ensure
a person’s presence and vital state, while also protecting one’s identity through
advanced security techniques, are key elements for a secure and reliable remote solu-
tion. However, next to developing technically superior solutions, there are also non-
technical requirements to ensure the accuracyof the claimed identity presented during
the identity onboarding process, such as the user’s context-awareness of the person
who is enrolled via the remote solution, the trustworthiness of identity provider, and
the social and ethical issues.

After the current introductory section, the chapter will establish the need for
remote identity verification based on the rapid spread of identity theft and people’s
expectations. In section three, the emergence of remote biometric identity verification
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technologies is discussed, and use cases are introduced. These are then discussed
from the perspectives of ethics, privacy and societal acceptability in section four.
The chapter concludes with the discussion and conclusions.

20.2 Identity Theft and the Emerging Need for Remote
Identity Verification

20.2.1 Risks and Societal Implications of Identity Theft

Obtaining someone else’s personal information or identity document (ID), such as an
identity card or passport, is where identity fraud begins, and it is becoming increas-
ingly popular [9, 10]. With a stolen identity, the fraudster can effectively become
someone else, allowing them to access the victim’s financial or other accounts, access
communications, set up new contracts, or present false information to the authori-
ties. This is not only a violation of privacy but may bring about substantial financial
and/or legal consequences to the victim. Evidence is also available on the associated
major social and psychological impacts [9, 11].

In our earlier research [11, 12], it has been concluded that roughly 25–30% of
the population of Austria, France, Germany, Italy, Spain, and United Kingdom have
experienced some form of attempted or confirmed misuse of personal information
over the period of 2013–2015. Only 10%of these caseswere detected before personal
informationwas actually taken. Thus, around 100million citizens were forced to take
extra steps to protect their identity during a 3-year period in the EU. Almost half
of them had to do so more than once, as they experienced multiple incidents. As a
result of the misuse of personal information, close to 40 million EU citizens have
experienced significant personal consequences, such as debt collectors contacting
them, problems with their family or friends, being denied a new service, having to
face legal problems, etc.

The total value of the money, goods or services obtained by criminals from 2013
to 2015 was roughly 12–16 billion euros in the EU. This is, however, only the
“consumer side”. From the misuse of personal information, various institutional
actors, e.g., financial or health insurance institutions, are likely to have incurred
additional financial losses that are unknown to the individuals and, therefore, not
reflected in this study [11, 12]. For instance, in the United States of America, Internal
Revenue Service has estimated that it paid 4 billion euros in fraudulent identity theft
refunds in filing season 2013, while preventing fraudulent refunds of 18 billion euros
(based on what they could detect) [13]. It is within reason than to assume that, given
the above example, the rough financial cost of identify in Europe reflects only the
tip of the iceberg.

Other studies such as those commissioned and co-operated on by theUnited States
Department of Justice and the Bureau of Justice Statistics [14, 15] have studied
identity theft issues in recent years and confirm the scale and growth of the problem.
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Javelin’s 2020 Identity Fraud Study concludes that total identity fraud reached 15
billion euros in 2019 while criminals are targeting smaller numbers of victims and
inflicting damage that is more complex to prevent or remediate. The research states
that “the type of identity fraud has drastically changed from counterfeiting credit
cards to the high-impact identity fraud of checking and savings account takeover.
At a time when consumers are feeling financial stress from the global health and
economic crisis, account takeover fraud and scams will increase” [16].

Eurobarometer survey on cyber security from 2020 [17] is also reflecting raising
concerns: as compared to the study from 2017 [18], less Europeans feel they can
protect themselves sufficiently against cybercrimes (59%, down from 71% in 2017).
Three key concerns are related to falling victim to the bank card or online banking
fraud (67%), the infection of devices with malicious software or identity theft (both
66%), and 6% of the respondents have actually experienced identity theft 2017–2019
[17].

20.2.2 The Need for Remote Biometric Identity Verification

Based on the increasing sophistication of attacks and the number of actual cases
of identity theft, the need for strong electronic identity is especially clear in online
services. The following three key arguments are developed: (1) on the importance
of the strong electronic identity solutions, (2) on the importance and acceptance of
the biometric solutions and (3) on the emerging need for remote identity onboarding
methods.

First, earlier research has shown that the public has little trust in the security
of popular Internet services, such as e-mail or Facebook [19]. Widespread misuse
of Internet accounts, bank accounts and credit cards does not foster trust in these
services. However, the personal experience with the attempted abuse or misuse of
personal information does not lead to the decline of confidence in government issued
identity documents. Confidence in government issued electronic identity cards and
passports remains very high [20, 21] and is likely to be because the misuse of govern-
ment issued identity documents remains infrequent in citizens’ view as compared to
other forms of identity fraud.

Government issued electronic identity solutions for online transactions are, thus,
an obvious choice for bolstering security of Internet services and broadening the use
of electronic authentication and signatures both in public and private applications.
Furthermore, front-runner countries’ experience in the widespread acceptance of
electronic identity documents, such as Estonia, shows that mobile ID can serve as a
convenient and secure alternative tomore traditional electronic identity cards. In fact,
the majority of the users of mobile ID seldom turn back to their electronic identity
card when online authentication on Internet or electronic signature is required.

Furthermore, people who have experienced misuse of personal information are
more likely to prefer identity documents that are more difficult to misuse, e.g., when
lost or stolen. Victims of the misuse of personal information are also more likely to
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accept modern forms of online authentication, such as electronic identity cards or
mobile ID, including in combination with fingerprints or other biometrics.

Second, the importance and acceptance of biometric solutions have increased
considerably, and such technologies should be preferred in identification solutions.
The direct aim of biometric technology (which includes biometric identifiers like face
and fingerprints) is to enhance the reliability of identification. Biometrics is a tool
used to identify and reliably confirm an individual’s identity based on physiological
or behavioural characteristics (or a combination of both) that are unique to a specific
human being. Since biometrics provides a close link between the physical person
and identity credential, e.g., a government issued identity document, it is considered
a strong form of identification technology [21].

Biometric identification can be applied and regarded as part of a more extensive
security system for identity management in a restricted security environment or
system (e.g., an eBank) to distinguish one person from another and decide whether
the specific person has access rights to the environment. It can also be used within
broader security systems to ensure legal access to a state or area, such as the Schengen
area. Thus, the use of biometrics in border guard solutions can be used to identify
illegal immigrants or people who have been blacklisted as international criminals or
terrorists.

The use of biometrics has the potential to raise the effectiveness and trust level
in transactions, procedures and systems where the verification or identification of
a person is necessary. Use of biometric traits, for example fingerprints or faces,
ensures with high probability that the person identified is the person he or she claims
to be and thus can be reliably related to his or her rights, entitlements, actions and
responsibilities. In other words, biometric “data” does not need to be remembered
and kept somewhere in secret, as a human’s biometric features cannot be forgotten or
lost [22, 23]. This, in turn, can create more conventional andmore reliable alternative
to traditional authentication methods, such as passwords.

However, the reliability of identities and identity documents depends largely on
the overall security of the issuing process, from the person’s registration in the support
system (e.g., information system managing identity issuance) to the overall organi-
sation of the issuance. Every link in this trust chain must be secure. If it emerges, for
example, that a passport (including its chip) is technically difficult to forge, criminals
will look for more easily exploitable weak spots such as issuance process, corrupt
officials or information system weaknesses in order to forge an identity.

Biometrics as a form of identity technology has many advantages over tradi-
tional means of identification like personal identification numbers (PIN), passwords
or token-based approaches. It is difficult to forge or duplicate a person’s biometric
trait; as such, it can prevent identity theft or rule out the use of several identities by
a single individual. Also, biometric identification is more convenient compared to
other identification tools or methods, since biometrics is ‘what you are’—and there-
fore always at hand [24]. But because of this connection there are also considerable
risks related to the use of biometrics (see more in section three). Nevertheless, each
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biometric characteristic (and the method used to capture it) has strengths and weak-
nesses regarding their universality, uniqueness, permanence, collectability, perfor-
mance, acceptability and circumvention [24]. Therefore, often multi-modal biomet-
rical systems are considered. For example, ePassports and some of the electronic
identity cards combine face and fingerprints. Also, not every biometric approach is
suitable for every implementation context. Some higher security processes would
require authoritative identity source against enrolled biometrics to be verified (for
example enrolled facial image against some register or reliable identity document).
For some biometrics enrolment must take place in a controlled and secure environ-
ment using special equipment that is not available for normal user (enrolling finger-
prints and sending to service provider, for example, or iris scan). Some biometrics is
also under special legal protection, where its enrolment and use are legally restricted
(fingerprints in some countries, for example).

Third, we would argue that there is clear need for remote identification methods
for identity onboarding. Until recently, government issued electronic identity docu-
ments, but also electronic identity means or electronic signature certificates on the
highest security level have been exclusively issued based on the physical face-to-face
customer onboarding.

However, increasing international mobility and greater priority on user conve-
nience, but also the COVID-19 pandemic, challenge the established onboarding
rules and procedures. This is especially true when it comes to issuing electronic
identity or opening bank accounts internationally. A silver bullet is being sought (the
remote customer onboarding and identity verification solutions), which would elim-
inate the barriers that stem from physical distance, while offering at least equal or
even better onboarding processes in comparison to face-to-face identity verification
with physical presence of a person.

Novel remote onboarding processes have recently appeared on the market; they
vary from human-assisted video identification procedures to biometric-based auto-
mated verification procedures. Earlier research has concluded that a considerable
aspect in successful implementation of biometric technology is public trust and
acceptability. Generally speaking, distrust among citizens regarding the technology,
be it deployment difficulties, inconvenience, false acceptance rates or else, lowers the
general trust in that technology among individuals but also state agencies deploying
that technology [20, 21].

20.3 Remote Biometric Identity Onboarding Technologies

20.3.1 Emergence of Biometric Remote Identity Onboarding

There are several modalities for issuing identity documents in operation in Europe. In
some of the countries, specialised passport offices of the national government provide
identity documents to citizens. In other countries, regional or local governments
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issue documents. At the more detailed organisational level, there is even more of a
variability in enrolment approaches, e.g., whether the enrolment of document data
takes place on the site of document issuing authority or remotely, live or not live,
under different levels of supervision (attended, semi-attended, automated controlled
or uncontrolled), with centralised or decentralised data storage, professional or non-
professional acquisition of biometric data, by capturing a single modality or multiple
biometric modalities in the same session, with a data processing system developed
by the public administration or by a private company.

Traditionally, professional photographers have been put in charge of capturing
the facial images, which were then handed as print-out or digital file to the issuer
of identity documents. However, this approach is prone to unwanted morphing of
facial images. Therefore, live or semi-live by an official or in an official photo-booth
that is located in a controlled environment have become preferable. But, there is an
increasing need to allow also for completely remote enrolment, including the capture
of the facial image and the data from the previously issued identity document.

In 2020, European Union Agency for Cybersecurity (ENISA) conducted a
research mapping down identity verification practices used in different European
countries for identity onboarding. ENISA concluded that identity onboarding tech-
nologies could bedivided into several categories: “onsitewith the operator, videowith
the operator, remote automatic, electronic identification means, certificate based and
combined” [25]. The first, second, and the final onboarding categories listed above
require a real time presence by both the verifier and the applicant, which can be
challenging to organise when performing identification procedures on a daily basis
(i.e., banking). The remaining three methods—remote automatic, based on the elec-
tronic identification means and certificates—are representing solutions that can be
used remotely and at the convenience of the person.

Traditional identity checking methods have their obvious shortcomings. Most
notably, physical identity checks require that the person checking the identity and
the applicant must be present at the same place. This is a requirement that can prove
“complicated, time consuming, and given the recent pandemic crisis even dangerous
for health-related reasons” [25]. Contrastingly, remote verification solutions like
remote verification by AI based on facial biometrics (often labelled “selfie-id”),
electronic authentication methods (fingerprint scanners on phones) or certificate-
based solutions (electronic signatures) makes it easier to identify the person and
prove their physical existence but without any requirement of physical presence at
an official enrolment station.

Hence, the significance of remote identity proofing methods for identity
onboarding is increasing, especially in cross-border applications in Europe and else-
where. The ENISA study found that 23 of 30 trust service providers (TSP) surveyed
already used remote identity proofing methods as a part of their services in 2020.
The most widely used method (used by 11 TSPs) is the remote method with a veri-
fying operator (typically based on synchronous audio–video call) while the second
most popular option involves electronic identificationmeans, incl. notified electronic
identification schemes. Remote automatic processes based on AI processing of the
applicant’s picture (selfie) and a picture of ID is recorded for four TSPs. As such,
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it demonstrates the wide interest of TSPs and companies in using remote proofing
methods and the increasing interest towards this field. This is further illustrated by
Fig. 20.1 where it could be seen that remote identity proofing is already allowed and
practiced in extensive number of the EU member states. TSPs indicated to extend
the number of remote identity proofing methods or introduce new ones; six TSPs
plan to offer remote automatic identification based on AI [25].

What is currentlymissing is a unified approach and common regulatory framework
in terms of remote identity verification. The absence of commonly accepted prac-
tices has resulted in a situation where different initiatives emerge across countries
which share some common elements but also numerous differences that can lead
to challenges related to the disjointed nature of remote identification policies. As
such, even though the remote identity verification technologies are becoming more
popular, the importance of cross-country recognition and legislation together with
technical know-how and uniformity in methods and practices across the countries
might help to strengthen and advance the development of a synchronized and secure

Fig. 20.1 Geographical map of the remote identity proofing practice for any (regulated) purpose
[25]
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remote identity verification solutions. Key to solving some of these challenges lies
not just on public and private sector cooperation, but also on interoperability between
governments issued electronic identity systems andprivate sector electronic identities
[26].

Financial sector is generally considered as frontrunner in digital transformation
and in the development of electronic services. For example, banks have been histor-
ically identified as the ‘informal’ leaders of the Estonian software industry and have
generated overall trust towards ICT due to their successful implementation of internet
banking services [27, 28]. Financial sector is also currently one of the prominent
fields where cross-border identification solutions are being sought, as the need for
having bank accounts in many countries and onboarding international clients in the
twenty-first century is growing. A few years ago, financial institutions started to on-
board new customers remotely in non-face-to-face processes. This takes place both
on the domestic level as well as across the national borders using commercial identity
verification solutions. The mobile payment apps, such as Wise, Revolut or Monzo,
exemplify a hot arena for remote customer onboarding that builds on (live) facial
images and on the government issued identity documents. The biometric identify
verification technologies acquired by the financial institutions to help them verify
the identity of their customers en masse and with a higher accuracy than a human
operator could offer. But of course, the challenges that the banks face are broader
than just identity checks and include such aspects as credit referencing, address
verification, employment checks, income verification etc. Thus, the need for cross-
border solutions for remote identity verification solutions makes financial sector one
of the main domains where novel technological solutions are pioneered (like using
blockchain, decentralised identity networks, “trusted events”, non-standard identity
sources, etc.) [26].

ETSI, the European standardisation organisation, has ongoing activities regarding
standardizing identity proofing for the trust services (issuing e-signature and e-seal
certificates). ETSI has prepared new standard for policy and security requirements
for trust service components providing identity proofing of trust service objects
[29]. There is the expectation that this standard would be of use not only for trust
services but also for other means of electronic identity (which are usually issued by
state authorities) and for the financial sector, especially for anti-money laundering
(AML) and know your customer (KYC) processes. This calls for synchronising iden-
tity proofing area more widely, including physical identity verification and remote
identification.

Typically, remote identification solutions rely on biometric verification, unless a
new identity is based on an already issued electronic identity that can be verified
during the onboarding either by the means of on-line authentication or qualified
electronic signature. Biometric verification that takes place during the remote enrol-
ment process assumes the existence of an authoritative source that a newly issued
(secondary) identity could be based on. In the absence of such possibility, a more
thorough process would be required for the identification of the person (analogue
of refugee identification process for example), while risk of creating a new double
identity cannot be completely avoided.
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The almost only biometric characteristic that can be viably used for remote iden-
tification is the facial image. It is a universal and accessible means that allows for
enrolment of identity in an environment that is not strictly controlled; it is compatible
with accessible primary authoritative sources (e.g., travel documents, databases) and
is a mature technology with presentation attack detection mechanisms.

Other biometric data, such as fingerprints or eye iris image, are not suitable for
enrolment to create the new identity for a person in uncontrolled remote environment,
as there is no suitable reference data available from authoritative sources, the access
to such sources is restricted by the law or undesirable from ethics and privacy points
of view. Thence, other biometric characteristics beyond face images are only usable
in multimodal applications, e.g., fingerprints can replace a PIN code as a part of
access control.

Last but not the least, putting the biometrics based remote identification solutions
into use assumes the existence of high-level presentation attack detection methods
and a security system that is in regular re-assessment and improvement in terms of
the detection of new attack-vectors and mitigation of emerging risks. In other words,
on-going enhancement of the face morphing and other presentation attack detection
methods is absolutely crucial.

20.3.2 Biometric Remote Identity Onboarding Technologies

Based on two above-mentioned studies [25, 26], the main methods regarding
remote biometric identity verification technologies for identity onboarding could
be approached as follows:

First, human assisted video identity verification is, for the time being, perhaps
the most popular onboarding method. The method is similar to face-to-face
onboarding, except that the presence of applicant is not physical, but the communi-
cation takes place through a secure audio and video communication channel. In this
process, a human operator carries out the person’s identity verification in a similar
way compared to the physical process, i.e., checks if the national identity document
is authentic and valid, reads/copies data from this document, and compares visually,
if the facial image from identity document against the face of the applicant. The oper-
ator plays the central role and makes decision about verification match and whether
to issue a new identity to the applicant.

The main weakness of this method is that operator alone may not be able to
detect document forgeries, image, or video forgeries, etc. without the assistance of a
specialised software, as advanced presentation attacks are impossible to detect with
a “bare human eye”. Also, this case physical MRTD-s are used, forged documents
detection is easier and document integrity controls are more advanced with eMRTD-
s. This can potentially be software assisted where a software is used for checking the
authenticity of the document and for verifying whether the person who visible in a
live video session is a high-probability match with the facial image in document. In
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this way, extra steps can be taken to ensure that the video session is not manipulated
and attacked.

The second method for identity verification is automated remote identity veri-
fication solutions that base their decisions solely on machine-learning systems. The
process is conducted and guided by a dedicated software application that carries out
automated steps of data collection and comparison without operator’s intervention.
Usually, the onboarding starts with reading/capturing identity document of applicant,
i.e., picture or video of identity document. Thereafter, facial verification takes place
by taking a short video of the applicant and comparing the live facial image in a video
against the portrait photo in the identity document. On the back end, this includes
security checks against a presentation attack by checking liveness of person, etc.

When the validation and security checks are satisfied, an automatic systemdecides
whether to issue a new identity or to cancel the issuance. An automatic system
does not mean that there could not be monitoring and alerting system, where if
there is suspicious activity or uncertain events the human operator can intervene
and decide what to do. Here, the biometrical verification system and supporting
presentation attack detection systems play a crucial role as they must ensure that
this particular person is the same person as he or she presents. Also, the identity
document and its authenticity are very important as it is usually the only trust-
worthy and widely recognised source against which the identity of the applicant
can be compared. But for automated purposes, not every identity document is suit-
able and sufficiently secure, only documents that comply to ICAO 9303 standard
for biometrically enabled Machine-Readable Travel Document (eMRTD) meet such
expectations. Usually, eMRTD includes facial image, fingerprint (optionally) and/or
iris images and also provides data authenticity and integrity controls (PKI based
passive and active authentication).

The weakness of this method lies primarily in whether the solution can be manip-
ulated by attackers (phishing). Therefore, the applicant’s awareness is crucial—
whether she or he understands the context of transaction and purpose for which
his/her data are collected and used. Security measures shall be implemented in such
a way that the presentation attack or phishing adversary could not easily assume the
context of the transaction and the purpose for which the applicant’s data would be
used.

Third, combined video identity verification. Identity verification tasks are
carried out mainly by machine learning systems based on biometrical verification (in
development for France and Spain eID-s). Combined method is defined as mixing
video session,where themainverification functions are carried out byAI andmachine
learning systems and assisted by a human operator who interacts where necessary or
to make a final decision to issue an identity. The human operator can understand and
can check the person’s motivation and awareness for this procedure. This method
addresses weaknesses from the previous alternatives and is suitable in the context
where other measures are not appropriate.

The main objective of combined methods is to bind the applicant’s biometric
data with the biometric data contained in government-issued identity document (as
a trustworthy source) and make sure that the claimed identity and captured live
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biometric data match with different security measures. Here, “liveness” of the person
participating in the onboarding process and his/her awareness of identity verification
context (for which purposes identity verification is carried out) are as important as
in previous methods.

The remote identity onboarding solutions require electronic identity solutions that
can be handed over remotely (for example mobile phone application and server or
cloud-based solutions) or physical carrier of electronic identity can be delivered in
secureway so that only rightful person can receive and activate the identity token. For
reading eMRTD-s, NFC reader enabled mobile phones are needed. Thus, it means
that availability of these kind of remote solutions are limited with certain technical
capabilities and enabling technologies.

Remote identity onboarding use-cases where the newly created identity will be
used for further transactions and where physical presence of applicant is usually
needed are (1) banks issuing authentication means for online banking customers
or providing access to e-merchants customers using electronic wallet; (2) public
authorities or identity providers for issuing e-identity means (for authentication) in
public or private services; and (3) trust service providers for issuing e-signature
certificates and/or devices. Use cases for single electronic transactions that need in-
person or remote onboarding verification include the opening a bank account (AML
and KYC requirements) and signing agreements which would normally require the
physical presence of a person.

Today there are professional remote identity onboarding providers which offer
video interviews, identity document check (both physical and digital), enrolment
of biometric characteristics and biometric verification (with presentation attack
measures) services. The largest providers are offering tailor-made customer solu-
tions and/or service packages, concentrating on a specific service, like biometrics
enrolment and verification or digital identity document check which will be inte-
grated and orchestrated together within some remote identity verification service
solution.

Also, mixed use-cases exist where trust service providers perform remote identity
verification and linked to a specific bank customer. The main similarity for these
different solutions is the biometric characteristics that are used, like facial biometrics
and the recognition task itself. This type of solution is 1:1—meaning one-to-one
biometrical verification; matching a biometric sample (video-selfie) with biometric
reference data from a trusted source like a digital identity document (eMRTD) to
prove a person’s claim about his or her identity.
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20.4 Ethics, Privacy and Societal Acceptability
of Biometric Identity

20.4.1 Risks and Main Ethical Issues

In order to weigh values, assessing and identifying relevant risks (to values) and
benefits of technology, defining the context is important [30, 31]. According to
[30] and [32], technology can be viewed on different levels of abstraction: as a
high-level socio-technical system (for example, technologies like biometrics, cloud
computing, affective computing), as an artefact (hardware or smaller scale technical
items, for example RFID chip) or at the level of applications of technology. The
latter includes the use of technologies (and artefacts) for particular purposes and in
specific settings/technical configurations (for example ePassport, specific solutions
as for example smart (automated) CCTV for the identification of abnormal behaviour
or specific kind of remote identity onboarding solutions).Aparticular high-level tech-
nology or artefact can raise different risks and ethical issues depending on the context
and its application [30].

As we have seen from the use-cases above, the main functionality of
remote identification solutions is to onboard the new identity for issuing e-
identification/authentication means or e-signature devices for transactions to access
certain systems (bank systems, specific e-service environments) and e-services or
to perform single e-transactions. Identity verification of a person is based on face
biometrics or theoretically may be based on other biometrical characteristics such as
fingerprints or iris biometrics.

Biometrical characteristics are used mainly either for the purpose of establishing
a subject’s identity (“who is the person”) or for verification/authentication (“is this
the person who he claims to be?”) in various information systems, but sometimes
also to monitor abnormal activities and intentions using behavioural biometrical
characteristics to profile a person [33].

Thus, there are two main ways of biometric comparison. The first is biometric
verification, a one-to-one process in which the face of the authenticator/user is
compared to the existing model. The second one is identification, which is a one-to-
many process of comparing the authenticator’s data to many existing samples in the
database and seeking for the match [22]. The latter is more complex procedure as it
involves not just authenticating the user, but also verifying the identity of the user.
In both cases, biometric interaction starts from enrolment process when the initial
biometric sample is constructed. This serves as a biometric template which is then
stored in the database and is taken as a basis for matching, which takes place when
the user scans biometric data in the future for recognition. This results in a matching
score which is produced to reflect the level of similarity between the sample and the
biometrics of authenticator [22].

So far, remote identity onboarding solutions have focused mainly on linking a
person’s data to his or her claimed identity. Thus, the aim is to make sure whether
a person is who she or he claims to be by comparing biometrical data one-to-one.
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This biometric recognition task and its possible privacy impact or consequences are
less invasive than in the case of co-called one-to-many identification where person
is searched from the crowd, databases or checklist and from the systems that use
behavioural biometrics to monitor, detect, or profile a person based on some traits
or behaviour pattern which may expose malicious intentions or dangerous activities
(carrying explosives, etc.). Thus, different kinds of biometrical recognition tasks
must be distinguished, since they entail different kind of security and privacy risks,
and ethical considerations.

The main risk groups that are related to remote identity onboarding solutions
are (1) falsified evidence, where the applicant applies for a false identity by using
a forged document, or a manipulated video or photo, etc.; (2) identity theft, where
applicant uses genuine evidence, which belongs actually to a different person; (3)
phishing, where the attacker tries to get private or sensitive information with social
engineering skills and pretends to be a trusted source/party to ultimately take over
the identity of another person. The first two first risks groups are also addressed by
European Telecommunications Standards Institute [29].

These risk groups/risks can have many risk sources including, technical system
vulnerabilities or presentation attack detection system weaknesses, weak identity
evidence with poor quality, to malicious social engineering, insider with malintent,
brute force attacks, etc. Additionally, risks such as data leaks, data loss, or data
integrity problems may cause consequences like identity misuse because of exposed
identity data, and a user’s rejection or discrimination etc. Also, unbalanced biometric
dataset for biometric verification or identification testing, poor image quality etc. can
increase the risk of a user´s rejection, discrimination, or accusations depending on
the use-case. Possible consequences are discussed in the next sub-chapters about
ethical values.

Regarding biometric identity verification for identity onboarding, the severity of
consequences or harm are dependent on the use-case, including where and for which
purposes biometric onboarding or use is implemented. If the use-case of onboarding
is related to the single transaction—for example to sign some legal contract—then the
practical consequence is limited with financial damage and privacy breach. However,
if identity onboarding is for issuing certificates for authentication or electronic signa-
ture, then it would cause far-reaching identity damage, privacy breach, financial
consequences or other problems for the person and critical reputational damage for
the service provider.

Based on these above-mentioned risks and possible harms, the main ethical and
social issues that will be raised in remote onboarding solutions case are (1) harming
integrity of personal identity and misuse of it; (2) privacy and function creep; (3)
ethical issues that are raising from algorithmically driven actions and decisions; and
(4) public acceptance of technology.
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20.4.2 Integrity of Practical Identity

Biometrics includes an individual biometric feature in the form of a physiolog-
ical or anatomical attribute or distinctive behaviour that reflects “What I am” [29].
Biometrical information is representing and defining the person—his/her “informa-
tized” body [34], or embodied identity. When we link personal information as name
and some other kind of identifiers to the biomedical or “embodied” information—
the practical identity of a person is created. This practical identity is included into
identity systems and identity data processing activities.

When we talk about the risks for identity manipulation, the integrity the person’s
practical identity is in danger because through this practical identity and identity veri-
fication he/she is not proving his/her identity claim only but also or his/her rights,
entitlements, ownership, and benefits. In case of remote identity onboarding solu-
tions, new electronic identity will be issued based on biometrical verification. Your
identity and corresponding data brings new entitlements, benefits, and/or rights, i.e.,
access to e-services and social benefits. The central component of the practical iden-
tity concept is the idea of an autonomous or self-determining person who is held
accountable for his/hers reasons, motives, and actions. “If someone else engages in
manipulation of a person’s identity, that person is not fully able to use his own rights
and entitlements; in the worst case, someone else will do this in their stead” [33].
As discussed above, identity theft can be severely damaging to a person, creating
financial, legal, social, and psychological problems.

Biometric data are irreversible—they cannot be revoked because biometric traits
are unique. If such data is copied and forged or confused, the data owner will have
great difficulty proving that he or she is unconnected to the instances of use of the
data or that identity is not created by themselves. At the same time, in the remote
identity onboarding process context, the main objective of biometric verification is
again to mitigate risks of identity loss and identity theft so that no one can pass him-
or her-self off as someone else and thereby make use of the rights, entitlements and
benefits belonging to another individual.

Therefore, regarding remote identity onboarding solutions, the security and
integrity measures play a crucial role for detecting identity forgery or theft, or other
vulnerabilities that might compromise the identity and the trust of those kind of iden-
tity systems. That presumes from the service provider a mature risk and a security
management system.

20.4.3 Privacy and Function Creep

The recent studies have shown that the loss or violation of privacy as a result of
potential data leaks and data disclosure, identity theft, misuse of personal data, and
other risks remain the main ethical and social concerns in terms of using biometrics.
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There are several privacy definitions; thus, it is important to define how it is used in
the context of this chapter. Here, the privacy normative conception is used and can be
described as limited to the ‘sphere’ surrounding the person, within which that person
has the right to control access to himself or herself. Privacy is further defined as “the
person’s right to decide to what extent other persons can access and use information
concerning him or her, and who those persons are who have access to his or her
physical body; those who access and use physical/intimate space surrounding the
person” [35].

Privacy ismostly regarded as instrumental value because it protects other values or
interests of a person. The most favoured theoretical argument is that privacy protects
a more fundamental value that of individual autonomy [36–38]. The modern concept
of privacy implies respect for the autonomy of a person. In the field of scientific
research, this is connectedwith themoral and legal claim for informed consent before
intervention in other people’s lives and the person’s right to the self-identification
that forms the core of a person’s autonomy [33]. Also, [39] and [40] discuss privacy,
individual value of autonomy and value of privacy in social construction of relation-
ships and interaction. Steeves and Regan suggest that “/…/ privacy is an inherently
social practice that enables social actors to navigate the boundary between self/other
and between being closed/open to social interaction” [39].

How does this definition of privacy fit into the identity onboarding solution and
biometrical data processing context? Mainly it means that biometrical data must be
collected and used with a person’s clear and informed consent, and this consent is
basically autonomous act of a person to authorize data processing in the scope and on
aims presented to the person. Thus, it means that presenting the transaction context
to the person and clearly stating the conditions of data processing are crucial. Data
processed without consent generally occurs when the party obtaining data forgets
to ask for consent, and data are disclosed because of data leakage, hacker re-used
some vulnerability to get personal data or even gains access to the person’s data
through hacking. These examples constitute a form of privacy loss as the person
did not authorized the data processing activity. Also, as privacy is the instrumental
value—the breach of privacy usually results in consequences from inconvenience of
leaked biometrical images, until serious practical identity loss—where someone else
is using your identity, accessing, and stealing your property, savings etc.

There is one special kind of privacy breach—namely “function creep”. In short,
function creep is the situation where someone’s personal data (including biometric
data) is used by the government or another data-processing body beyond the scope
for which it was initially intended and informed to the person [20, 21]. It is important
to understand that what this situation entails is not just the violation of privacy by the
authorities but also their abuse of rights and exercising more power than they were
granted. This can have social repercussions meaning that it could not be guaranteed
that the databases of biometrics possessed by the state or service providerwill be used
solely for identity verification purposes as initially intended. For instance, the lack
of transparency in processing biometric data means that the state or service provider
could use it for covert mass-surveillance and identification of suspects [20, 21],
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profiling and etc. This sort of privacy loss is related with value of self-determination
and right to not be discriminated.

Privacy is not an absolute value but one that varies between individuals and
cultures especially when it comes into contact with other values. In practice people
routinely face trade-offs and balancing acts such as privacy vs. security (e.g.,
at airports) or convenience like regarding remote identity onboarding solutions.
According to [41] privacy is a complex decision problem—subjective perceptions
of threats and potential damages, psychological needs, and actual personal returns
all play a role in affecting decisions to protect or to share personal information.
However, Acquisti and Grossklags refer to problems in privacy valuation: incom-
plete and asymmetric information about privacy-related contexts, risks and outcomes
of trade-offs and inconsistent decisions (due to uncertainty and limited knowledge
about future events, people’s behaviour, emotional judgements etc.), which may
result in a dichotomy between attitudes and actual behaviour [41]. Also, people may
not really have alternative choices for using technologies, services, etc. which may
jeopardize their privacy (but not necessarily) [20].

Remote identity onboarding solutions are generally designed to soften the conse-
quences of a crisis (asCOVID-19) or to offer connivance services instead of processes
where a person might have to travel hundreds of kilometres to get the desired or
needed electronic identity token. At the same time, providers of identity boarding
solutions recognize that there is a need for identity security monitoring to compare
biometrical data not only 1:1 for creating a new identity but also matching iden-
tity with already known adversaries etc. Also, as we saw above, remote identity
onboarding solutions are vulnerable to attacks against enrolment and verification of
biometrical data or presented evidence, thus a system of presentation attack detection
security control must be built up. To ensure transparency and trustworthiness of data
processing, the context awareness checks and informed consent must be at the core
of privacy policies. To this end, data protection laws and information security best
practices must be followed.

20.4.4 Ethical Issues Raising from Algorithmically Driven
Actions and Decisions

Kloppenburg and Van der Ploeg, prominent scholars in the surveillance studies and
biometrics have conceptualised the nature of biometrics in terms of bodily differences
and automated discrimination. They point out normative assumptions of biometric
recognition that everybody has unique bodily characteristics and at the same time
people in essence are similar, thus the human bodily features are defined into the
range of different human features. The “normalized” bodily features are defined
and built into algorithms, systems or equipment. Bodily differences and automated
discrimination appear in multiple ways as for example with demographic distribu-
tions in a training set for tuning algorithms, quality of images, setting thresholds for
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false negatives and positives etc. [42]. Hidalgo also points out that “interestingly, the
use of learning and training sets, as well as the obscurity of deep learning, makes
algorithms similar to humans by providing them with a form of culturally encoded
and hard-to-explain intuition” [43].

Indeed, a large-scale performance test about demographic effects was made by
the National Institute of Standards and Technology (NIST) in 2019 [44]. The overall
conclusion was that there is empirical evidence for the existence of demographic
differentials in most evaluated face recognition algorithms. But different algorithms
perform differently, themost equitable also rank among themost accurate. Regarding
identity verification (1:1), the main findings in this report suggest that for false
positives, using higher quality photos rates are highest in the case of West and East
African and East Asian people, and lowest in Eastern European individuals. With
smaller impact, they found false positives to be higher in women than in men, also
elevated in elderly and in children. For explanation that false positives may present
security concerns, as thismeans that people with thewrong identitymay pass identity
verification. At the same time regarding 1:N, this would mean that for false positives,
the personmay be placed on some kind of “list”; which could lead to false accusations
or a banned travel status. High quality false negatives are higher among Asian and
American Indians, but African and Caribbean people, especially older people, false
negatives triggered by lower quality border crossing images are higher. For those
impacted by false negatives, this would mean wrongful rejection at border crossings
andmore inconvenience. Although the goal of the studywas not to explore the causes
and effects, it was noted that testing algorithms from different regions it seems to
refer to the need for demographically more diverse training data [44].

As mentioned previously, in the case of remote identity onboarding solution
biometrical recognition task 1:1 biometrical verification is used. For the person who
is rejected as a false negative, it may bring some inconveniences, as he or she will be
not allowed to get digital identity from distance and must go to the physical customer
service point if alternative onboarding services are not available. Certainly, it does
not foster digital inclusion in the e-society. Tolerance ranges are not usually open
and obvious, which makes societal scrutiny also difficult [45].

False positives also play a crucial role in remote identity onboarding solutions.
Weak algorithms or racial and sex biased solutions can accidentally associate a person
with the wrong identity and issue a new identity. This then leads back to the integrity
of a person’s practical identity and how it can be misused.

Another issue concerns the automatic machine-learning and AI based decisions
about human proceedings and actions. What are the contexts and situations where
purely machine judgments are adequate in rational and moral sense and in which
context should the human operator assist?Of course, biometrical recognition systems
are very limited in their functions and decision power, there are moral implications
embedded into algorithms and automated decisions (as discrimination), but it is
hard to see the moral agent behind it. An interesting study was conducted 2018 by
NIST researchers compared the performance of automated identification software
to human participants who were identifying people using biometric verification and
highly challenging image pairs. The conclusion was that the best face recognition
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algorithms worked in the range of the best humans: professional forensic facial
examiners. However, optimal face identification was achieved only when humans
and machines worked in collaboration [46].

Nevertheless, there is question how to control the quality of automated decisions
in operation and who carries the responsibility if automated decisions has serious
consequences, such as false identity or identity misuse.

20.4.5 Public Acceptance of Technology

One of the possible barriers for introducing new technologies is the risk that they
will not be accepted by the users. To our knowledge there are no studies specifically
on the acceptance of biometrics in remote identity onboarding available. However,
one can learn from other studies undertaken on related biometric technologies.

Large scale biometrical systems were introduced in Europe with implementing
the so-called ePassports. And, already since their introduction of ePassports, scholars
have concluded that insufficient public information on the objectives of the utilisation
of ePassports and eIDs and their rapid adoptionwithout public discussion can escalate
public fears and create a trust deficit.

Our own studies confirm an absence of public information regarding the functions
of ePassports and biometric impacts of their implementation. In particular, many
people seem to lack information regarding the role of biometrics, ePassports and
their functioning. In other words, how are ePassports meant to make our life easier
and in what ways are they more effective than traditional identification methods?
How are they meant to increase our security? The unclear reasoning behind imple-
mentation of new solutions has a negative impact on their acceptability andmay raise
questions about their relevance [20]. An important aspect in successful implemen-
tation of biometric technology is public trust and acceptability. Generally speaking,
distrust among citizens regarding the technology, be it deployment difficulties, incon-
venience, false acceptance rates or else, lowers the general trust in that particular
technology among individuals but also state agencies deploying that technology
[20, 21].

Tiits et al. have also analysed public perceptions on a number of potential future
uses of ePassports and related data. It is found that the majority of the general public
also agrees with public entities using passport photos for identity checks. The public
is, however, less willing to accept the government making use of fingerprints and
even less so other biometric applications in making identity checks. The majority
of respondents are, in fact, against the use of fingerprints or eye iris images in the
case of low security services that do not require strong authentication of a person.
The acceptability of private businesses making use of biometrics for identity checks
follows largely the above pattern, even though acceptance levels are lower than
for public authorities [20, 21]. However, since the study was published, the use of
biometrics has become wider in consumer level devices and we expect the wider
approval of facial images by the public, as has happened with the fingerprint images.
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The study concludedwith several recommendationswhich are valid for increasing
the acceptance of the biometrics in remote identity onboarding. It was concluded
that the number of people who are uninformed or undecided about various aspects
of ePassports and their use, remains high. The expected benefits and risks of ePass-
ports have received only limited attention in the public media sphere in most of the
countries and more public debate is needed. However, increasing awareness on the
technical aspects of ePassports will not necessarily lead to higher acceptance among
the future generations of ePassports. What the public expects is that the benefits of
specific uses of ePassports are clear, and, most importantly, proper technological and
organisational measures are in place to secure that privacy is maintained and that
the use of personal data is limited only to the purposes originally stated. It was also
confirmed that the acceptability of technology is context-dependent and a function
of a trade-off between expected benefits and perceived risks (costs). This is where
earlier experience becomes crucial. The research shows that if people accept the use
of advanced biometrics, such as fingerprints or eye iris images in one scenario, they
are more willing to accept them in others. Thus, the successful pathway to greater
acceptability for the use of advanced biometrics in ePassports should start from the
introduction of perceivably high-benefit and low-risk applications [20, 21].

20.5 Discussion and Conclusions

Until recently, government-issued identity documents, including strong electronic
identity, which serves as ameans for authentication or electronic signature, have been
exclusively based on face-to-face customer onboarding.Checking a person’s physical
presence has been an essential part of identity enrolling procedures to avoid the risk
of identity forgery. Yet, several weaknesses, including face morphing attacks, have
been identified in document issuing processes. With synthetic media and artificial
intelligence generated ‘deep fakes’, it is becoming increasingly difficult to tell apart a
true identity from a fake one. So, with the increasing availability of datamanipulation
tools, forgery has also become massive and widespread. Hence, identity theft has
become a growing concern for individuals, organisations, and businesses and has
directed all the stakeholders to work on secure digital identity solutions. Thereby,
the establishment of a trustworthy (electronic) identity, the fight against identity theft
and privacy protection have become the cornerstones for further development of the
society.

Furthermore, increasing international mobility, the COVID-19 pandemic, and
greater priority on user convenience poses a significant challenge to the established
onboarding rules and procedures. This is especially true when it comes to issuing a
national electronic identity or opening bank accounts internationally. A solution is
being sought—the remote customer onboarding and identity verification solutions—
which would eliminate the barriers that stem from a physical distance while offering
at least equal or better onboarding processes than face-to-face identity verification
with the physical presence of a person.
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Biometrics is only reliable link for binding together identity evidence and the
real person that can be presented through a video-session. Face biometrics is used
and seems to be a suitable biometric option from different perspectives. The use of
such biometrics has the potential to raise the effectiveness and trust level in transac-
tions, procedures, and systems where the verification or identification of a person is
necessary. Also, biometric identification is considered more convenient compared to
other identification tools or methods. Recently, novel remote onboarding solutions
have appeared on the market; they vary from human-assisted video identification
procedures to biometric-based automated verification procedures. The almost only
biometric characteristic that can be viably used for remote identification is the facial
image. It is a universal and accessible means that allows for enrolment of identity
in an environment that is not strictly controlled; it is compatible with accessible
primary authoritative sources (e.g., travel documents, databases) and mature tech-
nology with presentation attack detection mechanisms exists. However, putting the
biometrics based remote identification solutions into use assumes the existence of
high-level presentation attack detection methods and a security system that is regu-
larly assessed and improved in terms of the detection of new attack-vectors and
mitigation of emerging risks. In other words, on-going enhancement of the face
morphing and other presentation attack detection methods is absolutely crucial.

We have analysed different use-cases of remote identity verification solutions
for identity onboarding, main risks, and challenges from ethical, societal and privacy
perspectives.Automated identity verification technologies basedonbiometrical algo-
rithms and security techniques to ensure a person’s genuine presence and alive-
ness identifying presentation, deepfake replay, and other similar attacks are key
elements for a secure and reliable remote solution. In addition, other non-technical
requirements for the reliability of the claimed identity presented during the iden-
tity onboarding process—user’s context-awareness while the person is enrolled
via remote solution, the trustworthiness of identity provider, etc.—must be not
underestimated and shall be addressed as well.

Regarding biometrical identity verification for identity onboarding severity of
consequences or harm is dependent on the use-case, where and for which purposes
biometric onboarding or use is implemented. If the use-case of onboarding is related
to the single transaction, then the practical consequence is limited with financial
damage and privacy breach. However, if identity onboarding is for issuing certificates
for authentication or electronic signature, then it would cause far-reaching identity
damage, privacy breach, potential financial harm, and other problems for a person
and critical reputational damage for the service provider.

The main social and ethical issues with biometrics in remote identity onboarding
are (1) the risk of harming integrity of personal identity and misuse of it; (2) the
risk of privacy invasion and function creep; (3) ethical issues that are raising from
algorithmically driven actions and decisions; and (4) public perception and social
acceptance of technology. In the case of integrity of person’s identity, during the
identity theft or loss more than privacy will be harmed, the person could be refused
access to services, lose control over their identity, and face damages which are done
in their name.
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Regarding privacy and function creep, the main issues are related to remote
onboarding solutions where a person’s data are used without his or her authorisation.
In these cases, how the data is leaked—whether it be from a data leak or unsecure
service, hackers (adversaries), or vulnerable data systems—is not as important as
what the consequences were. For example, differences in consequences and harm
i.e., financial harm or adverse consequences manifesting from the takeover of a
person’s identity. In case of remote systems using biometric recognition, it may be
temptation to perform one-to-many matching for profiling, blacklisting etc., which
could go beyond the data processing purposes authorized by and communicated to
the persons.

Algorithmical decisions and actions refer to situations where a person who is
rejected as a false negative may suffer from an inconvenience at the very least.
As an example, he or she may be refused from remote onboarding for new digital
identity and may be referred to go to the physical customer service point where an
alternative face-to-face onboarding service is available. Likewise, false positives are
a crucial risk factor in remote identity onboarding solutions. Overly loose algorithms
or racially or gender biased solutions may associate a person erroneously to a wrong
identity or assign a new identity to the wrong person altogether.

Finally, it is important to understand and address the potential public acceptance
issues. The end goal to be to support activities that increase the awareness of the bene-
fits and risks for using technologies and methodologies for biometric identification.
This is particularly important regarding the benefits of specific uses of biometrics in
remote identity onboarding and ensuring to thewould-be users that the proper techno-
logical and organisational measures are in place to secure that privacy is maintained
and that the use of personal data is limited only to the purposes originally stated.

These non-technical concerns and risks need to be addressed in developing identity
verification technologies based on biometrical algorithms and security techniques.
At the same time, introduction of such innovative solutions puts challenges to public
administrations.

The absence of a unified approach, common regulatory framework and commonly
accepted practices has resulted in a situationwhere different initiatives emerge across
countries which share some common elements but also numerous differences that
can lead to challenges related to interoperability. It is recommended to share between
the EUmember states (and beyond) the technical know-how, but also how social and
ethical risks have been managed.
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Abstract Recently, digital face manipulation and its detection have sparked large
interest in industry and academia around the world. Numerous approaches have been
proposed in the literature to create realistic face manipulations, such as DeepFakes
and face morphs. To the human eye manipulated images and videos can be almost
indistinguishable from real content. Although impressive progress has been reported
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in the automatic detection of such face manipulations, this research field is often
considered to be a cat and mouse game. This chapter briefly discusses the state of
the art of digital face manipulation and detection. Issues and challenges that need to
be tackled by the research community are summarized, along with future trends in
the field.

21.1 Introduction

Over the last couple of years, digital face manipulation and detection has become
a highly active area of research. This is demonstrated through the increasing num-
ber of workshops in top conferences [1–5], international projects such as MediFor
and the recent SemaFor funded by the Defense Advanced Research Project Agency
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(DARPA), and competitions such as the Media Forensics Challenge (MFC2018)1

launched by the National Institute of Standards and Technology (NIST), the Deep-
fake Detection Challenge (DFDC)2 launched by Facebook, and the recent Deeper-
Forensics Challenge.3

Face manipulation techniques can erode trust in digital media through fake news
and the spread of misinformation [6]. With the big impact of social networks on our
daily life, disinformation can be easily widespread and influence the public opin-
ion [7]. Its targets can be individuals, economy, or politics [8]. Manipulated videos
have already been used to create political tensions, and the technology enabling their
creation is being considered as a threat by various governments [9].

Motivated by those facts, researchers have proposed various techniques to detect
digital face manipulations in the recent past [10, 11]. In addition, public databases
have been made available and first benchmarks have been conducted by different
research groups [12–17], proving the high potential of the latest manipulation detec-
tors. Nonetheless, a reliable detection of manipulated face images and videos is still
considered an unsolved problem. It is generally conceded that digital face manip-
ulation detection is still a nascent field of research in which numerous issues and
challenges have to be addressed in order to reliably deploy such methods in real-
world applications.

This chapter concludes the book providing an overview of open issues and chal-
lenges in the field of digital face manipulation and detection. Limitations of state-of-
the-artmethods are pointed out and potential future research direction toward advanc-
ing bothfields are summarized, including promising application areas aswell as novel
use-cases.Moreover, legal and societal aspects of digital facemanipulation anddetec-
tion are discussed, such as the legality and legitimacy of the use of the manipulation
detection or the potentially conflicting right to “one’s own image”, among others.
Listing currently unsolved problems in the field, this chapter is intended to serve as
a starting point for new researchers in the field.
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The remainder of this chapter is organized as follows: Sect. 21.2 briefly describes
the current state of the art in face manipulation together with public available
databases. The most relevant issues with respect to the detection of face manip-
ulations are discussed in Sect. 21.3. In Sect. 21.4, future research directions and
application areas are summarized. Subsequently, Sect. 21.5 discusses societal and
legal aspects of face manipulation and detection. Finally, a summary is given in
Sect. 21.6.

21.2 Realism of Face Manipulation and Databases

21.2.1 State of the Art

Face manipulation techniques have been improved significantly in the last years as
discussed in Part II of the book. State-of-the-art techniques are able to generate fake
images and videos that are indistinguishable to the human eye [10, 11, 18]. However,
when considering automatic end-to-endmanipulation techniques, the visual quality is
not always stable and it depends severely on different aspects [17, 19–21]. Figure21.1
shows some weaknesses that limit the naturalness and facilitate fake detection. We
highlight next some of the most critical aspects:

• Face detection and segmentation, which is not 100% accurate [22, 23]: this
problem becomes worse when input images or videos are in bad quality, e.g., bad
lighting condition, noisy, blurry, or low resolution.

• Blending manipulated faces into the original image or video: although there
have been improvements in the blending algorithms [19], artifacts at the edges
of the manipulated and original regions still exist in many cases. In addition,
mismatch between these two regions (e.g., lighting condition, skin color, or noise)
can degrade the realism of the manipulated images/videos, making them easier to
be detected.

• Low-quality synthesized faces: while progress has beenmade here thanks toGen-
erative Adversarial Networks (GAN), for example, through the recent StyleGAN2
model [24] that is able to generate non-existent faces with high resolution, editing
with such models through GAN inversion techniques is time consuming and com-
putationally demanding. This computational complexity also hinders development
of high-resolution video manipulation techniques. Basic techniques often gener-
ate low-resolution face images, typically between 64×64 and 256×256 pixels as
discussed in Chap.4 of the book.

• Temporal inconsistencies along frames: this is of special importance in face
manipulations such as Audio-to-Video as discussed in Chap.8 of the book: Are
there any relationships between audio and other facial features such as eyes, teeth,
and even head movements? Techniques based on 3D pose and expression could
further benefit this research line [25].

Apart from the aspects commented before, it is also interesting to highlight that
most face manipulation techniques are currently focused only on the visual quality
at pixel level [10, 11], to the best of our knowledge. Biological aspects of the human
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Fig. 21.1 Weaknesses of
automatic end-to-end face
manipulations that limit the
naturalness and facilitate
fake detection
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being should be also taken into account in the manipulation process, e.g., blood
circulation (heart rate) and eye blink rate could be automatically extracted from the
faces to detect whether the video is real or fake [26, 27], as discussed in Chap.12.

21.2.2 Missing Resources

Although new public databases are being released recently, these generally lack
diversity and include low-quality videos. Specifically, for image databases, GAN-
based models have been proved to be very effective in creating realistic faces, but
these are usually generated with one model (e.g., StyleGAN2 [24]) with one spe-
cific set of parameters [28–30]. Video databases, on the other hand, are plagued
with low-quality synthesis results, exhibiting visible blurring or boundary artifacts.
As a result, it is easy for current fake detectors to over-adapt to the specific char-
acteristics of the generation method and artifacts. In addition, high-accuracy fake
detection performances on databases containing significant fraction of low-quality
videos will not be representative for the performance in real life.4 To make the detec-
tion more challenging, databases need to improve on the types and variants of the
generation models, post-processing steps, codecs, and compression methods, as well
as adversarial attacks.

Furthermore, current databases are still small and monotonic compared with
those in other areas like image classification or speech, e.g., ImageNet [31] or Vox-
Celeb2 [32]. One of the largest databases, the DFDC dataset [12], only has 128,154
videos with less than 20 types of manipulation methods. Moreover, most databases
only contain one or two subjects in an image or video except the recently released
Face Forensics in theWild (FFIW) database [33], and they are easily perceived (not a
small subject in a crowd). It is also interesting to highlight that none of the databases
contain manipulated or synthesized speech except the DFDC, but its manipulation
is simple and is hard to be considered as “fake”.

Finally, it is important to highlight two more missing resources in face manipu-
lation: (i) the generation of manipulated face databases based on 3D manipulation
techniques [34], and (ii) the generation of multimodal manipulated face databases
as current ones are only focused on the manipulation of either audio or face visual
information [35, 36].

21.3 Limitations of Face Manipulation Detection

21.3.1 Generalizability

The vast majority of existing face manipulation detection techniques have been eval-
uated only on known types of face manipulations or on a single database [10, 11].
In other words, the published empirical results showed performances of detectors
under same train and test manipulation type/database. However, their performances

4 https://www.youtube.com/channel/UCKpH0CKltc73e4wh0_pgL3g.

https://www.youtube.com/channel/UCKpH0CKltc73e4wh0_pgL3g
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usually drop significantly when evaluated under cross-manipulation setting (where
train and test sets are not from the same manipulation type or database) [12, 19, 37,
38]. Therefore, reported detection performance rates are over-optimistic.

Tackling the unknown emerging face manipulations is still a key challenge [30,
39]. In fact, generalization of detection techniques is crucial in attaining dependable
accuracy in real-life scenarios. It is agreed upon researchers that face manipulation
and detection is well described as a cat and mouse game, where improvements in
one area trigger improvements in the other.

The generalization capabilities of existing detectors are still an open issue that is
difficult to address with today’s (mostly supervised) solutions. An evident example
of this generalization problemwas demonstrated by the recent DeepfakeGameCom-
petition (DFGC) [40], held in conjunction with the 2021 edition of the International
Joint Conference on Biometrics (IJCB 20215). The competition had multiple rounds
of submissions, where participants first designed DeepFake detectors based on the
training data provided by the organizers and then contributed novel DeepFake gen-
eration techniques to test the detectors. With most developed detection techniques,
the performance deteriorated quickly with the introduction of novel DeepFakes not
seen during training.

Beyond being able to generalize, it is important that current methods are robust to
possible post-processing steps. In fact, media assets often undergo a number of not
malicious operations, such as compression and resizing [41], that occurs every time
they are uploaded over a social network or made available on a website. Now these
operations tend to weaken the forensic traces and above all cause a misalignment
between training and test data that can make the learning-based detectors not prop-
erly work [11]. Similar problems are also seen in other related areas, for example,
Presentation Attack Detection (PAD) [42–45], which despite decades of research,
issueswith cross-dataset performance and robustness to unseen attacks is still amajor
issue of even the most advanced solutions.

21.3.2 Interpretability

Until now, very few studies have attempted to explore the interpretability and trust-
worthiness aspects of face manipulation detectors [46]. Many detection methods,
particularly those based on deep neural networks, generally lack explainability owing
to the black box nature of deep learning techniques. The fake detectors presently label
a face sample with a fakeness probability score, occasionally detection confidence
is provided, but little insight about such results is provided beyond simple numerical
scores. It would be more beneficial to describe why a detector predicts a specific face
as real or manipulated. For instance, which face parts are believed to be forged and
where the detector is looking for label prediction [17]. For human, it is vital to com-
prehend and trust the opinion of a fake detector—however, the human expert operates

5 http://ijcb2021.iapr-tc4.org/.

http://ijcb2021.iapr-tc4.org/
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at the end of the processing chain and therefore wants to understand the decision. A
numerical score or label not corroborated with decent reasoning and insights cannot
be accepted in some critical applications like journalism or law enforcement, among
others.

Furthermore, it is not easy to characterize the intent of a face manipulation. So
far, learning-based detectors cannot distinguish between malicious and benign pro-
cessing operations. For example, it is impossible to tell if a change of illumination
was carried out only for the purpose of enhancement or to better fit a swapped face in
a video. In general, characterizing the intent of a manipulation is extremely difficult
and it will become even harder with the spread of deep learning-based methods in
almost all the enhancement operations. In fact, how can a face manipulation detector
realize that GAN content generated for super-resolution is acceptable while GAN
content that modify a face attribution is not? In a world where most of the media are
processed using deep learning-based tools, it is increasingly likely that something
be manipulated, and the key to forensic performance is learning the intent behind a
manipulation. A good forensic detector should be able to single out only malicious
manipulations on faces, by leveraging not only on the single media but looking at
the context and including all other related media and textual information.

21.3.3 Vulnerabilities

State-of-the-art detection methods make heavy use of deep learning, i.e., deep neu-
ral network models serve as the most popular backbone. Such approaches can
suffer severely from the adversarial attacks as some recent works suggested [47–
49]. Although real-world fake detectors may cope with various degradations like
video/image noise, compression, etc., they can be vulnerable to adversarial exam-
ples with imperceptible additive noises [47, 50]. Prior studies have demonstrated that
detectors based on neural networks are most susceptible to adversarial attacks [51].
Unfortunately, it has been noticed that all existing methods seem to fail against
adversarial attacks, even the accuracy of some fake detectors is reduced to 0% [51].

Beyond adversarial attacks, it is worth observing that every detection algorithm
should take into account the presence of an adversary to fool it. In fact, by relying
on the knowledge of the specific clues exploited by a face manipulation detector,
one can make it not work anymore. For example, if an adversary knows that the
algorithm exploits the presence of the specific GAN fingerprints that characterize
synthetic media, then it would be possible to remove them [30] and also to insert
real fingerprints related to modern digital cameras [52]. Overall, researchers should
be always aware about the two-player nature of this research and design a detector
robust also to possible targeted attacks.
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21.3.4 Human Capabilities

Detecting high-quality facemanipulations by humans is already a highly challenging
tasks, especially if the subject is not versed in this area. While researchers working
on facemanipulation are still often able to spot giveaways with the current generation
of manipulation techniques, it is expected that this will change in the near future.
Although humans have a limited capability to detect high-quality facemanipulations,
they are usually better at detecting manipulation patterns with little prior knowledge.
Thus, they can still be included in the forensic applications’ decision-making. Human
in the loop systems will lead us to a better reliable detection of high-quality face
manipulations. As the quality of digital face manipulation is improving so quickly,
it might not be possible to detect them solely based on human visual inspection
without an in-depth analysis of image characteristics. Two recent studies [53, 54]
have shown that humans cannot reliably distinguish images generated by advanced
GAN technologies from pristine images. The average accuracy turned out to be
around 50% (coin tossing) for untrained observers, increasing to just 60% for trained
observers with unlimited analysis time [54]. In ref. [53], experiments reveal that the
realism of synthetic images even surpasses those of real images (68% for synthetic
images versus 52% for real ones).

Fooling machines, on the other hand, is more challenging as long as examples
of face manipulations are available for supervised training, which does not always
simulate real-life scenarios.

21.3.5 Further Limitations

Standards in the field of face manipulation and detection represent the common rules
for assembling, evaluating, storing, and sharing samples anddetectors’ performances.
There are no international standards yet, although some inceptive efforts have been
made toward this [21]. There is a strong need for standardized frameworks, which
should be composed of protocols and tools for manipulation generation and detec-
tion, common criteria, and open platforms to transparently analyze systems against
benchmarks. Such standardized frameworks will help operators and consumers of
digital media to generate, evaluate, configure, or compare face manipulation and
detection techniques.

21.4 Face Manipulation and Detection: The Path Forward

21.4.1 Application Areas for Face Manipulation

Face manipulation techniques could mark a milestone in many different applica-
tion areas in the near future. We summarize next and in Fig. 21.2 some potential
applications:
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Fig. 21.2 Application areas of the face manipulation technology

• Movie industry: it is a simple and cheap way to do animations compared with
traditional computer graphics techniques.6 With some improvements in terms of
quality and resolution, we can foresee that DeepFakes will revolutionize the movie
industry, for example, allowing dead actors to act again and to speak seamlessly
many languages, enhancing expressions, aswell as allowing new settings and takes
(e.g., 3D views anytime, without expensive equipment).

6 https://www.youtube.com/watch?v=dHSTWepkp_M&t=76s.

https://www.youtube.com/watch?v=dHSTWepkp_M&t=76s
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• Social networks and entertainment: there already exist several startups focusing
on building funny animations from still images using lip sync technology, e.g.,
Avatarify,7 Wombo.ai,8 DeepNostalgia.9

• Privacy protection: face manipulation techniques could conceal certain attributes
of the subject from human observers or automatic techniques. For example, face
de-identification techniques aim tomake identity inference from images and video
impossible by altering key facial properties [55, 56], and soft-biometric privacy-
enhancing techniques [57] try tomodify image characteristics tomake it difficult to
automatically infer potentially sensitive attribute information from facial images,
e.g., age, gender, or ethnicity. These techniques could be very valuable, among
others, to replace faces of subjects or witnesses who wish to conceal their identity
in fear of prosecution and discrimination.

• e-Commerce: face attribute manipulations could further benefit the retail sector,
for example, through popular applications such as FaceApp.10 Consumers could
use this technology to try on a broad range of products such as cosmetics and
makeup, glasses, or hairstyles in a virtual and user-friendly environment.

• e-Learning: face manipulation techniques could enhance the process of remote
education of children/students in many different scenarios, for example, swapping
teacher’s face with their parents as it is proved that familiarity enhances the rate
of learning. Similarly, videos of historical figures could be generated, allowing
students to learn about the topics in a more interactive way, generating more
appealing learning scenarios.

• e-Health: bring a person to life using face manipulation techniques could be very
valuable for therapeutic purposes, allowing patients to express their feelings and
get over hard situations, e.g., sudden deaths.

• Computer vision: due to the nature of contemporary machine learning models
(which are notoriously data hungry), larger and larger datasets are needed for train-
ing and ensuring competitive performance. A common, but questionably practice
established by the computer vision community in recent years, is to address this
demand for data collecting large-scale datasets from the web. However, no consent
is obtained for such collections and the generated datasets are often associatedwith
privacy concerns. Using synthetic data, generated from images of a small number
of consenting subject and state-of-the-art manipulation techniques, may be a pos-
sibility to address the need for the enormous amount of data required by modern
machine learning models and comply with existing data protection regulations,
such as General Data Protection Regulation (GDPR) of the European Union.

7 https://avatarify.ai/.
8 https://www.wombo.ai/.
9 https://www.myheritage.com/deep-nostalgia.
10 https://www.faceapp.com/.

https://avatarify.ai/
https://www.wombo.ai/
https://www.myheritage.com/deep-nostalgia
https://www.faceapp.com/
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21.4.2 Promising Approaches

Fakedetection technologywill continue improving in the comingyears.One evidence
is that more and more publications have appeared in the last years in top conferences
such as AAAI, CVPR, and ICCV. However, as the face manipulation technology
will also improve simultaneously, we may still not see highly reliable detectors in
a near future, especially those that can handle unseen face manipulations, which is
currently one of the most challenging limitations of the detectors as discussed in
Sect. 21.3.

Several research directions can be pursued to improve the generalization problem
of current face manipulation detectors:

• We expect to see more interest in one-class learning models, commonly used in
the anomaly and novelty detection literature [58, 59]. Such models learn from real
examples and do not require examples of manipulated data to train fake detectors.
As a result, they are expected to generalize better for the detection of novel (unseen)
face manipulation techniques. Of course, such detection techniques come with
their own set of problems that range from data representation and model design to
learning objectives, among others.

• Online learning is also one promisingway to deal with generalization [60]. Unfor-
tunately, current databases are not optimal to conduct online learning research.
Therefore, focusing on making better databases and applying online learning can
be done together to improve face manipulation detection in the future.

• Recent studies suggest that no single feature/characteristic is adequate to build
effective and robust detectors of face manipulations. On the other hand, many
successful real-life machine learning solutions are based on ensemble models
that fuse results from individual types of features or detectors and are calibrated
for stronger collective performance [61, 62]. The most notable example is the
recent fake detectors presented in the DeepFake Detection Challenge [12].

• Similar to the previous point, multimodal approaches, which are able to fuse
multiple detection strategies including artifact analysis, identity-aware detection,
as well as contextual information such as accompanying text, audio, and origin
of data. Multimodal approaches also increase the interpretability and hence the
understanding of the reasoning of deep neural networks [63].

• More recently, identity-aware detection mechanisms have been proposed which
do not learn to detect specific artifacts but rather learn features of a subject [64].
However, such schemes additionally require reference data resulting in a differen-
tial detection approach [65, 66].

Apart from the promising fake detection approaches listed above, researchers
working on the topic of face manipulation could incorporate mechanisms that
intentionally include imperceivable elements (watermarks) into the manipulated
images/videos in order tomake the detection easier [67, 68].While such idea does not
address the general problem of detecting face manipulations, it could set the bar for
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adversaries higher and make sharing face manipulation techniques (with legitimate
use cases) with the research community less challenging.

Finally, face manipulation techniques could also improve privacy protection [69].
Research on privacy-enhancing techniques is increasingly looking at formal privacy
schemes, such as k-Anonymity [70, 71] or ε-differential privacy [72, 73], which
provide formal (mathematically proven) guarantees about the privacy levels ensured.
We expect to see novel algorithms around these concepts in the near future.

21.5 Societal and Legal Aspects of Face Manipulation and
Detection

Face manipulation brings an array of complex legal issues. There is no comprehen-
sive legislation on the use of manipulated images, yet several aspects are already
regulated in various countries. It should hence not surprise that the development of
new manipulation technology and the detection thereof also leads to new issues and
questions from a legal perspective which deserve further research.

If it is used to mislead, manipulated images can cause significant harm to the
individuals they falsely portray. They can cause emotional distress and reputational
damage. The victims of these fake images can try to find relief through torts and
criminal laws. Beyond individuals, these digitally altered images can also affect
society at large. The problem is that viewers are most of the time not aware that these
images are not genuine. In somecountries, altered (body) images used for commercial
purposes (such as the fashion industry) need to be labeled.More generally, legislative
proposals in several countries try to tackle the transparency issue by imposing an
obligation to inform users that they interact with AI-generated content (such as
DeepFakes). Besides this aspect, manipulated face images might also be subject to
copyright protection. But only the photographer of the original images can benefit
from it and object to their use without his or her authorization. On the other side, the
subjects might benefit from image, publicity, and privacy rights for the alteration of
their imageswithout their consent. The rules are different fromone country to another.
In some jurisdictions, they will be balanced with individuals’ freedom of speech (that
could allow them to alter these images). But not every use of altered face images
is intended to be malicious. Indeed, they can be very beneficial to some industries
(such as entertainment or healthcare as discussed in Sect. 21.4.1). Therefore, it is
very challenging to tackle the complexity of the use of digitally manipulated face
images with a single piece of legislation while technically it would be possible to
apply cryptographic techniques to ensure the integrity and authenticity of image data.
Finally, there is room to investigate the rules applicable to the digital alteration of
the face images for research purposes.

Focusing on face manipulation, one shall keep in mind that in several countries
individuals have a right to “one’s own image”. This implies that individuals are
entitled to control their representation and the reproduction of their images, especially
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face, to the outside world. In an increasingly digitized world, these individuals may
also choose to protect their digital images, for example, to prevent profiling.Detecting
manipulations, based on this right to control your own image by protecting it, should
not have adverse effects for these individuals, unless there is a clear legal rule that
this would be forbidden for legitimate reasons, e.g., on identity documents. The
potential conflict between this specific right to “one’s own image” and other needs,
e.g., of public authorities deserves further discussion and debate, based on researched
arguments.

All new digital technology used in a societal context raises inevitably new ques-
tions, also from the legal side. The reasons why digital technologies are often under
close review also by the regulator is that such technologies may change existing
(power) relations and affect prior balances once established, for example, when
investigating crime or when spreading news information.

Once the manipulation technologies are more widely used, for Example, for
spreading fake news over digital platforms, the owners of such platform will face
the need for a delicate exercise of assessing whether and removing any information
was manipulated. This exercise risks to collide with some fundamental principles
in democratic societies, such as the right of freedom of speech, but also the rights
to respect for privacy and data protection. For instance, there are currently several
proposals for the regulation of digital content on platforms, including anEUCommis-
sion’s proposal of a Digital Services Act, setting a common set of rules on obligations
for so-called intermediaries offering digital services. These services would include
video messages, which could be manipulated as to the identities of the actors therein,
leading to identity theft or spreading false information.

In case manipulation detection methods are used by public authorities competent
for preventing, investigating, detecting, or prosecuting criminal offences this shall
be done in a lawful and fair manner. While these are broad concepts, case law further
explains how to apply these concepts. Lawfulness refers to the need—in accordance
with the rule of law principle—to adopt adequate, accessible, and foreseeable laws
with sufficient precision and sufficient safeguards whenever the use of the detection
technology, which may be considered as a part of or sub process to, e.g., for face
recognition, could interfere with fundamental rights and freedoms. When used for
forensics, explainability of the algorithms used, also in court, will be high on the
agenda. Fairness points to the need for being transparent about the use of the tech-
nology. Furthermore, it is obvious that the use of the detection methods should be
restricted to well-defined legitimate purposes, such as, e.g., preventing illegitimate
migration or detecting identity fraud. From an organizational point, one should also
know that decisions purely and solely based on automated processing, producing
adverse legal effects or significantly effecting subjects, are prohibited, unless autho-
rized by law, and subject to appropriate safeguards, including at least humanoversight
and intervention. Again, according technical solutions to assure the authenticity of
data would need to be implemented as a prerequisite.

As argued inChap.20, the risk of harming integrity of personal identity andmisuse
of it as well as the risk of privacy invasion and function creep represent major issues.
In the case of integrity of subject’s identity, during the identity theft or loss more than
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privacy will be harmed, the subject could be refused access to services, lose control
over their identity, and face damages which are done in their name.

Regarding privacy and function creep, the main issues are related to solutions
where a subject’s data are used without his or her authorisation. In these cases, how
the data is leaked—whether it is from a data leak or insecure service, hackers (adver-
saries), or vulnerable data systems—is not as important as what the consequences
were [74, 75].

The absence of a unified approach, common regulatory framework, and commonly
accepted practices has resulted in a situationwhere different initiatives emerge across
countries which share some common elements but also numerous differences that
can lead to challenges related to interoperability. It is recommended to share between
countries next to technical know-how additionally how social and ethical risks have
been and are being managed.

Lastly, it is important to note that face manipulation techniques are also expected
to have positive impact on society and economy. For instance, face manipulation
techniques can help to address privacy issues through privacy-enhancing techniques,
they facilitate the training of machine learning models with synthetic data (with-
out images scrapped from the web), they can help with sustainability by facilitating
virtual fitting rooms for the beauty and fashion industries and drive economic devel-
opmentwith (high added value)mobile e-commerce, entertainment, and socialmedia
applications.

21.6 Summary

This concluding chapter has given an overview of different unsolved issues in (and
surrounding) the research field of digital face manipulation and detection. It summa-
rizes the opinions of several distinguished researchers from academia and industry of
different backgrounds, including computer vision, pattern recognition, media foren-
sics as well as social and legal research, regarding the future trends in said field.
Moreover, this chapter has listed various avenues which should be considered in
future research and, thus, serves as good reference point for researchers working in
the area of digital face manipulation and detection.
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