
Karlsruher Schriften
zur Anthropomatik

Band 52

Lars Wilko Sommer

Deep Learning based Vehicle Detection
in Aerial Imagery

B
an

d
 5

2
L.

 S
o

m
m

er
  

D

ee
p

 L
ea

rn
in

g
 b

as
ed

 D
et

ec
ti

o
n

 in
 A

er
ia

l I
m

ag
er

y

Lars Wilko Sommer

Deep Learning based Vehicle Detection
in Aerial Imagery

Karlsruher Schriften zur Anthropomatik

Band 52

Herausgeber: Prof. Dr.-Ing. habil. Jürgen Beyerer

Eine Übersicht aller bisher in dieser Schriftenreihe
erschienenen Bände finden Sie am Ende des Buchs.

Karlsruher Schriften zur Anthropomatik

Band 52

Herausgeber: Prof. Dr.-Ing. habil. Jürgen Beyerer

Eine Übersicht aller bisher in dieser Schriftenreihe
erschienenen Bände finden Sie am Ende des Buchs.

Deep Learning based Vehicle
Detection in Aerial Imagery

by
Lars Wilko Sommer

Karlsruher Institut für Technologie
Institut für Anthropomatik und Robotik

Deep Learning based Vehicle Detection in Aerial Imagery

Zur Erlangung des akademischen Grades eines Doktors der
Ingenieurwissenschaften von der KIT-Fakultät für Informatik des
Karlsruher Instituts für Technologie (KIT) genehmigte Dissertation

von Lars Wilko Sommer, M.Sc.

Tag der mündlichen Prüfung: 3. Juni 2020
Erster Gutachter: �Prof. Dr.-Ing. Jürgen Beyerer
Zweiter Gutachter: Prof. Dr.-Ing. Stefan Hinz

Print on Demand 2021 – Gedruckt auf FSC-zertifiziertem Papier

ISSN	 1863-6489
ISBN	 978-3-7315-1113-7
DOI	 10.5445/KSP/1000135415

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark
of Karlsruhe Institute of Technology.
Reprint using the book cover is not allowed.

www.ksp.kit.edu

The cover page is licensed under a Creative Commons
Attribution-No Derivatives 4.0 International License (CC BY-ND 4.0):
https://creativecommons.org/licenses/by-nd/4.0/deed.en

This document – excluding parts marked otherwise, the cover, pictures and graphs –
is licensed under a Creative Commons Attribution-Share Alike 4.0 International License
(CC BY-SA 4.0): https://creativecommons.org/licenses/by-sa/4.0/deed.en

Abstract

The usage of airborne platforms, such as unmanned aerial vehicles (UAVs),
equipped with camera sensors is essential for a wide range of applications in
the field of civil safety and security. Amongst others, prominent applications
include surveillance and reconnaissance, traffic monitoring, search and res-
cue, disaster relief and environmental monitoring. However, analyzing the
aerial imagery data solely by human operators is often not practicable due
to the large amount of visual data and the resulting cognitive overload. In
practice, automated processing chains based on appropriate computer vision
algorithms are employed to assist human operators in assessing the aerial im-
agery data. Key component of such processing chains is an accurate detection
of all relevant objects inside the camera’s field of view, before the scene can
be analyzed and interpreted. The low spatial resolution originating from the
large distance between camera and ground makes object detection in aerial
imagery a challenging task, which is further impeded by motion blur, occlu-
sions or shadows. Although many conventional approaches for object detec-
tion in aerial imagery exist in the literature, the limited representation capac-
ity of the utilized handcrafted features often inhibits reliable detection accu-
racies due to the occurring high variance in object scale, orientation, color,
and shape.

In the scope of this thesis, a novel deep learning based detection approach
is developed, whereby the focus lies on vehicle detection in aerial imagery
recorded in top view. For this purpose, Faster R-CNN is chosen as base detec-
tion framework because of its superior detection accuracy compared to other
deep learning based detectors. Relevant adaptations to account for the specific
characteristics of aerial imagery, especially the small object dimensions, are

i

Abstract

systematically examined and resulting issues with respect to real-world appli-
cations, i.e., the high number of false detections caused by vehicle-like struc-
tures and the poor inference time, are identified. Two novel components have
been proposed to improve the detection accuracy by enhancing the contextual
content of the employed feature representation. The first component aims at
increasing spatial context information by combining features of shallow and
deep layers to account for fine and coarse structures, while the latter compo-
nent leverages semantic labeling – the pixel-wise classification of an image
– to introduce more semantic context information. Two different variants
to integrate semantic labeling into the detection framework are realized: ex-
ploitation of the semantic labeling results to filter out unlikely predictions and
inducing scene knowledge by explicitly merging the semantic labeling net-
work into the detection framework via shared feature representations. Both
components clearly reduce the number of false detections, resulting in con-
siderably improved detection accuracies. To reduce the computational effort
and consequently the inference time, two alternative strategies are developed
in the context of this thesis. The first strategy is replacing the default CNN
architecture used for feature extraction with a lightweight CNN architecture
optimized with regard to vehicle detection in aerial imagery, while the latter
strategy comprises a novel module to restrict the search area to areas of in-
terest. The proposed strategies result in clearly reduced inference times for
each component of the detection framework. Combining the proposed ap-
proaches significantly improves the detection performance compared to the
standard Faster R-CNN detector taken as baseline. Furthermore, existing ap-
proaches for vehicle detection in aerial imagery, taken from the literature, are
outperformed in quantitative and qualitative manner on different aerial im-
agery datasets. The generalization ability is further demonstrated on a large
set of previously unseen data collected from novel aerial imagery datasets
with differing properties.

ii

Kurzfassung

Der Einsatz von luftgestützten Plattformen, die mit bildgebender Sensorik
ausgestattet sind, ist ein wesentlicher Bestandteil von vielen Anwendungen
im Bereich der zivilen Sicherheit. Bekannte Anwendungsgebiete umfassen
unter anderem die Entdeckung verbotener oder krimineller Aktivitäten, Ver-
kehrsüberwachung, Suche und Rettung, Katastrophenhilfe und Umweltüber-
wachung. Aufgrund der großen Menge zu verarbeitender Daten und der dar-
aus resultierenden kognitiven Überbelastung ist jedoch eine Analyse der Luft-
bilddaten ausschließlich durch menschliche Auswerter in der Praxis nicht an-
wendbar. Zur Unterstützung der menschlichen Auswerter kommen daher in
der Regel automatische Bild- und Videoverarbeitungsalgorithmen zum Ein-
satz. Eine zentrale Aufgabe bildet dabei eine zuverlässige Detektion relevan-
ter Objekte im Sichtfeld der Kamera, bevor eine Interpretation der gegebenen
Szene stattfinden kann. Die geringe Bodenauflösung aufgrund der großen Di-
stanz zwischen Kamera und Erde macht die Objektdetektion in Luftbilddaten
zu einer herausfordernden Aufgabe, welche durch Bewegungsunschärfe, Ver-
deckungen und Schattenwurf zusätzlich erschwert wird. Obwohl in der Lite-
ratur eine Vielzahl konventioneller Ansätze zur Detektion von Objekten in
Luftbilddaten existiert, ist die Detektionsgenauigkeit durch die Repräsentati-
onsfähigkeit der verwendeten manuell entworfenen Merkmale beschränkt.

Im Rahmen dieser Arbeit wird ein neuer Deep-Learning basierter Ansatz zur
Detektion von Objekten in Luftbilddaten präsentiert. Der Fokus der Arbeit
liegt dabei auf der Detektion von Fahrzeugen in Luftbilddaten, die senkrecht
von oben aufgenommen wurden. Grundlage des entwickelten Ansatzes bil-
det der Faster R-CNN Detektor, der im Vergleich zu anderen Deep-Learning
basierten Detektionsverfahren eine höhere Detektionsgenauigkeit besitzt. Da

iii

Kurzfassung

Faster R-CNN wie auch die anderen Deep-Learning basierten Detektionsver-
fahren auf Benchmark Datensätzen optimiert wurden, werden in einem ers-
ten Schritt notwendige Anpassungen an die Eigenschaften der Luftbilddaten,
wie die geringen Abmessungen der zu detektierenden Fahrzeuge, systema-
tisch untersucht und daraus resultierende Probleme identifiziert. Im Hinblick
auf reale Anwendungen sind hier vor allem die hohe Anzahl fehlerhafter De-
tektionen durch fahrzeugähnliche Strukturen und die deutlich erhöhte Lauf-
zeit problematisch. Zur Reduktion der fehlerhaften Detektionen werden zwei
neue Ansätze vorgeschlagen. Beide Ansätze verfolgen dabei das Ziel, die ver-
wendete Merkmalsrepräsentation durch zusätzliche Kontextinformationen zu
verbessern. Der erste Ansatz verfeinert die räumlichen Kontextinformatio-
nen durch eine Kombination der Merkmale von frühen und tiefen Schichten
der zugrundeliegenden CNN Architektur, so dass feine und grobe Strukturen
besser repräsentiert werden. Der zweite Ansatz macht Gebrauch von seman-
tischer Segmentierung um den semantischen Informationsgehalt zu erhöhen.
Hierzu werden zwei verschiedene Varianten zur Integration der semantischen
Segmentierung in das Detektionsverfahren realisiert: zum einen die Verwen-
dung der semantischen Segmentierungsergebnisse zur Filterung von unwahr-
scheinlichen Detektionen und zum anderen explizit durch Verschmelzung der
CNN Architekturen zur Detektion und Segmentierung. Sowohl durch die Ver-
feinerung der räumlichen Kontextinformationen als auch durch die Integrati-
on der semantischen Kontextinformationen wird die Anzahl der fehlerhaften
Detektionen deutlich reduziert und somit die Detektionsgenauigkeit erhöht.
Insbesondere der starke Rückgang von fehlerhaften Detektionen in unwahr-
scheinlichen Bildregionen, wie zum Beispiel auf Gebäuden, zeigt die erhöhte
Robustheit der gelernten Merkmalsrepräsentationen. Zur Reduktion der Lauf-
zeit werden im Rahmen der Arbeit zwei alternative Strategien verfolgt. Die
erste Strategie ist das Ersetzen der zur Merkmalsextraktion standardmäßig
verwendeten CNN Architektur mit einer laufzeitoptimierten CNN Architek-
tur unter Berücksichtigung der Eigenschaften der Luftbilddaten, während die
zweite Strategie ein neues Modul zur Reduktion des Suchraumes umfasst. Mit
Hilfe der vorgeschlagenen Strategien wird die Gesamtlaufzeit sowie die Lauf-
zeit für jede Komponente des Detektionsverfahrens deutlich reduziert.

iv

Kurzfassung

Durch Kombination der vorgeschlagenen Ansätze kann sowohl die Detekti-
onsgenauigkeit als auch die Laufzeit im Vergleich zur Faster R-CNN Baseline
signifikant verbessert werden. Repräsentative Ansätze zur Fahrzeugdetektion
in Luftbilddaten aus der Literatur werden quantitativ und qualitativ auf ver-
schiedenen Datensätzen übertroffen. Des Weiteren wird die Generalisierbar-
keit des entworfenen Ansatzes auf ungesehenen Bildern von weiteren Luft-
bilddatensätzen mit abweichenden Eigenschaften demonstriert.

v

Contents

Abstract . i

Kurzfassung . iii

1 Introduction . 1
1.1 Motivation . 1
1.2 Challenges . 4
1.3 Contributions 8
1.4 Thesis Outline 9

2 Related Work . 11
2.1 Deep Learning 11

2.1.1 Multilayer Perceptron 12
2.1.2 Convolutional Neural Networks 14
2.1.3 CNN Training 17
2.1.4 CNN Architectures 20
2.1.5 Special Layer Types 22

2.2 Deep Learning based Object Detection 25
2.2.1 Two-stage Approaches 26
2.2.2 One-stage Approaches 29
2.2.3 Extensions 30

2.3 Vehicle Detection in Aerial Imagery 33
2.3.1 Conventional Vehicle Detection Methods 33
2.3.2 Deep Learning based Vehicle Detection Methods . . 35

3 Concept . 41

vii

Contents

4 Experimental Setup 49
4.1 Datasets . 49
4.2 Evaluation Metrics and Protocol 57

5 Base Framework 63
5.1 Faster R-CNN 63

5.1.1 Region Proposal Network 64
5.1.2 Classification Stage 67
5.1.3 Implementation Details 68

5.2 Adaptation to Aerial Imagery 71
5.2.1 Feature Map Resolution 71
5.2.2 Anchor Box Settings 78
5.2.3 Object Dimensions 84
5.2.4 Arising Challenges 90

6 Integration of Contextual Knowledge 95
6.1 Spatial Context 96

6.1.1 Context Enhancement Module 97
6.1.2 Stage-wise Training Scheme 98
6.1.3 Ablation Experiments 99

6.2 Semantic Context 101
6.2.1 Semantic Labeling Approaches 102
6.2.2 Semantic Labeling based Filtering 108
6.2.3 Joint Semantic Labeling and Detection 116
6.2.4 Adaptation to the DLR 3K Dataset 125

7 Runtime Optimization 131
7.1 Lightweight Feature Extraction 132

7.1.1 Single Shot MultiBox Detector 132
7.1.2 Computation-Efficient CNN Architectures 134
7.1.3 Auxiliary Techniques for Runtime Optimization . . 145
7.1.4 Experiments and Discussion 147
7.1.5 Adoption to Faster R-CNN 152

7.2 Search Area Reduction 157
7.2.1 Search Area Reduction Module 159

viii

Contents

7.2.2 Implementation Details 162
7.2.3 Ablation Experiments 163

8 Evaluation . 169
8.1 Combined Methods for Improved Detection and

Inference Time 169
8.2 Comparison to Related Work 182
8.3 Generalization to Unseen Aerial Imagery 189
8.4 Summary . 195

9 Conclusions and Outlook 199
9.1 Conclusions . 199
9.2 Outlook . 200

Bibliography . 203

Publications . 229

List of Figures . 233

List of Tables . 237

Acronyms . 239

Table of Symbols . 245

ix

1 Introduction

1.1 Motivation

Recording of images or videos with sensors mounted on satellites or airborne
platforms, e.g., helicopters, unmanned aerial vehicles (UAVs) etc., afford the
coverage of large areas and the capturing of multiple objects and their in-
teractions by a single sensor. Thus, a central limitation of stationary camera
networks near ground is overcome. Owing to the increasing technological
advancements taking place across imaging systems and airborne platforms
and the accompanying decreasing costs, the fields for applications employing
aerial imagery, also referred to as remote sensing imagery, are growing rapidly
[Res17]. While the global aerial imaging market accounted for US $1.56 bil-
lion in 2017, it is expected to reach US $6.24 billion by 2026 [Res18]. Amongst
others, common applications expected to witness significant market growth
include search and rescue tasks [Rud08, Goo09, Qi16], disaster relief [Ada11,
Eze14, Erd16], traffic monitoring [Ang03, Len08, Kan15] and surveillance and
reconnaissance tasks [Gir04, Hei10, Rei10]. Illustrative examples underlining
the utility of aerial imagery for such applications are given in Figure 1.1.

Due to large search areas with often restricted accessibility such as mountains
or open seas, helicopters or UAVs equipped with specialized camera sensors,
e.g., thermal infrared (IR), are often used to assist in the recovery of missing or
injured humans and to assist in the manhunt and apprehension of suspected
criminals or fugitives. Studies comparing the effectiveness of airborne assets
and ground search teams in terms of success rate and localization time sub-
stantiate their benefits for search and rescue tasks [Ham17, Eye18]. It has
been shown that the support of human operators by automated algorithms is

1

1 Introduction

crucial for high success rates, as dynamic and complex environments impede
the localization of persons that are only visible in a short time range [Goo09].

(a) Search and rescue¹ (b) Disaster relief²

(c) Traffic monitoring³ (d) Aerial surveillance⁴

Figure 1.1: Examples for applications based on imagery recorded with aerial sensor platforms.

In the event of natural disasters, such as earthquakes, landslides, tsunamis or
floods, the most important issue is to preserve human lives, whereby the first
72 hours are the most critical [Erd16]. Therefore, fast and efficient conduct
of search and rescue missions is imperative. While traditional assessment

¹ https://www.thueringer-allgemeine.de/leben/recht-justiz/nach-razzia-in-gierstaedt-
spezialeinheit-fahndet-nach-schleusern-und-hintermaennern-id223248397.html

² https://ulcrobotics.com/services/gas-utility-unmanned-aerial-inspection/
³ Recordings from Fraunhofer IOSB over Karlsruhe, Germany
⁴ https://verkehrsforschung.dlr.de/en/news/visual-contact-wiesn

2

https://www.thueringer-allgemeine.de/leben/recht-justiz/nach-razzia-in-gierstaedt-spezialeinheit-fahndet-nach-schleusern-und-hintermaennern-id223248397.html
https://www.thueringer-allgemeine.de/leben/recht-justiz/nach-razzia-in-gierstaedt-spezialeinheit-fahndet-nach-schleusern-und-hintermaennern-id223248397.html
https://ulcrobotics.com/services/gas-utility-unmanned-aerial-inspection/
https://verkehrsforschung.dlr.de/en/news/visual-contact-wiesn

1.1 Motivation

methodologies including damage survey vehicles or unmanned ground vehi-
cles possess innate limitations regarding accessibility and timeliness, imagery
acquired by airborne platforms facilitates situational awareness and conse-
quently disaster management in real-time [Ada11]. To support human opera-
tors suffering from cognitive overload, automatic damage assessment systems
are required [Erd16].

The growing traffic volume provoked an increased demand for automated
traffic monitoring and management. Besides stationary cameras mounted
near ground, induction loops embedded in pavements and pneumatic tubes
stretched across roads used to estimate the traffic flow of particular areas,
aerial imagery acquired by airborne platforms has proven to be an ideal com-
plement allowing the coverage of large areas [Kan15]. With the rise of au-
tonomous driving, novel applications are the generation of realistic data, i.e.,
vehicle trajectories extracted from aerial imagery, required as input for sim-
ulation tools and the acquisition of aerial imagery as reference for onboard
sensors with a rather limited view of the overall scenario [Kur18].

Aerial surveillance tasks range from border patrol to monitoring of large
events. In recent years, the fast coverage of large borderlines even in dif-
ficult terrains has led to an increased use of airborne systems to prevent
unwanted cross-border activities like smuggling or human trafficking, as
existing solutions on the ground are often tedious, error-prone, costly and
time-consuming [Ber16]. Airborne systems further facilitate continuous
monitoring of a particular area as in case of large events, e.g., festivals and
sports events, whereby the recorded aerial imagery provides fast access to
situational information required by organizers and security teams on the
ground in case of emergency or traffic management [Röm16].

All these applications share the need for an automated processing chain to
assess the aerial imagery. Assessing huge amounts of data as in case of traf-
fic monitoring or aerial surveillance by human operators is not workable in
a time-efficient and cost-effective manner, while assistance for human opera-
tors is required in case of search and rescue tasks and disaster relief to coun-
teract cognitive overload caused by dynamic and complex environments. Key
component of such processing chains is an accurate detection of all relevant

3

1 Introduction

objects, e.g., vehicles inside the camera’s field of view, before the scene can be
analyzed and interpreted. This thesis aims at the development of an efficient
detection pipeline suited for the task of detecting vehicles in aerial imagery,
which are the objects of interest for a wide variety of applications. The focus
hereby lies on vehicle detection in images recorded in top view, also referred
to as nadir view, as it allows the coverage of large areas at uniform detail. For
this purpose, deep learning techniques that show promising results in most
fields of computer vision are explored to overcome shortcomings of conven-
tional vehicle detection methods based on handcrafted features.

1.2 Challenges

Vehicle detection in aerial imagery captured from sensor platforms like air-
craft, UAVs or satellites is a challenging task. The main reasons for this are
the high distance between sensor and ground, the capturing conditions and
varying scenarios due to different daytimes and regions. Figure 1.2 depicts
the challenges in detail, which can be categorized as follows:

1. Challenges arising from image acquisition:
• Image noise is the random deviation from the real pixel inten-

sity values. Main causes are statistical quantum fluctuations, the
physics of the camera sensor and intensity quantization.

• Blurring can have different reasons such as objects being out of
focus, object motion as well as camera motion or camera shake.
Motion blur occurs especially in case of weak illumination lead-
ing to longer camera exposure times. Blurring results in weak
contrast and reduced sharpness.

• Illumination strongly affects the image quality. Low illumina-
tion as in case of twilight requires longer exposure times leading to
motion blur or resulting in increased image noise. Too strong illu-
mination can cause saturation of the camera sensor, which leads

4

1.2 Challenges

to an excessive image brightness and reduced amount of image
details.

• Low spatial resolution originating from the large distances be-
tween camera and ground yields small object dimensions. Ob-
jects in the range of only few pixels comprise only little informa-
tion about their appearance and shape, which impedes the detec-
tion and classification task. Varying resolution leads to variation
in object dimensions that may result in misclassification, e.g., for
classes car and van.

2. Challenges due to object and scene variations:
• High intra-class variance due to the huge variety of vehicle

colors, scales and shapes impedes the learning of a robust fea-
ture representation used to distinguish between vehicles and non-
vehicles. In aerial imagery, the intra-class variance is further in-
creased by arbitrary vehicle orientations due to the camera per-
spective.

• Low inter-class variance makes it difficult to distinguish be-
tween different object categories. Due to the recording perspec-
tive, different object categories, e.g., car and van, exhibit similar
sizes and shapes, which may cause misclassified objects.

• Intricate background can result in a huge number of false posi-
tive detections. In particular, in urban or industrial areas, numer-
ous objects exhibit high similarity in scale and outline compared
to vehicles, which may result in only small differences in the fea-
ture representations.

• Partial occlusion, e.g., caused by trees or traffic signs, alters the
appearance of objects. The reduced amount of visible features im-
pedes the classification between object and background.

• Shadows appear when direct light, e.g., sunlight, is obstructed
either partially or totally by an object. Especially during morning
or afternoon hours, cast shadows can lead to distortion of object
shapes and result in weak contrast in shadow areas.

5

1 Introduction

Besides the aforementioned challenges due to image quality as well as object
and scene variation, real-world applications impose further requirements on
the detection algorithms. These practical requirements comprise:

• Generality and transferability of the detection algorithms are re-
quired to ensure high robustness against variations in the data. Com-
mon detection algorithms make usage of machine learning approaches
that learn the appearance of vehicles and non-vehicles from given sam-
ples. As these given samples are typically restricted, the learned model
should be able to localize and classify vehicles in new, previously un-
seen data.

• Real-time requirements have to be met to assure online processing
as required for many applications. As opposed to offline processing,
the processing of one image has to be completed before the next image
is captured. For instance, if the frame rate is 25 Hz, about 40 ms are
available to extract and process the current image information. Note
that meeting real-time requirements is generally more challenging with
larger image sizes due to the increased computational effort.

• Hardware constraints due to the limited payload of airborne plat-
forms affect the computing power and consequently the processing
time. Embedded systems such as NVIDIA Jetson platforms¹ that
comprise a powerful GPU in addition to a potent processor allow
low-power, onboard computing for deep learning and computer vision
applications. However, the GPU memory that is often shared with
the RAM and the number of parallel processing units are clearly less
compared to server setups that may comprise multiple GPUs and thus,
restrict the size and complexity of deep learning models.

¹ https://developer.nvidia.com/embedded-computing

6

https://developer.nvidia.com/embedded-computing

1.2 Challenges

Figure 1.2: Illustration of typical challenges occurring in aerial imagery. First row: image noise¹,
motion blur² and illumination². Second row: low resolution³, high intra-class vari-
ance¹ and low inter-class variance¹. Third row: intricate background³, partial occlu-
sion¹ and shadow¹.

¹ Image taken from [Xia18]
² Image from Fraunhofer IOSB
³ Image taken from [Raz16]

7

1 Introduction

1.3 Contributions

The aim of this thesis is the design of a deep learning based detection pipeline
for vehicle detection in aerial imagery with low spatial resolution, thus en-
abling the coverage of large areas. The work presented in this thesis makes
the following contributions to the field of deep learning based vehicle detec-
tion:

• A thorough analysis of applying deep learning based detection frame-
works for the task of vehicle detection in aerial imagery is conducted
in detail for the first time. Relevant adaptations to address the char-
acteristics of aerial imagery are systematically examined by means of
the popular Faster R-CNN detector [Ren15], which comprises a good
trade-off between detection accuracy and inference time. Furthermore,
resulting issues with respect to real-world applications are identified,
i.e., false alarms caused by objects with vehicle-like structures and time-
consuming detection components [Som17c, Som17b, Som18b].

• Two novel approaches to improve the detection accuracy by enhanc-
ing the contextual information of the detection framework are intro-
duced. The first approach aims at increasing spatial context informa-
tion by combining features of shallow and deep layers to account for
fine and coarse structures [Som18c], while the latter approach lever-
ages semantic labeling – the pixel-wise classification of an image –
to introduce more semantic context information. Two different vari-
ants to integrate semantic labeling into the detection framework are
realized: exploitation of the semantic labeling results to filter out un-
likely predictions [Som17a] and inducing scene knowledge by explicitly
merging the semantic labeling network into the detection framework
via shared feature representations [Nie18]. The proposed approaches
yield improved detection accuracy on publicly available aerial imagery
benchmark datasets, as the number of false alarms is considerably re-
duced.

8

1.4 Thesis Outline

• A novel semantic labeling aerial imagery dataset is generated by pixel-
wise annotation of the DLR 3K dataset, which allows for better integra-
tion and evaluation of semantic labeling in the context of vehicle de-
tection in aerial imagery. In cooperation with the German Aerospace
Center (DLR), a refined and enhanced version of the dataset is made
publicly accessible to researchers [Azi19]. Note that the DLR provides,
inter alia, more fine-grained annotations such as lane-markings.

• As vehicle detection in real-time or nearly in real-time is often a prereq-
uisite for real-world applications, two strategies to reduce the compu-
tational effort and consequently the inference time are proposed. The
first strategy is replacing the default CNN architecture used for feature
extraction with a lightweight CNN architecture optimized with regard
to vehicle detection in aerial imagery [Rin19]. Making use of the cir-
cumstance that vehicles generally cover only a small fraction of aerial
imagery, the latter strategy comprises a novel module to restrict the
search area prior to the detection modules [Som18a]. The proposed
strategies result in clearly reduced inference times for each component
of the detection pipeline.

• An extensive evaluation on several publicly available datasets shows
the superior detection performance of the detection method proposed
in the context of this thesis compared to representative existing work.
Furthermore, the transferability of conducted adaptations to account
for the characteristics of aerial imagery to more recent deep learning
based detection frameworks is demonstrated [Som18d, Aca18] and the
generalization ability of the proposed detection method is visualized on
unseen data with differing image content and image quality.

1.4 Thesis Outline

This thesis is organized as follows: Chapter 2 provides fundamentals of deep
learning that are essential for the remainder of this thesis. Furthermore, a
thorough review about deep learning based detection frameworks and about

9

1 Introduction

related work on vehicle detection in aerial imagery is given. In Chapter 3, the
concept of the proposed detection pipeline is introduced. Similarities and dif-
ferences compared to other concepts are identified and discussed. The evalua-
tion protocol and aerial imagery datasets utilized in this thesis are introduced
in Chapter 4. In Chapter 5, the base framework of the proposed detection
pipeline is presented. Adaptations proposed in order to account for charac-
teristics of aerial imagery are examined and issues with regard to real-world
applications are identified. In Chapter 6, two novel components to improve
the detection accuracy by enhancing the spatial and semantic content of the
employed features are described and evaluated in detail. Chapter 7 provides
a detailed description and evaluation of two alternative strategies proposed
to improve the inference time. In Chapter 8, an extensive evaluation of the
proposed detection pipeline is conducted. Different possibilities to combine
the proposed components and strategies are examined. A comparison of the
individual and combined approaches to representative existing work in the
literature is performed in a qualitative and quantitative manner. Finally, con-
cluding remarks and potential future research are summarized in Chapter 9.

10

2 Related Work

The goal of this thesis is the design of a deep learning based detection pipeline
for vehicle detection in aerial imagery. In the following chapter, an overview
about the existing work that covers the relevant modules of the proposed de-
tection pipeline is given. First of all, fundamentals of deep learning, in partic-
ular of convolutional neural networks, that are essential for the remainder of
this thesis, are introduced in Section 2.1. Section 2.2 gives a thorough review
about deep learning based detection frameworks and recent advancements.
Related work on vehicle detection in aerial imagery is summarized in Sec-
tion 2.3. The literature under review focuses on aerial imagery captured from
aircraft, UAVs or satellites equipped with visual cameras operating in top view.
The considered literature can be distinguished into conventional approaches
employing handcrafted features and deep learning based approaches.

2.1 Deep Learning

Neural networks have been applied in computer vision and related search ar-
eas for a long time. Since the first attempts in 1943, when McCulloch and Pitts
[McC43] created a mathematical model to emulate the neural networks of the
human brain, neural networks have progressed through several evolutionary
stages. Their most recent form is often termed deep learning referring to the
large number of layers, which have become feasible with the advancements
of the required hardware [Sch15]. The most popular variant of neural net-
works applied to numerous computer vision tasks is the convolutional neural
network (CNN). In 2012, CNNs experienced their wide breakthrough in com-
puter vision with the remarkable success of AlexNet [Kri12] in the ImageNet
classification challenge [Den09], which requires the classification of images

11

2 Related Work

into one of 1000 diverse classes. AlexNet, the first CNN participating in the
challenge, reduced the error rate by a significant margin compared to previ-
ous solutions, which was an initial indicator for the ability of CNNs to capture
a large and diverse number of image contents.

2.1.1 Multilayer Perceptron

xn

x3

x2

x1

…
b

ּ
w3

w2

w1

wn

yφ ()Σ

Figure 2.1: Structure of a single perceptron with input vector x, weights w, bias 𝑏 and output 𝑦.

The most common elementary unit of a neural network is the perceptron in-
troduced by Frank Rosenblatt in 1957 [Ros58]. Its basic structure is depicted
in Figure 2.1. A perceptron takes 𝑛 scalar inputs, generally provided as an
𝑛-dimensional vector x ∈ ℝ𝑛 and has a single scalar output 𝑦. The output of
the perceptron is defined as the weighted sum of its inputs passed through an
activation function:

𝑦 = 𝜑(w𝑇x + 𝑏). (2.1)

The weight vectorw∈ ℝ𝑛 and the optional bias term 𝑏 are the free parameters
of the neural network learned during training. The activation function 𝜑(⋅)
is a non-linear function introduced to facilitate the learning of a non-linear
decision function. Common choices are the sigmoid function, the hyperbolic
tangent function and the Rectified Linear Unit (ReLU) function. The ReLU –

12

2.1 Deep Learning

most frequently applied as activation function in CNNs – is described in more
detail in Section 2.1.2.

W1,b1 W2,b2 W3,b3

Figure 2.2: Multilayer Perceptron with two input neurons, two hidden layers with three neurons
each, and a single output neuron.

While a single perceptron is limited in its ability to approximate decision func-
tions, multiple perceptrons can be combined in a directed acyclic graph, as il-
lustrated in Figure 2.2, in order to allow an accurate approximation of complex
decision functions. Within this so-called Multilayer Perceptron (MLP), sets of
perceptrons denoted as neurons are arranged into three types of layers: an
input layer, one or more hidden layers and an output layer. Each neuron of
a particular layer 𝑖 is connected to the outputs of all neurons in the previous
layer 𝑖 − 1. Thus, these layers are often referred to as fully connected layers.
The output of the i-th fully connected layer is given by

h𝑖 = 𝜑(W𝑖h𝑖−1 + b𝑖) (2.2)

with h0 = x being the input, e.g., image or feature vector, and h𝑛 = 𝑦 being
the output of an n-layer MLP. W𝑖 = [w𝑖1,...,w𝑖𝑚)]𝑇 is the layer’s weight ma-
trix composed of the weight vectors of its 𝑚 neurons and b𝑖 = [b𝑖1,..., b𝑖𝑚)]𝑇
is the layer’s bias vector. Together, all weight matrices and bias vectors are

13

2 Related Work

the trainable parameters of the network. Note that the number of trainable
parameters can rise significantly with an increasing number of neurons in the
network due to the pairwise connection between neurons of adjacent layers.

2.1.2 Convolutional Neural Networks

CNNs are a specialized kind of neural network designed for processing
high-dimensional data with a known grid-like topology, e.g., images or video
frames. Typical CNNs consist of three basic types of layers: convolutional
layers, pooling layers and fully connected layers [LeC98]. To reduce the
number of parameters and consequently the complexity of a neural network,
convolutional layers make use of two basic ideas illustrated in Figure 2.3.
Instead of connecting every neuron with all neurons of the previous layer,
neurons are only connected to neurons of the previous layer within a fixed
local neighborhood. Thus, the weight matrix becomes sparse. Furthermore,
the weights are shared for all neurons within a layer and thus, become
independent of the position of the neuron.

co
nn

ec
ti

on
s

w
ei

gh
t m

at
ri

x

fully connected locally connected convolutional

Figure 2.3: Transition from a fully connected layer to a 1D convolutional layer and the respective
weight matrix.

In general, convolutional layers consist of a set of learnable filters, also called
channels, as single convolutional filters do not capture sufficient information

14

2.1 Deep Learning

from the previous layer. The set of filters is characterized by its kernel size
defining the corresponding local neighborhood, which is often referred to as
receptive field. The weights are not shared between filters, so that each filter is
free to learn a different convolutional operation. The output of a convolutional
layer is often referred to as feature map due to its spatial nature. It spans
across the spatial dimensions and contains a feature vector at each location,
whose dimension is equal to the number of filters 𝐶 in the layer. Note that in
case of multiple input channels 𝐷, each filter is comprised of 𝐷 kernels with
size 𝑘 × 𝑘. Every kernel is shifted across the respective input channel and the
resulting outputs are summed together via element-wise addition, yielding a
single output channel per filter as illustrated in Figure 2.4. The size of the
feature map is affected by stride and padding. The stride parameter specifies
the distance between two spatial locations, where filter kernels are applied,
while zero padding can be used in order to apply filter kernels at the edges of
the input.

D

D

D

C
k

k

K 1

K C

Figure 2.4: Schematic illustration of a convolution with 𝐶 filters comprised of 𝐷 kernels with
size 3 × 3. For each filter, every kernel is shifted across the respective input channel
and the resulting outputs are summed together via element-wise addition yielding a
single output channel per filter.

To approximate complex decision functions, nonlinearities are introduced to
a CNN by applying an activation function element-wise to the output of con-
volutional layers. In practice, ReLU is usually preferred to sigmoidal func-
tions like sigmoid and hyperbolic tangent as activation function [LeC15]. It

15

2 Related Work

provides advantages in terms of computational complexity and gradient com-
putation, while obtaining superior results for several tasks across multiple
domains [Kri12, Maa13, Glo11]. The ReLU function is defined as

𝜑(𝑥) = 𝑚𝑎𝑥(0,𝑥). (2.3)

It removes negative values from a feature map by setting them to zero as
illustrated in Figure 2.5.

15 20 -30 -25

12 -50 11 27

40 -5 21 6

20 18 -24 100

15 20 0 0

12 0 11 27

40 0 21 6

20 18 0 100

φ(x)=max (0,x)

Figure 2.5: Representation of the ReLU functionality and its transfer function.

Pooling layers are inserted periodically after convolutional layers to reduce
the spatial size of a feature map and consequently the amount of parame-
ters. This leads to improved computational efficiency, while the invariance to
small translations of the input is increased [Sch10]. The pooling operation is
defined by its filter size, stride and pooling function. The pooling operation
is performed independently on each input channel. Common pooling oper-
ations are max pooling with a filter size of 2 × 2 or 3 × 3 and a stride of two.
Max pooling returns the maximum output within the receptive field defined
by the filter size as illustrated in Figure 2.6. Less commonly applied pooling
functions are average pooling and ℓ2-norm pooling as max pooling has been
proven to work better in practice [Sch10]. Note that applying convolutions
with stride larger than 1 is an alternative strategy to reduce the spatial size of
the feature representation [Spr14].

Fully connected layers that connect each neuron to all neurons of the previous
layer like in an MLP are generally used as the last few layers in a CNN. The

16

2.1 Deep Learning

1 2 3 3

2 5 1 7

9 8 0 6

2 2 4 1

5 7

9 6

Figure 2.6: Illustration of a max pooling operation with a filter size of 2 × 2 and stride of two.

objective of fully connected layers is to learn non-linear combinations of the
high-level features given by the output of the last convolutional layer. The
output of the last fully connected layer is used for classification, regression,
etc. depending on the particular computer vision task.

2.1.3 CNN Training

The training of a CNN is generally performed in a supervised manner by back-
propagation with an objective function termed loss function L. The loss func-
tion designed for a specific task compares the predicted values of the network
to the ground truth (GT) and computes an error measure. In the context of ob-
ject detection, two types of loss functions, i.e., classification loss and regression
loss, are frequently applied as described in more detail in Section 5.1. Common
choice for the classification loss function is the softmax loss [Dud12], while
smooth 𝐿1 loss is widely used as regression loss function [Gir15]. A common
optimization method is stochastic gradient descent (SGD) where the gradient
is calculated for a small, randomly chosen subset of the training data called
batchℬ and then back-propagated through all layers of the network [Mon12].
In each iteration 𝑡, the gradients are used to update the current weights of the
network as follows:

W𝑡+1 = W𝑡 + ΔŴ𝑡 (2.4)

17

2 Related Work

with

ΔŴ𝑡 = 𝜂 ∑
𝑥∈ℬ𝑡

𝜕𝐿𝑥
𝜕W𝑡 (2.5)

being the gradient over the current batch ℬ𝑡 . The gradient is weighted by
the learning rate 𝜂 that specifies the step size in the gradient descent. To
achieve faster convergence, a fraction𝜔 of the previous weight updateΔŴ𝑡−1

is typically added to the current weight update:

W𝑡+1 = W𝑡 + ΔŴ𝑡 + 𝜔ΔŴ𝑡−1. (2.6)

Thus, this method called momentum allows to overcome plateaus in the loss
function [Dud12]. Besides SGD with momentum, several alternative opti-
mization methods that dynamically adapt the learning rate have been pro-
posed, including AdaDelta [Zei12], AdaGrad [Duc11], RMSprop [Tie12], and
Adam [Kin14]. Particularly, the latter optimization method, which is a com-
bination of SGD with momentum and RMSprop, often leads to good results in
practice with only little tuning of hyper-parameters. Thus, time-consuming
training of several networks with vanilla SGD and various learning rate sched-
ules is avoided.

Overfitting – an over-adaptation to the employed training samples – is a gen-
eral problem when training CNNs due to their large number of parameters. A
common regularization method to address this problem isweight decay, which
reduces the weights in each iteration by a small fraction 𝛿:

W𝑛𝑒𝑤 = (1 − 𝛿)W𝑜𝑙𝑑 . (2.7)

This prevents the weights from growing too large, which otherwise dominate
the output of the network. Another popular regularization method to avoid
overfitting is dropout [Sri14]. During training, dropout deactivates neurons of
particular layers with a given probability, forcing the network to learn redun-
dant representations. Thus, formation of critical paths through the network
specialized to the training samples is avoided.

18

2.1 Deep Learning

To avoid unstable training caused by vanishing or exploding gradients, a
proper initialization of the network weights is important. Random initializa-
tion, e.g., Xavier initialization [Glo10] or Kaiming initialization [He15], are
often applied to address this issue. While random initialization allows more
flexibility in the design of the network architecture, it often leads to less
optimal results, especially in case of deep networks with many parameters
and only a limited amount of available training data. Therefore, the weights
of models pre-trained on very large datasets, e.g., the ImageNet classification
challenge dataset comprising millions of images [Den09], are commonly used
in practice for initialization.

As the gradient signal can become less stable with increasing depth of the
network, batch normalization has been proposed to make the gradient prop-
agation in the network more stable [Iof15]. In general, batch normalization
is applied immediately before the activation function by normalizing the net-
work activations h̃𝑖 = W𝑖h𝑖−1 + b𝑖 to zero mean and unit variance:

ĥ𝑖 =
h̃𝑖 − 𝜇ℬe

√𝜎2ℬ + 𝜖
, (2.8)

where𝜇ℬ and𝜎2ℬ are the mean and variance calculated for the current batchℬ,
while e is an all-ones vector with the same length as h̃𝑖 . Furthermore, a small
value 𝜖 is added to prevent a division by zero. To restore the representation
power of the network, a set of learnable parameters 𝛾𝑖 and 𝛽𝑖 that scale and
shift the normalized input are introduced:

h̃
𝐵𝑁
𝑖 = 𝛾𝑖ĥ𝑖 + 𝛽𝑖e. (2.9)

As batch normalization prevents activations to become very high or very low,
it allows the usage of higher learning rates and thus, accelerates the training
process.

19

2 Related Work

2.1.4 CNN Architectures

Since the development of early CNN architectures like LeNet[LeC98] and
AlexNet[Kri12], several novel CNN architectures have been proposed to in-
crease the performance and allow for more efficient learning by rearranging
the combinations of convolutional layers, pooling layers and fully connected
layers. The most notable architectures that have been adapted for a broad
range of computer vision tasks can be distinguished into VGG, residual and
inception networks.

Similar to prior state-of-the-art networks, e.g., AlexNet, VGG networks
(named after the Visual Geometry Group from the University of Oxford)
comprise convolutional layers and pooling layers followed by a sequence
of fully connected layers arranged in a single path network [Sim14]. While
prior state-of-the-art networks made use of computationally expensive 9 × 9
or 11 × 11 filters to achieve large receptive fields, VGG networks rely on
sequences of 3 × 3 convolutional layers that emulate the effect of larger
receptive fields. The use of sequences of small convolutional layers allowed
to increase the network depth up to 19 layers and thus, the extraction of more
complex image features. Its variant with 16 layers termed VGG16 has become
a popular choice as feature extractor in many computer vision tasks.

Inception networks rely on a basic unit referred to as inception module (see
Figure 2.7) [Sze15]. An inception module – first applied in GoogLeNet [Sze15]
– consists of parallel branches with different sets of convolutional layers,
which are aggregated through concatenation. As each branch possesses a
different receptive field, the inception module allows the model to recover
both local features via smaller convolutions and more global features through
larger convolutions. Bottleneck layers, i.e., 1 × 1 convolutional layers, are of-
ten carried out to restrict the number of channels before larger convolutions.
To reduce the computational complexity, recent variants do not use convolu-
tions larger than 3 × 3. Therefore, large 𝑘 × 𝑘 convolutions are either replaced
by sequences of 3 × 3 convolutions or factorized to a combination of 1 × 𝑘 and
𝑘 × 1 convolutions [Sze16, Sze17].

20

2.1 Deep Learning

concat

pool1 1× 1 1× 1 1×

1 1×5 5×3 3×

Figure 2.7: Inception module – the basic unit of inception networks – consisting of parallel
branches with different sets of convolutional layers, which are aggregated through
concatenation.

3 3×

3 3×

(a)

3 3×

1 1×

1 1×

(b)

. . .3 3×3 3× 3 3×

1 1× 1 1× 1 1×

1 1× 1 1× 1 1×

(c)

Figure 2.8: Residual block (a), residual block with bottleneck layers (b), and basic unit of ResNeXt
networks (c).

Residual neural networks [He16a], shortened ResNets, overcome the problem
of vanishing gradients by adding identity shortcuts to the network, which
help to smoothly back-propagate the gradient signal (see Figure 2.8a). These
shortcuts further facilitate the learning task, as the intermediate layers only

21

2 Related Work

have to learn a residual to its input and no longer an entire feature transfor-
mation. Thus, the successful and robust training of deeper network architec-
tures comprising hundreds of layers becomes feasible [He16b]. In practice,
bottleneck layers are often applied as first and last layer in a residual block
(see Figure 2.8b) to increase and decrease the number of channels, yielding a
reasonable number of parameters in case of deep networks. Inspired by the
inception architecture, Xie et al. proposed a modified variant termed ResNeXt
[Xie17], which comprises multiple parallel paths with the same topology as
depicted in Figure 2.8c. Note that the parameter count is similar to its ResNet
counterpart, as the number of filters per path is set to four.

2.1.5 Special Layer Types

Though applying CNN architectures with standard convolutions has led to
impressive results for a wide range of applications, different types of convo-
lutional layers have been proposed to increase the receptive field, in order
to reduce the computational costs compared to standard convolutions and to
perform up-sampling within a neural network.

Figure 2.9: Dilated convolution with dilation coefficient 𝑑 = 2.

Dilated convolution is a special type of convolution to exponentially increase
the receptive field without loss of spatial resolution [Yu15]. Dilated convolu-
tion, also referred to as convolution with dilated filter or à-trous convolution, is

22

2.1 Deep Learning

characterized by the dilation coefficient 𝑑, which defines the spacing between
the elements of a filter. In practice, the filter elements are matched to distant
elements of the input as illustrated in Figure 2.9 yielding a larger receptive
field. Note that a dilated convolution with 𝑑 = 1 is equivalent to the standard
convolution.

Group convolutions, first mentioned in [Kri12], have been proposed to reduce
the computational costs of standard convolutions. Rather than applying fil-
ters with the full channel depth of the input image, i.e., 𝐷 kernels per filter,
the input is split channel-wise into groups and the filters are applied inde-
pendently for each group (see Figure 2.10b). Letting g denote the number of
groups, group convolution filters only consider D/g channels instead of the
full channel depth D. Thus, the computational costs are reduced by a factor of
g compared to standard convolutions.

Input
Features

Output
Features

(a) Standard convolution

Input
Features

Output
Features

group 1

group 2

group 3

(b) Group convolution

Figure 2.10: Standard convolution (a) compared to group convolution with three groups (b).

A depthwise separable convolution (DSC) performs convolutions indepen-
dently in spatial and channel domains to reduce the number of parameters
and the computational costs [Sif14]. It factorizes the standard convolution
into a depthwise convolution and a pointwise convolution as visualized in
Figure 2.11. The depthwise convolution is in essence a special case of group
convolution with the same number of groups 𝑔 and input channels 𝐷. Thus,

23

2 Related Work

a spatial convolution is performed independently over each channel of the
input, while the pointwise convolution, i.e., a 1 × 1 convolution, is applied
across all the 𝐷 intermediate channels.

Depthwise
Convolution

Pointwise
Convolution

3

3
1 11 1

1
1 4

8

8

4

4 1

6

6 6

6

Figure 2.11: Schematic illustration of a depthwise separable convolution that factorizes the stan-
dard convolution into a depthwise convolution and a pointwise convolution. Note
that the output depth is equal to the number of filters 𝐶 of the pointwise convolu-
tion.

Group
Convolution

Group
Convolution

Channel
Shuffle

Figure 2.12: Schematic of shuffled group convolutions.

Shuffled group convolutions aim at eliminating the side effect of group con-
volutions that outputs from a certain channel are only derived from a small
fraction of input channels [Zha18b]. Therefore, a novel operation called chan-
nel shuffle is introduced between two stacked group convolutions. The out-
put channels of each group from the first group convolution are divided into

24

2.2 Deep Learning based Object Detection

subgroups, which are transposed as depicted in Figure 2.12. The transposed
channels are then fed into the second group convolution and thus, allows an
information flow across groups. Note that the channel shuffle operation is
differentiable and thus, can be directly integrated into CNN architectures for
end-to-end training.

Deconvolution has been proposed to perform up-sampling within a neural net-
work. Note that the deconvolution within the context of CNNs is not the same
as the deconvolution defined in signal processing, but a transposed convolu-
tion as shown in Figure 2.13. Thus, it is also referred to as convolution with
fractional strides or transposed convolution. Up-sampling with factor 𝑓𝑢 can
be thought of as convolution with a fractional input stride of 1/𝑓𝑢. In prac-
tice, deconvolution works by swapping the forward and backward passes of
a convolution.

w x = Wx*

=0w0 w1 w2

w20 w0 w1

w0 x +0 w1 x +1 w2 x 2
w0 x +1 w1 x +2 w2 x 3

x0
x1
x2
x3

(a) Convolution

=x0
x1

0w0
w1
w2

w20

w0
w1

w0 x 0
w1 x +0 w0 x 1
w2 x +0 w1 x 1

w2 x 1

w x = W x*
T T

(b) Transposed Convolution

Figure 2.13: Example of deconvolution in 1D. Convolution with filter w can be expressed in
terms of a matrix multiplication (a). Deconvolution is multiplication with the trans-
posed matrix (b).

2.2 Deep Learning based Object Detection

Object detection, aiming at localizing and classifying object instances from a
large number of predefined categories in images, is a fundamental and chal-
lenging task in computer vision. With the remarkable success of deep learning
based image classification methods, deep learning has been widely adopted to

25

2 Related Work

solve the object detection task, yielding significant progress compared to con-
ventional methods relying on handcrafted features [Gir16]. In general, deep
learning based detection methods can be distinguished into two-stage and one-
stage approaches [Han18, Liu18, Zha18c]. Two-stage approaches, also referred
to as region proposal based approaches, comprise two stages. An initial stage
generates a set of candidate regions, which are classified in the subsequent
stage. In contrast to two-stage approaches, one-stage approaches, also called
regression-based approaches, predict class probabilities and bounding box off-
sets with a single feed forward CNN. While two-stage approaches generally
outperform one-stage approaches in terms of detection accuracy, one-stage
approaches are computationally less expensive and consequently more time-
efficient. In the following, an overview about the most important deep learn-
ing based detection frameworks and recent extensions yielding improved de-
tection performance is provided. Comprehensive surveys about deep learn-
ing based object detection and its advancements are given in [Han18, Liu18,
Zha18c].

2.2.1 Two-stage Approaches

Regions with CNN features (R-CNN) proposed by Girshick et al. [Gir14] is
one of the first object detection methods that employ CNN features for ob-
ject detection. Initially, an external region proposal method generally based
on handcrafted features, e.g., Selective Search [Uij13], is used to obtain a set
of region proposals, also termed candidate regions, which are image regions
that are likely to contain an object. Region proposal methods, referred to as
object proposal methods, have been widely applied as alternative to exhaus-
tive sliding window algorithms because of the reduced number of generated
candidate regions [Hos15]. Each candidate region is cropped and warped to a
fixed size and used as input for a CNN to extract a fixed-length feature vector.
Then, a set of class-specific linear Support Vector Machines (SVMs) is applied
to classify the candidate regions. Finally, bounding box regression inspired
by [Fel10] is performed for each candidate region to enhance the localiza-
tion accuracy. Though R-CNN outperforms all previously published works on
benchmark datasets by a large margin, it possesses notable drawbacks. The

26

2.2 Deep Learning based Object Detection

training of this multi-stage detector is complex and time-consuming, since
the region proposal method, the CNN used for feature extraction, the SVM
classifiers and the bounding box regressor need to be trained and optimized
separately. However, the main bottleneck during deployment is the feature
extraction, as CNN features are computed for each candidate region sepa-
rately [Gir15].

Spatial pyramid pooling network (SPPNet) [He14] overcomes this bottleneck
by computing convolutional features for the entire input image at once. To
account for the fixed-length feature vectors as required for the fully connected
layers, the last pooling layer is replaced by a so-called spatial pyramid pooling
layer. The spatial pyramid pooling extracts features of fixed length for each
candidate region from the shared feature map. For this, the spatial pyramid
pooling layer partitions the features of the corresponding region of interest
into fixed number of spatial bins at multiple levels. Applying the convolu-
tional layers at once for the entire image reduces the runtime during deploy-
ment by orders of magnitude. A drawback of SPPNet is that the fine-tuning
algorithm is unable to update the convolutional layers that precede the spa-
tial pyramid pooling and consequently limits the accuracy of very deep net-
works [Gir15].

Fast R-CNN [Gir15] addresses the drawback of SPPNet by introducing a Re-
gion of Interest (RoI) pooling layer. Similar to SPPNet, Fast R-CNN shares the
computation of convolutions across region proposals. However, the spatial
pyramid pooling layer is replaced by a RoI pooling layer, which enables fine-
tuning of all network layers and consequently facilitates the use of very deep
networks. By conducting max pooling, the RoI pooling layer converts the fea-
tures inside any valid region of interest into a feature map with a fixed spatial
extent. The feature map with fixed spatial extent is fed into a sequence of
fully connected layers that branch into two sibling output layers. The first
layer outputs softmax probabilities for the object categories and the second
layer outputs class-specific bounding box regression offsets for proposal re-
finement. Unlike R-CNN and SPPNet that employ stage-wise training, Fast
R-CNN simplifies the training procedure as classification and bounding box
regression are trained within the network. Although Fast R-CNN results in

27

2 Related Work

improved detection accuracy and speeds up the detection process, using an
external region proposal method remains time-consuming [Ren15].

Faster R-CNN [Ren15] extends Fast R-CNN by integrating a sub-network
called Region Proposal Network (RPN) that generates region proposals directly
within the network. The RPN and Fast R-CNN share the first set of convo-
lutional layers, so that the computational overhead of the RPN is small and
the time for generating region proposals is significantly reduced. The RPN is
applied on the output of the last shared convolutional layer, which is referred
to as feature map. The RPN comprises a convolutional layer followed by
two sibling output layers: one for classification and one for bounding box
regression. Anchor boxes centered at each feature map location are used
as bounding box reference for regression. In order to account for various
object dimensions, anchor boxes with different scales and aspect ratios are
employed. Region proposals that are likely to contain an object are then
forwarded to the classification stage, which is in essence the Fast R-CNN
detector.

R-FCN [Dai16] is a region-based fully convolutional network based on Faster
R-CNN, which makes use of an alternative classification stage to avoid the ap-
plication of RoI pooling and fully connected layers for each candidate region
separately. For this purpose, the standard RoI pooling layer is replaced by a
position sensitive RoI pooling layer, which is applied on top of class-specific
position sensitive score maps that are shared across the entire image and not
computed for each candidate region separately. The position sensitive score
maps that are generated by applying a set of convolutional layers encode the
relative position of objects, e.g., top-left corner. The position sensitive RoI
pooling layer aggregates the responses of the position sensitive score maps
for each candidate region forwarded from the RPN. R-FCN achieves compa-
rable detection results on benchmark datasets, while the runtime is clearly
reduced compared to Faster R-CNN.

28

2.2 Deep Learning based Object Detection

2.2.2 One-stage Approaches

You only look once (YOLO) [Red16] models the detection as a regression prob-
lem. For this, YOLO divides the input image into an 𝑆 × 𝑆 grid and predicts l
bounding boxes for each grid cell. Each bounding box comprises the coordi-
nates relative to the cell, its dimensions and a confidence score about the pres-
ence of an object within the box. Unlike region proposal based approaches
that employ features from local regions, YOLO uses features from the entire
image for bounding box prediction. Regardless of the number of bounding
boxes, one set of class probabilities is predicted per grid cell. During testing,
the class probabilities and confidence scores are multiplied to generate class-
specific confidence scores for each box. Predicting bounding boxes and class
probabilities at once results in a significant speed-up compared to other deep
learning frameworks. However, the coarse grid division and the constraint
that only two boxes are predicted per cell make YOLO prone to miss nearby
objects.

Single Shot MultiBox Detector (SSD) [Liu16] is a fully convolutional network,
whose functional principle is similar to the RPN in Faster R-CNN. In con-
trast to the original RPN, which is class-agnostic, SSD predicts a fixed num-
ber of bounding boxes and confidence scores for each object category. Anchor
boxes centered at each feature map location are used as reference for bound-
ing box regression. Besides employing anchor boxes with different scales and
aspect ratios, multiple convolutional layers are employed as feature maps to
account for different object dimensions. Shallow convolutional layers exhibit-
ing fine spatial resolutions are employed as feature maps to predict small ob-
jects, whereas deep convolutional layers with coarse spatial resolutions are
used to predict large objects. SSD achieves clearly improved detection accu-
racy compared to previous single stage approaches.

YOLOv2 [Red17] is an advanced version of YOLO, which adopts different
strategies from SSD and Faster R-CNN. Fully connected layers are removed
to make the network fully convolutional, which allows multi-scale training.
Similar to Faster R-CNN, anchor boxes are employed instead of predicting
the width and height outright. Rather than choosing anchor boxes manually,

29

2 Related Work

k-means clustering is employed to generate more appropriate anchor boxes.
Furthermore, a so-called passthrough layer is added to the network, which for-
wards features of shallower layers to the last convolutional layer that is used
as feature map. Adding fine-grained features to the feature map results in
better localization of small objects. YOLOv2 exhibits good detection accura-
cies on benchmark datasets, while the inference time is considerably reduced
compared to prior deep learning based detection approaches.

2.2.3 Extensions

The deep learning based detection frameworks discussed above are gener-
ally used as basis for further developments. Multiple extensions including
exploitation of novel CNN architectures, multi-layer exploitation and adding
context information have been proposed to boost the detection performance.

In general, deep learning based detection frameworks employ CNN architec-
tures developed for object classification as feature extractor. The employed
CNN architecture is commonly referred to as base or backbone network. In
[He16a], the authors improve the detection accuracy on benchmark datasets
by replacing VGG16 with a residual network as base network for Faster R-
CNN. Using ResNeXt networks as base network for Faster R-CNN shows
slightly improved detection results compared to conventional residual net-
works [Xie17]. The detection performance is further improved by employing
SENets [Hu18] – the winner of the ImageNet2017 classification challenge¹ – as
base network for Faster R-CNN. SENets comprise so-called Squeeze and Exci-
tation blocks that adaptively recalibrate feature responses so that informative
features can be emphasized and less useful features can be suppressed. In
[Zop18], the authors recently employ reinforcement learning to learn an op-
timized network architecture directly on the dataset of interest. Top perform-
ing results are achieved by using these so-called NASNets as base network for
Faster R-CNN on the MS COCO dataset [Lin14].

¹ http://image-net.org/challenges/LSVRC/2017/results

30

http://image-net.org/challenges/LSVRC/2017/results

2.2 Deep Learning based Object Detection

Various approaches have been proposed to improve detection accuracy by ex-
ploiting multiple layers. These approaches can be roughly divided into com-
bination of features from multiple layers [Bel16, Kon16, Shr16c] and object
prediction at different feature maps [Cai16]. Combining features from mul-
tiple layers is often performed to enhance the semantic and contextual in-
formation. Bell et al. [Bel16] extend Fast R-CNN by applying RoI pooling
on multiple layers. The extracted RoI features are concatenated and used to
classify the corresponding region proposals. HyperNet [Kon16] – an exten-
sion of Faster R-CNN – concatenates deep, intermediate and shallow feature
maps to so-called Hyper Feature maps used for object prediction. To account
for same feature map resolutions, max pooling is conducted to down-sample
shallow feature maps, while deconvolution is applied for up-sampling deep
layers. Shrivastava et al. [Shr16c] extend Faster R-CNN by introducing a top-
down modulation network to combine features from deep and shallow layers.
Deep layers are up-sampled via deconvolution and then concatenated with
features of shallow layers. Employing multiple layers as feature maps intro-
duced in [Liu16] is often adopted to account for various object dimensions.
In [Cai16], region proposals are generated at multiple layers so that receptive
fields match objects of different scales. The generated region proposals are
then classified in a subsequent stage similar to Faster R-CNN. Several meth-
ods take advantage of both extension schemes [Fu17, Woo18, Lin17a, Red18].
Deconvolutional SSD (DSSD) [Fu17] introduces a deconvolution module to
SSD. This module comprises deconvolutional layers to up-sample features of
deep layers that are merged with features of shallow layers via element-wise
product. Woo et al. [Woo18] propose a similar approach based on SSD called
StairNet. Lin et al. [Lin17a] propose an extension of Faster R-CNN referred
to as Feature Pyramid Network (FPN) that utilizes a top-down path to combine
features from different layers. Multiple feature maps are used for object pre-
diction at different scales. YOLOv3 [Red18] is a modified version of YOLOv2
that performs object prediction at different scales using a similar concept to
[Lin17a].

Adding context information is an alternative approach to enhance the detec-
tion accuracy. To increase the spatial context information, Cai et al. [Cai16]
enlarge each candidate region by a factor of 1.5. Zhu et al. [Zhu17] extend

31

2 Related Work

R-FCN by an additional branch that extracts features from multiple regions
surrounding the candidate region. Bell et al. [Bel16] propose spatial recurrent
neural networks to explore contextual information across the entire image.
In [Shr16a], the authors augment Faster R-CNN with a semantic segmenta-
tion network. The output of the semantic segmentation network is fed into
the detection branch to introduce semantic information. StuffNet [Bra17] is
an extension of Faster R-CNN that exploits an additional semantic segmen-
tation branch to use the local surrounding of an object to identify it. Mask
R-CNN [He17] combines Faster R-CNN with semantic segmentation by pre-
dicting the class and box offsets in parallel with a segmentation mask for each
candidate region.

Recent extensions also focus on novel training strategies, class imbalance han-
dling, cascaded detection and deformable neural networks. Peng et al. [Pen18]
introduce a novel Cross-GPU Batch Normalization (CGBN) scheme that al-
lows training with much larger mini-batch sizes. By using CGBN to train FPN,
the authors ranked first in the MS COCO 2017¹ detection challenge. In [Sin18],
the authors propose a novel scale normalized training scheme to tackle the
wide scale spectrum of object instances. Gradients of object instances are
selectively back propagated by ignoring gradients arising from objects of ex-
treme scales. To tackle the imbalance between classes, Lin et al. [Lin17b] pro-
pose a novel loss function called focal loss, which is in essence a dynamically
scaled cross entropy loss. As the scaling factor decays to zero with increas-
ing confidence of correct classes, easy examples are down-weighted, while
the training focuses on hard examples. Using focal loss to train RetinaNet,
which combines SSD and FPN, yields top performing results on the MS COCO
dataset. Cascade R-CNN [Cai18], which is widely applicable across detection
frameworks, is comprised of a sequence of detection stages trained with in-
creasing IoU thresholds to be sequentially more selective against false alarms.
RefineDet [Zha18a] performs two-step cascaded regression to refine the re-
gression and class prediction. In [Dai17], the authors introduce deformable

¹ https://places-coco2017.github.io/#winners

32

https://places-coco2017.github.io/#winners

2.3 Vehicle Detection in Aerial Imagery

convolution and deformable RoI pooling modules. Both modules model geo-
metric transformations by learning offsets to the grid sampling locations and
can readily replace their plain counterparts in existing CNNs.

2.3 Vehicle Detection in Aerial Imagery

Over the last decades, a broad variety of detection methods has been devel-
oped for the task of vehicle detection in aerial imagery. In the following,
the literature under review is restricted to vehicle detection in single aerial
images, whereas methods aiming at moving object detection by exploiting
image sequences, e.g., frame differencing [Kum01, Rei06, Xia10], background
subtraction [Rei10, Shi12, Lia12] or optical flow based methods [Yao08, Yu09,
Sia12], are not considered as static objects such as parked vehicles are missed.
In general, vehicle detection in aerial imagery is either performed by con-
ventional detection methods based on handcrafted features or deep learning
based methods.

2.3.1 Conventional Vehicle Detection Methods

Before the emergence of deep learning, vehicle detection in single aerial im-
ages was generally conducted by extracting handcrafted features followed by
a classifier or cascade of classifiers. Therefore, various combinations of fea-
ture extraction techniques and classifiers have been explored. Ruskone et al.
[Rus96] employed an MLP to analyze the intensity values of a pixel’s neigh-
borhood for vehicle detection in aerial imagery. Eikvil et al. [Eik09] examined
a combination of geometric-shape properties, gray level features and Hu mo-
ments to detect vehicles in high-resolution satellite images. Moranduzzo and
Melgani [Mor12, Mor13] proposed the use of Scale-Invariant Feature Trans-
form (SIFT) to extract key points, which are discriminated into points belong-
ing to vehicles or background by means of an SVM classifier. In [Mor14b],
the authors made use of Histogram of Oriented Gradients (HOG) features fol-
lowed by SVMs to detect cars in images acquired by UAVs. Tuermer et al.
[Tue13] adopted HOG features and disparity maps for vehicle detection in

33

2 Related Work

dense urban areas. In [Lei10], the authors proposed adaptive boosting (Ad-
aBoost) in combination with Haar-like features for vehicle detection in very
high-resolution satellite images. Liu and Mattyus [Liu15] employed Integral
Channel Features (ICF) and an AdaBoost classifier in a soft-cascade structure
to achieve fast and robust vehicle detection in aerial imagery. Kembhavi et
al. [Kem10] combined color probability maps, HOG and pairs of pixels fol-
lowed by partial least squares to project the high-dimensional feature set onto
a much lower dimensional subspace for vehicle detection in satellite images
taken from Google Earth. In [Sha12], the authors explored the use of multi-
ple visual features, i.e., Local Binary Pattern (LBP), HOG and opponent his-
togram, and intersection kernel SVM for vehicle detection in high-resolution
aerial images. Grabner et al. [Gra08] presented a framework for automatic car
detection in aerial images, which combines HOG, LBP and Haar-like features
and an AdaBoost classifier. In [Klu07], the authors extended the latter ap-
proach by incorporating 3D information obtained from a stereo matcher into
the training of the online boosting algorithm. Gleason et al. [Gle11] examined
the use of HOG and Histogram of Gabor coefficients in combination with fol-
lowing classification techniques: nearest neighbor, random forests and SVMs.
Liang et al. [Lia12] explored a classification scheme for vehicle detection in
wide area motion imagery, which combines HOG and Haar-like features with
a multiple kernel SVM used to learn the trade-off between HOG and Haar-
like features by constructing an optimal kernel with many base kernels. Xu
et al. [Xu16] proposed a hybrid method for vehicle detection, which adopts
an AdaBoost classifier using Haar-like features and a linear SVM using HOG
features.

Alternative approaches for vehicle detection in aerial imagery make use of
an explicit model representing the shape of vehicles. These approaches either
match the model to the image or group extracted image features to construct
structures similar to the model. Burlina et al. [Bur97] proposed to combine
contours obtained by an edge detector and votes obtained by the generalized
Hough transform of the image, calculated using the shape and size of a sam-
ple vehicle. In [Moo02], the authors explored a template matching algorithm
based on an operator designed to detect 2D shapes for vehicle detection in

34

2.3 Vehicle Detection in Aerial Imagery

aerial imagery. Zhao and Nevatia [Zha03] proposed to extract a subset of fea-
tures from a wire-frame model such as car boundary, windshield and shadow
area, which are passed to a Bayesian network with manually selected param-
eters in order to get a decision of a car’s existence. Hinz and Baumgartner
[Hin01] proposed a vehicle detection approach based on a hierarchical 3D ve-
hicle model, describing prominent vehicle features on different levels of de-
tails. In [Hin03], the authors conducted vehicle detection in high-resolution
aerial images by matching an explicit model mainly comprised of geometric
features and radiometric properties to the image. Kim and Malik [Kim03]
examined the use of a 3D model for fast vehicle detection based on line fea-
tures extracted by applying oriented edge detectors followed by connected-
component analysis for line grouping. In [Cho09], the authors performed
vehicle detection by extracting blobs with vehicle-like geometric and radio-
metric properties using a mean-shift clustering algorithm. A more thorough
review on detection methods based on handcrafted features for remote sens-
ing images is summarized in [Che16a].

2.3.2 Deep Learning based Vehicle Detection Methods

In recent years, conventional methods have been largely replaced by deep
learning based methods for the task of vehicle detection in aerial imagery
due to the limited representation capacity of handcrafted features. The first
deep learning based approaches for vehicle detection in aerial imagery em-
ployed CNNs as feature extractor and partially as classifier within a sliding
window algorithm. Chen et al. [Che13] explored a small CNN comprised
of three convolutional layers with subsequent max pooling layers followed
by one fully connected layer for feature extraction and classification within a
sliding window algorithm. The proposed CNN achieved superior results com-
pared to conventional methods based on handcrafted features, i.e., HOG+SVM
and LBP+SVM, on satellite images collected from Google Earth. In [Che14a],
the authors modified the CNN architecture proposed in [Che13] by dividing
the outputs of the last convolutional layer into multiple blocks of variable

35

2 Related Work

receptive fields to allow the extraction of variably scaled features, which fur-
ther improved the detection accuracy on the same set of satellite images col-
lected from Google Earth. To reduce the computational effort of the detection
pipeline, several authors adopted region proposal techniques for vehicle de-
tection in aerial imagery, yielding a smaller set of candidate regions to clas-
sify. By applying Binary Normed Gradients (BING) [Che14c] to extract re-
gion proposals instead of the exhaustive sliding window paradigm conducted
in [Che13, Che14a], Qu et al. [Qu16] achieved a clearly reduced inference
time without drop in detection accuracy. Zhu et al. [Zhu15] adopted the R-
CNN detection pipeline for vehicle detection in aerial images. Selective Search
[Uij13] - a hierarchical segmentation-based region proposal method - is ap-
plied to generate a set of candidate regions. For each candidate region, CNN
features are computed by using AlexNet, which are then classified by means
of an SVM. Cheng et al. [Che16b] exhibited improved detection results com-
pared to [Zhu15] by introducing a new objective function to train the AlexNet
model used for feature extraction. To achieve enhanced rotation invariance
against the varying orientations of objects in aerial imagery recorded in top
view, the new objective function enforces the training samples to share simi-
lar features before and after rotating via a regularization term. In [Jia15], the
authors proposed the combination of an efficient graph-based superpixel seg-
mentation method [Fel04] to generate candidate regions and a CNN to classify
each candidate into vehicle or non-vehicle. Ammour et al. [Amm17] con-
ducted car detection in UAV imagery in three stages: candidate regions were
initially generated via a mean-shift algorithm followed by the application of a
CNN, i.e., VGG16, to extract highly descriptive features, which are classified
by means of an SVM. Long et al. [Lon17] employed an ensemble of two CNN
models, i.e., AlexNet and GoogleNet, to classify candidate regions extracted
via Selective Search, yielding improved detection accuracy compared to the
single models. Furthermore, the authors proposed an unsupervised bound-
ing box regression algorithm to boost the localization accuracy of objects in
remote sensing images. In [Qu17], the authors proposed the combination of
BING for generating a set of candidate regions and a spatial pyramid pooling-
based CNN for feature extraction followed by a two-stage cascaded SVM for
classification. By replacing the last pooling layer with a spatial pooling layer

36

2.3 Vehicle Detection in Aerial Imagery

similar to SPPNet, the spatial pyramid pooling-based CNN facilitates the ex-
traction of a fixed-length feature vector for each candidate region without
deformation or cropping of the input, yielding improved detection accuracy
compared to its conventional CNN counterpart. Zhong et al. [Zho17] made
use of two subsequent CNNs for robust vehicle detection in aerial images. The
first CNN generates a set of vehicle-like regions similar to the RPN proposed
in [Ren15], which are fed into the second CNN for classification. Audebert et
al. [Aud17] proposed an alternative detection pipeline for vehicle detection
in aerial imagery comprised of two separate CNNs. First, semantic segmen-
tation is conducted to extract vehicle candidates, which are classified in the
subsequent stage into vehicle types and background.

As computing CNN features for each candidate region separately is compu-
tationally expensive, deep learning based detection frameworks that extract
CNN features for the entire image at once were adopted for the task of ve-
hicle detection in aerial imagery as well. In [Xu17a], the authors examined
the applicability of Faster R-CNN for vehicle detection in images acquired by
a UAV at low altitude. No adaptations to account for the characteristics of
the aerial imagery were required to outperform conventional detection meth-
ods based on handcrafted features due to the low ground sampling distance
(GSD), which denotes the distance between pixel centers measured on the
ground. Han et al. [Han17a] outperformed object detection methods based
on handcrafted features on high-resolution remote sensing imagery by utiliz-
ing Faster R-CNN with default settings. In order to account for the small di-
mensions of vehicles in aerial imagery, Carlet et al. [Car17] adapted YOLOv2
by removing the last max pooling layer and the associated convolutional lay-
ers to increase the resolution of the employed feature map. In [Sak17], the
authors adjusted Faster R-CNN for vehicle detection in multimodal aerial im-
agery to account for the small vehicle dimensions. Top performing results
were achieved by modifying the anchor settings of the RPN and by exploit-
ing shallower layers as feature map. Instead of increasing the resolution of
the employed feature map, Li et al. [Li17] extended the classification stage of
Faster R-CNN by extracting features of candidate regions enlarged by a factor

37

2 Related Work

of 1.5 to enhance the contextual information, which led to improved detec-
tion accuracy of vehicles in remote sensing images. Xu et al. [Xu17b] mod-
ified R-FCN for object detection in remote sensing imagery by introducing
deformable convolutions [Dai17] that enhance the transformation modeling
capability of standard convolutions by adding learnable offsets to the regular
grid sampling locations. However, the impact of the deformable convolutions
on the detection accuracy for category car was negligible. To improve the
detection performance in aerial imagery, several authors made use of recent
extensions proposed for deep learning based detection frameworks described
in Section 2.2.3. Deng et al. [Den17] proposed a modified variant of Faster
R-CNN for vehicle detection in aerial images. By combining the features of
multiple convolutional layers as input for the RPN and classification stage,
as shallower layers are more suitable for localization and deeper layers are
more suitable for classification, the authors clearly improved the recall rate
compared to the baseline Faster R-CNN. Inspired by the multi-scale scheme
employed in SSD, Deng et al. [Den18] proposed a multi-scale object detection
framework based on Faster R-CNN for vehicle detection in remote sensing
imagery. As opposed to [Ren15], the RPN is applied on multiple feature maps
to account for various object scales. Furthermore, the features of multiple
convolutional layers are combined as input for the classification stage, which
resulted in good detection performance for various categories in remote sens-
ing imagery. Guo et al. [Guo18] employed a detection framework similar to
FPN for object detection in high-resolution satellite images. A top-down ar-
chitecture with lateral connections to generate multiple high-level semantic
feature maps is used to predict objects with various scales. Top performing re-
sults were achieved on the publicly available Northwestern Polytechnical Uni-
versity Very-High-Resolution 10-class (NWPU VHR-10) benchmark dataset
[Che14b]. In [Azi18], the authors proposed several extensions to the FPN to
improve the detection accuracy in remote sensing imagery. In order to extract
strong semantic information from different scales, the authors extracted the
features for multiple scales of the input image, which are combined in the so-
called image cascade network. Though the detection accuracy was improved,
the use of multiple image scales as input is often not practicable for real-world

38

2.3 Vehicle Detection in Aerial Imagery

applications. Wang et al. [Wan18a] introduced a single stage detection frame-
work similar to DSSD for object detection in remote sensing images. Features
of deep layers are up-sampled and combined with shallow layers, yielding
feature maps with high-level semantic information. The authors reported im-
proved detection results in aerial images from various sources. Tayara and
Chong [Tay18] adopted RetinaNet, which comprises a top-down pathway to
combine features of deep and shallow layers and exploits focal loss, for object
detection in very high-resolution aerial images. While the top-down path-
way results in feature maps with high-level semantic information, the focal
loss down-weights the contribution of easy examples to the loss and thus, the
training focuses on hard negatives. Yang et al. [Yan18] extended Faster R-
CNN for vehicle detection in aerial images by adding skip connections from
shallow to deep layers in order to learn features with rich detail information.
The authors further adopted focal loss as classification loss for the RPN and
classification stage to address the issue of easy positive examples and hard
negative examples during training. The applicability of the proposed detec-
tion method was demonstrated on an own dataset with images recorded in
both nadir and oblique view. Ding et al. [Din18] performed several modifica-
tions to the base network employed in Faster R-CNN. In order to account for
small object dimensions, the authors made use of dilated convolutions to in-
crease the feature map resolution. Furthermore, the feature representation is
enhanced by combining features from different layers and the fully connected
layers are discarded to speed up the inference time. Alternative approaches
to address the issue of class imbalance as well as easy and hard examples are
examined in [Tan17, Kog18]. Tang et al. [Tan17] explored a detection frame-
work for vehicle detection in aerial imagery comprised of the modified RPN
proposed in [Den17] and a cascade of boosted classifiers, which replaces the
initial CNN classifier, aiming at reducing the number of false detections by
negative example mining. Koga et al. [Kog18] explored the use of hard ex-
ample mining in the training process of a CNN, which is applied within a
simple sliding window method for vehicle detection in aerial images. Recent
developments in the field of vehicle detection in aerial imagery focus on the
prediction of oriented bounding boxes [Azi18, Xia18, Bao19, Din19] and the

39

2 Related Work

detection in images and videos recorded from UAVs under varying camera
angles [Zhu18, Che19a, Wan19], which are not in the scope of this thesis.

40

3 Concept

This thesis aims at the design of a deep learning based detection pipeline for
vehicle detection in aerial imagery with low spatial resolution. While the low
spatial resolution allows the coverage of large areas, the small size of occur-
ring vehicles complicates their detection. Due to its superior detection accu-
racy compared to other deep learning based detectors, in particular for small
object instances, Faster R-CNN is chosen as base detection framework. Faster
R-CNN is comprised of two modules: an initial module referred to as RPN that
generates a set of candidate regions, which are then forwarded to the subse-
quent classification stage. The RPN and classification stage share a sequence
of convolutional layers serving as the feature extractor, while the output of
the last convolutional layer, denoted as feature map, is used as input for both
modules. Note that modern deep learning based detection frameworks, such
as Faster R-CNN, are designed for benchmark detection datasets clearly dif-
fering from aerial imagery. Thus, several adaptations are required to account
for the specific characteristics of aerial imagery. Despite the improved de-
tection accuracy, these required adaptations introduce several shortcomings,
e.g., poor inference time and low semantic and spatial content of the employed
features.

The overall concept of the proposed detection pipeline specifically designed
to address these shortcomings is illustrated in Figure 3.1. The RPN and classi-
fication stage that remain basically unchanged are highlighted by gray boxes.
Modifications to decrease the computational effort and consequently infer-
ence time, i.e., restriction of the search area and computation-efficient fea-
ture extraction, are emphasized by blue boxes. Green boxes indicate novel
components to increase the semantic and spatial context information of the
employed features and thus, improve the detection accuracy. Note that the

41

3 Concept

proposed components are not limited to Faster R-CNN and thus, can be inte-
grated into other deep learning based detection frameworks. Relying on the
application or target data, the components can be applied independently or
exchanged with other alternatives, e.g., different feature extractors.

Search Area Reduction

Context Enhancement

Feature Extraction Semantic Labeling

Classification Stage

RPN

RoI Pooling

Anchor
Boxes

Cls.

Reg.

Cls.

Reg.

Cls.

SAR

×16
up

×2up

Cls.

wise
pixel-

×2up

Pr
op

os
al

s

Figure 3.1: Overall concept of the proposed detection pipeline based on the Faster R-CNN detec-
tion framework, which comprises an RPN and a classification stage. Two novel com-
ponents denoted as semantic labeling and context enhancement module are added to
improve the detection accuracy by integrating semantic and spatial context informa-
tion. A search area reduction module and a modified feature extractor are introduced
to reduce the computational costs and consequently the inference time.

Detection Framework Adaptation

In the context of this thesis, Faster R-CNN is applied as base detection frame-
work. Compared to other deep learning based detection frameworks, Faster
R-CNN achieves superior detection accuracy, especially for small object
instances, and thus, seems most promising for the task of vehicle detection

42

3 Concept

in aerial imagery. However, deep learning based detection frameworks
such as Faster R-CNN are typically developed and designed for benchmark
datasets that clearly differ from aerial imagery as shown in Figure 3.2 and
Figure 3.3. Common benchmark datasets, e.g., PASCAL VOC [Eve10] and
MS COCO [Lin14], generally contain one or a few objects per image that are
often centered and occupy a high fraction of the image. Thus, even compara-
tively small objects exhibit a high level of detail such as wheels, license plate,
and lights in case of category car. In contrast, aerial imagery datasets like
DLR 3K [Liu15] and VEDAI [Raz16], which are typically acquired by sensors
mounted on platforms flying at high altitude, generally exhibit low spatial
resolutions resulting in small object dimensions, i.e., in the range of a few
pixels. Thus, objects that can be randomly located and oriented within the
scene often lack in level of detail, which considerably impedes the detection
task. Furthermore, the number of objects present in aerial imagery can vary
between only a few objects in rural regions and hundreds of objects in urban
areas with high traffic volumes or parking lots. Due to these differences, in
particular in object dimensions, deep learning based detection frameworks
are not directly applicable for vehicle detection in aerial imagery. In order
to account for the specific characteristics, several adaptations have been
systematically examined with regard to small object dimensions within this
thesis [Som17c, Som18b]. Particularly, increasing the feature map resolution
considerably improved the detection performance, as the initial resolution
is insufficient to precisely localize small vehicle instances in aerial imagery.
The transferability of the proposed adaptations to multiple object categories
and other detection frameworks are demonstrated in [Som17b, Som18d],
respectively. Though the default Faster R-CNN and conventional detection
methods are clearly outperformed, the performed adaptations pose draw-
backs regarding inference time and semantic and spatial content of the
employed features, which are addressed in the following.

43

3 Concept

Figure 3.2: Example images from benchmark object detection datasets, i.e., PASCAL VOC
(left) [Eve10] and MS COCO (right) [Lin14], generally contain one or a few objects
that are often centered and occupy a high fraction of the image. Even smaller objects
exhibit high level of detail, e.g., wheels, license plate and lights.

Figure 3.3: Example images from aerial imagery datasets, i.e., DLR 3K (left) [Liu15] and VEDAI
(left) [Raz16], can contain multiple randomly located objects whose size is in the
range of a few pixels.

44

3 Concept

Integration of Contextual Knowledge

Increasing the feature map resolution as required for an accurate localization
of small objects is conducted by exploiting shallower layers as feature maps.
However, the lack of semantic and spatial content compared to features from
deep layers results in false alarms caused by objects with vehicle-like shapes
such as windows or solar panels on buildings (see Figure 3.4). To overcome
the lack of semantic and spatial content, the detection pipeline is extended by
two novel components.

Figure 3.4: Qualitative detection results on the DLR 3K dataset that highlight the effect of the
performed adaptations. False alarms due to the exploitation of shallow layers as
feature map are mainly caused by objects with vehicle-like shapes such as solar cells
or windows on buildings.

Incorporating spatial context information into deep learning based detectors
has led to improved detection results in aerial imagery. While making use
of padded GT boxes has been proposed to automatically learn the context of
vehicles in aerial imagery [Sak17], adding more context information by in-
creasing the receptive filed via dilated convolution has been recently applied
for object detection in aerial imagery such as building detection [Ham18] and

45

3 Concept

vehicle detection [Din18]. Inspired by semantic labeling networks that com-
bine features of shallow and deep layers to account for fine and coarse struc-
tures, e.g., FCN [Lon15], an alternative approach is pursued within this the-
sis [Som18c]. Therefore, Faster R-CNN is extended by a novel component de-
noted as context enhancement module (see Figure 3.1). To integrate semantic
and contextual information of deep layers, while maintaining a high feature
map resolution, the features of deep layers are up-sampled via deconvolution
and combined with features of shallow layers, which is a similar concept as in
[Lin17a, Woo18]. Adopting the proposed deconvolution module for other de-
tection frameworks confirms the benefit of adding context information from
deep layers for vehicle detection [Aca18].

To address false alarms caused in image regions that are unlikely to contain
vehicles such as buildings, semantic context information is often applied in
conventional detection pipelines. For this, a common procedure is restrict-
ing detections to road areas, assuming that vehicles do not appear offside
roads [Tue13, Mor14a]. However, the accuracy of road databases is often
limited, which causes missed detections due to vehicles parked close to build-
ings [Tue13]. To cope with this issue, a novel approach that replaces the road
database by a semantic labeling mask is developed [Som17a]. As the proposed
semantic labeling network accurately predicts roads as well as driveways and
parking lots, only detections mainly located on buildings or low vegetation
are filtered out. To avoid large computational overhead due to an additional
semantic labeling network, an alternative approach that incorporates seman-
tic labeling into the detection framework is introduced in this thesis [Nie18].
Instead of filtering out detections offside roads, semantic labeling is employed
to induce scene knowledge into the feature maps used within the detection
framework (see Figure 3.1). For this purpose, the semantic labeling and the
detection network are merged by sharing a sequence of convolutional lay-
ers, which has an implicit effect on the resulting detections. Explicitly adding
deep features of the semantic labeling branch to the detection branch fur-
ther boosts the detection accuracy [Nie18]. Unlike the popular Mask R-CNN
[He17] that applies a semantic labeling network for each region proposal, the
proposed approach is not limited to scene context within region proposals,

46

3 Concept

which is beneficial in case of vehicle detection in aerial imagery. The pro-
posed principle is most similar to StuffNet [Bra17], which makes use of the
local surroundings of an object to identify it, yielding improved detection ac-
curacy on PASCAL VOC. Furthermore, a novel semantic labeling dataset¹ is
created within the context of this thesis to evaluate the effect of semantic
labeling on vehicle detection in aerial imagery [Azi19].

Runtime Optimization

Though the performed adaptations to account for the characteristics of aerial
imagery considerably improve the detection accuracy, the resulting poor in-
ference time impedes the usage for real-world applications that require vehi-
cle detection in real-time or nearly in real-time. To accelerate the detection
pipeline, two different strategies are pursued in the context of this thesis.

As feature extraction is one of the most time-consuming parts in modern deep
learning based detection frameworks such as Faster R-CNN, replacing the de-
fault CNN architecture with more computational efficient networks is com-
mon practice to reduce the inference time. Employing recent architectures
developed for use on mobile platforms with limited resources as feature ex-
tractor exhibit clearly reduced inference time without large drops in detection
accuracy [Wan18b, Zha18b]. The common principle is reducing the number of
parameters and computational operations by minimizing the use of expensive
3 × 3 convolution filters. While these lightweight architectures are generally
designed for classification tasks, adopting this principle to vehicle detection
in aerial imagery without caution may degrade the detection accuracy, as fea-
ture extraction is restricted to shallow layers. In this thesis, the applicability of
different lightweight architectures is examined exemplarily for SSD [Rin19],
which allows a straightforward exchange of the CNN architecture. In combi-
nation with further techniques for runtime optimization, the inference time
is considerably reduced, while only sacrificing little to no detection accuracy.

¹ A refined and enhanced version of the dataset is made publicly available in cooperation
with DLR, whereby DLR provides more fine-grained annotations: https://www.dlr.de/eoc/en/
desktopdefault.aspx/tabid-12760

47

https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12760
https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12760

3 Concept

The most promising architectures are adopted as feature extractor for Faster
R-CNN, exhibiting clear speed-up as well.

Restricting the search area to areas of interest, e.g., roads for vehicle detec-
tion, is an often applied preprocessing step in conventional object detection
pipelines to reduce the inference time. For this, common procedures are the
usage of road maps such as OpenStreetMap¹ [Tue13, Lei14] or the extraction
of road areas in a preceding area classification stage [Luo12, Mor14a]. In the
context of this thesis, a novel component is developed adopting the principle
of classifying areas of interest for deep learning based detection frameworks.
This novel component termed Search Area Reduction module classifies image
areas into regions with or without possibly relevant objects as visualized in
Figure 3.1. By filtering out regions that are unlikely to contain at least one ob-
ject, the computational effort for the subsequent detection stages, i.e., the RPN
and classification stage, and consequently the inference time are notably re-
duced. While existing work employs a separate network for identifying areas
of interest, e.g., cascaded application of Faster R-CNN networks [Han17b],
the proposed approach is the first that explicitly integrates the search area
reduction into the detection framework by sharing convolutional features.
Hence, the number of additional parameters and computational costs are min-
imized.

¹ https://www.openstreetmap.org/

48

https://www.openstreetmap.org/

4 Experimental Setup

In this chapter, the experimental setup to evaluate the detection methods pro-
posed in the context of this thesis is introduced. Section 4.1 gives an overview
about the employed aerial imagery detection datasets and their main statistics.
The evaluation protocols and according metrics are presented in Section 4.2.

4.1 Datasets

An overview about vehicle detection in aerial imagery datasets and their key
characteristics is given in Table 4.1. Note that only publicly available datasets
are listed. The number of instances is limited to vehicles, as further categories,
e.g., buildings, bridges, harbors etc., are not in the scope of this thesis. The
DLR 3K Munich Vehicle Aerial Image Dataset [Liu15] is chosen as base dataset
to examine the proposed detection pipeline and its components. Its number of
annotated vehicles clearly exceeds previous datasets, which is beneficial for
learning based detection algorithms as explored in this thesis. The Cars Over-
head with Context (COWC) dataset [Mun16], which comprises even more
vehicles, is left aside, as annotations are only provided in form of center coor-
dinates. To demonstrate the generalization ability of the proposed detection
pipeline, further experiments are performed on the Vehicle Detection in Aerial
Imagery (VEDAI) [Raz16] dataset, which is a common benchmark dataset for
vehicle detection in aerial imagery, and on recently published datasets, i.e.,
DOTA [Xia18], ITCVD [Yan18] and xView [Lam18]. Thus, different GSDs, ob-
ject sizes, object types, backgrounds and varying number of objects per frame
are taken into account. Note that the experiments on the latter datasets are
conducted in a qualitative manner to examine the transferability of the pro-
posed detection pipeline. Quantitative experiments are not performed due to

49

4 Experimental Setup

the late availability of the datasets and the partially poor annotation quality.
The ISPRS 2D Semantic Labeling Challenge Potsdam dataset [ISP] - a com-
mon benchmark dataset for semantic labeling of aerial imagery - is chosen as
main dataset for evaluating the effect of integrating semantic labeling on the
detection performance.

Table 4.1: Vehicle detection in aerial imagery datasets by release year. Center refers to annota-
tions with only the center coordinates of an instance provided, while BB is short for
bounding box, which is either axis-aligned or oriented. The number of instances is
limited to vehicles, as further categories, e.g., buildings, bridges, harbors etc., are not
in the scope of this thesis.

D
at

as
et

A
nn

ot
at

io
n

N
um

b e
r

of
Im

ag
es

Im
ag

e
W

id
th

(in
pi

xe
ls)

N
um

be
r

of
In

st
an

ce
s

GS
D

(in
cm

)

TAS [Hei08] a.-a. BB 30 792 1,319 -
NWPU [Che14b] a.-a. BB 800 ∼1,000 477 8-200
UCAS-AOD [Zhu15] orient. BB 910 ∼1,000 2,819 -
DLR 3K [Liu15] orient. BB 20 5,616 14,235 ∼13
VEDAI [Raz16] orient. BB 1,268 1,024 2,950 12.5
COWC [Mun16] center 53 2k-19k 32,716 15
DOTA [Xia18] orient. BB 2,806 800-13k ∼180k 10-100
ITCVD [Yan18] a.-a. BB 173 5,616 29,088 10
xView [Lam18] a.-a. BB 1,127 700-4k ∼250k 30

DLR 3K Munich Vehicle Aerial Image Dataset

The DLR 3K Munich Vehicle Aerial Image Dataset, in the following termed
DLR 3K dataset, is acquired at a height of 1000 m above the ground over Mu-
nich, Germany and comprises mainly urban and residential areas as visual-
ized in Figure 4.1. The DLR 3K dataset contains 20 images with a resolution
of 5616 × 3744 pixels and a GSD of approximately 13 cm, whereby GT annota-
tions provided in form of oriented bounding boxes for different vehicle types,

50

4.1 Datasets

e.g., car, truck and trailer, are only available for 10 images. For the experi-
ments within this thesis, the images with available GT annotations are split
into 8 training and 2 test images. Each image is divided into tiles of 936 × 936
pixels. As the deep learning based detection frameworks employed in this
thesis require at least one object per image, images without any object are
removed from the training set yielding 140 image tiles for training. Due to
the limited number of annotations for most vehicle types, only the classes car
and van are considered. Following [Liu15], the two classes are merged into a
single vehicle class. Furthermore, all oriented bounding boxes are converted
to axis-aligned bounding boxes according to [Sak17, Som17c, Tan17]. On av-
erage, the mean bounding box dimensions are 28.2 ± 8.2 × 28.3 ± 8.7 pixels.

Figure 4.1: Illustrative examples of the DLR 3K Munich Vehicle Aerial Image Dataset [Liu15].

Vehicle Detection in Aerial Imagery Dataset

The Vehicle Detection in Aerial Imagery (VEDAI) dataset comprises satellite
images of the Utah AGRC¹, which are acquired over Utah, US during spring

¹ https://gis.utah.gov/

51

https://gis.utah.gov/

4 Experimental Setup

2012. The raw images have four uncompressed channels (RGB and near IR),
whereby only the RGB channels are used in this thesis. As shown in Figure 4.2,
the images comprise varying backgrounds such as agrarian, rural and urban
areas. The VEDAI dataset comprises in total 1268 images of size 1024 × 1024
pixels and a GSD of 12.5 cm. In addition, a down-scaled version of the images
is available with a GSD of 25 cm. The two versions are referred to as large-
size color images (LCIs) and small-size color images (SCIs), respectively. GT
annotations are provided in form of oriented bounding boxes for nine vehicle
types, whereby cars, pick-ups and vans are summarized as small land vehi-
cles. In the following, the first half of images is used as training data and
the second half for testing. In accordance with experiments on the DLR 3K
dataset, all oriented bounding boxes are converted to axis-aligned bounding
boxes. Due to the limited number of annotations for large vehicles such as
boats and airplanes, only the small land vehicles are considered similar to
[Sak17]. VEDAI comprises in average 2.0 objects per image, which is con-
siderably less compared to DLR 3K. The mean bounding box dimensions are
33.6 ± 11.7 × 33.6 ± 11.9 and 16.8 ± 5.8 × 16.8 ± 5.9 pixels for LCI and SCI, respec-
tively.

Figure 4.2: Illustrative examples of the Vehicle Detection in Aerial Imagery dataset [Raz16].

52

4.1 Datasets

DOTA

The DOTA dataset is composed of 2806 images that are collected from multiple
sensors and platforms, i.e., Google Earth, satellite JL-1 and satellite GF-2 of the
China Centre for Resources Satellite Data and Application. The image sizes
range from 800 × 800 to 4000 × 4000 pixels and the GSD, which is provided
for each image separately, varies between 10 and 100 cm. As depicted in Fig-
ure 4.3, the dataset comprises images with differing scenarios and exhibits a
wide variety of scales and orientations. GT annotations of 15 categories are
provided in form of both oriented and axis-aligned bounding boxes for 1869
images. Note that the poor annotation quality, especially the high number of
missing annotations in case of the categories small vehicle and large vehicle,
obstruct an expressive quantitative evaluation [Aca18, Waq19].

Figure 4.3: Illustrative examples of the DOTA dataset [Xia18].

ITCVD

The ITCVD dataset is acquired at a height of 330 m above the ground over
Enschede, Netherlands. The dataset comprises in total 173 images with a res-
olution of 5616 × 3744 pixels whereof 46 images are taken in nadir view with

53

4 Experimental Setup

a GSD of 10 cm. The remaining images taken in oblique view with a tilt angle
of 45 degrees are not considered for the experiments within this thesis. Sim-
ilar to DLR 3K, the dataset comprises mainly urban and residential areas as
visualized in Figure 4.4. Note that the images exhibit stronger parallax effects
compared to the other datasets due to the low acquisition altitude. GT anno-
tations are provided in form of axis-aligned bounding boxes for all vehicles,
which are summarized into a single category.

Figure 4.4: Illustrative examples of the ITCVD dataset [Yan18].

xView

The xView datasets comprises 1127 images from WorldView-3 satellites with
a GSD of 30 cm. The image dimensions are in the range between 700 and 4000
pixels. The images are acquired over different continents including Australia,
Africa, Asia, Europe, Middle and South America and thus, include a large va-
riety of different scenarios and objects (see Figure 4.5). GT annotations of 60
categories including buildings, vehicles and mini-scenes, e.g., shipping con-
tainer lot, are provided in form of axis-aligned bounding boxes for 846 images.
The most GT annotations either belong to category building or category small
car because of their prevalence in densely populated areas.

54

4.1 Datasets

Figure 4.5: Illustrative examples of the xView dataset [Lam18].

ISPRS 2D Semantic Labeling Challenge Potsdam dataset

In literature, there exist multiple aerial semantic labeling datasets, whereby
most publicly available datasets only provide annotations for an individual
class such as roads or building footprints [Mni13, Mag17, Van18, Dem18].
Due to the missing annotations for occurring vehicles, these datasets are not
appropriate for the task of vehicle detection. In contrast, the 2018 IEEE GRSS
Data Fusion Challenge dataset [GRS18], the ISPRS 2D Semantic Labeling
Challenge Vaihingen dataset [ISP], and the ISPRS 2D Semantic Labeling
Challenge Potsdam dataset [ISP] provide annotations for multiple categories
including vehicles. While the 2018 IEEE GRSS Data Fusion Challenge dataset
and the ISPRS 2D Semantic Labeling Challenge Vaihingen dataset are not
considered because of the low GSD, i.e., 50 cm, and used sensor bands, i.e., IR,
red and green, respectively, the ISPRS 2D Semantic Labeling Challenge Pots-
dam dataset is chosen as main dataset for evaluating the effects of integrating
semantic labeling on the detection performance.

The ISPRS 2D Semantic Labeling Challenge Potsdam dataset, in the follow-
ing referred to as Potsdam dataset, consists of 38 patches with a resolution
of 6000 × 6000 pixels and a GSD of 5 cm. The Potsdam dataset is split into
24 patches for training and 14 patches for testing. According to [She16], the

55

4 Experimental Setup

training set is divided into two subsets: one for training and one for valida-
tion. Pixel-wise semantic annotations of six categories are provided as shown
in Figure 4.6. These categories are impervious surface, building, low vegetation,
tree, car, and clutter. The images collected over Potsdam, Germany, mainly
comprise urban areas showing large building blocks, narrow streets and dense
settlement structures. For each patch, RGB imagery, IR imagery and a digital
surface model (DSM) are provided. As the latter two are generally not avail-
able for aerial imagery, only RGB imagery is considered for the experiments
in the context of this thesis.

Figure 4.6: Example patch of the Potsdam dataset (left) and the corresponding semantic label-
ing mask (right) with pixel-wise semantic annotations of six categories: impervious
surface (white), building (blue), low vegetation (cyan), tree (green), car (yellow), and
clutter (red).

For all experiments, if not stated otherwise, the original image patches are
cropped into tiles of size 600 × 600 pixels. As required for Faster R-CNN, GT
bounding boxes are generated by fitting axis-aligned boxes around each seg-
ment labeled as car. To refine the GT annotations, split and merged GT anno-
tations are manually adjusted and GT annotations for missed cars due to inac-
curate labeling are added (see Figure 4.7)¹. Overall, the number of annotated
GT instances in the training and validation set is 5022 and 1607, respectively.

¹ The generated GT annotations are made publicly available at s.fhg.de/semseg-avss2017

56

s.fhg.de/semseg-avss2017

4.2 Evaluation Metrics and Protocol

Figure 4.7: Examples for semantic labeling masks (top row) resulting in split (1st column) and
merged (2nd column) GT annotations that are manually adjusted (bottom row) and
examples for semantic labeling masks with vehicles beneath a tree labeled as cate-
gory tree (3rd and 4th column) whose annotations are manually added.

4.2 Evaluation Metrics and Protocol

In the following, common metrics to evaluate the performance of the proposed
detection pipeline, the region proposal generation, i.e., RPN, and the semantic
labeling approaches to integrate semantic context information are introduced.

Object Detection

In this thesis, average precision (AP) [Sal83], which is a common metric to
measure the detection performance, is applied following the evaluation pro-
tocol introduced in [Eve10]. To compute the AP, the detection results are
compared against GT. The detection results and GT are provided as bounding
boxes with an associated class label. The detection results further comprise
for each bounding box the probability for the assigned class, which is denoted
as confidence score.

The confidence score and the Intersection over Union (IoU), also referred to
as Jaccard coefficient, are used as criteria to determine whether a detection is

57

4 Experimental Setup

considered as correct detection, termed true positive (TP), or not. The IoU is
defined as the area of the intersection divided by the area of the union of a
predicted bounding box and a GT box:

IoU =
𝐴pred ∩ 𝐴𝐺𝑇
𝐴pred ∪ 𝐴𝐺𝑇

. (4.1)

A detection is considered as TP, if it satisfies two conditions: the confidence
score is higher than a given threshold 𝜏 and the IoU is equal to or greater
than 0.5, which is referred to as PASCAL criterion¹. Detections that do not
fulfill both conditions are termed false positives (FPs). Note that, if multiple
detections correspond to the same GT instance, only the one with the highest
confidence score counts as a TP, while the remaining detections are consid-
ered as FPs. GT instances without an assigned detection are referred to as
false negatives (FNs).

Precision 𝑃 - the percentage of correct detections - is defined as the number
of TPs divided by the sum of TPs and FPs:

𝑃 = |𝑇𝑃|
|𝑇𝑃| + |𝐹𝑃| . (4.2)

Recall 𝑅 is the detection rate defined as the number of TPs divided by the sum
of TPs and FNs:

𝑅 = |𝑇𝑃|
|𝑇𝑃| + |𝐹𝑁| . (4.3)

Both measures are in the range between 0 and 1. The precision and recall pair
for a fixed confidence threshold 𝜏 is termed operating point. Higher values for
𝜏 generally result in higher precision and lower recall rates and vice versa. By
varying 𝜏, different operating points are received, yielding the precision-recall
curve (PRC) as exemplarily depicted in Figure 4.8.

¹ In case of multiple classes, which is not the case in this thesis, the predicted class has to match
furthermore the class label of the corresponding GT.

58

4.2 Evaluation Metrics and Protocol

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Figure 4.8: Precision-recall curve.

AP is defined as the area under this curve:

𝐴𝑃 = ∫
1

0
𝑃(𝑅) d𝑅 . (4.4)

In practice, AP is computed by summarizing the interval between two suc-
cessive recall values 𝑅𝑖 and 𝑅𝑖+1 multiplied with the interpolated precision
̃𝑃(𝑅𝑖+1):

𝐴𝑃 =
𝑛−1
∑
𝑖=0

(𝑅𝑖+1 − 𝑅𝑖) ̃𝑃(𝑅𝑖+1) , (4.5)

where 𝑛 is the number of unique recall values arranged in an ascending order.
The interpolated precision ̃𝑃(𝑅𝑖+1) is given by the maximum precision for any
recall ̃𝑅 equal to or greater than 𝑅𝑖+1:

̃𝑃(𝑅𝑖+1) = max
𝑅̃≥𝑅𝑖+1

(𝑃(̃𝑅)) . (4.6)

59

4 Experimental Setup

Object Proposals

Following [Hos15], the effectiveness of object proposals is examined by plot-
ting the recall for the object proposals with respect to various IoU thresholds
used to accept GT instances as recalled (see Figure 4.9). To this end, only the
𝑛𝑜 object proposals with the highest likelihood of the presence of an object
are used, whereby 𝑛𝑜 is a hyper-parameter that controls the number of object
proposals considered for classification. To measure the localization quality of
object proposals, the average best overlap (ABO) is calculated by averaging
the best IoU between each GT annotation 𝑎𝑖 ∈ 𝒜 and the corresponding set
of object proposals 𝒪:

ABO = 1
|𝒜| ∑𝑎𝑖∈𝒜

max
𝑜𝑗∈𝒪

IoU(𝑎𝑖,𝑜𝑗) . (4.7)

0.0 0.2 0.4 0.6 0.8 1.0

IoU

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

Figure 4.9: Recall versus IoU threshold curve.

Semantic Labeling

To evaluate the semantic labeling results, F1-score computed for each class
and overall accuracy showing the percentage of correctly labeled pixels are

60

4.2 Evaluation Metrics and Protocol

used as evaluation metrics following the 2D Semantic Labeling Contest pro-
tocol¹. Both metrics are derived from a pixel-based confusion matrix. To this
end, the confusion matrices for each tile are accumulated. F1-score is the har-
monic mean of precision and recall defined as

𝐹1-score = 2 𝑃 ⋅ 𝑅𝑃 + 𝑅 . (4.8)

To compute precision and recall (see eq. (4.2) and eq. (4.3)) per class, the num-
ber of TP pixels is derived from the main diagonal elements of the confusion
matrix, while the number of FP pixels is the sum per column and the num-
ber of FN pixels is the sum per row, excluding the main diagonal element.
The overall accuracy is computed by normalizing the trace of the confusion
matrix. Note that a three-pixel boundary between GT regions with different
labels is ignored during evaluation to reduce the impact of uncertain border
definitions due to the annotation procedure.

Inference Time

Besides the detection accuracy, the inference time is another key factor to
judge the detection performance. In the context of this thesis, two different
devices representing a server and a desktop setup are used in order to mea-
sure the inference time. The desktop setup is chosen to account that many
real-world applications have to do without powerful server setups. The key
characteristics of each device are given in Table 4.2. All inference time mea-
surements are conducted through the pycaffe Python interface for Caffe. If not
stated otherwise, the inference time is reported in milliseconds (ms) averaged
over the complete test set of the respective dataset. Note that all time mea-
surements exclude preprocessing steps, e.g., loading the image, as these steps
can be done asynchronously, while waiting for the GPU to finish the current
forward pass. In advance of each timing, 10 forward passes are performed to
warm-up the GPU kernels.

¹ http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html

61

http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html

4 Experimental Setup

Table 4.2: Overview of devices used for runtime measurements.

Server Desktop
CPU 48×Intel Xeon E5-2650 v4 12×Intel Core i7-7800X CPU

@ 2.20GHz @ 3.50GHz
RAM 256GB 32GB
GPU GTX TITAN X (Pascal), 12GB GTX 1050 Ti (Pascal), 4GB

62

5 Base Framework

In this chapter, the functional principle of the utilized base framework, i.e.,
Faster R-CNN, is introduced. For this, the main detector components and the
implementation details are extensively described. Furthermore, adaptations
in order to account for the characteristics of aerial imagery are proposed and
systematically examined to identify concomitant issues.

5.1 Faster R-CNN

Faster R-CNN is chosen as base framework for the detection pipeline proposed
in this thesis, because of its superior detection accuracy compared to other
deep learning based detectors, in particular for small object instances. The
capability of accurately detecting small object instances is even more essen-
tial in case of aerial imagery, which typically comprises objects in the range of
a few pixels due to its low spatial resolution as introduced in Section 4.1. The
functional principle of Faster R-CNN, which mainly comprises two modules,
is schematically depicted in Figure 5.1. The first module termed RPN gener-
ates a set of candidate regions, which is forwarded to a subsequent module
denoted as classification stage. The two modules are merged into a single
network by sharing a sequence of convolutional layers termed feature extrac-
tor. Fundamental basics of both modules as well as implementation details
are introduced in the following.

63

5 Base Framework

RPNAnchor
Boxes

Cls.

Reg.

Pr
op

os
al

s

Cls.

Reg.

Classification Stage RoI Pooling

Feature Extraction

Figure 5.1: Functional principle of the Faster R-CNN, which conducts object detection in two
stages: an initial stage that generates a set of candidate regions termed RPN and a
subsequent classification stage. Both stages share a sequence of convolutional layers
and employ the output of the last convolutional layer as feature map (highlighted in
dark blue).

5.1.1 Region Proposal Network

The Region Proposal Network is a deep learning based object proposal method
whose functional principle is depicted in Figure 5.2. Purpose of the RPN is the
localization of candidate regions that are likely to contain an object. To this
end, the RPN comprises a small network, which is shifted in sliding window
manner across the output of the last shared convolutional layer used as feature
map. The small network is comprised of a 3 × 3 convolutional layer followed
by two sibling fully connected layers: one for bounding box regression (reg
layer) and one for classification (cls layer). In practice, the fully connected
layers are implemented with two sibling 1 × 1 convolutional layers.

To conduct bounding box regression, anchor boxes centered at each sliding
window location, i.e., feature map location, are utilized as reference boxes. In
order to account for various object scales, anchor boxes with different aspect
ratios and sizes are employed, yielding k anchor boxes per sliding window
location. Thus, the reg layer has 4k outputs encoding offsets for each anchor
box used to predict the coordinates for the respective candidate region, while
the cls layer outputs 2k confidence scores about the presence of an object.

64

5.1 Faster R-CNN

k anchor boxes2k scores 4k coord.

feature map

cls layer reg layer

3 3 conv. layer×
512 - d

Figure 5.2: Functional principle of the Region Proposal Network. The RPN comprises a small
network that is shifted in sliding window manner across the used feature map. The
small network is comprised of a 3 × 3 convolutional layer followed by a classification
layer and bounding box regression layer. Anchor boxes centered at each sliding
window location are utilized as reference for the bounding box regression.

For training the RPN, a set of anchors termed mini-batch ℬ𝑅𝑃𝑁 is randomly
sampled per image, whereby each anchor is assigned by a class label 𝑝∗𝑖 indi-
cating the affiliation to an object (positive anchor) or not (negative anchor).
The class label 𝑝∗𝑖 is 1 in case of positive anchors and 0 in case of negative
anchors. Anchors with the highest IoU to a GT box as well as all anchors pos-
sessing an IoU above 0.7 are assigned as positive anchors, whereas anchors
bearing an IoU below 0.3 are assigned as negative anchors. Anchors being
neither positive nor negative are not considered for training.

Both classification and bounding box regression are trained jointly using a
multi-task loss defined as¹

𝐿𝑅𝑃𝑁 = ∑
𝑖∈ℬ𝑅𝑃𝑁

𝐿𝑐𝑙𝑠(𝑝𝑖,𝑝∗𝑖) + ∑
𝑖∈ℬ𝑅𝑃𝑁

𝑝∗𝑖 𝐿𝑟𝑒𝑔(t𝑖,t∗𝑖), (5.1)

where 𝑖 is the index of an anchor in the current mini-batch, 𝑝𝑖 denotes the
predicted probability of anchor 𝑖 is associated to an object, and t𝑖 and t∗𝑖 are
vectors representing the parameterized coordinates of the predicted bounding

¹ Note that the given objective function is in accordance with the implementation used in the
scope of this thesis and thus, slightly differs from the objective function given in [Ren15].

65

5 Base Framework

box and the associated GT box. The classification loss 𝐿𝑐𝑙𝑠 is the logarithmic
loss for two classes computed by:

𝐿𝑐𝑙𝑠(𝑝𝑖,𝑝∗𝑖) = −𝑝∗𝑖 𝑙𝑜𝑔𝑝𝑖 − (1 − 𝑝∗𝑖)𝑙𝑜𝑔(1 − 𝑝𝑖). (5.2)

Note that for simplicity the classification loss is implemented as a two-class
softmax layer [Ren15]. To ensure that the regression loss is only activated for
positive anchors, it is weighted by the class label 𝑝∗𝑖 . The regression loss is
given by:

𝐿𝑟𝑒𝑔(t𝑖,t∗𝑖) = ∑
𝑗∈{𝑥,𝑦,𝑤,ℎ}

𝐿𝑠𝑚𝑜𝑜𝑡ℎ
1 (𝑡𝑖𝑗 − 𝑡∗𝑖𝑗), (5.3)

whereby smooth 𝐿1 loss [Gir15], which is more robust to outliers compared
to 𝐿2 loss, is applied:

𝐿𝑠𝑚𝑜𝑜𝑡ℎ
1 (𝑥) = {0.5𝑥

2, if |𝑥| < 1
|𝑥| − 0.5 otherwise.

(5.4)

The vectors representing the parameterized coordinates of the predicted
bounding box and the associated GT box are defined as follows:

𝑡𝑥 = (𝑥 − 𝑥𝑎)/𝑤𝑎, 𝑡𝑦 = (𝑦 − 𝑦𝑎)/ℎ𝑎,
𝑡𝑤 = 𝑙𝑜𝑔(𝑤/𝑤𝑎), 𝑡ℎ = 𝑙𝑜𝑔(ℎ/ℎ𝑎),

𝑡∗𝑥 = (𝑥∗ − 𝑥𝑎)/𝑤𝑎, 𝑡∗𝑦 = (𝑦∗ − 𝑦𝑎)/ℎ𝑎,
𝑡∗𝑤 = 𝑙𝑜𝑔(𝑤∗/𝑤𝑎), 𝑡∗ℎ = 𝑙𝑜𝑔(ℎ∗/ℎ𝑎).

(5.5)

Here, 𝑥, 𝑦, 𝑤, and ℎ are the center coordinates, width and height of the pre-
dicted bounding box. The coordinates and dimensions of the corresponding
anchor box and GT box are indicated by a subscripted 𝑎 and a superscripted
∗, respectively.

During deployment, the actual bounding box coordinates of each region pro-
posal are computed in a subsequent layer denoted as proposal layer by adding
the predicted offsets to the coordinates of the respective anchor box. To gen-
erate the final set of region proposals, the region proposals are sorted with

66

5.1 Faster R-CNN

respect to the predicted confidence score for the presence of an object and
non-maximum suppression (NMS) is applied to remove redundant region pro-
posals.

5.1.2 Classification Stage

The functional principle of the classification stage, which is in essence the
Fast R-CNN detector [Gir15], is illustrated in Figure 5.3. The classification
stage takes a pre-defined number of candidate regions, i.e., region proposals
with the highest confidence scores, as input. Each candidate region denoted
as region of interest (RoI) is projected onto the same feature map as used
for the RPN. By conducting max pooling, the RoI pooling layer converts the
corresponding features inside the respective candidate region into a feature
map with fixed spatial extent. The feature map is then fed into a sequence of
fully connected layers branching into two sibling fully connected layers: one
for classification and one for bounding box regression similar to the RPN. The
cls layer outputs c+1 confidence scores for the c classes and the background
class, while the reg layer outputs 4 values for each class, which encode offsets
to the respective candidate region. The applied sub-network is also referred
to as classification head.

projection

RoI

feature map

conv.
layers

pooling

RoI

FCs

cls layer (FC)

reg layer (FC)

4(
c+

1)
 c

oo
rd

.
c+

1
sc

or
es

Figure 5.3: Functional principle of the classification stage. Each region of interest, i.e., candidate
region, is projected onto the feature map. The corresponding features inside the
respective candidate region are converted via RoI pooling into a feature map with
fixed spatial extent, which is fed into a sequence of fully connected layers (FCs).
The two final sibling fully connected layers output confidence scores and per-class
regression offsets.

67

5 Base Framework

For training the classification stage, a set of candidate regions also referred to
as mini-batch ℬ𝐶𝐿𝑆 is sampled from the set of candidate regions forwarded
from the RPN. Candidate regions with an IoU of at least 0.5 to a GT object
are associated with the corresponding class label 𝑢𝑖>0, otherwise assigned to
the background 𝑢𝑖=0. The ratio between candidate regions associated with an
object or assigned to background is set to 1:3 by subsampling the background
regions. A multi-task loss analogous to eq. (5.1) is applied to jointly train the
classification and bounding box regression of the classification stage:

𝐿𝐶𝐿𝑆 = ∑
𝑖∈ℬ𝐶𝐿𝑆

𝐿𝑐𝑙𝑠(𝑝𝑖,𝑢𝑖) + ∑
𝑖∈ℬ𝐶𝐿𝑆

𝐼(𝑢𝑖)𝐿𝑟𝑒𝑔(t𝑢𝑖 ,v𝑖). (5.6)

The classification loss 𝐿𝑐𝑙𝑠 is logarithmic loss whereby 𝑝𝑖 is the probability
distribution for candidate region 𝑖 and 𝑢𝑖 is the true class label. The regres-
sion loss 𝐿𝑟𝑒𝑔 is smooth 𝐿1 loss (see eq. (5.3)), whereby t𝑢𝑖 and v𝑖 are vectors
representing the parameterized coordinates of the predicted bounding box as-
sociated to class 𝑢𝑖 and the current GT box 𝑣𝑖 . Note that GT boxes are only
given for true classes. Thus, the regression loss is weighted with the indicator
function 𝐼(𝑢𝑖), which is 1 if 𝑢𝑖 is the true class and 0 for all other classes and
background.

5.1.3 Implementation Details

As aforementioned, a sequence of convolutional layers is used as feature ex-
tractor for Faster R-CNN, whereby the output of the last convolutional layer
serves as feature map for both stages. For this purpose, VGG16 [Sim14] is
employed by default as base network. Table 5.1 schematically depicts the ar-
chitecture of VGG16, which is comprised of 13 convolutional layers arranged
in sequences of 2 and 3, respectively, followed by 3 fully connected layers.
ReLU is applied as activation function after each convolutional and fully con-
nected layer, while spatial pooling is carried out by max pooling layers after
the 2ⁿᵈ, 4ᵗʰ, 7ᵗʰ, 10ᵗʰ and 13ᵗʰ convolutional layer. The 13 convolutional layers
are shared between both stages as feature extractor and the output of the last
convolutional layer, denoted as conv5_3, is used as feature map. The fully con-
nected layers are adopted for the classification stage. To this end, the output

68

5.1 Faster R-CNN

dimensions of the RoI pooling layer, which extracts features for each candi-
date region, is set to 7 × 7 as required for the first fully connected layer. The
last fully connected layer, which comprises 1000 outputs, i.e., one for each
class of the ImageNet classification benchmark dataset, is replaced by two
sibling fully connected layers. In case of one class, i.e., vehicle, the output
dimensions are set to 2 and 8, respectively.

Table 5.1: Schematic structure of VGG16 used by default as feature extractor for Faster R-CNN.
𝑑 ×𝑑 specifies the input image dimension, which is 224 × 224 in case of ImageNet.

Layer Type Kernel Size Stride, Pad Output Dimension
convolution 3 × 3 × 64 1, 1 𝑑 ×𝑑 × 64
convolution 3 × 3 × 64 1, 1 𝑑 ×𝑑 × 64
max pooling 2 × 2 2, 0 𝑑/2 × 𝑑/2 × 64
convolution 3 × 3 × 128 1, 1 𝑑/2 × 𝑑/2 × 128
convolution 3 × 3 × 128 1, 1 𝑑/2 × 𝑑/2 × 128
max pooling 2 × 2 2, 0 𝑑/4 × 𝑑/4 × 128
convolution 3 × 3 × 256 1, 1 𝑑/4 × 𝑑/4 × 256
convolution 3 × 3 × 256 1, 1 𝑑/4 × 𝑑/4 × 256
convolution 3 × 3 × 256 1, 1 𝑑/4 × 𝑑/4 × 256
max pooling 2 × 2 2, 0 𝑑/8 × 𝑑/8 × 256
convolution 3 × 3 × 512 1, 1 𝑑/8 × 𝑑/8 × 512
convolution 3 × 3 × 512 1, 1 𝑑/8 × 𝑑/8 × 512
convolution 3 × 3 × 512 1, 1 𝑑/8 × 𝑑/8 × 512
max pooling 2 × 2 2, 0 𝑑/16 × 𝑑/16 × 512
convolution 3 × 3 × 512 1, 1 𝑑/16 × 𝑑/16 × 512
convolution 3 × 3 × 512 1, 1 𝑑/16 × 𝑑/16 × 512
convolution 3 × 3 × 512 1, 1 𝑑/16 × 𝑑/16 × 512
max pooling 2 × 2 2, 0 𝑑/32 × 𝑑/32 × 512
fully connected 4096
fully connected 4096
fully connected 1000

69

5 Base Framework

Joint training of the RPN and classification stage is conducted for all experi-
ments within this thesis, which is 1.5 times faster than alternating optimiza-
tion at similar detection performance. For this purpose, 𝐿𝑅𝑃𝑁 and 𝐿𝐶𝐿𝑆 are
equally weighted:

𝐿𝐹𝑎𝑠𝑡𝑒𝑟 𝑅-𝐶𝑁𝑁 = 𝐿𝑅𝑃𝑁 + 𝐿𝐶𝐿𝑆 . (5.7)

Each model is trained for 60,000 iterations using SGD and an initial learn-
ing rate of 0.001. The learning rate is reduced by a factor of 10 every 20,000
iterations. The weight decay and momentum are set to 0.0005 and 0.9, re-
spectively. Weights pre-trained on ImageNet are used to initialize the con-
volutional layers and the first two fully connected layers in the classification
stage. All other layers are randomly initialized by using the Gaussian weight
filler method according to [Ren15]. If not stated otherwise, 3 scales and 3 as-
pect ratios are used for the anchor boxes of the RPN. The aspect ratios are
fixed to 1:1, 1:2 and 2:1 to account for the different orientations of vehicles in
overhead imagery. The minimum dimension to accept generated region pro-
posals for classification is set to 4 pixels. Note that by default, only candidate
regions whose dimensions exceed 16 pixels are considered for classification,
which may lead to a high number of missed detections as candidate regions
corresponding to small objects, partially occluded objects and objects at image
edges are filtered out.

During deployment, NMS is applied on the 10,000 region proposals exhibiting
the highest confidence scores. The overlap threshold value used for NMS is set
to 0.7. The top-2000 ranked region proposals after NMS are then forwarded
to the classification stage. Hence, redundant region proposals are removed
and the number of region proposals to classify and consequently the com-
putational costs are reduced. To remove duplicate detections, NMS with an
overlap threshold of 0.3 is applied on the final detections. The settings for the
NMS are based on preliminary experiments reported in [Som18b].

70

5.2 Adaptation to Aerial Imagery

5.2 Adaptation to Aerial Imagery

Deep learning based detection frameworks, such as Faster R-CNN, are typi-
cally developed and designed for benchmark detection datasets that consid-
erably differ from aerial imagery (see Chapter 3). Due to these differences,
in particular in object dimensions, deep learning based detection frameworks
are not directly applicable for vehicle detection in aerial imagery. In order
to account for the characteristics of aerial imagery, several modifications are
examined in detail for the first time [Som17b, Som18b]. In the following, the
conducted modifications to Faster R-CNN, i.e., reducing the feature map res-
olution and adapting the anchor box settings, are analyzed and the accompa-
nying effects are discussed.

5.2.1 Feature Map Resolution

By using the original VGG16 as feature extractor for Faster R-CNN, top per-
forming results are achieved on PASCAL VOC indicating the high suitability
for benchmark datasets [Ren15]. Due to spatial pooling, the dimensions of
the output of the last convolutional layer used as feature map are only 1/16
of the input image (see Table 5.1), which is sufficient for accurately localizing
objects in benchmark datasets as shown in Figure 5.4. To this end, the acti-
vations of three filters from the employed feature map, i.e., conv5_3, and the
corresponding detection results are depicted exemplarily for PASCAL VOC.
Note that the applied Faster R-CNN model is trained with the settings pro-
posed for PASCAL VOC. During inference, the input image is rescaled so that
the shorter size equals 600 pixels analogous to [Ren15]. The activations are
normalized to values between 0 and 1, whereby higher values correspond to
stronger activations. Multiple feature map pixels overlap with the objects due
to the large object dimensions. The activations of the three filters, which re-
spond to different object parts, e.g., windshield, show that the feature map
resolution is even sufficient to map the contours of the object parts and con-
sequently yield accurately aligned bounding boxes around the objects.

71

5 Base Framework

0.0

0.25

0.5

0.75

1.0

Figure 5.4: Activations of three filters from conv5_3 used as feature map and the corresponding
detection results on PASCAL VOC indicate that the feature map resolution is suffi-
cient to accurately localize objects. The activations are normalized to values between
0 and 1.

0.0

0.25

0.5

0.75

1.0

Figure 5.5: Activations of three filters from conv5_3 used as feature map and the corresponding
detection results indicate that the feature map resolution is not sufficient to accu-
rately localize small objects as in case of DLR 3K. The activations are normalized to
values between 0 and 1.

72

5.2 Adaptation to Aerial Imagery

In contrast, employing conv5_3 as feature map in case of aerial imagery, which
comprises objects in the range of only a few pixels, results in inaccurately
aligned bounding boxes. A reason for the poor alignment is the coarse feature
map resolution as exemplarily shown for DLR 3K in Figure 5.5. For this, the
applied Faster R-CNN model is trained with identical settings as for PASCAL
VOC on DLR 3K. Note that the number of outputs in the classification stage
are adapted to 2 and 8 as described in Section 5.1.3. The visualized activations
exhibit that only few feature map pixels overlap with the small object in the
sample image, whereby several of these feature map pixels mainly cover the
background. Hence, the feature map resolution is not sufficient to accurately
localize such small objects, which leads to poorly located as well as duplicate
detections.

To address this issue, the feature map resolution is systematically increased
by removing piecewise sequences of convolutional layers from the original
VGG16 network. Using the output of the 10ᵗʰ convolutional layer termed
conv4_3 and 7ᵗʰ convolutional layer termed conv3_3 results in feature maps
whose dimensions are 1/8 and 1/4 of the input image, respectively¹. The ef-
fect of higher feature map resolutions is given by quantitative results in Ta-
ble 5.2. For this, all experiments are performed on the DLR 3K dataset and
AP is used as evaluation metric (see Section 4.2). Each model is trained with
the settings specified in Section 5.1.3. Furthermore, the adapted anchor box
settings introduced in the subsequent section are adopted. As expected, the
AP considerably increases with higher feature map resolutions. The best AP
is achieved for conv3_3, which outperforms conv5_3 by almost 30% in AP.
However, using the output of conv2_2 as feature map, which exhibits an even
higher resolution, shows no further improvement. Instead, the AP slightly
drops due to an increased number of false positive detections, as the semantic
context information of the employed feature map becomes less. The observed
improvements are in accordance with findings reported in [Sak17]. The best
results for vehicle detection on the VEDAI dataset were achieved by using

¹ To increase the number of input channels as required for the first fully connected layer of the
classification stage, a 1 × 1 convolutional layer with 512 channels is applied on the output of
conv3_3 that originally comprises 256 channels (see Table 5.1).

73

5 Base Framework

conv3_3 as feature map for Faster R-CNN. Furthermore, the improved detec-
tion accuracy in other domains, such as pedestrian detection [Zha16] or logo
detection [Egg17], confirm the importance of exploiting shallower layers as
feature map for an accurate detection of small objects.

Table 5.2: AP for differing feature map resolutions on DLR 3K. The respective feature map res-
olutions are given with respect to the used input image size, i.e., 936 × 936 pixels.

Feature Map Resolution AP (in %)
conv5_3 59 × 59 65.1
conv4_3 117 × 117 90.3
conv3_3 234 × 234 94.3
conv2_2 468 × 468 92.7

0.0

0.25

0.5

0.75

1.0

Figure 5.6: Activations of three filters from conv3_3 used as feature map and the corresponding
detection results indicate that the feature map resolution is sufficient to accurately
localize even small objects. Note that the activations are normalized to values be-
tween 0 and 1.

74

5.2 Adaptation to Aerial Imagery

Visualizing the activations of three filters from conv3_3 used as feature map
and the corresponding detection results qualitatively show that the localiza-
tion accuracy improves with an increasing feature map resolution (see Fig-
ure 5.6). Due to the increased feature map resolution, considerably more fea-
ture map pixels overlap with the object in the sample image compared to us-
ing con5_3 as illustrated in Figure 5.5. Thus, even fine object parts such as
the windshield are covered by multiple feature map pixels and an accurate
prediction of the object boundaries is facilitated.

Analysis of the Localization Accuracy

In the following, a detailed analysis of the detection results is provided to sub-
stantiate the impact of the feature map resolution. First, the detection results
are examined with respect to the localization accuracy by varying the IoU
threshold value used to accept GT objects as recalled. PRCs for the different
feature map resolutions and varying IoU thresholds are given in Figure 5.7.

0.6 0.7 0.8 0.9 1.0
Recall

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

0.1
0.2
0.3
0.4
0.5
0.6

(a) conv3_3

0.6 0.7 0.8 0.9 1.0
Recall

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

0.1
0.2
0.3
0.4
0.5
0.6

(b) conv5_3

Figure 5.7: Precision-recall curves for various IoU thresholds used to accept GT objects as re-
called. Exploiting feature maps with higher resolutions results in better localization
quality as the performance decreases clearly less with increasing threshold values.

Higher feature map resolutions exhibit fewer variations in detection perfor-
mance with varying IoU thresholds. For conv3_3, the detection performance
is only slightly improved with lower IoU threshold values as most detections

75

5 Base Framework

have a high overlap to the GT annotations. In contrast, the detection per-
formance for conv5_3 is clearly improved by applying weaker IoU criteria.
Hence, employing higher feature map resolutions yields superior localization
accuracy.

21.4%

Localization
Error

Classification
Error

Error Source

0.4 ≤ IoU < 0.5
0.3 ≤ IoU < 0.4
0.2 ≤ IoU < 0.3
0.1 ≤ IoU < 0.2

88.7% 11.3%

57.2%

7.1%

14.3%

Figure 5.8: Error analysis of false positive detections for conv3_3.

90.8%9.2%

9.1%

27.3%

27.7%

34.8%

1.1%
Error Source

Duplicate
0.4 ≤ IoU < 0.5
0.3 ≤ IoU < 0.4
0.2 ≤ IoU < 0.3
0.1 ≤ IoU < 0.2

Classification
Error

Localization
Error

Figure 5.9: Error analysis of false positive detections for conv5_3.

The error analysis of false positive detections visualized in Figures 5.8 and
5.9 underlines the improved localization accuracy in case of higher feature
maps. For this, all FPs with a confidence score equal to or greater than 0.5 are
distinguished into localization errors and classification errors, respectively.
Following [Hoi12], localization errors are duplicate detections and detections
with misaligned bounding boxes, i.e., detections possessing an IoU to a GT
annotation between 0.1 and 0.5. All other FPs are categorized as classification

76

5.2 Adaptation to Aerial Imagery

errors. In case of conv3_3 only about 10% of all FPs are due to localization
errors, whereby most localization errors boast an IoU above 0.4. In contrast,
more than 90% of all FPs in case of conv5_3 are caused by misaligned bounding
boxes or duplicate detections. Overall, the number of FPs due to localization
errors is reduced by a factor of 46 for conv3_3, which confirms the assumption
that an increased feature map resolution is necessary to accurately localize
tiny objects such as vehicles in aerial imagery.

Impact on the RPN

As described in Section 5.1, the localization of relevant objects is initially done
by the RPN, as region proposals that most likely contain a relevant object are
identified. The relation between the feature map resolution and the gener-
ated region proposals is depicted in Figure 5.10 by means of recall-IoU curves.
Therefore, the IoU threshold value used to accept a GT object as covered at
least by one region proposal is varied in steps of 0.05 in the range between
0 and 1.0. To compute the recall, only the top-2000 ranked region proposals
after NMS are considered, which are equivalent to the region proposals for-
warded to the classification stage in the preceding experiments. Using the
output of conv3_3 as feature map results in region proposals exhibiting over-
all the best overlap to the GT annotations. While the recall values are only
marginally lower in case of conv2_2, exploiting feature maps with higher res-
olutions, i.e., using the output of conv4_3 and conv5_3, respectively, delivers
candidate regions with clearly worse overlap to the GT annotations. The de-
cline in recall gets more distinctive with higher feature map resolutions, in
particular for IoU threshold values above 0.4. Since only region proposals
with an overlap above 0.5 are considered as positive samples for the training
of the classification stage as described in Section 5.1.2, multiple GT objects are
not adequately covered by region proposals to be classified with high confi-
dence as vehicle. Hence, the probability of missed detections intensifies and
consequently the detection performance drops.

77

5 Base Framework

0.0 0.2 0.4 0.6 0.8 1.0
IoU reshold

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

conv2_2
conv3_3
conv4_3
conv5_3

Figure 5.10: Recall-IoU curves for different feature map resolutions. Exploiting feature maps
with high resolutions delivers candidate regions with higher overlap to GT anno-
tations.

5.2.2 Anchor Box Settings

The detection accuracy is strongly affected by the quality of candidate re-
gions predicted by the RPN, as only a specified number of candidate regions
is forwarded to the classification stage, while all other candidate regions are
discarded. Besides the employed feature map (see Section 5.2.1), the quality
of candidate regions depends on the configured anchor box settings, i.e., di-
mensions and aspect ratios of anchor boxes used for bounding box regression
[Ren15]. By default, 3 different scales and 3 different aspect ratios are used,
resulting in 9 anchor boxes at each location. While the default anchor box
scales, yielding box areas of 1282, 2562, and 5122 pixels, are in the range of
objects within the benchmark detection datasets¹, these scales considerably
exceed the mean vehicle dimensions in aerial imagery, e.g., 28.2 × 28.3 pixels
in case of DLR 3K. Using the default anchor box settings results in clearly
lower AP compared to anchor boxes in the range of vehicles within DLR 3K

¹ For instance, PASCAL VOC2007 comprises objects with an average size of 143.2 × 148.3 pixels.
By default, Faster R-CNN rescales the input images so that the shorter size equals 600 pixels,
which results in an effective average object size of 241.3 × 248.7 pixels.

78

5.2 Adaptation to Aerial Imagery

(see Table 5.3). Note that the output of conv3_3 is employed as feature map
due to the findings in Section 5.2.1.

Table 5.3: AP for different anchor box scales and consequently different anchor box areas. Using
anchor boxes in the range of vehicles within DLR 3K exhibits clearly improved results
compared to the default settings.

Anchor Box Area (in pixels) AP (in %)
1282, 2562, 5122 92.6
142, 282, 422 94.3

To analyze the impact of the anchor box sizes on the detection accuracy, only
one anchor box scale is used in the following. The anchor box scale is sys-
tematically reduced, yielding box areas in the range between 2562 and 142
pixels. Note that the aspect ratios are retained unchanged due to the differ-
ent orientations of vehicles in a scene. As given in Table 5.4, the best AP is
achieved for an anchor box area of size 282, which is roughly equivalent to the
mean vehicle dimensions in the DLR 3K dataset. While the AP only slightly
decreases for anchor boxes close to the mean vehicle dimensions, the drop
in AP considerably increases with anchor boxes clearly exceeding the mean
vehicle dimensions. As, in contrast to benchmark datasets, DLR 3K comprises
images with a homogenous GSD, the vehicle dimensions exhibit only small
variations and thus, using multiple anchor box scales used to account for dif-
ferent object scales is of less importance.

Table 5.4: AP for different anchor box scales and consequently different anchor box areas. Using
anchor boxes in the range of vehicles within DLR 3K exhibits the best AP.

Anchor Box Area (in pixels) AP (in %)
2562 88.1
1122 92.8
562 93.8
422 94.1
282 94.3
142 94.2

79

5 Base Framework

Relation between Region Proposal Quality and Detection
Accuracy

The impact of the anchor box scales on the quality of generated region pro-
posals is depicted in Figure 5.11 by means of Recall-IoU curves. Using anchor
boxes with an area of 282 pixels results in region proposals exhibiting overall
the best overlap to GT objects. The overlap considerably worsens with anchor
boxes that clearly exceed the mean vehicle dimensions. While recall values
close to 1 at an IoU threshold of 0.5 are achieved for anchor boxes in the range
of the mean vehicle dimensions, about 14% and 38% of the GT objects are not
recalled for anchor box areas of 1122 and 2562, respectively. As pointed out in
Section 5.2.1, only region proposals with an IoU above 0.5 are considered as
positive samples for the training of the classification stage. Hence, the number
of GT objects that are not adequately covered by region proposals increases
with larger margins to the mean vehicle dimensions and thus, the probability
of missed detections intensifies.

0.0 0.2 0.4 0.6 0.8 1.0
IoU reshold

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

256
128
56
42
28
14

2

2

2

2
2

2

Figure 5.11: Recall-IoU curves for different anchor box scales. Anchor boxes in the range of
mean vehicle dimensions result in candidate regions with higher overlap to GT
annotations.

To analyze the relation between the localization quality of the generated re-
gion proposals and detection accuracy more closely, the AP is plotted with

80

5.2 Adaptation to Aerial Imagery

respect to the ABO for the different anchor box scales in Figure 5.12. In ac-
cordance with above observations, better localization quality is achieved for
anchor box areas in the range of the mean vehicle dimensions, while the ABO
gets worse with anchor boxes exceeding the mean vehicle dimensions. Similar
findings confirming that anchors in the range of present objects yield better
detection results are reported in [Ash17].

0.6 0.7 0.8 1.0
ABO

0.85

0.90

0.95

1.00

A
P

256
128
56
42
28
14

2

2

2

2
2

2

Figure 5.12: Relation between average precision and average best overlap for different anchor
box scales. Candidate regions possessing higher ABO result in better AP.

Impact on the Training Behavior

Using anchor box sizes that clearly exceed the mean vehicle dimensions re-
sults in poor convergence behavior during training as shown in Figure 5.13.
To this end, the overall loss 𝐿𝐹𝑎𝑠𝑡𝑒𝑟 𝑅-𝐶𝑁𝑁 (see eq. (5.7)) and the losses of the
RPN, i.e., 𝐿𝑐𝑙𝑠,𝑅𝑃𝑁 and 𝐿𝑟𝑒𝑔,𝑅𝑃𝑁 (see eq. (5.2) and eq. (5.3)), are averaged over
100 iterations. For a mean anchor box area of 282 pixels, 𝐿𝐹𝑎𝑠𝑡𝑒𝑟 𝑅-𝐶𝑁𝑁 con-
verges to 0.15, while for a mean anchor box area of 2562 pixels, 𝐿𝐹𝑎𝑠𝑡𝑒𝑟 𝑅-𝐶𝑁𝑁
only slightly decreases and converges to 0.7. Examining the losses of the RPN
shows that in case of a mean anchor box area of 2562 pixels, both 𝐿𝑐𝑙𝑠,𝑅𝑃𝑁
and 𝐿𝑟𝑒𝑔,𝑅𝑃𝑁 exhibit no convergence behavior, while both losses converge to
0 for a mean anchor box area of 282 pixels. A reason for this is the sampling of

81

5 Base Framework

positive and negative anchors during training as described in Section 5.1.1. To
ensure at least one positive anchor per GT instance, anchors with the highest
IoU to a GT box are assigned as positive anchors in addition to anchors pos-
sessing an IoU above 0.7. However, in case of a mean anchor box area of 2562
pixels, all anchors exhibit only a small IoU to the nearest GT box as illustrated
in Figure 5.14. Thus, all positive anchors and negative anchors possess similar
IoUs, which impedes the training of the RPN.

0 20k 40k 60k
0.0

0.5

1.0

1.5

2.0

Iteration

Lo
ss

256
28

2

2

(a) 𝐿𝐹𝑎𝑠𝑡𝑒𝑟𝑅−𝐶𝑁𝑁

0 20k 40k 60k
0.0

0.4

0.6

0.8

1.0

Iteration

Lo
ss

0.2

256
28

2

2

(b) 𝐿𝑐𝑙𝑠,𝑅𝑃𝑁

0 20k 40k 60k
0.0

0.4

0.6

0.8

1.0

Iteration
Lo

ss

0.2

256
28

2

2

(c) 𝐿𝑟𝑒𝑔,𝑅𝑃𝑁

Figure 5.13: Loss curves for a mean anchor box area of 2562 and 142 pixels.

The localization quality of the region proposals that are forwarded to the clas-
sification stage is depicted in Figure 5.15. Note that only region proposals with
a confidence score above 0.5 are visualized. The generated region proposals
(red boxes) confirm the training behavior. In case of an anchor box area of 282
pixels (right), the region proposals are located around rectangular structures
and all vehicles (green boxes) are covered, which emphasizes that the RPN is
capable of correctly identifying regions that are likely to contain an object. In
contrast, the region proposals for an anchor box area of 2562 pixels (left) are
randomly located on road surfaces, as the RPN classifies such areas as regions
of interest.

During deployment, vehicles that are not adequately covered are likely to
yield missed detections. Furthermore, the poorly localized region propos-
als impede the training of the classification stage, as only region proposals
with an IoU of at least 0.5 to a GT object are associated as positive sample
(see Section 5.1.2). Using anchor box scales in the range of present objects
instead results in region proposals with a high ABO to the GT objects, which

82

5.2 Adaptation to Aerial Imagery

facilitates the training of the classification stage and delivers better detection
results as reported in Figure 5.12.

0.11

0.11

0.11

0.730.42
0.70

Figure 5.14: Visualization of anchor boxes (red) positioned at the center of a GT object (green).
Anchor boxes with a mean anchor box area of 2562 pixels (left) exhibit a consider-
ably worse IoU to the GT box compared to anchor boxes with a mean anchor area
of 282 pixels (right).

Figure 5.15: Region proposals (red boxes) for a mean anchor box area of 2562 pixels (left) and
282 pixels (right) that are forwarded to the classification stage as well as the cor-
responding GT (green boxes). Note that only region proposals with a confidence
score above 0.5 are depicted.

83

5 Base Framework

5.2.3 Object Dimensions

In the following, the effect of the proposed adaptations with respect to the
size of objects present in the aerial imagery is examined by varying the GSD.
Because of the uniform GSD of DLR 3K and consequently small variations in
vehicle dimensions, the original images with a GSD of 13 cm are rescaled for
training and testing by factor 2/3 and 1/2 yielding GSDs of 19.5 and 26 cm,
respectively. Hence, the mean object dimensions are reduced to 18.8 × 18.9
and 14.1 × 14.2 pixels. Figure 5.16 shows the object size distributions for the
different GSDs.

0 10 20 30 40 50
Object Size in sqrt(Area) (in pixels)

0

100

200

300

400

500

600

700

800

N
um

be
r

of
 O

bj
ec

t I
ns

ta
nc

es

13.0 cm
19.5 cm
26.0 cm

Figure 5.16: Distribution of object instance sizes for different GSDs.

Feature Map Resolution

As described above, increasing the feature map resolution mainly improves
the detection accuracy, as coarse feature map resolutions are not appropriate
for locating small objects. In the following, the impact of the feature map res-
olution is examined with respect to the object dimensions. Exploiting higher
feature map resolutions shows an improved AP for all GSDs as depicted in Ta-
ble 5.5. Note that for each GSD, the employed anchor box areas are equivalent
to the mean object dimensions (see Table 5.6). Using the output of conv3_3

84

5.2 Adaptation to Aerial Imagery

as feature map achieves the best AP for all GSDs. Due to smaller object di-
mensions and consequently fewer feature map pixels that overlap with object
instances, the AP decreases with higher GSDs for all feature map resolutions.
Note that the effect of decreasing AP with higher GSDs is further intensified
by the IoU criterion used to accept GT objects as recalled, which becomes
more severe, as even small variations in the predicted bounding box coor-
dinates can lead to a clearly worse IoU to the respective GT box. However,
the drop in AP is more pronounced in case of coarser feature map resolutions,
which underlines the necessity of high feature map resolutions to detect small
objects. In particular for high GSDs, most objects are covered by a single or
only a few feature map pixels in case of exploiting conv5_3 as feature map.
Thus, inference on the object location from the feature map to the input im-
ages is hindered.

Table 5.5: AP (in %) for differing feature map resolutions with respect to the GSD. Using shal-
lower layers as feature map yielding higher feature map resolutions results overall in
improved AP.

Feature GSD (in cm)
Map 13 19.5 26
conv5_3 65.1 38.4 21.9
conv4_3 90.3 76.5 59.7
conv3_3 94.3 89.4 83.2

Table 5.6: Anchor box areas employed for the different GSDs.

GSD (in cm) Anchor Box Area (in pixels)
13 142, 282, 422
19.5 102, 182, 262
26 82, 142, 202

The poor localization accuracy in case of coarse feature map resolutions is
confirmed by PRCs (see Figure 5.17). To this end, the precision is plotted with
respect to the recall for varying IoU thresholds accordingly to Figure 5.7. Note

85

5 Base Framework

that diverging axis scales are used for conv3_3 and conv5_3. For both GSDs,
coarser feature map resolutions exhibit stronger deviations in detection per-
formance with varying IoU thresholds. While the detection performance for
conv3_3 is only slightly increasing with lower IoU threshold values, the de-
tection performance for conv5_3 is considerably improved, which is in accor-
dance with the PRCs reported for a GSD of 13 cm (see Figure 5.7). Hence,
exploiting higher feature map resolutions allows for detections with gener-
ally higher overlap to the GT annotations.

0.6 0.7 0.8 0.9 1.0
Recall

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

0.1
0.2
0.3
0.4
0.5
0.6

(a) conv3_3 and a GSD of 19.5 cm

0.3 0.7 0.8 0.9 1.0
Recall

0.3

0.7

0.8

0.9

1.0
Pr

ec
is

io
n

0.1
0.2
0.3
0.4
0.5
0.6

0.4 0.5 0.6

0.4

0.5

0.6

(b) conv5_3 and a GSD of 19.5 cm

0.6 0.7 0.8 0.9 1.0
Recall

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

0.1
0.2
0.3
0.4
0.5
0.6

(c) conv3_3 and a GSD of 26 cm

0.3 0.7 0.8 0.9 1.0
Recall

0.3

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

0.1
0.2
0.3
0.4
0.5
0.6

0.4 0.5 0.6

0.4

0.5

0.6

(d) conv5_3 and a GSD of 26 cm

Figure 5.17: PRCs for various IoU thresholds used to accept GT objects as recalled. For each
GSD, higher feature map resolutions exhibit better localization quality. Note that
the axis scales differ for conv3_3 and conv5_3.

86

5.2 Adaptation to Aerial Imagery

Figure 5.18: Qualitative detection results (red boxes) for Faster R-CNN using conv5_3 (left) and
conv3_3 (right) as feature map and the corresponding GT (green boxes) for a GSD
of 26 cm. The higher feature map resolution results in better localized detections
and thus, considerably fewer false positive detections. Furthermore, the number of
missed detections is clearly reduced. Remaining false negative detections in case of
conv3_3 are mainly due to heavy occlusions, e.g., caused by trees (bottom row).

87

5 Base Framework

Qualitative detection results for a GSD of 26 cm depicted in Figure 5.18 visual-
ize the considerably improved localization accuracy in case of higher feature
map resolutions. Using conv5_3 as feature map leads to inaccurately located
bounding box predictions and numerous duplicate detections. In contrast, al-
most all objects are accurately detected in case of conv3_3, even in scenarios
with dense occurrence of vehicles like parking lots. Furthermore, the num-
ber of missed detections is clearly reduced with higher feature map resolu-
tions. Remaining false negative detections in case of conv3_3 are mainly due
to heavy occlusions, e.g., caused by trees.

Anchor Box Settings

The impact of adapting the anchor box settings is depicted in Table 5.7.
For this purpose, only one anchor box scale is employed analogous to Sec-
tion 5.2.2. The anchor box scale is systematically varied so that the resulting
anchor box areas are in the range between 2562 and 142 pixels. Note that the
output of conv3_3 is used as feature map for all experiments. For each GSD,
using anchor box areas that are in the range of the particular mean vehicle
dimensions exhibits the best AP. While the drop in AP is comparatively small
for a GSD of 13 cm in case of anchor boxes that exceed the mean vehicle
dimensions, the drop in AP becomes more distinctive with higher GSDs.
Hence, adapting the anchor box settings affects the detection performance
steadily with smaller object dimensions.

As pointed out before, the detection accuracy is affected by the localization
quality of generated region proposals. The relation between the localization
quality of generated region proposals and detection accuracy is shown in Fig-
ure 5.19. For each GSD, the highest ABO and consequently best localization
quality is achieved for anchor boxes in the range of the particular mean ve-
hicle dimensions, whereby for higher GSDs the ABO decreases steeper with
anchor boxes exceeding the mean vehicle dimensions. Hence, using appropri-
ate anchor box scales matters more in case of small object dimensions. For all
GSDs, better detection results are achieved for anchor box scales, yielding re-
gion proposals with higher ABO. The detection accuracy decreases notably for

88

5.2 Adaptation to Aerial Imagery

ABOs close to 0.5, in particular for a GSD of 26 cm. This confirms that larger
distances to the IoU threshold used to generate positive and negative training
samples lead to better detections, since the corresponding region proposals
may be classified with higher confidence as vehicle or background.

Table 5.7: AP (in %) for different anchor box scales and consequently different anchor box areas
with respect to the GSD.

Anchor Box GSD (in cm)
Area (in pixels) 13 19.5 26
2562 88.1 73.2 52.9
1122 92.8 85.4 71.4
562 93.8 88.3 81.1
422 94.1 89.0 82.9
282 94.3 89.5 83.1
142 94.2 89.4 83.2

0.4 0.5 0.6 0.9
ABO

0.5

0.6

0.8

1.0

A
P

256
128
56
42
28
14

2

2

2

2
2

2

0.7 0.8

0.9

0.7

13.0 cm

19.5 cm

26.0 cm

Figure 5.19: Relation between average precision and average best overlap for different anchor
box scales and various GSDs. For all GSDs, candidate regions with higher ABO
result in better AP.

89

5 Base Framework

5.2.4 Arising Challenges

Despite the considerably improved detection accuracy, in particular for high
GSDs, the performed adaptations lead to several shortcomings that have to be
addressed for real-world applications. These shortcomings are primarily the
weaker semantic and spatial context information of the employed features
and the inference time, which are discussed in the following.

Semantic and Spatial Context

In general, each convolutional layer within a CNN learns filters of increas-
ing complexity, since features from the previous layers are aggregated and
recombined. The first layers learn basic feature representations, e.g., edges
and corners, whereas the middle layers learn to respond to object parts and
the last layers learn higher representations to recognize full objects with dif-
ferent shapes and positions or even entire scenes [Zho15]. Furthermore, the
region of the input space that affects a particular unit of the network, also
referred to as receptive field, and consequently the spatial context information
generally increases with deeper layers [Luo16]. Hence, removing deep layers
to increase the feature map resolution required for accurately locating tiny
objects leads to less semantic and spatial context information.

88.7% 11.3%

13 cm 19.5 cm 26 cm

84.8% 15.2% 78.8% 21.2%

Localization
Error

Classification
Error

Figure 5.20: Error analysis of false positive detections for various GSDs.

90

5.2 Adaptation to Aerial Imagery

Analyzing the erroneous detections indicates that the less semantic and con-
textual information cause a high number of false positive detections. Fig-
ure 5.20 shows the division of the false positive detections into localization
and classification errors using the output of conv3_3 as feature map. For all
GSDs, the false positive detections are mainly due to classification errors as
background objects are classified as vehicles.

To highlight the effect of the comparatively poor semantic and contextual in-
formation on the detection accuracy, false positive detections for a GSD of 13
cm are qualitatively visualized in Figure 3.4. These false positive detections
are mainly due to objects with vehicle-like shapes, e.g., rectangular structures
on buildings such as solar cells or windows. Note that several of these false
positive detections comprise small components that activate filters respond-
ing to particular vehicle parts such as windshields or front lights. Figure 5.21
exemplarily depicts activations of four filters that respond to vehicle parts but
also to similar structures.

0.0

0.5

1.0

Figure 5.21: Activations of four filters from conv3_3 that respond to particular vehicle parts but
also to similar structures.

However, looking at the surrounding areas of the false positive detections
exhibits that most false positive detections are located on regions that are un-
likely to contain a vehicle such as buildings or vegetation. Though the training
data comprises no such positive samples for classification, the learned repre-
sentation is not sufficient to distinguish between relevant and non-relevant
surrounding areas. Hence, increasing the spatial or semantic context infor-
mation of the employed features to better learn the representations of relevant
surrounding areas like road surfaces or parking lots can reduce the number of

91

5 Base Framework

false positive detections. Approaches to enrich the spatial and semantic con-
tent of employed feature maps aiming at improving the detection accuracy
are presented in Chapter 6.

Inference Time

Besides the detection accuracy, the inference time is another essential factor
for most applications, e.g., search and rescue tasks. In Table 5.8, the impact
of the performed adaptations, in particular the increased feature map resolu-
tion, which exhibits the largest gain in detection accuracy, is regarded with
respect to the inference time. Following the protocol for time measurements
introduced in Section 4.2, the inference time is reported for the Faster R-CNN
detector as well as for each detector component in milliseconds (ms) averaged
over the complete test set including 240 image tiles of size 936 × 936 pixels. For
both the server and the desktop setup, the overall inference time gets worse
with increasing feature map resolutions. While the inference time for the
classification stage remains unchanged, as for all models the same number
of region proposals are processed, the inference time considerably increases
for the RPN because of the higher feature map resolution. As described in
Section 5.1.1, the RPN comprised of a small network is applied on each fea-
ture map location, whereby anchor boxes centered at the respective feature
map location are utilized for bounding box regression. Using conv3_3 instead
of conv4_3 or conv5_3 results in 4 and 16 times more feature map locations
that have to be processed and consequently, the number of region propos-
als to compute the bounding box coordinates for and that have to be sorted
increases by factor 4 and 16, respectively. Hence, the computational effort
clearly increases. However, the increase in inference time is not linear, as
NMS is applied on the 10,000 region proposals exhibiting the highest confi-
dence score for each model.

Comparing the different device setups indicates that clearly less inference
time is spent on more powerful devices, i.e., server setup. Especially the in-
ference times for the base network used for feature extraction and the classi-
fication stage are considerably worse. Though multiple convolutional layers

92

5.2 Adaptation to Aerial Imagery

are discarded in case of conv3_3, the inference time for conv5_3 only slightly
increases for the server setup, whereas for the desktop setup, the inference
time for feature extraction notably rises. Note that in case of conv3_3, the
inference time for feature extraction includes the time spent for the auxiliary
convolutional layer to account for the required number of inputs channels
of the fully connected layers. In order to speed up the detector for different
devices, optimization of the feature extraction as well as of the RPN and clas-
sification stage are required. Strategies to address these issues are introduced
in Chapter 7.

Table 5.8: Comparison of the inference time of Faster R-CNN using different feature maps. The
overall inference time gets worse with higher feature map resolutions due to the RPN.

Feature Map Component Time (in ms)
Server Desktop

conv3_3 Feature Extractor 58.9 177.4
RPN 139.8 212.8
Classification Stage 87.5 273.3
Total 286.2 663.5

conv4_3 Feature Extractor 59.1 230.2
RPN 40.1 58.7
Classification Stage 86.9 275.2
Total 186.1 564.1

conv5_3 Feature Extractor 62.0 255.6
RPN 20.3 23.6
Classification Stage 86.8 273.7
Total 169.1 552.9

93

6 Integration of Contextual
Knowledge

As discussed in Section 5.2.4, exploiting shallower layers as feature map for
Faster R-CNN to account for the characteristics of aerial imagery results in a
high number of FPs. These FPs are mainly caused by rectangular structures
such as windows or solar panels, whose appearance is similar to vehicles in
overhead imagery. Thus, post-processing or even human interactions are req-
uisite to ensure an accurate detection as required for a broad range of appli-
cations.

To circumvent the demand for post-processing or human interactions, two
different strategies to improve the detection accuracy are proposed in the
context of this thesis. In the remainder of this chapter, both strategies aim-
ing at enhancing the contextual information of the detection framework are
presented and discussed in detail. The goal of the first strategy introduced
in Section 6.1 is to increase the spatial context information by combining fea-
tures of shallow and deep layers to account for fine and coarse structures. The
latter strategy presented in Section 6.2 employs semantic labeling to introduce
more semantic context information. For this, two different approaches to in-
tegrate semantic labeling into the detection framework are realized. The work
presented in this chapter is mainly based on three of the author’s publications
[Som17a, Som18c, Nie18].

95

6 Integration of Contextual Knowledge

6.1 Spatial Context

Exploiting shallower layers as feature map for Faster R-CNN is crucial for ve-
hicle detection in aerial imagery, as the resolution of deeper layers is often not
sufficient to accurately localize tiny objects. To overcome the lack of semantic
and contextual content resulting in false alarms, an extension to the original
Faster R-CNN architecture called Multi Feature Deconvolutional (MFD) Faster
R-CNN is proposed in the context of this thesis. The schematic structure of
the MFD Faster R-CNN is illustrated in Figure 6.1. Inspired by semantic la-
beling networks aiming at the prediction of fine and coarse structures, fea-
tures from various layers (indicated by different blue tones) offering different
semantic and contextual information are combined. For this purpose, a con-
text enhancement module (CEM) highlighted in green is introduced to allow
the combination of these features, while the feature map resolution is kept
sufficiently high to localize tiny objects. In the following, the CEM and the
implementation details are presented followed by experiments and discussion
of the results to highlight the enhanced detection accuracy.

RPNAnchor
Boxes

Cls.

Reg.

Pr
op

os
al

s

Cls.

Reg.

Classification Stage RoI Pooling

Feature Extraction CEM

Figure 6.1: Schematic structure of the proposed Multi Feature Deconvolutional Faster R-CNN,
which extends the original Faster R-CNN by a CEM to combine features of shallow
and deep layers, while the resolution of the feature map is kept sufficient to localize
tiny objects.

96

6.1 Spatial Context

6.1.1 Context Enhancement Module

The main purpose of the context enhancement module is to create a high-
resolution feature map appropriate for the localization of tiny objects, which
comprises rich sematic features from deep layers. As shown in Section 5.2.1,
using the output of conv3_3 as feature map yields better detection perfor-
mance compared to conv4_3 and conv5_3 though the corresponding features
possess less semantic and contextual information. Essential for this is the
coarse feature map resolution in case of conv4_3 and conv5_3, i.e., 1/8 and 1/16
of the input image dimensions, which impedes the accurate localization of tiny
objects. As deeper layers generally comprise features with more semantic and
contextual content in comparison to shallower layers [Zho15, Luo16], the pro-
posed CEM up-samples the low-dimensional feature maps of deep layers, i.e.,
conv4_3 and conv5_3, which are then combined with the features of conv3_3.
For this purpose, a deconvolutional sub-module depicted in Figure 6.2 is in-
troduced. To combine feature maps of different size, a deconvolutional layer
with kernel size 4 × 4 is used to up-sample the lower-dimensional feature map
by a factor of 2. Instead of using nearest neighbor up-sampling as proposed in
[Lin17a], the application of deconvolutional layers facilitates the learning of
a non-linear up-sampling, which empirically showed superior results in pre-
liminary experiments. The up-sampled features are then combined with the
features of the shallower layer via concatenation, which is equivalent to the
lateral connections proposed in [Lin17a] to ensure more precise locations of
up-sampled features. To effectively fuse the information from the concate-
nated feature maps, a 1 × 1 convolutional layer is applied after the concate-
nation. Note that the number of channels for each feature map is further
adjusted to 256, which is the minimum number of channels of the employed
feature maps, to allow similar level of influence of the combined feature maps.
For this, 1 × 1 convolutions are applied on the output of conv4_3 and conv5_3.

As shown in Figure 6.1, the deconvolutional sub-module is iteratively ap-
plied. At first, the deconvolutional sub-module up-samples the features
from conv5_3 and combines the up-sampled features with the features from
conv4_3. Then, the combined features are up-sampled and merged with the
output from conv3_3. The resulting features are then employed as feature

97

6 Integration of Contextual Knowledge

map for the RPN and classification stage. Thus, the contextual content of the
deeper layers are propagated to the feature map.

4×4 deconv.

concatenation

1×1 conv.
Figure 6.2: Schematic illustration of the deconvolutional sub-module used to combine features

from shallow and deep layers. A deconvolutional layer with kernel size 4 × 4 and
stride 2 is applied to up-sample the features from the deep layer by a factor of two,
which are then combined via concatenation with the features from the shallow layer.
Finally, a 1 × 1 convolutional layer is appended to effectively fuse the information
from the concatenated feature maps.

6.1.2 Stage-wise Training Scheme

To train the proposed MFD Faster R-CNN, staged fine-tuning is performed
inspired by [Lon15] in order to improve the weight initialization. For this
purpose, Faster R-CNN using only conv3_3 as feature map is initially trained
end-to-end for a total of 60,000 iterations with an initial learning rate of 0.001.
Weights pre-trained on ImageNet are used for initialization. Next, conv4_1
through conv4_3 and a deconvolutional sub-module are added to the network
and the combination of conv3_3 and the up-sampled feature of conv4_3 are
used as feature map. The model is then trained end-to-end for 20,000 iter-
ations with a learning rate of 0.001. For this, the added layers are initial-
ized by using the Gaussian weight filler method, while all other weights are
initialized by the initially trained Faster R-CNN. In the last stage, conv5_1
through conv5_3 and a deconvolutional sub-module to up-sample the features
of conv5_3 are added to the network. The combination of conv3_3 and the up-
sampled features of conv4_3 and conv5_3 are used as feature map. The model
is then trained end-to-end for further 20,000 iterations with a learning rate
of 0.001. While the added layers are initialized by using the Gaussian weight

98

6.1 Spatial Context

filler method, all other weights are initialized by the previously fine-tuned
Faster R-CNN.

6.1.3 Ablation Experiments

The proposed MFD Faster R-CNN aims at enhancing the semantic and con-
textual information of the employed feature map by combining features from
shallow and deep layers and thus, reducing the number of false alarms. The
impact of enhancing the employed feature map by adding features from
deeper layers on the detection accuracy is examined on the DLR 3K dataset.
Table 6.1 shows the detection accuracy of the MFD Faster R-CNN for three
different GSDs. For this, the original images are rescaled for training and
testing as described in Section 5.2.3 and the used anchor box scales are
adopted accordingly.

Table 6.1: Comparison between the proposed MFD Faster R-CNN, which combines the outputs
from conv3_3, conv4_3, and conv5_3 as feature map, and the baseline Faster R-CNN
using only conv3_3 as feature map by means of AP (in %) for various GSDs.

Feature GSD (in cm)
Map 13 19.5 26
conv3_3 94.3 89.4 83.2
conv3_3⊕ conv4_3 95.0 90.8 84.6
conv3_3⊕ conv4_3⊕ conv5_3 95.1 91.4 85.3

Combining the features of conv3_3 with up-sampled features from conv4_3
exhibits superior results for all GSDs compared to the baseline Faster R-CNN
merely employing conv3_3 as feature map. The proposed MFD Faster R-CNN
that combines the features of conv3_3 with the up-sampled features from
conv4_3 and conv5_3 achieves overall the best detection performance for all
GSDs, which indicates that adding features comprising more contextual in-
formation results in better detection performance. A reason for the gain in
detection performance is an improved classification accuracy, yielding fewer
false positive detections. For instance, for a GSD of 26 cm, the number of false

99

6 Integration of Contextual Knowledge

positive detections is reduced by a factor of 27.8% compared to the baseline
Faster R-CNN, while the number of false negative detections remains almost
unaffected. For this, a classification threshold value of 0.5 is used. Qualita-
tive results on DLR 3K for a GSD of 26 cm depicted in Figure 6.3 exhibit that
the number of false positive detections caused by objects with shapes similar
to vehicles is clearly reduced. This shows that integrating features of deeper
layers with more semantic information leads to better classification accuracy
and thus, results in better detection performance.

Figure 6.3: Qualitative detection (red boxes) and corresponding GT (green boxes) for Faster R-
CNN using conv3_3 as feature map (top row) and MFD Faster R-CNN (bottom row)
for a GSD of 26 cm. The number of FPs due to objects with shapes similar to vehicles
are reduced by integrating spatial context information from deeper layers.

The impact of the training scheme is shown in Table 6.2 exemplarily for the
GSD of 26 cm. For comparison with the proposed training procedure com-
prised of three stages, two alternative variants are considered. The first vari-
ant is training the MFD Faster R-CNN in a single stage. For this, weights
pre-trained on ImageNet are used to initialize all layers of the VGG16 back-
bone from conv1_1 through conv5_3. The additional layers are initialized by
using the Gaussian weight filler method. The MFD Faster R-CNN is trained
end-to-end for a total of 60,000 iterations with an initial learning rate of 0.001.
The latter variant is comprised of two stages. In the first stage, Faster R-CNN
using only conv3_3 as feature map is initially trained end-to-end for 60,000
iterations with an initial learning rate of 0.001 analogously to the stage-wise

100

6.2 Semantic Context

training procedure. Next, the layers to integrate features from deeper layers
are appended to the network, which is then trained for further 20,000 itera-
tions. For this, the added layers are initialized by using the Gaussian weight
filler method, while all other weights are initialized by the previously fine-
tuned Faster R-CNN. Both alternative training schemes exhibit improved AP
compared to the baseline Faster R-CNN, which confirms the improved de-
tection performance in case of employing more semantic and contextual in-
formation. Nevertheless, using the three-stage training procedure results in
clearly better detection performance. As the network learns an accurate lo-
calization in the first stage, the enhancement of the employed feature map
with features from deeper layers via learned up-sampling and combination is
facilitated in the subsequent stages compared to the single stage training.

Table 6.2: Impact of the training procedure on the detection performance. Successively adding
features from deeper layers results in better AP.

Training scheme AP (in %)
One-stage 84.0
Two-stage 84.8
Three-stage 85.3

6.2 Semantic Context

An alternative strategy to overcome the lack of contextual information in deep
learning based detectors adapted for vehicle detection in aerial imagery is the
exploitation of semantic labeling networks. Semantic labeling is essentially a
pixel-wise classification of an input image. Integrating semantic labeling into
the detection framework allows the introduction of semantic context informa-
tion, i.e., local surrounding of an object to detect, and thus, seems promising
to reduce the number of false positive detections, which are often caused by
rectangular structures in image regions that are unlike to contain vehicles
such as buildings. For this purpose, two differing methods to integrate the
semantic labeling network into the detection pipeline are proposed.

101

6 Integration of Contextual Knowledge

The remainder of this section is organized as follows. First, auspicious ar-
chitectures for semantic labeling of aerial imagery are presented. Then, the
two proposed methods are described in detail and ablation experiments on
the ISPRS 2D Semantic Labeling Challenge Potsdam dataset are provided. Fi-
nally, an evaluation on a novel semantic labeling dataset based on DLR 3K
is performed to emphasize the effect of integrating semantic labeling on the
detection performance.

6.2.1 Semantic Labeling Approaches

Several CNN architectures have been proposed for the task of semantic label-
ing. In the following, four promising architectures that are examined within
the context of this thesis are introduced. Note that all considered architectures
are based on the VGG16 architecture to facilitate the fusion of the semantic
labeling network with the Faster R-CNN detection network proposed in Sec-
tion 6.2.3.

FCN-32s
3×3×64
3×3×64

3×3×128
3×3×128

3×3×256
3×3×256
3×3×256

3×3×512
3×3×512
3×3×512

3×3×512
3×3×512
3×3×512

7×7×4096
1×1×4096

1×1×6

2×2, 2

2×2, 2

2×2, 2

2×2, 2

2×2, 2

64×64×6

k×k×C
convolution

k×k, stride
max pooling deconvolution

k×k×C

Figure 6.4: Schematic structure of FCN-32s. The first two fully connected layers of VGG16 are
cast into convolutional layers with kernel size 7 × 7 and kernel size 1 × 1, respectively,
while the last fully connected layer is replaced by a 1 × 1 convolutional layer with 6
channels. To up-sample the output of the last convolutional layer by a factor of 32,
a deconvolutional layer with kernel size 64 × 64 and stride 32 is appended.

FCN-32s [Lon15] depicted in Figure 6.4 is a fully convolutional network (FCN)
designed for the task of semantic labeling. For this, the fully connected layers

102

6.2 Semantic Context

of the default architecture, i.e., VGG16 (see Table 5.1), are converted into con-
volutional layers. As fully connected layers can be viewed as convolutions
covering the entire input dimensions [Lon15], fc6, whose input dimensions
are 7 × 7 × 512, is cast into a convolutional layer with kernel size 7 × 7 and the
subsequent fully connected layer fc7 is transformed into a convolutional layer
with kernel size 1 × 1. The last fully connected layer originally used as clas-
sification layer is discarded and a 1 × 1 convolutional layer with 6 channels is
appended in case of the Potsdam dataset to predict scores for each category
at each of the coarse feature map locations. Finally, pixel-wise predictions for
the input image are achieved by up-sampling the coarse predictions via a sin-
gle deconvolutional layer. Per-pixel softmax loss is used to train the semantic
labeling network.

FCN-16s

3×3×64
3×3×64

3×3×128
3×3×128

3×3×256
3×3×256
3×3×256

3×3×512
3×3×512
3×3×512

3×3×512
3×3×512
3×3×512

7×7×4096
1×1×4096

1×1×6

2×2, 2

2×2,2

2×2, 2

2×2, 2

2×2, 2

4×4×6
1×1×6

32×32×6

k×k×C
convolution

k×k, stride
max pooling deconvolution

k×k×C
element-wise

sum

Figure 6.5: Schematic structure of FCN-16s. As opposed to FCN-32, the output of the last con-
volutional layer is up-sampled by a factor of two via deconvolution with kernel size
4 × 4 and stride 2 and then combined via element-wise addition with the output of
the 4ᵗʰ pooling layer. Note that the number of channels is adjusted by an additional
1 × 1 convolutional layer. A deconvolutional layer with kernel size 32 × 32 and stride
16 is used to up-sample the combined features by a factor of 16.

As FCN-32s outputs semantic labeling results with fuzzy boundaries due to
the coarse prediction layer, FCN-16s [Lon15] extends FCN-32s by combining
features from a deep, coarse layer with features from a shallow, fine layer to
overcome this drawback (see Figure 6.5). Instead of up-sampling the output of

103

6 Integration of Contextual Knowledge

the prediction layer on top of fc7 by a factor of 32, the prediction layer is up-
sampled by a factor of 2 and fused with the output of pool4 via element-wise
addition. Note that a 1 × 1 convolutional layer with 6 channels is applied on
pool4 to adjust the number of channels before fusing. Then, the combined fea-
tures are up-sampled to the input image dimensions by applying an additional
deconvolutional layer.

FCN-D16

3×3×64
3×3×64

3×3×128
3×3×128

3×3×256
3×3×256
3×3×256

3×3×512
3×3×512
3×3×512

3×3×512
3×3×512
3×3×512

7×7×4096
1×1×4096

2×2, 2

2×2, 2

3×3, 1

2×2, 2

2×2, 2

32×32×6
1×1×6

k×k×C
convolution

k×k, stride
max pooling deconvolution

k×k×C k×k×C
dilated convolution

Figure 6.6: Schematic structure of FCN-D16. In contrast to FCN-32s, the stride of the last pooling
layer is set to 1 to reduce the down-sampling factor from 32 to 16. The subsequent
convolutional layer, i.e., fc6, is replaced by dilated convolutions with dilation factor
2 to maintain the size of the receptive field of its counterpart in FCN-32s. A decon-
volutional layer with kernel size 32 × 32 and stride 16 is applied to up-sample the
output of the last convolutional layer by a factor of 16.

FCN-D16 is a modification of FCN-32s proposed within the context of this the-
sis in order to account for small objects and fine structures present in aerial
imagery. FCN-D16 illustrated in Figure 6.6 is based on VGG16 with all fully
connected layers converted to convolutional layers such as FCN-32s. In con-
trast to FCN-32s, dilated convolutions are introduced to increase the recep-
tive field without reducing the spatial resolution, which has shown to lead to
clearly improved semantic labeling results on benchmark datasets [Yu15]. For
this purpose, the stride of the last pooling layer, i.e., pool5, is set to 1, so that
the down-sampling factor is reduced from 32 to 16. Furthermore, the convo-
lutional layer fc6 is replaced by dilated convolutions with dilation factor 2.
While the reduced down-sampling factor retains more fine details, i.e., local

104

6.2 Semantic Context

information, the use of dilated convolutions increases the receptive field and
thus, yielding more contextual information. Analogous to FCN-32s, a 1 × 1
convolutional layer with 6 channels is appended to predict scores for each
category at each of the coarse feature map locations and a single deconvo-
lutional layer is then applied to achieve pixel-wise predictions for the input
image.

SegNet

3×3×64
3×3×64

3×3×128
3×3×128

3×3×256
3×3×256
3×3×256

3×3×512
3×3×512
3×3×512

3×3×512
3×3×512
3×3×512

2×2, 2

2×2, 2

2×2, 2

2×2, 2

2×2, 2

3×3×512
3×3×512
3×3×512

3×3×512
3×3×512
3×3×512

3×3×256
3×3×256
3×3×256

3×3×128
3×3×128

3×3×64
3×3×6

max pooling indices

2 2 2 2 2

k×k×C
convolution

k×k, stride
max pooling up-sampling

scale

Figure 6.7: Schematic structure of SegNet, which is comprised of an encoder and decoder net-
work. The topology of the encoder is identical to the convolutional part of VGG16,
while the topology of the decoder is in essence the mirrored encoder. Non-linear
up-sampling is performed by using max pooling indices that encode the positions
where to map the values of the preceding feature map as shown in Figure 6.8.

Badrinarayanan et al. [Bad17] proposed an encoder-decoder architecture for
semantic labeling called SegNet, which showed promising semantic labeling
results on benchmark datasets. As depicted in Figure 6.7, SegNet is composed
of an encoder and a decoder network. The architecture of the encoder is topo-
logically identical to the convolutional part of the VGG16 architecture, while
the topology of the decoder is in essence the mirrored encoder. Note that
the number of channels for the last convolutional layer is set to 6 in order to
provide pixel-wise predictions for each category. Instead of applying decon-
volutional layers to up-sample low resolution feature maps, the decoder uses
max pooling indices to perform non-linear up-sampling. For this, the pooling
indices, which indicate the positions with maximum values within the region

105

6 Integration of Contextual Knowledge

defined by the pooling size, are stored for each max pooling step of the cor-
responding encoder. Up-sampling is then performed by mapping the values
of the particular feature map to the stored positions as shown in Figure 6.8,
while the remaining pixels are filled with zeros. In this manner, the need for
learned up-sampling is eliminated. Per-pixel softmax loss is used to train the
semantic labeling network according to FCN-32s and its extensions.

a b

c d

a

b

c

d

1,1 2,1 3,1 4,1

1,2 2,2 3,2 4,2

1,3 2,3 3,3 4,3

2,41,4 3,4 4,4

0 0 0

0

0 0 0

0 0 0

0 0

1,1 3,2 4,3 1,4

max pooling
indices

Figure 6.8: Illustration of the non-linear up-sampling conducted in SegNet. The positions with
maximum values within the region defined by the pooling size are stored for each
max pooling step in pooling indices, which are used to map the values of the preced-
ing feature map to the stored positions. The remaining pixels are filled with zeros.

Ablation Experiments

In the following, the differing semantic labeling architectures are evaluated
on the Potsdam dataset introduced in Section 4.1 to assess the potential of
each architecture for integration into the Faster R-CNN detection framework.
For training, the original image patches are cropped into tiles of size 256 × 256
pixels with an overlap of 50%. In addition, data augmentation is performed
through applying vertical and horizontal flipping as well as rotation in steps of
90 degrees, so that the number of training samples is increased by a factor of
8. At test time, image tiles of size 512 × 512 pixels with 50% overlap between
tiles are used. For each tile, the central 384 × 384 pixels are selected for the
final semantic labeling mask, which exhibited slightly better performance in
preliminary experiments compared to averaging the overlapping regions. The
performed stitching strategy further reduces artefacts at image borders and
stitching borders, respectively. Each model is trained for 100,000 iterations

106

6.2 Semantic Context

with a batch size of 6 using the Adam solver with an initial learning rate of
1𝑒-8. Stage-wise training as proposed in [Lon15] is conducted to train FCN-
16s. Thus, weights of FCN-32s pre-trained on the Potsdam dataset are used
for initialization. Otherwise, weights pre-trained on ImageNet are used for
initialization.

The semantic labeling results for the different architectures are given in Ta-
ble 6.3. For this, F1-score computed for each class and overall accuracy are
used as evaluation metrics following the 2D Semantic Labeling Contest pro-
tocol (see Section 4.2). All architectures achieve an overall accuracy around
88%, which is clearly higher compared to the baseline results solely on RGB
imagery reported in [She16]. In particular, the F1-score achieved for category
car is considerably improved. SegNet, FCN-16s and FCN-D16 even outper-
form the baseline results, which additionally rely on IR and DSM informa-
tion. High F1-scores are achieved for each category except for the category
clutter. A reason for the by far lowest accuracy is the large variance of objects
and concepts aggregated in this category, ranging from water areas through
tennis courts to small structures such as outdoor furniture. Compared to the
F1-scores achieved for the categories impervious surface and building, the cat-
egories low vegetation and tree exhibit slightly lower F1-scores. These lower
F1-scores are mainly due to confusion between both categories, as even the
borders between both categories are often not unambiguous. While SegNet
achieves overall the highest accuracy slightly outperforming FCN-16s and
FCN-D16, FCN-32s exhibits the lowest overall accuracy and F1-scores for each
category especially for category car, whose instances possess the smallest di-
mensions. This indicates the importance of adding features of shallower layers
or maintaining finer feature maps by applying dilated convolutions to accu-
rately label small instances.

Qualitative examples depicted in Figure 6.9 emphasize the good semantic la-
beling results of the examined architectures. In particular, the high accuracy
for the categories car, impervious surface and building is notable, which is es-
sential for the application within a detection framework aiming at suppressing
false alarms often caused by vehicle-like structures on buildings. On the other
hand, the comparably poor accuracy in case of category clutter is apparent

107

6 Integration of Contextual Knowledge

throughout the examined architectures. The qualitative results for FCN-32s
indicate the slightly worse accuracy in case of instances possessing small di-
mensions. For instance, the boundaries for segments labeled as category car
are less accurate resulting in merged segments.

Table 6.3: Results of the examined semantic labeling architectures compared to the baseline re-
sults reported in [She16]. F1-scores are provided for the categories impervious surface
(IS), building (B), low vegetation (LV), tree (T), car (Ca) and clutter (Cl).

Sem. Labeling F1-score (in %) Overall
Approach IS B LV T Ca Cl Accuracy
RGB only [She16] 88.96 92.49 83.84 82.11 86.13 73.09 86.05
RGB+IR+DSM [She16] 90.01 93.83 86.15 83.59 92.97 75.87 87.84
FCN-32s 89.42 92.14 83.80 83.61 90.76 54.95 87.68
FCN-16s 89.92 92.44 84.21 84.32 94.58 56.48 88.09
FCN-D16 89.69 92.93 84.54 84.54 93.34 57.35 88.19
SegNet 89.93 93.70 85.05 84.57 95.26 55.54 88.46

6.2.2 Semantic Labeling based Filtering

In the following section, the first strategy to improve the detection perfor-
mance by integrating semantic labeling into the detection framework is intro-
duced. As a large number of false positive detections is caused by vehicle-like
structures located offside roads, e.g., solar cells on buildings, semantic label-
ing masks that exhibit accurate predictions of roads as well as driveways and
parking lots (see Section 6.2.1) are used to filter out detections that are mainly
located on regions unlikely to contain vehicles. Note that a separate semantic
labeling network is employed to generate the semantic labeling masks. Two
different positions to integrate the filtering step into the Faster R-CNN de-
tection pipeline are investigated. The first position is directly after the RPN
(see Figure 6.10a) and the latter after the classification stage (see Figure 6.10b).
While filtering the final detections after the classification stage only yields a
reduced number of false alarms, filtering region proposals may additionally
reduce the inference time because a smaller set of candidate regions is passed
to the classification stage of the detection network.

108

6.2 Semantic Context

Figure 6.9: Qualitative semantic labeling results of FCN-32s (3rd row), FCN-16s (4th row), FCN-
D16 (5th row) and SegNet (6th row) and corresponding GT (2nd row).

109

6 Integration of Contextual Knowledge

Anchor
Boxes

Cls.

Reg.

Cls.

Reg.

Classification Stage RoI Pooling

Feature Extraction

Pr
op

os
al

s
Fi

lt
er

ed

Semantic

Filtering

Pr
op

os
al

s

RPN

(a) Filtering of region proposals

RPNAnchor
Boxes

Cls.

Reg.

Pr
op

os
al

s
Cls.

Reg.

Classification Stage RoI Pooling

Feature Extraction

D
et

ec
ti

on
s

Fi
lt

er
ed

Semantic

Filtering

(b) Filtering of detections

Figure 6.10: Schematic illustration of the semantic labeling based filtering. For this purpose,
semantic labeling masks generated by a separate network are used to either filter
out region proposals (a) or detections (b) that are mainly located on regions unlikely
to contain vehicles.

Filtering Scheme

The proposed filtering scheme is straightforward as illustrated in Figure 6.11.
A separate CNN network is employed to generate a semantic labeling mask,
which is then used to compute the category distribution within each region
proposal or detection. The characteristics of the category distribution are
lastly employed to accept or reject the corresponding region proposal or de-
tection. Note that simply accepting region proposals or detections that are
mainly labeled as category car would decrease the detection accuracy due to
inaccurate labeling, e.g., high number of vehicles beneath a tree are labeled

110

6.2 Semantic Context

as category tree (see Figure 4.7), which influences the training of the seman-
tic labeling networks. Thus, a filter criterion is applied, which is designed to
maximize the detection accuracy.

1

0

0.5

1

0

0.5

Initial region
proposals/detections

Projection on
semantic labeling mask Class Histograms Filter Criterion

Filtered region
proposals/detections

Figure 6.11: Schematic of the semantic labeling based filtering scheme. Class histograms com-
puted for each initial region proposal or detection are used to filter out region pro-
posals or detections based on a filter criterion.

For this purpose, the effect of rejecting region proposals or detections based
on a single semantic labeling category on the detection performance is ana-
lyzed in Table 6.4. Region proposals and detections, whose pixels are labeled
at least 50% as impervious surface, building, low vegetation, tree and clutter,
respectively, are removed. For this, the provided semantic labeling GT is ex-
ploited. The Faster R-CNN model is trained end-to-end for 60,000 iterations
and an initial learning rate of 0.001. To account for the characteristics of the
Potsdam dataset, in particular the lower GSD yielding larger vehicle dimen-
sions, the output of conv4_3 is used as feature map. Furthermore, the anchor
base size is set to 4 and the anchor scales are set to 8, 16, and 24. The top-100
ranked region proposals after NMS are forwarded to the classification stage.
Removing region proposals or detections that are mainly labeled as building or
clutter clearly improves the detection accuracy as the number of false alarms
caused by objects with shapes similar to vehicles, like solar cells on roofs, are
filtered out. Instead, removing region proposals or detections mainly labeled
as category tree yields a drop in AP as numerous vehicles are missed due to
the semantic labeling GT. As most vehicles are surrounded by impervious
surfaces, removing region proposals or detections with at least 50% labeled
as impervious surface also results in worse AP, whereby the drop in AP is
more distinct in case of filtering detections. On the other hand, filtering out

111

6 Integration of Contextual Knowledge

region proposals or detections mainly labeled as category low vegetation ex-
hibits only minor impact on the detection accuracy. Note that performing the
filtering step directly after the RPN results in fewer region proposals per image
that have to be classified and consequently is less computationally expensive.
Thus, only filtering of region proposals is conducted in the following.

Table 6.4: Impact of filtering out detections or region proposals (⁺) based on a single semantic
labeling category on the Potsdam dataset. Note that detections or region proposals
whose pixels are at least 50% labeled as the current category are removed and the
semantic labeling GT is used to compute the category distribution.

Filter Criterion AP (in %) # Proposals/Image
- 92.9 100
50% Imp. Surface 86.4 100
50% Building 93.5 100
50% Low veg. 92.6 100
50% Tree 85.5 100
50% Clutter 93.6 100
50% Imp. Surface⁺ 92.3 82.4
50% Building⁺ 93.5 84.8
50% Low veg.⁺ 93.1 77.7
50% Tree⁺ 87.9 89.8
50% Clutter⁺ 93.6 95.1

As using a filter criterion based on a single semantic labeling category only
results in a small gain in AP, only region proposals that fulfill following equa-
tion are considered for classification:

𝑚𝑎𝑥(𝑁𝑐𝑎𝑟
𝑁𝑏𝑔

, 𝑁𝑖𝑠
𝑁𝑏𝑔

, 𝑁𝑡𝑟𝑒𝑒
𝑁𝑏𝑔

) > 1, (6.1)

where 𝑁𝑖 is the number of pixels corresponding to class 𝑖 within a region
proposal and 𝑁𝑏𝑔 is the sum of all pixels labeled as building or low vegetation.
Thus, only region proposals that are mainly labeled as car, impervious surface,
or tree are considered for classification.

112

6.2 Semantic Context

Ablation Experiments

The proposed filter criterion aims at maximizing the number of removed false
alarms and at minimizing the number of region proposals to classify. The ef-
fect of applying the proposed filter criterion is evaluated in Table 6.5. By using
the semantic labeling GT to compute the category distribution, the detection
performance is improved by 1.4% in AP compared to the baseline Faster R-
CNN, while the number of region proposals forwarded to the classification
stage is almost halved. Note that the proposed filter criterion empirically
showed the largest gain in AP compared to further filter criteria examined
in preliminary experiments. Employing the masks generated by the semantic
labeling networks introduced in Section 6.2.1 leads to slightly worse AP due
to incorrectly predicted labels, e.g., confusion between clutter and car, while
the number of region proposals considered for classification remains roughly
unaffected. Nevertheless, the baseline Faster R-CNN is still outperformed,
whereby using FCN-D16 to generate the semantic labeling masks exhibits the
highest detection accuracy amongst the examined semantic labeling archi-
tectures. Compared to the baseline Faster R-CNN, the number of false alarms
caused by objects with shapes similar to vehicles, e.g., windows on buildings,
is reduced as illustrated in Figure 6.12. For this, the output of FCN-D16 is used
and only detections (red boxes) with a confidence score above 0.5 are accepted.
Note that using the semantic labeling results as detections themselves is not
practical on the Potsdam dataset, as multiple missed and split detections occur
due to inaccurate semantic labeling annotations (see Figure 4.7) [Som17a].

Table 6.5: Impact of the semantic labeling mask employed for filtering out region proposals on
the Potsdam dataset. For this, eq. (6.1) is used as filter criterion.

Semantic Labeling AP (in %) # Proposals/Image
GT 94.3 50.3

FCN-32s 93.7 50.9
FCN-16s 93.8 51.1
FCN-D16 93.9 51.1
SegNet 93.7 51.0

113

6 Integration of Contextual Knowledge

As aerial imagery are often recorded with higher GSDs, the impact of semantic
labeling based filtering on the detection performance is examined for various
GSDs. For this, the original images are down-scaled by factor 2, 3, 4, and
5, respectively. FCN-D16 trained on the original image resolution is used to
generate semantic labeling masks instead of training a model for each resolu-
tion separately. During testing, the down-scaled images are up-scaled to the
original image resolution. The corresponding semantic labeling results are re-
ported in Table 6.6. The F1-score decreases for all categories with higher GSDs
and lower ground resolutions, whereby the drop in accuracy is only minor for
a GSD of 10 cm. Category tree, which is due to the season only represented by
thin tree branches, undergoes the strongest decrease with lower ground reso-
lutions, as such fine structures are eliminated during down-scaling and conse-
quently, assigned to incorrect categories. The highest F1-scores are achieved
for category car, which even exhibits a F1-score above 78% for a GSD of 25 cm.
The categories impervious surface, building, and low vegetation show good F1
scores around 70%, which are essential to apply the proposed filter criterion.

Table 6.6: Semantic labeling results for different GSDs using FCN-D16 on the Potsdam dataset.
F1-scores are provided for the categories impervious surface (IS), building (B), low veg-
etation (LV), tree (T), car (Ca) and clutter (Cl).

GSD F1-score (in %) Overall
(in cm) IS B LV T Ca Cl Accuracy
5 89.69 92.93 84.54 84.54 93.34 57.35 88.19
10 89.35 92.30 83.67 83.08 93.04 55.09 87.45
15 84.43 89.65 75.54 44.99 91.24 37.36 77.03
20 76.08 84.93 70.86 18.25 87.79 28.40 68.60
25 70.10 75.75 69.76 11.60 78.01 19.29 63.04

The detection performance for the different GSDs is given in Table 6.7. For
this, a Faster R-CNN model is trained on the down-scaled images for each GSD
separately. The respective anchor box scales are adapted for each GSD, so that
the employed anchor box areas are equivalent to the mean object dimensions.
All further settings remain unchanged. The semantic labeling masks gener-
ated for the corresponding resolution and the proposed filter criterion (see

114

6.2 Semantic Context

eq. (6.1)) are used to filter the region proposals. The detection performance is
clearly improved for all GSDs, whereby the gain in AP increases with higher
GSDs even though the semantic labeling accuracy gets worse for higher GSDs.
This indicates that the importance of employing semantic context information
increases with higher GSDs and consequently smaller object dimensions.

Figure 6.12: Qualitative detection examples before (top row) and after (bottom row) filtering
the region proposals using the semantic labeling mask outputted by FCN-D16 indi-
cate that false alarms located on regions that are unlikely to contain vehicles, e.g.,
windows on buildings, are removed.

Table 6.7: Average precision (in %) of Faster R-CNN with and without semantic labeling based
filtering using FCN-D16 on the Potsdam dataset for different GSDs.

Filter GSD (in cm)
Criterion 5 10 15 20 25
- 92.9 92.2 90.1 82.7 62.9
eq. (6.1) 93.9 93.3 91.7 85.8 70.7

115

6 Integration of Contextual Knowledge

6.2.3 Joint Semantic Labeling and Detection

Though the semantic labeling based filtering strategy demonstrates the utility
of semantic labeling for vehicle detection in aerial imagery, the inference time
doubles due to the application of two separate networks: one for detection and
one for semantic labeling. To overcome this drawback, an alternative strategy
is proposed that incorporates semantic labeling into the detection framework
by merging both networks. Thus, semantic labeling directly induces scene
knowledge into the feature maps used within the detection framework instead
of filtering out region proposals or detections, respectively. In the following,
two different variations to induce scene knowledge are introduced and the
effect of the detection performance is discussed.

Implicit Multi-Task Faster R-CNN

The first variant, which is in the following referred to as Implicit Multi-Task
(IMT) Faster R-CNN, is depicted in Figure 6.13. The proposed architecture
comprises two branches: one for detection (top branch) and one for seman-
tic labeling (bottom branch). The detection branch includes the RPN and the
classification stage, while FCN-D16 is exemplarily employed for the seman-
tic labeling branch. Note that the semantic labeling network can be replaced
by the alternative architectures described in Section 6.2.1. Both branches are
merged by sharing the first four sequences of convolutional layers. The pre-
requisite for this is that both branches are based on the same base architecture,
i.e., VGG16. This allows the network to learn a shared global feature map, i.e.,
conv4_3, through which the semantic labeling branch implicitly affects the de-
tection branch. As the semantic labeling branch is only required for training,
it can be discarded during deployment.

To allow end-to-end training of both tasks, a joint multi-task loss 𝐿𝑀𝑇 com-
prised of five losses is proposed:

𝐿𝑀𝑇 = 𝜆1𝐿𝑆𝐿+𝜆2𝐿𝑅𝑃𝑁,𝑐𝑙𝑠 +𝜆3𝐿𝑅𝑃𝑁,𝑟𝑒𝑔 +𝜆4𝐿𝐶𝐿𝑆,𝑐𝑙𝑠 +𝜆5𝐿𝐶𝐿𝑆,𝑟𝑒𝑔. (6.2)

116

6.2 Semantic Context

Anchor
Boxes

Cls.

Reg.

Cls.

Reg.

Classification Stage RoI Pooling
Feature Extraction

Semantic
Labeling

Pr
op

os
al

s

RPN

Figure 6.13: Schematic illustration of the proposed Implicit Multi-Task Faster R-CNN. An aux-
iliary branch for semantic labeling is added to the network, which shares the first
four sequences of convolutional layers with the detection branch, i.e., the RPN and
the classification stage. Thus, the semantic labeling branch has an implicit effect on
the detections through the resulting shared feature map.

The semantic labeling loss 𝐿𝑆𝐿 is the normalized sum of the pixel-wise softmax
loss, while the further losses are the classification losses 𝐿𝑅𝑃𝑁,𝑐𝑙𝑠 and 𝐿𝐶𝐿𝑆,𝑐𝑙𝑠
and regression losses 𝐿𝑅𝑃𝑁,𝑟𝑒𝑔 and 𝐿𝐶𝐿𝑆,𝑟𝑒𝑔 of the Faster R-CNN introduced
in Section 5.1. The weighting factor 𝜆1 is set to 4 and the weighting factors
𝜆2, 𝜆3, 𝜆4, and 𝜆5 are set to 1, so that the semantic labeling branch and the
detection branch are weighted equally.

Explicit Multi-Task Faster R-CNN

The latter variant termed Explicit Multi-Task (EMT) Faster R-CNN further ex-
tends the proposed IMT Faster R-CNN by explicitly employing additional fea-
tures of the semantic labeling branch for detection as visualized in Figure 6.14.

117

6 Integration of Contextual Knowledge

For this purpose, the output of conv5_3 of the semantic labeling branch is em-
ployed as auxiliary feature map for the classification stage. The set of gen-
erated region proposals is projected onto the auxiliary feature map as well
and an additional RoI pooling layer extracts the corresponding features. The
output of the additional RoI pooling layer has the same dimensions, i.e., 7× 7,
and number of channels, i.e., 512, as the output of the RoI pooling layer of
the detection branch. The outputs of both RoI pooling layers are fused via
element-wise addition. The fused features are then fed into the sequence of
fully connected layers of the classification stage. Outputs of deeper convo-
lutional layers of the semantic labeling branch are not considered as feature
map because the number of output channels exceeds 512 as required for the
element-wise addition. The EMT Faster R-CNN is trained analogously to the
IMT Faster R-CNN using the joint multi-task loss given in eq. (6.2). Thus,
semantic context information is induced twofold: implicitly by shared convo-
lutional layers and joint learning and explicitly by exploiting features of the
semantic labeling branch for the classification stage.

Ablation Experiments

In the following, the impact of both variants to induce scene knowledge into
the detection framework are evaluated. For this, each model is trained end-
to-end for 70,000 iterations with an initial learning rate of 0.001. VGG16 pre-
trained on ImageNet is used to initialize the weights of the shared convolu-
tions as well as the weights of both branches. Note that data augmentation,
which results in better semantic labeling results [She16], is performed through
applying vertical and horizontal flipping as well as rotation in steps of 90 de-
grees. To account for the characteristics of the Potsdam dataset, the settings
introduced in Section 6.2.2 are adopted, i.e., exploitation of conv4_3 as feature
map, setting the anchor base to 4 and the anchor scales to 8, 16, and 24, and
forwarding of the top-100 ranked region proposals after NMS to the classifi-
cation stage.

118

6.2 Semantic Context

Anchor
Boxes

Cls.

Reg.

Classification St.
Feature Extraction

Semantic
Labeling

Pr
op

os
al

s

RPN

Su
m

Cls.

Reg.

RoI P.

RoI P.

Figure 6.14: Schematic illustration of the proposed Explicit Multi-Task Faster R-CNN. In addi-
tion to the shared sequences of convolutional layers, features from the semantic
labeling branch are explicitly added for each region proposal by way of an addi-
tional RoI pooling layer and element-wise addition.

Table 6.8: Detection results for IMT Faster R-CNN and EMT Faster R-CNN with different archi-
tectures employed as semantic labeling branch on the Potsdam dataset.

Semantic Labeling IMT EMT
Architecture Faster R-CNN Faster R-CNN
- 95.7 95.7
FCN-32s 96.3 96.6
FCN-16s 95.7 96.4
FCN-D16 96.1 96.8
SegNet 96.1 96.3

Table 6.8 shows the detection accuracy for the IMT Faster R-CNN and EMT
Faster R-CNN with different semantic labeling architectures employed as se-
mantic labeling branch. The best detection accuracy for IMT Faster R-CNN

119

6 Integration of Contextual Knowledge

is achieved by employing FCN-32s as semantic labeling architecture, which
slightly outperforms FCN-D16 and SegNet. The IMT Faster R-CNN exhibits an
improved AP compared to the baseline Faster R-CNN except for using FCN-
16s as semantic labeling architecture, which indicates that implicitly inducing
scene knowledge by sharing features results in improved detection accuracy.
Note that the baseline Faster R-CNN is trained on augmented data as well.
Thus, the achieved AP is higher compared to the AP reported in Table 6.4.
One reason for the absent gain in AP in case of FCN-16s may be the train-
ing procedure as no staged training as proposed in [Lon15] is performed. In
[Som17a], notably worse semantic labeling results are achieved on the Pots-
dam dataset by training FCN-16s at once compared to FCN-32s. EMT Faster
R-CNN shows better detection results for all semantic labeling architectures
compared to its IMT Faster R-CNN counterparts and clearly improved detec-
tion results compared to the baseline Faster R-CNN. Hence, explicitly adding
features from the semantic labeling branch and consequently more seman-
tic context information boosts the detection accuracy. Overall, the best AP is
achieved for FCN-D16, which outperforms the baseline Faster R-CNN by 1.1%
in AP.

Table 6.9: Impact of varying the weighting factor 𝜆1 of the semantic labeling loss exemplarily
for EMT Faster R-CNN with FCN-D16.

Weighting factor 𝜆1 AP (in %)
1 96.5
2 96.5
3 96.7
4 96.8

The impact of varying the weight ratio between the semantic labeling loss and
the detection loss is given in Table 6.9 exemplarily for EMT Faster R-CNN us-
ing FCN-D16 for the semantic labeling branch. For this, the weighting factor
𝜆1 of the semantic labeling loss (see eq. (6.2)) is varied in the range between
1 and 4, while all other weighting factors are kept fixed at 1. Weighting all
losses equally (𝜆1 = 1) results in the lowest AP, while the best AP is achieved

120

6.2 Semantic Context

by weighting the semantic labeling branch and the detection branch compris-
ing four losses equally (𝜆1 = 4). This indicates that the impact of the semantic
labeling branch on the shared features increases with higher weighting fac-
tors. Thus, the enhanced adaptation of the employed feature map with respect
to the semantic labeling categories yields reduced false alarms mainly labeled
as building or low vegetation. Note that experiments with even higher values
for 𝜆1 showed no further improvements.

Figure 6.15: Qualitative detection examples of the baseline Faster R-CNN (top row) and EMT
Faster R-CNN with FCN-D16 (bottom row) indicate that false alarms located on
regions that are unlikely to contain vehicles are reduced.

Qualitative detection examples shown in Figure 6.15 illustrate that EMT-
Faster R-CNN exhibits fewer FPs due to vehicle-like structures compared to
the baseline Faster R-CNN. Overall, the number of FPs is reduced by 58.8%
for a confidence score of 0.5, while the number of FNs remains almost un-
changed. The corresponding semantic labeling masks still show good results
of the overall scene though the training settings are chosen with respect to
the detection task, e.g., batch size or number of iterations. Good semantic
labeling results are essential for improving the detection performance by

121

6 Integration of Contextual Knowledge

enhancing the scene knowledge, otherwise the detection performance may
decrease due to distraction caused by the semantic labeling branch.

Analyzing the remaining FPs underlines that almost no FPs on buildings re-
main. Qualitative examples of remaining FPs given in Figure 6.16 illustrate
that most FPs can be attributed to vehicle-like structures positioned near roads
or beneath trees such as trailers or garbage containers. Examining the seman-
tic labeling masks exhibits that the corresponding pixels of the FPs are mainly
labeled as category car or tree as well. Hence, the semantic labeling results
are in good accordance with the generated detections.

Figure 6.16: Qualitative examples of remaining FPs for EMT Faster R-CNN with FCN-D16. Most
FPs can be attributed to vehicle-like structures positioned near roads or beneath
trees, while almost no FPs on buildings remain.

As aerial imagery often exhibits higher GSDs, the detection performance of
IMT Faster R-CNN and EMT Faster R-CNN are evaluated for various GSDs.
Therefore, the image tiles used for training and testing are down-scaled by fac-
tor 2, 3, 4, and 5 yielding GSDs of 10 cm, 15 cm, 20 cm, and 25 cm, respectively.
For each GSD, models are trained separately, whereby FCN-D16 is employed
for the semantic labeling branch. The anchor box scales are adapted for each
GSD, so that the respective anchor box areas are equivalent to the mean object
dimensions. As shown in Table 6.10, EMT Faster R-CNN achieves the best AP
for all GSDs. The gain in AP compared to the baseline Faster R-CNN increases
with higher GSDs, which shows that additional semantic context information
due to the proposed architecture boosts the detection performance even for
tiny objects as in case of high GSDs. IMT Faster R-CNN outperforms Faster

122

6.2 Semantic Context

R-CNN for low GSDs, while the detection accuracy is almost similar for high
GSDs. This indicates that the impact of implicitly adapting the features of the
detection branch by adding an additional semantic labeling branch decreases
for high GSDs. The decreasing impact is not unexpected, as the semantic la-
beling results decrease as well for high GSDs, which may be enforced in this
case by the training settings conceived for the detection task. Note that the
used joint detection and semantic labeling architectures are designed for low
GSDs due to the original GSD of 5 cm. For instance, employing coarser feature
maps as demonstrated in Section 5.2 can improve the detection performance
for high GSDs.

Table 6.10: Average precision of the baseline Faster R-CNN, IMT Faster R-CNN and EMT Faster
R-CNN on the Potsdam dataset for different GSDs.

Approach GSD (in cm)
5 10 15 20 25

Faster R-CNN 95.7 93.0 90.5 83.2 67.5
IMT Faster R-CNN 96.1 95.0 91.5 83.2 67.6
EMT Faster R-CNN 96.8 95.8 92.4 85.7 71.2

Finally, the proposed IMT Faster R-CNN and EMT Faster R-CNN are com-
pared to Faster R-CNN with semantic labeling based filtering introduced in
Section 6.2.2 and two further baselines. For the semantic labeling based fil-
tering, FCN-D16 is used to generate semantic labeling masks and eq. (6.1) is
used as filter criterion. As further baselines, Faster R-CNN with hard neg-
ative mining and an extension of Faster R-CNN termed Multi-Feature Faster
R-CNN are considered. Online hard example mining (OHEM) [Shr16b], which
yields improved detection results on benchmark datasets, is used for hard
negative mining. Hence, an alternative strategy to influence the learning of
the employed feature map is examined. The Multi-Feature Faster R-CNN is a
straightforward alternative to increase the semantic context information. For
this, the output of conv5_3 is used as additional feature map for the classifica-
tion stage. For each region proposal, the corresponding features are extracted
and fused with features from conv4_3 via element-wise addition analogously

123

6 Integration of Contextual Knowledge

to EMT Faster R-CNN. Note that all models are trained on augmented data
analogous to IMT and EMT Faster R-CNN. For both additional baselines, the
settings are adopted from the baseline Faster R-CNN.

The best detection accuracy is achieved for EMT Faster R-CNN that clearly
exceeds the AP of the baseline approaches and of Faster R-CNN with seman-
tic labeling based filtering (see Table 6.11). The relatively poor AP achieved
for the Multi-Feature Faster R-CNN shows that adding features from the se-
mantic labeling branch, which explicitly learns scene knowledge, is superior
compared to simply adding features from deeper layers. IMT Faster R-CNN
slightly outperforms Faster R-CNN with OHEM, which indicates that induc-
ing semantic context information by adding an auxiliary semantic labeling
branch is a useful way to affect the learning of the feature map employed for
detection. Though Faster R-CNN with semantic labeling based filtering im-
proves the baseline Faster R-CNN by 0.3% in AP showing the benefit of the
semantic labeling based filtering, the impact on the detection accuracy is mi-
nor compared to incorporating semantic labeling directly into the detection
framework.

Table 6.11: Average precision and inference time of the IMT Faster R-CNN and EMT Faster R-
CNN compared to baseline approaches on the Potsdam dataset.

Approach AP (in %) Time (in ms)
Faster R-CNN 95.7 58
Multi-Feature Faster R-CNN 95.8 65
Faster R-CNN + OHEM 96.0 58
Faster R-CNN + Semantic Filtering 96.0 138
IMT Faster R-CNN 96.1 58
EMT Faster R-CNN 96.8 65

At last, the inference time is evaluated for all approaches by averaging over
the complete test set including 700 image tiles of size 600 × 600 pixels (see Ta-
ble 6.11). All time measurements are performed on a single GTX TITAN X
GPU using the server setup introduced in Section 5.2.4. Faster R-CNN with

124

6.2 Semantic Context

semantic labeling based filtering shows by far the worst inference time, be-
cause the detection network and the semantic labeling network are computed
separately. The inference time of IMT Faster R-CNN is identical to the base-
line Faster R-CNN, as the additional semantic labeling branch of IMT Faster
R-CNN can be disabled for deployment so that no computational overhead
emerges. As features from the semantic labeling branch are used for the clas-
sification stage, EMT Faster R-CNN results in a slightly increased runtime at
a notable improvement in detection accuracy. Thus, the proposed joint se-
mantic labeling and detection architectures are an efficient way to integrate
semantic labeling into Faster R-CNN without notably worsening the inference
time.

6.2.4 Adaptation to the DLR 3K Dataset

As shown in Section 6.2.2 and Section 6.2.3, the proposed approaches achieve
good detection results on the Potsdam dataset. However, the comprised train-
ing data is comparatively poor because of the utilized semantic labeling pro-
cedure and the use of ortho-rectified RGB images, which may impede the
learning of optimal feature representations. The main issue regarding the uti-
lized semantic labeling procedure is the labeling of vehicles beneath trees as
category tree though the vehicles are clearly visible (see Figure 4.7), while
the employed RGB images comprise distinctive artifacts (see Figure 6.17). To
overcome these issues, semantic labeling masks are generated for the DLR 3K
dataset within the context of this thesis. A refined and enhanced version of
the dataset is made publicly available as aforementioned in cooperation with
the DLR. As depicted in Figure 6.18, the six categories of the Potsdam data-
set are adopted. In contrast to the Potsdam dataset, vehicles beneath trees
that are clearly visible are labeled as category car. In addition, the DLR 3K
dataset extended by semantic labeling masks allows the comparison of the
proposed approaches with further vehicle detection methods. Note that the
Potsdam dataset originally designed for the task of semantic labeling of high-
resolution aerial imagery comprises no bounding box annotations and thus,
is only rarely considered for the task of vehicle detection in literature.

125

6 Integration of Contextual Knowledge

Figure 6.17: Artifacts of the RGB images of the Potsdam dataset due to ortho-rectification.

Figure 6.18: Example of the DLR 3K dataset (left) and the corresponding semantic labeling mask
(right) with pixel-wise semantic annotations of six categories: impervious surface
(white), building (blue), low vegetation (cyan), tree (green), car (yellow), and clutter
(red).

126

6.2 Semantic Context

The detection results of the proposed semantic labeling based filtering, the
IMT Faster R-CNN and the EMT-Faster R-CNN are given in Table 6.12. To
account for the smaller object dimensions in case of DLR 3K, the output of
conv3_3 is used as feature map instead of conv4_3. Hence, the feature map
resolution is increased as required for accurately localizing tiny objects. Fur-
thermore, the anchor base is set to 2 and the anchor scales are set to 7, 14, and
21 analogous to Section 5.2.2. For the semantic labeling based filtering, FCN-
D16 is used to generate semantic labeling masks and eq. (6.1) is used as filter
criterion. For the EMT Faster R-CNN, the outputs of conv4_3 and conv5_3 of
the semantic labeling branch are employed as auxiliary feature maps for the
classification stage and RoI pooling layers are added to extract the correspond-
ing features for each candidate region. The extracted features of the semantic
labeling branch and conv3_3 are combined via element-wise addition. The
further settings are adopted from Section 6.2.2 and Section 6.2.3, respectively.
Image patches of size 936 × 936 are used for training and evaluation. Further-
more, data augmentation is conducted during training by applying vertical
and horizontal flipping as well as rotation in steps of 90 degrees.

Table 6.12: Average precision of Faster R-CNN with and without semantic labeling based filter-
ing, IMT Faster R-CNN and EMT Faster R-CNN on DLR 3K.

Approach AP (in %)
Faster R-CNN 95.0
Faster R-CNN + Semantic Filtering 95.2
IMT Faster R-CNN 95.8
EMT Faster R-CNN 96.2

The semantic labeling based filtering, the IMT Faster R-CNN and the EMT-
Faster R-CNN outperform the baseline Faster R-CNN. Note that the AP of the
baseline Faster R-CNN is higher compared to the AP reported in Table 5.2 due
to the performed data augmentation. The gain in AP achieved for semantic
labeling based filtering is only 0.2% though the employed FCN-D16, which is
trained accordingly to Section 6.2.2, exhibits good semantic labeling results
(see Table 6.13). While the overall accuracy and the F1-scores for categories

127

6 Integration of Contextual Knowledge

impervious surface, building, low vegetation, and tree are in the range of the
semantic labeling results achieved on the Potsdam dataset, the F1-score for
category car is worse due to the high GSD. As depicted in Figure 6.19, pre-
dictions of fine structures such as vehicles comprise inaccurate boundaries,
which indicates limitations of the applied semantic labeling architecture in
case of tiny structures. Inducing semantic context information by adding an
additional semantic labeling branch to the detection network exhibits an im-
provement of 0.8% in AP. Figure 6.20 illustrates that the employed feature
maps are affected by the semantic labeling branch. For this, the detections and
corresponding activations of four filters are exemplarily depicted for Faster
R-CNN (top row) and IMT Faster R-CNN (bottom row). In case of Faster R-
CNN, the filters respond to vehicle parts but also to similar structures such
as solar cells. In contrast, the filters of IMT Faster R-CNN responding either
to structures on buildings or to vehicle parts are more discriminative. EMT
Faster R-CNN, which improves the baseline Faster R-CNN by 1.2% in AP, ex-
hibits overall the best detection accuracy. For a confidence threshold of 0.5,
the number of false positive detections is reduced by a factor of 32.3%, while
the number of false negative detections decreases by 10.6%. Qualitative re-
sults given in Figure 6.21 indicate that the number of false positive detections
caused by vehicle-like structures on buildings are reduced. Overall, the re-
sults achieved on DLR 3K are in good accordance with the results observed
on Potsdam dataset. Integrating semantic labeling into the detection frame-
work results in an improved detection accuracy, whereby the largest gain in
AP is achieved by explicitly employing features from the semantic labeling
branch for the detection task.

Table 6.13: Semantic labeling results for FCN-D16 on DLR 3K. F1-scores are provided for the
categories impervious surface (IS), building (B), low vegetation (LV), tree (T), car (Ca)
and clutter (Cl).

Sem. Labeling F1-score (in %) Overall
Approach IS B LV. T Ca Cl Acc.
FCN-D16 86.84 91.38 82.85 87.03 71.82 69.18 86.02

128

6.2 Semantic Context

Figure 6.19: Qualitative semantic labeling results of FCN-D16 (left column) on DLR 3K and cor-
responding GT (middle column) indicate limitations of the employed semantic la-
beling architecture in case of tiny structures such as vehicles, i.e., inaccurate bound-
aries.

0.0

0.25

0.5

0.75

1.0

Figure 6.20: Detection results and activations of four filters from conv3_3 for Faster R-CNN (top
row) and IMT Faster R-CNN (bottom row) exhibit that inducing semantic labeling
results in more discriminative filters.

Finally, the detection performance of the proposed IMT Faster R-CNN and
EMT Faster R-CNN are evaluated for various GSDs. For this, the original
images with a GSD of 13 cm are rescaled for training and testing by factor
2/3 and 1/2 yielding GSDs of 19.5 cm and 26 cm, respectively. For each GSD,
the employed anchor box areas are equivalent to the mean object dimensions
(see Table 5.6). Both IMT Faster R-CNN and EMT Faster R-CNN exhibit an
improved detection accuracy compared to the baseline Faster R-CNN for each
GSD, whereby explicitly adding features from the semantic labeling branch
results in stronger gain in AP. The improved AP in case of high GSDs shows

129

6 Integration of Contextual Knowledge

that the proposed architectures affect the detection performance even for low
spatial resolutions.

Figure 6.21: Qualitative detection examples of the baseline Faster R-CNN (top row) and EMT
Faster R-CNN with FCN-D16 (bottom row) indicate that false alarms located on
regions that are unlikely to contain vehicles, e.g., buildings, are reduced.

Table 6.14: Average precision of the baseline Faster R-CNN, IMT Faster R-CNN and EMT Faster
R-CNN on DLR 3K for different GSDs.

Approach GSD (in cm)
13 19.5 26

Faster R-CNN 95.0 91.9 86.0
IMT Faster R-CNN 95.8 93.0 87.3
EMT Faster R-CNN 96.2 93.3 88.9

130

7 Runtime Optimization

Detecting relevant objects in real-time or nearly in real-time is of great im-
portance across a broad range of applications. In general, deep learning based
object detectors, such as Faster R-CNN, are employed for most applications
due to their superior detection accuracy compared to conventional counter-
parts. However, applying Faster R-CNN as object detector is not appropriate
for a multitude of applications due to its poor inference time, which is in the
context of this thesis further impaired by adapting Faster R-CNN to the char-
acteristics of aerial imagery (see Section 5.2.4). Regarding the inference time
for the feature extraction, region proposal generation, and classification stage
separately exposes that each component notably contributes to the overall
inference time and thus, is often not directly practicable within the detection
pipeline. To allow the use of Faster R-CNN for different applications depend-
ing on vehicle detection in aerial imagery, acceleration of each component is
required.

In the remainder of this chapter, two approaches addressing the optimization
of the inference time are presented and discussed in detail. The first approach
introduced in Section 7.1 aims at reducing the computational costs for the fea-
ture extraction by replacing the default CNN architecture with a more com-
putational efficient CNN architecture. To minimize the computational effort
of both the region proposal generation and classification stage, the second ap-
proach introduced in Section 7.2 restricts the detection area by a novel Search
Area Reduction module. Hence, the number of feature map locations used for
region proposal generation is reduced and fewer region proposals need to be
classified. The presented approaches in this chapter are mainly based on two
of the author’s publications [Rin19, Som18a].

131

7 Runtime Optimization

7.1 Lightweight Feature Extraction

In the past, most research on CNN architectures has primarily focused on
improving the accuracy, yielding deeper and more complex network archi-
tectures often unpractical for real-world applications due to their model size
and inference time. With the increasing demand for online processing on
mobile platforms with limited resources, novel CNN architectures aiming at
reducing the number of parameters and computational operations have re-
cently been proposed. Replacing the default CNN architectures used as base
network with these computation-efficient architectures bears the potential to
reduce the inference time of deep learning based detection frameworks, as
feature extraction is one of the most time-consuming parts of these frame-
works.

In this thesis, the applicability of such lightweight architectures is examined
exemplarily for SSD, which allows a straightforward exchange of the CNN ar-
chitecture. For this purpose, four promising architectures are adapted as base
network for the task of vehicle detection in aerial imagery. In the follow-
ing, the functional principle of SSD and the structures of the employed CNN
architectures are introduced. Furthermore, auxiliary techniques for runtime
optimization applied in this thesis are described followed by experiments and
discussion of the results. The most promising architectures are then adopted
for Faster R-CNN.

7.1.1 Single Shot MultiBox Detector

As described in Section 2.2, SSD is a fully convolutional network whose func-
tional principle is similar to the RPN in Faster R-CNN (see Figure 7.1). In
contrast to the class-agnostic RPN introduced in Section 5.1.1, SSD predicts
a fixed number of bounding boxes and confidence scores for each object cat-
egory. For this, (𝑐 + 4)𝑘 convolutional filters with kernel size 3 × 3 referred
to as classification head are applied at each feature map location to predict
four bounding box offsets relative to the anchor boxes termed default boxes
and 𝑐 confidence scores, where 𝑐 is the number of object classes including the

132

7.1 Lightweight Feature Extraction

background class and 𝑘 is the number of anchor boxes. By default, the output
of multiple convolutional layers is used as feature map to account for various
object scales.

D
et

ec
ti

on
s

In
pu

t I
m

ag
e

Cls. + Reg.

Cls. + Reg.

Cls.+Reg.

Figure 7.1: Schematic structure of SSD.

For training, the objective loss is equivalent to the multi-task loss of the RPN
given in eq. (5.1). The classification loss is the softmax loss over multiple class
confidences, while smooth 𝐿1 loss is used as regression loss. Note that in case
of vehicle detection with only one category, the classification loss is equiva-
lent to the two-class softmax of the RPN. Regression to the anchor boxes is
performed analogously to the RPN by using eq. (5.5).

In the context of this thesis, only a single feature map is exploited as the ex-
amined aerial imagery datasets comprise images with a homogenous GSD
and thus, the vehicle dimensions exhibit only small variations. As observed
in [Rin19], using multiple layers may even yield a worse detection accuracy.
Moreover, truncating all layers after the exploited feature map also reduces
the computational costs. To further account for the characteristics of the
aerial imagery, the anchor box scales are adopted according to the vehicle
size distribution, i.e., the anchor box scale is set to 28 pixels and the aspect
ratios are set to 1:1, 1:2 and 2:1.

In the following, VGG16, which is used by default, is employed as base net-
work for the SSD detector baseline. VGG16 pre-trained on ImageNet is used
to initialize the weights. The baseline model is trained for 20,000 iterations

133

7 Runtime Optimization

using the SGD optimizer with a batch size of 32 and an initial learning rate of
0.0001. All other hyper-parameters remain unchanged from the original set-
tings¹. During deployment, the 2500 predictions with the highest confidence
score are considered for NMS. The top-200 predictions after NMS are used as
final detections.

7.1.2 Computation-Efficient CNN Architectures

Several computation-efficient CNN architectures have recently been pro-
posed, achieving comparable accuracies compared to conventional CNN
architectures, while the inference time is considerably reduced. In the fol-
lowing, the most promising of these architectures that are examined in this
thesis are presented and adaptations for the usage as base network within a
deep learning based vehicle detector are described.

MobileNet

MobileNet [How17] is a recently proposed network architecture specially de-
veloped for mobile and embedded vision applications. Instead of standard
3 × 3 convolutions, depthwise separable convolutions (see Figure 2.11) are
used as main building block. Due to the factorization of a standard 3 × 3
convolution into a 3 × 3 depthwise convolution followed by a 1 × 1 pointwise
convolution, the computational costs and the number of parameters are con-
siderably reduced compared to the standard 3 × 3 convolution. Except for an
initial 3 × 3 convolution and the final fully connected layer used for classifica-
tion, MobileNet only comprises stacked DSCs as depicted in Table 7.1. Strided
convolutions are used for down-sampling instead of pooling, which provides
a cheap way to decrease the input size. All convolutional layers are followed
by batch normalization and ReLU nonlinearity to stabilize and speed up the
training.

¹ https://github.com/weiliu89/caffe/tree/ssd

134

https://github.com/weiliu89/caffe/tree/ssd

7.1 Lightweight Feature Extraction

Table 7.1: Schematic structure of MobileNet that is mainly comprised of depthwise separable
convolutions. g denotes the number of groups for the respective depthwise (dw) con-
volution. Note that the initial network used for classification is designed for input
images of size 224 × 224 pixels. Both hyper-parameters, i.e., 𝜉 and 𝜌, are set by de-
fault to 1.

Layer Type Kernel Size Stride, Pad Output Dim.
convolution 3 × 3 × 32 2, 1 112 × 112 × 32
dw convolution 3 × 3 × 32, g=32 1, 1 112 × 112 × 32
convolution 1 × 1 × 64 1, 0 112 × 112 × 64
dw convolution 3 × 3 × 64, g=64 2, 1 56 × 56 × 64
convolution 1 × 1 × 128 1, 0 56 × 56 × 128
dw convolution 3 × 3 × 128, g=128 1, 1 56 × 56 × 128
convolution 1 × 1 × 128 1, 0 56 × 56 × 128
dw convolution 3 × 3 × 128, g=128 2, 1 28 × 28 × 128
convolution 1 × 1 × 256 1, 0 28 × 28 × 256
dw convolution 3 × 3 × 256, g=256 1, 1 28 × 28 × 256
convolution 1 × 1 × 256 1, 0 28 × 28 × 256
dw convolution 3 × 3 × 256, g=256 2, 1 14 × 14 × 256
convolution 1 × 1 × 512 1, 0 14 × 14 × 512

5× dw convolution 3 × 3 × 512, g=512 1, 1 14 × 14 × 512
convolution 1 × 1 × 512 1, 0 14 × 14 × 512

dw convolution 3 × 3 × 512, g=512 2, 1 7 × 7 × 512
convolution 1 × 1 × 1024 1, 0 7 × 7 × 1024
dw convolution 3 × 3 × 1024, g=1024 1, 1 7 × 7 × 1024
convolution 1 × 1 × 1024 1, 0 7 × 7 × 1024
avg pooling 7 × 7 - 1 × 1 × 1024
fully connected 1000

Two global hyper-parameters are introduced in order to adjust the speed/ac-
curacy trade-off: the width multiplier 𝜉 and the resolution multiplier 𝜌. The
width multiplier 𝜉 ∈ (0,1] reduces the number of input channels 𝐷𝑖𝑛 to 𝜉𝐷𝑖𝑛
and the number of output channels 𝐷𝑜𝑢𝑡 to 𝜉𝐷𝑜𝑢𝑡 for each layer, which leads

135

7 Runtime Optimization

to a thinner network with considerably less parameters and reduced compu-
tational costs. By applying the resolution multiplier 𝜌 ∈ (0,1] on the input
image, the width 𝑊 and height 𝐻 of the input image and each subsequent
layer are reduced to 𝜌𝑊 and 𝜌𝐻, respectively. Though reducing the input
image and the internal representation of every layer reduces the computa-
tional costs by 𝜌2, it is not practicable for the task of vehicle detection in
aerial imagery due to the already small object dimensions.

For the usage of MobileNet as base network within the SSD detector, only
the output of the 5ᵗʰ DSC layer is exploited as feature map, as deeper layers
would result in coarser feature map resolutions that are unsuited to accurately
localize small objects. Thus, all deeper layers are truncated, yielding a clearly
reduced model size. The official MobileNet weights pre-trained on ImageNet
are used for initialization¹. Therefore, the weights are converted from the
TensorFlow format to the Caffe format, as no pre-trained weights are directly
available for Caffe. Due to findings in preliminary experiments, each model
is trained for 45,000 iterations using the Adam optimizer with a batch size of
16 and an initial learning rate of 0.001.

ShuffleNet

ShuffleNet [Zha18b] designed especially for mobile devices with very limited
computing power employs DSCs to reduce the computational costs. In con-
trast to MobileNet, 1 × 1 convolutional layers are inserted before each DSC.
Thus, the number of input channels and consequently computational opera-
tions for the 3 × 3 depthwise convolutions are reduced. By replacing conven-
tional 1 × 1 convolutions with cheaper 1 × 1 group convolutions, the number
of parameters and computational costs are further reduced. Depending on the
group count g, a group convolution filter only considers the D/g channels of
its respective group as input instead of the full channel depthD. Channel shuf-
fling (see Figure 2.12) is applied after the auxiliary 1 × 1 group convolutions

¹ https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md

136

https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md

7.1 Lightweight Feature Extraction

to overcome the side effect caused by group convolutions that outputs from
a certain channel are only derived from a small fraction of input channels.

1 1 grp. str.=1×

3 3 dw str.=1×

1 1 grp. str.=1×

shuffle

(a) ShuffleNet Unit A

1 1 grp. str.=1×

3 3 dw str.=2×

1 1 grp. str.=1×

shuffle
avg pool str.=2

concat

(b) ShuffleNet Unit B

Figure 7.2: Main building blocks of ShuffleNet.These so-called ShuffleNet Units are composed of
depthwise (dw) convolutions, group convolutions and channel shuffling. Note that
the initial 1 × 1 group convolution and the 3 × 3 depthwise convolution comprise the
same number of channels C, while the last 1 × 1 group convolutional layer has 4C
channels.

ShuffleNet mainly comprises two building blocks called ShuffleNet Units based
on depthwise convolutions, group convolutions and the novel channel shuffle
operation (see Figure 7.2). Both building blocks comprise a sequence of two
group convolutions, a channel shuffle layer, and depthwise convolution and a
residual branch. Batch normalization is applied for each convolutional layer.
ReLU is used as activation function after the initial group convolution, while
no activation function is applied after depthwise convolution as suggested by
[Cho17]. Building blocks with stride 2 are modified by adding 3 × 3 average
pooling to the shortcut path and replacing the element-wise addition with
concatenation, which allows to enlarge the channel dimension with little ex-
tra computational costs. ShuffleNet 1×(g=3) provides the best speed/accuracy
trade-off according to the authors [Zha18b]. The overall architecture shown
in Table 7.2 consists of an initial 3 × 3 convolution and a subsequent max pool-
ing layer with stride 2 followed by a stack of ShuffleNet Units and a final fully
connected layer used for classification. The first building block in each stage is

137

7 Runtime Optimization

applied with stride 2 to down-sample the input dimensions. Note that a stan-
dard 1 × 1 convolution is applied as first convolution in the initial ShuffleNet
Unit and the subsequent channel shuffle operation is discarded.

Table 7.2: Schematic structure of ShuffleNet 1×(g=3). For each ShuffleNet Unit, the kernel size,
number of channels, stride and padding are given for the depthwise convolution. The
initial 1 × 1 group convolution has the same number of channels, while the last 1 × 1
group convolution comprises 4 times the number of channels. The original network
used for classification is designed for input images of size 224 × 224 pixels.

Layer Type Kernel Size Stride, Pad Output Dim.
convolution 3 × 3 × 24 2, 1 112 × 112 × 24
max pooling 3 × 3 2 56 × 56 × 24
ShuffleNet Unit B 3 × 3 × 54 2, 1 28 × 28 × 240
3× ShuffleNet Unit A 3 × 3 × 60 1,1 28 × 28 × 240
ShuffleNet Unit B 3 × 3 × 60 2, 1 14 × 14 × 480
7× ShuffleNet Unit A 3 × 3 × 120 1, 1 14 × 14 × 480
ShuffleNet Unit B 3 × 3 × 120 2, 1 7 × 7 × 960
3× ShuffleNet Unit A 3 × 3 × 240 1, 1 7 × 7 × 960
avg pooling 7 × 7 - 1 × 1 × 960
fully connected 1000

Within this thesis, ShuffleNet 1×(g=3) is used as base network for the SSD
detector. To this end, the output of the 4ᵗʰ ShuffleNet Unit is used as feature
map, while all deeper layers are removed from the network. Weights pre-
trained on ImageNet are used to initialize the model. Each model is trained
for 30,000 iterations using the Adam optimizer with a batch size of 16 and an
initial learning rate of 0.001.

PeleeNet

Unlike MobileNet and ShuffleNet, PeleeNet [Wan18b] foregoes the use of spe-
cial layers, such as depthwise convolutions or channel shuffling, due to the

138

7.1 Lightweight Feature Extraction

lack of efficient implementations in most deep learning frameworks and only
comprises conventional convolutions instead. PeleeNet, which is inspired by
DenseNet [Hua17], is comprised of two building blocks termed Stem Block and
Two-Way Dense Layer, respectively (see Figure 7.3). Both building blocks uti-
lize 1 × 1 convolutions to restrict the amount of channels for subsequent 3 × 3
convolutions and thus, reduce the computational costs. The Two-Way Dense
Layer comprises two ways with various kernel sizes in order to achieve differ-
ent scales of receptive fields and consequently to account for different object
dimensions.

1 1 str.=1×

3 3 str.=2×

1 1 str.=1×
avg pool str.=2

concat

3 3 str.=2×

(a) Stem Block

1 1 str.=1×

3 3 str.=1×

1 1 str.=1×

concat

3 3 str.=1×

3 3 str.=1×

(b) Two-Way Dense Layer

Figure 7.3: Main building blocks of PeleeNet.

The overall architecture given in Table 7.3 is composed of an initial Stem Block
used to enhance the feature expression ability in a computational efficient
manner followed by a sequence of stacked Two-Way Dense Layers and a final
fully connected layer used for classification. Note that the number of kernels
remains constant throughout the network for all 3 × 3 convolutional layers
to save computational costs. Therefore, 1 × 1 convolutions with increasing
number of kernels are added after the last Two-Way Dense Layer of each stack
in order to improve the representational abilities. Except for the last stack,
average pooling with stride 2 is applied after these 1 × 1 convolutions to reduce
the input dimensions for the subsequent stack. Batch normalization and ReLU
nonlinearity are applied for each convolutional layer.

139

7 Runtime Optimization

Table 7.3: Schematic structure of PeleeNet. The convolutions of the initial Stem Block comprise
32 channels except for the first 1 × 1 convolution that possesses 16 channels. For each
Two-Way Dense Layer, the kernel size, number of channels, stride and padding are
given for the 1 × 1 convolutions, as the number of channels, i.e., 16, remains constant
throughout the network for all 3 × 3 convolutions. Note that the initial network is
designed for input images of size 224 × 224 pixels.

Layer Type Kernel Size Stride, Pad Output Dim.
Stem Block 56 × 56 × 32
3×Dense Layer 1 × 1 × 16 1, 1 56 × 56 × 128
convolution 1 × 1 × 128 1, 0 56 × 56 × 128
avg pooling 2 × 2 2 28 × 28 × 128
4×Dense Layer 1 × 1 × 32 1, 1 28 × 28 × 256
convolution 1 × 1 × 256 1, 0 28 × 28 × 256
avg pooling 2 × 2 2 14 × 14 × 256
8×Dense Layer 1 × 1 × 64 1, 1 14 × 14 × 512
convolution 1 × 1 × 512 1, 0 14 × 14 × 512
avg pooling 2 × 2 2 7 × 7 × 512
6×Dense Layer 1 × 1 × 64 1, 1 7 × 7 × 704
convolution 1 × 1 × 704 1, 0 7 × 7 × 704
avg pooling 7 × 7 - 1 × 1 × 704
fully connected 1000

For the usage of PeleeNet as base network within the SSD detector, only the
output of the 1 × 1 convolutional layer after the 2ⁿᵈ stack of Two-Way Dense
Layers is exploited as feature map. All deeper layers are truncated from the
network. In contrast to the other computation-efficient networks, weights
pre-trained on PASCAL VOC and MS COCO are used for initialization¹, as no
weights pre-trained on ImageNet were publicly available at that time. Each
model is trained for 30,000 iterations using the Adam optimizer with a batch
size of 16 and an initial learning rate of 0.001.

¹ https://github.com/Robert-JunWang/Pelee

140

https://github.com/Robert-JunWang/Pelee

7.1 Lightweight Feature Extraction

SqueezeNet

SqueezeNet [Ian16] does not make use of special layers and instead only lever-
ages its building block called Fire module, which only consists of standard
convolutions. The Fire module visualized in Figure 7.4 is comprised of an ini-
tial 1 × 1 convolutional layer referred to as squeeze layer followed by a com-
bination of 1 × 1 and 3 × 3 convolutions termed expand layer¹. The squeeze
layer decreases the number of input channels for the subsequent expand layer,
which reduces in particular the computational effort for its 3 × 3 convolutions.
By increasing the number of channels, the expand layer improves the repre-
sentational abilities. Note that the computational costs of the expand layers
are reduced due to the combination of 3 × 3 with less computationally expen-
sive 1 × 1 convolutions.

1 1×

3 3×1 1×

concat

Figure 7.4: Main building block of SqueezeNet denoted as Fire module.

The SqueezeNet v1.0 network architecture given in Table 7.4 is comprised of
an initial 7 × 7 convolutional layer followed by 8 Fire modules. Max pooling
with a stride of 2 is performed after the initial convolutional layer, the 3ʳᵈ
and 7ᵗʰ Fire module. The relatively late placements of pooling layers lead to
relatively large feature maps, referred to as activation maps, throughout the
network, which is motivated by the intuition that large activation maps result
in higher accuracy. The output of the final average pooling layer is used for
classification.

¹ Note that the Caffe framework does not natively support convolutional layers with multiple
kernel sizes. Thus, separate convolutional layers with different kernel sizes are used and their
outputs are concatenated.

141

7 Runtime Optimization

Table 7.4: Schematic structure of SqueezeNet v1.0 that mainly consists of so-called Fire modules
(see Figure 7.4). Each Fire module comprises initial 1 × 1 convolutions followed by
parallel 1 × 1 and 3 × 3 convolutions that are combined via concatenation. The original
network used for classification is designed for input images of size 227 × 227 pixels.

Layer Type Kernel Size Stride, Pad Output Dim.
convolution 7 × 7 × 96 2, 3 114 × 114 × 96
max pooling 3 × 3 2 57 × 57 × 96

2× convolution 1 × 1 × 16 1, 0 57 × 57 × 16
convolution 1 × 1 × 64 | 3 × 3 × 64 1, 0 | 1, 1 57 × 57 × 128

convolution 1 × 1 × 32 1, 0 57 × 57 × 32
convolution 1 × 1 × 128 | 3 × 3 × 128 1, 0 | 1, 1 57 × 57 × 256
max pooling 3 × 3 2 28 × 28 × 256
convolution 1 × 1 × 32 1, 0 28 × 28 × 32
convolution 1 × 1 × 128 | 3 × 3 × 128 1, 0 | 1, 1 28 × 28 × 256

2× convolution 1 × 1 × 48 1, 0 28 × 28 × 48
convolution 1 × 1 × 192 | 3 × 3 × 192 1, 0 | 1, 1 28 × 28 × 384

convolution 1 × 1 × 64 1, 0 28 × 28 × 64
convolution 1 × 1 × 256 | 3 × 3 × 256 1, 0 | 1, 1 28 × 28 × 512
max pooling 3 × 3 2 14 × 14 × 512
convolution 1 × 1 × 64 1, 0 14 × 14 × 64
convolution 1 × 1 × 256 | 3 × 3 × 256 1, 0 | 1, 1 14 × 14 × 512
convolution 1 × 1 × 1000 1, 0 14 × 14 × 1000
avg pooling 14 × 14 - 1 × 1 × 1000

Instead of computationally expensive 7 × 7 convolutions, SqueezeNet v1.1 (see
Table 7.5), which is built on SqueezeNet v1.0, utilizes less expensive 3 × 3 con-
volutions to improve the inference speed. By performing max pooling after
earlier layers, i.e., the initial convolutional layer, the 2ⁿᵈ and 4ᵗʰ Fire mod-
ule, the computational costs are further reduced due to smaller input volumes
for some convolutional layers. Based on SqueezeNet v1.1, Gschwend [Gsc16]
proposed ZynqNet (see Table 7.6), which improves the classification accuracy

142

7.1 Lightweight Feature Extraction

by an alternating usage of 3 × 3 and 1 × 1 convolutions for the squeeze layers.
Furthermore, convolutions with stride 2 are used for down-sampling instead
of max pooling. In contrast to the other lightweight CNN architectures pre-
sented in this section, no batch normalization is conducted. ReLU is used as
activation function for each convolutional layer except for the last convolu-
tional layer.

Table 7.5: Schematic structure of SqueezeNet v1.1, which mainly consists of so-called Fire mod-
ules similar to SqueezeNet v1.0. Note that the original network used for classification
is designed for input images of size 227x227 pixels.

Layer Type Kernel Size Stride, Pad Output Dim.
convolution 3 × 3 × 64 2, 1 113 × 113 × 64
max pooling 3 × 3 2 56 × 56 × 64

2× convolution 1 × 1 × 16 1, 0 56 × 56 × 16
convolution 1 × 1 × 64 | 3 × 3 × 64 1, 0 | 1, 1 56 × 56 × 128

max pooling 3 × 3 2 28 × 28 × 128

2× convolution 1 × 1 × 32 1, 0 28 × 28 × 32
convolution 1 × 1 × 128 | 3 × 3 × 128 1, 0 | 1, 1 28 × 28 × 256

max pooling 3 × 3 2 14 × 14 × 256

2× convolution 1 × 1 × 48 1, 0 14 × 14 × 48
convolution 1 × 1 × 192 | 3 × 3 × 192 1, 0 | 1, 1 14 × 14 × 384

2× convolution 1 × 1 × 64 1, 0 14 × 14 × 64
convolution 1 × 1 × 256 | 3 × 3 × 256 1, 0 | 1, 1 14 × 14 × 512

convolution 1 × 1 × 1000 1, 0 14 × 14 × 1000
avg pooling 14 × 14 - 1 × 1 × 1000

The output of the 4ᵗʰ Fire module is chosen as feature map for using
SqueezeNet v1.0, SqueezeNet v1.1, and ZynqNet as base network. Weights
pre-trained on ImageNet are used to initialize the SqueezeNet models¹ and

¹ https://github.com/DeepScale/SqueezeNet

143

https://github.com/DeepScale/SqueezeNet

7 Runtime Optimization

ZynqNet¹. Each model is trained for 35,000 iterations using the Adam
optimizer with a batch size of 16 and an initial learning rate of 0.001.

Table 7.6: Schematic structure of ZynqNet, which alternatingly employs 3 × 3 and 1 × 1 convolu-
tions as squeeze layers in the Fire modules. The stride of these 3 × 3 convolutions is set
to 2 to conduct down-sampling, while max pooling layers are discarded. The initial
network used for classification is designed for input images of size 256 × 256 pixels.

Layer Type Kernel Size Stride, Pad Output Dim.
convolution 3 × 3 × 64 2, 1 128 × 128 × 64
convolution 3 × 3 × 16 2, 1 64 × 64 × 16
convolution 1 × 1 × 64 | 3 × 3 × 64 1, 0 | 1, 1 64 × 64 × 128
convolution 1 × 1 × 16 1, 0 64 × 64 × 16
convolution 1 × 1 × 64 | 3 × 3 × 64 1, 0 | 1, 1 64 × 64 × 128
convolution 3 × 3 × 32 2, 1 32 × 32 × 32
convolution 1 × 1 × 128 | 3 × 3 × 128 1, 0 | 1, 1 32 × 32 × 256
convolution 1 × 1 × 32 1, 0 32 × 32 × 32
convolution 1 × 1 × 128 | 3 × 3 × 128 1, 0 | 1, 1 32 × 32 × 256
convolution 3 × 3 × 64 2, 1 16 × 16 × 64
convolution 1 × 1 × 256 | 3 × 3 × 256 1, 0 | 1, 1 16 × 16 × 512
convolution 1 × 1 × 64 1, 0 16 × 16 × 64
convolution 1 × 1 × 192 | 3 × 3 × 192 1, 0 | 1, 1 16 × 16 × 384
convolution 3 × 3 × 112 2, 1 8 × 8 × 112
convolution 1 × 1 × 256 | 3 × 3 × 256 1, 0 | 1, 1 8 × 8 × 512
convolution 1 × 1 × 112 1, 0 8 × 8 × 112
convolution 1 × 1 × 368 | 3 × 3 × 368 1, 0 | 1, 1 8 × 8 × 736
convolution 1 × 1 × 512 | 1 × 1 × 512 1, 0 8 × 8 × 1024
avg pooling 8 × 8 - 1 × 1 × 1024

¹ https://github.com/dgschwend/zynqnet

144

https://github.com/dgschwend/zynqnet

7.1 Lightweight Feature Extraction

7.1.3 Auxiliary Techniques for Runtime Optimization

Besides the exploitation of computation-efficient CNN architectures, further
techniques that are conducted in the context of this thesis to optimize the
inference time are presented in the following.

Filter Pruning

As base networks are generally pre-trained for classification on benchmark
datasets comprising a large number of classes, e.g., ImageNet with 1000
classes, these networks are often over-parameterized for detection tasks
with only a few classes. In literature, there exist several techniques to re-
duce the number of parameters and consequently the model size such as
PCA decomposition [Wen17], random pruning [Li16, Ani17] and one-shot
pruning [Li16], whereby latter proved to outperform the other mentioned
techniques [Ani17].

In this thesis, the one-shot pruning strategy proposed by Li et al. [Li16] is ap-
plied to remove filters with redundant information, which are dispensable for
the task of vehicle detection in aerial imagery. In an initial stage, the one-shot
pruning, which is applied on an already trained network, measures the rela-
tive importance of each filter 𝑓𝑖 within a convolutional layer by calculating its
ℓ1-norm ‖𝑓𝑖‖1. ‖𝑓𝑖‖1 represents the average magnitude of its kernel weights
and thus, gives an expectation of the magnitude of the output feature map,
i.e., smaller kernel weights tend to produce output feature maps with weak
activations. For each filter 𝑓𝑖 within a convolutional layer, ‖𝑓𝑖‖1 is calculated
as ∑𝑛𝑖

𝑗=0|𝑓𝑖𝑗| where 𝑓𝑖𝑗 is the 𝑗𝑡ℎ kernel weight of filter 𝑓𝑖 . For every convolu-
tional layer, the filters are then sorted according to the ℓ1-norm, which proved
to be a good criterion to judge the usefulness of a particular filter [Li16]. Next,
a fixed percentage of filters with the lowest ℓ1-norm is removed from the par-
ticular convolutional layer. Finally, the condensed network is re-trained in
order to regain any knowledge lost during the pruning process.

145

7 Runtime Optimization

Merged Batch Normalization

As described in Section 2.1.3, batch normalization is used to accelerate the
training and to make the gradient propagation in the network more stable.
Therefore, the network activations are normalized to zero mean and unit vari-
ance and transformed through the learned parameters 𝛾𝑖 and 𝛽𝑖 as defined in
eq. (2.8) and eq. (2.9), respectively, which can be rewritten as:

h̃
𝐵𝑁
𝑖 = 𝛾𝑖

(W𝑖h𝑖−1 + b𝑖) − 𝜇ℬe

√𝜎2ℬ + 𝜖
+ 𝛽𝑖e. (7.1)

As 𝜇, 𝜎2, 𝛾𝑖 and 𝛽𝑖 are constant during inference, they can be merged into
the weights and biases of the previous convolutional layer as proposed in
[Fu17]. Note that 𝜇 and 𝜎2 are the average of the mean and variance values
computed for each batch during training. The new convolutional layer can
then be written as eq. (7.4), where Ŵ𝑖 and b̂𝑖 are the rescaled weights and
biases of layer 𝑖 given in eq. (7.2) and eq. (7.3), respectively.

Ŵ𝑖 = 𝛾𝑖(
W𝑖

√𝜎2 + 𝜖
) (7.2)

b̂𝑖 = 𝛾𝑖(
b𝑖 − 𝜇e
√𝜎2 + 𝜖

) + 𝛽𝑖e (7.3)

h̃
𝐵𝑁
𝑖 = Ŵ𝑖h𝑖−1 + b̂𝑖 (7.4)

Merging batch normalization related variables into the weights and biases
of the previous convolutional layers leads to improved inference time, as the
additional computational costs of the batch normalization layers are removed.

Computation-Efficient Classification Heads

As described in Section 7.1.1, (𝑐 + 4)𝑘 convolutional filters with kernel size
3 × 3 are applied at each feature map location to predict 𝑐 confidence scores

146

7.1 Lightweight Feature Extraction

and four bounding box offsets relative to the anchor boxes. In the context of
this thesis, the number of categories 𝑐 is set to 2, i.e., background and category
vehicle, and the number of anchor boxes is set to 5, yielding in total 30 convo-
lutional filters. Motivated by the modifications proposed in [San18, Wan18b],
the parameter count and computational costs can be reduced by replacing
the expensive 3 × 3 convolutions with more lightweight building blocks. In
the following, three different building blocks are considered as classification
head, i.e., DSCs, 1 × 1 convolutions and 1 × 1 group convolutions.

7.1.4 Experiments and Discussion

The effect of the employed base network on the detection performance is eval-
uated on the DLR 3K dataset. Table 7.7 gives the detection accuracy by means
of AP and the inference time benchmarked on the server and desktop setup
introduced in Section 5.2.4. The inference speed reported in frames per second
(FPS) is averaged over 500 forward passes on images with size 936 × 936 pixels.
As for Faster R-CNN timings, all time measurements exclude preprocessing
steps and 10 forward passes are performed to warm-up the GPU kernels. Note
that the benchmarks do not include the NMS stage to better judge the impact
of architectural changes.

Using VGG16 as base network exhibits the best AP, which is roughly on par
with Faster R-CNN (see Section 5.2). However, the inference time, in par-
ticular on the desktop setup, may not be satisfactorily for real-world applica-
tions often requiring processing of even larger images, e.g., full HD. Replacing
VGG16 with the computation-efficient CNN architectures leads to a vast gain
in inference speed. For MobileNet, ShuffleNet and PeleeNet that are trained
with batch normalization layers, the inference times are reported with and
without these layers. Using the merging process described in Section 7.1.3
results in considerably improved inference times, while the inference times
with batch normalization layers are only slightly better compared to VGG16.
Note that the merging process does not affect the detection accuracy, as it is
only an identity transformation. Hence, all further results are reported with
merged batch normalization layers.

147

7 Runtime Optimization

Table 7.7: Comparison of the inference time in FPS for different computation-efficient CNN ar-
chitectures used as base network for the SSD detector. Models marked with BN in-
clude the batch normalization layers during deployment.

Base Network AP (in %) Time (in FPS)
Server Desktop

VGG16 93.8 17.9 4.1
MobileNet𝐵𝑁 93.6 27.5 11.4
MobileNet 93.6 81.2 30.0
ShuffleNet𝐵𝑁 92.7 33.6 17.6
ShuffleNet 92.7 52.1 29.5
PeleeNet𝐵𝑁 93.8 23.2 11.4
PeleeNet 93.8 96.1 31.3
SqueezeNet v1.0 93.7 88.8 28.1
SqueezeNet v1.1 93.6 119.8 40.9
ZynqNet 93.7 121.2 41.6

ZynqNet exhibits overall the best inference time without large drop in detec-
tion accuracy. Compared to the VGG16 baseline the inference time is speeded
up by a factor of 6.8 and 10.1 on the server and desktop setup, respectively.
Among the computation-efficient CNN architectures, using PeleeNet as base
network yields the best detection accuracy reaching VGG16-level AP, while
outperforming the inference time for MobileNet and ShuffleNet by 14.9 and
44.0 FPS on the server setup. ShuffleNet exhibits overall the worst detec-
tion accuracy due to its fast down-sampling strategy to reduce computational
costs. For this reason, ShuffleNet is not considered for further experiments.

Impact of Filter Pruning

To further accelerate the inference time, the number of parameters are re-
duced by performing the filter pruning strategy described in Section 7.1.3. For
this, two different pruning thresholds are considered, removing either 25% or
50% of the filters with the lowest ℓ1-norm. In case of PeleeNet, convolutional

148

7.1 Lightweight Feature Extraction

layers of the initial Stem Block and of the Two-Way Dense Layers compris-
ing only maximal 16 channels are saved from pruning. In case of ZynqNet,
squeeze layers that possess already a small number of channels are saved from
pruning. Preliminary experiments showed that pruning layers with an al-
ready small number of channels results in worse detection accuracy, as too
small number of channels are not enough to retain all the information. In
case of MobileNet, the width multiplier 𝜉 is set to 0.5 and 0.75, respectively,
which is an alternative strategy to reduce the number of channels. Note that
for training, each MobileNet model is initialized with the official weights pre-
trained on ImageNet for the particular 𝜉.

Table 7.8: Comparison of the inference time in FPS for condensed base networks. Therefore, the
number of parameters of MobileNet is reduced by setting the width multiplier 𝜉 to
0.5 and 0.75, respectively, while one-shot pruning is applied on PeleeNet and ZynqNet
keeping the 𝛼% of channels with the highest ℓ1-norm.

Base Network AP (in %) Time (in FPS)
Server Desktop

MobileNet𝜉=1.00 93.6 81.2 30.0
MobileNet𝜉=0.75 93.2 98.6 37.3
MobileNet𝜉=0.50 92.3 131.0 51.0
PeleeNet𝛼=1.00 93.8 96.1 31.3
PeleeNet𝛼=0.75 93.7 99.6 31.8
PeleeNet𝛼=0.50 93.6 106.9 35.6
ZynqNet𝛼=1.00 93.7 121.2 41.6
ZynqNet𝛼=0.75 93.6 143.9 49.5
ZynqNet𝛼=0.50 93.1 181.7 61.6

The impact of reducing the number of parameters on the detection perfor-
mance is given in Table 7.8. On both setups, using ZynqNet with 50% removed
filters as base network results in the highest number of FPS, which is roughly
increased by a factor of 1.5 compared to the unpruned network. Compared to
the VGG16 baseline, the inference time is even speeded up by a factor of 10.2
and 15.0 on the server and desktop setup. The vast gain in inference speed by

149

7 Runtime Optimization

removing filters is achieved for MobileNet, as in contrast to PeleeNet and Zyn-
qNet the number of channels is reduced for all convolutional layers. Remov-
ing filters in case of PeleeNet only slightly improves the inference time, while
the detection accuracy remains almost constant. The small gain in inference
time is due to the limited number of layers that are pruned. Note that typi-
cally the computational effort for these layers is already reduced by a preced-
ing 1 × 1 convolutional layer minimizing the amount of input channels. The
almost constant detection accuracy indicates that even computation-efficient
CNN architectures are over-parameterized for the task of vehicle detection in
aerial imagery and can be further condensed. This is confirmed by the only
slightly decreasing AP for MobileNet𝜉=0.75 and ZynqNet𝛼=0.75.

Impact of Computation-Efficient Classification Heads

The effect of replacing the standard classification head comprised of 3 × 3 con-
volutions with more lightweight building blocks is evaluated in Table 7.9. For
this purpose, PeleeNet and ZynqNet are used as base networks, exhibiting so
far the best AP and best inference time, respectively. The number of groups
is set to 2 for the experiments involving group convolutions, so that the num-
ber of input and output channels are evenly divided. Two variants employ-
ing DSCs are evaluated, as the convolutional filters for the classification and
regression are natively split into two separate branches, i.e., one for classifi-
cation and one for regression. The first variant pursues the native procedure
and employs separate DSCs for each branch. The second variant referred to
as shared DSC shares the first 3 × 3 depthwise convolutions for both branches,
while the subsequent pointwise convolutions are divided for each branch.

The results indicate that every building block could replace the standard 3 × 3
convolutions as classification head without loss of accuracy, which is in accor-
dance with observations on detection benchmark datasets [San18, Wan18b].
In terms of inference time, exploiting 1 × 1 convolutions or 1 × 1 group con-
volutions leads to a slightly increased number of FPS, while models involving
depthwise separable convolutions experience a slightly decreased number of
FPS. A reason for this small drop in inference speed is the additional memory

150

7.1 Lightweight Feature Extraction

access by employing a classification head comprised of two layers, i.e., depth-
wise and pointwise convolutions, instead of a single layer. Thus, using the
shared variant reduces this effect and results in an increased number of FPS
compared to its counterpart.

Table 7.9: Comparison of the inference time in FPS for different building blocks used as classi-
fication head.

Base Network Classification Head AP (in %) Time (in FPS)
Server Desktop

PeleeNet 3 × 3 conv. 93.8 96.1 31.3
PeleeNet 1 × 1 conv. 93.8 98.5 32.1
PeleeNet 1 × 1 group conv. 93.8 98.6 32.1
PeleeNet separated DSC 93.8 86.4 29.6
PeleeNet shared DSC 93.8 92.7 30.9
ZynqNet 3 × 3 conv. 93.7 121.2 41.6
ZynqNet 1 × 1 conv. 93.7 124.3 43.0
ZynqNet 1 × 1 group conv. 93.7 124.8 43.1
ZynqNet separated DSC 93.8 106.5 38.3
ZynqNet shared DSC 93.7 113.8 41.3

Finally, the different architectural modifications from the experiments above
are combined for PeleeNet and ZynqNet. For this, one-shot pruning is ap-
plied with 𝛼=0.5 and 1 × 1 convolutions are employed as classification head,
replacing the computational more expensive 3 × 3 convolutions. Note that
1 × 1 group convolutions are not applied due to their slightly worse AP in
case of ZynqNet (see Table 7.9). The resulting inference times and detection
accuracies are given in Table 7.10. The final PeleeNet exhibits a considerably
improved inference speed compared to the VGG16 baseline, i.e., by factor 6.1
and 8.8 on the server and desktop setup, while the detection accuracy is on
par with the VGG16 baseline. The final ZynqNet achieves the highest infer-
ence speed, outperforming the final PeleeNet and the VGG16 baseline by fac-
tor 1.7 (1.8) and 10.5 (15.5), respectively, on the server setup (desktop setup).
However, the detection accuracy is slightly worse compared to PeleeNet and
VGG16. In addition to a speed-up, the performed architectural modifications

151

7 Runtime Optimization

lead to considerably reduced numbers of parameters, in particular, due to the
application of the lightweight CNN architectures. Filter pruning and replac-
ing the classification head further decrease the parameter count of PeleeNet
and ZynqNet by 47.1% and 63.3%. The clearly improved inference time and sig-
nificantly smaller model size allow now the usage on mobile platforms with
limited resources.

Table 7.10: Comparison of the parameter count and inference time for selected CNN architec-
tures. The final CNN architectures involve architectural modifications from the ex-
periments above, i.e., one-shot pruning with 𝛼=0.5 and 1 × 1 convolutions as classi-
fication head.

Base Network Parameter AP (in %) Time (in FPS)
Count Server Desktop

VGG16 7,774,046 93.8 17.9 4.1
PeleeNet 278,558 93.8 96.1 31.3
PeleeNet𝛼=0.50; 1 × 1 conv. 147,422 93.6 108.3 36.1
ZynqNet 230,782 93.7 121.2 41.6
ZynqNet𝛼=0.50; 1 × 1 conv. 84,734 93.0 187.1 63.5

7.1.5 Adoption to Faster R-CNN

In the following, ZynqNet is adopted as base network for Faster R-CNN, as
it possesses the largest speed-up for the SSD detector. For this purpose, the
output of the 4ᵗʰ Fire module is chosen as feature map analogous to the SSD
detector. Note that the stride of the initial 3 × 3 convolutional layer is set to 1
in the 3ʳᵈ Fire module. Thus, the employed feature map is only down-sampled
by a factor of four as required for an accurate localization of small objects
in case of high GSDs (see Section 5.2.3). In contrast to SSD, Faster R-CNN
comprises an additional classification stage, which has to be adapted for the
new base network. As described in Section 5.1.2, the classification stage is
composed of a RoI pooling layer, which converts for each region proposal the
corresponding features into a feature map with fixed spatial extent, followed

152

7.1 Lightweight Feature Extraction

by a sequence of fully connected layers branching in two fully connected lay-
ers: one for classification and one for bounding box regression. Note that by
default the sequence of fully connected layers is adopted from the VGG16 base
network. Due to the absence of fully connected layers in ZynqNet, different
combinations of layers are examined as so-called classification head. The first
examined classification head, in the following termed ZynqNet-Head, com-
prises all layers from ZynqNet after the 5ᵗʰ Fire module through the 9ᵗʰ Fire
module followed by the two sibling fully connected layers for classification
and regression, which remain unchanged for all setups. Furthermore, the de-
fault classification head termed VGG-Head is employed, whereby the fully
connected layers are randomly initialized by using the Gaussian weight filler
method. To retain a small parameter count, two variations of the VGG-Head
classification head comprising fewer parameters are examined. For this, the
number of outputs of each fully connected layer is reduced by factor 2 and 4,
respectively.

Table 7.11: Comparison of the detection accuracy and the inference time for Faster R-CNN with
different base networks on the DLR 3K dataset. For the ZynqNet architecture, dif-
ferent combinations of layers are examined as classification head due to the absence
of fully connected layers.

Base Network Classification Head AP (in %) Time (in ms)
Server Desktop

VGG16 VGG-Head 94.3 286.2 663.5
ZynqNet ZynqNet-Head 93.8 164.9 227.8
ZynqNet VGG-Head 94.1 188.0 313.2
ZynqNet VGG0.5-Head 94.1 166.7 227.0
ZynqNet VGG0.25-Head 93.3 156.9 196.1

The impact of replacing the base architecture of Faster R-CNN on the de-
tection accuracy and inference time is depicted in Table 7.11. For this, the
time measurements are performed in accordance to Section 5.2.4. All models
employing ZynqNet as base network are trained for 40,000 iterations using
the training settings introduced in Section 5.1.3. Weights pre-trained on Im-
ageNet are used for initializing the base network. Employing ZynqNet as

153

7 Runtime Optimization

base network results in a significantly reduced inference time on both setups.
Using the ZynqNet-Head as classification head exhibits slightly worse AP in
comparison to the VGG-Head, while the inference time is notably reduced
especially on the desktop setup. Employing the VGG0.5-Head, whose fully
connected layers comprise only 2048 outputs instead of 4096, yields inference
times similar to the ZynqNet-Head, while the detection accuracy is on par
with the VGG-Head. Decreasing the number of outputs further to speed up
the inference time results in worse AP.

Table 7.12: Comparison of the inference time for each component of the Faster R-CNN with
different base networks.

Base Network Component Time (in ms)
Server Desktop

VGG16 Feature Extractor 58.9 177.4
RPN 139.8 212.8
Classification Stage - VGG-Head 87.5 273.3

ZynqNet Feature Extractor 21.7 38.9
RPN 122.4 119.8
Classification Stage - ZynqNet-Head 20.8 69.1
Classification Stage - VGG-Head 43.9 154.5
Classification Stage - VGG0.5-Head 22.6 68.3
Classification Stage - VGG0.25-Head 12.8 37.4

The impact of replacing the base network on the inference time for each com-
ponent is given in Table 7.12. Using ZynqNet, which is more computation-
efficient than VGG16, considerably reduces the time spent for feature extrac-
tion, i.e., by 63% on the server and 78% on the desktop setup. Besides the
considerably reduced time spent for feature extraction, the inference time of
the RPN and classification stage are improved as well, as the employed fea-
ture map comprises fewer channels and consequently, the number of input
channels is reduced for both stages. Employing the ZynqNet-Head instead
of the VGG-Head results in roughly halved inference time for the classifica-
tion stage. Similar inference times are achieved on both setups by halving

154

7.1 Lightweight Feature Extraction

the number of outputs of the fully connected layers of the VGG-Head. Thus,
VGG0.5-Head is applied as classification head in the following.

Table 7.13 shows the detection accuracy for Faster R-CNN using ZynqNet as
base network with respect to various GSDs. Compared to VGG16, employing
ZynqNet as base network results only in slightly worse AP, which indicates
the applicability of the proposed computation-efficient CNN architecture even
for high GSDs.

Table 7.13: AP (in %) for Faster R-CNN using VGG16 and ZynqNet as base network with respect
to the GSD. VGG0.5-Head is applied as classification head in case of ZynqNet.

Base GSD (in cm)
Network 13 19.5 26
VGG16 94.3 89.4 83.2
ZynqNet 94.1 89.1 82.0

Impact of Filter Pruning

To further reduce the inference time, the one-shot pruning strategy described
in Section 7.1.3 is applied. The effect of removing filters from the base net-
work on the detection accuracy and inference time is given in Table 7.14. For
this, either 75% or 50% of the filters with the highest ℓ1-norm are kept. Ac-
cording to Section 7.1.4, squeeze layers are saved from pruning due to their
already small number of channels. Each condensed network is then re-trained
to regain any knowledge lost during the pruning process. The inference time
clearly decreases by removing filters from the base network especially on the
desktop setup. Removing 25% of the filters reduces the time spent for fea-
ture extraction by roughly 20% on both setups, while the detection accuracy
is almost on par with the unpruned network. The AP slightly drops when
50% of the filters are removed, while the time spent for feature extraction de-
creases by 36% and 43% on the server and desktop setup, respectively. The
inference time for the RPN and classification stage are also reduced because
of the smaller number of input channels.

155

7 Runtime Optimization

Table 7.14: Comparison of the overall inference time and the time spent for each component of
the Faster R-CNN with pruned base networks. Therefore, the 𝛼% of channels with
the highest ℓ1–norm are kept.

Base Network Component AP (in %) Time (in ms)
Server Desktop

ZynqNet𝛼=1.00 Feature Extractor 94.1 21.7 38.9
RPN 122.4 119.8
Classification Stage 22.6 68.3
Total 166.7 227.0

ZynqNet𝛼=0.75 Feature Extractor 94.0 17.5 30.4
RPN 120.9 113.6
Classification Stage 15.7 50.3
Total 154.1 194.3

ZynqNet𝛼=0.50 Feature Extractor 93.7 13.8 22.3
RPN 117.9 109.4
Classification Stage 12.4 34.9
Total 144.1 166.6

Impact of Modified RPN

So far, only the classification head, i.e., layers of the classification stage, has
been modified to speed up the inference time without loss in detection accu-
racy. Modifying the prediction layers of the RPN further reduces the inference
time as shown in Table 7.15. For this purpose, the initial 3 × 3 convolutional
layer comprising 512 channels is removed, so that the RPN is only composed
of two sibling 1 × 1 convolutional layers. Thus, the structure of the RPN is
equivalent to the prediction layers of the SSD detector, which is in essence a
class-specific RPN. The modified RPN decreases the time spent for generating
candidate regions and consequently, the overall inference time. The speed-up
is more distinctive in case of the unpruned network due to the higher number
of input channels for the RPN. The AP remains almost unchanged, which con-
firms the results achieved for SSD with different classification heads, namely,
that 1 × 1 convolutions are adequate as prediction layers for vehicle detection
in aerial imagery.

156

7.2 Search Area Reduction

Table 7.15: Comparison of the overall inference time and the time spent for the RPN in case of
adapted prediction layers for the RPN.

Base Network Component AP (in %) Time (in ms)
Server Desktop

ZynqNet𝛼=1.00 RPN 94.1 117.8 109.2
Total 162.1 216.4

ZynqNet𝛼=0.75 RPN 94.0 116.5 106.1
Total 149.7 186.9

ZynqNet𝛼=0.50 RPN 93.5 114.7 103.5
Total 140.9 160.7

The performed adaptations to the base network and prediction layers yield
significantly decreased inference times, whereby in particular the time spent
for the feature extraction and for the classification stage are clearly reduced
on both setups. The bottleneck in terms of inference time is the RPN. While
the inference time of its prediction layers is relatively small, the most time-
consuming parts of the RPN are the mapping of the predictions to the image
coordinates and the subsequent filtering of the candidate regions by means of
their confidence score via NMS. In the next section, a procedure is proposed
aiming at reducing the inference time of the RPN, amongst others.

7.2 Search Area Reduction

Restricting the search area to areas of interest, e.g., roads for vehicle detec-
tion, is an often applied preprocessing step in conventional object detection
pipelines. In particular for vehicle detection in aerial imagery, both the com-
putational costs for extracting feature descriptors as well as the subsequent
classification and the number of false positive detections are reduced. While
benchmark detection datasets typically comprise objects that are almost im-
age filling, only a small fraction of aerial imagery datasets is occupied by ob-
jects, i.e., vehicles, due to their small dimensions in the range of only a few
pixels. For instance, images of PASCAL VOC 2007 are occupied by more than

157

7 Runtime Optimization

50% with GT annotations, whereas in case of DLR 3K only about 1% of the
images are covered by GT annotations. Therefore, the majority of the input
image is no area of interest and is not relevant for predicting objects (see Fig-
ure 7.5). In case of real-world applications, this is often more distinct as the
image fraction covered by vehicles often further decreases especially in rural
areas that may contain no vehicle at all.

Figure 7.5: Examples of DLR 3K comprising large areas without vehicles.

As conventional object detectors generally compute features for each candi-
date window separately, the restriction only to areas of interest is straightfor-
ward to realize, e.g., by prior filtering out of non relevant candidate windows.
In the context of this thesis, a novel Search Area Reduction (SAR) module
is proposed to reduce the search area within deep learning based detection
frameworks such as Faster R-CNN. The extension of Faster R-CNN by the
proposed SAR module is schematically illustrated in Figure 7.6. In essence,
the SAR module divides the employed feature map into tiles that correspond
to certain areas of the input image and predicts a confidence score of how
likely a tile and consequently the respective area of the input image contains
at least one object. Based on this confidence score, an adaptive set of tiles
is forwarded to the components of the detection module, i.e., the RPN and

158

7.2 Search Area Reduction

classification stage. By filtering out tiles that do not contain any vehicles, the
inference time of the actual detection module is reduced. In contrast to pre-
vious approaches, the SAR module is directly integrated into the detection
pipeline. For this purpose, the SAR module and Faster R-CNN are realized
within a single network by sharing the convolutional features. In the follow-
ing, the SAR module and the implementation details are presented in detail.
Ablation experiments are further conducted to demonstrate the effect of the
proposed SAR module on the inference time.

Search Area Reduction

Feature Extraction Classification Stage

RPN

Pr
op

os
al

s

RoI Pooling

Anchor
Boxes

Cls.

Reg.

Cls.

Reg.

Cls.

SAR

Figure 7.6: Schematic illustration of Faster R-CNN extended by an integrated Search Area Re-
duction (SAR) module to adaptively reduce the search area. The SAR module divides
the input image into tiles and predicts a confidence score of how likely a tile contains
at least one object. As only tiles that likely contain at least one object are forwarded
to the components of the detection module, the inference time of the actual detection
module is reduced.

7.2.1 Search Area Reduction Module

The main principle of the proposed approach to reduce the search area is the
division of the input image into small tiles that are then classified into tiles
containing at least one object or none. To realize this within a deep learning
based detection framework, a SAR module comprised of three components is

159

7 Runtime Optimization

developed as depicted in Figure 7.7. Furthermore, the proposal layer is mod-
ified to map the generated region proposals that are given inside each tile to
their position in the input image.

RPN

conv3_3

conv4_3

conv5_1

conv4_2
conv4_1

conv5_2
conv5_3

sub-division-
SAR layer

sub-division-
RPN layer

SAR classifier

proposal layer

Classification
Stage

1 1 conv×

Figure 7.7: Schematic structure of the SAR module. Novel components introduced to perform
the SAR are highlighted in dark orange. Furthermore, the proposal layer is modified
to map the generated region proposals to their position in the input image.

The first component divides the input image into equally sized tiles. For this
purpose, a novel implemented layer called sub-division-SAR layer is intro-
duced. Instead of dividing the input image directly into tiles and computing
the convolutional features for each tile separately, the sub-division-SAR layer
is applied on the output of the last convolutional layer, i.e., conv5_3. Thus, the
computational effort is reduced, as the computation of convolutional features
is shared between adjacent tiles. Note that adjacent tiles slightly overlap in
order to avoid split objects at tile edges, which may result in misclassified ob-
jects. The convolutional features for each tile are cropped and reorganized in

160

7.2 Search Area Reduction

a batch by stacking the cropped features. The batch is then processed by the
subsequent SAR classifier.

The whole network employed for SAR classification is in essence the default
VGG16 classifier comprised of five sequences of convolutional layers followed
by three fully connected layers and a final softmax layer (see Table 5.1). The
last fully connected layer comprising 1000 outputs trained for 1000-way Ima-
geNet classification is replaced by a new fully connected layer with 2 outputs
for the two classes. The subsequent softmax layer outputs the corresponding
probability distribution. As described above, all convolutional features are
computed at once for the entire image and the output of the last convolutional
layer is divided into tiles. To classify each tile into tiles containing at least
one object or none, the sequence of fully connected layers as well as the soft-
max layer denoted as SAR classifier are applied on the corresponding features.
Note that the fully connected layers require fixed input dimensions. There-
fore, the cropped features are of size 14 × 14 × 512 (width × height × channels),
which complies to the dimensions for input images of size 224 × 224 pixels as
in case of the VGG16 classification network.

To restrict the search area, i.e., area processed by the detector components,
a novel sub-division-RPN layer is applied on the output of conv3_3¹, which is
used as feature map for the RPN. The sub-division-RPN layer divides the out-
put of conv3_3 into tiles of size 56 × 56 × 512. The offsets for cropping the tiles
are set in a way so that the corresponding input image regions are equivalent
for both the sub-division-RPN layer and sub-division-SAR layer. Besides the
output of conv3_3, the sub-division-RPN layer takes as additional input the
classification results of the SAR classifier. Based on the classification scores,
tiles that are likely to contain at least one object are passed to the RPN, while
all other tiles are filtered out. Note that the passed tiles are stacked together
into one batch, so that the RPN can generate region proposals for all relevant
tiles at once.

¹ To adapt the number of channels required for the fully connected layers, a 1 × 1 convolutional
layer is applied on the output of conv3_3 prior to the sub-division-RPN layer.

161

7 Runtime Optimization

The original proposal layer computes the actual coordinates of each region
proposal by adding the predicted offsets to the respective reference bounding
box. As the reference bounding box is given in tile coordinates, the proposal
layer of the RPN is modified in order to map the region proposals to their
position in the input image. Therefore, a position vector generated by the
sub-division-RPN layer is taken as an additional input. The position vector
encodes the position of each tile that is forwarded from the sub-division-RPN
with regard to its position in the input image. The actual coordinates of each
region proposal are then computed by adding the offsets for the respective
tile to its position given in tile coordinates. All mapped region proposals are
then forwarded to the classification stage.

7.2.2 Implementation Details

To train the extended Faster R-CNN, a training strategy comprised of two
stages is performed. Note that training both Faster R-CNN and the SAR clas-
sifier at once is not possible, as Faster R-CNN requires at least one GT ob-
ject per training image, whereas the SAR classifier requires images with and
without GT objects. In the first stage, Faster R-CNN is trained end-to-end for
60,000 iterations. For this, the training settings described in Section 5.1.3 are
adopted. Then, the SAR classifier is trained in the second stage. To account
for the input image dimensions of the default VGG16 classifier used as base
architecture, the images of the DLR 3K dataset are split into sub-images of
size 224 × 224 pixels. Adjacent sub-images exhibit an overlap of 46 pixels. The
sub-images are divided into two categories: the first comprises all sub-images
without any GT annotation and the second contains all sub-images with at
least one GT annotation. For each sub-image, only GT annotations with an
overlapping area of 10 or more pixels to the current sub-image are considered.
Furthermore, data augmentation, i.e., horizontal and vertical flipping, is per-
formed for each sub-image yielding a total of 19,200 training images, whereof
4,656 images belong to the category with at least one object. Example images
of the training set are depicted in Figure 7.8.

162

7.2 Search Area Reduction

Figure 7.8: Example images of the training set used to train the SAR classifier for DLR 3K. The
top row shows examples for the category with at least one object, while the bottom
row shows examples for the category without objects.

The SAR classifier is trained for 10,000 iterations with a batch size of 8. The
initial learning rate is set to 0.001 and decreased after 5,000 iterations by a
factor of 10. Note that all weights of Faster R-CNN are kept fixed in the second
training stage.

For deployment, the sub-division-SAR layer, sub-division-RPN layer, and the
modified proposal layer are added to the framework to perform the search area
reduction and the detection in a single network as depicted in Figure 7.7. For
each tile, NMS is applied on the 400 region proposals exhibiting the highest
confidence score. The top-80 ranked proposals after NMS are then forwarded
to the classification stage. As the input images are divided into 25 tiles, the
maximum number of proposals before and after NMS are 10,000 and 2,000,
respectively, which is equivalent to the numbers for Faster R-CNN without
the SAR module (see Section 5.1.3). The further settings are analogous to the
settings employed for Faster R-CNN without the SAR module.

7.2.3 Ablation Experiments

The impact of the proposed SAR module on the inference time is evaluated
on the DLR 3K dataset and the VEDAI LCI dataset in order to account for
different area categories with varying vehicle distributions, as the speed-up

163

7 Runtime Optimization

in inference time depends on the number of filtered out image regions. In case
of the DLR 3K test set, 36.4% of the image tiles include at least one object, since
DLR 3K comprising mainly urban and residential areas exhibits a high traffic
volume. In contrast, VEDAI comprises more rural and nature areas with a
low traffic volume, so that only 8.2% of the image tiles in the VEDAI test set
contain at least one object.

Table 7.16: Comparison of the inference time for Faster R-CNN with and without SAR on the
DLR 3K dataset. The overall inference time and in particular the inference time for
the RPN and the classification stage are reduced by applying the SAR module.

Approach Component Time (in ms)
Server Desktop

Faster R-CNN Feature Extractor 58.9 177.4
RPN 139.8 212.8
Classification Stage 87.5 273.3
Total 286.2 663.5

Faster R-CNN + SAR Feature Extractor 78.6 284.2
sub_SAR 4.9 5.1
SAR 3.1 3.4
sub_RPN 32.3 28.5
RPN 92.2 159.8
Classification Stage 15.2 75.1
Total 226.3 556.1

Comparison of the inference time for Faster R-CNN with and without the SAR
module on the DLR 3K dataset is given in Table 7.16. For this, all timings are
performed analogous to the timings in Section 5.2.4 on two different devices.
The SAR module aims at restricting the search area and consequently reducing
the inference time without worsening the detection accuracy. Preliminary
experiments showed that the best trade-off between runtime and detection
accuracy is achieved for a confidence score threshold of 0.5 used to accept tiles
for the RPN and the subsequent classification stage. Using higher threshold
values results in false negative detections due to vehicles present in tiles that
are filtered out. Thus, the threshold value is set to 0.5 in the following.

164

7.2 Search Area Reduction

The inference time for the RPN is reduced by approximately 34% and 25% for
the server and desktop setup, respectively, due to the clearly reduced number
of feature map locations used to predict candidate regions and the clearly re-
duced number of region proposals that have to be processed in the subsequent
proposal layer. The inference time for the classification stage is even reduced
by about 83% and 73%, respectively, as the number of candidate regions to
classify is considerably reduced. However, the overall inference time is only
reduced by 21% and 16%, respectively, because of the auxiliary components
of the SAR module and the inherent computational costs for its feature ex-
traction, which takes about 27% of the overall inference time. The additional
costs are mainly due to the cropping and reorganization of convolutional fea-
tures in the sub-division-SAR and sub-division-RPN layer. Note that compu-
tational costs for the sub-division-RPN layer depend on the number of tiles
considered for detection, as only the corresponding convolutional features are
rearranged. Furthermore, additional costs depending on the number of tiles
considered for detection result from the auxiliary computational operations
in the proposal layer.

Table 7.17: Comparison of the inference time for Faster R-CNN with and without SAR on the
VEDAI dataset. The overall inference time and in particular the inference time for
the RPN and the classification stage are reduced by applying the SAR module.

Approach Component Time (in ms)
Server Desktop

Faster R-CNN Feature Extractor 66.8 214.1
RPN 155.1 255.6
Classification Stage 92.9 258.5
Total 314.8 728.2

Faster R-CNN + SAR Feature Extractor 93.1 331.5
sub_SAR 5.4 5.5
SAR 3.3 3.2
sub_RPN 15.2 12.3
RPN 29.3 50.2
Classification Stage 8.7 22.5
Total 155.0 425.2

165

7 Runtime Optimization

The impact of the SAR module on the inference time for VEDAI is given in
Table 7.17. The overall inference time is reduced by 51% and 42% on the server
and desktop setup, respectively, while the AP only marginally decreases from
97.4% to 97.3%. The feature extraction for VEDAI is more time-consuming due
to the larger input image dimensions, i.e., 1024 × 1024 vs. 936 × 936 pixels in
case of DLR 3K. The speed-up is more distinctive compared to DLR 3K due to
the lower traffic volume and consequently reduced number of tiles considered
for the RPN and the classification stage. In particular, the inference time for
the RPN is notably reduced, i.e., by 81% and 80%, respectively.

Figure 7.9: Classification results of the SAR module on DLR 3K. Highlighted regions are clas-
sified as region with at least one object and are considered for detection. Regions
labeled in blue contain vehicles, whereas regions labeled in red contain no vehicles.

166

7.2 Search Area Reduction

Qualitative visualizations of the reduced search area are depicted in Figure 7.9
and Figure 7.10. Highlighted regions possess a confidence score about the
presence of at least one vehicle above 0.5 and are considered for detection.
Regions labeled in blue are correctly classified and contain at least one vehicle,
whereas regions labeled in red contain no vehicle. On both datasets, the SAR
module is able to reliably identify tiles that contain at least one object even
in case of housing areas with complex backgrounds and in case of areas off
paved roads that typically contain no vehicles. Tiles without vehicles that are
misclassified generally comprise structures with shapes similar to vehicles.

Figure 7.10: Classification results of the SAR module on VEDAI. Highlighted regions are clas-
sified as region with at least one object and are considered for detection. Regions
labeled in blue contain vehicles, whereas regions labeled in red contain no vehicles.

167

7 Runtime Optimization

The visualizations also indicate the potential as well as the limitation of the
proposed SAR module to reduce the inference time. While in case of rural
areas (see Figure 7.10) the majority of the tiles contain no vehicle and are fil-
tered out, DLR 3K comprises images with high traffic volume across the entire
scene, so that the search area is only marginally reduced (see Figure 7.9 bot-
tom row). As the computational costs for the RPN and classification stage and
consequently the inference time depend on the number of tiles without vehi-
cles that are filtered out, the speed-up increases with fewer tiles considered
for detection. Figure 7.11 shows the relation between speed-up compared to
Faster R-CNN without SAR and the number of tiles filtered out exemplarily
for DLR 3K on the server setup. For this, the number of tiles considered for
detection is fixed for each image and not based on the confidence score about
the presence of at least one vehicle. The timings are performed accordingly
to Section 5.2.4. Due to the auxiliary computational costs of the SAR module,
the removed search area has to comprise at least 10 tiles, which is 40% of the
image, to reduce the inference time. However, in case of images that comprise
only a few tiles that contain at least one vehicle, the inference time decreases
considerably, e.g., more than 125 ms if only 20% of the image regions are con-
sidered for detection. Note that the time spent for the auxiliary components
and the proposal layer may be further reduced by implementing these layers
in CUDA to allow computation on a GPU.

Number of Tiles

Δ
t (

in
 m

s)

5 10 15 20

100

-100

-150

-50

50

0

Figure 7.11: Speed-up in inference time between Faster R-CNN with and without SAR with re-
spect to the number of tiles filtered out. Due to the additional computational costs
of the SAR module, at least 10 tiles, which is 40% of the image, have to be filtered
out to reduce the inference time.

168

8 Evaluation

In this chapter, the methods proposed within the context of this thesis are
extensively evaluated following the evaluation protocol given in Section 4.2.
First, different combinations of the methods proposed for improving the de-
tection accuracy (see Chapter 6) and the methods proposed for runtime op-
timization (see Chapter 7) are examined in Section 8.1. Comparison of the
combined methods to representative existing work in the literature with re-
spect to detection accuracy and inference time is provided in Section 8.2. To
demonstrate the generalization ability of the proposed methods, additional
experiments are conducted in qualitative manner on different aerial imagery
datasets in Section 8.3. Finally, a summary is given in Section 8.4.

8.1 Combined Methods for Improved
Detection and Inference Time

As real-world applications generally require high detection accuracies at real-
time or near real-time, the methods proposed for improving the detection ac-
curacy by integrating contextual knowledge and the methods proposed for
runtime optimization are combined in this section. For this, all experiments
are conducted on the DLR 3K dataset. Note that data augmentation is per-
formed for all trainings by applying vertical and horizontal flipping as well as
rotation in steps of 90 degrees.

169

8 Evaluation

Combined Integration of Spatial and Semantic Context

As demonstrated in Section 6.1 and Section 6.2, integrating spatial and seman-
tic context information results in improved detection accuracy. In the follow-
ing, the effect of combining methods that either integrate spatial or semantic
information are examined. To this end, MFD Faster R-CNN and EMT Faster
R-CNN are merged into a single network as depicted in Figure 8.1. Instead
of employing the outputs of conv4_3 and conv5_3 from the semantic labeling
branch as auxiliary feature maps for the classification stage by extracting the
corresponding features for each candidate region via RoI pooling, the CEM
introduced in Section 6.1.1 is inserted to create a single high-resolution fea-
ture map. At first, the features from conv5_3 are up-sampled and combined
with the features from conv4_3. Then, the combined features are up-sampled
and merged with the output from conv3_3. Thus, the semantically enriched
features of deeper layers from the semantic labeling branch are propagated to
the resulting feature map. Note that the proposed combination facilitates the
use of the resulting feature map for both the RPN and classification stage, so
that the candidate region generation is not only implicitly but also explicitly
affected by the semantic labeling branch. The resulting network is trained
end-to-end using the joint multi-task loss 𝐿𝑀𝑇 given in eq. (6.2). Weights
pre-trained on ImageNet are used for initialization, while all further settings
are adopted from Section 6.2.3.

RPNAnchor
Boxes

Cls.

Reg.

Pr
op

os
al

s

Cls.

Reg.

Classification Stage RoI Pooling

Semantic Labeling

CEM

Figure 8.1: Schematic illustration of the merged MFD Faster R-CNN and EMT Faster R-CNN.
Note that the outputs of conv4_3 and conv5_3 from the semantic labeling branch are
used as inputs for the CEM to create a single high-resolution feature map.

170

8.1 Combined Methods for Improved Detection and Inference Time

Table 8.1: AP (in %) of the combined EMT-MFD Faster R-CNN for various GSDs. Compared to
its individual components and the baseline Faster R-CNN, the detection accuracy is
improved for all GSDs.

Base Network GSD (in cm)
13 19.5 26

Faster R-CNN 95.0 91.9 86.0
MFD Faster R-CNN 95.9 93.2 88.5
EMT Faster R-CNN 96.2 93.3 88.9
EMT-MFD Faster R-CNN 96.3 94.1 90.4

Table 8.1 reports the detection accuracy of the merged MFD Faster R-CNN and
EMT Faster R-CNN for various GSDs. Compared to its plain counterparts and
Faster R-CNN, the detection accuracy is improved for all GSDs. Note that the
AP for MFD Faster R-CNN is higher in comparison with the AP reported in
Table 6.1 due to the performed data augmentation. While the gain in AP is mi-
nor for a GSD of 13 cm, the improvement becomes more notable with higher
GSDs. For a GSD of 26 cm, MFD Faster R-CNN and EMT Faster R-CNN are
outperformed by 1.9% and 1.5% in AP, respectively. This shows that inducing
scene knowledge via semantic labeling yields more distinctive feature repre-
sentations in deep layers as expected. Furthermore, it indicates that combin-
ing features from different layers via the CEM and the use of the resulting
feature map for both stages are beneficial towards the simple integration of
features from deep layers for classification via RoI pooling as carried out in
EMT Faster R-CNN.

Integration of Semantic Context and Lightweight Feature
Extraction

The effect of combining the integration of semantic context and the
lightweight feature extraction is examined by replacing the default base
network of EMT Faster R-CNN, i.e., VGG16, with the computation-efficient
ZynqNet architecture. The outputs of the 7ᵗʰ and 9ᵗʰ Fire module are con-
sidered as auxiliary feature maps for the classification stage to explicitly

171

8 Evaluation

integrate features from the semantic labeling branch. Additional RoI pooling
layers are applied to extract the corresponding features for each candidate
region, which are fused with the respective output of the RoI pooling layer of
the detection branch via element-wise addition as described in Section 6.2.4.
VGG0.5-Head is employed as classification head, as it exhibits the best trade-
off between detection accuracy and inference time (see Table 7.11). Joint
multi-task loss 𝐿𝑀𝑇 (see eq. (6.2)) and the settings specified in Section 7.1.5
are adopted for the training.

Table 8.2: Comparison of the detection accuracy and inference time for EMT Faster R-CNN with
different base networks.

Base Network AP (in %) Time (in ms)
Server Desktop

VGG16 96.2 317.2 824.5
ZynqNet𝛼=1.00 96.0 172.5 264.2
ZynqNet𝛼=0.75 95.1 156.0 225.6
ZynqNet𝛼=0.50 94.1 149.8 187.6

The AP and inference times for EMT Faster R-CNN with ZynqNet𝛼=1.00 as
base network are given in Table 8.2. In comparison to EMT Faster R-CNN
with VGG16, the inference time is reduced by 46% and 68% for the server
and desktop setup, respectively, while the detection accuracy only marginally
decreases. This demonstrates that even lightweight architectures are suited
as base network for EMT Faster R-CNN and thus, allow improved detection
accuracy by integration of semantic context with clearly decreased inference
time compared to the original Faster R-CNN. Removing filters from the base
network following the pruning strategy introduced in Section 7.1.3 further
boosts the inference speed. However, the detection accuracy clearly drops
with fewer filters per convolutional layer. Table 8.3 illustrates the applicability
of EMT Faster R-CNN with ZynqNet𝛼=1.00 for higher GSDs. Though the gap
in AP compared to its counterpart using VGG16 as base network increases
with higher GSD, the AP is still high for a GSD of 26 cm.

172

8.1 Combined Methods for Improved Detection and Inference Time

Table 8.3: AP (in %) for EMT Faster R-CNN using VGG16 and ZynqNet as base network with
respect to various GSDs.

Base Network GSD (in cm)
13 19.5 26

VGG16 96.2 93.3 88.9
ZynqNet𝛼=1.00 96.0 92.7 87.8

Integration of Semantic Context and Search Area
Reduction

Figure 8.2 depicts the integration of the SAR module proposed in Section 7.2
into EMT Faster R-CNN. To minimize the auxiliary computational costs for
the SAR module, the convolutional layers are shared between the semantic
labeling branch and the SAR module. Stage-wise training is performed ac-
cording to Section 7.2.2, as Faster R-CNN requires at least one GT object per
training image, whereas the SAR classifier requires images with and without
GT objects. In the initial stage, EMT Faster R-CNN is trained using the set-
tings specified in Section 6.2.3, while the SAR classifier is trained in the second
stage as described in Section 7.2.2. Note that all convolutional layers are kept
fixed during the second training stage. For inference, the further components
of the SAR module, i.e., the sub-division-SAR layer and the sub-division-RPN
layer, and the modified proposal layer are added to the framework. All set-
tings are adopted from Section 7.2.2.

As shown in Table 8.4, the times spent for region proposal generation and the
classification stage as well as the overall inference time are clearly reduced by
restricting the search area. Note that the detection accuracy marginally drops
by 0.1% in AP, as the number of false negatives increases due to incorrectly
classified image areas. Compared to EMT Faster R-CNN with ZynqNet as base
network, the detection accuracy is on par, while the gain in inference time is
smaller because of the high traffic volume in the DLR 3K dataset.

173

8 Evaluation

Search Area Reduction

Cls.

SAR

RPNAnchor
Boxes

Cls.

Reg.

Pr
op

os
al

s

Su
m

Classification St.

Cls.

Reg.

Sem. Lab. RoI P.

RoI P.

RoI P.

Figure 8.2: Schematic illustration of the EMT Faster R-CNN with SAR. Features from the seman-
tic labeling branch are explicitly added for each region proposal by way of additional
RoI pooling layers and element-wise addition.

Table 8.4: Comparison of the inference time for EMT Faster R-CNN with and without SAR. The
overall inference time and in particular the inference time for the RPN and the classi-
fication stage are reduced by applying the SAR module.

Feature Map Component Time (in ms)
Server Desktop

EMT Faster R-CNN Feature Extractor 80.4 286.1
RPN 135.0 209.7
Classification Stage 101.8 328.7
Total 317.2 824.5

EMT Faster R-CNN + SAR Feature Extractor 81.5 286.0
sub_SAR 5.0 4.8
SAR 3.2 3.8
sub_RPN 33.1 30.9
RPN 93.7 161.1
Classification Stage 21.7 95.3
Total 238.2 581.9

174

8.1 Combined Methods for Improved Detection and Inference Time

Integration of Spatial Context and Lightweight Feature
Extraction

To combine the integration of spatial context and the lightweight feature ex-
traction, ZynqNet is applied as base network for MFD Faster R-CNN. The in-
tegration of spatial context from deeper layers is conducted in a stage-wise
manner by applying the CEM introduced in Section 6.1.1. The output from
the 9ᵗʰ Fire module is up-sampled and combined with the output from the
7ᵗʰ Fire module. The combined features are up-sampled and combined with
the output from the 5ᵗʰ Fire module. The resulting feature map enriched with
features that comprise more contextual information is then used as input for
the RPN and classification stage. Due to its good trade-off between detection
accuracy and inference time in case of Faster R-CNN with ZynqNet as base
network, VGG0.5-Head is employed as classification head. For training, the
staged fine-tuning scheme proposed in Section 6.1.2 is adopted.

The AP and inference times for MFD Faster R-CNN with ZynqNet𝛼=1.00
as base network are given in Table 8.5. The inference time is signifi-
cantly reduced on both setups by replacing the default base network with
ZynqNet𝛼=1.00, while the decrease in AP is small. Applying the pruning
strategy introduced in Section 7.1.3 to remove redundant filters yields a
further acceleration as expected. The drop in AP with fewer filters per
convolutional layer is smaller compared to EMT Faster R-CNN with ZynqNet
(see Table 8.2).

Table 8.5: Comparison of the detection accuracy and inference time for MFD Faster R-CNN with
different base networks.

Base Network AP (in %) Time (in ms)
Server Desktop

VGG16 95.9 316.3 815.2
ZynqNet𝛼=1.00 95.8 167.8 283.6
ZynqNet𝛼=0.75 95.3 162.5 233.3
ZynqNet𝛼=0.50 94.5 142.3 190.9

175

8 Evaluation

Table 8.6: AP (in %) for MFD Faster R-CNN using VGG16 and ZynqNet as base network with
respect to various GSDs.

Base Network GSD (in cm)
13 19.5 26

VGG16 95.9 93.2 88.5
ZynqNet𝛼=1.00 95.8 92.5 88.1

The applicability of MFD Faster R-CNN with ZynqNet𝛼=1.00 for higher GSDs
is demonstrated in Table 8.6. While the detection accuracy drops by 0.7% in
AP compared to MFD Faster R-CNN with VGG16 for a GSD of 19.5 cm, the
drop in AP is only 0.4% for a GSD of 26 cm.

Integration of Spatial Context and Search Area Reduction

RPNAnchor
Boxes

Cls.

Reg.

Pr
op

os
al

s
Cls.

Reg.

Classification Stage RoI Pooling

Search Area Reduction

Cls.

SAR

CEM

Figure 8.3: Schematic illustration of the MFD Faster R-CNN with SAR. Note that the combined
feature map is divided into tiles and region proposals are only generated for tiles that
are likely to contain at least one object based on the SAR classification.

The SAR module is added to the MFD Faster R-CNN as illustrated in Figure 8.3.
The model is trained in a stage-wise manner. MFD Faster R-CNN is initially
trained according to Section 6.1.2. In the second stage, the SAR classifier is
trained as specified in Section 7.2.2, whereby all convolutional layers are kept
fixed. For deployment, the further components of the SAR module and the
modified proposal layer are added to the framework and the settings stated in
Section 7.2.2 are adopted.

176

8.1 Combined Methods for Improved Detection and Inference Time

Table 8.7: Comparison of the inference time for MFD Faster R-CNN with and without SAR. The
overall inference time and in particular the inference time for the RPN and the classi-
fication stage are reduced by applying the SAR module.

Feature Map Component Time (in ms)
Server Desktop

MFD Faster R-CNN Feature Extractor 91.3 332.3
RPN 134.6 213.6
Classification Stage 90.4 269.3
Total 316.3 815.2

MFD Faster R-CNN + SAR Feature Extractor 92.8 334.0
sub_SAR 5.7 5.5
SAR 3.2 3.4
sub_RPN 32.9 28.0
RPN 92.2 154.4
Classification Stage 21.9 95.3
Total 248.7 620.6

The impact of the SAR module on the inference time is reported in Table 8.7.
The time spent for the RPN and classification stage on the server setup are
reduced by 32% and 76%, respectively, yielding an overall decrease of 21%,
while the detection accuracy slightly drops by 0.1% in AP, which is on par with
the detection accuracy achieved for MFD Faster R-CNN with a lightweight
base network (see Table 8.5).

Lightweight Feature Extraction and Search Area
Reduction

The usage of lightweight architectures as base network as well as the restric-
tion of the search area exhibit an improved inference time. To further speed
up the inference time, the SAR module is inserted into Faster R-CNN and
the default base network is replaced by ZynqNet𝛼=1.00. To this end, the out-
put from the 5ᵗʰ Fire module is considered as feature map for the RPN and
classification stage. The auxiliary Fire modules, i.e., the 6ᵗʰ through the 9ᵗʰ
Fire module, followed by max pooling, a sequence of fully connected layers

177

8 Evaluation

and a softmax layer are employed as SAR classifier. For this, the sequence
of fully connected layers is adopted according to Section 7.2.1. VGG0.5-Head
is employed as classification head, which exhibits the best trade-off between
inference time and AP. The model is trained in two stages as described in
Section 7.2.2. The detection part is first trained with the settings specified in
Section 7.1.5, while the SAR classifier is trained as described in Section 7.2.2.
The further components of the SAR module and the modified proposal layer
are inserted for deployment as shown in Figure 7.7. Furthermore, the settings
for deployment proposed in Section 7.2.2 are applied.

Table 8.8 shows the overall inference time and the time spent for each compo-
nent of Faster R-CNN with SAR and lightweight feature extraction. Inserting
the SAR module into Faster R-CNN with ZynqNet as base network achieves
overall the best inference time. The usage of the lightweight base network
results in clearly reduced time spent for feature extraction. Furthermore, the
time spent for classification decreases due to the more lightweight classifica-
tion head. Inserting the SAR module into Faster R-CNN with ZynqNet as base
network results in clearly less time spent for generating region proposals and
classification compared to its counterpart without SAR, while the detection
accuracy only worsens by 0.1% in AP. In comparison to the baseline Faster R-
CNN, the overall inference time is speeded up by 53% and 75% on the server
and the desktop setup, respectively, as the times spent for each component
are clearly reduced, whereas the detection accuracy only drops by 0.2% in AP.
Note that all timings are repeated for the models pre-trained on augmented
data and thus, the reported inference times may vary slightly compared to
their counterparts without augmented data given in previous chapters. The
most time-consuming component of Faster R-CNN with SAR and lightweight
feature extraction is the RPN. A reason for this is the proposal layer imple-
mented in Python that computes the final coordinates and sorts all proposals
by the predicted confidence score on the CPU.

178

8.1 Combined Methods for Improved Detection and Inference Time

Table 8.8: Overall inference time and the time spent for each component of Faster R-CNN with
SAR using ZynqNet as base network compared to the baseline Faster R-CNN and the
separate approaches proposed to improve the inference time.

Approach Base Component AP Time (in ms)
Network (in %) Server Desktop

Faster R-CNN VGG16 Feature Extractor 95.0 59.0 176.7
RPN 140.2 214.1
Classification Stage 87.7 273.6
Total 286.9 664.4

Faster R-CNN ZynqNet Feature Extractor 94.9 21.8 39.0
RPN 122.7 120.2
Classification Stage 22.1 68.3
Total 166.6 227.5

Faster R-CNN VGG16 Feature Extractor 95.0 78.7 283.9
+ SAR sub_SAR 5.0 5.1

SAR 3.1 3.5
sub_RPN 32.4 28.2
RPN 92.7 159.1
Classification Stage 15.0 75.4
Total 226.9 555.2

Faster R-CNN ZynqNet Feature Extractor 94.8 21.6 39.9
+ SAR sub_SAR 6.5 6.3

SAR 2.9 3.2
sub_RPN 24.9 27.0
RPN 64.8 68.4
Classification Stage 13.8 19.1
Total 134.5 163.9

Combination of all proposed Approaches

Finally, all proposed approaches are merged into a single detector as visu-
alized in Figure 3.1. For this, ZynqNet is used as base network. Note that
all layers from the initial convolutional layer through the 9ᵗʰ Fire module are
shared between the EMT Faster R-CNN, the MFD Faster R-CNN and the SAR
classifier to minimize the computational costs. The output from the 9ᵗʰ Fire

179

8 Evaluation

module is up-sampled and combined with the output from the 7ᵗʰ Fire mod-
ule. The combined features are up-sampled and combined with the output
from the 5ᵗʰ Fire module. The resulting feature map is then used as input for
the RPN and classification stage as aforementioned. The final model is trained
in two stages. First, EMT Faster R-CNN and MFD Faster R-CNN are trained
jointly using the proposed multi-task loss 𝐿𝑀𝑇 (see eq. (6.2)) and the settings
specified in Section 7.1.5. In the second stage, the SAR classifier is trained as
described in Section 7.2.2, while the layers shared with EMT Faster R-CNN
and MFD Faster R-CNN are kept fixed. For deployment, the further compo-
nents of the SAR module are inserted analogous to Figure 7.7.

Table 8.9: Detection accuracy and inference times for the final model that combines all proposed
approaches.

Approach Base AP Time (in ms)
Network (in %) Server Desktop

Faster R-CNN VGG16 95.0 286.9 664.4
EMT-MFD Faster R-CNN VGG16 96.3 317.0 818.3
Faster R-CNN + SAR ZynqNet 94.8 134.5 163.9

EMT-MFD Faster R-CNN + SAR VGG16 96.3 248.1 619.3
EMT-MFD Faster R-CNN + SAR ZynqNet 96.1 136.9 218.8

The detection accuracy and the inference times for the final model are re-
ported in Table 8.9. In comparison with the baseline Faster R-CNN, the detec-
tion accuracy is improved by 1.1% in AP, while the inference time is reduced
by 52% and 67% on the server and desktop setup, respectively. The improved
detection accuracy is mainly due to the reduced number of FPs caused by
vehicle-like structures (see Figure 8.4). Compared to other combinations of
the proposed approaches, the final model exhibits the best trade-off between
detection accuracy and inference time. The inference time is considerably re-
duced compared to the joint EMT-MFD Faster R-CNN with and without SAR,
while the detection accuracy only drops by 0.2% in AP. On the other hand,
the detection accuracy is improved by 1.3% in AP compared to Faster R-CNN
with SAR and ZynqNet as base network. The additional computational costs

180

8.1 Combined Methods for Improved Detection and Inference Time

caused by the modules proposed to integrate spatial and semantic informa-
tion result in an only marginally increased inference time on the server setup,
whereas the inference time increases by roughly 33% on the desktop setup.

Figure 8.4: Qualitative detection results (red boxes) and corresponding GT (green boxes) for
Faster R-CNN with VGG16 (left column), EMT-MFD Faster R-CNN + SAR with
VGG16 (middle column) and EMT-MFD Faster R-CNN + SAR with ZynqNet (right
column) on DLR 3K demonstrate that the proposed approaches are more robust to
false alarms due to vehicle-like structures.

181

8 Evaluation

8.2 Comparison to Related Work

The combined EMT-MFD Faster R-CNN with SAR is in the following com-
pared to representative existing work in the field of object detection in aerial
imagery. As most of these approaches adopt deep learning based detection
frameworks for the task of vehicle detection in aerial imagery, recently pro-
posed deep learning based detection frameworks are further considered for
the comparison. The detection performance for EMT-MFD Faster R-CNN with
SAR and the detection methods from literature are given in Table 8.10. The
considered vehicle detection methods either adapt the size of the employed
feature map [Car17, Aca18, Din18], exploit multiple feature maps [Guo18,
Tay18], combine features from different layers [Den17, Din18, Yan18] or make
use of a top-down architecture [Aca18, Guo18, Tay18] to account for the char-
acteristics of aerial imagery. Note that the detection methods proposed for ve-
hicle detection in aerial imagery are adopted unmodified. All the additionally
used deep learning based detection frameworks have a top-down architecture
and exploit multiple feature maps except for Faster R-CNN with OHEM. For
each detection framework, the shallowest feature map has been selected in
such a way that its dimensions are 1/4 of the input image in order to account
for small-sized vehicles. Furthermore, the anchor box scales are adopted ac-
cording to Table 5.6. To ensure a fair comparison, each model is trained on
the identical training data with the same data augmentation settings.

Amongst the vehicle detection methods, the best AP on DLR 3K is achieved
for DYOLO and Adapted RetinaNet, which both comprise a top-down archi-
tecture similar to MFD Faster R-CNN in order to obtain feature maps enriched
with more context information. Shallow YOLOv2, AVPN Faster R-CNN and
DFL-CNN exhibit considerably worse AP compared to the other vehicle de-
tection methods. Though both Shallow YOLOv2 and DFL-CNN specifically
adapt the resolution of the employed feature map, the resulting resolution,
i.e., 1/16 of the input image, which is the same for AVPN Faster R-CNN, is
not sufficient to accurately detect small-sized vehicles as in case of DLR 3K.
Overall, none of the examined vehicle detection methods accomplishes an AP
that is on par with the AP achieved for EMT-MFD Faster R-CNN with SAR.

182

8.2 Comparison to Related Work

One reason for this is the coarser feature map resolutions applied throughout
the different methods, i.e., 1/8 or 1/16 of the input image, which may result in
poorly located as well as duplicate detections (see Section 5.2.1). However, it
is to mention that some of these approaches are designed for object detection
in aerial imagery that comprise larger object instances such as NWPU.

Table 8.10: Average precision and inference time for EMT-MFD Faster R-CNN + SAR with
VGG16 and ZynNet, respectively, compared to representative existing work on the
DLR 3K dataset.

Method Base Network AP (in %) Time (in FPS)
Shallow YOLOv2 [Car17]¹ Darknet-19 73.4 6.4
Adapted YOLOv2 [Aca18]¹ Darknet-19 94.5 11.5
DYOLO [Aca18]¹ Darknet-19 94.9 5.8
AVPN Faster R-CNN [Den17]² ZF 69.2 12.4
Multi-Scale CNN [Guo18]² VGG16 93.7 4.4
Modified Faster R-CNN [Din18]² VGG16 93.6 10.8
DFL-CNN [Yan18]² ResNet50 85.1 6.6
Adapted RetinaNet [Tay18]³ ResNet50 95.0 14.8

Faster R-CNN + OHEM [Shr16b]² VGG16 95.2 3.5
FPN [Lin17a]³ ResNet50 95.4 13.4
FPN - DCNv1 [Dai17]³ ResNet50 95.3 12.2
FPN - DCNv2 [Zhu19]³ ResNet50 95.4 12.2
Cascade R-CNN [Cai18]³ ResNet50 95.7 10.5
Libra R-CNN [Pan19]³ ResNet50 95.6 12.7
YOLOv3 [Red18]¹ Darknet-53 96.1 14.2
DSSD [Fu17]² ResNet101 94.7 2.9
RefineDet [Zha18a]² VGG16 96.1 6.7
EMT-MFD Faster R-CNN + SAR VGG16 96.3 4.0
EMT-MFD Faster R-CNN + SAR ZynqNet 96.1 7.3

¹ Using the Darknet framework (https://github.com/pjreddie/darknet)
² Using the Caffe framework
³ Using the MMDetection [Che19b] toolbox based on PyTorch (https://github.com/open-mmlab/

mmdetection)

183

https://github.com/pjreddie/darknet
https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmdetection

8 Evaluation

Faster R-CNN with OHEM outperforms the baseline Faster R-CNN by 0.2%
in AP (see Table 8.9), which demonstrates the advantage of hard negative
mining to learn more robust feature representations. However, the detection
accuracy is generally worse compared to the adapted deep learning based de-
tection frameworks that make use of a top-down architecture. Hence, enhanc-
ing the context information by combining features of shallow and deep lay-
ers possesses a larger impact on the detection accuracy. FPN, which extends
Faster R-CNN by a top-down path that combines features from different lay-
ers, outperforms the baseline Faster R-CNN by 0.4% in AP. Inserting different
variants of deformable convolutions (FPN - DCNv1 and FPN - DCNv2) results
in no gain in AP. While Libra R-CNN that aims at reducing the imbalance at
sample, feature, and objective level only slightly improves the detection ac-
curacy of the FPN, applying a cascaded training scheme (Cascade R-CNN) in
order to increase the localization accuracy outperforms the FPN by 0.3% in
AP. The best AP amongst the recently proposed deep learning based detec-
tion frameworks is achieved for RefineDet and YOLOv3, which is almost on
par with the proposed detection methods. In comparison with the examined
vehicle detection methods, the recently proposed deep learning frameworks
generally exhibit higher AP values. This shows that the conducted adaptations
proposed in Section 5.2 are transferable to more recent detection frameworks
and are essential to achieve state-of-the-art detection accuracies in case of
tiny objects.

The best inference time is achieved for Adapted RetinaNet followed by
YOLOv3 and FPN. Both RetinaNet and YOLOv3 perform detection in a single
stage, which is in general less computationally expensive than two-stage ap-
proaches. A reason for the high number of FPS in case of FPN, although FPN
is an extended version of Faster R-CNN that comprises more computational
operations, is the more efficient implementation of the proposal generation
step. While the Caffe implementation performs the proposal generation on
the CPU, the MMDetection [Che19b] toolbox implementation runs com-
pletely on the GPU. Hence, implementing the components proposed in this
thesis with MMDetection in future work is an opportunity to further speed
up the inference time of EMT-MFD Faster R-CNN with SAR. AVPN Faster
R-CNN achieves the best inference time amongst the methods implemented

184

8.2 Comparison to Related Work

in Caffe, which is mainly due to the coarse feature map resolution and conse-
quently, the reduced number of region proposals that have to be processed.
However, employing such a coarse feature map resolution is not practicable
as discussed above. The best inference time for methods implemented in
Caffe, which exhibit a fine feature map resolution, is achieved for the pro-
posed detection method. Even single-stage approaches are outperformed,
which demonstrates the benefits of the proposed components.

Comparison of EMT-MFD Faster R-CNN with SAR to existing work from lit-
erature for various GSDs on DLR 3K is given in Table 8.11. For this, Adapted
RetinaNet, which showed the best AP for a GSD of 13 cm amongst the vehicle
detection methods, and the adapted detection frameworks with the highest
AP are considered. Note that the anchor box scales are adopted according to
Table 5.6. EMT-MFD Faster R-CNN with SAR using VGG16 as base network
exhibits the best detection accuracy for all GSDs followed by RefineDet and
YOLOv3. Using ZynqNet as base network yields slightly worse AP values
for higher GSDs, though ZynqNet comprises considerably fewer parameters
compared to the other employed base networks. Adapted RetinaNet exhibits
the largest decrease in AP with higher GSDs, which verifies the importance
of fine feature map resolutions especially in case of tiny objects.

Table 8.11: AP (in %) for EMT-MFD Faster R-CNN + SAR with VGG16 and ZynqNet, respectively,
compared to representative existing work on the DLR 3K dataset for various GSDs.

Method Base Network GSD (in cm)
13 19.5 26

Adapted RetinaNet[Tay18] ResNet50 95.0 92.2 84.1
FPN [Lin17a] ResNet50 95.4 93.0 88.6
Cascade R-CNN [Cai18] ResNet50 95.7 93.4 89.0
YOLOv3 [Red18] Darknet-53 96.1 93.9 89.7
RefineDet [Zha18a] VGG16 96.1 94.0 90.0
EMT-MFD Faster R-CNN + SAR VGG16 96.3 94.1 90.3
EMT-MFD Faster R-CNN + SAR ZynqNet 96.1 93.6 89.3

185

8 Evaluation

Qualitative detection examples (red boxes) and corresponding GT (green
boxes) on DLR 3K with a GSD of 26 cm are visualized in Figure 8.5. While
all detection methods show a good localization accuracy, applying the pro-
posed detection method results in fewer false alarms caused by vehicle-like
structures on buildings. However, for all methods, remaining false alarms are
mainly due to objects located on asphalted areas with vehicle-like shapes.

To demonstrate the transferability of the detection methods proposed in this
thesis, MFD Faster R-CNN with SAR is compared to existing work from liter-
ature on VEDAI LCI and VEDAI SCI (see Table 8.12). Note that exploitation
of semantic information is not conducted because of the missing semantic la-
beling annotations. Each model is trained with the same data augmentation
settings, i.e., vertical and horizontal flipping as well as rotation in steps of 90
degrees. The proposed MFD Faster R-CNN with SAR and VGG16 as base net-
work achieves the best AP on both versions of the dataset. Using ZynqNet
as base network exhibits the same detection accuracy on VEDAI LCI, while
the detection accuracy slightly drops in case of the higher GSD as observed
for DLR 3K as well. Amongst the adapted detection frameworks, RefineDet
shows overall the best detection accuracy. Similar to DLR 3K, Adapted Reti-
naNet exhibits the poorest detection accuracies due to the coarse feature map
resolution. Qualitative detection examples (red boxes) and corresponding GT
(green boxes) on VEDAI SCI are visualized in Figure 8.6.

Table 8.12: AP (in %) for MFD Faster R-CNN + SAR with VGG16 and ZynqNet, respectively,
compared to representative existing work on the VEDAI dataset.

Method Base Network VEDAI LCI VEDAI SCI
Adapted RetinaNet[Tay18] ResNet50 95.5 89.6
FPN [Lin17a] ResNet50 97.1 93.2
Cascade R-CNN [Cai18] ResNet50 97.1 93.3
YOLOv3 [Red18] Darknet-53 96.7 92.7
RefineDet [Zha18a] VGG16 97.2 93.8
MFD Faster R-CNN + SAR VGG16 97.7 94.3
MFD Faster R-CNN + SAR ZynqNet 97.7 94.0

186

8.2 Comparison to Related Work

R
et

in
aN

et
FP

N
C

as
ca

de
R

-C
N

N
YO

LO
v3

R
efi

ne
D

et
EM

T-
M

FD
V

G
G

16
EM

T-
M

FD
Z

yn
qN

et

Figure 8.5: Qualitative detection results (red boxes) and corresponding GT (green boxes) for
EMT-MFD Faster R-CNN + SAR with VGG16 and ZynqNet, respectively, and rep-
resentative existing work on DLR 3K with a GSD of 26 cm.

187

8 Evaluation
R

et
in

aN
et

FP
N

C
as

ca
de

R
-C

N
N

YO
LO

v3
R

efi
ne

D
et

M
FD

V

G
G

16
M

FD

Z

yn
qN

et

Figure 8.6: Qualitative detection results (red boxes) and corresponding GT (green boxes) for
EMT-MFD Faster R-CNN + SAR with VGG16 and ZynqNet, respectively, and rep-
resentative existing work on VEDAI SCI.

188

8.3 Generalization to Unseen Aerial Imagery

8.3 Generalization to Unseen Aerial Imagery

In the following, the generalization ability of the proposed detection method
is demonstrated by auxiliary experiments on three recently published aerial
imagery datasets, i.e., ITCVD, DOTA and xView (see Section 4.1). Note that
models pre-trained on DLR 3K are employed for all experiments.

ITCVD

Amongst the three datasets mentioned above, ITCVD is most similar to DLR
3K in terms of image quality and content. Both datasets are acquired over
Western European cities and thus, mainly comprise urban and residential ar-
eas with comparable structures and objects. Figure 8.7 shows qualitative de-
tection results (red boxes) and corresponding GT (green boxes) for EMT-MFD
Faster R-CNN with VGG16 and EMT-MFD Faster R-CNN with ZynqNet on
images from the ITCVD test set, whereby images taken in oblique view with
a tilt angle of 45 degrees are not considered. During deployment, the test im-
ages are down-scaled by a factor of 1.3, so that the GSD is similar to DLR 3K.
The proposed methods achieve a good classification and localization accuracy
even in case of a weak contrast between vehicle and background. Note that
even multiple vehicles are correctly detected, which are missed during the
annotation process especially in backyards and entrance areas. Hence, the
proposed methods are well transferable to unseen data that comprise similar
characteristics compared to the employed training data, i.e., the DLR 3K data-
set. As depicted in Figure 8.8, EMT-MFD Faster R-CNN with VGG16 and Zyn-
qNet, respectively, exhibit considerably fewer false alarms caused by vehicle-
like structures on buildings compared to Faster R-CNN with VGG16 taken
as baseline. Though ITCVD comprises strong parallax effects due to the low
acquisition altitude, the proposed methods are robust to false alarms caused
by the accompanying disturbing structures that are hardly or non-existent in
the training data. However, remaining false positive detections are caused
by vehicle-like structures on asphalted areas, whereas missed detections are
mainly due to partial occlusion, e.g., by trees, or due to vehicles located in
shadowed areas (see Figure 8.9), which is similar to observations on DLR 3K.

189

8 Evaluation

Figure 8.7: Qualitative detection results (red boxes) and corresponding GT (green boxes) for
EMT-MFD Faster R-CNN with VGG16 (top row) and with ZynqNet (bottom row)
on the ITCVD dataset show the good detection accuracy. Note that even multiple
vehicles with missing annotations are correctly detected.

Figure 8.8: Qualitative detection results (red boxes) and corresponding GT (green boxes) for
Faster R-CNN with VGG16 (left column), EMT-MFD Faster R-CNN with VGG16
(middle column) and EMT-MFD Faster R-CNN with ZynqNet (right column) on the
ITCVD dataset demonstrate that the proposed approaches are more robust to false
alarms due to vehicle-like structures in unseen data, while vehicles are correctly de-
tected.

190

8.3 Generalization to Unseen Aerial Imagery

Figure 8.9: Qualitative examples of missed detections and false alarms for EMT-MFD Faster
R-CNN with VGG16 (top row) and ZynqNet (bottom row) on the ITCVD dataset.
Missed detections are mainly due to objects that are partially occluded, e.g., by trees,
or that are located in shadowed areas, while false alarms are mostly caused by struc-
tures located on asphalted areas.

DOTA

In contrast to DLR 3K, the DOTA dataset comprises images from multiple
sensor platforms and consequently, exhibits varying image qualities, differ-
ing scenarios and a larger variety of object appearances. Figure 8.10 depicts
qualitative detection results (red boxes) and corresponding GT (green boxes)
for EMT-MFD Faster R-CNN with VGG16 and with ZynqNet on images from
the DOTA validation set. For this, only GT annotations for vehicle categories,
i.e., small vehicles and large vehicles, are visualized, whereas further cate-
gories such as baseball diamond, harbor, bridge, etc. are not considered. All
images are scaled during deployment to exhibit a similar GSD as in case of
DLR 3K. Both EMT-MFD Faster R-CNN with VGG16 and ZynqNet exhibit a
good localization and classification accuracy, which indicates the good trans-
ferability in case of differing scenarios and poor image quality. Furthermore,
issues regarding the provided GT, i.e., poorly aligned bounding boxes and
missing annotations, are illustrated, which impedes the validity of a quantita-
tive analysis. Compared to Faster R-CNN with VGG16, applying the proposed
methods results in clearly fewer false alarms caused by vehicle-like structures
on buildings (see Figure 8.11), which confirms observations on ITCVD.

191

8 Evaluation

Figure 8.10: Qualitative detection results (red boxes) and corresponding GT (green boxes) for
EMT-MFD Faster R-CNN with VGG16 (top row) and with ZynqNet (bottom row)
on the DOTA dataset indicate the good detection accuracy in unseen images from
different sensors. Note that even vehicles with missing annotations are detected.

Figure 8.11: Qualitative detection results (red boxes) and corresponding GT (green boxes) for
Faster R-CNN with VGG16 (left column), EMT-MFD Faster R-CNN with VGG16
(middle column) and EMT-MFD Faster R-CNN with ZynqNet (right column) on the
DOTA dataset demonstrate that the proposed approaches are more robust to false
alarms due to vehicle-like structures in unseen data.

192

8.3 Generalization to Unseen Aerial Imagery

Figure 8.12 shows the main reasons for remaining false alarms and missed
detections. While, similar to results on the DLR 3K dataset, missed detections
are mainly due to objects that are partially occluded, e.g., by trees, false alarms
are mostly caused by shadows or structures located on asphalted areas. Ad-
ditional false alarms stem from split detections caused by vehicle types that
are not represented in the training data.

Figure 8.12: Qualitative examples of missed detections and false alarms for EMT-MFD Faster
R-CNN with VGG16 (top row) and ZynqNet (bottom row) on the DOTA dataset.
Missed detections are mainly due to objects that are partially occluded, e.g., by trees,
while false alarms are mostly caused by shadows or structures located on asphalted
areas. Furthermore, false alarms are caused by split detections due to vehicle types
that are not represented in the training data.

xView

The xView dataset comprises images acquired over different continents and
thus, exhibits a larger variety of scenarios and objects compared to DLR 3K.
Qualitative detection results (red boxes) and corresponding GT (green boxes)
for EMT-MFD Faster R-CNN with VGG16 and ZynqNet on the xView dataset
are depicted in Figure 8.13. For this, only GT annotations for categories be-
longing to the meta class passenger vehicle are visualized. In contrast to the
experiments performed on ITCVD and DOTA, models pre-trained on DLR 3K

193

8 Evaluation

down-scaled by a factor of 2 are employed due to the low GSD of approx-
imately 30 cm. Both EMT-MFD Faster R-CNN with VGG16 and with Zyn-
qNet exhibit almost no false alarms even in scenes with complex backgrounds,
while detections are accurately aligned around occurring vehicles. However,
multiple vehicles are not detected because of the relatively large differences
to the training data, in particular the poorer image quality and larger variety
of occurring objects. This indicates that the generalization ability gets worse
in case of higher GSDs and consequently smaller object dimensions.

Figure 8.13: Qualitative detection results (red boxes) and corresponding GT (green boxes) for
EMT-MFD Faster R-CNN with VGG16 (left column) and with ZynqNet (right col-
umn) on the xView dataset. Despite the low spatial resolution, the proposed ap-
proaches are robust to false alarms due to vehicle-like structures in unseen data
with differing scenarios and backgrounds. However, multiple missed detections
occur due to the relatively large differences to the training data.

194

8.4 Summary

8.4 Summary

Finally, it is worth discussing the strengths and weaknesses of the proposed
components and the examined combinations with respect to real-world ap-
plications. The CEM introduced to enhance the spatial context information
of the employed features is straightforward to integrate into deep learning
frameworks, as essentially the feature extraction is altered. Its benefits to
the feature representation are demonstrated in the performed experiments by
means of clearly reduced false alarms caused by vehicle-like structures in un-
likely areas, which yields an improved detection accuracy. The auxiliary com-
putational costs on the other hand only slightly increase the inference time,
which may be tolerable for most applications in combination with techniques
to optimize the inference time. Implementations similar to the CEM are a ma-
jor part of the most recent deep learning based detectors that achieve state-
of-the-art results in various domains. This further emphasizes the importance
of such a component. Inducing scene knowledge via semantic labeling im-
proves the feature representation as well. The detection accuracy is clearly
improved, as the number of false alarms caused by vehicle-like structures in
unlikely areas is reduced. However, in contrast to the CEM, the training re-
quires semantic labeling annotations, whose generation is time-consuming.
Thus, semantic labeling annotations are often not available and the training
is restricted to a few aerial imagery datasets. Consequently, the applicabil-
ity of the semantic labeling based approach may be limited to images similar
to these datasets. Since architectures for semantic labeling in aerial imagery
are typically developed for low GSDs, novel architectures have to be explored
to better account for extremely fine structures as in case of GSDs above 20
cm. Otherwise, the potential of the semantic content information may be not
fully exploited. Using computation-efficient CNN architectures considerably
reduced the time spent for feature extraction without large drops in detection
accuracy, which is essential for applications that have to run in real-time or
near real-time. As training deep learning based detection frameworks with
such CNN architectures does not depend on specific datasets, its applicabil-
ity is not restricted. However, the drop in detection accuracy compared to
heavyweight CNN architectures increases with higher GSDs and thus, more

195

8 Evaluation

complex scenarios due to the smaller object dimensions. As one reason for
this is the clearly reduced number of parameters used for feature represen-
tation, the computation-efficient CNN architectures could be modified to ad-
dress this issue. The proposed module to restrict the search area to areas of
interest results in a large speed-up of the region proposal generation and the
classification stage, while the detection accuracy remains almost unaffected.
Prerequisite for this speed-up is that only a small fraction of an aerial image is
occupied by relevant objects and thus, most image regions are not considered
for detection. Therefore, the proposed module is less appropriate for aerial
imagery recorded over urban areas with dense traffic volumes. Since a clas-
sifier is trained on the respective data to identify areas that are unlikely to
contain a vehicle, the generalization ability is further affected by the quality
of the classifier, which may limit its applicability to unseen data. A data in-
dependent alternative is the integration of referenced road maps to identify
areas of interest, whereby road maps are not always provided and vehicles
offside roads are missed.

While each component already outperforms the baseline Faster R-CNN ei-
ther in terms of detection accuracy or inference time, combining the proposed
components further boosts the detection performance. Combining both alter-
native approaches to enhance the feature representation shows an additional
gain in detection accuracy, especially in case of more complex scenarios such
as higher GSDs. Hence, this combination is particularly of interest for appli-
cations relying on very accurate detection. As the computation-efficient CNN
architecture and the SAR module reduce the computational costs for different
stages of the detection pipeline, their combination further speeds up the over-
all inference time. Thus, this combination is better suited than the individual
approaches for applications with harsher time constraints. All combinations
of components to enhance the detection accuracy and components to decrease
the inference time yield an improved trade-off between inference time and de-
tection accuracy compared to the individual components, so that these com-
binations are good alternatives to fulfill time and accuracy constraints. The
best trade-off between inference time and detection accuracy is achieved for
integrating all components into the detection pipeline, whereby aforemtioned

196

8.4 Summary

limitations may restrict its applicability. Nevertheless, the stand-alone char-
acter of the proposed components allows the usage of themselves or in differ-
ent combinations in order to meet the specific requirements of an application.

In summary, the proposed detection pipeline comprised of the components to
enhance the detection accuracy and inference time outperforms representa-
tive existing work from literature on different aerial imagery. Furthermore, a
good generalization ability is demonstrated on unseen data with differing sce-
narios, which is essential for most real-world applications. Compared to the
baseline Faster R-CNN especially the number of false alarms is considerably
reduced due to the more robust feature representation.

197

9 Conclusions and Outlook

9.1 Conclusions

In this thesis, a novel deep learning based detection pipeline is proposed for
the task of vehicle detection in aerial imagery. For this, Faster R-CNN is sys-
tematically adapted with respect to the specific characteristics of aerial im-
agery. Increasing the resolution of the feature map employed for region pro-
posal generation and classification clearly improves the detection accuracy,
as localization issues in case of small-sized objects are solved. Despite the
improved detection accuracy, the performed adaptations yield several short-
comings, i.e., low semantic and spatial content of the employed features and
a poor inference time, which impede the usage in real-world applications.

Two novel approaches are proposed to overcome the lack of semantic and spa-
tial content and thus, reduce the number of false alarms. The first approach
enhances the spatial context information by combining features from differ-
ent layers to account for fine and coarse structures, while maintaining a high
feature map resolution. For this purpose, Faster R-CNN is extended by the
proposed CEM, which utilizes deconvolutional layers to up-sample features
of deep layers. The latter approach leverages semantic labeling to increase the
semantic context information, whereby two variants to integrate semantic la-
beling into the detection framework are realized. Inducing scene knowledge
by explicitly merging the semantic labeling network into the detection frame-
work via shared feature representations outperforms the alternative variant
that exploits the semantic labeling results to filter out unlikely predictions.
The proposed approaches exhibit clearly improved detection results, in par-
ticular for high GSDs and consequently smaller object dimensions. The rea-
son for the improved detection results is the reduced number of false alarms

199

9 Conclusions and Outlook

caused by vehicle-like structures located on regions that are unlikely to con-
tain vehicles, e.g., buildings.

In order to reduce the computational effort and consequently, the inference
time, two different strategies are pursued in this thesis. The first strategy aims
at optimizing the time spent for feature extraction by replacing the default
CNN architecture with a lightweight CNN architecture. In combination with
further techniques for runtime optimization, i.e., filter pruning, merged batch
normalization and exploitation of computation-efficient classification heads,
the inference time is considerably reduced, while the detection accuracy re-
mains almost unaffected. The second strategy restricts the search area to ar-
eas of interest by identifying and removing areas that are unlikely to contain
at least one vehicle. For this, a novel module to classify image areas is ex-
plicitly integrated into the detection framework by sharing the convolutional
features. As vehicles generally cover only a small fraction of aerial imagery,
the computational efforts for the region proposal stage and the classification
stage and consequently the inference time are clearly reduced.

To ensure high detection accuracies at real-time or near real-time, the pro-
posed approaches and strategies are combined into a single detection pipeline.
The standard Faster R-CNN detector taken as baseline is significantly im-
proved in terms of detection accuracy and inference time. Furthermore, the
proposed method outperforms representative existing work from literature
on different aerial imagery datasets. Finally, the generalization ability of the
proposed method is demonstrated by auxiliary experiments on unseen data
with differing scenarios.

9.2 Outlook

Although the proposed method exhibits good results regarding the detection
accuracy of vehicles in aerial imagery, further enhancements and extensions
are often necessary to meet the requirements of real-world applications.

Though the components proposed to reduce the computational effort result
in a large speed-up compared to the baseline Faster R-CNN, the inference

200

9.2 Outlook

time of the entire detection pipeline may not be sufficient for some applica-
tions. The main bottleneck is an inefficient proposal generation, which can
be addressed by transferring the corresponding processing steps to the GPU,
as implemented in novel frameworks like the MMDetection toolbox based on
PyTorch [Che19b]. Integrating the components proposed in this thesis into
single-stage detection frameworks offers an alternative to overcome issues
with regard to the proposal generation. A promising way to decrease the
overall inference time is making use of the NVIDIA TensorRT¹ library, which
facilitates high-performance inference of different deep learning frameworks.
By combining layers and optimizing kernel selection for improved latency,
throughput, power efficiency and memory consumption, TensorRT optimizes
the inference time of a given pre-trained network. Moreover, TensorRT of-
fers out-of-the-box INT8 quantization and FP16 precision implementations of
common layers as further options to accelerate the inference time.

So far, the proposed detection pipeline is limited to a single vehicle class in
aerial imagery recorded in top-down view due to the low availability of an-
notated training data. However, distinguishing between vehicle classes, e.g.,
car and truck, is highly relevant for applications such as traffic monitoring
and management, while an accurate detection in images recorded in oblique
view is often prerequisite for applications like disaster relief and search and
rescue tasks. As deep learning is largely data-driven, the trend of getting
bigger and more extensive datasets, emerging in different computer vision
domains including object detection in aerial imagery, facilitates the learning
of more complex tasks. The VisDrone dataset [Zhu18] for instance comprises
more than 2.6 million annotations for different object categories, e.g., pedes-
trian, car, truck, etc., in images recorded by UAVs with different perspectives.
Besides the new extension options, novel challenges arise that have to be ad-
dressed. Especially imbalanced data that may yield biased rules in favor of
the majority class and the large variety of object scales ranging from a few to
hundreds of pixels complicate the detection task. Furthermore, recent devel-
opments in the field of object detection in aerial imagery focus on the tran-
sition from axis-aligned bounding boxes to oriented bounding boxes, which

¹ https://developer.nvidia.com/tensorrt

201

https://developer.nvidia.com/tensorrt

9 Conclusions and Outlook

is especially of interest for tracking based applications that depend on orien-
tation information. For this, most components of the base detection pipeline,
e.g., proposal generation, RoI pooling, NMS, etc., and the objective function
have to be extended regarding the orientation.

In general, training data is limited in its diversity to particular areas and
recording conditions, which impairs the generality and transferability of
learned models. Though the proposed detection pipeline exhibits good
detection results on unseen data with differing scenarios, limitations of its
transferability become obviously recognizable especially in case of high
GSDs, poor image quality and large variety of occurring objects. To over-
come challenges of cross-domain differences, domain adaptation aims at
transferring knowledge learned by a particular network on a source domain
to a new related target domain. Common techniques attempt to match the
distributions of the source and target datasets by minimizing some divergence
criterion or make use of generative adversarial networks (GANs) to generate
synthetic target data which are somehow related to the source domain.
Few-shot learning – the ability to learn from only few labeled samples –
is another promising research direction to address these issues, which may
allow re-training on target data on the flight.

To improve the detection accuracy, exploiting temporal context across con-
secutive frames has recently drawn increasing attention in the computer vi-
sion community. Besides established approaches to integrate temporal con-
text like recurrent neural networks (RNNs), applying 3 dimensional convolu-
tions is a popular strategy to learn discriminative features along both spatial
and temporal dimensions. Since the data recorded for most applications based
on aerial imagery generally comprises image sequences, such approaches are
promising to improve the detection accuracy in aerial imagery, in particular
in case of tiny or partially occluded objects. While data-driven object detec-
tion in aerial imagery has been limited to single images in the past, recent
datasets such as the VisDrone dataset and the UAVDT dataset [Du18] provid-
ing annotations for image sequences allow the usage of multiple frames.

202

Bibliography

[Aca18] ACATAY, Oliver; SOMMER, Lars; SCHUMANN, Arne and BEYERER,
Jürgen: “Comprehensive Evaluation of Deep Learning based De-
tection Methods for Vehicle Detection in Aerial Imagery”. In: 2018
15th IEEE International Conference on Advanced Video and Signal
Based Surveillance (AVSS). 2018.

[Ada11] ADAMS, Stuart M and FRIEDLAND, Carol J: “A survey of unmanned
aerial vehicle (UAV) usage for imagery collection in disaster re-
search and management”. In: 9th International Workshop on Re-
mote Sensing for Disaster Response. Vol. 8. 2011.

[Amm17] AMMOUR, Nassim; ALHICHRI, Haikel; BAZI, Yakoub; BENJDIRA,
Bilel; ALAJLAN, Naif and ZUAIR, Mansour: “Deep learning ap-
proach for car detection in UAV imagery”. In: Remote Sensing 9.4
(2017).

[Ang03] ANGEL, Alejandro; HICKMAN, Mark; MIRCHANDANI, Pitu and
CHANDNANI, Dinesh: “Methods of analyzing traffic imagery col-
lected from aerial platforms”. In: IEEE Transactions on Intelligent
Transportation Systems 4.2 (2003), pp. 99–107.

[Ani17] ANISIMOV, Dmitriy and KHANOVA, Tatiana: “Towards lightweight
convolutional neural networks for object detection”. In: 2017 14th
IEEE International Conference on Advanced Video and Signal Based
Surveillance (AVSS). 2017.

[Ash17] ASHRAF, Khalid; WU, Bichen; IANDOLA, Forrest N; MOSKEWICZ,
Mattthew W and KEUTZER, Kurt: “Shallow networks for high-
accuracy road object-detection”. In: International Conference on
Vehicle Technology and Intelligent Transport Systems (VEHITS)
(2017).

203

Bibliography

[Aud17] AUDEBERT, Nicolas; LE SAUX, Bertrand and LEFÈVRE, Sébastien:
“Segment-before-detect: Vehicle detection and classification
through semantic segmentation of aerial images”. In: Remote
Sensing 9.4 (2017).

[Azi18] AZIMI, Seyed Majid; VIG, Eleonora; BAHMANYAR, Reza; KÖRNER,
Marco and REINARTZ, Peter: “Towards multi-class object detec-
tion in unconstrained remote sensing imagery”. In: Proceedings of
the Asian Conference on Computer Vision (ACCV). Springer. 2018,
pp. 150–165.

[Azi19] AZIMI, Seyed Majid; HENRY, Corentin; SOMMER, Lars; SCHUMANN,
Arne and VIG, Eleonora: “SkyScapes Fine-Grained Semantic Un-
derstanding of Aerial Scenes”. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV). 2019.

[Bad17] BADRINARAYANAN, Vijay; KENDALL, Alex and CIPOLLA, Roberto:
“Segnet: A deep convolutional encoder-decoder architecture for
image segmentation”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 39.12 (2017), pp. 2481–2495.

[Bao19] BAO, Songze; ZHONG, Xing; ZHU, Ruifei; ZHANG, Xiaonan; LI,
Zhuqiang and LI, Mengyang: “Single Shot Anchor Refinement
Network for Oriented Object Detection in Optical Remote
Sensing Imagery”. In: IEEE Access 7 (2019), pp. 87150–87161.

[Bel16] BELL, Sean; LAWRENCE ZITNICK, C; BALA, Kavita and GIRSHICK,
Ross: “Inside-outside net: Detecting objects in context with skip
pooling and recurrent neural networks”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2016, pp. 2874–2883.

[Ber16] BERRAHAL, Sarra; KIM, Jong-Hoon; REKHIS, Slim; BOUDRIGA,
Noureddine; WILKINS, Deon and ACEVEDO, Jaime: “Border
surveillance monitoring using quadcopter UAV-aided wireless
sensor networks”. In: Journal of Communications Software and
Systems 12 (2016).

204

Bibliography

[Bra17] BRAHMBHATT, Samarth; CHRISTENSEN, Henrik I and HAYS, James:
“StuffNet: Using ’Stuff’ to Improve Object Detection”. In: Proceed-
ings of the IEEE Winter Conference on Applications of Computer
Vision (WACV). 2017, pp. 934–943.

[Bur97] BURLINA, P; PARAMESWARAN, V and CHELLAPPA, R: “Sensitivity
analysis and learning strategies for context-based vehicle detec-
tion algorithms”. In: Proceedings DARPA Image Understanding
Workshop. 1997, pp. 577–584.

[Cai16] CAI, Zhaowei; FAN, Quanfu; FERIS, Rogerio S and VASCONCELOS,
Nuno: “A unified multi-scale deep convolutional neural network
for fast object detection”. In: Proceedings of the European Confer-
ence on Computer Vision (ECCV). Springer. 2016, pp. 354–370.

[Cai18] CAI, Zhaowei and VASCONCELOS, Nuno: “Cascade r-cnn: Delving
into high quality object detection”. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). 2018,
pp. 6154–6162.

[Car17] CARLET, Jennifer and ABAYOWA, Bernard: “Fast vehicle detection
in aerial imagery”. In: arXiv preprint arXiv:1709.08666 (2017).

[Che13] CHEN, Xueyun; XIANG, Shiming; LIU, Cheng-Lin and PAN, Chun-
Hong: “Vehicle detection in satellite images by parallel deep
convolutional neural networks”. In: Proceedings of the IEEE IAPR
Asian Conference on Pattern Recognition (ACPR). 2013, pp. 181–
185.

[Che14a] CHEN, Xueyun; XIANG, Shiming; LIU, Cheng-Lin and PAN, Chun-
Hong: “Vehicle detection in satellite images by hybrid deep con-
volutional neural networks”. In: IEEE Geoscience and Remote Sens-
ing Letters 11.10 (2014), pp. 1797–1801.

[Che14b] CHENG, Gong; HAN, Junwei; ZHOU, Peicheng and GUO, Lei:
“Multi-class geospatial object detection and geographic im-
age classification based on collection of part detectors”. In:
ISPRS Journal of Photogrammetry and Remote Sensing 98 (2014),
pp. 119–132.

205

Bibliography

[Che14c] CHENG, Ming-Ming; ZHANG, Ziming; LIN, Wen-Yan and TORR,
Philip: “BING: Binarized normed gradients for objectness estima-
tion at 300fps”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2014, pp. 3286–3293.

[Che16a] CHENG, Gong and HAN, Junwei: “A survey on object detection in
optical remote sensing images”. In: ISPRS Journal of Photogram-
metry and Remote Sensing 117 (2016), pp. 11–28.

[Che16b] CHENG, Gong; ZHOU, Peicheng and HAN, Junwei: “Learning
rotation-invariant convolutional neural networks for object
detection in VHR optical remote sensing images”. In: IEEE Trans-
actions on Geoscience and Remote Sensing 54.12 (2016), pp. 7405–
7415.

[Che19a] CHEN, Changrui; ZHANG, Yu; LV, Qingxuan; WEI, Shuo; WANG,
Xiaorui; SUN, Xin and DONG, Junyu: “RRNet: A Hybrid Detector
for Object Detection in Drone-Captured Images”. In: Proceedings
of the IEEE International Conference on Computer Vision Work-
shops (ICCVW). 2019.

[Che19b] CHEN, Kai; WANG, Jiaqi; PANG, Jiangmiao; CAO, Yuhang; XIONG,
Yu; LI, Xiaoxiao; SUN, Shuyang; FENG, Wansen; LIU, Ziwei; XU,
Jiarui, et al.: “MMDetection: Open MMLab Detection Toolbox and
Benchmark”. In: arXiv preprint arXiv:1906.07155 (2019).

[Cho09] CHOI, Jae-Young and YANG, Young-Kyu: “Vehicle detection from
aerial images using local shape information”. In: Pacific-Rim Sym-
posium on Image and Video Technology. Springer. 2009, pp. 227–
236.

[Cho17] CHOLLET, François: “Xception: Deep learning with depthwise
separable convolutions”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2017, pp. 1251–
1258.

[Dai16] DAI, Jifeng; LI, Yi; HE, Kaiming and SUN, Jian: “R-fcn: Object
detection via region-based fully convolutional networks”. In:
Advances in Neural Information Processing Systems (NIPS). 2016,
pp. 379–387.

206

Bibliography

[Dai17] DAI, Jifeng; QI, Haozhi; XIONG, Yuwen; LI, Yi; ZHANG, Guodong;
HU, Han and WEI, Yichen: “Deformable convolutional networks”.
In: Proceedings of the IEEE International Conference on Computer
Vision (ICCV). 2017, pp. 764–773.

[Dem18] DEMIR, Ilke; KOPERSKI, Krzysztof; LINDENBAUM, David; PANG,
Guan; HUANG, Jing; BASU, Saikat; HUGHES, Forest; TUIA, Devis
and RASKA, Ramesh: “Deepglobe 2018: A challenge to parse the
earth through satellite images”. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Workshops
(CVPRW). 2018, pp. 172–181.

[Den09] DENG, Jia; DONG, Wei; SOCHER, Richard; LI, Li-Jia; LI, Kai and FEI-
FEI, Li: “Imagenet: A large-scale hierarchical image database”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2009, pp. 248–255.

[Den17] DENG, Zhipeng; SUN, Hao; ZHOU, Shilin; ZHAO, Juanping and
ZOU, Huanxin: “Toward fast and accurate vehicle detection in
aerial images using coupled region-based convolutional neural
networks”. In: IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 10.8 (2017), pp. 3652–3664.

[Den18] DENG, Zhipeng; SUN, Hao; ZHOU, Shilin; ZHAO, Juanping; LEI, Lin
and ZOU, Huanxin: “Multi-scale object detection in remote sens-
ing imagery with convolutional neural networks”. In: ISPRS Jour-
nal of Photogrammetry and Remote Sensing 145 (2018), pp. 3–22.

[Din18] DING, Peng; ZHANG, Ye; DENG, Wei-Jian; JIA, Ping and KUIJPER,
Arjan: “A light and faster regional convolutional neural network
for object detection in optical remote sensing images”. In: IS-
PRS Journal of Photogrammetry and Remote Sensing 141 (2018),
pp. 208–218.

[Din19] DING, Jian; XUE, Nan; LONG, Yang; XIA, Gui-Song and LU, Qikai:
“Learning RoI Transformer for Oriented Object Detection in
Aerial Images”. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). 2019, pp. 2849–
2858.

207

Bibliography

[Du18] DU, Dawei; QI, Yuankai; YU, Hongyang; YANG, Yifan; DUAN,
Kaiwen; LI, Guorong; ZHANG, Weigang; HUANG, Qingming and
TIAN, Qi: “The unmanned aerial vehicle benchmark: Object de-
tection and tracking”. In: Proceedings of the European Conference
on Computer Vision (ECCV). 2018, pp. 370–386.

[Duc11] DUCHI, John; HAZAN, Elad and SINGER, Yoram: “Adaptive subgra-
dient methods for online learning and stochastic optimization”.
In: Journal of Machine Learning Research 12.Jul (2011), pp. 2121–
2159.

[Dud12] DUDA, Richard O; HART, Peter E and STORK, David G: Pattern
classification. John Wiley & Sons, 2012.

[Egg17] EGGERT, Christian; BREHM, Stephan; WINSCHEL, Anton; ZECHA,
Dan and LIENHART, Rainer: “A closer look: Small object detec-
tion in faster R-CNN”. In: Proceedings of the IEEE International
Conference on Multimedia and Expo (ICME). 2017, pp. 421–426.

[Eik09] EIKVIL, Line; AURDAL, Lars and KOREN, Hans: “Classification-
based vehicle detection in high-resolution satellite images”. In:
ISPRS Journal of Photogrammetry and Remote Sensing 64.1 (2009),
pp. 65–72.

[Erd16] ERDELJ, Milan and NATALIZIO, Enrico: “UAV-assisted disaster
management: Applications and open issues”. In: Proceedings of
the IEEE International Conference on Computing, Networking and
Communications (ICNC). 2016.

[Eve10] EVERINGHAM, Mark; VAN GOOL, Luc; WILLIAMS, Christopher KI;
WINN, John and ZISSERMAN, Andrew: “The pascal visual object
classes (voc) challenge”. In: International Journal of Computer Vi-
sion 88.2 (2010), pp. 303–338.

[Eye18] EYERMAN, J.; CRISPINO, G.; ZAMARRO, A. and DURSCHER, R.:
“Drone Efficacy Study (DES): Evaluating the Impact of Drones
for Locating Lost Persons in Search and Rescue Events”. In: DJI
and European Emergency Number Association (2018).

208

Bibliography

[Eze14] EZEqUIEL, Carlos Alphonso F; CUA, Matthew; LIBATIqUE,
Nathaniel C; TANGONAN, Gregory L; ALAMPAY, Raphael;
LABUGUEN, Rollyn T; FAVILA, Chrisandro M; HONRADO, Jaime
Luis E; CANOS, Vinni; DEVANEY, Charles, et al.: “UAV aerial imag-
ing applications for post-disaster assessment, environmental
management and infrastructure development”. In: Proceedings of
the IEEE International Conference on Unmanned Aircraft Systems
(ICUAS). 2014, pp. 274–283.

[Fel04] FELZENSZWALB, Pedro F and HUTTENLOCHER, Daniel P: “Efficient
graph-based image segmentation”. In: International Journal of
Computer Vision 59.2 (2004), pp. 167–181.

[Fel10] FELZENSZWALB, Pedro F; GIRSHICK, Ross B; MCALLESTER, David
and RAMANAN, Deva: “Object detection with discriminatively
trained part-based models”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 32.9 (2010), pp. 1627–1645.

[Fu17] FU, Cheng-Yang; LIU, Wei; RANGA, Ananth; TYAGI, Ambrish and
BERG, Alexander C: “DSSD: Deconvolutional single shot detec-
tor”. In: arXiv preprint arXiv:1701.06659 (2017).

[Gir04] GIRARD, Anouck R; HOWELL, Adam S and HEDRICK, J Karl: “Bor-
der patrol and surveillance missions using multiple unmanned air
vehicles”. In: Proceedings of the IEEE Conference on Decision and
Control (CDC). 2004, pp. 620–625.

[Gir14] GIRSHICK, Ross; DONAHUE, Jeff; DARRELL, Trevor and MALIK, Ji-
tendra: “Rich feature hierarchies for accurate object detection and
semantic segmentation”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2014, pp. 580–
587.

[Gir15] GIRSHICK, Ross: “Fast r-cnn”. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV). 2015, pp. 1440–1448.

[Gir16] GIRSHICK, Ross; DONAHUE, Jeff; DARRELL, Trevor and MALIK, Ji-
tendra: “Region-based convolutional networks for accurate ob-
ject detection and segmentation”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 38.1 (2016), pp. 142–158.

209

Bibliography

[Gle11] GLEASON, Joshua; NEFIAN, Ara V; BOUYSSOUNOUSSE, Xavier;
FONG, Terry and BEBIS, George: “Vehicle detection from aerial
imagery”. In: Proceedings of the IEEE International Conference on
Robotics and Automation. 2011, pp. 2065–2070.

[Glo10] GLOROT, Xavier and BENGIO, Yoshua: “Understanding the diffi-
culty of training deep feedforward neural networks”. In: Proceed-
ings of the 13th International Conference on Artificial Intelligence
and Statistics. 2010, pp. 249–256.

[Glo11] GLOROT, Xavier; BORDES, Antoine and BENGIO, Yoshua: “Deep
sparse rectifier neural networks”. In: Proceedings of the 14th Inter-
national Conference on Artificial Intelligence and Statistics. 2011,
pp. 315–323.

[Goo09] GOODRICH, Michael A; MORSE, Bryan S; ENGH, Cameron; COOPER,
Joseph L and ADAMS, Julie A: “Towards using unmanned aerial
vehicles (UAVs) in wilderness search and rescue: Lessons from
field trials”. In: Interaction Studies 10.3 (2009), pp. 453–478.

[Gra08] GRABNER, Helmut; NGUYEN, Thuy Thi; GRUBER, Barbara and
BISCHOF, Horst: “On-line boosting-based car detection from
aerial images”. In: ISPRS Journal of Photogrammetry and Remote
Sensing 63.3 (2008), pp. 382–396.

[GRS18] GRSS: 2018 IEEE GRSS Data Fusion Challenge Dataset. http : / /
hyperspectral.ee.uh.edu/?page_id=1075. [Online; accessed 01-
October-2019]. 2018.

[Gsc16] GSCHWEND, David: “Zynqnet: An fpga-accelerated embedded
convolutional neural network”. In: Master ETH-Zurich: Swiss
Federal Institute of Technology Zurich (2016).

[Guo18] GUO, Wei; YANG, Wen; ZHANG, Haijian and HUA, Guang: “Geospa-
tial object detection in high resolution satellite images based on
multi-scale convolutional neural network”. In: Remote Sensing
10.1 (2018).

[Ham17] HAMILTON, Carl; HUGHES, S; PERKINS, D and ROBERTS, P: “Exer-
cise Northumberland Research Report”. In: (2017).

210

http://hyperspectral.ee.uh.edu/?page_id=1075
http://hyperspectral.ee.uh.edu/?page_id=1075

Bibliography

[Ham18] HAMAGUCHI, Ryuhei; FUJITA, Aito; NEMOTO, Keisuke; IMAIZUMI,
Tomoyuki and HIKOSAKA, Shuhei: “Effective use of dilated convo-
lutions for segmenting small object instances in remote sensing
imagery”. In: Proceedings of the IEEE Winter Conference on Appli-
cations of Computer Vision (WACV). 2018, pp. 1442–1450.

[Han17a] HAN, Xiaobing; ZHONG, Yanfei and ZHANG, Liangpei: “An
efficient and robust integrated geospatial object detection frame-
work for high spatial resolution remote sensing imagery”. In:
Remote Sensing 9.7 (2017).

[Han17b] HAN, Zhongxing; ZHANG, Hui; ZHANG, Jinfang and HU, Xiaohui:
“Fast aircraft detection based on region locating network in large-
scale remote sensing images”. In: Proceedings of the IEEE Interna-
tional Conference on Image Processing ICIP. 2017.

[Han18] HAN, Junwei; ZHANG, Dingwen; CHENG, Gong; LIU, Nian and
XU, Dong: “Advanced deep-learning techniques for salient and
category-specific object detection: a survey”. In: IEEE Signal
Processing Magazine 35.1 (2018), pp. 84–100.

[He14] HE, Kaiming; ZHANG, Xiangyu; REN, Shaoqing and SUN, Jian:
“Spatial pyramid pooling in deep convolutional networks for
visual recognition”. In: Proceedings of the European Conference on
Computer Vision (ECCV). Springer. 2014, pp. 346–361.

[He15] HE, Kaiming; ZHANG, Xiangyu; REN, Shaoqing and SUN, Jian:
“Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification”. In: Proceedings of the
IEEE International Conference on Computer Vision (ICCV). 2015,
pp. 1026–1034.

[He16a] HE, Kaiming; ZHANG, Xiangyu; REN, Shaoqing and SUN, Jian:
“Deep residual learning for image recognition”. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2016, pp. 770–778.

211

Bibliography

[He16b] HE, Kaiming; ZHANG, Xiangyu; REN, Shaoqing and SUN, Jian:
“Identity mappings in deep residual networks”. In: Proceedings of
the European Conference on Computer Vision (ECCV). Springer.
2016, pp. 630–645.

[He17] HE, Kaiming; GKIOXARI, Georgia; DOLLÁR, Piotr and GIRSHICK,
Ross: “Mask r-cnn”. In: Proceedings of the IEEE International Con-
ference on Computer Vision (ICCV). 2017, pp. 2980–2988.

[Hei08] HEITZ, Geremy and KOLLER, Daphne: “Learning spatial context:
Using stuff to find things”. In: Proceedings of the European Confer-
ence on Computer Vision (ECCV). Springer. 2008, pp. 30–43.

[Hei10] HEINZE, Norbert; ESSWEIN, Martin; KRÜGER, Wolfgang and SAUR,
Günter: “Image exploitation algorithms for reconnaissance and
surveillance with UAV”. In: Airborne Intelligence, Surveillance, Re-
connaissance (ISR) Systems and Applications VII. Vol. 7668. Inter-
national Society for Optics and Photonics. 2010.

[Hin01] HINZ, Stefan and BAUMGARTNER, Albert: “Vehicle detection in
aerial images using generic features, grouping, and context”. In:
Joint Pattern Recognition Symposium. Springer. 2001, pp. 45–52.

[Hin03] HINZ, S; SCHLOSSER, C and REITBERGER, J: “Automatic car detec-
tion in high resolution urban scenes based on an adaptive 3D-
model”. In: 2003 2nd GRSS/ISPRS Joint Workshop on Remote Sens-
ing and Data Fusion over Urban Areas. IEEE. 2003, pp. 167–171.

[Hoi12] HOIEM, Derek; CHODPATHUMWAN, Yodsawalai and DAI, Qieyun:
“Diagnosing error in object detectors”. In: Proceedings of the
European Conference on Computer Vision (ECCV). Springer. 2012,
pp. 340–353.

[Hos15] HOSANG, Jan; BENENSON, Rodrigo; DOLLÁR, Piotr and SCHIELE,
Bernt: “What makes for effective detection proposals?” In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 38.4
(2015), pp. 814–830.

212

Bibliography

[How17] HOWARD, Andrew G; ZHU, Menglong; CHEN, Bo; KALENICHENKO,
Dmitry; WANG, Weijun; WEYAND, Tobias; ANDREETTO, Marco
and ADAM, Hartwig: “Mobilenets: Efficient convolutional neu-
ral networks for mobile vision applications”. In: arXiv preprint
arXiv:1704.04861 (2017).

[Hu18] HU, Jie; SHEN, Li and SUN, Gang: “Squeeze-and-Excitation Net-
works”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2018), pp. 7132–7141.

[Hua17] HUANG, Gao; LIU, Zhuang; VAN DER MAATEN, Laurens and WEIN-
BERGER, Kilian Q: “Densely connected convolutional networks”.
In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). 2017, pp. 4700–4708.

[Ian16] IANDOLA, Forrest N; HAN, Song; MOSKEWICZ, Matthew W;
ASHRAF, Khalid; DALLY, William J and KEUTZER, Kurt: “SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB
model size”. In: arXiv preprint arXiv:1602.07360 (2016).

[Iof15] IOFFE, Sergey and SZEGEDY, Christian: “Batch normalization: Ac-
celerating deep network training by reducing internal covariate
shift”. In: arXiv preprint arXiv:1502.03167 (2015).

[ISP] ISPRS: ISPRS WG III/4. ISPRS 2D Semantic Labeling Contest Data-
set. http://www2.isprs.org/commissions/comm3/wg4/semantic-
labeling.html. [Online; accessed 30-March-2017].

[Jia15] JIANG, Qiling; CAO, Liujuan; CHENG, Ming; WANG, Cheng and
LI, Jonathan: “Deep neural networks-based vehicle detection in
satellite images”. In: Proceedings of the IEEE International Sympo-
sium on Bioelectronics and Bioinformatics (ISBB). 2015, pp. 184–
187.

[Kan15] KANISTRAS, Konstantinos; MARTINS, Goncalo; RUTHERFORD,
Matthew J and VALAVANIS, Kimon P: “Survey of unmanned
aerial vehicles (UAVs) for traffic monitoring”. In: Handbook of
unmanned aerial vehicles (2015), pp. 2643–2666.

213

http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html

Bibliography

[Kem10] KEMBHAVI, Aniruddha; HARWOOD, David and DAVIS, Larry S:
“Vehicle detection using partial least squares”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 33.6 (2010),
pp. 1250–1265.

[Kim03] KIM, ZuWhan and MALIK, Jitendra: “Fast vehicle detection with
probabilistic feature grouping and its application to vehicle track-
ing”. In: IEEE. 2003, p. 524.

[Kin14] KINGMA, Diederik P and BA, Jimmy: “Adam: A method for
stochastic optimization”. In: arXiv preprint arXiv:1412.6980
(2014).

[Klu07] KLUCKNER, Stefan; PACHER, Georg; GRABNER, Helmut; BISCHOF,
Horst and BAUER, Joachim: “A 3D teacher for car detection in
aerial images”. In: Proceedings of the IEEE International Conference
on Computer Vision (ICCV). 2007.

[Kog18] KOGA, Yohei; MIYAZAKI, Hiroyuki and SHIBASAKI, Ryosuke: “A
CNN-based method of vehicle detection from aerial images using
hard example mining”. In: Remote Sensing 10.1 (2018).

[Kon16] KONG, Tao; YAO, Anbang; CHEN, Yurong and SUN, Fuchun: “Hy-
perNet: Towards Accurate Region Proposal Generation and Joint
Object Detection”. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). 2016, pp. 845–853.

[Kri12] KRIZHEVSKY, Alex; SUTSKEVER, Ilya and HINTON, Geoffrey E:
“Imagenet classification with deep convolutional neural net-
works”. In: Advances in Neural Information Processing Systems
(NIPS). 2012, pp. 1097–1105.

[Kum01] KUMAR, Rakesh; SAWHNEY, Harpreet; SAMARASEKERA, Supun;
HSU, Steve; TAO, Hai; GUO, Yanlin; HANNA, Keith; POPE, Arthur;
WILDES, Richard; HIRVONEN, David, et al.: “Aerial video surveil-
lance and exploitation”. In: Proceedings of the IEEE 89.10 (2001),
pp. 1518–1539.

214

Bibliography

[Kur18] KURZ, F; WAIGAND, D; PEKEZOU-FOUOPI, P; VIG, E; HENRY, C;
MERKLE, N; ROSENBAUM, D; GSTAIGER, V; AZIMI, S; AUER, S, et al.:
“DLRAD - A first look on the new vision and mapping bench-
mark dataset for autonomous driving”. In: International Archives
of the Photogrammetry, Remote Sensing & Spatial Information
Sciences 42 (2018).

[Lam18] LAM, Darius; KUZMA, Richard; MCGEE, Kevin; DOOLEY, Samuel;
LAIELLI, Michael; KLARIC, Matthew; BULATOV, Yaroslav and MC-
CORD, Brendan: “xview: Objects in context in overhead imagery”.
In: arXiv preprint arXiv:1802.07856 (2018).

[LeC15] LECUN, Yann; BENGIO, Yoshua and HINTON, Geoffrey: “Deep
learning”. In: Nature 521.7553 (2015), p. 436.

[LeC98] LECUN, Yann; BOTTOU, Léon; BENGIO, Yoshua and HAFFNER,
Patrick: “Gradient-based learning applied to document recogni-
tion”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[Lei10] LEITLOFF, Jens; HINZ, Stefan and STILLA, Uwe: “Vehicle detec-
tion in very high resolution satellite images of city areas”. In:
IEEE Transactions on Geoscience and Remote Sensing 48.7 (2010),
pp. 2795–2806.

[Lei14] LEITLOFF, Jens; ROSENBAUM, Dominik; KURZ, Franz; MEYNBERG,
Oliver and REINARTZ, Peter: “An operational system for estimat-
ing road traffic information from aerial images”. In: Remote Sens-
ing 6.11 (2014), pp. 11315–11341.

[Len08] LENHART, DOMINIK; HINZ, STEFAN; LEITLOFF, JENS and STILLA,
Uwe: “Automatic traffic monitoring based on aerial image se-
quences”. In: Pattern Recognition and Image Analysis 18.3 (2008),
pp. 400–405.

[Li16] LI, Hao; KADAV, Asim; DURDANOVIC, Igor; SAMET, Hanan and
GRAF, Hans Peter: “Pruning filters for efficient convnets”. In:
arXiv preprint arXiv:1608.08710 (2016).

215

Bibliography

[Li17] LI, Ke; CHENG, Gong; BU, Shuhui and YOU, Xiong: “Rotation-
insensitive and context-augmented object detection in remote
sensing images”. In: IEEE Transactions on Geoscience and Remote
Sensing 56.4 (2017), pp. 2337–2348.

[Lia12] LIANG, Pengpeng; TEODORO, Gregory; LING, Haibin; BLASCH,
Erik; CHEN, Genshe and BAI, Li: “Multiple kernel learning for
vehicle detection in wide area motion imagery”. In: Proceedings
of the IEEE International Conference on Information Fusion. 2012,
pp. 1629–1636.

[Lin14] LIN, Tsung-Yi; MAIRE, Michael; BELONGIE, Serge; HAYS, James;
PERONA, Pietro; RAMANAN, Deva; DOLLÁR, Piotr and ZITNICK, C
Lawrence: “Microsoft coco: Common objects in context”. In: Pro-
ceedings of the European Conference on Computer Vision (ECCV).
Springer. 2014, pp. 740–755.

[Lin17a] LIN, Tsung-Yi; DOLLÁR, Piotr; GIRSHICK, Ross; HE, Kaiming;
HARIHARAN, Bharath and BELONGIE, Serge: “Feature pyramid
networks for object detection”. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR).
2017.

[Lin17b] LIN, Tsung-Yi; GOYAL, Priya; GIRSHICK, Ross; HE, Kaiming and
DOLLÁR, Piotr: “Focal loss for dense object detection”. In: Pro-
ceedings of the IEEE International Conference on Computer Vision
(ICCV). 2017, pp. 2980–2988.

[Liu15] LIU, Kang and MATTYUS, Gellert: “Fast multiclass vehicle detec-
tion on aerial images”. In: IEEE Geoscience and Remote Sensing
Letters 12.9 (2015), pp. 1938–1942.

[Liu16] LIU, Wei; ANGUELOV, Dragomir; ERHAN, Dumitru; SZEGEDY,
Christian; REED, Scott; FU, Cheng-Yang and BERG, Alexander C:
“Ssd: Single shot multibox detector”. In: Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV). Springer. 2016,
pp. 21–37.

216

Bibliography

[Liu18] LIU, Li; OUYANG, Wanli; WANG, Xiaogang; FIEGUTH, Paul; CHEN,
Jie; LIU, Xinwang and PIETIKÄINEN, Matti: “Deep learning
for generic object detection: A survey”. In: arXiv preprint
arXiv:1809.02165 (2018).

[Lon15] LONG, Jonathan; SHELHAMER, Evan and DARRELL, Trevor: “Fully
convolutional networks for semantic segmentation”. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). 2015, pp. 3431–3440.

[Lon17] LONG, Yang; GONG, Yiping; XIAO, Zhifeng and LIU, Qing: “Accu-
rate object localization in remote sensing images based on con-
volutional neural networks”. In: IEEE Transactions on Geoscience
and Remote Sensing 55.5 (2017), pp. 2486–2498.

[Luo12] LUO, Pingting; LIU, Fuqiang; LIU, Xiaofeng and YANG, Yingqian:
“Stationary vehicle detection in aerial surveillance with a UAV”.
In: Proceedings of the IEEE International Conference on Informa-
tion Science and Digital Content Technology (ICIDT). Vol. 3. 2012,
pp. 567–570.

[Luo16] LUO, Wenjie; LI, Yujia; URTASUN, Raquel and ZEMEL, Richard:
“Understanding the effective receptive field in deep convolu-
tional neural networks”. In: Advances in Neural Information
Processing Systems (NIPS). 2016, pp. 4898–4906.

[Maa13] MAAS, Andrew L; HANNUN, Awni Y and NG, Andrew Y: “Recti-
fier nonlinearities improve neural network acoustic models”. In:
International Conference on Machine Learning (ICML). Vol. 30. 1.
2013.

[Mag17] MAGGIORI, Emmanuel; TARABALKA, Yuliya; CHARPIAT, Guillaume
and ALLIEZ, Pierre: “Can semantic labeling methods generalize
to any city? the inria aerial image labeling benchmark”. In: Pro-
ceedings of the IEEE International Geoscience and Remote Sensing
Symposium (IGARSS). 2017, pp. 3226–3229.

[McC43] MCCULLOCH, Warren S and PITTS, Walter: “A logical calculus of
the ideas immanent in nervous activity”. In: The bulletin of math-
ematical biophysics 5.4 (1943), pp. 115–133.

217

Bibliography

[Mni13] MNIH, Volodymyr: Machine learning for aerial image labeling.
Citeseer, 2013.

[Mon12] MONTAVON, Grégoire; ORR, Geneviève and MÜLLER, Klaus-
Robert: Neural networks: tricks of the trade. Vol. 7700. Springer,
2012.

[Moo02] MOON, Hankyu; CHELLAPPA, Rama and ROSENFELD, Azriel: “Per-
formance analysis of a simple vehicle detection algorithm”. In:
Image and Vision Computing 20.1 (2002), pp. 1–13.

[Mor12] MORANDUZZO, Thomas and MELGANI, Farid: “A SIFT-SVM
method for detecting cars in UAV images”. In: Proceedings of the
IEEE International Geoscience and Remote Sensing Symposium
(IGARSS). 2012, pp. 6868–6871.

[Mor13] MORANDUZZO, Thomas and MELGANI, Farid: “Automatic car
counting method for unmanned aerial vehicle images”. In: IEEE
Transactions on Geoscience and Remote Sensing 52.3 (2013),
pp. 1635–1647.

[Mor14a] MORANDUZZO, Thomas and MELGANI, Farid: “Automatic car
counting method for unmanned aerial vehicle images”. In: IEEE
Transactions on Geoscience and Remote Sensing 52.3 (2014),
pp. 1635–1647.

[Mor14b] MORANDUZZO, Thomas and MELGANI, Farid: “Detecting cars in
UAV images with a catalog-based approach”. In: IEEE Transactions
on Geoscience and Remote Sensing 52.10 (2014), pp. 6356–6367.

[Mun16] MUNDHENK, T Nathan; KONJEVOD, Goran; SAKLA, Wesam A and
BOAKYE, Kofi: “A large contextual dataset for classification, de-
tection and counting of cars with deep learning”. In: Proceedings
of the European Conference on Computer Vision (ECCV). Springer.
2016, pp. 785–800.

[Nie18] NIE, Kun; SOMMER, Lars; SCHUMANN, Arne and BEYERER, Jurgen:
“Semantic labeling based vehicle detection in aerial imagery”. In:
Proceedings of the IEEEWinter Conference on Applications of Com-
puter Vision (WACV). 2018, pp. 626–634.

218

Bibliography

[Pan19] PANG, Jiangmiao; CHEN, Kai; SHI, Jianping; FENG, Huajun;
OUYANG, Wanli and LIN, Dahua: “Libra r-cnn: Towards balanced
learning for object detection”. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). 2019,
pp. 821–830.

[Pen18] PENG, Chao; XIAO, Tete; LI, Zeming; JIANG, Yuning; ZHANG, Xi-
angyu; JIA, Kai; YU, Gang and SUN, Jian: “Megdet: A large mini-
batch object detector”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2018, pp. 6181–
6189.

[Qi16] QI, Juntong; SONG, Dalei; SHANG, Hong; WANG, Nianfa; HUA,
Chunsheng; WU, Chong; QI, Xin and HAN, Jianda: “Search and
rescue rotary-wing uav and its application to the lushan ms 7.0
earthquake”. In: Journal of Field Robotics 33.3 (2016), pp. 290–321.

[Qu16] QU, Shenquan; WANG, Ying; MENG, Gaofeng and PAN, Chunhong:
“Vehicle Detection in Satellite images by incorporating objectness
and convolutional neural network”. In: Journal of Industrial and
Intelligent Information 4.2 (2016).

[Qu17] QU, Tao; ZHANG, Quanyuan and SUN, Shilei: “Vehicle detec-
tion from high-resolution aerial images using spatial pyramid
pooling-based deep convolutional neural networks”. In: Multi-
media Tools and Applications 76.20 (2017), pp. 21651–21663.

[Raz16] RAZAKARIVONY, Sebastien and JURIE, Frederic: “Vehicle detection
in aerial imagery: A small target detection benchmark”. In: Jour-
nal of Visual Communication and Image Representation 34 (2016),
pp. 187–203.

[Red16] REDMON, Joseph; DIVVALA, Santosh; GIRSHICK, Ross and
FARHADI, Ali: “You only look once: Unified, real-time object
detection”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2016, pp. 779–788.

[Red17] REDMON, Joseph and FARHADI, Ali: “YOLO9000: Better, Faster,
Stronger”. In: Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR). 2017, pp. 6517–6525.

219

Bibliography

[Red18] REDMON, Joseph and FARHADI, Ali: “Yolov3: An incremental im-
provement”. In: arXiv preprint arXiv:1804.02767 (2018).

[Rei06] REINARTZ, Peter; LACHAISE, Marie; SCHMEER, Elisabeth; KRAUSS,
Thomas and RUNGE, Hartmut: “Traffic monitoring with serial im-
ages from airborne cameras”. In: ISPRS Journal of Photogrammetry
and Remote Sensing 61.3-4 (2006), pp. 149–158.

[Rei10] REILLY, Vladimir; IDREES, Haroon and SHAH, Mubarak: “Detec-
tion and tracking of large number of targets in wide area surveil-
lance”. In: Proceedings of the European Conference on Computer
Vision (ECCV). Springer. 2010, pp. 186–199.

[Ren15] REN, Shaoqing; HE, Kaiming; GIRSHICK, Ross and SUN, Jian:
“Faster r-cnn: Towards real-time object detection with region
proposal networks”. In:Advances in Neural Information Processing
Systems (NIPS). 2015, pp. 91–99.

[Res17] RESEARCH, Transparency Market: Aerial Imaging Market - Global
Industry Analysis, Size, Share, Growth, Trends and Forecast, 2017
– 2025. 2017.

[Res18] RESEARCH and MARKETS: Aerial Imaging - Global Market Outlook
(2017-2026). 2018.

[Rin19] RINGWALD, Tobias; SOMMER, Lars; SCHUMANN, Arne; BEYERER,
Jurgen and STIEFELHAGEN, Rainer: “UAV-Net: A Fast Aerial Ve-
hicle Detector for Mobile Platforms”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern RecognitionWorkshops
(CVPRW). 2019.

[Röm16] RÖMER, H; KIEFL, R; HENKEL, F; WENXI, C; NIPPOLD, R; KURZ, F
and KIPPNICH, U: “Using airborne remote sensing to increase situ-
ational awareness in civil protection and humanitarian relief - the
importance of user involvement”. In: International Archives of the
Photogrammetry, Remote Sensing & Spatial Information Sciences
41 (2016).

220

Bibliography

[Ros58] ROSENBLATT, Frank: “The perceptron: a probabilistic model for
information storage and organization in the brain.” In: Psycholog-
ical review 65.6 (1958), p. 386.

[Rud08] RUDOL, Piotr and DOHERTY, Patrick: “Human body detection and
geolocalization for UAV search and rescue missions using color
and thermal imagery”. In: Proceedings of the IEEE Aerospace Con-
ference. 2008.

[Rus96] RUSKONÉ, Renaud; GUIGUES, Laurent; AIRAULT, Sylvain and
JAMET, Olivier: “Vehicle detection on aerial images: A structural
approach”. In: Proceedings of IEEE International Conference on
Pattern Recognition (ICPR). Vol. 3. 1996, pp. 900–904.

[Sak17] SAKLA, Wesam; KONJEVOD, Goran and MUNDHENK, T Nathan:
“Deep Multi-modal Vehicle Detection in Aerial ISR Imagery”.
In: Proceedings of the IEEE Winter Conference on Applications of
Computer Vision (WACV). 2017, pp. 916–923.

[Sal83] SALTON, Gerard and MCGILL, Michael J: Introduction to modern
information retrieval. mcgraw-hill, 1983.

[San18] SANDLER, Mark; HOWARD, Andrew; ZHU, Menglong; ZHMOGINOV,
Andrey and CHEN, Liang-Chieh: “Mobilenetv2: Inverted residuals
and linear bottlenecks”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2018, pp. 4510–
4520.

[Sch10] SCHERER, Dominik; MÜLLER, Andreas and BEHNKE, Sven: “Eval-
uation of pooling operations in convolutional architectures for
object recognition”. In: Artificial Neural Networks–ICANN 2010.
Springer, 2010, pp. 92–101.

[Sch15] SCHMIDHUBER, Jürgen: “Deep learning in neural networks: An
overview”. In: Neural networks 61 (2015), pp. 85–117.

[Sha12] SHAO, Wen; YANG, Wen; LIU, Gang and LIU, Jie: “Car detection
from high-resolution aerial imagery using multiple features”. In:
Proceedings of the IEEE International Geoscience and Remote Sens-
ing Symposium (IGARSS). 2012, pp. 4379–4382.

221

Bibliography

[She16] SHERRAH, Jamie: “Fully convolutional networks for dense seman-
tic labelling of high-resolution aerial imagery”. In: arXiv preprint
arXiv:1606.02585 (2016).

[Shi12] SHI, Xinchu; LING, Haibin; BLASCH, Erik and HU, Weiming:
“Context-driven moving vehicle detection in wide area motion
imagery”. In: Proceedings of the IEEE International Conference on
Pattern Recognition (ICPR). 2012, pp. 2512–2515.

[Shr16a] SHRIVASTAVA, Abhinav and GUPTA, Abhinav: “Contextual prim-
ing and feedback for faster r-cnn”. In: Proceedings of the European
Conference on Computer Vision (ECCV). Springer. 2016, pp. 330–
348.

[Shr16b] SHRIVASTAVA, Abhinav; GUPTA, Abhinav and GIRSHICK, Ross:
“Training region-based object detectors with online hard exam-
ple mining”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2016, pp. 761–769.

[Shr16c] SHRIVASTAVA, Abhinav; SUKTHANKAR, Rahul; MALIK, Jitendra
and GUPTA, Abhinav: “Beyond skip connections: Top-down mod-
ulation for object detection”. In: arXiv preprint arXiv:1612.06851
(2016).

[Sia12] SIAM, Mennatullah and ELHELW, Mohamed: “Robust autonomous
visual detection and tracking of moving targets in UAV imagery”.
In: Prcoeedings of the International Conference on Signal Processing.
Vol. 2. 2012, pp. 1060–1066.

[Sif14] SIFRE, Laurent and MALLAT, Stéphane: “Rigid-motion scattering
for image classification”. In: Ph. D. dissertation (2014).

[Sim14] SIMONYAN, Karen and ZISSERMAN, Andrew: “Very deep convo-
lutional networks for large-scale image recognition”. In: arXiv
preprint arXiv:1409.1556 (2014).

[Sin18] SINGH, Bharat and DAVIS, Larry S: “An analysis of scale invari-
ance in object detection snip”. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). 2018,
pp. 3578–3587.

222

Bibliography

[Som17a] SOMMER, Lars; NIE, Kun; SCHUMANN, Arne; SCHUCHERT, Tobias
and BEYERER, Jürgen: “Semantic labeling for improved vehicle
detection in aerial imagery”. In: 2017 14th IEEE International Con-
ference on Advanced Video and Signal Based Surveillance (AVSS).
2017.

[Som17b] SOMMER, Lars W; SCHUCHERT, Tobias and BEYERER, Jürgen: “Deep
learning based multi-category object detection in aerial images”.
In: Automatic Target Recognition XXVII. Vol. 10202. International
Society for Optics and Photonics. 2017, p. 1020209.

[Som17c] SOMMER, Lars Wilko; SCHUCHERT, Tobias and BEYERER, Jürgen:
“Fast deep vehicle detection in aerial images”. In: Proceedings of
the IEEE Winter Conference on Applications of Computer Vision
(WACV). 2017, pp. 311–319.

[Som18a] SOMMER, Lars; SCHMIDT, Nicole; SCHUMANN, Arne and BEYERER,
Jürgen: “Search Area Reduction Fast-RCNN for Fast Vehicle De-
tection in Large Aerial Imagery”. In: Proceedings of the IEEE In-
ternational Conference on Image Processing (ICIP). 2018, pp. 3054–
3058.

[Som18b] SOMMER, Lars; SCHUCHERT, Tobias and BEYERER, Jürgen: “Com-
prehensive Analysis of Deep Learning based Vehicle Detection in
Aerial Images”. In: IEEE Transactions on Circuits and Systems for
Video Technology (2018).

[Som18c] SOMMER, Lars; SCHUMANN, Arne; SCHUCHERT, Tobias and BEY-
ERER, Jurgen: “Multi feature deconvolutional faster r-cnn for
precise vehicle detection in aerial imagery”. In: Proceedings of
the IEEE Winter Conference on Applications of Computer Vision
(WACV). 2018, pp. 635–642.

[Som18d] SOMMER, Lars; STEINMANN, Lucas; SCHUMANN, Arne and BEY-
ERER, Jürgen: “Systematic evaluation of deep learning based
detection frameworks for aerial imagery”. In: Automatic Target
Recognition XXVIII. Vol. 10648. International Society for Optics
and Photonics. 2018, p. 1064803.

223

Bibliography

[Spr14] SPRINGENBERG, Jost Tobias; DOSOVITSKIY, Alexey; BROX, Thomas
and RIEDMILLER, Martin: “Striving for simplicity: The all convo-
lutional net”. In: arXiv preprint arXiv:1412.6806 (2014).

[Sri14] SRIVASTAVA, Nitish; HINTON, Geoffrey; KRIZHEVSKY, Alex;
SUTSKEVER, Ilya and SALAKHUTDINOV, Ruslan: “Dropout: a
simple way to prevent neural networks from overfitting”. In:
Journal of Machine Learning Research 15.1 (2014), pp. 1929–1958.

[Sze15] SZEGEDY, Christian; LIU, Wei; JIA, Yangqing; SERMANET, Pierre;
REED, Scott; ANGUELOV, Dragomir; ERHAN, Dumitru; VAN-
HOUCKE, Vincent and RABINOVICH, Andrew: “Going deeper with
convolutions”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2015, pp. 1–9.

[Sze16] SZEGEDY, Christian; VANHOUCKE, Vincent; IOFFE, Sergey; SHLENS,
Jon and WOJNA, Zbigniew: “Rethinking the inception architecture
for computer vision”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2016, pp. 2818–
2826.

[Sze17] SZEGEDY, Christian; IOFFE, Sergey; VANHOUCKE, Vincent and
ALEMI, Alexander A: “Inception-v4, inception-resnet and the
impact of residual connections on learning”. In: Thirty-First AAAI
Conference on Artificial Intelligence. 2017.

[Tan17] TANG, Tianyu; ZHOU, Shilin; DENG, Zhipeng; ZOU, Huanxin and
LEI, Lin: “Vehicle Detection in Aerial Images Based on Region
Convolutional Neural Networks and Hard Negative Example
Mining”. In: Sensors 17 (2017).

[Tay18] TAYARA, Hilal and CHONG, Kil: “Object detection in very high-
resolution aerial images using one-stage densely connected fea-
ture pyramid network”. In: Sensors 18.10 (2018).

[Tie12] TIELEMAN, Tijmen and HINTON, Geoffrey: “Lecture 6.5-rmsprop,
coursera: Neural networks for machine learning”. In: University
of Toronto, Technical Report (2012).

224

Bibliography

[Tue13] TUERMER, Sebastian; KURZ, Franz; REINARTZ, Peter and STILLA,
Uwe: “Airborne vehicle detection in dense urban areas using HoG
features and disparity maps”. In: IEEE Journal of Selected Top-
ics in Applied Earth Observations and Remote Sensing 6.6 (2013),
pp. 2327–2337.

[Uij13] UIJLINGS, Jasper RR; VAN DE SANDE, Koen EA; GEVERS, Theo and
SMEULDERS, Arnold WM: “Selective search for object recogni-
tion”. In: International Journal of Computer Vision 104.2 (2013),
pp. 154–171.

[Van18] VAN ETTEN, Adam; LINDENBAUM, Dave and BACASTOW, Todd M:
“Spacenet: A remote sensing dataset and challenge series”. In:
arXiv preprint arXiv:1807.01232 (2018).

[Wan18a] WANG, Chen; BAI, Xiao; WANG, Shuai; ZHOU, Jun and REN, Peng:
“Multiscale visual attention networks for object detection in VHR
remote sensing images”. In: IEEE Geoscience and Remote Sensing
Letters 16.2 (2018), pp. 310–314.

[Wan18b] WANG, Robert J; LI, Xiang and LING, Charles X: “Pelee: A real-time
object detection system on mobile devices”. In:Advances in Neural
Information Processing Systems (NIPS). 2018, pp. 1963–1972.

[Wan19] WANG, Haoran; WANG, Zexin; JIA, Meixia; LI, Aijin; FENG, Tuo;
ZHANG, Wenhua and JIAO, Licheng: “Spatial Attention for Multi-
Scale Feature Refinement for Object Detection”. In: Proceedings of
the IEEE International Conference on Computer Vision Workshops
(ICCVW). 2019.

[Waq19] WAQAS ZAMIR, Syed; ARORA, Aditya; GUPTA, Akshita; KHAN,
Salman; SUN, Guolei; SHAHBAZ KHAN, Fahad; ZHU, Fan; SHAO,
Ling; XIA, Gui-Song and BAI, Xiang: “iSAID: A Large-scale Data-
set for Instance Segmentation in Aerial Images”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW). 2019, pp. 28–37.

225

Bibliography

[Wen17] WEN, Wei; XU, Cong; WU, Chunpeng; WANG, Yandan; CHEN, Yi-
ran and LI, Hai: “Coordinating filters for faster deep neural net-
works”. In: Proceedings of the IEEE International Conference on
Computer Vision (ICCV). 2017, pp. 658–666.

[Woo18] WOO, Sanghyun; HWANG, Soonmin and KWEON, In So: “Stairnet:
Top-down semantic aggregation for accurate one shot detection”.
In: Proceedings of the IEEE Winter Conference on Applications of
Computer Vision (WACV). 2018.

[Xia10] XIAO, Jiangjian; CHENG, Hui; SAWHNEY, Harpreet and HAN,
Feng: “Vehicle detection and tracking in wide field-of-view aerial
video”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2010, pp. 679–684.

[Xia18] XIA, Gui-Song; BAI, Xiang; DING, Jian; ZHU, Zhen; BELONGIE,
Serge; LUO, Jiebo; DATCU, Mihai; PELILLO, Marcello and ZHANG,
Liangpei: “DOTA: A large-scale dataset for object detection in
aerial images”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2018, pp. 3974–3983.

[Xie17] XIE, Saining; GIRSHICK, Ross; DOLLÁR, Piotr; TU, Zhuowen and
HE, Kaiming: “Aggregated residual transformations for deep neu-
ral networks”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2017, pp. 5987–5995.

[Xu16] XU, Yongzheng; YU, Guizhen; WANG, Yunpeng; WU, Xinkai and
MA, Yalong: “A hybrid vehicle detection method based on viola-
jones and HOG+ SVM from UAV images”. In: Sensors 16.8 (2016).

[Xu17a] XU, Yongzheng; YU, Guizhen; WANG, Yunpeng; WU, Xinkai and
MA, Yalong: “Car detection from low-altitude UAV imagery with
the faster R-CNN”. In: Journal of Advanced Transportation 2017
(2017).

[Xu17b] XU, Zhaozhuo; XU, Xin; WANG, Lei; YANG, Rui and PU, Fangling:
“Deformable convnet with aspect ratio constrained nms for ob-
ject detection in remote sensing imagery”. In: Remote Sensing 9.12
(2017).

226

Bibliography

[Yan18] YANG, Michael Ying; LIAO, Wentong; LI, Xinbo and ROSENHAHN,
Bodo: “Deep learning for vehicle detection in aerial images”. In:
Proceedings of the IEEE International Conference on Image Process-
ing (ICIP). 2018, pp. 3079–3083.

[Yao08] YAO, Fenghui; SEKMEN, Ali and MALKANI, Mohan J: “Multiple
moving target detection, tracking, and recognition from a mov-
ing observer”. In: Proceedings of the IEEE International Conference
on Information and Automation. 2008, pp. 978–983.

[Yu09] YU, Qian and MEDIONI, Gérard: “Motion pattern interpretation
and detection for tracking moving vehicles in airborne video”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2009, pp. 2671–2678.

[Yu15] YU, Fisher and KOLTUN, Vladlen: “Multi-scale context aggrega-
tion by dilated convolutions”. In: arXiv preprint arXiv:1511.07122
(2015).

[Zei12] ZEILER, Matthew D: “ADADELTA: an adaptive learning rate
method”. In: arXiv preprint arXiv:1212.5701 (2012).

[Zha03] ZHAO, Tao and NEVATIA, Ram: “Car detection in low resolu-
tion aerial images”. In: Image and Vision Computing 21.8 (2003),
pp. 693–703.

[Zha16] ZHANG, Liliang; LIN, Liang; LIANG, Xiaodan and HE, Kaiming: “Is
faster r-cnn doing well for pedestrian detection?” In: Proceedings
of the European Conference on Computer Vision (ECCV). Springer.
2016, pp. 443–457.

[Zha18a] ZHANG, Shifeng; WEN, Longyin; BIAN, Xiao; LEI, Zhen and LI,
Stan Z: “Single-shot refinement neural network for object detec-
tion”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2018, pp. 4203–4212.

[Zha18b] ZHANG, Xiangyu; ZHOU, Xinyu; LIN, Mengxiao and SUN, Jian:
“Shufflenet: An extremely efficient convolutional neural network
for mobile devices”. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). 2018, pp. 6848–6856.

227

Bibliography

[Zha18c] ZHAO, Zhong-Qiu; ZHENG, Peng; XU, Shou-tao and WU, Xindong:
“Object detection with deep learning: A review”. In: arXiv preprint
arXiv:1807.05511 (2018).

[Zho15] ZHOU, Bolei; KHOSLA, Aditya; LAPEDRIZA, Agata; OLIVA, Aude
and TORRALBA, Antonio: “Object detectors emerge in deep scene
cnns”. In: International Conference on Learning Representations
(2015).

[Zho17] ZHONG, Jiandan; LEI, Tao and YAO, Guangle: “Robust vehicle de-
tection in aerial images based on cascaded convolutional neural
networks”. In: Sensors 17.12 (2017).

[Zhu15] ZHU, Haigang; CHEN, Xiaogang; DAI, Weiqun; FU, Kun; YE, Qix-
iang and JIAO, Jianbin: “Orientation robust object detection in
aerial images using deep convolutional neural network”. In: Pro-
ceedings of the IEEE International Conference on Image Processing
(ICIP). 2015, pp. 3735–3739.

[Zhu17] ZHU, Yousong; ZHAO, Chaoyang; WANG, Jinqiao; ZHAO, Xu; WU,
Yi; LU, Hanqing, et al.: “Couplenet: Coupling global structure with
local parts for object detection”. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision (ICCV). 2017.

[Zhu18] ZHU, Pengfei; WEN, Longyin; DU, Dawei; BIAN, Xiao; LING,
Haibin; HU, Qinghua; NIE, Qinqin; CHENG, Hao; LIU, Chenfeng;
LIU, Xiaoyu, et al.: “Visdrone-det2018: The vision meets drone
object detection in image challenge results”. In: Proceedings of
the European Conference on Computer Vision (ECCV). 2018.

[Zhu19] ZHU, Xizhou; HU, Han; LIN, Stephen and DAI, Jifeng: “Deformable
convnets v2: More deformable, better results”. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2019, pp. 9308–9316.

[Zop18] ZOPH, Barret; VASUDEVAN, Vijay; SHLENS, Jonathon and LE, Quoc
V.: “Learning Transferable Architectures for Scalable Image
Recognition”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2018, pp. 8697–8710.

228

Publications

[1] CORMIER, Mickael; SOMMER, Lars Wilko and TEUTSCH, Michael: “Low
resolution vehicle re-identification based on appearance features for
wide area motion imagery”. In: Proceedings of the IEEE Winter Appli-
cations of Computer Vision Workshops (WACVW). 2016.

[2] SOMMER, Lars W; SCHUCHERT, Tobias and BEYERER, Jürgen: “Generat-
ing object proposals for improved object detection in aerial images”.
In: Electro-Optical Remote Sensing X. Vol. 9988. International Society
for Optics and Photonics. 2016, 99880N.

[3] SOMMER, Lars Wilko; SCHUCHERT, Tobias and BEYERER, Jurgen: “A
comprehensive study on object proposals methods for vehicle detec-
tion in aerial images”. In: 9th IAPR Workshop on Pattern Recogniton in
Remote Sensing (PRRS). 2016.

[4] SOMMER, Lars Wilko; TEUTSCH, Michael; SCHUCHERT, Tobias and BEY-
ERER, Jürgen: “A survey on moving object detection for wide area mo-
tion imagery”. In: Proceedings of the IEEE Winter Conference on Appli-
cations of Computer Vision (WACV). 2016.

[5] COLUCCIA, Angelo; GHENESCU, Marian; PIATRIK, Tomas; DE CUB-
BER, Geert; SCHUMANN, Arne; SOMMER, Lars; KLATTE, Johannes;
SCHUCHERT, Tobias, et al.: “Drone-vs-Bird detection challenge at IEEE
AVSS2017”. In: 2017 14th IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS). 2017.

[6] SCHUMANN, Arne; SOMMER, Lars; KLATTE, Johannes; SCHUCHERT, To-
bias and BEYERER, Jürgen: “Deep cross-domain flying object classifi-
cation for robust UAV detection”. In: 2017 14th IEEE International Con-
ference on Advanced Video and Signal Based Surveillance (AVSS). 2017.

229

Publications

[7] SOMMER, Lars; NIE, Kun; SCHUMANN, Arne; SCHUCHERT, Tobias and
BEYERER, Jürgen: “Semantic labeling for improved vehicle detection
in aerial imagery”. In: 2017 14th IEEE International Conference on Ad-
vanced Video and Signal Based Surveillance (AVSS). 2017.

[8] SOMMER, Lars; SCHUMANN, Arne; MÜLLER, Thomas; SCHUCHERT, To-
bias and BEYERER, Jürgen: “Flying object detection for automatic UAV
recognition”. In: 2017 14th IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS). 2017.

[9] SOMMER, Lars W; SCHUCHERT, Tobias and BEYERER, Jürgen: “Deep
learning based multi-category object detection in aerial images”. In:
Automatic Target Recognition XXVII. Vol. 10202. International Society
for Optics and Photonics. 2017, p. 1020209.

[10] SOMMER, Lars Wilko; SCHUCHERT, Tobias and BEYERER, Jürgen: “Fast
deep vehicle detection in aerial images”. In: Proceedings of the IEEE
Winter Conference on Applications of Computer Vision (WACV). 2017,
pp. 311–319.

[11] ACATAY, Oliver; SOMMER, Lars; SCHUMANN, Arne and BEYERER, Jür-
gen: “Comprehensive Evaluation of Deep Learning based Detection
Methods for Vehicle Detection in Aerial Imagery”. In: 2018 15th IEEE
International Conference on Advanced Video and Signal Based Surveil-
lance (AVSS). 2018.

[12] LYU, Siwei; CHANG, Ming-Ching; DU, Dawei; LI, Wenbo; WEI, Yi; DEL
COCO, Marco; CARCAGNÌ, Pierluigi; SCHUMANN, Arne; MUNJAL, Bharti;
CHOI, Doo-Hyun, et al.: “UA-DETRAC 2018: Report of AVSS2018 &
IWT4S Challenge on Advanced Traffic Monitoring”. In: 2018 15th IEEE
International Conference on Advanced Video and Signal Based Surveil-
lance (AVSS). 2018.

[13] NIE, Kun; SOMMER, Lars; SCHUMANN, Arne and BEYERER, Jurgen: “Se-
mantic labeling based vehicle detection in aerial imagery”. In: Proceed-
ings of the IEEE Winter Conference on Applications of Computer Vision
(WACV). 2018, pp. 626–634.

230

Publications

[14] SCHUMANN, Arne; SOMMER, Lars; MÜLLER, Thomas and VOTH, Sascha:
“An image processing pipeline for long range UAV detection”. In:
Emerging Imaging and Sensing Technologies for Security and Defence
III; and Unmanned Sensors, Systems, and Countermeasures. Vol. 10799.
International Society for Optics and Photonics. 2018, 107990T.

[15] SCHUMANN, Arne; SOMMER, Lars; VOGLER, Max and BEYERER, Jurgen:
“Onthology-based Masking Loss for Improved Generalization in
Remote Sensing Semantic Image Retrieval”. In: 2018 15th IEEE Inter-
national Conference on Advanced Video and Signal Based Surveillance
(AVSS). 2018.

[16] SOMMER, Lars; ACATAY, Oliver; SCHUMANN, Arne and BEYERER, Jürgen:
“Ensemble of Two-Stage Regression Based Detectors for Accurate Ve-
hicle Detection in Traffic Surveillance Data”. In: 2018 15th IEEE Inter-
national Conference on Advanced Video and Signal Based Surveillance
(AVSS). 2018.

[17] SOMMER, Lars; SCHMIDT, Nicole; SCHUMANN, Arne and BEYERER, Jür-
gen: “Search Area Reduction Fast-RCNN for Fast Vehicle Detection in
Large Aerial Imagery”. In: Proceedings of the IEEE International Con-
ference on Image Processing (ICIP). 2018, pp. 3054–3058.

[18] SOMMER, Lars; SCHUCHERT, Tobias and BEYERER, Jürgen: “Comprehen-
sive Analysis of Deep Learning based Vehicle Detection in Aerial Im-
ages”. In: IEEE Transactions on Circuits and Systems for Video Technol-
ogy (2018).

[19] SOMMER, Lars; SCHUMANN, Arne; SCHUCHERT, Tobias and BEYERER,
Jurgen: “Multi feature deconvolutional faster r-cnn for precise vehicle
detection in aerial imagery”. In: Proceedings of the IEEE Winter Confer-
ence on Applications of Computer Vision (WACV). 2018, pp. 635–642.

[20] SOMMER, Lars; STEINMANN, Lucas; SCHUMANN, Arne and BEYERER,
Jürgen: “Systematic evaluation of deep learning based detection
frameworks for aerial imagery”. In: Automatic Target Recognition
XXVIII. Vol. 10648. International Society for Optics and Photonics.
2018, p. 1064803.

231

Publications

[21] VALEV, Krassimir; SCHUMANN, Arne; SOMMER, Lars and BEYERER, Jur-
gen: “A systematic evaluation of recent deep learning architectures for
fine-grained vehicle classification”. In: Pattern Recognition and Track-
ing XXIX. Vol. 10649. International Society for Optics and Photonics.
2018, p. 1064902.

[22] ZHU, Pengfei; WEN, Longyin; DU, Dawei; BIAN, Xiao; LING, Haibin;
HU, Qinghua; NIE, Qinqin; CHENG, Hao; LIU, Chenfeng; LIU, Xiaoyu,
et al.: “VisDrone-DET2018: The Vision Meets Drone Object Detection
in Image Challenge Results”. In: Proceedings of the European Conference
on Computer Vision (ECCV). 2018.

[23] ZHU, Pengfei; WEN, Longyin; DU, Dawei; BIAN, Xiao; LING, Haibin;
HU, Qinghua; WU, Haotian; NIE, Qinqin; CHENG, Hao; LIU, Chenfeng,
et al.: “VisDrone-VDT2018: The vision meets drone video detection
and tracking challenge results”. In: Proceedings of the European Con-
ference on Computer Vision (ECCV). 2018.

[24] AZIMI, Seyed Majid; HENRY, Corentin; SOMMER, Lars; SCHUMANN,
Arne and VIG, Eleonora: “SkyScapes Fine-Grained Semantic Under-
standing of Aerial Scenes”. In: Proceedings of the IEEE International
Conference on Computer Vision (ICCV). 2019.

[25] COLUCCIA, Angelo; FASCISTA, Alessio; SCHUMANN, Arne; SOMMER,
Lars; GHENESCU, Marian; PIATRIK, Tomas; DE CUBBER, Geert, et al.:
“Drone-vs-Bird detection challenge at IEEE AVSS2019”. In: 2019 16th
IEEE International Conference on Advanced Video and Signal Based
Surveillance (AVSS). 2019.

[26] RINGWALD, Tobias; SOMMER, Lars; SCHUMANN, Arne; BEYERER, Jurgen
and STIEFELHAGEN, Rainer: “UAV-Net: A Fast Aerial Vehicle Detector
for Mobile Platforms”. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW). 2019.

232

List of Figures

1.1 Applications based on aerial imagery. 2
1.2 Challenges of object detection in aerial imagery. 7

2.1 Structure of a single perceptron. 12
2.2 Structure of a Multilayer Perceptron. 13
2.3 Transition to a 1D convolutional layer. 14
2.4 Schematic illustration of a convolutional layer. 15
2.5 Representation of the ReLU functionality. 16
2.6 Illustration of a max pooling operation. 17
2.7 Visualization of an inception module. 21
2.8 Visualization of a residual block and variants. 21
2.9 Illustration of a dilated convolution. 22
2.10 Illustration of a group convolution. 23
2.11 Schematic illustration of a depthwise separable convolution. . . 24
2.12 Schematic of shuffled group convolutions. 24
2.13 Example of deconvolution in 1D. 25

3.1 Concept of the proposed detection pipeline. 42
3.2 Example images from benchmark object detection datasets. . . 44
3.3 Example images from aerial imagery datasets. 44
3.4 False alarms due to the exploitation of shallow layers. 45

4.1 Examples of the DLR 3K dataset. 51
4.2 Examples of the VEDAI dataset. 52
4.3 Examples of the DOTA dataset. 53
4.4 Examples of the ITCVD dataset. 54
4.5 Examples of the xView dataset. 55

233

List of Figures

4.6 Examples of the Potsdam dataset. 56
4.7 Issues with semantic labeling masks. 57
4.8 Precision-recall curve. 59
4.9 Recall versus IoU threshold curve. 60

5.1 Functional principle of the Faster R-CNN. 64
5.2 Functional principle of the Region Proposal Network. 65
5.3 Functional principle of the classification stage. 67
5.4 Activations of filters from conv5_3 on PASCAL VOC. 72
5.5 Activations of filters from conv5_3 on DLR 3K. 72
5.6 Activations of filters from conv3_3 on DLR 3K. 74
5.7 Impact of feature maps on the localization quality. 75
5.8 Error analysis of false positive detections for conv3_3. 76
5.9 Error analysis of false positive detections for conv5_3. 76
5.10 Recall-IoU curves for different feature map resolutions. 78
5.11 Recall-IoU curves for different anchor box scales. 80
5.12 Relation between AP and ABO for different anchor scales. . . . 81
5.13 Loss curves for different anchor box scales. 82
5.14 Examples showing the impact of appropriate anchor scales. . . 83
5.15 Visualization of region proposals for different anchor scales. . . 83
5.16 Distribution of object instance sizes for different GSDs. 84
5.17 Precision-recall curves for different GSDs. 86
5.18 Qualitative examples for a GSD of 26 cm. 87
5.19 Relation between AP and ABO for various GSDs. 89
5.20 Error analysis of false positive detections for various GSDs. . . 90
5.21 Filters responding to vehicle parts and similar structures. . . . 91

6.1 Schematic structure of the proposed MFD Faster R-CNN. . . . 96
6.2 Illustration of the deconvolutional sub-module. 98
6.3 Reduced number of FPs by integrating spatial context. 100
6.4 Schematic structure of FCN-32s. 102
6.5 Schematic structure of FCN-16s. 103
6.6 Schematic structure of FCN-D16. 104
6.7 Schematic structure of SegNet. 105
6.8 Illustration of the non-linear up-sampling used in SegNet. . . . 106

234

List of Figures

6.9 Semantic labeling results for different architectures. 109
6.10 Illustration of the semantic labeling based filtering. 110
6.11 Schematic of the semantic labeling based filtering scheme. . . 111
6.12 Examples showing the impact of the proposed filtering. 115
6.13 Illustration of the proposed IMT Faster R-CNN. 117
6.14 Illustration of the proposed EMT Faster R-CNN. 119
6.15 Examples showing the impact of EMT Faster R-CNN. 121
6.16 Remaining FPs for EMT Faster R-CNN. 122
6.17 Artifacts of the RGB images of the Potsdam dataset. 126
6.18 Examples of semantic labeling masks for DLR 3K. 126
6.19 Limitations of semantic labeling in case of tiny structures. . . . 129
6.20 Impact of multi-task learning on filter responses. 129
6.21 Impact of EMT Faster R-CNN on DLR 3K. 130

7.1 Schematic structure of SSD. 133
7.2 Main building blocks of ShuffleNet. 137
7.3 Main building blocks of PeleeNet. 139
7.4 Main building block of SqueezeNet denoted as Fire module. . . 141
7.6 Illustration of Faster R-CNN with Search Area Reduction. . . . 159
7.7 Schematic structure of the SAR module. 160
7.8 Examples used to train the SAR classifier. 163
7.9 Classification results of the SAR module on DLR 3K. 166
7.10 Classification results of the SAR module on VEDAI. 167
7.11 Speed-up with respect to the number of tiles filtered out. . . . 168

8.1 Illustration of the merged EMT-MFD Faster R-CNN. 170
8.2 Illustration of the EMT Faster R-CNN with SAR. 174
8.3 Illustration of the MFD Faster R-CNN with SAR. 176
8.4 Examples of the combined detection method. 181
8.5 Comparison to existing work on DLR 3K. 187
8.6 Comparison to existing work on VEDAI. 188
8.7 Examples of the proposed method on the ITCVD dataset. . . . 190
8.8 Comparison to the baseline Faster R-CNN on ITCVD. 190
8.9 False alarms and missed detections on ITCVD. 191
8.10 Examples of the proposed method on the DOTA dataset. . . . 192

235

List of Figures

8.11 Comparison to the baseline Faster R-CNN on DOTA. 192
8.12 False alarms and missed detections on DOTA. 193
8.13 Examples of the proposed method on the xView dataset. . . . 194

236

List of Tables

4.1 Vehicle detection datasets by release year. 50
4.2 Overview of devices used for runtime measurements. 62

5.1 Schematic structure of VGG16. 69
5.2 AP for differing feature map resolutions. 74
5.3 AP for different anchor box scales. 79
5.4 AP for various single anchor box scales. 79
5.5 AP for differing feature map resolutions w.r.t. the GSD 85
5.6 Anchor box areas employed for the different GSDs. 85
5.7 AP for different anchor box scales w.r.t. the GSD. 89
5.8 Inference time for different feature map resolutions. 93

6.1 AP of MFD Faster-RCNN for various GSDs. 99
6.2 Impact of the training procedure on the AP. 101
6.3 Semantic labeling results of different architectures. 108
6.4 Detection performance for different filter criteria. 112
6.5 AP w.r.t. used semantic labeling architectures. 113
6.6 Semantic labeling results for different GSDs using FCN-D16. . . 114
6.7 AP with and without filtering for various GSDs. 115
6.8 AP for IMT Faster R-CNN and EMT Faster R-CNN. 119
6.9 Different weightings of the semantic labeling loss. 120
6.10 AP of IMT and EMT Faster R-CNN for various GSDs. 123
6.11 IMT and EMT Faster R-CNN compared to baselines. 124
6.12 AP for semantic labeling based approaches on DLR 3K. 127
6.13 Semantic labeling results for FCN-D16 on DLR 3K. 128
6.14 IMT and EMT Faster R-CNN on DLR 3K for various GSDs . . . 130

237

List of Tables

7.1 Schematic structure of MobileNet. 135
7.2 Schematic structure of ShuffleNet 1×(g=3). 138
7.3 Schematic structure of PeleeNet. 140
7.4 Schematic structure of SqueezeNet v1.0. 142
7.5 Schematic structure of SqueezeNet v1.1. 143
7.6 Schematic structure of ZynqNet. 144
7.7 Inference time for SSD with different base networks. 148
7.8 Inference time for SSD with condensed base networks. 149
7.9 Inference time for different classification heads. 151
7.10 Parameter count and inference time for selected networks. . . 152
7.11 Faster R-CNN with different base networks. 153
7.12 Inference time for each component of Faster R-CNN. 154
7.13 AP for Faster R-CNN with ZynqNet w.r.t. various GSDs. . . . 155
7.14 Inference time for Faster R-CNN with condensed networks. . . 156
7.15 Inference time in case of adapted RPN prediction layers. . . . 157
7.16 Impact of SAR on the inference time on DLR 3K. 164
7.17 Impact of SAR on the inference time on VEDAI. 165

8.1 AP of EMT-MFD Faster R-CNN for various GSDs. 171
8.2 EMT Faster R-CNN with different base networks. 172
8.3 EMT Faster R-CNN with different base networks for various

GSDs. 173
8.4 EMT Faster R-CNN with and without SAR. 174
8.5 MFD Faster R-CNN with different base networks. 175
8.6 MFD Faster R-CNN with different base networks for various

GSDs. 176
8.7 MFD Faster R-CNN with and without SAR. 177
8.8 Faster R-CNN with SAR using ZynqNet as base network. . . . 179
8.9 Detection performance of the final model. 180
8.10 Comparison to existing work on DLR 3K. 183
8.11 Comparison to existing work on DLR 3K for various GSDs. . . 185
8.12 Comparison to existing work on VEDAI. 186

238

Acronyms

ABO average best overlap

AdaBoost adaptive boosting

AGRC Automated Geographic Reference Center

AP average precision

AVPN accurate vehicle proposal network

B building

BB bounding box

BING Binary Normed Gradients

BN batch normalization

Ca car

CEM context enhancement module

CGBN Cross-GPU Batch Normalization

Cl clutter

CNN convolutional neural network

239

Acronyms

COWC Cars Overhead with Context

CPU Central Processing Unit

DCN deformable convolutional network

DFL-CNN Double Focal Loss - CNN

DLR German Aerospace Center

DOTA Dataset for Object DeTection in Aerial Images

DSC depthwise separable convolution

DSM digital surface model

DSSD Deconvolutional SSD

DYOLO Deconvolutional YOLO

EMT Explicit Multi-Task

FC fully connected layer

FCN fully convolutional network

FN false negative

FP false positive

FPN Feature Pyramid Network

FPS frames per second

GAN generative adversarial network

240

Acronyms

GPU Graphics Processing Unit

GSD ground sampling distance

GT ground truth

HD High Definition

HOG Histogram of Oriented Gradients

ICF Integral Channel Features

IMT Implicit Multi-Task

IoU Intersection over Union

IR infrared

IS impervious surface

ISPRS International Society for Photogrammetry and Remote Sens-
ing

LBP Local Binary Pattern

LCI large-size color image

LV low vegetation

MFD Multi Feature Deconvolutional

MLP Multilayer Perceptron

MS COCO Microsoft Common Objects in Context

241

Acronyms

NASNet Neural Architecture Search Network

NMS non-maximum suppression

NWPU Northwestern Polytechnical University

OHEM online hard example mining

PASCAL Pattern Analysis, Statistical Modelling and ComputAtional
Learning

PCA Principal Component Analysis

PRC precision-recall curve

RAM Random-Access Memory

R-CNN Regions with CNN features

ReLU Rectified Linear Unit

R-FCN Region-based Fully Convolutional Network

RNN recurrent neural network

RoI Region of Interest

RPN Region Proposal Network

SAR Search Area Reduction

SCI small-size color image

SENet Squeeze-and-Excitation Network

242

Acronyms

SGD stochastic gradient descent

SIFT Scale-Invariant Feature Transform

SPPNet spatial pyramid pooling network

SSD Single Shot MultiBox Detector

SVM Support Vector Machine

T tree

TAS Things and Stuff

TP true positive

UAV unmanned aerial vehicle

UAVDT UAV Detection and Tracking

UCAS-AOD University of Chinese Academy of Sciences - Aerial Object
Detection

VEDAI Vehicle Detection in Aerial Imagery

VGG Visual Geometry Group

VHR Very-High-Resolution

VOC Visual Object Classes

YOLO You only look once

243

Table of Symbols

Calligraphic Symbols

𝒜 set of ground truth annotations
ℬ batch
𝒪 set of object proposals

Greek Symbols

𝛼 percentage of filters kept after pruning
𝛽 shift parameter
𝛾 scale parameter
𝛿 weight decay
𝜖 small value
𝜂 learning rate
𝜆 weighting factor
𝜇 mean
𝜇ℬ mean over batch
𝜉 width multiplier
𝜌 resolution multiplier
𝜎2 variance

245

Table of Symbols

𝜎2ℬ variance over batch
𝜏 threshold
𝜔 momentum

Roman Symbols

𝑎 ground truth annotation instance
𝑏 bias
𝑐 number of classes
𝑑 dilation coefficient
𝑑 ×𝑑 image resolution
𝑓 convolutional filter
𝑓𝑢 up-sampling factor
𝑔 number of groups
𝑘 number of default anchor boxes
𝑘 × 𝑘 kernel size
𝑙 number of bounding boxes per grid cell
𝑛𝑜 number of object proposals considered for classification
𝑜 object proposal instance
𝑝 predicted object probability
𝑝∗ class label
𝑢 class label
𝑥,𝑦,ℎ,𝑤 bounding box center coordinates, height and width
𝑦 perceptron output
𝐴𝐺𝑇 ground truth bounding box area
𝐴𝑝𝑟𝑒𝑑 predicted bounding box area

246

Table of Symbols

𝐵 bounding boxes per grid cell
𝐶 number of filters in a convolutional layer
𝐷 number of channels
𝐻,𝑊 image width and height
𝐿 loss
𝐿𝑐𝑙𝑠 classification loss
𝐿𝐶𝐿𝑆 classification stage loss
𝐿𝐹𝑎𝑠𝑡𝑒𝑟 𝑅-𝐶𝑁𝑁 Faster R-CNN loss
𝐿𝑀𝑇 joint multi-task loss
𝐿𝑟𝑒𝑔 regression loss
𝐿𝑅𝑃𝑁 region proposal network loss
𝐿𝑆𝐿 semantic labeling loss
𝑁𝑏𝑔 number of pixels asigned to background classes
𝑁𝑐𝑎𝑟 number of pixels asigned to class car
𝑁𝑡𝑟𝑒𝑒 number of pixels asigned to class tree
𝑁𝑖𝑠 number of pixels asigned to class impervious surface
𝑃 precision
̃𝑃 interpolated precision

𝑅 recall
𝑆×𝑆 grid size
b bias vector
b̂ rescaled bias vector
e all-ones vector
h local feature vector
ĥ network activations with zero mean and unit variance
h̃ network activations

247

Table of Symbols

h̃
𝐵𝑁

normalized network activations
t parameterized coordiantes of a predicted bounding box
t∗ parameterized coordiantes of a ground truth bounding box
t𝑢 parameterized coordiantes of a predicted bounding box

associated to class u
v parameterized coordiantes of a ground truth bounding box
w perceptron weight vector
x perceptron input vector
W neural network layer weight matrix
Ŵ rescaled neural network layer weight matrix

248

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Karlsruher Schriftenreihe zur Anthropomatik
(ISSN 1863-6489)

Jürgen Geisler
Leistung des Menschen am Bildschirmarbeitsplatz.
ISBN 3-86644-070-7

Elisabeth Peinsipp-Byma
Leistungserhöhung durch Assistenz in interaktiven Systemen
zur Szenenanalyse. 2007
ISBN 978-3-86644-149-1

Jürgen Geisler, Jürgen Beyerer (Hrsg.)
Mensch-Maschine-Systeme.
ISBN 978-3-86644-457-7

Jürgen Beyerer, Marco Huber (Hrsg.)
Proceedings of the 2009 Joint Workshop of
Fraunhofer IOSB and Institute for Anthropomatics,
Vision and Fusion Laboratory.
ISBN 978-3-86644-469-0

Thomas Usländer
Service-oriented design of environmental information systems.
ISBN 978-3-86644-499-7

Giulio Milighetti
Multisensorielle diskret-kontinuierliche Überwachung und
Regelung humanoider Roboter.
ISBN 978-3-86644-568-0

Jürgen Beyerer, Marco Huber (Hrsg.)
Proceedings of the 2010 Joint Workshop of
Fraunhofer IOSB and Institute for Anthropomatics,
Vision and Fusion Laboratory.
ISBN 978-3-86644-609-0

Eduardo Monari
Dynamische Sensorselektion zur auftragsorientierten
Objektverfolgung in Kameranetzwerken.
ISBN 978-3-86644-729-5

Band 1

Band 2

Band 3

Band 4

Band 5

Band 6

Band 7

Band 8

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Thomas Bader
Multimodale Interaktion in Multi-Display-Umgebungen.
ISBN 3-86644-760-8

Christian Frese
Planung kooperativer Fahrmanöver für kognitive
Automobile.
ISBN 978-3-86644-798-1

Jürgen Beyerer, Alexey Pak (Hrsg.)
Proceedings of the 2011 Joint Workshop of
Fraunhofer IOSB and Institute for Anthropomatics,
Vision and Fusion Laboratory.
ISBN 978-3-86644-855-1

Miriam Schleipen
Adaptivität und Interoperabilität von Manufacturing
Execution Systemen (MES).
ISBN 978-3-86644-955-8

Jürgen Beyerer, Alexey Pak (Hrsg.)
Proceedings of the 2012 Joint Workshop of
Fraunhofer IOSB and Institute for Anthropomatics,
Vision and Fusion Laboratory.
ISBN 978-3-86644-988-6

Hauke-Hendrik Vagts
Privatheit und Datenschutz in der intelligenten Überwachung:
Ein datenschutzgewährendes System, entworfen nach dem

„Privacy by Design“ Prinzip.
ISBN 978-3-7315-0041-4

Christian Kühnert
Data-driven Methods for Fault Localization in Process
Technology. 2013
ISBN 978-3-7315-0098-8

Alexander Bauer
Probabilistische Szenenmodelle für die Luftbildauswertung.
ISBN 978-3-7315-0167-1

Jürgen Beyerer, Alexey Pak (Hrsg.)
Proceedings of the 2013 Joint Workshop of
Fraunhofer IOSB and Institute for Anthropomatics,
Vision and Fusion Laboratory.
ISBN 978-3-7315-0212-8

Band 9

Band 10

Band 11

Band 12

Band 13

Band 14

Band 15

Band 16

Band 17

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Michael Teutsch
Moving Object Detection and Segmentation for Remote
Aerial Video Surveillance.
ISBN 978-3-7315-0320-0

Marco Huber
Nonlinear Gaussian Filtering:
Theory, Algorithms, and Applications.
ISBN 978-3-7315-0338-5

Jürgen Beyerer, Alexey Pak (Hrsg.)
Proceedings of the 2014 Joint Workshop of
Fraunhofer IOSB and Institute for Anthropomatics,
Vision and Fusion Laboratory.
ISBN 978-3-7315-0401-6

Todor Dimitrov
Permanente Optimierung dynamischer Probleme
der Fertigungssteuerung unter Einbeziehung von
Benutzerinteraktionen.
ISBN 978-3-7315-0426-9

Benjamin Kühn
Interessengetriebene audiovisuelle Szenenexploration.
ISBN 978-3-7315-0457-3

Yvonne Fischer
Wissensbasierte probabilistische Modellierung für die Situa-
tionsanalyse am Beispiel der maritimen Überwachung.
ISBN 978-3-7315-0460-3

Jürgen Beyerer, Alexey Pak (Hrsg.)
Proceedings of the 2015 Joint Workshop of
Fraunhofer IOSB and Institute for Anthropomatics,
Vision and Fusion Laboratory.
ISBN 978-3-7315-0519-8

Pascal Birnstill
Privacy-Respecting Smart Video Surveillance
Based on Usage Control Enforcement.
ISBN 978-3-7315-0538-9

Philipp Woock
Umgebungskartenschätzung aus Sidescan-Sonar-
daten für ein autonomes Unterwasserfahrzeug.
ISBN 978-3-7315-0541-9

Band 18

Band 19

Band 20

Band 21

Band 22

Band 23

Band 24

Band 25

Band 26

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 27	� Janko Petereit
Adaptive State × Time Lattices: A Contribution to Mobile Robot
Motion Planning in Unstructured Dynamic Environments.
ISBN 978-3-7315-0580-8

Band 28	� Erik Ludwig Krempel
Steigerung der Akzeptanz von intelligenter
Videoüberwachung in öffentlichen Räumen.
ISBN 978-3-7315-0598-3

Band 29	� Jürgen Moßgraber
Ein Rahmenwerk für die Architektur von
Frühwarnsystemen. 2017
ISBN 978-3-7315-0638-6

Band 30	� Andrey Belkin
World Modeling for Intelligent Autonomous Systems.
ISBN 978-3-7315-0641-6

Band 31	� Chettapong Janya-Anurak
Framework for Analysis and Identification of Nonlinear
Distributed Parameter Systems using Bayesian Uncertainty
Quantification based on Generalized Polynomial Chaos.
ISBN 978-3-7315-0642-3

Band 32	� David Münch
Begriffliche Situationsanalyse aus Videodaten bei
unvollständiger und fehlerhafter Information.
ISBN 978-3-7315-0644-7

Band 33	� Jürgen Beyerer, Alexey Pak (Eds.)
Proceedings of the 2016 Joint Workshop of
Fraunhofer IOSB and Institute for Anthropomatics,
Vision and Fusion Laboratory.
ISBN 978-3-7315-0678-2

Band 34	� Jürgen Beyerer, Alexey Pak and Miro Taphanel (Eds.)
Proceedings of the 2017 Joint Workshop of
Fraunhofer IOSB and Institute for Anthropomatics,
Vision and Fusion Laboratory.
ISBN 978-3-7315-0779-6

Band 35	� Michael Grinberg
Feature-Based Probabilistic Data Association for
Video-Based Multi-Object Tracking.
ISBN 978-3-7315-0781-9

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 36	� Christian Herrmann
Video-to-Video Face Recognition for
Low-Quality Surveillance Data.
ISBN 978-3-7315-0799-4

Band 37	� Chengchao Qu
Facial Texture Super-Resolution
by Fitting 3D Face Models.
ISBN 978-3-7315-0828-1

Band 38 	� Miriam Ruf
Geometrie und Topologie von Trajektorienoptimierung
für vollautomatisches Fahren.
ISBN 978-3-7315-0832-8

Band 39 	� Angelika Zube
Bewegungsregelung mobiler Manipulatoren für die
Mensch-Roboter-Interaktion mittels kartesischer
modellprädiktiver Regelung.
ISBN 978-3-7315-0855-7

Band 40 	� Jürgen Beyerer and Miro Taphanel (Eds.)
Proceedings of the 2018 Joint Workshop of
Fraunhofer IOSB and Institute for Anthropomatics,
Vision and Fusion Laboratory.
ISBN 978-3-7315-0936-3

Band 41 	� Marco Thomas Gewohn
Ein methodischer Beitrag zur hybriden Regelung
der Produktionsqualität in der Fahrzeugmontage.
ISBN 978-3-7315-0893-9

Band 42 	� Tianyi Guan
Predictive energy-efficient motion trajectory
optimization of electric vehicles.
ISBN 978-3-7315-0978-3

Band 43 	� Jürgen Metzler
Robuste Detektion, Verfolgung und Wiedererkennung von
Personen in Videodaten mit niedriger Auflösung.
ISBN 978-3-7315-0968-4

Band 44 	� Sebastian Bullinger
Image-Based 3D Reconstruction of Dynamic Objects Using
Instance-Aware Multibody Structure from Motion.
ISBN 978-3-7315-1012-3

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 45	� Jürgen Beyerer, Tim Zander (Eds.)
Proceedings of the 2019 Joint Workshop of
Fraunhofer IOSB and Institute for Anthropomatics,
Vision and Fusion Laboratory.
ISBN 978-3-7315-1028-4

Band 46	� Stefan Becker
Dynamic Switching State Systems for Visual Tracking.
ISBN 978-3-7315-1038-3

Band 47 	� Jennifer Sander
Ansätze zur lokalen Bayes’schen Fusion von
Informationsbeiträgen heterogener Quellen.
ISBN 978-3-7315-1062-8

Band 48 	� Philipp Christoph Sebastian Bier
Umsetzung des datenschutzrechtlichen Auskunftsanspruchs
auf Grundlage von Usage-Control und Data-Provenance-
Technologien.
ISBN 978-3-7315-1082-6

Band 49 	� Thomas Emter
Integrierte Multi-Sensor-Fusion für die simultane
Lokalisierung und Kartenerstellung für mobile
Robotersysteme.
ISBN 978-3-7315-1074-1

Band 50 	� Patrick Dunau
Tracking von Menschen und menschlichen Zuständen.
ISBN 978-3-7315-1086-4

Band 51 	� Jürgen Beyerer, Tim Zander (Eds.)
Proceedings of the 2020 Joint Workshop of
Fraunhofer IOSB and Institute for Anthropomatics,
Vision and Fusion Laboratory.
ISBN 978-3-7315-1091-8

Band 52 	� Lars Wilko Sommer
Deep Learning based Vehicle Detection in Aerial Imagery.
ISBN 978-3-7315-1113-7

Lehrstuhl für Interaktive Echtzeitsysteme
Karlsruher Institut für Technologie

Fraunhofer-Institut für Optronik, Systemtechnik
und Bildauswertung IOSB Karlsruhe

B
an

d
 5

2

Object detection in aerial imagery is essential for a wide range of applica-
tions in the field of civil safety and security. However, low spatial resolution
originating from the large distance between sensor and ground, capturing
conditions and varying scenarios due to different daytimes and regions
impede the detection task. This book proposes a novel deep learning
based detection method, focusing on vehicle detection in aerial imagery
recorded in top view. The base detection framework is extended by two
novel components to improve the detection accuracy by enhancing the
contextual and semantical content of the employed feature representation,
yielding a reduced number of false detections. To reduce the computational
effort and consequently the inference time, a lightweight CNN architecture
optimized with regard to vehicle detection in aerial imagery is proposed as
base architecture and a novel module restricting the search area to areas of
interest is introduced. Extensive evaluation demonstrates state-of-the-art
performance and the generalization ability on unseen aerial imagery data.

L.
 S

o
m

m
er

  

D
ee

p
 L

ea
rn

in
g

 b
as

ed
 D

et
ec

ti
o

n
 in

 A
er

ia
l I

m
ag

er
y

ISSN 1863-6489
ISBN 978-3-7315-1113-7 9 783731 511137

ISBN 978-3-7315-1113-7

G
ed

ru
ck

t
au

f
FS

C
-z

er
ti

fi
zi

er
te

m
 P

ap
ie

r

	Abstract
	Kurzfassung
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Challenges
	1.3 Contributions
	1.4 Thesis Outline

	2 Related Work
	2.1 Deep Learning
	2.1.1 Multilayer Perceptron
	2.1.2 Convolutional Neural Networks
	2.1.3 CNN Training
	2.1.4 CNN Architectures
	2.1.5 Special Layer Types

	2.2 Deep Learning based Object Detection
	2.2.1 Two-stage Approaches
	2.2.2 One-stage Approaches
	2.2.3 Extensions

	2.3 Vehicle Detection in Aerial Imagery
	2.3.1 Conventional Vehicle Detection Methods
	2.3.2 Deep Learning based Vehicle Detection Methods

	3 Concept
	4 Experimental Setup
	4.1 Datasets
	4.2 Evaluation Metrics and Protocol

	5 Base Framework
	5.1 Faster R-CNN
	5.1.1 Region Proposal Network
	5.1.2 Classification Stage
	5.1.3 Implementation Details

	5.2 Adaptation to Aerial Imagery
	5.2.1 Feature Map Resolution
	5.2.2 Anchor Box Settings
	5.2.3 Object Dimensions
	5.2.4 Arising Challenges

	6 Integration of Contextual Knowledge
	6.1 Spatial Context
	6.1.1 Context Enhancement Module
	6.1.2 Stage-wise Training Scheme
	6.1.3 Ablation Experiments

	6.2 Semantic Context
	6.2.1 Semantic Labeling Approaches
	6.2.2 Semantic Labeling based Filtering
	6.2.3 Joint Semantic Labeling and Detection
	6.2.4 Adaptation to the DLR 3K Dataset

	7 Runtime Optimization
	7.1 Lightweight Feature Extraction
	7.1.1 Single Shot MultiBox Detector
	7.1.2 Computation-Efficient CNN Architectures
	7.1.3 Auxiliary Techniques for Runtime Optimization
	7.1.4 Experiments and Discussion
	7.1.5 Adoption to Faster R-CNN

	7.2 Search Area Reduction
	7.2.1 Search Area Reduction Module
	7.2.2 Implementation Details
	7.2.3 Ablation Experiments

	8 Evaluation
	8.1 Combined Methods for Improved Detection and Inference Time
	8.2 Comparison to Related Work
	8.3 Generalization to Unseen Aerial Imagery
	8.4 Summary

	9 Conclusions and Outlook
	9.1 Conclusions
	9.2 Outlook

	Bibliography
	Publications
	List of Figures
	List of Tables
	Acronyms
	Table of Symbols

