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Preface

The theory of evolutionary equations has its origins in the seminal paper [82] by
Rainer Picard, working at the Technische Universitit Dresden, Germany. All three
of us were students at this university at the time. Thus, we were lucky enough to
learn the theory of evolutionary equations from its early days on. We took and still
take the opportunity to be part of the continuously growing group of people actively
developing the theory further. In fact, both the PhD and the habilitation theses of
S.T. and M.W. are concerned with generalisations of the initial theory as well as
opening up new directions of research. It is also an aim of these lecture notes to
present some of these latest results in a coherent text.

In general terms, the theory of evolutionary equations provides a Hilbert space
method to understand differential equations. It comprises a unified approach
to solving both ordinary and partial differential equations as well as to show
general well-posedness results for both stationary and nonstationary, that is, time-
dependent problems. Besides well-posedness theorems for large classes of differen-
tial equations (including nonlinear problems), the theory addresses quantitative and
qualitative questions related to exponential stability, homogenisation and regularity.
This list is bound to get longer in future. The general approach, furthermore, allows
for either a comparison or unification (depending on the context) of approaches
initially tailored for particular types of equations, such as parabolic, hyperbolic
or elliptic. In particular, mixed type equations can be considered and understood
with the presented perspective. Thus, many fundamental equations of mathematical
physics such as the heat equation, wave equation, Maxwell’s equations and the
equations of elasticity theory can be treated using this method.

The abovementioned equations fitting into a general solution theory posed a
surprising fact (at least for us). Even more so as the general problem class of
evolutionary equations bases on four rather elementary observations being shortly
summarised as follows:

 the (distributional, time) derivative can be realised as a boundedly invertible,
normal operator in exponentially weighted L;-spaces,
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* many equations of mathematical physics (including the above) can be written as
a sum of two unbounded operators: one of them involving first order differential
operators in space and the other one a first order differential operator in time,

* the introduction of abstract so-called ‘material laws’ or ‘material law operators’
as coefficients of the time derivative describes both heterogeneous media and
coupling effects,

e the solution mechanism is based on monotonicity of both the sum of the
mentioned unbounded operators together with its adjoint computed in the space-
time Hilbert space; in many cases, this monotonicity readily follows from the one
of the time derivatives multiplied with the material law operator.

The last observation is particularly striking in as much as the monotonicity of the
time derivative multiplied with the material law operator is rather easily obtained in
many applications. This provides a well-posedness criterion that is both elementary
and general, often leading to generalisations of known solution criteria for particular
situations. From an applied perspective, these criteria can often be verified without
diving into the intricacies of more involved solution methods and, thus, the existing
numerical methods for evolutionary equations can be used to numerically solve the
considered equation at hand.

In the context of time-dependent equations and related topics, there is a well-
established format of introducing various subjects to advanced master or diploma
students as well as PhD students, namely the Internet Seminar on Evolution
Equations. Since 1997, it has been organised by various groups from Germany,
Hungary, Italy, the UK and the Netherlands, providing virtual lectures as well
as supervised student projects. In the academic year 2019-2020, we organised
the Internet Seminar focussing on evolutionary equations. The present book is an
extended version of the lecture notes for the virtual lectures. As such, it presents a
thorough introduction to the theory of evolutionary equations and the corresponding
solution theory and provides many properties, different classes of examples and
properties of solutions, taking the reader from the early beginning of Picard’s
theorem to (almost) the state-of-the-art in this theory.

As the text is based on weekly virtual lectures, each chapter of the book is
intended to (roughly) comprise a selection of material that covers 4 h of lectures and
2 h of exercise classes. Hence, this book covers material for one or two semesters. It
is intended for master or diploma students as well as PhD students and researchers
and requires only basic knowledge on functional analysis, foundations in Hilbert
space theory and complex analysis in one variable. The needed amount of these
is similar to the ones provided in basic courses on these topics. Apart from these
prerequisites, the material of the book is self-contained. At the end of each chapter,
we appended 7 exercises of varying difficulties from easy to challenging and also
we commented on further reading and/or on the wider context of the contents of the
chapter.

We are indebted to Rainer Picard for introducing this theory to us more than
a decade ago and for his past and ongoing support in many areas. We are very
grateful to the participants of the 23rd Internet Seminar for reading the manuscript,
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working with the material and thus checking large parts of the present text. In
particular, we cordially thank Jiirgen Voigt, Hendrik Vogt and Michael Doherty
for their valuable comments, which led to many improvements. M.W. thanks Jussi
Behrndt for the invitation on a guest professorship at the TU Graz at the end of
2020 and the beginning of 2021. This guest appointment led to the presentation of
the course at TU Graz with many interested students, in particular, Julia Hauser,
Peter Schlosser, Georg Stenzel and Raphael Watschinger, studying the material and
providing useful feedback that helped to profoundly improve the text. We thank the
anonymous referees for their comments that led to further improvements. All the
remaining mistakes are our own.

We thank Christiane Tretter, Editor of the Operator Theory series, for her
encouragement and guidance. Moreover, we thank Dorothy Mazlum for her support
during the earlier stages of the manuscript (and its submission) as well as Daniel
Jagadisan for the completion and final submission process. Last but not the least,
we thank the TU Bergakademie Freiberg for providing the open access costs for
this manuscript, thus making the final version of these lecture notes easily available
around the world without further costs.

Hamburg, Germany Christian Seifert
Kiel, Germany Sascha Trostorff
Freiberg, Germany Marcus Waurick

August 2021
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Chapter 1 )
Introduction Check for

This chapter is intended to give a brief introduction as well as a summary of the
present text. We shall highlight some of the main ideas and methods behind the
theory and will also aim to provide some background on the main concept in the
manuscript: the notion of so-called

Evolutionary Equations

dating back to Picard in the seminal paper [82]; see also [84, Chapter 6].

Another expression used to describe the same thing (and in order to distinguish
the concept from evolution equations) is that of evo-systems. Before going into detail
on what we think of when using the term evolutionary equations, we provide some
wider context to (some) solution methods of partial differential equations.

1.1 From ODEs to PDEs

In order to study and understand partial differential equations (PDEs) in general
people have started out looking for methods known from the theory of ordinary
differential equations (ODEs) to apply these to PDEs. The process of getting from a
PDE to some ODE is by no means unique nor ‘canonical’. That is to say there might
be more than one way of reformulating a PDE into an (generalised) ODE setting (if
at all).

The benefits of such a strategy, if it works, are obvious: Since for ODEs solution
methods are well-known and well understood, some intuition from ODEs may
be passed onto the solution process for PDEs. One way of directly apply ODE-
methods to PDEs can be carried out for transport type equations, where the method
of characteristics uses the fact that—using the implicit function theorem—some
solutions of PDEs correspond to solutions of ODEs. In this section we shall not

© The Author(s) 2022 1
C. Seifert et al., Evolutionary Equations, Operator Theory: Advances
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2 1 Introduction

delve into this direction of PDE theory but refer to the standard literature such as
[39] instead.

Another way of using ODE theory for PDEs is summarised by what might be
called infinite-dimensional generalisations. In a nutshell instead of solving a PDE
directly, one solves (infinitely many) ODEs instead. For some equations this strategy
can be applied by the separation of variables ansatz. Somewhat similarly, one
can generalise linear ODEs into an infinite-dimensional setting under the umbrella
term evolution equation to signify differential equations involving time. In order
to provide some more detail to this strategy we shortly recall how to solve linear
ODEs: Let us consider an n x n-matrix A with entries from the field K of complex
or real numbers, C or R, and address the system of ordinary differential equations

u'(t) = Au(t), t>0,
u(0) = ug

for some given initial datum, ug € K". This solution can be computed with the help
of the matrix exponential

0 k
tA __ (tA) nxn
e’ = E X! ek
k=0

in the form

u(t) = euy.

As it turns out, this u is continuously differentiable and u satisfies the above
equation. We note in particular that e'dug — e"uy = ug as + — 0+ and that
elT9)4 = e’ In a way, to obtain the solution for the system of ordinary
differential equations we need to construct (e’A)t>0, the so-called fundamental
solution.

In order to have a particular example for the infinite-dimensional generalisation
in mind, let us have a look at the heat equation next. This is the prototypical
example for an (infinite-dimensional) evolution equation: Let 2 < R¢ be open.
Then consider

0:0(t, x) = A6(t,x), (t,x) e (0,00) x Q,
0(0,x) =6p(x), x € Q,

where A = 27:1 3]2 is the usual Laplacian carried out with respect to the ‘x-
variables’ or ‘spatial variables’, and 6y is a given initial heat distribution and 6
is the unknown (scalar-valued) heat distribution. The above heat equation is also
accompanied with some boundary conditions for 8(¢, x) which are required to be
valid for all # > 0 and x € 9€2. For definiteness, we consider homogeneous Dirichlet
boundary conditions, that is, 6 (¢, x) = 0 for all # > 0 and x € 9€2, in the following.
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In order to mark the considered boundary conditions we shall write Ap instead
of just A and look at the heat equation in the form

u' = Apu, u(0)=ug

with the understanding that u is considered to be a vector-valued function assigning
each time ¢+ > 0 to a function space X of functions 2 — K; here we choose
X = Ly(R2). If Q is bounded, it is possible to diagonalise Ap and the corresponding
eigenvector expansion leads to infinitely many ODEs of the form

uy = Agug,  ug(0) = uok

for suitable scalars Ag, k € N. The solution sequence (uy )i for these ODEs is the
sequence of coefficients of the eigenvector expansion of u.

A different infinite-dimensional generalisation of the finite-dimensional setting
leads to a solution method valid for all €2.

This generalisation does not consist in changing the PDE to many ODEs but only
to a single one with an infinite-dimensional state space. The method is described best
by looking at the fundamental solution in the ODE setting rather than the equation.
The idea is to find a fundamental solution with state space X so that we replace the
family (etA),>0 of matrices acting on K" by a family (T (¢)); > of linear operators in
X . This leads to the notion of so-called Cp-semigroups and the fundamental solution
of the heat equation is then the (appropriately interpreted) family (e’AD)@o, see
[38, 48, 81] for some standard references. More precisely, for X = L,(€2) and
6o € Lo(2), the function6: ¢ — e!Ag, L, (S2) satisfies the above heat equation
in a certain generalised sense.

In general, for equations written in the form u” = Au for appropriate A, a solution
theory, that is, the proof for existence, uniqueness and continuous dependence on
the data, is then contained in the construction of the fundamental solution (e.g., Co-
semigroup) in terms of the ingredients of the equation. This infinite-dimensional
generalisation from the ODE case proves to be versatile and has been applied to
many different particular PDEs of the form u’ = Au.

Albeit quite successful there are also some drawbacks in the application of the
abovementioned theories. For particular PDEs either the considered methods are not
applicable or their application necessitates more or less involved workarounds.

In the next section, we describe a particular problem for which invoking for
instance semigroup theory would seem unnatural let alone not at all straightforward.
It follows, however, the general scheme of looking at fundamental solutions in an
infinite-dimensional context.



4 1 Introduction
1.2 Time-independent Problems

The construction of fundamental solutions is also a valuable method for obtaining a
solution for time-independent problems, see, e.g., [39]. To see this, let us consider
Poisson’s equation in R3: Given f € Cc (R3) we want to find a function u: R3 —
R with the property that

—Au(x) = f(x) (x e R).

It can be shown that u given by

1 1
uw =, / £ dy
7 Jea 1x =y

is well-defined, twice continuously differentiable and satisfies Poisson’s equation;
cf. Exercise 1.3. Note that x — nl‘x‘ is also referred to as the fundamental solution
or Green’s function for Poisson’s equation. The formula presented for u is the
convolution with the fundamental solution. The formula used to define u also works
for f being merely bounded and measurable with compact support. In this case,
however, the pointwise formula of Poisson’s equation cannot be expected to hold
anymore, since changing f on a set of measure 0 does not influence the values
of u. Thus, only a posteriori estimates under additional conditions on f render u
to be twice continuously differentiable (say) with Poisson’s equation holding for
all x € R®. However, similar to the semigroup setting, it is possible to generalise
the meaning of —Au = f. Then, again, the fundamental solution can be used to
construct a solution for Poisson’s equation for more general f.

The situation becomes different when we consider a boundary value problem
instead of the problem above. More precisely, let @ € R be an open set and let
f € L2(£2). We then ask whether there exists u € Ly(€2) such that

—Au=f, ong,
u=0, onodS.

Notice that the task of just (mathematically) formulating this equation, let alone
establishing a solution theory, is something that needs to be addressed. Indeed, we
emphasise that it is unclear as to what Au is supposed to mean if u € L,(£2), only.
It turns out that the problem described is not well-posed in general. In particular—
depending on the shape of €2 and the norms involved—it might, for instance, lack
continuous dependence on the data, f.

In any case, the solution formula that we have used for the case when Q@ = R?
does not work anymore. Indeed, only particular shapes of €2 permit to explicitly
construct a fundamental solution; see [39, Section 2.2]. Despite this, when €2 is
merely bounded, it is still possible to construct a solution, u, for the above problem.
There are two key ingredients required for this approach. One is a clever application
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of Riesz’s representation theorem for functionals in Hilbert spaces and the other
one involves inventing ‘suitable’ interpretations of Au in 2 and # = 0 on 9€2. Thus,
the method of ‘solving’ Poisson’s equation amounts to posing the correct question,
which then can be addressed without invoking the fundamental solution. With this
in mind, one could argue that the setting makes the problem solvable.

1.3 Evolutionary Equations

The central aim for evolutionary equations is to combine the rationales from both
the Cp-semigroup theory and that from the time-independent case. That is to say,
we wish to establish a setting that treats time-independent problems as well as time-
dependent problems. At the same time we need to generalise solution concepts.
We shall not aim to construct the fundamental solution in either the spatial or
the temporal directions. The problem class will comprise of problems that can be
written in the form

(M) +A)U=F

where U is the unknown and F the known right-hand side. Furthermore, A is an
(unbounded, skew-selfadjoint) operator acting in some Hilbert space that is thought
of as modelling spatial coordinates; d; is a realisation of the (time-)derivative
operator and M (9;) is an analytic, bounded operator-valued function M, which is
evaluated at the time derivative. In the course of the next chapters, we shall specify
the definitions and how standard problems fit into this problem class. In particular,
we will specify the Hilbert spaces modelling space-time in which the above equation
is considered.

Before going into greater depth on this approach, we would like to emphasise
the key differences and similarities which arise when compared to the derivation of
more traditional solution theories that we outlined above.

Since the solution theory for evolutionary equations will also encapsulate time-
independent problems, we predominantly focus on inhomogeneous problems. In
fact, the choice of Hilbert spaces implies implicit homogeneous initial conditions at
t = —oo. However, inhomogeneous initial values at t = 0 will also be considered
in this manuscript. In fact, it turns out that these initial value problems can be recast
into problems of the above type.

In any case, as we do not want to require the existence of any fundamental
solution we will also need to introduce a generalisation of the concept of a solution.
Moreover, we shall see that both d; and A are unbounded operators whereas M (0;)
is a bounded operator. Thus, we need to make sense of the operator sum of the two
unbounded operators 9, M (d;) and A, which, in general, cannot be realised as being
onto but rather as having dense range, only.

A post-processing procedure will then ensure that for more regular right-hand
sides, F, the solution U will also be more regular. In some cases this will, for
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instance, amount to U being continuous in the time variable. We shall entirely
confine ourselves within the Hilbert space case though. In this sense, the solution
theory to be presented will be, in essence, an application of the projection theorem
applied in a Hilbert space that combines both spatial and temporal variables.

The operator M (9;) is thought of as carrying all the ‘complexity’ of the model.
What we mean by complexity will become more apparent when we discuss some
examples.

Finally, let us stress that A being ‘skew-selfadjoint’ is a way of implementing first
order systems in our abstract setting. In fact, we shall focus on first order equations
in both time and space. This is also another change in perspective when compared
to classical approaches. As classical treatments might emphasise the importance
of the Laplacian (and hence Poisson’s equation) and variants thereof, evolutionary
equations rather emphasise Maxwell’s equations as the prototypical PDE. This
change of point of view will be illustrated in the following section, where we address
some classical examples.

1.4 Particular Examples and the Change of Perspective

Here we will focus on three examples. These examples will also be the first to
be readdressed when we discuss the solution theory of evolutionary equations in
a later chapter. In order to simplify the current presentation we will not consider
boundary value problems but solely concentrate on problems posed on @ = R3,
Furthermore, we shall dispose of any initial conditions. For a more detailed account
on the derivation of these equations, we refer to the appendix of this manuscript.

Maxwell’s Equations

The prototypical evolutionary equation is the system provided by Maxwell’s
equations. Maxwell’s equations consist of two equations describing an electro-
magnetic field, (E, H), subject to a given certain external current, j,

0teE+oFE —curl H = j,

oruH + curl E = 0.
We shall detail the properties of the material parameters ¢, i, and o later on; for
a definition of curl see Sect. 6.1. For the time being it is safe to assume that they
are non-negative real numbers and that they additionally satisfy that u(e 4+ o) > 0.

Now, in the setting of evolutionary equations, we gather the electro-magnetic field
into one column vector and obtain

() + (o) (5D (2) - 6):
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We shall see later that we obtain an evolutionary equation by setting

e 0 _ 0 0 —curl
M(9;) = <0 M) + 9, 1(3 0) and A = <curl Ou )

A formulation that fits well into an infinite-dimensional ODE-setting would be,
for example,

aE_eO_1 —O’CUI‘]E+80_1j

"\H) \on —curl 0 H 0pu 0/’
provided that ¢ > 0. The inhomogeneous right-hand side (; J» 0) can then be dealt
with by means of the variation of constants formula, which is the incarnation of

the convolution of (i j»0) with the fundamental solution in this time-dependent
situation. Thus, in order to apply for example semigroup theory, the main task lies

in showing that
[ - ;a i curl
— :L curl 0

gives rise to a suitable interpretation of (e’ 4) 1>0-

A different formulation needs to be put in place if ¢ = 0 everywhere. The
situation becomes even more complicated if ¢ and o are bounded, non-negative,
measurable functions of the spatial variable such that € + o > ¢ for some ¢ > 0.
In the setting of evolutionary equations, this problem, however, can be dealt with.
Note that then one cannot expect E to be continuous with respect to the temporal
variable unless j is smooth enough.

Wave Equation

We shall discuss the scalar wave equation in a medium where the wave propagation
speed is inhomogeneous in different directions of space. This is modelled by finding
u: R x R® — R such that, given a suitable forcing term f: R x R> — R (again
we skip initial values here), we have

3%u — diva gradu = f,
wherea = a' € R¥*3 is positive definite; that is, (£, a&)gs > 0forall £ € R\ {0}.

In the context of evolutionary equations, we rewrite this as a first order problem in
time and space. For this, we introduce v := d;u and ¢ := —a grad u and obtain that

((6.2) = (aD) ()= ()
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Thus,

10 0 div
M = dA =
() <0 a1> an <grad 0 )

render the wave equation as an evolutionary equation.

Let us mention briefly that it is also possible to rewrite the wave equation as a
first order system in time only. For this, a standard ODE trick is used: one simply
sticks with the additional variable v = 0;u and obtains that

(1) = (anremat) (1) + ()

In this formulation the ‘complexity’ of the model is contained in the operator

0 1
divagrad 0/’
Heat Equation

We have already formulated classical approaches to the heat equation
0,0 — diva gradd = Q,

in which we have added a heat source Q and a conductivity a = a' € R3*3 being
positive definite. Here, however, we reformulate the heat equation as a first order
system in time and space to end up (again setting g := —a grad ) with

(+00)+ (0.)* ua ©)) ()= (B)

In the context of evolutionary equations we then have that

10\ .1 (0 0 0 div
M = dA = .
@) (0 0) o <o al) an (grad 0 )

The advantage of this reformulation is that it becomes easily comparable to the
first order formulation of the wave equation outlined above. For instance it is now
possible to easily consider mixed type problems of the form

(a’ (é ( —(s))a—1> " (g sa0_1> " (gid dév» (2) - <g> ’

with s: R} — [0, 1] being an arbitrary measurable function. In fact, in the
solution theory for evolutionary equations, this does not amount to any additional
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complication of the problem. Models of this type are particularly interesting in the
context of so-called solid-fluid interaction, where the relations of a solid body and a
flow of fluid surrounding it are addressed.

1.5 A Brief Outline of the Course

We now present an overview of the contents of the following chapters.

Basics

In order to properly set the stage, we shall begin with some background of operator
theory in Banach and Hilbert spaces. We assume the reader to be acquainted with
some knowledge on bounded linear operators, such as the uniform boundedness
principle, and basic concepts in the topology of metric spaces, such as density
and closure. The most important new material will be the adjoint of an operator,
which needs not be bounded anymore. In order to deal with this notion, we will
consider relations rather than operators as they provide the natural setting for
unbounded operators. Having finished this brief detour on operator theory, we will
turn to a generalisation of Lebesgue spaces. More precisely, we will survey ideas
from Lebesgue’s integration theory for functions attaining values in an infinite-
dimensional Banach space.

The Time Derivative

Banach space-valued (or rather Hilbert space-valued) integration theory will play
a fundamental role in defining the time derivative as an unbounded, continuously
invertible operator in a suitable Hilbert space. In order to obtain continuous
invertibility, we have to introduce an exponential weighting function, which is akin
to the exponential weight introduced in the space of continuous functions for a proof
of the Picard—Lindelof theorem; that is, the unique existence theorem for solutions
for ODE:s. It is therefore natural to discuss the application of this operator to ODEs.
Hence, in passing, we will present a Hilbert space solution theory for ordinary
differential equations. Here, we will also have the opportunity to discuss ordinary
differential equations with delay and memory. After this short detour, we will turn
back to the time derivative operator and describe its spectrum. For this we introduce
the so-called Fourier—Laplace transformation which transforms the time derivative
into a multiplication operator. This unitary transformation will additionally serve to
define (analytic and bounded) functions of the time derivative. This is absolutely
essential for the formulation of evolutionary equations.

Evolutionary Equations

Having finished the necessary preliminary work, we will then be in a position
to provide the proper justification of the formulation and solution theory for
evolutionary equations. We will accompany this solution theory not only with
the three leading examples from above, but also with some more sophisticated
equations. Amazingly, the considered space-time setting will allow us to discuss
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(time-)fractional differential equations, partial differential equations with delay
terms and even a class of integro-differential equations. Withdrawing the focus on
regularity with respect to the temporal variable, we are en passant able to generalise
well-posedness conditions from the classical literature. However, we shall stick
to the treatment of analytic operator-valued functions M only. Therefore, we will
also include some arguments as to why this assumption seems to be physically
meaningful. It will turn out that analyticity and causality are intimately related
via both the so-called Paley—Wiener theorem and a representation theorem for time
translation invariant causal operators.

Initial Value Problems for Evolutionary Equations

As it has been outlined above, the focus of evolutionary equations is on inhomoge-
neous right-hand sides rather than on initial value problems. However, there is also
the possibility to treat initial value problems with the approach discussed here. For
this, we need to introduce extrapolation spaces. This then enables us to formulate
initial value problems as inhomogeneous equations. We have to make a concession
on the structure of the problem, however. In fact, we will focus on the case when
M(@,) = My + 8[1M1 for some bounded linear operators Mo, M acting in the
spatial variables alone. The initial condition will then read as (MoU) (0+) = MyUp.
Hence, one might argue that the initial condition U (0+) = Uy is only assumed in
a rather generalised sense. This is due to the fact that My might be zero. However,
for the case A = 0 we will also discuss the initial condition U (0+) = Uy, which
amounts to a treatment of so-called differential-algebraic equations in both finite-
and inifinite-dimensional state spaces.

Properties of Solutions and Inhomogeneous Boundary Value Problems
Turning back to the case when A # 0 we will discuss qualitative properties
of solutions of evolutionary equations. One of which will be exponential decay.
We will identify a subclass of evolutionary equations where it is comparatively
easy to show that if the right-hand side decays exponentially then so too must
the solution. If the right-hand side is smooth enough we obtain that U(z), the
solution of the evolutionary equation at time ¢, decays exponentially if t — oo.
Furthermore, we will frame inhomogeneous boundary value problems in the setting
of evolutionary equations. The method will require a bit more on the regularity
theory for evolutionary equations and a definition of suitable boundary values. In
particular, we shall present a way of formulating classical inhomogeneous boundary
value problems for domains without any boundary regularity.

Properties of the Solution Operator and Extensions

In the final part, we shall have another look at the advantages of the problem
formulation. In fact, we will have a look at the notion of homogenisation of
differential equations. In the problem formulation presented here, we shall analyse
the continuity properties of the solution operator with respect to weak operator
topology convergence of the operator M (d;). We will address an example for
ordinary differential equations (when A = 0) and one for partial differential
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equations (when A # 0). It will turn out that the respective continuity properties
are profoundly different from one another.

Furthermore, we have the occasion to address the notion of ‘maximal regularity’
in the context of evolutionary equations. Maximal regularity has initially been
coined for parabolic-type problems like the heat equation. It turns out that evolu-
tionary equations have a property similar to maximal regularity if one assumes the
block structure of M (9;) and A to satisfy certain requirements. These requirements
lead to a subclass of evolutionary equations containing classical parabolic type
equations. We conclude the body of the text with two extensions of Picard’s
theorem. The first of which addresses non-autonomous problems and the second
non-linear evolutionary inclusions.

1.6 Comments

The focus presented here on the main notions behind evolutionary equations is
mostly in order to properly motivate the theory and highlight the most striking
differences in the philosophy. There are other solution concepts (and corresponding
general settings) developed for partial differential equations; either time-dependent
or without involving time.

There is an abundance of examples and additional concepts for Co-semigroups
for which we refer to the aforementioned standard treatments again. There is also a
generalisation to problems that are second order in time, e.g., u” = Au, where u(0)
and «’(0) are given. This gives rise to cosine families of bounded linear operators
which is another way of generalising the fundamental solution concept, see, for
example, [107].

The main focus of all of these equations is to address initial value problems,
where the (first/second) time derivative of the unknown is explicit.

Another way of writing many PDEs from mathematical physics into a common
form uses the notion of Friedrichs systems, see [43, 44]. However, the main focus
of Friedrichs systems is on static, that is, time-independent partial differential
equations. A time-dependent variant of constant coefficient Friedrichs systems are
so-called symmetric-hyperbolic systems, see e.g. [12]. In these cases, whether the
authors treat constant coefficients or not, the framework of evolutionary equations
adds a profound amount of additional complexity by including the operator M (9;).

The treatment of time-dependent problems in space-time settings and addressing
corresponding well-posedness properties of a sum of two unbounded operators has
also been considered in [26] with elaborate conditions on the operators involved.
In their studies, the flexibility introduced by the operator M (9;) in our setting is
missing, thus the time derivative operator is not thought of having any variable
coefficients attached to it.
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Exercises

Exercise 1.1 Let ¢ € C(R, R). Assume that ¢(r +5) = ¢ (#)¢p(s) forall ¢, s € R,
¢(0) = 1. Show that ¢ (¢) = e*' (t € R) for some @ € R.

Exercise 1.2 Letn € N, T: R — R"*" continuously differentiable such that 7 (r+
s) = T@)T(s) forall t,s € R, T(0) = I. Show that there exists A € R"*" with
the property that 7' (1) = ¢4 (t € R).

Exercise 1.3 Show that x — u(x) = 42 fR3 |le‘f(y) dy satisfies Poisson’s
equation, given f € C°(RY).

Exercise 1.4 Let f € C°(R). Define u(t, x) := f(x +1¢) for x,t € R. Show that
u satisfies the differential equation d,u = d,u and u(0, x) = f(x) forall x € R.

Exercise 1.5 Let X, Y be Banach spaces, (7;,),cn be a sequence in L(X, Y), the set
of bounded linear operators. If sup {||7,,|| ; n € N} = oo, show that there is x € X
and a strictly increasing sequence (ny)xen in N such that H T x H — 00.

Exercise 1.6 Let n € N. Denote by GL(n; K) the set of continuously invertible
n x n matrices. Show that GL(n; K) € K"*" is open.

Exercise 1.7 Let n € N. Show that ®: GL(m; K) > A — A~! € K" is
continuously differentiable. Compute @'.
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Chapter 2 )
Unbounded Operators Shethie

We will gather some information on operators in Banach and Hilbert spaces.
Throughout this chapter let X(, X1, and X, be Banach spaces and Hy, Hi, and
H, be Hilbert spaces over the field K € {R, C}.

2.1 Operators in Banach Spaces

We define the set of continuous linear operators

I Bx||

L(Xo, X1) :={B: Xo — X1; B linear, ||B| =
! xexo\{op Xl

with the usual abbreviation L(Xg) := L(Xg, Xg). In contrast to a bounded linear

operator, a discontinuous or unbounded linear operator only needs to be defined on

a proper albeit possibly dense subset of X. In order to define unbounded linear

operators, we will first take a more general point of view and introduce (linear)

relations. This perspective will turn out to be the natural setting later on.

Definition A subset A C X x X is called a relation in Xo and X . We define the
domain, range and kernel of A as follows
dom(A) :={x € Xp; Iy € X1: (x,y) € A},
ran(A) ={y € X1; Ix € Xp: (x,y) € A},
ker(A) = {x € X¢o; (x,0) € A}.

© The Author(s) 2022 15
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The image, A[M], of a set M C X under A is given by
AIM] ={ye Xy; Ixe M: (x,y) € A}.

A relation A is called bounded if for all bounded M C X the set A[M] C X; is
bounded. For a given relation A we define the inverse relation

A7l ={(y,x) € X1 x Xo; (x,y) € A}.

A relation A is called linear if A € Xy x X is a linear subspace. A linear relation
A is called linear operator or just operator from X to X if

Al{0}l={y € X1; (0,y) € A} ={0}.
In this case, we also write
A: dom(A4) € Xo — X,

to denote a linear operator from X to X. Moreover, we shall write Ax = y instead
of (x,y) € A in this case. A linear operator A, which is not bounded, is called
unbounded.

For completeness, we also define the sum, scalar multiples, and composition of
relations.

Definition Let A C Xo x X1, B € Xo x X1 and C C X x X, be relations, A € K.
Then we define

A+ B ={(x,y+w)eXoxX1; (x,y) €A, (x,w) € B},
AA = {(x,Ay) € Xo x X1; (x,y) € A},
CA={(x,2) € Xox Xz;3ye Xi: (x,y) €A, (y,2) € C}.

For a relation A € Xo x X1 we will use the abbreviation —A := —1A (so that the
minus sign only acts on the second component). We now proceed with topological
notions for relations.

Definition Let A C X x X| be arelation. A is called densely defined if dom(A) is
dense in X(. We call A closed if A is a closed subset of the direct sum of the Banach
spaces Xo and X. If A is a linear operator then we will call A closable, whenever
A C Xo x X is a linear operator.
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Proposition 2.1.1 Let A € Xy x X1 be a relation, C € L(X»,Xo) and B €
L(Xo, X1). Then the following statements hold.

(a) A is closed if and only ifA_1 is closed. Moreover, we have (A)~! = A—1.
(b) Ais closed if and only if A + B is closed.
(c) If A is closed, then AC is closed.

Proof Statement (a) follows upon realising that Xg x X; 2 (x,y) — (y,x) €
X1 x Xp is an isomorphism.

For statement (b), it suffices to show that the closedness of A implies the same
for A 4+ B. Let ((xp, yn)), be a sequence in A 4+ B convergentin Xo x X to some
(x,y).Since B € L(Xp, X1), it follows that ((x,, y» — Bx,)), in A is convergent to
(x,y— Bx)in X x X1. Since A is closed, (x, y— Bx) € A. Thus, (x,y) € A+ B.

For statement (c), let ((wg, y»)), be a sequence in AC convergent in X X
X1 to some (w,y). Since C is continuous, (Cwy), converges to Cw. Hence,
(Cwy, yn) = (Cw,y) in Xp x X1 and since (Cwy, y,) € A and A is closed, it
follows that (Cw, y) € A. Equivalently, (w, y) € AC, which yields closedness of
AC. |

We shall gather some other elementary facts about closed operators in the following.
We will make use of the following notion.

Definition Let A: dom(A) € Xo — X be alinear operator. Then the graph norm
of A is defined by dom(A) > x — ||x[l4 == v/|x|> + [ Ax]2.

Lemma 2.1.2 Let A: dom(A) € Xo — X be a linear operator. Then the
following statements are equivalent:

(i) A is closed.
(i) dom(A) equipped with the graph norm is a Banach space.
(iii) For all (x,), in dom(A) convergent in Xo such that (Ax,), is convergent in
X1 we have limy,_, o X, € dom(A) and Alim,_ o X, = lim;— o0 Axy,.

Proof For the equivalence (i)<(ii), it suffices to observe that dom(A) > x
(x, Ax) € A, where dom(A) is endowed with the graph norm, is an isomorphism.
The equivalence (i)<>(iii) is an easy reformulation of the definition of closedness of
A C Xo x Xi. m|

Unless explicitly stated otherwise (e.g. in the form dom(A) C X, where we regard
dom(A) as a subspace of Xy), for closed operators A we always consider dom(A)
as a Banach space in its own right; that is, we shall regard it as being endowed with
the graph norm.

Lemma 2.1.3 Let A: dom(A) C Xo — X1 be a closed linear operator. Then A is
bounded if and only if dom(A) C X is closed.
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Proof First of all note that boundedness of A is equivalent to the fact that the
graph norm and the Xo-norm on dom(A) are equivalent. Hence, the closedness and
boundedness of A implies that dom(A) C Xj is closed. On the other hand, the
embedding

t: (dom(A), [|-[l4) = (dom(A), [I-llx,)

is continuous and bijective. Since the range is closed, the open mapping theorem
implies that (~! is continuous. This yields the equivalence of the graph norm and
the Xo-norm and, thus, the boundedness of A. O

For unbounded operators, obtaining a precise description of the domain may be
difficult. However, there may be a subset of the domain which essentially (or
approximately) describes the operator. This gives rise to the following notion of
a core.

Definition Let A C Xg x X1. A set D C dom(A) is called a core for A provided
AN(D x X1) = A.

Proposition 2.1.4 Let A € L(Xo, X1), and D C Xq a dense linear subspace. Then
D is a core for A.

Corollary 2.1.5 Let A: dom(A) € Xo — X be adensely defined, bounded linear
operator. Then there exists a unique B € L(Xo, X1) with B 2 A. In particular, we
have B = A and

[ Ax]|

Bl = )
xedom(A),x=0 |IX]l

The proofs of Proposition 2.1.4 and Corollary 2.1.5 are asked for in Exercise 2.2.

2.2 Operators in Hilbert Spaces

Let us now focus on operators on Hilbert spaces. In this setting, we can additionally
make use of scalar products (-, -), which in this course are considered to be linear in
the second argument (and anti-linear in the first, in the case when K = C).

For a linear operator A: dom(A) € Hyp — Hj the graph norm of A is induced
by the scalar product

(x,y) = {x,y) + (Ax, Ay),

known as the graph scalar product of A. If A is closed then dom(A) (equipped with
the graph norm) is a Hilbert space.
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Of course, no presentation of operators in Hilbert spaces would be complete
without the central notion of the adjoint operator. We wish to pose the adjoint within
the relational framework just established. The definition is as follows.

Definition For a relation A € Hy x H; we define the adjoint relation A* by

* 71J'
A" = A C H| x Hy,

where the orthogonal complement is computed in the direct sum of the Hilbert
spaces Hi and Hp; that is, the set H; x Hp endowed with the scalar product

((-xa }’), (M, U)) = (‘x7 I/l)Hl + (ya U>H0~
Remark 2.2.1 Let A C Hyp x Hj. Then we have

A* ={(u,v) € H x Hy; V(x,y) € A: (u, y) g, = (v, x)p, } -
In particular, if A is a linear operator, we have
A* ={(u,v) € Hy x Hy; ¥x € dom(A) : (u, Ax)y, = (v, %), } -

Lemma 2.2.2 Let A € Hy x Hjp be a relation. Then A* is a linear relation.
Moreover, we have

() )= () ) ) = )
The proof of this lemma is left as Exercise 2.3.

Remark 2.2.3 Let A C Hy x Hj. Since A* is the orthogonal complement of —A—L
it follows immediately that A* is closed. Moreover, A* = (A)* since AL = (A)l.

Lemma 2.2.4 Let A C Hy x Hj be a linear relation. Then
A = (A%)" = A

Proof We compute using Lemma 2.2.2

(e = () ) =y e

Theorem 2.2.5 Let A C Hy x Hj be a linear relation. Then

ran(A)*t = ker(A*) and ran(A*) = ker(A)™ .
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Proof Let u € ker(A*) and let y € ran(A). Then we find x € dom(A) such that
(x, y) € A. Moreover, note that (1, 0) € A*. Then, we compute

(u, ) g, = (0, x)p, = 0.

This equality shows that ran(A)T D ker(A*). If on the other hand, u € ran(A)*
then for all (x, y) € A we have that

0=(u,y)p,

which implies (u#, 0) € A* and hence u € ker(A*). The remaining equation follows
from Lemma 2.2.4 together with the first equation applied to A*. O

The following decomposition result is immediate from the latter theorem and will
be used frequently throughout the text.

Corollary 2.2.6 Let A C Hy x Hj be a closed linear relation. Then
H; =ran(A) @ ker(A*) and Hp = ker(A) ® ran(A™).

We will now turn to the case where the adjoint relation is actually a linear operator.

Lemma 2.2.7 Let A C Hy x Hy be a linear relation. Then A* is a linear operator
if and only if A is densely defined. If, in addition, A is a linear operator, then A is
closable if and only if A* is densely defined.

Proof For the first equivalence, it suffices to observe that
A*[{0}] = dom(A)~. (2.1)

Indeed, A being densely defined is equivalent to having dom(A)* = {0}. Moreover,
A* is an operator if and only if A*[{0}] = {0}. Next, we show (2.1). For this, apply
Theorem 2.2.5 to the linear relation A~'. One obtains (ran A’I)J- = ker(Afl)*.
Hence, (dom(A))J- = kelr(A*)’1 = A*[{0}], which is (2.1). For the remaining
equivalence, we need to characterise A being an operator. Using Lemma 2.2.4 and
the first equivalence, we deduce that A = (A*)" is a linear operator if and only if
A* is densely defined. ]

Remark 2.2.8 Note that the statement “A* is an operator if A is densely defined”
asserted in Lemma 2.2.7 is also true for any relation. For this, it suffices to observe
that (2.1) is true for any relation A € Hy x Hj. Indeed, let A € Hyp x Hj be a
relation; define B := lin A. Then dom(B) = lindom(A). Also, we have
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With these preparations, we can write
dom(A)* = (lindom(A))* = dom(B)* = B*[{0}] = A*[{0}],

where we used that (2.1) holds for linear relations.

Lemma 2.2.9 Let A C Hy x Hj be a linear relation. Then A € L(Hy, Hy) if and
only if A* € L(Hy, Hy). In either case, | A*|| = ||A.

Proof Note that A € L(Hy, Hy) implies that A is closable and densely defined.
Thus, by Lemma 2.2.7, A* is a densely defined, closed linear operator. For u €
dom(A*) we compute using Lemma 2.2.4

*
= sup Ay M Ay
xeH\(0)  IIx]l xeHN0)  IIx]]
yielding ||A*|| < ||A || On the one hand, this implies that A* is bounded, and on
the other, since A* is densely defined we deduce A* € L(H;, Hyp) by Lemma 2.1.3.
The other implication (and the other inequality) follows from the first one applied
to A* instead of A using A™ = A. ]

We end this section by defining some special classes of relations and operators.

Definition Let H be a Hilbert space and A € H x H a linear relation. We call
A (skew-)Hermitian if A C A* (A € —A*). We say that A is (skew-)symmetric if
A is (skew-)Hermitian and densely defined (so that A* is a linear operator), and A
is called (skew-)selfadjoint if A = A* (A = —A™). Additionally, if A is densely
defined, then we say that A is normal if AA* = A*A.

2.3 Computing the Adjoint

In general it is a very difficult task to compute the adjoint of a given (unbounded)
operator. There are, however, cases, where the adjoint of a sum or the product can
be computed more readily. We start with the most basic case of bounded linear
operators.

Proposition 2.3.1 Let A, B € L(Hy, H)),C € L(H», Hy). Then (A + B)* =
A* 4+ B* and (AC)* = C*A*.
The latter results are special cases of more general statements to follow.

Theorem 2.3.2 Let A, B C Hy x Hj be relations. Then A* + B* C (A + B)*. If,
in addition, B € L(Hy, Hy), then (A 4+ B)* = A* + B*.

Proof In order to show the claimed inclusion, let (1, r) € A* + B*. By definition
of the sum of relations, we find v, w € Hy, r = v + w, with (u,v) € A* and
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(u, w) € B*. We compute for all (x, s) € A+ B, thatis, (x,y) € Aand (x,z) € B
forsome y,z € Hy withs =y 4z

(x,r gy = (x, v+ w)gy = (x, V) g, + (x, W)y,

= <y’u>H1 + (Z,M>H1 = <y+Z,M>Hl = (Sau>H1 .

This shows the desired inclusion. Next, we assume in addition that B € L(Hy, Hy).
For the equality, it remains to show that (A + B)* C A* + B*, which in conjunction
with the above follows if dom((A + B)*) € dom(A*+ B*) = dom(A*™) Ndom(B™*).
By Lemma 2.2.9, we have dom(B*) = H;. Hence, it suffices to show that dom((A+
B)*) € dom(A™). For this, let (1, v) € (A + B)*. Then we compute for all (x, y) €
A using Lemma 2.2.9 again

(6, 0) gy = (v + Bx,u) gy = (v w) g, + (¥, By
Thus, (x,v — B*u)y, = (y, u)y,, which yields (u, v — B*u) € A*; whence, u €
dom(A*) as desired. O

Corollary 2.3.3 Let A C Hyo x Hi, B € L(Hy, Hy). If A is densely defined, then
A* + B* is an operator and (A + B)* = A* 4+ B*.

Theorem 2.3.4 Let A C Hy x Hy and C € Hy x Hy. Then C*A* C (AC)*. If,
in addition, A C Hy x Hj is closed and linear as well as C € L(H», Hy), then
(AC)* = C*A*.

Proof For the first inclusion, let (#, w) € C*A*. Thus, we find v € Hy such that
(u,v) € A* and (v, w) € C*. Next, let (r, y) € AC. Then we find x € Hy such that
(r,x) € C and (x, y) € A. We compute

<y1 u)Hl = <)C, v>H0 = (V, w>H2 .
Since (r, y) € AC were chosen arbitrarily, we infer C*A* C (AC)*. As every
adjoint is closed, we obtain C*A* C (AC)*.

Next, we assume that A is closed and linear as well as that C is bounded and
linear. Then, by what we have just shown, we obtain AC C (C*A*)*. Next, let
(w, y) € (C*A*)*. Then for all (u, v) € A* and z = C*v we obtain

W, y)g, = (2, w)y, =(C*v, w)H2 = (v, Cw)p, .
Thus, we obtain (Cw, y) € A** = A = A. Thus, (w, y) € AC. Hence,
AC = (C*A¥)",

which yields the assertion by adjoining this equation. O
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Corollary 2.3.5 Let A € Hy x Hj be a linear relation and C € L(H3, Hy). Then
(AC)" = Cc*Ax.

Proof The result follows upon realising that A* = A*** = (A)* |

Corollary 2.3.6 Let A C Hy x Hj be a linear relation and C € L(H», Hy). If AC
is densely defined, then C* A* is a closable linear operator with C*A* = (AC)* .

Remark 2.3.7 Let us comment on the equalities in the prevoius statements.

(a) Note thatif B € L(H;, Hy) and A C Hy x Hj is linear, then (BA)* = A*B*.
Indeed, this follows from Theorem 2.3.4 applied to A* and B instead of A and
C*, respectively, since then we obtain (A* B*)* = B**A** = BA. Computing
adjoints on both sides again and using that A* B* is closed by Proposition 2.1.1,
we get the assertion.

(b) We note here that in Corollary 2.3.5 and Corollary 2.3.6 AC cannot be replaced
by AC and encourage the reader to find a counterexample for A being a closable
linear operator. We also refer to [94] for a counterexample due to J. Epperlein.

We have already seen that A* = A". We can even restrict A to a core and still obtain
the same adjoint.

Proposition 2.3.8 Let A C Hy x Hj be a linear relation, D € dom(A) a linear
subspace. Then D is a core for A if and only if (AN (D x Hp))* = A*.

Proof We set A|p := AN (D x Hj). Then

Deore &= Alp=A < Alp =A" & Apt=At & A} =A" O

2.4 The Spectrum and Resolvent Set

In this section, we focus on operators acting on a single Banach space. As such,
throughout this section let X be a Banach space over K € ({R,C} and let
A: dom(A) € X — X be a closed linear operator.

Definition The set
p(A) == {A eK: (n—A)le L(X)}
is called the resolvent set of A. We define
o(A) =K\ p(A)

to be the spectrum of A.
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We state and prove some elementary properties of the spectrum and the resolvent
set. We shall see natural examples for A which satisfy that o (A) = Koro(A) = &
later on.

For a metric space (X, d), we will write B (x,r) = {y € X ; d(x,y) < r} for the
open ball around x of radius r and B [x,r] = {y € X; d(x, y) < r} for the closed
ball.

Proposition 2.4.1 If A, u € p(A), then the resolvent identity holds. That is
A=A == =-nr-H w-4""

Moreover, the set p(A) is open. More precisely, if . € p(A) then
B(x1/[0-—A)7Y) € p(A) and for w € B (A, 1/ |[(h — A)~Y||) we have

(- = 0wt (a-a) "
k=0

as well as

B =7
[ =l = A

The mapping p(A) 3 » — (A — A)~! € L(X) is analytic.
Proof For the first assertion, we let A, & € p(A) and compute
h=A == =0 =A== =) - A
== w-p-a"
== - -7

Next, letA € p(A) and u € B (A, 1/]|(x — A)~"|). Then
H()\ — WO — A)! H <1

Hence, 1 — (A — w)(A — A)~! admits an inverse in L(X) satisfying

o]

(1-0-wa-n7) " =3 (¢ -wo-a7) . 22)

k=0

We claim that u € p(A). For this, we compute

p=A=i—A-G-w=0-4(1-0-we-a7").
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Since (1 (A= - A)fl) is an isomorphism in L(X), we deduce that the
right-hand side admits a continuous inverse if and only if the left-hand side does.
As A € p(A), we thus infer © € p(A). The estimate follows from (2.2). Indeed, we
have

o= 7] < o7

5 (@ - wo - A)l)kH

k=0

00 oAyl
N o L R

=~

For the final claim of the present proposition, we observe that
1 ! 1
=" =(1-G-wa-n7") -4

i o NG
DR (e-a7) .

which is an operator norm convergent power series expression for the resolvent at 1
about A. Thus, analyticity follows. O

For a given measure space (€2, X, u) we shall consider multiplication operators
in Ly(u) next. For a measurable function V: 2 — R we will use the notation
[V < c] = V_l[(—oo, c]] for some constant ¢ € R (and similarly for other
relational symbols).

Remark 2.4.2 Before we turn to more general multiplication operators, we like
to reason our notation for them by illustrating the example case of multiplication
operators in Ly (R). A multiplication operator that immediately comes to mind is the
so-called multiplication-by-the-argument operator on L, (R), which we shall denote
by m. Expressed differently, let

m: dom(m) C Lr(R) - Lr(R), f > (x — xf(x)),

where dom(m) consists of all those L, (R)-functions f such that (x — xf(x)) €
L>(R). Being a multiplication operator, m admits what is called a ‘functional
calculus’: It is possible to define functions of m, which will turn out to be operators
themselves. Thus, if V: R — C is measurable, we can define V (m) to denote an
operator in L,(R) acting as follows

(V(m) f)(x) = V(x) f(x)

for suitable f. To apply V to m turns out to be the same as the operator
of multiplication by V. This correspondence serves to justify the notation of
multiplication operators acting on Ly(u) for some measure space (€2, X, ). We
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will re-use the notation V (m) to denote the operator of multiplication-by-V, even
in cases where there is no well-defined multiplication-by-argument-operator m in
La().

Theorem 2.4.3 Let (2, X, i) be a measure space and V: Q@ — K a measurable
function. Then the operator

V(m): dom(V(m)) C Ly(n) — La(u)
e (o Vo) f),

with dom(V (m)) = {f € La(w); (a) — V(a))f(a))) € Lg(u)} satisfies the fol-
lowing properties:

(a) V(m) is densely defined and closed.

(b) (V(m))* = V*(m) where V*(w) = V(w)* for all w € Q (here V(w)* denotes
the complex conjugate of V(w)).

(c) If V is p-almost everywhere bounded, then V (m) is continuous. Moreover, we
have |Vl L 2,0y < 1V ILoo)-

(d) IfV # 0 u-a.e. then V(m) is injective and V(m)~ ! = ‘1,(m), where

Ly e LV V@ #0,
4 0, V(w) =0,

forallw € Q.
Proof For the whole proof we let 2, == [|V| < n]and put 1, := 1g,.

(a) We first show that V (m) is densely defined. Let f € L,(u). Then, we have

forall n € Nthat 1, f € dom(V(m)). From € = J, Q, and 2, € Q,4 it
follows that 1,, f — fin La() asn — oo.
Next, we confirm that V (m) is closed. Let (fx)x in dom(V (m)) convergent in
Lo () with (V (m) fx )i be convergentin Ly (). Denote the respective limits by
f and g. It is clear that for all » € N we have 1, fiy — 1, f as k — o0. Also,
we have

Ing = lim 1,V(m)fi = lim V(m)(L,fi) = Vm)(Lpf) =1a V.

Hence, g = Vf u-almost everywhere and since g € Ly(u), we have that
f € dom(V (m)).

(b) It is easy to see that V*(m) € V(m)*. For the other inclusion, we let u €
dom(V (m)*). Then, for all f € Ly(u) andn € N we have 1,, f € dom(V (m))
and, hence,

(£ LaViu) = [o f*VFudu = (V)L f), u) = (L, f, V(m)*u)
= (f, 1,V (m)*u).
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It follows that 1,,V*u = 1,V (m)*u for all n € N. Thus, Q = |, €2, implies
V*u = V(m)*u and therefore u € dom(V*(m)) and V*(m)u = V (m)*u.

(c) If |V| < k p-almost everywhere for some « > 0, then for all f € La(w)
we have |V(w)f(w)| < «|f(w)| for p-almost every w € . Squaring
and integrating this inequality yields boundedness of V (m) and the asserted
inequality.

(d) Assume that V # 0 p-a.e. and V(m) f = 0. Then, f(w) = 0 for u-a.e. w € 2,
which implies f = 0in Ly (). Moreover, if V(m) f = g for f, g € La(u), then
for u-a.e. w € 2 we deduce that f(w) = ‘ﬁ(w)g(w), which shows ‘1,(111) D)

V(m)~!. If on the other hand g € dom( ‘1, (m)), then a similar computation
reveals that ‘1,(m) g € dom(V (m)) and V (m) ‘1, (m)g = g. |

The spectrum of V (m) from the latter example can be computed once we consider a
less general class of measure spaces. We provide a characterisation of these measure
spaces first.

Proposition 2.4.4 Let (2, X, u) be a measure space. Then the following state-
ments are equivalent:

(1) (2, X, p) is semi-finite, that is, for every A € X with t(A) = oo, there exists
B e X with0 < u(B) < oo such that B C A.

(ii) For all measurable V: Q — K with V(m) € L(La(w)), we have V € Loo(1L)
and |V p o < V@)1 z,w)-

Proof ()=(ii): Lete > 0 and A, = [|[V| = [[V(m)Il1r,u)) + €]. Assume that
m(Ag) > 0. Since (2, X, w) is semi-finite we find B C A, suchthat 0 < u(Bg) <
oo. Define f = M(Bg)’l/zllgs € Lo(w) with || fllz,q = 1. Consequently, we
obtain

IV L) 2 1V fllz,gn 2 V@)L, w) + &

which yields a contradiction, and hence (ii).

(ii))=(i): Assume that (2, X, i) is not semi-finite. Then we find A € ¥ with
W(A) = oo such that for each B C A measurable, we have u(B) € {0, co}. Then
V = 1, is bounded and measurable with ||V, . = 1. However, V(m) = 0.

Indeed, if f € La(u) then [f # 0] = U, e[l f1* = n~']. Thus,

[Vm) f #0]=[f#01nA=JlfP=n""1NA.

neN

Since ([ /1> > n~']) < oo as f € La(w), we infer u([|fI> > n~'1NA) =0
by the property assumed for A. Thus, w([V(m) f # 0]) = 0 implying V(m) = 0.
Hence, |Vl L1y =0 < T =11VILw- O



28 2 Unbounded Operators

Remark 2.4.5 Any o-finite measure space is semi-finite. Indeed, let (2, X, i) be
o-finite and A € ¥ with £ (A) = oo. We find a sequence (G,), of pairwise disjoint,
measurable sets with finite measure satisfying | J, G, = €. Hence, u(G, N A) <
w(Gyp) < oo. If (G, N A) = 0 for all n, then w(A) = 0 by the o-additivity of u.
Thus, as w(A) # 0, we find n such that 0 < (G, N A) < oo and (2, X, ) is
semi-finite.

A straightforward consequence of Theorem 2.4.3 (c) and Proposition 2.4.4 is the
following.

Proposition 2.4.6 Let (2, X, u) be a semi-finite measure space, V: Q2 — K
measurable and bounded. Then ||V (M) || 1 r,u) = 1V | Lo w)-

Theorem 2.4.7 Let (2, X, i) be a semi-finite measure space and let V: Q — K
be measurable. Then

o (V(m)) =ess-ranV :={L € K; Ve > 0: u([Ix— V| <e]) > 0}.

Proof Let A € ess-ranV. For all n € N we find B, € ¥ with non-zero, but finite
measure such that B, C [M —-V|< }l] . We define f;, = \/u(}? )113,, € La(u).
Then || fullz,() = 1 and

1
V(@) fa(@)] < V(@) = Al fu(@)] + [A] | fu(@)] < (n + MI) [ fn ()]

for w € €2, which shows that (f;;), is in dom(V (m)). A similar estimate, on the
other hand, shows that

(V) =24) fullLyuy = 0 (1 — 00).

Thus, (V(m) — A)~! cannot be continuous as | fullLy(wy = 1foralln e N.
Letnow A € K\ess-ran V. Then there exists &€ > O suchthat N := [|A — V| < €]
is a p-nullset. In particular, A — V # 0 p-a.e. Hence, (A — V(m) ! = A—lv (m)

is a linear operator. Since,

}\EV‘ < 1/e p-almost everywhere, we deduce that
(A — V(m))~' € L(La(w)) and hence, 1 € p(V(m)). |

We conclude this chapter by sketching that multiplication operators as discussed in
Theorem 2.4.3, Propositions 2.4.4, 2.4.6, and Theorem 2.4.7 are the prototypical
example for normal operators. In fact it can be shown that normal operators are
unitarily equivalent to multiplication operators on some Ly(w). This fact is also
known as the ‘spectral theorem’. It is also important to note that, as we have seen
in Theorem 2.4.3, a multiplication operator in Ly () is self-adjoint if and only if V
assumes values in the real numbers, only.
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2.5 Comments

The material presented in this chapter is basic textbook knowledge. We shall thus
refer to the monographs [54, 139]. Note that spectral theory for self-adjoint operators
is a classical topic in functional analysis. For a glimpse on further theory of linear
relations we exemplarily refer to [7, 14, 25]. The restriction in Proposition 2.4.6
and Theorem 2.4.7 to semi-finite measure spaces is not very severe. In fact, if
(2, ¥, ) was not semi-finite, it is possible to construct a semi-finite measure space
(R10c, L1oc, Mloc) such that L, (w) is isometrically isomorphic to L, ((tioc), see [129,
Section 2].

Exercises

Exercise 2.1 Let A € Xy x X be an unbounded linear operator. Show that for
every linear operator B € X¢ x X1 with B © A and dom(B) = X, we have that
B is not closed.

Exercise 2.2 Prove Proposition 2.1.4 and Corollary 2.1.5. Hint: One might use that
bounded linear relations are always operators.

Exercise 2.3 Prove Lemma 2.2.2.

Exercise 2.4 Let A: dom(A) € Hyp — Hp be a closed and densely defined linear
operator. Show that for all A € K we have

rEP(A) & 1" € p(A¥).

Exercise 2.5 Let U C Hy x Hj satisfy U~! = U*. Show that U € L(Hy, H;) and
that U is unitary, that is, U is onto and for all x € Hy we have [|[Ux ||y, = [|x |l g,-

Exercise 2.6 Letd: C[0,1] € L7(0,1) — K, f — f(0), where C [0, 1] denotes
the set of K-valued continuous functions on [0, 1]. Show that § is not closable.
Compute 6.

Exercise 2.7 Let C € C be closed. Provide a Hilbert space H and a densely defined
closed linear operator A on H such thato(A) = C.
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Chapter 3 )
The Time Derivative Check for

It is the aim of this chapter to define a derivative operator on a suitable L»-space,
which will be used as the derivative with respect to the temporal variable in our
applications. As we want to deal with Hilbert space-valued functions, we start
by introducing the concept of Bochner—-Lebesgue spaces, which generalises the
classical scalar-valued L ,-spaces to the Banach space-valued case.

3.1 Bochner-Lebesgue Spaces

Throughout, let (€2, X, i) be a o-finite measure space and X a Banach space over
the field K € {R, C}. We are aiming to define the spaces L, (u; X) for 1 < p < 0.
This is the space of (equivalence classes of) measurable functions attaining values
in X, which are p-integrable (if p < 00), or essentially bounded (if p = o0) with
respect to the measure ;. We begin by defining the space of simple functions on €2
with values in X and the notion of Bochner-measurability.

Definition For a function f: Q@ — X and x € X we set

Apy = fHxN

A function f: Q — X is called simple if f[S2]is finite and for each x € X \ {0} the
set A f,, belongs to ¥ and has finite measure. We denote the set of simple functions
by S(u; X). A function f: Q — X is called Bochner-measurable if there exists a
sequence (f,)neN in S(u; X) such that

(@) = f(w) (n— o0)
for p-a.e. w € Q.
© The Author(s) 2022 31
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Remark 3.1.1 Let us comment on the definition of Bochner-measurability.

(a)

(b)

()
(d)

For a simple function f we have

f=)Y x-l4,,

xeX

where the sum is actually finite, since 1 4 e = O forall x ¢ f[S2].

If X = K, then a function is Bochner-measurable if and only if it has a
p-measurable representative. Indeed, if f is Bochner-measurable, we find a
sequence (f), in S(u; K) such that f, — f pointwise p-a.e. Hence, we find
a p-nullset N € X such that g, = Io\vfu — Lowf = g pointwise on
all of Q. Since g, is u-measurable and p-measurable functions are stable under
pointwise limits, g is u-measurable itself. Since f = g except for a p-nullset, f
has a pu-measurable representative. If, on the other hand, f has a u-measurable
representative, let g be this representative. Approximating real and imaginary
parts separately, it suffices to treat the case K = R. Then consider forn € N

k+1
Sn ::Z " ]].Mr]lc,

where M,],‘ = g_l[(ﬁ, k;tl]]. It is easy to see that sup,.q |sn(w) — g(w)|
< 1/n for all w € Q2. Hence,

~ k+1
5, = Z o L € SGy R)
keZ, k| <2

converges pointwise everywhere to g. In consequence, f is Bochner-
measurable.

It is easy to check that S(u; X) is a vector space and an S(u; K)-module; that
is, for f € S(u; X) and g € S(u; K) we have g - f € S(u; X).

If f: @ — X is Bochner-measurable, then || f(-)||y : £ — R is Bochner-
measurable. Indeed, since

17Ol = Tim 11Ol

pn-a.e. and a sequence (f;)nen in S(u; X), it suffices to show that || f,,(-) || x is
simple for all n € N. The latter follows since A, « N Ay, , = & forx # y and
thus

IO = D> lxlx-1La,,

xe ful€2]

is a real-valued simple function.
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(e) If one deals with arbitrary measure spaces, the definition of simple functions has
to be weakened by allowing the sets Ay to have infinite measure. However,
since in the applications to follow we only work with weighted Lebesgue
measures, we restrict ourselves to o-finite measure spaces.

Definition (Bochner-Lebesgue Spaces) For p € [1, co] we define
Lp(u; X) = {f: Q — X; f Bochner-measurable, || f(-)|x € Ep(,u)} ,
as well as
Lp(u: X) = LX)/

where ~ denotes the usual equivalence relation of equality p-almost everywhere.
We equip L, (u; X) with the norm

o I 7@} du(@)?, if p < oo,

ess-supeq I f @)y, if p=oo

Il = (f € Lp(w; X)).

We first prove a density result.
Lemma 3.1.2 The space S(u; X) is dense in L,(u; X) for p € [1, 00).

Proof Let f € L,(u; X). Then there exists a sequence (f;)nen in S(u; X) such
that f,(w) — f(w) forall ® € Q\ N for some nullset N € Q. W.lo.g. we may
assume that || f;,()|| x and || f (-)|| x are w-measurable on & \ N for each n € N. For
n € N we define the set

I ={we Q\N; [fillx <21 f(@lx} €z,

and set ﬁl = fy1y,. Then ﬁl € S(u; X) and we claim that ﬁl(a)) — f(w) for
all w € @\ N. Indeed, if f(w) = 0O then fn(a)) = 0 and the claim follows. If
f (@) # 0, then there is some ng € N such that || f,(@)|lx <2 | f(w)|lx forn > ny,
and hence w € ﬂ,@m} I,,. Consequently ﬁl(a)) = fu(w) — f(w). By dominated
convergence, it now follows that

/

Q

h@ = @] au@ -0 @),

which proves the claim. O

As a consequence of the latter lemma, we can show that Bochner-measurability is
preserved by pointwise convergence almost everywhere.
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Proposition 3.1.3 Let f,,, f : @ — X for n € N. Moreover, assume that f; is
Bochner-measurable for eachn € N and f,(w) — f(w) asn — oo for pu-almost
every w € Q. Then f is Bochner-measurable.

Proof Since f, — f almosteverywhere, we have [f # O\N C (U, cn[/fn # O\N
for some nullset N C Q. Moreover, since f;, is Bochner-measurable, the definition
of simple functions yields that | J,.n[fn # 01 € U,y Bn» Where, forall n € N,
B, is measurable with (B,) < oo. The latter implies that there exists a sequence
of measurable sets (A;),enN such that A, € A, 41, u(A,) < ooforalln € Nand

Lf #01\N < | An.

neN

Forn e Nweset g, = ]lAnﬂ[,ﬁl <n}Jn> Where ﬁ, : © — Ris measurable and equals
Il fu ()|l x p-almost everywhere (cp. Remark 3.1.1(d) and (b)). In this way we obtain
a sequence of Bochner-measurable functions with g, — f p-almost everywhere.
Moreover, g, € L1(u; X) for each n € N and thus, for each n € N we find a simple
function h, with ||g, — hnll; < 27" by Lemma 3.1.2. Then

/QZ lgn(@) — hn (@)l die(@) < o0

neN

and hence, ZneN llgn (@) — hp(w)||ly < oo for p-almost every w € €2, which
particularily implies g, — h, — O p-almost everywhere. Hence, h, — f p-almost
everywhere, which shows the Bochner-measurability of f. O

We can now prove that the spaces L ,(u; X) are actually Banach spaces.

Proposition 3.1.4 Let p € [1, 00]. Then (L, (1; X), |I-Il ;) is a Banach space and
if X = H is a Hilbert space, then so too is Lo (w; H) with the scalar product given
by

(fog)s = / (f(@), g(@)y du@) (f.g € La(u: H)).

Q

Proof We just show the completeness of L, (u; X). Let (f;)nen be a sequence in
Lp(u; X) such that 372 | || full, < 0o. We set

gn(@) = lfu(@lly @eN we).

Then (gu)nen is a sequence in Lj,(u) such that Z;O:I lgnll, < oo. By the
completeness of L, (u) we infer that

oo
8§ = Z 8n
n=1
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exists and is an element in L, (u). In particular, g(w) < oo for u-a.e. w € Q and
thus,

Y lfa@)lx =) gnlw) < 0o
n=1 n=1

for pn-a.e. w € Q. By the completeness of X we can define

f@) =) ful®)

n=1

for pu-a.e. w € Q. Note that f is Bochner-measurable by Proposition 3.1.3. We need
to prove that f € L,(u; X) and that Zﬁ:l Jon— fin Ly(u; X) as k — oo. For
this, it suffices to prove that

aneLp(u; X) and an—>Oian(/L; X)as k — oo. 3.1

n=k n=k

Indeed, this would imply both f — Zﬁ:l Sn € Lp(u; X) and the desired
convergence result. We prove (3.1) for p < oo and p = oo separately.

First, let p = co. Foreachn € N we have f,, € Loo(u; X) and thus || f, (w) ||y <
| fulloo forall € 2\ N,, and some nullset N, € Q. We set N := Uzozl N,, which
is again a nullset. For k € Nand w € 2\ N we then estimate

Y@ <Y Im@Ix <Yl
n=k

X n=k n=k

which yields (3.1).
Now, let p < oo. For k € N we estimate

[

1
P

N

1
P r 00 p
) du() [ (Zufn(w)nX) du()
X Q n=k

> fulw)
n=k

1
P

m P
= f i, (lefnw)nx) dp(@)
n=k

Q
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1
m p P
zmh—{%o /(Z”fn(w)nx) du(w)
n=k

Q
m o0
< Bm D i fall, =D 1 ull,
n=k n=k

where we have used monotone convergence in the third line. This estimate
yields (3.1). O

We now want to define an X-valued integral for functions in L1 (u; X); the so-called
Bochner-integral.

Proposition 3.1.5 The mapping'

/ dp: S(u; X) € Li(u; X) — X
Q

fe Y xu(Ar)

xeX

is linear and continuous, and thus has a unique continuous linear extension to
L1(w; X), called the Bochner-integral. Moreover,

IR

andfor A € X, f € L1(u; X) we set

/Afduzzfﬂf-]lAdu.

Proof We first show linearity. Let f, g € S(u; X) and A € K. Then, for x € X we
have

< Wflly - Of € Li(us X)),
X

Arpigr = O+ N = | (£ NNl —a01) = | AryNAgaay,

yeX yeX

1 Note that the sum is indeed finite and all summands are well-defined if we set Ox - 00 := Ox.
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and therefore /t(Aj f4¢,x) = D cx (A f,y N Ag x—1y). Thus, we compute

fgw +edu =Y x-u(Aifrg) =Y Y x-u(Agy N Agray)

xeX xeXyeX
=YD oy ulAny N Agcay)
yeXxeX
F Y =) m(Agy N Agray)
yeX xeX
=) Dy Ay NAg )+ YD 2 u(Any N AL,
veX xeX yeX zeX

where we interchanged the finite sums. Now,

Z H(Afy N Agx—ry) = M(Af,y N U Ag,xf)»y) = u(Ayry)
xeX xeX

as well as

Z M(AJ‘?)’ n Ag,z) = M( U Af,y N Ag,z) = H(Ag,z),
yeX yvex

and therefore we conclude

/Q()\f+g)du=)\Zy-/L(Af,y)+2z~u(Ag,z)=>»/Qfdu+/ggdu-

yeX zeX

In order to prove continuity, let f € S(u; X). We estimate

JRE

=| > xouAp)| < D0 Ixlxu(As)

X lxesil x  XefIQ]
= [ X Wlxtadu
2 xefiol

=/ 1FOllx d= 1171 -
Q

The remaining assertions now follow from Lemma 3.1.2 by continuous extension
(see Corollary 2.1.5). |

The next proposition tells us how the Bochner-integral of a function behaves if we
compose the function with a bounded or closed linear operator first. In what follows,
let X' := L(X, K) denote the dual space of X.
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Proposition 3.1.6 Let f € L1(u; X), Y a Banach space.
(@) Let Be L(X,Y).Then Bo f € L1(u; Y) and

/QBofduzB/Qfdu.

(b) If Xo € X is a closed subspace and f(w) € Xo for p-ae. o € S, then
fQ fdu e Xop.

(c) (Theorem of Hille) Let A: dom(A) C X — Y be a closed linear operator and
assume that f(w) € dom(A) for u-a.e. w € Q and that Ao f € Li(u;Y).
Then fQ fdu € dom(A) and

A/QfduzfﬂAofdu.

Proof
(a) At first we observe that, if f € S(u; X), then

Bof=Bo Y x-ls,= Y Bx-ly,,.

xeX\ (0} xeX\{0}

Thus, Bo f € S(u; Y) since Bx-14,, € S(u; Y), the sumiis finite and S(u; Y)
is a vector space. Let now be f € L1(u; X). Then there is (f,),eN @ sequence
in S(u; X) such that f, — f w-a.e. Then B o f,, € S(u; Y) (see above) and
due to the continuity of B we have that Bo f, — B o f u-a.e., hence Bo f
is Bochner-measurable. Moreover, ||B o f(:)|ly < 1Bl || f(-)|lx, which yields
that Bo f € Li(u; Y). By continuity of both B and fQ du, it suffices to check
the interchanging property for any f € S(u; X) alone. However, this is clear,
since for a simple function f

Bof=B<Zx-11AN> = Bx 1y,

xeX xeX

where the sum is actually finite and hence,

/Bofd,bLZ/ZBX']lAf,xd/’L:Z/Bx']lAf.de“
Q Q Q '

xeX xeX
= Bx-p(Asy) =B (Zx-u(Af,x)> =B f fdu,
xeX xeX Q2

where in the third equality we have used that Bx - 14, is a simple function.
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(b) Letx’ € X' with x’|x, = 0. It follows from (a) that

x’(/ngd;L):/Qx’ofdu:O,

and since x” was arbitrary, it follows that fQ fdu € Xo from the Theorem of
Hahn—Banach.
(c) Consider the space L1(u; X x Y). By assumption, it follows that

(f,Ao f)eLi(u; X xY).

However, (f, Ao f)(w) = (f(w), (Ao f)(w)) € A C X xY for u-a.e.w € 2,
and since A is closed we can use (b) to derive that

/Q(f,Aof)dueA. (3.2)

Let 71, 7 be the projection from X x Y to X and Y, respectively. It then follows
from part (a) that

- </Q(f,A0f)du)=/Qm(f,A0f)du=/Qfdu,

and analogously for m. Using these equalities we derive from (3.2) that
Jo fdu € dom(A) and that A [, fdu = [ Ao fdpu. o

As a consequence of the latter proposition, we derive the fundamental theorem of
calculus for Banach space-valued functions.

Corollary 3.1.7 (Fundamental Theorem of Calculus) Let a,b € R,a < b
and consider the measure space ([a, b], B([a, b)), ), where B([a, b]) denotes the
Borel-o-algebra of [a, b] and )\ is the Lebesgue measure. Let f: [a,b] — X be
continuously differentiable.> Then

F) = fl@) = f £ dn.
[a,b]

Proof Note first of all that continuous functions are Bochner-measurable (which
can be easily seen using Theorem 3.1.10 below). Thus, the integral on the right-
hand side is well-defined. Let ¢ € X’. Then ¢ o f: [a,b] — K is continuously
differentiable, and (¢ o f)' (1) = (¢ o f’) (1). Using Proposition 3.1.6 (a) together

2 By this we mean that f is continuous on [a, b], continuously differentiable on (a, b) and f” has
a continuous extension to [a, b].
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with the fundamental theorem of calculus for the scalar-valued case we get
</)( : h]f/d?») =f[ ) (o f)dr=0(fB)—¢(f@)=¢(fb)~ fa).
a, a,

Since this holds for all ¢ € X’, the assertion follows from the Theorem of Hahn—
Banach. O

Next we state a density result, which will be useful throughout the course.

Lemma 3.1.8 Let 1 < p < 00, D € L,(u) be total in L,(1) and X a Banach
space. Then the set {¢(-)x ; x € X, ¢ € D} is total in L (u; X).

Proof By Lemma 3.1.2, we know that S(u; X) is dense in L,(u; X). Thus, it
suffices to approximate 1 4x for some A € £ with u(A) < oo and x € X. For
this, however, take a sequence (¢,), in the linear hull of D with ¢, — 14 in L, (u)
as n — oo. Then

1Tax — @nxllL,ux) = Ixllx 1Ta = @ullL, ) = 0 (n— 00).

Thus, the claim follows. m]
The following application of Lemma 3.1.8 also deals with a dense subset of X.

Lemma 3.1.9 Let1 < p <00, D C Ly(u) be totalin L, (1), X a Banach space,
Dy C X totalin X. Then {¢(-)x; x € Do, ¢ € D}is total in L, (i; X).

Proof The proof follows upon realising that the set {¢(-)x ; x € Dy, ¢ € D} is total
in the set {¢(-)x; x € X, ¢ € D}. From here we just apply Lemma 3.1.8. O

We conclude this section by stating and proving the celebrated Theorem of Pettis,
which characterises Bochner-measurability in terms of weak measurability.

Theorem 3.1.10 (Theorem of Pettis) Let f: Q — X. Then f is Bochner-
measurable if and only if

(a) f is weakly Bochner-measurable; that is, x’ o f: Q@ — K is Bochner-
measurable for each x' € X', and

(b) f is almost separably-valued; that is, lin f[2\ No] is separable for some Ny €
3 with u(Np) = 0.

Proof 1If f is Bochner-measurable, then clearly it is weakly Bochner-measurable.
Further, as f is the almost everywhere limit of simple functions, it is almost
separably-valued, since each simple function attains values in a finite-dimensional
subspace of X.
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Assume now conversely that f satisfies (a) and (b). We define ¥ =
lin f[2\ Np], which is a separable Banach space by (b). Thus, there exists a
sequence (X, ),eN in X’ such that

Iyl = sup |x, (M| (v €Y).

neN

Since for each n € N the function g, = |x], o f| is Bochner-measurable by (a) and
Remark 3.1.1(d), we find a u-nullset N,, and a measurable function g,,: @ — R
such that g, = g, on Q \ N, by Remark 3.1.1(b). Then sup, c 8, (-) is measurable
and

If (@)l = sup gn(@) (w € L\ N),

neN

where N =, Ny Nn, which shows that || £ (-)[| is Bochner-measurable. Let & > 0,
(yn)nen a dense sequence in Y. Applying the previous argument to the function
Jx() = f(-) — yx for k € N we infer that || fx(-)|| is Bochner-measurable and
hence, there is a p-nullset N; and a measurable funtion ﬁ: Q2 — R such that
I fell = ﬁ on Q\ N;. Consequently, the sets

Ex=[fi<el={weQ; filw) <e} (ke

are measurable. Moreover, by the density of {y, ; n € N} in Y, we get that Q\ N’ C
Uken Ex with N’ := [JZZ; N; UNp. Setting Fy := Ej and Fy1 = Eny1 \Uj—; Fr
for n € N, we obtain a sequence of pairwise disjoint measurable sets (Fy),cn With
Q\ N € U, en Fn- We set

o0
8= Z yilp
k=1

and obtain || f(w) — g(w)|| < ¢ for each w € @\ N’. Hence, if g is Bochner-
measurable, then f is Bochner-measurable as well. Indeed, we find a sequence
of such functions converging to f p-almost everywhere and so Proposition 3.1.3
applies. For showing the Bochner-measurability of g, let (2x)xen be a sequence of
pairwise disjoint measurable sets such that (_J, .y €% = € and () < oo for each
k € N. Forn € N we set

n
&n = Z Vilrng;-
k,j=1

Then (g,),cn 18 a sequence of simple functions with g, — g pointwise as n — 00
and thus, g is Bochner-measurable. m]
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3.2 The Time Derivative as a Normal Operator

Now let H be a Hilbert space over K € {R,C}. Forv € Rand p € [1,00) we
define the measure

)= [ & e
A

for A in the Borel-o-algebra, B(R), of R. As our underlying Hilbert space for the
time derivative we set

LZ,V(R; H) = LZ(MZ,V; H).
In the same way we define
Lp,v(R§ H) = Lp(lfvp,v; H)

for p € [1,00). If H = K we abbreviate L, ,(R) := L, ,(R; K). Thus, f €
Ly (R; H)if and only if f is Bochner measurable and

lelf(t)IIZ dpap (1) = /R IF@I5 e dr < oo.

Our aim is to define the time derivative on Ly ,(R; H). For this, we define a
suitable anti-derivative as an operator, which for v # 0 turns out to be one-to-
one and bounded. Then we introduce the time derivative as the inverse of this anti-
derivative. The reason for doing it that way is to easily get a formula for the adjoint
for the time derivative using the boundedness of the anti-derivative.

We start our considerations with the definition of convolution operators in
Lo.y(R; H).

Lemma 3.2.1 Letk € L1,,(R). We define the convolution operator
kx: Ly ,(R; H) — Ly ,(R; H)

by
(kx* f) (@) = /Rk(S)f(t —s)ds,

which exists for a.e. t € R. Then, kx is linear and bounded with |kx| < ||k||L1,v(R)~
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Proof Let f € Lo, (R; H). We first prove that s +— k(s)f(t —s) € L1(R; H)
for a.e. t € R. The Bochner-measurability is clear since k and f are both Bochner-
measurable. Moreover,

2
/(/ k() f(r = $)lln dS) e " dr
r \JRr

2
=f (/ lk(s)]2 €™ 2% k(s)|2 e~ 3¢ ||f<r—s)||He“<”>ds) d
R R

</ ( [ o) ( [ e ||f<t—s)||;,e—2v(r—s>ds) d
R \JR R
= ”k”Ll,v(R)/ |k(s)|/ I f@— S)||2 e 2V(=9) qr e~V ds
R R

2 2
= kZ, ) 102, , o) »

which on the one hand proves that

/Rllk(S)f(t —$)llg ds < o0

for a.e. r € R and on the other hand shows the norm estimate, once we have shown
the Bochner-measurability of k* f. For proving the latter, we apply Theorem 3.1.10.
Since f is Bochner-measurable, we find a nullset N such that Hy := lin f[R \ N]
is separable. Hence, for almost every ¢ € R we have

(k*f)(t):/k(s)f(t—s)ds:/ k(t —s)f(s)ds € Hy
R R\N

by Proposition 3.1.6(b). Thus, k * f is almost separably-valued. Moreover, for x’ €
H’ we have by Proposition 3.1.6(a)

X otk* f) =k of)

almost everywhere and thus, the weak Bochner-measurability follows from the fact
that the convolution of two measurable scalar-valued functions is measurable. Since
the linearity of k= is clear the proof is done. O

Definition For v # 0 we define the operator

Ly: Ly y(R; H) — Ly w(R; H)
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I o= ]1[0,00)*1 ifv > O,
T~ cooox, ifv <0,

Note that, by Lemma 3.2.1, I, is bounded with ||/, || < ™
Remark 3.2.2 Forv > 0, f € L2 ,(R; H) we have

00 t
Lf(1) =100 % f(1) = / f(t—s)ds = / f(s)ds (ae.t €R).
0 —00

Analogously, forv < 0, f € L2,,(R; H) we have
o0
I f(t) = —/ f(s)ds (ae.t €R).
t

Proposition 3.2.3 Let v # 0. Then I, is one-to-one and CC1 (R; H), the space of
continuously differentiable, compactly supported functions on R with values in H,
is in the range of I,,.

Proof We just prove the assertion for the case when v > 0. Let f € L, ,(R; H)
satisfy I, f = 0. In particular, we obtain for all t € R\ N that 0 = [, f(r) =
fioo f(s)ds for some Lebesgue nullset, N € R. Then fora, b € R\ N witha < b
and x € H we have that

<f, e’y 'X> = /R(f(l),ez”]l[a,b](t) 'X>H e 2 dr

< / f@ydr, x>

= (L f) () =y f) (@), x)g =0.

Ly (R; H)

Thus f = 0. Indeed, since R\ N is dense in R, {€*"O 14 415 a, b € R\ N} is total
in Ly, (R). Hence, {¢*’V1qp)-x; a,b € R\ N, x € H} is total in Ly, (R; H)
by Lemma 3.1.8. This proves the injectivity of /,. Moreover, if ¢ € Cg (R; H) then
by Corollary 3.1.7 we have

t
o) = / ¢'()ds = (I,¢') (1) (ae.t €R). O
—00
Definition For v # 0 we define the time derivative, o;,,, on L ,(R; H) by

B =11
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Note that by Lemma 3.2.1 and Proposition 3.2.3, 9;, is a closed linear operator for
which C! (R; H) € dom(;,,). Since

Cl(R; H) 2 lin{(p~x; 9peClR), x € H}

we infer that 9;, is densely defined by Lemma 3.1.8 and Exercise 3.2. Moreover,
since I,¢' = ¢ for ¢ € C}(R; H) we get that

Ao = ¢
that is, d;,, extends the classical derivative of continuously differentiable functions.

We shall discuss the actual domain of 9;,,, in the next chapter.

Proposition 3.2.4 Let v # 0. Then Dy = lin{g -x; ¢ € CP(R), x € H} is a
core for 9; . Here, CZ°(R) denotes the space of smooth functions on R with compact
Support.

Proof We first prove that
{¢': v e CM®)} (3.3)

is dense in Ly, (R). As CZ°(R) is dense in L; ,,(R) (see Exercise 3.2), it suffices to
approximate functions in CZ°(R). For this, let f € C°(R). We now define

on(t) = fioof(S)—f(s—n)ds ifv >0, CeRneN)
TS ) = fs+n)ds ifv <0 ’ '
Then ¢, € C°(R) for each n € N and
w,@(t)={f(t)_f(t_") =0 ernen.
f@) — ft+n) ifv<0

Consequently,

Jp|ft—mPe " dr ifv >0,

2
len = Fl,, @ = :f]R 1 +m)Pe2dt ifv <0

=117, @e """ =0 (n— o0),

which shows the density of (3.3) in L; ,(R). By Lemma 3.1.8 we have that

{¢/ x; 0 e CEM), x € H}
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is total in L ,(R; H) and so 0;,[Dg] is dense in Ly ,(R; H). Now let f €
dom(d;,,) and ¢ > 0. By what we have shown above there exists some ¢ € Dy
such that

10rv@ — 0 v fllL,, & H) < &

-1
v

Since 85,,1 = [, is bounded with < |11)| , the latter implies that

€
le = fll,,®:m) < |’

and hence, Dy is indeed a core for o . a

Corollary 3.2.5 Forv € R the mapping

exp(—vm) : L2 ,(R; H) — L2(R; H)
[ e f(1)

is unitary, and for v, u # 0 one has
exp(—vm)(9;,, — V) exp(—vm)f1 = exp(—pum) (9, — () exp(—,um)fl.

Proof The proof is left as Exercise 3.5. For this we recall that the equality to
be proven is an equality of relations and particularly includes the equality of the
(natural) domains of the operators involved. Furthermore, note that it suffices to
show equality on CJ°(R; H) and then to use an appropriate density result. O

By Corollary 3.2.5 we can now define 9; o. Let v # 0. Then
3.0 = exp(—vm)(d;,, — v) exp(—vm) L.

Note that in view of Corollary 3.2.5, the assertion of Proposition 3.2.4 now also
holds for v = 0.
Finally, we want to compute the adjoint of 9, ,,.

Corollary 3.2.6 Let v € R. The adjoint of 9;,, is given by

B;fv = —8,,1, + 2v.

In particular, o; ,, is a normal operator with Re 9; ,, .= é (31,1; + 3:,)) = v, and 0 ¢
is skew-selfadjoint.



3.3 Comments 47

Proof Let v # 0 first. Integrating by parts, one obtains
/R(Bt,uw(t), Y(n))e 2 dt = /R(q,/(t), y@) e di
= / (), =¥ (1) + 20y (1)) e dt
R

for ¢, ¥y € C°(R; H). Since C°(R; H) is a core for 9;,, by Proposition 3.2.4, the
latter shows

81,1) g —87?1) + 2v.

Since we know that 9;,, is onto, it suffices to prove that —B;f , + 2v is one-to-one,
since this would imply equality in the latter operator inclusion. For doing so, we
apply Theorem 2.2.5 to compute

ker(—9;, +2v) = ran(—d;,, +2v)*.

Moreover, we have that —d,, + 2v is unitarily equivalent to —d; _, by Corol-
lary 3.2.5 and since 9d;,—, is onto, so is —d;, + 2v and thus ker(—aﬁjv + 2v) =
Ly, (R; H)J- = {0}, which yields the assertion.

The case v = 0 follows directly from the definition of 9; . a

3.3 Comments

Standard references for Bochner integration and related results are [6, 31].

Considering the derivative operator in an exponentially weighted space goes back
(at least) to Morgenstern [67], where ordinary differential equations were considered
in a classical setting. In fact, we shall return to this observation in the next chapter
when we devote our study to some implications of the already developed concepts
on ordinary and delay differential equations.

A first occurrence of the derivative operator in exponentially weighted Ly-spaces
can be found in [83], where a corresponding spectral theorem has been focussed
on. We will prove in a later chapter that the spectral representation of the time
derivative as a multiplication operator can be realised by a shifted variant of the
Fourier transformation—the so-called Fourier—Laplace transformation.

In an applied context, the time derivative operator discussed here has been
introduced in [82].
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Exercises

Exercise 3.1 A sequence (¢y), in C° (RY) is called a 5-sequence if

(@) ¢, = 0forn € N,

(b) spte, < [—rll, rll]d forn e N,

(¢) fga@n=1forneN.

Letp € CSO(R‘I) with spty C [—1, 1]d, ¢ > 0 and fRd ¢ = 1. Prove that (¢,),

given by ¢, (x) = n?p(nx) for x € R, n € N defines a §-sequence. Moreover,
give an example for such a function ¢.

Exercise 3.2 It is well-known that {1; ; I d-dimensional bounded interval} is total
in Ly (RY).

(a) Letyp € C®RY), f € Lr(R?). Define as usual
Fro=(xe [ ra-nemd)
]Rd

Prove that f % ¢ € C®(RY) with 3% (f * ¢) = f % 8% for all @ € N¢, where
3% = 9" ... 9;"¢. Moreover, prove that spt f * ¢ C spt f + spt .

(b) Let (¢,), be a 6-sequence and f € L>(RY). Show that f % ¢, — f in Ly(R%)
asn — oo.
Hint: Prove that 17 * ¢, — 1; in Lz(Rd) for all d-dimensional bounded
intervals and use that || f * @, ||, < || f|l, (see also Lemma 3.2.1).

(c) Prove that CZ° (R?) is dense in Ly (RY).

Exercise 3.3 Let a < b, Xo, X1, X2 be Banach spaces, f: (a,b) — Xo and
g: (a,b) — X both continuously differentiable, £: Xy x X; — X bilinear and
continuous. Prove that 4: (a, b) — X, given by

h(t) =£(f (1), (1)) (€ (a,b))

is continuously differentiable with

W) =e(f' (1), g0) +L(f), g'®) (€ (a,b).

If f, f/, g, ¢’ have continuous extensions to [a, b], prove the integration by parts
formula:

b b
/K(f’(t),g(t))dt=€(f(b),g(b))—E(f(a),g(a))—/ (f®, g ®)dr.

Exercise 3.4 For v # 0, show that ||1,,|| = IIIJI'
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Exercise 3.5 Prove Corollary 3.2.5.

Exercise 3.6 Let v € R and H be a complex Hilbert space. Prove that o (d;,,) €
{it +v; t € R}, where 0; ¢ is defined in Corollary 3.2.6.

Hint: For f € dom(d,,),z € C compute Re((z — d;,) f. f>L2v(R;H) by using
Corollary 3.2.6. For proving the surjectivity of z — 9;,, for a suitable z, use the
formula

ran(z - at,v) = ker(z* - a:jv)l‘

Remark: Later we will see that, actually, o (9;,,) = {it + v; t € R}.

Exercise 3.7 Consider the differential equation

(aﬁv - 1) w=1111.

Since 312,u -1 = (8,,1, — 1) (3,,,) + 1), it follows by Exercise 3.6 that there is a
unique u € L3, (R) solving this equation if v ¢ {—1, 1}. Compute these solutions.
Hint: For u € dom(d,,,) use the fact that u is necessarily continuous (which we
shall establish in the next chapter).
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Chapter 4 )
Ordinary Differential Equations Shethie

In this chapter, we discuss a first application of the time derivative operator
constructed in the previous chapter. More precisely, we analyse well-posedness of
ordinary differential equations and will at the same time provide a Hilbert space
proof of the classical Picard—Lindelsf theorem.! We shall furthermore see that the
abstract theory developed here also allows for more general differential equations
to be considered. In particular, we will have a look at so-called delay differential
equations with finite or infinite delay; neutral differential equations are considered
in the exercises section.
We start with some information on the time derivative and its domain.

4.1 The Domain of 9;,, and the Sobolev Embedding Theorem

Let H be a Hilbert space. Readers familiar with the notion of Sobolev spaces
might have already realised that the domain of 9;,, can be described as L; , (R; H)-
functions with distributional derivative lying in L3 ,, (R; H). We shall also use

HNR; H) := dom(d;,,) C L2, (R; H),

if we want to emphasise the target Hilbert space of the dom(9;,,)-functions. In order
to stress the distributional character of the derivative introduced, we include the
following result. Later on, we have the opportunity to have a more detailed look at
Sobolev spaces in more general contexts.

! There are different notions for this theorem. It is also called existence and uniqueness theorem
for initial value problems for ordinary differential equations as well as Cauchy—Lipschitz theorem.
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Proposition 4.1.1 Letv € Rand f, g € L2,,(R; H). Then the following conditions
are equivalent:

(i) f € dom(d;,) and oy f = g.
(ii) For all ¢ € C°(R) we have

—fR¢’f=/R¢g,

where these integrals are Bochner integrals of the H-valued functions t +—
@'(t) f(t) andt — ¢(1)g(t), respectively.
Proof Assume that f € dom(9,,,). By Proposition 3.2.4 and Corollary 3.2.6, we
have that Dy = lin{g-x; ¢ € C(R), x € H} < dom(9;,) (which also holds
for v = 0) and

<at,vf’ 1/f : x>L2,v = (f’ (_1/// + 21)1//') ’ x>L2,v

forall x € H and ¥ € C°(R). Hence, we obtain for all ¢ € C°(R)

(—y' +2v9) fe = | Yo fe "
R R

putting ¢ := e~2""y and using that multiplication by e ="

we deduce the claimed formula with g = 9, ,, f.
On the other hand, the equation involving g applied to ¢ = e 2"y for ¥ €
C(R) implies that

is a bijection on C°(R),

/ (—=y' +2vy) fe 2 = / vge V.
R R
Testing this equation with x € H yields
(g V- x)py, =(f (=¥ +209) -x) =(f (=0 x+ 209 -x))
Since Dy is dense in dom(d;,,,) by Proposition 3.2.4, we infer that
(g h)py, = (. (=Oroh +20R)),
forall h € dom(9;,,). Now, Corollary 3.2.6, yields
(g’ h>L2.v = (f’ a;th>L2,v (h € dom(a;jv))

Thus, f € dom(d;}) = dom(d,,v) and 9, , f = g. O
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The next result is a version of the Sobolev embedding theorem. It particularly
confirms that functions in the domain of 9;, are continuous. This result was
announced in Exercise 3.7. Here, we make use of the explicit form of the domain of
¢, as being the range space of the integral operator /,. We define

C,(R; H) = {f: R — H; f continuous, || f|, « = sup He_”’f(t)HH < oo}
teR

and regard it as being endowed with the obvious norm.

Theorem 4.1.2 (Sobolev Embedding Theorem) Ler v € R. Then every f €
dom(d;,,) has a continuous representative, and the mapping

dom(d,,) > f— f € Cy(R; H)

is continuous.

Proof We restrict ourselves to the case when v > 0; the remaining cases can be
proved by invoking Corollary 3.2.5. Let f € dom(d;,,). By definition, we find
g € Ly ,(R; H)suchthat f = 8tfvlg = I, g. Then for all t € R we compute

t t t t
/ gl dr = f llg(m)lle™" " dr < / lg(@) > =27 dr / e T dr
—0o0 —0Q0 —0o0 —0o0

1
<Jorfly, L e

Thus, g is integrable on (—oo, t] for all + € R and dominated convergence implies

that
r=(

—00

t

g(s) ds)

is continuous. Moreover, for t € R we obtain

1
e
2v

vt

13
wmw</|mmmemﬁhu/

which yields the claimed continuity. O

Corollary 4.1.3 For all f € dom(d;,), we have that ||e™ f ()|, — O ast —
Foo.

The proof is left as Exercise 4.2.
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4.2 The Picard-Lindelof Theorem

The prototype of the Picard—Lindelof theorem will be formulated for so-called
uniformly Lipschitz continuous functions. We first need a preparation.

Definition Let X be a Banach space. Then we define
ScR; X) ={f: R — X; fsimple, spt f compact}

to be the set of simple functions from R to X with compact support.

Lemma 4.2.1 Let X be a Banach space and v, € R. Then S.(R; X) is dense
in Ly ,(R; X) N Ly n(R; X); that is, for all f € Ly, (R; X) N Ly ,(R; X) there
exists (fu)n in Sc(R; X) such that f, — f in both Ly, (R; X) and L ,(R; X). In
particular, Sc(R; X) is dense in L; , (R; X).

Proof Let f € Ly ,(R; X) N Ly ,(R; X). Then for all n € N we have that
Li—nmf € Loy X) N Lyy(R; X) and Lj—p ) f — f in Ly, (R; X) and
in Ly n(R; X) asn — oo. Forn € N let (fy i) be in S(uzy; X) such that
Jok = L—pnfin Loy (R; X) ask — oo. We put f, x := Lj—pn) fuk € Sc(R; X).
Then f, x — Lj—pnf in Lz »(R; X) and in Ly ;,(R; X) as k — oo. m|

In order to define the notion of uniformly Lipschitz continuous functions, we first
need the Lipschitz semi-norm.

Definition Let X, X; be normed spaces, and F: X9 — X; Lipschitz continuous.
Then

_ IFx)— F)
”F”Lip = Ssup
x,yeXg lx — yli
xXFEYy

is the Lipschitz semi-norm of F.

Definition Let Hy, H; be Hilbert spaces, 1 € R. Then a function F: Sc(R; Hp) —
ﬂ@ M Ly, (R; Hy) is called uniformly Lipschitz continuous if for all v > u we have
that F considered in Ly, (R; Ho) x L2,,(R; H}) is Lipschitz continuous, and for the
unique Lipschitz continuous extensions F”, v > u, we have that

s [ < .

vz

Remark 4.2.2 Another way to introduce uniformly Lipschitz continuous mappings
is the following. Let Hy, H; be Hilbert spaces, u € R. Let (F"),>,, be a family of
Lipschitz continuous mappings F": L2 ,(R; Hp) — L2, ,(R; H;) such that

sup || F" 00

N ”Lip <
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and the mappings are consistent in the sense that for all v, > u and f €
Ly ,(R; Hy) N LQ’U(R; Hp) we have

F'(f) = F"(f).

Then, for v > p and f € Sc(R; Hp) we have F'(f) €
F"|s.(R: Hy) is uniformly Lipschitz continuous.

N> L »(R; Hy) and

Theorem 4.2.3 (Picard-Lindelof—Hilbert Space Version) Let H be a Hilbert
space, o € R and F: S;(R; H) — ﬂv>ﬂ Ly ,(R; H) uniformly Lipschitz
continuous with L = sup,,> , | F" |l ip. Then for all v > max{L, 1} the equation

at,vuv = Fv(uv)
admits a unique solution u,, € dom(o;,,). Furthermore, for all v > max{L, u} the

following properties hold:

(a) If FV(uy) is continuous in a neighbourhood of a € R, then u, is continuously
differentiable in a neighbourhood of a.

(b) For all a € R, L(_co,aty is the unique fixed point v € L ,(R; H) of
]1(_00,5,]3;&”, that is, v uniquely solves

v=1(—oca)d;y F'(V).

(c) Foralln > v we have that u, = u,.
(d) Forall f € Ly, (R; H) the equation

O vV = F'(v) + S

admits a unique solution vy, y € dom(d;,), and if f, g € L2, (R; H) satisfy
f =g on(—o00,alforsomea € R, then v, y = vy g on (=00, al.

Proof of Theorem 4.2.3—First Part Define ®: Ly ,(R; H) — L2, (R; H) by

) =8, F'(u).

Since B,TVI < 11) and v > L it follows that ® is a contraction and thus admits a

unique fixed point, which by definition solves the equation in question. Moreover,
we have that u, = ®(u,) = 3, F"(u,) € dom(3;,).

Differentiability of u, as in (a) follows from Exercise 4.1 and the continuity of
FY(uy).

For the unique existence asserted in (d), note that the unique existence of v, ¢
follows from the above considerations after realising that ¥ (v) = B,TVIF Y(v) +
B,TVI f defines a contraction in Ly ,(R; H). For the remaining statements in (d) and
the statements in (b) and (c), we need some prerequisites. |
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Definition Let Hy, H; be Hilbert spaces, v € R and F: L, ,(R; H) —
Ly (R; Hy). Then, F is called causal if foralla € Rand all f, g € Ly, (R; Hp)
with f = g on (—o0, a], we have that F(f) = F(g) on (—o0, a].

Remark 4.2.4 Letv e R,a e R.If f € L(L2,,(R; H)) withspt f € (—o00, a] then
f€My<y L2y@®R; H) and

ev—ma

IfllLy, @) < 1Al @y @ <v).

Likewise, if spt f C [a, 00), we get f € [ L ,(R; H) with

p=v

1y, @ < e PN iy, @m (0= v).

Lemma 4.2.5 Let Hy, H be Hilbert spaces, u € R, F: S.(R; Hy) —
ﬂu>u L, ,(R; Hy) uniformly Lipschitz continuous. Then the following statements
hold:

(a) FV iscausal forallv > .
(b) The mapping BE,}F” is causal if v > max{u, 0} and v # 0.
(c) Forallv = n > u, we have that F* = F" on Ly, (R; Ho) N Ly ,(R; Ho).

Proof (a) We divide the proof into three steps.

(i) Letv > w.In order to show causality of F, we first note that it suffices to have
FY(f) = FV(g) on (—o0,a]forall f, g € S.(R; Hy) with f = g on (—00, a].
Indeed, let f, g € L2,(R; H) with f = g on (—oo, a] for some a € R.
By Lemma 4.2.1 we find (f,), and (g,), in Sc(R; Hp) such that f, — f
and g, — gin L3y (R; Ho). Next, L(—oo.a]fn = L(—oo.alf = L(—c0,a]g @S
n — oo in Ly, (R; Hp). Thus, putting g, = L(—co,a]fn + L(a.00)8n for all
n € N we obtain that g, — g in L2 ,(R; Hp). Since F'(f,) = F'(gn) on
(—oo,a] foralln € Nand F": Ly, (R; Hy) — L2, (R; Hj) is continuous,
taking the limit n — oo yields F¥(f) = F"(g) on (—o0, a].

(i) Leta € R,c > 0and f € Sc(R; Hp) such that f = 0 on (—o0,4a], g €
Moy L2v®R; Hy) such that l1gllz, @ my) < ¢ Ifllz,, @ H) forallv > u.
Then

TElgg, €@ de < [ llg@0)l1, e @ dr
<A [X IO, e dt — 0

as v — o00. Since €@~ 5 oo as v — oo for all 1 < a, the monotone
convergence theorem implies g = 0 on (—o0, a].

(iii) Let f,g € Sc(R; Hp) such that f = g on (—oo,a] for some a € R.
Then f — g = 0 on (—o00,a]. Since F is uniformly Lipschitz continu-
ous, with L = sup,>,, [ F"llyy we obtain |F*(f) = F* (&)L, @:m) <
LIIf —gllL, @ Hy forall v = p. By (ii) we conclude F¥(f) = F"(g) on
(—o00, a] for all v > u, which by (i) yields the assertion.
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The statement in (b) directly follows from (a). Note that 8,])1 F" is uniformly
Lipschitz continuous only for v > 0.

Let us prove (c). Since FV(f) = F(f) = F(f) for f € S.(R; Hp), the set
Sc(R; Hyp) is dense in Ly ,(R; Hp) N Ly, ,(R; Hp) by Lemma 4.2.1, and F"
and F" are Lipschitz-continuous, we obtain the assertion. m]

Proof of Theorem 4.2.3—Second Part The remaining part in (d): Let f,g €
Ly ,(R; H) with f = g on (—o00,a]. Since v > L > 0, we compute using
Lemma 4.2.5(b) and causality of 8,])1 that

T(—oo.aiVv,f = Li—co.a1dyy F* (v,5) + Li—c0.a1dyy f
= L—ooa1dyy F” (L(=c0.a1¥v.1) + L(—c0.a1d;y L(—co.a1f
= Lcos.a1dry F¥ (L—oo.alv, 1) + Li—os,a1dy y L(—o0.a18-
The same computation also yields that
L(—co.a1Vn.g = L(—oo.a1ry F¥ (L(os,aiVvg) + Li—oc.aldy L(—o0.a1€-

It is easy to see that u +— n(_oo,a]agvlF” (u) + n(_oo,a]a,jjn(_oo,a]g defines a
contraction in Lj , (R; H). Hence, the contraction mapping principle implies that
L—c0,a1v, f = L(—c0,a)Vv,g-

The statement in (b) follows from the fact that u +— ]1(_oo,a]a,jvl FV(u) defines a
contraction and Lemma 4.2.5(b).

For the proof of (c), we observe that for all n € N, we have 1(_co njuty; €
Ly ,(R; H) N Ly »(R; H). Hence, by (b) and Lemma 4.2.5(c), it follows that

ooty = Li—oomdyy F" (Li—oomitn) = Loomd;y F” (Loomitn) -
As 1(_oo,nuy satisfies the same fixed point equation, we deduce 1(_oo njity; =

1 (_co,njtty for all n € N, which yields the assertion. O

As a first application of Theorem 4.2.3 we state and prove the classical version
of the Theorem of Picard-Lindelof.

Theorem 4.2.6 (Picard-Lindel6f—Classical Version) Ler H be a Hilbert space,
Q2 C R x H be open, f: Q2 — H continuous, (ty, xo) € 2. Assume there exists
L > 0 such that for all (¢, x), (t,y) € Q we have

If,x) = fa I <Llx—yl.
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Then, there exists § > 0 such that the initial value problem

{u’(r) = f(t.u(®) (t € (o, 1o+ 5)), @

u(to) = xo,
admits a unique continuously differentiable solution, u: [to, to + 8] — H, which
satisfies (t,u(t)) € Q forallt € [tg, ty + 5]

Proof First of all we observe that we may assume, without loss of generality, that
xo = 0. Indeed, to solve the initial value problem

V() = ft,v() +x0) (1€ (o, 10+ 9)),
v(tg) = 0,

for a continuously differentiable v: [fo, fp + 6] — H is equivalent to solving the
problem in Theorem 4.2.6 for u by setting u = v + 1|4, 4+s1X0. Appropriately
shifting the time coordinate, we may also assume that 7o = 0.

Thus, let (0, 0) € €. Then [0, §'] x B [0, ¢] € € for some §’, ¢ > 0. Denote by
P: H — H the projection onto B [0, €]; that is, for x € H, Px € B [0, ] is the
unique element satisfying

x — Px = inf |x— .
b= Pxllg = inf il =yl

By Exercise 4.4, P is Lipschitz continuous with Lipschitz semi-norm bounded by
1. We then define

F:Sc(R: H) — (1) Lo.v(R; H)
v>0

g (1= s @) f(, P(g(1))))
and will prove that F is well-defined and uniformly Lipschitz continuous. Since the
mapping ¢ > Lo (t) f(z,0) is supported on [0, §'], we obtain for v > 0 that
F(0) € Ly v(R; H). Moreover, forv > O and g, 7 € S.(R; H) we estimate
IF () — FMWIIL, ,@m)
5
= [ 1F@® = Fao e = [ 16, peo) - fo PhoEe

& &
<L /O IP(g(®) = P(h()|* e dr < L? /O lg (@) = h())* e dr

<L Nlg =7, @m) -

which shows that F' is well-defined and uniformly Lipschitz continuous.
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By Theorem 4.2.3, there exists v € dom(9;,,) with v > L such that
9 vv = F'(v).

We read off from v = B,T:F”(v) that v = 0 on (—o0, 0], and that v is continuous
by Theorem 4.1.2. Moreover, we obtain that

t min{z,8'}
v(r) = / Lio,5/ (7)) f (7, P(v(7)))dr = /0 f(z, P(v(7)))dr,

from which we read off that v is continuously differentiable on (0, § ) since f and
P are also continuous. The same equality implies for 0 < ¢ < § = min{ 1&8/1’ 8'},
where M = sup; v)e(0.5'1x 10,¢1 IL.f (7, )|, that

t
vl < fo I/ (r. P dr < M5 < e.

Thus, (1, v(1)) € [0,8'] x B[0,] € Qforall0 <7 < §and so Pv(r) = v(z) for
0 <t < 48. Thus, u := vljo,s) satisfies (4.1).

Finally, concerning uniqueness, let #: [0,3] — H be a continuously differen-
tiable solution of (4.1). Let v be the extension of & by 0 to the whole of R. Then we
get that

L—oo,810 = ]1(700,51/0 Ljo.67) (1) f (7, V(7)) dr

= 1(—00.4] / 0.6 (v) f(r, P(¥(1))) dt
—00
= L (00,8197 F* (L (—c0,510)-

Since 1(_0,s1v is the unique solution of the equation w = ]1(,00,51853 F(w), we
obtain that 1(—s0,§7 = 1(—c0,6]v, Which yields u = u. o

Remark 4.2.7 The reason for the proof of the classical Picard—Lindelof theorem
being seemingly complicated is two-fold. First of all, the Hilbert space solution
theory is for L-functions rather than continuous (or continuously differentiable)
functions. The second, maybe more important point is that the Hilbert space
Picard—Lindelof asserts a solution theory, which provides global existence in
the time variable. The main body of the proof of the classical Picard—Lindelof
theorem presented here is therefore devoted to ‘localisation’ of the abstract theorem.
Furthermore, note that the method of proof for obtaining uniqueness and the
admittance of the initial value rests on causality. This effect will resurface when
we discuss partial differential equations.
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4.3 Delay Differential Equations

In this section, our study will not be as in depth as done for the local Picard—Lindel6f
theorem. Of course, the solution theory would not be a very good one if it was only
applicable to, arguably, the easiest case of ordinary differential equations. We shall
see next that the developed theory applies to more elaborate examples.

In what follows, let H be a Hilbert space over K. We start out with a delay
differential equation with so-called ‘discrete delay’. For this, we introduce, for i €
R, the time-shift operator

i Se(®; H) — (] Law(R; H),
veR

f=fC+h).

Lemma 4.3.1 Let © € R. The mapping t,: Sc(R; H) — ﬂv%L Ly,(R; H) is
uniformly Lipschitz continuous if and only if h < 0. More precisely, for v € R we
have

h
lTnllLry, @ m)) =€

Proof Let f € Sc(R; H). Then for v € R we compute

Ien fIZ, , @y = /R Lf @ +m)e " dt = /R Lf @12 e dr

2 2vh
= ”f”Lz,,,(]R;H) e .

Since sup,>, e?’" < oo if and only if 1 < 0 we obtain the equivalence. Moreover,
the above equality also yields the norm of 75 on L» ,(R; H). O

We will reuse t;, for the Lipschitz continuous extensions to Ly ,,(R; H). The well-
posedness theorem for delay equations with discrete delay is contained in the next
theorem. We note here that we only formulate the respective result for right-hand
sides that are globally Lipschitz continuous. With a localisation technique, as has
already been carried out for the classical Picard—Lindel6f theorem, it is also possible
to obtain local results.

Theorem 4.3.2 Let H be a Hilbert space, uw € R, N € N, hy, ..., hy € (—00, 0],
and

G: Sc®R: HV) > (1) L2 (R: H)
v
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uniformly Lipschitz. Then there exists an n € R such that for all v > n the equation
9 yu =G" (rhlu, e rhNu)

admits a solution u € dom(d;,,) which is unique in Uu>n Ly ,(R; H). Moreover,
Jorall a € R the function u, = 1(_o g1 satisfies

Ug = ]1(,00,a,a,jU1G” (thlua, e rhNua) .
Proof The assertion follows from Theorem 4.2.3 applied to F := Go(th1 sy Th N)
in conjunction with Lemma 4.3.1. O

Next, we formulate an initial value problem for a subclass of the latter type of
equations.

Theorem 4.3.3 Leth > 0, f: R>o x H x H — H continuous, and f(-,0,0) €
Ly (R; H) for some p > 0. Assume that there exists L > 0 with

”f(tax7 )’) - f(t,M,U)” < L”(x’)’) - (M,U)” ((t7-xay)7(tauav) S Rzo x H x H)

Letug € C ([—h, 0]; H). Then the initial value problem

{u’(r) = f,u@),ut —h) (> 0), 42

u(t) = uo(r) (r € [=h,0])
admits a unique continuous solution u: [—h, o0) — H, continuously differentiable
on (0, 00).

Proof Fort < Olet f(z,-,-) = 0. We define F: S¢(R; H) — ()
by

vop Low(@®: H)
F@)(1)
= [ (1. () + 0,00 (D0 (0), $(¢ — h) + L1000t — Wug(0) + Loy (Dot — h)

for all t € R. It is easy to see that F' is uniformly Lipschitz continuous. Thus, by
Theorem 4.2.3, we find > p such that for all v > 7 the equation

9 vv = F'(v)

admits a solution v € [, dom(d;,,) which is unique in |, L2,»(R; H). Note
that spt FV(v) < [0, co). Hence, v = 0 on (—o0, 0] . By Theorem 4.1.2, we obtain
that v(0) = 0. We claim that u := v 4 L[g,00)(1)u0(0) 4+ L|_p,0)u0 is a solution
of (4.2). First of all note that u is continuous on [—/, 00). Next, for0 < ¢t < h we
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have that t — h < 0 and thus v(tr — &) = 0 and so we see that

F"(v)(1)
= f(t, v(t) + Lj0.00) (10 (0), v(t — h) + L0.00)(t — )tto(0) + Lyo.n) (t)uo(t — h))
= f(t,u®), uot — h)).

Similarly, for ¢+ > h we obtain
F"(v)(t) = f(t, u(t), u(t — h))

and thus, by continuity of f, ug and u, it follows that v is continuously differentiable
on (0, co0) and

u'(t) = V' (1) = d,v(t) = f(t, u®), u(t — h)).

It remains to show uniqueness. For this, let w: [/, 00) — H be a solution of (4.2).
Then

1
w(r) = uo(0) +/ S w(s), wis —h))ds (1 >0)
0

and w(t) = ug(t) if t € [—h,0]. Extend w by 0 on (—oo, —h) and set T :=
w — 110,00)(u0(0) — N—p,0)u0. We infer

t
V() = / f (s, w(s), w(s —h))ds
0

t
= / £ (5, 9(5) 4 L[0,00) (5)u0(0),

V(s — h) + Ljo,00) (s — Wuo(0) + Lo ) (s)uo(s — h)) ds

forall7 € R.Fora € Rweset U, = 1(—00,a)V € [ ),eg L2,v(R; H) and obtain,
using the above formula for v,

Vo = L(co,a1dy F' (W)
By uniqueness of the solution of
_ —1 v
Lcoa)? = T(-o0.a1d; y F¥ (L(~o0.a1)

it follows that v, = 1 (_0,qqv forall a € R and, thus, u = w. a
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The equation to come involves the whole history of the unknown; that is, the
unknown evaluated at (—oo, 0]. For a mappingu: R — H and ¢ € R we define the
‘history’ of u up to time ¢ as u;: R<o — H, u;(0) := u(t + 6) forall 6 € R<p.
Moreover, we define the mapping

u(.)IRBtI—)Ih,

which maps each ¢ € R to the history of u up to time ¢.
Lemma 4.3.4 Let i > 0. Then
O: Se(R; H) = (1) Law(R; LaR<o; H))
v

U= ugc)
is uniformly Lipschitz continuous. More precisely, for all v > 0 we have

1
\/21).

Proof Letu € Sc(R; H). Then Ou(t) = u; € Lo(R<o; H) for all t € R and we
compute

|e*l =

Oul? =// u(t +6)||> do eV dr
l “LZN(R;LZ(RSO;H)) ® Jr_ [ ( )i

=// lu())? e~ dg dr
R JR<o

1
= / lu@)||> e 2" dr. O
2v R

Theorem 4.3.5 Let H be a Hilbert space, u € Randlet ®: S, (R; Ly (R<o; H)) —
mu>u L, ,(R; H) be uniformly Lipschitz. Then, there exists n > 0 such that for all
v > n the equation

Bt,vu = CDU(M(.))

admits a solution u € (), >, dom(d;,,) unique in | J,,>, L2»(R; H).

Proof This is another application of Theorem 4.2.3. O
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4.4 Comments

In a way, the proof of Theorem 4.2.6 is standard PDE-theory in a nutshell; a solution
theory for L ,-spaces is used to deduce existence and uniqueness of solutions and
a posteriori regularity theory provides more information on the properties of the
solution.

Note that—of course—other proofs are available for the Picard-Lindel6f theo-
rem. We chose, however, to present this proof here in order to provide a perspective
on classical results. Furthermore, we mention that in order to obtain unique
existence for the solution, it suffices to assume that f satisfies a uniform Lipschitz
condition with respect to the second variable and that f is measurable. Continuity
of f is needed in order to obtain C!-solutions.

A more detailed exposition and more examples of the theory applied to delay
differential equations can be found in [52] and—in a Banach space setting—[85].

There is also a way of dealing with delay differential equations by expanding the
state space the problem is formulated in. In this case, it is possible to make use of
the rich theory of Cy-semigroups. We refer to [10] for this.

Causality is one of the main concepts for evolutionary equations. We have
provided this notion for mappings defined on L, ,-type spaces only. The situation
becomes different if one considers merely densely defined mappings. Then it is a
priori unclear, whether for a Lipschitz continuous mapping the continuous extension
is also causal. For this we refer to Exercise 4.7 below and to [51, 131], and [138,
Chapter 2] as well as to references mentioned there.

Exercises

Exercise 4.1

(a) Let X be a Banach space,u: [a, b] — X continuous. Show thatv: (a,b) - X
given by

13
v(t):/ u(t)dr

is continuously differentiable with v'(t) = u(r) for all t € (a, b).
(b) Let H be a Hilbert space, and v € R. Let u € dom(9;,,,) with 9;,,u continuous.
Show that u is continuously differentiable and u’ = 9; ,u.

Exercise 4.2 Prove Corollary 4.1.3.
Exercise 4.3 Let H be a Hilbert space. Show that

dom(d; ) — Ci/z(R; H) = ’f € Cy(R; H); eV fis ;-H’older continuous] ,
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where a function g: R — H is said to be ;-H(J‘lder continuous if

lg@) — gl

sreR |t —s|'/?
t#s

Exercise 4.4 Let H be a Hilbert space, C € H non-empty, closed and convex.
Show that the projection, P, of H onto C defines a Lipschitz continuous mapping
with Lipschitz semi-norm bounded by 1, where for x € H, Px € C is the unique
element satisfying

lx — Pxlly = inf [lx — ylly .
yeC

Exercise 4.5 Let h: R x R<g x R" — R” be continuous satisfying
Az, s, x) —h(t, s, I < Llx—yl

with i(-,-,0) = 0. Let R > 0 and up € C(RR<op; R") have compact support. Show
that the initial value problem

w'(t) = [Pg hit,s,u(s)ds (> 0),
u(t) = uo() (r<0)
admits a unique continuous solution u: R — R”, which is continuously differen-

tiable on R~ .
Hint: Modify ® from Lemma 4.3 .4.

Exercise 4.6 Let H be a Hilbert space. Show that for a uniformly Lipschitz

continuous ®: S, (]R; L>(R<p; H)z) — ﬂv>u L, ,(R; H) the equation

9 pu = " (u(.), (at,vu)(A))

admits a unique solution # € dom(9;,,) for v large enough.

Exercise 4.7 Let D C L;(R) be dense and suppose that F: D € Ly(R) — L(R)
admits a Lipschitz continuous extension F°.

(a) Show that F is causal if and only if for all ¢ € S.(R; R) and all a € R there
exists L > 0 such that

‘(1(—oo,a] : (F(f) - F(g))a ¢>L2(R)‘ <L ”11(—00,&] : (f - g) HLz(R)
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for all f, g € D; that is, the mapping

(>

is Lipschitz continuous.

(b) Fora € Rletdom(F) Ndom(F1(_ 41) be densein Lr(R) andif f,g € D =
dom(F) and f = g on (—o00, a] then also F(f) = F(g) on (—o00, a]. Show
that FO is causal.

(c) Assume for all f,g € D anda € R that f = g on (—o0, a] implies that
F(f) = F(g) on (—00, a]. Show that this is not sufficient for FY to be causal.
Hint: Find a dense subspace D = dom(F) so that the first condition in (b) is
not satisfied.

<]l(7oo,aj =), ¢>L2(R)D

Looar ¢ = @) 2 £ F(P) € (La®),
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Chapter 5 )
The Fourier-Laplace Transformation Shethie
and Material Law Operators

In this chapter we introduce the Fourier—Laplace transformation and use it to
define operator-valued functions of 9;,,; the so-called material law operators. These
operators will play a crucial role when we deal with partial differential equations.
In the equations of classical mathematical physics, like the heat equation, wave
equation or Maxwell’s equation, the involved material parameters, such as heat
conductivity or permeability of the underlying medium, are incorporated within
these operators. Hence, these operators are called “material law operators”. We start
our chapter by defining the Fourier transformation and proving Plancherel’s theorem
in the Hilbert space-valued case, which states that the Fourier transformation defines
a unitary operator on Ly (R; H).
Throughout, let H be a complex Hilbert space.

5.1 The Fourier Transformation

We start by defining the Fourier transformation on L (R; H).
Definition For f € Li(R; H) we define the Fourier transform fof f by

fls) = ! /e*i”f(t)dt (s € R).
T JR

We also introduce
Cy(R; H) :={f: R — H; f continuous, bounded}

endowed with the sup-norm, ||-|| -
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Lemma 5.1/.} (Riemann-Lebesgue) Ler f € L1(R; H). Then fe Cv(R; H) and
lims|— 00 Hf(t) H = 0. Moreover,

170 < 11 -

1
V2
Proof First, note that fis continuous by dominated convergence and bounded with

| Fls < £l

1
V2
This shows that the mapping

Li(R; H) > Co(R; H), [ [ (5.1)

defines a bounded linear operator. Moreover, for ¢ € Cé (R; H) we compute

1 - I 1 ~
P(s) = o /Re_m(p(t) dr = S iS/Re“”cp’(t) dt

for s # 0 and thus,

1 1
lim sup [|@(s)|| < lim sup o', =0,
s|—o00 |s]—00 |S|\/27-[ ” ”1
which shows that lims|— l@(s)|l = 0. By the facts that CCl (R; H) is dense

in Li(R; H) (see Lemma 3.1.8), {f € Co(R; H); limpy oo | fD] = 0} is a
closed subspace of C,(R; H) and the operator in (5.1) is bounded, the assertion
follows. m|

It is our main goal to extend the definition of the Fourier transformation to functions
in Ly(R; H). For doing so, we make use of the Schwartz space of rapidly decreasing
functions.

Definition We define
SR; H) = if € C®(R; H); Vn,k e No: (1 = (X fM (1)) € Go(R; H)}

to be the Schwartz space of rapidly decreasing functions on R with values in H.
As usual we abbreviate S(R) := S(R; K).
Remark 5.1.2 S(R; H) is a Fréchet space with respect to the seminorms

SMR; H) > f > sup Htkf(")(t) H (n, k € Np).
teR
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Moreover, S(R; H) C mpe[l,oo] L,(R; H). Indeed, S(R; H) € Lo(R; H) by
definition, and for f € S(R; H) and 1 < p < oo we have that

[irowa=[ 0 Jasuro] o
R R (14 [t))*

<sup H(l + DA @) Hp /R 0 +1|t|)2p dr < oo.

Proposition 5.1.3 For f € S(R; H) we have fe S(R; H) and the mapping
SR H) — SR H), fr [

is bijective. Moreover, for f, g € L1(R; H) we have that
/ (F(), g)) dr = f (f(0).8(=0) dr. (5.2)
R R
Additionally, if f, f € Li(R; H) then

fO=F(=1) (teR). (5.3)

Proof Let f € S(R; H). By Exercise 5.1 we have

—

Fl(s) = ! /(—it)e_i”f(t) dt = —i(t > 1f(D))(s) (s€R) (5.4)
\/271 R
and

sFisy= | f(—is)e*i”f(t) dt = —if'(s) (s €R). (5.5)
V2
R
Using these formulas, one can show that f € S(R; H). Since the bijectivity
of the Fourier transformation on S(R; H) would follow from (5.3), it suffices to

prove the formulas (5.2) and (5.3). Let f, g € L1(R; H). Then we compute using
Proposition 3.1.6 and Fubini’s theorem

—~ 1 .
dr = I f(s)d d
/R (F(0), g) dt /R Jon < /R e f(s) s,g(t)> 1

B /R/]R én e (f(s). g(1)) dsdr
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1 ist
— , is dr) d
/R <f(s) . /R eig(r) r> 5
- / (f(5), B(—9)) ds,
R

which yields (5 2). For proving formula (5.3), we consider the function y defined

by y(t) =e~ 2 for r € R. Clearly, y € S(R). We claim that ¥ = y. Indeed, we
observe that y solves the initial value problem y’ + 7y = 0 subject to y(0) = 1;
if we can show that 7 solves the same initial value problem, then their equality
would follow from the uniqueness of the solution. First, we observe that y(0) =

2
«/;n fR e 2 df = 1. Second, we compute using the formulas (5.4) and (5.5) that

—

7'(5) = =i(t = 1y (D) (5) = iy"(5) = =s7(s) (s € R).
Altogether, we have shown that 7 solves the same initial value problem as y and

hence, 7 = y. Letnow f € L (R; H) with f € Li(R; H),a > Oand x € H.
Then we compute using (5.2)

</ f(t)y(at)ei”dt,x>=/ (A(t),y(at)xe_i”> dt=/ (f(t),(y(a-)/xe\*is('))(—t)> dr
R R

/<f(f) o /J/(ar)xe’i”ei”dr> dr
1 [s—t 1 s —t
Ll (o= Lo ()

/(f(s—at),y(t)x) dt=</ fs—at)y (t) dt,x>
R R

for each s € R. Since this holds for all x € H we get
/Rf(r)y(m)ei” dt = /Rf(s —at)yy (1) dt (s € R).
Letting a — 0 in the latter equality, we obtain
/Rf(t)ei” dt =(}i_13)/Rf(s —atyy 1) dt (s € R), (5.6)

where we have used dominated convergence for the term on the left-hand side. In
order to compute the limit on the right-hand side, we first observe that

fH/ fs —any (@) dt
R /R

ds<//||f(s—at)ll ds y(ydr = Il Iyl
R JR
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and hence, for each a > 0 the operator

Sa: Li(R; H) — L1(R; H),

f= (s > f f(s —at)y (1) dt>
R

is bounded by ||y |;. Moreover, since S, — ¥ () llyll; asa — 0 for ¢ €
C.(R; H), we infer that

Saf = fO vl (@—0)

foreach f € L1(R; H). Hence, passing to a suitable sequence (a,),, in R o tending
to 0, we get

lim (Sq, f) (5) > f© Iyl (ae.s €R).

Using this identity for the right-hand side of (5.6), we get
[ Foeta=ro il e em,

and since ||y |l = V27, we derive (5.3). |

With these preparations at hand, we are now able to prove the main theorem of this
section.

Theorem 5.1.4 (Plancherel) The mapping
F: SR; H) C Lo(R; H) —> Ly(R; H), f > f

extends to a unitary operator on Ly(R; H), again denoted by F, the Fourier
transformation. Moreover, F* = F~ is given by f + f(—-).

Proof Using (5.2) and (5.3) we obtain that

(f.2),= /R (f0),8®) dt = /R (f(),8(=n)dr = /R (f(1). g(®) dt = (f.8)a
forall f, g € S(R; H) and thus, in particular,

Ifll=1Ffl2- (5.7

Moreover, dom(F) = ran(F) = S(R; H) is dense in Lo (R; H) and hence, the first
assertion follows by Exercise 5.2. As F is unitary, we have F* = F —1 thus, by (5.2)
aEplied to f, g € S(R; H), we read off (using Proposition 2.3.8) that Fl=(fr
f(—+)), which yields all the claims of the theorem at hand. |
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Remark 5.1.5 We emphasise that for f € Ly(R; H) the Fourier transform F f is
not given by the integral expression for Li-functions, simply because the integral
does not need to exist. However, by dominated convergence

Ff= lim ! / i e O f(1)dt
\/271 — '

R—o0 R

where the limit is taken in Ly(R; H).

5.2 The Fourier-Laplace Transformation
and Its Relation to the Time Derivative

We now use the Fourier transformation to define an analogous transformation

on our exponentially weighted L,-type spaces; the so-called Fourier—Laplace

transformation. We recall from Corollary 3.2.5 that for v € R the mapping
exp(—vm): Lo, (R; H) — Ly(R; H), f > (1> e " f(1))

is unitary. In a similar fashion, we obtain that

exp(—vm): L1,,(R; H) — Li(R; H), f > (t+—>e " f(1))

defines an isometry.

Definition Let v € R. We define the Fourier—Laplace transformation as
Ly: Lry(R; HY — Lo(R; H), f +— Fexp(—vm)f.

We can also consider the Fourier-Laplace transformation as a mapping from
L1,y(R; H) to Cp(R; H); that is,

Ly: L1,yR; H) > Co(R; H), f — Fexp(—vm)f.
Remark 5.2.1 Note that £, = JFexp(—vm) is unitary as an operator from

Ly ,(R; H) to L2(R; H) since it is the composition of two unitary operators. For
¢ € C°(R; H), we have the expression

(Lop) (1) = \/;71 /R e~ UHsy(5)ds  (t € R),

which shows that £, can be interpreted as a shifted variant of the Fourier
transformation, where the real part in the exponent equals v instead of zero.
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Our next goal is to show that the Fourier—Laplace transformation provides a
spectral representation of our time derivative, 9; .

Definition Let V: R — K be measurable. We define the multiplication-by-V
operator as
V(m): dom(V(m)) € La(R; H) = La(R; H), f > (1= V(1) f(1))
with
dom(V(m)) := {f e Lr(R; H); (t — V(t)f(t)) € Lr(R; H)}.
In particular, if V is the identity on R we will just write m instead of id(m) and call

it the multiplication-by-the-argument operator.

Remark 5.2.2 Note that the multiplication-by-V operator is a vector-valued ana-
logue of the multiplication operator seen in Theorems 2.4.3 and 2.4.7. The
statements in these theorems generalise (easily) to the vector-valued situation at
hand. Thus, as in Theorem 2.4.3, one shows that m is selfadjoint. Moreover, when
H # {0}, in a similar fashion to the arguments carried out in Theorem 2.4.7 one
shows that

o(m) = R.

In order to avoid trivial cases, we shall assume throughout that H # {0}.

Theorem 5.2.3 Letv € R. Then
& v = LEGm +v)L,.
In particular,
0(0)={it+v;teR}.

Proof We first prove the assertion for v # 0 and show that

Iv:‘C?j(. ! )['V'
m+ v

The assertion will then follow by Theorem 2.4.3(d). Note that im1+ , € L(L2(R; H))
by Proposition 2.4.6, and hence, both operators /,, and L}( imlJrv)‘CV are bounded

and defined on the whole of L, ,,(R; H). Thus, it suffices to prove the equality on a
dense subset of Ly , (R; H), like C¢(R; H). We will just do the computation for the
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case when v > 0. So, let ¢ € C.(R; H) and compute

1 : 1 0o
Lolyp) (1) = e~ (ir+v)s / drds = / / e (ir+v)s g d
(Lyvlyo) (1) «/ZH/R 7oo<ﬂ(r) r Jor Ju ), s (r)dr

1 1 / ef(it+v)r¢(r) dr = 1
R

- 2 it v it +v (Lvp) (1)

fort € R. For v < 0 the computation is analogous. In the case when v = 0 we
observe that
0;,0 = exp(—vm)(9;,, — V) exp(—vm)_1 = exp(—vm) L} (im + v — V)L, exp(—vm)_1

= L£}(im)Lo. O

5.3 Material Law Operators

Using the multiplication operator representation of 9d;, via the Fourier—Laplace
transformation, we can assign a functional calculus to this operator. We will do this
in the following and define operator-valued functions of 9; ,,. The class of functions
used for this calculus are the so-called material laws. We begin by defining this
function class.

Definition A mapping M: dom(M) € C — L(H) is called a material law if

(a) dom(M) is open and M is holomorphic (i.e., complex differentiable; see also
Exercise 5.3),
(b) there exists some v € R such that Cres, € dom(M) and

Moo, Cren, = sup [[M(2)] < oo.
7€CRes>v

Moreover, we set

sb (M) :=inf{v € R; Cresy € dom(M) and [|M ||so cg,., < 00}

to be the abscissa of boundedness of M.
Example 5.3.1 Let us state various examples of material laws.

(a) Polynomials in z V:Letn e No, My, ..., M, € L(H). Then

M@)=) "My (zeC\ {0}
k=0
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defines a material law with

—o0 ifMy=...=M,=0,

0 otherwise.

Sb(M)Z!

(b) Series in z~': Let (My)ken in L(H) such that Z,‘:io | M|l r—* < oo for some
r > 0. Then

M) = ZZ_kMk (ze C\ {0}
k=0

defines a material law with s, (M) < r.
(c) Exponentials: Let h € R, My € L(H) where My # 0 and set

M(z) = Mye?" (z € ©).

Then M is a material law if and only if # < 0. In this case, sp (M) = —o0.
(d) Laplace transforms: Let v € Rand k € Ly ,,(R) with sptk € Rx¢. Then

M(z) = \/27T(£k)(z) = / e “k(t)dt (z € Cresv)
0

defines a material law with s, (M) < v.
(e) Fractional powers: Let My € L(H), My # 0, « € R and set

M(z) = Moz™® (z € C\Rx),
where we set
0 — b
(rel ) = %70 (- 50,0 € (=7, 7).
Then M is a material law if and only if « > 0 and

—o0 ifa =0,

0 otherwise.

Sb(M):!

For material laws M we now define the corresponding material law operators in
terms of the functional calculus induced by the spectral representation of 9, ,,.

Proposition 5.3.2 Let M: dom(M) € C — L(H) be a material law. Then, for
v > sy (M), the operator

M(@m+v): Lr(R; H) - L(R; H), f — (t — M(it+v)f(t))
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is bounded. Moreover, we define the material law operator
M(@;,y) = LM (im +v) L, € L(L2,y(R; H))
and obtain

HM(BI,.;)” < ”M”oo,CRe>u .

Proof The proof is clear. O

Remark 5.3.3 The set of material laws is an algebra and the mapping of assigning a
material law to its corresponding material law operator is an algebra homomorphism
in the following sense. For j € {1,2} let M;: dom(M;) € C — L(H) be
material laws, A € C. Then M| + M, (with domain dom(M;) Ndom(M>)), AM; and
My - M, (with domain dom(M;) N dom(M>)) are material laws as well. Moreover,
sy (M1 + M3) , sp (M - M) < max{sy (M), sp (M>)}. Furthermore, if M,(z) is
a scalar for all z € dom(M;), then for v > max{sp (M), sp (M2)} we have
(MyM2)(By.0) = My (31.,) M2 (81,0) = Ma(3,,,) M1 (3r,0) = (MaM1) (3.

Example 5.3.4 We now revisit the material laws presented in Example 5.3.1 and
compute their corresponding operators, M (9;,,).

(a) Letn € No, Mg, ..., M, € L(H) and
n
M(z) = Zz_kMk (z € C\ {0}).
k=0
Then, for v > 0, one obviously has
n
M@,) =)0, My,
k=0

due to Theorem 5.2.3.
(b) Let (My)ren in L(H) such that Z/fio | Mi|l r—* < oo for some r > 0 and

o0
M) =Y "z "My (zeC\{0).
k=0
Then, for v > r, one has
o
M) =) 0 My
k=0

again on account of Theorem 5.2.3.
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(©

(d)

(e)

Material Law Operators
Leth <0, My e L(H) and
M(z) = Moe" (z € C).
Then, for v € R, we have
M(0:,v) = Mo,
where
w: Loy(R; H) > Loy(R; H), f > (1 f(t+h).

Indeed, for ¢ € C:.(R; H) we compute

1 S
(LyMothe) (1) = /2 fR e~ WS Mow(s + h) ds
T

77

— My | / e~ UIE=M g (5) ds = M(ir + v) (Lvg) (1)
\/271 R

for all t+ € R, where we have used Proposition 3.1.6 in the second line. Hence,

Mot = LM (3Im +v) Lo = M(9;,,)¢

and since C.(R; H) is dense in Ly ,,(R; H) the assertion follows.
Letv e Rand k € Ly ,(R) with sptk € R>¢ and

M(z) = V27 (Lk)(z) (z € Cresy).
Then, by Exercise 5.4,
M0, ,) = kx

for each u > v.
Let My € L(H),« > 0 and

M@z) = Moz (z € C\Re).

Then for v > 0 we have

t

(M(3;,,) f) (1) = My [w F(la) (t—)* ' f(s)ds (ae.reR)

(5.8)
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for each f € Ly, (R; H); see Exercise 5.5. This formula gives rise to the
definition

t

1
0. f) @)= [m @) (t—5)*"'f(s)ds (1 €R),

which is known as the (Riemann—Liouville) fractional integral of order «.

Throughout the previous examples, the operator M (9; ,) did not depend on the
actual value of v. Indeed, this is true for all material laws. In order to see this, we
need the following lemma.

Lemma 5.3.5 Let n,v € Rwithu < v, and set U := {z € C; Rez € (u, v)}.
Let g: U — H be continuous and holomorphic on U such that g(i-+v), g(i-+un) €
Ly (R; H) and there exists a sequence (Ry)neN in Rxq such that R, — oo and

v
/ lg(*iRy + o)l do —> 0 (n — 00). (5.9)
"
Then

LrgG-4p) = Lygh-+v).

Proof Lett € R. By Cauchy’s integral theorem, we have that
f g(z)e’" dz = 0,
VRn

where yg, is the rectangular closed path with corners +iR, + w,£iR, + v
(see Fig.5.1). Thus, we have that

TR,

Fig. 5.1 Curve yp,
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Ry, ) R, '
1/ g(lS + v)e(ls-i-v)t ds — 1/ g(lS + M)e(ls"ﬂl«)t ds
—R, _R,

(5.10)

U . U .
=— / g(—iRy, + p)e TR dp 4 / g(iR, + p)eiftPidp,
M n

Note that with the help of the formula for the inverse Fourier transformation (see
Theorem 5.1.4) and £} = (Fexp(—vm))* = exp(—vm)~ ! F* the left-hand side
of (5.10) is nothing but

Vi ((C511- g, R G - +)) (1) — (L LR, Ra8G - +10)) ().

and hence, there is a subsequence of (R;), (which we do not relabel) such that the
left-hand side of (5.10) tends to

V2mi ((Lhgli-+v)) (1) — (Lhgl- +w) (1))
for almost every t € R as n — 00. As such, all we need to show is that the right-

hand side of (5.10) tends to 0 as n — oo, which obviously follows by (5.9). |

Theorem 5.3.6 Let M: dom(M) € C — L(H) be a material law. Then, for
w,v>sp(M)and f € Ly ,(R; H) N Ly ,(R; H), we have

M@ 0) f = M(3,.) f.

Moreover, M (0;,,) is causal for all v > sp (M).

Proof Let u < v. We prove the assertion for f = 1, 5] x witha < bandx € H
first. For p € R we compute

1 1

. (e—(it+p)a _ e—(it+p)h) .
27 it + p

b
o= | [ e

for all € R\ {0}. Moreover, we define
1 1 —za —zb
g@= , ME@r_(¢7-¢ ™) (ceCrezy\ (0]

and prove that g satisfies the assumptions of Lemma 5.3.5. First, we note that g is
bounded on {z € C; u < Rez < v} \ {0}. Indeed, we only need to prove that it is
bounded near O provided that u < 0. To that end, we observe

1 1 — e—2b—a)
e e—zh) — e ¢ —b—a (z—0).
4
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Thus, g is bounded near 0. In particular, z = 0 is a removable singularity and, hence,
g can be extended holomorphically to Cge>,. Moreover, for p > 11 we have that

1
/Rllg(it + o)l de =/1 lgGr + p)II> de ~I—/ 1 lgGe + p) 11 dz.
— >

The first term on the right-hand side is finite since g is bounded, while the second
term can be estimated by

. (e=P% 4 e=Ph)2 1
ligGr + p)II* dr < M]3 flx]1? dr < oo.
/|t|>1 20 Cre- 27 =112+ p?

This proves that g(i - +p) € L2(R; H) for each p > p and hence, particularly for
p = p and p = v. Finally, for p > u we have that

1

it + < e P e ) 50 t| — 00),
lgti +ol <, | ( )= 0 - o0
which together with the boundedness of g yields (5.9) by dominated convergence.
This shows that g satisfies the assumptions of Lemma 5.3.5 and thus

1
Mo, W1

M@ f = Ligl-+v) = Ligli-+p) = M3, f.
By linearity, this equality extends to S.(R; H) and so,

F:Se(R; H) > () Low(R: H), f > M(3,)f
v

is well-defined. Moreover, F is uniformly Lipschitz continuous (observe that
sup, >, IEY < ||M||oo,<CRe>M) and hence, the assertions follow from Lemma 4.2.5.
O

5.4 Comments

The Fourier and the Fourier—Laplace transformation introduced in this chapter are
used to define an operator-valued functional calculus for the time derivative, 9 .
This functional calculus can be defined since the Fourier—Laplace transformation
provides the unitary transformation yielding the spectral representation of the time
derivative as multiplication operator. This fact was already noticed in [83], which
eventually led to evolutionary equations in [82].

We emphasise that we have used the fundamental property that both F and £, are
unitary. It is noteworthy that the Fourier transformation is an isometric isomorphism
on L>(R; X) if and only if X is a Hilbert space, see [58]. In the Banach space-valued
case one has to further restrict the class of functions used to define a functional
calculus. For the topic of functional calculus we refer to the 21st Internet Seminar
[46] by Markus Haase and to his monograph, [47].
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Material laws and the corresponding material law operators were also considered
in [82, Section 3], including a physical motivation. Note that the definition in [82]
is slightly different compared to the one presented here.

Exercises

Exercise 5.1 Let (2, X, ) be a o-finite measure space, X a Banach space and
I C R an open interval. Let g: I x & — X such that g(z,-) € Li(u; X) for each
t € I, and define

h: 1 — X, tr—)/g(t,w)d,u(w).
Q

(a) Assume that g(-, w) is continuous for pu-almost every w € Q2 and let f € Li(w)
such that

gt o) < flw) (el wel).

Prove that /4 is continuous.
(b) Assume that g(-, w) is differentiable for w-almost every w € 2 and let f €
L1(w) such that

0:g(t, )| < flw) (tel,u—aa. weQ).

Prove that £ is differentiable with
() = / 3,g(t, w) du(w).
Q

Exercise 5.2 Let Hy, H; be two Hilbert spaces and U: dom(U) € Hy — H;
linear such that

¢ dom(U) is dense in Hy and ran(U) is dense in Hj.
e Vx edom(U) : |Ux|lg, = x| g,
Show that U can be uniquely extended to a unitary operator between Hy and Hj.

Exercise 5.3 Let 2 C C be open, X a complex Banach space and f: Q@ — X.
Prove that the following statements are equivalent:

(i) f is holomorphic.
(ii) For all x’ € X’ the mapping x" o f: & — C is holomorphic.
(iii) f is locally bounded and x’ o f: Q — C is holomorphic for all x’ € D, where
D C X’ is a norming set! for X.

I'D C X’ is called a norming set for X if ||x|| = SUP,/¢ p\ {0} ”Xl,”
X’ is norming for X by the Hahn—Banach theorem.

x’(x)| for each x € X. Note that
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(iv) f isanalytic,i.e. foreach zg € Q thereisr > 0and (a,), in X with B (z9,r) C
Q and

f@ =) anz—z0)" (z€Bz0,7).
n=0

Assume now that X = L(X, X7) for two complex Banach spaces X1, X», let D1 C
X1 be dense and D, C X/2 norming for X5. Prove that the statements (i) to (iv) are
equivalent to

(v) f islocally bounded and Q > z — xé( f(2)(x1)) € C is holomorphic for all
x1 € Dy andxé € Ds.

Hint: For the difficult implications one might also consult [6, Appendix A]. In the
same source one can find that in part (iii) it is enough for D to be separating.

Exercise 5.4 Letv € Rand k € Ly, (R). Prove that
Ly (ke f) = ~2m (Lok) - (Lo f)

for f € L2,(R; H).

Exercise 5.5 Let ¢ > 0 and define g,(¢) == 10,c0) ()1~ for t € R. Show that
8« € L1,,(R) for each v > 0 and that

1 . ,
(Lo8a) (1) = nF(a)(ltJrv) “.

V2
Use this formula and Exercise 5.4 to derive (5.8).

Hint: To compute the Fourier—Laplace transform of gy, derive that £, g, solves a
first order ordinary differential equation and use separation of variables to solve this
equation.

Exercise 5.6 Let n,v € R with u < vand f € Ly,(R; H) N Ly ,(R; H).
Moreover,set U :={z € C; u < Rez < v}. Show that f € Ly ,(R; H)N
Ly ,(R; H) and that

H<p<V

U3 z+> (Lref)(Imz)

is holomorphic.

Exercise 5.7 Let Hy, H; be Hilbert spaces and T: Ly ,(R; Hy) — L2, (R; Hy)
linear and bounded. We call T autonomousif T t;, = 1, T foreach h € R (tj; denotes
the translation operator defined in Example 5.3.4). Prove that for autonomous 7', the
following statements are equivalent:

(1) T is causal.
(i) Forall f € Ly, (R; Hp) with spt f C [0, 0o) one has sptT f C [0, 00).

Moreover, prove that for a material law M, the operator M (9, ,) is autonomous for
each v > sy, (M).
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Chapter 6 )
Solution Theory for Evolutionary Shethie
Equations

In this chapter, we shall discuss and present the first major result of the manuscript:
Picard’s theorem on the solution theory for evolutionary equations which is the main
result of [82]. In order to stress the applicability of this theorem, we shall deal with
applications first and provide a proof of the actual result afterwards. With an initial
interest in applications in mind, we start off with the introduction of some operators
related to vector calculus.

6.1 First Order Sobolev Spaces

Throughout this section let @ € R? be an open set.

Definition We define

grad,: C°(Q) € La(R) — La()!

.....
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andif d = 3,

curle: C(RQ)° € Ly(Q)} — Ly(2)?

023 — 3¢
(@) jeprom P | 301 — 3193
0192 — D201
Furthermore, we put
div = —grad}, grad:= —div}, curl = curl}
and
divp := —grad®, grad, := —div*, curlp := curl®.

Proposition 6.1.1 The relations div, divo, grad, grady, curl and curly are all
densely defined, closed linear operators.

Proof The operators grad,, div. and curl; are densely defined by Exercise 6.3. Thus,
div, grad and curl are closed linear operators by Lemma 2.2.7. Moreover, it follows
from integration by parts that grad, C grad, dive C div and curle C curl. Thus,
div, grad and curl are also densely defined. This, in turn, implies that grad,., div. and
curl; are closable by Lemma 2.2.7 with respective closures grad,, divg and curly by
Lemma 2.2.4. O

We shall describe the domains of these operators in more detail in the next theorem.

Theorem 6.1.2 If f € L2(2) and g = (g}) jep1
statements hold:

(a) f € dom(grad) and g = grad f if and only if

d) € LZ(Q)d then the following

.....

Vo € CO(Q), j e (l,....d}: —/ f3j¢=/gj¢.
Q Q

(b) f € dom(grady) and g = grad f if and only if there exists (fi)x in CS°(S2)
such that fi — f in Ly(2) and grad fi — g in Ly(Q)? as k — oc.
(c) g € dom(div) and f = div g if and only if

Vp € C(Q): —/ g-grad¢>=/ 9.
Q Q

(d) g € dom(divg) and f = divg g if and only if there exists (g )i in C° (Q)d such
that g — g in Ly(Q)¢ and div gx — f in L2(Q) as k — oc.
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Ifd =3and f, g € Ly(2)3 then the following statements hold:
(e) f € dom(curl) and g = curl f if and only if

Vo € C°(Q)°: /f-curl¢=/g-¢.
Q Q

() f € dom(curly) and g = curly f if and only if there exists (fi)k in Cé’O(Q)3
such that fi — f in Lo(R)3 and curl fy — g in L2(Q)3 as k — oc.

All the statements in Theorem 6.1.2 are elementary consequences of the integration
by parts formula, the definitions of the adjoint and Lemma 2.2.4. We ask the reader
to prove these statements in Exercise 6.4.

We introduce the following notation:

H'(Q) := dom(grad),

H} () == dom(grad,),
H (div, ©) := dom(div),
H (curl, ) := dom(curl).

Following the rationale of appending zero as an index for HO1 (£2), we shall also use

Hy(div, ) := dom(divg),
Hy(curl, 2) := dom(curlp).

We caution the reader that other authors also use Hy(div, 2) and Hp(curl, ) to
denote the kernel of div and curl.

All the spaces just defined are so-called Sobolev spaces. We note that for d = 3

we clearly have H 1(©)? < H(div, Q) N H(curl, ). On the other hand, note that
H (div, ©2) is neither a sub- nor a superset of H (curl, €2).
Remark 6.1.3 We emphasise that H} (@) = C2o()" '@ < B1(Q) is a proper
inclusion for many open 2. The ‘0’ in the index is a reminder of ‘0’-boundary
conditions. In fact, the only difference between these two spaces lies in the
behaviour of their elements at the boundary of €2. The space HO1 signifies all H'-
functions vanishing at €2 in a generalised sense. The corresponding statements are
true for the inclusions Hy(div, Q) C H(div, ) and Hy(curl, Q) € H(curl, 2).
The space Hp(div, €2) describes H (div, 2)-vector fields with vanishing normal
component and to lie in Hy(curl, 2) provides a handy generalisation of vanishing
tangential component. We will anticipate these abstractions when we apply the
solution theory of evolutionary equations for particular cases. In a later chapter
we will come back to this issue when we discuss inhomogeneous boundary value
problems.

For later use, we record the following relationships between the vector-analytical
operators introduced above.
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Proposition 6.1.4 Let d = 3. We have the following inclusions:

ran(curly) C ker(divop),
ran(grad,) C ker(curlp),
ran(curl) C ker(div),
ran(grad) C ker(curl).
Proof 1t is elementary to show that for given ¢ € Cé"’(Q)3 and ¢ € C(R2) we
have divg curlp ¥ = 0 as well as curlp grady ¢ = 0. Thus, we obtain ran(curlc) €
ker(divg) and ran(grad,) < ker(curlp). Since ker(divp) and ker(curlp) are closed,
and Cé"’(Q)3 and CZ°(R2) are cores for curly and grad,, respectively, we obtain the

first two inclusions. The last two inclusions follow from the first two by taking into
account the orthogonal decompositions

Lz(Q)3 = ran(grad) @ ker(divg) = ker(curl) @ ran(curlp)
and
Lz(Q)3 = ran(grad,) @ ker(div) = ker(curlp) & ran(curl)

which follow from Corollary 2.2.6. O

6.2 Well-Posedness of Evolutionary Equations
and Applications

The solution theory of evolutionary equations is contained in the next result, Picard’s
theorem. This result is central for all the derivations to come. In fact, with the
notation of Theorem 6.2.1, we shall prove that for all (well-behaved) F there is
a unique solution of

(0,vM(3,,) + A)U = F.

The solution U depends continuously and causally on the choice of F.

In order to formulate the result, for a Hilbert space H, v € R and a given closed
operator A: dom(A) € H — H we define its extended operator in Ly ,(R; H),
again denoted by A, by

L2 (R; dom(A)) € La,y(R; H) — L2 (R; H)
f— (t — Af(t)).

We have collected some properties of extended operators in Exercises 6.1 and 6.2.
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Theorem 6.2.1 (Picard) Lervg € Rand H be a Hilbert space. Let M : dom(M) C
C — L(H) be a material law with sp (M) < vy and let A: dom(A) C H — H be
skew-selfadjoint. Assume that

Re (¢, zM(2)p)y = cllgplll; (¢ € H,z € Cresy)

for some ¢ > 0. Then for all v > vy the operator d; , M (0; ) + A is closable and
-1
Sy = (at,vM(at,v) + A) € L(LZ,V(R; H)).

Furthermore, S, is causal and satisfies |Svllp(,,) < 1/c, and for all F €
dom(d;,,) we have

Sy F e dom(9;,,) N dom(A).

Furthermore, forn,v > voand F € Ly ,(R; H)N L, ,(R; H) we have that S, F =
S, F.

The property that S, F = S, F forall F € Ly ,(R; H) N Ly ,(R; H) where n,v >
v, for some vy € R, will be referred to as S, being eventually independent of v in
what follows.

Remark 6.2.2 If F € dom(d;,,), then U = §,F € dom(d;,,) N dom(A) by
Theorem 6.2.1. Since M (0;,,) leaves the space dom(d;,,) invariant, this gives that
M(;,)U € dom(9d;,,) and thus, U solves the evolutionary equation literally; that
is,

(at,vM(at,v) +AU=F,
while for F € L, ,(R; H), in general, we just have

(0r,vM (0;,0) + A)U = F.

Definition Let H be a Hilbert space and 7T € L(H). If T is selfadjoint, we write
T > c for some ¢ € R if

Vxe H: (x,Tx)y >clx|3.

Moreover, we define the real part of T by Re T = ;(T + T%).
Note that if H is a Hilbert space and T € L(H) then Re T is selfadjoint. Moreover,

(x, ReT)x)gy =Re(x,Tx)g (x € H).
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Hence, in Theorem 6.2.1 the assumption on the material law can be rephrased as
RezM(z) > ¢ (2 € Crexyy)-

The following operators will be prototypical examples needed for the applications
of the previous theorem.

Proposition 6.2.3 Let Hy, H| be Hilbert spaces.

(a) Let B: dom(B) € Hy — Hj, C: dom(C) € H; — Hy be densely defined
linear operators. Then

<g g) : dom(B) x dom(C) C Hy x Hi — Hy x H;

(9. V) = (Cy, BY)

is densely defined, and we have

oc\" (0 B
Bo) \c*o0)’
(b) Leta € L(Hy), and ¢ > 0. Assume Rea > c¢. Thena™' € L(Hy) with ||a_1 H <
DandRea™" > c|la| =2

Proof The proof of the first statement can be done in two steps. First, notice that

c* 0 B O

é 0c\'\ .. [(0C\ (o) (¢
<¢> € dom <<B 0) ) with (B 0) (W) = ({) we get for all x € dom(B)

that

s =(55)6)- () =6 G @),
(), =

Hence, v € dom(B*) and B*y = &. Similarly, we obtain ¢ € dom(C*) and
C*¢ =¢.

For the second statement, we compute for all ¢ € Hy using the Cauchy—Schwarz
inequality

* *k
the inclusion ( 0 B ) C (O C) follows immediately. If, on the other hand,

11y llall gy = | (b, ad) | > Re (¢, ad) gy = ¢ (b, P) gy = B, -
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Thus, a is one-to-one. Since Rea = Re a™ it follows that a* is one-to-one, as well.
Thus, we get that g has dense range by Theorem 2.2.5. The inequality

lagllmy = cliPll g

implies that a~! is bounded with ||a_l || < i Hence, as a ! is closed, dom(a_l) =
ran(a) is closed by Lemma 2.1.3 and hence, dom(a~') = Hy; thatis,a~! € L(Hy).
To conclude, let ¥ € Hpy and put ¢ := a~'y. Then 1l = aa_lw”Ho S

lall a="y ], and so

Re(y.a™'v) =Read. @)y, =Re(p.ab)y, > (o6, = clav.a'y)
Se Iyl u!
T ag?

The Heat Equation

The first example we will consider is the heat equation in an open subset 2 € R¢.
Under a heat source, Q: R x Q2 — R, the heat distribution, 6 : R x Q — R, satisfies
the so-called heat flux balance

00 +divg = Q.
Here, ¢: R x © — R? is the heat flux which is connected to 6 via Fourier’s law
q = —agradf,

where a: Q — RY%9 ig the heat conductivity, which is measurable, bounded and
uniformly strictly positive in the sense that

Rea(x) > ¢

for all x € @ and some ¢ > 0 in the sense of positive definiteness. Moreover, we
assume that €2 is thermally isolated, which is modelled by requiring that the normal
component of ¢ vanishes at d<2; that is, ¢ € dom(divg) (see Remark 6.1.3). Written
as a block matrix and incorporating the boundary condition, we obtain

(r(60)+ (0")* (ena5)) () = (5)
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Theorem 6.2.4 For all v > 0, the operator

10 00 0 divo
3
Y (0 o) + (0 a—1> + (grad 0 )

is densely defined and closable in L, (R; Ly(2) x LQ(Q)d). The respective
closure is continuously invertible with causal inverse being eventually independent

of v.

Proof The assertion follows from Theorem 6.2.1 applied to

10\ . {0 0 0 divo
@ <0 o) te (0 al) an <grad 0 )

Note that M is a material law with s, (M) = 0 by Example 5.3.1. Moreover, for
(x,y) € Lr(R2) x Lz(Q)d and z € Crexy With v > 0 we estimate
Re ((x, 1), 2M (@) (5, V) Ly xaid = Rez X117 ) + ¢ lall 2 Iyl17, g

> minfv, ¢ llal 2} 10, M, gy o

where we have used Proposition 6.2.3(b) in the first inequality. Moreover, A is skew-
selfadjoint by Proposition 6.2.3(a). O

Remark 6.2.5 Assume that Q € dom(d;,,). It then follows from Theorem 6.2.1 that

-1
0\ _ 10\ , (0 0 0 divo 0
(q) - (a””<00>+<0a—1>+<grad 0 )) <0>
0 di
edom(a,,v)mdom«grad 10“’)). (6.1)

Then, as in Remark 6.2.2, it follows that 6 and ¢ satisfy the heat flux balance and
Fourier’s law in the sense that § € dom(9d;,,) N dom(grad) and g € dom(divg) and

90 +divog = Q,
q = —agradé.
This regularity result is true even for Q € Ly ,(R; L2(2)); see [88] and Chap. 15,

Theorem 15.2.3.

The Scalar Wave Equation

The classical scalar wave equation in a medium Q2 C R4 (think, for instance, of
a vibrating string (d = 1) or membrane (d = 2)) consists of the equation of the
balance of momentum where the acceleration of the (vertical) displacement, u : R x
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Q — R, is balanced by external forces, f: R x € — R, and the divergence of the
stress, o: R x € — RY, in such a way that

3u —dive = f.

The stress is related to u via the following so-called stress-strain relation (here
Hooke’s law)

o =T gradu,

Rdxd

where the so-called elasticity tensor, 7: Q — , 1s bounded, measurable, and

satisfies
Tx)=Tx)*>c

for some ¢ > O uniformly in x € . The quantity gradu is referred to as the
strain. We think of u as being fixed at 92 (“clamped boundary condition™). This is
modelled by u € dom(grad,).

Using v = 0d;u as an unknown, we can rewrite the balance of momentum and
Hooke’s law as 2 x 2-block-operator matrix equation

5 10y 0 div vy _ (f
“\or! grad, 0 o) \o)-
The solution theory of evolutionary equations for the wave equation now reads as
follows:

Theorem 6.2.6 Let @ C RY be open, and T as indicated above. Then, for all

v >0,
9 1 0\ ([ 0 div
"lor! grad, 0

is densely defined and closable in L, (R; Ly(2) x LQ(Q)d). The respective
closure is continuously invertible with causal inverse being eventually independent

of v.
0 div

Proof We apply Theorem 6.2.1t0 A = — (gra dy 0

), which is skew-selfadjoint

1

07!
sp (M) = —oo. The positive definiteness constraint needed in Theorem 6.2.1 is
satisfied by Proposition 6.2.3(b) on account of the selfadjointness of 7, which

by Proposition 6.2.3(a), and M (z) = ( ), which defines a material law with
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implies the same for T Indeed, for vp > 0 and z € Cre>y, We estimate

Re ((x, ). 2M (2)(x, V) Ly Lot = Re (¥ 2X)py@) +Re(y. 2771y} .
2

2 ¢ 2
2w lIxlliy@) 0, 7o 1Y, 0

> vomin{L, ¢/ ITIP} G, DT )15
for each (x, y) € La(€2) x L>(22)?, where we used the selfadjointness of T in the
second line. |

Remark 6.2.7 Let f € Ly ,(R; L2(2)), v > 0, and define

<u>_ ) <1 o)_( 0 div) ”(awlf)
)\ \or! grad, 0 0o /)

By Theorem 6.2.1, we obtain (E) € dom(9;,,) Ndom (( 0 le)) . Hence, we
o grad, O

have

dou —dive =3, } f

BI,VT_IE = grady u

or

Thus, formally, after another time-differentiation and the setting of ¢ = 9, ,6 we
obtain a solution of the wave equation, (u#, o). Notice, however, that differentiating
divo cannot be done without any additional knowledge of the regularity of &. In
fact, in order to arrive at the balance of momentum equation, one would need to
have dive € dom(d;,,). However, one only has ¢ € dom(9;,,,) N dom(div). It is an

elementary argument, see [110, Lemma 4.6], that we in fact have div 8,])1 = 8;,1 div,
which suggests that, in general, dive ¢ dom(d; ), see Exercise 6.6.

Maxwell’s Equations

The final example in this chapter forms the archetypical evolutionary equation—
Maxwell’s equations in a medium © € R>. In order to identify the particular choices
of M (9;,,) and A in the present situation (and to finally conclude the 2 x 2-block
matrix formulation historically due to the work of [59, 64, 102]), we start out with
Faraday’s law of induction, which relates the unknown electric field, £: R x Q —
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R3, to the magnetic induction, B: R x Q — R3 , via
0:B +curl E =0.

We assume that the medium is contained in a perfect conductor, which is reflected
in the so-called electric boundary condition which asks for the vanishing of the
tangential component of E at the boundary. This is modelled by E € dom(curlp).
The next constituent of Maxwell’s equations is Ampere’s law

oD + jo —curl H = jj,

which relates the unknown electric displacement, D: R x Q — R3, (free) current
(density), jo: R x Q — R3, and magnetic field, H: R x Q — R3, to the
(given) external currents, jo: R x € — R3. Maxwell’s equations are completed
by constitutive relations specific to each material at hand. Indeed, the (bounded,
measurable) dielectricity, e: Q2 — R3*3, and the (bounded, measurable) magnetic
permeability, 1: @ — R3*3, are symmetric matrix-valued functions which couple
the electric displacement to the electric field and the magnetic field to the magnetic
induction via

D =¢E, and B = uH.

Finally, Ohm’s law relates the current to the electric field via the (bounded,
measurable) electric conductivity, o: Q — R3*3, as

je=o0oE.

All in all, in terms of (E, H), Maxwell’s equations read

880+0‘0+ 0 —curl EN _(Jjo

"\opn 00 curly 0 H] \o)"
For the time being, we shall assume that there exist ¢ > 0 and vy > 0 such that for
all v > v we have

ve(x)+Reo(x) 2c, ukx)=zc xef)

in the sense of positive definiteness. Note that the latter condition allows particularly
for ¢ = 0 on certain regions, if Re 0 compensates for this. To approximate small ¢
by 0 is referred to as the eddy current approximation in these regions. With the above
preparations at hand, we may now formulate the well-posedness result concerning
Maxwell’s equations.
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Theorem 6.2.8 Ler 2 C R be open and v > vy. Then

9 e 0 " o0 n 0 —curl
A 00 curly 0

is densely defined and closable in Lj,, (R; LZ(Q)?’ X LZ(Q)3). The respective
closure is continuously invertible with causal inverse being eventually independent

of v.

Proof The assertion follows from Theorem 6.2.1 applied to the material law

wo=(;2) e+ (5

and the skew-selfadjoint operator

0 —curl
A= . O
(curlo 0 )

Remark 6.2.9 In the physics literature (see e.g. [40, Chapter 18]), Maxwell’s
equations are usually complemented by Gauss’ law,

divg B =0,

as well as the introduction of the charge density, p = diveE, and the current, j =
Jo — Jje, by the continuity equation

8;,0 = leJ

We shall argue in the following that these equations are automatically satisfied if
(E, H) is a solution to Maxwell’s equation. Indeed, assuming jo € dom(d; ,), then,
as a consequence of Theorem 6.2.1, for

()= (e (5 () (5 5m) (2)

E 0 —curl .
we observe (H) € dom (at,v) N dom ((curlo 0 )) Reformulating the latter

equation yields

B=uH = —851 curly E,

v

eE =0, (—0E+ jo+curl H) =9} j+ 9, curl H.
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Since curly E € ran(curlp), we have by Proposition 3.1.6(b) that 8;,1 curlp E €
ran(curlp). Thus, by Proposition 6.1.4, we obtain

divo B = divo (—a,jvl curly E) ~0.
Similarly, we deduce that
p=diveE =diva, ) j.
If, in addition, we have that j € dom(div), we recover the continuity equation. In

general, the continuity equation is satisfied in the integrated sense just derived.

We shall keep the list of examples to that for now. In the course of this book,
we will see more (involved) examples. Furthermore, we will study the boundary
conditions more deeply and shall relate the conditions introduced abstractly here to
more classical formulations involving trace spaces.

6.3 Proof of Picard’s Theorem

In this section we shall prove the well-posedness theorem. For this, we recall an
elementary result from functional analysis. It is remindful of the Lax—Milgram
lemma.

Proposition 6.3.1 Let H be a Hilbert space and B: dom(B) € H — H densely
defined and closed. Assume there exists ¢ > 0 such that

Re (¢, Bp)y = clplly (¢ € dom(B)),
Re(y, B*y), > clvly (¥ € dom(B*).

Then B! € L(H) and |B™"| < 1/c.

Proof Since B is not necessarily bounded here, the present argument requires a
refinement of the one in Proposition 6.2.3. In fact, the first assumed inequality
implies closedness of the range of B as well as continuous invertibility with
B~!': ran(B) — H. The fact that ran(B) is dense in H follows from the second
inequality. O

Remark 6.3.2 In the proof of Theorem 6.2.1, we will apply Proposition 6.3.1 in a
situation, where dom(B*) C dom(B). In this case, the condition

Re (¢, Bo)y > clply; (¢ € dom(B))
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readily implies

Re (v, B*Y), > clvly (¥ € dom(B¥).

Next, we turn to the proof of Picard’s theorem. For this, we recall that we do not
notationally distinguish between the operator A defined on H and its extension to
H -valued functions. We leave it to the context, which realisation of A is considered,
which will always be obvious; see also Exercises 6.1 and 6.2.

Proof of Theorem 6.2.1 Let v > vy and z € Crex,. Define B(z) == zM(z) + A.
Since M (z) € L(H) it follows from Theorem 2.3.2 that B(z)* = (zM(z))* — A and
dom(B(z)) = dom(B(z)*) = dom(A). Moreover, for all ¢ € dom(A) we have

Re (¢, B(2)p)yy = Re (p, M (2) + A) )y =Re (¢, 2M (D)) = c N7y ,

due to the skew-selfadjointness of A. Thus, by Proposition 6.3.1 (see also
Remark 6.3.2) applied to B(z) instead of B, we deduce that

S:Crezv 32 B(z)™!

is bounded and assumes values in L(H) with norm bounded by 1/c. By Exer-
cise 6.5, we have that S is holomorphic. Thus, S is a material law and HS(B,,V) || <
1/c by Proposition 5.3.2. Moreover, Theorem 5.3.6 implies that S(9;,,) is indepen-
dent of v and causal.

Next, if f € dom(9;,,), it follows that (im + v) £, f € L2(R; H). Hence, for all
t € R we obtain

AS(it + )Ly f(1) = A( (it +v) MGt +v) + A) " L, £ (1)
=L, f(t) — (it + v) M(it + v)S(it + v)Ly £ ().

Thus, by the boundedness of M and S, we deduce S(i-+v)L, f € L2(R; dom(A)).
This implies S(9;,,)f € L3, (R; dom(A)) by Exercise 6.2. Similarly, but more
easily, it follows that (i-+v)S@ - +v)L,f € La(R; H) also, which shows
S(8.0) f € dom(@dy ).

We now define the operator B(im + v) by

dom(B(im + v)) = {f € Lr(R; H); f(t) € dom(A) forae.t € R,
(t— B(it +v)f(1)) € La(R; H)}

and

Bim+v)f =+ B@r+v)f@) (f €dom(B@im + v))).
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Then one easily sees that B(im + v) = S(@im + v)’1 and since S(im + v) is closed,
it follows that B(im + v) is closed as well. Moreover

(im+4+v)M(@im+v)+ A C B(im 4 v)

and hence, the operator (im + v)M (im + v) + A is closable, which also yields the
closability of 0;,,M(9;,,) + A by unitary equivalence. To complete the proof, we
have to show that

(im+ v)M(@m +v) + A = B(im + v),

as this equality implies S(0;,,) = (a,,VM (0¢,v) + A)71 by unitary equivalence. For
showing the asserted equality, let f € dom(B(im + v)). For n € N we define
fn =1j—ynf. Then f;, € dom(im+v)Ndom(A) € dom ((im~|—v)M(im—|—v)—|—A)
for each n € N and by dominated convergence, we have that f,, — f asn — oo as
well as

((m + v)M (im 4+ v) + A) f, = B(im + v) f,,
=1y Bim+v)f — Bim+v)f

n — oo. This shows that f € dom ((im+ V)M (im + v) + A) and hence, the
assertion follows. O

Remark 6.3.3 Note that Theorem 6.2.1 can partly be generalised in the following
way (with the same proof). Let M : Cre~y, — L(H) be holomorphic and A a
closed, densely defined operator in H such that zM (z) + A is boundedly invertible
for all z € CRre=y, and that SUD, € Creosy |zM(z) + A)~! ||L(H) < oo. Then S, €
L(L>,(R; H)) is causal and eventually independent of v.

Remark 6.3.4 As the proof of Theorem 6.2.1 shows, for v > vy we have that
S: Crezv 2 2= @M(2) + A)~! € L(H) is a material law and S, = S(d;.,).
Thus, the solution operator is a material law operator, and by Remark 5.3.3 applied
to S and z — i 1y we obtain

Sv0r,v S 9,0 Sv.

6.4 Comments

The proof of Theorem 6.2.1 here is rather close to the strategy originally employed
in [82], at least where existence and uniqueness are concerned. The causality part
is a consequence of some observations detailed in [52, 131]. The original process
of proving causality used the Theorem of Paley and Wiener, which we shall discuss
later on.
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The eddy current approximation has enjoyed great interest in the mathematical
and physical community, in particular for the case when ¢ = 0 everywhere. The
reason being that then Maxwell’s equations are merely of parabolic type. We shall
refer to [79] and the references therein for an extensive discussion.

Both Proposition 6.3.1 and the Lax—Milgram lemma have been put into a general
perspective in [89].

Exercises

Exercise 6.1 Let (2, X, 1) be a o-finite measure space and let Hy, H; be Hilbert
spaces. Let A: dom(A) € Hyp — Hj be densely defined and closed. Show that the
operator

Ay La(us dom(A)) € Lo(w; Ho) — Lo(u; Hy)
f— (a) = Af(a)))

is densely defined and closed. Moreover, show that (4,)" = (A*) L

Exercise 6.2 In the situation of Exercise 6.1, if (21, X1, n1) is another o-finite
measure space and F: Ly(u) — Lo(u1) is unitary, show that for j € {0, 1} there
exists a unique unitary operator Fp; : Lao(u; Hj) — La(ui; Hj) such that

Fhi(px) = (Fp)x (¢ € La(n), x € Hj).
Furthermore, prove that
F ApFp, = Apy-
Exercise 6.3 Show that for 2 € R? open, the set C3°(2) € L,(R) is dense.

Exercise 6.4 Prove Theorem 6.1.2.

Exercise 6.5 Let H be a Hilbert space, A: dom(A) € H — H skew-selfadjoint,
and ¢ > 0. Moreover, let M : dom(M) € C — L(H) be holomorphic with

ReM(z) > ¢ (z € dom(M)).

Show that dom(M) > z +— (M(z2) + A)*1 is holomorphic.

Exercise 6.6 Let C: dom(C) € Hy — Hj be a densely defined and closed linear
operator acting in Hilbert spaces Hy and Hj. For v > 0 show that

9,,C=Ca ).
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Hint: Apply Exercise 6.2 and show (im + v)~1C = C(im + v)~! with a suitable
approximation argument.

Exercise 6.7 Let € RY be open.

(a)
(b)

Compute H(} (Q)* where the orthogonal complement is computed in H ().
Assume that

D= [¢ e H(Q): grad ¢ € dom(div), ¢ = divgrad¢] C C®(Q).

and show that C®°(Q) N H' () € H () is dense.

Remark The regularity assumption in (b) always holds and is known as Weyl’s
Lemma, see e.g. [45, Corollary 8.11], where the more general situation of an

elli
the

ptic operator with smooth coefficients is treated. See also [32, p.127], where
regularity is shown for harmonic distributions.
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Chapter 7 )
Examples of Evolutionary Equations Shethie

This chapter is devoted to a small tour through a variety of evolutionary equa-
tions. More precisely, we shall look into the equations of poro-elastic media,
(time-)fractional elasticity, thermodynamic media with delay as well as visco-elastic
media. The discussion of these examples will be similar to that of the examples in
the previous chapter in the sense that we shall present the equations first, reformulate
them suitably and then apply the solution theory to them. The study of visco-elastic
media within the framework of partial integro-differential equations will be carried
out in the exercises section.

7.1 Poro-Elastic Deformations

In this section we will discuss the equations of poro-elasticity, which form a coupled
system of equations. More precisely, the equations of (linearised) elasticity are
coupled with the diffusion equation. Before properly writing these equations we
introduce the following notation and differential operators.

Definition Let Kflx‘l = {A eKixd, A = AT} C K9*4 be the (closed) subspace

sym
of symmetric d x d matrices. Let 2 C R? be open. Then define

Lyt = La(2 KGR

sym sym

Analogously, we set C° (Q)dxd .— C (L2 Kdxdy,

sym sym

Note that the symmetry of a d x d matrix here means that the matrix elements
are symmetric with respect to the main diagonal. For K = C, this does not
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correspond to the symmetry of the associated linear operator (which would rather
be selfadjointness).

Definition Let € R be open. Then we define

Grad.: CX(Q)? C Ly(2)? — Ly()4xd

sym

1
(81) jett, ety = o (D5 +9580)  cr .y

and
Dive: CRQL S La@&d — La(@)*
d
(q)/'k)j,ke{l ..... o (Z akq)/k)
k=1 jell,...d}
Similarly to the definitions in the previous chapter, we put Grad := — Div}, Div :=

— Grad} and Grady := — Div*, Divg := — Grad*, where (analogously to the scalar-
valued case) we observe that Grad. € — Div} motivating the notation Grad and
Gradp.

Remark 7.1.1 Note that in the literature Gradu is also denoted by e(u) and is
called the strain tensor. Due to the (obvious) similarity to the scalar case, we
refrain from using ¢ in this context and prefer Grad instead. Again, the index 0
in the operators refers to generalised Dirichlet (for Gradp) or Neumann (for Divg)
boundary conditions.

We are now properly equipped to formulate the equations of poro-elasticity; see
also [69] and below for further details. In an elastic body 2 € RY, the displacement
field, u: R x  — R?, and the pressure field, p: R x @ — R, of a fluid diffusing
through Q2 satisfy the following two energy balance equations

9;pd;u — grad 9;A divu — Div C Gradu + grada™*p = f,
d;(cop +adivu) —divkgradp = g.

The right-hand sides f: R x € — R? and g: R x @ — R describe some
given external forcing. We assume homogeneous Neumann boundary conditions
for the diffusing fluid as well as homogeneous Dirichlet (i.e. clamped) boundary
conditions for the elastic body. The operator p € L(L>(22)%) describes the density
of the medium 2 (usually realised as a multiplication operator by a bounded,
measurable, scalar function). The bounded linear operators C € L(LQ(Q);ly);él)
and k € L(LZ(Q)d) are the elasticity tensor and the hydraulic conductivity of
the medium, whereas cg, A € L(L2(€2)) are the porosity of the medium and the
compressibility of the fluid, respectively. The operator o« € L(L2(£2)) is the so-



7.1 Poro-Elastic Deformations 105

called Biot—Willis constant. Note that in many applications p, cg, A and « are just
positive real numbers, and C and k are strictly positive definite tensors or matrices.

The reformulation of the equations for poro-elasticity involves several ‘tricks’.
One of these is to introduce the matrix trace as the operator

trace: Ly(Q)%%4 = L,(Q)

sym

d
(PjK)jkell,...d) = Z ;.
j=1

Note that the adjoint is given by trace* f = diag(f, ..., f) € La(2)%*9 It is then

sym °
elementary to obtain trace Grad € div as well as grad = Div trace®. Hence, we

formally get
9; p0;u — Div ( (at trace™® A trace +C) Grad u — trace™ a*p) =f,
0 (cop + atrace Gradu) — divk gradp = g.

Next, we introduce a new set of unknowns

v = o/,
T = C Gradu,
w = Atrace Gradv — o™ p,
q = —kgrad p.
Here, v is the velocity, T is the stress tensor and ¢ is the heat flux. The quantity

w is an additional variable, which helps to rewrite the system into the form of
evolutionary equations.

In order to finalise the reformulation we shall assume some additional properties
on the coefficients involved. Throughout the rest of this section, we assume that

*

p=p 2c

co=cj = c,
Rel > c,
Rek > ¢, and

C=C*>c¢

for some ¢ > 0, where all inequalities are thought of in the sense of positive
definiteness (compare Chap. 6). As a consequence, we obtain

trace Gradv = A~ 'w 4+ A~ ¥ p.
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Rewriting the defining equations for 7, w, and g together with the two equations
we started out with, we obtain the system

3 pv — Div (T + trace® w) = f,
dcop+arlo+arla*p +divg = g,
Ao+ 27" p — trace Grad v = 0,
3C~'T — Gradv =0,

k_lq +gradp = 0.

Note that at this stage of modelling we assumed that we can freely interchange the
order of differentiation, so that Grad d;u = 9; Grad u. Introducing

p00 0 0 0 0 0 00
0cgO 0 O Oarla*ar10 0
Mp=]000 0 O}, Mi=]0xrta*x 271 0 0 [, (7.1)
oooclto 0 0 0 00
000 0 O 0 0 0 0k!
100 0 0O 0 0 0—Div 0
010 0 O 0 0 0 0 div
V=1001trace0]|, A= 0 00 O o |1, (7.2)
000 1 O —Gradg 0 0 0 O
000 0 1 0 grad0 0 O
we obtain
v f
P g
(0Mo+ M +VAV*) o |=]0
T 0
q 0

This perspective enables us to prove well-posedness for the equations of poro-
elasticity by applying Theorem 6.2.1.

Theorem 7.1.2 Put H = Ly(2)? x Ly(RQ) x La(Q) x La(Ld x Ly(Q)? and
let Mo, M1,V € L(H) and A be given as in (7.1) and (7.2). Then there exists
vo > 0 such that for all v > vy the operator 9; , Mo + M| + V AV* is continuously
invertible on Ly ,(R; H). The inverse S, of this operator is causal and eventually
independent of v. Moreover, sup,>, [Svll < 0o and F € dom(d;,,,) implies Sy F €
dom(d;,,) Ndom(VAV™).
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We will provide two prerequisites for the proof. We ask for the details of the proof
of Theorem 7.1.2 in Exercise 7.1.

Proposition 7.1.3 Let Hy, H| be Hilbert spaces, B: dom(B) € Hy — Hy skew-
selfadjoint, V € L(Hy, Hy) bijective. Then (V BV*)* = —V BV*.

The proof of Proposition 7.1.3 is left as (part of) Exercise 7.1.

Proposition 7.1.4 Let H be a Hilbert space, No, N\ € L(H) with No = Nj.
Assume there exist cg, c; > 0 such that (x, Nox) > cg ||x||2f0r all x € ran(Ny) and
Re (y, N1y) = 1 ||y||2f0r all y € ker(Ny). Then for all 0 < c’1 < c| there exists
vo > 0 such that for all v > vy we have that

vNo + Re Ny > ¢f.

Proof Note that by the selfadjointness of Ng we can decompose H = ran(Ng) &
ker(Np), see Corollary 2.2.6. Let z € H, and x € ran(Nyp), y € ker(Np) such that
z=x 4 y.Fore,v > 0 we estimate

v(x+y, No(x +y)) +Re(x +y, Ni(x +y))

= v (x, Nox) + Re (y, N1y) + Re (x, N1x) + Re (x, N1y) + Re (y, N1x)

WV

veo IlX I+ er Iyl — NI Il = 2 N Il

WV

1
2 2 2 212 2
veo IxI1% + e Iy l™ = INuHIxI™ = NI Il = e Lyl

1
(VCO -, INy 11 — ||N1||> x4+ (c1 — &) lyll*,

where we have used the Peter—Paul inequality (i.e., Young’s inequality for products
of non-negative numbers). For 0 < ¢| < ¢; we find ¢ > 0 such that ¢c; — & > c].

Then we choose vy > Clo (c/l + i | N1 ||2 + |IN1 ||). With this choice of vy we deduce
for all v > v that

vz, Noz) +Re (2 N12) > ¢f (I + I¥I12) = ¢ Izl

which yields the assertion. O

7.2 Fractional Elasticity

Let © € R? be open. In order to better fit to the experimental data of visco-elastic
solids (i.e., to incorporate solids that ‘memorise’ previous force applied to them) the
equations of linearised elasticity need to be extended in some way. The balance law
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for the momentum, however, is still satisfied; that is, for the displacement u: R x
Q — R? we still have that

0;pou —DivT = f,

where p € L(L>(£2)%) models the density and f: R x Q2 — R isa given external
forcing term. The stress tensor, 7: R x Q — ]Rfyxnf, does not follow the classical
Hooke’s law, which, if it did, would look like

T = CGradu

for C € L(LZ(Q)dXd). Instead it is amended by another material dependent

sym

coefficient D € L(LZ(Q)fanf) and a fractional time derivative; that is,

T = C Gradu + D9/ Gradu,

for some o € [0, 1], where 97 := 0; 8;"_1, see Example 5.3.1(e). We shall simplify
the present consideration slightly and refer to Exercise 7.2 instead for a more
involved example. Throughout this section, we shall assume that

C=0,D=D*">c,andp=p">c

for some ¢ > 0. Thus, putting v := d;u and assuming the clamped boundary
conditions again, we study well-posedness of

opv —DivT = f, (7.3)
T = Dd; Grady u. (7.4)
In order to do that, we first rewrite the second equation. We will make use of the

following proposition which will serve us to show bounded invertibility of 97 (in
the space L» ), and which will also be employed to obtain well-posedness.

Proposition 7.2.1 Letv > 0, z € Crexy, @ € [0, 1]. Then
Rez* > (Rez)* =Y.

Proof Let us prove the first inequality. Note that without loss of generality, we may

assume that Rez = 1. Let ¢ = argz € (—’27, 75) Since In o cos is concave on
(—g , ’2’) (as (Ino cos)’ = — tan is decreasing) and (In o cos)(0) = 0, we obtain

In cos(ag) = Incos(ag+(1—a)0) > o Incos(p)+(1—a) Incos(0) = In (cos(p)®),
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and therefore cos(ag) > cos(g)?. Since Re z = 1 implies |z| = we obtain

1
cos(g)”

Rez® — cos(xg)

= > 1= (Rez)”.
(cos g)° (Reo
The second inequality follows from monotonicity of x — x“. O
Applying Proposition 7.2.1 and noting that D is boundedly invertible we can
reformulate (7.4) as

3, 2D™'T — Gradgu = 0,

so that (7.4) and (7.3) read

(1 (5 ) ~ (o ) ()= (6):

A solution theory for the latter equation, thus, reads as follows, where again v =
8, vlU.

Theorem 7.2.2 Put H := Ly(2)¢ x Ly()4%?. Then for all v > 0 the operator

sym *

5 0 0 B 0 Div
""\0 8, D! Grady 0

is densely defined and closable in Lj ,(R; H). The inverse of the closure is
continuous, causal and eventually independent of v.

0 Div

Grady O
by Proposition 6.2.3(a), it suffices to confirm the positive definiteness condition for

Proof The proof rests on Theorem 6.2.1. Since ( ) is skew-selfadjoint

the material law. For this let z € Cgre>, and compute for x € LZ(Q)gyfrfl, using
Proposition 7.2.1 and Proposition 6.2.3(b),
Re (x, zz_o‘D_lx> =Re <x, zl_“D_1x> > ple <x, D_1x> >l ||DC||2 Ix|1?.

This yields the assertion. O



110 7 Examples of Evolutionary Equations
7.3 The Heat Equation with Delay

Let © € R? be open. In this section we concentrate on a generalisation of the heat
equation discussed in the previous chapter. Although we keep the heat flux balance
in the sense that

30 +divg = 0,

with ¢: R x © — R being the heat flux and 6: R x @ — R being the heat, we
shall now modify Fourier’s law to the extent that

q = —agradf — br_j grad0

for some a, b € L(Ly(2)%) with Rea > ¢ for some ¢ > 0, and & > 0. We shall
again assume homogeneous Neumann boundary conditions for g. Written in the
now standard block operator matrix form, this modified heat equation reads

(5 00) * G amt) * (ena ) ()= (5)

In order to actually justify the existence of the operator (a + bt_;,) ! as a bounded
linear operator, we provide the following lemma.

Lemma 7.3.1 Leth > 0.

(a) There exists vo > 0 such that for all v > vg the operator a + bt_j, is
continuously invertible on L; , (R; Ly (2)%).
(b) Forall0 <c <c¢/ ||a||2 there is vi = v such that for all 7 € Crexy, we have

Re (a + be_zh)_1 >

Proof Note that a is invertible with |ja™!| < i and Rea™! > Hacl\z by
Proposition 6.2.3(b).

(a) By Example 5.3.4(c), for all v > 0 we obtain

—(it+v)h

1571ty < Wliacas) S ‘e ‘ = 1Bl 1y ey e
te

Thus, we find vg > 0 such that for all v > vy we obtain ||br_hcf1 ||L(L2 ) <

b-nll(r,,) < 1. Thus,

a+bt_y = (1 + br,hafl) a

is continuously invertible by a Neumann series argument.
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(b) Let 0 < ¢’ < ¢/ lall?, and set d(z) = —be “"a~!. Moreover, we choose
vi = v such that |d(2)ll @) < m1n{2, e} for all z € Cgrexy,, Where

0<e< éc (Hac\lz — c’), For z € Crexy, We compute
1 0
Re (a + be_zh) =Rea ' (1-d(z)) ' =Re (a_l Zd(z)k>
k=0
o
=Re (al + Zald(z)k>

k=1
c o0
> =D ald@N > - Zud(z)uk
lal®> | la || ¢
c 1 ld@ll c 1 ,

= — > — 2¢
lal?  c1=1d@I " fal?® ¢ .

With this lemma we are in the position to provide the well-posedness for the
modified heat equation.

Theorem 7.3.2 Let H = Lo(2) x L2(2)%. There exists vo > 0 such that for all
v = v the operator

5 (10) 4 (© 0 L0 divo
oo 0(a+bt_p)! grad 0

is densely defined and closable with continuously invertible closure on Ly ,,(R; H).
The inverse of the closure is causal and eventually independent of v.

Proof The proof rests on Theorem 6.2.1 and Lemma 7.3.1. O

7.4 Dual Phase Lag Heat Conduction

The last example is concerned with a different modification of Fourier’s law. The
heat flux balance

0;0 +divg = Q (7.5)
is accompanied by the modified Fourier’s law
(1+Sq3t ) qa ) = —(1 + s99;) grad 9, (7.6)

where s; € R, s9 > 0 are given numbers, which are called ‘phases’.
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Remark 7.4.1 The modified Fourier’s law in (7.6) is an attempt to resolve the
problem of infinite propagation speed which stems from a truncated Taylor series
expansion of a model given by

T, = —Tsy gradf.

Note that it can be shown that such a model would even be ill-posed, see [34].

Let us turn back to the system (7.5) and (7.6). Notice, since sg > 0, and due to
a strictly positive real part of the derivative in our functional analytic setting, we
deduce that (1 4 s99;,,) is continuously invertible for v > 0. Thus, we obtain

-1 1 2 -1
(9, + 54 + 2sqat,v)(l +500;,)" g = — grad®.

The block operator matrix formulation of the dual phase lag heat conduction model
is thus

s (! 0 +< 0 divo> <9>_<Q>
"PNO (B A+ g+ 552000) (1 + 590;,) 7! grad 0 q) \o)’

Theorem 7.4.2 Let H = Ly(Q) x L2()?. Assume sq € R\ {0}, s9 > 0. Then
there exists vy > 0 such that for all v > vg the operator

. 1 0 +< 0 div())
"PNO (B + g+ 552000) (1 + 590,,) 7! grad 0

is densely defined and closable with continuously invertible closure on Ly ,(R; H).
The inverse of the closure is causal and eventually independent of v.

The proof of Theorem 7.4.2 is again based on Theorem 6.2.1. Thus, we shall only
record the decisive observation in the next result. For this, we define

- |
T sy + 5852

M(z) =
2 1+ sz

eC (zeC\{0,— ).

Lemma 7.4.3 Let s; € R\ {0}, s9 > 0. Then there exist vo € R and ¢ > 0 such
that for all 7 € Cre., we have

RezM(z) > c.
Proof We puto = z‘é .Letz € C\ {0, — Sle }. We compute

1—0(1—50)

14 sz

I +s42+ ésgzz 1

M(z) = =
M) 1+ spz 2

1
5420 + 0 (1 — 20) +
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and therefore

| | (1=0 (1-130)) 0 +ssRe2)
RezM(Z)zzsqaRez—i-a(l—za)—i- .

1+ sz
By assumption
2
s
0< 1 =50,
< 5 540
and since
(1 -0 (1 — éo))(l + s Re z)
) -0
[T+ szl
as Re z — o0, we obtain
1
RezM(z) > zsqo Rez -4
for some § > 0 and all z € C with Re z large enough. O

7.5 Comments

The equations of poro-elasticity have been proposed in [69] and were mathemati-
cally studied in [63, 103].

Equations of fractional elasticity are discussed in [20, 73, 87, 134]. The well-
posedness conditions stated here and in Exercise 7.2 can be generalised as it is
outlined in [87] to the case where both C and D are non-negative, selfadjoint
operators so that C and D satisfy the conditions imposed on N; and Ny in
Proposition 7.1.4. We refrained from presenting this argument here, as it seemed too
technical for the time being. Note however that the proof is neither fundamentally
different nor considerably less elementary.

The heat equation with delay has also been studied in [55] with an entirely
different strategy; the dual phase lag models have been dealt with in [68, 127].

Other ideas to rectify infinite propagation speed of the heat equation can be found
in [3], where nonlinear models for heat conduction are being discussed.

The visco-elastic equations discussed in Exercise 7.6 are studied with convolu-
tion operators more general than below in [119]; see also [19, 27, 95, 116].



114 7 Examples of Evolutionary Equations
Exercises

Exercise 7.1 (Solutions to the Equations of Poro-Elasticity)

(a) Prove Proposition 7.1.3.

(b) Prove Theorem 7.1.2.

(c) Let @ € R? beopen, v > 0, f € H'(R; Lo(Q)?) and g € H!(R; L2(Q)).
With the help of Theorem 7.1.2 show that for large enough v > 0 there exist
a unique # € dom (321)) N dom (gradk div 8,,1,) N dom (Div C Gradyp) and p €
dom(d,,,) N dom(grad &*) N dom(divg k grad) such that

000 yu — grad A div 9, yu — Div C Gradgu + grada™p = f
o veop +adivo, yu —divokgrad p = g.

Exercise 7.2 Let Q € R? be open, C, D € L(Ly($)4%dy D = D* > ¢ for some

sym
c>0and o € [;, 1]. Show that there exists vy > 0 such that for all v > vg the
system

orvpv —DIivT = f,
T = (C + Ddy,) Grado u,

d><d)

where v = 9, ,u, admits a unique solution (v, T') € L2 ,(R; Lr(2)? x L2 (2)§ym

forall f € H(R; L(2)%).

The following exercises are devoted to showing the well-posedness of certain
equations in visco-elasticity, where the ‘viscous part’ is modelled by convolution
with certain integral kernels. The proof of the positive definiteness property requires
some preliminary results. We assume the reader to be equipped with the basics from
the theory of functions of one complex variable.

For U € C open write U = {(x.y) € R% x +iy € U}, and foru: U — C
holomorphic, define fre 4 : U — R by fre u(x,y) :=Re u(x +1iy) for (x, y) € U.
We put

Hre(U) = {fReu ; u: U — C holomorphic} .

Exercise 7.3 Let U C C be open.

(a) Let f € Hre(U). Show that f satisfies the mean value property; that is, for all
(x,y) e Uandr > 0 with B ((x, y),r) € U we have

1 2
S, y) = f(x+rcosd,y+rsinf)do.
2 0
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(b) Let U = Cim>0 and f € Hgre(U) N C(R x Rxp). Moreover, assume that
f(x,0) = 0foreachx € Rand f(x,y) — 0as |(x,y)] - oo. Show that
f=00nR x Ry.

Exercise 7.4 In this exercise we show a version of Poisson’s formula. Let U =
Cmmso and f € Hre(U) N C(R x R;o).
(a) Assume that f(-,0) € L,(R) for some 1 < p < oco. Show that Ciy=0 3 z —
Imz/+i(Rez—x' . .
. (Rrrel;;’()2:1532 f(x’,0)dx’ is holomorphic.
1
(b) Assume that f(-,0) € Loo(R). Show that f]R (x,xr)yzﬂz)f(x/’ 0)dx’ —
f(x0,0)as x — xpand y — O+.
(c) (Poisson’s formula) Assume that f(-,0) € L,(R) for some 1 < p < oo and
f(x,y) = 0as|(x,y)] - coin R x R3. Show that

fy) = :T /R oy g g2 @O () € R x Re)
Hint: Apply Exercise 7.3(b).
Exercise 7.5 Letvgp € Rand k € L1 ,,(R; R) with sptk C Rxy.
(a) Show that for all (x, v) € R x R.,, we have

v —1g

) 1
Im(Lk)(ix +v) = - /R (x —x)2 + (v — 1p)

5 Im(Lk)(ix’ + vg) dx'.

Hint: Approximate k by functions in CS°(R>0; R) and use Poisson’s formula
(see Exercise 7.4).
(b) Assume there exists d > 0 such that for all x € R

x Im(Lk)(ix + vg) < d.
Show that for all v > vy and x € R we have
x Im(Lk)(ix 4+ v) < 4d.

Hint: Use the formula in (a) and split the integral into positive and negative part

of R; use symmetry of (Lk) under conjugation due to the realness of k.
Exercise 7.6 Let 2 C R? be open,vp € Rand k € Ly ,,(R; R) with sptk C R>.
Assume there exists d > 0 such that

x Im(Lk)(ix +1v0) <d (x € R).
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Show that there exists v > vg such that for all v > v the operator

s (1 0 L 0 Div
N0 (1 — k)t Gradg 0

is well-defined, densely defined and closable in L3, (R; H) with H = Lz(Q)d X
LZ(Q)dXd Further, show that its closure is continuously invertible, and that the

sym *

corresponding inverse is causal and eventually independent of v.

Exercise 7.7 Letvgp € Rand k € L1 ,,(R; R) with sptk C Rxy.

()

(b)

Assume that k is absolutely continuous with &’ € Ly, (R; R). Show that there
exist vi = vg and d > 0 with

xIm(Lk)(ix +v)) <d (x € R).

Assume that k(t) > 0 for all # € R and that k(z) < k(s), whenever s < 7. Show
that there exists v > vy with

x Im(Lk)(ix +v1) <0 (x € R).

Hint: For part (b) use the explicit formula for Im(Lk) as an integral and the
periodicity of sin.

Remark: The condition in (a) is a standard assumption for convolution kernels
in the framework of visco-elastic equations; the condition in (b) is from [95].
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Chapter 8 )
Causality and a Theorem of Paley Shethie
and Wiener

In this chapter we turn our focus back to causal operators. In Chap. 5 we found
out that material laws provide a class of causal and autonomous bounded operators.
In this chapter we will present another proof of this fact, which rests on a result
which characterises functions in Ly(R; H) with support contained in the non-
negative reals; the celebrated Theorem of Paley and Wiener. With the help of this
theorem, which is interesting in its own right, the proof of causality for material
laws becomes very easy. At a first glance it seems that holomorphy of a material
law is a rather strong assumption. In the second part of this chapter, however, we
shall see that in designing autonomous and causal solution operators, there is no
way of circumventing holomorphy.

In the following, let H be a Hilbert space, and we consider L3 ,(R>0; H) as the
subspace of functions in L , (R; H) vanishing on (—oo0, 0).

8.1 A Theorem of Paley and Wiener

We start with the following lemma, for which we need the notion of locally
integrable functions. We define

Lijoc(R; H) :={f; VK CRcompact: 1x f € L1(R; H)}
={f: Vo e CEM): of € Li(R; H)}.
Lemma 8.1.1 Let f € Ly 10c(R; H). Then we have f € Lo(Rxo; H) if and only if

f € My=o L2w@®; H) with sup,_o | fll L, ,®:my < 0. In the latter case we have
that

gy = lim gy =Su H) -
I s @iy = ML iy = SUP I s sy
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Proof Let f € Lr(Rxo; H) and v > 0. Then we estimate

/ ILf @7 e > dr = f ILfOll7 e dt < f LF O dt = 1f1Z @ gm) -
R R>o R>o

which proves that f € Lj , (R; H) with ||f||L2,U(]R;H) < ||f||L2(R>0;H) foreachv >
0. Moreover, || fllz, ,®:z) — ||f||L2(R>0;H) as v — 0 by monotone convergence
and since clearly || fll 1, (. #) < ”f”LzM(]R;H) for 0 < u < v we obtain

.y = lim Ly = Su CHY -
I 2@y = Hm L, ;) U>P0||f||L2.v(R,H)

Assume now that f € (1,0 L2v(R; H) with C = sup,_o | fllz, @z < 00
This inequality yields

sup / If@I7e " dr < C2
(—00,0)

ve(0,00)

Hence, the monotone convergence theorem yields that g(¢) = limy,— || f >
e 2" fort € (—o0, 0) defines a function g € L (—o0, 0). Thus, [g = oo] is a
set of measure zero and thus [ f = 0] N (—o0, 0) = (—00,0) \ [g = oo] has full
measure in (—o0o, 0) implying that spt f € Rx.

Finally, from

sup / I f(OI> e dr < C2.
(0,00)

ve(0,00)

we infer again by the monotone convergence theorem that ¢ — lim,_q || f |?
e vV = ||f(t)||2 defines a function in L;(0, co), showing the remaining
assertion. O

For the proof of the Paley—Wiener theorem we need a suitable space of holomorphic
functions on the right half-plane, the so-called Hardy space H3(CRre=; H), which
we introduce in the following.

Definition For v € R we define the Hardy space

p>v

Ho(Cresv; H) = 4 g: Cre=y — H ; g holomorphic, sup/ llgGr + ,0)||%1 dr < oo
R
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and equip it with the norm [|-|l3/, .. ,: o) defined by

1
2

el i = S0 /”ﬂH+PWHm

We motivate the Theorem of Paley—Wiener first. For this, let f € Lz ,(R>o; H)
and define its Laplace transform as

CRresv 22+ Lf(z) = «/1271 /f(t)e*” dr. 8.1
0

Note that £ f(z) = LRre;f(Imz) for all z € Cre~, due to the support constraint on
f. Moreover, it is not difficult to see that the integral on the right-hand side of (8.1)
exists as (t > e’p’f(t)) € Li(Rxo; H) N Lo(Rxo; H) for all p > v. Hence,
Lf: Cresy — H is holomorphic (cf. Exercise 5.6). Moreover, by Lemma 8.1.1

sup IL££G - +o)l 1y = SUP HEPJC”LZ(R:H) - ,s;lipu 1Ly

p>v

Sup He f”Lz,,,(]R;H)
p>0
= He_V.fHLz(R;H) = ”f”szv(R;H) ’

which proves that

L: Ly y(Rxo; H) = Ho(Cresv; H)
[ (2 (Lreof) (Imz))

is well-defined and isometric. It turns out that £ is actually surjective, see Corol-
lary 8.1.3 below. The surjectivity statement is contained in the following Theorem
of Paley—Wiener, [78]. We mainly follow the proof given in [101, 19.2 Theorem].

Theorem 8.1.2 (Paley—Wiener) Let g € Ho(Cre=0; H). Then there exists an f €
Ly(Rx0; H) such that
Lyf=gGl-+v) (v>0).

Proof Forv > 0wesetg, =g(i-+v) € Ly(R; H) and f, = F*g, € Lo(R; H).
Moreover, we set f = e(‘)fl. We first prove that f € ﬂv>0 Ly, (R; H) with
sup, o Il fllz, ;) < oo. For doing so, leta > 0, p > 0 and x € R. Applying
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Fig. 8.1 Curve y

v

Cauchy’s integral theorem to the function z — e** g(z) and the curve y, as indicated
in Fig. 8.1, we obtain

a 1
0= i/e(i’“)xg(it +1)dr — /e“““)xg(ia + k) dk
—a P
(8.2)
a 1
—i f W 0% o (it 4 p)dr + f eI o (_ig + k) di.
—a P
Moreover, since
1 2 1 , 1
f / et o (g + k) di| da < / f ]e&ia“)x di f lg(Fia + )13 dic| da
R llp H R Ip 14

1 1
< fCZdeK fflIg(:tia—i—x)lI%, da d«
o o R

1
f eZKx die
p

we infer that (a > fpl eFHaH)x o (ig + k) dK) € Lr(R; H) and thus, we find a

sequence (dy),eN in R+ ¢ such that a,, — oo and

2
< |1 — ,0| ||g||’}-[2(CRe>O?H) < 00,

1
/ eFaHIX o (tig, +k)dk — 0
P

as n — oo. Hence, using (8.2) with a replaced by a, and letting # tend to infinity,
we derive that

An Aan

/ Do (ir 4+ 1) dr — / eW*+PYe (it + p)dr = 0 (n — 00).

—dn —dn
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Noting that for each i > 0 we have

dp
/ WM g (i 4 p) dt = V21" F*(11—ay.0,180)(x) (x € R)

—dn

and that 1|_g, 4,184 — gu in Lo(R; H) as n — 00, we may choose a subsequence
(again denoted by (ay),) such that

ap [
0= lim_ / W+ DY¥e(ir 4 1) dr — / eW+PX o (it 4 p) dt
—dn —dn

= lim (V276" F* (10,180 () = V27" F* (1 -ay.,18) (1))
:\/Zn(e)‘fl (x) — e f,(x))

for almost every x € R. Hence, f = e fi = exp(pm) f, for each p > 0 and thus,

/uﬂwmeJWM=/Wnaw2w<“>
R

R

which shows f € (. L2, ,(R; H) with

p>0

sup Il fllLy ey = SUP [ ol Ly iy = SUP 80| Ly iy = 1811202 (Crenor) -
p>0 p>0 p>0

Thus, f € Lo(Rxo; H) with ||f||L2(R>0;H) = 181174, (Cgeso: 5y Y Lemma 8.1.1.
Moreover,

Ly f = Fexp(—vm) f = Fexp(—vm)exp(vm) f, = F f, = g, = g(i- +v)

for each v > 0, which shows the representation formula for g. m|

Summarising the results of Theorem 8.1.2 and the arguments carried out just before
Theorem 8.1.2, we obtain the following statement.

Corollary 8.1.3 Let v € R. Then the mapping

L: Ly y(Rxo; H) = Ha(Cresy; H)
f (2 (Lreof) Im2))

is an isometric isomorphism. In particular, Hy(Cres,; H) is a Hilbert space.
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Proof We have argued already that £ is well-defined and isometric. Thus, we show
that £ is onto, next. For this, let g € H7(Cresy; H) and define g(z) == g(z +v) for
7 € Cre>0. Then g € Hy(Cre=o; H) and thus, Theorem 8.1.2 yields the existence
of f € Ly(Rxo; H) with

gl +p) =Zl-+p—v) =Ly [ =Ly(e"F) (0> ).

Hence, setting f = e”'fe Ly y(Rxo; H), we obtain Lf = g. O

We can now provide an alternative proof of Theorem 5.3.6 by proving causality with
the help of the Theorem of Paley—Wiener.

Proposition 8.1.4 Let M: dom(M) C C — L(H) be a material law. Then forv >
sb (M) we have M(9;,,) € L(L2(R; H)) and M(9;,,) is causal and autonomous
(see Exercise 5.7).

Proof Let v > s, (M). Then M: Cgrexy — L(H) is bounded and holomorphic
on Cgre~y. Hence, by unitary equivalence, M (9;,,) € L(L2.(R; H)). Moreover,
M (9;,,) is autonomous by Exercise 5.7. Thus, for causality it suffices to check that
sptM(d;,v)f € Rxo whenever f € Lz ,(Rxo; H). So let f € Ly ,(Rxo; H).
Then Lf € H2(Cresy; H) by Corollary 8.1.3 and since M is bounded and
holomorphic on Cge-.,, we infer also that

(2> M) (Lf) (2)) € Ha(Cresv: H).
Again by Corollary 8.1.3 there exists g € L2 ,(R>0; H) such that

Lg(z) =M @) (Lf) (@) (2 € Cresv).
Thus, in particular

Log=MGm+p)L,f (p>v).
Since f,g € Ly, (Ryo; H) we infer that L,g¢ — Lyg and L, f — L,f
in Lo(R; H) as p — v by dominated convergence. Moreover, M (im + p) —
M (im + v) strongly on Lo (R; H) as p — v (cf. Exercise 8.2). Hence, we derive
Lyg=M@im+v)L,f,

and thus, g = M (9;,,) f which shows causality. O
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8.2 A Representation Result

In this section we argue that our solution theory needs holomorphy as a cen-
tral property for the material law. There are two key properties for rendering
T € L(L2,,(R; H)) a material law operator. The first one is causality (i.e.,
1 (—00,a)(M) T T (—00,a1(M) = L(—c0,q)(m)T for all a € R) and, secondly, T needs to
be autonomous (i.e., 7, T = Tty for all h € R where t;, f = f(- 4+ h)). The main
theorem of this section reads as follows:

Theorem 8.2.1 Let vo € R and let T € L(L2,,(R; H)) be causal and
autonomous. Then T|L2,u0ﬂL2,v has a unique extension T, € L(Lj,,(R; H)) for
each v > vg and there exists a unique M: Cresy, — L(H) holomorphic and
bounded such that T,, = M (0;,,) for each v > vy.

We consider the following (shifted) variant of Theorem 8.2.1 first.

Theorem 8.2.2 Let T € L(L>(R; H)) be causal and autonomous. Then there
exists M: Cre=0 — L(H), a material law (i.e., holomorphic and bounded), such
that

(LTf) (2) = M@) (Lf) () (f € LaRxo; H), z € Cre>0).

Proof Fors > 0and x € H we define fx  := 1(0,5)x and compute

I 11—
L@ = /e_ztxdtz x (2 € CRre>0). 8.3
Sr.s(2) Jox Jo Sz ( Re>0) (8.3)
We define M : Creso — L(H) via
21
M(2)x == v *LTfa),
1—e2

which is well-defined since spt 7 f 1 < [0, oo) (use causality of T'); M(z) € L(H),
since T is bounded. Also, M (-)x is evidently holomorphic for every x € H as a
product of two holomorphic mappings and thus by Exercise 5.3, M is holomorphic
itself. Next, we show that for all z € Creso and f € Lo(Rxo; H), we have

(LTf) (2) = M) (L) (2). (8.4)
By definition of M, the equality is true for f replaced by fy 1, x € H. Next,

observe that lin {L(a+1/mx;: a >0,n €N, x € H} is dense in Ly(Rxo; H).
Hence, for (8.4), it suffices to show

(ﬁT]l(a,a—H/n)x) (2) = M(z) (ﬁ]l(a,a-i-l/n)x) (2) (8.5)
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foralla > 0,n € N,x € H, and z € Cre=0. Next, using that 7 is autonomous in the
situation of (8.5), we see (TL(aat1/m*) = (TT=al,1/mx) = T—a (T1(0,1/n)x)
and, by a straightforward computation, (L1_, f)(z) = e *“Lf(z) for all f €
Ly(R>; H). Thus,

(LTt 1/mx) (2) = € (LT L(0,1/n)X) (2),

which yields that it suffices to show (8.5) for a = 0 only, that is, for f = fx 1/s.
Furthermore, we compute for n € N and z € Cresg

n—1 a1
ﬁfo,l(Z) = Z(‘CT]l(k/n,(k+l)/n)x)(Z) — Ze_Zk/n(ﬁT]l(O,l/n)x)(Z)
k=0 =0
1]—e7%
= | _ ezn ETFeam) @)

Thus, using (8.3) for s = 1/n, we deduce from the definition of M,

1—e /" 2nz 1—ee/n
S LT ) =
2z € 2z

= M(Z)ﬁfx,l/n(z)-

Lfo,l/n(Z) = M(z)x

Hence, (8.4) holds for all f € L(Rx>o; H). It remains to show boundedness of
M. For this, let 7 € Cre=o and x € H. Set f = ]l[o,oo)e’z*x as well as ¢ =
2Re z+/27. Then

1 o0 —zt—7%t X
/Jf(Z)=\/2n A e ? ‘xdt:c.

By virtue of (8.4), we get LT f(z) = M (z)L f(z) and thus M (z)x = cLT f(z). This
leads to

1T,

oo
M@l < / leTr@)| dr< Hll[o,o@e‘“‘)H
Var Jo V2 L®)

c 2
Loooe 0| T oy Il = IT 1y Il
< g [M000e 0 Ty 1l = 1T e my el

where we used that || fll,, &) = |L0,006 7" ||L2(R) x|l g. Thus, [M(2)] <
[IT]|, which yields boundedness of M and the assertion of the theorem. O
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We can now prove our main result of this section.

Proof of Theorem 8.2.1 We just prove the existence of a function M. The proof of
its uniqueness is left as Exercise 8.3.
We first prove the assertion for v9 = 0. So, let T € L(L(R; H)) be causal
and autonomous. According to Theorem 8.2.2 we find M: Cre=o — L(H)
holomorphic and bounded such that

(LTf) (z) = M@) (Lf) () (f € LaRxo; H), z € Cre>0).

Let now ¢ € C°(R; H) and set a := infspte. Then 7,9 € L2(Rxo; H), and for
v > 0 we compute

LoTo = LoT_qTtap =e IV 7 0 = e (M p16m 4 1)) L 10
= M(@{m+v)L,e. (8.6)
The latter implies
ITell,,®m) = 1LoTellL, @5y = IMGm+v)Looll L, w7
S IM oo, Cpeso 1912, , &: H)

and hence, T'|ceor;#) has a unique continuous extension 7, € L(L2,(R; H)).
Using (8.6) we obtain

T, =LM@Gm+v)L, = M ()

by approximation.
Let now vy € R. Then the operator

T = e Vompevom e L(L2(R; H))

is causal and autonomous as well. Thus, T|C50(R; H) has continuous extensions
fp € L(L2,(R; H)) for each p > 0 and~there is M: CRres0 — L(H)
holomorphic and bounded such that 7, = M(9;,,) for each p > 0. Using
Tlco®:my = €T |coom;mye ™", we derive that T|coor;p) has the unique
continuous extension 7, = e"Umi),vOe"’Om € L(Ly,y(R; H)) foreach v > vy
and

LyTy = L,e0"Ty_pye™ 0" = L,y Ty—yee” O™ = M(@(im + v — vg) Ly—yye” 0"

= M(im—i— v—19)L,.
Hence,

Tv = M(at,v)
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for the holomorphic and bounded function M given by M (z) = M (z — vp) for
7 € Cresy- o

8.3 Comments

The stated Theorem of Paley and Wiener is of course not the only theorem
characterising properties of the support of Lp-functions in terms of their Fourier or
Laplace transform. For instance, a similar result holds for functions having compact
support, see e.g. [101, 19.3 Theorem] and Exercise 8.7. These theorems provide a
nice connection between L,-functions and spaces of holomorphic functions in form
of Hardy spaces. In this chapter we just introduced the Hardy space H> and it is not
surprising that there are also the Hardy spaces H, for 1 < p < co. We refer to [35]
for this topic.

The representation result presented in the second part of this chapter was origi-
nally proved by Foures and Segal in 1955, [41]. In this article the authors prove an
analogous representation result for causal operators on L (R?; H), where causality
is defined with respect to a closed and convex cone on R?. The quite elementary
proof of Theorem 8.2.2 for d = 1 presented here was kindly communicated to us
by Hendrik Vogt.

Exercises

Exercise 8.1 Let A C R.q be a set with an accumulation point in R . Prove that
{(x — e_“) ; A € A}isatotal setin Ly (Rp).
Hint: Use that the set is total if and only if

VfieLow®xo): |VAeA: / e M f(x)dx=0= f=0
R20
Exercise 8.2 Let M: dom(M) € C — L(H) be a material law. Moreover, let

v > sp (M). Show that lim,_,,,+ M (im + p) = M (im + v) where the limit is meant
in the strong operator topology on L (R; H).

Exercise 8.3 Prove the uniqueness statement in Theorem 8.2.1.

Exercise 8.4 Give an example of a continuous and bounded function M : Cre=o —
L(H) such that the corresponding operator M (9;,,) is not causal for any v > 0.

Exercise 8.5 Prove the following distributional variant of the Paley—Wiener theo-
rem: Letvg > 0,k € N, f: Cresy, = C, and set h(z) = Zlkf(z) for z € CRresy,-
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We assume that & € H2(Cresyy; C). For v > vy we define the distribution
u: C¥R) - Cby

u(w) = (L5hG - +v), @) ) (W € C°(R; O)).

L, (R;C)

Prove that sptu € R>¢, where
sptu =R\ |_J{U S Ropen: ¥y € C°(U: C) : u(y) = 0}.

What is u if f = Lcg,.,,?

Exercise 8.6 Let g € Lo2(R), a > 0 such that sptg € [—a, a]. Show that f = Fg
extends to a holomorphic function f: C — C with f(it) = f(¢) foreacht € R
such that

3C > 0Vz e C: |f(2)] < CelReal,

Exercise 8.7 Let f : C — C be holomorphic such that

(@ 3C >0,a>0VzeC: |f(z)] < CetlRezl,
(b) f() € La(R).

Prove that g := F* f(i-) satisfies sptg C [—a, a].
Hint: Apply Theorem 8.1.2 to the function / : Cre~¢o — C given by

h(z) =e (z € Cre>0)

—a S
z+1

to derive that sptg € R>_,.

Remark: The assertion even holds true if one replaces condition (a) by

AC >0,a>0VzeC: |f(z)] < Cell
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Chapter 9 )
Initial Value Problems and Extrapolation <z
Spaces

Up until now we have dealt with evolutionary equations of the form
(3,vM(3;,,) + A)U = F

for some given F € L, ,(R; H) for some Hilbert space H, a skew-selfadjoint
operator A in H and a material law M defined on a suitable half-plane satisfy-
ing an appropriate positive definiteness condition with v € R chosen suitably
large. Under these conditions, we established that the solution operator, S, =
(8t,,,M(8t,,,) + A)71 € L(L»,,(R; H)), is eventually independent of v and causal;
that is, if F = 0 on (—o0, a] for some a € R, then so too is U.

To solve for U € L;,(R; H) for some non-negative v penalises U having
support on R<g. This might be interpreted as an implicit initial condition at —oo.
In this chapter, we shall study how to obtain a solution for initial value problems
with an initial condition at 0, based on the solution theory developed in the previous
chapters.

9.1 What are Initial Values?

This section is devoted to the motivation of the framework to follow in the
subsequent section. Let us consider the following, arguably easiest but not entirely
trivial, initial value problem: find a ‘causal’ u: R — R such that for up € R we
have

W@ =0 (¢ >0),
u(0) = uop.

(CAY
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First of all note that there is no condition for u on (—o0, 0). Since, there is no source
term or right-hand side supported on (—oo, 0), causality would imply that # = 0 on
(—o0, 0). Moreover, u = ¢ for some constant ¢ € R on (0, 0c0). Thus, in order to
match with the initial condition,

u(t) =uolp,e0)(t) (& €R).

Notice also that u is not continuous. Hence, by the Sobolev embedding theorem
(Theorem 4.1.2), u ¢ |, dom(d; ).

Proposition 9.1.1 Let H be a Hilbert space, ug € H. Define
Soup: CP(R; H) —> K
f = (uo, f(O)p .

Then, for all v € R.., Soug extends to a continuous linear functional on dom(d;,)).
Re-using the notation for this extension, for all f € dom(9;,,) we have

(80”0) (f) = - (]]-[0,0o)u()s (at,l) - 2\)) f)Lz.,,(]R;H) . (92)

Proof The equality (9.2) is obvious for f € C°(R; H) as it is a direct consequence
of the fundamental theorem of calculus (look at the right-hand side first). The
continuity of §pug follows from the Cauchy—Schwarz inequality applied to the right-
hand side of (9.2). Note that 1jg ooyuo € L2, (R; H). a

Recall from Corollary 3.2.6 that
8;1) = —8,,1) + 2v.
Hence, if we formally apply this formula to (9.2), we obtain
(at,v]l[o,oo)MOs f> = (]]-[O,OO)M()s 8;fuf>L2“)(R;H) = (5()”0) (f)
Therefore, in order to use the introduced time derivative operator for the above initial
value problem, we need to extend the time derivative to a broader class of functions
than just dom(9;,,). To utilise the adjoint operator in this way will be central to the
construction to follow. It will turn out that indeed
9 v1[0,00) 80 = Solo.
Moreover, we shall show below that

0, v = Souo

considered on the full time-line R is one possible replacement of the initial value
problem (9.1).
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9.2 Extrapolating Operators

Since we are dealing with functionals, let us recall the definition of the dual space.
Throughout this section let H, Hy, H; be Hilbert spaces.

Definition The space
H' :={p: H — K; ¢ linear and bounded}
is called the dual space of H. We equip H' with the linear structure
AO@+Y)(x) =2 ox)+v(x) (AeK g, ¥ €H xeH).

Remark 9.2.1 Note that H' is a Hilbert space itself, since by the Riesz representa-
tion theorem for each ¢ € H’ we find a unique element Ry ¢ € H such that

Vx e H: o(x) = (Ryo, x).

Due to the linear structure on H’, the so induced mapping Ry : H' — H (which is
one-to-one and onto) becomes linear and

H x H 3 (p,¥) — (Ryp, Ryyr)

defines an inner product on H’, which induces the usual norm on functionals.

From now on we will identify elements x € H with their representatives in H'; that
is, we identify x with Rp;'x.

Let C: dom(C) € Hyp — Hj be linear, densely defined and closed. We recall
that in this case dom(C) endowed with the graph inner product

(u,v) = (u, v) g, + (Cu, Cv) g,

becomes a Hilbert space. Clearly, dom(C) < Hy is continuous with dense range.
Moreover, we see that dom(C) > x — Cx € H is continuous. We define

C°: H; — dom(C)' = H~(C),
(C°P)(x) == (¢, C)C)Hl (¢ € Hy, x € dom(C)).

Note that C? is related to the dual operator C’ of C considered as a bounded operator
from dom(C) to H; by

—1
C®=C'Ry.
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Proposition 9.2.2 With the notions and definitions from this section, the following
statements hold:

(a) C° is continuous and linear.

(b) C* C C°.

(¢) ker(C*) = ker(C®).

(d) € € (C*°: Hy — dom(C*) = H~1(C*).

() Hy=H)— H —1(C) densely and continuously.

Proof
(a) Leto, v € Hy, A € K. Then

Co(hp+v)(x) = A*(C°P)(x) + (C°Y)(x) = (AOCP+C°Y)(x) (x € dom(C)).
To show continuity, let ¢ € H; and x € dom(C). Then

IC° ()N = [{p, Cx) gy | < Nbllg, ICx N, < Nl ay 1x Nldomic) -

Hence, [|C°| = supgep g1, <1 €6 |gomeey < 1
(b) Let ¢ € dom(C*). Then we have for all x € dom(C)

(C°¢) (x) = (¢, Cx)py, = (C*¢, x)py = (C*¢) ().

We obtain C°¢ = C*¢ (note that a functional on Hy is uniquely determined by
its values on dom(C)).

(¢) Using (b), we are left with showing ker(C®) C ker(C*). So, let ¢ € ker(C®).
Then for all x € dom(C) we have

0=(C°¢) (x) = (¢, Cx)p,

which leads to ¢ € dom(C*) and ¢ € ker(C™).
(d) is a direct consequence of (b) applied to C*.
(e) Since dom(C) < Hy is dense and continuous, so is that Hé < dom(C)’; cf.
Exercise 9.2.
O

We will also write C_1 := (C*)° for the so-called extrapolated operator of C. Then
(C*_1 = C°. We will record the index —1 at the beginning, but in order to avoid
too much clutter in the notation we will drop this index again, bearing in mind that
C_12Cand (C*_; 2C*

Example 9.2.3 We have shown that for all v € R the operator 9;, is densely defined
and closed. Then for f € L, (R) we have for all ¢ € CZ°(R)

(@-11) @ ={1.87,0),, = o+ )0y, == [ (fe o)
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Hence, (9;,,)—1 f acts as the ‘usual’ distributional derivative taking into account the
exponential weight in the scalar product.
With this observation we deduce that for v > 0 we have

(3z,u),1 110,00) = 9,y 110,00) = 0.

Hence, the initial value problem from the beginning reads: find u such that
(0r,v)—1u = Souo.

Example 9.2.4 Let @ C R? be open. Consider grady: Hj(Q) € L(Q) —
L>(22)?. We compute div_;: Lr(2)? — H~1(Q) with H~(Q) = H}(Q)". For
g € Ly(R)? we obtain for all ¢ € HJ(Q)

(div_1 q) (¢) = (q’ div* ¢>L2(Q)d = (q’ gradO ¢>L2(Q)d .

Also, with similar arguments, we see that

(grad_; ) (¢) = = (f, diVoq) 1,0

forall f € Lo(R2) and g € Hy(div, 2).

We consider a case of particular interest within the framework of evolutionary
equations.

Proposition 9.2.5 Let A: dom(C) x dom(C*) C Hy x H] — Hy x Hj be given

(0= (L9 0)- ()

Then A_;: Hy x Hl — H™'(C) x H~'(C*) acts as

A <¢> _ ( 0 (C*)l) (as) _ <(C*>1w> .
¥ -C1 0 4 —C_1¢
Next, we will look at the solution theory when carried over to distributional right-
hand sides.

An immediate consequence of the introduction of extrapolated operators, how-
ever, is that we are now in the position to omit the closure bar for the operator sum in
an evolutionary equation, which we will see in an abstract version in Theorem 9.2.6
and for evolutionary equations in Theorem 9.3.2. The main advantage is that we can
calculate an operator sum much easier than the closure of it. The price we have to
pay is that we have to work in a larger space H ! rather than in the original Hilbert
space Ly, (R; H). Put differently, this provides another notion of “solutions” for
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evolutionary equations. For this, we need to introduce the set
Fun(H) = {¢: dom(¢) C H — K; ¢ linear}

of not necessarily everywhere defined linear functionals on H. Any u € H is thus
identified with an element in Fun(H) via ¥ +— (u, ¥)y. Note that we can add
and scalarly multiply elements in Fun(H) with respect to the same addition and
multiplication defined on H’ and with their natural domains. As usual, we will use
the C-sign for extension/restriction of mappings.

Theorem 9.2.6 Let A: dom(A) € H — H, B: dom(B) € H — H be
densely defined and closed such that A 4+ B is closable, and assume that there
exists (Ty),en in L(H) such that T, — 1y in the strong operator topology with
ran(7,) € dom(B) and

T.A C AT,, T,B C BT, foralln € N.

Then T, A* C A*T and T,) B* C B*T,’ for eachn € N and ran(T,’) € dom(B™).
Moreover, for x, f € H the following conditions are equivalent:

(i) x € dom(A + B) and (A + B)x = f.
(i) A_1x + B_1x C f e Fun(H).

Proof Letn € N. Taking adjoints in the inclusion 7, A C AT, we derive (AT,)* C
(T,,A)*. By Theorem 2.3.4 and Remark 2.3.7 we obtain

TFA* C TFA* = (AT,)* C (T,A)* = A*T?.

The same argument shows the claim for B*. Moreover, since BT, is a closed
linear operator defined on the whole space H, it follows that BT, € L(H) by
the closed graph theorem. Hence, (B7,)* is bounded by Lemma 2.2.9 and since
(BT,)* < (I,B)* = B*T/, we derive that dom(B*T,") = H, showing that
ran(7,") € dom(B*).

We now prove the asserted equivalence.

(i)=>(i1): By definition, there exists (x;), in dom(A) Ndom(B) such that x, — x in
H and Ax, + Bx, — f. By continuity, we obtain A_jx, — A_1x and B_1x, —
B_1x in H™'(A*) and H~!(B*), respectively. Thus, we have

(A_1x + B_x)(y) = lim (A_jx, + B_jx,)(y) = lim (Ax, + Bxy, y)
n—00 n—oo
={fiy),

for each y € dom(A*) N dom(B*), which shows the asserted inclusion.
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(ii)=(1): For n € N we put x, = T,x. Then x, € dom(B) and for all y €
dom(A*) N dom(B*), we obtain
(Tuf = Bxp,y) = (Tuf, y) = (Tux, B*y) = (£, T, y) = (x, T, B*y)
= (£ T;y) = (x. BT y) = f(T,/y) — (Boix)(T) y)
= (A_1x)(T)y) = (x, A*Tn*y> = (x, Tn*A*y> = (xn, A*y>,
where we have used that 7,y € dom(A*) Ndom(B*). Let now y € dom(A*). Then
T}y € dom(A*)Ndom(B*) for each k € N and thus, by what we have shown above
(Te(Tu f — Bxn), y) = (T f — Bxn, TEY) = (xu, A*T{Y)
= (x,,, Tk*A*y> = (Tkxn, A*y>

for each k € N. Letting k tend to infinity, we derive
(T f — Bxn, y) = (xn, A*y).

Since this holds for each y € dom(A*), this implies that we have x,, € dom(A) and
Ax, + Bx, = T, f. Letting n — oo, we deduce x, — x and Ax, + Bx, — f;that
is, (i). m]

Lemma 9.2.7 Let T: dom(T) € H — H be densely defined and closed with
0 € p(T). Then T—1: H — H~Y(T*) is an isomorphsim. In particular, the norms
}|(T,1)_1-HH and ||| g-1 7+ are equivalent.

Proof Note that since 0 € p(T) we obtain {0} = ker(T) = ker((T*)®) = ker(T_1),
see Proposition 9.2.2(c). Thus, T_ is one-to-one. Next, let f € H~'(T*). Since
0 € p(T), we obtain 0 € p(T*) by Exercise 2.4, which implies that (T*-, T*-)
defines an equivalent scalar product on dom(7*). Thus, by the Riesz representation
theorem, we find ¢ € dom(T*) such that for all € dom(7T*) we have

Fa) = (10, Ty) = ((T)° (T7¢)) ).

Hence, f € ran((T*)°) = ran(T_1), thus proving that 7_1 is onto. |
The following alternative description of H~!(T*) is content of Exercise 9.5.

Proposition 9.2.8 Let T: dom(T) € H — H be densely defined and closed with
0 € p(T). Then

RS EICATER )

where = means isomorphic as Banach spaces and (-) denotes the completion.
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Proposition 9.2.9 Let B € L(H). Assume that T: dom(T) C H — H is densely
defined and closed with 0 € p(T) and T~'B = BT~'. Then B admits a unique
continuous extension B € L(H*1 (T™)).

Proof By Proposition 9.2.2(e), dom(B) = H is dense in H~!(T*). Thus, it suffices
to show that B: H € H~Y(T*) — H~'(T*) is continuous. For this, let ¢ € H and
compute for all ¢ € dom(7*)

(B9 (@) = (B g}l = |(Be. (T%) ' Tq)| = |(17"Bo. T*q)|
= (B¢, 7*q)| <181 | T7'®| N4 lomcr -

The statement now follows upon invoking Lemma 9.2.7. O

The abstract notions and concepts just developed will be applied to evolutionary
equations next.

9.3 Evolutionary Equations in Distribution Spaces

In this section, we will specialise the results from the previous section and provide
an extension of the solution theory in L, ,(R; H). For this, and throughout this
whole section, we let H be a Hilbert space, © € R and M : Cre>y — L(H) be a
material law. Furthermore, let v > max{sy (M), 0} and A: dom(A) € H — H be
skew-selfadjoint. In order to keep track of the Hilbert spaces involved, we shall put
H)(R; H) := dom(d,,).
Hy'(R; H) = dom(3y,»)’ = dom(d;,) .
Proposition 9.3.1 Let D: dom(D) € H — H be densely defined and closed and

B € L(H). Assume that DB is densely defined. Then for all ¢ € H, (DB)_1(¢) =
(D—_1B)(¢) on dom(D*).

Proof First of all, note that (DB)* = B*D*, by Theorem 2.3.4. Next, let ¢ € H
and x € dom(D*). Then
((DB)-19)(x) = (¢, (DB)*x) = (¢, B*D*x)
= (¢, B*D*x) = (B¢, D*x) = (D_1 B$)(x). o

The first application of the theory developed in the previous section reads as follows.

Theorem 9.3.2 Let U, F € L, ,(R; H). Then the following statements are equiv-
alent:

(i) U € dom(3,,M(8;,) + A) and (3, ,M (3,,,) + A)U = F.
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(1) 0;,yM(9:,,)U + AU C F where the left-hand side is considered as an element
of Hy'(R; H) N Ly, (R; H™'(A)) € Fun(Ly,, (R; H)).

Before we come to the proof, we state the following lemma, the proof of which is
left as Exercise 9.7.

Lemma 9.3.3 Let H be a Hilbert space.

(a) Let B: dom(B) € H — H and C: dom(C) € H — H be densely defined
closed linear operators. Moreover, let 1, u € p(C) be in the same connected
component of p(C) and

-0 'BSB(u-0)~L

Then (. —C)"'B € B, —C)~ L.
(b) Forv > 0we have (1+¢0;,,)"" — 11, @:m) and (1+€0} )" = 11, @)
strongly as € — 0+.

Proof of Theorem 9.3.2 At first, we want to apply Theorem 9.2.6 from above
to the case Lj ,(R; H) being the Hilbert space, A the operator in Lj,(R; H),

-1
B = 0;yM(0;,y), and T, := (1 + ;a,,v) ,n € N. The operators A and B are

densely defined. Indeed, A is skew-selfadjoint and dom(B) © dom(d,,,). Next, by
Theorems 2.3.2 and 2.3.4,

(B+A)" 2 B*+ A" = (8,yM(3,,,))" — A 2 M(3,,)"3/, — A.

In consequence, dom((A + B)*) 2 dom(d;,,) N dom(A) is dense. Thus, B + A is
closable by Lemma 2.2.7.

By Lemma 9.3.3 we obtain 7,7} — 11, ,®;H) strongly in Ly ,(R; H) as
n — 00. Moreover, by Hille’s theorem (see Proposition 3.1.6) we have B,TUIA -
Aatfvl and thus, T,A € AT, for each n € N by Lemma 9.3.3, which also yields
T)A C AT for each n € N by Theorem 9.2.6. The latter, together with the strong
convergence of (1), and (T)),, yields that T,,, T, — 17, (R;dom(a)) strongly in
Ly ,(R; dom(A)) asn — oo.

Next, we infer ran(7,,) € dom(d;,,) € dom(B) and

T,B € BT,

for all n € N by using the Fourier—Laplace transformation, see also Theorem 5.2.3.
Hence, by Theorem 9.2.6, condition (i) is equivalent to

0,y M(90))1U + AU CF. 9.3)

It remains to show that (9.3) is equivalent to (ii): We apply Proposition 9.3.1 to the
case D = 9;,,, B = M(9;,). For this assume that (9.3) holds. By Proposition 9.3.1,
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we deduce that for all ¢ € dom(afjv) N dom(A) we have that (use dom(A) =
dom(A*))

(O, v M (01,,))1U + A_1U) (@) = ((3;,0) 1M (0:,,)U + A_1U) ()

Thus, (9.3) implies (ii).
Now, assume that (ii) holds. Let ¢ € dom((d;,,M(9;,))*) N L2 ,(R; dom(A)).
Then, forn e N, ¢, =T ¢ — ¢p asn — ooin Ly ,(R; dom(A)) and

(M (3¢,0)) G0 = T, (3 v M (3; )" — (B vM (3 v))*¢ (n — 00)
in Ly, (R; H). By (ii) we obtain

((0,0) 1M (0:,)U + A_1U)(@n) = F ().

Using Proposition 9.3.1, we infer

(O, v M (01,0))1U + A_1U)(@n) = F(n).

Letting n — oo, we deduce (9.3). |

Assume now that there exists ¢ > 0 such that
RezM(z) =2 ¢ (z € Crex).

We recall from Theorem 6.2.1 that the operator d;,,M(9;,) + A is continuously
invertible in L, ,(R; H).

Theorem 9.3.4 The operator S, = (a,,VM(at,U) + A)_1 € L(Ly,,(R; H)) admits
a continuous extension to L(HU_I(R; H)).

Proof We apply Proposition 9.2.9 to L, ,(R; H) being the Hilbert space, T = 9;,,,
and B = §,. For this, it remains to prove that T-1S, = §,T~!. This however
follows from the fact that z — S(z) = (M(2) + A)*1 is a material law and
S(at,v) = Sv~ d

9.4 Initial Value Problems for Evolutionary Equations

Let H be a Hilbert space, u € R, M: Cre~;, — L(H) a material law, v >
max{s, (M),0} and A: dom(A) € H — H skew-selfadjoint. In this section
we shall focus on the implementation of initial value problems for evolutionary
equations. A priori there is no explicit initial condition implemented in the theory
established in Ly, (R; H). Indeed, choosing v > 0 we have only an implicit
exponential decay condition at —oo. For initial values at 0, we would rather want to
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solve the following type of equation. In the situation of the previous section, for a
given initial value Uy € H we seek to solve the initial value problem

:(at,vM(at,v) +A)U=0 on (0,00, 04

U0+) = Up.

In this generality the initial value problem cannot be solved. Indeed, for U €
Ly, (R; H) evaluation at 0 is not well-defined. A way to overcome this difficulty
is to weaken the attainment of the initial value. For this, we specialise to the case
when

M(d;,,) = Mo+ 9,y M,

with My, M1 € L(H).
We start with two lemmas, the second of which will also be useful in the next
chapter.

Lemma 9.4.1 Let Hy, H| be Hilbert spaces and assume that H| — Hy continu-
ously and densely. Then C°(R; Hy) € L, (R; H) N HV1 (R; Hp) is dense.

Proof By Proposition 3.2.4, C°(R; Hy) € HVl (R; Hy) is dense. Since the embed-
ding HVl R; H)) — Ly,([R; H) N HVl (R; Hp) is continuous, it thus suffices to
show that this embedding is also dense. For this, let f € Ly ,(R; H) N HVl (R; Hp).
For ¢ > 0 small enough, we define

fer=(+¢d,)"" f € H(R; H)).
By Lemma 9.3.3(b), f — f in L ,(R; Hy) as ¢ — 0. It remains to show that

Otvfe = 0 fin Lo (R; Hp) as ¢ — 0. For this, by definition of Hv1 (R; Hp), we
find g € Ly, (R; Hp) such that f = 8,],1g. Using again Lemma 9.3.3(b), we infer

ovfe=do(l+ed ) ' f=U+ed) g —>g=d0f

in Ly, (R; Hp) as ¢ — 0. This concludes the proof. m]

Lemma 9.4.2 Let Uy € dom(A), U € Ly, (R; H) such that MoU — 10,00y MoUp :
R — Hfl(A) is continuous, sptU C [0, co) and

3 vMoU + MU + AU =0 on (0,00),
(MoU)(0+) = MoUy in H-'(A),

where the first equality is meant in the sense that for all ¢ € HV1 R; H) N
Ly ,(R; dom(A)) with spte C [0, c0)

(0:,vMoU + M U + AU )(p) = 0.
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Then U — 10,00)Uop € dom(0;,, Mo + M1 + A) and

(3e,0Mo + My + A)(U — 10,00 U0) = —(M + A)UpL0,00)-
Proof We apply Theorem 9.3.2 for showing the claim; that is, we show that
((@r,yMo+M1)(U—110,00)U0)+ AU =10,00)U0) ) (¥) = (—(M1+A) UL 0,00)) (V)
for each ¥ € Hvl(]R; H) N L, (R; dom(A)). Note that by continuity (use
Lemma 9.4.1 with Hy = H and H; = dom(A)), it suffices to show the equality

for ¢y € C°(R; dom(A)). So, let ¥ € CX(R; dom(A)) and for n € N we define
the function ¢, € HV1 (R) by

0 ifr<o,
on(t) == {nt ift € (0,1/n),
1 ifr>1/n.

Note that ¢, € Hv1 (R; H) N Ly, (R; dom(A)) and spt(¢,¥) < [0, oo) for each
n € N. Thus, we obtain

((0r,vMo + My 4+ A)(U — 10,00 U0) ) (%)
= (Br.vMo 4+ My + AU) () — ((0r.0Mo + My + A)(Lj0,00)U0)) (%)
= ((0r.yMo + My + A)U) (pa®) + ((3r0Mo + M1 + A)U) (1 — @) V)
— (@r,vMo + My + A)(L[0,00)U0) ) (%)
= (3w Mo + M1 + A)U)((1 — @) V) — (SoMoUo) ()
— (M1 + A) (110,00 U0) ) (W)

for each n € N. Thus, the claim follows if we can show that
(@r,vMo + M1 + AHU)((1 = g)¥) — SoMoUp)(¥) — 0 (n — o).
For doing so, we first observe that for all n € N we have
(8oMoUo) (V) = (8oMoUo)((1 — @n) ) = (3;,y MoLj0,00)Uo) (1 — @) ¥),
since ¢, (0) = 0. Moreover,

(M1 + DU)A = en)y) = (U, (1 = p) (M + AY) =0 (n — 00),
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since 1 — ¢, (m) — 1 (_x0,01(m) strongly in L3 ,(R; H) and sptU < [0, oo). Thus,
it remains to show that

(31,0 Mo(U — 110,00)U0)) (1 — @) ¥) = 0 (n — 00).
We compute
(3.0 Mo(U = 140,00)U0)) (1 = @) ¥)
= (Mo(U = 10.00)U0). 87", (1 = ) V),
= (Mo(U = 110,00)U0). nLj0,1/m¥ ), , = (Mo(U = Lo.00)U0). (1 = ¢m)dr0¥r),,
+20(Mo(U — 1j0.00U0). (1 = @)V}, -
Note that the last two terms on the right-hand side tend to 0 as n — o0 since, as

above, 1 — ¢, (m) — 1 (_o0,01(m) strongly in L3 ,(R; H) and sptU < [0, oo). For
the first term, we observe that

(MoU = 10,00 U0), nL10,1 /),

1/n
<n / (Mo(U 1) — Uo). (D) | 2" di
0
I/n —2vt
<n fo IMo(U @) — U1y I @ laomeary €2 dt = 0 (2 — 00),

by the fundamental theorem of calculus, since (MoU)(t) — MoUp in H ~1(A) as
t — 0+. O

Assume now additionally that there exists ¢ > 0 such that
Mo+ My 2 ¢ (2 € Crexy)-

Then we can actually prove a stronger result than in the previous lemma.

Theorem 9.4.3 Let Uy € dom(A), U € L3 ,(R; H). Then the following statements
are equivalent:

(1) MoU — 119,00y MoUp: R — H~Y(A) is continuous, sptU C [0, o0) and

3w MoU + MU + AU =0 on (0, 00),
MoU (0+) = MUy in H-1(A),

where the first equality is meant as in Lemma 9.4.2.
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(i) U — Tjo,00U0 S dom(d;,,Mo + M1 + A), and we have that
(0r,vMo + My + A)(U — 19,00 U0) = —(M1 + A)UpL{p,c0)-
(i) U = S,6oMoUy, with S, € L(Hv_l(R; H)) as in Theorem 9.3.4.

Moreover; in either case we have MoU — 119,000 MoUp € HV1 (R; Hfl(A)).

Proof (i)=(ii): This was shown in Lemma 9.4.2.
(ii)=(iii): We have that

U —110,00)0Uo = =Su (M1 + A)Lj0,00) Vo).
Applying 8,])1 to both sides of this equality we infer that
3{1}(U = L1000 U0) = =Su (M1 + A)a,]}]l[o,oo) Vo)
= =0, 110,00) U0 + Su (31, M0d; ) 110,00 Vo).
which gives
9y U = S, (3,uMod; ) 10,00)Uo) = Sy (Mo10,00)Uo).
Applying 9, ,, to both sides and taking into account Theorem 9.3.4, we derive the
claim.
(ili)=>(i1): We do the argument in the proof of (ii)=>(iii) backwards. First, we apply
3, to U = S, (8MoUp), which yields
8, U = 9} Su(8oMoUo) = Su(MolLo,00)U0) = Sy (3r,uMod;, 10,00 Vo).

Thus,

3y (U — 10,000 U0) = Sy (31,0 M0d;, L10,00)U0) — ;) 110,00)Uo
= —S, (M} + A)3;} 10,00)Up).

An application of 9;, yields the claim.
(i1),(iii))=(1): Since U = S, (6oMoUyp), we derive that

(3r,yMo + M1 + A)U C SoMoUpy,
which in particular yields (9;,, Mo + M1 + A)U = 0 on (0, co). By (ii) we infer

U —10,00)Up = =S8, (M1 + A)Ljo,00)U0),

sptU C [0, 0o). It remains to show that Mo(U — 10.00)Uo) € H!(R; H'(A)),

which shows that spt(U — 1jg,00)Up) < [0, 00) due to causality and hence,
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since this would imply the continuity of Mo(U — 10,00)Uo) with values in H -1 (A)
by Theorem 4.1.2 and thus,

Mo(U = 110,00 U0) (0+) = Mo(U — 110,00)U0)(0-) = 0in H™'(A)
since the function is supported on [0, co) only. We compute

Mo(U — 1j0,00)Uo)
= —MyS, (M1 + A)10,00)Up)
= —3.vMoSy (3, ) (M1 + A)1j0,00)U0)

= —0, (M) + A)Ljg,00)Up + (M) + A)S, (3 (M1 + A) 10,00 Vo),

and since the right-hand side belongs to HV1 (R; H -1 (A)), the assertion follows. 0O

Remark 9.4.4 By Theorem 9.3.4, we always have U = S,80MoUp € H; '(R; H).
This then serves as our generalisation for the initial value problem even if Uy ¢
dom(A).

The upshot of Theorem 9.4.3(ii) is that, provided Uy € dom(A), we can reformulate
initial value problems with the help of our theory as evolutionary equations with
L, ,-right-hand sides. Thus, we do not need the detour to extrapolation spaces for
being able to solve the initial value problem (9.4) (with an adapted initial condition
as in (i)) in this situation.

Also note that it may seem that U does depend on the ‘full information’ of Uy as
it is indicated in (ii). In fact, U only depends on the values of Uy orthogonal to the
kernel of M as it is seen in (iii). We conclude this chapter with two examples; the
first one is the heat equation, the second example considers Maxwell’s equations.

Example 9.4.5 (Initial Value Problems for the Heat Equation) We recall the setting
for the heat equation outlined in Theorem 6.2.4. This time, we will use homoge-
neous Dirichlet boundary conditions for the heat distribution 6. Let Q < RY be
open and bounded, a € Loo(92)?%4 with Rea(x) > ¢ > 0 for a.e. x € Q for some
¢ > 0. In this case, we have

Mo = 10’ M1=091, A 0 d1v.
00 O0a grad, 0

For the unknown heat distribution, 6, we ask it to have the initial value 6y €
dom(grady). Letv > 0 and V € Ly, (R; L2(R2) x L2(2)?) be the unique solution
of

6o 0
0. M, M AV =—-—M Al =-—1 .
(3;,0Mo + My + A) (M1 + A) 10,00) (0) [0,00) (grado 9())
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Then (0,q) = U =V + 10,00 (9(;)) € Lz,v(R; Ly(2) x Lz(Q)d) satisfies (ii)

from Theorem 9.4.3. Hence, on (0, co) we have

3.0 divg
) — 0
(40 * (o)

and the initial value is attained in the sense that

(Mo (0, q)) (0+) = (“8”) = (?) in H'(A) = H ! (grady) x H'(div),

which follows from Proposition 9.2.5 where we computed H ~'(A). Let us have
a closer look at the attainment of the initial value. As a particular consequence of
strong convergence in H -1 (grad,)), we obtain for all ¢ € dom(div)

(8(1), dive) — (6, div ¢)

as t — 0+. Since grad,, is one-to-one and has closed range (see Corollary 11.3.2),
we see that div has dense and closed range. Hence div is onto. This implies that for
all y € L2(2)

0@, ) = (6o, ¥) (1 — 04).

We deduce that the initial value is attained weakly. This might seem a bit
unsatisfactory, however, we shall see stronger assertions for more particular cases
in the next chapter.

Next, we have a look at Maxwell’s equations.

Example 9.4.6 (Initial Value Problems for Maxwell’s Equations) We briefly recall
the situation of Maxwell’s equations from Theorem 6.2.8. Let e, u,0: Q — R3%3
satisfy the assumptions in Theorem 6.2.8 and let (Eg, Hy) € dom(curlp) x
dom(curl). Let (E, H) € Ly, (R; Ly(2)°) satisfy

g (50 (00) (0 —cur E

D op 00 curly 0 H
_ _((° 0 " 0 —curl 1 Eo\ 1 —o Eqy + curl Hy
a 00 curly 0 [0.00) Hy) [0.00) —curlg Eg ’

Then, as we have argued for the heat equation,

()= (7) + 10 ()
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satisfies a corresponding initial value problem. We note here that although often
the second component in the right-hand side is set to 0, as there are ‘no magnetic
monopoles’, in the theory of evolutionary equations the second component of the
right-hand side does appear as an initial value in disguise.

9.5 Comments

There are many ways to define spaces generalising the action of an operator to a
bigger class of elements; both in a concrete setting and in abstract situations; see
e.g. [22, 38]. People have also taken into account simultaneous extrapolation spaces
for operators that commute, see e.g. [77, 93].

These spaces are particularly useful for formulating initial value problems as
was exemplified above; see also the concluding chapter of [84] for more insight.
Yet there is more to it as one can in fact generalise the equation under consideration
or even force the attainment of the initial value in a stronger sense. These issues,
however, imply that either the initial value is attained in a much weaker sense, or
that there are other structural assumptions needed to be imposed on the material law
M (as well as on the operator A).

In fact, quite recently, it was established that a particular proper subclass of
evolutionary equations can be put into the framework of Cp-semigroups. The
conditions required to allow for statements in this direction are, on the other hand,
rather hard to check in practice; see [116, 120].

Exercises

Exercise 9.1 Let Hy be a Hilbert space, T € L(Hp). Compute H~'(T) and
H-Y(T™).

Exercise 9.2 Let Hy, H; be Hilbert spaces such that Hy < H; is dense and
continuous. Prove that H{ — Hé is dense and continuous as well.

Exercise 9.3 Prove the following statement which generalises Proposition 9.2.9
from above: Let Hy be a Hilbert space, A € L(Hp). Assume that 7: dom(7) <
Hy — Hy is densely defined and closed with 0 € p(T) and T—'A = AT +
T-'BT~! for some bounded B € L(Hp). Then A admits a unique continuous
extension, A € L(H ™' (T*)).

Exercise 9.4 Let Hy be a Hilbert space, N: dom(N) € Hy — Hp be a normal
operator; that is, N is densely defined and closed and NN* = N*N. Show that
HY(N) = H~'(N*) and deduce H’I(B,,V) = H*I(B,’fv).

Exercise 9.5 Prove Proposition 9.2.8.
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Exercise 9.6 Let Hy be a Hilbert space, n € Nand T: dom(T) € Hy — Hp be
a densely defined, closed linear operator with 0 € p(T). We define H"(T) =
dom(T") and H"(T) := H~Y(T"). Show that for all k € N and £ € Z we
have that H*4(T) — HY(T) continuously and densely. Also show that D =
ey dom(7™) is dense in HY(T) and dense in H—¢(T*) forall ¢ € N and that T'|p
can be continuously extended to a topological isomorphism H*(T) — H‘~(T)
and to an isomorphism H ~¢+1(T*) — H~¢(T*) for each £ € N.

Exercise 9.7 Prove Lemma 9.3.3.
Hint: Prove a similar equality with 8,])1 formally replaced by z € 9B (r,r) € C and
deduce the assertion with the help of Theorem 5.2.3.
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Chapter 10 )
Differential Algebraic Equations Shethie

Let H be a Hilbert space and v € R. We saw in the previous chapter how initial
value problems can be formulated within the framework of evolutionary equations.
More precisely, we have studied problems of the form

(8,vMo+ M +A)U =0 on (0,00),

(10.1)
MoU (0+) = MyUy

for Up € H, My, M1 € L(H) and A: dom(A) € H — H skew-selfadjoint; that
is, we have considered material laws of the form

M) =Mo+z "M (zeC\{0).

Here, the initial value is attained in a weak sense as an equality in the extrapolation
space H —1(A). The first line is also meant in a weak sense since the left-hand side
turned out to be a functional in H,jl R; HYN Ly, »(R; H~'(A)). In Theorem 9.4.3
it was shown that the latter problem can be rewritten as

(3,vMo + My + A) U = 8oMoUp.

In this chapter we aim to inspect initial value problems a little closer but in the
particularly simple case when A = 0. However, we want to impose the initial
condition for U and not just MoU. Thus, we want to deal with the problem

(8.vMo+ M) U =0 on (0,00),

(10.2)
U©+) = Uy

© The Author(s) 2022 149
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for two bounded operators My, M; and an initial value Uy € H. This class of
differential equations is known as differential algebraic equations since the operator
My is allowed to have a non-trivial kernel. Thus, (10.2) is a coupled problem of
a differential equation (on (ker Mp)+) and an algebraic equation (on ker My). We
begin by treating these equations in the finite-dimensional case; that is, H = C"
and My, M1 € C"*" for some n € N.

10.1 The Finite-Dimensional Case

Throughout this section let n € N and My, My € C"*".

Definition We define the spectrum of the matrix pair (Mo, M1) by
o (Mo, My) :=={z € C; det(zMo + M;) =0},
and the resolvent set of the matrix pair (Mo, M1) by
p (Mo, My) = C\ o(Mo, My).

Remark 10.1.1

(a) Itisimmediate that o (Mo, M) is closed since the mapping z +— det(zMo+ M)
is continuous.

(b) Note in particular that the spectrum (the set of eigenvalues) of a matrix A
corresponds in this setting to the spectrum of the matrix pair (1, —A).

In contrast to the case of the spectrum of one matrix, it may happen that
o(My, My) = C (for example we can choose My = 0 and M; singular). More
precisely, we have the following result.

Lemma 10.1.2 The set o (Mo, M1) is either finite or equals the whole complex
plane C. If 0 (Mg, My) is finite then card(o (Mo, M1)) < n.

Proof The function z +— det(zMp + M;) is a polynomial of order less than
or equal to n. If it is constantly zero, then o(Mp, M;) = C and otherwise
card(o (Mo, My)) < n. |

Definition The matrix pair (Mg, M) is called regular if o (Mo, M) # C.

The main problem in solving an initial value problem of the form (10.2) is that one
cannot expect a solution for each initial value Uy € C" as the following simple
example shows.
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11
00
there exists a solution U: R>g — C? satisfying (10.2); that is,

Example 10.1.3 Let My = ( ) , M = <(1) (1)> and let Uy € C2. We assume that

Ui(t) + Uy(t) + Ui() =0 (1 > 0),
Ux(t) =0 (¢t >0),
U(0+) = Up.

The second and third equation yield that the second coordinate of Uy has to be zero.
Then, for Uy = (x, 0) € C? the unique solution of the above problem is given by

U@ = (Ui(1), U2(1) = (xe™",0)  (t 2 0).

Definition We call an initial value Uy € C" consistent for (10.2) if there exists
v>0andU € C(Rxo; C")N L2, (Rxo; C") such that (10.2) holds. We denote the
set of all consistent initial values for (10.2) by

IV(My, My) = {Uo e C"; Uy consistent} )
Remark 10.1.4 1t is obvious that IV(My, M) is a subspace of C". In particular,
0eIV(My, My).

It is now our goal to determine the space IV (M, M7). One possibility for doing so
uses the so-called quasi-Weierstraf3 normal form.

Proposition 10.1.5 (Quasi-Weierstral Normal Form) Assume that (Mg, M) is
regular. Then there exist invertible matrices P, Q € C"*" such that

PMoQ = (é;) PMiQ = (g ?)

where C € CK*k and N € C=0*x0=K for some k € {0, ..., n}. Moreover, the
matrix N is nilpotent; that is, there exists £ € N such that Nt =o.

Proof Since (Mg, M) is regular we find A € C such that AMy 4+ M| is invertible.
We set P1 .= (AMy + Ml)_l and obtain

Mo,1 := P1My = (A\Mo + M)~ My,

My 1= PiMy = (Mo+ M) "My =1—-21Mo;.

Let now P, € C"*" such that

_ J O
My, = P2M0,1P2 1_ <0 ]V)
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for some invertible matrix J € C*** and a nilpotent matrix N e Co=hx(n=k) (yge
the Jordan normal form of My  here). Then

_ 1—AJ 0

Now, by the nilpotency of N, the matrix - AN ) is invertible by the Neumann
series. We set

—1
P3 = J O~ _1
0 (1—AN)
and obtain
1 0 J1—x0
P3Moy o = ~ ~),and P3M;,= )
302 (O(I—AN)IN) e A2 < 0 1)

Note that (1 — AN )_lﬁ is nilpotent, since the matrices commute and N is nilpotent.
Thus, the assertion follows with N := (1 — AN)_IN, C=J1-xP=rPPP,
and 0 = P, I |

It is clear that the matrices P, Q, C and N in the previous proposition are not
uniquely determined by My and M;. However, the size of N and C as well as
the degree of nilpotency of N are determined by My and M; as the following
proposition shows.

Proposition 10.1.6 Let P, Q € C"*" be invertible such that

PMoQ = (52) PMiQ = (g ‘1))

where C € Ck*k N ¢ Cr—k)x(n—k) for some k € {0, ...,n}, and N is nilpotent.
Then (Mo, My) is regular and

(a) k is the degree of the polynomial z — det(zMy + My).
(b) N* =0 ifand only if

sup
lz|>r

Z_Z-H(ZM() + Ml)_1 H < 0

for one (or equivalently all) r > 0 such that B (0,r) 2 o (Mo, My).
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Proof First, note that

z+C 0

1
Mo+ M) = 1o p det0 e( 0 zN+1> det P det 0

det(z + C)

for all (z € C). Hence, (Mo, M) is regular and
k = degdet((-) + C) = degdet((-)Mp + M),
which shows (a). Moreover, we have p (Mg, M) = p(—C) and

(z+C)! 0

-1 _
@Mo+ M) = Q( 0 (ZN+1)71

) P (z € p(Mo, M1)),
and hence, for r > 0 with B (0, r) 2 o (Mo, M) we have

[eMo+ M~ | < ki@ + D7 2= 0

for some K; > 0, since SUP|;|>r || (z+ C)’1 || < 00. Now let £ € N such that
N¢ = 0. Then

H(zN+1)‘1H=H§(—1>"zk1vk <Kl (2=
k=0

for some constant K> > 0 and thus,
[@Mo+ M0~ | < KiK2 12 (el = 0.
Assume on the other hand that

sup
lz|=r

Z%J“l(zMo + Ml)*1 H < 00

forsome £ € Nand r > 0 with o (Mg, M) C B (0, r). Then there exist El, Ez >0

such that
et <] (<07 L0

<Rif@mo+my!| < Rale) !
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for all z € C with |z| > r. Now, let p € N be minimal such that N” = 0. We show
that p < £ by contradiction. Assume p > £. Then we compute

p—1

1
0= lim , (N +1D7'NP=! = lim Y (—Dfp Nkt
n—-oon n— 00
k=0
-1
— hm Z(_l)knkfeNkﬁ’p*Z*l + (_1)ZNP71
n—o0
k=0
= (=D'NPH
which contradicts the minimality of p. O

Theorem 10.1.7 Let (Mg, My) be regular and P, Q € C"*" be chosen according
to Proposition 10.1.5. Let k = degdet((-)Mo + My). Then

IV(My, My) = {UO eC": 07Uy e C x {0}}.

Moreover, for each Uy € IV (Mo, M1) the solution U of (10.2) is unique and satisfies
UeCRyp;CMHN C'(R-o; C") as well as

MoU'(t) + MiU(1) =0 (¢t > 0),
U(0+) = Uy.

Proof Let C € CF% and N e C*~0*=k) pe nilpotent as in Proposition 10.1.5.
Obviously U is a solution of (10.2) if and only if V := Q~!U both is continuous on

R3¢ and solves
10 co
<3t,u (O N) + <0 1)) V=0 on (0,00), (10.3)

V(0+) = 07Uy = V.
Clearly, if 07'Uy = (x,0) € CF x {0} then V given by V(¢) := (e "x, 0) for
t > 01is a solution of (10.3) for v > 0 large enough. On the other hand, if V given
by V(1) = (Vi(r), Va(t)) € CK x C"% (+ > 0) is a solution of (10.3) then we have
o vNVo+V, =0 on (0,00).

Since N is nilpotent, there exists £ € N with N¢ = 0. Hence,

N'at) = =N, ,NV2 (1) = 3, N Va(t) =0 (1 > 0),
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which in turn implies 9;,, N Z’IVZ = 0 on (0, 00). Using again the differential
equation, we infer N =2y, (t) = 0 for ¢t > 0. Inductively, we deduce V() = 0
for t > 0 and by continuity V>(0+) = 0, which yields Vy = Q’IUO e Ck x {03.
The uniqueness follows from Proposition 10.2.7 below. O

10.2 The Infinite-Dimensional Case

Let now My, M| € L(H). Again, it is our aim to determine the space of consistent
initial values for the problem

(3,vMo+ M) U =0 on (0,00),

(10.4)
U(0+) = Up.

Here, consistent initial values are defined as in the finite-dimensional setting:

Definition We call an initial value Uy € H consistent for (10.4) if there exist v > 0
and U € C(Ryo; H) N Ly, (R>0; H) such that (10.4) holds. We denote the set of
all consistent initial values for (10.4) by

IV(My, M) := {Ug € H; Uy consistent} .

Before we try to determine IV(My, M) we prove a regularity result for solutions
of (10.4).
Proposition 10.2.1 Letv > 0, Uy € H and U € C(Rxo; H) N L2, (R>0; H) be
a solution of (10.4). Then My(U — 1o,00)Up) € Hv1 (R; H) and

o.My (U — ﬂ[O,oo)U()) + MU =0.

Proof We extend U to R by 0. First, observe that Mo(U — 1j0,00)U0): R — H is
continuous, since U is continuous and U (0+) = Up. By Lemma 9.4.2 (with A = 0),
we obtain

U —10,00)Up € dom (8,',,M0 + Ml) and (8,',,M0 + Ml)(U — 110,000 U0) = —M1Up1L0,00)-
Since 0;,, is closed and My is bounded, 9;,, Mo is closed as well. Since M is
bounded, therefore also 9d;,, Mo+-M is closed. Thus, U —19,00)Up € dom(9;,, Mo+
M) = dom(d;,, Mp) and therefore Mo(U — 1j9,00)Up) € dom(d;,,), and

0,y Mo(U — 119,000 Uo) + MU = 0. O



156 10 Differential Algebraic Equations

We now come back to the space IV(My, M1). Since we are now dealing with an
infinite-dimensional setting, we cannot use normal forms to determine IV (Mo, M1)
without dramatically restricting the class of operators. Thus, we follow a different
approach using so-called Wong sequences.

Definition We set
IVo=H
and for k € Ny we set
IVip1 = My [Mo[IVi]].

The sequence (IVy)ien, is called the Wong sequence associated with (Mo, M1).
Remark 10.2.2 By induction, we infer IVy; C IV for each k € Ny.

As in the matrix case, we denote by
p(Mo, M1) = |z € C: (Mo + M)~ € L(H) |

the resolvent set of (Mo, M1).
Lemma 10.2.3 Let k € Ng. Then:

(@) My(zMo+ M)~ My = Mo(zMo + M1)~' M, for each z € p(Mo, My).
(b) (Mo + My)~"Mo[TIV] € Vi for each z € p(Mo, My).
(©) Ifx e IV we find x1, ..., xkr1 € H such that for each z € p(Mo, M1) \ {0}

1 & 1
(Mo + M)~ Mox = x4 xet g @Mo+ M) i,
=1

(d) If p(Mo, My) # @ then M; ' [Mo[IVi]] € Vi 1.

Proof The proofs of the statements (a) to (c) are left as Exercise 10.6. We now
prove (d). If & = O there is nothing to show. So assume that the statement holds
for some k € Ny and let x € Ml_1 [Mo [IVk_H]]. Since IVi41 € IV, we infer
xeM; ! [Mo [IVk]] C IVi41 by induction hypothesis. Hence, we find a sequence
(Wn)neN in IVi4q with w, — x. Let now z € p(Mo, M1). Then, by (b), we have
(zMy + Ml)flMow,, € IVi42 for each n € N and hence, (zMp + Ml)’lMox S
IVi42. Moreover, since M1x € My [IVk+1], we find a sequence (y;)neN in [Viy
with Myy, — Mjx. Setting now

Xn = (zMo + M1)71ZM())C + (zMo + Ml)flM()yn € Vi
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(where, again, we have used (b)) for n € N, we derive

Xn = (zMo + M)~ 2Mox 4 (zMo + My) ™ Moy,

=x — (zMo + M)~ (Mi1x — Myy,) — x

as n — oo and thus, x € [Viy». |

The importance of the Wong sequence becomes apparent if we consider solutions
of (10.4).

Lemma 10.2.4 Assume that p(Mo, M1) # @. Letv > 0and U € Ly, (Rxo; H)N
C(R>0; H) be a solution of (10.4). Then U(t) € mkeNo IV for eacht > 0.

Proof We prove the claim, U(t) € IV forall + > 0 and k € Ny, by induction. For
k = 0 there is nothing to show. Assume now that U (t) € IV for each r > 0 and
some k € Ny. By Proposition 10.2.1 we know that

0 vMo(U — 110,00)Up) + MU =0

and thus, in particular,
t
MoU (t) — MoUy ~|—/ MU(s)ds =0 (t = 0).
0
Letnowt > 0 and & > 0. Then we infer
t+h
MOU(t—l—h)—MoU(t)—i-Ml/ U(s)ds =0
t
and hence,
t+h
f U(s)ds € M; ' [Mo[IV]] € IVit
t

by Lemma 10.2.3(d). Since U is continuous, the fundamental theorem of calculus
implies U (t) € IVi41, which yields the assertion. O

In particular, the space of consistent initial values has to be a subspace of () <y, TVi-
We now impose an additional constraint on the operator pair (Mo, M), which is
equivalent to being regular in the finite-dimensional setting (cf. Proposition 10.1.6).

Definition We call the operator pair (Mo, M1) regular if there exists vy > 0 such
that

(@) Cresvy S p(Mo, My), and
(b) there exist C > 0 and £ € N such that for all z € Cgresy, We have
Mo+ M)~ < Clzl".
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Moreover, we call the smallest ¢ € N satisfying (b) the index of (My, M), which is
denoted by ind(Myp, M1).

Remark 10.2.5 Note that for matrices My and M the index equals the degree of
nilpotency of N in the quasi-Weierstrall normal form by Proposition 10.1.6.

From now on, we will require that (Mo, M) is regular. First, we prove an important
result on the Wong sequence in this case.

Proposition 10.2.6 Let (Mg, M) be regular, k € Ny, and k > ind(My, M1). Then

IV = IVindmo, My)-

Proof We show that IVy = IVyy for each k > ind(My, M). Since the inclusion
“D” holds trivially, it suffices to show IVy < IVi4;. For doing so, let £ >
ind(My, M) and x € IVy. By Lemma 10.2.3(c) we find x1, ..., xx+1 € H such
that

1 L 1
(Mo + M)~ Mox = x4 xet g, @Mo+ M) s
=1

for each z € Crexy,. Since k > ind(My, M), we derive
2(zMo + M) 'Mox — x  (Rez — 00),
and since the elements on the left-hand side belong to IVy41, by Lemma 10.2.3(b),

the assertion immediately follows. O

We now prove that in case of a regular operator pair (Mo, M) the solution of (10.4)
for a consistent initial value Uy is uniquely determined.

Proposition 10.2.7 Let (Mo, My) be regular, Uy € IV (Mg, My), and v > 0 such
that a solution U € C(Rxo; H) N Ly v(Rx0; H) of (10.4) exists. Then this solution
is unique. In particular

(LoU)() = ! ((it + p)Moy + M1)71M0U0 (a.e.t € R)
V27

for each p > max{v, vp}.
Proof By Proposition 10.2.1 we have Mo(U — 1o,00)Up) € HV1 (R; H) and
v Mo(U — 119,000 Up) + MU = 0.
Applying the Fourier—Laplace transformation, £, for p > max{v, v} we deduce

1 1

(it + p)Mo(L,U () — it + o

Uo) + MiL,U(1) =0 (ae.r €R)
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which in turn yields

LUt = (Gt + p)Mo + M) MoUp  (ae.1 € R)

1
V2
and, in particular, proves the uniqueness of the solution. O

Remark 10.2.8 Let U be a solution of (10.4) for a consistent initial value Uy. Then
the formula in Proposition 10.2.7 shows that U € ﬂp>vo L; ,(R; H) and hence, we

also have Mo(U — 1j0,00)U0) € ﬂp>v0 Hf} (R; H). If vg > 0 then we even obtain
U e Ly,,(R; H) since SUP =y, ”U”Lz,p(R:H) = SUP )y, ”EﬂU”Lz(R;H) < 0o (cp.
Lemma 8.1.1), and therefore also Mo(U — 1{0,00)U0) € HI}O(]R; H).

One interesting consequence of the latter proposition is the following.

Corollary 10.2.9 Let (Mg, M) be regular. Then the operator My: IV (My, M1) —
H is injective.

Proof Let Uy € IV(My, M) with MyUy = 0. By Proposition 10.2.7, the solution
U of (10.4) with U (0+) = Uj satisfies

LoU®t) = (Gt + p)Mo + M)~ MU =0

1
V2r
and hence, U = 0, which in turn implies Uy = U (0+) = 0. m]
We now want to determine the space IV(Mp, M) in terms of the Wong sequence.
Proposition 10.2.10 Ler (Mg, M1) be regular. Then

WVind(mo,my) S IV(Mo, M1) S IVind(mo, M) -

Proof The second inclusion follows from Lemma 10.2.4 and Proposition 10.2.6.
Let now Uy € IVina(my, M) and set

1
V(z) = (zMo + M) "' MoUy  (z € Cre=p)-
b

V2

Let k := ind(Myp, M1). By Lemma 10.2.3(c) we find x1, . .., xx4+1 € H such that

k
1 1 1 1 _
V() = o (ZUO +> L ¥t gy @Mo+ M) 1xk+1) (z € Cre=y)-
=1

In particular, we read off that V € H5(Cres,; H) forall v > vg. Now, let v > vp.
By the Theorem of Paley—Wiener (more precisely by Corollary 8.1.3) there exists
U € Ly,,(R>; H) such that

(L,U) (1) =V(it+p) (ae.t€R, p>v).
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Moreover,

V(z) 'y ! zkjl +1(M+M)’1 (z € CRe=v)

— = X X,
vV iZ \/27.[ 0 «/27‘[ v ZZ [4 Zk reLy] 1 k+1 Z Re>v
and hence (z = zV(z) — «/;n Uo) € Hor(Cre>y; H) as well. Since
. 1
(ﬁpaz,p(U — Lj0,00)U0)) (1) = (it + p) (L,U) (1) — Uo
V2r

=(@{t+p)V3it+ p) — Uy (ae.teR,p>v),

1
V2w
we infer U — 1j0,00)Up € HI}(R; H) and, thus, U — 1j0,00)Up is continuous
by Theorem 4.1.2. Hence, U € C(R3o; H) and since sptU < Ry, we derive
U (0+) = Up. Finally, by the definition of V,

1 1
Mo (zv(z) ~ /o Uo) =~ /o M (zMo + M) "' MyUy = —M V (2)

for all z € Cre>,. Hence,
0r,vMo(U — 1j0,00)Up) + M1 U =0,

from which we see that U solves (10.4). |
Finally, we treat the case when IV (My, M) is closed.

Theorem 10.2.11 Let (Mo, M) be regular and 1V(My, My) closed. Then the
operator S: IV(My, M) — CRxo; H), which assigns to each initial state,
Uy € IV(My, My), its corresponding solution, U € C(Rxo; H), of (10.4) is
bounded in the sense that

Sp: IV(Mo, My) — C([0,n]; H), U+ SUoljo,n

is bounded for each n € N.

Proof By Proposition 10.2.10 we infer that IV(Mp, M) = IVy with k =
ind(Mo, M1). Let v > vy > 0. By Proposition 10.2.7 and Corollary 8.1.3, there
exists C > 0 such that

V2r

S U

(z — sz(zMo + Ml)flMoUo) H

Ly y(Rx0;H) H H2(Cresv; H)

b
< C\/v MoUoll g



10.3 Comments 161

for each Uy € IV(My, M), where we have used the regularity of (Mg, M) and

T
= IMoUpll g -
v

In particular, S: IV(My, M1) — H‘l(at]fv) is bounded. Since L3 ,,(R>o; H) —
H’l(at’fv) continuously, we infer that S: IV(Mo, M1) — L3,,(R>o; H) is
bounded by the closed graph theorem. Hence, also

(z+—~ Z_lMoU()) H
H H2(Cre>v: H)

Sut IV(Mo, M1) — Lo([0,n]; H), Up+— SUpl[o,n)

is bounded for each n € N and since C([0, n]; H) — L2([0, n]; H) continuously,
we infer that S, is bounded with values in C([0, n]; H) again by the closed graph
theorem. O

Remark 10.2.12 The variant of the closed graph theorem used in the proof above
is the following: Let X, Y be Banach spaces and Z a Hausdorff topological vector
space (e.g. a Banach space) such that Y < Z continuously. Let 7: X — Z be
linear and continuous with T7[X] € Y. Then T € L(X, Y). Indeed, by the closed
graph theorem it suffices to show that 7 : X — Y is closed. For doing so, let (x;),
be a sequence in X with x, — x and Tx, — y for some x € X,y € Y. Then
Tx, — Tx in Z by the continuity of 7 and Tx, — y in Z by the continuous
embedding. Hence, y = Tx and thus, T is closed.

10.3 Comments

The theory of differential algebraic equations in finite dimensions is a very active
field. The main motivation for studying these equations comes from the modelling
of electrical circuits and from control theory (see e.g. [28] and Exercise 10.5).
The main reference for the statements presented in the first part of this chapter is
the book by Kunkel and Mehrmann [57]. Of course, also in the finite-dimensional
case Wong sequences can be used to determine the consistent initial values, see
Exercise 10.1. For instance, in [13] the connection between Wong sequences and the
quasi-Weierstrall normal form for matrix pairs is studied. Of course, the theory is not
restricted to linear and homogeneous problems. Indeed, in the non-homogeneous
case it turns out that the set of consistent initial values also depends on the given
right-hand side.

The theory of differential algebraic equations in infinite dimensions is less
well studied than the finite-dimensional case. We refer to [114], where the theory
of Co-semigroups is used to deal with such equations. Moreover, we refer to
[97, 98], where sequences of projectors are used to decouple the system. Moreover,
there exist several references in the Russian literature, where the equations are
called Sobolev type equations (see e.g. [111]). The results on infinite-dimensional
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problems presented here are based on [121, 124, 125]. In [124] the focus was on
systems with index O with an emphasis on exponential stability and dichotomy.

We also add the following remark concerning the result in Theorem 10.2.11. By
Corollary 10.2.9 we know that My: IV(Mo, M1) — H is injective. If IV(My, M1)
is closed, it follows that the operator C: dom(C) € IV(My, M) — IV(My, My)
given by

dom(C) = {Uy € IV(Mo, My); MUy € Mo [IV(Mo, M1)]},
CUy == My ' MUy (Up € dom(C))

is well-defined and closed. Using this operator, C, Theorem 10.2.11 states that if
IV(Myp, M) is closed then —C generates a Cp-semigroup on IV(My, M1). The
precise statement can be found in [121, Theorem 5.7]. Moreover, C is bounded
if IVind(Mo, M) 18 closed (cf. Exercise 10.7).

Exercises

Exercise 10.1 Let My, M; € C"*" such that (Mp, M) is regular and define the
Wong sequence (IV) jen, associated with (Mo, M1). Moreover, let P, Q € C"*",
C € CHk and N € C~ 0=k pe a5 in the quasi-WeierstraB normal form for
(Mo, M1) with N nilpotent (cf. Proposition 10.1.5). We decompose a vector x € C"
into ¥ € CF and X € C"* such that x = (¥, X). Prove that

—

xelV; & 0 'x eran N/ (j e Np).

Moreover, show that for each z € p(Mo, M) we have
J
IV, = ran ((zMo n Ml)’lMo) (j € No).

Exercise 10.2 Let E € C"*". We set k := ind(E, 1), where 1 denotes the identity
matrix in C"*". A matrix X € C"*" is called a Drazin inverse of E if the following
properties hold:

o EX=XE,

e XEX =X,

° XEk+1 — Ek.

Prove that each matrix £ € C"*" has a unique Drazin inverse.

Hint: For the existence consider the quasi-Weierstrafl form for (E, 1).
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Exercise 10.3 Let My, M, € C"*" with (Mo, M) regular and MoM| = M| M.
Denote by M(])) the Drazin inverse of My (see Exercise 10.2). Prove:

(@) MPM, = MM,
(b) ran MP My = IV (Mo, M),
(c) Forall Uy € IV(My, M7) the solution U of (10.2) is given by

U@t) =e ™My, (> 0).

Exercise 10.4 Let My, M| € C"" with (M, M) regular. Prove that there exist
two matrices E, A € C"™" with (E, A) regularand EA = AF such that

e IV(E, A) =IV(My, My),

* U solves the initial value problem (10.2) for the matrices My, M if and only if
U solves the initial value problem (10.2) for the matrices E, A with the same
initial value Uy € IV (Mo, My).

Exercise 10.5 We consider the following electrical circuit (see Fig. 10.1) with a
resistor with resistance R > 0, an inductor with inductance L > 0 and a capacitor
with capacitance C > 0. We denote the respective voltage drops by vg, vz and vc.
Moreover, the current is denoted by i. The constitutive relations for resistor, inductor
and capacitor are given by

Ri = vpg,
Li' =vp,
Cve =1,

respectively. Moreover, by Kirchhoff’s second law we have
vR +vc +vr =0.
Write these equations as a differential algebraic equation and compute the index

and the space of consistent initial values. Moreover, compute the solution for each
consistent initial value for R =2and C = L = 1.

Fig. 10.1 Electrical circuit | |
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Exercise 10.6 Prove the assertions (a) to (¢) in Lemma 10.2.3.

Exercise 10.7 Let My, M| € L(H).

()
(b)

Assume that p(Mo, M) # <. Prove that for each k € N the space IV is closed
if and only if Mg [IV;_1] is closed.

Assume that (Mo, M) is regular with ind(Mp, M;) > 1. Prove that if
IVind(my, M) 1s closed then the operator

MotV iacung iy = TVind(mo. i) = Mo [TVina(ao. m1)—1]

is an isomorphism.
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Chapter 11 )
Exponential Stability of Evolutionary Shethie
Equations

In this chapter we study the exponential stability of evolutionary equations. Roughly
speaking, exponential stability of a well-posed evolutionary equation

(3, vM@ ) +A)U=F

means that exponentially decaying right-hand sides F' lead to exponentially decay-
ing solutions U. The main problem in defining the notion of exponential decay for
a solution of an evolutionary equation is the lack of continuity with respect to time,
so a pointwise definition would not make sense in this framework. Instead, we will
use our exponentially weighted spaces L; , (R; H), but this time for negative v, and
define the exponential stability by the invariance of these spaces under the solution
operator associated with the evolutionary equation under consideration.

11.1 The Notion of Exponential Stability

Throughout this section, let H be a Hilbert space, M: dom(M) € C — L(H) a
material law and A: dom(A) € H — H a skew-selfadjoint operator. Moreover,
we assume that there exist vg > s (M) and ¢ > 0 such that

RezM(z) 2 ¢ (2 € Crexyy)-
By Picard’s theorem (Theorem 6.2.1) we know that for v > v the operator
-1
Sl) = (at’vM(at’p) + A) (S L(L2,U(R; H))

is causal and independent of the particular choice of v. We now define the notion of
exponential stability.
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Definition We call the solution operators (S, )y >, exponentially stable with decay
rate pg > 0 if for all p € [0, po) and v > vy we have

SvFely ,(R;H) (FelLyy(R; HYNLy _,(R; H)).

Remark 11.1.1 We emphasise that the definition of exponential stability does not
mean that the evolutionary equation is just solvable for some negative weights.
Indeed, if we consider H = C, A = 0 and M(z) = 1 for z € C we obtain that
the corresponding evolutionary equation

doU=F (11.1)

is well-posed for each v # 0. However, we also place a demand for causality on our
solution operator. Thus, we only have to consider parameters v > (. We obtain the
solution U by

t
Ut) = / F(s) ds.

As it turns out, the problem (11.1) is not exponentially stable. Indeed, for F =
110,11 € Myer L2,v(R) the solution U is given by

0 ifr <0,
Ut)=43r ifo<r<l,
1 ifr > 1,

which does not belong to the space Ly _,(R) for any p > 0.

We first show that the aforementioned notion of exponential stability also yields
a pointwise exponential decay of solutions if we assume more regularity for our
source term F'.

Proposition 11.1.2 Let (S,),>y, be exponentially stable with decay rate py > 0,
v 2, p €10, po) and F € dom(9;,,) N"dom(0;,—p). Then U = S, F is continuous
and satisfies

Ute’ -0 (t— o0).
Proof We first note that 9; , F = 9;,_, F by Exercise 11.1. Moreover, since S, is a
material law operator (i.e., S, = S(9,,) for some material law S; see Remark 6.3.4)

we have

Sv0r,v S O, Sv.
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Thus, in particular, we have

Svat,vF = at,vSvF = 8t,vU§
that is, U € dom(9,,,). Moreover, since d; ,FF = 0;,_,F € Ly _,(R; H), we infer
also U, 9, ,U € Ly _,(R; H) by exponential stability. By Exercise 11.1 this yields

U € dom(9;,_,) with d; _,U = 9, ,U. The assertion now follows from the Sobolev
embedding theorem (Theorem 4.1.2 and Corollary 4.1.3). O

11.2 A Criterion for Exponential Stability of Parabolic-Type
Equations

In this section we will prove a useful criterion for exponential stability of a certain
class of evolutionary equations. The easiest example we have in mind is the heat
equation with homogeneous Dirichlet boundary conditions, which can be written as
an evolutionary equation of the form (cf. Theorem 6.2.4)

(2 (06) * (0) + (s, ) (2) = (5)

in Ly ,(R; H), where H = Ly(Q) & L»(Q)? with @ € R? open, and a €
L(L>(£)%) with

Rea > ¢

for some ¢ > 0 which models the heat conductivity, and v > 0.

Theorem 11.2.1 Let Hy, H| be Hilbert spaces and C: dom(C) € Hy — Hj a
densely defined closed linear operator which is boundedly invertible. Moreover, let
My € L(Hy) be selfadjoint with

Mo = co

for some ¢y > 0 and M: dom(M) € C — L(Hy) be a material law satisfying
sy (M1) < —pq for some p1 > 0 and

Jdci1 > 0Vz € Cres—p, : Re Mi(2) = cy.

Then

—1
_ My 0 0 0 0 —C* )
Sy = (at,v < 0 0) + (0 M1(8t,u)> + (c 0 )) € L(L2,v(R; Ho ® H)))
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for each v > 0. Moreover, for all vy > O the family (S,), >, is exponentially stable

. . —1112
with decay rate po = min !,01, e/ (IMZ ¢, IMoll €Y )}.
In order to prove this theorem we need a preparatory result.

Lemma 11.2.2 Assume the hypotheses of Theorem 11.2.1. Then for each z €
CRres—py the operator

Mo O 0 —C* .
© (0 M1(z)>+<C o) om(C) xdom(C*) € Ho® Hy — Ho® H,

is boundedly invertible. Moreover,

sup HT(Z)_1H < 0

ZECRe>,p
for each p < po.

Proof Let z € Cgrex»—_, for some p < po. We note that M (z) is boundedly
invertible with HM1 (z)*IH < 1/cy (see Proposition 6.2.3(b)) and (C*)™! =
(C~Y* e L(Ho, H) (see Lemmas 2.2.2 and 2.2.9). The beginning of the proof
deals with a reformulation of 7 (z). For this, let u, f € Ho, v, g € Hj. Then, by
definition, (#, v) € dom(7(z)) = dom(C) x dom(C*) and T (z)(u, v) = (f, g) if
and only if v € dom(C*) and u € dom(C) together with

zMou — C*v = f

Cu+ Mi(29)v =g.

Since both C* and M| (z) are continuously invertible, we obtain equivalently u €
dom(C) together with

2(CH "Mou —v=(CH7'f
M) 'Cu+v=M@ g

Adding the latter two equations and retaining the first equation, we obtain the
following equivalent system subject to the condition ¥ € dom(C)

v =2(C*" ' (zMou — f) € dom(C*),
(CH T MCT + My () HCu = Mi(2) g+ (CHT L
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We now inspect the operator S(z) = z(C~")*MoC~! + M(z)~" € L(H)). By

Proposition 6.2.3 for x € H; we estimate

Re (x, S(z)x) = Re (C*Ix, ZMoC*1x> + Re <x, M1(Z)71x>

2 c
-1 2 1 2
> —p IMoll | 7|1 + , Il
M1 ()]
cl 1112
>( — oMol |7 1l
1M1, .,
=

Since p < pp and by the definition of pp we infer that © > 0. Hence, S(z) is

boundedly invertible with

s <!

We now set
u=C'S@Q((CH ' f+ M) 'g) € dom(0),

v = (C*) " (zMou — f) € dom(C*).

By the first part of the proof we have that (u,v) is the unique solution of

T (z)(u, v) = (f, g). Moreover, we can estimate

1|l 1 _ 1
el < (Jeen|irn+nel). and
I’ c1
1 1 . 1
ol < dgl+icu < (leh+ (Jeo™ s+ lel)),
c1 1 M ‘1
which proves that 7' (z) is boundedly invertible with

sup HT(z)*IH < 0.

ZE(CRE>,p

Proof of Theorem 11.2.1 Let H .= Hy & H;. We set

M, 0
M(z) = ( 00 le1(z)> (z € dom(M1) \ {0}).
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Letv > 0. Then
Vz € Crexv : RezM (2) > min{vco, 1}

and hence, the first assertion of the theorem follows from Theorem 6.2.1.
Next, we focus on exponential stability. For v > 0, we have that

Sy =T®®.)" ",

where T is defined in Lemma 11.2.2. Moreover, by Lemma 11.2.2, the mapping
T CRre>—py — L(H) with T’l(z) = T(z)f1 defines a material law with
Sh (Tﬁl) = —po (the holomorphy of T is obvious and hence, T-! is also

holomorphic). Thus, we may apply Theorem 5.3.6 to obtain (note that 7~ (0r,v) =
T(3)"")

So(f) =T @) f=T@,) " f €Lyp(R; H)

foreach f € Ly ,(R; H) N Ly ,(R; H) with p > —pp, which shows exponential
stability. O

11.3 Three Exponentially Stable Models for Heat Conduction

The Classical Heat Equation
We recall the classical heat equation (cf. Theorem 6.2.4) on an open subset Q C R¢
consisting of two equations, the heat flux balance

00 +divg = f
and Fourier’s law
q = —agradf,

where f is a given source term and @ € L(L(2)?) is an operator modelling the
heat conductivity of the underlying medium. We will impose Dirichlet boundary
conditions which will be incorporated in our equation by replacing the operator
grad by grad,, in Fourier’s law (cf. Sect. 6.1).

In order to apply Theorem 11.2.1 we need that grad,, is boundedly invertible in
some sense. This can be shown using Poincaré’s inequality.
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Proposition 11.3.1 (Poincaré Inequality) Ler @ C R? be open and contained in
a slab; that is, there exist e € RY with lell =1and a,b € R, a < b such that

Qc ixeRd; a< (e,x)<b}.
Then for each u € dom(grad,) we have
leell y ) < (b —a) |gradgul] g -
Proof Without loss of generality, let e = (1,0, ..., 0). Recall that, by definition,
CZ°(2) is a core for grad,. Thus, it suffices to prove the assertion for functions in

C (). Let p € C°(2). We identify ¢ with its extension by 0 to the whole of R4,
By the fundamental theorem of calculus, we may compute

X
@(x) =/ (s, x2,...,xg)ds  (x € Q).

Hence, by the Cauchy—Schwarz inequality and Tonelli’s theorem

fwmﬂwzf
Q Q

b
g/(b—a)/ |81<p(s,x2,...,xd)|2dsdx:(b—a)Z/ 1010(x)|% dx
Q a Q

2
dx

X1
/ 01p(s, x2,...,xq)ds
a

< (b —a? erady g2, g

which shows the assertion. m]

Corollary 11.3.2 Under the assumptions of Proposition 11.3.1 the operator grad
is one-to-one and ran(grad,) is closed.

Proof The injectivity follows immediately from Poincaré’s inequality. To prove the
closedness of ran(grad), let (ux)ren in dom(grad,) with grady uxy — v in Lz(Q)d
for some v € LZ(Q)d. By Poincaré’s inequality, we infer that (uy)ken is @ Cauchy-
sequence in Ly (€2) and hence convergent to some u € L»(£2). By the closedness of
grad we obtain u € dom(grad,) and v = grad, u € ran(grad,). a

We need another auxiliary result which is interesting in its own right.
Lemma 11.3.3 Let H be a Hilbert space and V C H a closed subspace. We denote
by

ty:V—>H, x> x

the canonical embedding of V into H. Then tyiy,: H — H is the orthogonal
projectionon V and vj,ty : V. — 'V is the identity on V.
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Proof The proof is left as Exercise 11.2. O

We now come to the exponential stability of the heat equation. First, we need to
formulate both the heat flux balance and Fourier’s law as a suitable evolutionary
equation. For doing so, we assume that  C R? is open and contained in a slab.
Then ran(grad,) is closed by Corollary 11.3.2. It is clear that we can write Fourier’s
law as

g = —agradyt = _atran(gradoﬂran(grado) grady 6.

*

Hence, defining g := Lran(erad,

arrive at

)4 and @ := [;(an(grado)alra“(gfado) € L(ran(grady)), we

q = —Alan(grady) Srady 6.
Moreover, since ran(grado)L = ker(div), we derive from the heat flux balance
f =86 +divg = 8,60 + diV tran(grad,)q
and hence, assuming that @ is invertible, we may write both equations with the

unknowns (0, §) as an evolutionary equation in Ly ,(R; H) for v > 0, where H =
L,(2) @ ran(grad,). This yields

10 00 0 div Lran(grad) 0 f
) ~ 0 ~ = .
( i (O 0) * (O al) * (L;kan(grado) grady 0 q 0

(11.2)
For notational convenience, we set

C .

%
T [ran(grado)

grady: dom(grady) € L2(€2) — ran(grad,). (11.3)

Lemma 11.3.4 Let Q@ € RY be open and contained in a slab and C as above. Then
C is densely defined, closed and boundedly invertible. Moreover

C* = —div lran(grad,) -

Proof The proof is left as Exercise 11.3. O

Proposition 11.3.5 Let Q@ C R? be open and contained in a slab, a € L(L(Q2)%),
and c¢1 > 0 such that

Rea > .
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Then a = Lfan(grado)mfaﬂ(gfado) is boundedly invertible and the solution operators
associated with (11.2) are exponentially stable.

Proof For x € ran(grady) we have

Re (x, ax)ran(grado) =Re ([ran(grado)xa a[ran(gradO)X>L2(Q)d
2 2
2 cl ” tran(gradg) X ||L2(Q)d =ca ”x”ran(grado) ’

and thus, a is boundedly invertible. Hence, (11.2) is an evolutionary equation of the
form considered in Theorem 11.2.1 with My := 1, M (z) == a ! forz € C and C
given by (11.3). Since Rea~! > HCI\IZ’ Theorem 11.2.1 is applicable and we derive

a

the exponential stability. O
The Heat Equation with Additional Delay
Again we consider the heat equation, but now we replace Fourier’s law by

q = —aj grady 6 — axt_j grad 0

for some operators aj, ay € L(LZ(Q)d) and 7 > 0. As above, we assume that
Q € R4 is open and contained in a slab. We may introduce § = L;‘an(gmdo)q and

Ej = L;kan(grado)aj‘mn(gfado) € L(Lz(Q)d) for j € {1, 2}. Moreover, we assume that
there exists ¢ > 0 such that

Rea; > c.

By Lemma 7.3.1 there exists vy > 0 such that the operator dj + @27, is boundedly
invertible in L , (R; ran(grad,))) and its inverse is uniformly strictly positive definite
for each v > vy. Hence, we may write the heat equation with additional delay as an
evolutionary equation of the form

10 0 0 0 -C* 0 . f
(3”” (0 0) * (o @ +Ezr-h>—1) * (c 0 )) (a) = <0> (s

with C given by (11.3).

Proposition 11.3.6 Ler Q C R9 pe open and contained in a slab, h > 0, a1, ay €
L(L>(Q)%), and ¢ > 0 such that

Rea; > ¢

and |laz|| < c. Then the solution operators (S,)y>y, associated with (11.4) are
exponentially stable.
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Proof Note that ||az| < |laz|l < c. We choose

0 Vg €
<pr<  log . .
h = llazll
Then we estimate for z € Cres—p,
~ ~ —zh it p1Lh 2
Re <-x7 (al + are )x>ran(grad0) > (C ||a2|| € ) ”'x ||ran(grad0) .

By the choice of p1, we infer ¢ := (¢ — ||z ") > 0. Hence,
Mi(2) = (a1 + 5264”’)71 (z € Cre>—p,)
is well-defined and satisfies
ReMi(z) 2 c1 (z € Cres—p;)

for some c; > 0 by Proposition 6.2.3. Thus, Theorem 11.2.1 is applicable and yields
the exponential stability of (11.4). O
A Dual Phase Lag Model

In this last variant of heat conduction, we replace Fourier’s law by

(I +s5401)g = (1 + 590;) grad, 0,

where s, s9 > 0 are the so-called “phases” (cf. Sect. 7.4, where a different type of
dual phase lag model is studied). The latter equation can be reformulated as

(14 549.0)(1 + 509;.,) " 'q = grady 0

for v > 0. Assuming that @ C R is open and contained in a slab, and defining
q = L:‘an(grado)q, the dual phase lag model may be written as

10 0 0 0 —-C* 0 . f
(3”” (0 0) * (0 (14 5490,0)(1 +593t,v)_1> * (C 0 )) (a) - (0)

(11.5)

with C given by (11.3).

Proposition 11.3.7 Ler Q C RY be open and contained in a slab, vo > O.
Moreover, let s9 > sq > 0. Then the solution operators (Sy)v>y, associated
with (11.5) are exponentially stable.

Proof Again, we note that (11.5) is of the form considered in Theorem 11.2.1 with
My =1 and
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I+s4z

M) = 1+ 592

(zeC\{-s;'D.

Setting == z‘; < 1 we compute

(I —pw) 1+sgRez
Re M =R = 1— > eC -1).
M@ e(u—i_ 1+ sgz #tll=a) 1+ sgz|? © € Cret)
Thus, Theorem 11.2.1 is applicable and hence, the claim follows. O

11.4 Exponential Stability for Hyperbolic-Type Equations

Important examples of exponentially stable equations do not fit in the class of
parabolic-like equations studied in Sect. 11.2. As a motivating example we consider
the damped wave equation, which can be written as a second-order equation of the
form

37, Mou + d;,yMyu — div gradyu = f, (11.6)

where My, M1 € L(Ly(S2)), My is selfadjoint and My, Re M1 > ¢ > 0, with
Q € R4 modelling the underlying medium. It is well-known that this equation
is exponentially stable if 2 is bounded. However, if we write this equation as an
evolutionary problem in the canonical way; that is, we introduce v := 9; ,u and
q = — gradj u as new unknowns, we end up with an equation of the form

Mo 0 M 0 0 div v\ _(f
(s (P00) (M0 0) (L0 SN () = (). o

which is not of the form discussed in Sect. 11.2. However, another formulation
of (11.6) as an evolutionary equation allows to show exponential stability in a similar
way as for parabolic-type equations. More precisely, we aim for a formulation, such
that the second block operator matrix in (11.7) has non-vanishing diagonal entries.
This leads to a damping effect for both unknowns.

We start to provide a general reformulation scheme of second-order equations as
suitable evolutionary equations and afterwards discuss the exponential stability of
those.

An Alternative Reformulation for Hyperbolic-Type Equations

Throughout we assume that C: dom(C) € Hy — H; is a densely defined
closed linear operator between two Hilbert spaces Hyp and Hj, which is additionally
assumed to be boundedly invertible. Furthermore, let M : dom(M) € C — L(Hp)
be a material law of the form

M) = Mo(z) + 2 'M1(z) (z € dom(M)),
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where My, M;: dom(M) C C — L(H) are material laws themselves. We consider
second-order problems of the form

(BIZ,VM(at,u)%-C*C)u = f, (11.8)

for a given right-hand side f € L; , (R; Hp) and aim for conditions on M to ensure
the exponential stability in a suitable sense.

Example 11.4.1 The wave equation (11.6) on a bounded domain 2 € R” is indeed

of the form (11.8). We set C = L;(an(grado) grady: dom(grady) < Lo(R2) —

ran(grad,), which is boundedly invertible by Poincaré’s inequality (see Proposi-
tion 11.3.1 and Lemma 11.3.4) and

M@z)=My+z"'M; (zeC\ {0}

for Mo, My € L(L2(S)).

We now introduce two new unknowns to rewrite (11.8) as an evolutionary equation.
For this let d > 0 and set vg := 0;,yu + du and g := —Cu. Then we formally get

0r,vg = —C0yu = —C(vg —du) = —Cvq +dCu = —Cvg — dgq
and
3w M (3 ,)va = 87, M (3.0 + ddy M (3;.)u
=f—-C"Cu+ d oy Mo(0r,p)u + dM(0r,)u
= f+C*q +dMo(3: ) (va — du) + d My (3 ,)u
= [+ C*"q+dMo(d;,)va — d (Mi(3;,) — dMo(3;,,)) C™q.

Thus, the new unknowns, vy and ¢, satisfy an evolutionary equation of the form

M(3,) 0 —Mo(3,v) (M1(3;,) — dMo(3,,,)) C!
<3t,u ( 0 1) +d ( 0 | )

(D)

with a new material law My : dom(M) € C — L(Hp & H1) given by

— _ —1
Ma(z) = (Méz)(l)>+z_1d< M(;)(z) (M (2) dlMo(z))C )
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Remark 11.4.2 We remark that the above formal computation can be done rigor-
ously (both forward and backwards), so that indeed (11.8) and (11.9) are equivalent
problems in the sense that the solutions u and (vg, g) are linked via

vg = 0yu +du, q=—Cu.

11.5 A Criterion for Exponential Stability
of Hyperbolic-Type Equations

In this section we provide sufficient conditions on the material law M in order to
obtain a well-posed and exponentially stable problem (11.9) for a suitable d > 0.
So, we assume the same assumptions to be in effect as in the previous section.

Remark 11.5.1 Assume that (11.9) is exponentially stable with decay rate py > 0;
thatis, vg € Ly, _,(R; Hy), g € Lo, _,(R; Hy)if f € Ly _,(R; Hy) N Lo, (R; Hp)
for all p € [0, po) and v > O large enough. Then u, 9, yu € Lo _,(R; Hp) as well.
Indeed, since

u=—-C"'qe Ly ,(R;H),
we derive
Ot ou =vg —du € Ly _,(R; Hp).
Employing Exercise 11.1, we even infer u € dom(d;,—,) and hence, u €

C_,(R; Hp) by Sobolev’s embedding theorem (see Theorem 4.1.2). Thus, we also
obtain the exponential stability of (11.8) in this case.

In order to prove the exponential stability of (11.9), we have to show how a positive
definiteness assumption on M allows for positive definiteness of M, for some
d > 0. We start with the following observation.

Lemma 11.5.2 Let z € dom(M), ¢ > 0. Assume
Re (u, eM )y, > c lullyy, (u € Ho).

Then ford > 0 and (v, q) € Ho ® H it follows that
. 3 2
Re ((v, q), z2Ma(2) (v, ) gygn, = min{c —dK(d), 4d +Rezp (v, Pllyyem, -

where K (d) := mo + (dmo +m)* |[C7Y|* and m; == | M; | for j € {0, 1).
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Proof Letv € Hy and g € H;. Then we estimate

Re ((v, ), 2Ma(2) (v, @) gyo H,

= Re(v, M (2)v — dMo(2)v + d(M1(2) — dMO(Z))C_IQ>H +Re({q,zq +dq)y,
0
> (c = dmo) Iy, = d m1 +dmo) [ €™ | gl Il + Rez +a) gl

_ Ly 2| 1 ? 2 _ 2
> (e=dmo— , dmi+dmo? | C7!|") vl + Rez+d = &) g1, .

for each ¢ > 0, where we have used the Peter—Paul inequality. Choosing ¢ = Z, we
obtain the assertion. |

This estimate allows us to derive the positive definiteness of M, for a suitable choice
of d > 0.

Proposition 11.5.3 Let ¢ > 0 and assume that
Re (u, 2M(2Ju)y, > cllullyy, (u € Ho, z € dom(M)).

Then there exist ¢, d, po > 0 such that

Re (v, 9), 2Ma () (V. ) oo, = 1 Dl

forall z € dom(M) N Cres—p, and (v, q) € Hy @ H.

Proof We note that dK(d) — 0 as d — 0, where K(d) is given as in
Lemma 11.5.2. Hence, we find d > 0 such that dK(d) < c. Choosing py < id
and using Lemma 11.5.2, we estimate for each z € dom(M) N Cre~—p, and
(v,q) € Hy ® H;

Re ((v, 9), 2Ma(2) (v, ) gy, = < (v, q)llfqoeayl )

where ¢ := min ic —dK(@), 3d — ,00} > (0 showing the assertion. |

We are now in the position to state the main result for exponential stability of
hyperbolic-type equations.

Theorem 11.5.4 Let C: dom(C) € Hy — H; be a densely defined closed
linear and boundedly invertible operator between two Hilbert spaces Hy and H.
Furthermore, let M : dom(M) € C — L(Hy) be a material law of the form

M) = Mo(z) + 2 'M1(z) (z € dom(M)),
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where My, M : dom(M) € C — L(H) are bounded analytic functions. Assume
that there exist ¢, vo > 0 such that Cres—,, \ dom(M) is discrete and

Re (u, zM (2)u) g, > ¢ lully,

for each u € Hy,z € dom(M). Then there exists some d > 0 such that
problem (11.9) is well-posed and exponentially stable.

Proof We first note that by Proposition 11.5.3 there exist pg, d, ¢ > 0 such that

Re ((v, 9), 2Ma(2) (v, 9)) gy, = < (v, q)llf%@ﬂ1

for all z € dom(M) N Cres—p, and (v, g) € Hy @ H. Since M is a material law,
so is My and thus, well-posedness of (11.9) follows from Picard’s theorem (see

Theorem 6.2.1). Since
0 -C*
cC 0

is skew-selfadjoint, the above estimate yields that zM,;(z) + ( 0

_ *
¢ is bound-
cC 0

edly invertible for each z € dom(M) N Cres—p, With

—

sup 1T () <
zedom(M)ﬂ(CRD,pO

s

)

where

o -1
Ti(2) = <sz(z) + (g _OC )) .

Setting u = min{vy, po}, we infer that Ty is defined on the whole Cges—_j
despite a discrete set. Since Ty is holomorphic and bounded, Riemann’s theorem
on removable singularities implies that 7; can be extended to a holomorphic and
bounded function on Cge-—,,. We denote this extension again by Ty. In particular,
T, is a material law with s5(7Ty) < —up. Let now p € [0,u) and (f,g) €
Ly v(R; Hy ® Hy) N Ly _,(R; Hy @ Hy), where v > 0 is large enough to ensure
well-posedness. By Theorem 5.3.6 we derive

Ta(0:,0)(f, 8) = Ta(3;,—p)(f, 8) € L2,—p(R; Ho ® H1)

and since T4 (9;,,)(f, g) is nothing but the solution of (11.9) with the right-hand side
replaced by (f, g), exponential stability follows. O
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Definition We call the equation
(a,%VM(a,,v) + C*c) W= f

exponentially stable if there exists some d > 0 such that the equation

0 —-C*
(at,de(at,v) + (C 0 )) v=g

is exponentially stable.

11.6 Examples of Exponentially Stable Hyperbolic Problems

We will illustrate our findings by providing two concrete examples. Firstly, we
discuss the damped wave equation in an abstract form and, secondly, we consider
the dual phase lag model, as it was introduced in Sect. 7.4.

The Damped Wave Equation
We start by formulating an immediate corollary of our main stability theorem.

Corollary 11.6.1 Let C: dom(C) € Hy — Hj be a densely defined closed linear
and boundedly invertible operator between two Hilbert spaces Hy and Hy and let
My, M\ € L(Hy) such that My is selfadjoint and My > 0, Re M1 > ¢ > 0. Then
the second order problem

(aﬁvMo B, My + c*c) w=f

is exponentially stable.

Proof We have to prove that the material law
M) =Mo+z"'Mi (zeC\{0)
satisfies the assumptions of Theorem 11.5.4. For Re z > 0 we have
Re (1, 2M (), > c ully, (u € Ho),

since Re zM( > 0. Moreover, for Re z € [—pp, 0] with pg < I\A;o\l (we set g = 00)
we have that

Re (u, zM (2)u) g, = (—pollMoll + ©) llullyy,  (u € Ho).

Since Cres—p, \ dom(M) = {0}, we can apply Theorem 11.5.4. O
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We now come to a concrete realisation of the operator C. Let 2 € R¢ be open and
contained in a slab. According to Corollary 11.3.2 the space ran(grad,) is closed
and by Lemma 11.3.4 the operator

C = grady: dom(grady) C L»(£2) — ran(grad)

&
Lran( grad,)

is densely defined, closed and boundedly invertible, and its adjoint is given by
C* = — diV tran(grady) -
Thus, we have that
C*C = —div Lmn(grado)tfan(gmdo) grad, = — div grad,, .

Let now My, M1 € L(L2(S2)) with My selfadjoint and My > 0, Re M| > ¢ > 0.
By Corollary 11.6.1 the equation

(a,%VMO 8 oMy — div grado) u=f (11.10)

is exponentially stable.

Remark 11.6.2 We emphasise that this result yields the classical exponential
stability for the damped wave equation; i.e., the situation where My = 1. However,
Corollary 11.6.1 is also applicable in the situation where My = 1g, for some
Qo € Q2 and ReM; > c. In this case, Eq. (11.10) is a coupled system of the
damped wave equation inside ¢ and of the heat equation outside 2.

Dual Phase Lag Heat Conduction

We recall the setting of Sect. 7.4, where we have discussed the equations of dual
phase lag heat conduction on an open and bounded subset @ C R¢ within the
framework of evolutionary equations. The equations under consideration consist of
the heat flux balance

00 +divg = Q,

and a modified Fourier’s law

1
(14 5430 + 2s§a§v)q = —(1+5¢8.,) grad, (11.11)

where s, € R, s9 > 0 are given. Note that (1 + s¢9;,,) is boundedly invertible for
V> — Slg and hence, (11.11) yields

1
—grad® =0,y (0, + g+ 570 (L +5690)7'q
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Applying the operator 0, ,, (8;)1 +54+ %sé dr.0)(145¢9,.,) " to the heat flux balance
equation (and assuming that Q € dom(9;,,)) we obtain the following second order
problem

1 . -
07, (87 +sq+ zsgaw)(l + 590;.,)7'0 — divgradd = Q, (11.12)

for a suitable source term é Assuming Dirichlet boundary conditions for 6, the
equation takes the form

(a,%vM(a,,u) + C*C) 0=0,

with C = L;kan(grado) grad,: dom(grady) C L»(2) — ran(grad,) and
-1 1.2
7+ sgt+ 58,2 1
M= ThT %N (ZGC\{O,— })
1450z N7
Note that
1.2
Sq + 5,572 1
M(Z) — q 2%q —1

+z
1+ 59z 1450z

and hence, M is indeed of the form considered in Sect. 11.5 with

1.2
Sq + 852
Moy = " 1

b M =
1450z 1@)

14892

which are both bounded if we restrict the domain of M to a right half-plane
(CR6>7S; te for some ¢ > 0.

Proposition 11.6.3 If 0 < z‘; < 2 then the dual phase lag model (11.12) is
exponentially stable.

Proof We apply Theorem 11.5.4. For this we need to show that there exists ¢ > 0
such that

Re (u, zM (2)u) o) = ¢ ”””%2(9)

foreachu € Ly(€2) and z € Cres—y, Ndom(M) for some 0 < vy < Slg . Indeed, this
is sufficient for exponential stability, since Cre>—y, \ dom(M) = {0} is discrete and
C = L;‘an(gmdo) grad, is boundedly invertible. Similar to the proof of Lemma 7.4.3

S, .
we set o = S‘é and obtain

1 l—o(1-lo
a)-i— ( 2)

1
M) = +o(1-
M@ = 8q20 +0 < 2 1+ so2
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for each z € dom(M). Since 0 < 0 < 2 weobtain0 < o (1 — éa) < ; and hence,

) Q—oa—;@>a+mRn)
a>~|—

1
RezM(z) = s Rezo~|—a<1—
2 2 1+ spz|?

1 1
> —zsqvoo +o(l— 20) = Cy,

for each z € CRres—y, N dom(M) with 0 < vy < Sle. Choosing now 0 < vy <
min{slg , zs_q”}, we obtain ¢y, > 0 and thus, Theorem 11.5.4 is applicable which
yields the assertion. O

11.7 Comments

The results of this chapter are based on the results obtained in [116, Section
2]. There, Laplace transform techniques are used to characterise the exponential
stability of evolutionary equations in a slightly more general setting. In particular,
further criteria for exponential stability of parabolic- and hyperbolic-type equations
are given, which also allow for the treatment of integro-differential equations.

In general whether or not a given partial differential equation is (exponentially)
stable is both an important and classical question in the area of equations depending
on time. The understanding of this question for instance contributes to the study of
equilibria of non-linear equations. In the linear case, in particular in the framework
of Cp-semigroups, stability has been studied intensively resulting in an abundance
of criteria. Due to strong continuity of the semigroup and, thus, of the considered
solutions (exponential) stability is defined via pointwise estimates. As an example
criterion we mention Datko’s theorem [29] (see also [6, Theorem 5.1.2]), which
states that a Cp-semigroup is exponentially stable if and only if the solution operator
associated with the equation

(Ov+A)U=F

leaves L ,(R>0; H) invariant for some (or equivalently all) p € [1, 00). As it turns
out, the latter is equivalent to the invariance of Ly _,(R; H) for some p > 0 and
thus, our notion of exponential stability coincides with the usual one used in the
theory of Co-semigroups. Another important theorem on the exponential stability
of Cp-semigroups on Hilbert spaces is the Theorem of Gearhart—Priif3 [96] (see also
[38, Chapter 5, Theorem 1.11]), where the exponential stability of a Cyp-semigroup
is characterised in terms of the resolvent of its generator.
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The wave equation without damping is not exponentially stable. In fact one
can even show that energy is preserved during the evolution. Hence, it is a
natural question whether it is possible to introduce suitable ‘dampers’ (i.e., lower
order coefficients) leading to an exponentially stable equation. The criterion in
Corollary 11.6.1 shows that if the damper M; is ‘global’ in the sense that it is
induced by a multiplication operator a(m) for a strictly positive function a, the
resulting damped wave equation is exponentially stable.

A less general, more detailed analysis of the actual wave equation shows that it
is possible to obtain an exponentially stable damped wave equation if the damper is
only local or introduced via boundary conditions. Indeed, in [9] the authors proved
exponential stability of the damped equation if the damping area [a > 0] =
{x € Q; a(x) > 0} satisfies the geometric optics condition. This is, for instance,
the case if [a > 0] contains a neighbourhood of the boundary 9<2.

Besides exponential stability, which is the only type of stability studied so
far within the current framework of evolutionary equations, different kinds of
asymptotic behaviours were addressed and characterised for Cp-semigroups. We
just mention the celebrated Arendt—Batty—Lyubich—Vu theorem [4, 61] on strong
stability of Cp-semigroups or the Theorem of Borichev—Tomilov [15] on the
polynomial stability of Cp-semigroups on Hilbert spaces.

Exercises

Exercise 11.1 Let H be a Hilbert space, v, p € Rand u € Lj 1oc(R; H). Prove the
following statements:

(a) Ifu € dom(9;,,) N dom(d; ) then 0; yu = 0 pu.
(b) If u € dom(d;,,) such that u, 9; ,u € Ly ,(R; H) then u € dom(d;,,).

Exercise 11.2 Prove Lemma 11.3.3.

Exercise 11.3 Let Hy, H; be Hilbert spaces and A: dom(A) € Hy — Hj a
densely defined closed linear operator. Moreover, we assume that A has closed
range. Show that the adjoint of the operator L:‘an( A)A: dom(A) € Hy — ran(A) is
given by A*ianca). If additionally A is one-to-one, show that L:‘an( HA is boundedly

invertible.
Exercise 11.4 Let Q € R be open and contained in a slab. We consider the heat
conduction with a memory term given by the equations
000 +divg = f,
q = —(1 — kx) grad, 6, (11.13)
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where k € L1, (R>0; R) for some p; > 0 with

/OO k()] dt < 1.
0

Write (11.13) as a suitable evolutionary equation and prove that this equation is
exponentially stable.

Exercise 11.5 Let A € C"*" for some n € N and consider the evolutionary
equation

(0ry + AU =F.
Prove that the solution operators associated with this problem are exponentially
stable if and only if A has only eigenvalues with strictly positive real part.
Exercise 11.6 Let Q C R? be open.
(a) Lety € CSO(Q)d. Prove Korn’s inequality

QU

1
||Grad<p||iz(9)gyﬁ1 = 5 Z ngad ®j ”iz(sz)d :

j=1
(b) Use Korn’s inequality to prove that for u € Lz(Q)d we have
u € dom(Gradg) <<= Vje(l,...,d}: u; € dom(grad).

Moreover, show that in either case

d
1 2 2
2 2} | gradg u ||L2(Q)d S ”Grad()””iz(g)gyxrg S 2; | grady u; ”Lz(Q)d :
j= j=

(c) Letnow 2 be contained in a slab. Prove that Gradg is one-to-one and has closed
range.
Exercise 11.7 Let @ € R? be open and a € L(L>(2)%) withRea > ¢ > 0.

(@) Letv > O and f € Lj,(R; L2(£2)). Moreover, assume that €2 is contained
in a slab and define @ = * Alran(grady)- Let 6 € Lo w(R; L2(2)), g €

ran(gradg)
Ly, (R; Ly()9) satisfy

(0 (00) + (05) + (e, ) (2) = )
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and 6 € L, (R; L2(2)), g € L, (R; ran(grad,)) satisfy

10 00 0 div tran(grady) 0 f
) ~ 0 ~ = .
t,v (O 0) + (0 a—l) + ‘;kan(grado) grad, 0 q 0

Show that (6, U, grag,) @) = . 3).

(b) Let 2 be bounded and consider the evolutionary equation

(2 (00) # (02) * (ena ")) (0) = (2)

Show that the associated solution operators are not exponentially stable.
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Chapter 12 )
Boundary Value Problems and Boundary  @uix
Value Spaces

This chapter is devoted to the study of inhomogeneous boundary value problems.
For this, we shall reformulate the boundary value problem again into a form which
fits within the general framework of evolutionary equations. In order to have an
idea of the type of boundary values which make sense to study, we start off with a
section that deals with the boundary values of functions in the domain of the gradient
operator defined on a half-space in R4 (ford = 1 we have Lr(R~1) = K).

12.1 The Boundary Values of H LRrd-1 R.o)

In this section we let = R9~1 x R.pand f € HI(Q); our aim is to make sense of
the function R?~! 5 ¥ > f(¥, 0). Note that this makes no sense if we only assume
f € L2(L2) since RI-1 % {0} = 02 is a set of (d-dimensional) Lebesgue-measure
zero. However, if we assume f to be weakly differentiable, something more can be
said and the boundary values can be defined by means of a continuous extension of
the so-called trace map. In order to properly formulate this, we need the following
density result.

Theorem 12.1.1 The set D = {d): Q- K; Iy e CSO(R“'): Vg = ¢} is dense
in the space HY(Q).

We will need a density result for H L(RY) first.
Lemma 12.1.2 CX(RY) is dense in H'(RY).

Proof Let f € H'(R?). We first show that f can be approximated by functions
with compact support. For this let ¢ € C° (R?) with the properties 0 < ¢ < 1,
¢ = 1on B(0,1/2) and ¢ = Oon R\ B (0, 1). For all k € N we put ¢y =
¢(-/k) and fi == ¢rf € Lr(RY). Then f; has support contained in B [0, k]. The
dominated convergence theorem implies that f; — f in Lo(R?) as k — oo. Next,
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lety € C° (R4) and compute for all k € N

— (fr. divy) = — (@i f.divy) = — (f, e divy) = — (f. div (¢ep) — (grad éx) - )
— (f. div (¢ ) + (f grad o, ¥)

1
= <(grad e + kf(graddﬂ(-/k), 1/f>,
which shows that f; € dom(grad) = H I(R4) and

1
grad fi = (grad )i+ f (grad ) (-/ ).

From this expression of grad f; we observe grad fy — grad f in Ly(R%)¢ by
dominated convergence. Hence, fy — f in dom(grad) = H L(RY).

To conclude the proof of this lemma it suffices to revisit Exercise 3.2. For this, let
(Yi)k in C° (R9) be a 8-sequence. Then, by Exercise 3.2, we infer ¥ % f — f in
L>(R%) as k — oo and hence, by Exercise 12.1, it follows also that grad (y * f) =
Vi * grad f — grad f (note the component-wise definition of the convolution). A
combination of the first part of this proof together with an estimate for the support
of the convolution (see again Exercise 3.2) yields the assertion. O

Proof of Theorem 12.1.1 Let f € H'(2). The approximation of f by functions in
D is done in two steps. First, we shift f in the negative e4-direction to avoid the
boundary, and then we convolve the shifted f to obtain smooth approximants in D.

Let f € Lz(Rd) be the extension of f by zero. Put ey := (8;4) je(1,...q}> the d-th
unit vector. Then for all T > 0 we have Q + ey € 2 and, thus by Exercise 12.2,
we deduce f; = f(- + teg)lg — fin HY(Q) as T — 0. Thus, it suffices to
approximate f; for r > 0.

Let T > 0 and let (Y); in C“(Rd) be a §-sequence. Then Y * f( + tey) €
H'(RY), by Exercise 12.1. Define fi . = (wk * f( + red))lg Then we obtain
that fi; — f; in H'(Q) as k — oo. Indeed, the only thing left to prove is that
grad fy - — grad f; in Lz(Q)d as k — oo. For this, we denote by g the extension
of grad f by 0. Since g € Lr(R?)? it suffices to show that grad Jk.r = Yk * gz on
Q for all large enough k € N, where g = g(- 4+ teg). Let k > i Then for all
x e Qandy € sptyy S [—1/k, 1/k)? we infer x — y + teq € Q. In particular,
f(—y+rtes) € H(Q)and grad f(-—y+7eq) = g(-—y+Teq). Take n € C°(Q)¢
and compute

—(fr,z. div '7>L2(Q) =- /Q /]Rd Yr(x — y) f(y + teq)* dy divn(x) dx
~ / / Ui (v) f(x — y + Teq)* dy divn(x) dx
Q JR4

_/ \/[ 1/k 1//{]‘1 1)Z/.k(y)'f(x_ydl—.L—ed)*dydlvr](.x)Cl.X,'
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. / Ve (FC — 3 + Tea). divnp, g dy
[—1/k,1/ kY

= /[ _—— Vi (y) (g — y + Tea), N g dy

= (Y * gr, 77>L2(Q)d .

As Py * f(- + teg) € H'(RY), we conclude the proof using Lemma 12.1.2. |
With these preparations at hand, we can define the boundary trace of H!(2).

Theorem 12.1.3 The operator

y:DC H(Q) > LRI
[ R s ¥ f(F,0)

is continuous, densely defined and, thus, admits a unique continuous extension to
H'(Q) again denoted by y. Moreover, we have

|
Iy fllL,me-1y < (2 1, ||gradf||L2(Q)d)2 SIfllgve (f € HI(Q))-

Proof Note that y is densely defined by Theorem 12.1.1. Let f € CZ° R4) and
¥ € R~ Let R > 0 be such that spt f C B (0, R). Then

R
/ |G, 0)| d¥ = —/ / 3 | f(F, | dxd¥
Rd-1 Rd-1 Jo
= _/Q (f()*8a f(x) + 9 f*(x) f(x)) dx
S 21 Ly llgrad fliz, ) -

The remaining inequality follows from 2ab < a® 4 b? forall a, b € R. O

Except for one spatial dimension, where the boundary trace can be obtained by
point evaluation, the boundary trace ¥ does not map onto the whole of L, (RY™1).
Hence, in order to define the space of all possible boundary values for a function in
H' one uses a quotient construction: we set

HP®RITY = {yrs fe H' @)
and endow H!/2 (Rd_l) with the norm

Iy f vy = inf gl ey : 8 € H' (), vg = v
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It is not difficult to see that H'/2(R4~1) is unitarily equivalent to (ker y)J', where the
orthogonal complement is computed with respect to the scalar product in H!(2).
Thus, H/2(R4~1) is a Hilbert space.

Remark 12.1.4 The norm defined on the space H'/2(R¢~1) given above is not the
standard norm defined on this space. Indeed, following [72, Section 2.3.8] the usual
norm is given by

1/2
2 |u(x) — u(y)|?
dxd
(”””Lz(R‘”>+/Rm /R oy T

foru € H' 2(R“’*l). However, this norm turns out to be equivalent to the norm
given above, see e.g. [115, Section 4].

As the notation of this space suggests, it can also be defined as an interpolation
space between HI(R‘I’I) and LZ(R‘I’I), see [60, Theorem 15.1].

12.2 The Boundary Values of H (div, RA=1 x R_ )

Let Q := R4~ xR. (. There is also a space of corresponding boundary traces for the
divergence operator. Similarly to the boundary values for the domain of the gradient
operator, H 1(), the construction of the boundary trace for H (div)-vector fields
rests on a density result. The proof can be done along the lines of Theorem 12.1.1
and will be addressed in Exercise 12.3.

Theorem 12.2.1 D? is dense in H(div, Q), where D is defined as in Theo-
rem 12.1.1.

Equipped with this result, we can describe all possible boundary values of
H (div, 2). It will turn out that vector fields in H (div, 2) have a well-defined
normal trace, which for Q2 = RI-1 R. ¢ is just the negative of the last coordinate
of the vector field.

Theorem 12.2.2 The operator
/
vo: D4 C H(div, Q) — (Hl/z(Rd’l)) — H~2®R
g R s ¥ > —qu(F, 0)),

is densely defined, continuous with norm bounded by 1 and has dense range. Thus
vn admits a unique extension to H (div, Q) again denoted by y,. Here, —q is the
negative of the d-th component of q pointing into the outward normal direction of
Q and —qq is identified with the linear functional

H'P®R) 5 yf > (=qaC, 00, ) 1, a1y -
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Moreover, for all f € dom(grad) and g € dom(div) we have

(divg, )+ (g, grad f) = (mq) (v f)- (12.1)

Proof Let f € D and g € D“. Then integration by parts yields

d—1

Wivg, f)+ (g, grad f) = fQ divig* f) = /R (q* (7. 0) £ (. 0), —eg) d¥

== /I;dfl J/C];lk)/f = (¥n4q, yf)Lz(Rd*I) = (mqe)[).
Hence,

|0, ¥ Lyra-1y | < Nq gy 1 gt -
Since D is dense in H' (), the inequality remains true for all f € H 1(Q). Thus,
| V) 1y ity < gl 1f g (F € H' ().
Computing the infimum over all g € H'(Q) with yg = yf, we deduce
|ma V) iy | < 1l 17F ey, (F € HY(Q)).
Therefore yog € H'/2(R?™Y) and [yagllz-12 < 1191l gaivy» Which shows
continuity of y,. It is left to show that y, has dense range. For this, take yf €
H'2(R4=1) for some f € H'(2) such that
("8 Y/ wa-1y =0

for all g € D?. Next, take § € C(RY!) and ¢ € C®(R) with (0) = 1. Then
weset g: Q3 (X,X) = —e g(X)¥(¥) € D? and note that y,¢ = 3. Hence

Vf D rmi-n =0 (FeCO®RIT).

Thus, yf = 0, which implies that the range of y, is dense, as H~1/?(R?~1) is a
Hilbert space. The remaining formula (12.1) follows by continuously extending both
the left- and right-hand side of the integration by parts formula from the beginning
of the proof. Note that for this, we have used both Theorems 12.1.1 and 12.2.1. O
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Corollary 12.2.3 Let f € H'(Q), ¢ € H(div, Q). Then f e dom(grady) if and
onlyifyf =0, and g € dom(divy) if and only if ynqg = 0.

Proof We only show the statement for g. The proof for f is analogous. If ¢ €
dom(divp), then there exists a sequence (¥,), in C° (2)? such that ¥, — ¢ in
H(div, 2) as n — oo. Thus, by continuity of y,, we infer 0 = yp¥, — wgq.
Assume on the other hand that ¢ € dom(div) with y,g = 0. Using (12.1), we obtain
for all f € dom(grad)

(divg, f) + (g, grad f) = 0.

This equality implies that ¢ € dom(grad®*) = dom(divp), which shows the
remaining assertion. O

The remaining part of this section is devoted to showing that the continuous
extension of y, maps onto H~'/2(R4~1). For this we require the following
observation, which will also be needed later on.

Proposition 12.2.4 Let U C R? be open. Then
Ho(div, U)LHavo) — {q € H(div,U); divg € H'\(U), g = graddivq] .

Proof Let g € H(div, U). Then ¢ € Ho(div, U)*#w@iv.0) if and only if for all r €
Hy(div, U) we have
0={r,q)aivuy = 9,y + {divr,divg), )

=(r,q) L,y + (divor,divg) @) -

The latter, in turn, is equivalent to divg € dom(divj) = dom(grad) = H 1(U) and
—graddivg = divjdivg = —q. ]

Theorem 12.2.5 y, maps onto H'/2(R4=Y. In particular, we have

g1 i aiv.o) < gl g-1/2Ra-1y

forall g € Ho(div, Q)Hiv.e),
Proof By Theorem 12.2.2 it suffices to show that y;, has closed range. For this, it
suffices to show that there exists ¢ > 0 such that

91l aiv,2) < € Ivngllg-12Ra-1y

for all g € ker(y,)H@v.2) By Corollary 12.2.3, we obtain ker(y,) = Hp(div, 2).
Hence, by Proposition 12.2.4, we deduce that ¢ € ker(y,)~#@.9 if and only if
q € dom(graddiv) and ¢ = graddivg. So, assume that ¢ € dom(graddiv) with



12.3 Inhomogeneous Boundary Value Problems 195

q = graddivg. Then (12.1) applied to ¢ € dom(div) and f = divg € dom(grad)
yields

(ynq)(y divg) = (divg, divg) + (g, graddivg) = (divg, divg) + (¢, q)
= llg 117 giv. ) -

where we used graddivg = g. Hence

113 aiv.y < Iy divallgz Ivagllg-12 < Idivgll g o) llvng -1
= 191l aiv.2) 1¥agllg-112

where we again used that grad divg = ¢. This yields the assertion. O

12.3 Inhomogeneous Boundary Value Problems

Let Q = R?~! x R. (. With the notion of traces we now have a tool at hand that
allows us to formulate inhomogeneous boundary value problems. Here we focus on
the scalar wave type equation for given Neumann data g € H~'/2(R?~1). We shall
address other boundary value problems in the exercises. Let M : dom(M) € C —
L(LZ(Q) X Lz(Q)d) be a material law with s, (M) < vg for some vy € R. We
assume that M satisfies the positive definiteness condition in Theorem 6.2.1; that is,
we assume there exists ¢ > 0 such that for all z € Cre>y, we have RezM (z) > c.
For v > vy we want to solve

(o (22)()-() =
grad 0 q 0

g, ) =2 on 9 forall 7 > 0.

Let us reformulate this problem. Let ¢ € C*°(R) such that 0 < ¢ < 1 with¢p =1
on [0, 00) and ¢ = 0 on (—o00, —1]. We define the function

g=(1r¢WF e H'PRI™) e (| Lo @®; HV2RITY)

v>0

and consider

(o (22)()-() =
grad 0 q 0 (12.2)

Ynq (1) = g(1) forall r > 0.

instead.
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Theorem 12.3.1 Let v > max{vg, 0}, v # 0. Then (12.2) admits a unique solution
0 div
1 .
(v,q) € H| (R, dom ( (grad . ) ))

Proof We start with the existence part. By Theorem 12.2.5, we find G € H(div, Q)
such that ,G = g; set G == ¢ (- )G e H 3(IR H (div, 2)). Consider the following
evolutionary equation

0 divg uy 0 —divG
(at,vM(at,v) + <grad 0 )) <r> = 0y, M (0,0) (—G) + < 0 ) .

Note that the right-hand side is in HV2 (R; Ly (£2) x LZ(Q)‘I). By Theorem 6.2.1, we
obtain

-1
uy 0 divg 0 —divG
(r) = (at,vM(at,v) + (grad 0 )) (at,vM(at,v) (—G) + ( 0 ))

e H'(R; Ly(2) x Ly N L., (R; dom ( (gid d(i)v> ))

Indeed, since the solution operator commutes with 9; , and the right-hand side lies

in H2 it even follows that < ) € HZ(R L2(2) x La(2)?). From the equality

0 divg u\ 0 —divG
<8t,vM(8t,v) + (grad 0 )) (r) = 0,y M (0;,)) (—G) + ( 0 )

it follows that

0 divg
(<grad 0 ))( ) € Hy (R; La(RQ) x La(Q)%).

Hence,

: —1
(”r‘) e(1+ <gr0a ; d‘OVO)) [H!(R: Ly(Q) x Ly(@)"]

LACTEI())!
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divg
grad 0

0 div u 0
s (L) 10)- ()

Since r € HVl (R; dom(divy)), by Corollary 12.2.3 and Theorem 4.1.2 we obtain

where the resolvent is well-defined since < ) is skew-selfadjoint. Also, we

deduce that

Ya((r+G)(0) =mG@) =g@) (¢ €R).

Hence, (1, r + G) solves (12.2).
Next we address the uniqueness result. For this we note that a straightforward
computation shows

1

v _ 0 divg ) 0 —divG
(q B G) = | 0,y M(9,,) + (grad 0 ) (al,vM(al,v) (—G) + ( 0 )) ,

which coincides with the formula for (u, r + G). |

The upshot of the rationale exemplified in the proof is that inhomogeneous boundary
value problems can be reduced to an evolutionary equation of the standard form
with non-vanishing right-hand side. The treatment of inhomogeneous Dirichlet data
works along similar lines.

12.4 Abstract Boundary Data Spaces

Of course inhomogeneous boundary value problems can be addressed for other
domains Q than the half-space R?~! x R.. Classically, some more specific
properties need to be imposed on the description of the boundary 9€2. In this section,
however, we deviate from the classical perspective in as much as we like to consider
arbitrary open sets 2 C R¢. For this we introduce

BD(div) = {¢ € H(div, 2); divg € dom(grad), graddivg = ¢},

BD(grad) = [u € HI(Q); gradu € dom(div), divgradu = u} .

By Proposition 12.2.4 and Exercise 6.7, these spaces are closed subspaces of
H(div, Q) and H 1(Q), respectively, and therefore Hilbert spaces. Indeed,

BD(div) = Hy(div, Q)J-H(div,Q)
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and
1 L1
BD(grad) = H (2)" 1 ®,

Now, we are in a position to solve inhomogeneous boundary value problems, where
the trace mappings y and y;, are replaced by the canonical orthogonal projections
TTBD(grad) and 7pp(div) respectively; see Exercise 12.4. We devote the rest of this
section to describe the relationship between the classical trace spaces introduced
before and the BD-spaces. In the perspective outlined here, there is not much of a
difference between Neumann boundary values and Dirichlet boundary values. The
next result is an incarnation of this.

Proposition 12.4.1 We have
grad[BD(grad)] € BD(div) and div[BD(div)] € BD(grad).
Moreover, the mappings

gradgp : BD(grad) — BD(div),

u +— gradu
and

divgp : BD(div) — BD(grad),
q — divg

are unitary, and grad, = divpp.

Proof Let ¢ € BD(grad). Then grad¢ € H(div, 2) and divgrad¢ = ¢. This
implies divgrad¢ € dom(grad) and graddivgrad¢ = grad¢, which yields
grad¢ € BD(div). Thus, gradgp, is defined everywhere; interchanging the roles of
grad and div, we obtain divpp is also defined everywhere. We infer divgp gradBIP =

1BD(grad) and gradgp, divep = 1gpdiv) and thus gradgp, is bijective with gradyy =
divpp. It remains to show that gradg, preserves the norm. For this we compute

<gradBD ¢s gradBD ¢>BD(div) = (gradd), grad¢>H(div)
= (grad ¢, grad @), ()¢ + (divgrad ¢, divgrad @), , )
= (grad ¢, grad ¢>L2(Q)d + (9, ¢>L2(Q)

= (@, ®)dom(erad) = (@+ @)BD(grad) »

which implies that gradgp is unitary. Hence, divgp = gradgll) = gradgy,. O
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It is also possible to show an ‘integration by parts’ formula analogous to (12.1) for
the abstract situation:

Proposition 12.4.2 Let u € H'(Q) and g € H(div, Q). Then

(divg, u)y, @) + (g, grad M>L2(Q)d = <diVBD TBD(div)9 » ﬂBD(grad)”>BD(grad)

= (mBDWiv ¢, gradgp ”BD(grad)”>BD(div) :

Proof We decompose u = ug + uj and ¢ = go + g1 with ug € HOI(Q), qo €
Hy(div, 2), u1 = 7BD(grady# and g1 = mBD(div)¢- Then we obtain

(divg, u)p, @) + (g, grad M)LZ(Q)J

= (divo qo, u) 1, () + (div g1, u) 1, (@) + {(qo, grad u) , @ye + (q1, gradu), )a

= {(qo, —gradu) (e + (divqr, u), @) + (qo, gradu) ., oy + (g1, gradu) (o

= (divqi, uo)p, (@) + (divqr, ui)r, @) + (g1, graduo) p, (@) + (g1, gradur) (@)

= <q1’ - grad() MO>L2(Q)d + (divql’ ul)Lz(Q) + <q1’ grado MO>L2(Q)d + <91, gradul>L2(Q)d
= {divgi, u1)p, (@) + (g1, gradui), gy

= <d1V q1, Ml)Lz(Q) —+ (graddiv q1, gradul)Lz(Q)d = <d1Vq1, ul)BD(grad) .

The remaining equality follows from divj;, = gradgp by Proposition 12.4.1. O

In view of Proposition 12.4.2 the proper replacement of y, appears to be
divep 7BD(div) instead of just mpp(divy. Next, we show the equivalence of the trace
spaces for the half-space and the abstract ones introduced in this section.

Theorem 12.4.3 Let Q@ = RI7! x R.g. Then ¥ |BD(grad) - BD(grad) —
H'2(RIY and ¥n|BD(iv) : BD(div) — H~Y2(R=Y) are unitary mappings.

Proof We begin with y,. We have shown in Theorem 12.2.2 that y4|ppdiv)
is continuous and in Theorem 12.2.5 it has been shown that (yn|BD(diV))’1 is
continuous. Also the two norm inequalities have been established.

The injectivity of y|Bp(grad) follows from kery = HO1 (2) by Corollary 12.2.3.
All that remains simply relies upon recalling that H'/2(R?~1) is isomorphic to
(ker )+ with the orthogonal complement computed in H' (). O

12.5 Robin Boundary Conditions

The classical Robin boundary conditions involve both traces, the Dirichlet trace y
and the Neumann trace y;,. To motivate things, let us again have a look at the case
Q = RI-1 x R~ . We consider the boundary condition for given g € H (div, 2)
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andu € H(Q)
¥aq +iyu =0,
in the sense that
(@) (V) = (—iyu, v) @1y (e HPPRITY).
Note that this is an implicit regularity statement as y,g € H~'/2RI™1) is
representable as an L(R¢~1) function. The next result asserts that an evolutionary
0 le) with the above Robin

grad 0
boundary condition fits into the setting rendered by Theorem 6.2.1. In other words:

Theorem 12.5.1 Let @ = RI™! x R.. Then the operator A: dom(A) C

Ly(Q)4+ > Ly()4+! with A C ( 0 dlv) with domain
grad 0

equation with a spatial operator of the type (

dom(A) = !(u, g) € H'(Q) x H(div, Q) ; yaq + iyu = 0}

is skew-selfadjoint.

Proof Let (u, q), (v, r) € H() x H(div, Q). Then, by (12.1) we obtain

((ema 0 () O (a5 C))
grad 0 / \g/) \r qg) \grad 0 /] \r
= (divg, v) + (gradu, r) + (u, divr) + (g, gradv) = (yaq) (yv) + ((ar) (yu))*

If, in addition, (u, g) € dom(A), we obtain

) OE) (aD) C))
= (q) (yv) + ((rar) (yu))* = (=iyu, yv) p,ga-1) + ((rar) (yu))*
= (yu,iyv) a1y + ((ar) (yu))* = ((iyv + yar) (yu))*.
Since for every u € D, we find g € D4 such that (1, g) € dom(A),
y[D] C {yu; 3q € H(div, Q): (u,q) € dom(A)}.
Thus, the set on the right-hand side is dense in H'/2(R?~1). This in turn implies

that (v,r) € dom(A*) if and only if iyv + ypr = 0, and in this case we have
A*(v,r) = —A(v, r). This implies that A is skew-selfadjoint. |
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Remark 12.5.2 The factor i in front of yu is chosen as a mere convenience in order
to render the corresponding operator A in Theorem 12.5.1 skew-selfadjoint. It is
also possible to choose § € L(H'2(3Q)) with —Re 8 > 0 instead of i. Then one
obtains for all U € dom(A) and V € dom(A*) the estimates Re (U, AU) > 0
and Re (V, A*V) > 0. Appealing to Remark 6.3.3, it can be shown that the
corresponding evolutionary equation

(0 wM(0r,v) + AU = F

for a suitable material law M as in Theorem 6.2.1 is well-posed.

Next, one could argue that in the case of arbitrary €2, the condition

ITBD(grad) + divBD TBD(div)q = 0 (12.3)

amounts to a generalisation of the Robin boundary condition just considered.
However, this is not true as the following proposition shows.

Proposition 12.5.3 Let u € HY(RQ), and ¢ € H(div, Q). Moreover, we set
k : BD(grad) — Lr(R4=YY with kv = yv forv € BD(grad). Then ynq +iyu =0
if and only if

divep 7TBD(div)q + ik K TBD(gradyt = 0.

Proof We first observe that k TBp(gradyw = yw for each w € H' ().
Assume now that ypg + iyu = 0 and let v € BD(grad). Then we compute, using
Proposition 12.4.2 and (12.1)

(uc K TTBD(grad) U v)BD(grad) (IKJTBD(grad)I/l KU>L LJ(RA-1y = = (iyu, )/U)LZ(Rd )
= —(nq)(yv) =(—=divg, v) @) + {(—¢, gradv), )

= (_ diVBD 7TBD(div)¢]7 v)BD(grad) )

which proves one of the asserted implications.
Assume that divgp TBD(div)q + iK*KﬂBD(gmd)u = 0andletv € Hl/z(Rd_l).
We take w € H'(€2) with yw = v and compute

(vng)(v) = (divg, w)p,q) + (¢, grad w), )

= (diVBD 7TBD(div)¢ » TBD(grad) w)BD(grad)

( iK KT[BD(grad) U, TBD(grad) w>BD(grad)
( 1KTL’BD(grad) U, KTTBD(grad) w>L2(Rd*1)

= (—iyu, U)Lz(Rd—l) ,
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which shows the remaining implication. O

12.6 Comments

The concept of abstract trace spaces has been introduced in [86] in order to study a
multi-dimensional analogue for port-Hamiltonian systems. Also concerning differ-
ential equations at the boundary (so-called impedance type boundary conditions),
the concept of abstract boundary value spaces has been employed, see [91].

A comparison between abstract and classical trace spaces has been provided
in [37, 115] particularly concerning H~'/2(R¢~1). A good introduction for trace
mappings for more complicated geometries can be found e.g. in [5]. The trace
operator can also be suitably established for H (curl, €2)-regular vector fields given
that €2 is a so-called Lipschitz domain, see [18].

Exercises

Exercise 12.1 Let ¢ € CP(RY), f € Ly(RY). Show that
¢xfrxr / ¢(x —y)f(y)dy
R4

belongs to H I(R?) and that grad (¢ x f) = (grad¢) % f. If, in addition, f €
H' (R = dom(grad), then grad(¢ * f) = ¢ * grad f, where the convolution
is always taken component wise.

Exercise 12.2 Let Q € R? be open. Let f € L(£2) and denote by f € Ly(RY)
the extension of f by zero. Let v € R, ¢ > 0 and define f; == f(- + tv)]|q.

(a) Show that f; — fin Lo(2) ast — O.
(b) Letnow f € H'(Q) and Q + v C Q forall ¢ > 0. Show that f; — f in
H'(Q)ast — 0.

Exercise 12.3 Prove Theorem 12.2.1.

Exercise 12.4 Let @ € R be open, M: dom(M) € C — L(L2(R) x La()?)
with sp (M) < vp for some vy € R, ¢ > 0 such that for all z € Cgrexy, We have
RezM(z) = ¢, v > max{vg, 0} and v # 0. Show that there exists a unique

(o) < s (®aom (o 5))



References 203

e (L2)E)-() =
grad 0 q 0

TBD(erad) V() = @ (2) f forallt e R,

satisfying

for some bounded ¢ € C*°(R) with infspt¢ > —oo and f € BD(grad).

Exercise 12.5 Let @ = RY-1 x R.o. Show that there exists a continuous linear
operator E: H'(Q) — H'(R?) such that E(¢)|q = ¢ foreach ¢ € H'(Q).

Exercise 12.6 (Korn’s Second Inequality) Let Q = RI-1 x Roy. Using Exer-
cise 12.5 show that there exists ¢ > 0 such that for all ¢ € H'(2)? we have

||¢||H1(Q)d <c (||¢||L2(Q)d + ||Grad¢||L2(Q)dxd) .

Thus, describe the space of boundary values of dom(Grad).
Hint: Prove a corresponding result for @ = R first after having shown that
c (Rd)d forms a dense subset of both H'(€2)? and dom(Grad).

Exercise 12.7 Let © € R3 be open. Compute BD(curl) := Hy(curl, Q)LH )
and show that curl: BD(curl) — BD(curl) is well-defined, unitary and skew-
selfadjoint.
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Chapter 13 )
Continuous Dependence Shethie
on the Coefficients I

The power of the functional analytic framework for evolutionary equations lies in
its variety. In fact, as we have outlined in earlier chapters, it is possible to formulate
many differential equations in the form

(M (3)+ A)U = F.

In this chapter we want to use this versatility and address continuity of the above
expression (or more precisely of the solution operator) in M (9;). To see this more
clearly, fix F and take a sequence of material laws (M,),. We will address the
following question: what are the conditions or notions of convergence of (M}),, to
some M in order that (U,), with U, given as the solution of

(atMn(at) + A) Up=F
converges to U, which satisfies
(OM@0;)+ AU =F?

In the first of two chapters on this subject, we shall specialise to A = 0; that is, we
will discuss ordinary differential equations with infinite-dimensional state space. To
begin with, we address the convergence of material laws pointwise in the Fourier—
Laplace transformed domain and its relation to the convergence of material laws
evaluated at the time derivative.
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206 13 Continuous Dependence on the Coefficients I
13.1 Convergence of Material Laws

Throughout, let H be a Hilbert space. We briefly recall that a sequence (7},), in
L(H) converges in the strong operator topologytosome T € L(H) if forallx € H
we have

T, x > Tx (n— 00).

(Ty)n is said to converge in the weak operator topology to T € L(H) if for all
x,y € H we have

(v, Thx) = (y, Tx) (n— 00).

We denote the set of material laws on H with abscissa of boundedness less than or
equal to vp € R by

M(H, vg) :={M: dom(M) — L(H); M material law, s, (M) < vp}.

Remark 13.1.1 Letvy € R, v > vg. Then M(H, vp) is an algebra and M (H, vg) >
M= M) € L(Lz,,,(R; H )) is an algebra homomorphism which is one-to-one
by Theorem 8.2.1.

Definition Let vy € R. A sequence (M), N in M(H, vg) is called bounded if

sup ||Mn||oo,<CRe>u0 < 0.
neN

Theorem 13.1.2 Let vo € R, (M), in M(H, vg) be bounded. Assume that for
all z € Cres, the sequence (My(z)), converges in the weak operator topology
of L(H) with limit M (z) and let v > vo. Then M € M(H, vo) and My (9;,,) —
M (9;,,) as n — oo in the weak operator topology ofL(Lz,v(R, H)).

If, in addition, (M, (2)), converges in the strong operator topology of L(H) for
all z € Cresyy, then, as n — 00, M, (d;,,) — M(9;,) in the strong operator
topology ofL(Lz,v(R, H)).

Proof Let 7o € CRre>vy, € (0,Rezg — vp). For x, y € H, by Cauchy’s integral
formula, we deduce

1 , M,
(v, My (z0)x) = ooz f (. Ma@)x)n dz (meN).
i JoBior) 2720

As (M), is bounded, Lebesgue’s dominated convergence theorem yields

1 (y, M(2)x)
(y, M(zo)x) = . / Y H g,
271 JoBzry 220
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Since

Ky, M@)x) g < llxllg 1yl sup I Malloo,creny (2 € CRe>ug)s (13.1)

neN

(¥, M(-)x)y is holomorphic in a neighbourhood of zp. By Exercise 5.3 we obtain
that M : Cresy, — L(H) is holomorphic. In fact, the estimate (13.1) even implies
that M € M(H, vp).

If z € Cresy, and (M, (2)), even converges in the strong operator topology, then
the limit is clearly M (z).

The convergence statements for (M, (0;,,)), (in the weak and strong operator
topology) are then implied by Fourier—Laplace transformation. O

Remark 13.1.3 In Theorem 13.1.2, it suffices to assume that (M, (z)), converges
only for z belonging to a countable subset of Crex, With an accumulation point in
(CRe>v0~

The next statement is essential for the convergence statement for “ordinary”

evolutionary equations.

Proposition 13.1.4 Let (T,)n be a sequence in L(H) converging in the strong
operator topology to some T € L(H) with 0 € (,cn 2(Ty), sUp,en || Tn_1 || < 00
andran(T) C H dense. Then T is continuously invertible and (Tn_l),, converges to
T~ in the strong operator topology.

Proof We set K := sup,,cy || 7! || We show that T is continuously invertible first.
For this, let x € H. Then

lxll =

Iﬁnngmﬂw»wa (n — o0).

Hence, T is one-to-one and it follows that ran(7) € H is closed. Hence, 0 € p(T).
For x € H we conclude

Tnflx — Tfle = ‘

QﬂT—Eﬂ“%HgKWT—Eﬂ“%HeO

as (n - o0). |
We are now in the position to obtain the first result on continuous dependence.
Theorem 13.1.5 Let v € R, (M,),, a bounded sequence in M(H, vp), ¢ > 0 such

that for alln € N and z € Cres., we have

RezM, (z) > c.
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If (M, (2))n converges in the strong operator topology for all z € Crexy, then for
the limit M (z) we have M € M(H, vo) with RezM (z) > c for all z € Cres, and
forv > vy we have

(B M (3)) " = (B oM (@)

in the strong operator topology.

Proof By Theorem 13.1.2, we observe M € M(H, vp). Let z € Cre>y,. Then
we have Re zM (z) = lim,—o0 RezM;,(z) > ¢ and hence zM(z) is continuously
invertible. Since 0 € (),cy £ (2M,(2)) and || (ZM,,(Z))_1|| < 1/c¢ by Proposi-
tion 6.2.3(b), we deduce by Proposition 13.1.4 applied to 7, = zM,(z) that
(zM,(z))"! — (zM(z))~! in the strong operator topology. By Theorem 13.1.2,
for v > vy we infer (8,,1)Mn(8t,v))71 — (8,,1,M(8,,U))71 in the strong operator
topology. O

13.2 A Leading Example

We want to illustrate the findings of the previous section with the help of an ordinary
differential equation. Also, we shall provide an argument on the limitations of the
theory presented above. Let (2, X, i) be a finite measure space.

Note that for V € Ly (u) with associated multiplication operator V (m) as in
Theorem 2.4.3 we have that

M:z 14+2z7'V(m) e L(La(w)

is a material law with sy (M) = O unless V = 0 (in case V = 0 we have s, (M) =
—00). The corresponding evolutionary equation is given by

Orou + V(mu = f.

We want to study sequences of material laws of this form; that is, material
laws induced by sequences (V,), in Lso(u). First, we provide the following
characterisation of the convergence of multiplication operators. We recall that for
a Banach space X the weak™ topology o (X', X) on X’ is the coarsest topology such
that all the mappings X’ 3 x’ + x/(x) (x € X) are continuous.

Proposition 13.2.1 Ler (V,), in Loo() and V € Lo (). Then the following
statements hold.

(@) Vyu(m) — V(m) in L(L2(u)) if and only if V;, — V in Loo(1).

(b) Vu(m) — V(m) in the strong operator topology of L(L2(w)) if and only if (V;;)
is bounded in Loo () and V, — V in L1 ().
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(¢) Vu(m) — V(m) in the weak operator topology of L(L>(w)) if and only if
Vi, — V in the weak™* topology G(Loo(,u), Ll(l/«))~

Proof

(a) This is a direct consequence of Proposition 2.4.6.
(b) Assume V,, — Vin L{(u) and that (V,)), is bounded in Lo, (). Then (V,—V),
is also bounded in Loo(1t). For f € Loo(1t) € La(14) we obtain

IVatm) £ — V) £I2, 0 =/Q|vn “VRIFR du

< sup 1V = Vil ||f||iw)/ Vi — VI di = 0.
neN Q

Since Loo(w) is dense in Lo(u) and (V;,(m) — V(m)), is bounded by Propo-
sition 2.4.6, we obtain V,,(m) — V(m) in the strong operator topology of

L(La(w)).

Now, let V;;(m) — V (m) in the strong operator topology of L(L2(x)). Then
(V(m)), is bounded in L(L>(w)) by the uniform boundedness principle. Now
Proposition 2.4.6 yields boundedness of (V};),, in Lo (1t). Moreover, since 1o €
Lo(w), we deduce V,, = V,(m)1g — V(m)lg = V in Ly(w). Since Lo(i)
embeds continuously into L1(x) we obtain V,, — V in L (u).

(c) The assertion follows easily upon realising that ¢ € Lj(u) if and only if there

exists Y1, Y2 € La(u) such that ¢ = ¥r1;. m|

With the latter result at hand together with the results in the previous section, we
easily deduce the next theorem on continuous dependence on the coefficients.

Theorem 13.2.2 Let (V) in Loo(t) be bounded, V € Loo(1t), and V,, — V in
L1(w). Then there exists v > 0 such that

(30 + Vo)™ = (8,0 + V()™

in the strong operator topology ofL(Lzsv R; Lg(,u))).
Note that the convergence statement can be improved, see Exercise 13.3.

Proof By Proposition 13.2.1(b) we obtain V,,(m) — V (m) in the strong operator
topology of L(La(u)). Note that for v > 1 + sup, oy | Vall Lo ) We have

Re(z + Va(m) 21 (2 € Cre>v,n € N).

Now Theorem 13.1.5 applied to M, (z) =1+ z7 1V, (m) yields the assertion. |
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Remark 13.2.3 Theorem 13.2.2 can be generalized in the following way. Let (B,,),
in L(H), B € L(H), B, — B in the strong operator topology. Then there exists
v > 0 such that

(3 +By) " = (30 +B) "

in the strong operator topology of L (Lz,v R; Lz(M))).

In Theorem 13.2.2 we assumed strong convergence of the sequence of multiplication
operators (V,(m)),. A natural question to ask is whether the stated result can be
improved to (V,), converging in the weak™ topology o (Loo(,u), L (M)) only. The
answer is neither ‘yes’ nor ‘no’, but rather ‘not quite’, as we will show in the
following. We start with a result on weak® limits of scaled periodic functions,
which will serve as the prototypical example for a sequence converging in the weak™
topology of L.

Theorem 13.2.4 Let f € Loo(R?) be [0, 1)%-periodic; that is,
fe+b=f (keZ.

Then
fn) — / S(x)dxLpa
[0,1?

in the weak™* topology G(Loo(Rd), Ly (Rd)) asn — oo.

Proof Without loss of generality, we may assume f[o e f(x)dx = 0. By the

density of simple functions in L (Rd) and the boundedness of (f(n-)), in Lo (Rd),
it suffices to show

/ f(nx)dx - 0 (n— o0)
o)

for Q = la,b] = lai,b1] x ... x [ag,bg] where a = (ai,...,aq),b =
(b1, ...,by) € R, By translation and the periodicity of f we may assume a = 0.
Thus, it suffices to show

f(nx)dx - 0 (n— o0)
[0,b]
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forall b € (0, 00). So,letb = (b, ...,by) € (0,00). Let n € N. Then we find
z€ Ng and ¢ € [0, 1)? such that nb = z + ¢. We compute

f(nx)dx

[0,b]
1

= 4 f(x)dx
n Jio,nb
1

=

f ) dx + ld/ fx)dx.
n

10,11 1x[0,nb2]x...x[0,nb4] (z1,21+¢11x[0,nb2]x... x[0,nby]

We now estimate

1 1
.| o< [ £ @) d
n% J(z1,214+¢11x[0,nba]x...x[0,nby] n% J(z1,214+¢11x[0,nba]x...x[0,nby]
.,
< dx [ £l
“ond (0,1]x[0,1nb2 ] x.... x[0,1b] alt)
1
= nbz e ba 1 g o -
Continuing in this manner and using z; < nb; forall j € {1, ..., d}, we obtain
1 bi-...-by
fnx)dx| < fx)dx| + 11 o) -
‘ (0,51 n? 1 Ji0.21 n 2 bj ()

j=1 J

Since f is [0, 1)d-peri0dic and z € Ng we observe

d
(x)dx = / (x)dx =0.
f(x)dx ]l_[=1Z/ [0,1)‘1f x)dx

[0,z]
Thus,
1 bi-... by
Sf(nx)dx| < AN L) »
I, DL
which tends to 0 as n — o0. m|

Remark 13.2.5 Note that Theorem 13.2.4 also yields

Fn) — / F)dxlg
[0,1)4
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in the weak™® topology o (Lo (£2), L1(€2)) for all measurable subsets 2 C R4 with
non-zero Lebesgue measure.

We now present an example which shows that weak™ convergence of (V},),, does not
yield the result of Theorem 13.2.2.

Example 13.2.6 Let (2, 2, n) = ((0,1), B((0, 1)), A|0,1)). For n € Nlet V, be
given by V,,(x) := sin(2wnx) for x € (0, 1). Then, by Theorem 13.2.4, we obtain
Vi = 0in o (Loo((0, 1)), L1((0, 1))) as n — oo. Let v > 1. Then (9., + V;,(m))
is continuously invertible as an operator in Lz,v(R; L>((0, 1))). Let f e C([0, 1]
and denote f: ¢t > 1jp o) (t)f. Then f € LZ,V(R; L, ((0, 1))). The solution u,, €
La,»(R; L2((0, 1)) of

(8t,v + Vi (m))un =f

is given by the variations of constants formula; that is,

t
u,(t, x) = ]l[o,oo)(t)/ exp (— (r — ) sin(2nx)) dsf(x) (teR,xe1).
0

Thus, if a variant of Theorem 13.2.2 were true also in this case, (u,), needs to
converge (in some sense) to the solution u of

at,vu =1
which is given by
w(t, x) = Loy )t f(x) (1 €R,x € (0, 1)).

However, by Theorem 13.2.4, for x € (0, 1) we deduce
t t
/ exp (— (r — ) sin(2wnx)) ds —>/ J(=(t—s)ds (n— 00)
0 0

in o (Loo((0, 1)), L1((0, 1)) for each r > 0, where

1
J(s) = / exp (ssin(27x))dx (s € R)
0
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denotes the 0-th order modified Bessel function of the first kind, cf. [1, p. 9.6.19].
Moreover, for ¢ € CP(R), A € B((0, 1)) and using dominated convergence we
obtain

(n, 9T A) L, (R Lo(0,1))

o0 1 t
= / / / exp ( —(t—y) sin(27mx)) de(x)*]lA(x) dxo(t)e 2 dr
0 0o Jo

00 1 t
—>f f f J(=(t — 5))ds f () L4 (x) dxe(r)e 2" dr
0 0 0

= (i, 1 A) 1, ,R: Lo(0.1))

with
t
ut, x) = ﬂlo,oo)(t)/ J(—( — s))dsf(x) (teR,x €(0,1)).
0

Since (u,), is bounded in LZ,V(R; L>((0, 1))) and, by Lemma 3.1.9, the set
{q)]lA; A e B((0,1)), peC¥ (R)} is total in Lz,v(R; L>((0, 1))), we infer
u, — u weakly in LZ,V(R; L>((0, 1))) as n — oo. In particular, ¥ # u.
Furthermore, # is not of the form

t ~ ~
/0 exp ( — (- s)V(x)) ds f(x)

for some V € Loo((0, 1)) and hence, we cannot hope for i to satisfy an equation of
the type

(8y + V()i = f.

As we shall see next, in the framework of evolutionary equations it is possible to
derive an equation involving suitable limits of (V,), and f as a right-hand side.

13.3 Convergence in the Weak Operator Topology

In this section, we consider a particular class of material laws and characterise
convergence of the solution operators of the corresponding evolutionary equations
in the weak operator topology. The main theorem that will serve to compute the
limit equation satisfied by % in Example 13.2.6 reads as follows.
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Theorem 13.3.1 Let H be a Hilbert space, (By,), a bounded sequence in L(H) and
V > sup,en I Bull. Then ((at,v + Bn)fl)n converges in the weak operator topology
of L(L2v(R; H)) if and only if for all k € N the sequence (B,’j)n converges in the
weak operator topology of L(H). In either case, we have

o0
(07,0 + Bn)il - Z ( - atjul)kckattul
k=0

in the weak operator topology of L(L3,,(R; H)), where C, € L(H) denotes the
weak limit of (BX),, for k € Nand Cy := 1p.

Remark 13.3.2 In the situation of Theorem 13.3.1, let B,’f — Cy in the weak
operator topology for all k € N. Let L = sup,cy |Bull, v > 2L, and f €
Ly ,(R; H). By Theorem 13.3.1, if (0;,, + Bp)u, = f for all n € N, then
(un)y converges weakly in Ly, (R; H) to some element &' € Ly ,(R; H). In
order to determine the differential equation satisfied by i, we make the following
observations: by weak convergence,

ICxll < timint | B[ < £*.
n— o0

Hence, since 3;,)1

; < i (see Sect. 3.2) we infer that
2,v

o0
Z ( - atjvl)kck

k=1

convergesin L(L2 ,(R; H)) and

o0
Z ( - atfvl)kck

k=1

o0 k o0 1
<[] e <30 =1

k=1 k=1

Hence, since Co = 1y we deduce that Y po ( — a,fl})ka is boundedly invertible
by the Neumann series. Thus, we obtain

-1

o0 -1 oo

=8 (Z (- a;vl)"ck> =0 (1H +Y (- agvl)kck> i
k=1

=0y Z <_ Z ( - at;;l)kck> U = 0, yU + 0 Z (— Z ( — a,]})ka> u.

=1 k=1

Before we prove Theorem 13.3.1 we revisit Example 13.2.6.
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Example 13.3.3 (Example 13.2.6 Continued) By Theorem 13.3.1, we need to
compute the limit of (sin*(27n-)), in the weak* topology of Lo ((0, 1)) for all
k € N. By Theorem 13.2.4, we obtain for all k € N

1
lim sink(Znn-) =/ sink(27'r§) dé1,1)
n—od 0

(m,zm)z Lo,1, k= 2m forsomem € N,

0, k odd,

in a(Loo((O, 1)), L1((0, 1))). Hence, u, — i weakly, where i satisfies
Dol + 3 Y (=D 8" ) u=
" " =1 ( m=1 " (m!zm)z) !

for v > 2 by Remark 13.3.2.

Proof of Theorem 13.3.1 Before we prove the equivalence, we make some obser-

vations. Since v > sup,cy | Bzl =: L, by a Neumann series argument we deduce
that
o o0 X
(afV+B Z 3 1 Z(_a;}l) B;;{a;vl-
k=0 k=0

The series Z/fio ( 0 ) Bka 1 is absolutely convergentin L(Lj ,(R; H)). Also
note that for M,, : (CRe>L Sz Zkzo(—l)kBkl we have M,, € M(H, v).
Assume now that (B,’j )n converges in the weak operator topology to some Cy, for

all k € N. A little computation reveals that as n — oo,
/ 1\¢ 1
My@) = Y (—Z) Ci =M@ (€Cres)
k=0

in the weak operator topology, where the series on the right-hand side converges in
L(H) since

ICkll < <LK (ke N).

Moreover, since v > L, the sequence (M,), is bounded in M(H, v) and thus,
M e M(H,v) and

M, (at,v) - M(at,v)

in the weak operator topology by Theorem 13.1.2.
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Now, we assume that ((Bt,v + B,,)’l)n converges in the weak operator topology.
Then (M,,(0;,,))n converges in the weak operator topology. Let k € N. We need
to show that for all ¢, v € H the sequence ((d), B,lfl//‘> y)n 1s convergent to some
number ¢ ¢y as n — o00. The Riesz representation theorem then yields the
existence of Cy € L(H) with (¢, Crfr) = cr¢,y- So, let ¢,y € H. Moreover,
we consider the functions m,, and A, given by

mi(@) =Y _(=2'z(¢. Bw) (€ BO.1/L).nel)

k=0
and
=1/ 1Ny
@) = (6. My@V) = Y _ (—Z) (6. Bfv),  (eCrerine ),
k=0

Clearly, m, and &, are holomorphic on their respective domains for each n € N and
the sequences (m), and (h,), are uniformly bounded on compact subsets (in other
words they form normal families). Moreover,

mp(z) = hnC) (z € B(1/(2L), 1/(2L)),n € N).

We aim to show that the coefficients of the power series of m, converge as n tends
to infinity. The proof will be done in two steps. In step 1, we will prove that the
sequence (h,), converges to a holomorphic function i: Cre~z — C uniformly
on compact sets. Then, in the second step, we will use this to deduce that (m;),
also converges uniformly on compact sets and prove the assertion with the help of
Cauchy’s integral formula.

Step 1: By Proposition 5.3.2, (M, (im + v)), converges in the weak operator
topology of L(L>(R; H)). For f, g € L(R) we thus obtain that

((fohnGm +0)8) 1wy ), = ((fD. Mu(Gm+v)gV) 1, omy ),

is convergent. Thus, using L>(R) - L>(R) = L1 (R), we obtain that

V: Li(R)y>u+— lim (/ h, (it 4+ v)u(t) dt) eC
n—o0 R
defines a linear functional, which is continuous, since

sup sup || My (i + V) [l gy = sup | My (im + V) || (2, ®; H)) < 00
neNteR neN
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by boundedness of (By),. Hence, since L1(R) = Ls(R), we find a unique
h € Ly (R) with

lim /h,,(it—l—v)u(t) dt:/’ﬁ(r)u(t) dt (e Li(R)).
n—>oo R ]R

We now show that every subsequence (%, )x of (h,), has a subsequence (h, i )
which converges locally uniformly to a holomorphic function 4: Cresz — C
such that h(i - +v) = h a.e., and that this implies that the limit 2 does not
depend on the subsequences. Then we conclude that (4,), itself converges
locally uniformly to A.

So, let (hy, )k be a subsequence of (%,,). By Montel’s theorem (see [104, Theorem
6.2.2]), we find a subsequence (hnkl)l of (hy,)x such that h,,,q — hasl —
oo uniformly on compact subsets of Cre~y for some holomorphic function
h: Cre>1 — C. In particular, we obtain

lim | hy, (it +v)e@)dt = / h(it +v)p@)dt (¢ € C:.(R))
I—oo Jg 1 R

by dominated convergence and hence, A (it 4+ v) = ﬁ(t) for almost every t € R.
This shows that the limit £ is independent of choice of the subsequences (%, )k
and (hnkl );. Indeed, if I Cre>1 — C is the limit of another subsubsequence of
(hn)n as above, then iz\(i_l—v) =h= h(i-4v) a.e. Since T and h are holomorphic,
the identity theorem yields h=h.

Now, assume for a contradiction that (4,), does not converge locally uniformly
to h. Then we find a subsequence (h,, ) of (h,),, a compact set K C Crex1,
and & > 0 such that

[hne — | , =e (keN). (13.2)

00, K
However, the subsequence (h,, )r has a subsequence (hnkl ); which converges
locally uniformly to A, contradicting (13.2). Thus, (h,), itself converges locally
uniformly to £, and, in particular, 4, — h pointwise on Cres ..

Step 2: By what we have shown in Step 1, the sequence (m,),en converges
pointwise on B(l /L), 1/ (2L)). Since (my), is also uniformly bounded on
compact subsets of B(0, 1/L), we derive that (m,), converges uniformly on
compact subsets of B(0, 1/L) by Vitali’s theorem (see [104, Theorem 6.2.8]).
Choosing 0 < r < 1/L, we thus obtain by Cauchy’s integral formula

1 n
(. B1v), = QP /d mkizz) dz.

B(0,r) <

Thus (Bfl‘ )n converges in the weak operator topology as n — oo. O
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13.4 Comments

The problems discussed here are contained in [133, 138] for both the weak and
the strong operator topology. The case of differential-algebraic equations has been
invoked as well.

The appearance of memory effects; that is, the occurrence of higher order integral
operators due to a weak convergence of the coefficients has been first observed
by Tartar and can, for instance, be found in [113]. The limit equation, however,
is described by a convolution term rather than a power series of integral operators. It
is, however, possible to reformulate these resulting equations into one another, see
[135].

The last characterisation of weak convergence in Theorem 13.3.1 was formulated
for the first time in [89].

Exercises

Exercise 13.1 Let (V,), in Loo(R?) and V € Loo(R?). Characterise convergence
of V,(m) — V(m) in the strong operator topology of L(L>(R%)) in terms of
convergence of (V,), similar to as was done in Proposition 13.2.1.

Exercise 13.2 Show that there exists an unbounded sequence (V,,),, in Loo((0, 1))
and V € L ((0, 1)) with V,, — V in L{((0, 1)).

Exercise 13.3 Let (2, X, ) be a finite measure space, (V,,),, a bounded sequence
in Loo(it) and assume that V,, — V in L{(u) for some V € Loo(). Show that
there exists v > 0 such that

(30 + Vo) ™' = (8.0 + V()™

in the strong operator topology of L(LZ,V(R; Lo(w)), HVl (R; Lz(,u))).

Exercise 13.4 Let D =
compute the limit of

[n+1/2,n+4 1], V, == 1p(n-). For suitable v > 0

nez

(B0 + Va(m)™")

in the weak operator topology of L, (R; L2((0, 1))).

Exercise 13.5 Let H be a Hilbert space, c > O and ¢ < B, = B;f € L(H) for all
n € N. Characterise, in terms of convergence of (B, ), in a suitable sense, that

(@B,
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converges in the weak operator topology. In the case of convergence, find its limit
and a sufficient condition for which there exists a B € L(H) such that

B vB) ™ = @3B!

in the weak operator topology.

Exercise 13.6 Let H be a Hilbert space. Show that Bry)y = {B € L(H) ;
[|B]| < 1} is a compact subset under the weak operator topology. If, in addition, H
is separable, show that By () is also metrisable under the weak operator topology.

Exercise 13.7 Let H be a separable Hilbert space, (By,), in L(H) bounded. Show
that there exists a subsequence (B, )r of (By),, a material law M: dom(M) —
L(H) and v > 0 such that given f € Ly ,(R; H) and (uy)x in Lo, (R; H) with

at,u’/lk + Bnk”k =f (keN),

we deduce that (ux ), converges weakly to some u € Ly, (R; H) with the property
that

8t,vM(at,v)u =f
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Chapter 14 )
Continuous Dependence Shethie
on the Coefficients II

This chapter is concerned with the study of problems of the form
(3r,0Mn(31,0) + A) Uy = F

for a suitable sequence of material laws (M), when A # 0. The aim of this
chapter will be to provide the conditions required for convergence of the material
law sequence to imply the existence of a limit material law M such that the limit
U = lim,_, o, U, exists and satisfies

(0r,vM(3,,) + A)U = F.

Additionally, for material laws of the form M, (9;,,) = Mo, + 8;\,1 My, it will be
desirable to have the respective limit material law satisfty M (9;,,) = Mo + 8;,1 M
for some My, M1 € L(H). This cannot be expected (as we have seen in the guiding
example in the previous chapter) if A is a bounded operator, the Hilbert space H is
infinite-dimensional, and the material law sequence only converges pointwise in the
weak operator topology. It will turn out, however, that if A is “strictly unbounded”
then a suitable result can hold, even if we only assume weak convergence of the
material law operators.

14.1 A Convergence Theorem

The main convergence theorem of this chapter will be presented next.
Theorem 14.1.1 Let H be a Hilbert space, vg € R, (M), in M(H, vo) and M €
M(H, vo). Assume there exists ¢ > 0 such that for alln € N we have

RezM,(z) 2 c (z € (CRe>v0)-
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Let A: dom(A) € H — H be skew-selfadjoint and assume dom(A) — H
compactly. If M,,(z) — M(z) as n — 00 in the weak operator topology for all
Z € Cresy, then

-1 -1
VY > > >
(3,0 Mn(Br0) +A) = (8.vM(30) + A)

in the strong operator topology of L(L2,,(R; H)) for each v > vy.
For the proof of this theorem, we need a lemma first.

Lemma 14.1.2 Let H be a Hilbert space, A: dom(A) € H — H skew-
selfadjoint, ¢ > 0, (T,,), in L(H) withReT,, > c foralln € N, and T € L(H).
Assume dom(A) — H compactly and T, — T in the weak operator topology.
Then 0 € (,en P(Tn + A) N p(T + A) and

T+ > T +A)™!

in the norm topology of L(H).

Proof From Re T, > c it follows that 0 € p(T, + A) (n € N) and ((Tn + A)_l)n
is bounded in L(H). Indeed, since B := T, + A satisfies ReB = ReT, > ¢
and dom(B) = dom(A) = dom(B*) due to the skew-selfadjointness of A,
Proposition 6.3.1 yields the assertion. Moreover, since

AT, + A =1 - T(T, + A)!

forall n € N, it follows that (7, + A)~"), is also bounded in L(H, dom(A)) by
the boundedness of (7,,), in L(H). Due to the convergence of (7,), to T, it follows
that Re T > ¢, and thus, (T + A)~! € L(H, dom(A)). Before we come to a proof
of the desired result, we will prove an auxiliary observation.

Claim: for all (f;), in H weakly converging to f, we have (7, + At fn —
(T + A)~! f in the norm topology of H.

For proving the claim, let (f,), in H be weakly convergent to some f. Consider
up = (Ty + A)~' fu. Then (u,), is bounded in dom(A), since ((7, + A)~'),
is bounded in L(H,dom(A)) and (f,), is bounded in H. Hence, there exists
a subsequence (u,)r which weakly converges to some u in dom(A). Since
dom(A) — H compactly, we infer u,, — u in the norm topology of H. Hence, in
the equality

Tnkunk + Aunk = fnka

as T, — T in the weak operator topology and u,, — u in H, we may let k — oo
and obtain for the weak limits

Tu + Au = f;



14.2 The Theorem of Rellich and Kondrachov 223

that is, u = (T + A)~! f. Having identified the limit, a contradiction argument
(here a so-called ‘subsequence argument’, see Exercise 14.3) concludes that (1),
itself converges weakly in dom(A) and strongly in H to u. Thus, the claim is proved.

Next, assume by contradiction that ((T,, + A)’l)n does not converge in operator

norm to (T + A)~'. Then we find an ¢ > 0 and a strictly increasing sequence of
integers, (ny )k, and a sequence of unit vectors ( f,,)x in H such that

| @+ 7 fo = @+ 07

> e (14.1)

By possibly taking another subsequence, we may assume without loss of generality
that ( fnk) , converges weakly to some f € H. By the claim proved above, we

deduce (T +A) " foo = T+A) fand T+ A fry = T+A)f,
both in the norm topology of H as k — oo. Thus, we may let k — oo in (14.1),
and obtain the desired contradiction. O

Proof of Theorem 14.1.1 By Theorem 13.1.2 it suffices to show that for all z €
(CRe>v0

EMu(2) + A > @M@+ AT (n— 00)

in the strong operator topology. This, however, follows from Lemma 14.1.2 applied
to T, = zM, (2). |

Remark 14.1.3 Note that we only used convergence in the strong operator topology
in the proof of Theorem 14.1.1. However, the assertion in Lemma 14.1.2 is about
convergence in the norm topology. The reason that we cannot assert the convergence
claimed in Theorem 14.1.1 in the norm topology is that the compact embedding of
dom(A) — H only works locally for fixed z, and not uniformly in z. This situation
can, however, be rectified. We refer to Exercise 14.1 for this.

14.2 The Theorem of Rellich and Kondrachov

In order to apply Theorem 14.1.1, we need to provide a setting where the condition
on the compactness of the embedding is satisfied. In fact, it is true that H'()
embeds compactly into L(€2) given @ € R? is bounded and has ‘continuous
boundary’, see e.g. [5, Theorem 7.11]. In this chapter, we restrict ourselves to a
proof of a less general statement.

A preparatory result needed to prove the compact embedding theorem is given
next.

Proposition 14.2.1 Let I C R be an open, bounded, non-empty interval. Then
the mapping H'(R) > f + f|; € H'(I) is well-defined, continuous and onto.
Moreover; there exists a continuous right inverse H'(I) — H'(R).
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For the proof of this proposition, we need an auxiliary result first.

Lemma 14.2.2 Let Q C RY be open and connected. Moreover, letu € H 1(Q) with
gradu = 0. Then u is constant.

We leave the proof of this lemma as Exercise 14.2.

Proof of Proposition 14.2.1 The mapping H'(R) — H!(I), f — f|; is readily
confirmed to be continuous. It remains to prove that it is onto. Let I = (a, b),
u € H'(I) and define the function v by

t
v(t) :=/ du(s)ds (t € (a, b)).

Clearly, v € L>((a, b)) and we compute for each ¢ € C°((a, b))

b t * b prb
9 am = / ( f au(s)ds) ¢/ dr = f f ¢/ (1) di du(s)* ds

= —(0u, ®) 1, ((a.b)) -

This shows v € H'((a, b)) with dv = du. Hence, by Lemma 14.2.2 there exists a
constant ¢ € C with u = ¢ + v. We now define f by

0 ift<a—1lort>b+1,
ct+c(l —a) ifa—1<t<a,

f@) = .
u(t) ifa <t <b,

—(c+vd)t+ (c+vd)(1+b) ifb<t<b+1.

We then easily see that f € H '(R) and clearly f|w,»y = u. In order to see that
u +— f is continuous, we need to establish that the value ¢ depends continuously on
u. This, however, follows from the estimate

1 b N2 1
lc] = Jb—a (/ |C|2) < b a(||”||L2(a,b) + vl Lya.p))
_ ., _
1
< Jb—a Nl L,y + B —a) 10ull 1, qa.5))

V2max{1, (b —a)}
< u . o
Jb—a Nl g1 ()
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Theorem 14.2.3 Let I C R be an open bounded interval. Then HY(I) — Ly(I)
compactly.

Proof By Proposition 14.2.1, we find a continuous mapping E: H'(I) — H'(R)
such that for all u € H'(I) we have E(u)|; = u. Moreover, by Exercise 4.3 the
mapping H I(R) < C2(R) is continuous. Thus,

H'(H) 5 H'R) — C'2R) - cV2(1),

is a composition of continuous mappings, where the last mapping is the restriction to
I. Since C'/?(I) < C(I) compactly by the Arzela—Ascoli theorem, and C (1) <>
Lo (1) continuously, we infer H L — Ly compactly. |

We now have the opportunity to study the limit behaviour of a periodic mixed type
problem.

Example 14.2.4 (Highly Oscillatory Problems) Let s1,s2: R — [0, 1] be 1-
periodic, measurable functions. Then for v > 0, we set

-1
") . si(nm) 0 1 — s1(nm) 0 09
ST (3”” ( 0 sz(nm)> + ( 0 1- sz(nrn)) + (ao o)) :

where 0 = div and dp = grad, are regarded as operators in L((0, 1)) with
respective domains H'((0,1)) and H(}((O, 1)). Then, by Theorem 14.2.3, the

operator A = (;) g) satisfies the assumptions of Theorem 14.1.1. Moreover,
0

Theorem 13.2.4 implies that the remaining assumptions of Theorem 14.1.1 are
satisfied. Hence, we deduce that (S ("))n converges in the strong operator topology

on L(L2,,(R; L2((0, 1)))) to the limit

~1
1 1
0 1— [y s1 0 09
o [ o 51 + 0 + < )
t,v ( 0 fol S2) 0 1— fol 5 80 0

Next, we aim to provide an application to more than one spatial dimension. For this,
we will also need a corresponding compactness statement. This is the subject of the
rest of this section.

Theorem 14.2.5 (Rellich—-Kondrachov) Ler Q@ C R be open and bounded. Then
HOI(Q) — Ly(2) compactly.

Proof Without loss of generality (by shifting and shrinking of €2 and extending by
0), we may assume that Q = (0, 1). We carry out the proof by induction on the
spatial dimension d. The case d = 1 has been dealt with in Theorem 14.2.3. Assume
the statement is true for some d — 1. Using that C°((0, 1)?) is dense in HO1 (0, D%,
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we infer the continuity of the injection

R: Hy (0, ) — H'(R; L2((0, DY) N La(R; Hy (0, H*™)
¢ (t— (0 ¢, w)),

where we identify ¢ with its extension to R? by 0. The range space is endowed with
the usual sum scalar product.

Let (¢,), be a weakly convergent nullsequence in HOI((O, D?). In particular,
(R¢n), is bounded in H'(R; L2((0, 1)~")) and hence, it is also bounded in
Cy (R; L, ((0, 1)‘1’1)) by Theorem 4.1.2 (and Corollary 4.1.3); that is,

sup  ln(t, Iz, 0.1)0-1) < 00 (14.2)
t€[0,1],neN

Let f € La((0, 1)?~1). Then (¢, £), given by
¢n,f: = <¢n(tv ')s f)Lz((o’l)d—l)

is a weakly convergent nullsequence in H'((0, 1)). We obtain by Theorem 14.2.3
that ¢, y — 01in L2((0, 1)) as n — oo. By separability of L, ((0, 1?1 we find
D C L»((0, 1)4~1) countable and dense, a subsequence (again labeled by n) and a
nullset N € R such that ¢, s(t) — Oforallt € R\ Nand f € Dasn — oo.
By (14.2), we deduce ¢, s(t) — Oforallt € R\ N and f € Lo((0, )%
as n — 00, or, in other words, ¢,(f,-) — 0 weakly in L,((0, 1)?=1) for each
teR\ Nasn — oo.

Next, we show that there exists a nullset N € N; C R such that ¢, (z,) — 0
in Ly((0, 1)?~!) forall # € R\ Ny. For this, since (R¢,), in Lo(R; H ((0, D7)
is bounded, we find a nullset N € N; < R such that (¢,(¢, -)), is bounded
in Hol((O, DAY forall t € R \ Ni. Let ¢+ € R\ Ni. Then there exists a
further subsequence (¢, (¢, -))x which converges weakly in H(}((O, 1)d_1). By the
induction hypothesis, (¢, (¢, -)),, converges strongly in L2 ((0, 1)4=1), and since
we have already seen that it is a weak nullsequence in L ((0, 141, we derive
@n (t,-) = 0in Lo ((0, 141, By a subsequence argument we derive that

$u(t,-) =0

in Lr((0, H)¢~") forallr € R\ Nj.
Now, for n € N we deduce

1
2 2
1612 .00y = /O In (e, 12 g 101, 4 = O,

where we have used dominated convergence, which is possible due to (14.2). O
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14.3 The Periodic Gradient

In this section we investigate the gradient on periodic functions on R¢. Throughout,
we set Y == [0, 1)?.

Definition (Periodic Gradient) We define

CR) = {9ly: ¢ € CX®Y), 9 +h) = ¢ (k e %)}

and
grad, o, : C°(Y) C Lao(Y) — Lo(¥)?
¢ +— grad ¢.
Moreover, we set divy := — grad;  and grad, := —div} = grad, .

Remark 14.3.1 The operators just introduced can easily be shown to lie between
the operator realisations we have introduced in earlier chapters. Indeed, it is easy to
see that

divp € divy and grady < gradﬁ
and, consequently, we also have
grad; C grad and divy C div.
The corresponding domains for the operators grad, and divy will be denoted by
Htl (Y) and Hy(div, Y), respectively.
For the next results, we define the periodic extension operator. For ¢ € Ly (Y)™
we put

Gpe(x + k) = ¢ (x)

for almost every x € ¥ and all k € Z¢.
We start with the following two observations.

Lemma 14.3.2 Let f € Ly(Y) and (pi)k be a §-sequence in CZ° (RY) (cf. Exer-
cise 3.1). Define

Jie = (or * fre)ly (k€ N).

Then fi € Cﬁoo(Y)for eachk € Nand f — fin Ly(Y) ask — oo.
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Proof It follows as in Exercise 3.2 that py * fpe is in C°°. Moreover, one easily sees
that pg * fpe is [0, 1)d-periodic, and hence, f; € Cé’o(Y) for each k € N. For the
convergence we observe

(or * (Ly4+B0,1) fpe)) (x) = fi(x) (x € Y,k € N).

Moreover, by Exercise 3.2 we have o * (I1yB(0,1) fpe) = Ly+B(0,1) fpe in Lz(Rd)
as k — oo, and thus,

Jie = (or * My 0,1y fpe))ly = (yypo,nfped)ly = f (k—00) inLy(Y). O
Lemma 14.3.3 CE’O(Y)d is a core for divy.

Proof First we note that Cﬁ°°(Y)‘1 C dom(divy). To see this, for ¢ € Cn°°(Y), v e
CE’O(Y)d we compute
(grad@, W), (yyt = / (grad ¢ (x), W (x))ge dx = —/ ¢ (x)* divW(x)dx
Y Y
= (¢, —divW¥), )

by integration by parts (note that the boundary values cancel out due to the
periodicity of ¢ and W). Now, let ¢ € dom(divz) and (ox)x be a d-sequence in
cr (R%). For k € N we define

gk = (Pk * gpe)ly
and obtain g € C;O(Y)d and gy — ¢ in La(Y)? ask — oo by Lemma 14.3.2. It
is left to show that divgy — diviq in L2(Y) as k — oo. For doing so, we show

that divgy = (pk * (divy q)pe)|y, which would then yield the assertion again by
Lemma 14.3.2. So,letk € Nand ¢ € CE’O(Y). We compute

(qk, grad @) 1, (yya =f</ pk(y)qpe(x—y)dy,grad¢(X)> dx
Y Rd ]Kd
=/ pk(y)/ (gpe(x — ¥), grad ¢ (x)) s dxdy
R4 Y
= / Pk(}’)/ (QPe(x), (grad ¢)pe(x + )’)>Kd dxdy
R4 Y—y

- [Rd pk(y)fy(q(x), (grad @) pe(x +y)>]K‘1 dx dy
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= /Rd pk(y)/y(q(x), (grad dpe (- 4 ¥)) (x))a dx dy
= —/ Pk()’)/ (divy g (x), dpe(x + ¥))ia dxdy
R4 Y

= _/ Pk()’)/ ((divt @pe(x — y), ¢pe(x)>Kd dxdy
R4 Y+y
= - ((Iok * (leﬁ C])pe)|Ys ¢>L2(Y) 5

where we have used periodicity as well as ¢pe(- + y) € CE’O(Y). |

Remark 14.3.4 The proof of Lemma 14.3.3 reveals that every g € ker(divy) can be
approximated by elements in C I(:X) )4n ker(divy).

Proposition 14.3.5 Let Q@ C R? be open, bounded, u e Hﬁl(Y) and q €
H:(div, Y). Then upe|q € H'(Q), Gpelq € H(div, Q) and

grad (upele) = (grad, u)pe lo and div (gpele) = (divs q)pe la.
Proof Let first ¢ € C;O(Y). Then by definition ¢pe € C % (R) and we easily see
grad Ppe = (grad¢)pe = (gradﬁ @)pe-

Moreover, since Q2 is bounded, we infer ¢pe € H L. By definition of Hﬁl(Y) we
find a sequence (¢r)keN in CE’O(Y) such that ¢ — wu in La(Y) and grad; ¢ —

gradt u in Lz(Y)d as k — oo. Since
Ly(Y) — L2(S2), [+ fpe

is bounded due to the boundedness of €2, we also derive ¢ pe — upe in L2(£2) and
(grady ¢r)pe — (grad, u)pe in Ly(2)? as k — oo. By what we have shown above,
we infer

grad ¢k,pe = (grad; ¢k)pe - (gradﬁ ”)pe (k — o00)

in LZ(Q)d, and thus, upe € H'(Q) with gradupe = (gradﬁ u)pe by the closedness
of grad. The proof for g follows by the same argument with Lemma 14.3.3 as an
additional resource. O

The extension result just established yields the following compactness statement.

Theorem 14.3.6 (Rellich—-Kondrachov II) The embedding Htl(Y ) — Lo(Y) is
compact.
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Proof Let (¢,), be a bounded sequence in Hﬁl(Y ). Let Q C R? be open and
bounded such that ¥ C €. By Proposition 14.3.5, we deduce that (¢, pele), is
bounded in H'(2). Let € CF(2) withy =l onY. Then (1/f¢n,pe)n is bounded

in HOI(Q). By Theorem 14.2.5, we find an L;(€2)-convergent subsequence. This
sequence also converges in Ly(Y). Since ¢ = 1 on Y, we obtain the assertion. 0O

Next, we provide a Poincaré-type inequality for the periodic gradient.

Proposition 14.3.7 There exists ¢ > 0 such that for all u € Hﬁ1 (Y)

M—/M
Y

In particular, ran(gradt) C Ly(YV)? is closed, ker(gradt) = lin{ly} and the
operator

<c H grady

L(Y) ! HLZ(Y)d .

grad,: Hﬁl(Y) N {]ly}l — ran(grad,)

is an isomorphism.
Proof The proof is left as Exercise 14.4. O

We are now in a position to formulate the particular example we have in mind.
Problems of this type with highly oscillatory coefficients are also referred to as
homogenisation problems. We refer to the comments section for more details on
this.

Example 14.3.8 (Homogenisation Problem for the Wave Equation) Let ¢ > 0,
a: RY — K9%4 pe bounded, measurable, a(x) = a(x)* > ¢ for all x € R,
Furthermore, assume that a is [0, l)d-periodic. Letv >0, f € Ly ,(R; La(Y)) and
for n € N consider the problem of finding u,, € Ly ,(R; L>(Y)) such that

37 un — divg a(nm) grad, u, = f. (14.3)
We have already established that there exists a uniquely determined solution,
u,. Employing the same trick as in Sect. 11.3, we shall rewrite (14.3) using

Up = Ovltn, the canonical embedding ¢;: ran(grad,) < Lr(Y)? as well as
qn ‘= —L§a(nm)tﬁt§ grad, uy, to obtain

1 0 0 dinL g Uy f
(at’v (0 (L?a(nm)tol) + (té‘ grad, 0 (%) - (0) :

Note that we have used that (L;‘a(nm)tt) : ran(grady) — ran(gradt) is continuously
invertible and strictly positive definite (uniformly in n); see Proposition 11.3.5. Also
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E3
note that L§a(nm)Lﬁ is selfadjoint. As in Exercise 11.3 we see that (L§ gradﬁ) =
— divy ty. Thus, the operator

1 0 0 divse
s = |9 1)+ o
tv (0 ([E‘a(nm)tt) ) L§ grad11 0

is well-defined and bounded in Lj , (R; L2(Y) X ran(gradt)). We aim to find the

limit of (™), as n — oc. For this, we want to apply Theorem 14.1.1. We readily
see using Theorem 14.3.6 and Exercise 14.5 that

0 divg ey
A=
(t;( grad, 0 )

satisfies the assumptions in Theorem 14.1.1. Thus, it is left to analyse

((L§a(nm)Lﬁ)71)n. This is the subject of the next section. For this reason, we
define

a, = (L;‘a(nm)tt)71 (n € N).

14.4 The Limit of (a,),

In this section, we shall apply our earlier findings to higher-dimensional problems.
Again, we fix ¥ = [0, ¥ as well as ty: ran(grad,) — L>(Y)4, the canonical
embedding. Before we are able to present the central result of this section, we need
a preliminary result.

Throughout, let a: RY — K9%d be measurable, bounded and [0, 1)d-periodic
such that Re a(x) > ¢ for each x € R¥ for some ¢ > 0.

Lemma 14.4.1 Let & € K% Then there exists a unique vg € L>(Y)? with ve—§ €
ran(grad,) and a(m)vg € ker(divy).

Proof Take w € Htl(Y ) such that

grad, w = —ty (tE‘a(m)m) iza(m)é = —yantia(m)é.

This is possible, since the right-hand side belongs to ran(grad,) by definition. We
put vg := grad; w + §. Then vz — § € ran(grad,) and we have

za(m)ve = fa(m) (grad, w 4 &) = fa(m) (—Lﬁantg‘a(m)é + 5)

= —fa(m)izapza(m)é + a(m)é = 0.
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The latter gives a(m)ve € ran(gradt)l = ker(divy). For the uniqueness, we assume

v € ran(grad,) with a(m)v € ker(divy). Then
(tza(m)eg)iiv = tfa(m)v = 0,

which implies L%‘v = 0 since L%‘a(m)t; is invertible. Thus v = 0. O

The previous result induces the linear mapping
Ahom K? 5 E—> / avg € Kd,
Y

where vg € Ly(Y )¢ is the unique vector field from Lemma 14.4.1.
Remark 14.4.2 We gather some elementary facts on apom.

(a) We have (a®)hom = affom. In particular, if a is pointwise selfadjoint then so
i8S anom. Indeed, let &, ¢ € K< and vg and v, € LZ(Y)d be the corresponding
functions for a* and a, respectively, according to Lemma 14.4.1. Then there
exist wg, wy € dom(grad,) with ve — § = grad, wg and v, — ¢ = grad, we.
We compute

(@ )hom§ € s = fY ((a™ve) (3. ve () — grady we () dy
- /Y((a*vg) (). ve (M))gea dy
- /Y ((a*vg) (1), grad; we (1), dy
N /y(vs ). (ave) Mg dy = (a"ve. grady we) 0
=/Y(vg(y),(avz)(y)>u<d dy
= /Y(gradﬁ wg (y) + €. (ave) (0))ya dy

= /Y(S’ (avg) ()’)>Kd dy = (&, ahom{)gd -

(b) Reanom is strictly positive definite. As above, one shows

Re (£, ahomé)ga = Re /Y (0. @) D)ga dy > ¢ [ve]} ya (€ € KD
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and since the right-hand side is strictly positive if £ # 0 by Lemma 14.4.1, we
derive the assertion.

The construction of apom now allows us to formulate the main result of this section.
Theorem 14.4.3 We have
-1 -1
ay = (L§a(nm)Lﬁ> g (lzahomlﬁ) =! dhom (1 —> 00)
in the weak operator topology of L(ran(grad,)).

The proof of Theorem 14.4.3 requires some more preparation. One of the results
needed is a variant of Theorem 13.2.4 for L, (Y). However, it will be beneficial to
finish Example 14.3.8 first.

Example 14.4.4 (Example 14.3.8 Continued) The operator sequence (S™), con-
verges in the strong operator topology of L(Lz,v(R; Lr(Y) x ran(gradt))) to the

following limit
1 0 0 divguy
0
Y (0 ahom> + (L; grad; 0 )

Lemma 14.4.5 Let f: RY — K be measurable and [0, l)d-periodic. Let @ C R4
be open, bounded and assume f|y € Lo(Y). Then

fw)— ([ £)ta

-1

weakly in L>(2) as n — oo.

Proof Due to the boundedness of 2 we find a finite set F' C 74 such that Q C
Uker k + Y. Thus, by periodicity, it suffices to restrict our attention to the case
when © = Y. We define

X = {f: RY 5 K; fis [0, )¢ -periodic, |y € LZ(Y)}

endowed with the norm || f|lx = || flylL,y)- It is not difficult to see that X is a
Hilbert space. For n € N, we define 7;,: X — Lo(Y) by T,, f := f(n-). Then, for
all n € N, T, is an isometry. Indeed, for f € X, we compute

1 1
/Ylf(nx)|2 dv =, /ny [fPF dy = n /Y IF O dy = 1£1Z,r) »

where we used periodicity again. Recall that S(Y) denotes the simple functions on
Y and consider

D={feX; fly e S(V)}.
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Then D is dense in X. Also, if h € D, thenh € Loo(Rd). By Theorem 13.2.4, we
note

(Tnh, 8),vy = (h(n°), &) 1y (v) = <(/Yh)11Y,g>L " (n — 00)
2

forall g € Lo(Y) € L1(Y). Hence, T,h — Th weakly in L(Y) as n — oo, where
for f € X, we define Tf = (fY f)ny e Ly(Y).
Next, if f € X,h e Dand g € Ly(Y), then

KTuf = Tf. o) < KTnf — Tuh, g)| + {Tuh — Th, g)| + (Th — Tf, gl
If = hllxllglizory + {Tuh — Th, g)]

+ITII L ILf — hlix.

<
<

Hence, for ¢ > 0, by density of D in X, we find 4 € D such that

I/ = hlxliglizoy + T MLy L — Rl <

£
5

Then, we find no € N so that for all n > ng, [(T,h — Th, g)| < &/2 resulting in

(Tnf —Tf, gl <e. O

Lemma 14.4.6 Let (gn), and (rp), be weakly convergent sequences in a Hilbert
space H with weak limits q,r € H, respectively. Moreover, let X C H be a closed
subspace and 1: X — H the canonical embedding. Assume that

qn € X foreachn € N and (L*rn)n is strongly convergent in X.

Then

m v, gn)pg = q)y -
Proof Since *: H — X is continuous it is also weakly continuous, and thus,
Frp = 0r (n— 00)
strongly in X. For n € N we compute
(Fns Gn) g = (rns 0¥ qn) y = (rns )y — (07, 05q) 5 -
Since X is a closed subspace, it is also weakly closed and thus ¢ € X which yields
(5, L*q)X =(rq)y- |

The next theorem is a version of the so-called ‘div-curl lemma’.
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Theorem 14.4.7 Let (g,), and (ry), be weakly convergent sequences in L»(Y)? to
some q,r € Ly(Y)?, respectively. Assume that

gn € ran(grad,) for eachn € N and (té‘rn> is strongly convergent in ran(grady).
n

Then
fY (). ()t $(6) dx — /Y (r (), 4 (0) )t $00) dx

forallp € CX(Y) asn — oo.

Proof Let ¢ € C(Y), n € N. Since g, € ran(grad,), we find a unique w, €
Htl(Y) with w, € {1y}t = ker(gradﬁ)L such that

gradﬁ Wy = ¢n.

Moreover, since grad,: Hl:l (Y) N {1y}t — ran(grad,) is an isomorphism by
Proposition 14.3.7, we infer that (w,), is a weakly convergent sequence in Hnl(Y)
and denote its weak limit by w € Htl(Y ). By Theorem 14.3.6, we deduce w, — w
strongly in L, (Y )¢. Moreover, note that (¢wp), weakly converges to pw in Htl (Y).
In particular, grad, (pw,) — grad, (pw) weakly in L>(Y).Forn € N, we compute

/): (rn(x), gn(x))ga ¢ (x) dx = (ry, Qn¢>L(Y)d = (Vn, (grad; w")¢>L(Y)d

= (ru, grady(@wn)) (o = runs wn grad; @), 0

Now, the first term on the right-hand side of this equality tends to
(r, gradﬁ(cj)w)) Lo(r)d by Lemma 14.4.6 applied to X = ran(grad,), which is closed

by Proposition 14.3.7. The second term tends to (r, w grad, d)) by strong

La(y)?
convergence of (w,), and weak convergence of (r,,), in Lo (Y )d. Thus, we obtain

fY (r(x), n())ica ¢ (x) dx — (r, grad; (pw)), 0 = {r w grad; @), 4

=/y<r(x),61(x))Kd ¢(x)dx (n — o0). O

We will apply the latter theorem to the concrete case when r;, = a(nm)g, in
order to determine the weak limit of (a(nm)gy,),.
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Lemma 14.4.8 Let (q,),, and (a(nm)qy,), be weakly convergent in Lo (Y)4 to some
q and r, respectively. Assume that

gn € ran(grady) for each n € N and (L;a(nm)qn) is strongly convergent in ran(grady).
n

Then r = anomq-

Proof Let & € K and choose v = Vg € L>(Y)? according to Lemma 14.4.1 for
a* instead of a; thatis, v — & € ran(gradt) and a*(m)v € ker(divy). Forn € N, we
define v, == vpe(n-) € Lz(Y)d. Next, let g € CE’O(Y). Then we compute

(a*(nm)v,, grad, g>L2(Y)d = fy(a*(nx)vpe(nx), grad, g(x))Kd dx

1 *
nd / Y(“ ()vpe(y). (grad; g) (v/m))yq dy
1
= i /Y (@ (vpe(y), (grad g(-/m)(»))ga dy-

In order to compute the last integral, we employ Lemma 14.3.3 and Remark 14.3.4
to find a sequence (¢k)ien in Cé’o(Y)d N ker(divy) such that ¢y — a*(m)v as

k — oo in Ly(Y)4. The latter implies (¢y)pe — a*(m)vpe as k — oo in Lr(nY)?
for each n € N and div(¢x)pe = O for all k € N by Proposition 14.3.5. Thus,
we obtain with integration by parts (note that the boundary terms vanish due to the
periodicity of ¢ and g)

1
(a*(nm)vn, gradt g>L2(Y)d = pd—1 <a*(m)vpe, (gradg(./n))>L2(ny)d
.
= oo Jim (e (grad g(/m)), ypa = 0.
Since Cﬁ°°(Y) is a core for gradt, we infer that a*(nm)v,, € ran(gradt)l and hence,

a*(nm)v, =0 (n €N).

Moreover, we have a*(nm)v, — fY a*v = (a*)homé weakly in Ly(Y)¢ asn — oo
by Lemma 14.4.5. Thus, by Theorem 14.4.7 applied to g, and r,, :== a*(nm)v,, we
deduce that for all ¢ € C°(Y)

nlingo/IV(a*(HX)vn(X),qn(x»Kd¢(X)dx=/Y((a*)homé,q(x»Kd¢(X)dX-

On the other hand, v, — (fY v)lly = &1y weakly in LZ(Y)d asn — oo by
Lemma 14.4.5, where fY v = § follows from v — § € ran(grad). Thus, we can
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apply Theorem 14.4.7 to g, = v, and r, := a(nm)q, and obtain for all ¢ € C°(Y)
/Y(a*(HX)vn(X),qn(X)>Kd d(x)dx = /Y (Un(x), a(nx)gn(x))ga ¢(x) dx

— /Y (&, r(x))ga ¢ (x)dx
as n — 0o. Thus, we have
/Y((a*)homé,q(x»Kd ¢(x)dx = /Y (&, r(x))ga ¢ (x)dx

for each ¢ € C°(Y). Hence, we infer

(€, 7)) ke = ((@nomé, ¢ (X))a = (€, anomq (¥))

for almost every x € Y, where we have used Remark 14.4.2(a). Since the latter
holds for each & € K4, we deduce r = Ahom( - |

Proof of Theorem 14.4.3 Let n € N and for u € ran(grad;) we put g, = a,u.
We need to show that (g,), weakly converges to apomu. For this, we choose
subsequences (without relabeling) such that both (g,), and (a(nm)g,), weakly
converge to some g and r, respectively. By definition, we have g, € ran(grad;) and
L;‘a(nm)qn = u for each n € N. Hence, by Lemma 14.4.8, we deduce anomg = 7.
As ran(gradﬁ) is closed, it is also weakly closed, and hence, g € ran(gradt). Thus,
we have

L%‘ahomttq = L;}’,
or equivalently
g = Ghom!z7-
Now, since u = L§a(nm)qn — LE‘r weakly, we infer
g = OhomU.

A subsequence argument now yields the claim. O

14.5 Comments

The theory of finding partial differential equations as appropriate limit problems
of partial differential equations with highly oscillatory coefficients is commonly
referred to as ‘homogenisation’. The mathematical theory of homogenisation goes
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back to the late 1960s and early 70s. We refer to [11] as an early monograph
wrapping up the available theory to that date.

The usual way of addressing homogenisation problems is to look at static
(i.e., time-independent) problems first. The corresponding elliptic equation is then
intensively studied. Even though it might be hidden in the derivations above,
the ‘study of the elliptic problem’ essentially boils down to addressing the limit
behaviour of a, as n — oo; see [37, 132]. Consequently, generalisations of the
periodic case have been introduced. The periodic case (and beyond) is covered in
[11, 21]; non-periodic cases and corresponding notions have been introduced in
[108, 109] and, independently, in [70, 71].

An important technical tool to obtain results in this direction is the div-curl
lemma or the notion of ‘compensated compactness’. In the above presented material,
this is Theorem 14.4.7; the main difficulty to overcome is that of finding a limit of
a product ({(gn, rn)), of weakly convergent sequences (gn), , (r»), in Ly (2)3 for
some open © C R3. It turns out that if (curlg,), and (divr,), converge strongly
in an appropriate sense, then fQ {(qn, rn) @ converges to the desired limit for all
¢ € C¥(R2). In Theorem 14.4.7 the curl-condition is strengthened in as much as we
ask g, to be a gradient, which results in curlg, = 0. The div-condition is replaced
by the condition involving L;‘, which can in fact be shown to be equivalent, see [130].
The restriction to periodic boundary value problems is a mere convenience. It can
be shown that the arguments work similarly for non-periodic boundary conditions,
and even with the same limit, see [113, Lemma 10.3].

There are many generalisations of the div-curl lemma. For this, we refer to [17]
(and the references given there) and to the rather recently found operator-theoretic
perspective, with plenty of applications not solely restricted to the operators div and
curl, see [80, 130].

We shortly comment on the term ‘compensated compactness’. In general, one
cannot expect for two weakly convergent sequences (g,), and (r,), in Ly(2)3
that the sequence of their scalar product (g,, r,) to converge to the scalar product
of the limits. If, however, either (g,), or (r,), are bounded in a space compactly
embedded into L»(2)3, then either of those sequence converge in norm in Ly(2)3
and limy,—,  (qn, rn) = (limy— oo gn, lim,_, o 1,) follows. However, even though
neither Hop(curl, 2) nor H (div, Q) are compactly embedded into L>(2)3, one
can still conclude that for bounded sequences (g,), in Hp(curl, 2) and (r,,), in
H (div, Q) we have

fim_ (qa, ra) = ( lim_gu. tim r,).
n—o0 n— 00 n—o0

Thus, one might argue that the respectively missing compactness of the embeddings
of Hy(curl, ) and H (div, ) into L($2)? is somehow ‘compensated’. Following
the core arguments in [130], one might also argue that the deeper reason for the
convergence of the scalar products is more closely related to (general) Helmholtz
decompositions.
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The way of deriving the homogenised equation (i.e., the limit of a,) is akin to
some derivations in [21, 128]. Further reading on homogenisation problems can also
be found in these references. The first step of combining homogenisation processes
and evolutionary equations has been made in [135] and has had some profound
developments for both quantitative and qualitative results; see [23, 42, 136, 138].

Exercises

Exercise 14.1 Under the same assumptions of Theorem 14.1.1 show

(M) + 4)™" = (0ruM @)+ 4) ") o)

—_—
L(L2,v(R; H))
Exercise 14.2 Let Q € R? be open and & > 0. We define the set
Q. = {x € Q; dist(x, 90Q) > ¢&}.

(a) Let (¢r)ren in C°(RY) be a 8-sequence (cf. Exercise 3.1) and u € H' (). We
identify each function on by its extension to R¢ by 0. Prove that for k € N
large enough, ¢y * u € Hl(SZE) with

grad(¢y * u) = ¢y * gradu on 2.

(b) Use (a) to prove Lemma 14.2.2.

Exercise 14.3 Prove the ‘subsequence argument’: Let X be a topological space and
(xn)n a sequence in X. Assume that there exists x € X such that each subsequence
of (x,), has a subsequence converging to x. Show that x,, — x asn — oo.

Exercise 14.4 Let Hy, H; be Hilbert spaces and C: dom(C) € Hy — Hj be a
closed linear operator such that dom(C) < Ho compactly. Let Pye,(c)L: Ho — Ho

denote the orthogonal projection onto the closed subspace ker(C)~. Prove that there
exists ¢ > 0 such that

Vu € dom(C) ¢ | Per(cyrtt |y, < cICullp, -

Apply this result to prove Proposition 14.3.7.

Exercise 14.5 Let Hy, H; be Hilbert spaces. Let C: dom(C) € Hy — Hj be
closed and densely defined. Assume that dom(C) N ker(C)L — Hy compactly.
Show that, then, dom(C*) N ker(C*)* — H, compactly.
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Exercise 14.6 Letv > 0, Q = [0, 1)d, s € Loo(R) be 1-periodic, 0 < s < 1, and
a as in Example 14.3.8. Show that (u,), in L2 ,(R; L2(Y)) satisfying

37 ,s(nm)uy + 8;,,(1 — s(nm))u, — divs a(nm) grad, u, = f

for some f € Ly, (R; La(Y)) is convergent to some u € Lj , (R; La(Y)). Which
limit equation is satisfied by u?

Exercise 14.7 Let («,), be a nullsequence in [0, 1] and let a be as in Exam-

ple 14.3.8. Show
at,v O 0 let Lt
+ *
0 dpom ;grad; 0

v O N 0 divgey
(77 *
0 9 \an G gradg 0

in the strong operator topology. Show that if f € L, _,(R; L2(Y)1), where
Ly(Y)1 = {¢ € Lo(Y); [, ¢ = 0} for some small enough n > 0, we have

at,v 0 0 din i b .
( 0 ahom) + g grad, 0 o) € Ly, (R; Ly(Y) x ran(grad,)).
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Chapter 15 )
Maximal Regularity Shethie

In this chapter, we address the issue of maximal regularity. More precisely, we
provide a criterion on the ‘structure’ of the evolutionary equation

(M@ +4)U=F

in question and the right-hand side F in order to obtain U € dom(d;,, M (9;,)) N
dom(A). If F € Ly ,(R; H), U € dom(9;,,M(9,,)) N dom(A) is the optimal
regularity one could hope for. However, one cannot expect U to be as regular since
(3t,,,M (0r,v) + A) is simply not closed in general. Hence, in all the cases where
(at,,,M (0r,v) + A) is not closed, the desired regularity property does not hold for
F e Ly ,(R; H). However, note that by Picard’s theorem, F' € dom(d,,,) implies
the desired regularity property for U given the positive definiteness condition for the
material law is satisfied and A is skew-selfadjoint. In this case, one even has U €
dom(9;,,) Ndom(A), which is more regular than expected. Thus, in the general case
of an unbounded, skew-selfadjoint operator A neither the condition F' € dom(9; )
nor F € Ly ,(R; H) yields precisely the regularity U € dom(0;,, M (9;,,))Ndom(A)
since

dom(9;,,) Ndom(A) € dom(d;,, M (9;,,)) Ndom(A) € dom(d;,, M (9;,,) + A),

where the inclusions are proper in general. It is the aim of this chapter to provide an
example case, where less regularity of F actually yields more regularity for U. If one
focusses on time-regularity only, this improvement of regularity is in stark contrast
to the general theory developed in the previous chapters. Indeed, in this regard, one
can coin the (time) regularity asserted in Picard’s theorem as “U is as regular as
F”. For a more detailed account on the usual perspective of maximal regularity
(predominantly) for parabolic equations, we refer to the Comments section of this
chapter.
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15.1 Guiding Examples and Non-Examples

Before we present the abstract theory, we motivate the general setting looking at a
particular example. Traditionally, in the discussion of partial differential equations
and their classification, people focus on regularity theory. Thus, one finds the non-
exhaustive categories ‘elliptic’, ‘parabolic’, and ‘hyperbolic’. Since we do not want
to dive into the intricacies of this classification much less their regularity, we only
name some examples of the said subclasses. Laplace’s equation from Chap. 1
falls into the class of elliptic PDEs, the heat equation is a paradigm example
of a parabolic equation and Maxwell’s equations or the transport equation are
hyperbolic.

Since we predominantly treat time-dependent equations and elliptic PDEs
usually are time-independent, we only look at examples for hyperbolic and parabolic
equations more closely. As for the hyperbolic case, we consider the transport
equation next and highlight that any ‘gain’ in regularity as hinted at in the
introduction of this chapter is not possible.

Example 15.1.1 We define 9: HYR) C Ly(R) - Lr(R), ¢ +— ¢'. Then, by
Corollary 3.2.6, 0* = —0; that is, 9 is skew-selfadjoint. We consider for v > 0 the
operator

at,v + a

in Ly, (R; La(R)). Then, by Picard’s theorem, 0 € ,O(at,u + 3); that is,
(at,v + 8)_1 € L(L2,,(R; Ly(R))). Next, consider the functions

w: (t,x) > Ip (e h(x —1)
fi@t,x) > g ()1 —1)e "h(x —1)

for some 4 € Ly(R). Then it is not difficult to see that u, f € L2 ,(R; L2(R)). If
h € C(R), then

u e HY(R; H'(R)) < dom(?;,, + )
and
Or,p +Du = f.

If i € Ly(R)\ H'(R), then one can show thatu € dom (3, + 3), (3, + d)u = f
and

u ¢ dom(9;,,) N dom(d).
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For this observation, we refer to Exercise 15.1. Thus, being in the domain of 9, + 0
does not necessarily imply being in the domain of either dom(9;,,) or dom(d).

The last example has shown that we cannot expect an improvement of regularity
for the considered transport equation. In fact, it is possible to provide an example
of a similar type for the wave equation (and similar hyperbolic type equations
including Maxwell’s equations). Thus, in order to have an improvement of regularity
one needs to further restrict the class of evolutionary equations. We now provide a
guiding example, where we discuss an abstract variant of the heat equation.

Example 15.1.2 Let €3 be the space of square summable sequences indexed by n €
N. We note that £; is isomorphic to Ly (#y), where #py is the counting measure on N.
We introduce m: dom(m) C ¢, — ¢ the operator of multiplying by the argument.
Then, m is an unbounded, selfadjoint operator. Next, we consider the operator

5 (10), (00), (0 -m
“\oo 01 m 0

on Ly ,(R; £2). Then, Picard’s theorem applies and we obtain

oe o (39) (00 + (2 7)

For f € Ly, (R; £2) define

()= (o (=60 ) ()

Then u € dom(9;,) N dom(m) and ¢ € dom(m). We ask the reader to fill in the
details in Exercise 15.2.

Remark 15.1.3 The last example is in fact an abstract version of the heat equation
on bounded domains. We refer to [90, Section 2.2.2] for a corresponding reasoning
for the Schrodinger equation.

Let us compare the two different examples, the transport equation and the abstract
parabolic equation. From the perspective of evolutionary equations; that is, looking
at equations of the form

(0r,vMo+ My + A)U = F,

for the transport equation we have My = 1 and M; = 0. In the case of the
abstract parabolic equation, M( has a nontrivial kernel, which is compensated in
M. Moreover, the decomposition of kernel and range of M is comparable to the
block structure of A. Thus, we may hope for an improvement of regularity as in
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Example 15.1.2 if these abstract conditions are met. This observation is the starting
point of parabolic evolutionary pairs to be defined in the next section.

15.2 The Maximal Regularity Theorem and Fractional
Sobolev Spaces

In order to be able to formulate the main theorem of this chapter, we need the notion
of fractional Sobolev spaces. For this, we recall from Example 5.3.4 and Sect. 7.2
that we already dealt with fractional powers of the time-derivative. For ¢, v> 0, we
thus consistently define

af, = L(m +v)*L,,

with maximal domain in Ly, (R; H), where we agree with setting Lo := F. Note
that in this case, using Proposition 7.2.1, 0 € p(at"fv) given v > 0. Hence, the
following construction yields Hilbert spaces; for this also recall that (-, ) 4 denotes
the graph inner product of a linear operator A defined in a Hilbert space.

Definition Let o, v > 0. Then we define

HY(R; H) = (dom(affv), (f,8) > (9, £, 08,8) 10 B H))
for v > 0 and
H ®: H) = ({f € La@®: H): Ff € dom(Gm))]). (f. &) = (F . Fg)me )-
Lemma 15.2.1 Forall o, v > 0 the space HY(R; H) is a Hilbert space. Moreover,
HYR; H) — L»,,(R; H) continuously and densely.
Proof We only show the claim for v > 0. By Fourier—Laplace transformation, the
claim follows if we show that

(im 4+ v)¥: dom((im + v)*) C Lr(R; H) — Ly(R; H)

is densely defined and continuously invertible. For this, we find n € N and 8 €
[0, 1) such that @ = n + B. It is easy to see that (im + v)® = (im 4 v)" (im + v)~.
Thus, continuous invertibility readily follows from the continuous invertibility of
(im+ v) and (im + v)# (for the latter, see also Proposition 7.2.1). For the case when
H =K, it follows from Theorem 2.4.3 that (im + v)* is densely defined. Thus, it
follows from Lemma 3.1.8 that (im + v)® is densely defined also for general H. O

In order to state our main theorem, we introduce the notion of parabolic pairs.
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Definition Let M: dom(M) € C — L(H) be a material law, A: dom(A) C
H — H and ¢ € (0,1]. We call (M, A) an (a-)fractional parabolic pair if the
following conditions are met: there exist v > max{0, sp (M)} and ¢ > 0 such that

RezM(z) > ¢ (2 € Cresv),

and moreover, we find a closed subspace Hy € H, H| = Hl, C: dom(C) C
Hy — Hj closed and densely defined, and Moy € M (Hp; v), N € M(H; v) such
that

M) = (MOS(Z) 8) +77'N@), A= (g _OC*> ,

and
Rez! ™*Moo(z) > ¢ (z € Cresv)
for some ¢’ > 0, and Cre=y > z — z' " “Moo(z) € L(Hp) is bounded. A 1-
fractional parabolic pair is called parabolic.
Remark 15.2.2
(a) If (M, A) is a-fractional parabolic and f-fractional parabolic with the same
decomposition H = Hy @ Hj, then « = . Indeed, assume that @ < 8. Then

2P Moo(z) = 227 P2 " Moo(z) = 0 (Jz] = 00,z € CRre=v)

contradicting the real-part condition.
(b) If (M, A) is a-fractional parabolic, then there exists i > v such that for all
Z € (CRe>M

Rez! ™ (Moo(z) n z_lNoo(z)) > )2 (15.1)

for some ¢’ > 0, where Ny (z) = L”I,‘{ON(z)ur.[0 € L(Hyp). Indeed, this follows
from the fact that z7%Ngp(z) — 0 as Rez — oo.

The main theorem of this chapter is the following:

Theorem 15.2.3 Let o € (0, 1] and (M, A) be «-fractional parabolic (with H =

Ho ® Hy and C from Hy to Hy) and assume that (15.1) holds for all z € Cg,.., for

some v > max{0, s, (M)}. Let f € Ly ,(R; Ho) and g € Hf)x/z(R; Hy). Then the

solution (u, v) = (8[,UM(8LU) + A)il(f, g) € L ,(R; H) satisfies

u € H(R; Ho) N HY*(R; dom(C))
v e HY2(R; Hy) N Ly, (R; dom(CH)).
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More precisely,

(.0 M(3.0) + A) "'t Loy(R: Ho) ® HY*(R: Hy)
— (HX(R; H)NHE*(R; dom(C)))®(HE/*(R; H1)NLy,, (R; dom(C*)))

is continuous.
Example 15.2.4 (Heat Equation) Let us recall the heat equation from Theo-
rem 6.2.4. For @ € R? open, we leta € L(L>(2)%) such that

Rea > ¢

in the sense of positive definiteness. It is not difficult to see that

7= —1)> s
0az grad 0

is parabolic; with the obvious orthogonal decomposition of the underlying Hilbert
space. Let f € Ly ,(R; L2(€2)). Then

()= (o () (0.2)+(2%) ()

particularly satisfies the regularity statement
0 € H) (R; L2(2)) N Lo, (R; H'(R)) and g € Ly, (R; Ho(div, ).

The next example deals with a parabolic variant of the equations introduced in (7.3)
and (7.4) describing fractional elasticity. We modify the equations at hand by
considering o € [1, 2].

Example 15.2.5 (Parabolic Fractional Viscoelasticity) Let @ C R? open and recall
the differential operators Div and Grady from Sect. 7.1 defined in the spaces
Ly(Q)4x¢ and Ly ()%, respectively. Let ¢ > 0 and D € L(La(Q)%5d), p = p* €
L(Ly(2)%). Forv > 0and f € Ly, (R; L>(2)%) consider the problem of finding
u: R x Q — R4 such that

Ot vpdyu —DivT = f (15.2)
T = Daffv Grady u, (15.3)
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for some « € [1, 2), where p > c and Re D > c in the sense of positive definiteness.
We rewrite the system just introduced by using v := 9;*,u to (formally) obtain

I vpd v —DIvVT = f
T = D Gradg v.

Note that y := 1+ (I — «) € (0, 1]. Thus, using the selfadjointness and positive
definiteness of p as well as Proposition 7.2.1, we infer

Re(z"p) 2 v7c (2 € Crexy).

Consequently, applying Proposition 6.2.3(b) to a = D, we get that

e o0 0 —Div
0 z'D')’\—Grady ©

is y-fractional parabolic. In consequence, the solution (v, T') of

o (%0 0 (0 D)) (v)_(f
"\ o & D! —Grady 0 )~ \o

additionally satisfies the following regularity properties

ve HY (R; La()?) N HY/*(R; dom(Grady)),
T e HY?(R; La(@)%5¢) N Loy (R; dom(Div)).

sym
Rephrasing this for u = 9, v, we even have
2(m. d 1+a/2(Tp.
ue€ Hj (R, Ly(2) ) NH, (]R, dom(Grado)),

which, since «/2 < 1, particularly implies that the equations (15.2) and (15.3) are
equalities valid in L ,, (R; Lz(Q)d) and L, (]R; LZ(Q)dXd), respectively.

sym

15.3 The Proof of Theorem 15.2.3

The decisive estimate in connection to the proof of Theorem 15.2.3 is contained
in the following statement. For the entire rest of the section, we shall denote the
norm and scalar product in H(R; K), K some Hilbert space, by || - [l and (-, -),,
respectively.
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Lemma 15.3.1 Let Hy, H| be Hilbert spaces, C: dom(C) € Hy — Hj densely
defined and closed. Let o € [0, 1], Mj: dom(M;) € C — L(H;) material laws
for j € {0, 1}, v > max{sp (Mp) , sp (M), 0} with

Crezv 22 2 7*My(z) € L(Ho)
bounded. Assume there exists ¢ > 0 such that for all z € Cre>,

RezMy(z) > ¢, ReMi(z) >¢, Rez!™My(z) >c.

Let f € Ly,(R; Hy), g € HY*(R; Hy) as well as u € H}(R; dom(C)) and
v e Hv1 (R; dom(C*)). Assume the equalities
3 ,vMo(3;,)u — C*v = f,

v+ M1(0;,,)Cu = g.

Then
2 2 2 2
lullg + ICully 5 + vl » + [ o]
1 2 m 2
<2 (1 + (m% +mf+ 2) (C + 62) ) (113 + 18122
with my = | M1l Cy,.., and mo = ||z = 2! =“Mo(@)| ¢, -

Proof We compute

cliculll, < cliCully, +clul,

< Re (M (3;,v)Cu, cu)‘x/2 + Re (3,u Mo(3;,v)u, u>a/2

=Re (g — v, Cu) gy + Re (0,0 Mo(3;,)u, u)a/z

< Ngllay2 I Cutllay + Re (31,0 Mo(3r.v)u — C*v. u),
2 2
= gl NCullays +Re (£, (37,)%"% (21)" )

S llgllayz 1Cullayz + 11 fllo el »
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where we used that

[ @) @) ully = (im0 im0 ]|

:

< Am 4+ )" ull L, ®; Hyy = 1]l

(—im +v)*/?
(im 4y AT

Ly (R; Hp)

Moreover,

¢ lul® < Re (at{;“Mo(at,U)a“ u, Bffvu>0

t,v
= Re (0;,, Mo (3 v)u, 3", u),
=Re(f + C*v, 37, u),
2 2
< Ifllo el +Re((9:,) v, 0P cu)

< llo lulle + Nvllaya [Cullyy
=11 £llo Nl + || g = M1(3r,)Cut| I Cla 2

< fllo lully + llglay2 1Cullayz +mi ICullg

mi
< (14+ ") (1F o ey + Ngllaya I1Cullay2 ).
Thus, we obtain for & > 0
¢ (Iul2 +1Cul? )

mi
< (2+"1) (1F 10 Ny + g ez 1 Cul2)

1 mq 1
<, (2+" )(8 (113 + g2 2) + & (2 + ||Cu||§/2)).

Choosing ¢ = ¢?/(2¢ + m1) and subtracting the term involving u and Cu on both
sides of the inequality, we deduce

c 1 mp\ 1
s (2 +icutz) < (2+") (1713 +1812,2)

= ™Y (113 + 1812 0)
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and therefore

2 m 2
2 2 2 2
(hl2 + ncul? ) < (C - 62) (113 + Ng122) -

Finally, we compute

1
1012 < gl + M@l ,

2 2
<ligll), +mt (C + ’f;) (113 + gl22)
and
1
€[ < [ MoG@rullg + 1713

2 2
< o T 1Mo

3 S Mo(3;,,)3 u

20002 2
<mg llully + 171G

O

2 m 2
<m%(c + Cz) (113 +1g12,2) + 1713

The next preliminary finding is a refinement of the surjectivity statement in Picard’s
theorem.

Proposition 15.3.2 Let H be a Hilbert space, M: dom(M) € C — L(H) a
material law, v > sy (M), with v > 0, and A: dom(A) € H — H skew-
selfadjoint. Assume there exists ¢ > 0 such that for all z € Cre~, we have

RezM(z) > c.

Let B € [0, 1].

(a) The inclusion
(3.0 M(3,) + A) [H2(R; dom(A))] € HE (R; H)

is dense.
(b) Let Hy C H be a closed subspace and Hy := H(f-. Then

(3,0 M (3;,0) + A) [HZ(R; dom(A))] C Lo, (R; Ho) & HP (R; Hy)

is dense.
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Proof

(a) Since HI}(R; H) is dense in Hf (R; H) (this is a consequence of

(b)

Lemma 15.2.1), it suffices to show the claim for 8 = 1. Next, by Picard’s
theorem, for f € dom(9,,), we obtain u = (Bt,,,M(B,,V)%—A)_1 f €
dom(9;,,) N Lz,v(R; dom(A)). In particular, it follows that

(3r.vM(3,0) + A) [H}(R; H) N Ly, (R; dom(A))] S Lo,y (R; H)
is dense. Multiplying this inclusion by 8,])1, we infer that
(9,uM (3:,,) + A) [H] (R; H) N H, (R; dom(A))] € H, (R; H)
is dense. Hence, for f € Hvl(R; H), we find (u,), in HUZ(]R; H) N
H) (R; dom(A)) such that f, = (3,,M )+ A)uy — f in H)(R; H)
as n — oo. Next, for e > 0, (1 + sa,,u)—lu € HUZ(]R; dom(A)) given
u e Hvl(R; dom(A)). Moreover, (1 + sat,u)_lf — fin Hvl(R; H)ase — 0,

by Lemma 9.3.3(b) and the fact that 8,:,1 commutes with (1 4 88,,1,)_1. Thus,
we compute fore > Oandn € N

H (9 M (Br0) + A) (1+ £3,.) "y — le
<Ja+ean - a+ean |+ |a+ean s - g
<= fli+ [ +eanr 1| >0

asn — oo and ¢ — 0, which concludes the proof of (a).
By (a), it suffices to show that

HY(R; H) = HJ (R; Ho) ® HJ(R; H) € La,»(R; Ho) ® HJ (R; Hy)
is dense (note that the first equality follows from the fact that H > u —

(uo,u1) € Ho @ Hj is unitary). The desired density result thus follows from
Lemma 15.2.1. |

Next, we shall proceed with a proof of our main theorem in this chapter.

Proof of Theorem 15.2.3 For i, j € {0,1} we set N;j(z) = LE{_N(Z)LHj. Let
(f, 9 € (BwM(B,,V) + A)[HE(R; dom(C) & dom(C*))]. Defining

(u, v) = (3, M (3) + A) ' (f, &) € HX(R; dom(C) & dom(C*)),
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we have

at,vMOO(at,v)u + NOO(at,v)u —C*'v= f- NOl(at,v)U,
N11(9,0)v + Cu = g — N19(0;,0)u.

Since Re zM (z) > c, we infer
Re N11(0;v) = ¢
Thus, by Proposition 6.2.3(b), we deduce that M (9;,,) := Ni1 (8,,1))’1 satisfies the
real-part condition imposed on M in Lemma 15.3.1. Moreover, since (M, A) is
a-fractional parabolic,
Mo (2) = Moo(2) + 2~ ' Noo(2)

fulfills the real part and boundedness assumptions in Lemma 15.3.1. Introducing

f=f—No1(d)v € H (R; Hp) C La.,(R; Hp)
g = Mi(30)g — Mi(3,)N10(dv)u € H(R; Hy) € HY?*(R; Hy),

we get

3w Mo(3y.0)u — C*v = f,
v+ M, (at,v)c g

Thus, using Lemma 15.3.1, we find ¥ > 0 in terms of My, M and the positivity
constants such that (recall that m == || M| || o cp..,)

lal2 + w20 + l0l2 5 + [0

<w(| 715+ 1R1%)

2K( ||f||0 + ||N||oo \CResv ||U||0 +m1 ||g||0,/2 + m1 ||N||oo \CResv ||u||a/2)
2 1 2
2 (IS5 + IN B g, I0IG +m3 815+ 23 IN W ., (6 Nl + )

for all ¢ > 0, where in the last estimate, we used

2 2 2 2
el o = (0P, 057 = (e G207 ) <l Nl
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Hence, choosing ¢ > 0 small enough and using that (at,,,M(Bt,,,) + A)71 is
continuous from L; ,,(R; H) into itself, we find ¥’ > 0 such that

2
lully + 1Cullg 5 + 0I5 2+ [ C*o5 < «"(ILF1G+ gl 2

which establishes the assertion (using the density result in Proposition 15.3.2(b)).
0

15.4 Comments

The issue of maximal regularity (in Hilbert spaces for simplicity) is a priori
formulated for equations of the type

u' + Au = f,

where f lies in some L2((O, T); H ) and A is an unbounded operator in H.
The question of maximal regularity then addresses, whether a solution u to this
equation exists and satisfies u € L((0, T); dom(A)) N H'((0, T); H). In Hilbert
spaces, whether or not this question can be answered in the affirmative solely
relies on the properties of A. Hence, one shortens this question to whether A
‘has maximal regularity’. The present situation is conveniently understood: A has
maximal regularity if and only if —A is the generator of a holomorphic semigroup,
see [33, Theorem 2.2] and [105, Lemma 3,1]. One major example class is the class
of operators that are defined with the help of forms, see [5] for an introductory
text. People then studied the situation of time-dependent A. It has then been shown
in various contexts and under suitable conditions on the (smoothness of the) time-
dependence of A, whether A has maximal regularity or not. For this, we refer to
[2, 8, 30] for an account of possible conditions. The evolutionary equations case,
which is addressed for the first time in [88] in the time-independent and in [123]
for the non-autonomous case, is different in as much as the focus of the underlying
rationale is shifted away from the spatial derivative operator towards the material
law. The proof of Theorem 15.2.3 outlined above is the autonomous version of
[123].
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Exercises

Exercise 15.1 Consider the situation of Example 15.1.1.

(a) Show that 0 € p(d,, + 9) for all v > 0. Next, let u be as in Example 15.1.1
and show that u ¢ dom(d;,,).
(b) Letv > 0 and show using Picard’s theorem that

ocr(1(3%)+ ()

Show that there exist f, g € Lo ,(R; L2(IR)) such that for

()= (e (32) - (02) ()
()= (s (- (2) ()

we have u r, ug ¢ dom(d;,,).

and

Exercise 15.2 Let u and ¢ be defined as in Example 15.1.2. Show that u €
dom(d;,,) and g € dom(m) by explicit computation (not using Theorem 15.2.3).
Hint: Find an ordinary differential equation satisfied by u. Use the explicit solution
of this ordinary differential equation to show the claim.

Exercise 15.3 Leto > 0 and v > 0. Show that

3v: dom(3 %" € HYR) - HX(R)

u > 0 u

is densely defined closable with continuous invertible closure.

Exercise 15.4 (Local Maximal Regularity) Let Hy, H; be Hilbert spaces,
a € L(Hy) be such that Rea > ¢ for some ¢ > 0. Furthermore, let
C: dom(C) € Hy — H be densely defined and closed. Let T > 0. Show
that for every f € Lz( ©0,7); Ho) there exists a unique u € Hl((O, T); Ho) N
Lz( ©0,7); dom(C*aC)) with #(0) = 0 such that

W (1) + C*aCut) = f(t) (ae.t e (0,T)).
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Hint: Reformulate the equation satisfied by u into an evolutionary equation, apply
Theorem 15.2.3.

Exercise 15.5 Let Hy, H; be Hilbert spaces, a € L(Hj) be such that Rea > ¢ for
some ¢ > 0. Furthermore, let C: dom(C) € Hy — H; be densely defined and
closed. Let T > 0. Define dp: dom(dp) S L2((0,T); Ho) — L2((0,T); Ho)
with dpu = u’ and

dom(dg) = !u € Hl((O, T); Ho); u(0) = 0} .

Show that for u € H! ( 0,7); Ho) the point-evaluation #(0) = 0 is well-defined.
Then show that 9y + C*aC is continuously invertible and closed as an operator in
L>((0,T); Hy).

Hint: For the first part use Theorem 12.1.3. For the second part, apply the result of
Exercise 15.4. Show that in the situation of the previous exercise, there exists « > 0
independently of f and u with

”u”Hl((O,T);Ho)ﬁLz((O,T);dom(C*aC)) < K”f”Lz((o,T);HO)‘

Exercise 15.6 Recall Maxwell’s equations from Theorem 6.2.8:

e 0 a0 0 —curl
)
Y (O M) + (0 O) + (curlo 0 )

in Ly, (R; Lr(9)3 x L2(Q)3) with &, u,0: Q — R33 satisfying the following
property: there exist ¢ > 0 and vg > 0 such that for all v > vy we have

ve(x) +Reo(x) Z2c, ux)=zc (xeQ).

By Theorem 6.2.8, for v > vp and jy € L2, (R; LZ(Q)3), there exists a unique pair
(E, H) € Ly ,(R; Ly(2)°) such that

(3= (G2) o)+ ) )

Assume there exist open sets ¢, 21 € Q such that Qp € Q] C Q) € Q with
spt jo(t) € Qo for a.e. t € R. Moreover, jy € HI}/Z(R; L2(91)3). Furthermore,
assume £ = 0 on Q. Show that t — H(t)|g, € H}(R; L2(Q0)%).

Exercise 15.7 Let Hy, H; be Hilbert spaces, a, b € L(Hp) be such that Reb > ¢
for some ¢ > 0. Furthermore, let C: dom(C) € Hy — H; be densely defined
and closed. Let f € L2(R; Hp) with infspt f > —oo. Show that for v > 0 large
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enough, there exists for a unique u € HV2 (R; Hy) Ndom (C’k (a+ bB,,V)C) satisfying
37 u + C*(a+bd;,)Cu = f.

Hint: Use the substitution w := 9; ,u and g := —(a + bd;,,) Cu to reformulate the
equation in question as an evolutionary equation. Then apply Theorem 15.2.3.
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Chapter 16 )
Non-Autonomous Evolutionary Shethie
Equations

Previously, we focussed on evolutionary equations of the form
(a,,UM(a,,U) + A) U=F.

In this chapter, where we turn back to well-posedness issues, we replace the material
law operator M (9;,,), which is invariant under translations in time, by an operator
of the form

M+ 3N,

where both M and N are bounded linear operators in L ,(R; H). Thus, it is the
aim in the following to provide criteria on M and N under which the operator

o M+N+ A (16.1)

is closable with continuously invertible closure in L; ,,(R; H). In passing, we shall
also replace the skew-selfadjointness of A by a suitable real part condition. Under
additional conditions on M and A/, we will also see that the solution operator
is causal. Finally, we will put the autonomous version of Picard’s theorem into
perspective of the non-autonomous variant developed here.

In order to get grip on the domain of the anticipated operator sum, we need to
assume a commutator condition of the coefficient operators and the time-derivative.
Thus, the replacement for the assumption of the coefficient to be a “material
law operator” (i.e., a bounded analytic function of the time-derivative) is to be
evolutionary and to have a bounded commutator with the time-derivative (in a
suitable sense). Since we proved in Theorem 8.2.1 that bounded analytic functions
of the time-derivative are exactly the ones that are causal and autonomous (and
evolutionary), one may view the following theorem as a direct generalisation of
Picard’s theorem in the way that “autonomous” is dropped.

© The Author(s) 2022 259
C. Seifert et al., Evolutionary Equations, Operator Theory: Advances
and Applications 287, https://doi.org/10.1007/978-3-030-89397-2_16


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89397-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-89397-2_16

260 16 Non-Autonomous Evolutionary Equations
16.1 Examples

In principle finding examples for the non-autonomous theory is relatively simple.
The prototype case focusses on time-dependent multiplication operators. In order
to illustrate our findings below, we shall revisit the heat equation and Maxwell’s
equations.

Non-Autonomous Heat Equation
Let @ € R? be open and a: R x © — R?*? bounded and measurable. Assume
there exists ¢ > 0 such that

Rea(t,x) > c (ae.(t,x) € R x Q).

Then the non-autonomous variant of the equations describing heat conduction are

0,0 + divog = Q
qt,x)=a(t,x)gradd(t,x) ((t,x) e R x Q).

The resulting block operator matrix

g (1O) (0 0, (0 divo
100 0a-! grad 0

is then closable and continuously invertible in LZ,V(R; Ly(2) x Lz(Q)d) for all
v > 0 by Theorem 16.3.1.

Non-Autonomous Maxwell’s Equations
Let Q2 C R3be openande, u,0: RxQ — R3*3 bounded and measurable. Assume
that ¢ and p are Lipschitz continuous w.r.t. the temporal variables uniformly in
space; that is, there exists L > 0 such that
lle(s, x) —e(@, X)llgsxs + lIn(s, x) — u(@, X)lgsxs < Lt —s| (5,7 € R, x € Q).

Assume £(f,x)| = e(t,x) and wu(r,x)T = u@t,x) forallt € R, x € Q.
Furthermore, assume there exist ¢, vy > 0 such that for all v > vy we have

u(t,x) > c, and ve(t, x) + ;a’(t)(x) +Reo(t,x) 2 c ((t,x) e R x Q).

Then it will not be difficult to see that the operator

e(my, my) 0 o(my, my) 0 0 —curl
O ( 0 p(my, mx)) + < 0 O> + <curlo 0 >
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is closable and continuously invertible in L5 ,, (]R; LZ(Q)3 X LZ(Q)3) forall v > vy
by Theorem 16.3.1; see also Exercise 16.1.

16.2 Non-Autonomous Picard’s Theorem—The ODE Case

Let H be a Hilbert space and v > 0. In this section we will focus on the ODE-case
first, which is modelled by A = 0 in (16.1).

Theorem 16.2.1 Let M, M',N € L(Ly,(R; H)) with M, N causal and
Re M > 0. Assume

My € ¥ oM —M
and
Re (g, (3.0 M +N) )= c (. o)
for some ¢ > 0 and all ¢ € dom (9;,,M). Then

0€p (3, M+N),
H @ oM+ N)~! || < 1/c, and (8,,1,./\/1 —l—./\/')_1 is causal. Moreover,

Re(g, (3, M+N)"¢) > clp,¢) (¢ €dom ((3,,M+N)")).

Remark 16.2.2 The only non-trivial condition in Theorem 16.2.1 is the commutator
condition

My C 8o M — M.
This condition is satisfied for multiplication operators induced by a Lipschitz

continuous function, see also Exercise 16.1.

We leave the proof of 0 € p (8t,v/\/l + N ) and the norm estimate as Exercise 16.4.
For the proof of causality, we need some preparations. The first result will also be
of some value in the next chapter. It deals with a reformulation of causality for
resolvents.

Proposition 16.2.3 Let B: dom(B) C L2 ,(R; H) — L2, (R; H) be linear, 0 €
p(B), and assume that there exists ¢ > 0 such that for all ¢ € dom(B) we have

Re (@, Bo) 1, .1y = (@, Py o H) -
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Then the following two statements are equivalent:

(i) B~'is causal.
(ii) Forall ¢ € dom(B) and all a € R we have

Re(L(-cca19: By, &) 2 € (Li-0a1¥- 91, o -

Proof (i))=(i): Let f € Ly ,(R; H) and a € R with spt f C [a, 00). Then, using
(ii), for ¢ := B~! f € dom(B) we have

0 =Re{lcoat: fy,, @ m = Re(lcca. B, @ )
2
Z C(ﬂ(—oosa]‘f” ¢>LQVU(R;H) =c H]l(—oosa]d)“szv(R;H) ’

which yields spt¢ C [a, 00). Thus, B~!is causal.
({)=(ii): Leta € R, ¢ € dom(B), and f = B¢. Then ¢; = B_lll(_oo,a]f €
dom(B) and, using causality of B~!, we obtain

T—coa1®1 = L—co.aiB Mool f = LcooalB f = L(—oo.a1®.
We thus compute

Re (1 (~oc,a1¢- Bd))Lz‘U(R;H) =Re(L(_coai$1. f)LZU(R;H) = Re(¢1. ]1(—007a1f)L24U(R;H)
=Re (g1, Bo1)r, w1y = (1, 1)1, ,®: 1)
> e | Lcoamdilly, @m = € 1Lsadl,, @)
=c <]1(—0°»a]¢’ ¢>L2_v(R;H) )

where in the last estimate we used that multiplication by 11—, 4] is a contraction.
O

Lemma 16.2.4 Let B: dom(B) € L ,(R; H) — L3 ,(R; H) be linear. Let
A, i € p(B) be contained in the same connected component of p(B). Assume that
(w — B)Vis causal. Then (A — B)~V is causal.

Proof Let Z be the connected component of p () shared by both x and A. Define

Mi={nez; aeR: 1 oa(m =B aoaim =1 ooamn—B~"']
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Then, u € M. Next, we show that M is open and closed in Z. For this, let no € M.
By Proposition 2.4.1, we have B (19, 7) € p(B) with r := 1/||(no — B)~'|. As
B (no, r) is connected, we infer B (19, r) € Z. Furthermore, from Proposition 2.4.1,
we infer for n € B (5o, r) that

o0
n=B)""=> (10— —B~H .
k=0
Hence, since ng € M, we obtain for alla € R,

1 oo.aim)(n = B) ™' = L—ooa)(m) Y (10 — )" ((no — B)"H*!
k=0

(10 — M1 (— 00,01 (m) (o — B)~H*F!

M

~
Il
o

(10 — M¥ L (00,01 (m) (10 — B) ™ M _ o a1 (m)

M

~
Il
=}

= L(—co.a1(m) Y (o — m* (10 = B) "D (oo a1 (m)
k=0

= L(o0,a)(m) () — B) "L (_o0,a)(m).

Thus, B (n9,r) € M and M is open in Z. Next, let (n,), be a sequence in M,
convergent to some n € Z. For n € N the equality

L(—ooal M)y — B) ™' = 1 —oo,a)(m) 1y — B) M (Co0,a)(m)  (a € R)

as well as the continuity of (- — B)~! imply that n € M. Hence, M is closed. We
infer M = Z from the connectedness of Z and, thus, A € M. m|

Lemma 16.2.5 Letv € Rand M € L(L3(R; H)) be causal. If there exists ¢ > 0
such that

Re(p, M), )y Z (@, 9),, 1y (@ € Loy(R; H)),

then M~V is causal.



264 16 Non-Autonomous Evolutionary Equations

Proof We have 0 € p(M) by Proposition 6.2.3(b). In particular, we obtain for all
a €Rand¢ € Ly ,(R; H), using causality of M, that

Re (1 (—o0.a1- M‘ﬁ)LZJ,(R;H) =Re (L(—co.a)®. ]l(*oov“]qu)LzJ,(]R;H)
= Re (I (001> L(~o0.al MI(—c0.ai$), | k. 11
= Re (I (—oc,a1®. M]l(*oo’al¢>L2,v(R;H)
> c(L-coar. ]l(—oos“]d))szv(R;H)
= c{L(-o.a1. ¢>L2vv(R;H) ’
which yields causality of M~! by Proposition 16.2.3 applied to B = M. |
Lemma 16.2.6 Let M, N, M’ € L(L,,,(R; H)). Assume

M, C M — M

and
Re (o, (3. oM +N)g) > c(p,¢) (¢ € dom(d; ).
Then
7= {n €10,00) 5 (Bu(M+n)+N)"! causaz}
is closed,

Proof As it was mentioned before, the proof of 0 € p (9;,,(M + 1) +N) forn €
[0, 00) is postponed to Exercise 16.4. For all n € [0, 00) and ¢ € dom(9;,,) we
have

Re (¢, (0 v(M+m) +N)p) = c(d,¢) (¢ € dom(dy ).

Note that this inequality to hold for all ¢ € dom(9;,,) is sufficient for it to hold
for all ¢ € dom(9;,,(M + n)). Indeed, this is a consequence of dom(d;,,) being
a core for 9;,,(M + n), which is easily seen (see also Lemma 16.3.3). Hence, by
Proposition 16.2.3, n € Z if and only if

Re (11(—oo,a]¢a 0,y (M + 1) +N)¢> = C(ﬂ(—oo,a]d’a ¢> (¢ € dom(9y,v)).

Before we show closedness of Z, we shortly recall that integration by parts yields
foralla e R

1 2 —2va
Re (L(—co,a1¢, 0r,vp) = 5 le@le +v(Lcoo,a1p. ) (¢ € dom(d;,)).
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In order to show that Z is closed, let (17,), be a sequence in Z, convergent to some
n € [0, oo). Then we compute for alla € R and ¢ € dom(d;,,) andn € N

Re (100,016 (3,0 (M + 1) + N) @)
= Re(l(coaid: (drvM+ 1) + N) ¢) + Re (L—o0.a10: 3.0 (1 = 1))

1
cmkmﬂ¢¢%%;n—mnwmnﬁam—mwy+w—wﬁvmkmﬂ¢¢y
Letting n — oo, we infer

Re (L(—o0,a19, (90 (M + 1) + N) ¢) > ¢ (L(—o0,a10. ¢)

for ¢ € dom(9,,,). Hence, n € Z. a

Proof of Theorem 16.2.1 Keeping Exercise 16.4 in mind, we only need to show
that the solution operator (9, M + N )~! is causal.
By Lemma 16.2.6, it suffices to show that for all > 0,

Oy M+1)+ A

is causal. Hence, we may assume that 0 € p(M) and, using Lemma 16.2.5, that
M1 is causal. In this situation, it remains to show that

@M+ =M @B+ NMTH T
is causal. As M~ is causal, it furthermore suffices to show causality of
@+ 107!

where K := N M~! is causal. Using Re M > 0 and the inequality assumed for
9, v M + N, we conclude that (3;, + u + K) is continuously invertible for all
= 0. Since 8;\,1 is causal, Lemma 16.2.4 yields that (9;,, + w)~! is causal. From
Re(d,y + p) > v+ w it follows that || (3;,, + 1) ™| < 1/(v + w). Hence, we find
p > 0 such that ||(3;,, + 1) 'K < 1. Thus,

@+ K7 = (14 F B+ ) 'K) T @+ ) !

zj (@ + )7 @y + )7
k=0

is causal as a composition of causal operators. Finally, Lemma 16.2.4 implies
causality of (d;,, + K)~! as desired. O
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16.3 Non-Autonomous Picard’s Theorem—The PDE Case

Let H be a Hilbert space. In Sect. 4.2, we have already discussed the notion of
uniformly Lipschitz continuous mappings. Here we concentrate on linear uniformly
Lipschitz continuous mappings, which we call evolutionary as a short hand:

Definition Let vp € R. A mapping

M: S(R; H) —> (1) La.v(R: H)

V>0

is called evolutionary (at vp) if it is linear and uniformly Lipschitz continuous
(at vp); that is, for all v > vp, the mapping M: S.(R; H) € L2 ,(R; H) —
Ly, (R; H) is linear and continuous. Moreover, its continuous extension to the
whole of L; ,(R; H), denoted by M, satisfies sup,,>,, |M"] < oo.

The set of all evolutionary mappings is defined as

Sev(H,vo) = { M: Se(R: H) > () L2,v(R; H) ; M evolutionary at v

V210

We have seen that material law operators are evolutionary (see Theorem 5.3.6
and the concluding lines of the proof). In the non-autonomous version of Picard’s
theorem (Theorem 6.2.1), evolutionary mappings will replace the notion of material
law operators. Hence, we allow for an explicit time-dependence in the coefficients.
Recall from Lemma 4.2.5(a), that M" is causal and independent of v in the sense
of Lemma 4.2.5(c).
The non-autonomous version of Picard’s theorem now reads as follows.

Theorem 16.3.1 Let 1 € R, M, M/, N € Sev(H, 1), Re M" > O forallv > u
and A: dom(A) C H — H be closed and densely defined. Assume that there exists
¢ > 0 such that the following conditions are satifsfied:

(@) MHd,, C By M — (M),
(b) forallv > wand ¢ € dom(0;,,) we have

Re (@, (3, MY + N) ¢>L2,1,(R;H) Z (P, D)y, (R H) >
(¢c) forall x € dom(A) and y € dom(A*) we have
Re (x, Ax)y > 0 and Re (y, A*y)H > 0.
Then for all v > max{u, 0}, v # 0, the operator

dhwM” + N+ A: H)(R; H) N Ly, (R; dom(A)) € Ly, (R; H) — Lo, (R; H)
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is closable and its closure is continuously invertible. Moreover, with S, €
L(L2,v(R; H)) being the inverse of this closure, ||Syllp(r, ,®:Hy < 1/¢, Sy is
eventually independent of v and S, is causal.

Remark 16.3.2

(a) Itis aconsequence of Theorem 16.3.1 that the mapping

S: Se(R: H) — () Law(R; H)
=

Fr (B uME+NE+ A f

is evolutionary.

(b) It will follow from the techniques used in the proof of Theorem 16.3.1, that a
similar results holds without the assumption of evolutionarity for the operator
coefficients. We refer to the formulation in Exercise 16.5 and ask the reader to
provide a proof for this.

The proof of the non-autonomous version of Picard’s theorem requires some
preparations. Being still a linear theory, the well-posedness result is—similar to the
autonomous version of Picard’s theorem—based on Proposition 6.3.1. Furthermore,
we need some results on the interaction of the time derivative and the non-
autonomous coefficients. Thus, for the next lemma, we introduce the commutator

[A,B] = AB — BA
for two linear operators A and B on its natural domain
dom(AB) Ndom(BA).

Lemma 16.3.3 Letv € R, M, M' N € Sov(H,v). For ¢ > 0 small enough,
denote S, = (1 +&d,,)7.

(@ If MY3;, C 0y MY — (./\/l’)v, then for all ¢ > 0 we have

[at,va, Se] = Sat,vSs(M/)vSS € L(LZ,V(R; H)).

In this case, we also have that [9; ,M", S;] — O in the strong operator
topology of L(L2,,(R; H)).

(b) We have that [N,Se] — 0 as ¢ — 0 in the strong operator topology of
L(L2v(R; H)).
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Proof
(a) Lete > O0and ¢ € dom(d;,,). Then

[at,vMVa Ss]d) = at,v(MVSS - SSMV)¢
= O vSe (1 + 83 ) M” — M"(1 + £9;,1))Se
= Sat,vSs(M/)vSSd)a

which shows the first equality. Since S; — 1 as ¢ — 0 in the strong operator
topology and €9;,,S¢ = (1 —S¢) — 0as e — 0 in the strong operator topology,
we infer the convergence statement in (a).

(b) This statement follows from S, — 1 in the strong operator topology. O

Lemma 16.3.4 Let € R, M, M', N € Sey(H, ) and A: dom(A) C H — H
be closed and densely defined. Assume M*9; , € 9 , M* — (./\/l’)“. Then for all
V=

MY+ NV 4+ A)" = (0,0 MY + N 4 A% = (MO0, + V)* + A%,

Proof Letv > p.Itis not difficult to see that M*9; ,, < 3, , MH* — (M’)” implies
MV3;, C 3y MY — (M’)v, see Exercise 16.2.

Let g € dom ((8,,1)/\/1” + NV + A)*). For ¢ > 0 small enough, we define S, =
(1+ed,,) " as well as g == S*g. Foru € dom(d; , M" + NV + A) we compute

t, v » 8E

(@M + NV + A)u, g

= (Se (v M" + N + A)u, g) (16.2)
= (@ M" + N + A)Seu, g) = {[8r, v M, Selu + [NV, Selu, g) .

We read off that g, € dom ((d;,,M" +N" + A)*) and

O oMY + NV + A)*g,
= SX@ M+ N" + A)*g — [0,y M”, Se1*g — [NV, Se]*g.

By Lemma 9.3.3, we infer that g, — g weakly as ¢ — 0. Similarly, we obtain
Se (@ v M =N"+A) g +[8;, M, Sel"g =[N, SeI*'g — (8, v M"+ NV +A)*g

weakly as ¢ — 0. Next, we show that g € dom(A) for all ¢ > 0. For this, we
realise that g € dom(d;,,) = dom(d;,,) and, thus, revisiting (16.2), we infer

(Au, g¢) = — (@MY + N"u, g¢) + (0o M” + NV + A)Seu, g)
- <[al‘,UMU1 Sé‘]us g) - ([va Sé‘]uv g>
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= —(u, (M)}, + NY)")ge) + (u, S5(B,0M” + NV + A)*g)
— (u, [0;.0 M, SeT*g + [N, SeI%g).

Since HV1 R; H) N Lz,v(R; dom(A)) is dense in Lz,v(}R; dom(A)), we read off
that g. € dom(A™). Thus, since g. € dom(d;,) anyway, we obtain by the first
statements in Theorem 2.3.2 and Theorem 2.3.4 that

(at,va + NV + A)*gs = (MU)*a;jugs + (NU)*gs + A*gs,

which together with the above convergence result shows the assertion. O

Lemma 16.3.5 Let u,v € R, u > v. Let S, € L(L2,(R; H)) as well as S, €
L(L , (R; H)) be causaland D € L ,(R; HYN Ly ,(R; H) dense in Ly ,(R; H)
such that S, = Sy, on D. Then S, = S, on L ,(R; H) N Ly , (R; H).

Proof Let f € Ly ,(R; H)NL> ,(R; H). By density of D, we may find a sequence
(fu)n in D such that f, — fin Ly ,(R; H). Let a € R. Then 1(—o0,qfn —
1 (—oc,a1f in Lo w(R; H) N Ly, (R; H). Since both S, and S, are causal, we infer
forn € N that

1(—00,a18" L(—o0,a1 frn = L(=00,a1S" [ = L(—00,a1S" fr = L(=00,a1S" L (=00,a] f-

Letting n — o0, we deduce that both the left-hand side as well as the right-hand
side converge in Lj 1oc(R; H). Consequently, we infer, using causality again that

Lcoo,a1S" f = 1(c0,a18" L(—o0,a1f = L(=00,a15" L(=00,a1f = L(=00,a1S" [-

This equality holds for all @ € R, thus S* f = S f and the assertion follows. O
The following lemma is proved in the (easy) Exercise 16.7.

Lemma 16.3.6 Let Hy, H| be Hilbert spaces. Let B: dom(B) € Hy — Hj be
closed and densely defined. Let V be a Hilbert space such that V. — dom(B)
continuously and densely. If D C V is a dense subspace, then D is a core for B.

Proof of Theorem 16.3.1 Define B = 9 oM’ + NV + A with dom(B) =
H!(R; H) N Ly, (R; dom(A)). By the last equality in Lemma 16.3.4, we have
dom(B*) 2 H'(R; H) N Ig,U(R; dom(A*)). Hence, B* is densely defined and,
therefore, by Lemma 2.2.7, B is closable. Next, we want to apply Proposition 6.3.1
to B := B. For this, we let ¢ € dom(E) and compute

Re (¢, Bg) = Re(p, (3, v M" + N + A)g)
> c (¢, ¢) +Re(p, Ap) > c (¢, ¢) .
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Since dom(E) is a core for B, we deduce

Re (¢, Bp) > c(b.$) (¢ € dom(B)).

Using Lemma 16.3.4, we obtain D := dom ( (Bt,v./\/l” + N”)* )ﬂLz,,} (R; dom(A*))
is a core for B*. Using Theorem 16.2.1, we estimate for all » € D that

Re (v, B*y) = Re (v, (3,0 M” + NY) ¢ + A™Y) > c (Y, ¥).

Hence,
Re(y, B*y) > c (¥, ¥) (¥ € dom(B¥)).

Thus, Proposition 6.3.1 applies and we deduce that 0 € p(B) and | B~! H < 1/e.

Next, since (9, M" + N~ is causal by Theorem 16.2.1, using Proposi-
tion 16.2.3 for ¢ € H!(R; H) N Ly, (R; dom(A)) = dom(B) we obtain fora € R
that

Re (1 (—o0,a1®: Bd) = Re(L(—o0,a1®, (90 M” + NV + A)g)
= Re<]l(700,a]¢a 0y MY + N“)¢)¢ + Re (ﬂ(—oo,a]¢a ﬂ(foo,a]A‘ﬁ)
> c(L—oo,a1®s @) + Re (10,01, AL(—o0,a1) = ¢ (L(—00,a1¢. D).

The inequality Re(L(—oo,a1¢p, B¢) > c(L(—oo.a1¢. ®) carries over to all ¢ €
dom(B) using that dom(§) is, by definition, a core for B. Again appealing to
Proposition 16.2.3 we obtain that B~! is causal. Finally, in order to show that S,
is eventually independent of v, we want to apply Lemma 16.3.5. Since we have
shown that for all v > 1 > u, the operators S, and S, are continuous and causal, it
remains to constructaset U C Lj ,(R; H) N Ly ,(R; H) dense in L; ,,(R; H) such
that S, = S, on U. We put

U= 0 yM"+ N + A)[CE(R; dom(A))],

which is evidently a subset of Ly, (R; H). Observe that C°(R; dom(A)) <
Ly ,(R; H) N Ly (R; H). Moreover, M" = M" as well as NV'" = N on
Ly ,(R; H)N Ly, (R; H). Thus, both MY and ' leave L ,(R; H)N Ly, (R; H)
invariant, by Lemma 4.2.5. Hence, since A[C°(R; dom(A))] € CP(R; H), we
infer that U C Ly ,(R; H) N Ly, (R; H).

Finally, by Lemma 9.4.1, C2°(R; dom(A)) is dense in Ly, (R; dom(A)) N
H!(R; H). We now apply Lemma 16.3.6 to C°(R;dom(A)) € V:i=L,,
(R; dom(A)) N H(R; H) and B to get that C°(IR; dom(A)) is a core for B. Since
B is surjective, this implies that U = B[C°(R; dom(A))] € Ly, (R; H) is dense
which yields the assertion. O
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16.4 Comments

Traditionally, non-autonomous equations have been dealt with—similar to the
autonomous case—by mimicking techniques and results from non-autonomous
ordinary differential equations. In consequence, the fundamental solution is the
central object of attention, which finds itself in the concept of so-called evolution
families (U (¢, 5));>s or propagators, see e.g. [53, 112]. Similar to the autonomous
case, one is interested in the initial value problem

u' @)+ A@®u(t) =0, >0,
u(0) = uo,

for a given parameter dependent operator family (A(?)); of unbounded operators.
The solution is then given by u(#) = U (¢, 0)up. In applications, for instance to
parabolic equations, A(t) = — diva(t) grad.

One is then interested in whether (A(#)), gives rise to an evolution family. There,
the main issue is to understand the behaviour of the possibly different domains
of A(t) for any given ¢. Focussing on inhomogeneous problems rather than initial
value problems, we again are changing the perspective in the case of evolutionary
equations. The presented time-space perspective entirely dispenses with the possible
domain issues and requires only mild regularity conditions of the coefficients. In
particular, as it has been demonstrated for the heat equation in Sect. 16.1, we merely
require boundedness and measurability for a, whereas for Maxwell’s equations we
need Lipschitz continuity for the coefficients ¢ and .

The first result on the well-posedness of non-autonomous evolutionary equations
has been found in [92]. In this source, the focus was on multiplication operators
as coefficients and Lipschitz continuity of the operator coefficients with respect to
time was assumed. The method of proof has been used to generalise this to the
commutator assumption presented here, see [137, 138]. Theorem 16.3.1 also has a
nonlinear analogue. This can be found in [122]. For an autonomous well-posedness
result for nonlinear evolutionary inclusions we also refer to Chap. 17.

Exercises

Exercise 16.1 Let V: R — R be Lipschitz continuous.

(a) Let ¢ € C(R). Show that ¢V € HVl (R) with bounded derivative. Show
that there exists a bounded measurable function V' such that V(r) — V(0) =
Jo V'(x)dr.

(b) Let V be bounded. Show that V (m) is evolutionary at 0 and that

V(m)"d,, C 3,V (m)” — V'(m)".
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(c) In the situation of (b), show that for ¢ € dom(9;,,), we have

1
Re (¢, 0;,,V(m)¢) = v (¢, V(m)¢) + 5 (@, V'(m)g).

Exercise 16.2 Let H be a Hilbert space, u € R. Let M, M’ € Sey(H, 11). Assume
that

M* 8, C 0 g M — (MM
Show that then for all v > © we have
MV8;, C 0y MY — (M.
Exercise 16.3 Let H be a Hilbert space, v, c > 0, M € M(H, v). Assume that
RezM(z) = c.
Show that then
Re (01,0 M (9,)8, Lsoar$) > ¢ |1 oc.ar |’

forall ¢ € dom(9;,,) anda € R.

Exercise 16.4 In the situation of Theorem 16.2.1, show that 0 € p(3; ,M + N)
and || (3, M + )71 < 1/ec.
Hint: Show Re (3;,,M + N)" > c first.

Exercise 16.5 Prove the following ‘non-causal’ version of Theorem 16.3.1: Let H
a Hilbert space, v € R. Let M, M', N € L(L2,,(R; H)) and A: dom(A) C H —
H be closed and densely defined. Assume that there exists ¢ > 0 such that the
following conditions are satifsfied:

(a) Moy S 0y M — M,
(b) forall ¢ € dom(d;,,) we have

Re(p, (3o M+N) @), ) =€ (d. )1, @)
(c) forall x € dom(A) and y € dom(A*) we have
Re (x, Ax)y > 0and Re(y, A*y)H > 0.
Then

d oM+ N+ A: H)(R; H) N Ly, (R; dom(A)) € Ly, (R; H) — Lo, (R; H)
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is closable and its closure is continuously invertible. Denoting the respective inverse
by S, we have Sz, ,®:my) < 1/c.

Exercise 16.6 Without using Theorem 16.3.1 or Exercise 16.5 show that if M €
M(H,v)and N € Sey(H, v) satisfy

Re (g, (9,0 M(3;,) + N")p) = c(¢.¢) (¢ € dom(dy,,))

for some ¢ > 0, then 0 € p(&,,,,M(at,v) + NV + A), for all skew-selfadjoint
A: dom(A) C H—~ H.

Hint: Compute the adjoint of 3; , M (9;,,) + N + A with the help of Theorem 6.2.1
and Theorem 2.3.2.

Exercise 16.7 Prove Lemma 16.3.6.
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Chapter 17 )
Evolutionary Inclusions Shethie

This chapter is devoted to the study of evolutionary inclusions. In contrast to
evolutionary equations, we will replace the skew-selfadjoint operator A by a so-
called maximal monotone relation A € H x H in the Hilbert space H. The resulting
problem is then no longer an equation, but just an inclusion; that is, we consider
problems of the form

(u, f) € 0,yM(3,,) + A, (17.1)

where f € Ly ,(R; H) is given and u € L, ,(R; H) is to be determined. This
generalisation allows the treatment of certain non-linear problems, since we will
not require any linearity for the relation A. Moreover, the property that A is just a
relation and not neccessarily an operator can be used to treat hysteresis phenomena,
which for instance occur in the theory of elasticity and electro-magnetism.

We begin to define the notion of maximal monotone relations in the first part
of this chapter. In particular, we introduce the notion of the so-called Yosida
approximation of A and provide a useful perturbation result for maximal monotone
relations, which will be the key argument for proving the well-posedness of (17.1).
For this, we prove the celebrated Theorem of Minty, which characterises the
maximal monotone relations by a range condition. The second section is devoted
to the main result of this chapter, namely the well-posedness of (17.1), which
generalises Picard’s theorem (see Theorem 6.2.1) to a broader class of problems.
In the concluding section we consider Maxwell’s equations in a polarisable medium
as an application.
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17.1 Maximal Monotone Relations and the Theorem
of Minty

Definition Let A € H x H. We call A monotone if
Y(u,v),(x,y) e A: Re{(u—x,v—y)=>0.

Moreover, we call A maximal monotone if A is monotone and for each monotone
relation B € H x H with A C B it follows that A = B.

Remark 17.1.1 Let A C H x H be a monotone relation.

(a) Itis clear that A is maximal monotone if and only if for each x, y € H with
Vu,v) € A: Refu—x,v—y) >0

it follows that (x, y) € A.

(b) From (a) it follows that A is demiclosed; i.e., for each sequence ((xy, Yn))neN
in A with x, — x in H and y, — y weakly or x,, — x weakly and y, — y in
H for some x,y € H asn — oo it follows that (x, y) € A (note that in both
cases we have (u — x,,, v — y,) = (u — x, v — y) for each (u, v) € A).

We start to present some first properties of monotone and maximal monotone
relations.

Proposition 17.1.2 Let A € H x H be monotone and A > 0. Then the following
statements hold:

(a) The inverse relation (1 + LA)~' is a Lipschitz-continuous mapping, which
satisfies H(l +24)7! HLip < 1.
(b) If 1 4+ LA is onto, then A is maximal monotone.

Proof For showing (a), we assume that (f,u),(g,x) € (1 + LA)~! for some
f,g,u,x € H.Then we find v, y € H such that (u, v), (x,y) € Aandu +Av = f
as well as x + Ay = g. The monotonicity of A then yields

lu— x> =Re(f —g—Ar(—y),u—x) <Re(f—g.u—x)<|f—glllu—x]|.

If now f = g, then u = x. Hence, (1 + AA)~! is a mapping and the inequality
proves its Lipschitz-continuity with |(1 +24)7! ||Lip < 1.

To prove (b), let B € H x H be monotone with A € B and let (x,y) € B.
Since 1 + LA is onto, we find (u,v) € A € B such thatu + Av = x + Ay. Since
(14 AB)~! is a mapping by (a), we infer that

x=0+2B) 'ax+r)=0+rB) " 'u+r)=u

and hence, also v = y, which proves that (x, y) € A and thus, A = B. m|
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Example 17.1.3 Let B: dom(B) € H — H be a densely defined, closed linear
operator. Assume Re (¢, Bu) > 0 and Re (v, B*v) > O for all u € dom(B)
and v € dom(B*). Then B is maximal monotone. Indeed, the monotonicity
follows from the linearity of B and by Proposition 6.3.1 the operator 1 4+ B is
continuously invertible, hence onto. Thus, the maximal monotonicity follows by
Proposition 17.1.2(b). In particular, every skew-selfadjoint operator is maximal
monotone. Moreover, if M: dom(M) € C — L(H) is a material law such that
there exist ¢ > 0, vg > sp (M) with

Re (zM(2)¢, ¢) = cllpll* (¢ € H,z € Cresuy),

then 9; , M (9;,,) — c is maximal monotone for each v > vy.

Our first goal is to show that the implication in Proposition 17.1.2(b) is actually an
equivalence. This is Minty’s theorem. For this, we start to introduce subgradients
of convex, proper, lower semi-continuous mappings, which form the probably most
prominent example of maximal monotone relations.

Definition Let f: H — (—00, c0]. We call f

(a) convexifforallx,y € H, A € (0, 1) we have

JOx+ A =2y) <Af)+A =2 f().

(b) proper if there exists x € H with f(x) < oo.
(c) lower semi-continuous (L.s.c.) if for each ¢ € R the sublevel set

[f <cl={xeH; f(x)<c}

is closed.
(d) coercive if for each ¢ € R the sublevel set [ f < c] is bounded.

Remark 17.1.4 1If f: H — (—00, 00] is convex, the sublevel sets [ f < c] are
convex for each ¢ € R. Hence, if f is convex, l.s.c. and coercive, the sets [ f < c]
are weakly sequentially compact (or, by the Eberlein—Smulian theorem [50, theorem
13.1], equivalently, weakly compact) for each ¢ € R. Indeed, if (x,),en is a
sequence in [f < c] for some ¢ € R, then it is bounded and thus, posseses a
weakly convergent subsequence with weak limit x € H. Since [ f < c] is closed
and convex, Mazur’s theorem [50, Corollary 2.11] yields that it is weakly closed
and thus, x € [ f < c] proving the claim.

Definition Let f: H — (—o00, 0o] be convex. We define the subgradient of f by
of ={(x,y)e Hx H;Yue H: f(u)> f(x) +Re(y,u —x)}.

Remark 17.1.5 Note that u — f(x) + Re(y, u — x) is an affine function touching
the graph of f in x. Thus, the subgradient is the set of all pairs (x, y) € H such
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that there exists an affine function with slope y touching the graph of f in x. It is
not hard to show that if f is differentiable in x, then (x, y) € df if and only if
y = f’(x) (see Exercise 17.1). Thus, the subgradient of f provides a generalisation
of the derivative for arbitrary convex functions.

Proposition 17.1.6 Let f: H — (—o00,00] be convex and proper. Then the
following statements hold:

(@) If (x,y) € Of, then f(x) < o0o. Moreover, the subgradient of is monotone.

() If f is Ls.c. and coercive, then there exists x € H such that f(x) =
infyen f(u).

(c) Leta >0,x,y € Hand g: H — (—00, 0] with g(u) = 5 |lu — y||2 + f(u)
foru € H. Then g(x) = inf,egy g(u) if and only if (x, a(y — x)) € df.

(d) Leta« > Oandy € H. If f is Ls.c., then g: H — (—o00, 00] with g(u) =
5 llu— yI?+ f () foru € H is convex, proper, L.s.c and coercive. In particular
1 + «df is onto and hence, df is maximal monotone.

Proof

(a) If (x,y) € of we have f(u) > f(x) + Re(y,u — x) for each u € H. Since
f is proper, we find u € H such that f(#) < oo and hence, also f(x) < ococ.
Let now (u, v), (x, y) € df. Then we have f(u) > f(x) + Re(y,u — x) and
f(x) =2 f(w) +Re{v,x —u) = f(u) — Re(v,u —x). Summing up both
expressions (note that f(x), f(u) < oo by what we have shown before), we
infer

Re(y —v,u —x) <0,

which shows the monotonicity.

(b) Let (xy)nen in H with f(x,) — inf,cy f(u) =: d. Note that d € R, since
f is proper. Without loss of generality, we can assume that x, € [f < d + 1]
for each n € N and by Remark 17.1.4 we can assume that x,, — x weakly as
n — oo forsome x € H. Lete > 0. Since x,, € [f < d + ¢] for sufficiently
large n € N, we derive x € [f < d + €] again by Remark 17.1.4 and so,
f(x) < d + ¢ foreach ¢ > 0, showing the claim.

(c) Assume that g(x) = inf,cy g(u) and let u € H. Since f is proper, so is g and
thus, we have g(x) < oo, which in turn gives f(x) < oco.Let A € (0, 1] and set
w = Au + (1 — A)x. Then the convexity of f yields

(W) = f()) > fw) — f(x)
=gw0—mﬂ+Zﬂu—yW—Hw—ﬂﬁ

o
>zuu—yw—nw—ﬂﬂ
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(07
= 2(||x—y||2— 1A —x) 4+ x — ylI*)

= Z(—ZARe(u—x,x—y}—Az lu — x12).

Dividing the latter expression by A and taking the limit A — 0, we infer

—aRe(u —x,x —y) < fu) — f(x),

which proves (x, «(y — x)) € af.
Assume now that (x, «(y — x)) € df. For eachu € H we have

Jx — ylI> —2Re(y —x,u —x) = ||y —x — (u — )|I> — [lu — x||* < flu — y|I?

and thus,
Fa) > f(x) +Rela(y —x),u—x) > f(x) + Z(ux —yI% =l = yI1?),

which shows the claim.
(d) We first show that there exists an affine function #: H — R with 2 < f. For
this, we consider the epigraph of f given by

epi f == {(x,B) €e HxR; f(x) <pB}.
Since f is convex and l.s.c., one easily verifies that epi f is convex and closed.
Moreover, since f is proper, epi f # @. Let now z € H with f(z) < oo and

n < f(z). Then (z,n) € (H x R) \ epi f and by the Hahn—Banach theorem we
find w € H and y € R such that

Re (w, z) +yn < Re (w, x) + yB
for all (x, B) € epi f. In particular
Re (w, z) +yn <Re(w,x) +yf(x)
for each x € H and since this holds also for x = z, we infer y > 0. Choosing
h(x) = ; Re (w,z —x) + n for x € H, we have found the asserted affine

function.
Using this, we have that

g(u) > Z e — yI> + h(u) (e H)
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and since the right-hand side tends to co as |lu|| — oo, we derive that g is
coercive. Moreover, g is convex, proper and L.s.c. (see Exercise 17.2) and thus,
there exists x € H with g(x) = inf,eg g(u) by (b). By (¢), (x, @(y — x)) € df
and thus, (x, y) € 1 +adf. Since y € H was arbitrary, 1 + «df is onto and so,
df is maximal monotone by (a) and Proposition 17.1.2(b). |

We can now prove Minty’s theorem.

Theorem 17.1.7 (Minty) Let A C H x H maximal monotone. Then 14+ LA is onto
forall . > 0.

Proof Since LA is maximal monotone for each A > 0, it suffices to prove the
statement for A = 1. Moreover, since A — (0, f) is maximal monotone for each
f € H,itsuffices to show 0 € ran(14 A). For this, define f4: H x H — (—00, 00]
by (note that A # @ by maximal monotonicity)

fa(u,v) =sup{Re(u,y)+Re(v,x) —Re(x,y); (x,y) € A}.

As a supremum of affine functions, we see that f4 is convex and l.s.c. Moreover,
we have that

fa(u,v) = —inf{—Re (u, y) —Re (v, x) + Re(x,y) ; (x,y) € A}
= —inf{Re(x —u,y —v); (x,y) € A} +Re (u, v)

foreachu, v € H and since A is maximal monotone, we get by using Remark 17.1.1

inf{fRe(x —u,y—v); (x,y) € A} 205 (u,v) € A
< inf{Re(x —u,y—v); (x,y) € A} =0
and so
inf{Re(x —u,y—v); (x,y) € A} <0 (u,veH).
In particular, we get fa(u,v) > Re(u,v) for each u,v € H and fa(u,v) =
Re (u,v) if and only if (u,v) € A. Thus, fa4 is proper since A # @. By

Proposition 17.1.6(d) we obtain that O € ran(1 4 df4) and thus, we find (o, vg) €
H x H with ((ug, vo), (—up, —vo)) € 9f4. Hence, by definition of df4,

fa(u,v) = fa(uo, vo) + Re ((—uo, —vo), (u — uo, v — vo))
= fa(uo, vo) + lluol> + llvoll*> — Re (uo, u) — Re (vo, v)

for all (u, v) € H x H.In particular, using that f4 (u, v) = Re (u, v) for (u,v) € A
we get

0> faluo, vo)+lluol®+llvoll*>—Re (ug, u) —Re (v, v) —Re (u, v)  ((u,v) € A).
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Taking the supremum over all (4, v) € A, we infer

0> fa(uo, vo) + lluoll® + llwoll* + fa(—uo, —vo),
> Re (uo, vo) + lluoll® + Ilvoll* + Re (=uo, —vo) = lluo + voll*
Thus, up + vo = 0 and instead of inequalities, we actually have equalities in the

expression above. Thus, fa(up,v0) = Re{up, vo) and so, (ug,vo) € A. From
ug + vo = 0 it thus follows that 0 € ran(1 4+ A). |

Next, we show how to extend maximal monotone relations on a Hilbert space H
to the Bochner-Lebesgue space Ly (u; H) for a o-finite measure space (2, A, ).
The condition (0, 0) € A can be dropped if ;£ (2) < oo.

Corollary 17.1.8 Let A C H x H maximal monotone with (0,0) € A. Moreover,
let (2, A, 1) be a o -finite measure space and define

ALyu:m) =1{(f, 8) € La(u; H) x La(u; H); (f(1),8(1) € A (1 € Qae)}.

Then Ay, (u; 1y is maximal monotone.

Proof The monotonicity of Ay, m) is clear. For showing the maximal monotonic-
ity we prove that 1 + Ay, H) is onto (see Proposition 17.1.2(b)). For this, let
h e Ly(w; H)andset f(r) = (1 + A)~Y(h(1)) foreach r € Q. Note that f is well-
defined by Theorem 17.1.7. Since (1 + A)~! is continuous by Proposition 17.1.2(a)
and /4 is Bochner-measurable, f is also Bochner-measurable. Moreover, using that
0,0) e 1+ A and H(l +A)7! ||Lip < 1, we compute

[ 1@ anw < [ 11 auw < oo

Q Q

and so, f € La(u; H). Thus, h — f € Ly(u; H), which yields (f,h — f) €
Ap,(u;H) and so, h € ran(1 + Ap, . 1))- O
17.2 The Yosida Approximation and Perturbation Results

We now have all concepts at hand to introduce the Yosida approximation for a
maximal monotone relation.

Definition Let A € H x H be maximal monotone and A > 0. We define
Ay =) (1 — 4+ AA)_1> .

The family (A; )0 is called Yosida approximation of A.
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Since for a maximal monotone relation A € H x H the resolvent (1 + )\A)f1 is
actually a Lipschitz-continuous mapping (by Proposition 17.1.2(a)), whose domain
is H (by Theorem 17.1.7), the same holds for A, . We collect some useful properties
of the Yosida approximation.

Proposition 17.2.1 Let A € H x H maximal monotone and A > 0. Then the
following statements hold:

(a) Forall x € H we have ((1 +24)7 1 (x), AA(x)) € A.
(b) Ay is monotone and || Ay ||Lip < )IL

Proof

(a) For all x € H we have that ((1 + AA)_l(x),x) € 14+ AA, and therefore,

(A +24)7'@), 4,() € A,
(b) Letx,y € H. Then we compute

ARe (4;(0) = 4,0, x = )
= = yIP = Re((1+24) 00 = (1 +24)7 (0, x — )
>l =y = |a+247' 0 = A+ 207 0 1k = vl
>0
by Proposition 17.1.2(a) and hence, A;, is monotone. Moreover,
Re (A7() = Ax(3), ¥ = ¥)
= Re(4,(0) = 4,0, (1 + 247100 — (1L +24)7 ()
+ A4 (x) = 42
> 1AL () = A2,

where we have used (a) and the monotonicity of A. The Cauchy—Schwarz
inequality now yields || Az ||, < )1\ O

We state a result on the strong convergence of the resolvents of a maximal monotone
relation, which we already have used in previous sections for the resolvent of 9; ,,.
For the projection Pc(x) of x € H onto a non-empty closed convex set C C H,
recall Exercise 4.4 and that y = Pc(x) if and only if y € C and

Re(x —y,u—y)y <0 uelC).
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Proposition 17.2.2 Let A C H x H be maximal monotone. Then dom (A) is convex
andforall x € H we have (1+1A) " (x) — Piom (A)(x) as h — O+, where Py (4

denotes the projection onto dom (A).

Proof We set C := convdom (A). Then C is closed and convex. Next, we prove
that (1 + )LA)’I(x) — Pc(x) as A — O+ forall x € H. So let x € H and
set x;, = (1 + )\A)fl(x) for each A > 0. Then we have A, (x) = i(x — X))
and hence, using Proposition 17.2.1(a) and the monotonicity of A, we infer

Re <xA —u, i(x —x;) —v) = 0 for each (1, v) € A. Consequently, we obtain

x> < Re (x5 —u, x) +Re (xp, u) —ARe (x; —u,v)  ((u,v) € A). (17.2)

In particular, we see that (x;);~0 is bounded as A — 0 and so, for each nullsequence
we find a subsequence (A,), with A, — O such that x;, — z weakly for some
z € H.By (17.2) it follows that

IzII> <Re(z —u,x) +Re(z,u) (u e dom(A)).

It is easy to see that this inequality carries over to each u € C and thus
Re(z —u,z—x) < O for each u € C which proves z = Pc(x) and hence,
x5, — Pc(x) weakly. Next we prove that the convergence also holds in the norm
topology. From (17.2) we see that

lim sup ||xkn||2 < Re(Pc(x) —u,x)+Re(Pc(x),u) (u e dom(A))
n— o0

and again, this inequality stays true for each u € C. In particular, choosing u =
Pc(x) we infer limsup,,_, o, Hxln H2 < || Pc(x) %, which together with the weak
convergence, yields the convergence in norm (see Exercise 17.3). A subsequence
argument (cf. Exercise 14.3) reveals x,, — Pc(x)in H as A — 0.

It remains to show that dom (A) is convex. By what we have shown above, we have
(14+ArA)~!(x) = x as A — 0 foreach x € C and since (1 +1A)~!(x) € dom (A)
for each A > 0, we infer x € dom (A). Thus, C € dom (A) and since the other
inclusion holds trivially the proof is completed. O

We conclude this section with some perturbation results.

Lemma 17.2.3 Let A € H x H be maximal monotone and C: H — H Lipschitz-
continuous and monotone. Then A + C is maximal monotone.

Proof The monotonicity of A 4 C is clear. If C is constant, then the maximality
of A + C is obvious. If C is non-constant we choose 0 < A < HChL‘ . Then for all
ip

f € H the mapping

u> (1+21A)7 (f — AC))
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defines a strict contraction (use Proposition 17.1.2(a) and dom((1 + )»A)’l) =H
by Theorem 17.1.7) and thus, posseses a fixed point x € H, which then satisfies
(x, f) € 1+A(A+C). Thus, A+ C is maximal monotone by Proposition 17.1.2(b).

O

We note that the latter lemma particularily applies to C = B, for a maximal
monotone relation B € H x H and A > 0 by Proposition 17.2.1(b).

Proposition 17.2.4 Let A, B C H x H be two maximal monotone relations, ¢ > 0
and f € H. For A > 0 we set

x. =+ A+ B~ ().
Then f € ran(c + A + B) if and only if sup, o | Br(x;)|| < oo and in the latter
case x,, — x as .. — Owith (x, f) € c + A + B, which identifies x uniquely.

Proof Note that x; is well-defined for A > 0 by Lemma 17.2.3, Theorem 17.1.7
and Proposition 17.1.2.
For all . > O we find y, € H such that (x;, y») € A and cx) + y, + By (xy) = f.
We first assume that there exist x, y, z € H such that (x, y) € A, (x,z) € B and
cx +y+z = f.Thus, we have

cx —=x) =y + Bulx) —y —z,
which gives

0<clx,—xl>=Re(y— yi, x) —x) +Re(z — By(x3), x5 — x)
< Re(z — B, (x;), x) — x)
= Re(z = B0, (1+2B) ™ (53) — x) 4+ Re (2 = By(x3), 1B, (1))

< Re(z — B (x1), AB;.(x3))

where we have used the monotonicity of A in the second line and the monotonicity
of B as well as Proposition 17.2.1(a) in the last line. The latter implies

I1B5. () 1I? < Re {z, Bi.(x))
and the claim follows by the Cauchy—Schwarz inequality.

Assume now that K = sup; . | Bx(x,)|| < oo and let u, A > 0. As above, we
compute

Re <)’u — Vo, Xp — xu> + Re(BM(xM) — By (x), x) — xﬂ)
< Re (B (xy) — Bi(xp), X3 — xu)

e o —
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= Re (B, (v) = B(xa), (1+2B)~ (x3) = (1 + 1B) ™ (x,)
+Re (B (x) = Br(12), ABy(12) = 1By (x))
< Re(Byu(x) = Ba (1), ABy.(01) — 1B (x,0)

<200+ K>
Thus, for a nullsequence (A,),en in (0, 00) we infer that (x;,),en is a Cauchy
sequence whose limit we denote by x. Since (By, (x3,))neN 1s bounded, we can

assume, by passing to a suitable subsequence, that By, (x;,) — z weakly for some
z € H. Then

[+ 2B ) = x| < s, = x| + 2B, (52,

-0 (n—> o)

and since ((1 + )\nB)’l(xAn),BAn (x3,)) € B for each n € N by Proposi-
tion 17.2.1(a), the demi-closedness of B (see Remark 17.1.1) reveals (x,z) € B.
Moreover,

Ya, =f =By, (xn,) —cxp, > f—z—cx =y (n— o0)

weakly and hence, by the demi-closedness of A, we infer (x,y) € A, which
completes the proof of the asserted equivalence. By a subsequence argument (cf.
Exercise 14.3) we obtain the asserted convergence (note that x = (c+ A+ B)~( 1))
is uniquely determined by f). O

To treat the example in Sect. 17.4 we need another perturbation result, for which we
need to introduce the notion of local boundedness of a relation.

Definition Let A € H x H and x € dom (A). Then A is called locally bounded at
x if there exists 6 > 0 such that

A[B(x,8)]={ye H; 3z€ B(x,8): (z,y) € A}

is bounded.

Proposition 17.2.5 Let A C H x H be maximal monotone such that
intconvdom (A) # . Then intdom(A) = intconvdom (A) = intdom (A)
and A is locally bounded at each point x € intdom (A).

In order to prove this proposition, we need the following lemma.

Lemma 17.2.6 Let (D;),eN be a sequence of subsets of H with D, C Dpyq
for each n € N and D := |,y Dn. If intconvD # @, then intconvD =
U, ey intconv D,.
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Proof Set C := intconv D. By Exercise 17.4 we have C = conv D. Since (Dy,),eN
is increasing we have conv D = Un en conv Dy, and hence, C C Un enconv D, C
C. Since C is a Baire space by Exercise 17.5, we find np € N such that
intconv Dy, # & and hence, intconv D,, # & for each n > ng. Hence, conv D,, =

intconv D, for each n > ng by Exercise 17.4. Thus,

C = U conv D, = U intconv D, = U intconv D,,.
neN neN neN

Finally, since |, int conv D, is open and convex, we infer C =, intconv D,
by Exercise 17.4. O

Proof of Proposition 17.2.5 We first show that A is locally bounded at each point
in int convdom (A). For this, we set

Ap={(x,y) € A; lIxll, Iyl <n} (neN).

Then dom(A) = UneN dom(A;,) and dom(A,) < dom(A,+1) for each
n € N. Since intconvdom (A) # &, Lemma 17.2.6 gives intconvdom (A) =
UneN intconvdom(Ay,). Thus, it suffices to show that A is locally bounded at
each x € intconvdom(A,) for each n € N. So, let x € intconvdom(A,) for
some n € N. Then we find § > 0 such that B[x,5§] € convdom(A,). We
show that A[B(x, 3)] is bounded. So, let (u,v) € A with Ju —x|| <  and
note that u € convdom(A,) C B[O, n]. Then for each (a,b) € A, we have
Re (u —a, v — b) > 0 and thus

Re{a —u,v) =Re{a —u,v—>b) +Re{a —u, b)
<Re(a —u,b) <2n* (a € dom(A,)).

Clearly, this inequality carries over to each a € convdom(A,). If v # 0 we choose
a = 2”5UHU +u € Blu, g] C B[x, 8] € convdom(A,), and obtain

4n?
vl < 5

which shows the boundedness of A[B(x, g)].

To complete the proof we need to show that intdom (A) = intconvdom (A) =
intdom (A). First we note that dom (A) is convex by Proposition 17.2.2 and hence,
convdom (A) = dom (A). Now Exercise 17.4(b) gives

intdom (A) = intconvdom (A) = intconv dom (A).

To show the missing equality it suffices to prove that intconvdom (A) € dom (A).
So, let x € intconvdom (A). Then x € dom (A) and hence, we find a sequence
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((*n, Yn))neN in A with x, — x. Since A is locally bounded at x, the sequence
(¥n)neN is bounded and hence, we can assume without loss of generality that y,, —
y weakly for some y € H. The demi-closedness of A (see Remark 17.1.1) yields
(x,y) € A and thus, x € dom (A). |

Now we can prove the following perturbation result.

Theorem 17.2.7 Let A,B € H x H be maximal monotone, (intdom (A)) N
dom(B) # @. Then A + B is maximal monotone.

Proof By shifting A and B, we can assume without loss of generality that (0, 0) €
ANB and 0 € (intdom (A)) Ndom(B). We need to prove thatran(1+ A+ B) = H.
So,let y € H and set

x=>0+A+B)"'y *>0).

Since (0,0) € AN By, and |(1+ A+ BA)_1||Lip < 1, we infer that ||x | < ||yl
for each A > 0. For showing y € ran(l + A + B) we need to prove that
sup,-o l|Ba(xy)|l < oo by Proposition 17.2.4. By definition we find y, € H
such that (xy,y)) € A and y = x), + y» + Bi(x;) for each A > 0. Since A is
locally bounded at 0 € intdom (A) by Proposition 17.2.5 we find R,§ > 0 with
B(0,8) € dom(A) and

Yu,v) e A: Jlull <= |v| <R.

For A > 0 we define u, = 2”;” v, if yp # 0and uy := 0if y; = 0. Then |Ju, | <

g < § and thus, u; € dom (A). Hence, there exist vy € H with (u;,v)) € A and
[luall < R for each A > 0. The monotonicity of A then yields

0 < Re(y) — vy, x5 — uy)

= Re (yx, xa) — Re (v;, x) — Re (yy, up) + Re (vy, up)

)
< Re(y —xy — Bu(xy), x5) —Re (yr, un) + Ryl + 2R
)
< Re(y,x3) —Re(yn,up) + Ryl + 2R
2 )
< lyll® —Re{yx, ur) + Ryl + 2R,

where we have used the monotonicity of B and B; (0) = 0 in the fourth line. Hence,
we obtain

) )
5 Iyl = Re (v u3) < IvI? + Ryl + LR

which shows that (y;)x~0 is bounded and thus, also sup, . q | B (x)) || < oo. O
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17.3 A Solution Theory for Evolutionary Inclusions

In this section we provide a solution theory for evolutionary inclusions by general-
ising Picard’s theorem (see Theorem 6.2.1) to the following situation.

Throughout, we assume that A € H x H is a maximal monotone relation with
(0,0) € A. Moreover, let M: dom(M) € C — L(H) be a material law satisfying
the usual positive definiteness constraint

Jvg = sb (M), ¢ > 0¥z € Crezv, d € H : Relg, 2M(2)¢) = c Il
Then for v > max{vg, 0}, v # 0, we consider evolutionary inclusions of the form

(W, f) € 0 vM(0:,v) + AL, ,(R; H)> (17.3)
where Ar, ,(r; m) is defined as in Corollary 17.1.8. The solution theory for this kind
of problems is as follows.

Theorem 17.3.1 Let v > max{vp,0}, v # 0. Then the inverse relation
S, = (B,NM(B,,U) + ALM(R;H))f1 is a Lipschitz-continuous mapping,
dom(S,) = Lo,(R; H) and ||Sv||Lip < i Moreover, the solution mapping
Sy is causal and independent of v in the sense that S,(f) = S,(f) for each
fely(R; H)NLy ,(R; H) and p > v > max{vg, 0}, v # 0.

In order to prove this theorem, we need some prerequisites. We start with an
estimate, which will give us the uniqueness of the solution as well as the causality
of the solution mapping S, .

Proposition 17.3.2 Let v > max{vg, 0}, v # 0, and

(M, f)v ()C, g) € 8I,UM(at,U) + ALQVU(R;H)'

Then foralla € R

1
[tesca@ =0, < [Tewalf =9l

Proof By definition, we find sequences ((un, fu))nen and ((Xn, gn))neN in
0rvM(0r,v) + AL, ,R;H) such that u, — u,x, — x,f, — fandg, — g
as n — oo. In particular, for each n € N we find v,, y, € L2, (R; H) such that
(n, vn), (Xn, yn) € AL, ,(R;H) and

at,vM(at,v)un + v, = fna
at,vM(at,v)xn + Yn = &n-
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Since (0, O) (S A, we infer (]l(foo,a]uns ]l(foo,alvn)s (]l(,oo,a]xn, ]l(foo,a])’n) S
AL, ,(r;n) and hence, we may estimate

Re (]l(*oo,al(fn — &n)sUn — Xn)
= Re (1 (—o0,a1r,u M (31,,) (U — X0), ttn — )
+Re (]l(*oo,alvn — L(—00,a1Yns L(—c0,alttn — ﬂ(foo,a]xn>
> Re (1 (—c0,a19,v M (31,0) (n — %), tn = %),

where we used Corollary 17.1.8. Moreover, since z — (zM (z))~! is a material law,
(0¢,v M (0, )~ Vs causal. By Proposition 16.2.3, for ¢ € dom(d;,, M (9;,,)) we have

Re (100,19, uM (31,,)$, ¢) > ¢ |1 (—o0,a16| . Thus, we end up with

Re (]l(—oo,a](fn - gn)a Un — xn) Zc ||11(—oo,a](”n - xn)Hz ,

which yields

1
”]l(—oo,a](”n - xn)H < c H]l(—oo,a](fn - gn)” .

Letting n — o0, we derive the assertion. O

Next, we address the existence of a solution for (17.3) for suitable right-hand sides
f. For this, we provide another useful characterisation for the weak differentiability
of a functionin L, (R; H).

Lemma 17.3.3 Letv € R, u € Ly (R; H). Then u € dom(d;,,) if and only if
SUP) <k <o ,11 lthu — u|| < oo for some ho > 0. In either case

1
h(rhu —u) = oyu (h—0)

in Ly (R; H).

Proof For h > 0 we consider the operator Dj,: L ,(R; H) — L, (R; H) given
by Dpv = }ll(rhv —v).Ifv e Cg (R; H) we estimate

1 h 2
IIthHZ:f 5 ||v(t+h)—v(t)||2e_2‘”d[:f ) / V(t+s)ds| e 2 dr
h r 7= |l Jo
—2vt " / 2 ot
yv(t+s)H dse " dr = V' + )| 2" dr ds
0 JR

<o || ||

By density of CC1 (R; H) in HV1 (R; H) we infer that

sup [ DpllL gl (R: 1.1, ®R:H)) S
0<h<1
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Moreover, for v € Cg (R; H) it is clear that Dpv — v in Ly ,(R; H) ash — 0 by
dominated convergence. Since (Dp,)ogng1 is uniformly bounded, the convergence
carries over to elements in HV1 (R; H), which proves the first asserted implication
and the convergence statement.

Assume now that SUP)<h<hg }l lthu — ul| < oo for some hyp > 0. Choosing a
suitable sequence (h,),en in (0, hg] with b, — 0 as n — 00, we can assume
that hln (th,u — u) — v weakly for some v € L, (R; H). Then we compute for
each¢ € CP(R; H)

(U, ¢> = lim hl <M(l +hn) _ u(t),¢(t)) e—2vt dr

n—oo R Nn

n—o00

= lim ! <u(t), ot — hn)ez‘)hn _ ¢(t)> ef2vt dt
R hn

/R(u(t), —¢' (1) +2vp (D)) e " dt = (u, 3} ,¢),

which—as C°(R; H) is a core for 8;'jv (see Proposition 3.2.4 and Corol-
lary 3.2.6)—shows u € dom(d;})) = dom(dy,). O

Proposition 17.3.4 Letv > vy and f € dom(9;,,). Then there exists u € dom(9;,,)
such that

(W, f) € 0 yM(@0:,v) + AL, ,(R; H)-

Proof We recall that B := 9;, M (9;,,) —c is maximal monotone by Example 17.1.3.
Let A > 0 and set

u, = (c+B+ (ALQVU(R;H)))\)il(f) = (01,0 M (0;,0) + (ALzyv(R;H)))\)il(f)-

We remark that (ALZ.v (R?H))A = (A,\)szv(R;H) (see Exercise 17.6). Hence, we have
(AL, ® ), = (AL, ®:m)), T for each h > 0. Thus, we obtain

it = (B.oM @) + (AL, @m),)” (@f)
and so, due to the monotonicity of B and (A Loy (R; H)) 50
llThun — usll < i ltnf — fII.
Dividing both sides by & and using Lemma 17.3.3, we infer that ) € dom(9;,,,) and

lonf — fll = K

1 1 1
lorvus| = lim  llzpus —upll < sup |
h—0h € 0<h<l1 h
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and hence,

sup ALy, @:m), @) = sup | f = 8oM@ )| < IfI+ K | M@0 -

Proposition 17.2.4 implies uy — uasA — Oand (u, f) € 0;,, M (3;,y)+AL, ,(R: H)-
Moreover, since (9;yu3)x>0 is uniformly bounded, we can choose a suitable
nullsequence (A,)nen in (0, 00) such that o;,u;, — v weakly for some v €
Ly, (R; H). Since 9, is closed and hence, weakly closed (either use 8;"; =0,y OrF
Mazur’s theorem [50, Corollary 2.11]) again), we infer that u € dom(9;,,). |

We are now in the position to prove Theorem 17.3.1.

Proof of Theorem 17.3.1 Let v > vp. Since 9;,,M(9;,,) — ¢ is monotone (Exam-
ple 17.1.3), the relation 9;,M(9;,) + Ar, R.#) — ¢ is monotone and thus,
(0r,vM (0 v) +AL, (R: H))_l defines a Lipschitz-continuous mapping with smallest
Lipschitz-constant less than or equal to i Since this mapping is densely defined by
Proposition 17.3.4, it follows that S, = (9;,,M (3;,,) + Aszv(R;H))_l is Lipschitz-
continuous with ||Sv||Lip < Ll and dom(S,) = L ,(R; H). Moreover, S, is
causal, since for f,g € Ly,(R; H) with T(_q1f = L(—c0,q1g for some
a € R it follows that T(_0 418y (f) = L(—c0,a1Sv(g) by Proposition 17.3.2.
Thus, the only thing left to be shown is the independence of the parameter v.
So, let f € Ly,(R; H) N Ly, (R; H) for some vyp < v < . Then we find a
sequence (¢p),eN in Cg (R; H) with ¢, — f inboth Ly ,(R; H) and Ly ,(R; H).
We set u, = S,(¢n) € L»,(R; H) and since 0 = §,(0), we derive that
infsptu, > infspt¢, > —oo by Proposition 17.3.2. Thus, u, € L ,(R; H) and
since u, € dom(d, ,) by Proposition 17.3.4 and spt 9, ,u, < sptu,, we infer that
also 0 yu, € Lo ,(R; H), which shows u, € dom(d, ) and 0 ,u, = 0;vu, by
Exercise 11.1. By Theorem 5.3.6 it follows that

at,vM(at,v)un = M(at,v)at,vun = M(at,v)at,,u.un
= M(at,u)at,,u.un = at,,u.M(at,,u.)un-
Since we have (un, ¢n — 0 vM(0;)un) € Ar, ;s it follows that (u,, ¢ —

O, uM (0 un) € ALM(R;H) by the definition of ALM(R;H) and thus, u,, =
Su(¢n). Letting n — oo, we finally derive S, (f) = Su(f). m|

17.4 Maxwell’s Equations in Polarisable Media

We recall Maxwell’s equations from Chap. 6. Let @ € R? open. Then the electric
field E and the magnetic induction B are linked via Faraday’s law

0;.vB +curlp E =0,
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where we assume the electric boundary condition for E. Moreover, the electric
displacement D, the current j. and the magnetic field H are linked via Ampere’s
law

0rvD + jo —curll H = jp,

where jo is a given external current. Classically, D and E as well as B and H are
linked by the constitutive relations

D =¢FE, and B = uH,

where &, 4 € L(L2()%) model the dielectricity and magnetic permeability,
respectively. In a non-polarisable medium, we would additionally assume Ohm’s
law that links j. and E by j. = o E with o € L(L2(2)?). In polarisable media
however, this relation is replaced as follows

IlEIl < Eo = je=0FE
(17.4)
IEl=Ey=3A>0: jo= (0 +NE,

where Eo > 0 is the called the threshold of ionisation of the underlying medium.
The above relation is used to model the following phenomenon: Assume that the
medium is not or weakly electrically conductive (i.e., o is very small) but if the
electric field is strong enough (i.e., reaching the threshold Ey), the medium polarises
and allows for a current flow proportional to the electric field. Such phenomena
occur for instance in certain gases between two capacitor plates, where the gas
becomes a conductor if the electric field is strong enough.

Our first goal is to formulate (17.4) in terms of a binary relation. For this, we set

B = {0, v) € La@® x La()° s ull < Eo, Re (u,v) = Eo ]}

Lemma 17.4.1 Let u,v € Ly(2)3. Then (u, v) € B if and only if
(lull < Ep) and (lull < Eo = v=0)and (Jull = Eo = 3> > 0: v = Au).
Proof Assume first that (#, v) € B. Then |lu|| < Eg by definition. Moreover,
Eo [lvll = Re (u, v) < [lull ||v]
and hence, if |u| < Eg it follows that v = 0. Moreover, if |u|| = Ep we have

equality and thus, u and v are linearly dependent; that is, we find A1, Ay € C with
A1A2 # O such that Aju 4+ Aov = 0. Note that Ay # 0 since # # 0 and hence, we get
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v = Au with A := —i; . We then have
0 < |AEZ = vl Eo = Re (u, v) = Re A ||ul|> = Re A Ej,

which shows 0 < Re A = |A| and thus, A > 0. The other implication is trivial. a

The latter lemma shows that (E, j.) satisfies (17.4) if and only if (E, j.—0c E) € B,
or equivalently (E, j.) € o 4+ B. Thus, we may reformulate Maxwell’s equations in
a polarisable medium €2 as follows

((2) (8) < (650) + (50) + (amy 5"

To apply our solution theory in Theorem 17.3.1, we need to ensure that

B —curl B0 0 —curl
A= = 17.5
(curlo 0 ) (O 0) + (curlo 0 ) (17.3)

defines a maximal monotone relation on L»(£2)° x L»(2)°. This will be done by the
perturbation result presented in Theorem 17.2.7. We start by showing the maximal
monotonicity of B.

Lemma 17.4.2 We define the function I : L>(2)3 — (—o0, 00] by

o0 otherwise.

H — {0 if llull < Eo

Then I is convex, proper and l.s.c. Moreover, B = d1l. In particular, B is maximal
monotone.

Proof This is part of Exercise 17.7. O

Proposition 17.4.3 The relation A given by (17.5) is maximal monotone with
(0,0) € A.

Proof Since B is maximal monotone by Lemma 17.4.2, it is easy to see that

B0\ . . ...
(0 0) is maximal monotone, too. Moreover, by definition we see that 0 €

intdom(B) and thus, 0 € intdom (g g) = intdom(B) x L»(§2)3. Since

clearly 0 € dom 0 —curl and 0 —curl is maximal monotone (see
curlp 0 curlp O

Example 17.1.3), the assertion follows from Theorem 17.2.7. O
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Theorem 17.4.4 Let e, i, 0 € L(L2(Q)3) withe, u selfadjoint. Moreover, assume
there exist vy, ¢ > 0 such that

ve+Reo >candu>c (v =)

Then for each v > vy we have that

£ 0 o0 B —curl .
Sy = at,v + +
0n 00 curlh 0/ Ry

is a Lipschitz-continuous mapping with dom(S,) = Lz,(R; Lr()%) and
||Sv||Lip < i Moreover, S, is causal and independent of v in the sense that
Su(f) = Sy (f) whenever v, > vo and f € L2 ,(R; L2(2)%) N Ly, (R; L2(2)).

Proof This follows from Theorem 17.3.1 applied to M (z) := ((8) 0) +z7! <g g)
I

and A as in (17.5). |

17.5 Comments

The concept of maximal monotone relations in Hilbert spaces was first introduced
by Minty in 1960 for the study of networks [66] and became a well-studied subject
also with generalisations to the Banach space case. For this topic we refer to the
monographs [16] and [49, Chapter 3]. The concept of subgradients is older and it
was found out by Rockafellar [99] that subgradients are maximal monotone. Indeed,
one can show that subgradients are precisely the cyclically maximal monotone
relations (see e.g. [16, Theoreme 2.5]).

The Theorem of Minty was proved in 1962, [65] and generalised to the case of
reflexive Banach spaces by Rockafellar in 1970 [100]. The proof presented here
follows [106] and was kindly communicated by Ralph Chill and Hendrik Vogt.

The classical way to approach differential inclusions of the form (u, f) €
d; + A where A is maximal monotone uses the theory of nonlinear semigroups of
contractions, introduced by Komura in the Hilbert space case, [56] and generalised
to the Banach space case by Crandall and Pazy, [24]. The results on evolutionary
inclusions presented in this chapter are based on [117, 118] and were further
generalised to non-autonomous problems in [122, 126].

The model for Maxwell’s equations in polarisable media can be found in [36,
Chapter VII]. We note that in this reference, condition (17.4) is replaced by

|E| < Ey = j. =0E
|[E|=Eo=312>0: jo=(c +MNE,
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which should hold almost everywhere. To solve this problem, one cannot apply
Theorem 17.2.7, since 0 is not an interior point of the domain of the corresponding
relation and thus, a weaker notion of solution is needed to tackle this problem, see
[36, Theorem 8.1].

Exercises

Exercise 17.1 Let f: H — (—o00, 00] be convex, proper and l.s.c. Moreover,
assume that f is differentiable in x € H (in particular, f < oo in a neighbourhood
of x). Show that (x, y) € df if and only if y = f/(x).

Exercise 17.2 Let f, g: H — (—00, 00]. Prove that

(a) f + gisconvexif f and g are convex.
(b) f+ gisls.c.if fand g are l.s.c.

Exercise 17.3 Let H be a Hilbert space, (x;),eN in H and x € H. Show, that
xp — x if and only if x, — x weakly and lim sup,,_, o, [|xx |l < [Ix]|.

Exercise 17.4 Let X be a normed space (or, more generally, a topological vector
space) and C € X convex. Prove the following statements:

(@) fx eintCandy € C,then (1 —t)x +ty € intC foreacht € [0, 1).
(b) IfintC # &, then C = intC and intC = intC.
(c) If Cisopenand K C X is open with K € C. Then K C C.

Hint: For (a) take an open set U € X with 0 € U such thatx + U — U € C and
show (1 —H)x+ty+ (1 —-1)U C C.

Exercise 17.5 Let X be a topological space and U € X open. We equip U with the
trace topology. Prove the following statements:

(a) For A C U we have AU = AX N U and inty A = intx A.
(b) If A C Uisclosedin U and inty A = &, then inty AX =0.
(c) If X is a Baire space, then U is a Baire space.

Recall, that a topological space X is a Baire space if for each sequence (A, ),en of
closed sets with int A, = @ it follows that int | J, .y Ay = @ or, equivalently, if for
each sequence (U,),en of open and dense sets it follows that ﬂneN U, is dense.

Exercise 17.6 Let A C H x H be maximal monotone.

(a) Let u, A > 0. Show that (A;), = Aj4u.
(b) Let (0,0) € A and (€2, A, ) a o-finite measure space. Prove that (A)) 1, =
(Ap,(w)). foreach A > 0.
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Exercise 17.7 Let H be a Hilbert space and C € H non-empty, convex and closed.
Moreover, define Ic: H — (—o0, 00] by

0 ifxeC,

Ic(x) = ]
oo otherwise.

Show that I¢ is convex, proper and l.s.c. and show
(x,y)edlc & xeC,YueC:Re(y,u—x)<0.

Moreover, prove Lemma 17.4.2.
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Appendix A
Derivations of Main Equations

In this appendix we will derive the main equations studied in this book from a
mere Physics’ point of view. We will start with the heat equation and then turn
to Maxwell’s equations. After that, we derive the equations for linear elasticity and
finally deduce the wave equation from elasticity theory.

A.1 Heat Equation

The heat equation describes the energy transport between materials due to a
difference in temperature, where the transport evolves from high temperature to
low temperature. Let 2 € R? be open. Let 6: R x € — R be the heat distribution.
As a physical principle, we ask for conservation of total energy. For a Borel subset
V C Q with smooth boundary let Qy : R — R given by Qv (¢) := fv 6(t, x)dx be
the time-dependent heat content (i.e., the energy) in V. Then for a system without
external heat sources, changes of Qy can only result in heat fluxes along the
boundary of V. Let g: R x Q@ — R? be the heat flux, which can be interpreted
as a density. Then

0 Qv (1) = —/BVQ(LX) ~v(x)dS(x),

where v is the outward unit normal on V. By Gauss’ divergence theorem, we thus
have

Qv = —/ divg(t, x)dx.
Vv
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On the other hand, interchanging the time derivative and integration, we observe
% Qv(1) = /V 30(t, x) dx.
Hence,
/V (Bté(t, x) +divg(z, x)) dx =0.

Since V C 2 was arbitrary, we conclude the continuity equation
90 +divg = 0.

In presence of an external heat source O : R x Q2 — R, the continuity equation turns
into the heat flux balance

060 +divg = Q.

In order to incorporate that the energy transport runs from regions of high
temperature to regions of low temperature, we make use of Fourier’s law stating that
the heat flux at time ¢ and position x is determined by the gradient of the temperature
at ¢ and x; that is,

q(t,x) = —a(x)grado(z, x),

where a: @ — R?*9 is the heat conductivity, and we may assume that a(x) is
invertible for all x € Q2. We thus arrive at the heat equation

00 +divg = Q,
a_lq + grad6 =0,
or, put differently,

00 — div(a grad6) = Q.

A.2 Maxwell’s Equations

Maxwell’s equations are the governing equations in electrodynamics and describe
the evolution of the electromagnetic fields. Let 2 C R3 be a domain; that is, open
and connected. The physical quantities of interest in Maxwell’s equations in vacuum
are the time-dependent electric field E: R x € — R? and magnetic induction
B: R x Q — R3 on £, since they can be observed via their action as a force.
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Given two point charges ¢, ¢’ at distinct points x, x’ € €, respectively, the
Coulomb force

/
_ I, x—x

~ Yameo® x — 2P

can be observed, where ¢ is the dielectric constant in vacuum. More precisely, F is
the force on the point charge ¢ at x induced by the point charge ¢’ at x”:

/

q F q

X x/

The electrical field at time ¢ and position x induced by ¢’ at x’ is then given by

Eeny= g FTF
,_x =
4n£oq Ix — x|

such that it acts locally on the point charge g at x via the Coulomb force
F =qE(t,x).

Let us generalise from point charges, formally given by ¢’8,, to charge densities.
Let p: R x © — R be the time-dependent charge density. Then the electric field at
time ¢ and position x is given by

1 A X /
E(t,x) = P, x")
4reg Jo I

x'.
x — x|
By Exercise A.1 we can rewrite this as

1 t,x' 1 t,x
E(t,x)=— /grad P, x) dx’:—grad( / Pt x) dx’)
dreo Jo llx —x'1l 4meo Jo llx — x|l

= —grad P (¢, x),

where.CD: R x @ — R given by ®(¢,x) = 4:1150 Jo ‘fx(ii;i dx’ is the electric
potential.

Analogously, the magnetic induction acts as a force as follows. We first consider
two closed non-intersecting curves C and C’ in 2 decribing two wires and let I and
I’ be (constant) currents on C and C’, respectively. Then the force between these
two wires is given by

-
F:I“OI’// ( o x3><dx’)><dx,
ar - Jo Jor Nlx — x|

where g is the permeability in vacuum.
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Thus, the magnetic induction at time ¢ induced by the wire C’ acting at a point x
from C is given by

Ko ., x—x /
Bt,x)=—""1 x dx’,
(t, x) 4o /C’ T X

such that it acts via the force
F:I/ B(t, x) x dx.
c

Let us generalise from constant currents on one-dimensional curves C’ to current
densities. Let j: R x 2 — R3 be the time-dependent current density. Then the
magnetic induction at time ¢ and position x is given by

Ko x —x' s
B(t,x) =— x j(t,x")dx".
(t, x) A /Q It — x| J( x)

By Exercise A.1 we can rewrite this as

1
B(t,x)="° / grad x j(t, x) dx’
Q llx —

4 x|
-

=curl<'u0/ J &, x) dx’) =curl A(¢, x),
A Jo llx = x|

where A: Rx Q — R3 givenby A(1,x) == {0 [, H/x('j;i)” dx’ is the vector potential.

We now relate the charge density p and the current density j. As a physical
principle, we ask for conservation of total charge. For a Borel subset V C Q with
smooth boundary let Qy: R — R given by Qy (¢) = fv p(t, x) dx be the time-
dependent total charge in V. Then changes of Qy can only result in currents along

the boundary of V; that is,

% Qv (t) = —/avj(t,X) -v(x) dS(x),

where v is the outward unit normal on dV. By Gauss’ divergence theorem, we thus
have

Qv = —/ div j (¢, x) dx.
Vv
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On the other hand, interchanging the (time) differentiation and integration, we
observe

3er(t)=/V8t,o(t,x)dx.
Hence,
f (3o (r, x) +div j (£, x)) dx = 0.
1%

Since V C 2 was arbitrary, we conclude the continuity equation
op+divj=0.

We now derive the two fundamental equations, namely Faraday’s law and Ampere’s
law. We start with Faraday’s law. Let ¥ C € be a two-dimensional submanifold
with boundary curve 9 ¥ which we may think of as a wire.

v

1>
Then a changing magnetic field through ¥ induces a voltage along X as
U@ = —/E B, x) - v(x)dS(x).
Since voltages result from electric fields, we also have
U@ = /32 E(t,x)dx = /2 curl E(t, x) - v(x) dS(x),

where we invoked Stoke’s theorem and v is again the unit normal on ¥ (oriented
accordingly to a parametrisation of 0X). Thus,

/ (9 B(t,x) + curl E(t, x)) - v(x) dS(x) = 0.
)

Since ¥ C 2 was arbitrary, we conclude Faraday’s law

0B =—curl E.
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We now derive Ampere’s law by considering curl B = curl curl A = graddiv A —
AA,where AA = (AA1, AAz, AAj)and AA; =divgrad A; for j € {1,2,3}. We
calculate by Exercise A.1

(¢, x' 1
div A(z, x) = ’“‘Ofdiv JUX) “O/ (—gradx, / )-j(t,x’)dx/
Q Q flx — x|l

4o lx—x'| 4n
I / divj(t,x)

= dx .
4 Jo llx — x|

By the continuity equation, we further obtain

divA(tx) =~ bt 2]

Mo/ sz(t,x’)d /
X
Q

t,x'
=—“°a,/ PUXD G = oot ® (. x).
4 Jo llx — x|

Thus,

graddiv A(t, x) = —eopo grad 9, D (¢, x)
= —eopod; grad ® (¢, x) = eopod E (2, x).

Moreover, by Exercise A.2 (assuming that j(, -) can be smoothly extended to R?),

1 1
AAG, x) =10 /A je ' = 1O / (Ax/ )j(t,x’) dx’
lx — x'|| lx — x|l

4 4r
= / I _lx,“ Aj(t, X" dx' = =0 (1, %),
We conclude Ampere’s law

curl B = gop0d E + poj.

So far we only considered the equations in vacuum. In materials two additional
effects, polarisation and magnetisation, occur due to the interaction of the fields
with the medium. Let P: R x  — R3 be the polarisation; that is, the averaged
electrical dipole moments. Further, let M: R x Q — R3 be the magnetisation;
that is, the averaged magnetic dipole moments. Then the current density gets two
additional terms jp, jyy: R x Q — R3, where jp = 0P and jy = curl M.
Thus, j = j. + jp + jm where j. corresponds to the free charged carriers or free
current (as the current density in vacuum) and jp + jjs forms the bound currents.
In order to take these two effects into account, we define the electric displacement
D:R x Q — R3by D = gyE + P and the magnetic field H: R x @ — R3 by
H = ulo B — M, such that B = puoH + M. Then one typically expands P and M in
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terms of £ and H. We only consider linear models; thatis, P = x.Eand M = x,, H
with electric and magnetic susceptibility x., xm: & — R3*3, respectively. Then
D = ¢E where e = go(1 + x.): © — R3>3 is the dielectricity and B =  H where
w=po(l + xm): Q— R33 is the magnetic permeability. Polarisation and mag-
netisation have no effect on Faraday’s law, but on Ampere’s law, which now states

curl H = 0;¢E + j..
In case of an external current jo: R x Q2 — R3, we observe
curl H = 0,¢E + j. — jo-

Finally, Ohm’s law couples the free current j. with the electric field E by j. = o E,
where o : © — R3*3 is the electric conductivity, so that we obtain

curl H = 0,6 E + 0 E — .
We thus arrive at Maxwell’s equations

0reE + o0 E — curl H = jj,
opuH +curl E = 0.

A.3 Linear Elasticity

The theory of elasticity is devoted to the study of distortion of bodies due to forces,
which is reversible in the sense that the body will return to its original state when the
force is removed. In order to reasonably neglect thermodynamical effects we assume
that the deformation occurs slowly to obtain thermodynamical equilibrium and the
temperature of the body is constant. Also, we assume that the behaviour of the
material does not depend on memory effects, so hysteresis is excluded. Moreover,
we exclude rigid body moves (i.e., translations and rotations) due to the forces.

Let @ € R be a domain which models the body. Then the displacement field
u: R x Q — R? describes the deformation vector of the body at time ¢ and position
x.Forx,y € Qwe write x’ = x +u(t, x) and y = y+u(z, y) for the new positions
of x and y, respectively, after the deformation at time 7.

X Y
u(t, x\ N(\’v ?’)
y
x/
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Then, assuming spatially smooth and slowly varying deformations u (i.e., small
spatial derivatives of u), by a linearisation of u(¢, -) we obtain

u(t, x) = u(t,y) + dyu(t, y)(x — y)

for x close to y and therefore

" = y'[F = x4 u(t, x) — (v + ult, y)) 2
= |x — Y+ 2 ult, x) —ult, y), x — y) + lu(t, x) — u(t, y)*

R |x — y|2 -I-Z(B),u(t, V(X —y),x — y>,

where we neglected the quadratic term |u(t, x) — u(t, y)|2 ~ |3yu(t, y)(x — y)|2.
Since

d
[y, ) =y, x —y) = Y G j(t, )0 — ) (xj — yj)
jk=1

d
1 1
= 20 (L + 0t 3)) G = 0 = 3)
k=1

.....

we may introduce the symmetrised gradient of u as Gradu: R x @ — R? defined
by Gradu(t, y) = ) (3kuj(t, y) + djur(t, y))j,ke{l ) 1o get

X' =y~ lx — y2 + 2 (Gradu(z, y)(x — y), x — y).

Note that e(u)(¢, y) := Grad u(¢, y) is called the strain tensor of u at ¢ and y.

Due to the displacement u, there appear forces between the molecules of the
material trying to push them back to their equilibrium state. These forces induced
by the displacement u result from stresses along the boundary of Q. Let T =
T.: R x Q2 — Rfyﬁ be the stress tensor corresponding to the displacement u.
Then the forces between the molecules are given by the divergence of T'; that is, by
DivT: R x Q — R,

d

DivT(t, x) = ( BkT~k(t,x)> .
/; J Jell,...d)

In thermodynamics, the free energy JF of a system describes the maximum

amount of work that a system can perform. Thus, we may expand the free energy

JFu of the deformed system in terms of the strain tensor ¢(#) = Grad u around the

undeformed system Fg. Since changes of the free energy result from stresses, we
0Fy

Do) Since the stress tensor vanishes for deformation 0, there exists a

observe T =
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so-called elasticity tensor C: Q2 — L(R;lyﬁl, Rfyfr‘f) such that

Fu=Fo+ ; (e(u), Ce(u)) .

Thus,

0Fu

T = = Ce(u) = CGradu.
de(u)

This is Hooke’s law of linear elasticity. Using Hooke’s law, we get
DivT = Div C Grad u.

In order to obtain the governing equations for linear elasticity, we make use of
Newton’s law. Let p: R x 2 — R be the mass density of the body. Then Newton’s
law on conservation of momentum yields

0rpou = F,

where F describes the acting forces on the system. These forces decompose into the
internal forces between the molecules due to the displacement u and we have seen
that this is given by Div 7. Moreover, there may be external forces f: R x Q — R?
(for example gravity). Thus, F = DivT + f, and therefore

0rporu —DivT = f.

Taking into account Hooke’s law, we arrive at the governing equation of linear
elasticity as

0rpdiu — Div C Gradu = f.

A.4 Scalar Wave Equation

The scalar wave equation can be derived from linear elasticity. Indeed, let Q2 R4
be open and consider scalar displacements u: R x & — R, so we only consider
displacements in one particular direction. Also, we may assume constant mass
density; thatis, p: R x Q — R is constant. Without loss of generality, we therefore
set p = 1. Let f: RxQ — R be an external force in direction of the displacements.
Then from linear elasticity we obtain

du—divT = f,
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where 7: R x Q@ — R? is the stress obtained by the displacements. If we
further make use of Hooke’s law T = C grad u with the elasticity tensor C: Q —
L(Rd, ]Rd) = R9*4 e arrive at the scalar wave equation

32u — divC gradu = f.

A.5 Comments

The physical derivations of the equations treated in this appendix are well-known
and can be found in many textbooks. We refer to [74-76] for foundations on
physics of electrodynamics, thermodynamics and statistical physics. The final form
of Maxwell’s equations appeared in [62], however they had been derived in his
earlier works already. The vector form of Maxwell’s equations appeared in the
1880s. The equations of linear elasticity stem from elastodynamics.

Exercises

Exercise A.1 Let Q C R?beopen,x’ € Q, f: @\ {x’} — Rdefined by f(x) :=
folx’l\' Show that f is differentiable and grad f (x) = H;—_;’/HB forall x € Q\ {x'}.

Exercise A.2 Let K: R* \ {0} —> R, K(x) = — ui\r Then AK(x) =
div grad K (x) = 0 for all x € R3 \ {0} and

—/ K (x)Ag(x) dx = ¢(0)
R3

forall p € CX°(R?).
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Almost separably-valued, 40 Densely defined, 16
Ampere’s law, 95, 304 Dielectricity ¢, 95, 305
Autonomous, 82, 125 Differential algebraic equation, 150
Div-curl lemma, 238
Domain, 15
B Drazin inverse, 162
Baire space, 295 Dual phase lag heat conduction, 111
Balance of momentum, 92 Dual space, 37, 133

BD(div), 197
BD(grad), 197

Bochner-integral, 36 E

Bochner-Lebesgue spaces, 33 Eddy current approximation, 100
Bochner-measurable, 31 Elasticity tensor, 93, 307
Boundedness in M(H, vp), 206 Electric boundary condition, 95
Bounded relation, 16 Electric conductivity, 305

Electric conductivity o, 95
Electric displacement, 95, 304

C Electric field, 95, 300

Cv(R; H), 67 Eventually independent, 89
CC1 (R; H), 44 Evolutionary equation, 5, 6
Cy(R; H),53 Evolutionary inclusions, 288
Causal, 56, 125 Evolutionary mapping, 266
Clamped boundary condition, 93 Evolution equation, 1, 2
Closable, 16 Evo-system, 1

Closed, 16 Exponentially stable, 168, 182
Coercive, 277 External current, 95, 305
Compensated compactness, 238 Extrapolated operator, 134
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Fourier transform, 67

Fourier transformation, 71

Fractional elasticity, 107

Fractional integral, 78

Fractional parabolic pair, 247
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5,11

Fundamental theorem of calculus, 39

G
Graph norm, 17
Graph scalar product, 18

H
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H:(div, Y), 227

H}(Y),227

Hardy space, 120

Heat equation, 2, 8, 300

Heat equation, evolutionary equation, 91
Heat flux, 91, 299

Heat flux balance, 91, 300
(skew-)Hermitian, 21

Holder continuous, 65
Homogenisation problem, 230
Hooke’s law, 93, 307

I

Image, 16

Index of operator pair, 158
Inverse relation, 16

K
Kernel, 15
Korn’s inequality, 187

L
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Laplace transform, 121

Laplacian, 2
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Lemma of Riemann-Lebesgue, 68
Linear elasticity, 307

Index

Linear relation, 16

Lipschitz semi-norm, 54

Local boundedness, 285

Lower semi-continuous (l.s.c.), 277

M

Magnetic field, 95, 304

Magnetic induction, 95, 300

Magnetic permeability u, 95, 305

Magnetisation, 304

Material law, 74

Material law operator, 76

Matrix exponential, 2

Maximal monotone relation, 276

Maxwell’s equations, 6, 305

Maxwell’s equations, evolutionary equation,
94

Mean value property, 114

Monotone, 276

Multiplication-by-the-argument operator, m,
73

Multiplication-by-V operator, 73

N
Newton’s law, 307
Normal, 21

0
Ohm’s law, 95, 305
Operator, 16

P

Parabolic, 247

Periodic, 210

Periodic gradient, 227
Poincaré’s inequality, 172
Poisson’s equation, 4
Poisson’s formula, 115
Polarisation, 304
Poro-elasticity, 103, 104
Positive definite, 7
Proper, 277

Q

Quasi-Weierstrall normal form, 151

R
Range, 15
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Regular operator pair, 157
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Resolvent identity, 24
Resolvent set, 23
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S
Schwartz space, 68
(skew-)selfadjoint, 21
Semi-finite, 27
Simple function, 31
Simple functions with compact support, 54
Sobolev embedding theorem, 53
Sobolev space, 87
Solid-fluid interaction, 9
Solution theory
evolutionary equations, 88
general notion, 3
Spectrum, 23
Spectrum, matrix pair, 150
Strain tensor, 104, 306
Stress, 93
Stress tensor, 105, 108, 306
Strong operator topology convergence, 206
Subgradient, 277
(skew-)symmetric, 21

T
Theorem of Hille, 38
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Theorem of Minty, 280

Theorem of Paley—Wiener, 121
Theorem of Pettis, 40

Theorem of Picard, 89

Theorem of Picard—Lindelof, 55
Theorem of Plancherel, 71

Theorem of Rellich—Kondrachov, 225
Time derivative, 44

Time-shift operator, 60

U

Unbounded, 16

Uniformly Lipschitz continuous, 54
Unitary, 29

\"
Visco-elasticity, 114

w

Wave equation, 7, 308

Wave equation, scalar, evolutionary equation,
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Weakly Bochner-measurable, 40

Weak operator topology convergence, 206

‘Wong sequence, 156
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Yosida approximation, 281
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