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Preface

The International Conference on Process Mining (ICPM) was established two years ago
as the conference where people from academia and industry could meet and discuss the
latest developments in the area of processmining research and practice, including theory,
algorithmic challenges, and applications. Although the ICPM conference series is very
young, it has attracted innovative research of high quality from scholars and industrial
researchers.

This year the conference was organized in Eindhoven, the Netherlands. Workshops
were held on November 1, 2021, on the first of the conference days. While adhering
to the restrictions introduced by the COVID-19 pandemic, it did not negatively affect
the program that was offered by ICPM. In fact, the conference included co-located
workshops presenting a wide range of outstanding research ideas in terms of the full
paper presentations. In addition, the resulting workshop programs were complemented
with keynotes, round-table panels, and poster sessions, providing a lively discussion
forum for the whole community.

ICPM 2021 featured six workshops, each focusing on particular aspects of process
mining, either a particular technical aspect or a particular application domain:

– 2nd International Workshop on Event Data and Behavioral Analytics (EDBA)
– 2nd International Workshop on Leveraging Machine Learning in Process Mining
(ML4PM)

– 2nd International Workshop on Trust, Privacy, and Security in Process Analytics
(TPSA)

– 4th International Workshop on Process-Oriented Data Science for Healthcare
(PODS4H)

– 2nd International Workshop on Streaming Analytics for Process Mining (SA4PM)
– 6th International Workshop on Process Querying, Manipulation, and Intelligence
(PQMI)

These proceedings present and summarize the work that was discussed during the
workshops. In total, the ICPM 2021 workshops received 65 submissions, of which 28
papers were accepted for publication, leading to a total acceptance rate of about 43%.
Supported by ICPM, eachworkshop also conferred a bestworkshop paper award. Finally,
it is worth mentioning that to promote open-research, ICPM proudly offered to publish
the entire proceedings as open-access.

In addition to the 28 papers accepted for the aforementioned six workshops, we are
proud to announce that the organizers of the XES 2.0 workshop, which took place on
November 2 during the second day of the conference, were also invited to publish their
results in these proceedings. The XES 2.0 workshop focused on a survey conducted
by the IEEE Task Force on Process Mining on the challenges faced during event data
preparation (from source data to event log).



vi Preface

We would like to thank all the people from the ICPM community who helped to
make the ICPM 2021 workshops a success. We particularly thank the general chair,
Boudewijn van Dongen, and all the organization committee members for organizing
such an outstanding conference despite the COVID-19 pandemic and the associated
challenges. We also thank the workshop organizers, the numerous reviewers, and, of
course, the authors for making the ICPM 2021 workshops such a success.

December 2021 Jorge Munoz-Gama
Xixi Lu
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Rethinking the Input for Process Mining:
Insights from the XES Survey

and Workshop

Moe Thandar Wynn1(B), Julian Lebherz2, Wil M. P. van der Aalst3,
Rafael Accorsi4, Claudio Di Ciccio5, Lakmali Jayarathna1,

and H. M.W. Verbeek6

1 Queensland University of Technology, Brisbane, Australia
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3 RWTH Aachen University, Aachen, Germany
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5 Sapienza University of Rome, Rome, Italy
claudio.diciccio@uniroma1.it

6 Eindhoven University of Technology, Eindhoven, The Netherlands
h.m.w.verbeek@tue.nl

Abstract. Although the popularity and adoption of process mining
techniques grew rapidly in recent years, a large portion of effort invested
in process mining initiatives is still consumed by event data extraction
and transformation rather than process analysis. The IEEE Task Force
on Process Mining conducted a study focused on the challenges faced dur-
ing event data preparation (from source data to event log). This paper
presents findings from the online survey with 289 participants spanning
the roles of practitioners, researchers, software vendors, and end-users.
These findings were presented at the XES 2.0 workshop co-located with
the 3rd International Conference on Process Mining. The workshop also
hosted presentations from various stakeholder groups and a discussion
panel on the future of XES and the input needed for process mining.
This paper summarises the main findings of both the survey and the
workshop. These outcomes help us to accelerate and improve the stan-
dardisation process, hopefully leading to a new standard widely adopted
by both academia and industry.

Keywords: Process Mining · XES · Event Data · Data
Transformation

1 Introduction

It is well known that data pre-processing is the most time-consuming task of a
process mining project. The XES workshop, organised by the IEEE Task force
c© The Author(s) 2022
J. Munoz-Gama and X. Lu (Eds.): ICPM 2021 Workshops, LNBIP 433, pp. 3–16, 2022.
https://doi.org/10.1007/978-3-030-98581-3_1
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on Process Mining XES working group, aims to seek contributions from process
mining vendors and researchers on the challenges faced in curating data input for
process mining projects. The scope of the workshop covers the different aspects of
the data input pipeline, starting from the raw event data to generating an event
log (e.g., data curation, data cleaning, data standardisation). The intended out-
come is a collection of data-related challenges and potential solutions to address
these challenges. This paper summarises the main findings from this initiative.

The rest of the paper is organised as follows: Sect. 2 provides an overview
of the current IEEE standard for eXtensible Event Stream (XES). Section 3
describes the key insights from the online survey, while Sect. 4 synthesises the
discussion on the day of the XES workshop. Section 5 concludes the paper.

2 XES Standard: A Brief Overview

MXML (Mining eXtensible Markup Language), defined in 2003, was the first
process mining standard to exchange event data [1]. Due to its limitations, the
standardisation for new format called XES started in 2009 supported by the
IEEE Task Force on Process Mining. Already in the first meeting of the Task
Force on September 15th 2010 at the Stevens Institute of Technology in Hoboken
USA there was consensus to establish XES as an official standard. The XES
standard was adopted by the IEEE Standards Association (SA) as the “IEEE
Standard for eXtensible Event Stream (XES) for Achieving Interoperability in
Event Logs and Event Streams” [2] in 2016.

After the adoption of the XES standard by the IEEE, work was done on
creating new extensions to the XES standard. The conceptual model of XES
introduces components (logs, traces, events, and attributes) that may all contain
attributes. Every such attribute is represented as a key-value mapping, where the
value is assigned according to the attribute’s type (string, timestamp, integer,
real, boolean, ID, or list).

The purpose of the extensions was, and still is, to provide semantics to the
attribute keys. A typical example for this is the “concept:name” key, which is
generally considered to be the name of the corresponding activity (for an event)
or the name of the corresponding case (for a trace). However, to provide this
key with semantics, the Concept extension needs to be included in the XES
log, as, by default, keys have no fixed semantics. To provide semantics to some
basic attributes, the XES standard comes with a collection of standard exten-
sions1. The Concept extension is a typical example thereof, and the standard
additionally includes the Lifecycle, Time, Organizational, and Cost. In the
end, this work led to the adoption of a number of additional extensions by the
XES Working Group (WG), like Micro in 2016, Software in 2017, and Artifact
Lifecycle in 2018.

However, the adoption of the XES standard by the different software tools
in the process mining community remained low. Also, whenever a tool claimed

1 www.tf-pm.org/resources/xes-standard/about-xes/standard-extensions.

www.tf-pm.org/resources/xes-standard/about-xes/standard-extensions
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to support the XES standard it was often unclear to what extent it supported
the XES standard. To provide a better overview of this support of the XES
standard, the XES Working Group initiated a XES certification process in 2017.
As a result, at the time of writing twelve process mining tools2 have been
certified by the XES WG as supporting the XES standard. The XES standard
helped to progress the field of process mining. It led to consensus about core
concepts [1] and many publicly available event logs were made available for
competitions and benchmarks. However, adoption in industry is limited, mostly
due to the verbosity of the XML serialisation of XES. Moreover, the extraction
and pre-processing of event data is still seen as a limiting factor for process
mining.

3 Survey Design and Insights

To investigate the challenges faced during event data preparation for process
mining, we conducted an online survey collecting the insights from the process
mining community from various roles (i.e., academia, professional services, soft-
ware vendors, and commercial end users).

Survey Design. The survey instrument was developed by the XES WG through
several review iterations. The survey contained 12 questions and captured the
participants’ insights on the suggestions for speeding up the data pre-processing,
particularly to understand what enhancement can be made to an industry-wide
process mining data standard such as XES.

1. How much experience do you have with Process Mining?
2. Which area and role best describe how you have interacted with PM?
3. What share of effort is typically spent on data pre-processing?
4. Which process mining solutions have you used?
5. Which technologies have you used in data pre-processing for process mining?
6. In which format(s) is your source data available in?
7. Which source systems have you analysed with process mining?
8. How big was the largest data set you worked with in process mining?
9. To what extent did you encounter the following data-related challenges while

undertaking PM projects in terms of sourcing data, processing data, analysing
process data?

10. Which data-related challenges have you encountered beyond the ones listed
in question 9?

11. There is general consensus amongst practitioners that data pre-processing
tasks still consume most of the effort put into process mining initiatives. How
could we speed up the data pre-processing to focus on analysis?

12. How could a re-imagined industry-wide process mining data standard help
you excel in your role?

2 www.tf-pm.org/resources/xes-standard/for-vendors/certification/tools.

www.tf-pm.org/resources/xes-standard/for-vendors/certification/tools
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The XES online survey was distributed to the international process mining com-
munity (through LinkedIn posts, email lists and website announcements) and
was opened from June to July 2021. In total, 290 responses were received. A
duplicate response was detected and removed, thus the total number of responses
used for the analysis is 289.

Survey Insights. The responses for Questions 1 to 9 were quantitatively anal-
ysed using the descriptive and frequency analysis. In addition, the responses are
grouped based on a participant’s role. Free-text responses provided in Questions
10, 11, and 12 were analysed by a research assistant to identify the emerging
themes and then reviewed by two XES WG members. This led to the final
grouping of common themes presented later in the section.

Out of the 289 responses, the highest response rate is from the professional
service role (n = 112, 39%), followed by academia (n = 97, 33%), software
vendors (n = 46, 16%), and commercial end users (n = 34, 12%), as depicted in
Fig. 1. The highest range of experience reported was 2–5 years (38%), followed
by 5–10 years (24%), 1–2 years (18%), 10+ years (10%), and less than one year
(9%). Participants with no experience are less than 1%.
Next, we present individual key findings for Questions 3–12.

Q3: What share of effort is typically spent on data pre-processing?
Figure 2 shows that 61% to 80% of the effort of share for data pre-processing is
the highest reported response by participants (36%) across all roles. The maxi-
mum percentage reported was 90% for the academic role and the professional ser-
vice role. These results confirm that a significant amount of effort is being spent
to pre-process event data for process mining. It is also interesting to notice that
most of the participants with less than one year of experience did not respond to
this question. This may indicate that process mining novices are more focused
on the novel techniques and tool development than on the input data.

Fig. 1. XES survey participants: demographics
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Fig. 2. Q3: Share of effort on data pre-processing

Q4: Which process mining solutions have you used? Celonis is the overall
highest selection (n = 170), with Disco (n = 159) and ProM (n = 127) round-
ing off the top three process mining solutions reported by the participants (see
Fig. 3). Note that it is possible for participants to select multiple solutions, and
many opted for this. The role-wise comparison for the top ten process mining
solutions, where variations can be observed among the four roles. For example,
Disco (Fluxicon) is the most selected option for academics (n = 77), closely
followed by ProM (n = 65).

Q5: Which technologies have you used in data pre-processing for pro-
cess mining? Microsoft SQL server is the highest selected response for database
management and data storage systems (n = 125). Figure 4 shows a slightly differ-
ent perspective among the four roles, with academia selecting MySQL (n = 45)
ahead of Microsoft SQL server and the software vendors preferring PostgresSQL
(n = 26). PowerBI (n = 122) has been the most selected response as a data
visualisation tool (see Fig. 5). Python (n = 177) turned out to be the most used
custom data transformation language (see Fig. 6).

Q6: In which formats is your source data available in? A plain text file
(e.g., txt or csv) is the most commonly available source data format (n = 229),
with the relational format access (n = 168), and the XML format such as XES
(n = 112) being selected as the second and the third most common ones (see
Fig. 7). Please notice that participants could select more than one source data
format. The responses also confirm that XML (e.g., XES) is not widely used in
the community with only 39% (n = 112) selecting this option.

The frequencies and their relative order among the top five source formats
are also different across the different roles (as shown in Fig. 8). For example,
XML is the second, third, fourth, and third choice for academia, professional
services, software vendors, and commercial end users, respectively.
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Fig. 3. Q4: 10 most used process mining solutions

Fig. 4. Q5: 10 most used database management and data storage systems (role-wise)

Q7: Which source systems have you analysed with process mining?
SAP ECC (R/3) (n = 114), SAP S/4 HANA (n = 101), and Salesforce (n = 71)
are the top three most analysed source systems (see Fig. 9). Interestingly, 35%
of academics (34 out of 97) selected “I don’t know” as their response for this
question. This is probably due to the fact that they primarily work with publicly
available data sets such as those provided by the BPI challenges.
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Fig. 5. Q5: 10 most used data visualisation technologies (role-wise)

Fig. 6. Q5: 10 most adopted custom data transformation languages (role-wise)

Q8: How big was the largest data set you worked with in process
mining? Around 16% of participants (n = 45) have mentioned that they have
worked with less than 1000 events and 0.05% participants have mentioned that
they have worked with more than 1,000,000,000 (1 billion) events. Moreover,
around 20% of the participants (n = 58) have worked with less than 1000 process
cases or instances and around 4% of the participants (n = 12) mentioned that
the highest number of process cases or instances they have worked with is larger
than 1 billion.
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Fig. 7. Q6: 10 most used source data formats

Fig. 8. Q6: 10 most used source data formats (role-wise)

Q9: To what extent did you encounter data-related challenges while
undertaking PM projects in terms of sourcing data, processing data,
and analysing process data? Figure 10 depicts an overview of sixteen data-
related challenges identified across three categories: sourcing data, process data,
and analysing data. The participants were asked to select a single option, ranging
from none to very significant, for each data challenge.

Among the six challenges linked to the sourcing of process data, the challenge
of complex data structures stands out as the most problematic, with 64% of the
participants (n = 185) selecting either significant or very significant. Moreover,
54% of them selected the undocumented data structures as a key challenge (sig-
nificant or very significant). On the other hand, 61% indicated that the challenge
of identifying the required data in the source systems as either moderate, minor
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Fig. 9. Q7: 10 most used source systems

or none, while 49% felt the same about the challenge of exporting data from
source systems.

Among the five processing data-related challenges, 45% (n = 140) identified
inconsistent data as being a relevant challenge (significant or very significant)
while 42% identified incomplete data as being a significant challenge. However,
75% of all participants (n = 217) indicated that the performance issues are not
very significant by selecting either moderate, minor or none for that challenge.

Among the six data-related challenges linked to the analysis, the limitation
related to analysing one-to-many and many-to-many relationships has been iden-
tified as a crucial challenge (48% selecting either significant or very significant)
while 76% indicated that exporting data from a process mining tool is the least
significant challenge by selecting either moderate, minor, or none.

Q10: Which data-related challenges have you encountered beyond the
ones listed in question 9? Figure 11 shows the frequency of the new challenges
proposed by the participants. Among them, lack of documentation and data
quality feature as the two top themes.

Q11: How could we speed up the data pre-processing to focus on
analysis? The main themes identified from the responses (n = 199) relate to
the standardisation of data formats as well as data transformation pipelines,
suggestions for better tool support, scaling up of domain and process mining
expertise, and suggestions to improve data quality. Figure 12 captures the main
themes with exemplar comments received from the participants.
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Fig. 10. Q9: Ranking the significance of data-related challenges
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Fig. 11. Q10: Qualitative insights of other data-related challenges

Fig. 12. Q11: Qualitative insights for suggestions to speed up the data pre-processing

Q12: How could a re-imagined industry-wide process mining data
standard help you excel in your role? The participants foresaw a vari-
ety of potential benefits ranging from the acceleration of data pre-processing to
commodisation of analysis (n = 156) (see Fig. 13).

Discussion. The survey results reconfirm the common belief that the data pre-
processing task is highly time consuming (with the maximum amount of effort
estimated to be 90%) while 36% estimated their efforts to be within the range
of range60% to 80% (cf. Q3). The responses also confirm that the XML format
(i.e., the one of XES) is not widely used in the community to store event logs,
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Fig. 13. Q12: Qualitative insights for the expected benefits of an industry-wide stan-
dard

with only 39% selecting this option (cf. Q6). There seems to be consensus among
the process mining community that there are significant data-related challenges
associated with complex data structures, complex one-to-many and many-to-
many relationships, inconsistent data, incomplete data and missing relationships
(cf. Q9). These data challenges should be carefully considered and addressed
when a new standard is being prepared.

The participants also indicated a need for systematic and automated data
pre-processing techniques for efficient and reproducible data transformations for
process mining. A dedicated methodology for data pre-processing to support
a structured approach to PM methodology (Stage 0 ) seems definitely desir-
able, with the ability to create templates that capture best practices to ulti-
mately speed up the data pre-processing task (cf. Q11). Approaches to assess
and improve the data quality issues identified in the survey (e.g., inconsistent
data or incomplete data) could be beneficial. Furthermore, a new event log stan-
dard should leave room for various mechanisms to import/export the event data,
not only using XML.

4 Adding Context: Reflections from the XES 2.0
Workshop

In order to challenge and validate the survey’s takeaways presented above, the
XES WG hosted a workshop co-located with the Third Int. Conference on Pro-
cess Mining in Eindhoven (Netherlands) on November 2, 2021. A session on sur-
vey results set the scene, followed by contributions from software vendors (repre-
sented by Celonis and Signavio), academia (represented by RWTH Aachen and
the Free University of Bozen-Bolzano) and professional services (represented by
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KPMG). Concluding with a panel discussion centred around select findings from
the survey, the workshop not only offered well-balanced viewpoints from different
players in the discipline, but most notably revealed an unexpected homogene-
ity concerning the most relevant levers for a successful evolution of the XES
standard.

First, rethink the Core Concepts of an Event Log. Numerous participants
raised questions about the fundamental scope of what information is captured in
event logs. The support of extensions render the current XES standard extremely
flexible – even towards future, non-anticipated requirements – but at the cost
of complexity. With limited awareness and use of existing extensions, this split
needs to be revisited. It also became apparent that even though XES itself
does not stipulate any storage format, most participants equate XES with its
XML schema definition and call out its misfit with data volume and velocity
of current, practical use cases. This showcases the need to strictly focus on
storage-agnostic core concepts first and to later create multiple relevant reference
implementations.

In addition, recent trends in industry and academia (e.g., object-centric event
logs like OCEL, multi-event logs, and knowledge graphs) point to the need for
complex data structures and relationships to be captured in an event log. A con-
sensus has been reached to revisit the core concepts in an event log and propose
a conceptual data model alongside a metadata schema that can support complex
data structures (including many-to-many relationships between multiple objects,
cases, and events).

Event Logs as a Semantic Layer. The current standard focuses mainly on
syntactic interoperability and, to a lesser extent, on semantic aspects. However,
enriching event logs with semantics would open up a whole array of possibilities
across academia and industry (e.g., novel algorithms, autonomous data transfor-
mation, dynamic perspective change, real-time data extraction). Additionally,
domain-specificity could tailor the semantics extensions to selective industries
and thereby mimic real-world domain ontologies.

Taking this concept one step further, domain ontologies linked with event
data could support process analytics without case identifiers. Different event logs
could be generated as views over the same event data store. This intermediate
layer would also hide the ultimate sources of the event data (let them be single
or multiple, homogeneous or heterogeneous, legacy or newly implemented).

Generating Momentum amongst Industry Players. Contributions, Q&A
and panel discussion also evidenced an intrinsic challenge of generating momen-
tum around an industry standard for interoperability. It is acknowledged that
the current XES standard is hardly used in industry or professional services.
Vendors see themselves in a balancing act with true interoperability on the one
side, arguably a catalyst for the whole industry, and proprietary solutions on
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the other side, often attributed with preventing customer churn. In the end, the
community needs to find ways to present all sides with compelling cases to not
only support, but jointly design the next evolution of XES. Not only vendors of
process analytics tools should be involved, but also those implementing systems
for process execution. Their support could become the linchpin to propel the
industry.

5 Conclusion

This paper presents a summary of findings from an online survey with 289 partic-
ipants, who span across the roles of practitioners, researchers, software vendors
and end-users. It also provides a synthesis of the discussion among the partic-
ipants during the XES workshop at the International Conference on Process
Mining 2021 and sketches the next steps for the XES WG.
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Over the past decades, capturing, storing, and analyzing event data has gained attention
in various domains such as process mining, clickstream analytics, IoT analytics,
e-commerce, and retail analytics, online gaming analytics, security analytics, website
traffic analytics, and preventive maintenance, to name a few. The interest in event data
lies in its analytical potential as it captures the dynamic behavior of people, objects, and
systems at a fine-grained level.

Behavior often involves multiple entities, objects, and actors to which events can be
correlated in various ways. In these situations, a unique, straightforward process notion
does not exist, is unclear or different processes or dynamics could be recorded in the
same data set.

The Event Data & Behavioral Analytics (EdbA) workshop’s objective is to provide
a forum to practitioners and researchers for studying a quintessential, minimal notion of
events as the common denominator for records of discrete behavior in all its forms. The
workshop aims to stimulate the development of new techniques, algorithms, and data
structures for recording, storing, managing, processing, analyzing, and visualizing
event data in various forms. To this end, different types of submissions are welcome
such as original research papers, case study reports, position papers, idea papers,
challenge papers, and work in progress papers on event data and behavioral analytics.
For more information, visit http://edba.science.

The second edition of the EdbA workshop attracted 18 submissions. After careful
multiple reviews by the workshop’s program committee members, seven were accepted
for a full-paper presentation at the workshop, while 1 submission was accepted as a
work-in-progress presentation. All full-paper papers have been included in the pro-
ceedings. This year’s papers again cover a broad spectrum of topics, which can be
organized into three main themes: pattern discovery, beyond traditional event logs, and
IoT.

In the final plenary discussion session, the workshops participants reflected on the
changing nature of research questions, evaluation criteria, and benchmarks when
leaving the classical process mining setting: more than one object, more than one
possible value for an attribute, more than one model, more than one data source.
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Abstract. Process mining is a scientific discipline that analyzes event
data, often collected in databases called event logs. Recently, uncertain
event logs have become of interest, which contain non-deterministic and
stochastic event attributes that may represent many possible real-life sce-
narios. In this paper, we present a method to reliably estimate the proba-
bility of each of such scenarios, allowing their analysis. Experiments show
that the probabilities calculated with our method closely match the true
chances of occurrence of specific outcomes, enabling more trustworthy
analyses on uncertain data.

Keywords: Process Mining · Uncertain Data · Partial Order

1 Introduction

Process mining is a discipline that focuses on extracting insights about processes
in a data-driven manner. For instance, on the basis of the recorded information
on historical process executions, process mining allows to automatically extract
a model of the behavior of process instances, or to measure the compliance of
the process data with a prescribed normative model of the process. In process
mining, the central focus is on the event log, a collection of data that tracks past
process instances. Every activity performed in a process is recorded in the event
log, together with information such as the corresponding process case and the
timestamp of the activity, in a sequence of events called a trace.

Recently, research on novel forms of event data have garnered the attention
of the scientific community. Among these there are uncertain event logs, which
contain data affected by imprecision [8]. This data contains meta-information
describing the nature and entity of the uncertainty. Such meta-information can
be obtained from the inherent precision with which the data has been recorded
(e.g., timestamps only indicating the date have a possible “true value” range of
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24 h), from the precision of the tools involved in supporting the process (e.g., the
absolute error of sensors), or from the domain knowledge provided by a process
expert. An uncertain trace corresponds to multiple possible real-life scenarios,
each of which might have very diverse implications on features of cases such
as compliance to a model. It is then important to be able to assess the risk of
occurrence of specific outcomes of uncertain traces, which enables to estimate
the impact of such traces on indicators such as cost and conformance.

In this paper, we present a method to obtain a complete probability dis-
tribution over the possible instantiations of uncertain attributes in a trace. As
a possible example of application, we frame our results in the context of con-
formance checking, and show the impact of assessing probability estimates for
uncertain traces on insights about the compliance of an uncertain trace to a pro-
cess model. We validate our method with experiments based on a Monte Carlo
simulation, which shows that the probability estimates are reliable and reflect
the true chances of occurrence of a specific outcome.

The remainder of the paper is structured as follows. Section 2 examines
relevant related work. Section 3 illustrates a motivating running example for
our technique. Section 4 presents preliminary definitions of different types of
uncertainty in process mining. Section 5 illustrates a method for computing
probabilities of realizations for uncertain process traces. Section 6 validates our
method through experimental results. Finally, Sect. 7 concludes the paper.

2 Related Work

The analysis of uncertain data in process mining is a very recent research direc-
tion. The specific formulation and definition of uncertain data utilized in this
paper has been introduced in 2019 [8], in the context of an analysis approach
consisting in computing bounds for the conformance score of uncertain traces
through alignments [5]. Subsequently, that work has been extended with an
inductive mining approach for process discovery over uncertainty [9] and a tax-
onomy of different types of uncertain data, with their characteristics [10].

Uncertain data, as formulated in our present and previous work, is closely
related to a considerably more studied data anomaly in process mining: partially
ordered event data. In fact, uncertain data as described here is a generalization of
partially ordered traces. Lu et al. [7] proposed a conformance checking approach
based on alignments to measure conformance of partially ordered traces. More
recently, Van der Aa et al. [1] illustrated a method for inferring a linear exten-
sion, i.e., a compliant total order, of events in partially ordered traces, based on
examples of correct orderings extracted from other traces in the log. Busany et al.
[4] estimated probabilities for partially ordered events in IoT event streams.

An associated topic, which draws from disciplines such as pattern and
sequence mining and is antithetical to the analysis of partially ordered data,
is the inference of partial orders from fully sequential data as a way to model
its behavior. This goes under the name of episode mining, which can be per-
formed with many techniques both on batched data and with online streams of
events [2,6,11].



Probability Estimation of Uncertain Process Trace Realizations 23

In this paper, we present a method to estimate the likelihood of any scenario
in an uncertain setting, which covers partially ordered traces as well as other
types of uncertainty illustrated in the taxonomy [10]. Furthermore, we will cover
both the non-deterministic case (strong uncertainty) and the probabilistic case
(weak uncertainty).

3 Running Example

In this section, we will provide a running example of uncertain process instance
related to a sample process. We will then apply our probability estimation
method to this uncertain trace, to illustrate its operation. The example we ana-
lyze here is a simplified generalization of a remote credit card fraud investigation
process. This process is visualized by the Petri net in Fig. 1.

Firstly, the credit card owner alerts the credit card company of a possibly
fraudulent transaction. The customer may either notify the company by calling
their hotline (alert hotline) or arrange an urgent meeting with personnel of the
bank that issued the credit card (alert bank). In both scenarios, his credit is
frozen (freeze credit) to prevent further fraud. All information provided by the
customer about the transaction is summarized when filing the formal report (file
report). As a next step, the credit card company tries to contact the merchant
that charged the credit card. If this happens (contact merchant), the credit
card company clarifies whether there has been just a mistake (e.g., merchant
charging not delivering a product, or a billing mistake) on the merchant’s side.
In such cases, the customer gets a refund from merchant and the case is closed.
Another outcome might be the discovery of a friendly fraud, which is when a
cardholder makes a purchase and then disputes it as fraud even though it was
not. If contacting the merchant is impossible, a fraud investigation is initiated.
In this case, fraud investigators will usually start with the transaction data and
look for timestamps, geolocation, IP addresses, and other elements that can be
used to prove whether or not the cardholder was involved in the transaction.
The outcome might be either friendly fraud or true fraud. True fraud can also
happen when both the merchant and the cardholder are affected by the fraud.
In this case, the cardholder receives a refund from the credit institute (activity
refund credit institute) and the case is closed.

Note that for simplicity, we have used single letters to represent the activity
labels in the Petri net transitions. Some possible traces in this process are for
example: 〈h, c, r,m, u〉, 〈b, c, r,m, f〉, 〈h, c, r, i, f〉 and 〈b, c, r, i, t, v〉.

Suppose that the credit card company wants to perform conformance check-
ing to identify deviant process instances. However, some traces in the information
system of the company are affected by uncertainty, such as the one in Table 1.

Suppose that in the first half of October 2020, the company was implement-
ing a new system for automatic event data generation. During this time, the
event data regarding the credit card fraud investigation process often had to
be inserted manually by the employees. Such manual recordings were subject
to inaccuracies, leading to imprecise or missing data affecting the cases during
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Fig. 1. A Petri net model of the credit card fraud investigation process. This net allows
for 10 possible traces.

Table 1. Example of an uncertain case from the credit card fraud investigation process.

Case ID Event ID Activity Timestamp Ind.

5167 e1 h (alert hotline) 05-10-2020 23:00

5167 e2 c (freeze credit) 06-10-2020

5167 e3 r (file report) U(05-10-2020 20:00,

06-10-2020 10:00)

5167 e4 i (fraud investigation) 09-10-2020 10:00

5167 e5 {f : 0.3 (friendly fraud), 14-10-2020 09:00

t : 0.7 (true fraud)}
5167 e6 v (refund credit institute) 15-10-2020 10:00 ?

this period. The process instance from Table 1 is one of the affected instances.
Here, events e2, e3, e5, e6 are uncertain. The timestamp of event e2 is not precise
enough, so the possible timestamp lies between 06-10-2020 00:00 and 06-10-2020
23:59. Event e3 has happened some time between 20:00 on October 5th and
10:00 on October 6th. Event e5 has two possible activity labels: f with probabil-
ity 0.3 and t with probability 0.7. Refunding the customer (event e6) has been
recorded in the system, but the customer has not received the money yet, which
is why the event is indeterminate: this is indicated with a question mark (?) in
the rightmost column, and indicates an event that has been recorded, but for
which is unclear if it actually occurred in reality.

The credit card company is interested in understanding if and how the data in
this uncertain trace conforms with the normative process model, and the entity
of the actual compliance risk; they are specifically interested in knowing whether
a severely non-compliant scenario is highly likely. In the remainder of the paper,
we will describe a method able to estimate the probability of all possible outcome
scenarios.

4 Preliminaries

Let us now present some preliminary definitions regarding uncertain event data.
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Definition 1 (Uncertain attributes). Let U be the universe of attribute
domains, and the set D ∈ U be an attribute domain. Any D ∈ U is a discrete
set or a totally ordered set. A strongly uncertain attribute of domain D is a
subset dS ⊆ D if D is a discrete set, and it is a closed interval dS = [dmin, dmax]
with dmin ∈ D and dmax ∈ D otherwise. We denote with SD the set of all
such strongly uncertain attributes of domain D. A weakly uncertain attribute
fD of domain D is a function fD : D �→ [0, 1] such that 0 <

∑
x∈D fD(x) ≤ 1

if D is finite, 0 <
∫ ∞

−∞ fD(x) dx ≤ 1 otherwise. We denote with WD the set of
all such weakly uncertain attributes of domain D. We collectively denote with
UD = SD ∪ WD the set of uncertain attributes of domain D.

It is easy to see how a “certain” attribute x, with a value not affected by any
uncertainty, can be represented through the definitions in use here: if its domain
is discrete, it can be represented with the singleton {x}; otherwise, it can be
represented with the degenerate interval [x, x].

Definition 2 (Uncertain events). Let UI be the universe of event identifiers.
Let UC be the universe of case identifiers. Let A ∈ U be the discrete domain of
all the activity identifiers. Let T ∈ U be the totally ordered domain of all the
timestamp identifiers. Let O = {?} ∈ U, where the “?” symbol is a placeholder
denoting event indeterminacy. The universe of uncertain events is denoted with
E = UI × UC × UA × UT × UO.

The activity label, timestamp and indeterminacy attribute values of an uncer-
tain event are drawn from UA, UT and UO; in accordance with Definition 1, each
of these attributes can be strongly uncertain (set of possible values or inter-
val) or weakly uncertain (probability distribution). The indeterminacy domain
is defined on a single element “?”: thus, strongly uncertain indeterminacy may
be {?} (indeterminate event) or ∅ (no indeterminacy). In weakly uncertain inde-
terminacy, the “?” element is associated to a probability value.

Definition 3 (Projection functions). For an uncertain event e = (i, c, a,
t, o) ∈ E, we define the following projection functions: πa(e) = a, πt(e) = t,
πo(e) = o. We define πset

a (e) = a if a is strongly uncertain, and πset
a (e) = {x ∈

UA | fA(x) > 0} with a = fA otherwise. If the timestamp t = [tmin, tmax] is
strongly uncertain, we define πtmin

(e) = tmin and πtmax
(e) = tmax. If the times-

tamp t = fT is weakly uncertain, we define πtmin
(e) = argminx(fT (x) > 0) and

πtmax
(e) = argmaxx(fT (x) > 0).

Definition 4 (Uncertain traces and logs). τ ⊂ E is an uncertain trace if
all the event identifiers in τ are unique and all events in τ share the same case
identifier c ∈ UC . T denotes the universe of uncertain traces. L ⊂ T is an
uncertain log if all the event identifiers in L are unique.

Definition 5 (Realizations of uncertain traces). Let e, e′ ∈ E be two uncer-
tain events. ≺E is a strict partial order defined on the universe of strongly uncer-
tain events E as e ≺E e′ ⇔ πtmax

(e) < πtmin
(e′). Let τ ∈ T be an uncertain trace.

The sequence ρ = 〈e1, e2, . . . , en〉 ∈ E∗, with n ≤ |τ |, is an order-realization of τ
if there exists a total function f : {1, 2, . . . , n} → τ such that:
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– for all 1 ≤ i < j ≤ n we have that ρ[j] ⊀E ρ[i],
– for all e ∈ τ with πo(e) = ∅ there exists 1 ≤ i ≤ n such that f(i) = e.

We denote with RO(τ) the set of all such order-realizations of the trace τ .
Given an order-realization ρ = 〈e1, e2, . . . , en〉 ∈ RO(τ), the sequence σ ∈

UA
∗ is a realization of ρ if σ ∈ {〈a1, a2, . . . , an〉 | ∀1≤i≤n ai ∈ πset

a (i)}. We
denote with RA(ρ) ⊆ UA

∗ the set of all such realizations of the order-realization
ρ. We denote with R(τ) ⊆ UA

∗ the union of the realizations obtainable from
all the order-realizations of τ : R(τ) =

⋃
ρ∈RO(τ) RA(ρ). We will say that an

order-realization ρ ∈ RO(τ) enables a sequence σ ∈ UA
∗ if σ ∈ RA(ρ).

Detailing an algorithm to generate all realizations of an uncertain trace is
beyond the scope of this paper. The literature illustrates a conformance checking
method over uncertain data which employs a behavior net, a Petri net able to
replay all and only the realizations of an uncertain trace [8]. Exhaustively explor-
ing all complete firing sequences of a behavior net, e.g., through its reachability
graph, provides all realizations of the corresponding uncertain trace.

Given the above formalization, we can now define more clearly the research
question that we are investigating in this paper. Given an uncertain trace τ ∈ T
and one of its realizations σ ∈ R(τ), our goal is to obtain a procedure to reliably
compute P (σ | τ) = “probability of σ given that we observe τ”. In other words,
provided that σ corresponds to a scenario (i.e., a realization) for the uncertain
trace τ , we are interested in calculating the probability that σ is the actual
scenario occurred in reality, which caused the recording of the uncertain trace
τ in the event log. In the next section, we will illustrate how to calculate such
probabilities of uncertain traces realizations.

5 Method

Before we show how we can obtain probability estimates for all realizations
of an uncertain trace, it is important to state an assumption: the information
on uncertainty related to a particular attribute in some event is independent
of the possible values of the same attribute present in other events, and it is
independent of the uncertainty information on other attributes of the same event.
Note that in the examples of uncertainty sources given in Sect. 1 (data coarseness
and sensor errors), this independence assumption often holds.

Additionally, we need to consider the fact that strongly uncertain attributes
do not come with known probability values: their description only specifies the
values that attributes might acquire, but not the likelihood of each possible
value. As a consequence, estimating probability for specific realizations in a
strongly uncertain environment is only possible with a-priori assumptions on how
probability distributes among the attribute value. At times, it might be possible
to assume the distribution in an informed way—for instance, on the basis of
features of the information system hosting the data, of the sensors recording
events and attributes, or other tools involved in the management of the process.
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In case no indication is present, a reasonable assumption—which we will hold
for the remainder of the paper—is that any possible value of a strongly uncertain
attribute is equally likely. Formally, with e = (i, c, a, t, o) ∈ E let τs : E → E be a
function such that τs(e) = (i, c, a′, t′, o′), where a′ = {(x, 1

|πset
a (e)| ) | x ∈ πset

a (e)}
if a ∈ SA and a′ = a otherwise; t′ = U(πtmin

(e), πtmax
(e)) if t ∈ ST and t′ = t

otherwise; o′ = 0.5 if o = {?} and o′ = o otherwise.
First, observe that the probability P (σ | τ) that an activity sequence σ ∈ UA

∗

is indeed a realization of the trace τ ∈ T , and thus σ ∈ R(τ), increases with
the number of order-realizations enabling it. Furthermore, for each such order-
realizations, one can construct a probability function PO(ρ | τ) reflecting the
likelihood of the sequence ρ itself given the trace τ , and a probability function
PA(σ | ρ) reflecting the likelihood that the realization corresponding to ρ is
indeed σ. The value of PO(ρ | τ) is affected by the uncertainty information in
timestamps and indeterminate events, while the value of PA(σ | ρ) is aggregated
from the uncertainty information in the activity labels.

Given a realization σ of an uncertain process instance and the set of its
enablers, its probability is computed as following:

P (σ | τ) =
∑

ρ∈E∗
PO(ρ | τ) · PA(σ | ρ)

Note that, if ρ does not enable σ, PA(σ | ρ) = 0. For any uncertain trace
τ ∈ T , it holds that

∑
σ∈R(τ) P (σ | τ) = 1, since both PO(·) and PA(·) are each

constructed to be (independent) probability distributions.
We will now compute PA(σ | ρ) using the information on the activity labels

uncertainty. Let us write fe
A as a shorthand for πa(e). If there is uncertainty in

activities, then for each event e ∈ ρ and activity label a ∈ πset
a (e), the probability

that e executes a is given by fe
A(a). Thus, for every ρ = 〈e1, ..., en〉 ∈ RO(τ) and

σ = 〈a1, ..., an〉 ∈ RO(τ), the value PA can be aggregated from these distribu-
tions in the following way:

PA(σ | ρ) =
n∏

i=1

f
i
A(ai)

Through the value of PA, we can assess the likelihood that any given order-
realization executes a particular realization. The next step is to estimate the
probability of each order-realization ρ from the set RO(τ). The probability of
observing ρ needs to be aggregated from the probability that the correspond-
ing set of events appears in the given particular order, which is determined by
the timestamp intervals and, if applicable, the distributions over them; and the
probability that the order-realization contains the corresponding specific set of
events, which is determined by the uncertainty information on the indeterminacy.
Multiplying the two values obtained above to yield a probability estimate for the
order-realization reflects our independence assumption. Let us firstly focus on
uncertainty on timestamps, which causes the events to be partially ordered.

We will write fe
T (t) as a shorthand for πt(e)(t). For every event e, the value

of fe
T (t) yields the probability that event e happened on timestamp t. This
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value is always 0 for all t < πtmin
(e) and t > πtmax

(e) (see πtmin
and πtmax

in
Definition 3). Given the continuous domain of timestamps, PO(·) is assessed by
using integrals. For a trace τ ∈ T and an order-realization ρ = 〈e1, ..., en〉 ∈
RO(τ), let ai = πtmin

(i) and bi = πtmax
(i) for all 1 ≤ i ≤ n. Then, we define:

I(ρ) =

∫ min{b1,...,bn}

a1

fe1
T (x1)

∫ min{b2,...,bn}

max{a2,x1}
fe2

T (x2) · · ·
∫ min{bi,...,bn}

max{ai,xi−1}
f i

T (xi) · · ·
∫ bn

max{an,xn−1}
fen

T (xn) dxn . . . dx1

=

∫ min{b1,...,bn}

a1

∫ min{b2,...,bn}

max{a2,x1}
· · ·

∫ min{bi,...,bn}

max{ai,xi−1}
· · ·

∫ bn

max{an,xn−1}

n∏
i=1

f i
T (xi) dxn . . . dx1

This chain of integrals allows us to compute the probability of a specific order
among all the events in an uncertain trace. Now, to compute the probability of
each realization from Re accounting for indeterminate events, we combine both
the probability of the events having appeared in a particular order and the
probability that the sequence contains exactly those events. For simplicity, we
will use a function that acquires the value 1 if an event is not indeterminate. Let
us define fe

O : O → [0, 1] such that fe
O(?) = πo(e)(?) if πo(e) �= ∅ and fe

O(?) = 1
otherwise. More precisely, given τ ∈ T and ρ ∈ RO(τ), we compute:

PO(ρ | τ) = I(ρ) ·
∏

e∈τ
e∈ρ

(1 − f
e
O(?)) ·

∏

e∈τ
e �∈ρ

f
e
O(?)

We now have at our disposal all the necessary tools to compute a probability
distribution over the trace realizations of any uncertain process instance in any
possible uncertainty scenario. Let us then apply this method to compute the
probabilities of all realizations of the trace τ in Table 1, and to analyze its
conformance to the process in Fig. 1.

Each order-realization of τ enables two realizations, because event e5 has
two possible activity labels. Since for events e ∈ τ \ {e5}, we have fe

A equal to
1 for their corresponding unique activity label, the probability that an order-
realization ρ ∈ RO(τ) has some realization σ ∈ RA(ρ) only depends on whether
the trace σ contains activity f or t. Thus, for traces σ1′

, σ2′
, σ3′

, σ4′
, σ5′

, σ6′
and

their unique enabling sequences, we always have PA(σi′ | si
e) = fe5

A (f) = 0.3,
where i ∈ {1, . . . , 6}. Similarly, for traces σ1′′

, σ2′′
, σ3′′

, σ4′′
, σ5′′

, σ6′′
and their

unique enabling sequences, we always have PA(σi′′ | ρi) = fe5
A (t) = 0.7, where

i ∈ {1, . . . , 6}. Next, we calculate the PO(·) values for the 6 possible order-
realizations in RO(τ), which are displayed in Table 2.

One can notice that the I values only depend on the ordering of the first
three events, which are also the only ones with overlapping timestamps. Since the
indeterminate event e6 does not overlap with any other event, pairs of sequences
where the first three events have the same order also have the same probability.
This reflects our assumption that the occurrence and non-occurrence of e6 are
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Table 2. The possible order-
realizations of the process
instance from Table 1 and
their probabilities.

Order-realization ρ I(ρ) PO(ρ)

ρ1:〈e1, e2, e3, e4, e5, e6〉 0.140 0.074

ρ2:〈e1, e3, e2, e4, e5, e6〉 0.780 0.390

ρ3:〈e3, e1, e2, e4, e5, e6〉 0.072 0.036

ρ4:〈e1, e2, e3, e4, e5〉 0.149 0.074

ρ5:〈e1, e3, e2, e4, e5〉 0.780 0.390

ρ6:〈e3, e1, e2, e4, e5〉 0.072 0.036

Table 3. The set of possible realizations of
the example from Table 1, their enablers, their
probabilities, and their conformance scores. The
conformance score is equal to the cost of the
optimal alignment between the trace and the
Petri net in Fig. 1.

Realization σ ρ P (σ | τ) conf

σ1′
:〈h, c, r, i, f, v〉 ρ1 PO(ρ1)·PA(σ1′ |ρ1) = 0.022 1

σ1′′
:〈h, c, r, i, t, v〉 ρ1 PO(ρ1)·PA(σ1′′ |ρ1) = 0.052 0

σ2′
:〈h, r, c, i, f, v〉 ρ2 PO(ρ2)·PA(σ2′ |ρ2) = 0.117 3

σ2′′
:〈h, r, c, i, t, v〉 ρ2 PO(ρ2)·PA(σ2′′ |ρ2) = 0.273 2

σ3′
:〈r, h, c, i, f, v〉 ρ3 PO(ρ3)·PA(σ3′ |ρ3) = 0.011 3

σ3′′
:〈r, h, c, i, t, v〉 ρ3 PO(ρ3)·PA(σ3′′ |ρ3) = 0.025 2

σ4′
:〈h, c, r, i, f〉 ρ4 PO(ρ4)·PA(σ4′ |ρ4) = 0.022 0

σ4′′
:〈h, c, r, i, t〉 ρ4 PO(ρ4)·PA(σ4′′ |ρ4) = 0.052 1

σ5′
:〈h, r, c, i, f〉 ρ5 PO(ρ5)·PA(σ5′ |ρ5) = 0.117 2

σ5′′
:〈h, r, c, i, t〉 ρ5 PO(ρ5)·PA(σ5′′ |ρ5) = 0.273 3

σ6′
:〈r, h, c, i, f〉 ρ6 PO(ρ6)·PA(σ6′ |ρ6) = 0.011 2

σ6′′
:〈r, h, c, i, t〉 ρ6 PO(ρ6)·PA(σ6′′ |ρ6) = 0.025 3

both equally possible. Table 3 displays the calculations for the computation
of the P (σ | τ) values for all realizations. Now we can compute the expected
conformance score for the uncertain process instance τ = {e1, . . . , e6}. We can
do so by computing alignments [5] for each realization of τ :

conf(τ) =
∑

σ∈R(τ)

P (σ | τ) · conf(σ, M) = 0.022 · 1 + 0.05 · 0 + 0.117 · 3 + 0.273 · 2 + 0.011 · 3

+ 0.025 · 2 + 0.022 · 0 + 0.052 · 1 + 0.117 · 2 + 0.273 · 3 + 0.011 · 2 + 0.025 · 3
= 2.204.

Given the information on uncertainty available for the trace, this conformance
score is a more realistic estimate of the real conformance score compared to
taking the best, worst or average scores with values 0, 3 and 1.75 respectively.

6 Validation of Probability Estimates

In this section, we compute the probability estimates for the realizations of
an uncertain trace, and then show a validation of those estimates by Monte
Carlo simulation on the behavior net of the trace. The process instance of our
example has strong uncertainty in timestamps and weak uncertainty in activities
and indeterminacy. It consists of 4 events: e1, e2, e3 and e4, where e2 and e3
have overlapping timestamps. Event e2 executes b (resp., c) with probability
0.9 (resp., 0.1). There is a probability of 0.2 that e3 did not occur. Figure 2
shows the corresponding behavior graph, an uncertain event data visualization
that represents the time relationships between events with a directed acyclic
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e1

a e2

b: 0.9
c: 0.1

e3

d

?: 0.8

e4

e

Fig. 2. The behavior graph of the
uncertain trace considered as example
for validation.

Fig. 3. The behavior net obtained from
the behavior graph in Fig. 2.

Table 4. The set of realizations of the trace from Fig. 2, their enablers, and their
probabilities.

Realization σ ρ P (σ|τ)

σ1:〈a, b, e〉 ρ1:〈e1, e2, e4〉 PO(ρ1)·PA(σ1|ρ1) = 0.8·0.9 = 0.72

σ2:〈a, b, d, e〉 ρ2:〈e1, e2, e3, e4〉 PO(ρ2)·PA(σ2|ρ2) = (0.5·0.2)·0.9 = 0.09

σ3:〈a, d, b, e〉 ρ3:〈e1, e3, e2, e4〉 PO(ρ3)·PA(σ3|ρ3) = (0.5·0.2)·0.9 = 0.09

σ4:〈a, c, e〉 ρ4:〈e1, e2, e4〉 PO(ρ4)·PA(σ4|ρ4) = 0.8·0.1 = 0.08

σ5:〈a, c, d, e〉 ρ5:〈e1, e2, e3, e4〉 PO(ρ5)·PA(σ5|ρ5) = (0.5·0.2)·0.1 = 0.01

σ6:〈a, d, c, e〉 ρ6:〈e1, e3, e2, e4〉 PO(ρ6)·PA(σ6|ρ6) = (0.5·0.2)·0.1 = 0.01

graph [8]. Lastly, Table 4 list all the possible realizations, their probabilities,
and the order-realizations enabling them.

We now validate our obtained probability estimates quantitatively by means
of a Monte Carlo simulation approach. First, we construct the behavior net [10]
corresponding to the uncertain process instance, which is shown in Fig. 3. The
set of replayable traces in this behavior net is exactly the set of realizations
for the uncertain instance. Then, we simulate realizations on the behavior net,
dividing the accumulated count of each realization by the number of runs, and
compare those values to our probability estimates. Here, we use the stochastic
simulator of the PM4Py library [3]. In every step of the simulation, the stochastic
simulator chooses one enabled transition to fire according to a stochastic map,
assigning a weight to each transition in the Petri net (here, the behavior net).

To simulate uncertainty in activities, events and timestamps, we do the fol-
lowing: possible activities executed by the same event appearing in an XOR-split
in the behavior net are weighted so to reflect the probability values of the activ-
ity labels. Indeterminacy is equivalently modeled as an XOR-choice between a
visible transition and a silent one in the behavior net, so to model a “skip”.
If there are two or more possible activities for an indeterminate event, then
the sum of the weights of the visible transitions in relation to the weight of
the silent transition should be the same as in the distribution given in the event
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Fig. 4. Plot showing how the fre-
quency of trace 〈a, b, e〉 converges to the
expected value of 0.72 over 1000 runs.

Fig. 5. Plot showing how the frequency
of trace 〈a, b, d, e〉 converges to the
expected value of 0.09 over 1000 runs.

Fig. 6. Plot showing how the frequency
of trace 〈a, d, b, e〉 converges to the
expected value of 0.09 over 1000 runs.

Fig. 7. Plot showing how the fre-
quency of trace 〈a, c, e〉 converges to the
expected value of 0.08 over 1000 runs.

type uncertainty information. Whenever there are events with overlapping times-
tamps, these appear in an AND-split in the behavior net. The (enabled) path
of the AND-split which is taken first signals which event is executed at that
moment.

Let bn(τ) = (P, T ) be the behavior net of trace τ . Let (e, a) ∈ T be a visible
transition related to some event e ∈ τ . We weight (e, a) the following way:

weight((e, a)) =

{
fe

A(a) if πo(e) = ∅,

(1 − fe
O(?)) · fe

A(a) otherwise.

If e ∈ τ is an indeterminate event, then weight((e, ε)) = fe
O(?).

Note that according to the weight assignment function, if e is determi-
nate, then

∑
a∈πset

a (e) weight((e, a)) = 1. Otherwise,
∑

a∈πset
a (e) weight((e, a)) =

1 − fe
O(?) = 1 − weight((e, τ)). By construction of the behavior net, any transi-

tion related to an event in τ can only fire in accordance with the partial order
of uncertain timestamps. Additionally, all transitions representing events with
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overlapping timestamps appear in an AND construct. By definition of our weight
function, whenever the transitions of some e ∈ τ are enabled (in an XOR con-
struct), the probability of firing one of them is 1/k, where k is the number of
events from τ for which none of the corresponding transitions have fired yet.
This way, there is always a uniform distribution over the set of enabled tran-
sitions representing overlapping events. Assigning the weights according to this
distribution allows to decorate the behavior net with probabilities that reflect
the chances of occurrence of every possible value in uncertain attributes.

Applying the stochastic simulator n times yields n realizations. For each
of the 6 possible realizations for the uncertain process instance, we obtain a
probability measurement by dividing its simulated frequency by n. Figures 4
through 7 show how for greater n, this measurement converges to the probability
estimates shown in Table 4, which were computed with our method.

To conclude, the Monte Carlo simulation shows that our estimated proba-
bilities for realizations match their relative frequencies when one simulates the
behavior net of the corresponding uncertain trace.

7 Conclusion

Uncertain traces inherently contain behavior, allowing for many realizations;
these, in turn, correspond to diverse possible real-life scenarios, that may have
different consequences on the management and governance of a process. In this
paper, we presented a method to quantify the probability of each realization
of an uncertain trace. This enables process analysts to weigh the impact of
specific insights gathered with uncertainty-aware process mining techniques, such
as conformance checking using alignments. As a consequence, information from
process analysis techniques can be associated with a quantification of risk or
opportunity for specific scenarios, making them more trustworthy.

Multiple avenues for future work on this topic are possible. These include
inferring probabilities for uncertain traces from sections of the log not affected
by uncertainty, adopting certain traces or fragments of traces as ground truth.
Moreover, inferring probabilities by examining evidence against a ground truth
can also be achieved with a normative model that includes information concern-
ing the probability of error or noise in specific parts of the process.
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Abstract. Executing operational processes generates event data, which
contain information on the executed process activities. Process mining
techniques allow to systematically analyze event data to gain insights
that are then used to optimize processes. Visual analytics for event data
are essential for the application of process mining. Visualizing unique pro-
cess executions—also called trace variants, i.e., unique sequences of exe-
cuted process activities—is a common technique implemented in many
scientific and industrial process mining applications. Most existing visu-
alizations assume a total order on the executed process activities, i.e.,
these techniques assume that process activities are atomic and were exe-
cuted at a specific point in time. In reality, however, the executions of
activities are not atomic. Multiple timestamps are recorded for an exe-
cuted process activity, e.g., a start-timestamp and a complete-timestamp.
Therefore, the execution of process activities may overlap and, thus, can-
not be represented as a total order if more than one timestamp is to be
considered. In this paper, we present a visualization approach for trace
variants that incorporates start- and complete-timestamps of activities.

Keywords: Process Mining · Visual analytics · Interval order

1 Introduction

The execution of operational processes, e.g., business and production processes,
is often supported by information systems that record process executions in
detail. We refer to such recorded information as event data. The analysis of
event data is of great importance for organizations to improve their processes.
Process mining [1] offers various techniques for systematically analyzing event
data, e.g., to learn a process model, to check compliance, and to obtain perfor-
mance measures. These insights into the processes can then be used to optimize
them.

As in other data analysis applications, visual analytics for event data are
important in the application of process mining. A state-of-the-art process min-
ing methodology [6] lists process analytics including visual analytics as a key
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(a) Three different trace variants showing the execution order of atomic activities
activity A
(start)

activity B
(start)

activity C
(start)

activity A
(complete)

activity B
(complete)

activity D
(start)

activity E
(start)

. . .

activity A
(start)

activity B
(start)

activity C
(start)

activity A
(complete)

activity B
(complete)

activity E
(start)

activity D
(start)

. . .

(b) Two different trace variants showing the execution order of non-atomic activities,
i.e, each activity is split into start and complete

Fig. 1. Classic trace variant visualizations for (non)-atomic process activities

component next to the classic fields of process mining: process discovery, con-
formance checking, and process enhancement.

A visualization approach that is used across various process mining tools,
ranging from industry to scientific tools, is called the variant explorer. Consider
Fig. 1a for an example. In classic trace variant visualizations, a variant describes
a unique sequence of executed process activities. Thus, a strict total order on the
contained activities is required to visualize such sequence. Recorded timestamps
of the executed activities are usually used for ordering them.

This classic trace variant visualization has two main limitations. (1) Assume
atomic process activities, i.e., a single timestamp is recorded for each process
activity. A strict total order cannot be derived if multiple activities have the
same timestamp. In such cases, the sequential visualization, indicating temporal
execution, of process activities is problematic because a second-order criteria
is needed to obtain a strict total order. (2) In many real-life scenarios, process
activities are performed over time, i.e., they are non-atomic. Thus, the execu-
tion of activities may intersect with each other. Consider Fig. 2a for an example.
Considering both start- and complete-timestamps, a strict total order cannot be
obtained if the executions of activities overlap. The classic trace variant explorer
usually splits the activities in start and complete as shown in Fig. 1b to obtain
atomic activities. However, the parallel behavior of activities is not easily dis-
cernible from the visualization. In addition, the first limitation remains.

In this paper, we propose a novel visualization of trace variants to overcome
the two aforementioned limitations. We define a variant as an interval order,
which can be represented as a graph. For instance, Fig. 2b shows the interval
order of the two process executions shown in Fig. 2a. The graph representation
of an interval order (cf. Fig. 2b) is, however, not easy to read compared to the
classic trace variant explorer (cf. Fig. 1). Therefore, we propose an approach to
derive a visualization from interval orders representing trace variants.

The remainder of this paper is structured as follows. Section 2 presents related
work. Section 3 introduces concepts and definitions used throughout this paper.
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(a) Time plots visualizing activity instances, i.e., each ac-
tivity has a start-timestamp and a complete-timestamp,
executed within two different cases/process instance

A

B
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D

E

F

A

G

(b) Visualization of the
corresponding interval or-
der. Vertices represent ac-
tivity instances. Arcs indi-
cate an ordering between
activity instances

Fig. 2. Visualizing partially ordered event data. Each interval shown in Fig. 2a, i.e.,
an activity instance, describes the execution of an activity. A, . . . , G represent activity
labels. Both visualized cases/process instances (Fig. 2a) correspond to the same interval
order (Fig. 2b). Note that we consider two activity instances to be unrelated if they
overlap in time

Section 4 introduces the proposed visualization approach. Section 5 presents an
experimental evaluation, and Sect. 6 concludes this paper.

2 Related Work

For a general overview of process mining, we refer to [1]. Note that the major-
ity of process mining techniques assume totally ordered event data. For exam-
ple, in process discovery few algorithms exist that utilize life cycle information,
i.e., more than one timestamp, of the recorded process activities. For instance,
the Inductive Miner algorithm has been extended in [9] to utilize start- and
complete-timestamps of process activities. Also in conformance checking there
exist algorithms that utilize life cycle information, e.g., [10]. A complete overview
of techniques utilizing life cycle information is outside the scope of this paper.

In [6], the authors present a methodology for conducting process mining
projects and highlight the importance of visual analytics. In [8], open challenges
regarding visual analytics in process mining are presented. The visualization of
time-oriented event data—the topic of this paper—is identified as a challenge.

The classic variant explorer as shown in Fig. 1 can be found in many differ-
ent process mining tools, e.g., in ProM1, which is an open-source process mining
software tool. In [3], the authors present a software tool to visualize event data.

1 https://www.promtools.org.

https://www.promtools.org
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Table 1. Example of event data

Event-ID Case-ID Activity Label Start-timestamp Complete-timestamp Resource . . .

1 1 activity A 07/13/2021 08:00 07/13/2021 09:30 staff . . .

2 1 activity B 07/13/2021 08:30 07/13/2021 11:00 staff . . .

3 1 activity C 07/13/2021 09:00 07/13/2021 12:00 staff . . .

4 1 activity D 07/13/2021 11:30 07/13/2021 13:30 staff . . .

5 1 activity E 07/13/2021 11:40 07/13/2021 13:00 supervisor . . .

6 1 activity F 07/13/2021 14:00 07/13/2021 15:00 manager . . .

7 1 activity A 07/13/2021 14:30 07/13/2021 16:00 staff . . .

8 1 activity G 07/13/2021 16:30 07/13/2021 17:00 staff . . .

9 2 activity A 07/13/2021 08:00 07/13/2021 09:30 staff . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Various visualizations of event data are offered; however, a variant explorer,
as considered in this paper, is not available. In [2], the authors present a plu-
gin for ProM to visualize partially ordered event data. The approach considers
events to be atomic, i.e., an event representing the start and an event represent-
ing the completion of an activity are considered to be separate events. Based
on a user-selected time granularity, events within the same time segment are
aggregated, i.e., they are considered and visualized to be executed in parallel.
This offers the advantage that the user can change the visualization depending
on how accurately the timestamps are to be interpreted. Compared to our app-
roach, we consider non-atomic activity instances, i.e., we map start and complete
events of a process activity to an activity instance. Next, we relate these activity
instances to each other instead of atomic events as proposed in [2]. Therefore,
both approaches, the one presented in [2] and the one presented in this paper,
can coexist and each have their advantages and disadvantages.

3 Preliminaries

In this section, we present concepts and definitions used within this paper.
Event data describes the historical execution of processes. Table 1 shows

an example of said event data. Each row corresponds to an event, i.e., in the
given example an activity instance.2 For example, the first event, identified by
event-id 1, recorded that activity A has been executed from 08:00 until 09:30 at
07/13/2021 within the process instance identified by case-id 1.

In general, activity instances describe the execution of a process activity
within a specific case. A case describes a single execution of a process, i.e., a pro-
cess instance, and it is formally a set of activity instances that have been executed
for the same case. Activity instances consist of at least the following attributes:

2 Note that in some event logs, the start and the completion of an activity are separate
events (i.e., separate rows). Observe that such records are easily transformed to our
notion of event data.
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an identifier, a case-id, an activity label, a start-timestamp, and a complete-
timestamp. Since we are only interested in the order of activity instances within
a case and not in possible additional attributes of an activity instance, we define
activity instances as a 5-tuple.

Definition 1 (Universes). T is the universe of totally ordered timestamps. L
is the universe of activity labels. C is the universe of case identifiers. I is the
universe of activity instance identifiers.

Definition 2 (Activity Instance). An activity instance (i, c, l, ts, tc)∈I×C×
L×T ×T describes the execution of an activity labeled l within the case c. The
start-timestamp of the activity’s execution is ts, and the complete-timestamp is
tc, where ts≤tc. Each activity instance is uniquely identifiable by i. We denote
the universe of activity instances by A.

Note that any event log with only one timestamp per executed activity can
also be easily expressed in terms of activity instances, i.e., ts=tc. For a given
activity instance a=(i, c, l, ts, tc)∈A, we define projection functions: πi(a)=i,
πc(a)=c, πl(a)=l, πts(a)=ts, and πtc(a)=tc.

Definition 3 (Event Log). An event log E is a set of activity instances, i.e.,
E⊆A such that for a1, a2∈E ∧ πi(a1)=πi(a2) ⇒ a1=a2. We denote the universe
of event logs by E.

For a given event log E∈E , we refer to the set of activity instances executed
within a given case c∈C as a trace, i.e., Tc={a∈E | ∧πc(a)=c}. As shown in
Fig. 2a, we can visualize a trace and its activity instances in a time plot.

Note that each activity instance a=(i, c, l, ts, tc)∈A defines an interval on the
timeline, i.e., [ts, tc]. A collection of intervals—in this paper we focus on traces—
defines an interval order. In general, given two activity instances a1, a2∈A, we
say a1<a2 iff πtc(a1)<πts(a2). Note that interval orders are a proper subclass of
strict partial orders [7]; hence, interval orders satisfy: irreflexivity, transitivity,
and asymmetry. Interval orders additionally satisfy the interval order condition,
i.e., for any x, y, w, z : x<w ∧ y<z ⇒ x<z ∨ y<w [7].

In this paper, we represent an interval order as a directed, labeled graph that
consists of vertices V , representing activity instances, and directed edges V ×V ,
representing ordering relations between activity instances. Figure 2b shows the
interval order of the traces shown in Fig. 2a. We observe that the first two
activity instances labeled with A and B are incomparable to each other because
there is no arc from either A to B or vice versa. Thus, the first execution of A
and B are executed in parallel, i.e., their intervals overlap. For example, activity
C is related to F , G and the second execution of A. Thus, C is executed before
F , G and the second execution of A. Next, we formally define the construction
of the directed graph representing the interval order of a trace.

Definition 4 (Interval Order of a Trace). Given a trace Tc⊆A, we define
the corresponding interval order as a labeled, directed graph (V,E, λ) consisting
of vertices V , directed edges E=(V ×V ), and a labeling function λ : V →L. The
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Fig. 3. Proposed visualization for the interval order shown in Fig. 2b

set of vertices is defined by V =Tc with λ(a)=πl(a). Given two activity instances
a1, a2∈T , there is a directed edge

(
πi(a1), πi(a2)

)
∈E iff πtc(a1)<πts(a2). We

denote the universe of interval orders by P.

Next, we define the induced interval order.

Definition 5 (Induced Interval Order). Given (V,E, λ)∈P. For V ′⊆V , we
define the induced interval order, i.e., the induced subgraph, (V ′, E′, λ′)∈P with
E′=E∩(V ′×V ′) and λ′(v)=λ(v) for all v∈V ′.

4 Visualizing Trace Variants

This section introduces the proposed approach to visualize trace variants from
partially ordered event data. Section 4.1 introduces the approach, and Sect. 4.2
proves that the approach is deterministic. Section 4.3 discusses the potential
limitations of the approach. Finally, Sect. 4.4 covers the implementation.

4.1 Approach

The proposed visualization approach of trace variants is based on chevrons, a
graphical element known from classical trace variant visualizations (cf. Fig. 1).
Figure 3 shows an example of the proposed visualization for the interval order
given in Fig. 2b. The interpretation of a chevron as indicating sequential order
is maintained in our approach. Additionally, chevrons can be nested and stacked
on top of each other. Stacked chevrons indicate parallel/overlapping execution of
activities. Nested chevrons relate groups of activities to each other. In the given
example, the first chevron indicates that C is executed in parallel to A, B, D,
and E. The two upper chevrons indicate that A and B are executed in parallel,
but are executed before D and E, both of which are also executed in parallel.

The proposed approach assumes an interval order, representing a trace vari-
ant, as input and recursively partitions the interval order by applying cuts to
compute the layout of the visualization (cf. Fig. 3). In general, a cut is a partition
of the nodes of a given interval order. Based on the partition, induced interval
orders are derived. Each application of such a cut corresponds to chevrons and
their positioning in the final visualization, e.g., stacked or side-by-side chevrons.
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v1

v2v0

v3 v4

v5

V1 V2 V3

(a) Interval order and a maximal ordering cut

v1

v2v0

(b) Induced interval order based on V1

Fig. 4. Example of an ordering cut, i.e., a partition of the nodes into V1={v0, v1, v2},
V2={v3}, V3={v4, v5}, and one corresponding induced interval order for V1

Nested chevrons result from the recursive manner. Next, we define the compu-
tation of the proposed layout, i.e., we define two types of cuts.

An ordering cut partitions the activity instances into sets such that these sets
can be totally ordered, i.e., all activity instances within a set can be related to all
other activity instances from other sets. In terms of the graph representation of
an interval order, this implies that all nodes from one partition have a directed
edge to all nodes from the other partition(s). We depict an example of an ordering
cut in Fig. 4. Note that all nodes in V1 are related to all nodes in V2 and V3.
Next, we formally define an ordering cut for an interval order.

Definition 6 (Ordering Cut). Assume an interval order (V,E, λ)∈P. An
ordering cut describes a partition of the nodes V into n>1 non-empty subsets V1,

. . . , Vn such that: ∀1≤i<j≤n
(
∀v∈Vi, v

′∈Vj

(
(v, v′)∈E

))
.

A parallel cut indicates that activity instances from one partition overlap
in time with activity instances in the other partition(s), i.e., activity instances
from different partitions are unrelated to each other. Thus, we are looking for
components in the graph representation of an interval order.

Definition 7 (Parallel Cut). Assume an interval order (V,E, λ)∈P. A par-
allel cut describes a partition of the nodes V into n≥1 non-empty subsets
V1, . . . , Vn such that V1, . . . , Vn represent connected components of (V,E, λ), i.e.,
∀1≤i<j≤n

(
∀v∈Vi∀v′∈Vj

(
(v, v′)/∈E ∧ (v′, v)/∈E

))
.

We call a cut maximal if n, i.e., the number of subsets, is maximal.
Figure 5 shows an example of the proposed visualization approach. We use

the interval order from Fig. 2b as input. The visualization approach recursively
looks for a maximal ordering or parallel cut. In the example, we initially find an
ordering cut of size three (cf. Fig. 5a). Given the cut, we create three induced
interval orders (cf. Fig. 5b). As stated before, each induced interval order created
by a cut represents a chevron. In general, an ordering cut indicates the horizon-
tal alignment of chevrons while a parallel cut indicates the vertical alignment of
chevrons. Since we found an ordering cut of size three, the intermediate visual-
ization consists of three horizontally-aligned chevrons (cf. Fig. 5c). If an induced
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Fig. 5. Example of recursively applying ordering and parallel cuts to an interval order
and the corresponding visualization
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interval order only consists of one element (e.g., the third induced interval order
in Fig. 5b), we fill the corresponding chevron with a color that is unique for the
given activity label (cf. Fig. 5c). As in the classic trace variant explorer, colors
are used to better distinguish different activity labels.

We now recursively apply cuts to the induced interval orders. In the first
two interval orders, we apply a parallel cut (cf. Fig. 5d). The third interval
order consists only of one node labeled with G; thus, no further cuts can be
applied. Figure 5e shows the induced interval orders after applying the two
parallel cuts. As stated before, time-overlapping activity instances are indicated
by stacked chevrons. Since both applied parallel cuts have size two, we create two
stacked chevrons each within the first and the second chevron (cf. Fig. 5f). After
another ordering cut (cf. Fig. 5g–5i) and two more parallel cuts (cf. Fig. 5j), the
visualization approach stops because all induced interval orders consist of only
one activity instance. Figure 5l shows the final visualization.

4.2 Formal Guarantees

Next, we show that the proposed approach is deterministic, i.e., the same visu-
alization is always returned for the same interval order. We therefore show that
different cuts cannot coexist, i.e., either a parallel cut, an ordering cut, or no cut
exists in an interval order. Further, we show that maximal cuts are unique.

Lemma 1 (Cuts Cannot Coexist). In an interval order (V,E, λ)∈P a par-
allel and an ordering cut cannot coexist.

Proof. Let (V,E, λ)∈P be an interval order with an ordering cut V1, . . . , Vn

for some n≥2. Assume there exists a parallel cut, too, i.e., V ′
1 , . . . , V ′

m

for some m≥2. For 1≤j≤m, assume that for an arbitrary v∈V it holds
that v∈V ′

j such that v∈Vi for some i∈{1, . . . , n}. Since an ordering cut
exists, we know that ∀w∈Vi+1∪ . . . ∪Vn

(
(v, w)∈E

)
and ∀w′∈V1∪ . . . ∪Vi−1

(

(w′, v)∈E
)
. Since V ′

1 , . . . , V ′
m is a parallel cut, i.e., each V ′

k∈{V ′
1 , . . . , V ′

m}
represents a connected component (Definition 7), also all w and w′

must be in V ′
j . Hence, V ′

j ={v}∪V1∪ . . . ∪Vi−1∪Vi+1∪ . . . ∪Vn. Further, since
∀w′∈V1∪ . . . ∪Vi−1∀w∈Vi+1∪ . . . ∪Vn

(
(w′, w)∈E ∧ (w′, v)∈E ∧ (v, w)∈E

)
it fol-

lows by Definition 7 that V ′
j =V1∪ . . . ∪Vn=V . Hence, ∀V ′

k∈{V ′
1 , . . . , V ′

m}\{V ′
j }

(V ′
k=∅) since V ′

1 , . . . , V ′
m is a partition of V . This contradicts our assumption

that there exists a parallel cut, too. The other direction is symmetrical. ��

Since cuts cannot coexist (cf. Lemma 1), one cut is applicable for a given
interval order at most. Next, we show that maximal cuts are unique.

Lemma 2 (Maximal Ordering Cuts Are Unique). If an ordering cut
exists in a given interval order (V,E, λ)∈P, the maximal ordering cut is unique.

Proof. Proof by contradiction. Assume an interval order (V,E, λ)∈P having two
different maximal ordering cuts, i.e., V1, . . . , Vn and V ′

1 , . . . , V ′
n.

⇒ ∃i∈{1, . . . , n}∀j∈{1, . . . , n}
(
Vi �=V ′

j

)
⇒ Vi �=V ′

i
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⇒ ∃v∈Vi∪V ′
i

(
(v∈Vi ∧ v/∈V ′

i ) ∨ (v/∈Vi ∧ v∈V ′
i )

)

Assume v∈Vi ∧ v/∈V ′
i (the other case is symmetric)

⇒ v∈V ′
1∪ . . . ∪V ′

i−1∪V ′
i+1∪ . . . ∪V ′

n=V \V ′
i

1) Assume v∈V ′
1∪ . . . ∪V ′

i−1

Definition 6
========⇒ ∀v′∈Vi

(
(v, v′)∈E

)
2) Assume v∈V ′

i+1∪ . . . ∪V ′
n

Definition 6
========⇒ ∀v′∈Vi

(
(v′, v)∈E

)

v∈Vi===⇒ (v, v)∈E contradicts the assumption (V,E, λ) represents an interval order
because irreflexivity is not satisfied. ��

Lemma 3 (Maximal Parallel Cuts Are Unique). If a parallel cut exists
in a given interval order (V,E, λ)∈P, the maximal parallel cut is unique.

Proof (Lemma 3). By definition, components of a graph are unique. ��

Lemma 2 and Lemma 3 show that maximal cuts, both ordering and parallel,
are unique. Together with Lemma 1, we derive that the proposed visualization
approach is deterministic, i.e., the approach always returns the same visualiza-
tion for the same input, because for a given interval order only one cut type is
applicable at most and if a cut exists, the maximal cut is unique.

4.3 Limitations

In this section, we discuss the limitations of the proposed visualization approach.
Reconsider the example in Fig. 5. Cuts are recursively applied until one node,

i.e., an activity instance, remains in each induced interval order (cf. Fig. 5k).
However, there are certain cases in which the proposed approach cannot apply
cuts although more than one node exists in an (induced) interval order.
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(a) Dots indicate that the shown pattern of
chained activity instances can be extended ar-
bitrarily, horizontally as well as vertically
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(b) Corresponding
interval order
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(c) Correspond-
ing visualization

Fig. 6. Example trace and interval order in which no cuts are applicable

Consider Fig. 6a, showing an example of a trace where no cuts can be applied.
Since each activity instance is overlapping with some other activity instance, we
cannot apply an ordering cut. Also, since there is no activity instance that over-
laps with all other activity instances, we cannot apply a parallel cut. Note that
the visualized pattern of chained activity instances can be arbitrarily extended
by adding more activity instances vertically and horizontally, indicated by the
dots in Fig. 6a. Figure 6b shows the corresponding interval order.
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Fig. 7. Screenshot of Cortado’s variant explorer showing real-life event data [4]

Table 2. Evaluation results based on real-life event logs

Log statistics
Calculation time (s) of

interval ordered variants
Variants statistics

Event

log

#cases

(avg. #events

per case)

multiple

timestamps

per activity

available

Total

calculation

Pre-

processing

event

data

Creating

interval

orders

Cutting

interval

orders

#classic variants

(only start-time-

stamp considered)

#interval

ordered

variants

#interval

ordered

variants

with limitations

BPI Ch.

2017 [5]

31,509

(≈38)
yes ≈39 ≈21.6 ≈5.7 ≈11.3 15,930 5,854 335 (≈6%)

BPI Ch.

2012 [4]

13,087

(≈20)
yes ≈22.6 ≈5.9 ≈5.4 ≈11.2 4,366 3,830 0 (≈0%)

Sepsis [11]
1,050

(≈14)
no ≈1.9 ≈0.3 ≈0.3 ≈1.2 846 690 0 (≈0%)

For the example trace, the proposed approach visualizes the activities
A, . . . , F within a single chevron, indicating that the activities are executed
in an unspecified order (cf. Fig. 6c). Thus, the visualization highly simplifies the
observed process behavior in such cases. Alternatively, it would be conceivable to
show the interval order within a chevron if an (induced) interval order cannot be
cut anymore. However, we decided to keep the visualization simple and show all
activities within a single chevron. Note that this design decision entails that the
expressiveness of the proposed visualization is lower than the graphical notation
of interval orders, i.e., different interval orders can have the same visualization.

4.4 Implementation

The proposed visualization approach for partially ordered event data has been
implemented in Cortado [12]3, which is a standalone tool for interactive process
discovery. Figure 7 shows a screenshot of Cortado visualizing an event log with
partially ordered events. The implemented trace variant explorer works for both,
partially and totally ordered event data. The tool assumes an event log in the
.xes format as input. If the provided event log contains start- and complete-
timestamps, the visualization approach presented in this paper is applied.

3 Available from version 1.2.0, downloadable from: https://cortado.fit.fraunhofer.de/.

https://cortado.fit.fraunhofer.de/
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5 Evaluation

In this section, we evaluate the proposed visualization approach. We focus
thereby on the performance aspects of the proposed visualization. Further, we
focus on the limitations, i.e., no cuts can be applied anymore, although the
(induced) interval order has more than one element, as discussed in Sect. 4.3.

We use publicly available, real-life event logs [4,5,11]. Table 2 shows the
results. The first three columns show information about the logs. Two logs [4,5]
contain start- and complete-timestamps per activity instance while one log [11]
contains only a single timestamp per activity instance. Regarding the total cal-
culation time, we note that the duration of the visualization calculation is rea-
sonable from a practical point of view. We observe that the recursive application
of cuts takes up most of the computation time in all logs, as expected. Regarding
the variants, we observe that the number of classic variants is higher compared
to the number of variants derived from the interval order for all event logs. We
observe this even for the third event log [11] because some activities within the
cases share the same timestamp. Regarding the limitations of the approach, as
discussed in Sect. 4.3, we observe that only in the first log [5] approximately in
6% of all trace variants patterns occur where it was not possible to apply cuts
anymore. Note that the limitation cannot occur in event logs where only a single
timestamp per activity is available, e.g., [11].

6 Conclusion

This paper introduced a novel visualization approach for partially ordered event
data. Based on chevrons, known from the classic trace variant explorer, our app-
roach visualizes the ordering relations between process instances in a hierarchi-
cal manner. Our visualization allows to easily identify common patterns in trace
variants from partially ordered event data. The approach has been implemented
in the tool Cortado and has been evaluated on real-life event logs.
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Abstract. With the advent of Industry 4.0, increasing amounts of data
on operational processes (e.g., manufacturing processes) become avail-
able. These processes can involve hundreds of different materials for
a relatively small number of manufactured special-purpose machines
rendering classical process discovery and analysis techniques infeasible.
However, in contrast to most standard business processes, additional
structural information is often available—for example, Bills of Materi-
als (BOMs), listing the required materials, or Multi-level Manufactur-
ing Bills of Materials (M2BOMs), which additionally show the material
composition. This work investigates how structural information given
by Multi-level Bills of Materials (M2BOMs) can be integrated into a
top-down operational process analysis framework to improve special-
purpose machine manufacturing processes. The approach is evaluated on
industrial-scale printer assembly data provided by Heidelberger Druck-
maschinen AG.

Keywords: Process Mining · Bill of Materials · Operational
Processes · Industry 4.0 · Offset Printing

1 Introduction

With the advent of digitalization, data on an increasing number of processes are
recorded. Process mining is the emerging key discipline concerned with the anal-
ysis of such data to provide insights into processes and, eventually, to improve
them. Traditionally, event data, i.e., a set of discrete events that are linked by a
certain case notion, have been recorded in business management systems, which,
for example, handle order-to-cash or purchase-to-pay processes. However, with
the rise of Industry 4.0, more and more event data from manufacturing and
assembly processes become available. The analysis of these so-called operational
processes [1] using process mining is therefore key to not only remove friction
from companies’ administrative workflows but also to optimize and steer their
manufacturing processes.

In contrast to standard business processes, operational processes frequently
provide additional structural information. A common approach to structure
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the production, particularly for complex products, is by means of a Multi-
level Manufacturing Bill of Materials (M2BOM) that shows the hierarchical
composition of required materials. These models are for example supported by
manufacturing ERP systems such as SAP [13]. Moreover, operational processes
often involve a large number of materials and assembly tasks that render fully-
automatic model discovery infeasible. However, model discovery plays a cen-
tral role in classical process mining-based process analysis frameworks such as
PM2 [6], where the mining & analysis stage implementation comprises auto-
matic model discovery, conformance checking, and model enhancement. Thus,
the adaptability of standard analysis approaches to operational processes is lim-
ited. Thus, given operational event data where each assembly case is endowed
with its corresponding M2BOM, we propose a two-stage refinement of PM2’s
mining & analysis step. The first substage targets a general and comprehen-
sive performance overview exploiting additional structural information; the sec-
ond substage concerns the analysis of subprocesses of interest identified in the
first stage. To implement the first substage, we propose a method that discov-
ers a tree-based assembly model close to the original M2BOM and, therefore,
well-suited to convey results to stakeholders from engineering. In doing so, we
particularly focus on performance. Due to practical constraints, the actual pro-
cess usually adheres to the provided M2BOM (e.g., parts cannot be missing and
dependencies must be respected) and, thus, conformance checking tends to be
less interesting.

Our main contributions are the investigation of so-called M2BOM-structured
event logs and how multiple M2BOMs, with the help of domain knowledge and
special types of material options, can be unified into a single common data model.
We propose to detect bottlenecks based on this unified representation and to
analyze the latter using a top-down approach. Finally, we illustrate the feasibility
of our approach on an industrial-scale printer assembly use case provided by
Heidelberger Druckmaschinen AG.

The remainder of this paper is structured as follows: Sects. 2 and 3 cover
the related work and preliminaries, respectively. Section 4 presents the analysis
approach, in particular, the discovery of M2BOM-based models in Sect. 4.2. We
evaluate the approach in Sect. 5 and conclude our work in Sect. 6.

2 Related Work

There are many papers on improving the performance of manufacturing
processes—for example, based on the principles of lean management [11]. We,
however, focus on the more recent approach of using process mining to ana-
lyze and improve operational assembly processes. For a more detailed review on
process mining for assembly-related processes (e.g., procurement), we refer the
reader to [5]. One of the first case studies, conducted by Rozinat et al. [12], inves-
tigates the testing procedure of wafer scanners in terms of idle times and repeated
tests. In this work, little additional structural information has been exploited.
More similar to our use case in terms of independently manufactured parts is
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the ship manufacturing process in [9], where multiple ship blocks are manufac-
tured simultaneously. In contrast to our work, this work focuses on individual
blocks only, applying trace clustering to identify similar intra-block assembly
work flows. A comparison between planned and de facto schedules in block-level
ship manufacturing processes can be found in [10]. Besides, model discovery
for a coffee machine manufacturing process using standard automatic mining
approaches has been investigated in [3]. Recently, Uysal et al. [15] analyzed the
performance and evolution of an automotive production line. While this work
also focuses on the performance of an assembly line, we consider more complex
production lines and do not require a ground truth production model. However,
both use cases share a similar assembly structure in common (i.e., major assem-
bly steps, linked by additional structural information, and a set of unstructured
assembly activities related to each major assembly step). More recently, Lorenz
et al. [8] analyzed deviations between de jure and de facto models in sanitary
product manufacturing using conformance checking. They emphasize that the
major advantage of process mining over traditional methods is its adaptabil-
ity to dynamic processes and that it can comprehensively consider entire cases.
This strength is further underpinned by its application to production change
point detection in [4]. Finally, a first framework for the end-to-end analysis of
production processes using process mining has been proposed in [14].

3 Preliminaries

Throughout this paper, we use out-trees to model a bill of materials. Given a
set of vertices V , a directed acyclic and weakly connected graph T = (V,E)
with E ⊆ V × V is a tree. We denote the set of vertices by Tv = V . A rooted
tree is a tree with designated root vertex ρT and an out-tree is a tree where
each edge points away from ρT . An s-t path for s, t ∈ V is a sequence of edges
〈e1 = (s, v1), e2 = (v1, v2), . . . , ek = (vk−1, t)〉, ei ∈ E, i = 1, . . . , k.

In this work, we use restricted, loop-free, process trees to describe execu-
tion/replay semantics.

Definition 1 (Loop-free Process Tree). Let A denote a universe of activity
labels such that τ /∈ A. Let ⊕ = {→,×,∧,∨} be the set of tree operators. A
loop-free process tree is defined by the following production rules:

– a ∈ A ∪̇ {τ} is a loop-free process tree
– •(T1, . . . , Tn) for process trees Ti, i = 1, . . . , n, n ≥ 1, and • ∈ ⊕ is a loop-free

process tree

Besides, given a process tree PT, we assume standard operator semantics for the
defined language L(PT) (compare [7]). Furthermore, to model the operational
event data, we introduce the following universes and event projections.

Definition 2 (Event Universes). To model the manufacturing event data, we
define the universes of event identifiers, Ueid

; product identifiers, Upid
; manufac-

turing activities, Ua; timestamps, Utime; material types, Umtyp
; material identi-

fiers, Umid
; material id to material type mappings, mat ∈ Umid

→ Umtyp
; and

events, E = Ueid
× Upid

× Ua × Utime × Umid
.
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Fig. 1. Analysis methodology for M2BOM-structured event logs.

Notice that each event is related to a single material following the bill of
materials-inspired idea that tasks can be attributed to a specific material where
the assembly of multiple materials is attributed to the created new material.
Given an event e = (eid, pid, a, t,mid) ∈ E , we denote the projection on the
event id, product id, activity, timestamp, and material id by πeid(e) = eid,
πpid(e) = pid, πa(e) = a, πtime(e) = t, and πmid(e) = mid, respectively. Fur-
thermore, in a slight abuse of notation, we generalize the projection to sets,
yielding multisets of attribute values, for example, πa(E) = [πa(e) | e ∈ E] for
E ⊆ E . Finally, we introduce the following standard definition of an event log
with the additional requirement that materials are not shared among different
products.

Definition 3 (Assembly Event Log). An assembly event log (E,≤E) is a
finite tuple of events E ⊆ E endowed with an ordering relation ≤E⊆ E × E
such that: (i) ≤E is a partial order, (ii) event identifiers are unique, i.e.,
∀e1∀e2 : πeid

(e1) = πeid
(e2) ⇒ e1 = e2, (iii) ordering respects time, i.e.,

∀e1∀e2 ∈ E : e1 ≤E e2 ⇒ πtime(e1) ≤ πtime(e2), and (iv) no materials are
shared, i.e., ∀e1∀e2 ∈ E : πmid

(e1) = πmid
(e2) ⇒ πpid

(e1) = πpid
(e2).

4 Methods

In this section, we propose a top-down methodology for analyzing operational
processes providing additional structural information and illustrate how a multi-
level manufacturing bill of materials (M2BOM) can be exploited.

4.1 Analysis Methodology

A major challenge when analyzing operational processes is the potentially large
number of assembly activities and materials. Additionally, particularly in special-
purpose machine manufacturing, the number of orders is usually small. This gen-
erally negatively affects automatic process discovery techniques, yielding huge



Analyzing Multi-level BOM-Structured Event Data 51

m0

m1 m3

m7 m8

(a) M2BOM

m0

80

m1

60

m4

10

m2

10
m3

80

m5

60
m6

60

(b) Initial shared M2BOM

m0

81

m1

61

m4

10

m2

10
m3

81

m5

60
m6

60
m7

1
m8

1

(c) Merged shared M2BOM

Fig. 2. Example of iteratively merging M2BOMs into a shared M2BOM.

and incomprehensible models. However, for humans, even with little domain
knowledge, these processes are clearly structured and a lot of effort went into
planning. In doing so, one material dependency modeling approach is by means
of M2BOM. In the proposed process analysis methodology, depicted in Fig. 1, we
therefore exploit this additional structural information to be able to visualize the
process as a whole. To this end, we first extract the structural information. Then,
a tree-based performance-aware overview over the entire process where vertices
correspond to the materials, is created to show bottlenecks and to identify other
points of interest (e.g., similar materials with relatively large performance differ-
ences). After identifying points of interest, particularly performance bottlenecks,
a refined analysis of the associated subprocesses is conducted. Usually, manufac-
turing subprocesses are designed to be independent and, thus, little information
is lost by focusing on a specific subprocess. Besides, the assembly of a specific
material is often fairly sequential thereby facilitating the analysis. In doing so, a
control-flow and conformance analysis tends to be less interesting; instead, the
major focus must be on the performance. Given the reduced complexity of the
subprocess, the performance spectrum [2], with time relative to timestamp of
case start, is a well-suited tool because it allows for a high-resolution perfor-
mance analysis. Finally, the subprocess analysis can be iterated drilling down
further.

4.2 M2BOM-Structured Assembly Processes

A common approach to structure assembly processes is by means of multi-level
manufacturing bills of materials (M2BOMs). Unfortunately, M2BOMs cannot be
directly used to visualize the performance of multiple cases because products are
often configurable and therefore have different bills of materials. Even though
these configurations might be modeled for the customer in the ordering system,
this information is lost when creating the actual manufacturing bill of materials.
Thus, to provide a comprehensive assembly overview, this section proposes a
method to discover an option-aware M2BOM from the data. To this end, we
first merge a collection of M2BOMs into a common representation (compare
Fig. 2) and then extend it into a proper configuration model (compare Fig. 3).

Conceptually, a M2BOM can be modeled by a tree as follows:
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Definition 4 (Multi-level Manufacturing Bill of Materials (M2BOM)).
Given a finite list of materials M ⊆ Umid

, a multi-level manufacturing bill of
materials is an out-tree (M,D).

An example M2BOM is depicted in Fig. 2(a). Since our approach operates
on material types, we label the vertices by their type in our illustrations. In
addition, to relate the event data of a particular product to its M2BOM, we
define σmid(p,E) = {πmid(e) | e ∈ E, πpid(e) = pid}, which selects the materials
used in the assembly of the product pid for the assembly event log (E,≤E). Next,
we combine the classical event log and M2BOM into a M 2BOM-structured event
log.

Definition 5 (M2BOM-structured event log). Let (E,≤E) denote an
assembly event log. Let BOM E : Upid

→ (P(Umid
) × (P(Umid

× Umid
)) , pid �→

(M,D) be a function that assigns M2BOM to each product such that M =
σmid

(p,E). An M2BOM-structured event log is a tuple ((E,≤E),BOM E).

We deliberately keep the event log and M2BOMs separate—requiring that mate-
rial from the log occurs in the M2BOM and vice versa—to facilitate the use of
other process mining techniques. Even though the performance of the assem-
bly for a single product can be measured and projected onto the corresponding
M2BOM using the M2BOM-structured event log, this does not provide aggre-
gated statistics. Therefore, we first merge the M2BOMs into one shared M2BOM.

Definition 6 (Shared M2BOM). Let EBOM = ((E,≤E),BOM E) be an
M2BOM-structured event log. Let Mσ ⊆ Umid

× Umtyp
× P(Upid

) be a vertex
set with id, material type, and product set projections πmid

(v) = mid, πmtyp
(v) =

mtyp, and πpid
(v) = spid

for v = (mid,mtyp, spid
) ∈ Mσ. Bσ = (Mσ,Dσ) with

Dσ ⊆ Mσ × Mσ is a shared M2BOM iff:

– Bσ is an out-tree (compare Definition 4)
– Bσ contains exactly the bills of materials present in EBOM:

• Each M2BOM is contained: for every product id pid ∈ πpid
(E) there

exists an injective homomorphism hpid
: (BOM E(pid))v → Mσ between

B and Bσ that respects the material types and product id sets, i.e.,
∀m ∈ (BOM E(pid))v

(
mat(m) = πmtyp

(h(m)) ∧ pid ∈ πpid
(h(m))

)
.

• Bσ contains only M2BOMs from the event log, i.e., ∀v ∈ Mσ({pid|pid ∈
πpid

(E), h−1
pid

(v) �= ∅} = πpid
(v)).

In the shared M2BOM, every vertex has an id (guaranteeing uniqueness), a
type, and a set of products containing this material. Since M2BOM allows mul-
tiple materials instances having the same type, corresponding vertices between
M2BOM and the shared M2BOM must be consistent in the type and location
within the tree. We enforce this by the injective—no two material instances are
mapped to the same vertex—homomorphism hpid . It ensures that every M2BOM
can be type-consistently embedded into the shared M2BOM and that a vertex
contains a product if and only if one of its materials is mapped to this vertex.
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Fig. 3. Resolving material count mismatches by introducing options. (a) The option
contexts and the order of retrieval. (b) The applied resolutions.

While the declarative definition does not provide a recipe for constructing the
shared M2BOM, there is a straightforward iterative approach that merges ver-
tices v, v′ of trees T, T ′ if their and their ancestors’ types are consistent (i.e., the
material types on the ρT −v and ρT ′ −v′ paths coincide). An example is depicted
in Fig. 2, which, for simplicity, shows the cardinality of the product id sets instead
of the actual sets. Furthermore, Fig. 2(c) also shows the homomorphism between
the M2BOM (Fig. 2(a)) and the initial shared M2BOM (Fig. 2(b)).

While the shared M2BOM allows for a visualization of aggregated projected
statistics, it cannot properly capture material frequency differences in terms of
certain materials being optional or choices between materials. Besides, it is also
desirable to link the shared M2BOM to a proper process model to be able to
apply other process mining techniques. For example, process simulation can be
used for production planning. To this end, we transform the shared M2BOM into
an option M2BOM that, in turn, can be directly related to a process tree. The
option M2BOM models optional materials and choices using dedicated special
material types mγ , m∨, m×, and mτ . While mγ is used to create material groups;
m∨, m×, and mτ directly correspond to their pendants in process trees. An
example of the transformation is depicted in Fig. 3(b), showing that, for example,
a customer may choose between m1 and m2.

Definition 7 (Option M2BOM). Let U
o
mtyp

= Umtyp
∪̇ {mγ ,m×,m∨,mτ}

denote an extended material type universe. An option M2BOM is an out-tree
Bo = (Mo,Do) with Mo ⊆ U

o
mtyp

× Umid
,Do ⊆ Mo × Mo such that mτ only

occurs as leaf vertex adjacent to a choice vertex of type m× or m∨.

An option M2BOM directly corresponds to a process tree where material groups
are modeled by concurrency and non-leaf materials as sequences of concurrent
child material manufacturing followed by the assembly of the parents themselves.
Accordingly, we define the process tree of an option M2BOM as follows:

Definition 8 (Process Tree of an Option M2BOM). Given an option
M2BOM Bo = (Mo,Do) and a vertex v ∈ Mo, the process tree PTBo(v), rooted
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Fig. 4. Transforming a shared M2BOM into an option M2BOM by (a) identifying
option contexts and (b) applying different resolution strategies.

at v, of the option M2BOM is recursively defined as follows:

PTBo(v) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(∨)
× (PTBo(c1), . . . ,PTBo(cn)) if v = m×(∨)

∧(PTBo(c1), . . . ,PTBo(cn)) if v = mγ

πmtyp
(v) if v is a leaf

→ (∧(PTBo(c1), . . . ,PTBo(cn)), πmid
(v)) if v ∈ Umtyp

(1)

where (c1, . . . , cn) is an arbitrary enumeration of the children of v. We denote
the process tree obtained for the root of Bo by PTBo (i.e., PTBo := PTBo(ρBo)).

To relate an option M2BOM to a concrete M2BOM, we, first, introduce the
material reduction of an option M2BOM Bo that reduces Bo to an M2BOM.
It is obtained by repeatedly replacing edges (s, u), (u, t) with s, t ∈ U

o
mtyp

, u ∈
{mγ ,m×,m∨} by (s, t) and removing mτ leaves and vertices without adjacent
edges. We denote the material reduction by Bo

|Umtyp
. For example, Fig. 4(a)

shows the material reduction of the resolution depicted in Fig. 4(b). Using the
material reduction and Definition 7, we can establish the link between M2BOM-
structured event logs and option M2BOMs. M2BOM B is compatible with an
option M2BOM if for each material in B there is a corresponding material in
Bo

|Umtyp
and if B is a valid combination of materials w.r.t. the options modeled

in Bo (e.g., no mandatory material is missing or exclusive material options are
respected). To this end, we require that a potentially valid production plan of
B (i.e., materials are ordered such that child materials are manufactured before
their parent materials), is contained in the language of the process tree PTBo .

Definition 9 (Option M2BOM Compatibility). Given M2BOM B =
(M,D) and an option M2BOM Bo = (Mo,Do) with its material reduction
Bo

|Umtyp
= (Mo

r ,Do
r), B realizes Bo if there exists an injective homomorphism

h : M → Mo
r between Bo and Bo

|Umtyp
satisfying the following conditions: (i)

material types are respected, i.e., ∀m ∈ Mπmtyp
(m) = πmtyp

(h(m)) and (ii) the
post-order traversal 〈v1, . . . , vn〉 of vertices in B, 〈h(v1), . . . , h(vn)〉 is in the lan-
guage of the process tree of Bo, i.e., 〈h(v1), . . . , h(vn)〉 ∈ L(PTBo).
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Finally, a BOM-structured event log is compatible with an option M2BOM if
M2BOM of every product is compatible. Similar to the construction of the shared
M2BOM, there is a straightforward approach based on comparing product sets
to construct a compatible option M2BOM from the shared M2BOM of a BOM-
structured event log. Figure 4 illustrates the major steps; first, option contexts
induced by product count mismatches between parent and child vertices are
iteratively retrieved in bottom-up order. Given a count mismatch between the
products associated with parent v and child v′ (i.e., |πpid(v)| �= |πpid(v

′)|), the
option context comprises v and all its children as these might be in a, so far
undiscovered, choice relation with v′. This mismatch can then be resolved by
introducing group, exclusive choice, or non-exclusive choice nodes as well as the
possibility to skip certain materials; the concept of the resolution is depicted in
Fig. 4(b). The resolution usually requires domain knowledge because the data
may not contain all valid configurations. For example, two configurations might,
by incident, never occur together even though they could. Therefore, making
both optional should be preferred over an exclusive choice. Finally, the set of
product ids covered by a newly introduced vertex is equal to the union of its
successor’s cover. Notice that for optional subtrees, the counting argument above
has to be slightly modified so that these vertices are not handled repeatedly.
Eventually, we obtain a valid option M2BOM after resolving all options. Figure
3(b) shows a complete option resolution, including the order of steps. First, m4

is found to be an optional part of m2. Next, we discover an occurrence mismatch
between m3 and its child materials that can be resolved by a choice between two
material groups. Finally, an exclusive choice between m1 and m2 is introduced.

5 Case Study

We evaluated the proposed methodology using real-world data from Heidelberger
Druckmaschinen AG—a global manufacturer of offset, digital, and label printing
presses. The company not only offers special-purpose machines but also provides
services for the entire industrial printing value chain. The event data comprises
events for several of hundred offset printers of different models and configura-
tions. In agreement with the company’s confidentiality policy, we anonymized the
data (i.e., the activities, materials, and time spans). However, to give a high-level
intuition, we assigned the materials in the first four M2BOM levels expressive
names. As depicted in Fig. 5, the root element is the printer, the second level
comprises logistics materials, the third level’s material is required to finalize the
machine (Final Comp.), and the fourth level comprises the major large com-
ponents of an offset printer (Large Comp.). In addition, each event contains a
reference to its and its parent’s material id, which was used for the automated
M2BOM construction.

BOM-Based Overview. In coordination with the stakeholders, we applied the
option M2BOM discovery approach to the most frequently sold product. We
obtained an option M2BOM containing more than 250 different materials and



56 T. Brockhoff et al.

0 0.2 0.4 0.6 0.8 1

Printer 1

Logistics 1
Logistics 2
Logistics 3
Logistics 4
Logistics 5
Logistics 6
Logistics 7
Logistics 8
Logistics 9

Logistics 10
Logistics 11
Logistics 12

Assemb. Task 13

Final Comp. 1
Final Comp. 2
Final Comp. 3
Final Comp. 4
Final Comp. 5
Final Comp. 6
Final Comp. 7
Final Comp. 8
Final Comp. 9

Final Comp. 10
Final Comp. 11
Final Comp. 12
Final Comp. 13
Final Comp. 14

Assemb. Task 15
xExcl. Option 16
xExcl. Option 17
xExcl. Option 18

Large Comp. 1

Large Comp. 2

Large Comp. 3

Large Comp. 4

Large Comp. 5

Large Comp. 6

Large Comp. 7

Large Comp. 8

Large Comp. 9

Large Comp. 10
Large Comp. 11
Large Comp. 12
Large Comp. 13
Large Comp. 14
Large Comp. 15
Large Comp. 16
Large Comp. 17
Large Comp. 18
Large Comp. 19

Assemb. Task 20
xExcl. Option 21
xExcl. Option 22
xExcl. Option 23

Material (lvl 4) 1
Assemb. Task 2

Material (lvl 4) 15
Assemb. Task 16

Material (lvl 5) 1
Material (lvl 5) 2
Material (lvl 5) 3
Material (lvl 5) 4
Material (lvl 5) 5
Material (lvl 5) 6
Material (lvl 5) 7

Assemb. Task 8
xExcl. Option 9
xExcl. Option 10

Material (lvl 5) 72
Material (lvl 5) 73
Material (lvl 5) 74
Material (lvl 5) 75
Material (lvl 5) 76
Material (lvl 5) 77
Material (lvl 5) 78

Assemb. Task 79
xExcl. Option 80
xExcl. Option 81

Printer
Logistic

Final
Comp.

Large Comp.
Material

. 1

. 2

. 3

. 4

Large Comp. 1

Large Comp. 2

Large Comp. 3

Large Comp. 4

Large Comp. 5

Large Comp. 6

Large Comp. 7

Large Comp. 8

Large Comp. 10
La ge Co 11

Assemb. Task 20
xExcl. Option 21
xExcl. Option 22
xExcl. Option 23

Material (lvl 4

Material (lvl 4)

Fig. 5. An excerpt of our visualization of the option M2BOM, discovered for the most
frequently sold printer model (anonymized time scale).

approximately 25 choices. For each vertex v, we computed the median assembly
time, i.e., the timespan between the start and complete timestamp of the first
and the last event related to a material in the subtree rooted at v. Moreover,
we included the business hours and the factory calendar in the computations.
An excerpt of the resulting option M2BOM colored by the median assembly
times is depicted in Fig. 5. Starting at the root node, we expanded each level’s
most performance-relevant material up to a depth of three. Each circular ver-
tex corresponds to a material, while squares correspond to options or a special
activity material that subsumes all assembly tasks related to the parent vertex.
For example, Assembly Task 20 subsumes the events required to assemble Final
Comp. 1 using the materials on the fourth level. Besides, Excl. Option 21 shows
an optional printer part. Considering the performance of the assembly, this visu-
alization clearly shows the most time-consuming operations—namely, Assembly
Task 20 and Large Comp. 1. In contrast to a plain list of assembly times, Fig. 5
also depicts the relations between the materials, facilitating performance com-
parison. Knowing that Large Comp. 1-8 are similar materials, Fig. 5 shows
median assembly time differences between these components. In particular, the
increased assembly duration of Large Comp. 1 compared to Large Comp. 8 is
due to a slightly increased complexity of the respective assembly tasks. However,
we will focus on Assembly Task 20, the most time-consuming step.

Bottleneck Analysis. Next, we investigated the major bottleneck, Assembly Task
20. To this end, we extracted the corresponding events for all printers of the
considered model and discovered a process model using the default Inductive
Miner infrequent [7] algorithm. As expected, the resulting model was mostly
sequential and exhibits only little concurrency. Using this model, we created the
token flow-based performance spectrum [2]. In doing so, we exploited additional
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Fig. 6. Performance Spectrum for the most critical assembly activity. (Color figure
online)

domain knowledge to identify sections in the subprocess. The resulting perfor-
mance spectrum is depicted at the left hand side of Fig. 6; the vertical axis shows
the flow of cases through the identified sections, while the horizontal axis shows
the time relative to the start of the assembly. We further differentiate between
standard machines (orange) and machines with additional customization and
features (cyan). Using the performance spectrum, we identified two crucial sec-
tions, where times differ significantly among various machines. By iterating the
subprocess analysis step, we were finally able to identify the decisive assembly
tasks in terms of overall performance within the two sections. The performance
spectra for these activities are depicted on the right hand side of Fig. 6.

6 Conclusion

In this work, we propose an analysis methodology for conducting a process min-
ing analysis in operational (assembly) processes that provide additional struc-
tural information in terms of multi-level manufacturing bills of materials. Our
analysis methodology uses a top-down approach that first creates an overview
over the entire process, exploiting the available additional structural informa-
tion, and then analyzes subprocesses in more detail. In particular, we propose
an option BOM-based visualization and provide a method to discover an option
M2BOM from the assembly event data. We demonstrate the applicability of the
analysis methodology, particularly the discovery and visualization of the option
M2BOM, on a real-world industrial-scale printer manufacturing use case.

For future work, we plan to extend the option M2BOM mining approach to
incorporate different printer models and to apply it to additional manufacturing
domains. Moreover, incorporating process variant comparison approaches, par-
ticularly w.r.t. performance, would be interesting. Finally, as even subprocesses
can be quite large, we aim to investigate methods that automatically detect
performance-critical parts in performance spectra.
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Abstract. The identification and construction of datasets of human
activities is an extremely time-consuming and resource intensive task,
yet researchers cannot refrain from such datasets. The publicly available
datasets may not reflect all the researchers’ requirements and are not
scrupulously documented. In addition, these datasets can cope with just
a limited and predefined set of behaviors. To address these challenges, we
developed an instrument that allows to simulate the behavior of agents
interacting with an environment. The environment is a customized con-
figuration, equipped with sensors. The simulation generates as output
a stream of events stemming from activated sensors. In addition, the
agents behavior is not fully deterministic, so as to reflect the dynamic
nature of human beings and to be as realistic as possible.

1 Introduction

In this work we describe Linac, a smart environment simulator. The simulator
combines the non-deterministic behavior of human beings with a controlled sim-
ulation system, with the aim of generating data streams for research purposes.
During the last decade there has been a notable diffusion of sensor systems.
These systems allow the collection and analysis of data in real time, gaining
the attention of researchers in the field of process mining [11,14]. As a result,
the application of sensor systems has spread to many fields with the aim of col-
lecting data, opening up the opportunity to derive new processes. One of the
most attractive and innovative application is the derivation of processes related
to human behavior [13], paving the way into the world of industry and health-
care [9]. In order to include human beings in process analysis, algorithms need
to consider all the specific characteristics derived from this new application. To
evaluate, extend, develop and test process mining algorithms, data is needed.
There are several ways to collect real-life data, but they are expensive and time
consuming. As well as there are scenarios that cannot be replicated (such as
accidents or borderline situations). In addition, a thorough understanding of the
underlying data as well as its underlying execution is required, and the most
appropriate way to do the work is by generating ad hoc data (i.e., where the
ground truth is known beforehand). The simulation and data generation instru-
ment proposed in this paper allows the configuration of a custom and controlled
c© The Author(s) 2022
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https://doi.org/10.1007/978-3-030-98581-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98581-3_5&domain=pdf
http://orcid.org/0000-0002-2487-1164
http://orcid.org/0000-0002-0837-0183
https://doi.org/10.1007/978-3-030-98581-3_5


Linac: A Smart Environment Simulator of Human Activities 61

simulation. Different agents populate a smart environment, and the process to
be carried out is defined by the user. The scenario is equipped with sensors. The
simulation consists of the behavior of the agents interacting with the system.

The rest of the paper is organized as follows: existing solutions, the problems
of testbeds, public datasets and simulators are presented in Sect. 2. In Sect. 3
we describe our proposed solution, and in Sect. 4 its implementation. In Sect. 5
an evaluation of the approach is presented, and Sect. 6 concludes the paper.

2 Existing Solutions

To evaluate process mining algorithms, data is needed [18]. In particular, when
the process comprises the analysis of human behavior, the construction of a
dataset becomes an extremely time-consuming and resource intensive task [20].
Three solutions can be considered: testbeds, public datasets and simulators.

The first option consists of constructing a physical testbed. Testbeds are
physical environments equipped with sensors, controllers and network compo-
nents, capable of capturing the state of the environment. Once the testbed has
been constructed, a participant performs a predefined list of activities. The acqui-
sition of such datasets is subject to limitations related to the cost and configura-
tion of the actual environment. The layout of the environment must be carefully
studied and verified, then all the necessary materials must be acquired, con-
figured and installed. After the construction, the real execution process could
start. This process is usually long-lasting, since participants need time to carry
out the activities. Large datasets acquired with these techniques are therefore
very complicated and expensive to obtain.

The second option to obtain data consists of using publicly available datasets.
The main issue is to find a dataset that describes exactly the scenario needed.
Additionally, the understanding of a dataset is limited to the documentation pro-
vided by authors. Since datasets are usually made up of thousands of events, it is
hard to have a detailed description of their content. Consequently, it takes a long
time to understand it. Orange4Home and CASAS are two datasets widely used in
the literature for the analysis of routines and daily activities. The Orange4Home
dataset [7] reports the activities of daily living in a smart apartment, for 4 weeks
of recording. The dataset contains recording from 236 data sources. The log is
not annotated, and the documentation is limited to the routine plan followed by
the occupant during the experiment. The CASAS project [6] provides 66 differ-
ent datasets, describing labeled and unlabeled activities performed in a smart
environment such as assisted care apartments or box offices. The data refers to
both single and multi-resident. The documentation provides the list of activi-
ties performed and the list of sensors. For the labeled datasets, authors do not
specify how the activities were recognized. In addition to what has been said
so far, datasets publicly available usually describe common scenarios, charac-
terized by the execution of regular activities. However, we may be interested
into processes related to extreme or anomalous cases both for a case study and
to include all possible scenarios. Based on the experiment under investigation,
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there might be the need to examine specific cases that are difficult or expen-
sive to replicate in reality or that may rise ethical concerns: an accident in an
industry or an elderly person falling to the ground. Additionally, to verify the
correctness of an algorithm we might want to evaluate it against as many cases
as possible. A ready-to-use dataset hardly includes borderline cases, limiting the
testing possibility.

The most effective way to obtain data is by using a simulator that replicates
each specific use case. In this way we could have a complete control over the
environment and the actions, a complete knowledge of the activities carried out
and the data produced, i.e., the ground truth. Synonott et al. [19] distinguish
between model-based and interactive approaches. Model-based approaches [3,
12,17] consist of the specification of the reference model that the simulation
should follow. The abstraction level in the definition of the activities describes
the accuracy of the modeled behavior. Renoux et al. [17] propose a model-based
approach in which inhabitants interact with a “sensorized” apartment. The user
does not script out the actions that need to be carried out but rather provides
an idea of how the simulated world works. The abstraction of the model does not
allow to represent subtle but significant differences in the behaviors execution.
To one hand they are suitable for long running simulations, on the other hand
they do not provide clock simulation. Interactive approaches [2,5] consist of a
virtual environment (2D or 3D scenario) where the user can operate: the agent
interacting with the environment is an “avatar” guided by the user who can
interact with each individual sensor. The simulation is precise and realistic,
since there is a real human behind the movements. However, the generation
of large amounts of data is very expensive as it requires a great effort by the
user: these approaches are suitable for testing single activities or short runs.
An example is the work of Buchmayr et al. [5] which presents a 2D floor map
equipped with sensors. The main objective of the tool is to generate and visualize
sensors behavior, in particular the simulation of faulty or unexpected cases. The
simulation is performed by the user interacting with the sensors via the mouse.

The majority of the simulators cannot be adapted to simulate several different
environments. For example, it is challenging to represent a smart factory scenario
with a 3D smart home simulator as it would become very complex in terms of
dimensions and objects to have integrated [2]. Or it would be impossible to be
able to replicate exact behaviors when the simulator only requires a general
behavioral model as input [17]. The tools provided to draw the environment are
often limited to the intended objective [3]; as well as they are not always oriented
to the generation of datasets. Furthermore, there is a lack of simulators capable
of reproducing, in a realistic way, the behavior of a human being [8] interacting
with an environment. For this reason, we have developed a simulator capable of
representing different environments and scenarios. The agent’s behavior is the
central focus of the tool. The behavior of the agent is as realistic as possible
by introducing different walking speeds and non-deterministic movements. The
process carried out by the agent is defined by the user, and it controls the
expected result of the simulation.
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3 Proposed Simulation Solution

To study processes related to human beings, process mining algorithms need to
be evaluated. The data used in the evaluation phase should faithfully represent
the reality and the human behavior. During the development of Linac, we have
identified several key features that a simulator must consider. The most relevant
is that human beings are flexible in their movements [8]: they do not perform
movements in a fixed way but introducing variability. Furthermore, we cannot
assume that human beings are all equal, i.e. elderly are slower in the movements,
while young people are faster. Another factor that gains the attention of our
analysis is the amount of data generated: sensors systems tend to produce large
amount of data. In the following sections we explain how these challenges have
been addressed.

3.1 Configuration of the Smart Environment

The simulation platform allows the configuration of a smart environment. The
application is not limited to represent specific domains since it offers a blank
canvas where to build up the floor plan, in form of a grid. The drawing tools are
walls, entities and sensors. Walls are used to physically constrain the environ-
ment, while entities are objects that are part of the environment (that are not
sensors). The agent can interact with these objects. An example of entity is a
chair: the agent can move around such an object, but if she is instructed to go to
it, then she can “stand” on top of it. Both sensors and entities have a physical
and an interact area. Fig. 1a shows an example of floor plan designed as two
rooms and two agents (agents represented with green tiles). The purple tiles are
non-walkable sensors, while the blue tiles are entities. The walkable sensors are
not shown on the map, but they can be inspected on the application. A pre-build
selection of sensors is included, but new sensors could easily be defined as Java
classes. Sensors can be active or passive. While active sensors are activated by
the direct interaction by the agent, passive sensors are continuously running to
detect changes in their statuses, producing an output at fixed time intervals.
How the agent interacts with the sensor is defined via a command in the agent
instructions. The trigger frequency of each sensor is configurable.

3.2 Configuration of the Agents’ Behavior – AIL Language

The simulation consists of human beings moving and interacting with the objects
of the smart environment. The simulation is carried out by one or more agents,
each of them representing a person. Sensors and entities are shared among the
agents. During the configuration it is possible to define a specific movement speed
(i.e. meters per second) for each agent. The definition of the speed allows the
simulation of the behavior of people with different ability levels. Furthermore,
each agent has a specific set of activities to perform. The list of instructions is
specified by the user during the configuration phase, using an application specific
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script language called Agent Instruction Language (AIL). AIL has been imple-
mented in order to facilitate the definition of a list of activities to be performed.
In fact, the definition of a long set of instructions is a time consuming and
complex task. In addition, human behavior is characterized by the repetition of
activities, always performed following the same set of actions. As a consequence,
the list of instructions is composed by redundant code, e.g., the procedure for
preparing a cup of tea will always be executed in the same way. To facilitate the
task, we introduced primitive instructions that and can be grouped into macros.
The AIL language comprises four primitive instructions which describe basic
behaviors:

– goto(x,y): instructs the agent to move to a specific position;
– goto(name), where name refers to an entity or an active sensor: instructs the

agent to move to a random tile in the interaction area of the entity/sensor;
– wait(seconds): instructs the agent to remain stationary for the specified

amount of seconds;
– interact(activeSensor, command): instructs the agent to move to a ran-

dom tile within the interact area of sensor activeSensor, and interact with
it as specified by the command. The command of interaction is reflected in
the data produced when the sensor triggers.

Macro instructions describe complex behaviors. These instructions include a
sequence of primitive and/or macro instructions. Macros are a powerful tool to
avoid errors, limit redundant code and establish groups of activities that form
richer behavior. These instructions are defined as follows:

– macro(m) {list of primitive instructions}: defines the macro;
– m(): executes the macro m.

Figure 1b shows an example of primitives and macro. For each agent, a list of
instructions is reported, and both agents share the macro called makeTea. Then
the macro is then used only by agent a1. The language is designed to be intu-
itive: an external application can be used to automatically generate instructions
starting from an ideal behavior.

3.3 Simulation Execution

The simulation models human behavior, which consists of movements and inter-
actions with the objects. The movements, in turns, comprise journeys between
the agent’s current position and the target position. To find the path the agent
must follow, we implemented a path-finding algorithm. To comply with the flex-
ibility and stochasticity of human behavior, we extended the A* path-finding
algorithm [10], constructing a sub-optimal and non-deterministic version of it.
Actually, we started from an optimal and deterministic implementation of A*:
since we defined the floor plan as a grid of tiles, it is easy to translate the grid
of tiles into a graph of nodes needed for the A* algorithm. The A* algorithm
uses a heuristic function to calculate a path between two nodes on a graph.
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Fig. 1. A floor plan and a possible list of instructions for two agents

The heuristic function can be either admissible or inadmissible: in the first case
it always calculates a distance that is shorter than or equal to the actual dis-
tance of reaching the goal node (optimal path); in the second case, it can calcu-
late a distance that is longer than the actual distance of reaching the goal node
(sub-optimal path). Furthermore, since neither the A* algorithm itself nor the
commonly used heuristic functions contains a random variable, the calculated
path is deterministic. However, a path-finding algorithm that is deterministic
and optimal is not a good model for human movement: (i) a human does not
take the same path every time between two points, (ii) a human does not take a
random walk between two points and (iii) humans do not always take a shortest
path between two points [4]. To tackle these problems, we defined an inadmissi-
ble heuristic function that includes a random variable. To obtain this heuristic
function H, we considered the Euclidean distance between the two points plus a
value R ∼ U(0, n ·L), randomly drawn from the uniform distribution between 0
and n ·L. In this case, L is the length of the sides of the tiles in the floor plan and
n is a parameter indicating the degree of sub-optimality (the higher the value
the less optimal the path). Adding the random variable to an otherwise admissi-
ble heuristic, overestimates the distance, thus making the heuristics inadmissible
and hence sub-optimal. Furthermore, since it contains a random variable, it will
be non-deterministic. We then experimented with increasing the threshold value
n as much as we could, while avoiding the agent making too many counterpro-
ductive movements. Here we defined counterproductive movements as a move
that leaves the agent at the same distance to the goal node or a longer distance
away from the goal node.

3.4 Clock Simulation

A fundamental aspect of Linac is the clock simulation. Being able to run the
simulation in real time is valuable when evaluating online algorithms and, on
the other hand, not practical when simulating multiple days, as this would take
multiple days in the real life as well. One way to lessen this impracticality is to
scale how fast time progresses in the simulation relative to the time progression
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Fig. 2. Screenshots of the Linac floor-plan page (left) and simulation (right)

in the reality. This can be achieved by defining how many real time seconds a
simulated second should take.

3.5 MQTT Output

The output produced by Linac is in the form of MQTT messages. The MQTT
protocol [15] is based on a publish/subscribe model that decouples the publisher
that sends the message from the subscribers that receive the message by the
use of a broker. This architecture involves one or more publishing clients that
publish messages under a topic. In our context each sensor would constitute a
publishing client. Using this system, we could also focus only on a specific sensor
by subscribing to a specific topic.

4 Implementation

Linac is implemented as a web application1. The application comprises a fron-
tend and backend. The latter2 is a server-side application implemented in Java.
The former3 is a web application implemented in TypeScript and Vue.js. The
web application communicates with the server using a restful interface. The
backend, in turns, exposes a set of APIs that can be triggered also from other
applications. For example, a script can be used to generate and execute mul-
tiple simulations by programmatically generating the corresponding AIL code.
The web application is organized in three main components: the floor plan, the
sensors/entities/agents pages and the simulation page. A screenshot of the main
page is shown in Fig. 2. The implementation allows the configuration and sim-
ulation of the environment. Once a simulation is running, it is possible to see
the movements of the agents on the map in real time. Further details on the
implementation are available on the report [16].

1 See http://linac.compute.dtu.dk.
2 Source code available at https://github.com/DTU-SPE/linac-backend.
3 Source code available at https://github.com/DTU-SPE/linac-frontend.

http://linac.compute.dtu.dk
https://github.com/DTU-SPE/linac-backend
https://github.com/DTU-SPE/linac-frontend
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(a) Floor plan of CASAS [1] (b) Floor plan in Linac (floor sensors
not visible)

Fig. 3. The two floor maps

5 Evaluation

To evaluate the behavior of the simulator, we decided to replicate an existing
dataset, derived from a real scenario, and compare the results. The dataset
chosen is one from CASAS. The dataset represents sensor events collected in
a smart apartment testbed. The apartment has two residents performing their
normal daily activities. The dataset provides both the raw and the annotated
events, but we used the annotated one to recognize activities. Our evaluation
comprises three phases: in the first phase we tried to replicate the floor plan,
after that we analyzed the annotated dataset to identify how each activity has
been performed, concluding with a running simulation. Being able to successfully
replicate the CASAS dataset would allow us to show the capabilities of Linac
in terms of realism of the data, thus allowing us to derive new datasets where
specific situations or behaviors appear.

5.1 Configuration

Floor Plan Design. The Linac tool allows the configuration of an environ-
ment by means of a grid of variable size. On the grid, wall entities and sensors
are distinguished by colors: black, blue, and purple respectively. The CASAS
environment is composed of a 6 rooms apartment, equipped with more than 50
sensors (motion, item, door, water, temperature, electricity sensors). The floor
plan was designed by transforming the sensors layout into the form of a grid.
Then, all the sensors have been configured, and for each of them the physical
area, the interaction area and the trigger frequency have been defined. Once the
two maps matched, we moved on to the next phase. Figure 3 shows the two floor
plans: Fig. 3a illustrates the original map provided by CASAS while Fig. 3b
refers to the grid layout designed using Linac.
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Table 1. Datasets structure and results comparison

Duration # of sensors # of events

CASAS Linac CASAS Linac CASAS Linac

Simulation1 ( Bed_to_Toilet) 2 min 2 min 12 13 47 51

Simulation2 ( Meal_Preparation) 19 min 19 min 14 14 360 440

Agent Instructions. The CASAS dataset is labeled, but no information regard-
ing how the activities were carried out is provided. For this reason, we choose to
focus only on two activities, rather than analyzing all the 13 proposed. The activi-
ties are Bed_to_Toilet, referred as Simulation1, and Meal_Preparation, named
Simulation2. Starting from the list of triggered sensors in the CASAS dataset, we
reconstructed the path followed by the agent. At this point, we drawn up a list of
instructions that the agent had to follow to carry out the specific activity. A key
feature of our simulator is the goto primitive statement which allows to instruct
the agent to reach a specific tile, entity or active sensor, without having to provide
coordinates for each step. In this way, it is easier to define the activity list. Once
completed the list of instruction, we moved on the simulation phase.

The Simulation. The simulation tool of Linac allows for defining the date, the
relative time and the configuration of MQTT. The choice of date and time let
you to place the simulation at a specific moment in time. The simulation could
be performed in real time speed or in a specific relative time, that is how many
real seconds a simulated one should take. For this evaluation task, we performed
the two simulations (Bed_to_Toilet and Meal_Preparation) on the same floor
plan. The first simulation refers to a movement between two rooms, that is the path
followed to go from the bed to the kitchen. The second refers to the activity of meal
preparation. We used the relative time to run the simulations, which took less than
1 minute to execute. The data for both simulations is available for download4.

5.2 Results

The four datasets (2 simulations × 2 datasets) are structured as reported in
Table 1. For each couple of simulations, the durations are the same. The total
amount of unique sensors activated differs in Simulation1 and this is caused
by the non-deterministic path-finding algorithm implemented in Linac. In other
words, the path that agents follow is characterized by a certain random variabil-
ity, which led to the activation of an additional sensor. A gap could be observed
in the number of events generated, especially in Simulation2. This discrepancy
does not imply differences in the behavior: the index that causes this spread is
the trigger frequency of each sensor. In Linac, each sensor has a fixed trigger
frequency (for this simulation, configured to 5 seconds). In the CASAS dataset,

4 See https://doi.org/10.5281/zenodo.5386318.

https://doi.org/10.5281/zenodo.5386318
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Fig. 4. Sensors triggered in Simulation1 in CASAS and Linac
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Fig. 5. Sensors triggered in Simulation2 in CASAS and Linac

on the other hand, this information is not provided. To better evaluate the dif-
ferences between the two simulations, we plot them on heat maps.

The first map, reported in Fig. 4 refers to Simulation1. The maps show the
number of times that each relevant sensor is triggered during the simulation
period (with a time grouping of 1 min). As we can notice from the color varia-
tions, the two maps seem to behave very similarly over the same sensors/time.
However, some discrepancies could be observed in the intensity color. Since the
simulation is spread over just two minutes, and the number of events generated
is small, we cannot consider the impact of sensors triggered only few times. In
fact, the agent did not spend long periods in those zones, but was only passing
through them, generating a single trigger for each sensor.

The second simulation lasts for 19 min, and this makes the heat maps in
Fig. 5 more accurate. In fact, the average amount of triggers for each sensor is
higher than the previous simulation. Therefore, as the simulation lasts longer,
the total number of events generated is much greater. Looking at the maps we
have to consider that the values on the x-axes are one minute units. Therefore,
there could be sensors activated a minute before or a minute after others (e.g.
15:11:58 and 15:12:01), which could be considered misalignment in the graphs
but, for simulation purposes, are absolutely tolerable. Both the maps in Fig. 5
intensify in colors in the time interval 15:15–15:23, suggesting that the main
behaviors occurred during that interval.
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To better evaluate the resulting simulations, we computed the Pearson’s coef-
ficient for the two scenarios. The Pearson’s coefficient is a measure of the strength
of a linear correlation between two variables. We computed the correlation for
each sensor, and then we calculated the average value for all sensors. Both Sim-
ulation1 and Simulation2 resulted in a coefficient of 0.93. These results depict a
strong correlation between the sensors activation during the simulations. There-
fore, we can state that, in both simulations, the behavior of the simulated sensors
(by Linac) and the behavior of the reference sensors (CASAS) agree and hence
we can conclude that Linac is capable of effectively mimicking a real dataset.

The objective of the simulations is to replicate the behavior of human beings
(in CASAS) as movements of agents (in Linac) through a simulation. The two
simulations conducted, and the resulting evaluation, highlighted that Linac is
able to replicate a real behavior such as that collected in the CASAS dataset.

6 Conclusions and Future Works

We presented a smart environment simulator for the generation of datasets, in
the form of streams. The simulator could be used to configure different envi-
ronments, thanks to its structure made up of walls, entities and sensors. The
behavior of the agents is composed of movements inside the environment and
of interactions with entities and sensors. The behavior is dictated by means
of a list of instructions that the agent must follow and that can be described
using the language AIL, that we created for this purpose. The simulation uses a
non-deterministic sub-optimal algorithm to replicate the stochasticity of human
behavior. The simulator, additionally, offers the functionality for setting the
speed of movement for each agent. A simulated clock is used to solve problems
related to the long running of the simulations. The clock is fully configurable,
and the emulation consists of running real simulations but in which time passes
much faster. The last aspect to be summarized is the output that uses the MQTT
protocol to stream the data, that is, sensors readings.

The behavior of the Linac simulator has been compared with a dataset
describing the behavior of an actual person inside a testbed environment. The
analysis gave very positive results suggesting that Linac is able to reproduce the
same movements.

All things considered, it can be said that the Linac simulator is suitable
for the generation of realistic datasets referring to the human behavior. The
data generated can be used to test and evaluate algorithms, thus resulting in a
valuable tool for researchers.

Aspects to improve comprise the definition of the library of sensors available
and the extension of the AIL language. For example, considering the wait state-
ment, used to instruct the agent to remain stationary for a certain period, there
are cases in which we want the agent should not remain exactly in the same
tile, but randomly move nearby. These aspects could contribute towards an ever
higher level of realism.
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Abstract. Process mining is a research domain that enables businesses
to analyse and improve their processes by extracting insights from event
logs. While determining the root causes of, for example, a negative case
outcome can provide valuable insights for business users, only limited
research has been conducted to uncover true causal relations within
the process mining field. Therefore, this paper proposes AITIA-PM, a
novel technique to measure cause-effect relations in event logs based on
causality theory. The AITIA-PM algorithm employs probabilistic tem-
poral logic to formally yet flexibly define hypotheses and then automat-
ically tests them for causal relations from data. We demonstrate this by
applying AITIA-PM on a real-life dataset. The case study shows that,
after a well-thought-out hypotheses definition and information extrac-
tion, the AITIA-PM algorithm can be applied on rich event logs, expand-
ing the possibilities of meaningful root cause analysis in a process mining
context.

Keywords: Process Mining · Root Cause Analysis · Probabilistic
Temporal Logic · Event Log

1 Introduction

Process mining is a research domain that enables businesses to analyse and
improve their processes by extracting insights from event logs [1]. The foundation
is the event log, which records the real execution of a business process. It can
then be used for, among other goals, process discovery [2] and conformance
checking [6]. However, merely discovering how a process is actually executed and
where it differs from the normative model might not be sufficient. Insights in,
for example, why an event was triggered or why a trace ended with an exception
can be of more interest to business users, and thus, accurate root cause analyses
(RCA) are desired.

Identifying root causes can be a complex task [17]. Each process involves
many different steps, and for each step many factors can be of influence. Add to
this that many traces in a business process can show unique behaviour, as well as
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influence each other by having to share resources. Previous research has proposed
techniques to conduct RCA in process mining, e.g. [7,10,11], however, there are
clear limitations. First, they often put forward a correlation analysis instead of a
true RCA. However, when a process characteristic is correlated with a particular
undesirable outcome, this does not imply that this characteristic caused the
phenomenon. In that sense, one must acknowledge confounding factors can exist,
which might cause spurious associations to arise [24]. Second, existing RCA
techniques that build upon causality theory impose heavy assumptions on the
underlying data. Think of only being able to handle linear causal relations, for
example.

Against this background, this paper proposes the AITIA-PM algorithm. This
algorithm is a new way of executing an RCA in process mining, inspired by the
work of Kleinberg [13,14]. Not only is AITIA-PM based on causality theory, this
technique does not impose assumptions on the required data, making it more
reliable in the real world. We propose the use of probabilistic temporal logic
(PTL) to formally define hypotheses about causal relations, which offers great
flexibility. Additionally, we explicitly take confounding factors into account. As
such, AITIA-PM is a new addition to the current state-of-the-art of meaningful
RCA in process mining. Our contributions are best summarised as follows:

– We propose a novel method in AITIA-PM, adding a new technique to the
mix for effective root cause analysis in the process mining domain which is
fully based on existing causality theory.

– The demonstration on a real-life event log shows the value of AITIA-PM,
mainly found in the flexibility of PTL when identifying specific causal rela-
tions and how statistical significance can be computed. It also shows the
importance of a theoretical foundation regarding the philosophy surrounding
causality, as results are easy to interpret.

The remainder of this paper is structured as follows. Section 2 describes the
related work in root cause analysis from a process mining standpoint, after which
Sect. 3 introduces the AITIA-PM algorithm which is employed in the demonstra-
tion as discussed in Sect. 4. Finally, we conclude our paper in Sect. 5.

2 Related Work

An RCA is not bound to a specific family of techniques. Examples are (i) clas-
sification techniques as seen in, for example, [3,8,10,22,23], and (ii) rule mining
algorithms like association rules [5] and subgroup discovery [19]. Unfortunately,
in most applications, there is too little attention given towards the differentiation
between correlation and causality.

Hompes et al. [11] proposed a graph-based approach resulting in a time series
analysis to detect cause-effect relations by testing for Granger causality [9], thus
explicitly considering causation instead of correlation between features. However,
it is not perfect either. Granger causality, as it is originally defined, cannot
account for instantaneous or nonlinear causal relations, and cannot deal with
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confounding effects either. Also, Granger causality makes strong assumptions on
the underlying data which are rarely met in the real world [15].

Finally, Qafari and van der Aalst have recently published research on struc-
tural equation models for RCA [17] which was later extended with counterfac-
tual reasoning [18]. One of the foundations here is that the structure of causal
relations can be provided by the domain expert if available and, as such, there
can be no discussion about causality or correlation. The counterfactual rea-
soning extension allows the authors to produce recommendations that indicate
how specific cases could have been handled differently to avoid problems in the
future [18]. However, the authors acknowledge that using a machine learning
technique imposes the risk of obtaining wrong or imprecise recommendations, or
even miss out on the correct ones, regardless of the model’s accuracy. Narendra
et al. [16] also show how to answer the what-if questions via structural causal
models and counterfactual reasoning, proving the effectiveness of the methods,
yet they acknowledge it lacks intuitiveness.

The causality measure and complementary algorithm introduced by Klein-
berg [13,14] pays great attention towards determining causality by building on
the philosophical foundations of causality theory [12,21]. To that end, the algo-
rithm is able to detect the genuine causal relations from data separate from
spurious ones. This is achieved by implementing probabilistic temporal logic
(PTL) for defining hypotheses, which are then tested based on probability theory
and statistical significance. Additionally, Kleinberg’s technique explicitly tackles
confounding variables.

3 The AITIA-PM Algorithm

As described in Sect. 2, Kleinberg’s work found its basis in causality theory. The
measure and complementary algorithm allow for extraction of causal relations
from data rather than a predefined model of how a system evolves in terms of
states it is in. AITIA-PM tailors the ideas of Kleinberg to the process mining
field. The following paragraphs describe the necessary background followed by a
step-by-step guide of the algorithm. For more information, we refer the reader
to Kleinberg [13].

3.1 Background

The Concept of Causality. In this paper, consistent with the work of Klein-
berg [13], the following properties must hold to establish a causal relationship
between a cause and an effect: (i) the cause must precede the effect in time [12]
and (ii) a cause must raise the probability of the effect [21]. Property (ii) is also
known as the prima facie condition. Several pitfalls must be taken into account,
however.

First of all, there might be causality without raising the probability of the
effect or vice versa. For example, yellow stained fingers and lung cancer can be
the result of a common earlier cause: smoking. Without considering smoking, one
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would observe that having yellow stained fingers would increase the probability
of lung cancer. However, when holding the common cause fixed, that relationship
between the effects would disappear. Controlling for common causes is known
as screening off, or dealing with confounding factors [24].

Second, event logs carry a case notion. However, process instances can influ-
ence each other. Think of resources being shared or scarce materials suddenly
becoming unavailable because the last item was just consumed, thus impacting
how a different case can continue. Therefore, we add another property to AITIA-
PM one must meet, namely that (iii) each case is defined by the events which
can possibly be a cause of the effect within that specific case.

Clearly, unlike the heavy assumptions made in Granger causality which are,
among others, that there is no confounding variable present, causal relations
are linear and time series are stationary [15], our understanding of causality
imposes less restrictions on the input data. The first two properties, as will be
made clear in the following subsections, are also easy to infer from an event log
automatically, making inference practically feasible as well.

Probabilistic Temporal Logic. PTL allows reasoning on the likelihood of an
event within a certain time interval. For example: how likely is it that a train
arrives at the station within 2 to 10 min. As such, properties should not hold
eventually, as they are bound in time so it can be quantified how likely it will
happen. By allowing to freely define the cause, effect, type of relation between
cause and effect, and the time window, PTL is highly flexible in execution.

AITIA-PM uses PTL as language to define the hypotheses the business user
desires to test for cause-effect relations. Each hypothesis comprises a logical
formula describing both the time bounds as well as the likelihood of a potential
cause c triggering an effect e: c �≥r,≤s

≥p e. This is also called a leads-to formula
where r, s represent the time bounds and p the minimum probability for the cause
triggering the effect in the time window in order for the formula to evaluate to
true. c and e here are state formulas: properties which hold for the system at
a certain point in time. Such a property can be an activity that was executed.
For example, with ¬H and F being not doing homework and failing a test
respectively, ¬H �≥1,≤3

≥0.40 F would describe that when a student neglects the
necessary homework, the probability of the student failing a test between 1 and
3 time units would be at least 40%. From the practical viewpoint of AITIA-PM,
the probabilities are calculated from data and do not need to be passed by the
user.

The state formulas for the cause and effect are not limited to contain one
element each. PTL allows for each state formula to be a path formula too. A
path formula can express properties along a path (or trace) in the dataset. For
example, a path formula can be that an activity B must follow activity A in a
trace within 5 time units, like so:

[AF≤5
≥p1

B] �≥r,≤s
≥p2

e (1)
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where F represents the path operator Finally, indicating that at some state of
the path the property will hold, and p1 being the probability that B should follow
A within 5 time units. The evaluation of such a path formula in itself is also a
state formula which is true at a certain moment in time for the trace. Having
defined such state and path formulas, one knows which information to extract
from the event log to employ as system states. These system states, along with
their case notions and timestamps, then serve as input for the algorithm.

AITIA-PM uses only a subset of PTL by, for example, neglecting the notion
of time windows. We do so because long-term dependencies in business processes
need to be acknowledged. The interested reader is referred to [13] for more details
about PTL.

3.2 Algorithmic Procedure

AITIA-PM guides the user in detecting meaningful root causes supported by
causal theory. It consists of the following five steps: (i) input data preparation, (ii)
generating causal hypotheses, (iii) testing for prima facie causes, (iv) calculation
of epsilon values, and (v) testing for causal significance.

Step 1 – Input Data Preparation. The AITIA-PM algorithm focuses on
system states and how they change over time for each case in the event log. As
such, these are the three required attributes in the input data structure. The
definition of the system states depends on the potential causes and effects the
business user is interested in, and thus, has defined in PTL hypotheses. For
example, let’s assume that we know that when resource x (Rx) is involved in
a case, the case will result in an error (E). In other words, you define your
hypothesis as

Rx � E. (2)

Remember that the probability of this leads-to formula actually occurring is
inferred from data in a later stage. Given this hypothesis, the data analyst knows
which system states to extract from or enrich the event log with: the resources
involved with the case at each time unit, and whether or not the error E was
registered. As such, the input data consists of these three columns: the case ID,
the system state, and the timestamp.

One can also opt to convert all timestamps in the data set to a specific time
unit, where the first observation in the event log would start at time unit 0. This
would easily allow the reintroduction of time windows in PTL leads-to formulas.

Step 2 – Generating Hypotheses. Having defined the system states, one
can now generate the different hypotheses: which causes might have a significant
impact on the likelihood of the effect triggering? AITIA-PM takes a list of plau-
sible causes and effects to combine them into the complete set of hypotheses:
does cause c trigger effect e within the time bounds [r, s]? All combinations are
considered a hypothesis except where c = e.
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In this step, it is important to consider adding all system states as a possible
cause for the effect of interest. This way, you also check for the other states as
potential confounding factors, even though you might not expect them to have
a causal relationship with the effect. In the example of Rx triggering an error E,
a hypothesis will be generated for every resource Rr with r ∈ R to trigger the
effect E.

Step 3 – Testing for Prima Facie Causes. The hypotheses generated before
contain all combinations of cause-effect we are interested in. However, they prob-
ably also describe causal relations which might not meet the prima facie condi-
tion. In order for a cause to be a prima facie cause of an effect, it must satisfy
the following three conditions:

1. the cause must have occurred before the effect,
2. the cause must increase the probability of the effect occurring, and
3. the cause and effect when checking the above requirements must belong to

the same case in the event log.

With the timestamps and case IDs provided along with the system states, it
is relatively straightforward to determine whether or not a cause is a prima facie
cause for an effect from the event log. Only the hypotheses fulfilling the above
requirements are considered to be genuine potential causes for the effect.

In order to accomplish this prima facie test, the following pieces of informa-
tion are required: (i) when and for which case was the cause observed, (ii) when
and for which case was the effect observed, and (iii) how often did the effect
occur after the cause given they both belong to the same case. The prima facie
condition is then probabilistically checked from the data as follows:

P (e|c) > P (e) (3)

where

P (e) =
#e

#events
(4)

and

P (e|c) =
#(e ∧ c)

#c
. (5)

It is important to remember that #(e ∧ c) takes the timing of events and case
ID into account. This computation therefore checks if there exists a c before e
within the same case, and if not, the hypothesis is automatically classified as
false. For example, resource Ry is only involved after the case already produced
error E. As such, P (E|Ry) = 0, meaning that Ry cannot be a prima facie cause
of E.
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Step 4 – Calculation of Epsilon Values. Having determined all prima facie
causes of the effect of interest, we now want to separate the genuine causes from
the spurious ones. To that end, we use epsilon values as a measure of causality
that can be statistically tested. The measure εavg, introduced by Kleinberg [13],
describes the average change of probability of effect e given the presence of cause
c while keeping another factor x constant. This factor x is also a prima facie cause
of e which is deemed to be present. As such, for each other factor x, an εx is
calculated after which the average describes the impact of c on e.

Formally, the measure is then expressed as follows:

εavg(c, e) =

∑
x∈X\c εx(c, e)

|X\c| (6)

where X represents the set of prima facie factors of e and

εx(c, e) = P (e|c ∧ x) − P (e|¬c ∧ x). (7)

Determining these probabilities correctly requires that the case notion is identical
for pairs of e, c and x. While keeping x constant, the probability change of e
is of interest when the cause c is present or not. Property (iii) of causality in
AITIA-PM dictates that all information regarding causal relationships within a
case is available in that same case. As such, the case ID must be identical for c
and x when counting the occurrences of (c ∧ x) and (¬c ∧ x).

The probabilities are defined as follows:

P (e|c ∧ x) =
#(e ∧ c ∧ x)

#(c ∧ x)
(8)

and

P (e|¬c ∧ x) =
#(e ∧ ¬c ∧ x)

#(¬c ∧ x)
(9)

where e must occur at a later time than (c ∧ x) or (¬c ∧ x). As soon as this
information is available, it is a simple matter of counting how often an effect
does or does not take place in the related time windows. For each hypothesis
that passed the prima facie test, an εavg is obtained. These average epsilons are
the foundation of the statistical test performed next.

Step 5 – Determining Causal Significance. Up until this point, the epsilon
values are computed, which express the average probability changes of the effect
e occurring given the presence or absence of a prima facie cause c. A statistical
test can then separate the genuine causes from the spurious ones. To that end,
the AITIA-PM algorithm uses the concept of false discovery rates (FDR) as
implemented by the R-package fdrtool [20]. Saving the technical details, the
procedure is as follows:

1. start by calculating z-values: z = (εavg − μ)/σ where μ and σ represent the
average and the standard deviation of the set of εavg, respectively;
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2. Next, fit a mixture model to the observed data, the z-values;
3. Determine the FDR of z.

The causal relations where the FDR is below a certain threshold are deemed
significant causes. This threshold is chosen freely by the business user depending
on how acceptable a false discovery is. For example, with a threshold of 0.01,
one would expect 1% of causes to be significant.

4 Demonstration

In this section, we demonstrate how AITIA-PM learns causes for process delay
by applying it on a real-life dataset, namely the “receipt phase of an environ-
mental permit application process (WABO) CoSeLoG project” event log [4]1.
This event log contains the receiving phase execution records of the building
permit application process in an undisclosed Dutch municipality. It consists of
1.434 traces and 8.577 events spread over 27 activity classes.

Similar to Qafari and van der Aalst [17], we consider as effect the delay
observed in some cases. This delay threshold is set to 3% of the maximum dura-
tion of all traces. As the maximum duration is 275.8813 days, the threshold is
equal to 8.2764 days, or 198.6345 h. As the average duration of a trace is about
2% of the maximum duration, the threshold of 3% seems appropriate. We add
a new event “Case Delayed” to each case that exceeds the threshold duration at
the moment the case reaches a duration of 198.6345 h. This ensures that events
occurring after that moment in time can no longer be considered a cause for
the delay in that case. As Qafari and van der Aalst [17], we investigate if the
combination of a specific activity Ai performed by a specific resource Rj causes
process delay.

Remember the five steps of AITIA-PM: (1) data preparation, (2) generating
causal hypotheses, (3) testing for prima facie causes, (4) calculation of epsilon
values, and (5) testing for causal significance. Steps 1 and 2 both relate to the
PTL hypothesis definition. In our example, an initial set of 397 hypotheses is
constructed as there are 397 distinct activity-resource pairs in the event log. Each
hypothesis for a specific activity Ai and a specific resource Rj can be described
with PTL as follows:

Ai ∧ Rj � delay (10)

Consequently, the system states to extract from the event log are all the activities
per case with the associated resource that executed them. The first ten rows of
the input dataset are shown in Table 1, along with the first observation of process
delay.

All initial 397 hypotheses were tested for the prima facie condition (step
3), and 159 of these passed the test, meaning they occurred before the delay

1 The source code and data to reproduce the results of the demonstration are available
at https://github.com/gregvanhoudt/AITIA-PM.

https://github.com/gregvanhoudt/AITIA-PM
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Table 1. Input data for AITIA-PM.

Case ID System State Time Unit

case-891 Confirmation of receipt - Resource26 0.0000000

case-891 T02 Check confirmation of receipt - Resource26 0.0131450

case-891 T03 Adjust confirmation of receipt - Resource26 0.1759917

case-891 T02 Check confirmation of receipt - Resource26 0.1835817

case-891 T03 Adjust confirmation of receipt - Resource26 0.1894819

case-3756 Confirmation of receipt - Resource02 71.2025831

case-3756 T06 Determine necessity of stop advice - Resource02 71.3695931

case-3756 T02 Check confirmation of receipt - Resource24 72.1805186

case-3756 T07-1 Draft intern advice aspect 1 - Resource24 72.1995269

case-3756 T06 Determine necessity of stop advice - Resource02 72.3097125

... ... ...

case-891 Case Delayed 198.6345127

... ... ...

was observed and they increase the probability of the case being delayed. After
computation of the test statistics and setting the FDR threshold to 5%, we
obtain output as shown in Table 2.

Table 2. AITIA-PM output.

cause epsilon z fdr

T02 Check confirmation of receipt - Resource24 0.1871651 7.444724 0.0000000

T04 Determine confirmation of receipt - Resource10 0.1202274 4.364844 0.0258531

T05 Print and send confirmation of receipt - admin1 0.0736255 2.220631 0.0258531

In summary, AITIA-PM detects that, with the FDR threshold set to 0.05,
three of the 159 hypotheses are genuine. It appears that the probability of the
case being delayed significantly increases when specifically (i) “T02 Check confir-
mation of receipt” is executed by Resource24, (ii)“T04 Determine confirmation
of receipt” is executed by Resource10, or (iii) “T05 Print and send confirmation
of receipt -” is executed by Admin1. We can be most sure of (i), as that FDR
value is equal to zero and its epsilon value is also the highest.

This epsilon is also easy to interpret. In the case of our first result, this
interpretation is as follows: the average increase in probability of the effect, the
case delay, occurring when the activity “T02 Check confirmation of receipt”
is executed by Resource24 while controlling for alternative causal explanations
equals 18.71651 pp..
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5 Conclusion

This paper introduced a novel root cause analysis method in process mining
named AITIA-PM. It complements the state-of-the-art with respect to RCA
techniques as it follows causality theory. Unlike already established techniques,
AITIA-PM imposes realistic assumptions regarding the required data. This
makes it a very adaptable technique to the desires of a business user. Addi-
tionally, by taking a probabilistic approach and averaging out the probability
changes, the technique can easily tackle confounding factors which could cause
spurious associations. This makes it a strong novel option for RCA.

The demonstration shows that AITIA-PM can flexibly tap into the vast
amount of information an event log possesses. PTL allows very diverse hypothe-
ses to be tested which makes AITIA-PM both powerful but also expressive. Due
to PTL it is easy to define both simple as well as more complex hypotheses with
respect to cause-effect relations in a formal manner. Finally, we have shown the
strength of AITIA-PM with respect to interpretability of results.

Several future research challenges are identified in this article. First, a domain
expert is required to provide the necessary states the process can semantically
be in. Automatic hypothesis generation could bring insights the domain expert
might not even consider. Second, state formulas in their current form are binary
as they evaluate to true or false. Future work could bring an extension which
supports continuous variables.
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Abstract. Process mining facilitates analysis of business processes
using event logs derived from historical records of process executions
stored in organisations’ information systems. Most existing process min-
ing techniques only consider data directly related to process execution
(endogenous data). Data not directly representable as attributes of either
events or traces (which includes exogenous data), are generally not con-
sidered. Exogenous data may be used by process participants in making
decisions about execution paths. However, as exogenous data is not rep-
resented in event logs, its impact on such decision making is opaque and
cannot currently be assessed by existing process mining techniques. This
paper shows how exogenous data can be used in process mining, in partic-
ular discovery and enhancement techniques, to understand its influence
on process decisions. In particular, we focus on time series which rep-
resent periodic observations of e.g. weather measurements, city health
alerts or patient vital signs. We show that exogenous time series can
be aligned and transformed into new attributes to annotate events in
an event log. Then, we use these attributes to discover preconditions in
a Petri net with exogenous data (xDPN), thus revealing the exogenous
data’s influence on the process. Using our framework and a real-life data
set from the medical domain, we evaluate the influence of exogenous data
on decision points that are non-deterministic in an xDPN.

Keywords: Process mining · Decision mining · Petri nets with data ·
Context awareness · Time series data

1 Introduction

Process mining is a field that uses historical event data extracted from an organ-
isation about a business function (process) to better understand its behaviour
and performance [1]. Process mining techniques rely on a single ‘source of truth’,
an event log containing process instances (traces), and a sequence of events (the
“what” happened and “when” it happened) for each process instance.

Process discovery techniques [13,25] exploit event sequences presented in an
event log to recreate the structure of a business process. Conformance tech-
niques [3,4] use a process model and an event log to create aligned event
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sequences that follow the possibilities described in the process model. Enhance-
ment techniques [1,20] enrich a process model with additional influences such as
the performance or the resource utilisation of events.

In our work, we use the following definitions to distinguish between data that
can, and can not be represented in event logs effectively. We define endogenous
data as data internal to a process, meaning they have a direct link to a specific
process’s progress towards its goal. For example, endogenous data could include:
the time that an event occurred, the resource which performed the activity, any
information needed to perform the activity or the cost of completing the activity.

In contrast, we define exogenous data as data external to a process, mean-
ing that they are not tied to a specific process, but record contextual data. For
example, exogenous data could be the temperature and humidity readings inside
a food delivery truck, or periodic readings from a sensor monitoring a patient’s
heart rate, or the noise levels in an employee’s work space. The purpose in record-
ing exogenous data is to describe the context as clearly as possible over time,
meaning that records are taken as frequently as possible (i.e., time series) rather
than more selective point-in-time recordings usually associated with endogenous
data. While data-aware or context-aware techniques exist, such as techniques
presented in [20,24] or [25], we have not found any studies which use exogenous
data in conjunction with these techniques.

In this paper, we study the potential of exogenous data to improve our under-
standing of complex decision points in processes. In particular, we focus on a
particular type of exogenous data, i.e., numerical time series. We proposed a
novel process mining framework, xPM, that translates exogenous time series
data and links them to relevant events in an event log for automated process
discovery and enhancement. A data-aware process discovery technique can then
be used to discover a process model in which the decision points are annotated
with preconditions using exogenous data. Finally, an enhancement step which
visualises related exogenous data for transitions on a process model is envisioned.
We instantiated xPM and evaluated the influence of exogenous data on the qual-
ity of the discovered process model using a real-life data set from the medical
domain.

The remainder of the paper is organised as follows: Sect. 2 outlines related
work. Section 3 defines the preliminaries. Section 4 presents xPM. Section 5 dis-
cusses the evaluation, and Sect. 6 concludes the paper.

2 Related Work

Categorisation of data sources used to describe businesses has been discussed
in several studies. The ‘onion skin’ model in [22] conceptualises the relationship
between data and process as the viewpoint is moved further away from a process.
This conceptualisation is then applied to process mining in [2], where data is
categorised according to the likelihood of cause and effect between variables
with the process. However, these frameworks are not seen as essential to process
mining in recent reviews of the field, and the contextual component remains an
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optional consideration during event data extraction [7,9,21]. Our contribution
is that we support separate entities for endogenous and exogenous data sources
such that they can studied separately or in combination.

The benefits of including a variety of data categories are discussed in [16]
which (i) motivates the use of data attributes for distinguishing between noise
and conditional behaviour, (ii) considers if data attributes influence decision
points by creating an internal state as the process executes through boolean
expressions and decision trees, and (iii) studied how alignments [3] can be
extended such that they balance both the control flow perspective and the data
perspective. The techniques described in [16] were implemented using Petri Nets
with Data (DPN) modelling language (see [6,10,16] for a complete definition).

Our study extends the concepts presented in [16] and shows how exogenous
data can be incorporated (instead of being limited to only the endogenous per-
spective of an event log). In particular, we focus on extending guard conditions
in DPNs to include external factors not represented in the endogenous event log.

Methodologies that encourage contextual data collection and log enrichment
are few in number. However, some recent studies have focused on the enrichment
of an event log with new types of data. In [23], the authors present a framework
for intra- and inter-trace predictive monitoring and introduce the notion of bi-
dimensional coding to deal with intra- and inter-trace dependencies. In [8], the
authors suggest that not all events within an event log are about the control flow,
and are instead, about the data flow of a process. They use the concept of context
events to deal with the two types of events and show how distinguishing between
the two can lead to less complex discovered models. However, this approach
would incorporate exogenous context into the control flow perspective instead
of clarifying whether the context influences process execution.

The benefits of having additional data attributes that can be seen in the
recent evolution of techniques using such data, such as [14,25]. In [14], the
authors present a discovery algorithm that uses data attributes to create a
hierarchical model to improve the simplicity of outcomes. Another approach
in [25], was to create a constraint operator for process trees notation, whereby
data semantics can be expressed. While these techniques can create control flow
sequences based on data attributes, no extensions have been proposed to use
exogenous sources outside what can be found in the events within an event log.

3 Preliminaries

This section introduces event logs, Petri nets, xDPNs and exogenous data sets.

Event Logs. The execution of each process step can be recorded as an event.
An end-to-end execution of a process is called a trace. A trace is a sequence of
events 〈e1, . . . en〉. An event log is a collection of such traces. Both traces and
events can have attributes to store data.

Exogenous Data Sets. A time series is a sequence of timestamped
values 〈m@t1

1 . . . m@ti
i 〉 for measures mi and timestamps ti. For example,
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〈22 ◦C01-01-2021
1 , 15 ◦C02-01-2021

2 , 10 ◦C03-01-2021
3 〉. A time series can have attributes

and uses the notation of a trace to describe the ith measurement of a time series.
A collection of time series describing the same exogenous context is an exogenous
data set. For example, a collection of time series for wind speed, where each series
is recording wind speeds for a local government area is an exogenous data set.

Labelled Petri Nets. A Petri net is a triple N = (P, T, F ), where P is a
finite set of places, T is a finite set of transitions such that P ∩ T = ∅ and
F ⊂ (P × T ) ∪ (T × P ) is a set of directed arcs, called a flow relation [1]. A
labelled Petri net is a quintuple, (P, T, F,Σ, λ), where (P, T, F ) is a Petri net, Σ
is a set of observed activity names and λ is a event labelling function T → Σ [1].
Places may hold tokens, which are produced and consumed when transitions
fire according to the flow relation. A transition is enabled if each input place
contains a token. The state of a Petri net is a marking, which records what places
have tokens and how many. An enabled transition l can fire, which updates the
marking according to the flow relation F and, if l is labelled by λ, denotes the
execution of activity λ(l). An initial marking denotes the initial state of a Petri
net before the first transition is fired.

Petri Nets with Exogenous Data (xDPN). A precondition is a boolean
expression describing a subset of values for attributes (e.g. temperature is
higher than 20 °C). A Petri Net with Exogenous Data (xDPN) is a sextuple
(P, T, F,Σ, λ, Φ), where (P, T, F,Σ, λ) is a labelled Petri net and Φ : T → φ
associates a transition with a precondition. A transition is data enabled if the
precondition attached to a transition is satisfied by the current assignment of
attributes or if there is no attached precondition. In an xDPN, a transition can
fire if it is enabled and data enabled. The state of an xDPN is described by
a marking, and an endogenous and exogenous data state. An xDPN is a sub-
formalism of DPN (a complete formalisation of DPN can be found in [6,10,16]):
in contrast to xDPN, DPN consider distinctions between attributes states (e.g.
read or written). Furthermore, xDPNs do not enforce that transitions in the
model update variable assignments, allowing exogenous data attributes to be
updated during execution.

4 A Framework for Process Mining with Exogenous Data

In this section we introduce xPM, which considers how exogenous data can be
used by process mining techniques. Figure 1 shows an overview of xPM. xPM
takes as input an event log and a collection of exogenous data sets (X ). xPM uses
a number of quadruples (x,L,S, T ), where x ∈ X is an exogenous data set; L is a
linking function, which links traces to exogenous time series that are relevant for
that trace; S is a slicing function, which, for each event, returns sub-time series
relevant for that event; and T is a transformation function, which summarises
each sub-time series into a set of transformed attributes. For each such quadruple,
xPM annotates each event (that has non-empty sub-time series) with their exoge-
nous sub-time series and transformed attributes, creating a exogenous-annotated
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link L
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transform T

quadruples

link L

slice S

transform T

discover D

enhance E

log
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. . .
Xn

traceback
xDPN

xDPN

xlog

Fig. 1. The xPM framework. Fig. 2. Visualisation of exogenous data sliced
by S to create sub-time series si. Each ei is
annotated with si−1.

log (xlog). Next, a discovery function D discovers an xDPN. Finally, an enhance-
ment step E aligns a log and a xDPN. Then for each aligned event, we trace back
from the exogenous transformed attribute to sub-time series. Finally, E visualise
the subset of exogenous data set relevant for each transition (traceback xDPN).

4.1 Linking

The first step of xPM is to find a subset of an exogenous data set related to
each trace using a linking function L. This linking function can consider many
different aspects of a trace when creating this subset, and it may also consider if
a trace has or has not been linked to other exogenous data sets. For example, an
event log could be capturing how an insurance company handles claims. Then,
an exogenous data set could capture time series of weather predictions for local
government areas. An L would link the time series in this data set to claims. To
create a subset of time series, L might compare the location of a claim and the
location of weather predictions. However, a more complex L could find adjacent
government areas and interpolate between weather predictions to predict if an
extreme weather event will likely occur.

In case an L links two or more time series to a particular trace, this L must
merge these time series into a single time series. Simply combining all time
series onto a single timeline is insufficient as multiple values could be recorded
at a timestamp. Handling this case is not trivial and will require a thorough
understanding of exogenous data or domain knowledge. As such, in this paper
we limit the scope of exogenous data to time series of numerical data and limit L
to link only one time series to each trace. We acknowledge that this a simplified
view of exogenous data and does not account for all types of exogenous data
possible; an extension of xPM could consider how an additional internal step
could compress larger subsets into a single time series.
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4.2 Slicing

The second step of xPM is to annotate events with relevant exogenous data. That
is, events will be annotated with the sub-time series using a slicing function S.
Figure 2 illustrates an example of a simple slicing function: each event ei of a
trace 〈e1, . . . en〉 is annotated with the sub-time series between the previous event
ei−1 and ei.

More elaborate slicing functions could use a process model to ignore con-
current events when determining the previous event, or to only annotate events
relevant to decision points in the model. Other possibilities include taking a fixed
time window, for instance, for an event, taking the past two days of rainfall mea-
surements to watch for flash flooding. Another possible slicing algorithm could
use knowledge of activity instances (i.e. start and completion events) in order to
create sub-time series observed during a execution of an activity.

These examples are not exhaustive; however, we highlight the potential of
creating an extensive array of slicing algorithms to suit the needs of an analyst.
Domain knowledge then informs the choice of slicing functions; assisting this
choice is an interesting area of further research.

4.3 Transformation

Next, a transformation function, T , transforms a sub-time series for an event
into attributes and annotates the event with these attributes. Each new attribute
created in this way for a event is referred to as a transformed attribute. The T
function needs to provide a name for each attribute it creates (which can be
trivially met by adding a suffix to the exogenous data set’s name). Furthermore,
transformations should reference sub-time series by an identifier so that outcomes
that use transformations can be traced back to the original sub-time series for
further analysis.

We identified three forms that a T can take: (i) T can return a single value to
annotate an event; such a transformation might return the minimum, maximum
or mean of a sub-time series; (ii) T can return a set of attributes to annotate
an event; such a transformation might be the nth Taylor polynomial of the
sub-time series, with each of the necessary coefficients; (iii) T can be recursive,
which applies several recursions in order to meet either case (i) or (ii). Such a
transformation finds the nth derivative of the sub-time series (where the sub-time
series is a continuous function) then applies any previously mentioned functions.

4.4 Discovery

The output of several quadruples (x,L,S, T ) is an event log, with some events
annotated with (i) sub-time series and (ii) transformed attributes. We refer to
such an event log as an exogenous-annotated log (xlog). To this xlog, a dis-
covery function D is applied. This study only considers D functions that use
data-aware discovery techniques to obtain a process model with preconditions
for transitions using the transformed attributes. Examples of such techniques
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are [17] and [19]. Preconditions found by these techniques do not create boolean
expressions between written or read and as such can be translated into an
xDPN. Furthermore, when discovering preconditions using these techniques, the
attributes that have been set by preceding events inform the discovery. As data
leading up to the event is not considered, future decision mining techniques
capable could handle differences in exogenous and endogenous attributes.

4.5 Enhancing

As the final step of xPM an enhancement step E visualises the sub-time series
from an xlog using the outcome of D to highlight points of interest. To create
a connection between the events in an exogenous-annotated log and a discov-
ered xDPN, we need to use process conformance techniques to find alignments.
While data-aware alignments exist (e.g. [4,16]), [4] only considers the writing of
attributes by transitions (and not whether preconditions hold) and [4,16] correct
the data written by transitions using Integer Linear Programming. In contrast,
in our context, exogenous data should not be adjusted in conformance techniques
as it occurs outside the internal process execution. Therefore, to verify whether
preconditions are met, our approach first computes alignments [3], after which
we verify preconditions separately.

Given that the alignments proposed in [3] do not consider the data per-
spective, we present following example of E which uses alignments. First, an
alignment between all traces and an xDPN is computed. Then for each aligned
transition in the xDPN, we collect the most recent sub-time series in preceding
events and plot all series from the same exogenous data set on a graph. Then
we consider the type of alignment move that occurred in the alignment for that
transition. If we see a synchronous move and this transition has a precondition,
we check the following. (1) If the precondition was satisfied then sub-time series
related to the aligned event of this move is plotted in green. (2) If the precon-
dition was not satisfied then sub-time series related to the aligned event of this
move is plotted in red. (3) Otherwise – e.g. a non-synchronous move – we plot the
related sub-time series in black. Figure 3 is an example of such a visualisation,
which has been implemented in a ProM plugin, Exogenous Data.

5 Evaluation

In this section, we instantiate xPM presented in Sect. 4. Then we evaluate, using
two event logs from a real-life data set in the medical domain and existing
DPN discovery techniques, the influence of exogenous data on the quality of the
discovered xDPNs.

5.1 Procedure

We used the event logs either (i) as an event log with endogenous data
attributes (endo), (ii) as an event log with exogenous attributes where endoge-
nous attributes have been removed (exo), and (iii) as an event log with both
endogenous and exogenous attributes (endo+exo).
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(a) A transition with a disjunctive precondition of R1 and R2.

(b) An exogenous data set’s (RR2) sub-time series for Figure 3a.

Fig. 3. An example of E for a transition, showing exogenous sliced time series.

Our instantiation of xPM is as follows:

L For each exogenous data set, a linking function was defined that linked data
sets to the patient of the trace and that occurred during the admission.

S We included two slicing functions. Let 〈e1 . . . en〉 be a trace. Then, for event
ei the first slicing function (S1) finds sub-time series between events ei−1 and
ei, while the second slicing function (S2) finds the sub-time series between e1
and ei.

T We included four transformation functions: minimum, average, maximum and
the cumulative sum of a Fourier transform1 [11].

D To discover a control-flow model, we applied the Inductive Miner - infre-
quent [13] with path filtering of 0.25. To discover an xDPN, we applied
two Data Petri Net discovery techniques: Mutually Exclusive Decision Tree
(dt) [5] and Overlapping Rules Decision Tree (or) [19].
These techniques each take a parameter min instances (mi) that sets the
minimum level of observed decision point instances that support a clause in
a precondition. We repeated the experiment for mi ∈ {0.05, 0.15, 0.25}.

E was not part of this experiment.

Thus, in total, 18 xDPNs were discovered for each of the two logs. A visual
breakdown of our instantiation can be seen in Fig. 4.

5.2 Quality Measures

We assessed the quality of the discovered xDPNs using fitness, precision and
determinism. For fitness, we used balanced multi-perspective conformance check-
ing [18]. For precision, we used the multi-perspective precision [16].

1 https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.stft.html#scipy.
signal.stft.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.stft.html#scipy.signal.stft
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.stft.html#scipy.signal.stft
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Fig. 4. Visual breakdown of quadruples applied in xPM.

For determinism, we propose the following measure, which expresses the deci-
sion points in the model that are deterministic. That is, a fraction of places in the
model with more than two outgoing arcs (decision points) that have at least one
outgoing arc to a transition that has no precondition. Formally, let N = (P, T, F )
be a Petri net.

decision points or dp(P ) = {p | p ∈ P ∧ p• ≥ 2} (1)

weight or w(p) =
|{t | t ∈ p• ∧ Φ(t) �=⊥}|

|p•| (2)

Determinism or D(P) =

{∑
{p∈dp(P )} w(p)

|dp(P )| if |dp(P )| > 0

1 otherwise
(3)

A D value of 1 implies that all transitions that are involved in choices in the
model have preconditions, while a value of 0 indicates that no transition that is
involved in a choice has a precondition.

5.3 Event Logs and Exogenous Data

The data for our experiments is derived from the MIMIC-III data set [12].
MIMIC-III records patient demographics, admissions, ward stays, clinical obser-
vations, labs, imaging, prescriptions, caregiver notes, etc., for over forty thousand
patients who stayed in critical care units between 2001 to 2012.

We created two event logs: a log of patient movements (movements log) and a
log of procedures for respiratory failures (procedures log). The extraction scripts
for these two event logs can be found in this repository2. The movements log
captures the movements of patients between ICU wards within a single hospi-
tal admission, and contains 24 271 traces, 290 462 events, 65 activities and 6
endogenous attributes. The procedures log captures a process which describes
the procedures that a patient received during a single hospital admission and
contains 65 traces, 610 events, 34 event classes and 4 endogenous attributes.
Both logs have 8 exogenous data sets (respiratory rate, 3x heart rate, 2x oxy-
gen saturation, 2x arterial blood pressure). The movements log has 25 684 680
exogenous data points; the procedures log has 590 285 exogenous data points.

2 https://github.com/adamBanham/icpm2021.

https://github.com/adamBanham/icpm2021
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Table 1. Experimental Results.

Movements log Procedures log

Variant D mi fit. pre. D fit. pre. D

endo dt 0.25 0.586 0.644 0.048 0.739 0.395 0.119

0.15 0.573 0.656 0.108 0.739 0.392 0.119

0.05 0.573 0.644 0.140 0.761 0.418 0.167

or 0.25 0.586 0.657 0.048 0.785 0.393 0.131

0.15 0.583 0.656 0.108 0.785 0.393 0.131

0.05 0.587 0.647 0.140 0.761 0.419 0.167

endo dt 0.25 0.575 0.591 0.079 0.692 0.409 0.155

+exo 0.15 0.518 0.537 0.156 0.705 0.411 0.155

0.05 0.465 0.533 0.283 0.717 0.459 0.238

or 0.25 0.586 0.649 0.048 0.731 0.445 0.214

0.15 0.536 0.559 0.156 0.739 0.430 0.179

0.05 0.465 0.550 0.259 0.717 0.463 0.238

exo dt 0.25 0.654 0.640 0.000 0.722 0.413 0.143

0.15 0.654 0.623 0.000 0.697 0.436 0.143

0.05 0.173 0.567 0.222 0.709 0.420 0.214

or 0.25 0.654 0.628 0.000 0.701 0.512 0.274

0.15 0.654 0.639 0.000 0.697 0.425 0.143

0.05 0.099 0.582 0.198 0.709 0.424 0.214

5.4 Results and Discussion

Table 1 shows the results. The best results for each log appear in boldface.
When considering the movements log, using exogenous data only (exo) does not
introduce preconditions in most cases, and henceforth the fitness and precision
values are high. In cases where it does introduce preconditions, fitness is very
low but precision is competitive. We conclude that for this log, the exogenous
data by itself does not suffice. For exo+endo, typically more preconditions are
discovered, which lowers fitness and precision (at most 0.11 lower than endo).
This is to be expected, as adding more preconditions to the xDPN means that
multi-perspective measures will consider more data attributes from the event
log, thus increasing the state space on which precision is based.

When considering the procedures log, surprisingly, larger values of the param-
eter mi did not always decrease the number of preconditions found (D, or,
endo+exo) as is to be expected as mi is a support threshold. We suspect that
the rather small size of the procedures log and the nature of the overlapping rules
(or) algorithm is at play here, which after building a first precondition, there is
not enough observations left for a second precondition to meet the mi threshold.
For this log, using the exogenous data increased the determinism and hence the
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number of preconditions found (exo+endo and exo vs. endo). Consequently, for
endo and endo+exo, fitness goes up with mi for dt and goes down for or, but for
exo these patterns are not there. If we consider exo and endo+exo vs. endo, then
fitness consistently decreases, precision consistently increases, and determinism
consistently increases. We suspect that the preconditions cover a larger fraction
of the increased state space than for the movements log.

A possible extension of our analysis would be to understand if cohort analy-
sis [15], separating patients into distinct care groups, would change the efficacy
of our approach, allowing us to consider if observations in procedures log can be
seen in medically relevant cohorts of patients.

6 Conclusion

In previous studies, exogenous data has been undeveloped when considering
guard conditions in DPNs. As such, exogenous data’s influence on process par-
ticipants and decision-making in a process execution has not been considered in
depth. This paper presents xPM, a framework for using exogenous data in pro-
cess mining techniques that does not limit analysis opportunities. xPM allows for
complex analysis of exogenous data and process executions, using existing pro-
cess mining techniques and increased traceability – by means of slicing functions
– between events and exogenous data. We evaluated the influence of exogenous
data on process model discovery by measuring the difference in process model
quality. Our evaluation showed that we could understand more decision points
by including exogenous data and can improve fitness.

We see several extensions in future work. The semantics of xDPN could be
expanded to introduce ways of expressing exogenous data sets alongside the pro-
cess execution rather than solely within preconditions. Other data-aware process
mining techniques could be used instead of the proposed techniques in our instan-
tiation, such as [14,25]. Decision mining techniques for discovering preconditions
could be extended to consider if an transformed attribute or exogenous data set
correlates with the process activity before discovering a precondition. A vari-
ety of visualisation for the enhancement step could exist, and analysis could be
expanded to consider more than satisfaction of a precondition to creating new
modes of engagement with domain experts.
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Abstract. Contextualisation is an important challenge in process min-
ing. While Internet of Things (IoT) devices are collecting more and more
data on the physical context in which business processes are executed, the
IoT and process mining fields are still considerably disintegrated. Impor-
tant concepts, such as event or context, are not understood in the same
way, which causes confusion and hinders cooperation between the two
domains. Based on IoT ontologies and business process context models,
this paper proposes a model to bridge the conceptualisation gap between
the IoT and the process mining fields. The model defines the necessary
concepts and relationships to build process mining techniques that take
the physical context into account. As a first validation, the model is used
to describe a lifelike process example, showing how IoT data and process
events are related. Using this conceptualisation, both practitioners and
researchers from the IoT and the process mining communities can reason
about the use of IoT data in process mining and find support for data
understanding, event abstraction and IoT and process data integration.

1 Introduction

Although the potential of IoT data for process mining (PM) has been recognised,
the relationships between IoT data and event logs has not been made explicit
yet. This lack of deeper knowledge about these relationships, at the conceptual
level, is part of a more general conceptual issue in PM boiling down to the ques-
tion: what is an event? Previous works by different researchers have identified
various conceptions of “event”, which differ on their semantic level, e.g. micro
events, high- versus low-level events, etc.; on their “scope”, e.g. context events
or process/control-flow events; or on whether the event includes the data associ-
ated with it, as in XES [9], etc. In addition to this, the same kind of conceptual
challenges arise when using IoT data to retrieve the context of a process, as the
understanding of context differs in the fields of IoT and PM.

These conceptual issues causes practical problems in PM. Process models
discovered from event logs at an inadequate semantic level, i.e., too detailed or
too coarse, can be too complex or too simple, which often make them unpractical
and unfaithful to the reality. Then, confusing process and context events can also
have an impact on the resulting process model, by either omitting activities of
c© The Author(s) 2022
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the process, or over-complexifying the model. An example of this can be found
in Dees et al. [4], who showed that translating three types of events of the Sepsis
dataset [14] into context events, reduced the number of discovered variants to
one-fourth, while annotating the model with information on these context events
made the model as informative as a model considering all events as process
events. Employing IoT data in PM can cause both types of problems: models at
an unsuitable level of granularity, or models that confuse the context and the
control-flow, as IoT data have to be abstracted to the adequate semantic level
(i.e. that of the process) and data on the control-flow of the process have to be
carefully distinguished from data on the context of the process.

The goal of this paper is to discuss the important concepts of event and
context in PM, highlighting the difference in their understanding in the domains
of IoT and PM. Using these concepts, we propose a model defining the links
between these concepts and between the IoT and PM conceptual views, based
on IoT ontologies, context models from business process management (BPM) and
PM data models. The rest of the paper is structured as follows. Section 2 reviews
the existing literature, focusing on IoT ontologies and business process (BP)
context models. Next, in Sect. 3, the ambiguities in some important concepts are
analysed. Section 4 presents a conceptual model defining and linking important
concepts of IoT and PM. After this, a use-case of the model is presented in
Sect. 5, and a comparison with some related works is done in Sect. 6 Finally,
Sect. 7 provides a brief conclusion with some propositions for future works.

2 Background

In this section, previous works on the modelling of IoT and PM are introduced.
First, relevant IoT ontologies are discussed, before addressing BP context mod-
els. Literature on process mining in IoT environments is discussed in detail in
Sect. 6.

2.1 IoT Ontologies

Recently, the focus in IoT ontologies has shifted from the creation of ontologies
that are as complete as possible (e.g. the Semantic Sensor Network (SSN) ontol-
ogy1) to the development of new ontologies that are simpler and more practical
(e.g. IoTStream [7]). Two such ontologies are the Sensor, Observation, Sample
and Actuator (SOSA) ontology [10] and IoTStream [7].

SOSA proposes three perspectives: the sensor, observation and actuator per-
spectives [10]. IoTStream is a more specific ontology, inspired by SOSA, that
focuses on the treatment of streaming data [7]. Both of these ontologies are
event-centric, in the sense that they focus on data generation and treatment,
and less attention is paid to the devices and platforms IoT relies on.

1 https://www.w3.org/TR/2017/REC-vocab-ssn-20171019/.

https://www.w3.org/TR/2017/REC-vocab-ssn-20171019/
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2.2 Business Process Context Modelling

One of the first BP context models was proposed by Rosemann et al. [16]. In
this paper, the authors described an onion model where context was split in four
layers (listed from closest to farthest from the process): immediate context, inter-
nal context, external context and environment context. van der Aalst developed
an akin onion model a few years later [1]. Another relevant representation was
proposed by Ghattas et al. [8], who extended the generic process model (GPM)
with a context model C = <I,X> that links each instance of the process with
1) I, the initial state of its variables and 2) X, the inputs from the external
environment that affect the instance.

In a recent review paper, Brunk [3] proposed a taxonomy for BP context
data with six dimensions: time, structure, origin, relevance, process relation and
runtime behaviour. The dimensions proposed describe traditional BP context
accurately, but they are not suitable for IoT data. For instance, typical IoT
context variables such as temperature, can hardly fit in the origin dimension.

Another approach was followed by van der Werf et al. [23], who represented
the context of a BP in a domain model.

However, these papers do not discuss context based on sensor data in partic-
ular. This is done by Koschmider et al. [12], who model context information in
a hierarchy that contains three elements: raw data, simple context information
and complex context information.

3 Conceptual Ambiguity in IoT and PM

To bring the IoT and PM fields of study together, there needs to be an agree-
ment on some common fundamental concepts. However, a recurrent issue when
trying to bridge IoT and PM is that some common concepts are not understood
homogeneously across both domains, such as the concept of context. This lack
of homogeneity can create confusion and undermine the integration of the two
fields. In this section, we start by defining the concept of IoT data, explaining
next the concepts of context and event. We especially highlight the differences
in understanding of those concepts by the IoT and PM fields.

3.1 IoT Data

To understand IoT data, we start with the concept of IoT. A profusion of def-
initions exists, and the one we retain is from Dorsemaine et al., which is syn-
thetic and explicitly mentions the various aspects of IoT: IoT is a “Group of
infrastructures interconnecting connected objects and allowing their manage-
ment, data mining and the access to the data they generate.” [6]. Relying on
this definition of IoT, we can say that IoT data are all the data collected by
the objects belonging to connected infrastructures. These data describe physical
objects (the so called Things) or the physical environment. Examples of IoT
data are the temperature in a refrigerated area, the location of a package in a
warehouse, the heart rate of a patient, etc.
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3.2 Context in PM vs Context in IoT

Context was defined by Dey [5] as: “any information that can be used to char-
acterise the situation of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an application, includ-
ing the user and applications themselves.” This broad definition is referred to
in both IoT and PM, but what it means in practice substantially differs in each
domain, as the situation is viewed from different angles.

In IoT, the notion of context refers to the physical context of a system. Data
about the physical context are usually gathered by sensors that measure e.g.
the location of objects, the ambient temperature, the movement of people or
objects, etc. In PM and BPM, the context that is typically taken into account
is the context of the BP that is analysed. In general, this translates to factors
that impact the design or the execution of the process [1,16]. However, within
the PM field, the understanding of context can differ from this definition. Most
papers describe context-aware PM approaches (e.g. [1–3,23]), and understand
context in the same way as in BPM. But we can also find some papers describ-
ing PM approaches applied to context-aware environments (e.g. [13,20]), which
understand context like in IoT, as the physical context.

There is thus a discrepancy in the understanding of context. As a conse-
quence, some IoT context data do not fit in taxonomies describing business
process context variables; e.g., a variable such as the temperature in a room can
hardly fit in any of the categories defined by Rosemann et al. [16]. However, such
a variable can be useful to describe the context of a business process, and should
be taken into account in PM.

On the other hand, not all the parameters that are measured by sensors in
context-aware environments are relevant for PM: only those that impact the
process are. The notion of context that should be used in PM using IoT is
therefore the business context as understood in BPM, including relevant physical
parameters, which have so far been largely overlooked.

3.3 Process Event vs IoT Event

Fundamental to PM, the concept of event is also very important in IoT. A
distinction between the two acceptations of the term is recognised [11,20]. This
distinction is usually limited to placing events from IoT at a lower abstraction
level than events in PM. However, both definitions differ in more than that if we
do a more detailed evaluation.

On the IoT side, an event can be defined as a time-value set [17]:

<key, value, destination, generation time, release time>

where the semantics of a particular event are specified by the key-value pair.
Notice that this is a data definition, characterising a data construct.

On the PM side, a common definition of the term event is the one of the XES
Standard: “Events represent atomic granules of activity that have been observed
during the execution of a process. As such, an event has no duration” [9].
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We can especially notice that an event is more broadly defined in the IoT
literature than in the PM literature, as an event in IoT can represent a very
wide range of things, depending on the key-value pair. An event as understood
in IoT can be linked either with an event of the process (e.g. a patient taking a
blood test), or with a context variable (e.g. the patient’s insulin level), whereas
an event as understood in PM can only correspond to the first one. This means
that, as such, PM algorithms cannot simply be run on IoT data.

To connect these two concepts, and to reconcile the views of the IoT and
PM domains on context, we developed a conceptual model to help to build a
common comprehension of the structure of information to IoT and PM.

4 Connecting IoT and Process Mining: A Conceptual
Model

In this section, we propose and discuss a conceptualisation that shows the link
between IoT and PM, based on: (1) the concepts defined in the previous section,
(2) IoT ontologies, and (3) BP context data models. To create this model, we
took inspiration from the methodology described by Noy and McGuinness [15].

Following this methodology, as a first step, we formulated the requirement
that our model had to fulfil: our goal is to model the link between data generated
from, or captured by, IoT devices and PM event logs. The model should be able to
represent the different concepts involved in IoT-enhanced PM, and to distinguish
different concepts (i.e., different types of events) that are often confused in PM.

Then, we reviewed existing models, focusing on lightweight and event-centric
IoT ontologies (IoTStream [7], SOSA [10]), as well as context data models (e.g.,
[3,16]).

After this, our third step was to look for recurrent terms and concepts. We
searched for concepts that were often present in IoT ontologies and for concepts
that were often present in the BP context literature. We proposed archetypal
classes of objects in IoT and BP context, as well as concepts that were com-
mon to both IoT ontologies and BP context models. Recurrent concepts in IoT
ontologies are sensor/device, observation, observable property, and analytics,
while recurrent terms in BP context are context variable, event log, and data.

Events are central in both IoT and PM. However, as mentioned in Sect. 3,
this concept is difficult to grasp and it is not understood in the same way in
both fields. We propose to use a generic definition of event, which both IoT and
PM experts can accept: “An Event is an actual occurrence or happening that is
significant (i.e. it falls within a domain of interest to the system), instantaneous
(i.e. it takes place at a specific point in time), and atomic (i.e. it either occurs or
not)” [22] . This definition acknowledges that any occurrence that is actual (i.e.
happens in the real world), atomic and instantaneous, only needs to be significant
to a certain purpose or in a certain application to be an event. Events in PM are
significant for the execution of the process, while events in IoT measure relevant
factors of the physical environment. Examples of events complying with this
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definition include e.g. the termination of an activity, a report on daily sales, the
entrance of a person in a certain area, or the switching on or off of a lamp.

The fourth step was to create the classes of our conceptual model, and to
link them together. The result can be seen on Fig. 1. The model, built as a UML
class diagram, is constituted of two main parts: the first one, from Observable
Property to Event, describes how data are captured and managed by IoT devices
(following IoT ontologies), and the second one, from Event to Event Log Entry
(including Process-Aware IS and IS data entry) shows how data are processed
in PM to create a contextualised event log. A link is made through the common
construct of Event. Next, we define the different terms represented in the model.

Fig. 1. Core of the model linking IoT with PM

A Sensor is an IoT device that measures the state of a real-world phe-
nomenon, named Observable Property in SOSA [10]. An Observable Prop-
erty is an observable quality (property, characteristic) of a Feature Of Interest.
Examples of Observable Properties are: the outside temperature, the location of
a truck, the weight of a container. A Feature Of Interest is the thing whose
property is being estimated or calculated in the course of an observation (e.g. the
container whose weight is measured). An Observation is a measurement of an
Observable Property; it provides the result of estimating or calculating a value
of an observable property (e.g. the measured weight of the container). The case
of an actuator (an IoT device that can interact with the environment) generat-
ing the data can be modelled similarly, with actuator, actuatable property and
actuation classes that mirror the sensor, observable property and observation.
To avoid overloading the model, this is omitted in the figure.

IoT Events can be derived from Observations or other IoT events, and
are a specialisation of Event that is defined as an instantaneous change in a
real-world phenomenon that is monitored by a Sensor. Several IoT Events can
be detected from the same Observation, e.g., an observation of the Observable
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Property “temperature” can trigger the IoT event “temperature decreases to
0 ◦C” and “it is freezing”.

Likewise, an IoT Event can be created directly by a change in the Obser-
vations of a Sensor (e.g. “temperature reaches 23 ◦C” is directly linked to the
observation “23” of a temperature sensor), or it can be derived by process-
ing one or several observation(s) from the same sensor (e.g. “temperature has
increased” results from the processing of two temperature observations), with
Analytics techniques. Analytics is an umbrella term from the IoTStream ontol-
ogy [7] used here to describe any technique that allows the extrapolation of an
Event from an Observation or another Event, such as e.g. event abstraction,
complex event processing, database query, stream annotation, activity recogni-
tion, event-activity and event-case correlation, aggregation techniques, filtering
techniques or machine learning algorithms.

Two other types of Events (Context Event and Process Event), which typi-
cally have richer semantics, can be derived from IoT Events using Analytics. A
Process Event is an instantaneous change of state in the transactional lifecy-
cle of an activity. This type of event corresponds to the usual notion of event in
PM. Note that we decouple the occurrence of the change of state in the activ-
ity lifecycle and the attributes that are usually present in event data structures.
Conceptually, we consider the attributes independent of the existence of the pro-
cess event, and we model them separately (with the Context Event and Context
Variable classes). An example of Process Event is the arrival of a package at
a storage facility, which could have as attribute the size or the weight of the
package.

A Context Event is an instantaneous change in a real-world phenomenon
(deduced from an IoT Event or an IS Data Entry), that has an impact on
the execution of the process (i.e. it impacts a Context Variable), but that does
not change its control-flow state. Examples of Context Variables include the
location of a package in a delivery process, the vital signs of a person in a health
monitoring process, etc. An example of Context Event would be, e.g., a package
has arrived at a certain area, which makes the package ready for pick up.

Fig. 2. Hierarchy of event specialisations in the model

Events in the model follow a hierarchy based on their complexity, as shown
on Fig. 2. A higher-level event can be deduced from one or several lower-level
events, and similarly a lower-level event can be the basis of one or several higher-
level events. This mechanism is inspired by CEP [22], as was also suggested by
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Soffer et al. [18]. IoT Events can cascade until a deduced event has a direct
relationship with the process, i.e. it is a Process or a Context Event. Note that
an Analytics technique, possibly trivial, is required to derive an Event from one
or several other Events.

As stated earlier, a Context Variable is a parameter that has an influence
on the execution of the process. Brunk [3] distinguished four categories of con-
text variables, depending on their relationship with the process: activity-related,
process event-related, control-flow-related, and artefact-related. Note that Con-
text Variables might be at the level of activities, process instances, or even the
overall process.

Process-Aware Information System (PAIS) and Information Sys-
tem (IS) Data entry represent the traditional PM data sources. A PAIS is an
IS that records process data (i.e., IS data entries). An IS Data entry can relate
to three classes: Process Event, Context Event and Context Variable. The link
between PAIS and Process Event is the usual path of data used in PM, which
are entered in the PAIS at runtime and later extracted to form an event log.
Usually, in PM, data used as context variables are data retrieved from the IS
and are considered rather static. But this does not mean that such context vari-
ables may not be subject to change. Take, for example, the amount of a claim
in a claim handling process. The claim amount is usually assumed fixed, but it
can actually change, as a result of, e.g., a reevaluation of the claim by an expert.
This is why IS Data Entry is linked with both Context Variable and Context
Event.

Finally, Event Log Entry is the point where Context Variables are linked
with Process Events in the contextualised event log, which would contain logs
of process events together with the context in which they took place. Note that,
although these classes are not linked with Analytics in Fig. 1, it does not nec-
essarily mean that Analytics are not used. Analytics is linked with Observation
and Event to emphasise the importance of Analytics techniques to derive Events
from Observations or other Events, but it may be that, e.g., event correlation or
data fusion techniques are necessary to match a Process Event with the relevant
Context Variables, or to derive an IoT Event from an Actuation. This is omitted
in the figure for the sake of clarity.

5 Use Case Validation

In this section, we present a lifelike use case showing how the path between IoT
data and a PM event log can be represented using this conceptualisation.

Consider the process of transporting Moderna vaccines from their produc-
tion facility to the patients in Belgium. The vaccines are manufactured in a
main production plant in the US, before being shipped to a central storage
facility in Belgium. The vaccine crates are then dispatched to local vaccination
centres where each dose is administered to a patient. The vaccines being partic-
ularly fragile, one would like to keep track of shocks and bumps experienced by
the crates during transport, to detect during which activities most shocks are
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incurred, and improve the process to minimise this number. Figure 3 shows how
to use our model to map different concepts from the raw output of an IoT sensor
to an entry in the event log.

Fig. 3. Example instances for the vaccine shipment process.

While the Features Of Interest Vaccine crates are being handled, their
Observable Property Crate movement is recorded by an Accelerometer Sensor.
Observations of this sensor are triplets (x, y, z) containing the acceleration in the
three dimensions of space. The IoT Event Crate is moving can be derived from
such an Observation. Comparing the movement with previous movements can
tell if the crate is being shaken (which corresponds to the Context Event Crate is
shaking, Fig. 3(a)) or if it is being displaced (which could detect a Process Event
Crate is loaded, Fig. 3(b)), depending on the direction of consecutive movements
(consecutive movements in the same direction correspond to a displacement,
while consecutive movements in different directions indicate a tremor). The Con-
text Event Crate is shaking impacts the Context variable Shaken, which after a
certain amount of shocks becomes equal to “mild”, to reflect the magnitude of
shaking undergone by the crate (part (a) on Fig. 3).

Recording this Context Variable with each Process Event allows determining
which activities shake the crates most. It can also be crossed with other Con-
text Variables (e.g. the Resource driving the truck transporting the vaccines, an
activity-related Context Variable that can be found as an IS Data Entry of the
PAIS), to determine under which circumstances shocks are minimised (part (b)
on Fig. 3).

This helps in 1) retracing the sources of the event log (IoT and PAIS), and
2) getting a deeper understanding of the links between the raw accelerometer
data and the process events and context variables in the event log, as well as 3)
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distinguishing process events (e.g. Vaccine crate loaded) from context informa-
tion (e.g. Shaken).

6 Related Work

Most of the literature that tackles PM using IoT data proposes step-by-step
frameworks to extract an event log from low-level IoT data, such as those pro-
posed by Koschmider et al. [11], Trzcionkowska and Brzychczy [21] or Soffer et
al. [18]. There are differences from one framework to the other, but typical steps
included in these frameworks are preprocessing the raw data, activity recogni-
tion or discovery and event abstraction. These works differ from ours as 1) they
focus on the processing of the data (the “how”) while we concentrate on the data
themselves (the “what”), and 2) although contextual sensor data are included,
their use is limited to supporting the discovery of activities or the abstraction
of events, as in [12] or [19], i.e. the IoT data are not used to mine the context of
the process model.

E.g., using the framework of Koschmider et al. to model the use-case in Sect. 5
would yield the following: in step 1, accelerometer data would be correlated with
activity “vaccine crate loading”. Step 2 would extract the rule that successive
movements in the same direction characterise the “vaccine crate loading” activ-
ity, and step 3 would apply this rule to the whole sensor data to create an event
log with the activity instead of the sensor data. The Process Events derived are
similar to these described by our model, but many aspects, such as the context
information, e.g. the Context Variable “shaken”, are not included. The main
steps of these frameworks can also be linked with some parts of the model; see
Fig. 4.

Fig. 4. Translation of typical IoT PM frameworks steps on our model

Furthermore, existing BP data models cannot model the use-case either. XES
[9] is at a high level of abstraction, and is designed to store Process events only.
Extensions of XES exist, among which the micro-event extension, which makes
it possible to define a hierarchy of events, but it does not make it possible to
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link multiple higher-level events to a lower-level event2. The object-centric event
log (OCEL)3, a new PM data paradigm based on the concept of object, is also
unsuitable for context events, as each event has to be linked with one and only
one activity, which is not the case for many context events, such as e.g. the
weight of a package. The context-aware GPM [8] can represent Context events,
but does not distinguish them from Process events and is more coarse-grained
than our model. For instance, using the context-aware GPM [8], the context in
the vaccine shipment example would be modelled with: I = {{crate shaken},
{resource}} and X = {{crate is shaking}, {vaccine crate loaded}, {vaccine crate
received}}. This representation includes all the final elements of the context but,
again, it misses the traceability provided by our model, and cannot include IoT
metadata. Lastly, neither XES nor the context-aware GPM can represent the
hierarchy of events.

7 Conclusion

In this paper, we pleaded for the use of IoT as source of context information
in PM. After analysing the existing relevant models and current ambiguities
affecting very important concepts, we proposed a conceptual model that defines
and connects IoT and PM. As such, the model provides definitions to foster
understanding between the IoT and PM community, and enables traceability
between the two types of data. This is a first step towards properly understanding
the relationship between IoT data and process data in order to improve their
further analysis using PM. Also note that the reuse of ontologies and models
from the literature automatically enables the possibility to add other additional
concepts, e.g., to conceptualise the ecosystem and platforms that exist around an
IoT device as described in IoT ontologies. We hope that this conceptualisation
inspires others to investigate further the uncharted spaces at the intersection of
IoT and PM.

In future works, we plan to complete the model by adding attributes to the
classes and to make it actionable and reusable by others. To this second end,
we foresee two possibilities: implementing it in OWL, or translating it into an
extension of the XES Standard . The presented model also needs to be further
validated. We plan to validate it with additional real-life cases and to conduct
an expert-based evaluation. Finally, we also aim at researching analytics and
machine learning techniques that can automatically learn the influence of IoT
data on process execution and discovery.

2 http://www.xes-standard.org/xesstandardextensions.
3 http://ocel-standard.org/1.0/specification.pdf.

http://www.xes-standard.org/xesstandardextensions
http://ocel-standard.org/1.0/specification.pdf
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The interest in combining Machine Learning (ML) and Process Mining (PM) has seen
increasing growth in the last few years. Nowadays, the application of ML to PM is
considered as the emerging technology that is fostering a new paradigm for improving
business process management by enabling process task automation, simplification, and
monitoring. The intent of the 2nd International Workshop in Leveraging Machine
Learning for Process Mining has been to provide a venue to discuss the recent research
developments at the intersection of ML and PM by bringing together practitioners and
researchers from both communities. The open call for contributions has solicited
submissions in the areas of automated process mining and updating, conformance
checking, predictive and prescriptive process mining, multi-perspective and multi-
dimensional process mining, applications of deep learning techniques, and transfer
learning, IoT business services, and block-chains.

The workshop has attracted nineteen submissions by confirming the liveliness of
the field. From the received nineteen submissions, seven submissions have been passed
to the review process and accepted for presentation at the workshop, while three papers
have been presented in the poster session of the workshop. Each paper has been
reviewed by three or four members of the program committee. Papers presented at the
workshop have been also selected for inclusion into the post-proceedings. These
articles are briefly summarized below.

The paper by Chiorrini et al. investigates how to use instance graphs derived from
traces for next activity prediction, in order to improve predictive performances by
exploiting information about parallelism among activities.

The paper by a Fani Sani et al. describes an instance selection procedure to speed
up the training stage of the next activity prediction methods by maintaining reliable
levels of prediction accuracy.

The paper by Peeperkorn et al. proposes an evaluation scheme tailored towards
measuring the capacity of deep learning models to learn process model structures.

The paper of Post et al. tackles the problem of detecting exceptions by encoding
traces, assigning an anomaly score to each trace, and using the domain knowledge of
auditors to update the anomaly scores assigned through active anomaly detection.

The paper by Pourbafrani et al. illustrates an approach that increases the inter-
pretability of Remaining Time Prediction models by accounting for extracted features
for multiple performance patterns caused by inter-caste dynamics.

The paper of Shoush and Dumas presents a prescriptive monitoring technique that
combines predictive modeling and causal inference, in order to identify traces that are
likely to lead to a negative outcome and estimate the effect of an intervention on a
trace’s outcome.



The paper of Stevens et al. introduces a definition of explainability that allows
comparing different outcome-oriented predictive models based on model-agnostic
quantitative measures.

In addition to these seven papers and the four posters, the program of the workshop
has included the panel on “Machine Learning and Process Mining - Marriage or
Cohabitation?” that involved by Ernesto Damiani, Chiara Di Francescomarino, Marlon
Dumas, Wil van der Aalst, as panelists.
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this book. We are also grateful to the members of the Program Committee and external
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expertise and patience.
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Abstract. Nowadays, a lot of data regarding business process execu-
tions are maintained in event logs. The next activity prediction task
exploits such event logs to predict how process executions will unfold up
until their completion. The present paper proposes a new approach to
address this task: instead of using traces to perform predictions, we pro-
pose to use the instance graphs derived from traces. To make the most
out of such representation we train a message passing neural network,
specifically a Deep Graph Convolutional Neural Network to predict the
next activity that will be performed in the process execution. The exper-
iments performed show promising performance hinting that exploiting
information about parallelism among activities in a process can induce
a performance improvement in highly parallel process.

Keywords: Deep Learning · next activity prediction · Predictive
Process Monitoring · Graph Neural Networks · Process Mining

1 Introduction

Nowadays, many business processes maintain a significant amount of data
regarding their executions in the form of events logs. The predictive process
monitoring field is concerned with the exploitation of such event logs to predict
how such executions will unfold up until their completion. Predictive process
monitoring includes various tasks: one of them is the next activity prediction,
that is concerned with the prediction of what will next happen in an execution.

In the last years predictive process monitoring, and particularly next activity
prediction, is receiving an ever-increasing attention, and researchers are tackling
the problem using various deep learning approaches [3,4,13–15,19,21]. It is also
known that using graphs is an extremely convenient way of representing process
executions [6,20]. Recently, a new type of neural network architecture is gaining
ground in the deep learning community: the graph neural network [16,24]. Still,
there is almost no work in the literature that evaluates the possibility of exploit-
ing such family of networks for the predictive process monitoring tasks. Driven

c© The Author(s) 2022
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by this lack of studies, we introduce a methodology to properly exploit the graph
representation of processes executions [6] for the next activity prediction task.

In particular, our proposal requires a business process event log and a model
of such process, which are used to build for each trace a proper corresponding
instance graph. From this graph representation, the dataset is then created and
the Deep Convolutional Graph Neural Network [25] is trained to perform the pre-
diction for next activity. Experimental results show that information contained
in instance graphs, in particular concerning the parallelism among activities, can
improve the prediction accuracy.

The rest of the paper is organized as follows: in Sect. 2 a review of the task-
relevant literature is performed. Section 3 describes the proposed methodology.
In Sect. 4 a comparison with the results from the relevant literature is performed
and commented. Finally, in Sect. 5 we draw some conclusions and list further
directions of research.

2 Related Work

In the scientific community there is an ever-increasing interest in the application
of deep learning techniques to predictive process monitoring tasks. In [18] the
authors proposed to adopt an LSTM architecture for the one step ahead event
prediction and the suffix prediction, using the one-hot encoding of the associated
activity and three temporal features related to the event’s timestamp. The LSTM
architecture has also been used by [3,8,13]. The approach in [8] predicts only
the next activity type, while [13] predicts the next activity and all the associated
categorical attribute. The authors of [3] combine both [8] and [18] approaches
to extend [8] to the next completion time prediction, using an abstract notion
of class resource, i.e. group of resources that usually perform similar activities.
Recently, in [14] a CNN architecture has been proposed: the authors convert the
sequential temporal data in the log into a spatial representation to then treat
data as images. In [15] the approach has been further extended by the authors.

The of use Generative Adversarial Nets (GANs) is proposed in [19] to address
the next event prediction task, tackling in this way the lack of sufficient training
data that often impact performances. In the GAN approach the authors used
LSTM networks for both the generator and discriminator. For this reason they
trained various networks, each one over sub-sequences of processes of specific
length, thus producing more than one prediction model for each process, the
same limit of the other LSTM based approaches.

In 2008 Scarselli et al. introduced “The Graph Neural Network Model”
(GNN) [16], a neural network model capable of processing data in graph domains.
Since their definition, graph neural networks have been increasingly used in sev-
eral fields. In a recent survey [24] it has been proposed a new taxonomy to divide
the state-of-the-art GNNs into four categories, namely, recurrent GNNs, con-
volutional GNNs, graph autoencoders, and spatial-temporal GNNs. In the same
work the authors also outline the various application fields.

It is relevant to note that very recently a proposal of usage of Graph Con-
volutional Neural Network in the next activity and timestamp predictions has
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Fig. 1. The BIG-DGCNN methodology pipeline

been formulated by [21]. Their approach differs from the one proposed in the
present paper as they propose to use a Directly Follows Graph representation to
model the traces while our approach adopts an Instance Graph representation.
Furthermore, the network architecture used in this work and in [21] are different.
In [21] a single graph convolutional layer followed by two fully connected layers
are used, while in the present paper a more elaborated architecture is adopted
as described in Sect. 3. Also lately, in [23] the author explored the opportunity
of exploiting gated graph neural network for the next activity prediction. In the
work different graph representations are tested but are only compared with self
implemented baselines, focusing the work exclusively on network architecture.

3 Methodology

In this Section we discuss the proposed methodology, first explaining the ratio-
nale of the whole pipeline shown in Fig. 1, then delving into its relevant aspects.

The goal of the present work is to define a robust approach that makes use of
information about the parallelism among activities in the next activity prediction
task. To this end, we propose to represent each trace with its corresponding
Instance Graph (IG), and to process IGs by graph neural networks, that are
designed to natively manage graph structures.

It is known that replaying a trace on a Petri net it is possible to produce an
instance graph representing the process execution [6]. The starting point of our
methodology is thus an event log and a model of the process expressed as Petri
net. The model can be given by a domain expert, opening to the possibility to
provide the desired perspective over the process, or a Petri net can be derived
by some process discovery algorithm. In both cases, a problem arises with highly
variable processes whose event log includes many non-conforming traces. This
situation often occurs when an a-priori model has been defined for a process
that rapidly evolves thus making the model obsolete; or in decision-intensive
processes where only a high-level model can be defined and executions vary
from case to case (e.g. care process in a hospital). When process discovery is
exploited to synthesize a process, lossy algorithms may be adopted (e.g. Heuristic
Miner, infrequent Inductive Miner) that discard uncommon behaviours to ensure
simpler and more meaningful models. In the presence of non-conforming traces a
simple replay will lead to not valid IGs, e.g. disconnected graphs, or graphs with
more than one terminal node. To deal with this issue, our approach also provides
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a repairing of non-conforming traces by the adoption of the BIG algorithm [5].
This prevents the loss of data and grants to our system the possibility to predict
also uncommon events. From BIG-generated IGs the dataset is then created and
the graph neural network trained to perform the prediction of the next activity.
Among the different architectures existing in the literature, the Deep Graph
Convolutional Neural Network (DGNN) [25] has been chosen. In the following
we will refer to our methodology as BIG-DGCNN.

3.1 Building Instance Graphs

An Instance Graph (IG) is a graph that describes a specific execution of some
process model. In an IG each node represents an activity, and an edge between
activity A and activity B denotes the existence of a causal relation between
A and B, namely the fact that B cannot be executed until A is terminated; in
other words, the execution of B depends on the execution of A. For a more formal
definition of instance graphs and causal relations see [6]. In an instance graph
parallelisms are shown besides causal relations, while choices are not represented.
This is obvious, since in each single execution choices have already been made.
Activities that can be done in parallel within one instance can appear in any
order in the trace without changing the resulting instance graph. Hence, an
execution is represented by an unique IG, which in turn represent different traces.

Instance graphs can be built from a set of traces in an event log and the
corresponding process model. In this paper we refer to the Building Instance
Graph (BIG) algorithm proposed in [5]. Unlike other approaches in the literature,
BIG enables the representation of parallel behaviors and is able to handle traces
that do not conform to the model. BIG is a two-steps algorithm: first an IG is
extracted for each trace, then IGs from non-conforming traces are repaired. In
the first step, a node is created in the IG for each event of the trace and the
node is labeled with both the activity associated with the given event and the
position of the event in the trace. For each pair of events (ei, ej) with i < j such
that causal relation exists between the corresponding activities in the model, an
edge is inserted between the corresponding nodes in the IG if and only if between
the pair of events there is neither another causal successor of ei, nor a causal
predecessor of ej .

It is worth noting that, if the trace does not fit the model, the corresponding
IG is affected by several issues, e.g. being a disconnected graph and having
multiple terminal nodes. From a semantic point-of-view these IGs represent many
more behaviours than the model actually allows for, namely they over-generalize.
Hence, the representation of the process behavior provided by these IGs is very
poor. In order to mitigate these issues, in [5] a procedure for the repair of IGs is
proposed.

First, non-synchronous movements in the trace, which lead to issues in the IG,
are identified by using aligned-based conformance checking technique [2], which
returns the kind of non-synchronous movements and their position in the trace.
This information is used to repair each move-in-the-model and each move-in-the-
log occurring in the alignment. The former leads to disconnected graphs, which
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are repaired by identifying nodes corresponding to activities that are in a causal
relation with the move-in-the-model and properly connecting them. For each
move-in-the-log, the repair procedure changes the edges connecting the nodes
corresponding to the events before and the events after the non-synchronous
event; the causal relations among the activity corresponding to move-in-the-log
and activities related to its predecessors and successors in the trace are used to
build new edges.

3.2 Data Preprocessing

This Section describes the processing of the log to obtain the dataset for training
and testing. First of all, since a log not necessarily has single specific ending
and starting activities, we introduce such artificial events in the logs. This is
done to guarantee that a trace always has a termination activity and to ensure
that parallelism at the beginning and end of a process execution are properly
represented in the IG. Second, BIG is applied to obtain an IG for each trace.

The approach of this paper learns a function that, given a graph prefix τg
of dimension g, returns a label a that can be interpreted as the next performed
activity in the process execution. Hence, the third step of the proposed method-
ology is to build the pairs (τg, a) from an IG for any g ∈ {2, . . . , N − 1} where N
is the number of nodes in the IG (i.e. the trace length). Therefore from one IG,
we produce N − 2 pairs. The procedure is repeated for every IGs in the dataset.

Each node in an IG has a progressive index associated with it that represents
its position in the trace. This index determines an order of the nodes, which we
use to progressively build the graph prefixes from the full IG. We denote by ai,
i = 1, . . . , N the activity associated with the node of index i.

Given an IG, the graph prefix τ2 is obtained by selecting the first two nodes
and the edges between them. This prefix is labelled with the activity a3 of the
next node (Fig. 2). The next prefix is simply derived by τ2, extending it with
the node of index 3 and the edges connecting it to τ2. The associated label is a4

(Fig. 3). Iteratively, the procedure re-build the whole instance graph until the
last node is selected as label.

We adopt the one-hot encoding representation for the set of activities in the
log.

3.3 Deep Graph Convolutional Neural Network

In this paper, we use a variant of the Deep Graph Convolutional Neural Network
(DGCNN) proposed in [25]. The DGCNN is composed of three sequential stages.
In Fig. 4, we show a representation of the overall neural network architecture.
First it has several graph convolution layers which extract the features from
the nodes local substructure and define a consistent vertex ordering. Second it
has a SortPoolingLayer which sorts the vertex features according to the order
defined in the previous stage, selecting the top nodes. In this way the dimension
of the input is unified. At last, a 1-D convolution layer and a dense layer take
the obtained representation to perform predictions.
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Fig. 2. First labelling step

Fig. 3. Second labelling step

The graph convolution layer adopted by DGCNN is represented by the fol-
lowing formula:

Z = f(D̃−1ÃXW ) (1)

where Ã = A + I is the adjacency matrix (A) of the graph with added
self-loops(I), D̃ is its diagonal degree matrix with D̃ii =

∑
j Ãij , X ∈ R

n×c is
the graph nodes information matrix (in our case the one-hot encoding of the
activity labels associated to the nodes), W ∈ R

c×c′
is the matrix of trainable

weight parameters, f is a nonlinear activation function, and Z ∈ R
n×c′

is the
output activation matrix. In the formulas, n is the number of nodes of the input
graph (in our case the graph prefix), c is the number of features associated to a
node, and c′ is the number of features in the next layer tensor representation of
the node.

In a graph, the convolution operation aggregates node information in local
neighborhoods so to extract local structural information. In order to extract
multi-scale structural features, multiple graph convolution layers (Eq. 1) are
stacked as follows:

Zk+1 = f(D̃−1ÃZkW k) (2)

where Z0 = X, Zk ∈ R
n×ck is the output of the kth convolution layer, ck is

the number of features of layer k, and W k ∈ R
ck×ck+1 maps ck features to ck+1

features.
The graph convolution outputs Zk, k = 1, ..., h are then concatenated in

a tensor Z1:h := [Z1, ..., Zh] ∈ R
n×∑h

1 ck which is then passed to the Sort-
PoolingLayer. It first sorts the input Z1:h row-wise according to Zh, and then
returns as output the top m nodes representations, where m is a user-defined
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parameter. This way, it is possible to train the next layers on the resulting fixed-
in-size graph representation.

In the original proposal the DGCNN includes a 1-D convolution layer, fol-
lowed by several MaxPooling layers, one further 1-D convolution layer followed
by a dense layer and a softmax layer.

In the present paper we simplify the architecture leaving only one 1-D con-
volution layer with dropout [17] followed by a dense and a softmax layer. This is
because the process mining domain tend to present smaller graphs in comparison
with those of typical application domains of graph neural networks [24].

For further information on the architecture we refer the interested reader to
[25].

Fig. 4. DGCNN architecture. Taken from [25].

4 Experiments

4.1 Experimental Setup

In this Section, we characterize the benchmark datasets used, then we discuss
the setting of parameters for the algorithms used in the experiments.

Datasets. In order to be comparable with the literature [3,14,18,21], we tested
our approach on 2 commonly used benchmark datasets, namely Helpdesk and
BPI12W.

The Helpdesk dataset [22] contains traces from a ticketing management pro-
cess of the help desk of an Italian software company. In this process all execution
instances start with the insertion of a new ticket into the ticketing management
system.
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Table 1. Overview of benchmark dataset. |σ| is used to represent the trace length.

Dataset N.traces Tot.events N.act.types Min |σ| Max |σ| Avg |σ|
Helpdesk 3804 13710 9 1 14 3.60

BPI12W 9658 72413 6 1 74 20.03

The BPI12 dataset [7] is taken from a Dutch Financial Institute. The process
represents a personal loan or overdraft applications within a global financing
organization. The event log is a merge of three intertwined sub processes, related
to the evolution of the status of the loan/draft application (BPI12A), of the
work items belonging to the application (BPI12W ), and of the offer belonging to
the application (BPI12O) respectively. We considered the BPI12W sub-process.
Furthermore, as usually done, we retained only the completed events in the log.
Table 1, shows the characteristics of both datasets.

We hasten to note that BPI12W execution instances show no parallel activ-
ities, while some level of parallelism exists in Helpdesk Thus the selection of
these datasets allows us to better appreciate the impact of parallelisms on per-
formance.

Finally, in order to be as much comparable as possible with the literature,
we split each log keeping the first (chronologically ordered) 67% of the traces for
training and the remaining part for testing.

Parameter Settings. In the BIG-DGCNN methodology there are two main
algorithms that require the setting of parameters: the infrequent Inductive Miner
(iIM) [12] used to derive the Petri net representing the process models requested
for the execution of the BIG algorithm, and the DGCNN. Regarding iIM, the
noise threshold must be set. This threshold is used to determine how much
infrequent behaviour will be filtered out when building the model. In choosing
such parameter we tested the fitness of the resulting model (i.e. the extent to
which the discovered model can accurately reproduce the cases recorded in the
log). We changed the noise threshold with 10% step from 0% to 100% and
selected the smallest noise threshold that granted at least a 90% fitness. In this
way, we obtain processes that are capable of modeling a vast majority of traces
while still maintaining a good degree of generalization, thus emulating a model
provided by an expert, and putting us in a close-to-real setting.

Regarding the parameters of the DGCNN, as stated before we set the number
of 1-D convolution layers to one, followed by a dense layer, both with 32 neurons.
We used ADAM [10] as optimization algorithm and trained the network for 100
epochs with an early stopping. We used as loss function the categorical cross
entropy. For both datasets we varied the following parameters:

– the number of nodes selected by the SortPooling layer (m), in {3, 5, 30}
– the number of stacked graph convolution layer (h), in {2, 3, 5, 7}
– the batch size (bs), in {16, 32, 64, 128}
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– the initial learning rate (lr), in {10−2, 10−3, 10−4}
– the dropout percentage (do), in {0.1, 0.2, 0.5}
The configurations that provide the best accuracy are shown in Table 2.

Table 2. Best network parameters for the dataset.

Dataset m h bs lr do

Helpdesk 30 5 32 10−3 0.1

BPI12W 5 5 32 10−3 0.2

Tools and Hardware. All the experiments have been performed using pytorch
geometric [9] with torch version 1.8.1, on a Tesla T4 GPU, a Intel(R) Xeon(R)
CPU@2.20 GHz, and a 12 GB RAM.

4.2 Results

Table 3 shows the accuracy achieved on the selected datasets, by our approach
and other approaches exploiting different neural network architectures.

We can see that on Helpdesk BIG-DGCNN achieves the best performance.
It is worth noting that in all the competitor approaches instances are described
by a richer set of features, like time information, while our input graphs encode
only activity labels and flow information.

On the other hand, on the BPI12W dataset there is a relevant performance
degradation w.r.t. the other methods. As noted before, BPI12W shows no par-
allel activities. This seems to confirm our hypothesis that properly taking into
account information on parallelisms can be beneficial to the next activity predic-
tion, whilst graph neural networks do not develop their full potential on sequen-
tial processes. The hypothesis also gains confidence when the BIG-DGCNN per-
formances are compared against the results presented in [19] on the whole BPI12

Table 3. Literature comparison, measured accuracy

Dataset

Approach Helpdesk BPI12w

BIG-DGCNN 82.58% 62.43%

GCNN [21] 79.54% 65.69%

MLP [21] 82.01% 65.59%

CNN [14] 73.93 % 78.17%

CNN [15] - 82.20%

LSTM [18] 71.23% 76.00%

LSTM [3] 78.90% 77.80%
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dataset. There, plain CNN [14], and LSTM [3,18] approaches has been compared
to a LSTM trained in a GAN framework. BIG-DGCNN is able to achieve an
accuracy of 76.45% which is higher than the accuracy presented for all the plain
methods, although it is lower than that achieved by LSTM+GAN. We remark
that GAN is a novel learning framework, where any neural network architecture
can be adopted. It is possible that the adoption of graph neural networks like
those presented in this work could further improve performance, solving also a
limit of the LSTM network used in [19] which is constrained to fixed size pre-
fixes, hence forcing the training of a specialized network for every desired prefix
length. We plan to experiment the GAN framework with graph neural networks
in future work.

Since [21] also adopts a graph neural network architecture, one may want to
analyse the reasons under the different accuracy. Various factors can be respon-
sible for this: first, [21] adopts directly follows graphs, which are derived at a
process level, while we build and properly repair the instance graph for each
trace. Second, the representation of the graph is performed in a different way.
The approach described in [21] only takes into account the last occurred event of
a sequence of events with the same activity label when building the input graph.
On the contrary, our approach considers all passed events of the trace, including
the events relative to repeated actions. Third, the network used in this work is
endowed with several graph convolution layers, while that used in [21] is a single
layer graph convolutional neural network [11] variant.

5 Conclusions and Future Works

The main contribution of this work is the definition of BIG-DGCNN, a method-
ology to address the task of next activity prediction exploiting information about
parallelism among activities in a process. The methodology adopts BIG [5] to
repair non-conforming traces in order to always build a fully representative
instance graph. Then it uses a rather new kind of neural network architecture,
the Deep Graph Convolutional Neural Network [25], that is capable of effectively
using the structural information of a graph in its functioning. The comparison
with the literature highlights that BIG-DGCNN show promising performance
in datasets relative to process with a consistent presence of parallelism, while
performing less effectively in sequential datasets like BPI12W. Although it is
well known that parallelism is a characterizing feature of business processes [1],
variants of the approach that can better deal with sequential dataset can be
worth of investigation. Other interesting future research directions include:

– extending the BIG-DGCNN inputs to all the available features of every bench-
mark dataset, aspect neglected in this work so to isolate the structural con-
tribution of the process workflow,

– extending the experimentation to other datasets,
– testing the GAN training method using BIG-DGCNN thus “eliminating the
need for a large training data” [19] and avoiding the fixed prefix restriction
of GAN+LSTM.
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Abstract. Predictive process monitoring concerns itself with the pre-
diction of ongoing cases in (business) processes. Prediction tasks typ-
ically focus on remaining time, outcome, next event or full case suf-
fix prediction. Various methods using machine and deep learning have
been proposed for these tasks in recent years. Especially recurrent neu-
ral networks (RNNs) such as long short-term memory nets (LSTMs)
have gained in popularity. However, no research focuses on whether such
neural network-based models can truly learn the structure of underly-
ing process models. For instance, can such neural networks effectively
learn parallel behaviour or loops? Therefore, in this work, we propose an
evaluation scheme complemented with new fitness, precision, and gen-
eralisation metrics, specifically tailored towards measuring the capacity
of deep learning models to learn process model structure. We apply this
framework to several process models with simple control-flow behaviour,
on the task of next-event prediction. Our results show that, even for
such simplistic models, careful tuning of overfitting countermeasures is
required to allow these models to learn process model structure.

Keywords: Predictive Process Monitoring · Next Event Prediction ·
Recurrent Neural Network · Generalisation

1 Introduction

In the field of process mining, a clear trend can be discerned in terms of a shift
from post factum analysis to predictive and even prescriptive modelling. This
is for instance clearly reflected in the surge in papers presenting deep learning-
based modelling techniques to address analysis tasks including remaining time,
outcome, and next event prediction. One potentially problematic issue regard-
ing the application of such deep learning models is the fact that, to the best of
our knowledge, no research has focused on investigating whether popular mod-
elling architectures such as LSTM neural networks, can actually “learn” process
behaviour from a possibly incomplete set of example traces in an event log.
c© The Author(s) 2022
J. Munoz-Gama and X. Lu (Eds.): ICPM 2021 Workshops, LNBIP 433, pp. 127–139, 2022.
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Accordingly, the main contribution of this work is to propose a framework to
assess the capability of deep learning-based next event prediction techniques to
truly learn process model structure. The framework consists of a variant-based
resampling procedure combined with novel metrics to assess fitness, precision
and generalisation of the learned neural network models. In our experimental
evaluation, we rely on six relatively (and purposefully) trivial process models
that reflect essential control-flow constructs in business processes. By doing so,
we can investigate the relation between types of control-flow behaviour (e.g.
AND, XOR, and OR split/join, loops, long distance dependencies etc.) and the
capacity of deep learning models to truly learn these structural patterns. Our
findings indicate that even for such trivial models, and in particular for models
with parallel behaviour, rigorous application of overfitting countermeasures is
required to have any chance of steering the neural network model towards the
goal of truly learning process model structure, more so when compared with
other domains in which such networks have been applied. These findings have
important consequences, given that real-life models and event logs are usually
orders of magnitude more complex than the models used here. As such, we
believe that this paper opens up an important agenda for further investigation.

Our paper is organised as follows. First, Sect. 2 discusses some relevant related
work. Next, our proposed framework is explained in Sect. 3. In Sect. 4, the care-
fully selected artificial process models are proposed, before discussing the hyper-
parameter grid search and presenting the experimental results. What follows is
a brief discussion of the results and their implication (Sect. 5). The paper is con-
cluded in Sect. 6, which also provides an outlook towards future research. The
synthetic data, results and trained models used and presented in this paper are
available online1.

2 Related Work

In recent years, within the field of Predictive Process Monitoring (PPM), a
lot of attention has been attracted by deep learning-based solutions, most fre-
quently Recurrent Neural Networks (RNN) [3,4,6,9,15,16]. Given the scope of
this paper, we limit this section to a selection of PPM works addressing the next
event prediction problem, i.e. given a prefix of activities, produce a probability
vector corresponding with the likelihood of each respective activity occurring as
the next one. In their pioneering work, Tax et al. [15] propose to use a Long
Short-Term Memory network (LSTM) to predict next events and correspond-
ing timestamps, thereby relying on one-hot encoding of the activity labels as
input for the LSTM, together with their timestamps. Moreover, Evermann et
al. [6] also propose the use of LSTM networks, specifically to predict full case
suffixes rather than the next event only. However, they reduce the input dimen-
sion of the event labels by using vector embeddings, and include attributes such

1 https://github.com/jaripeeperkorn/GeneralizationPPM.

https://github.com/jaripeeperkorn/GeneralizationPPM
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as resources. Camargo et al. [4] use separately trained embeddings of categor-
ical variables and timestamps in order to predict both next events as well as
future timestamps. Moreover, Lin et al. [9] use an LSTM encoder-decoder and
a modulator structure to predict next events and suffixes, using both control-
flow information as well as other event attributes. Recently Taymouri et al. [16]
proposed a Generative Adversarial Networks approach to the problem of next
event, suffix and timestamp prediction showing promising results. In Bukhsh [3]
a transformer network approach is proposed to the problem of next event predic-
tion. Transformer networks have recently been used to beat several benchmarks
in other fields like Natural Language Processing [18].

Despite the drastic increase in research attention, no studies have investigated
whether RNN-based architectures can actually learn process model structure.
As such, it is unclear whether the generalisation that is expected from plain
process discovery techniques is realised by neural network models. It has been
shown that RNNs are universal approximators [12]. And while Siegelmann and
Sontag [13] showed in 1995 already that RNNs are Turing complete, i.e. for any
given computable function there exists a finite RNN to compute it, there is still
much work on understanding what makes functions difficult to learn, let alone
under the constraint of data incompleteness as is the case with business process
data sets [11]. That is, whilst it might be clear that RNNs are capable to fit
the given training data in the form of process cases, the central question we
investigate here is whether such models can be constructed so that they are also
able to generalise towards making good predictions for new unseen control-flow
behaviour, which is highly likely to occur once a process starts to exhibit even
a limited amount of complexity. In other words: do these models memorise the
training data or truly learn the process structure?

3 A Framework for Assessing the Generalisation
Capacity of RNNs

With the goal of this paper in mind, we set out on developing a framework that
is capable to assess to what extent RNN-based architectures are capable to learn
process model structure. For an introduction on how RNNs work and how they
can be used in predictive process monitoring, the interested reader is referred
to [6]. This framework relies on a specific resampling procedure combined with
a set of new metrics to quantify recall, precision and generalisation. Recall that
we restrict ourselves to next event prediction models, however, an extension to
suffix prediction is trivial. Moreover, given that many remaining time or outcome
prediction models also rely on incorporating control-flow information, it can be
expected that these models too would benefit from proper generalisation, if at
all possible.

3.1 The Resampling Procedure

A schematic overview of the assessment framework is shown in Fig. 1. We start
from a (simple) process model and play-out the model to obtain a corresponding
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event log. We assume that we work in a setting where the number of variants (i.e.
distinct traces in terms of the events and their order), is bounded. Therefore,
in case of loops, we assume a maximum number of times a certain marking
can be visited. Once the event log is obtained, we determine all of its unique
control-flow variants. Next, a resampling procedure at the level of variants is
performed to construct training and test sets. For instance, one can decide to
simply retain all cases pertaining to one single variant in the test log, resulting
in a “leave-one-variant-out cross-validation” (LOVOCV).

Fig. 1. Overview of the setup.

Thus, starting from the complete event log, which is referred to as the
Train+Test log (Tr+Te), we single out all cases pertaining to one or more vari-
ants to form the Test log (Te). The remaining variants form the Training log
(Tr), which is split into all possible prefixes to train the model. From this set
of prefixes, a Validation log (Val) is created, mainly to allow the training proce-
dure of the LSTMs to use early stopping. For now, we simply perform a random
selection of 20% of the Training log ’s prefixes. The Training and Validation
log ’s prefixes are then used to train a model for next event prediction using the
observed next events of every prefix as the target. Accordingly, the model is
trained to predict for every prefix what the subsequent event’s activity label will
be. As such, the model outputs a probability for each of the different activities
in the activity vocabulary. Once trained, we use the RNN model to simulate a
Simulated log (Sim) as follows. We start by presenting the RNN with a prefix
only containing the beginning of sequence token (BOS). As output, the model
returns a probability for each of the possible activity labels to be the next event.
Using these probabilities, we sample a possible next event, to be appended to
the existing prefix. Subsequently the prefix is used to sample a next event in the
same way. We do this until we reach the end of sequence token (EOS) or a certain
predetermined maximum size is reached. LSTMs have been used as generative
models similarly in [4]. The idea is that, by simulating an event log from the
RNN, we should ideally obtain an event log that is behaviourally highly similar
to the event log that we started from. That is, we expect that, even when leav-
ing out one single variant, the RNN should be able to (1) generalise this variant
from the observed variants in the Training log, (2) avoid creating variants that
were not observed in the original event log (Train+Test), and (3) contain all the
variants present in the Training log.
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3.2 Metrics

Accordingly, we define novel recall, precision and generalisation metrics that can
quantify these three criteria. Based on the Training (including Validation), Test
and Simulated logs, we define the following metrics:

Fitness =
∑

v∈V ar(Tr)

Min (Occ(v, Sim), Occ(v, Tr))
|Tr| (1)

Precision =
∑

v∈V ar(Sim)

Min (Occ(v, Sim), Occ(v, Tr + Te))
|Sim| (2)

Generalisation =
∑

v∈V ar(Te)

Min (Occ(v, Sim), Occ(v, Te))
|Te| (3)

with |L| denoting the number of traces in an event log L, Var(L) denoting the
set of variants of an event log L and Occ(v,L) a function denoting the frequency
or multiplicity of a variant v in an event log L.

Each of these metrics outputs a value between 0 and 1. Beware that these
metrics make use of nominal counts, so they only make sense when the original
Train+Test log and the Simulated log contain the same amount of traces. If not,
the metrics will have to be corrected. First of all, the fitness metric measures
to what extent all of the variants present in the Training log are also present in
the Simulated log. This is because we want the RNN to learn and replicate all
of the behaviour found in the Training log. Moreover, we expect that the fre-
quency of each variant in Simulated log is, more or less, equal to the frequency
of observation of that variant in the Training log. Therefore, the fitness mea-
sure will punish if a certain variant is under-represented in the Simulated log.
Secondly, the precision metric measures whether the RNN allows for too much
behaviour, i.e. traces that have not been seen in Train+Test log. Moreover if cer-
tain correct variants are over-represented in the Simulated log the precision will
also decrease. Finally, the generalisation metric quantifies to which extent the
RNN is able to generalise, i.e. whether it is able to learn and reproduce correct
but unseen behaviour. Therefore, the metric measures whether the frequency of
occurrence of the unseen variant(s) in the Test log is actually reproduced to the
same level in the Simulated log.

4 Experimental Evaluation

With the introduction of our assessment framework, consisting of a variant-level
resampling procedure combined with these three metrics, we can now devise an
experimental setup to evaluate the generalisation capacity of RNNs. While it is
theoretically possible to perform such a assessment using complex artificial and
even real-life logs and models, we opt to focus on simple models, as these provide
a sine qua non condition in terms of investigating whether such models can deal
with the aforementioned control-flow patterns at all.
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4.1 Process Models

Hence, we generated artificial process models that represent main modelling
constructs. In order to obtain the full event log (i.e. the Train+Test log), we use
the play-out functionality of the Python Process Mining library PM4PY [2]. The
models are depicted as Petri nets in Fig. 2. Model 1 is a simple linear model with
a parallel gateway consisting of five parallel branches containing each one single
activity. This process has 120 (equally likely) control-flow variants. In Model
2, a process model with 128 (equally likely) control-flow variants is created by
sequencing seven exclusive OR (XOR) splits. Similarly, Model 3 consists out of
eight XOR splits, but with a long-term dependency added in. Model 4 consists
of three inclusive OR (IOR) splits, where at least one, but possibly both of
the two activities have to occur. This leads to in total 64 control-flow variants.
Model 5 shows a process which has two parallel paths, consisting of five activities
each, leading to 125 control-flow variants with varying likelihood. Finally, Model
6 shows a process with three different possible loops (containing two activities
each). The amount of possible control-flow variants is technically unlimited, so
that we restrict each marking to be visited a maximum of three times, we keep
27 different variants.

F

E4

• A B

E5

D GE1 HC

E2

I

E3

Model 1: Parallel Model with 120 variants.
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Fig. 2. Process models used in the experimental evaluation.

4.2 Hyperparameter Search

The generalisation capacity of RNNs strongly depends on tuning its hyperpa-
rameters. This is an essential part of the training procedure. An overview of
the investigated hyperparameters can be found in Table 1. A maximum prefix
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length of size 10 was used (with longer prefixes left-truncated), unless explicitly
mentioned otherwise. The model’s weights are optimised using the Adam [8]
optimiser with a mini-batch size of 128 prefixes, using a starting learning rate
of 0.005. The learning rate is decreased when the accuracy on the validation set
has not decreased for over 10 epochs and the training is stopped (early stopping)
when the accuracy has not increased for over 30 epochs (or when a maximum
of 600 epochs is reached). The loss function used is categorical crossentropy.
For clarity, the RNN is trained optimising accuracy in a “classical” sense, i.e.
whether the activity predicted by the model to be the most probable activity is
actually correct. As mentioned earlier, the usage of an embedding layer is the
first binary hyperparameter. Where applicable, the dimension of the embedding
was set to � 4√Act. Voc. Size�, as was done in [4] (note that the embeddings were
pretrained independently from the RNN in that work, though we used this value
as a starting point in this investigation). The number of stacked LSTM layers
is varied between one and two, with the layers’ hidden dimension size set to 16,
32 or 64 units. Furthermore, we experiment with different values for overfitting
countermeasures like regularisation and dropout. We try five different values for
L1 (Lasso) and L2 (Ridge) regularisation [20], which adds a small penalty to
the model based on the absolute or squared value of the weights respectively.
In order to limit the scope of our grid we change L1 and L2 together. Lastly
we also added the dropout hyperparameter [14], in which, per epoch, a fraction
of the nodes is selected to be ignored during training, reducing the likelihood
of overfitting to the training data. In this paper we experiment with multiple
dropout values (including no dropout). There are multiple ways to introduce
dropout when using RNNs related to the internal structure of such units; in
this work we chose to add dropout to the output of the LSTM layer (note that
dropout on the inputs would lead to removing certain steps of a prefix which is
undesirable in our setting). We omitted the use of batch normalisation due to
its limited effectiveness when applied to RNNs [5]. In future work, however, we
could explore the effectiveness of Recurrent Batch Normalisation [5] and Layer
Normalisation [1]. The neural network implementation was created using the
Python library Keras2.

Table 1. The hyperparameter values used in the grid search.

Hyperparameter Values

Embedding Layer Yes, No

Number of LSTM Layers 1, 2

LSTM Layer Size 16, 32, 64

L1 and L2 0.0, 0.00001, 0.0001, 0.001, 0.01

Dropout 0.0, 0.2, 0.4

2 https://keras.io.

https://keras.io
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This led to 180 different hyperparameter configurations to iterate over. Based
on some preliminary exploration, it was noticed that an RNN, without explicit
overfitting countermeasures like regularisation and dropout, struggled to gener-
alise for the process in Model 1. In order to contain computational time, and
because the goal is to obtain a RNN that is able to generalise different types of
behaviour at the same time, we opted to only perform one grid search on the
event log obtained from this process model. The best hyperparameter settings
for Model 1 were subsequently used and applied to all other models. For obtain-
ing optimal hyperparamaters using Model 1, we conducted a tailored leave-one-
variant-out cross-validation (LOVOCV) procedure as introduced above. More
specifically, we generated a Train+Test log consisting of 12.000 traces for each
model. In each LOVOCV iteration, we singled out all cases pertaining to one
single variant into the Test log. For every hyperparameter combination, we per-
formed the tailored LOVOCV eight times, each time with a different variant in
the test set. In each iteration, we obtained a Simulated log of equal size of the
original Train+Test log. Based on these eight LOVOCV iterations, we calculated
the three different metrics defined above, and, for each setting, took the average
over the eight iterations. Note that we use the Test log for this hyperparameter
tuning, rather than the (cross) validation log as is usual. Since we are not trying
to compare the predictive quality of different approaches as such, this is justi-
fied. We choose to continue working with the setting showing the highest average
score over all three metrics, i.e., no embedding layer, one LSTM layer of hidden
size 32, an L1 and L2 of 0.001 and a dropout of 0.4. Because this model was only
trained on the data of one simple process model, and the differences between
certain settings were slim, we however do not want to claim this setting is ideal
for each predictive process monitoring problem. However in the context of this
investigation rather than optimisation experiment, we continue with this setting
in the rest of the paper. Not shown here, but apparent from the hyperparameter
search was: (i) for all three metrics a regularisation value of 0.01 resulted in low
scores, (ii) no or limited application of overfitting countermeasures leads to high
fitness and precision (as expected) but weak generalisation scores. We like to
stress that it is therefore of the utmost importance to tune the hyperparameters
correctly when training RNNs.

4.3 Results

Subsequently, we then repeat the experiment using the settled hyperparameter
configuration for all models. For each of these, we applied a LOVOCV setup
again, working with Test logs containing a single variant. As for some models
the frequency of the variants is not evenly distributed and to obtain more robust
results, we now conducted an exhaustive LOVOCV, i.e. the procedure is repeated
as many times as the number of variants in the event log, so that every variant
is used once to form the Test log. In the case of Model 6 (loops), we restricted
the analysis to variants for which the loop is taken a maximum of three times
(27 variants). This was however not restricted neither in the play-out itself, nor
in the simulation with the trained LSTM, leading to more different variants in
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these logs. In the experiment for Model 3 (including the long-term dependency)
the prefix length of the input of the RNN was set to the maximum trace length
minus one instead of the default of 10 because it needed to be long enough in
order to have a chance of dealing with the long-term dependency. The average
values over all variants for each of the three metrics can be found on the left side
of Table 2. The error intervals are calculated by taking the standard deviation
over all the metric values. Various interesting observations can be made from
the results. First, it can be noticed that models with parallel behaviour (Model
1, 4 and 5) are problematic for the LSTMs. One can observe some level of
generalisation, but given the extremely lenient LOVOCV-setup, it is remarkable
that the generalisation scores go well below 0.80. On the other hand, the LSTMs
show to be much more robust when dealing with XOR-splits (Model 2 and 3)
and loops (Model 6). Also the long-term dependency in Model 3 seems to be
handled well by the LSTM models. The standard deviations are significantly
higher for the generalisation scores as this metric seems to be more prone to
fluctuations. This is most likely due to the changing Test log, though should be
further investigated.

Up until this point we have used the most trivial setting, i.e. the leave-one-
variant-out Test log. However, one might expect that LSMTs should be able to
cope with larger fractions of unseen behaviour. Therefore, this final evaluation
part addresses the use of larger test sets, in particular, leaving out 20% of the
control-flow variants from the Training log. We repeated this three times, with
each time 20% randomly selected variants. The average of the metric values for
each of these experiments can be found on the right side of Table 2. The error
intervals are calculated by taking the standard deviation over the metric values
for the three different experiments. When comparing this with the results from
the LOVOCV experiment we can see that for some models, precision seems the
decrease a bit. This might suggest that because the model has less behaviour to
learn the correct process model structure from, it fares worse, allowing for some
extra incorrect behaviour. Fitness seems not to be affected. Generalisation also
results in lower values when having a more diverse Test log. This is especially
apparent in the process models which already yielded low generalisation scores
above, like Model 4 and 5. Again the standard deviation is higher when calculat-
ing the generalisation, because it is highly dependent on which variants exactly
were in the Test log, and of the apparently more fluctuation-prone behaviour of
this metric.

5 Discussion

From the hyperparameter tuning, it appears that overfitting countermeasures
like regularisation and dropout are important parameters for constructing pre-
dictive RNNs. However, precise tuning is crucial, and we therefore urge other
researchers to perform a good hyperparameter experiment when training RNNs
on predictive process monitoring tasks. This may require the inclusion of resam-
pling methods as introduced here, as opposed to only holding out randomly
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Table 2. The results on the different process models, averaged over all leave-one-
variant-out experiments with every different control flow variant. And the results on
the different process models when taking a Test log consisting of 20% of the control
flow variants. Average over three different randomly selected Test logs.

LOVOCV Leave 20% out

Model Prec. Fit. Gen. Prec. Fit. Gen.

Model 1 0.94 ± 0.00 0.94 ± 0.00 0.79 ± 0.12 0.89 ± 0.01 0.93 ± 0.00 0.72 ± 0.04

Model 2 0.94 ± 0.00 0.94 ± 0.00 0.92 ± 0.09 0.92 ± 0.01 0.93 ± 0.01 0.89 ± 0.04

Model 3 0.94 ± 0.00 0.94 ± 0.00 0.91 ± 0.10 0.92 ± 0.02 0.93 ± 0.01 0.85 ± 0.05

Model 4 0.95 ± 0.01 0.95 ± 0.00 0.75 ± 0.13 0.87 ± 0.03 0.94 ± 0.01 0.61 ± 0.14

Model 5 0.92 ± 0.01 0.92 ± 0.01 0.68 ± 0.21 0.84 ± 0.01 0.94 ± 0.01 0.47 ± 0.05

Model 6 0.93 ± 0.01 0.93 ± 0.01 0.92 ± 0.11 0.92 ± 0.01 0.93 ± 0.00 0.83 ± 0.12

selected prefixes. Please observe that the “best” hyperparameters were selected
on the test observations for Model 1. It can be expected that standard tuning
on a random validation set and thereby only optimising accuracy of next events
(and not the metrics presented here), is unlikely to result in the same outcome.

LSTMs seem to be less suited for generalising process models with parallel
behaviour. When the degree of incompleteness is increased, i.e. the amount of
variants not seen by the RNN during training is expanded, LSTMs seem to strug-
gle more. The generalisation, as well as the precision, decreased when increasing
the amount of variants in the test set, when compared with the LOVOCV exper-
iments.

It could be interesting to investigate to what extent the generalisation and
overfitting problems could affect predictions of real-life processes, considerably
more complex than the artificially created data discussed in this work. Extra
overfitting measures may need to be included as well in the future. One option
could be found in using a similar resampling method as used here in order to con-
struct the Test log, or a hybrid approach, to create the Validation log. Another
course of action would be to alter the loss function used to train the RNN. Impor-
tant to check further is whether low generalisation scores of merely memorising
and overfitting models also lead to less accurate next event predictions. We still
assume proper generalisation would be beneficial in predictive task, especially
with increasing complexity, and theoretically the power of deep learning models,
actually lies in their generalisation capability [7]. Moreover if overfitting would
not be an issue, more explainable statistical models could easily be found as well,
as opposed to the black-box LSTMS, with comparable accuracy, and preference
should be given to these more explainable models.

6 Conclusion and Future Work

This paper addressed the so far largely uninvestigated problem of neural net-
works’ capability to learn the behaviour of the underlying process behind an
event log. By introducing a new framework that combines a variant-level resam-
pling scheme with three novel metrics, we were able to investigate to what extent
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LSTMs trained to predict the next event of a process execution are general, fit
and precise. By applying this framework on several simple process models, it was
shown that LSTMs can only generalise parallel behaviour to a certain extent.
Even in the most lenient setting, the LOVOCV, the generalisation metric does
not return values close to optimal. When increasing the amount of variants in the
Test log, unseen by the LSTM during training, generalisation decreases further,
as well as precision. This paper opens up the door for future work in predictive
process monitoring to include explicit generalisation checks as well, in model
selection, hyperparameter tuning and testing.

The experiments in this work were limited to only use control-flow behav-
ior. However, since the generalization behavior investigated in this paper is only
control-flow like, this choice is justified. Nevertheless, it might be interesting to
investigate the effects of adding more dimensions (like timestamps and resource)
to the predictive models. In future work, more synthetic logs could be investi-
gated deepening the relation between process model behaviour and RNN gener-
alisation. A more rigorous theoretical elaboration, similar to [17], might provide
some interesting insights as well. Furthermore, it should be investigated whether
new recommendations can be proposed regarding how to optimally sample train-
ing and validation sets. Also, it would be interesting to apply these metrics on
models trained on real-life event logs, as opposed to only synthetic data. In this
paper it was opted to first work with synthetic data since it would allow us
to test different types of behaviour independently. However real-life logs are in
general more complex, and in this way might present other difficulties. When
doing this, it might be useful to expand the hyperparameter grid and include
extra parameters such as Layer Normalization [1] and Recurrent Batch Nor-
malization [5], and to ameliorate the overfitting measures applied in this work.
Other future work can address a comparison of results presented here with the
findings in recently proposed work by [19], and similarly test multiple encoding
techniques like hash encoding. Moreover, an additional investigation of the atten-
tion mechanism seems worthwhile [3]. In addition, a similar experiment could be
applied to alternative architectures including Convolutional Neural Networks,
Transformer Networks, and GAN-style approaches. This work was also limited
to only include next-event prediction models, thus it might be useful to expand
the metric definitions to also be able to evaluate full suffix prediction (or even
remaining time prediction). Finally, the application of neural networks to formal
languages has been investigated in other domains, e.g. in [10], which could lead
to more fundamental research on grammar learning capabilities of RNNs.
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Abstract. Process mining techniques use event data to describe busi-
ness processes, where the provided insights are used for predicting pro-
cesses’ future states (Predictive Process Monitoring). Remaining Time
Prediction of process instances is an important task in the field of Pre-
dictive Process Monitoring (PPM). Existing approaches have two key
limitations in developing Remaining Time Prediction Models (RTM): (1)
The features used for predictions lack process context, and the created
models are black-boxes. (2) The process instances are considered to be
in isolation, despite the fact that process states, e.g., the number of run-
ning instances, influence the remaining time of a single process instance.
Recent approaches improve the quality of RTMs by utilizing process con-
text related to batching-at-end inter-case dynamics in the process, e.g.,
using the time to batching as a feature. We propose an approach that
decreases the previous approaches’ reliance on user knowledge for discov-
ering fine-grained process behavior. Furthermore, we enrich our RTMs
with the extracted features for multiple performance patterns (caused
by inter-case dynamics), which increases the interpretability of models.
We assess our proposed remaining time prediction method using two
real-world event logs. Incorporating the created inter-case features into
RTMs results in more accurate and interpretable predictions.

Keywords: process mining · predictive process monitoring ·
remaining time prediction · inter-case dynamics behavior

1 Introduction

Remaining time prediction approaches learn from historical process executions
and build prediction models for running process instances, i.e., cases, based on
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Fig. 1. Our proposed framework for inter-case-aware RTMs. Patterns are discovered
after detecting uncertain segments, i.e., segments causing high prediction errors due to
inter-case dynamics. RTMs are trained using the extracted features from the patterns
within uncertain segments.

the extracted features from the event data. Many approaches have been suggested
to solve the remaining time prediction problem [17]. However, most proposed
approaches have considerably high prediction errors. Based on [17], the best per-
forming model using an LSTM neural network [10] showed a prediction error of
178.4 days on average for the Road Traffic Management (RF) event log [9]. These
approaches also only consider control-flow-related aspects of processes and indi-
vidual case properties, i.e., intra-case properties, while making predictions [12]. A
process also has other dimensions associatedwith it [13]. For instance, specific rules
determining scheduling and assignment of limited resources, queuing mechanism,
and decision logic in the process create inter-case dependencies within the perfor-
mance of process instances. Moreover, most of the effort put into this research area
has focused on applying new predictive modeling techniques, which create black-
box prediction models. Considering inter-case along with intra-case process fea-
tures in RTMs increases the explainability, interpretability, and accuracy of the
prediction [8]. Therefore, we aim to improve the quality of RTMs and introduce
more interpretability in the predictions. The accuracy of a RTM which is unaware
of inter-case behavior is substantially impacted if cases in a process segment, i.e.,
a pair of related activities, are processed in a batch, First-In-First-Out (FIFO), or
other patterns. The prediction accuracy decreases as a case passes through such
segments indicating that RTM is uncertain about the underlying process behavior
in such segments. We call these process segments uncertain segments. Therefore,
recognizing all uncertain segments and translating their various inter-case patterns
of process execution into features for training RTMs increases prediction quality.

In this paper, we present a three-step approach for developing inter-case
dynamics aware RTMs: (1) Identifying process segments that cause high predic-
tion errors due to inter-case dynamics, i.e., uncertain segments. (2) Discovering
insights about the underlying patterns, e.g., batching, that leads to inter-case
dependencies within the detected segments. (3) Transforming derived insights
into features and incorporating them in RTMs to improve the quality of predic-
tions. For instance, the waiting time for the batching in a segment is transformed
into a feature and introduced into the RTM. We evaluate the prediction errors of
RTMs without incorporating inter-case dependencies, such as batching behavior
in a process segment, as shown in Fig. 1, and identify uncertain segments that
involve inter-case dynamics. We continue by extracting the features associated
with the observed patterns in the uncertain segments.
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We introduce preliminaries and the related work in Sect. 2. In Sect. 3, we
present our main approach. We evaluate the approach in Sect. 4 using real event
logs, and Sect. 5 concludes this work.

2 Preliminaries and Related Work

In this section, we introduce the necessary concepts and related work required
to understand the approach presented in this paper.

2.1 Related Work

RTM approaches can be classified into three broad categories [17]. Process aware
approaches make predictions using explicit process model representations such as
transition system [1]. Process agnostic approaches typically use machine learning
(ML) methods [14] to make predictions. Recent process agnostic approaches pre-
dominantly make use of sophisticated neura!l network architectures like LSTM
[16] and explainable AI methods [5] to develop RTMs. Hybrid approaches like [11]
combine capabilities of both categories by exploiting transition systems that are
annotated using a machine learning algorithm. However, most approaches across
all three categories only consider the intra-case perspective for predictions.

RTM approaches based on queuing models [15] and supervised learning [14]
utilized the inter-case dimension in predictions. They create features on the basis
of queuing theory like case priority and open cases of similar type. However,
these approaches assume FIFO queuing behavior throughout the entire process.
Two recent PPM approaches [3,8] use performance spectra [2] to learn inter-case
dynamics present in the process without any prior assumption. Denisov et al.
[3] presented a novel approach to predict the aggregated performance of non-
isolated cases that utilize performance-related features. Klijn et al. [8] presented
a novel RTM approach that is aware of batching-at-end dynamics. In this paper,
we extend the process agnostic RTM approach presented in [8] by considering
inter-case dynamics caused by non-batching, batching-at-start patterns too. We
use and improve the fine-grained error analysis technique proposed in [8] to
identify inter-case dynamics by limiting manual intervention.

2.2 RTM Background

RTM approaches predict the remaining time to completion of an ongoing process
instance, i.e., case, based on process execution data of completed cases. Process
execution of a completed case is recorded as a non-empty sequence of events
(e), i.e., σ = 〈e1, .., en〉 or trace. An event log L is a set of completed traces. Let
A, T , E be the universe of activities (event classifiers), timestamps and events.
Each event e∈ E consists of mandatory and additional attributes. Let AN be the
set of attribute names. For an∈AN , we define #an(e) as the value of attribute
an for event e. An event e has mandatory attributes timestamp #t(e)∈T at
which e occurs and activity #act(e)∈A that occurs during e.
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We first need to understand the general steps to develop a RTM described
in [17]. In the offline or training phase, the first step is to prepare the input
data, i.e., event log. Since a RTM makes prediction for incomplete traces, it
trains on prefixes extracted from traces in L. A prefix is extracted by tak-
ing the first k∈N events from a completed trace (σ = 〈e1, .., en〉) using function
hdk(σ)= 〈e1, .., ek〉, k ≤ n. The resulting prefixes are collectively known as a pre-
fix log L∗ of L. Therefore, data preparation includes cleaning the data, creating
a prefix log and feature engineering. Features like weekday or sojourn time are
extracted from event data and categorical features are encoded.

A RTM can be instantiated based on three main parameters, methods for
grouping similar prefixes into buckets, prefix encoding methods, and used predic-
tion techniques. For instance, RTM = (p, a, x) represents that the model’s prefix
bucketing method is based on similar prefix lengths (p), the encoding method
is aggregating data of all prefix events (a), and ML algorithm is XGBoost (x).
After training, the models are tuned using techniques like hyperparameter opti-
mization. Finally, the optimal model’s prediction accuracy is evaluated using
aggregated metrics, e.g., Mean Absolute Error (MAE).

2.3 Performance Spectrum with Error Progression

To identify process segments subject to high prediction errors due to inter-
case dynamics, Klijn et al. [8] introduced a visual analysis technique, Per-
formance Spectrum with Error Progression (PSwEP). It uses the performance
spectrum (PS) [2], which maps the performance of each case passing through
a segment over time. A process segment (a, b)∈A × A can be defined as any
two successive steps in the process, e.g., a step from activity a to activity b.
For traces of form 〈..., ei, ei+1, ...〉, where #act(ei)= a,#t(ei)= ta,#act(ei+1)= b,
and #t(ei+1)= tb, we observe an occurrence of a segment (a, b) from time ta to
tb. Each occurrence of segment (a, b) representing a case is plotted in a PS as
a line from (ta, a) to (tb, b). In PSwEP, segment occurrences within a PS are
classified based on the error progression of the case while passing through the
segment. Let P be the set of predictions made on test data using RTM . Each
prediction prk∈P corresponds to a prediction made for prefix hdk(σ)= 〈e1, .., ek〉
at point of prediction #act(ek)= ak and tprk = #t(ek), i.e., the time moment of
prediction.

Fig. 2. PswEP for (Add Penalty (AP), Send
for Credit Collection (SC)) in RF: error
decrease (red), error increase (blue).(Color
figure online)

yprk and yprk denote the actual
and predicted outcomes of prk. To
measure the error progression of seg-
ment occurrence (ak, ak+1) linked
to σ, the prediction errors at ak

and ak+1 are compared. The dif-
ference in relative absolute errors
DRAE(raek, raek+1) = raek −
raek+1 with raek=|yprk − yprk |/yprk
is measured. If the prediction error
decreases for a segment occurrence, i.e., DRAE > 0 this plotted line is colored
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red in the PSwEP. If the prediction error increases, i.e., DRAE < 0 the line is
colored blue. Figure 2 shows PSwEP of segment (Apply Penalty (AP), Send for
Credit Collection (SC)) in the RF event log.

3 Approach

In this section, we will discuss the main approach proposed to develop an inter-
case-dynamics-aware RTM. In Sect. 3.1, we discuss the proposed techniques to
automatically identify uncertain segments. In Sect. 3.2, we discuss the process of
identifying and deriving insights about inter-case dynamics. Finally, in Sect. 3.3,
we propose ways to create inter-case features by utilizing derived insights.

3.1 Detecting Uncertain Segments

Measuring Uncertainty of a Process Segment. To identify uncertain seg-
ments, we need to measure the uncertainty of each process segment. To do so,
we first measure the DRAE (Sect. 2.3) of individual segment occurrences linked
to predictions made using RTM on test data. Table 1 shows an example of how
individual predictions are aligned with segment occurrences and the error pro-
gression of each occurrence is classified. A decrease in error, i.e., DRAE > 0
for a case passing through segment (a, b) implies that after the occurrence of
activity b the remaining time prediction improves. This decrease could indicate
some uncertainty between activity a and b, which gets resolved after activity
b completes. An increase in error implies that after the occurrence of activity
b, the prediction model becomes more unsure about how the partial trace will
proceed. If prediction error remains the same, i.e., DRAE = 0, there is no clear
indication of uncertainty within the process segment. We can either ignore such
rare cases or include them as error decrease, where we consider the latter.

Based on above insights, we use three aggregated metrics to quantify uncer-
tainty of segments. For each segment (S) linked to P, we measure (1) observa-
tions or total occurrences linked to S in P, (2) decrease cases or total occurrences
linked to S with DRAE ≥ 0, and (3) increase cases or total occurrences linked
to S with DRAE < 0. Table 2 is the result of applying the above aggregations
to occurrences of segments found in Table 1.

Table 1. Error progression for the occurrence
of segments linked to predictions.

Case ID Prefix tprk yprk yprk
rae Segment DRAE Error

Progression

c1 〈a〉 1 6 10 0.667

c1 〈a, b〉 2 5 2 0.600 (a, b) 0.007 decrease

c1 〈a, b, c〉 4 3 2 0.333 (b, c) 0.267 decrease

c1 〈a, b, c, d〉 4 3 2 0.333 (c, d) 0 same

c1 〈a, b, c, d, e〉 7 0 0 ∞ (d, e) −∞ increase

c2 〈a〉 3 11 14 0.272

c2 〈a, b〉 5 9 14 0.555 (a, b) −0.283 increase

c2 〈a, b, c〉 14 2 3 0.500 (b, c) 0.055 decrease

Table 2. Measuring uncertainty
of each segment by aggregating its
occurrences to calculate observa-
tions, decrease cases, and increase
cases.

Segment Observations Decrease

Cases

Increase

Cases

(a, b) 2 1 1

(b, c) 2 2 0

(c, d) 1 1 0

(d, e) 1 0 1
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Selecting the Most Uncertain Segments. We define a mapping function
uS : N × R −→ [0, 1] to select a subset of process segments for which inter-case
features could be created (Eq. 1). The inputs are the number of observations
(o) and the ratio r = d/max(1, i) of decrease cases (d) to increase cases (i)
for segment S (as shown in Table 2). Output 1 indicates the segment is highly
uncertain. Note that ideal candidates for uncertain segments are those where
decrease cases are almost the same or more than increase cases, i.e., their ratio
should be greater than some threshold tr. The threshold for the number of
observations (tobs) indicates the occurrences of the segments. These thresholds
can be set for each process individually.

uS(o, r) =

{
1 if o ≥ tobs and round(r) ≥ tr

0 otherwise
(1)

Let SG be the set of all segments in a process and SGstart be the set of
starting segments. Therefore, we apply uS to S∈SG \ SGstart based on some tr
and tobs and select set of segments U for which uS(o, r)= 1. Removing starting
activities in traces is due to the fact that the RTM has too little information,
and the prediction error is likely to decrease when the second activity occurs.
We use the RF event log [9] as the running example. First, predictions are
made on the last 20% (temporally split) of the event log using a RTM, here
RTM = (p, a, x). Then, these predictions are used to measure the uncertainty
of each process segment and uS is applied to all non-starting segments. We set
tr = 1 and tobs > μ, e.g., tobs = 2 ∗ std where μ, std are the mean and standard
deviation of segment occurrences. The selected uncertain segments are (Send
Fine (SF), Insert Fine Notification (IF)), (Insert Fine Notification (IF), Add
Penalty (AP)) and (Add Penalty (AP), Send for Credit Collection (SC)). The
details of selecting the most uncertain segments presented here1.

3.2 Identifying Inter-case Dynamics in Uncertain Segments

In order to diagnose causes for uncertainty within segments, first, we visualize
the performance of cases within the process segment using PSwEP (Sect. 2.3).
After that, the observed patterns in the performance spectrum are compared
to a taxonomy [2] to identify underlying process behavior that causes inter-case
patterns within the process segment. We explain the process of deriving insights
for the uncertain segments identified in the running example.

In the shown PSwEP of (SF, IF ) in Fig. 3 (left), two patterns, batching-
at-start and non-batching FIFO behavior are identified. These are elementary
patterns related to the order of case arrival. We notice uncertainty (as shown
by the red lines) for non-batched cases. Therefore, RTM is currently not aware
that non-batched cases are processed much faster than batch ones. Batched
cases within the segment (Fig. 3) are also classified using red. The uncertainty
concerning these cases is caused by the prediction model’s lack of awareness

1 https://www.pads.rwth-aachen.de/go/id/qcekn/lidx/1.

https://www.pads.rwth-aachen.de/go/id/qcekn/lidx/1
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about batching-at-start dynamics. The order of lines in PSwEP of (AP, SC)
presented before in Fig. 2 clearly shows that the inter-case pattern is caused
by batching-at-end. The prediction model is currently unaware of this inter-case
dynamic within the process segment. In PSwEP of (IF, AP ) in Fig. 3 (right),
we observe a FIFO with a constant time pattern in the order of case arrival. The
performance of a case is strongly correlated to the previous case that passed
through the segment. We also know that there are two possible activities, Add
Penalty (AP) or Insert Date Appeal to Prefecture (ID), that can occur after
Insert Fine Notification (IF) and the time that cases wait within the segments is
significantly different. Therefore, incorrectly assuming the path of a case arrives
at IF impacts the remaining time prediction. We are able to predict the path
by observing the recent performance of cases in (IF, AP ) and (IF, ID) w.r.t.
inter-case dependencies. Lastly, across three segments, we observe changing the
density of lines indicating varying workloads.

Based on the above derived insights, we define the abbreviated inter-case
pattern(s) identified for segments (SF, IF ), (IF, AP ) and (AP, SC) as
R1 =non − batching, batch(s), R2 =non − batching and R3 = batch(e) respec-
tively.

Fig. 3. PSwEP for segments (Send Fine (SF), Insert Fine Notification (IF)) (left),
and (Insert Fine Notification (IF), Add Penalty (AP)) (right) in the RF event log.

Table 3. The created inter-case features for segment predictions (C = {CS , CS1 ,
CS2 , CS3}) and waiting time (w) within uncertain segments for the RF event log.

Case ID Activity Timestamp ... CS CS1 CS2 CS3 w y

N71924 SF 09-17 08:00 ... 1 1 0 0 1154258.7 39229200.0

S120874 AP 05-09 08:00 ... 1 0 1 0 2808000.3 28080000.0

S86803 SF 11-03 09:00 ... 1 1 0 0 1212661.0 36115200.0

S57422 SC 01-10 09:00 ... 0 0 0 0 0.0 0.0

S70222 CF 09-29 08:00 ... 0 0 0 0 0.0 40438800.0

3.3 Inter-case Feature Creation

As the running example shows, ignoring inter-case dynamics results in high pre-
diction errors for prefixes expected to pass through segment S∈U . Therefore,
we need to provide the RTM information about a prefix being subject to inter-
case pattern R detected in uncertain segment S prior to the occurrence of the
segment. We use these insights to develop inter-case features.
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Fig. 4. The overview of feature creation
process for RF event log with uncertain
segments S1, S2 and S3.

Consider the running example with
three uncertain segments S1, S2, and S3

with inter-case pattern(s) R1, R2 and
R3, respectively, we define the follow-
ing inter-case features: (1) CS∈{0, 1}, to
indicate if a prefix passes through an
uncertain segment S∈U , (2) CS1∈{0, 1},
to indicate that the prefix passes
through S1 with inter-case pattern(s)
R1, (3) CS2∈{0, 1}, to indicate that pre-
fix passes through S2 with inter-case
pattern(s) R2, (4) CS3∈{0, 1}, to indi-
cate that prefix passes through S3 with
inter-case pattern(s) R3, and (5) w, to indicate the waiting time of the prefix in
S∈U , as a result of inter-case pattern(s) R. As a result of the feature creation
step for the running example, Table 3 is generated showing inter-case features.
These features are used to train an inter-case-dynamics-aware RTM. Feature y
is the target feature, i.e., remaining time to completion.

Creating inter-case features for an ongoing case at run-time requires its own
prediction models. We need a model (NS) to predict inter-case features related to
segment prediction and waiting time prediction model (TMS,R) for each uncer-
tain segment S∈U with inter-case pattern(s) R. Figure 4 gives an overview of
the steps involved in creating the models (offline) and utilization of these models
to create inter-case features (at run-time). This process is the extended version
of the presented feature-creation in [8].

3.4 Predicting the Next Segment

Classifier NS should determine if a prefix passes through segment S∈U at the
point of prediction. To build NS, we build a classifier for the next activity
prediction using [18] and modify the outcome to predict the value of segment
prediction inter-case features. Let hdk(σ) be the input prefix with last activity
a for NS. If the next activity predicted is b, we say that the prefix passes
through segment (a, b) at the point of prediction. If (a, b)∈U , then CS = 1, else
we set it to 0. If CS = 1, we set the value of the boolean variable representing
the prefix passing through segment (a, b) as 1. Therefore, if predicted (a, b)= S1,
then CS1 = 1, CS2 = 0, and CS3 = 0. The collective set of predicted features using
NS is called C.
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3.5 Predicting Waiting Time

Fig. 5. Illustration of a single instance
for TMS,R to learn waiting time for
case c1 using performance-related features
extracted from Sh and relevant individual
properties of c1.

In this section, we present general
steps to create a waiting time pre-
diction model (TMS,R) that predicts
how long a case stays in a segment S
with inter-case patterns R. Consider a
case c1 arriving at segment S = (a, b)
at time ta (Fig. 5). Because of inter-
case dynamics, the waiting time w of
c1 will depend on the performance of
other cases in relevant segments in
some recent time interval, i.e., historic
spectrum (Sh) [3] and relevant indi-
vidual properties (intra-case features).
The intra-case feature of c1 and perfor-
mance seen within Sh can be encoded
as feature vector X1..Xn using insights gained about R within S. This allows
us to formulate the waiting time prediction problem as a supervised learning
problem: w = f(X1..Xn)+ε, where function f predicts w from X1..Xn. To learn
f , we create training samples using the sliding window method and apply a
ML method like LightGBM [6] that tries to minimize prediction error ε. Table 4
shows sample data used to train a TMS,R for (IF, AP).

Table 4. Sample data for training waiting time
prediction model (TMS,R) for uncertain seg-
ment (IF,AP ) with pattern R=non−batching.

starting ending pending wl w

cases cases cases

60 37 60 5183000.0 5184000.0

14 10 14 5184000.0 5184000.0

19 17 18 5187000.0 5187000.0

Waiting Time Prediction for
Non-batching Dynamics. In
Sect. 3.1, we learned that w of a
case in (IF,AP ) is influenced by
R = non − batching and varying
workload in segments (IF,AP )
and (IF,AD). To derive workload
related context, we define h in Sh

as the period between arrival of c1
and the last case before it and derive: (1) starting cases or the number of cases
that started (arrived at the segment) in period h, (2) ending cases or the number
of cases that completed (exited the segment) in period h and (3) pending cases
or the number of cases that have started within period h and will complete in
the future. Since, performance of a case in (IF,AP ) strongly depends on the
previous case, we also extract last waiting time (wl), e.g., Table 4.

Waiting Time Prediction for Batching-at-Start Dynamics. w of a case
c1 arriving at (SF, IF) will depend on R = batch(s), non− batching and varying
workload within the segment. Therefore, Sh contains only segment (SF, IF). To
learn performance related to R =non − batching and the workload, we include
features presented in Sect. 3.5. To include features related to R = batch(s), we
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extract features related to the previous batch [7] with batching moment BMl:
(1) least (wmin) and longest waiting time (wmax) in previous batch, (2) previous
batch size and batch size percentile, (3) mean and standard deviation of IBCT
or inter batch case completion time, which is the time difference between the
completion times of two successive cases in the batch and (4) batch type, which
distinguishes batches with less than 2 observations that behave like simultaneous
batches, and (5) CIA or case inter-arrival time which the time between arrival
of c1 and the case before it. We also include relevant intra-case features resource,
expense, points and weekday, month, hour of previous batch. Duration or the
waiting time of the case in the previous segment is also included to distinguish
batched and non-batched cases. However, learning case-specific w is difficult
because batching-at-start cases proceed randomly, i.e., not in the order they
arrived at the batch. To avoid learning this random behavior, we propose building
a TMS,R that predicts the average of expected waiting times for all cases that
arrive along with c1. Hence, the training data will be prepared by extracting the
above-mentioned features and then aggregating (calculating mean) feature values
for instances that correspond to cases arriving simultaneously in the segment.

Waiting Time Prediction for Batching-at-End Dynamics. (AP,SC) con-
tains inter-case dynamics caused by R = batch(e) and varying workload. To con-
sider the varying workload across the segment, we include the features presented
in Sect. 3.5. To learn batching related performance, we extract features wmin,
wmax and CIA described in previous section. Additionally, we include: (1) tlb: or
the time elapsed since the occurrence of the last batch, (2): the mean and stan-
dard deviation of IBIA (inter-case arrival rate) which is the difference between
the arrival times of two successive cases in the batch. We also include intra-case
features month and weekday.

4 Evaluation

4.1 Experimental Setup

We evaluate the proposed approach on two real-life event logs: the RF event log
[9] and BPIC’20 event log [4]. We implemented inter-case feature creation and
PSwEP in Python, which is publicly available2. To train and test RTMs, we use
the benchmark implementation for RTM approaches3 [17]. First, we make predic-
tions with RTM = (p, a, x) for both event logs to identify uncertain segments and
their patterns. The uncertain segments identified from RF event log are (SF, IF),
(IF, AP) and (AP, SC) with inter-case pattern(s) R1 =non−batching, batch(s),
R2 = non−batching and R3 = batch(e), respectively. The two identified uncertain
segments from BPIC’20 event log are (Declaration Final Approved by Admin-
istration (DF), Request Payment (RP)) and (Request Payment (RP), Payment

2 https://github.com/karshreya98/Inter case aware RTM.
3 https://github.com/verenich/time-prediction-benchmark.

https://github.com/karshreya98/Inter_case_aware_RTM
https://github.com/verenich/time-prediction-benchmark
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Table 5. Weighted average MAE (in days) of different RTM models with different
bucketing, encoding and ML methods, e.g., (p, a, x), while using no inter-case features
I(∅) and with the created inter-case features using segment predictions I(C, w).

(p, a, x) (p, l, x) (c, a, x) (c, l, x) (p, l, r) (c, a, r) (c, l, r) (s, l, x)

RF I(∅) 212.60 209.69 210.32 208.59 221.39 221.05 221.53 203.29

I(C, w) 187.65 179.78 201.17 179.34 191.06 205.87 190.63 179.78

BPIC’20 I(∅) 3.68 3.66 3.87 3.62 3.85 3.90 3.72 3.66

I(C, w) 3.58 3.57 3.81 3.53 3.69 3.70 3.65 3.48

Handled (PH)). The inter-case pattern(s) identified for segments (DF, RP) and
(RP, PH) are R1 = non−batching, batch(s), and R2 = batch(e) respectively. To
create inter-case features, we implement NS using [18] and follow steps described
in Sect. 3.5 to create TMS,R models using LightGBM [6]. Predictions are made
with different bucketing prefixes, encoding prefix events, and ML methods. We
consider prefix bucketing methods to be grouping by prefix lengths (p), using a
clustering algorithm (c) or grouping all prefixes in a single bucket (s). Common
prefix encoding methods include data of only last prefix event (l) or aggregating
data of all prefix events (a), and apply ML models, XGBoost (x) or random forest
(r) to the input encoded feature vectors. The following input configurations are
used: (1) I(∅): event log with no inter-case features, (2) I(C, w): event log with
inter-case features created using actual segment prediction C, and (3) I(C, w):
event log with inter-case features created using segment prediction made using
NS. We use 80% and 20% (by temporally splitting) of the event logs for training
and testing the RTMs. To measure overall prediction accuracy, we measure the
weighted average MAE [17] of all predictions P made on test data.

4.2 Results

Table 6. MAE (in days) for different configurations
(I) with the similar lengths bucketing (p), aggregat-
ing events data for encoding prefix events (a), and
XGBoost (x) as the ML method, RTM = (p, a, x).
Pk is the set of all predictions for prefixes of length k.

RF I(∅) I(C, w) I(C, w) BPIC’20 I(∅) I(C, w) I(C, w)

Pk =2 176.37 107.85 106.74 Pk =3 4.03 3.84 4.06
Pk =3 227.38 189.22 200.02 Pk =4 2.64 2.22 2.23
Pk =4 202.92 123.19 171.11 Pk =5 1.07 0.98 0.97

Table 5 shows that using
inter-case features leads to
an increase in performance
for all 8 combinations of
bucketing prefixes, encoding
prefix events, and ML meth-
ods in RTMs against base-
line I(∅). For the RF event
log, we see that prediction
error decreases by a maxi-
mum of 14.26% and a minimum of 4.27% for methods (p, l, x) and (c, a, x),
respectively, with I(C, w). For the BPIC’20 event log, we observe a maximum
decrease of 5.12% and a minimum decrease of 1.55% in weighted average MAE
for methods (c, a, r) and (c, a, x), respectively. Since BPIC’20 is a smaller event
log with fewer cases subject to the identified inter-case patterns, the overall
reduction in prediction error is smaller. The most accurate predictions for the
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RF event log obtained using I(C, w) with (c, l, x), has a MAE 0.6 days less than
the benchmark result [17]. However, our approach’s privilege is that these pre-
dictions can be interpreted more easily because of the inter-case features.

Fig. 6. Comparing prediction results for
RF

Fig. 7. Comparing prediction results for
BPIC’20

In our approach, inter-case fea-
tures are primarily included for pre-
fixes passing through uncertain seg-
ments which occur at some step k
of the process. Therefore, we look at
MAE of predictions made for all pre-
fixes of relevant length k, i.e., Pk ⊆ P.
Segments (SF, IF ), (IF, AP ) and
(AP, SC) of the RF event log occur
predominantly at step k = 2, k = 3
and k = 4 of the process respectively.
Segments (DF, RP ) and (RP, PH)
of the BPIC’20 log occur predomi-
nantly at steps k = 3 and k =
4, 5 respectively. Table 6 shows us
the results for predictions made using
RTM = (p, a, x). For the RF event
log, the prediction error decreases by
39%, 12% and 15% for P2, P3 and P4,
respectively using I(C, w) over baseline. For BPIC’20, error decreases up to 15%
and 9% for P4 and P5, respectively, when using I(C, w). However, the MAE of P3

is slightly higher for configuration I(C, w) compared to I(∅) . This is because of
incorrect segment predictions for (DF, RP) made by NS which is proven by the
results of I(C, w). Figures 6 and 7 compare the batching-at-end aware predictions
made using inter-case features created in our approach that uses LightGBM [6])
and previous approach [8] that uses exponential smoothing (ES). We measure
the increase/decrease in performance of P4 made using different combination
of RTMs over their respective baselines. We compare only predictions at k = 4
for both logs where uncertain segments with batching-at-end dynamics occur.
Figure 6 shows that, our approach performs better than previous approach in 5
of the 8 input configuration (I) for batched cases in RF event log. Figure 7 shows
that for the batched cases in BPIC’20 log, our method performs better for all
the configurations.

5 Conclusion

We presented an approach to systematically discover a subset of uncertain pro-
cess segments with inter-case dynamics that cause high prediction errors. Con-
trary to previous approaches, our designed function for detecting the subset
of uncertain segments, limited the manual intervention to the identification of
inter-case patterns within these segments. Using visual analysis, we identified and
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gained insights about inter-case pattern(s) within uncertain segments. In partic-
ular, we gained insights into non-batching (FIFO and unordered), batching-at-
start, and batching-at-end inter-case patterns. Subsequently, we included these
insights in remaining time predictions by transforming them into the inter-case
features. For instance, there is a maximum increase in overall prediction per-
formance by 14.2% for RF event-log. Since there is no standardized process to
create a ML model for inter-case feature creation, our proposed approach is also
sensitive to user interpretation. Yet, it provides more interpretability to RTMs.
Note that despite an overall decrease in prediction error, some prefixes were heav-
ily over-predicted or under-predicted. Therefore, the next step is to improve the
prediction models and leverage routing probability derived from stochastic pro-
cess models. It improves the inter-case feature creation for segment prediction.
Another possible path is to make RTM aware of non-case-related aspects, e.g.,
resources dependencies.
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Abstract. Predictive process monitoring is a subfield of process mining that aims
to estimate case or event features for running process instances. Such predictions
are of significant interest to the process stakeholders. However, state-of-the-art
methods for predictive monitoring require the training of complex machine learn-
ing models, which is often inefficient. This paper proposes an instance selection
procedure that allows sampling training process instances for prediction models.
We show that our sampling method allows for a significant increase of training
speed for next activity prediction methods while maintaining reliable levels of
prediction accuracy.

Keywords: Process Mining · Predictive Monitoring · Sampling · Machine
Learning · Deep Learning · Instance Selection

1 Introduction

As the environment surrounding business processes becomes more dynamic and
competitive, it becomes imperative to predict process behaviors and take proactive
actions [1]. Predictive business process monitoring aims at predicting the behavior of
business processes, to mitigate the risk resulting from undesired behaviors in the pro-
cess. For instance, by predicting the next activities in the process, one can foresee the
undesired execution of activities, thus preventing possible risks resulting from it [12].
Moreover, by predicting an expected high service time for an activity, one may bypass or
add more resources for the activity [15]. Recent breakthroughs in machine learning have
enabled the development of effective techniques for predictive business process moni-
toring. Specifically, techniques based on deep neural networks, e.g., Long-Short Term
Memory (LSTM) networks, have shown high performance in different tasks [8]. Addi-
tionally, the emergence of ensemble learning methods leads to improvement in accuracy
in different areas [4]. Particularly, for predictive process monitoring, eXtreme Gradi-
ent Boosting (XGBoost) [6] has shown promising results, often outperforming other
ensemble methods such as Random Forest or using a single regression tree [25,28].
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Indeed, machine learning algorithms suffer from the expensive computational costs
in their training process [34]. In particular, machine learning algorithms based on neural
networks and ensemble learning might require tuning their hyperparameters to be able
to provide acceptable accuracy. Such long training time limits the application of the
techniques considering the limitations in time and hardware [21]. This is particularly
relevant for predictive business process monitoring techniques. Business analysts need
to test the efficiency and reliability of their conclusions via repeated training of differ-
ent prediction models with different parameters [15]. Moreover, the dynamic nature of
business processes requires new models adapting to new situations in short intervals.

Instance selection aims at reducing original datasets to a manageable volume to per-
form machine learning tasks, while the quality of the results (e.g., accuracy) is main-
tained as if the original dataset was used [11]. Instance selection techniques are cate-
gorized into two classes based on the way they select instances. First, some techniques
select the instances at the boundaries of classes. For instance, Decremental Reduction
Optimization Procedure (DROP) [32] selects instances using k-Nearest Neighbors by
incrementally discarding an instance if its neighbors are correctly classified without
the instance. The other techniques preserve the instances residing inside classes, e.g.,
Edited Nearest Neighbor (ENN) [33] preserves instances by repeatedly discarding an
instance if it does not belong to the class of the majority of its neighbors.

Such techniques assume independence among instances [32]. However, in pre-
dictive business process monitoring training, instances may be highly correlated [2],
impeding the application of techniques for instance selection. Such instances are com-
puted from event data that are recorded by the information system supporting business
processes [14]. The event data are correlated by the notion of case, e.g., patients in a
hospital or products in a factory. In this regard, we need new techniques for instance
selection applicable to event data.

In this work, we suggest an instance selection approach for predicting the next activ-
ity, one of the main applications of predictive business process monitoring. By consider-
ing the characteristics of the event data, the proposed approach samples event data such
that the training speed is improved while the accuracy of the resulting prediction model
is maintained. We have evaluated the proposed methods using two real-life datasets
and state-of-the-art techniques for predictive business process monitoring, including
LSTM [13] and XGBoost [6].

The remainder is organized as follows. We discuss the related work in Sect. 2. Next,
we present the preliminaries in Sect. 3 and proposed methods in Sect. 4. Afterward,
Sect. 5 evaluates the proposed methods using real-life event data and Sect. 6 provides
discussions. Finally, Sect. 7 concludes the paper.

2 Related Work

Predictive process monitoring is an exceedingly active field of research. At its core,
the fundamental component of predictive monitoring is the abstraction technique it
uses to obtain a fixed-length representation of the process component subject to the
prediction (often, but not always, process traces). In the earlier approaches, the need
for such abstraction was overcome through model-aware techniques, employing pro-
cess models and replay techniques on partial traces to abstract a flat representation of
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event sequences. Such process models are mostly automatically discovered from a set
of available complete traces, and require perfect fitness on training instances (and, sel-
domly, also on unseen test instances). For instance, van der Aalst et al. [1] proposed
a time prediction framework based on replaying partial traces on a transition system,
effectively clustering training instances by control-flow information. This framework
has later been the basis for a prediction method by Polato et al. [20], where the tran-
sition system is annotated with an ensemble of SVR and Naı̈ve Bayes classifiers, to
perform a more accurate time estimation. A related approach, albeit more linked to the
simulation domain and based on a Monte Carlo method, is the one proposed by Rogge-
Solti and Weske [24], which maps partial process instances in an enriched Petri net.

Recently, predictive process monitoring started to use a plethora of machine learn-
ing approaches, achieving varying degrees of success. For instance, Teinemaa et al. [27]
provided a framework to combine text mining methods with Random Forest and Logis-
tic Regression. Senderovich et al. [25] studied the effect of using intra-case and inter-
case features in predictive process monitoring and showed a promising result for
XGBoost compared to other ensemble and linear methods. A comprehensive bench-
mark on using classical machine learning approaches for outcome-oriented predictive
process monitoring tasks [28] has shown that the XGBoost is the best-performing clas-
sifier among different machine learning approaches such as SVM, Decision Tree, Ran-
dom Forest, and logistic regression.

More recent methods are model-unaware and perform based on a single and more
complex machine learning model instead of an ensemble. The LSTM network model
has proven to be particularly effective for predictive monitoring [8,26], since the recur-
rent architecture can natively support sequences of data of arbitrary length. It allows per-
forming trace prediction while employing a fixed-length event abstraction, which can be
based on control-flow alone [8,26], data-aware [16], time-aware [17], text-aware [19],
or model-aware [18].

A concept similar to the idea proposed in this paper, and of current interest in the
field of machine learning, is dataset distillation: utilizing a dataset to obtain a smaller
set of training instances that contain the same information (with respect to training
a machine learning model) [31]. While this is not considered sampling, since some
instances of the distilled dataset are created ex-novo, it is an approach very similar to
the one we illustrate in our paper. Moreover, recently some instance selection algorithms
have been proposed to help process mining algorithms. For example, [9,10] proposed
to use instance selection techniques to improve the performance of process discovery
and conformance checking procedures.

In this paper, we examine the underexplored topic of event data sampling and selec-
tion for predictive process monitoring, with the objective of assessing if and to which
extent prediction quality can be retained when we utilize subsets of the training data.

3 Preliminaries

In this section, some process mining concepts such as event log and sampling are dis-
cussed. In process mining, we use events to provide insights into the execution of busi-
ness processes. Each event is related to specific activities of the underlying process.
Furthermore, we refer to a collection of events related to a specific process instance
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as a case. Both cases and events may have different attributes. An event log that is a
collection of events and cases is defined as follows.

Definition 1 (Event Log). Let E be the universe of events, C be the universe of cases,
AT be the universe of attributes, and U be the universe of attribute values. More-
over, let C⊆C be a non-empty set of cases, let E⊆E be a non-empty set of events, and
let AT⊆AT be a set of attributes. We define (C,E, πC , πE) as an event log, where
πC :C×AT �→U and πE :E×AT �→U . Any event in the event log has a case, therefore,
�e∈E(πE(e, case) �∈ C) and

⋃

e∈E

(πE(e, case))=C.

Furthermore, let A⊆U be the universe of activities and let V⊆A∗ be the uni-
verse of sequences of activities. For any e∈E, function πE(e, activity)∈A, which
means that any event in the event log has an activity. Moreover, for any c∈C function
πC(c, variant)∈A∗\{〈〉} that means any case in the event log has a variant.

Therefore, there are some mandatory attributes that are case and activity for events and
variants for cases. In some process mining applications, e.g., process discovery and
conformance checking, just variant information is considered. Therefore, event logs are
considered as a multiset of sequences of activities. In the following, a simple event log
is defined.

Definition 2 (Simple event log). Let A be the universe of activities and let the universe
of multisets over a set X be denoted by B(X). A simple event log is L∈B(A∗). More-
over, let EL be the universe of event logs and EL=(C,E, πC , πE)∈EL be an event
log. We define function sl:EL→B({πE(e, activity)|e∈E}∗) returns the simple event
log of an event log. The set of unique variants in the event log is denoted by sl(EL).

Therefore, sl returns the multiset of variants in the event logs. Note that the size of a
simple event log equals the number of cases in the event logs, i.e., sl(EL)= |C|

In this paper, we use sampling techniques to reduce the size of event logs. An event
log sampling method is defined as follows.

Definition 3 (Event log sampling). Let EL be the universe of event logs and
A be the universe of activities. Moreover, let EL=(C,E, πC , πE)∈EL be an
event log, we define function δ:EL→EL that returns the sampled event log where
if (C ′, E′, π′

C , π′
E)= δ(EL), then C ′⊆C, E′⊆E, π′

e⊆πE , π′
C⊆πC , and conse-

quently, sl(δ(EL))⊆sl(EL). We define that δ is a variant-preserving sampling if
sl(δ(EL))= sl(EL).

In other words, a sampling method is variant-preserving if and only if all the variants of
the original event log are presented in the sampled event log.

To use machine learning methods for prediction, we usually need to transfer each
case to one or more features. The feature is defined as follows.

Definition 4 (Feature). Let AT be the universe of attributes, U be the universe of
attribute values, and C be the universe of cases. Moreover, let AT⊆AT be a set of
attributes. A feature is a relation between a sequence of attributes’ values for AT and
the target attribute value, i.e., f∈(U |AT |×U). We define fe:C×EL→B(U |AT |×U) is a
function that receives a case and an event log, and returns a multiset of features.
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Fig. 1. A schematic view of the proposed sampling procedure

For the next activity prediction, i.e., our prediction goal, the target attribute value should
be an activity. Moreover, a case in the event log may have different features. For exam-
ple, suppose that we only consider the activities. For the case 〈a, b, c, d〉, we may have
(〈a〉, b), (〈a, b〉, c), and (〈a, b, c〉, d) as features. Furthermore,

∑

c∈C

fe(c, EL) are the

corresponding features of event log EL=(C,E, πC , πE) that could be given to differ-
ent machine learning algorithms. For more details on how to extract features from event
logs please refer to [23].

4 Proposed Sampling Methods

In this section, we propose an event log preprocessing procedure that helps predic-
tion algorithms to perform faster while maintaining reasonable accuracy. The schematic
view of the proposed sampling approach is presented in Fig. 1. We first need to traverse
the event log and find the variants and corresponding traces of each variant in the event
log. Moreover, different distributions of data attributes in each variant will be computed.
Afterward, using different sorting and instance selection strategies, we are able to select
some of the cases and return the sample event log. In the following, each of these steps
is explained in more detail.

1. Traversing the event log: In this step, the unique variants of the event log
and the corresponding traces of each variant are determined. In other words,
consider event log EL that sl(EL)= {σ1, ..., σn} where n= |sl(EL)|, we aim
to split EL to EL1, .., ELn where ELi only contains all the cases that
Ci = {c∈C|πC(c, variant)=σi} and Ei = {e∈E|πE(e, case)∈Ci}. Obviously,⋃

1≤i≤n

(Ci)=C and
⋂

1≤i≤n

(Ci)=∅.

2. Distribution Computation: In this step, for each variant of the event log, we compute
the distribution of different data attributes a∈AT . It would be more practical if the
interesting attributes are chosen by an expert. Both event and case attributes can
be considered. A simple approach is to compute the frequency of categorical data
values. For numerical data attributes, it is possible to consider the average or the
median of values for all cases of each variant.

3. Sorting the cases of each variant: In this step, we aim to sort the traces of each
variant. We need to sort the traces to give a higher priority to those traces that can
represent the variant better. One way is to sort the traces based on the frequency of
the existence of the most occurred data values of the variant. For example, we can
give a higher priority to the traces that have more frequent resources of each variant.
It is also possible to sort the traces based on their arrival time or randomly.
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4. Returning sample event logs: Finally, depending on the setting of the sampling func-
tion, we return some of the traces with the highest priority for all variants. The most
important point about this step is to know how many traces of each variant should
be selected. In the following, some possibilities will be introduced.
– Unique selection: In this approach, we select only one trace with the highest pri-
ority. In other words, suppose that L′ = sl(δ(EL)), ∀σ∈L′L′(σ)= 1. Therefore,
using this approach we will have |sl(δ(EL))|= |sl(EL)|. It is expected that
using this approach, the distribution of frequency of variants will be changed
and consequently the resulted prediction model will be less accurate.

– Logarithmic distribution: In this approach, we reduce the number of traces
in each variant in a logarithmic way. If L= sl(EL) and L′ = sl(δ(EL)),
∀σ∈L′L′(σ)= [Logk(L(σ))]. Using this approach, the infrequent variants will
not have any trace in the sampled event log. By using a higher k, the size of the
sampled event log is reduced more.

– Division: This approach performs similar to the previous one, however, instead
of using logarithmic scale, we apply the division operator. In this approach,
∀σ∈L′L′(σ)= 
 (σ)

k �. A higher k results in fewer cases in the sample event log.
Note that using this approach all the variants have at least one trace in the sam-
pled event log.

There is also a possibility to consider other selection methods. For example, we can
select the traces completely randomly from the original event log.

By choosing different data attributes in Step 2 and different sorting algorithms in
Step 3, we are able to lead the sampling of the method on which cases should be chosen.
Moreover, by choosing the type of distribution in Step 4, we determine how many cases
should be chosen. To compute how sampling method δ reduces the size of the given
event log EL, we use the following equation:

RS =
|sl(EL)|

|sl(δ(EL))| (1)

The higher RS value means, the sampling method reduces more the size of the training
log. By choosing different distribution methods and different k-values, we are able to
control the size of the sampled event log. It should be noted that the proposed method
will apply just to the training event log. In other words, we do not sample event logs for
development and test datasets.

5 Evaluation

In this section, we aim at designing some experiments to answer our research question,
i.e., “Can we improve the computational performance of prediction methods by using
the sampled event logs, while maintaining a similar accuracy?”. It should be noted that
the focus of the experiments is not on prediction model tuning to have higher accuracy.
Conversely, we aim to analyze the effect of using sampled event logs (instead of the
whole datasets) on the required time and the accuracy of prediction models. In the
following, we first explain the event logs that are used in the experiments. Afterward, we
provide some information about the implementation of sampling methods. Moreover,
the experimental setting is discussed and, finally, we show the experimental results.
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Table 1. Overview of the event logs that are used in the experiments. The accuracy and the
required times (in seconds) of different prediction methods for these event logs are also presented.

Event Log Cases Activities Variants Attributes FE Time LSTM Train Time LSTM Acc XG Train Time XG Acc

RTFM 150370 11 231 1 73649 3021 0.791 11372 0.814

BPIC-2012-W 9658 6 2643 2 1212 3344 0.68 2011 0.685

5.1 Event Logs

To evaluate the proposed sampling procedure for prediction, we have used two event
logs widely used in the literature. Some information about these event logs is presented
in Table 1. In the RTFM event log, which corresponds to a road traffic management
system, we have some high frequent variants and several infrequent variants. Moreover,
the number of activities in this event log is high. Some of these activities are infrequent,
which makes this event log imbalanced. In the BPIC-2012-W event log, relating to a
process of an insurance company, the average of variant frequencies is lower.

5.2 Implementation

We have developed the sampling methods as a plug-in in the ProM framework [30],
accessible via https://svn.win.tue.nl/repos/prom/Packages/LogFiltering. This plug-in
takes an event log and returns k different train and test event logs in the CSV format.
Moreover, to train the prediction method, we have used XGBoost [6] and LSTM [13]
methods as they are widely used in the literature and outperformed their counterparts.
Our LSTM network consisted of an input layer, two LSTM layers with dropout rates of
10%, and a dense output layer with the SoftMax activation function. We used “categor-
ical cross-entropy” to calculate the loss and adopted ADAM as an optimizer. We used
gbtree with a max depth of 6 as a booster in our XGBoost model. Uniform distribution
is used as the sampling method inside our XGBoost model. To avoid overfitting in both
models, the training set is further divided into 90% training set and 10% validation set
to stop training once the model performance on the validation set stops improving. We
used the same setting of both models for original event logs and sampled event logs.
To access our implementations of these methods and the feature generation please refer
to https://github.com/gyunamister/pm-prediction/. For details of the feature generation
and feature encoding steps, please refer to [18].

5.3 Evaluation Setting

To sample the event logs, we use three distributions that are log distribution, division,
and unique variants. For the log distribution method, we have used 2, 3, and 10 (i.e.,
log2, log3, and log10). For the division method, we have used 2, 5, and 10 (i.e., d2, d5,
and d10). For each event log and for each sampling method, we have used a 5-fold
cross-validation. Moreover, as the results of the experiments are non-deterministic, all
the experiments have been repeated 5 times and the average values are represented.

Note that, for both training and evaluation phases, we have used the same settings
for extracting features and training prediction models. We used one-hot encoding to

https://svn.win.tue.nl/repos/prom/Packages/LogFiltering
https://github.com/gyunamister/pm-prediction/
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encode the sequence of activities for both LSTM and XGBoost models. We ran the
experiment on a server with Intel Xeon CPU E7-4850 2.30GHz, and 512 GB of RAM.
In all the steps, one CPU thread has been used. We employed the Weighted Accuracy
metric [22] to compute how a prediction method performs for test data. To compare
the accuracy of the prediction methods, we use the relative accuracy that is defined as
follows.

RAcc =
Accuracy using the sampled training log
Accuracy using the whole training log

(2)

IfRAcc is close to 1, it means that using the sampling event logs, the prediction methods
behave almost similar to the case that the whole data is used for the training. Moreover,
values higher than 1 indicate the accuracy of prediction methods has improved.

To compute the improvement in the performance of training time, we will use the
following equations.

Rt =
Training time using whole data

Training time using the sampled data
(3)

RFE =
Feature extraction time using whole data

Feature extraction time using the sampled data
(4)

For both equations, the resulting values indicate how many times the sampled log is
faster than using all data.

5.4 Experimental Results

Table 2 presents the reduction rate and the improvement in the feature extraction phase
using different sampling methods. As it is expected, the highest reduction rate is for
log10 (as it removes infrequent variants and keeps few traces of frequent variants), and
respectively it has the biggest improvement in RFE . Moreover, the lowest reduction
is for d2, especially if there are lots of unique variants in the event log (i.e., for the
RTFM event log). We expected smaller event logs to require less feature extraction
time. However, results indicate that the relationship is not linear, and by having more
reduction in the size of the sampled event log there will be a much higher reduction in
the feature extraction time.

In Table 3 and Table 4, the results of improvement in Rt and RAcc are shown for
LSTM and XG prediction methods. As expected, by using fewer cases in the training,
the performance of training time improvement will be higher. Comparing the results in
these two tables and the results in Table 2, it is interesting to see that in some cases, even
by having a high reduction rate, the accuracy of the trained prediction model is close
to the case in which whole training log is used. For example, using d10 for the RTFM
event log, we will have high accuracy for both prediction methods. In other words, we
are able to improve the performance of the prediction procedure while the accuracy is
still reasonable.

When using the LSTM prediction method for the RTFM event log, there are some
cases where we have accuracy improvement. For example, using d3, there is a 0.4%
improvement in the accuracy of the trained model. It is mainly because of the existence
of high frequent variants. These variants lead to having unbiased training logs and con-
sequently, the accuracy of the trained model will be lower for infrequent behaviors.
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Table 2. The reduction in the size of training logs (i.e., RS) and the improvement in the perfor-
mance of feature extraction part (i.e., RFE) using different sampling methods.

Sampling Methods d2 d3 d10 log2 log3 log10 unique

Event Log RS RFE RS RFE RS RFE RS RFE RS RFE RS RFE RS RFE

RTFM [7] 1.99 4.8 3.0 11.1 9.8 106.9 153.5 12527.6 236.3 23699.2 572.3 74912.8 285.1 24841.8

BPIC-2012-W [29] 1.22 1.37 1.41 1.80 1.66 2.51 6.06 22.41 9.05 37.67 28.50 208.32 1.73 2.36

Table 3. The accuracy and the improvement in the performance of prediction using different
sampling methods for LSTM.

Sampling Methods d2 d3 d10 log2 log3 log10 unique

Event Log RAcc Rt RAcc Rt RAcc Rt RAcc Rt RAcc Rt RAcc Rt RAcc Rt

RTFM 1.001 2.0 1.004 2.9 0.990 9.0 0.716 26.7 0.724 33.0 0.767 41.8 0.631 29.1

BPIC-2012-W 1.000 1.4 0.985 1.3 0.938 1.3 0.977 4.7 0.970 5.8 0.876 11.9 0.996 1.6

Table 4. The accuracy and the improvement in the performance of prediction using different
sampling methods for XGBoost.

Sampling Methods d2 d3 d10 log2 log3 log10 unique

Event Log RAcc Rt RAcc Rt RAcc Rt RAcc Rt RAcc Rt RAcc Rt RAcc Rt

RTFM 1.000 2.4 1.000 1.4 1.000 84.1 0.686 126.4 0.706 191.8 0.772 355.0 0.582 297.7

BPIC-2012-W 0.999 2.3 0.998 2.4 0.997 3.4 0.923 10.7 0.970 16.7 0.883 64.8 0.997 2.8

6 Discussion

The results indicate that we do not always have a typical trade-off between the accuracy
of the trained model and the performance of the prediction procedure. In other words,
there are some cases where the training process is much faster than the normal proce-
dure, even though the trained model provides an almost similar accuracy. We did not
provide the results for other metrics; however, there are similar patterns for weighted
recall, precision, and f1-score. Thus, the proposed sampling methods can be used when
we aim to apply hyperparameter optimization [3]. In this way, more settings can be
analyzed in a limited time. Moreover, it is reasonable to use the proposed method when
we aim to train an online prediction method or on naive hardware such as cell phones.

Another important outcome of the results is that for different event logs, we should
use different sampling methods to achieve the highest performance. For example, for the
RTFM event log—as there are some highly frequent variants—the division distribution
may be more useful. In other words, independently of the used prediction method, if
we change the distribution of variants (e.g., using unique distribution), it is expected
that the accuracy will sharply decrease. However, for event logs with a more uniform
distribution, we can use logarithmic and unique distributions to sample event logs. The
results indicate that the effect of the chosen distribution (i.e., unique, division, and
logarithmic) is more important than the used k-value. Therefore, it would be valuable
to investigate more on the characteristics of the given event log and suitable sampling
parameters for such distribution. For example, if most variants of a given event log
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are unique, the division and unique methods are not able to have remarkable RS and
consequently, RFE and Rt will be close to 1.

Moreover, results have shown that by oversampling the event logs, although we will
have a very big improvement in the performance of the prediction procedure, the accu-
racy of the trained model is significantly lower than the accuracy of the model that is
trained by the whole event log. Therefore, we suggest gradually increasing (or decreas-
ing) the size of the sampled event log in the hyper-parameter optimization scenarios.

By analysis of the results using common prediction methods, we have found that
the infrequent activities can be ignored using some hyper-parameter settings. This is
mainly because the event logs are unbalanced for these infrequent activities. Using the
sampling methods that modify the distribution of the event logs such as the unique
method can help the prediction methods to also consider these activities.

Finally, in real scenarios, the process can change because of different reasons [5].
This phenomenon is usually called concept drift. By considering the whole event log for
training the prediction model, it is most probable that these changes are not considered
in the prediction. Using the proposed sampling procedure, and giving higher priorities
to newer traces, we are able to adapt to the changes faster, which may be critical for
specific applications.

7 Conclusion

In this paper, we proposed to use the subset of event logs to train prediction models.
We proposed different sampling methods for next activity prediction. These methods
are implemented in the ProM framework. To evaluate the proposed methods, we have
applied them on two real event logs and have used two state-of-the-art prediction meth-
ods: LSTM and XGBoost. The experimental results have shown that, using the pro-
posed method, we are able to improve the performance of the next activity prediction
procedure while retaining an acceptable accuracy (in some experiments, the accuracy
increased). However, there is a relation between event logs characteristics and suitable
parameters that can be used to sample these event logs. The proposed methods can be
helpful in situations where we aim to train the model fastly or in hyper-parameter opti-
mization scenarios. Moreover, in cases where the process can change over time, we are
able to adapt to the modified process more quickly using sampling methods.

To continue this research, we aim to extend the experiments to study the relationship
between the event log characteristics and the sampling parameters. Additionally, we
plan to provide some sampling methods that help prediction methods to predict infre-
quent activities, which could be more critical in the process. Finally, it is interesting to
investigate more on using sampling methods for other prediction method applications
such as last activity and remaining time prediction.
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Abstract. Process mining allows auditors to retrieve crucial informa-
tion about transactions by analysing the process data of a client. We
propose an approach that supports the identification of unusual or unex-
pected transactions, also referred to as exceptions. These exceptions can
be selected by auditors as “key items”, meaning the auditors wants to
look further into the underlying documentation of the transaction. The
approach encodes the traces, assigns an anomaly score to each trace, and
uses the domain knowledge of auditors to update the assigned anomaly
scores through active anomaly detection. The approach is evaluated with
three groups of auditors over three cycles. The results of the evaluation
indicate that the approach has the potential to support the decision-
making process of auditors. Although auditors still need to make a man-
ual selection of key items, they are able to better substantiate this selec-
tion. As such, our research can be seen as a step forward with respect to
the usage of anomaly detection and data analysis in process auditing.

Keywords: Process Mining · Domain Knowledge · Anomaly
Detection · Auditing

1 Introduction

In the past years, it has become clear that data captured by information systems
are relevant for auditors [1,2]. Process mining allows auditors to elicit behaviour
from process data in the form of event logs derived from information systems
of their clients [1, p. 32]. An event log is a collection of cases, where a case is a
sequence of events performed in the context of a single process [1, p. 128]. As
an event log collects behaviour captured by the information systems involved, it
can be considered as an unbiased perspective on the client’s processes [3]. Take,
for example, an event log that contains loan offers made by a bank. The bank
receives a customer request for a loan, asks for additional information until it
has sufficient information, and finally decides to grant the loan or not. Without
process data, the auditor does not know the steps taken before the loan was
granted (i.e. the behaviour), while this behaviour could be instrumental in the
auditor’s decision to further investigate a particular loan offer.
c© The Author(s) 2022
J. Munoz-Gama and X. Lu (Eds.): ICPM 2021 Workshops, LNBIP 433, pp. 167–179, 2022.
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Choosing which loan offer, or any other transaction of the client, to inves-
tigate further is also referred to as key item selection. Key items are specific
transactions that auditors want to look further into by, for example, requesting
additional documentation on the transactions because they might have a higher
likelihood of containing a material misstatement (i.e. transactions that violate
accounting and auditing standards [4, p. 374]). Currently, key items are selected
based on the size of the transactions (i.e. the transactions with the highest mon-
etary value), professional judgement, or by drawing a sample [5, Ch. 6]. Without
detailed information about transactions, unusual or unexpected aspects such as
the number of times a transaction has been declined and resubmitted, the total
number of activities performed in the transaction, or the throughput time of the
transaction, are largely ignored while selecting key items.

Anomaly detection algorithms can be used to detect exceptions, which can
then be selected as key items. However, both supervised and unsupervised
approaches may be unsuitable for practice because they either require a large
amount of labeled training data or lack explainability [6–11]. More specifically,
selecting the key items based on the underlying process data still requires domain
knowledge [11]. Hence, active engagement of domain experts (i.e. auditors) is
needed to detect exceptions. This leads to the following research question: How
can key item selection be supported using active anomaly detection on process
data? The research question is answered by structuring the identification of
exceptions in process data in a three-step approach. In doing so, we contribute to
the research field of process mining and auditing. By embedding domain knowl-
edge in the identification of exceptions, the approach shows that the involvement
of domain experts can be beneficial for both the domain experts’ insight into the
process of the client and the results of the approach itself. Additionally, because
the approach provides a more detailed account of the transactions, the selection
is better substantiated.

2 Related Work

2.1 Anomaly Detection

Anomaly detection approaches can be used to identify unusual or unexpected
transactions in process data, also referred to as exceptions. Several anomaly
detection approaches suitable for process data have been proposed [6–11]. Cur-
rent approaches mostly use trained models to detect anomalies, like Ko et al.
[10] and Pauwels et al. [9]. Using these approaches in practice is difficult because
there is no labeled data available during audits, meaning these models cannot be
trained. An alternative to training data could be a temporal holdout set where
the data of the prior audit is used to train the model (i.e. the prior-year data
is used to train the model to identify anomalies in the current-year data). How-
ever, if a temporal holdout set is used, concepts such as concept drift should be
taken into account because the model might not know the difference between an
anomaly and the introduction of a new process. An example of this is the recent
COVID-19 pandemic, which coerced the digitisation of processes, introducing
concept drift to the process data.



Active Anomaly Detection for Key Item Selection in Process Auditing 169

Other approaches such as those of Nolle et al. [8] and Böhmer et al. [7]
use neural network-based autoencoders and Basic Likelihood Graphs to identify
anomalies. This introduces complexity through the techniques they use, lead-
ing to both an increase in required processing power and unexplainability or
incomprehensibility of the approach. This is problematic because it prohibits
the domain expert to adequately substantiate their selection of key items.

In contrast to the other approaches, Schumann et al. [11] use low-complexity
models that do not require training data to identify anomalies. Because they
determine certain non-compliant patterns in the data beforehand and inject
the data with these patterns, no training data is required. While the other
approaches are evaluated through various performance metrics, only Schumann
et al. [11] evaluate their technique with domain experts. The benefit of this
type of evaluation is that is allows for domain experts to differentiate between
real anomalies and cases that are considered compliant in practice. However,
the rationale used by the domain experts is not explained, which brings the
applicability and replicability of the approach in practice in question.

2.2 Active Anomaly Detection

Traditional anomaly detection approaches do not actively engage domain
experts when identifying exceptions while the performance of anomaly detec-
tion approaches can potentially be improved by incorporating domain expert
feedback. An example of a framework that allows using domain expert feedback
is the Active Anomaly Detection (AAD) framework by Das et al. [12]. The AAD
framework takes an ensemble model and assigns an initial weight to each indi-
vidual model. The weight of a model influences how much it contributes to the
anomaly score of a data point. A higher weight gives a model more influence
on the anomaly score. After assigning an anomaly score to each case, a query
budget B is defined and the instances with the top-B anomaly scores are labeled
by domain experts. After each instance is labeled, the weights of the models are
updated. The technical details of how the weights are updated are left out due
to size limitations but can be found in [12].

To the best of our knowledge, anomaly detection approaches that actively
engage domain experts are not currently used in practice. Furthermore, as men-
tioned above, selecting key items on the underlying process data still requires
domain knowledge. AAD could provide domain experts the opportunity to
embed their knowledge in the anomaly detection algorithm. However, because
in this research process data is used, some additional steps need to be taken
before the data is suitable the AAD framework. The reason the AAD framework
is chosen is because it is written in a programming language compatible with
current process mining techniques (i.e. Python).

2.3 Trace Visualisation

By using the AAD framework, domain knowledge is embedded in the assigning
of the anomaly scores. It could however be that domain experts have different
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opinions on the label of a case. Hence, the information presented to domain
experts should make clear why the presented case has a high anomaly score in
an understandable and interpretable way.

Within process mining literature, different types of visualisations have been
proposed, each of them serving different purposes [13]. According to Klinkmüller
et al. [14], when assessing the conformance of a case in the BPIC2012 event log,
around 41.3% of the information needs can be fulfilled with tables presenting
case and/or event attributes and 34.8% by a process model. The remainder is
often fulfilled with a line or bar chart, fulfilling 20.6% of the information needs.
By taking into account the information needs of domain experts when visualising
the trace, they are supported in their decision-making process and can better
substantiate their key item selection.

3 Active Selection Approach

Taking into account the literature discussed above, we propose the Active Selec-
tion Approach. The goal of the approach is to structure the selection of key items
using process data available during an audit. Figure 1 gives an overview of the
steps that make up the approach. The remainder of this section describes each
step in more detail.

Fig. 1. Active Selection Approach

3.1 Step One: Encode Process Data

Before anomalies can be detected using traditional methods, the event log needs
to be transformed into a tabular data structure where data is structured into
rows, each of which contains information about a case, also known as trace
encoding [15,16]. The way the traces are encoded should be tailored towards the
process of the client and the type of information that should be retained. For
example, if the domain experts are only interested in the resources and monetary
value of the transactions, there is no need to consider the temporal aspect of the
process data during encoding. Should some of the resulting features consistently
have the same value as another feature or holds a constant value throughout the
event log, they can be removed. Preferably, no further feature selection should
be done, in order to retain as much information about the event log as possible.
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3.2 Step Two: Assign Anomaly Score

After the process data is encoded, an anomaly detection algorithm is used to
assign an anomaly score to each case. The only constraint to the choice of algo-
rithm is that it has to be an ensemble method so that the weight of the individual
models can be updated based on domain expert feedback.

3.3 Step Three: Actively Label Exceptions

With each case having an anomaly score, the cases with the highest anomaly
score can be visualised and shown to a domain expert. Based on the visuali-
sations, the domain expert has to label the case as either a key item or not.
Based on the label, the weights of the algorithm are updated. This step has
two benefits: 1) the domain experts gain insight into anomalous traces within
the process of the client and 2) the weights of the algorithm are updated, poten-
tially improving the results. After the domain expert has labeled a set number of
cases, the algorithm assigns an updated anomaly score to each case. The result
of the approach is an enriched event log containing updated anomaly scores.
Based on these, the domain expert can decide to select certain cases with a high
anomaly score as key items, thereby supporting their decision-making process.

4 Evaluation

The approach was implemented in Python (available on Github1) and evaluated
over three cycles with several domain experts: senior auditors from an audit firm,
experienced students from a post-master accountancy program (around 2–4 years
of practical experience), and attendees of a symposium on statistical auditing.
Each cycle had two objectives: (1) evaluate the performance of the approach and
(2) measure the saturation of the information needs of the domain experts with
regards to the trace visualisation. During each cycle, domain experts completed
a survey2 that showed them six cases. Three of those cases were considered an
exception (i.e. had a high anomaly score) and the other three were not (i.e. had
a low anomaly score). The label given by the domain experts was viewed as the
true label to later compute performance metrics. Table 1 provides an overview
of who participated in each cycle and which sub-process they were shown.

4.1 Step One: Encode Process Data

The process data used during the evaluation is the publicly available Business
Process Intelligence Challenge 2012 (BPIC2012) event log [17]. The event log
contains 13.087 cases with 262.200 events. It describes an application process
for a personal loan within a bank. The event log is chosen because the loan
applications contain financial information and could therefore realistically be
1 https://github.com/rubenpost/Model agnostic AAD/blob/main/main.py.
2 https://survey.uu.nl/jfe/form/SV 5jUGtcjPq1muHgG.

https://github.com/rubenpost/Model_agnostic_AAD/blob/main/main.py
https://survey.uu.nl/jfe/form/SV_5jUGtcjPq1muHgG
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Table 1. Evaluation cycles

Cycle Participants Sub-process # cases
labeled

One 3 senior auditors and 15 stu-
dents

The offer (O) 108

Two 3 senior auditors and 53 stu-
dents

The offer (O) 336

Three 3 senior auditors, 18 students,
and 108 symposium attendees

The offer (O) and the work
items (W)

648

part of an audit. There are 24 unique activities in the event log, representing
three sub-processes. The event log contains three sub-processes, the application
(A), the offer (O), and the work items (W) belonging to the application. To
reduce the learning curve for domain experts when interpreting the information
about the process, only one sub-process was used during each evaluation. This
also reduced the number of activities the domain experts had to review. During
the first and second cycle, the offer (O) was shown. In the third cycle, the offer
(O) was shown to the auditors and students, while the work items (W) were
shown to the professionals at the Limperg Symposium Statistical Auditing. Only
accepted loan applications were included, as we assume that only these cases
would have a financial impact on the client. The final event log contained 2.243
cases and 15.701 events.

The event log contained several attributes. In Table 2, the trace encoding
used during this evaluation is described. All attributes were encoded as either
aggregates or static. This means the order of the activities is lost, but the fre-
quency is still kept as part of the feature. After trace encoding, the data had a
shape of 2243× 71, meaning there are 2.243 cases each represented by 71 fea-
tures. Because of the limited moments available with the domain experts, the
encoding type per attribute was not optimised based on the evaluation results.

Table 2. Feature encoding on BPIC2012 event log

Attribute Category Type Encoding

CaseID Case Static Not included

Resource Event Dynamic Frequency

Activity Event Dynamic Frequency

Timestamp Event Dynamic Frequency

Registration Event Dynamic Frequency

Status Event Dynamic Frequency

Amount Case Static As-is

Activity count Case Static As-is

Case length Case Static As-is
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4.2 Step Two: Assign Anomaly Score

During the evaluation, the Isolation Forest algorithm was used to assign an
anomaly score to each case [18]. The Isolation Forest algorithm was used because
it can cope with high-dimensional data sets, is generally fast, and is an ensemble
method. The default parameters for the Isolation Forest as described in Das et
al. [12] are used. Because of the way the approach is evaluated, the algorithm
is not instantiated within the Active Anomaly Detection framework until the
third cycle. For the first and second cycle, each case was assigned an anomaly
score by Isolation Trees without individual weights. After assigning the anomaly
score, the top and bottom 100 anomaly scores (viewed as exceptions and no
exceptions, respectively) were used in the survey during cycle one and two. The
labels received during the first and second cycle were used to update the weights
of the algorithm for the third cycle.

4.3 Step Three: Actively Label Exceptions

The trace visualisation for the evaluation consisted of four different visuals. The
first visual is a directly-follows-graph process model generated with PM4Py, a
Python-based process mining package [19]. This type of graph is solely based on
which activity directly follows which activity (i.e. a directly-follows dependency
(a > b)) [20]. This means that concurrency and parallelism are ignored. This
type of process model was chosen due to its ability to show the many loops
a process can take [21]. In addition to the activities, the process model also
includes the time between activities and time spent on the activity. One table
visualises the directly-follows dependency between all activities in the case. The
reason the directly-follows dependency was included in a separate table is that
the frequency of the dependency is shown in the table, but not in the process
model. Another table shows which resource performed which activities and how
many times. Lastly, all numeric features of the case were plotted in a histogram.
The bin in which the value of the case resides is highlighted.

4.4 Performance Results

With the labels collected during the survey, the performance metrics were com-
puted to evaluate the performance progression after each evaluation cycle. In
addition to the performance metrics, the label confidence per label is computed,
which shows how often domain experts agreed on the label of a case. The met-
rics are visualised in Fig. 2 (a). In this figure, the progression of the metric after
each evaluation in a cycle is shown. The last result of the evaluation is the label
confidence per evaluation cycle. In Fig. 2 (b), the label confidence is shown both
for cases identified as exceptions and as not an exception by the approach.

After labeling the cases, the domain experts were asked two questions: “What
additional information would help in making your decision?” and “Did you have
enough information to make your decision about each case?”. These open ques-
tions relate to the second objective of the evaluation (i.e. are the information
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Fig. 2. Survey results

needs met?). The first question was an open question that aimed to provide
feedback and points of interest for the approach. In addition to this open ques-
tion, comments made by the domain experts were also written down and used
as input for the next cycle. The answers to the second question also indicate the
saturation of the domain experts’ information needs and has three levels: “yes”,
“somewhat”, and “no”.

The results of the first open question are shown in Table 3. The table describes
which information needs were identified during each evaluation and how these
were implemented in the next cycle (i.e. their impact) and Fig. 3 shows the
indication of saturation per cycle.

Table 3. Suggested information needs and impact on approach

Cycle Suggested information needs Impact

One Relation between number of resources
used in the case and the norm

Included the average number of can-
cellations a case in the event log con-
tains and how often a case with the
same or more cancellations is found

Relation between number of times a
case is cancelled and the norm

Included the average number of
resources a case in the event log con-
tains and how often a case is per-
formed by the same or more resources

The directly follows relationship table
is hard to interpret at first

Included an explanation of the table
in the figure title

Two Internal procedures for cancelling a
case

None, this information is not available

Three The financial impact of certain activ-
ities on the organisation

None, this information is not available

Background of the process and the
resources that work on it

None, this information is not available
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Fig. 3. Progression of information needs saturation per cycle

5 Discussion

In the next paragraphs, the results of the questions on information needs are
discussed, the impact on the approach is described, and the performance metrics
are interpreted per cycle.

5.1 Cycle One

During the first cycle, the domain experts seemed to agree that more context
was needed on the case they were reviewing. Specifically, the attribute values
of the case needed to be put in the context of the entire event log. Hence,
the averages of several attributes deemed important by the domain expert are
added to the trace visualisation. Besides this, they noted that the directly follows
relationship table was hard to interpret. However, once they understood how to
read the table, the information seemed very useful (mostly because it showed
the order of the activities, something the model did not always do clearly).

The performance metrics show that the exceptions identified through the
approach were quite often labeled as such by the domain experts. However,
cases not identified as an exception were often labeled as an exception by domain
experts as well. Hence, the FPR is slightly higher than the FNR. The F1 score
was 68.9%, indicating that if the approach was used in a real audit, and the cases
with the highest anomaly scores were selected as key items, it would select a key
item most of the time. The label confidence was high in the first cycle (averaging
87.4%), meaning domain experts generally agreed on the label of a case. Hence,
the robustness of the performance metrics of the first cycle is considered high.
The performance metrics did not lead to further changes to the approach.

Based on these results, more context on the case was added to the trace
visualisation. By adding the average over the entire event log and the rarity (i.e.
how many other cases have the same values for that specific feature), the domain
expert can compare the case to the ‘norm’.
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5.2 Cycle Two

During cycle two, the information needs of the domain experts seemed to be more
saturated. This can be seen both in the number of suggested information needs
(only one) and the percentage of domain experts indicating they had enough
information to review each case (93%). Except for the need for a more elaborate
explanation of the histograms in the trace visualisation, the suggested informa-
tion needs had no impact on the approach. This is because the information was
not available during this research.

Despite the fact that the information saturation was higher in the second
cycle, the performance metrics mostly decreased. The F1 score decreased to
63.4% (an 8% decline) and cases were more often predicted incorrectly. With the
exception of the FNR, which increased with by 20%. This means domain experts
were more likely to identify cases as an exception in general. The label confidence
was also much lower, averaging 67.1%. The high information saturation and low
label confidence indicate that professional judgement had a large influence on
the performance metrics. This was not observed in the first cycle, but is further
confirmed by domain experts indicating that working with process data is new
and needs adjusting to, meaning that they have to rely more on their professional
judgement than might be intended during an audit.

Based on these results, one minor change was made to the approach. An
explanation was added to the histogram to describe what exactly the domain
experts were looking at and the information the histogram gave them.

5.3 Cycle Three

During the last cycle, no further information needs were identified that had
impact on the approach. Additionally, all of the domain experts indicated that
they either had enough or somewhat enough information to review each case.
None of the domain experts indicated they did not have enough information,
indicating that the information needs were saturated the most in the third cycle.

The labels collected through the survey in the first and second cycle were
used to update the weights of the algorithm. This led to an increase in perfor-
mance metrics: the F1 score was the highest of all the cycles with 72.2%. A
similar increase was also seen in the other performance metrics, meaning that
domain experts were more likely to label a case the same way the approach
did. The labeling confidence was also the highest out of all the cycles, averaging
89.4%. This cycle also evaluated two sub-processes. The increase in information
saturation and performance metrics indicate that the approach generalised well
to different sub-processes of the event log used during the evaluation. Because no
further information needs were identified, no changes were made to the approach.
This is in line with the measured information saturation.

6 Limitations

The study has potential limitations. The first limitation is the bias introduced
by the domain experts when labeling the cases. This shows through the label-
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ing confidence; the average labeling confidence is between 67.1% and 89.4%.
This shows that labeling a case could involve a substantial amount of profes-
sional judgement. This could be related to the experience of the domain experts
that participated in the survey, which was not always known. Besides the three
auditors, the background and expertise of the students and professionals are
unknown. This could lead to lower quality labels.

The approach requires domain experts to label cases before receiving a final
list of identified exceptions. This might be cumbersome and could cause friction
during the usage in audit. Regarding the results, it is unknown whether the
results can be generalised to different event logs. Because only one event log,
albeit divided into two sub-processes, is used during the evaluation, the results
might not be reproducible with different event logs. The same is true for the
encoding of the traces. Because different encoding types were not evaluated, it
is unknown whether different trace encoding would improve the results.

7 Conclusion and Future Work

The evaluation showed that the approach has the potential to support the
decision-making process of domain experts when selecting key items. Although
auditors still need to make a manual selection of key items, they are able to better
substantiate this selection. During the evaluation, multiple signs indicated that
professional judgement had a large influence on the label domain experts gave
a case (and therefore on the results). There were two reasons why professional
judgement was still required. First of all, there was more uncertainty among the
decision-makers with respect to the context of the process execution. During
a normal audit, more contextual information is available. This could cause the
domain experts to select more key items than they would normally do to reduce
the risk of missing a misstatement. The second reason is that working with pro-
cess data is new and needs adjusting to, meaning that domain experts relied
more on their professional judgement then they normally would when selecting
key items with less information about the behaviour of the transaction.

The subjectivity involved in labeling the cases should be further reduced.
Currently, trace visualisation attempts to standardise the information on which
the domain experts make their decision. By standardising this information,
the decision of the domain experts becomes more structured and standardised,
reducing the subjectivity involved during their decision-making. Future work
should standardise the trace visualisation, further structuring the way profes-
sional judgement is used throughout the approach.
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Abstract. Prescriptive process monitoring is a family of techniques to
optimize the performance of a business process by triggering interven-
tions at runtime. Existing prescriptive process monitoring techniques
assume that the number of interventions that may be triggered is
unbounded. In practice, though, interventions consume resources with
finite capacity. For example, in a loan origination process, an intervention
may consist of preparing an alternative loan offer to increase the appli-
cant’s chances of taking a loan. This intervention requires time from
a credit officer. Thus, it is not possible to trigger this intervention in
all cases. This paper proposes a prescriptive monitoring technique that
triggers interventions to optimize a cost function under fixed resource
constraints. The technique relies on predictive modeling to identify cases
that are likely to lead to a negative outcome, in combination with causal
inference to estimate the effect of an intervention on a case’s outcome.
These estimates are used to allocate resources to interventions to max-
imize a cost function. A preliminary evaluation suggests that the app-
roach produces a higher net gain than a purely predictive (non-causal)
baseline.

1 Introduction

Prescriptive Process Monitoring (PrPM) [5,8] is a set of techniques to recom-
mend or to trigger actions (herein called interventions) during the execution of a
process in order to optimize its performance. PrPM techniques use business pro-
cess execution logs (a.k.a. event logs) to predict negative outcomes that affect
the performance of the process and use these predictions to determine if and
when to trigger interventions to prevent or mitigate such negative outcomes.

Several PrPM techniques have been proposed [2,5,8]. These techniques, how-
ever, assume that it is possible to trigger any number of interventions at any
point in time. In practice, each intervention requires some resources (e.g., time
from an employee), and those resources have a limited capacity. For example,
in a loan origination process, an intervention could be to provide an alternative
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loan offer to increase the applicant’s likelihood of taking a loan. This intervention
can only be triggered if a loan officer is available to perform it.

In this setting, we address the question of whether or not to trigger an inter-
vention during the execution of an instance of a business process (herein a case)
to optimize a gain function that considers the cost of the case ending in a neg-
ative outcome and the cost of the intervention. We tackle this question in the
context where each intervention requires locking a resource for given treatment
duration and where the number of available resources is bounded.

To address this question, we use a predictive model to estimate the probabil-
ity of a negative case outcome and a causal inference approach to estimate the
effect of triggering an intervention on the probability of a negative case outcome.
Based on these estimates, we estimate the gain of triggering an intervention for
each case. We use this estimate to decide which cases should be treated given
the available resources. We report on evaluating a real-life event log to compare
the proposed approach with a baseline that relies only on predictive models.

The paper is structured as follows. Section 2 presents background concepts
and related work. Section 3 explains the approach while Sect. 4 discusses the
empirical evaluation. Finally, Sect. 5 summarizes this paper and future work
directions.

2 Background and Related Work

2.1 Predictive Process Monitoring

PrPM techniques are closely related to techniques for estimating the probability
of negative case outcomes, also known as outcome-oriented Predictive Process
Monitoring (PPM) techniques [12]. The input of an outcome-oriented PPM tech-
nique is an event log representing the execution of a business process. An extract
of a loan handling process is shown in Fig. 1. This log consists of two traces. Each
trace consists of a sequence of events. An event describes the execution of one
activity instance. An event contains three attributes: a case identifier (cid), an
activity label (activity), and a timestamp. Other event attributes may exist, like
who does the activity (the resource). Additional attributes may be of one of two
types: case attributes or event attributes. Case attributes are attributes whose
values do not change within a case, while the value of an event attribute changes.
For example, in Fig. 1, the log contains two case attributes (age and gender) and
one event attribute (resource).

trace1 = [(1, submitAnApplication, 12 : 00PM, (resource, emp1), (age, 25), (gender,male),

..., (1, callClients, 02 : 00PM, (resource, emp2), (age, 25), (gender,male))]

trace2 = [(2,makeAnOffer, 10 : 00AM, (resource, emp3), (age, 30), (gender, female)), ...,

(2, verifyDocuments, 02 : 00PM, , (resource, emp4), (age, 30), (gender, female))]

Fig. 1. Extract of a loan application process.



182 M. Shoush and M. Dumas

Outcome-oriented PPM methods predict the outcome of an ongoing case,
given its (incomplete) trace. In a typical binary PPM method, the outcome of
a case may be positive (e.g., a client accepted the loan offer) or negative (the
client did not accept the offer). Accordingly, a precondition for applying a PPM
method is to notion case outcomes and historical data about case outcomes. In
the above example, this means that for each trace, we need to know whether or
not the customer accepted the loan offer. An event log in which each trace is
labeled with a case outcome is called a labeled event log.

PPM methods typically distinguish between an offline training phase and
an online prediction phase. Based on historical (completed) cases, a predictive
model (specifically a classification model) is trained in the offline phase. This
model is then used during the online phase to make predictions based on incom-
plete traces. A typical approach to train models for PPM is to extract all or
a subset of the prefixes with length k of the labeled trace in an event log and
associate the full trace’s label to every prefix extracted from the trace. A dataset
of this form is called a labeled prefix log. A labeled prefix log is a set of prefixes
of traces, each one with an associated case outcome (positive or negative).

vector1 = [((age, 25), (gender male, 1), (gender female, 0)),

((res emp1, 1), (res emp2, 0), (res emp3, 0), (res emp4, 0)),

((A submit an application, 1), ((A communicate clients, 0),

((A make an offer, 0), ((A verify documents, 0)), (sum time, 0)]

Fig. 2. Aggregate encoding for trace1 with k = 1.

We use the labeled prefix log to train a machine learning algorithm to build a
predictive monitoring model. However, we need first to encode the prefixes in the
prefix log of each trace as so-called feature vectors (herein called trace encoders).
Teinemaa et al. [11] propose and evaluate several types of trace encoders and
find that aggregation encoder consistently yields models with high accuracy.

An aggregate encoder is a function that maps each prefix of a trace to a fea-
ture vector. Simply, it encodes each case attribute as a feature (or one-hot encode
categorical case attributes). For each numerical event attribute, use an aggrega-
tion method (e.g., sum) over the sequence of values taken by this attribute in
the prefix. For every categorical event attribute, encode every possible value of
that information as numerical features. This information refers to the number of
times this value has appeared in the prefix. An example of applying aggregate
encodings to trace1 with k = 1 is shown in Fig. 2.

2.2 Prescriptive Process Monitoring

Various PrPM methods have been proposed in prior work. Fahrenkrog et al. [5]
introduce an approach to generate single or multiple alarms when the probability
of a case leading to an undesired outcome is above a threshold (e.g., 70%).
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Each alarm triggers an intervention, which reduces the probability of a negative
outcome. Their method optimizes the threshold empirically w.r.t a gain function.

Metzger et al. [8] use ensemble methods to compute predictions and reliability
estimates to trigger interventions. They introduce policy-based reinforcement
learning to find and learn when to trigger proactive process adaptation. This
work targets the problem of learning when to trigger an intervention rather than
the question of whether or not to trigger an intervention. Both the technique
of Metzger et al. and that of Fahrenkrog et al. work under the assumption that
the number of interventions that may be triggered at a given point in time is
unbounded. In contrast, in this paper, we consider resource constraints.

Weinzerl et al. [13] propose a PrPM technique to recommend the next activity
in each ongoing case of a process, to maximize a given performance measure. This
previous study does not consider an explicit notion of intervention. Thus, it does
not consider the cost of intervention nor the fact that an intervention may only
be triggered if a resource is available to perform it.

2.3 Causal Inference

Causal Inference (CI) [14] is a collection of techniques to discover and quantify
cause-effect relations from data. Causal inference techniques have been used in
a broad range of domains, including process mining.

In [3], the authors introduce a technique to find guidance rules following
Treatment → Outcome relation, which improves the business process by trigger-
ing an intervention when a condition folds. They generate rules at design time in
the level of groups of cases that will be validated later by domain experts. More
recently, in [2], they address another target problem: reducing the cycle time of
a process using interventions to maximize a net gain function. Both works [3]
and [2] consider the estimation of the treatment effect. However, they assume
that interventions with a positive impact occur immediately and do not examine
the finite capacity of resources.

Causal inference techniques are categorized into two main frameworks [7]: (1)
Structural Causal Models (SCMs), which consist of a causal graph and structural
equations [1]. SCM focuses mainly on estimating the causal effects through a
causal graph which a domain expert manually constructs. (2) Potential outcome
frameworks focus on learning the treatment effects for a given treatment-outcome
set (T, Y ). Our work utilizes the latter, which focuses on automatic estimation
methods rather than manually constructed graphs.

We use potential outcome models to estimate the treatment effect hereafter
called conditional average treatment effect (CATE) from observational data. In
particular, we use an orthogonal random forest (ORF) algorithm that combines
tree-based models [1] and double machine learning [4] in one generalized app-
roach [9]. It estimates the CATE on an outcome Y when applying a treatment
T to a given case with features X.

ORF requires input to be in the form of input = {(Ti, Yi,Wi,Xi)}n
i=1 for n

instances. For each instance i, Ti is described by a binary variable T ∈ {0, 1},
where T = 1 refers to treatment is applied to a case and T = 0 that it is not. Yi
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refers to the observed outcome. Wi describes potential confounding properties,
and Xi is the information achieving heterogeneity.

3 Approach

The primary objective of our approach is to determine whether or not to treat
a given case and when an intervention takes place to maximize the total gain.
To learn whether or not to treat, we build predictive and prescriptive models in
the learning phase. Then, the resource allocator selects when to treat.

Event log Log pre-
processing

Predictive
model Causal model

Learning phase

Start
Is

Resource
Available

Retrieve
case with
max gain

Yes
maxGain Allocate

Resource
> 0 

No
Wait for 
case with
max gain

.

< 0 Wait for 
resourcesResource Allocator

Fig. 3. Proposed approach

The approach consists of two phases, as shown in Fig. 3. In the learning phase,
we prepare the event log to build two machine learning models. The first one is a
model that estimates the undesired case outcome probability. The second one is
the causal model to estimate the impact of a given intervention on the outcome
of a case. The predicted probability of the negative outcome and the estimated
treatment effect are used to determine the net gain in the resource allocation
phase. Below, we explain each step in Fig. 3.

3.1 Log Preprocessing

Log preprocessing is an essential step in our approach that includes data cleaning,
k-prefix extraction, prefix encoding, and identifying the outcome of cases and
interventions that we might apply to reduce the probability of negative outcomes.
For data cleaning, prefix extraction, and encoding, we follow the same approach
proposed by Teinemaa et al. [12]. The setting of outcome and intervention is
process-dependent which means we first need to understand the business process
objective. Next, we analyze the log to find what interventions could affect the
outcome of a given case by reducing the probability of negative outcomes.
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3.2 Predictive Model

We build a predictive model to estimate the probability that cases will end with
the undesired outcome. We use the estimated probabilities as a threshold τ that
we optimize empirically to decide if we move forward to estimate the treatment
effect and define gains or not.

Prepared
event log Prefixes

Extraction
Aggregate
encodings Classifier

Prefix log
Trained 

ClassifierFeature vectors

Predictive
model

Running
case

Estimated
probabilities

Encoded 
trace prefix

Fig. 4. Predictive model steps.

In order to build a predictive model, as shown in Fig. 4, first, we extract
prefixes of length k from every trace that results in a so-called prefix log. This
prefix extraction guarantees that our training log is similar to the testing log.
For instance, If we have a complete trace containing seven events, we extract
prefixes up to five events. Then we will have five incomplete traces starting with
a trace containing only one event till a trace carrying five events. Next, in the
aggregate encodings step, we encode each trace prefix into a fixed-size feature
vector (see example in Fig. 2). Finally, we use the encoded log to train a machine
learning method to estimate the probability of the undesired outcome.

This article deals with an outcome-oriented PPM problem, a classification
problem from a machine learning perspective. The output from training a classi-
fication technique is a predictive model to estimate the probability of the unde-
sired outcome (i.e., Puout) of running cases.

3.3 Causal Model

We use ORF to build a causal model to estimate the treatment effects or the
CATE of an intervention in a given case. An advantage of using ORF w.r.t.
other causal models is that it handles well high-dimensional feature spaces. This
is useful in our setting because event logs have many event attributes with cat-
egorical values, leading to feature explosion.

To estimate CATE using ORF, the input needs to be in the form of
input = {(Ti, Yi,Wi,Xi)}n

i=1 for n instances. For each instance i, Ti is the
accepted treatment. Yi refers to the observed outcome. Ti and Yi come from
the preprocessing step (see Sect. 3.1), and they might be differ from one process
to another based on the process objective. Wi describes the potential confound-
ing variables, and Xi is the information achieving heterogeneity. In this work, we
deal with an outcome-oriented loan application process it means the purpose is
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to increase the rate of successful loan applications via treating ongoing applica-
tions. We hypothesized that the intervention increases the number of successful
applications, and we assume that the treatment is identified beforehand. X and
W are obtained from the encoded log. X is a feature vector that carries both
case and event attributes, including the activity names, resources, and other
extracted features,e.g., temporal attributes. We consider all these attributes to
achieve the heterogeneity of the intervention effect. In this work, we assume
that all log attributes X are too possible confounders W . Nevertheless, X and
W may not be the same variables where a domain expert can specify which
features would be removed from W if they do not improve the outcome.

Next, and based on the above descriptions, we train an ORF to estimate the
treatment effect. The output from training an ORF technique is a causal model
used to estimate CATE for running cases.

3.4 Resource Allocator

We trained two models in the learning phase: the predictive one to estimate the
probability that a case will end with the undesired outcome Puout and the causal
model to estimate the CATE of utilizing an intervention in a given case. We
use both models with the resource allocator to decide whether or not to treat a
given case and when the intervention takes place to maximize the total gain.

Regularly triggering interventions in cases may come with gain; however,
it comes at a cost. Therefore, to define the total gain, we determine the costs
with and without intervention if the predictive model gives a probability higher
than a specific threshold τ . Especially, suppose the intervention cost is relatively
expensive as opposed to the advantage that it could afford. In that case, it
becomes more critical to decide whether or not to treat a given case.

A suitable threshold is not identified beforehand. One solution is to define
and optimize the threshold empirically to obtain maximal gain instead of a
random fixed value. The threshold is used to ensure that a given case has a high
probability of ending with the undesired outcome, i.e., Puout > τ .

Definition 1. Cost with no intervention. cost(cid, Ti=0) The cost when cid

ends with an undesired outcome without applying the intervention; therefore,
i = 0 is shown in Eq. 1. The Puout is the estimated probability of the undesired
outcome from the predictive model, and cuout is the cost of the undesired outcome.

cost(cid, Ti=0) = Puout ∗ cuout (1)

Definition 2. Cost with intervention. cost(cid, Ti=1) The cost when cid ends
with an undesired outcome with applying the intervention; therefore, i = 1 is
shown in Eq. 2. The CATE1 is the estimated causal effect of applying Ti=1 to
cid resulting from the ORF model. cT1 is the cost of employing Ti=1 to cid.

cost(cid, Ti=1) = (Puout − CATE1) ∗ cuout + cT1 (2)
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Now, we have the costs with (cost(cid, Ti=1)) and without (cost(cid, Ti=0)) the
intervention, the estimated probability (Puout), and CATE1 in our pocket. The
next step is defining the gain from applying Ti=1 to cid that enables the highest
cost reduction based on Eqs. 1 and 2, as shown in Eq. 3. The gain decides whether
or not to treat cid, which solves the first part of our problem.

Definition 3. Gain. gain(cid, Ti=1)

gain(cid, Ti=1) = cost(cid, T0) − cost(cid, Ti=1) (3)

For example, suppose we have an event log with six cases (see Table 1), the
cuout = 20, and the cT1 = 1. We have two situations where we do not calculate
the costs with and without intervention and, therefore, the gain. The first one
is presented with cid = C where the estimated probability is below a certain
threshold, for instance, τ = 0.5. The other one is given with cid = F , where there
is no positive effect of applying intervention to the case; though, the Puout > τ .
Other cases fulfill the conditions of having Puout > τ and CATE1 > 0.

Table 1. An example of defining gain.

cid Puout cuout cT1 CATE1 cost(cid, T0) cost(cid, Ti=1) gain(cid, Ti=1)

A 0.55 20 1 0.3 11 6 5

B 0.64 20 1 0.12 12.8 11.4 1.4

C 0.4 20 1 – – – –

D 0.8 20 1 0.13 16 14.4 1.6

E 0.9 20 1 0.22 18 14.6 3.4

F 0.51 20 1 −1.2 – – –

The second part of the problem is deciding when we treat a given case
assuming that intervention fulfills the required conditions, i.e., Puout > τ and
CATE1 > 0. We use the resource allocator to tackle this part.

The resource allocator monitors the availability of resources to allocate them
efficiently. Allocating resources to cid raises another question: how long, i.e.,
treatment duration, the allocated resource is blocked to apply Ti=1.

A simple way to define the treatment duration (hereafter Tdur) is to set it as
a fixed value based on the domain knowledge. However, the variability of Tdur

might affect the net gain; therefore, we examine three different distributions for
the Tdur, i.e., fixed, normal, and exponential.

Finally, based on the domain knowledge that tells us how many resources
are available to apply Ti=1, we keep an ordered list of the max gains for each
running case cid. Once we have an available resource, we allocate it to apply
Ti=1 to cid with the max gain in our ordered list and block it for Tdur.

For example, in Table 1, suppose res1 and res2 are available. First, we allo-
cate res1 to cid = A and res2 to cid = B and block them for Tdur. Then,
cid = D enters; but, we can not treat it since there are no available resources.
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Accordingly, we keep cid = D and cid = E (that comes later) in our sorted list.
We assume that cases keep coming to our system, implying that the sorted list
may eventually be extended with other cases with positive gains. Whenever a
resource becomes available, if a case in the sorted list has a positive gain, we
allocate resources to the one with max gain. Moreover, our approach allocates
resources to different cases simultaneously, and various instances update the
available resources.

4 Evaluation

We conducted an evaluation to address the following research questions:

RQ1. To what extent the total gain depends on the number of available
resources?

RQ2. To what extent the total gain depends on the variability of the Tdur?
RQ3. When allocating resources to cases with higher gain versus cases with

higher undesired outcome probability, what is the total gain?

4.1 Dataset

We evaluate our approach using one real-life event log, namely BPIC2017 1, cor-
responding to a loan origination process. In this event log, each case corresponds
to a loan application. Each application has an outcome. The desired one occurs
when offering clients a loan, and clients accept and sign it. While the undesired
one occurs when the bank cancels the application or the client rejects the offer.
The log contains 31, 413 applications and 1,202,267 events.

We used all possible attributes in the log as input to the predictive and
causal models. Furthermore, we extracted other features, e.g., the number of
offers, event number, and other temporal information, e.g., the hour of the day,
day of the month, and month. We extracted prefixes of length less than or equal
to the 90th percentile of the case lengths in the log to avoid bias from long cases.
We encoded the extracted prefixes using aggregate encoding to convert them into
a fixed-size feature vector (see Sect. 2.1).

To obtain the best performance of either predictive or causal models, event
log, i.e., a loan application process, preprocessing is an essential step. In addition
to the preprocessing given by [12], we define the outcome of cases based on
the end activity. We represent cases that end with “A Pending” events as a
positive outcome, where cases that have “A Denied” or “A Cancelled” events
are adverse outcomes that need intervention. Then, we define the intervention
that we could apply to minimize the unsuccessful loan applications based on
the winner report of the BPIC challenge [10]. They report that making more
offers to clients increases the probability of having “A Pending” as an end stat.
Accordingly, we represent cases with only one offer to be treated where T = 1.
In contrast, cases with more than one offer should not be treated, then T = 0.

1 https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b.

https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
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4.2 Experiment Setup

We use an XGBoost2 model to estimate the probability of negative case out-
comes, i.e., Puout. XGBoost has shown good results on various classification
problems [6], including outcome-oriented PPM [12]. We use the following param-
eters to train the XGBoost model: learning rate of 0.2, subsample of 0.89, max
tree depth of 14, Colsample by tree of 0.4, and a min child weight of 3.

We use ORF to estimate the CATE as implemented in the EconMl3 package.
We use the following parameters: min leaf size of 50, a max depth of 20, a sub-
sample ratio of 0.4, and lambda regularization with parameter 0.01.

The predictive and causal models follow the same workflow as any machine
learning problem. We temporally split the log into three parts (60% - 20% -
20%) to simulate real-life situations to tune and evaluate these models. Mainly,
we arrange cases using their timestamps. We use the opening 80% for training
(60%) and tuning (20%), and the rest (20%) to evaluate model performance.
Table 2 shows the configurations of the proposed approach.

We vary the cuout values to make them more significant than the cT1 value to
give a meaningful result. We found that the higher cuout related to cT1 , the more
net gain. Accordingly, we applied the higher value of the cuout in our experiments
with different treatment distributions and an empirically optimized threshold to
answer our research questions.

We assume that the estimated CATE is accurate and, hence, allocating
resources will decrease a case’s probability of a negative outcome. We compare
our approach to a purely predictive baseline proposed in [5], where the interven-
tions are triggered as soon as Puout > τ . In other words, we allocate resources
to cases with the highest Puout instead of cases with max gain, and we consider
the CATE as the new gain we achieve from treating cases.

Table 2. Configurations of the proposed approach

#resources cuout cT1 τ T dur (sec)

1, 2, ...10 1, 2, 3, 5, 10, 20 1 0.5, 0.6, ...0.9 Fixed = 60

Normal ∈ {1, 60}
Exponential ∈ {1, 60}

4.3 Results

We present the results of our proposed approach by exploring the effects of
available resources on the total gain and the percentage of treated cases, taking
into account the variability of Tdur (RQ1 and RQ2). Figure 5a shows how the
total gain and percentage of treated cases evolve as we increase the number
of available resources (RQ1). When the number of available resources increases,
both metrics increase. Meanwhile, if the available resources reach above 50%, the
2 https://github.com/dmlc/xgboost.
3 https://github.com/microsoft/EconML.

https://github.com/dmlc/xgboost
https://github.com/microsoft/EconML
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total gain almost increases considerably. For example, with fixed distribution in
Fig. 5a, when the percentage of available resources is above 50%, the total gain
rises markedly compared to the situation where the rate of resources is below
50%. That is because more cases are treated when more than half of the resources
become available.

(a) RQ1 and RQ2 (b) RQ3

Fig. 5. Total gain and % of treated cases w.r.t % available resources

Moving to RQ2, we experiment with three Tdur distributions, i.e., fixed, nor-
mal, and exponential. Figure 5a shows that the fixed distribution gives more net
gain because there is less variability in the distribution of resources among cases
that need intervention than normal and exponential distributions where the level
of variability decreases, respectively. Accordingly, the net gain highly depends
on the variability of treatment duration.

To answer RQ3, we allocate resources to cases with the highest Puout instead
of cases with max gain. We consider the CATE a new gain from treating cases
(see Fig. 5b). Therefore, we need a threshold τ to determine whether or not to
intervene depending on the Puout. There are two approaches to set a thresh-
old: first, and based on a given threshold, e.g., τ = 0.5, if there are available
resources and the undesired outcome above the given threshold, we trigger an
intervention. The second is to use an empirical threshold proposed by [5], where
authors compute an optimal threshold based on historical data. We varied the
threshold as shown in Table 2. However, the results are different based on the
Tdur distribution. Where τ = 0.5, the normal distribution gives more net gain
than other thresholds. While τ = 0.6, the exponential distribution delivers the
higher net gain. Moreover, with τ = 0.7, the fixed distribution wins. The results
of optimizing the threshold are available in the supplementary material4, where
we show how the total gain changes w.r.t different thresholds and different Tdur.

We observe that our approach consistently leads to higher net gain, under
the same amount of consumed resources, than the purely predictive baseline.
For example, under a fixed distribution, treating 25% of cases with our approach

4 https://zenodo.org/record/5538113#.YVSdhSVRV8I.

https://zenodo.org/record/5538113#.YVSdhSVRV8I
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(cf. Fig. 5a) leads to a net gain of 10000, while in the predictive method (Fig. 5b),
treating twice more cases (50% of cases) yields a net gain of only 1400. This
suggests that the combination of causal inference with predictive modeling can
enhance the efficiency of prescriptive process monitoring methods.

4.4 Threats to Validity

The evaluation comes with an external validity threat (lack of generalizability)
due to its reliance on only one event log. The evaluation is preliminary and ought
to be followed up with additional experiments using other datasets.

We simulated a scenario where we could trigger interventions at any time
point. Also, we assume that the effect of this intervention will be to reduce the
probability of adverse outcomes by the estimated CATE. There is a threat to
ecological validity because the CATE might not reflect the actual treatment
effect due to unobserved confounders.

The evaluation is limited to one feature encoding method and one machine
learning algorithm. Experimenting with other encodings and algorithms is a
direction for future work.

5 Conclusion

We introduced a prescriptive monitoring approach that triggers interventions
in ongoing cases of a process to maximize a net gain function under limited
resources. The approach combines a predictive model to identify cases that are
likely to end in a negative outcome (and hence create a cost) with a causal
model to determine which cases would most benefit from the intervention in their
current state. These two models are embedded into an allocation procedure that
allocates resources to case interventions based on their estimated net gain. A
preliminary evaluation suggests that it treats fewer cases and allocates resources
more effectively than a baseline method that relies only on a predictive model.

In the proposed approach, an intervention is triggered whenever the esti-
mated net gain of treating this case is maximal, relative to other cases. Under
some circumstances, this may lead to treating a case at a suboptimal time. For
example, in a loan origination process, calling a customer two days after send-
ing an offer may be more effective than doing so just one day after the offer.
The expected gain is not just depending on utilizing the intervention. It rather
depends on the time we trigger the intervention. Accordingly, If we decide to
wait until the state of the cases changes and do not intervene, it will reduce
the uncertainty and probably achieving more gain. Our approach would trigger
the intervention “call customer” one day after the offer if the expected benefit
is positive and there is no other case with a higher net gain. An alternative
approach would be to allocate resources based on the estimated net gain of a
case intervention at the current time and the expected gain of intervening in the
same case at a future time. An avenue for future work is to combine the proposed
approach with a method that optimizes the time point when an intervention is



192 M. Shoush and M. Dumas

triggered in a case. A related avenue for future work is to consider constraints on
the moment when interventions can be triggered on a case. For example, calling
a customer to follow up on a loan offer does not make sense if the loan offer has
been canceled or the customer has not yet received a loan offer.

Another limitation of the proposed approach is that it assumes that there is a
single type of intervention. In reality, there may be multiple types of interventions
(e.g., call the customer, send a second loan offer). Another future work direction
is to handle multiple types of interventions.

Reproducibility. The implementation and source code of our approach can be
found at https://github.com/mshoush/PrescriptiveProcessMonitoring.
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Abstract. The growing interest in applying machine and deep learn-
ing algorithms in an Outcome-Oriented Predictive Process Monitoring
(OOPPM) context has recently fuelled a shift to use models from the
explainable artificial intelligence (XAI) paradigm, a field of study focused
on creating explainability techniques on top of AI models in order to
legitimize the predictions made. Nonetheless, most classification mod-
els are evaluated primarily on a performance level, where XAI requires
striking a balance between either simple models (e.g. linear regression)
or models using complex inference structures (e.g. neural networks) with
post-processing to calculate feature importance. In this paper, a compre-
hensive overview of predictive models with varying intrinsic complexity
are measured based on explainability with model-agnostic quantitative
evaluation metrics. To this end, explainability is designed as a symbiosis
between interpretability and faithfulness and thereby allowing to com-
pare inherently created explanations (e.g. decision tree rules) with post-
hoc explainability techniques (e.g. Shapley values) on top of AI models.
Moreover, two improved versions of the logistic regression model capable
of capturing non-linear interactions and both inherently generating their
own explanations are proposed in the OOPPM context. These models
are benchmarked with two common state-of-the-art models with post-
hoc explanation techniques in the explainability-performance space.

Keywords: Predictive Process Monitoring · XAI · Machine Learning ·
Deep Learning

1 Introduction

Sparked by the growing research on machine learning, the analysis of processes
through data-driven approaches has seen a surge under the label process min-
ing [1]. Recently, the subtrack of predictive process monitoring [14] has known
a strong uptake as it allows identifying trends in processes concerning the obtain-
ment of particular goals (e.g. will customers be awarded credit?), impeding bot-
tlenecks, and whether particular activities will occur in the future. As the concrete
goal is to predict the future state as accurately as possible, the anticipated trend
c© The Author(s) 2022
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is to increase the predictive performance with the use of deep learning instead
of the more classical machine learning models [4,14]. The intrinsic complexity
of these predictive models, however, causes a lack of transparency of the model,
intertwined with the inability to interpret the predictions. In predictive process
monitoring, several papers have already suggested model-agnostic explainability
techniques on top of the machine learning models, e.g. SHAP/LIME [10], with
similar developments in a deep learning context [3,12]. Nevertheless, the accu-
racy by which these post-hoc explainability techniques reflect the effective model
behaviour of the predictive model is often inadequate. Moreover, identifying faith-
ful explanations that are interpretable remains a challenge for black box models.
This has already been raised by XAI proponents [11], advising to adopt inher-
ently interpretable models rather than trying to explain black box models when
it comes down to high-stake decision-making. Nonetheless, a description of the
technical limits of post-hoc XAI techniques is deemed out of scope.

To the best of our knowledge, none of these works have addressed the system-
atic comparison of interpretable models versus post-hoc explainability in the con-
text of OOPPM. To this end, this paper introduces a definition of explainability
that allows to compare different predictive models based on model-agnostic quan-
titative measures. Furthermore, given the need for more inherently interpretable
machine learning models which excel in terms of the predictive performance–
explainability trade-off [5,11], the Logit Leaf Model (LLM) and the Generalized
Logistic Rule Model (GLRM) are adapted to the OOPPM context. The former
naturally clusters the data with a decision tree and builds linear models which
are directly interpretable in the leave nodes. The latter creates binary rules from
the input data with a generalized logistic rule model which is less transparent but
has been shown to outperform even very intricate inference mechanisms such as
neural networks [16]. We benchmark these techniques with two established tech-
niques aimed at introducing post-hoc explainability, i.e., XGBoost with Shapley
values, and recurrent neural networks with attention. The rest of the paper is
organized as follows. First, Sect. 2 provides a brief overview of the preliminaries.
Next, Sect. 3 defines how explainability can be quantitatively measured, while
introducing two models to the field of OOPPM. This is followed by an experi-
mental evaluation in Sect. 4, where the experimental setup, the implementation
details and the results are reported. Finally, the models are compared alongside
the conclusion in Sect. 5.

2 Preliminaries

Fig. 1. Preliminary steps (simplified)
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OOPPM relies on the use of historic process data recorded in event logs. An
event log is a list of traces which represent the enactment of a particular case
within an information system [1]. Moreover, a trace is considered as a sequence
of timestamped events which are tuples of p features [x1, . . . , xp] such as an
activity name, timestamp, and so on. On the other hand, machine and deep
learning models such as the ones used for OOPPM are built to work on tabular
data, with every row representing a new instance while having a fixed length of
feature values. In order to use event logs in combination with AI models, the
data transformation steps from Fig. 1 need to be applied.

First, (trace) prefixes are extracted from the completed cases to be able to
learn, preferably incrementally, from the development of the traces. To this end,
a prefix log is typically derived, which is the extracted event log that contains
all the prefixes of each case in the original event log.

The second data transformation step describes the encoding mechanism [15]
that enables the user to work with a varying amount of features. An often used
encoding is frequency aggregation, which takes the frequencies of the categori-
cal values while calculating the summary statistics of the numeric values (min,
max, mean, sum and std). This transformation step results in a trace prefix of
indefinite length being displayed as a row with a fixed amount of features, with
x′
i,j the frequency/statistics of instance i ∈ [1 . . . n] on the transformed feature

x′
j , j ∈ [1 . . . p]. Nonetheless, this encoding mechanism neglects the order of the

timestamped events and therefore results in a loss of information. By contrast,
the use of frequency aggregation in step-based models such as recurrent neu-
ral networks becomes superfluous given their sequential setup. To exploit this
efficiently, a low-dimensional representation of discrete features in the form of
embeddings is an often performed encoding [12,14]. This mapping transforms the
categorical feature to a vector of continuous numbers in a meaningful way. The
use of embeddings is preferred over one hot-encoding, where high-cardinality
features cause the feature space to explode while simultaneously ignoring the
similarity between these vectors.

The last step before the data can be fed to a model is trace bucketing, a com-
monly used data transformation step that supports the discovery of heteroge-
neous segments in the data while creating separate models for each of them [15].
Techniques such as K-nearest neighbours or K-Means clustering measure the
(dis)similarity between traces depending on the parameter k. However, while
bucketing can effectively diminish the runtime performance [15], the clustering
does not necessarily result in an intuitive or interpretable outcome. E.g., cluster-
ing techniques can base their grouping on a high number of dimensions that are
not interpretable. Furthermore, there is no guarantee that the use of a bucketing
technique will effectively improve performance [15]. The above was tested by
benchmarking against the single bucketing technique, in which only one bucket
is created [15].

As a final step, the model can be used to make certain predictions y∗ = F (xj)
with F the model/function to make a prediction based on the features xj with
j ∈ [1 . . . p].
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3 Explainability in OOPPM

This Section introduces a general definition of explainability based on XAI con-
cepts, which can be used to evaluate OOPPM techniques. Next, two interpretable
models with varying model complexity are introduced to OOPPM. The Logit
Leaf Model (as presented in this paper) is a transparent and interpretable model.
The second algorithm is the Generalized Logistic Rule Model that uses column
generation to find the optimal set of rule-based features and able to create its
own explanations.

3.1 Explainability Through Interpretability and Faithfulness

Fig. 2. Explainability Through Interpretability and Faithfulness

The use of the predictive models for high-stake decision-making processes is find-
ing its way to ever more applications. While simple models are able to generate
their own explanations, XAI tries to approximate the behaviour of the model
with post-hoc explainable techniques such as e.g. Shapley values, feature impor-
tance, etc. This leads to a widespread urge to evaluate the faithfulness (and
interpretability) of these models, by looking at whether the original task model
(e.g. black box model) is accurately reflected by the explainability model (e.g.
post-hoc explainability technique).

First of all, even though often used interchangeable, there is a subtle dif-
ference between interpretability and explainability. This boils down to the fact
that understanding the internal working of the model is different from the abil-
ity to link the inputs with its predicted output in a faithful way. Moreover, an
unambiguous and simple interpretation of a prediction has a substantial loss of
trustworthiness if it does not accurately represent the effective behaviour of the
model. To emphasize, a simple explanation generated for a rain forecast predic-
tion could be: ‘if the grass is green, it will rain’, which is easy to interpret, but
is unfaithfulness to the actual behaviour of rain.

The necessity to distinguish between faithfulness and interpretability was
defined by [5] and is adapted in this paper for OOPPM purposes. As a result, the
combination of interpretability (further decomposed in parsimony and functional
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complexity) and faithfulness (by means of monotonicity), allows quantifying and
thus evaluate explainability in an OOPPM context (see Fig. 2).

Parsimony is a property of interpretability that discusses the complexity of
the model [5], an often used metric for linear regression models. In this paper, the
parsimony of a model F is quantified by the amount of features in the resulting
model. This can be seen as the number of features with non-zero weights e.g.,
linear regression coefficients with a corresponding weight different from 0, in
other cases the non-zero weights provided by the post-hoc feature importance.
As a result, the parsimony of a model is maximally equal to the total amount
of features. Moreover, a parsimonious (i.e. simple) model corresponds to a low
value for CF .

Assume features xi with ai the weight of the features i ∈ [1 . . . p] indicated by
the feature importance of a model, where the total parsimony CF is calculated
as followed:

CF =
p∑

i=1

C(i) with

C(i) =

{
0, if ai > 0,

1, otherwise.
(1)

Functional complexity is, alongside parsimony, a metric of model com-
plexity and measures how strong the model is dependent of the features [8].

Assume the prediction of an instance i by the model F is indicated by
ŷi = F (xi,1, . . . , xi,p). Furthermore, the prediction after feature permutation is
defined by ŷ∗

i = F (xi,1, ., x
∗
i,j , ., xi,p), where x∗

i,j is a randomly permuted feature
value. The total functional complexity is calculated as the amount of prediction
changes before and after permutation for all the instances and features, divided
by the number of instances and the parsimony CF of the model. Therefore,
the functional complexity is quantified by regarding a feature as ‘used’ when
changing the feature changes the prediction. A lower value for UF means less
model complexity and therefore higher model interpretability. This paper intro-
duces a slightly different perspective from the original computation [8], where the
functional dependency of a model was originally determined by examining how
often the model predictions change when changing the value xi,j of an instance
i ∈ [1 . . . n] on a feature j ∈ [1 . . . p].

UF =
1
n

1
CF

p∑

j=1

n∑

i=1

ui,j with

ui,j =

{
1, if ŷi �= y∗

i ,

0, otherwise.
(2)

Monotonicity is the notion that describes the extent to which the feature
importance ranking of the explainability model is faithful to the ranking of the
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task model feature importance. By definition, monotonicity is ensured (i.e. M =
1) if the model is able to create its own explanations, i.e. inherently generated
explanations [9]. The monotonicity of a (post-hoc explainability) model therefore
needs to be quantified by the Spearman’s correlation coefficient [9].

M = ρ(a, e)

with a = (|a1|, ..., |ap|) containing the absolute values of the feature weights
of the task model and e = (|e1|, ..., |ep|) the absolute values of the feature weights
of the explainability model. This correlation coefficient is a non-parametric mea-
sure that takes a value between [−1, 1] and describes the association of rank.
A perfectly faithful model has a correlation coefficient of +1, where a loss in
faithfulness corresponds with a value closer to 0. Consequently, a negative value
corresponds to a negative rank association between the two feature importance
weights.

3.2 Logit Leaf Model

Evidently, the use of inherently interpretable models for high-stake decision-
making is preferred over black box models [11], which leads to the introduction of
the Logit Leaf Model. This model is constructed as a hybrid of logistic regression
and decision tree clustering, with the former model applied in the leaves of the
latter to create predictions. An initial version was proposed by [2] in the context
of churn prediction where in each leaf node, only the variable that contributes to
the maximal Akaike Information Criterion decrease is added, until the stopping
criteria are met. Here, we adapt the general idea to the context of OOPPM.

The adapted algorithm starts similarly as a simple decision tree, with the tree
splitting the data in an iterative manner into smaller, more homogeneous sam-
ples. All the possible splits are evaluated based on the information gain obtained
by the decrease in entropy, where after the best possible split is performed. The
stopping decision consist out of two different approaches: a maximum number
of tree levels together with a minimal number of samples in a leaf. Hence, all
the possible models that abide the stopping decision rules are evaluated based
on their final predictive performance where only the optimal model is returned.
Lastly, the assignment decision of the leave nodes is revised, where a logistic
regression model is learnt for each segment of the data instead of performing
majority voting.

The strength of decision trees lies in the ability to discover XOR-style inter-
actions, as opposed to the model failing when it comes to discovering linear
relations between the predictor variables. By contrast, logistic regression models
are unable to deal with these interaction effects but manage to handle linear
relations well. As a result, the logit leaf model overcomes both disadvantages
while exploiting their respective strengths. The nature of this model ensures
that the explanations consist out of a combination of decision tree rules and
logistic regression coefficients, making it a faithful model by design.

The model does, however, have two major drawbacks. Firstly, while decision
trees can capture the interaction effects, the logistic regression model might not
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deal with them well in case they are still left in impure splits. This can result in
reduced predictive performance. Secondly, the model can still become large when
many coefficients have higher/lower values, impeding the overall interpretability.

3.3 Generalized Logistic Rule Model

The second introduced model is the Generalized Logistic Rule Model [16], which
combines the linear elements from logistic regression together with a conjunctive
ruleset, where each rule is constructed as a conjunction of binarized features
making the GLRM model a rule ensemble [6]. Here, the assumption of a Gaussian
distribution of the residuals in a general linear regression model is relaxed and
generalized for different distributions. By induction, a logistic regression model
is therefore also a generalized linear model [16].

In order to find the optimal set of rule-based features, column generation
is performed using integer programming to improve the objective function [16].
First, the GLRM model transforms the original features to rule-based features
before making predictions. To this end, numerical features are binarized through
bi-directional comparisons to a set of thresholds, while categorical features are
one-hot encoded.

In the final model, the probability of y being classified as ‘deviant’ is predicted
as log(z), where z is a linear combination of the discovered rules.

log(z) =
1

(1 + e−z))
(3)

Similar to a logistic regression, the GLRM model is able to create coefficients
for a single feature, but by extension also for an AND-combination of two fea-
tures. Furthermore, the rule-based features can handle both linear and non-linear
dependencies (analogous to LLM) as an improvement over the competencies of
the logistic regression model. The strength of the GLRM model lies in the abil-
ity to reduce the amount (and length) of rules with the use of regularization
parameters, a means to improve the interpretability of the rules. Moreover, λ0

denotes the fixed cost of each rule (penalizes the amount of the rules), while
λ1 is the additional cost of each literal in rule (penalizes the length of a rule).
This ensures that GLRM can compete directly in terms of performance while
providing its own, relatively simple explanations.

The intrinsic complexity of this model, i.e. a column generation subproblem
solved using integer programming, can be seen as a drawback in the context
of high-stake decision making. Next, generalized linear models are known to be
sensitive to outliers. The last drawback is the need of relatively large sample
sizes, and an exponential increase of binarized features with an increase in the
amount of predictor variables.

4 Experimental Evaluation

In this Section, the two benchmark models are briefly discussed, while indi-
cating which post-hoc explainability techniques are used on top of these black
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box models. Next, the different event logs and their corresponding statistics are
elaborated on. This is followed by detailed information about the implementa-
tion steps performed in this experiment. Finally, an overview of the quantitative
metric results is given, which is subsequently summarized in Sect. 5.

4.1 Benchmark Models

XGBoost is one of the most widely-used ensemble methods in machine learning
due to its ability to outperform most of the existing models. Several studies in a
predictive process monitoring context have already used this gradient boosting
machine [15], where weak learners are improved after each iteration to a final
strong learner by incorporating the loss function of the previous weak learner(s).
As this is a black box model, Shapley values need to be calculated in order to
explain the model [13]. The Shap value for each instance-feature combination is
obtained, whereby the calculation is based on coalitional game theory. There-
fore, XGBoost is not an interpretable model, as the inherit complexity is what
bestows the predictive abilities on this black box model. The feature importance
is calculated by the average of the amount that each feature split point improves
the purity (i.e. Gini index) weighted by the number of instances in the respective
nodes, across all the decision trees within the model.

The second model is a recurrent neural network with Long Short-Term Mem-
ory (LSTM), with the long-term relations and dependencies encoded in the cell
state vectors, therefore solving the vanishing gradient problem. The advantage
of LSTM over classical machine learning models lies in the ability to model time-
dependent and sequential data tasks, where the categorical values are encoded in
embeddings. Similar to XGBoost, the complexity of the internal representation
of an LSTM neural network does not allow for inherent explanations of pre-
dictions. Consequently, recent work in deep learning to predict the next activity
have come with solutions to provide post-hoc explanations [3,7], whereby the use
attention layers to create post-hoc explainability in predictive process monitor-
ing stems from [12]. In [3], an LSTM model in combination with Shapley values
allow the user to identify the influence of certain features in the different steps
of the process, while [7] focuses on creating local post-hoc explanations with
the use of a surrogate decision tree. In addition, [17] introduces a widely-used
approach of machine learning to offer explainability in the light of deep neural
networks for remaining-time and next-activity predictions respectively. Finally,
in the case of long short-term neural networks, the feature importance of the
task model is approximated with the use of a perturbation method.

4.2 Event Logs

The first event log TF1 contains notifications from an Italian local police force,
e.g. the reason, the total amount, and the amount of repayments. The origi-
nal event log has 1,198,366 events divided over 129,615 cases (see Table 1). The
second event log BPIC2017 assembles the execution history of a loan applica-
tion process in a certain Dutch financial institution. The dataset contains events
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related to a particular loan application, with the label indicating if the loan appli-
cation was accepted (regular), or not (deviant). The last event log BPIC2015
assembles events from the second Dutch municipality (see [15]), pertaining to
the building permit application process. The different event logs can be found
at the website of 4TU Centre for Research Data1.

Table 1. Event Logs

event log events cases cutoff features features features

len. (orig.) (agg. enc.) (select.)

TF1 460,556 129,615 10 21 254 3

BPIC2017 1,198,366 31,413 20 26 259 10

BPIC2015 41,202 753 40 21 391 50

4.3 Implementation

The event logs are split on an 80/20 ratio, with the cases ordered based on their
timestamp and only the first 80% used for training purposes (after cutting the
events of the training cases that overlap with the test period), an analogue imple-
mentation approach to [15]. Next, the data transformation steps as described in
Fig. 1 are performed. After trace prefixing and cutting (with a predefined cut-off
length), different sequence encoding techniques are implemented for the machine
learning algorithms (i.e. aggregation encoding) and the LSTM model (i.e. embed-
ding). Therefore, the total amount of deduced columns after aggregation encod-
ing in Table 1 is only applicable for the machine learning models. Lastly, no
trace bucketing technique has been applied for any of the respective models.
Instead, in order to improve runtime performance and interpretability, feature
selection is performed, where only uncorrelated predictor features (with ≥ 10%
Pearson correlation with the target feature) are selected, which made trace buck-
eting unnecessary. Furthermore, the hyper optimization for the machine learning
models is performed with the use of hyperopt2, while the LSTM neural network
has an analogue setting to [12], with the predictive function transformed into a
binary outcome-oriented prediction by stripping of the final layer and inserting
a sigmoid output layer instead. As a final remark, detailed information about
design implementations and parameters are provided, to enhance reproducible
results3.

1 https://data.4tu.nl/.
2 http://hyperopt.github.io/hyperopt/.
3 https://github.com/AlexanderPaulStevens/OOPPM.

https://data.4tu.nl/
http://hyperopt.github.io/hyperopt/
https://github.com/AlexanderPaulStevens/OOPPM
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Table 2. Quantitative Metrics (overview)

Traffic Fines BPIC2017 BPIC2015

LLM GLRM XGB LSTM LLM GLRM XGB LSTM LLM GLRM XGB LSTM

Parsimony 2 3 3 2 9 6 10 7 18.5 13 40 15

Functional

Complexity
0.00 0.00 0.57 0 0.97 0.55 0.25 0.00 0.29 0.15 1.24 0.12

Monotonicity 1 1 1 −1 1 1 0.42 −0.43 1 1 0.31 −0.12

4.4 Quantitative Metrics Results

The parsimony of a model is described with the use of an absolute number instead
of, e.g., a ratio, allowing for comparability between event logs with different
dimensions. Intuitively, the parsimony of a model displays the amount of features
used in the explainability model, with on average the highest value denoted for
the XGBoost model in contrast to the lowest value for the rule-based GLRM.
Furthermore, the parsimony of the LLM tends to increase more compared to the
LSTM with an increased amount of predictor variables.

The functional complexity of each model describes the dependency of the
model on the features, and only makes sense when analysing the same event
log. Again, the XGBoost model reports the highest value on average, while the
LSTM neural network has the lowest functional dependency (on average) on its
features. This intuitively boils down to the fact that changing a value in an LSTM
neural network has a smaller effect on the value of the prediction due to the more
complex inference structure that makes for more stable predictions. Furthermore,
this metric is by design (as the parsimony metric is in the denominator instead of
the total amount of column) able to demonstrate that e.g. the XGBoost model is
also functionally dependent on feature(s) that were assigned a zero-attribution,
as a value >1 for event log BPIC2015 is reported. Further insights are that the
functional complexity of the GLRM and LLM do not have a linear relationship
with the basic statistics from Table 1, where the functional complexity in the
XGB model seems to depend on the number of selected features.

As the faithfulness of both LLM and GLRM are guaranteed by definition (the
task model and the explainability model are the same), only monotonicity val-
ues for the XGBoost and LSTM model have to be calculated. For the BPIC2017
event log, the Spearman’s rank correlation coefficient of the XGBoost vs. Shap-
ley value feature importance is 0.42, where the underlying message is that the
Shapley values do not accurately reflect the model behaviour, indicating a loss
of faithfulness. For the LSTM neural network, the feature importance calculated
with the attention values versus feature importance based on the perturbation
importance are the values used to calculate the monotonicity, with a negative
value of −0.43 reported in Table 2 for the event log BPIC2017. This interesting
value is visualized in Fig. 3, where it is clear that there is uncertainty about the
influence of the time component on the model.



204 A. Stevens et al.

Lastly, the performance of the different models over the different event logs
show that the introduced models are competitive with the less interpretable
models (with an outlier value for the LSTM on the event log BPIC2015).

Fig. 3. BPIC2017 LSTM (Attention vs. Perturbation)

5 Conclusion

While data fuels the advances in machine learning and artificial intelligence, the
centre of attention has mostly been on the computational aspects, thereby often
neglecting the interpretation, actionability, and implications of the results. More-
over, an easily interpretable explanation must also be faithful to the effective
model of behaviour, with the quantitative evaluation of explainability techniques
on top of models with varying intrinsic complexity as an increased necessity. To
this end, this paper has introduced a definition (explainability as a symbiosis
between interpretability and faithfulness) and quantitative metrics (parsimony,
functional complexity and monotonicity) to evaluate and rank different algo-
rithms based on their explainability. Moreover, it is desirable that a model uses
a small amount of features for its predictions (low parsimony), which are as
functionally independent as possible (low functional complexity), without com-
promising on faithfulness (monotonicity of 1).

Furthermore, this paper also introduced two improved versions of the logis-
tic regression model, which were found to have comparative performance results
when compared with the two benchmark models. In addition, both the GLRM
and LLM show better (or at least comparable) overall results based on par-
simony, functional complexity and monotonicity on the three event logs with
varying statistics. Lastly, the faithfulness of the explanations is ensured for these
models by definition, while the study shows that the post-hoc explainability mod-
els on top of the XGBoost and LSTM models are associated with an imperfect
faithfulness. As a result, the use of GLRM is recommended (over LLM) due
to the overall better results. This predictive model can handle both linear and
non-linear dependencies and the amount (and length) of rules can be reduced
with the use of regularization parameters, which is favourable to the parsimony
and possibly the functional complexity.
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Future research consists of evaluating the impact of the index sequence encod-
ing technique, seeking justification for the obtained negative values of the mono-
tonicity of the LSTM, and identifying the most important components for evalu-
ating model explainability. Additionally, this paper will be extended to a bench-
marking study with additional methods (classic logistic regression, CNN, etc.)
and metrics.

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

2. Caigny, A.D., Coussement, K., Bock, K.W.D.: A new hybrid classification algo-
rithm for customer churn prediction based on logistic regression and decision trees.
Eur. J. Oper. Res. 269(2), 760–772 (2018)

3. Galanti, R., Coma-Puig, B., de Leoni, M., Carmona, J., Navarin, N.: Explainable
predictive process monitoring. In: ICPM, pp. 1–8. IEEE (2020)
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Streaming Process Mining is an emerging area in process mining that spans data
mining (e.g. stream data mining; mining time series; evolving graph mining), process
mining (e.g. process discovery; conformance checking; predictive analytics; efficient
mining of big log data; online feature selection; online outlier detection; concept drift
detection; online recommender systems for processes), scalable big data solutions for
process mining and the general scope of online event mining. In addition to many other
techniques that are all gaining interest and importance in industry and academia. The
SA4PM workshop aims at promoting the use and the development of new techniques
to support the analysis of streaming-based processes. We aim at bringing together
practitioners and researchers from different communities, e.g., Process Mining, Stream
Data Mining, Case Management, Business Process Management, Database Systems,
and Information Systems who share an interest in online analysis and optimization of
business processes and process-aware information systems with time, storage, or
complexity restrictions. Additionally, SA4PM aims to attract research results on
scalable algorithmic process mining solutions in general, given that the work addresses
how such efficient solution would function under streaming settings. The workshop
aims at discussing the current state of ongoing research and sharing practical experi-
ences, exchanging ideas, and setting up future research directions.

The workshop started with an interesting invited talk by Matthias Weidlich, titled:
“From Complex Event Recognition to Processes and Back – A Reflection on Existing
Solutions and Open Challenges” where he shed light on scenarios and respective
solutions for the integration of complex event recognition and process management.
Then he pointed to open questions in the area.

This 2nd edition of the workshop attracted 7 international submissions, one of
which was redirected to another workshop before the reviewing due to relevance. Each
paper was reviewed by at least three members of the Program Committee. From these
submissions, the top 3 were accepted as full papers for presentation at the work-
shop. The best rejected paper was invited for a work-in-progress talk without being
included in the proceedings. All presenters got the chance to interact with the audience
during a poster session. The workshop was held in a hybrid setting to enable online
attendance to interact with the talks. The papers presented at the workshop provided a
mix of novel research ideas and focused on online anomaly detection, online predictive
monitoring, and streaming analysis of consumer behavior.

Anna Wimbauer et al. focus on online anomaly detection in online process mon-
itoring when tracking local deviations over multiple process instances. The proposed
method, called PErrCas, additionally visualizes correlations of deviation points.
PErrCas provides knowledge about current cascades of deviations to give process
analysts a starting point for rational root cause analysis if processes leave their in-
control parameters. The method monitors deviations online and maintains cascades of
varying timespans. As such, the approach avoids defining an observation window



beforehand, which is a significant advantage due to its impracticability to predefine
expected cascade properties in exploratory scenarios.

Next, Suhwan Lee et al. addressed the problem of continuous performance eval-
uation for business process outcome monitoring after defining it as a gap in the liter-
ature. Without such a continuous evaluation, users may be unaware of the performance
of predictive models, resulting in inaccurate and misleading predictions. Their paper
fills this gap by proposing a framework for evaluating online process outcome pre-
dictions, comprising two different evaluation methods. These methods are partly
inspired by the literature on streaming classification with delayed labels and comple-
ment each other to provide a comprehensive evaluation of process monitoring tech-
niques: one focuses on real-time performance evaluation, i.e., evaluating the
performance of the most recent predictions, whereas the other focuses on a progress-
based evaluation, i.e., evaluating the ability of a model to output correct predictions at
different prefix lengths. The authors presented an evaluation involving three publicly
available event logs, including a log characterized by concept drift.

Finally, Yorick Spenrath, et al. presented work on online prediction of aggregated
retailer consumer behavior. Their observation is that the ability to make predictions on
an individual level is useful, as it allows retailers to accurately perform targeted
marketing. However, with the expected large number of consumers and their diverse
behavior, making accurate predictions on an individual consumer level is difficult.
Their approach presents a framework that focuses on this trade-off in an online setting.
By making predictions on a larger number of consumers at a time, they improve the
predictive accuracy but at the cost of usefulness, as one can say less about the indi-
vidual consumers. The framework is developed in an online setting, where they update
the prediction model and make new predictions over time. They show the existence of
the trade-off in an experimental evaluation on a real-world dataset consisting of 39
weeks of transaction data.

We hope that the reader will find this selection of papers useful to keep track of the
latest advances in the stream process mining area. We are looking forward to keeping
bringing new advances in future editions of the SA4PM workshop.
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Online Prediction of Aggregated Retailer
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Abstract. Predicting the behaviour of consumers provides valuable
information for retailers, such as the expected spend of a consumer or
the total turnover of the retailer. The ability to make predictions on an
individual level is useful, as it allows retailers to accurately perform tar-
geted marketing. However, with the expected large number of consumers
and their diverse behaviour, making accurate predictions on an individ-
ual consumer level is difficult. In this paper we present a framework that
focuses on this trade-off in an online setting. By making predictions on
a larger number of consumers at a time, we improve the predictive accu-
racy but at the cost of usefulness, as we can say less about the individual
consumers. The framework is developed in an online setting, where we
update the prediction model and make new predictions over time. We
show the existence of the trade-off in an experimental evaluation on a
real-world dataset consisting of 39 weeks of transaction data.

Keywords: Consumer Behaviour · Stream Analysis · Clustering

1 Introduction

Knowing the future behaviour of consumers is important to help retailers plan
ahead [3]. One way to do so is by predicting how consumers will behave on an
individual level. Knowing which consumers are expected to increase or decrease

Fig. 1. Overview of the problem. Making predictions for individual consumers is more
useful, but less accurate. Making predictions for all consumers (i.e. the entire retailer) is
easier, but not useful on individual consumers. This paper balances the two by making
predictions using groups of consumers.

c© The Author(s) 2022
J. Munoz-Gama and X. Lu (Eds.): ICPM 2021 Workshops, LNBIP 433, pp. 211–223, 2022.
https://doi.org/10.1007/978-3-030-98581-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98581-3_16&domain=pdf
http://orcid.org/0000-0003-0908-9163
http://orcid.org/0000-0002-4027-4351
http://orcid.org/0000-0002-3978-6464
https://doi.org/10.1007/978-3-030-98581-3_16


212 Y. Spenrath et al.

their spending allows retailers to apply more targeted marketing strategies.
Unfortunately, the human nature of consumers makes it difficult to accurately
predict on an individual level. Two consumers can behave similar for some time,
but then quite different in the next week. Another way to make predictions is
by taking all consumers together, for example by predicting the turnover of the
next week based on the turnover of the past weeks. This improves the accuracy
of the predictions as we effectively remove outliers from individual consumers,
but it also reduces the information we get about the individuals. This trade-off
is schematically presented in Fig. 1.

In this paper we aim to strike a balance between accuracy and usefulness.
Instead of making predictions on individual consumers we make predictions on
groups of consumers. The advantage is an increase in accuracy with respect to
making predictions for individual consumers as we remove the effect of outliers
on the prediction. At the same time, we increase the usefulness of the prediction
with respect to the prediction on all consumers together. This is because the pre-
dictions are on a limited number of consumers at a time. We apply our framework
in a streaming setting, at regular intervals we discover clusters of consumers to
update the prediction model. We as such make the following contributions: 1)
we propose a framework to overcome the loss in prediction accuracy for diverse
consumers by making the predictions on carefully selected clusters of consumers
in a streaming environment, 2) we show its effectiveness on a real-world dataset
from the supermarket domain and 3) we show that over time, making predictions
on clusters does not decrease the accuracy of a downstream prediction task, in
contrast to making predictions on individual consumers.

The rest of this paper is organized as follows: we first present our framework
in Sect. 2 and evaluate it in Sect. 3. We then discuss how this paper relates to
existing work in Sect. 4. Finally, we conclude the paper in Sect. 5.

2 Framework

In this section we start by giving an overview of our framework, we present the
details and formalization of each step in the subsections. The data used can be
considered analogous to concepts in process mining: events are represented by
transactions, cases by consumers, and timestamps by purchase dates. Multiple
events involving the same consumer constitute to (part of) the consumer journey.

Fig. 2. Overview of the framework
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These terms are interchangeable. For the description of the general framework
we stick to ‘events’ and ‘consumers’, but use ‘transactions’ in the application
details of this paper.

Like most other real-life applications, these journeys can vary wildly between
different consumers. The goal is to make a prediction about one or more future
events of a consumer. For our application this is the total spend over a given
period of time, the sum of the spend in the separate events.

The framework starts with this collection of events containing information
on a detailed level. This first step is to abstract from these single events. We do
so by aggregating events per week and per consumer. This results in a vector
of descriptive values that describes all visits of a consumer in a single week. We
refer to this as features. The details of this are discussed in Sect. 2.1.

The framework consists of a loop of roughly three steps as presented in Algo-
rithm1 and schematically shown in Fig. 2. At time t, we use the past τ ∈ N+

weeks of data, [t−τ, t), to make a prediction about the next week of data, [t, t+1).
We do not do so on an individual consumer basis, but on a cluster of consumers.
In other words, we learn the behaviour of a group of consumers and make a pre-
diction on their behaviour as a group. To this end we first cluster the consumers
based on the their features from [t − τ − 1, t) into k ∈ N+ separate clusters. The
details of this clustering are discussed in Sect. 2.2. Next, we construct a train-
ing dataset to train a Recurrent Neural Network (RNN) regression model. Each
datapoint in this dataset represents one cluster. The predictor space consists of
the features in each week from [t − τ − 1, t − 1), averaged over the consumers
in the cluster. The target value is the turnover in [t − 1, t), averaged over all
consumers in the cluster. The details of this training and the RNN architecture
are described in Sect. 2.3. Finally, we make a prediction for every cluster using

Algorithm 1: Overview of the framework
input : Stream of events, in batches of one week at time t
output: Clusters gt

j of consumers and predictions ŷt
j for the average turnover

per consumer in gt
j after every week t

1 while True do
2 Cluster consumers based on [t − τ − 1, t)
3 Extract descriptive features for consumers � Section 2.1
4 Create clusters of consumers � Section 2.2
5 Update LSTM
6 One sequence per cluster over [t − τ − 1, t − 1) as predictor
7 Turnover per cluster for [t − 1, t) as target
8 � Section 2.3
9 Make predictions

10 One Sequence per cluster over [t − τ, t) as predictor
11 Predict turnover per cluster for [t, t + 1)
12 � Section 2.4
13 t ← t + 1
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Table 1. Values derived from a single transaction.

Index Value Description

v1 Freshness Fraction of perishable items

v2 Item value Average value of the items bought

v3 Product density Average frequency of each product

v4 Total value Total price paid for the transaction

v5 Total item count Total number of items purchased

data [t − τ, t), predicting the average consumer spend of a cluster for [t, t + 1).
The details of the prediction part are discussed in Sect. 2.4.

2.1 Features

Our framework starts with a set of events L. Each such an event e has a
timestamp e.time, a unique consumer identifier e.cid ∈ C, a label e.label in
some activity space A, and additional values e.v1 through e.vm that contain
further information on the event. The first step in our framework consists of
summarizing multiple of these events over a period of time. For a time period
[t1, t2) and a consumer identified by c, we combine all events e that satisfy
the predicate t1 ≤ e.time < t2 ∧ e.cid = c, we indicate this set of events
as L′. Over these events we compute the fraction of each label a ∈ A as
freq(a) = |{e ∈ L′|e.label = a}|/|L′|.

For the additional values e.v1 through e.vm we define functions h1 through
hm, with hi : P(L) → R, which aggregates the values e.vi in L′. We also record
the number of events |L′|. In total, we therefore have |A| + m + 1 descriptions
that together summarize the events in L′. We refer to these as features in the
remainder of the paper, and indicate them as F = f1, f2, . . . , f|F |, where |F | =
|A| + m + 1.

For the purpose of this paper, each event is a transaction made by a consumer
at a retailer. The consumer identifier e.cid is shared between transactions of
the same consumer, which is known because consumers hold loyalty cards that
uniquely identify them at each purchase. The timestamp e.time is the date (and
time) of the transaction. The label e.label provides a description of the contents
of the purchase. This labelling is based on an extension from earlier work [12].
It roughly consists of learning eight separate clusters over a large collection
of transactions, based on the categories and quantities of the products in a
transaction. Finally, the values e.v1 through e.v5 provide additional aggregate
information on the transaction, as indicated by Table 1.

We therefore have |A| = 8 (labels), m = 5 (values in Table 1), and as such a
total of |F | = 14 features that describe the events over a period of time. With the
help of domain knowledge1, we define h1 through h3 as the mean, and h4 and h5

1 The authors gratefully thank the company BrandLoyalty for making their data avail-
able for this project and their useful feedback on the framework.
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as the sum of the values of the individual events. The latter two, aggregating the
Total value and Total item count, are summed instead of averaged, as this
helps distinguishing consumers with a large total spend from consumers with a
smaller total spend.

The way in which our framework is constructed allows it to be generalized
for the use in certain business processes as well. The event logs of such processes
consist of labelled events that belong to a case with some case identifier, and
possibly contain additional values per event [1]. This more generic application is
beyond the scope of this paper.

2.2 Clustering

In the clustering step, we group consumers with similar behaviour over [t − τ −
1, t), conform the left box of Fig. 2. We apply the aggregation of Sect. 2.1 to each
separate week [t−τ−1, t−τ), [t−τ, t−τ+1), . . . , [t−1, t). As such, each consumer
is described by |F | features at τ + 1 points in time, over the period [t − τ − 1, t).
While we learn how these values evolve over time during training, we still want
consumers with similar evolution to be grouped together. For each feature fi we
extract a linear fit over the values of fi in those weeks as fi(t′) = ai · t′ + bi with
residuals ri. Consumers with similar ai, bi, and ri will have a similar average
value for f (bi), a similar increase/decrease (ai), and a similar fitness to a linear
trend (ri). We compute these ai, bi, and ri for each feature fi, and cluster based
on the resulting 3 · |F | coefficients.

As consumers can have different points in time where they first visit the store,
some may not have started their visits in or before the first week of the clustering
period. We exclude those consumers who have their first purchase after t − τ in
the clustering step, i.e. they are not assigned a cluster and clusters are not based
on these consumers.

For the clustering we apply a Lloyd’s algorithm [10] with the Euclidean dis-
tance, to find a given number of k clusters. In our studies, we evaluate a dataset
of tens of thousands of consumers at every clustering step. As such, we apply
an approximation to the Euclidean distance. Instead of taking the real space for
each dimension, we divide each dimension in a discrete number of bins. This
effectively reduces the number of actual datapoints, since some consumers may
be in the same bin in every dimension. This also allows a more efficient calcu-
lation of the Euclidean distance2. After the clustering step at time t we have a
clustering Gt = {gt1, g

t
2, . . . , g

t
k}, with gti ⊆ C and gtj ∩ gti = ∅ for i 	= j.

2.3 Training

In the training step we extract features and ground truth from the same time
frame we use in the clustering. We use the period [t − τ − 1, t − 1) for the
predictor values, and [t − 1, t) for the value of the total turnover that is to be

2 More details on this approximation can be found at github.com/YorickSpenra
th/ICPM2021/blob/main/BitBooster.pdf.

https://github.com/YorickSpenrath/ICPM2021/blob/main/BitBooster.pdf
https://github.com/YorickSpenrath/ICPM2021/blob/main/BitBooster.pdf
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predicted, depicted in the centre box of Fig. 2. For the purpose of our framework,
we require any model that uses these sequences of data to make predictions. For
the scope of this paper we use a long-short term memory RNN (LSTM) as
it learns from sequential data and has the advantage of allowing incremental
training. Each training point is a matrix where each row is one element of the
sequence, and each column is one feature. More specifically, for a cluster gti ∈
Gt we compute a matrix M t

i such that M t
i [a, b] is the value of feature fb over

[t − τ − 2 + a, t − τ − 1 + a), averaged over all consumers in gti .
For the LSTM architecture we use the one defined by [14], staying as close

to that work as possible, only changing the input and output layers to match
our input and output representations. In an online training setting, we train the
model from scratch in the first time step, and update it at every next time step.

2.4 Predicting

During the predicting we construct the predictor values in the same way as
discussed in Sect. 2.3, using the clusters found in Sect. 2.2. In other words, during
a time step we use the same clusters to construct training and testing points. We
use [t−τ, t) to construct the sequence, i.e. we shift predictor period by 1 week, as
depicted in the right box of Fig. 2. We use these predictor sequences to predict
the average turnover of a consumer in the cluster over the week [t, t+1), indicated
as ŷt

j for cluster gtj . This results in k predictions, one for each cluster. From this
we can compute the total expected turnover by summing the products of the
cluster sizes and cluster predictions. We define this value as T̂ =

∑k
j=1 |gtj | · ŷt

j .

3 Experimental Evaluation

In this section we discuss the experimental evaluation of the method described
in Sect. 2. For the experiment, we use data from a real-life retailer. Because of
privacy restrictions, we cannot disclose all details. The transaction data comes
from 39 weeks and contains over 160000 consumers with at least one purchase
in that time. The number of visits per consumer varies between 1 and 312 with
a mean of 55.0 and a standard deviation of 21.8. We discuss the experimental
setup in Sect. 3.1 and then present and discuss the results in Sect. 3.2.

3.1 Experimental Setup

For the experiments we vary the two parameters of our framework: the sequence
length τ and the number of clusters k. For τ we take 2, 4, 6, 8, 10. For k we take
values 250, 500, 750, 1000 and 2000η for η = 1 . . . 5. We also add two special
cases. The first has k = 1: all consumers belong to the same cluster. The second
does not use clusters, i.e. every consumer has its own cluster. This is indicated
by k = |C|. These latter two can be regarded as competitors: existing solutions
that do not use clustering to improve predictions. In total, we conduct 5 ·11 = 55
experiments.
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Each prediction estimates the average turnover per consumer in each cluster.
The ground truth of this is the actual average turnover per consumer in the clus-
ter. Based on this, we define three metrics to asses the quality of each parameter
combination at each time step. The first is the root mean square error (RMSE)
on the cluster predictions. This is a measure of the prediction accuracy. We fur-
ther identify the 10% of the consumers that have the largest decrease in their
turnover with respect to the previous week. Formally, we label each consumer
with True if their decrease in turnover is among the 10% highest of all consumers
(top decile), and False otherwise. We can do this using the actual turnover (as
true label) and using the predicted turnover of the cluster they belong to (as
predicted label). Using this classification, we then compute the F1 score at each
time step as a second quality metric. Finally, we compute the predicted total
turnover using T̂ from Sect. 2.4 and compare this with the actual total turnover.
We compute the absolute percentage error (APE), 100% · |T − T̂ |/T , as a third
metric. The latter two metrics are measures of usefulness.

Our aim is to answer the following questions. 1) How does τ influence the
RMSE (prediction accuracy)? 2) How does k influence the RMSE (prediction
accuracy)? 3) How does k influence the F1 on the top decile (usefulness)? 4)
How does k influence the APE in T̂ (usefulness)? 5) How does k influence the
F1 over time (usefulness)? 6) What are the considerations for a ‘good’ value for
k (balance)? For the first four questions we average all of the above metrics over
time; starting at t = 11. This is because if τ = 10, the first prediction made is
at t = 11. In this way, we average the same number prediction metrics for every
experiment. The implementation of the framework is open-source and can be
found at www.github.com/YorickSpenrath/ICPM2021.

3.2 Results

In this section we present and discuss the experimental results. Each combination
of k and τ delivers one value for RMSE, F1 and APE, averaged over time. The
results are presented in Fig. 3. Each row contains the results for one value of τ ,
increasing k from left to right, each column contains the results for one value of
k, increasing τ from top to bottom.

The Effect of τ on RMSE (Prediction Accuracy). We first analyze the
effects of τ on the RMSE in Fig. 3A as this will be relevant in the discussions
on k. We distinguish between values k ≤ 1000 and k > 1000.

k > 1000 For larger k, all experiments show a clear decrease of RMSE with
increasing τ . This is expected, as a higher τ means that the data sequences for
each cluster are longer and the LSTM can learn from a longer period of time,
which benefits its performance [18].

k ≤ 1000 For smaller k, the RMSE is not as consistently decreasing with
increasing τ . The reason for this is that for a lower value of k we have fewer
clusters of consumers and hence fewer training points. This makes the model
possibly less stable, as it has less data to improve its performance. As a result,
some models may fail to perform as expected. This means that longer sequences
(higher τ) may result in poorer predictions than shorter sequences (lower τ).

www.github.com/YorickSpenrath/ICPM2021
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Fig. 3. Results for the experiments. Lighter colours indicate a better value, the colour
scale is with respect to the values in each separate table. The RMSE is in monetary
units, the APE are percentages.

The Effect of k on RMSE (Prediction Accuracy). We next analyze the
influence of k (left to right) on the RMSE. With the exception of k = 1, from
Fig. 3A we clearly see that the RMSE increases (worse predictions) with k.
This is to be expected, as an increase in the number of clusters means that
each cluster is smaller in size. As a result of this, the values in the clusters
that are used to construct the sequences fed to the LSTM are based on fewer
consumers. This increases the effect of outliers on the mean feature value and
hence decreases the quality of the sequences on which the LSTM is trained. With
the exception of τ ∈ [6, 8], k = 1 follows a similar trend, outperforming all other
values of k. The exception for τ ∈ [6, 8] is likely caused by the above-mentioned
instability: the model is only updated with a single value every training step.
This may still result in a decent model (as evident from other τ values) though
there is no guarantee. While the RMSE for the other τ values is consistently
lower than those for other k, we do note that k = 1 makes a single predictions
for all consumers together. This means that little to nothing can be said about
the individual consumers making it less useful than many clusters, where the
predictions are on fewer consumers at a time.

The Effect of k on F1 (Usefulness). Figure 3B clearly shows the inverse effect
of Fig. 3A in terms of k. An increase in k shows a clear increase in the F1, making
the resulting models more useful. There does seem to be a limit to this though,
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once we make predictions on individual consumers (k = |C|), the F1 decreases
again. We expect the cause of this to be the further increase in RMSE for this
value, though future research should look into this.

The Effect of k on APE (Usefulness). As depicted in Fig. 3C, the relation
between k and APE is less obvious than for the other two metrics. For lower
values of τ , a higher value of k is preferred. For mid range values of τ , lower values
of k perform better. For higher values of τ , the mid range of k shows a better
performance. It is difficult to find the exact reason for this. One explanation is
that each cluster prediction can either be too high (over-predicting) or too low
(under-predicting). Summing all these predictions to compute the total turnover
then effectively self-corrects these errors. There are then two factors affecting
the total turnover error: the RMSE of the individual predictions and the self-
correction effect. As discussed, the former increases with k. It is reasonable that
the latter effect is more present for higher k. The question is which of these
effects is stronger. As discussed before, the RMSE decreases with τ . As such,
for lower τ , the stronger self-correction effect for higher k is more important
to get a decent total turnover prediction. For higher values of τ , the reduced
RMSE appears to allow lower values of k (with k > 1000) to be preferred. For
the mid-range of τ values, it is not exactly clear why even lower k values are
better, though this can be caused by the same model instability effect discussed
before.

The Effect of k on F1 over Time (Usefulness). The results above have
shown the effect of k on prediction accuracy and usefulness as average over
all time steps. We now discuss some of the effects that can be viewed as the
model progresses over time, presented in Fig. 4. The numbers in the bottom row
of Fig. 3B are the averages of these plots. From the figure we clearly see the
importance of making predictions in groups of consumers. The F1 for making
individual predictions (k = |C|) quickly diminishes over time, stabilizing up to
0.25 points lower than the other experiments. Next to this, we see the effect of
external events at three points in time, indicated by vertical dotted lines. These
external events are likely to cause a sudden change in the consumer behaviour,
decreasing the predictive accuracy in the time around them. This results in a
sudden drop in F1, especially for the first and third event.

The Optimal Value of k. Based on the above results there are three consider-
ations for the optimal value of k: Model stability (lower k means fewer training
points), Cluster stability (lower k means better averaged clusters), and Cluster
detail (higher k makes predictions closer to individual consumers).

4 Related Work

One class of supervised learning is called ‘bucketing’. In bucketing, datapoints
from a training set are first clustered using some clustering method, and a sep-
arate machine learning model is trained on each cluster. This approach is also
extensively used in predictive process mining. Examples of such works are [5]
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(offline) and [6] (online). Our approach is different in the sense that we do not
train one model per cluster, but train and update a single model using datapoints
that are each extracted from a single cluster. While having a different target,
the work in [4] applies clustering for the same reason as we do. The aim of that
work is to discover process models that describe the sequences in an event log.
A difficulty in discovering such process models is the variability in sequences.
As a solution, the authors iteratively split the collection of sequences to create
smaller event logs to create better models. The splitting is based on clustering
to combine comparable sequences, much like our approach.

In Sect. 2.1 we described how we summarize a sequence of events over a
period of time into a feature vector. This process is referred to as encoding or
embedding. In the process mining field, different techniques of encoding exist. The
most frequently used method to limit the number of events considered (prefix) to
create evenly-sized vectors. These vectors then either list only the labels (e.label),
or also each of the attributes (e.v1 - e.vm). Examples of the use of this encoding
are [5,6,9]. The disadvantage of this approach in our use case is that the number
of events in a given time frame is highly relevant, limiting to a fixed-number
of first events would lose this information. The frequency-based encoding we
apply is also used in for example [11]. [9] further uses Hidden Markov Models
(HMMs): a value of likeliness that a sequence belongs to the target class based
on initially learned HMMs is added to the feature space. A more dedicated
approach is to find relevant subsequences and count their frequencies, such as
in [2,4]. While this can be highly relevant as an addition to our current encoding,
it is computationally expensive to find which subsequences are relevant.

In terms of predictive process mining, this paper is part of a class of out-
come prediction solutions. [14] adopts LSTMs to predict the remainder (suffix)
of a case by repeated next activity predictions. The same target is predicted
in [15] but then with the use of deep adversarial models. In [9], the authors pre-
dict whether an active case will be compliant or not according to the business
process owner, leveraging complex encoding case as explained above. The same

Fig. 4. Progression of F1 over time for τ = 10. The vertical lines indicate significant
external influences that can influence consumer behaviour.
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prediction task is executed by [5], which makes use of the bucketing described
above. Using techniques from text mining, [16] aims to early signal whether a
case will have a outcome that requires intervention using unstructured textual
information from events. A more detailed summary of recent outcome-oriented
tasks can be found in [17]. Next to this, literature contains specific to consumer
behaviour prediction. Examples of these include the next interaction [8], losing
a consumer (churning) [3,7,13], and life-time value [3]. Of these, [8] also uses a
process mining oriented approach, and [13] also uses Neural Networks for their
predictions. The work of [3] further suggests the use of automatically learned
features over handcrafted ones for the prediction.

5 Conclusion and Future Work

In this paper we proposed a framework to make predictions about future events
of consumer behaviour, aiming to strike a balance between accuracy and useful-
ness. Larger clusters lead to better predictions but say less about the individual
consumers, and vice-verse for smaller clusters. Apart from this, a lower number
of clusters likely causes the prediction model to be less stable as fewer training
points are available. We also demonstrated the benefit of clustering consumers
over time. When making predictions on an individual consumers, the usefulness
(F1) rapidly decreases over time, this effect is not seen when consumers are
grouped together for the prediction.

For future research, several directions can be identified. The most important
one is how the size of the dataset affects the considerations for the optimal num-
ber of clusters. Another direction is to replace the linear fit clustering method.
The framework operates on events that belong to consumers, and as such existing
clustering methods from the process mining field, such as [2,9], are alternatives
to this. Finally, at each time step the clusters are recomputed. An extension lies
in incorporating past information on clusters, such that longer-term similarities
in consumer behaviour can also be considered.
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Abstract. Efficient and quick detection of problems is an essential task
in online process monitoring. Many anomaly detection approaches excel
in finding local deviations. We propose a novel approach that tracks local
deviations over multiple process instances and visualizes correlations of
deviation points. PErrCas provides knowledge about current cascades
of deviations to give process analysts a starting point for rational root-
cause analysis if processes leave their in-control parameters. PErrCas
monitors deviations online and maintains cascades of varying timespans.
Hence, our approach avoids defining an observation window beforehand,
which is a significant advantage due to its impracticability to predefine
expected cascade properties in exploratory scenarios.

Keywords: Anomaly Detection · Cascades · Trace Streams

1 Introduction

Anomaly detection has multiple applications in process mining. The most promi-
nent scenario is conformance checking, where misbehavior of process instances
is measured against a reference process model by techniques like token replay
or alignments. The identified anomalies represent structural non-compliances in
comparison to previous or planned executions. Temporal deviations are another
focus for process anomaly detection since detecting unexpected delays or speed-
ups often provides a starting point for thorough investigations. Fraud, failures,
or inefficient resource usage are only a few root causes for deviations.

While the research community has published a rich collection of techniques
to detect various anomalies, most works focus explicitly on correlations within
cases and neglect interferences between different cases. Whether it be customer
journeys, production cycles, or sequences of administrative actions, cases are
handled as independent process executions, and explanations for anomalies in a
case are usually expected to be caused by previous events in the same case. How-
ever, cases share a resource pool containing staff, machinery, or infrastructure.
Restricting a root cause analysis to singular cases might fail if another instance
has caused an issue and subsequent cases are affected by its effects. We differ
between local anomalies, isolated within a singular case, and global anomalies,
which originate in a particular case of an event and spread through the process
using common tie points between cases.
c© The Author(s) 2022
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This work presents a novel online approach to identify process error cascades
in a trace stream. Error cascades are typically not artificially implemented in
processes. Since many processes contain a dynamic resource scheduling, e.g., the
staff is assigned depending on current situations like workload or environmental
influences, static cascade knowledge has limited value. Error cascades have two
additional properties besides their various lifetimes, defined as the timespan
between the actual event and the last moment that the cascade influences events.

Many cascades affect only structurally subsequent events according to the
process. E.g., delayed transporters in logistic processes delay following trans-
ports, which might delay further transports waiting for the first segment. In
specific processes, deviations may cause feedback in the process. Delays in pro-
duction processes often cause previous and following actors to traverse into idle
states. Depending on the process design, this allows preponing of cases in con-
trast to their scheduled execution. If the processes do not allow resources real-
location, previous actors also switch to a delay status.

The remaining important property of cascades is complexity. Typically, most
cascades contain only a few correlated actions. Complex cascades with long cor-
relation chains of affected actions are infrequent but provide valuable insights
for later investigations. Large distances between root causes and detected devi-
ations are typical scenarios where manual analysis fails to establish the causal
connection.

2 Related Work

Correlations between different database objects have been extensively researched
in the domain of sequential pattern mining [5]. Regarding sequential pattern
mining on data streams, traditional SPM algorithms are required to overcome
memory and performance restrictions and are therefore not always suitable to be
applied on data streams directly. Marascu and Masseglia [9] propose an approx-
imate algorithm called SMDS (Sequence Mining in Data Streams) primarily
designed for Web usage data streams that can handle the complexity of stream-
ing data. In their approach, user transactions are processed in batches. For each
batch, the users are clustered based on their surfing behavior adding users to
the most similar cluster or creating a new cluster. In [7,14] research on online
sequential pattern mining is continued. However, this research direction focuses
on totally ordered sequences. Event-based processes allow concurrent executions
of events, and anomalies are propagated non-linearly due to the process com-
plexity. Moreover, we consider if two anomalies happen close in time to declare
a correlation, while temporal intervals are usually neglected in sequence mining.

In the field of spatio-temporal data mining deep learning methods are used
to learn traffic flow correlations to predict future traffic flow [6,13]. Since those
methods depend on the spatial features and processes mostly neglect spatial
data while focusing on structural positions in the process, the approaches are not
directly applicable for our use case. Even if event logs include spatial data, this
information might not be relevant for the causal relationship between outliers.
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In Liu et al. [8] the authors aim at finding causal interactions between traffic
outliers by constructing outlier causality trees and running a frequent subtree
mining algorithm on them. Toosinezhad et al. [12] applied these ideas for process
mining. The authors are the first to solve a significant task, as the origins of
process failures are not always found within the same process instance since the
real world is interconnected. Their approach does not consider anomalies for each
case individually but anomalies over various cases and their correlations. Hence,
Toosinezhad et al. proposed a method to tackle this challenge and introduce a
novel perspective of process anomaly detection.

As cases proceed in a process, their irregular behavior might disrupt the entire
system causing further anomalies. Toosinezhad et al. divide the dataset into
batches and construct one cascade graph per batch. The partitioning into spe-
cific intervals, like weeks, requires prior knowledge of certain cascade properties.
Instead, we expand our cascades incrementally without batch restrictions. We
create new cascades when incoming outlier events are not correlated to already
identified cascades. Finally, we cluster the constructed cascades to give general-
ized cascade patterns, allowing quicker analysis by emphasizing the prominent
structures.

The Performance Spectrum miner presented in [3] uses a descriptive analysis
to reviel performance patterns. In [11] Senderovich et al. use both intra- and
inter-case features to predict case properties. However, to the best of our knowl-
edge, Toosinezhad et al. proposed the only work on detecting anomaly cascades
in processes so far.

3 Preliminaries

The proposed method is applied to trace streams. A trace stream S : N → N

is a mapping from natural numbers to the case identifier domain. Such a trace
stream can be efficiently generated from an event stream, as already described
in [10]. On case-level, each case contains finitely many events.

Definition 1 (Case-Level Event). A case-level event e is a tupel e = (c, a,
t) containing a case identifier #case(e) = c, an activity label #activity(e) = a
and a timestamp #time(e) = t. The case-level event may also contain additional
attributes.

Regarding intervals between case-level events, we define segment-level events.
These are then aggregated into cascades which are modelled as graphs and rep-
resent the causal dependencies on the process level.

Definition 2 (Segment-Level Event). A segment-level event s is a tupel s
= (sn, c, st, et) containing a segment-name #segment(s) = sn, a case identi-
fier #case(s) = c, a start-time #start(s) = st and an end-time #end(s) = et.
Every segment-level event s is composed of two case-level events ei and ej, where
#case(ei) = #case(ej) = c, (#activity(ei),#activity(ej)) = sn, #time(ei) = st
and #time(ej) = et. It must hold that #time(ei) < #time(ej) and there is no ek

with #case(ek) = c such that #time(ei) < #time(ek) < #time(ej).
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Fig. 1. Example process time line

Definition 3 (Error Cascade). An error cascade is a directed graph g = (V,
E), where each node n in V represents a set of outliers S = s1, · · · , sk in one
segment #segment(s1) = · · · = #segment(sk). There is an edge from node ni to
nj, if outliers in nj are correlated to preceding outliers in ni.

Each node has a heat value that gives information about the last time an
outlier occurred in this segment. It is computed as an exponentially moving
average to consider all past segment-level event outliers aggregated in this node.
We declare a node as active if the time difference between the starting time of
the current outlier and the heat value of the node is lower than a predefined
activity threshold tha. The activity threshold defines the time span in which we
assume two outliers to be correlated. If the activity threshold is one day, an
outlier can affect the process performance for one day. Henceforth, if the time
difference between the heat value and a new outlier is greater than the activity
threshold, a causal relationship between the outlier set of that node and the new
outlier is impossible. We call a cascade active as long as at least one of its nodes
is still active.

4 Online Cascade Mining

In this section, we define the three main steps of our method. Our approach oper-
ates on trace streams. We first scan for process segments that take an unusually
long (or short) time for each incoming trace. We then check for each outlier if
it is correlated to an already existing active cascade, in which case we add the
outlier to the correlated cascade. If it is not correlated to an existing cascade, the
outlier forms the start of a new cascade. These first two steps are performed on
each trace consecutively. The last step is carried out in an offline phase once a set
of cascades has accumulated. We cluster the cascades and compose all cascades
in one cluster to a cascade pattern.

4.1 Outlier Segment-Level Events

For each incoming trace, we generate the segment-level events from consecu-
tive case-level events and search for temporally deviating segment-level events.
Figure 1 shows an example process with four activities A, B, C, and D. Cases
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c1, c2 and c3 arrive shortly after one another and traverse through the process
at different paces. Every circle on the timeline symbolizes a case-level event. It
means, e.g., that case c1 underwent activity A at 12:35 on the seventh of Jan-
uary 2021. Since there are four successive activities, we have three segment-level
events per case: A:B, B:C and C:D. All three cases transition from activity A
to activity B fairly quickly, then c1 gets delayed in segment B:C. This leads to
further delays of case c2 in segment C:D and case c3 in segment B:C. We can
already see that segment-level events B:C - c1, C:D - c2 and B:C - c3 will be
marked as outliers.

Formally we declare a segment-level event an outlier if its z-score Z(s) =
Δt−μsegment

σsegment
is higher than a certain outlier threshold tho. With Δt = #end(s)−

#start(s) being the duration of the segment-level event. The mean μsegment, the
variance σ2

segment and the number of events per segment ksegment are stored for
each segment and updated with every incoming segment-level event.

4.2 Error Cascade Construction

When a new outlier arrives, we check whether it correlates to any currently active
cascades. In this case, it is “added” to this cascade. If an outlier is not correlated
to an active cascade, a new cascade is started. Over time older cascades become
inactive node by node, and new cascades are started and built up. If an outlier
segment-level event s and a cascade fulfill one of the two following cases we
assume that they are correlated.

1. Segment-level event s belongs to the same segment as a node n in the cas-
cade and #start(s) − #heat(n) < tha. The cascade already includes a set
of outliers in the same segment that is still active, in a sense that the
time difference between heat value and starting time of the outlier does
not exceed the activity threshold. In this case, outlier s is added to node
n by increasing the event counter by one and updating the heat value:
#new

heat(n) = #start(s) − [0.25 · (#start(s) − #old
heat(n))]

2. Segment-level event s and a node n in the cascade share a common activ-
ity and #start(s) − #heat(n) < tha. Since outlier segment-level event s and
the outliers of node n are close in time and overlap in their segments, we
assume that the anomalous behaviour of s is correlated to the segment-level
events aggregated in node n. In this case a new node nnew for segment
#segment(s) is appended to the cascade such that event counter = 1 and
#heat(nnew) = #start(s). An edge is added from n to nnew symbolizing the
correlation between n and nnew.

If a segment-level event s is not correlated to a cascade, we assume that none
of the preceding events are correlated to this outlier. As stated above, the new
outlier event s then marks the start of a new cascade. We start a new cascade
by generating a new cascade graph with one node. In the same way as a new
node is added to an existing cascade, the first node of the new cascade has
#segment(s) as segment and event counter = 1 and #heat(n) = #start(s). If
the cascade still contains one node once it becomes inactive, we delete it and
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Fig. 2. Example Cascade Mining

regard the corresponding outlier (or outliers) as standalone. Figure 2a describes
the incremental cascade building process for our example. B:C is the first node
of the new cascade, because outlier B:C - c1 could not be added to an existing
cascade. Next comes outlier C:D - c2 which is correlated to node B:C because
they overlap in activity C and are temporally close. A new node C:D with
an edge from B:C to C:D is added to the cascade. The third outlier B:C - c3
is correlated to both existing nodes. Since there is already an active node for
segment B:C the outlier is added to this node by updating the event counter
and heat value.

4.3 Cascade Patterns

In the first two steps, we process the traces and the outliers within these traces
consecutively. Every time a specific time has passed, and a set of cascades could
be collected within this period, the last step is carried out. We then cluster
these cascades in an offline phase to search for patterns within the cascades,
i.e., patterns of correlated segments. Alternatively, one of the various online
clustering algorithms (see [15]) could be applied to every error cascade that is
no longer active. This however is not in the scope of this paper.

We first cluster the cascade set by applying DBSCAN [4]. We chose the
DBSCAN clustering algorithm [4], because it can find clusters of arbitrary shapes
and can handle noise. The clustering provides a grouping into similar cascade
graphs and filters out noisy or rare cascades simultaneously. To apply the algo-
rithm, we define a distance measure within the cascade space. For the distance
between two cascade graph we use the maximum common subgraph metric as
presented in [1]. To get more representative clustering results, we assign an addi-
tional weight to every cascade. If a cascade weights 2, the clustering algorithm
handles the cascade as if it was contained in the set twice. As weights, we choose
the average number of segment-level event outliers that nodes in this cascade
contain. Adding weights is necessary because there might be cascades that stay
active for a long time. If correlated outliers come in at frequent intervals, we
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Fig. 3. Underlying process model for the synthetic data

always add them to the same cascade. This continuously prolongs the cascades
activity, and no new cascades with the same cascade pattern are generated.
Without adding any weights, DBSCAN would declare these cascade graphs as
noise, even though they represent many segment-level event outliers.

Finally, we compose all cascade graphs within a cluster into one cascade
pattern. Composing the cascades means we summarize all nodes and edges from
the individual graphs in one graph, the cascade pattern. The cascade pattern
provides a good overview of the various cascades in the respective cluster.

Clustering and composing the cascades aims at generating a relatively small,
manageable and easy to interpret result set. Different cascade patterns represent
distinct groups of outlier correlations. The compression is a significant advantage
compared to [12], where the number of resulting frequent cascades tends to be
very large, and there are often large groups of very similar frequent cascades.

Getting back to our example, let us assume that we retrieved a few more cas-
cades from B:C to C:D. Additionally, cascades from B:C to A:B were detected.
These cascades were grouped into the same cluster by the clustering algorithm,
and we compose these cascades into the cascade pattern shown in Fig. 2b. This
cascade pattern visualizes in an intuitive way that delays in segment B:C were
correlated to delays in both segment C:D and A:B. The final cascade pattern
then forms a good basis for possible process improvements.

5 Evaluation

5.1 Synthetic Data

In the following we present our results from testing our method on synthetic and
real life data. We first tested our approach on synthetic data, as this way, we
could verify the results we obtained from our method. For DBSCAN clustering
we use the following parameters: ε = 0.4 and minPts is set to the 75%-quantile of
the cascade weights, but at least 4. For the synthetic data we used the processes
and logs generator PLG2 [2] to generate an eventlog, based on the process model
shown in Fig. 3. We then spread all traces over one year and introduced noise
by randomly delaying every event (normally distributed with μ = 30, σ2 = 25
minutes). Finally, we incorporated the three cascades shown in Fig. 4, by delaying
events in the corresponding segments. The cascades occur 300, 50 and 12 times
and have an approximate length of one day, one week and one month.
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Fig. 4. Induced and detected cascades in the synthetic log with activity threshold =
1, outlier threshold = 5 and ε = 0.4

We tested our approach with different parameters, achieving the best results
with an activity threshold of 1 day and an outlier threshold of 5. During the cas-
cade detection phase 882 segment-level event outliers were detected and assigned
to 167 cascades graphs. Out of these 167 graphs 121 were deleted before clus-
tering because they contained only one node. In the end we received 46 cascade
graphs, which were then grouped into 3 clusters (and some outliers) and com-
posited to the 3 cascade patterns shown in Fig. 4. This complies with the number
of cascades from the ground truth. Cascade 1 and 2 are nearly identical to the
induced cascades and also have a maximum common subgraph (mcs) similarity
of 1.00 with the ground truth cascade. Cascade 3 is missing its last segment
node, which leads to a mcs similarity of 0.67.

To test our approach on datasets with different quality we increased noise
in our dataset. As described earlier we first generated an event log without any
noise (using PLG2) and induced the three cascades in a second step. To create
synthetic logs with increasing noise, we introduced noise to the control flow of
the initial event log using PLG2. To this end, we chose increasing parameters
(0 to 40 promille) for the trace missing head, trace missing tail, trace missing
episode, perturbed event order probability. We generated five logs for each noise
parameter and averaged the results over these five logs, since the results varied
due to randomness in the event log creation process.

The tested parameters and corresponding results are shown in Fig. 7. The F1-
score was calculated by comparing each detected cascade pattern with the ground
truth cascade it was most similar to. F1 nodes only considers correctly/wrong
assigned nodes, whereas the total F1-score considers nodes and edges. The overall
recall and the F1-score for nodes are significantly higher than the overall F1-
score, which is mainly due to additional edges in the detected cascade patterns
(Compared to the incorporated cascade patterns, the detected cascades contain
more undirected instead of directed edges.). These additional edges are detected
since the cascades were incorporated into the data in close intervals. Because of
this, a cascade might still be active when delays of a subsequent cascade start.
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Fig. 5. Exemplary cascade patterns retrieved from BPI 2020 dataset

Figure 7 shows that even though the quality of the results decreases slightly with
increasing noise, it still stays at a pretty high level and our approach can deliver
meaningful results.

To compare our results, we slightly adapted the method from [12] to our
use case and implemented it using python. We tested the approach on our syn-
thetic log with different parameters and achieved the best results (i.e. all cas-
cades were detected, with minimum result set size) with outlier threshold = 5,
time interval = 60 (batch length in days) and minimum support = 3 (for fre-
quent subgraph mining). The resultset consisted of 153 cascades, where each cas-
cade covered parts of the incorporated cascade patterns, and every cascade pattern
was represented entirely by at least one frequent subgraph. Even though all incor-
porated cascade patterns were detected, the size of the result set was considerable,
making it very difficult to interpret it. Furthermore, many frequent subgraphs dif-
fered from other subgraphs in only one node or edge and thus did not contribute
any new valuable information. We observed that the size of the result set could
vary significantly for different time intervals. At the same time, it is challenging to
choose an appropriate time interval because it cannot be derived from the struc-
ture of the process. The size of the time interval defines the maximum duration of
a cascade. However, this information is not given in a real-life cascade mining sce-
nario, which means that by choosing a too small time interval, one might neglect
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Fig. 6. Number of active cascades,
travel permit log of BPI 2020 dataset

Fig. 7. Results on synthetic data with
increasing noise

longer-lasting cascades. At the same time, a smaller time interval might be desir-
able, as it leads to a smaller result set. Cascades of cascade pattern 3 (see Fig. 4e)
have an approximate length of 30 days. This cascade pattern was only detected
entirely from a time interval of 30 days onward. For a bi-weekly interval, 3 of 106
frequent cascades had an mcs-similarity of 0.67 to cascade 3. For all the lower inter-
vals, cascade 3 was not detected at all.

In conclusion, our approach yielded a far smaller result set (3 vs. 153 detected
cascade patterns) that still contained the same amount of information. At the
same time, we achieved good results even in a streaming scenario (compared to
an event log), where we had to process traces consecutively.

5.2 Travel Reimbursement Process

In addition to the synthetic data, we also tested our approach on real-world
process data that was published for the BPI Challenge 20201. The data was col-
lected from the travel reimbursement process at TU/e in 2017 and 2018 and con-
tained files for different subprocesses. Travel reimbursement is a process present
in nearly every company and thus forms a good basis for our evaluation. For
international trips, employees have to request a travel permit before starting
the trip. At the end of the trip, they can request reimbursement of their costs.
We chose this process for our tests because here, an array of delays can, in the
worst-case, risk the entire trip. For our experiments we used the travel permits
log, which contains the described process, and reduced it to traces in 2018.

With an activity threshold of 7 days and an outlier threshold of 5, we detected
12 cascade patterns, showing two examples in Fig. 5. 528 segment-level event
outliers were grouped into 124 cascades (+ 19 deleted cascades with one node).
As Fig. 6 shows, the number of active cascades changed in waves and decreased

1 https://icpmconference.org/2020/bpi-challenge/
DOI: https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51.

https://icpmconference.org/2020/bpi-challenge/
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
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Fig. 8. Parameter Sensibility (constant outlier threshold of 5)

over the year. A maximum number of 18 cascades was active at the beginning of
the year, which might be due to many requests regarding trips later in the year.

Figure 8 shows how the results vary for different parameters. We observed
that with an increasing activity threshold, the number of detected cascade pat-
terns decreases while the average number of nodes per cascade pattern increases
(Fig. 8a). For a large activity threshold, e.g. 150 days, cascade nodes stay active
for a very long time. New incoming outliers are declared correlated to exist-
ing cascades for a longer time, and no new cascades are started. This leads to
larger cascades and thus also larger cascade patterns. New cascades are started
more frequently for smaller activity thresholds, resulting in more cascades and
fewer nodes per cascade. At this point, it needs to be mentioned that an activ-
ity threshold of 150 days or even 60 days is probably very unrealistic for this
kind of process. The activity threshold resembles the time in which an anomaly
can affect process performance. A proper value for the activity threshold can
be picked in the context of the process structure, and in contrast to the time
interval from [12] no prior knowledge of the cascades is needed.

The number of cascade patterns also decreases with an increasing minPts
(input parameter DBSCAN) (Fig. 8b). The minPts parameter can be used as an
importance regulator. The higher it is, the fewer cascade patterns are detected
and the more cascades each pattern represents.

6 Conclusion

With our novel approach PErrCas, we are able to track correlated outliers over
multiple process instances by continuously adding outliers to existing cascades
and creating new cascades. We differentiate between two different correlations:
accumulations of outliers in one segment and correlated outliers in different seg-
ments. The set of cascades can be analyzed in regular intervals to create cascade
patterns and get an overall picture of the cascades. This continuous approach



PErrCas: Process Error Cascade Mining in Trace Streams 235

avoids defining an observation window beforehand. Instead, we consider how
long an outlier can affect future process performance and track cascades as long
they influence process performance. A useful extension of our work would be to
discover a good candidate threshold for this automatically.

So far, our method only works on trace streams because we need entire traces
to build segment-level events and detect outliers. Future work could examine how
error cascades can be detected in event streams. Another issue for future work
is the correlation between outliers. We declare outliers to be correlated if they
are close in time and their segments overlap. However, there are also many other
ways in which two anomalies could be correlated.
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Abstract. While a few approaches to online predictive monitoring have
focused on concept drift model adaptation, none have considered in depth
the issue of performance evaluation for online process outcome predic-
tion. Without such a continuous evaluation, users may be unaware of the
performance of predictive models, resulting in inaccurate and misleading
predictions. This paper fills this gap by proposing a framework for evalu-
ating online process outcome predictions, comprising two different eval-
uation methods. These methods are partly inspired by the literature on
streaming classification with delayed labels and complement each other
to provide a comprehensive evaluation of process monitoring techniques:
one focuses on real-time performance evaluation, i.e., evaluating the per-
formance of the most recent predictions, whereas the other focuses on
progress-based evaluation, i.e., evaluating the ability of a model to output
correct predictions at different prefix lengths. We present an evaluation
involving three publicly available event logs, including a log characterised
by concept drift.

Keywords: predictive monitoring · process outcome · event stream

1 Introduction

The process mining research in recent years has started focusing on the online
realisation of typical use cases, such as process discovery [5] and conformance
checking [4]. In the online perspective, an event log is a stream of events, which
become available for analysis as soon as they are logged. Conversely, the tradi-
tional offline perspective considers an event log as a batch of events logged in a
certain time span.

On the one hand, the online perspective naturally brings some benefits: online
models need not waiting for a large number of events to be accumulated in an
event log before performing an analysis; they also allow updating the analytic
models in real time when a new event is received, and, consequently, they may
naturally adapt to concept drift in the process generating the events [13]. On the
other hand, this perspective also poses a number of challenges: new techniques
c© The Author(s) 2022
J. Munoz-Gama and X. Lu (Eds.): ICPM 2021 Workshops, LNBIP 433, pp. 237–249, 2022.
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must be developed to adapt to the streaming nature of events; owing to the
finite memory assumption of streaming analytics, only a limited number of recent
events can be available for the analysis at any given time [8]; finally, run time
may become a concern, since models may need to be updated with every new
event received and before the next event will be received.

This paper focuses on the predictive monitoring use case in process mining
and, more specifically, on the continuous evaluation of the predictions of process
outcomes [16], whereby the objective is to predict the (usually binary) outcome
label of a running process case and to continuously evaluate these predictions.
For instance, the possible outcome of a case would be that the personal loan
request is accepted or rejected in a loan application process.

In the offline perspective, the outcome prediction problem is solved by encod-
ing the completed cases into feature-label vectors, which are then used to train
and test a predictive classification model. Besides the obvious need to consider
online classification techniques for developing the predictive model, in the online
perspective the outcome prediction is an instance of the delayed labels [10] online
classification task: while in the batch perspective all the feature vectors and labels
of completed cases are available for training and testing, in the online perspec-
tive the label of a case normally becomes available only when the last event of
that case is received. This is an issue to be taken into account when updating
the predictive model and, consequently, to assess its performance.

The contribution of the paper is to develop two performance evaluation meth-
ods specifically-tailored to online outcome predictive monitoring. These methods
are developed adapting the notion of continuous evaluation [8], which recently
has emerged as a novel perspective for evaluating the performance in streaming
classification with delayed labels, to the domain of process outcome prediction.

The paper is organised as follows. Related work is discussed in the next
section. Section 3 introduces the overall framework, while the performance meth-
ods are presented in Sect. 4. The experimental results are reported in Sect. 5,
while conclusions are drawn in Sect. 6.

2 Related Work

Several approaches recently have been proposed to deal with online process dis-
covery [2,6] and online conformance checking [4,17].

As far as process predictive monitoring is concerned, Maisenbacher and Wei-
dlich [13] have proposed to use incremental classifiers to deal with an event log
as a stream of events, specifically aiming at creating outcome prediction models
that can adapt to concept drift. They propose to evaluate the models using aver-
age accuracy across all the labels received in the stream and they evaluate their
approach on different concept drifts injected in a single artificially-generated
event log. Baier et al. [1] have investigated the issue of optimal data selection
point for retraining an offline predictive model when a concept drift is observed
in an event stream.
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In the more general field of streaming classification, Žliobaitė [18] first has
identified the issue of delayed labels, suggesting to map dynamically the dis-
tribution of the labels to detect the concept drift. Grzenda et al. [8] recently
have introduced the continuous evaluation methodology for streaming classifica-
tion with delayed labels, whereby the performance of a model is evaluated for
each observation considering the amount of time left before the arrival of the
corresponding label.

3 Continuous Prediction Evaluation Framework

Given the first n positive natural numbers N
+
n and a target set S, a sequence s is a

function s : N
+
n → S mapping integer indexes to the elements of S. Given a set of

activity labels A, the domain N
+ of timestamps, and a set of I attribute domains

Di, we define the set of event attributes as E = A×N
+×[D1×. . .×Di×. . .×DI ].

A trace σ is a sequence of n events σ : N
+
n → E. We denote with T the universe

of sequences of events and with E the event universe, with E = E × J , where J
is a set of possible case ids. An event stream is an infinite sequence Ψ : N

+ → E .
For simplicity, we write events as ek,j , where k indicates their position in

a trace and traces as σj = 〈e1,j , . . . , ei,j , . . . , eNj ,j〉, where Nj is the number
of events in the trace σj . The function t : E → N

+ returns the timestamp of
an event. The prefix function pref : T × N

+ → T returns the first p events
of a trace, i.e., pref(σj , p) = 〈e1,j , . . . , ep,j〉, with p ≤ Nj . Note that, for the
evaluation, event streams are generated from event logs in which multiple events
may have the same timestamp. For the events that have the same timestamp, we
assume that the ordering of the events in an event log reflects their true ordering
and use this order in the stream to calculate prefixes.

A trace σ is associated with a binary outcome label and, without loss of
generality, we assume that the value of this label becomes known with the last
event eNj ,j of a trace. Therefore, we define a labelling function as a partial
function y : E � {0, 1}, which returns the label of a trace in correspondence of
its last event. For clarity and with an abuse of notation, we denote the label of
a trace σj as yj .

A sequence encoder is a function f , with f : T → X1 × . . . × Xw × . . . × XW

mapping a prefix into a set of features defined in the domains Xw. A process
outcome prediction model pom is a function ŷ : X1×. . .×Xw×. . .×XW → {0, 1}
mapping an encoded prefix into its predicted label.

In offline settings, prefixes may be divided into separate buckets and a dif-
ferent prediction model may be maintained (trained/tested) for each bucket of
prefixes. We adopt the same design in this work considering prefix-length bucket-
ing [11] of traces: a different predictive model pomk is trained and tested using a
set of prefixes of length k = 1, . . . ,K, where the maximum prefix K may vary for
each event log. Thus, we define an outcome prediction framework pof as a collec-
tion of outcome prediction models pomk, that is, pof = {pomk}k=1,...,K . We use
index-based encoding of prefixes [11], in which features in a prefix are generated
for each event in it. We use one-hot encoding for the categorical attributes, such
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as the activity or the resource label, whereas continuous values are encoded as is.
As classifiers, we consider incremental streaming classifiers that can be updated
when a new label is received [9].

The processing of one event ek,j belonging to trace σj is schematised in Fig. 1.
Note that this way of processing events applies after a given grace period, which
is defined by a specific number L of labels received. That is, during the grace
period, the labels received are only used to train the models in the framework.
The event ek,j may either be the last of σj , i.e., k = Nj , in which case the label
yj becomes known, or not. When an event is not the last one of its trace (see
Fig. 1a), it is used to generate a new prefix pref(σj , k). Then, a prediction ŷk,j
for the new prefix pref(σj , k) can be computed using the model pomk. Receiving
the last event ek,j , with k = Nj of a trace σj and its label (see Fig. 1b) enables
(i) to evaluate all the predictions ŷn,j that have been generated for the prefixes
pref(σj , n), with n = 1, . . . ,max{K,Nj} using the model pomn (evaluation
before training) and (ii) to update the models pomn, with n = 1, . . . ,max{K,Nj}
in the framework, owing to the availability of new labelled prefixes. Finally, it
is possible (iii) to compute a new set of predicted labels ŷl,k, with l �= j and
k = 1, . . . ,max{Nl, Nj} for all the prefixes for which a label has not been yet
received (train and retest).
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Fig. 1. An overview of the continuous evaluation framework

Next, we propose the novel methods to evaluate the performance of an online
outcome prediction framework pof .

4 Performance Evaluation Methods

One of the major challenges in streaming classification is the performance eval-
uation, particularly in cases, such as the one of online process outcome predic-
tion, in which the labels are delayed. The challenge arises because of the dynamic
nature of the classification models considered in the framework: the models avail-
able to generate predictions are updated with each new label received; therefore,
the same observation may be associated with different predictions generated by
different versions of the model that applies to it.

Figure 2 exemplifies what stated above in the context of the proposed frame-
work, considering 3 process cases and prefix length up to 3. First, note that
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different versions of the same model pomk are generated along the considered
timeline. In particular, a new version of pomk is generated when a new label yj
for a case σj , with Nj < k, is received. Second, new predictions for prefixes of
length k are generated each time a new version of pomk is available. Finally, note
that a prediction can only be evaluated when the corresponding label becomes
available. In the example, the predictions generated for all the prefixes of case 3
cannot be evaluated because the label of case 3 has yet to be received at t8.

Fig. 2. Evaluation methods: supporting example

We propose two ways to approach the issue of performance evaluation of the
proposed framework: using a local observation timeline within a process case or
a real-time global perspective on recent process cases. The former is inspired
by the literature on streaming classification with delayed labels [8], whereas the
latter is a novel perspective that we argue is specifically tailored to the context
of process outcome predictive monitoring.

4.1 Evaluating Performance Using a Local Timeline

The local timeline perspective on performance evaluation in streaming classifica-
tion is also referred to as the continuous evaluation of a model [8]. In the context
of process outcome predictive monitoring, it translates naturally into evaluating
the performance along a timeline that establishes the progress of the execution
of a case. The traditional view of case progress in predictive monitoring is the
prefix length, i.e., measuring the progress of a case using the number of events
that have occurred in it. Therefore, we define a continuous evaluation method
by prefix length.

Continuous Evaluation by Prefix Length. The objective of the continuous
evaluation by prefix length is to evaluate the performance of an online outcome
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classification framework at each prefix, i.e., to answer the question “How likely is
the framework to output a correct prediction for a running trace at prefix length
k?”.

The design of a suitable performance measure starts from aggregating the
predictions available for a case at a given prefix length, in order to obtain one
reference value for each trace for which a label has been received at each pre-
fix length. Inspired by the literature on streaming classification with delayed
labels [8], we aggregate multiple predictions using a majority rule. That is, given
the set Ŷk,j = {ŷl

k,j}l=1,...,L of L predictions available for trace σj at prefix length
k, and given Ŷ o

k,j = {y ∈ Ŷk,j : y = o} as the set of predictions evaluating to o,
with o ∈ {0, 1}, the aggregated prediction for σj at prefix k is:

ŷagg
k,j =

{
1 if |Ŷ 1

k,j | ≥ |Ŷ 0
k,j |

0 otherwise

Once the multiple predictions for a case at a given prefix length have been
aggregated, the performance can be evaluated using any of the standard con-
fusion matrix-based performance measure for classification. For instance, given
the accuracy acc(ŷj) of an individual prediction for trace σj at any prefix length:

acc(ŷj) =

{
1 if ŷj = yj

0 otherwise

the accuracy acck(pof) of an outcome prediction framework pof at prefix length
k is defined as:

acck(pof) =
1
J

·
J∑

j=1

acc(ŷagg
k,j )

where J is the number of traces in the stream (or labels received).
For example, in Fig. 2, let us consider only the traces c1 and c2, for which

the label has been received. The most frequent prediction at prefix length k = 1
for both trace c1 and c2 is 0 (no predictions equal to 1 are available). Given that
the label of c1 and c2 are 1 and 0, respectively, the accuracy of the framework
at prefix length k = 1 is 0.5.

4.2 Real-Time Model Performance

This method for performance evaluation considers a global perspective on recent
predictions obtained by the framework, answering the question “How likely are
the most recent prediction(s) obtained from a model to be eventually correct?”
Instead of aggregating the performance at given progress rates or prefix lengths
for cases, in the real-time method we first define w as the size of a test window
containing the traces {σw}w=1,...,W associated with the latest W labels yw that
have been received. We then consider the average of the performance across all
the predictions available, at any prefix length, for each trace σw in this window.
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Table 1. Descriptive statistics of event logs used in the evaluation

# cases # events # activity # variants Avg events/case Median events/case # true labels # false labels

BPIC 2015 1 1199 52217 289 1100 43.55 44 506 693

BPIC 2017 1878 23941 22 376 12.75 12 576 1302

IRO5K 1000 10756 20 111 10.76 11 237 763

When a new label is received, then, to accommodate this new trace, the trace
in the window associated with the oldest label received is removed from the
window.

Given Ŷw as the set of predictions ŷk,w available for a trace σw at any prefix
length k, the real-time accuracy accrt(pof) of an outcome predictive framework
is then defined as follows:

accrt(pof) =
1
W

·
W∑

w=1

[
1

|Ŷw|
acc(ŷk,w)

]
.

Let us consider W = 2 in the example of Fig. 2. At t8, the traces c1 and
c2 are included in the window, because they are associated to the last 2 labels
received. For c1, there are 2 predictions available (at t1 and t6), all incorrect.
For c2, there are 2 predictions available (one correct t2 and one incorrect at t4).
Therefore, the real-time accuracy at t8 for W = 2 of the framework is 0.25.

5 Experimental Analysis and Results

We consider 3 publicly accessible event logs. The BPIC 2015 11 is a log from a
Dutch municipality of a process for granting building permissions. The outcome
label in this log is 1 (true) when a trace contains the activity ’create procedure
confirmation’, and 0 otherwise. The BPIC 20172 event log refers to a personal
loan request process at a Dutch financial institute. The outcome label evaluates
to 1 (true) if a request is accepted, and 0 otherwise. The IRO5K3 event log is
a synthetic log regarding the assessment of loan applications [12]. The outcome
label evaluates to 1 (true) if a request is accepted, and 0 otherwise. The two BPIC
logs have been chosen because they are real world event logs that have been used
in the previous research on outcome predictive monitoring [16] and they differ
greatly in terms of variability. Specifically (see Table 1), the BPIC 2015 event
log shows a higher number of activity labels and trace variants in respect of
BPIC 2017. The IRO5K event log has been chosen because it is characterised
by process drift.

1
at: https://data.4tu.nl/articles/dataset/BPI Challenge 2015 Municipality 1/12709154/1.

2
at: https://data.4tu.nl/articles/dataset/BPI Challenge 2017 - Offer log/12705737.

3
at: https://data.4tu.nl/articles/dataset/Business Process Drift/12712436.

https://data.4tu.nl/articles/dataset/BPI_Challenge_2015_Municipality_1/12709154/1
https://data.4tu.nl/articles/dataset/BPI_Challenge_2017_-_Offer_log/12705737
https://data.4tu.nl/articles/dataset/Business_Process_Drift/12712436
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The process outcome prediction is an instance of early time series prediction
and the research community focuses on building an accurate model for early
predictions [16]. We consider a different maximum prefix length for each event
log: 44 for BPIC 2015 1, 14 for BPIC 2017 and 11 for IRO5K. The minimum
prefix length is set to 2 for all event logs.

As streaming classifiers, we consider 3 different tree-based incremental clas-
sifiers typically adopted in streaming classification: the Hoeffding Tree Classifier
(HTC) [9], the Hoeffding Adaptive Tree Classifier (HATC) [3], and the Extremely
Fast Decision Tree (EFDT) [14]. These algorithms are tree-based classifiers which
incrementally construct split points depending on the confidence for information
gain.

Any streaming classification framework normally requires a grace period to
allow a proper initialisation of the classifier [7]. As grace period in all experi-
ments, we consider 200 labels received. That is, until the 200-th label is received,
the events without label in the stream are not processed and the labels are used
only to update the classification models. We consider the implementation of the
classifiers provided by the Python package River [15], setting 100 observations
for the classification tree leaf between split attempts and maximising information
gain as split criterion in all streaming classifiers.

For the real-time performance evaluation, we consider W = 50 cases as win-
dow size and we also include as a baseline the results obtained using an offline
outcome predictive model developed using the Random Forest (RF) classifier,
implemented using the Python package ‘scikit-learn’ with 100 estimators, using
a 70/30 train/test split and 10-fold cross-validation. Finally, to support the dis-
cussion we also plot for each log the number of true and false labels received at
each prefix length.

The code and data to reproduce the experiments presented in this section,
as well as additional results that have been omitted in this section due
to lack of space, are available at https://github.com/ghksdl6025/streaming
prediction4pm.

Figure 3b shows the continuous evaluation results for BPIC2017 using the
prefix length method. Regarding the prefix length method, the EFDT shows
a better performance than the other classifiers. Generally, the accuracy of the
classification increases after prefix length 9.

From the results, we can observe that the continuous evaluation method
provides diagnostic information to help deciding which model to deploy. The
prefix length method reveals that EFDT performs better than other classifiers
for ongoing cases until prefix length 11. Therefore, the EFDT classifier should be
preferred if the predictions obtained from the outcome decision framework are
used to take the decision after an event in a case has occurred (e.g., “What’s the
best thing to do after the client has replied?”), and that event normally happens
within the first 11 executed in a trace.

https://github.com/ghksdl6025/streaming_prediction4pm
https://github.com/ghksdl6025/streaming_prediction4pm
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Fig. 3. BPIC 2017 log experiment results.

Figure 3c shows the real-time perspective results for BPIC2017. Except for a
sharp drop in the accuracy of HATC and HTC after the 200-th label received, the
accuracy remains above 0.6 and comparable with the one of the offline baseline.
From a diagnostic standpoint, the real-time performance perspective generally
reveals whether the predictive framework outputs correct predictions for all cases
now, on cases recently finished. It also can provide diagnostic information when
there is a sudden change in the process, showing how each model performs after
such a change.

For the BPIC2015 1 log (see Fig. 4), let us first consider the real-time evalu-
ation method (Fig. 4c). We observe that after approximately 350 labels received,
the performance of all models drops significantly. This may be caused by an
(unknown) concept drift in the event log. After 600 cases, we see that EFDT
recovers whereas the performance of the other two models does not improve until
the end. Therefore, also in this case EFDT emerges as more likely to recover after
a drop in the performance than HATC and HTC.

For the IRO5K event log, Fig. 5b shows the results of the continuous evalu-
ation by prefix length. The results for this log must be interpreted considering
the distribution of labels received across prefix lengths. Until prefix length 6
no new labels are received, which justifies the constant high accuracy by prefix
length until then (given that the models trained during the grace period are
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Fig. 4. BPIC 2015 1 log experiment results.

fairly accurate). Then most false labels are received at prefix length 6 and 7,
whereas no true labels are received before prefix 10. Therefore, the models used
to generate predictions change substantially after prefix 6, which may justify the
drop in performance.

More insightful for this event log is the analysis of the real-time performance,
which is shown in Fig. 5c. In particular, there is no specific drop of the accu-
racy when the process drift occurs. The EFDT classifier, in particular, actually
increases its accuracy after the concept drift. Generally, after the concept drift
occurs the performance of all classifiers recovers relatively quickly (in less than
100 labels received) and, until the end of the stream, remains higher for most
time in respect of the offline baseline. This can be interpreted as encouraging evi-
dence that the proposed framework with the EFDT model, at least in this case,
naturally adapts to concept drift in the process generating the event stream.
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Fig. 5. IRO5K log experiment results.

6 Conclusions

In this paper, we propose a continuous performance evaluation framework for
online process outcome prediction techniques. Moreover, we propose two concrete
evaluation methods, which assess the performance of the prediction techniques
from both a local perspective and a global real-time perspective. The experi-
mental analysis of our framework on the three real-life logs has shown that our
framework can reveal very interesting results from different perspectives and
provide novel insights into how predictive models perform.

As far as the experimental analysis is concerned, the streaming classifier
EFDT has emerged as the best performing and robust classifier for outcome
prediction with event streams. This confirms the claim of the proposers of the
EFDT classifier that it should be preferred to other incremental tree classifiers
based on the Hoeffding bound in most application scenarios [14]. Unexpectedly,
although HATC is specifically designed to adapt to concept drift, our evaluation
framework shows that EFDT appears as the best classifier at dealing with con-
cept drifts in the event logs. This may be due to the window selection of EFDT,
which simply adapts quickly to the new data, whereas in the other two models
(HATC and HTC) there is a threshold controlling the model adaptation, which
may limit the ability to adapt to small changes in the feature vectors.
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As a future work, the proposed framework can be extended with various
performance evaluation methods. For example, instead of the prefix-length per-
spective, we may also complement the framework with a method that evaluates
the accuracy from the last-state perspective. Providing performance evaluation
from multiple perspectives may help ease the issue of explainability of online
predictive monitoring models, which should also be further investigated.
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3. Bifet, A., Gavaldà, R.: Adaptive learning from evolving data streams. In: Adams,
N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol.
5772, pp. 249–260. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03915-7 22

4. Burattin, A., Carmona, J.: A framework for online conformance checking. In:
Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 165–177.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74030-0 12

5. Burattin, A., Sperduti, A., van der Aalst, W.M.: Heuristics miners for streaming
event data. arXiv preprint: arXiv:1212.6383 (2012)

6. Burattin, A., Sperduti, A., van der Aalst, W.M.: Control-flow discovery from event
streams. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 2420–
2427. IEEE (2014)

7. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the
Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 71–80 (2000)

8. Grzenda, M., Gomes, H.M., Bifet, A.: Delayed labelling evaluation for data streams.
Data Mining Knowl. Disc. 34(5), 1237–1266 (2019). https://doi.org/10.1007/
s10618-019-00654-y

9. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In:
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 97–106 (2001)

10. Krempl, G., et al.: Open challenges for data stream mining research. ACM
SIGKDD Explor. Newsl. 16(1), 1–10 (2014)

11. Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.:
Complex symbolic sequence encodings for predictive monitoring of business pro-
cesses. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015.
LNCS, vol. 9253, pp. 297–313. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-23063-4 21

12. Maaradji, A., Dumas, M., La Rosa, M., Ostovar, A.: Fast and accurate business
process drift detection. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.)
BPM 2015. LNCS, vol. 9253, pp. 406–422. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-23063-4 27

https://doi.org/10.1007/978-3-642-03915-7_22
https://doi.org/10.1007/978-3-642-03915-7_22
https://doi.org/10.1007/978-3-319-74030-0_12
http://arxiv.org/abs/1212.6383
https://doi.org/10.1007/s10618-019-00654-y
https://doi.org/10.1007/s10618-019-00654-y
https://doi.org/10.1007/978-3-319-23063-4_21
https://doi.org/10.1007/978-3-319-23063-4_21
https://doi.org/10.1007/978-3-319-23063-4_27
https://doi.org/10.1007/978-3-319-23063-4_27


Continuous Performance Evaluation for Business Process Outcome 249

13. Maisenbacher, M., Weidlich, M.: Handling concept drift in predictive process mon-
itoring. SCC 17, 1–8 (2017)

14. Manapragada, C., Webb, G.I., Salehi, M.: Extremely fast decision tree. In: Proceed-
ings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 1953–1962 (2018)

15. Montiel, J., et al.: River: machine learning for streaming data in python (2020)
16. Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predic-

tive process monitoring: review and benchmark. ACM Trans. Knowl. Disc. Data
(TKDD) 13(2), 1–57 (2019)

17. van Zelst, S.J., Bolt, A., Hassani, M., van Dongen, B.F., van der Aalst, W.M.P.:
Online conformance checking: relating event streams to process models using
prefix-alignments. Int. J. Data Sci. Anal. 8(3), 269–284 (2017). https://doi.org/
10.1007/s41060-017-0078-6
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Abstract. The extraction, transformation, and loading of event logs
from information systems is the first and the most expensive step in pro-
cess mining. In particular, extracting event logs from popular ERP sys-
tems such as SAP poses major challenges, given the size and the structure
of the data. Open-source support for ETL is scarce, while commercial
process mining vendors maintain connectors to ERP systems supporting
ETL of a limited number of business processes in an ad-hoc manner.
In this paper, we propose an approach to facilitate event data extrac-
tion from SAP ERP systems. In the proposed approach, we store event
data in the format of object-centric event logs that efficiently describe
executions of business processes supported by ERP systems. To evalu-
ate the feasibility of the proposed approach, we have developed a tool
implementing it and conducted case studies with a real-life SAP ERP
system.

Keywords: SAP · ETL · Process Mining · Object-Centric Event Logs

1 Introduction

Process mining is a branch of data science including techniques to discover pro-
cess models from event data, so-called process discovery, check the compliance of
data against the process models, so-called conformance checking, and enhance
process models with constraints/information coming from the event logs, so-
called enhancement. Such techniques have been adopted by various domains,
including healthcare, manufacturing, and logistics. The first step of applying
the techniques is to extract event logs from the target information systems, e.g.,
Enterprise Resource Planning (ERP) systems. This usually requires a connection
to the database(s) supporting the information system. Afterward, the extracted
event log undergoes pre-processing steps to resolve various data quality issues,
including incomplete information, noise, etc. These steps are usually called ETL
(Extraction, Transformation, and Load). The ETL phase is usually the most
time-consuming part of a process mining project [12].
c© The Author(s) 2022
J. Munoz-Gama and X. Lu (Eds.): ICPM 2021 Workshops, LNBIP 433, pp. 255–267, 2022.
https://doi.org/10.1007/978-3-030-98581-3_19
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ERP systems contain valuable data based on which process mining techniques
provide insights regarding the underlying real-life business processes. In partic-
ular, the SAP ERP system has a significant share in the ERP market (22.5%
in 2017, Gartner). Extracting data from an SAP ERP system is particularly
challenging as it involves many different tables/objects. Due to its complex-
ity, support to extracting event data from the SAP ERP system has only been
limited to commercial vendors, e.g., Celonis and ProcessGold, which requires
extensive interaction with domain experts. Moreover, the logs extracted by such
extractors suffer from convergence/divergence problems [1]. This is due to the
necessity to specify a case notion. A case notion is a criteria to group events that
belongs to the same execution of a business process. In ERP systems, different
case notions can be used for the same data. For example, in a procure-to-pay
process, we could specify as case notion the order, the single item of the order,
the delivery, the invoice, or the payment.

This paper proposes a novel approach to guide and ease the extraction of
event logs from SAP ERP. The approach consists of two phases, i.e., 1) building
graph of relations and 2) extracting object-centric event logs. We propose to use
Object-Centric Event Logs (OCEL) as intermediate storage to collect the events
extracted from different tables. OCEL does not require the specification of a case
notion. Therefore, it provides flexible and comprehensive event data extraction.
OCEL can be used with Object-Centric Process Mining (OCPM) techniques
or flattened to traditional event logs by selecting a case notion out of objects.
The proposed approach has been implemented as a prototypical extractor and
evaluated using an SAP ERP system.

The rest of the paper is organized as follows. Section 2 presents some back-
ground knowledge. Section 3 presents the proposed approach. Section 4 presents
a prototypal software implementing the ideas proposed in this paper. Section 5
evaluates the processes extracted by the prototypal software on top of an edu-
cational SAP instance. Section 6 presents the related work on extracting and
analyzing event logs from SAP.

2 Background

This section presents some background knowledge on OCEL, convergence/diver-
gence problems, and SAP systems.

2.1 Object-Centric Event Logs

Traditional event logs in process mining have events associated with a single
case/process execution. These event logs, extracted from information systems,
suffer from convergence/divergence problems [1]. We have a convergence problem
when the same event is duplicated among different instances. This happens, for
example, in an order-to-cash process, when item is considered as the case notion,
and an event of order creation can be associated with several items. We have a
divergence problem when several instances of the same activity happen in a case
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while not being causally related. This happens, for example, in an order-to-cash
process, when order is considered as the case notion, and several instances of
the same item-related activity are contained in the same order.

OCEL relax the assumption that an event is associated with a single case.
Instead, in an OCEL an event can be related to several objects, where every
object is associated with a type. This results in a more natural way to extract
event data from a modern information system. For example, in ERP systems,
the event of order creation can currently involve an order document and several
items. This resolves the convergence problem (since we do not need to duplicate
the events anymore) and the divergence problems (since activities related to
items of an order are not associated with the case of the general order).

Recently, the OCEL standard1 has been proposed as the mainstream for-
mat for storing object-centric event logs [5]. The format is supported by dif-
ferent implementations and libraries in various programming languages, e.g.,
Java (ProM framework) and Python. OCEL can be used to discover object-
centric process models [2,3], which describe the lifecycle of different object types
and their interactions. Moreover, conformance checking can be done on multiple
object types [2].

2.2 SAP: Entities and Relationships

Fig. 1. Core entities of SAP ERP systems in UML 2.0 class diagram

In a broader sense, SAP ERP can be seen as a document management system.
Therefore the concept of document is particularly important. Figure 1 introduces
the document and its relevant entities and relationships among them, using UML
2.0 class diagram. First, a document represents a core business object, including

1 http://www.ocel-standard.org/.

http://www.ocel-standard.org/
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orders, deliveries, and payments. Each document contains a master item and
detail items. For instance, a delivery document contains a delivery master item,
corresponding to an order, and multiple delivery detail items, corresponding to
materials in the order. A master table is a collection of the same type of master
items, whereas a detail table is a collection of the same type of detail items. For
instance, EKKO as a master table contains purchase order master items. EKPO
as a detail table contains purchase orders detail items.

Both master and detail items contain a various number of attribute values,
e.g., the total cost of a document or the cost of a single item. Each attribute
belongs to a domain that encodes the type of information reported by the
attribute, e.g., creation date and posting date of a document share the same
domain because they are both dates.

3 Extracting Event Data from SAP ERP: Approach

Figure 2 describes an overview of our proposed approach to extract OCEL from
SAP ERP systems. It consists of two phases: 1) building Graph of Relations
(GoR) and 2) extracting OCEL. The former aims to construct a graph that
describes all relevant tables of a business process. There are well-known business
processes in SAP ERP, e.g., Purchase to Pay (P2P) and Order to Cash (O2C).
For such business processes, target tables, where we extract event data regarding
the process, are already known, e.g., EKKO, RBKP, EKBE for P2P and VBAK,
BKPF for O2C. However, most business processes in an organization are mostly
unknown and, thus, require the identification of relevant tables.

Based on the GoR, we extract OCEL by connecting them to the underlying
database of SAP ERP systems. To this end, we first preprocess records of tables
described in the GoR. Next, we define activity concepts relevant to the target
business process using the relevant tables. Finally, based on the activity concept,
we extract event data from the relevant tables.

3.1 Building Graphs of Relations

Figure 3 shows the conceptual model of three GoRs, each of which corresponds
to a business process. A GoR is an undirected connected graph where the nodes
are SAP tables containing the potentially interesting information and the edges
show a relation among two tables based on a joint field/column. The node in
the center of a GoR is a master table that is most relevant to the target process.
The distance of each node from the master table shows the relevancy of the
information contained in the corresponding table to the tables of interest and
consequently to the corresponding type of process. Different colors in a GoR
indicate different classes of tables. Each class has a unique way of defining activ-
ity concepts. As a result, different GoRs may be connected to each other. Below
are the steps to construct GoRs:
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Fig. 2. Overview of extracting object-centric event logs from SAP ERP systems

Joint tables
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Direct connec�ons between master tables
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Fig. 3. Conceptual model of Graph of Relations (GoRs)
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Selecting Master Tables. A GoR is built upon a master table relevant to a
business process to analyze. In this work, we consider relevant master tables as
users’ input.

Identifying Relevant Tables. Based on the given master table, we need to
identify relevant tables to the master tables. Such tables become the candidates
for constructing the GoR. Three different main approaches may be taken: man-
ual, automatic, and hybrid.

– In the manual approach, the identification is conducted by domain experts
who understand business processes and the technical details of SAP systems.
In addition, the domain expert may provide a data schema to explain the
entities and relationships among them.

– In the automatic approach, the identification is made automatically by
exploiting existing information in the system. For instance, using the table
DD03VV, one can extract the relationships between the tables.

– Finally, the hybrid approach exploits both manual and automated techniques.
For instance, the data schema from domain experts can provide an initial set
of relevant tables, which will be improved by including more relevant tables
with the help of automatically generated relationships.

Classifying Tables. The last step is the classification of the identified tables
into different classes. In the following, we describe five different classes.

– A flow table describes the status of objects that compose the target business
process. It explains the creation, deletion, and update of such objects, e.g.,
VBFA explains the status of objects that are associated with the Order-to-
Cash (O2C) process.

– A transaction table describes the execution of transactions (TCODE) in SAP
systems.

– A change table describes the changes in objects of the target business process,
e.g., CDHDR and CDPOS are primary change tables.

– A record table stores relevant attributes of objects of the target business
process, e.g., the table EKKO contains the relevant attributes of purchase
order documents.

– A detail table stores the relationships between different entities, e.g., the
table EKPO stores the connection between purchase requisitions and pur-
chase orders.

3.2 Extracting Object-Centric Event Logs

In this subsection, we explain how OCEL are extracted using GoRs. The extrac-
tion consists of four main steps; pre-processing, defining activity concept, defining
object types and connecting entries.
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Pre-processing. SAP tables contain a lot of data related to different com-
panies or groups in the same company (multi-tenant system). Moreover, when
invoicing/accounting tables are considered, documents are organized by their
fiscal year. A pre-processing step must be performed to extract an event log of
reasonable size, containing the desired behavior and a coherent set of informa-
tion since document identifiers can be replicated across different organizations.
To this end, the union of all the fields in the primary keys of the tables is con-
sidered, and for some of them, a filtering query is executed, e.g., on a specific
company code or a specific fiscal year.

Defining Object Types. During the extraction, the entries of the master
tables are transformed into events, having the columns as event attributes. More-
over, the values of all the columns except the dates and the numbers become
objects of the object type given by the column’s name.

Defining Activity Concept. To extract event data from GoRs, we take a
divide-and-conquer approach. We first extract event data from each table and
then combine them. The first step of extracting event data from each table is
to define the activity concept. In the following, we explain how the activity is
defined in each class of tables.

– Each row in flow tables contains a current document number, a previous doc-
ument number, the type of the current document, and the type of the pre-
vious document. For instance, considering VBELN as the domain, VBELN,
VBELV, VBTYP N, and VBTYP V in the VBFA table contain respectively
the current document number, the previous document number and the cur-
rent and previous document types. We define activities as the type of the
current documents, i.e., the value in VBTYP N.

– Each row in transaction tables contains a transaction code. We transform the
transaction code into human-readable formats using the TSTCT table, e.g.,
VA02 is transformed to Change Order, which becomes the activity name.

– Each row in record tables describes the properties of an object. All the rows of
the record tables are associated with the same activity, e.g., Create document
[...] for all the rows in EKKO.

– For change tables, we suggest three approaches: (1) Transaction codes used
for changes are transformed into activities, (2) Fields, updated after changes,
are converted into activities, e.g., Price Changed, and (3) We consider both
old and new fields’ values and define activities, e.g., Postpone Delivery, by
comparing old and new values of delivery dates.

Connecting Entries. In this step, the information of the detail tables is used
to enrich events. For example, if an entry of the table RSEG, containing detailed
information about invoices, associates an invoice identifier with an order identi-
fier, every event associated with the invoice identifier is also associated with the
order identifier in the subsequent step.
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Fig. 4. A GoR built on our SAP IDES instance on the P2P process. Detail tables are
colored by green, RKPF that is an additional record tables is colored by pink, and
RBKP and BKPF that are additional transaction tables are colored by yellow. (Color
figure online)

4 Extracting Event Data from SAP ERP: Tool

We implemented a tool in the Python3 language, available in the Github repos-
itory; https://github.com/Javert899/sap-extractor. The tool is available as a
web application implemented using the Flask framework and can be launched
with the command; python main.py. The web application can be accessed at the
address; http://localhost:5000/new extractor.html. First, the extractor asks the
parameters of connection to the database supporting the SAP ERP instance.
Then, it provides both a list of object classes contained in the database and
a list of pre-configured sets of tables related to the mainstream processes. The
next step is the construction of the GoR, which permits extending the set of
tables. The following step is about pre-providing the values for the primary keys
of the included tables, e.g., the client used during the connection and the fiscal
year. After this step, the identification of the type of tables and the extraction
occurs, which permits obtaining an OCEL, that can be flattened to a traditional
event log or analyzed using object-centric techniques such as the ones provided
in https://github.com/Javert899/sap-extractor.

5 Assessment

This section proposes an assessment of the proposed techniques on top of an SAP
ERP IDES system. In particular, we will target the extraction of the well-known
Purchase to Pay (P2P) system. A P2P process involves different steps including
approval of a purchase requisition, placement of a purchase order, invoicing from
a supplier, and payment. Therefore, it involves different tables in the SAP system.

5.1 Building a Graph of Relations

Selecting Master Tables. The first step in the tool is selecting a candidate
table related to the process. In this case, we start from EKKO that is one of the

https://github.com/Javert899/sap-extractor
http://localhost:5000/new_extractor.html
https://github.com/Javert899/sap-extractor
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main tables in the P2P process and contains the master information. In building
the GoR, represented in Fig. 4, several other tables that are connected to EKKO
are found. Given the vast number of tables contained in SAP, we applied a simple
filtering based on the number of entries in each table to show the main nodes in
the GoR.

Identifying Relevant Tables. Figure 4 shows other tables containing event
data meaningful to extract an event log for the P2P2. The user needs to specify
the tables to include along with the original set of tables. The GoR is therefore
updated3. In our implementation, the master tables related to the detail tables
are automatically included in the set4.

Classifying Tables. The tool needs to categorize the tables in the set between
master tables and detail tables, as the master tables contain event data, while
detail tables contain the connection between different entities:

– Some tables are recognized as transactions tables: RBKP (containing the
transactions related to the invoices) and BKPF (containing the transaction
related to the payments).

– Some tables are recognized as record tables: EBAN (in which a record is a
purchase requisition), EKKO (in which a record is an order document), and
RKPF (in which a record is a reservation).

– Some tables are recognised as detail tables: EKPO, EKPA, EKET, EKBE,
BSEG, RSEG, RESB5.

5.2 Extracting Object-Centric Event Logs

In this section, we will explain the main steps of the log extraction process,
including the definition of the object types and the activity concept for the
extraction, and the connection between the entries given the information of the
detail tables. Since we did not perform a pre-processing step, we will not assess
the step here.
2 Including EKBE, containing goods/invoice receipts, BSEG, containing detail table

for payments, RSEG, containing detail data for invoices, RKPF, including inventory
management data, EKPO, containing the detailed information about the purchase
orders, EKPA, containing the partner roles in purchasing, and EKET, containing
the scheduling agreement. We can see that the EBAN table, containing purchase
requisition data, has not been included because of the filtering applied on the number
of entries. However, it would be found by the method if the threshold is set to a lower
value so that we will include it in the following steps.

3 The set of tables to extract include: EKKO, EKPO, EKPA, EKET, EKBE, BSEG,
BKPF, RSEG, RBKP, RKPF, RESB, EBAN.

4 This means that BKPF, the master table of BSEG, containing the master data about
the payments, and RBKP, the master table of RSEG, containing the master data
about the invoices, are included.

5 Because their primary key is contained in the primary key of EKKO (for EKPO,
EKPA, EKET, EKBE), BKPF, RBKP and RKPF respectively.
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Defining Object Types. Starting from the choices on the GoR and the iden-
tification of the type of tables, it is possible to extract different object types,
including BANFN-BANFN (purchase requisition), INFNR-INFNR (purchasing
record), EBELN-EBELN (purchase order), BELNR-RE BELRN (the invoice
number), BELNR-BELNR D (the payment number), and AWKEY-AWKEY (a
generic object type containing the ID of the object in SAP).

Defining Activity Concept. The activity concept is defined as follows:

– For the record tables, a unique activity is defined for all the events, that is
Create document (TABNAME) (where TABNAME is the name of the corre-
sponding record table, so it can be EBAN/EKKO/RKPF).

– For the transaction tables, the activity is given by the transaction code6.
Mainstream transactions occurring are Enter incoming invoice, Enter incom-
ing payment, Enter outgoing payment.

Connecting Entries. The detail tables are used to enrich the entries extracted
from the master tables as follows:

– BSEG provides a connection from the payments to the purchase order items.
– RSEG connects the invoices to the purchase order items.
– EKPO provides a connection of the purchase order items to the corresponding

purchase requisition.
– EKPA and EKET contain detailed information that does not provide mean-

ingful links to other tables in the set. EKBE is a peculiar type of detail table,
as it contains the information about goods/invoice receipts, so it could be
seen as a master table. Still, it also links the purchase order items with the
invoices through the goods/invoice receipts.

6 Related Work

This section presents the related work on data extraction from ERP systems for
process mining purposes.

Data Extraction and Pre-processing from SAP ERP. In [6], an approach
to extract traditional event logs from SAP ERP is proposed. The set of relevant
business objects is identified, and the related tables and their relations are iden-
tified. A limitation is that the construction of the document flow is manual. In
[7], the authors address the pre-processing challenges to extract event logs from
SAP ERP by using tools such as EVS Model Builder. In [4], an ontology-driven
approach for the extraction of event logs from relational databases is proposed,
in which the user can express semantic queries which are then translated to rela-
tional queries. In [8], the effects of some decisions on the quality of the resulting
event log are analyzed. In particular, the context of event log extraction from
ERP system is considered.
6 Using the description of the transaction contained in the table TSTCT.
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Artifact-Centric Models on ERP Systems. In [10], an approach to discover
artifact-centric models from ERP systems is proposed. The approach is split into
two main parts: 1) identifying a set of artifacts, extracting a traditional event
log, and a model of its lifecycle; 2) discovering the interactions between artifacts.
The set of tables to extract needs to be decided by the user and the specification
of the activity concepts is not described in this work.

In [9], object-centric event logs (in the XOC format) are extracted from the
Dollibar ERP system. These logs have been used to generate an object-centric
behavioral constraints (OCBC) model. However, OCBC/XOC are not scalable.

OpenSLEX Meta-models. In [11], a meta-model is proposed to ease the
extraction of process mining event logs from information systems supported by
relational databases. The instances of the OpenSLEX meta-model can be built
from different types of database logs (redo logs, SAP change tables). Hence, the
meta-model is generic and not tailored to the peculiar features of an SAP ERP
system. The main problem is that the extraction of an event log requires a case
notion’s specification, which leads to convergence/divergence problems.

Enterprise-Grade Connectors. Several commercial vendors of process min-
ing solutions offer enterprise-grade connectors to SAP, that are able to ingest
and process millions of events. Notable examples in the current landscape are
Celonis7, Signavio8, LANA9, UIPath10.

7 Conclusion

In this paper, we proposed a generic approach to extract event logs from SAP
ERP, which exploits the relationships between tables in SAP to build Graphs of
Relations (GoRs) and obtains Object-Centric Event Logs (OCEL) using GoRs.
Figure 2 summarizes our approach. By storing extracted event data into OCEL,
we permit the specification of multiple case notions, avoiding the convergence/-
divergence problems and simplifying the extraction process. An open-source tool
implementing the approach and a case study on an educational SAP instance
have been presented, showing the feasibility of identifying the relationships
between different tables of the P2P process and extracting corresponding OCEL.
As future work, we plan to deploy our approach on different instances of SAP
systems running in real businesses to explore the connection between GoRs and
underlying processes and to discover unknown processes. Moreover, we should
further assess how good the extraction of a typical SAP process is in comparison
to commercial-grade extractors.

7 https://www.celonis.com/solutions/systems/sap.
8 https://www.signavio.com/products/process-intelligence/.
9 https://lanalabs.com/en/migration-to-sap-s-4-hana-with-lana/.

10 https://docs.uipath.com/process-mining/docs/introduction-to-sap-connector.

https://www.celonis.com/solutions/systems/sap
https://www.signavio.com/products/process-intelligence/
https://lanalabs.com/en/migration-to-sap-s-4-hana-with-lana/
https://docs.uipath.com/process-mining/docs/introduction-to-sap-connector
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2018-2019. LNBIP, vol. 379, pp. 24–51. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-46633-6 2

4. Calvanese, D., Montali, M., Syamsiyah, A., van der Aalst, W.M.P.: Ontology-driven
extraction of event logs from relational databases. In: Reichert, M., Reijers, H.A.
(eds.) BPM 2015. LNBIP, vol. 256, pp. 140–153. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-42887-1 12

5. Ghahfarokhi, A.F., Park, G., Berti, A., van der Aalst, W.M.P.: OCEL: a standard
for object-centric event logs. In: Bellatreche, L., et al. (eds.) ADBIS 2021. CCIS,
vol. 1450, pp. 169–175. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
85082-1 16

6. van Giessel, M.: Process Mining in SAP R/3: A Method for Applying Process Min-
ing to SAP R/3. Eindhoven University of Technology, Eindhoven, The Netherlands
(2004)

7. Ingvaldsen, J.E., Gulla, J.A.: Preprocessing support for large scale process mining
of SAP transactions. In: ter Hofstede, A., Benatallah, B., Paik, H.-Y. (eds.) BPM
2007. LNCS, vol. 4928, pp. 30–41. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78238-4 5

8. Jans, M., Soffer, P.: From relational database to event log: decisions with quality
impact. In: Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp.
588–599. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74030-0 46

9. Li, G., de Murillas, E.G.L., de Carvalho, R.M., van der Aalst, W.M.P.: Extracting
object-centric event logs to support process mining on databases. In: Mendling, J.,
Mouratidis, H. (eds.) CAiSE 2018. LNBIP, vol. 317, pp. 182–199. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-92901-9 16

10. Lu, X., Nagelkerke, M., Van De Wiel, D., Fahland, D.: Discovering interacting
artifacts from ERP systems. IEEE Trans. Serv. Comput. 8(6), 861–873 (2015)

11. de Murillas, E.G.L., van der Aalst, W.M.P., Reijers, H.A.: Process mining on
databases: unearthing historical data from redo logs. In: Motahari-Nezhad, H.R.,
Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 367–385. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23063-4 25

12. van Eck, M.L., Lu, X., Leemans, S.J.J., van der Aalst, W.M.P.: PM2: a process
mining project methodology. In: Zdravkovic, J., Kirikova, M., Johannesson, P.
(eds.) CAiSE 2015. LNCS, vol. 9097, pp. 297–313. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-19069-3 19

https://doi.org/10.1007/978-3-030-30446-1_1
https://doi.org/10.1007/978-3-030-30446-1_1
https://doi.org/10.1007/978-3-030-46633-6_2
https://doi.org/10.1007/978-3-030-46633-6_2
https://doi.org/10.1007/978-3-319-42887-1_12
https://doi.org/10.1007/978-3-319-42887-1_12
https://doi.org/10.1007/978-3-030-85082-1_16
https://doi.org/10.1007/978-3-030-85082-1_16
https://doi.org/10.1007/978-3-540-78238-4_5
https://doi.org/10.1007/978-3-540-78238-4_5
https://doi.org/10.1007/978-3-319-74030-0_46
https://doi.org/10.1007/978-3-319-92901-9_16
https://doi.org/10.1007/978-3-319-23063-4_25
https://doi.org/10.1007/978-3-319-19069-3_19
https://doi.org/10.1007/978-3-319-19069-3_19


An Event Data Extraction Approach from SAP ERP for Process Mining 267

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Towards a Natural Language
Conversational Interface for Process

Mining

Luciana Barbieri1(B), Edmundo Roberto Mauro Madeira1, Kleber Stroeh2,
and Wil M. P. van der Aalst3,4

1 Institute of Computing, University of Campinas (Unicamp), Campinas, Brazil
{luciana.barbieri,edmundo}@ic.unicamp.br
2 Everflow Process Mining, Campinas, Brazil

kleber.stroeh@everflow.ai
3 Fraunhofer Institute for Applied Information Technology FIT, Sankt Augustin,

Germany
4 RWTH Aachen University, Aachen, Germany

wvdaalst@pads.rwth-aachen.de

Abstract. Despite all the recent advances in process mining, making
it accessible to non-technical users remains a challenge. In order to
democratize this technology and make process mining ubiquitous, we
propose a conversational interface that allows non-technical profession-
als to retrieve relevant information about their processes and operations
by simply asking questions in their own language. In this work, we pro-
pose a reference architecture to support a conversational, process mining
oriented interface to existing process mining tools. We combine classic
natural language processing techniques (such as entity recognition and
semantic parsing) with an abstract logical representation for process min-
ing queries. We also provide a compilation of real natural language ques-
tions (aiming to form a dataset of that sort) and an implementation of
the architecture that interfaces to an existing commercial tool: Everflow.
Last but not least, we analyze the performance of this implementation
and point out directions for future work.

Keywords: Process Mining · Process Querying · Natural Language
Interface

1 Introduction

Process Mining (PM) aims to discover, monitor and enhance processes using
information extracted from event logs [2]. There exist mature academic and
commercial process mining techniques and tools that provide analyses over event
log data. The use of these tools, however, requires knowledge of the technology
itself and is mostly done by technical teams (process analysts, data scientists
and alike).
c© The Author(s) 2022
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To make process mining more ubiquitous, i.e., accessible on a daily basis
by non-technical teams, we propose a natural language conversational interface.
Business level and operations teams, for example, can take great benefit from
the insights produced by process mining tools when accessed through such an
intuitive conversational interface.

In spite of recent advances in Natural Language Processing (NLP), under-
standing the semantics of a natural language question and translating it to a cor-
rect corresponding logical query is still a challenging task. Problems such as ambi-
guity (same natural language expression having multiple interpretations) and vari-
ability (many different expressions having the same meaning) are yet difficult to
handle. Context awareness brings yet another level of complexity to the task, as
the meaning of a natural language question may depend on previous questions and
responses.

The main objective of this ongoing research is to propose, implement and
evaluate an architecture for a process mining natural language conversational
interface that takes questions in natural language and translates them to logical
queries that can be run against existing process mining tools. The contributions
presented in this paper are:

– Introduce a reference architecture for a process mining natural language con-
versational interface

– Propose an abstract logical representation for process mining queries that is,
on the one hand, independent of the underlying concrete process mining tool
and, on the other, mappable to its API calls

– An initial collection and categorization of natural language process mining
questions aiming to create a public dataset

– A proof of concept of the proposed architecture, including integration to a
commercial tool (Everflow Process Mining1) through its (RESTful) API

The remainder of this paper is organized as follows. Section 2 reviews related
work. Section 3 introduces the proposed architecture. Section 4 describes the PM
question dataset under construction. Section 5 presents the conducted proof of
concept. Section 6 concludes this paper and points out future work and directions.

2 Related Work

Natural Language Interfaces to Databases. From the many existing NLP appli-
cations, the ones that are mostly related to this research are the so called Natural
Language Interfaces to Databases (NLIDB). The main objective of NLIDB is to
enable users who are not familiar with complex query languages such as SQL
to easily formulate queries over information stored in databases using natural
language.

Even though NLIDB is not a new research topic, recent advances in natural
language processing have raised its importance and popularity during the last

1 https://everflow.ai/.

https://everflow.ai/
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decade [3]. Current methods differ in the use of natural language itself (from
queries restrictedly written according to specific grammatical constraints to full
natural language sentences), as well as in the technical approaches used to parse
and convert them to a machine-readable format such as SQL or SPARQL. Most
common parsing techniques are based on rule matching or machine learning. In
either case, the types of queries that can be handled by the system are limited
either by the set of rules, in the first case, or by the training data in the second.

While most of the existing NLIDB methods are designed to handle queries
over any domain (metadata and/or domain ontologies are usually taken as input
to map domain terminology to database entities), using specific process mining
domain knowledge yields context to the design of a potentially more robust
natural language interface.

Natural Language Processing Applications in Business Process Management and
Process Mining. One of the most important applications of NLP techniques to the
Business Process Management (BPM) domain is the extraction of process models
from natural language text [4]. Other existing applications of NLP to BPM include
the automatic generation of textual descriptions from process models [6] and the
comparison of process models to textual descriptions [9]. In [1], the authors dis-
cuss future challenges for NLP applications in the BPM field, including the use of
conversational systems to support the execution of business processes.

Most related to our research is the work presented in [5], where the authors
propose a method to answer natural language queries over process automation
event logs. The method extends the ATHENA NLIDB system [8] to translate
natural language queries to queries over process execution data (event logs)
stored in Elasticsearch.

Existing process mining techniques and tools can provide automatic analysis
over event log data, which can be used to answer high-level user questions. To
the best of our knowledge, this is the first research work aiming to automatically
understand and answer natural language questions over process mining data and
analyses.

3 Proposed Method

Our proposed method can be best described by the architecture depicted in
Fig. 1. In broad terms, it can be viewed as a pipeline moving from top to bot-
tom. The input is a question in regular natural language (in our case, English).
Questions can be provided as text or speech - planned future work includes
an Automatic Speech Recognition module, which will provide “speech-to-text”
functionality.

To close the pipeline, we envision Response Generation and Text to Speech
modules to provide a conversational response to the user. In the scope of this
work, this response was simplified and corresponds to a piece of information
directly derived from the call to the PM Tool’s API. The following sections
detail the modules responsible for understanding the input natural language
question and mapping it to an API call.
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Fig. 1. Process Mining Natural Language Querying Interface Architecture Overview

3.1 Pre-processing and Tagging

The input text passes initially through a Pre-processing and Tagging step, where
the following processing occurs:

– Tokenization, which is the splitting of text into tokens. Separation is based
on whitespaces, punctuation marks and apostrophes, among others.

– Part-of-Speech (POS) Tagging, which performs morphological analysis over
the text, marking tokens with tags such as PRON (pronoun), ADJ (adjective)
and VERB.

– Dependency Parsing, which provides semi-syntactic analysis and marks
tokens with grammatical structure information and dependency relations
between them.

– Lemmatization, which finds the base (non-inflected) form of words.
– Entity Recognition, which identifies and tags real-world entities in the text,

as detailed below.

Entity Recognition identifies general entities from pre-defined categories, such
as names of people and organizations, geographic locations, time and quantities,
among others. In addition to that, a natural language interface for process mining
must be able to recognize the process mining entities present in sentences. Terms
such as event, case, activity, resource and variant (along with its synonyms) must
be recognized and tagged appropriately. The resulting tags are a crucial input
for the next task in the processing pipeline (semantic parsing). Figure 2 depicts
the process mining data model that underlies the recognition of such terms.
Although this model is based in [2], one should notice that, for the purpose of
this work, the term “event refers to both event and activity instance.
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Fig. 2. Process Mining Data Model Underlying Entity Recognition

Besides dealing with general process mining terms, the system must be able
to recognize domain-specific terms. This includes the names of non-standard
attributes present in the event log along with possible categorical values, among
others. To be able to recognize such terms, this module uses event log metadata
(names, types and possible values) of these attributes. As the proposed natural
language interface does not deal directly with the event log, the PM Tool Inter-
face Mapping layer takes the responsibility of interfacing with the PM Tool to
gather these metadata. Figure 3 shows examples of questions tagged with recog-
nized entities. Notice that “Hailey Lee” and “Chicago” are categorical attribute
values gathered from event log metadata and used to tag these terms during
entity recognition.

Fig. 3. Entity Recognition Examples

3.2 Semantic Parsing

Semantic parsing aims to understand the meaning of a natural language sentence
and map it to a logical (machine-readable) representation. The most common
methods used for semantic parsing are rule-based and neural approaches. While
rule-based methods are usually more appropriate to build domain specific sys-
tems targeted to understand a finite set of sentences, neural systems are more
suitable to handle complex scenarios at the cost of requiring large training cor-
pora. Logical representations usually take the form of lambda calculus, query
languages such as SQL and SPARQL or executable programs, among others.

Rule Matching. As, to the best of our knowledge, there is no process mining
question dataset that could be annotated and used to train traditional machine
learning or neural models, we have initially adopted a rule matching approach
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for semantic parsing. Besides requiring no training data, the method has the
advantage of achieving high accuracy in answering predictable questions.

In our proof of concept, we used the spaCy open-source natural language
processing library2. Its Rule Matcher component allows the definition of rules
that match sequences of tokens. Rules are based on tags filled in the previous
steps in the pipeline (part-of-speech tags, dependency parsing results, entity
recognition labels), together with actual words or expressions (in our case, words
or expressions used to express the sort of process mining relationship/analysis
being queried). Figure 4 illustrates the matching of the question “What activities
have been assigned to Hailey Lee?” to a rule pattern.

Fig. 4. Rule matching example

In this case, the matched pattern leads the system to the conclusion that
the user wants the list of activity instances associated to a particular resource
(Hailey Lee).

Logical Representation. After the semantics of a question is understood (i.e.
after it matches a rule), it must be converted to a corresponding logical (PM
tool independent) representation. The Question Decomposition Meaning Repre-
sentation (QDMR) proposed in [11] and inspired by SQL has been used for this
purpose with some extensions.

In QDMR questions are represented by a sequence of steps where each step
corresponds to an operator. Each operator (except for select) is applied to the
results of a previous step in the sequence. Additional parameters may be given to
logical operators depending on the entities (concepts, attributes, aggregations,
etc.) recognized in the natural language question. Table 1 presents the most
relevant QDMR operators used in this research work to compose the logical
representation of PM queries. For the complete set, please refer to [11].

2 https://spacy.io/.

https://spacy.io/
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Table 1. Some QDMR operators used for PM question logical representation

Operator Description Example Logical Form

select Return all instances of the

given concept.

Show me all cases select case

filter Return the referenced

instances for which the given

condition holds.

Show me all cases from

Chicago

select case

filter city Chicago #1

project Return the given

attribute/relation for the

referenced instances.

How long does each process

instance take to execute?

select case

project duration #1

aggregate Apply the given aggregation

to the referenced values.

What is the average case

duration?

select case

project duration #1

aggregate average #2

group Apply the given aggregation

to each subset of values

corresponding to each key

What is the average cost of

each activity?

select event

project cost #1

project activity #1

group average #2 #3

superlative Return the referenced

instances for which the given

value is the highest/lowest.

What was the slowest case? select case

project duration #1

superlative max #1 #2

Notice that hash tags are used to refer to the results of a previous logical
operation in the sequence, which may be a set of event or case instances or their
attribute values. For example, in the following sequence, #1 refers to the results
of select case, which are all case instances and #2 refers to the values of the
duration attribute for #1.

select case

project duration #1

aggregate average #2

The original set of QDMR operators was extended by this work to allow
querying the behavioral aspects of process execution. Inspired by and initially
based on the set of predicates defined by the Process Query Language (PQL) [7],
the predicate operator was introduced to logically represent questions over
behavioral relations between executed activities. Supported predicates can be
applied over cases or traces and are presented in Table 2.

Rule to Logical Representation Mapping. As one of the architectural goals
of the proposed method is to allow integration to any Process Mining tool, it
makes as few assumptions as possible on how the integrated Process Mining
tool models the event log data. As a result, a minimal process mining data
model based in the XES standard event log format [10] drives the mapping of
matched rules to logical representation. Some of the entities tagged and handled
as concepts during entity recognition and rule matching (activity, resource, trace)
are, at this point, mapped to attributes of event and case, which are the only
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Table 2. Predicates used for PM question logical representation

Predicate Parameters Description

occurs activity Return the referenced cases or traces that execute

the given activity.

cooccur activity1, activity2 Return the referenced cases or traces that execute

both activity1 and activity2 or none.

conflict activity1, activity2 Return the referenced cases or traces that execute

either activity1, activity2 or none.

causal activity1, activity2 Return the referenced cases or traces where any

occurrence of activity1 precedes any occurrence of

activity2.

concurrent activity1, activity2 Return the referenced cases or traces where some

occurrence of activity1 occurs at the same time as

some occurrence of activity2.

activity-count - Return the number of activities executed by each

referenced case or trace, including repetitions.

distinct-activity-count - Return the number of distinct activities executed

by each referenced case or trace.

occurence-count activity Return the number of times the given activity is

executed for each referenced case or trace.

selectable concepts (assuming that processes are queried one at a time). Non-
standard attributes contained in the event log are mapped based on the metadata
obtained from the PM tool.

Once a rule fires, a corresponding logical representation must be put together.
This depends not only on what rule has been matched, but also on the entities
(concepts, attributes, etc.) recognized in the sentence. As an example, Fig. 5
depicts the possible logical representations to be created when the “aggregate
attribute query” rule is matched.

Fig. 5. Logical forms for attribute query rules

The matched rule indexes the first column in the table, while the enti-
ties tagged in the sentence index the next four (concept, attribute, filter and
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aggregation). The last column corresponds to the logical representation that
will be used to drive the calls to the PM Tool API detailed in the following
subsection. Asterisks indicate optional entities and the corresponding logical
operations that are added to the sequence when they are present. The complete
set of correspondences between rules and logical representations is available at
https://ic.unicamp.br/∼luciana.barbieri/ruletological.pdf.

3.3 PM Tool Interface Mapping

The final step in the question processing pipeline is to map the logical represen-
tation of the query into a real API call provided by a process mining tool.

In this work, we integrated the architecture into Everflow’s RESTful API.
This API presents endpoints that mimic process mining main concepts and nat-
urally maps into the PM data model used to create logical representations.

Using Everflow’s “cases” and “events” endpoints, altogether with their asso-
ciated parameters (such as “filter” and “aggregate”), it is straightforward to map
the logical representation into actual API calls. Figure 6 illustrates the end-to-
end mapping of a natural language question to a final API call.

Fig. 6. End to end mapping of question to API call

The integration of a new PM tool currently requires a different instantiation
of the PM Tool Interface Mapping component. Planned future work includes the
definition of a standard API to replace this component and allow PM tools to
easily integrate our natural language conversational interface.

4 Sample Questions

An initial set of natural language questions was collected from graduate students
with beginner to intermediate level of expertise in Process Mining, resulting in

https://ic.unicamp.br/~luciana.barbieri/ruletological.pdf
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250 general (not specific to any existing event log) questions originally written
in Portuguese. Free translation was performed by 3 volunteers resulting in 794
questions in English (multiple translations were done by the volunteers for some
of the questions).

Questions were then categorized into 4 groups: event log data questions (ques-
tions over case/event instances, attributes and counts), process model questions
(model structure, behavior and quality), process mining analysis questions (con-
formance checking, bottleneck analysis, transitions, root cause analysis, social
network, etc.) and advanced analysis questions (prediction, prescription and sim-
ulation). Table 3 summarizes these categories.

Variability in both language and contents of questions can be improved in
the future by collecting them directly in English and eliminating the translation
step. Nonetheless, as no public dataset of PM questions is currently available, the
samples collected so far played an important role in setting the ground for this
research and being the initial input for building the rules used for semantic pars-
ing. The complete set of 794 questions, with their corresponding classifications,
is available at https://ic.unicamp.br/∼luciana.barbieri/pmquestions.csv.

Table 3. Question categories

Category # Samples Example

Event log data 327 Which activity has the highest mean resolution time?

Process model 107 What are the possible start and end activities in my log?

Analysis 240 What are the most frequent non-conformances in my process?

Advanced analysis 120 What is the predicted completion time for case X?

5 Proof of Concept

In order to verify the applicability of the proposed method, we implemented
a subset of the architecture (blue colored components) presented in Fig. 1. For
this proof of concept, we used the spaCy open-source natural language processing
library, targeting questions from the “Event log data” category of the original
collected set. The library’s Rule Matcher component was used and fed with
34 semantic rules covering event log attribute querying, instance querying and
counting, aggregations and superlatives (“most”, “least”), among others.

In order to test the implementation, the set of questions from the “Event log
data” category was further refined by removing compound questions (questions
containing multiple embedded subquestions) and time-bound questions (ques-
tions containing time-related filters as in “What is the average duration of cases
completed in the first quarter of 2020?”), as these constructions were not covered
by the implemented set of semantic rules. This led to a testing dataset of 203
questions.

This testing set was executed against a Work Force Management based event
log that was uploaded into the Everflow Process Mining tool. However, any

https://ic.unicamp.br/~luciana.barbieri/pmquestions.csv
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process mining event log could be used, as the collected questions are not context-
specific (not bounded to any particular event log).

From the 203 testing questions, 163 (80.3%) were correctly answered, 22
(10.8%) were not responded because the system was not able to match any seman-
tic rule, and 18 (8.9%) were incorrectly answered, because they fired the wrong
semantic rule or because they were falsely tagged during the Pre-processing and
Tagging phase.

Examples of successfully answered questions are “What is the most common
flow of activities?”, “Which activity has the highest mean resolution time?” and
“What are the 10% slower cases?” Unmatched questions include “What resources
execute what activities?” and “Which resources are the most agile in task exe-
cution?”. Likewise, examples of questions that fired the wrong semantic rule are
“What resources take the longest to execute activity A?” and “What are the
resources assigned to the fastest cases?”. Actually, all these failed tests illustrate
the shortcomings of a rule-based approach, where the final result is sensitively con-
nected to the rules in use. This means that they could be fixed by a more crafted,
possibly longer, rule set, which is hard to achieve and difficult to maintain.

On the other hand, properly answered questions such as “What is the average
execution time of the process in Chicago?” illustrate the ability of the system to
use terms that are specific to the event log. In this example, “Chicago” is a value
under the attribute “City” in the event log, and could be used in the question
due to the capacity to handle metadata coming from the process mining tool.
This question was, of course, not present in the original testing dataset.

Overall, in spite of the limited size and variation of the testing questions and
rules, the 80.3% accuracy seems promising as a first result. As expected, a rule-
based approach has limitations in treating questions that stray too much away
from the structures implemented in the rules. In general, this method presents
high precision, but low generalization.

6 Conclusions and Future Work

Implementing the proposed reference architecture and testing it against the
aforementioned sample question dataset has led to some interesting conclusions.
Rule-based semantic parsing was an appropriate choice for bootstrapping a nat-
ural language interface for PM as no training data set of any kind or size is
currently available to train any supervised or semi-supervised machine learning
technique.

Furthermore, as the PM general ontology is small (few entities and relations),
it was possible to answer questions for a selected, pre-defined, set with high
accuracy using a relatively small number of rules. However, this approach does
come with limitations. Rule-based semantic parsing does not generalize well,
with new rules being required for most new/unpredicted questions.

In order to overcome this generalization limitation and to evolve the study
towards a fully functional architecture, we envision the following future work:
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– Use machine learning for semantic parsing by using the developed rule match-
ing parser to create an annotated training dataset.

– Increase our experiment by working with questions in other categories (pro-
cess model, analysis, advanced analysis).

– Extend the response mechanism to include natural language response gener-
ation, making responses more natural and user-friendly.

– Extend the training dataset and make it public. This implies collecting addi-
tional questions, if possible, directly in English and associated with a selected
event log, so that questions can be more context-based and closer to what
real business users would ask in a specific domain.
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Abstract. Process mining algorithms discover a process model from an
event log. The resulting process model is supposed to describe all possi-
ble event sequences of the underlying system. Generalization is a process
model quality dimension of interest. A generalization metric should quan-
tify the extent to which a process model represents the observed event
sequences contained in the event log and the unobserved event sequences
of the system. Most of the available metrics in the literature cannot
properly quantify the generalization of a process model. A recently pub-
lished method called Adversarial System Variant Approximation lever-
ages Generative Adversarial Networks to approximate the underlying
event sequence distribution of a system from an event log. While this
method demonstrated performance gains over existing methods in mea-
suring the generalization of process models, its experimental evaluations
have been performed under ideal conditions. This paper experimentally
investigates the performance of Adversarial System Variant Approxima-
tion under non-ideal conditions such as biased and limited event logs.
Moreover, experiments are performed to investigate the originally pro-
posed sampling parameter value of the method on its performance to
measure the generalization. The results confirm the need to raise aware-
ness about the working conditions of the Adversarial System Variant
Approximation method and serve to initiate future research directions.

Keywords: Process Mining · Conformance Checking ·
Generalization · Generative Adversarial Networks

1 Introduction

Significant research effort has been spent on the automated discovery of process
models from event logs and the quality assessment of such models, i.e., con-
formance checking. While the focus of conformance checking has been mainly
on measuring how well a discovered process model reflects event sequences that
are recorded in an event log, measuring the extent to which a process model
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generalizes the possible event sequences of the system from which the event log
originates, is less explored. The origin of such event logs is usually real-world
systems in domains such as business [2], manufacturing [19,23], or healthcare
[9,11,21]. Studies have shown that measuring the generalization of discovered
process models is of importance [16] and that only a few methods focus on this
objective. Meanwhile, the research community is aware that existing methods
do not fully address requirements and present individual shortcomings [12,18].

Adversarial System Variant Approximation (AVATAR) is a method [20] to
overcome some of the known issues in measuring generalization. This method
leverages a Generative Adversarial Network (GAN) that is trained on the same
event log that is used to discover a process model. AVATAR is based on the fact
that GANs successfully demonstrated the ability to unveil underlying data distri-
butions, including discrete sequences, and transfers the approach to the context
of measuring the generalization of process models. By sampling from the GAN,
a baseline of supposedly generalizing event sequences is obtained. Experimental
evaluations have been performed using ground truth systems which have shown
that the GAN of AVATAR can model observed event sequences of the event log,
and unobserved event sequences of the ground truth system accurately.

Whereas the experimental evaluation of AVATAR demonstrated that GANs
are suitable and promising neural network architectures that can be used to mea-
sure the generalization of a process model, further research is required to under-
stand the working conditions of those GANs in depth. This paper contributes
to this objective by conducting performance analyses on the GANs of AVATAR
using the same ground truth systems that were used in the original publica-
tion. First, the performance analysis includes an experimental evaluation of the
proposed sampling parameter k value of 10, 000 of the AVATAR GAN. Second,
experiments are performed on limited event log sizes. The original publication
used a constant 70% split ratio of the event sequences of the ground truth sys-
tems that were used as the event log for process discovery and AVATAR. Under
real-world conditions, such a constant 70% split ratio is usually infeasible. Hence,
it is necessary to investigate the GAN performance of AVATAR using different
split ratios. Third, an experimental evaluation is performed on the robustness
of AVATAR towards bias. Specifically, this paper investigates if event logs that
are biased affect the ability of the GAN to unveil unobserved event sequences
of the ground truth system. The results of the experiments are used to draw
conclusions and to raise awareness about the working conditions of the GANs of
AVATAR. The results and source codes are available on Github1.

2 Related Work

2.1 Generalization Metric

Generalization describes that a process model, such as a Petri net (PN), mod-
els ideally all possible event sequences of a system that can realistically occur.

1 https://github.com/ProminentLab/AVATAR.

https://github.com/ProminentLab/AVATAR
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This means that a process model should allow for the event sequences that
are recorded in an event log when observing a system under investigation. These
event sequences are usually used to automatically discover a process model using
a process discovery algorithm. Additionally, the process model should not allow
for unrealistic event sequences beyond the observed ones. It is obvious that the
difficulty of measuring the generalization of a process model reduces to classify-
ing if given unobserved event sequences are either realistic or unrealistic in the
context of the system under investigation.

A significant amount of research has been spent on measuring how well a pro-
cess model allows for event sequences contained in an event log (i.e., measuring
the fitness) and how well a process model restricts to allow for event sequences
beyond the ones contained in an event log (i.e., measuring the precision). How-
ever, research on measuring the generalization of process models is scarce due
to the difficulty of deriving realistic and unobserved event sequences from an
event log. Nonetheless, the process mining research community is aware that the
quality dimension of generalization is of importance [7,12,18].

Historically, one of the first approaches to quantify the extent to which a
process model generalizes event sequences beyond the ones contained in an event
log has been introduced by Buijs et al. [8]. The proposed approach is based
on quantifying the trustworthiness of the precision of a process model using
alignments. Highly frequent used areas of a process model are considered well
generalizing whereas low frequent parts of the model are less generalizing.

Van der Aalst et al. [1] built a measurement to quantify that a process model
does not overfit on a given event log. Specifically, their approach is based on the
probability of observing a new event in any given state of the model based on
the observations contained in the event log. If the likelihood of observing a new
event in a given state is small, then the generalization is good.

Vanden Broucke et al. [6] introduced a method to measure the generalization
of a process model using weighted artificial negative events. In comparison to
an actual event, an artificial negative event prevents the occurrence of a specific
event at a given time. This concept enables to derive allowed and disallowed
generalized event sequences.

A method proposed by van Dongen et al. [10] is based on anti-alignments
which are event sequences that are disparate from a set of given event sequences.
This notion is used to measure the generalization by relating the state space of a
process model. A generalizing process model has therefore a maximally different
set of anti-alignments without introducing unseen states.

A comparative study by Janssenswillen et al. [13] led to the conclusion that
metrics that quantify the generalization with respect to a given event log do
usually not assess the quality of a process model concerning the underlying
system correctly. Hence, generalization metrics need to be developed that do
not solely relate modeled event sequences to the ones contained in an event log.
Such metrics should be evaluated using ground truth systems.



284 J. Theis et al.

Event Log Process Model

Unobserved
Event Sequences

Sequence
GAN

discover

train

sample

assess
generalizationAVATAR

Fig. 1. Flow chat of the AVATAR methodology, derived from [20]

2.2 Adversarial System Variant Approximation

AVATAR is a recently proposed approach to quantify the extent to which a
process model generalizes [20]. The idea of this method is to unveil realistic
but unobserved event sequences of a system using Generative Adversarial Net-
works (GANs). If it is possible to confidently model unobserved event sequences
using GANs, then measuring the generalization reduces to measuring the fitness
and precision of a process model using the observed event log in combination
with the unobserved event sequences that are modeled by the GAN. This is
motivated by the generalization capabilities of GANs [3]. A flow chart of the
methodology is provided in Fig. 1. A given set of event sequences that is used
for automated process discovery is also used to train a Sequence GAN (SGAN).
AVATAR leverages a RelGAN [15] architecture that is enhanced with an addi-
tional standard discriminator neural network. A major hyperparameter of this
SGAN architecture is the temperature control β of the RelGAN that controls
the tradeoff between sample diversity and quality. The trained SGAN is then
used to sample unobserved event sequences. AVATAR proposes therefore two
sampling methodologies. The first is naive sampling controlled by the parame-
ter k which means that k samples are drawn from the generator of the SGAN.
The intuition is that the number of unique event sequences converges with an
increasing number of sampling iterations. This also means that the relative fre-
quency of an event sequence indicates the modeling confidence of this particular
event sequence. The second sampling methodology uses the Metropolis-Hastings
algorithm [14] and is inspired by the work of Turner et al. [22]. It is assumed
that by sampling from the SGAN, the unobserved event sequences of a system
can be unveiled. Here, quantifying the generalization of a process model reduces
to measuring the fitness and precision of the process model with respect to the
set of observed and approximated unobserved event sequences from the GAN.

The AVATAR methodology has been statistically evaluated using the finite
set of event sequences of 15 ground truth PNs. These PNs were created arti-
ficially as part of a comparative study of process discovery quality measures
[13] and are publicly available2. Each of the 15 PNs has different, but realistic
characteristics. 10 of the PNs can be classified as moderately complex with a
small number of transitions and comparatively few parallelisms whereas 5 PNs

2 https://github.com/gertjanssenswillen/processquality/.

https://github.com/gertjanssenswillen/processquality/
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are highly complex with a larger number of transitions and parallel structures.
The highly complex PNs are supposed to reflect the complexity of real-world
systems. For each ground truth PN, a random and unbiased 70% random split
of the modeled unique event sequences was considered as an event log. These
event logs were used to discover process models using two process discovery algo-
rithms [4,5]. The remaining 30% were withheld as the set of unobserved event
sequences that the GAN should be able to model.

The results of the experimental evaluation showed that SGANs are well suited
to obtain realistic unobserved event sequences with a relatively small number of
unrealistic event sequences. Moreover, the AVATAR generalization scores were
compared to existing generalization metrics on the discovered process models.
The obtained AVATAR scores on those models were perceived more appropriate
than the scores of existing generalization measures based on the ground truth
event sequence information. All experimental results were obtained under ideal
working conditions.

3 Notations

The notations that are used throughout this paper are based on and consistent
with the ones of the original AVATAR publication. The reader is referred to [20]
for comprehensive introductions.

A system is denoted by S. An event a ∈ A describes an instantaneous change
of the state of S where A is the finite set of all possible events. The cardinality
of a set is denoted by | · |. An event instance E is a vector and describes the
occurrence of a specific a along with its occurrence timestamp and optional
additional information. A trace is a finite and chronologically ordered sequence
of event instances. A variant v ∈ V is a sequence of events where V is the infinite
set of all variants. A trace maps to exactly one variant. Whereas an event log is
a set of traces, denoted by L, a variant log is a sample of variants denoted by L∗.
A unique variant log is denoted by L+ and equals to the set of L∗. The set of
all variants that can be observed during the runtime of S is denoted by VS . The
functions μ(V) and mean(V) return the maximum and mean variant lengths of
a given set of variants, respectively.

Following the AVATAR methodology, a SGAN architecture is trained on L+

with a hyperparameter β, i.e., GANβ . The SGAN can be used to naively sample
variants. The number of sampling iterations from GANβ is denoted by k.

When training a GAN, all variants of L+ ⊆ VS are considered. A subset of
variants Vu might exist such that VS = (L+ ∪ Vu) and (L+ ∩ Vu) = ∅. Vu is
intuitively the set of unobserved behavior. Ideally, when sampling k times from
GANβ , it is desired to obtain an estimated set of system variants, i.e., V̂S that
equals to VS . How well the GAN performs to reach this goal is quantified using
the true positive ratios tp = |V̂S∩VS |

|VS | and tpu = |V̂S∩Vu|
|Vu| . tp describes the propor-

tion of realistic variants sampled using GANβ over all possible system variants.
tpu describes the ratio of sampled variants using GANβ over all unobserved
variants. Moreover, the number of unique sampled variants is recorded. Ideally,
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tp and tpu should be equal to 1 while the number of unique sampled variants
should equal |VS |. The score function s(tp, tpu) = tp+tpu√

2
is used, as proposed

and reasoned in [20], to quantify how well the GAN of AVATAR performs.

4 Problem Statement

The AVATAR methodology [20] demonstrated that SGANs can model Vu which
builds a foundation to measure the generalization of process models. The eval-
uation setup of AVATAR consisted of a 70/30 split ratio of VS to obtain L+

and Vu and a sampling parameter k value 10, 000 for each of the ground truth
systems. This setup raises multiple research questions, including the following.

RQ1: Is the parameter k with a value of 10, 000 optimally defined and is
there a relationship between k and the GAN performance of AVATAR? The
parameter k describes the number of variants that are drawn naively from the
trained SGAN without leveraging the Metropolis-Hastings algorithm. Whereas
[20] states that preliminary results showed that setting k to the value of 10, 000
is a good choice, a proven justification for this value is missing. Moreover, it
remains unclear if a relationship between k and the performance of the GAN
of AVATAR exists. This paper experimentally assesses the performance of the
GANs with multiple values for k to validate the statement made in the original
publication and investigates the relationship between S, k, and the GAN to
model VS .

RQ2: How does the size of L+ relate to the performance of modeling VS?
The AVATAR methodology has been evaluated using a 70/30 split ratio of VS

to obtain L+ and Vu across all used ground truth systems. However, it remains
unclear how the GAN of AVATAR performs if less information of a system
is given. In real-world scenarios, an exact 70% split of all possible variants of a
system is usually unrealistic. The ratio of variants contained in L+ to all variants
in VS can be guessed at its best. Hence, this paper experimentally assesses the
performance of the GANs of AVATAR at different split ratios to investigate the
working conditions of AVATAR when the given event log size is limited.

RQ3: Are the GANs of AVATAR sensitive to biased variant logs? The GANs
of AVATAR have been evaluated using a random and unbiased split of VS . In real-
world scenarios though, L+ might be biased due to a limited observation duration
of the system or adverse environmental situations. Whereas research has been
conducted on the impact of biased event logs on process discovery algorithms
[17], it remains unclear how the GANs of AVATAR perform when being trained
on a biased set of variants. Bias can be expressed, e.g., in terms of variant
lengths. In this paper, preliminary experiments are performed to investigate if
the performance of the GANs are affected when being trained on specific biased
variant logs.
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5 Experimental Setup

5.1 Sampling Parameter

To investigate the relationship between k and the performance of the SGANs
(RQ1 ), multiple values for k are investigated. Specifically, k is set to 1, 000,
2, 000, 4, 000, 6, 000, up to 20, 000, with an increment of 2, 000 each. This includes
the originally proposed k = 10, 000 value. These specific values are chosen such
that performance changes can be observed when increasing and decreasing the
proposed value of k. It is expected that the performance of the GANs decreases
with a very small value, such as k = 1, 000, but it remains unclear if the perfor-
mance increases with an increased value of k. It is not expected that a granularity
finer than 2, 000 will unveil significant differences.

Training and sampling of the SGANs is performed on the five highly complex
PNs that were also used to evaluate the AVATAR methodology according to the
original publication. These systems are denoted as S11−15 and correspond to
Systems 11–15 in [20]. For each of the five systems, two SGANs are trained
with β = 100 and β = 1000, respectively. These GANs are trained using a
random 70% split of VS which corresponds to L+. The remaining 30% results
in Vu and are used to evaluate the performance of the SGAN to approximate
the unobserved system variants, as in the original publication. This is called a
70/30 split ratio. The setup results in ten different SGAN models and, due to
11 different values for k, in a total of 110 observation values for evaluation.

5.2 Variant Log Size

To investigate the performance of the GANs of AVATAR when limited variant
log sizes are given (RQ2 ), two SGANs per system are trained with different split
ratios compared to the 70/30 ratio of the original evaluation. In this setup, the
70/30 split ratio is used as a baseline for comparison. Moreover, experiments are
performed using 10/90, 20/80, 30/70, 40/60, 50/50, and 60/40 split ratios. It
is expected that the performance of the GANs in modeling Vu decreases with
smaller |L+| values. As before, the systems S11−15 are used for experimental
evaluation due to their realistic complexity. The SGANs are trained with β = 100
and β = 1000 to be consistent with the original AVATAR work. This results in
70 SGANs for evaluation. Variants are generated from the SGANs using the
originally proposed k = 10, 000 value.

5.3 Biased Variant Logs

This experiment investigates the performance of the GANs of AVATAR in detect-
ing Vu when being trained on a biased L+ to provide an answer to RQ3. Bias is
expressed using the length of variants. The baseline is obtained using a random
and unbiased 70/30 split ratio on VS such that mean(L+) and mean(Vu) are
almost equal. Four bias setups are defined and denoted by b1 to b4.
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The first bias setup b1 is defined such that L+ contains the shortest 70% of Vs

and Vu contains the remaining 30%. This means that a SGAN is trained on short
variants, but is supposed to generalize to long variants. The setup b2 is defined
such that L+ contains the longest 70% of Vs and Vu contains the remaining
variants. In this case, a SGAN is trained on long variants and is supposed to
generalize short variants. The setups b3 and b4 are leaky variations of b1 and b2,
respectively. For both setups, 20% of the variants in Vu are randomly exchanged
with a randomly chosen variant from L+. This means that the corresponding
SGAN is not trained on strictly short or strictly long variants. However, bias in
terms of the lengths of variants contained in L+ and Vu persists.

For all setups b1 to b4, the longest possible variant of a corresponding system
is contained in L+ rather than Vu. This is required to satisfy the assumption
that the maximum possible system variant length is known to train an SGAN
[20]. Therefore, at least one variant with a length equal to μ(VS) must be known.
Like before, two SGANs are trained with β = 100 and β = 1000, respectively, for
each of the systems S11−15 and each setup plus the baseline setup. Consequently,
the total number of SGAN models under investigation equals 50.

6 Results

6.1 Sampling Parameter Results

For S11 and GAN100, the number of approximated system variants increases
with the value of k. This GAN setup is closest to the desired |VS | value when
using k = 8, 000. In the meantime, the tp ratio decreases with an increasing
value of k. With an increasing value of k, the tpu ratio converges to 0.6. Similar
behavior is observed for the SGANs for S12. However, with k = 2, 000, V̂S already
exceeds the desired value of VS . Accordingly, tp decreases and tpu converges with
increasing k to about 0.8. The overestimation of variants can be explained by
the complexity of the underlying system. The second most complex system is
S14 with a much smaller maximum variant length. Accordingly, the SGANs of
S14 are better in approximating VS compared to the ones of S12. Systems S13−15

perform similarly to S11 with an optimal variant number approximation around
k = 10000. The tpu ratios seem to converge around 0.7 and 0.9.

The results look similar for GANs with β = 1, 000. In general, V̂S is over-
estimated with an increasing value of k and when k > 10, 000. Only for S11,
the corresponding SGAN underestimates |VS | when using any of the considered
values for k. However, for k = 20, 000, GAN1000 almost perfectly estimates |VS |
with a decently high tp and tpu ratio. Generally, the tp ratio reduces with a more
gentle slope compared to GAN100 while tpu converges to a fixed value similar to
GAN100. The tpu convergence value lies between 0.75 and 1.0.

Since it can be observed that the performance of the GANs on more complex
systems, such as S12, can be weaker, a linear regression model is fit using the
features k, μ(VS), and |VS | to model the resulting scoring value for s. With
linear features, this leads to an R2 value of 1.4% indicating a bad fit. With the
corresponding quadratic features, the R2 score improves to 40%. The quadratic
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relationship could be an initial step to develop a rule-of-thumb to select an
individual and optimized value for k. The required values for |VS |, μ(VS) and a
desired minimum score value s can be guessed by using expert knowledge.

The median value of k that corresponds to the best obtained scores for the
SGAN models under consideration, equals 10, 000. This validates the general
suitability of k = 10, 000 as proposed in [20] and answers RQ1.

6.2 Variant Log Size Results

For the GANs that were trained using β = 100, it can be generally noted that
fewer unique variants are sampled with decreasing sizes of L+. At the same time,
it can also be observed that tp and tpu generally tend to decrease. A similar, but
less significant behavior can be observed for the SGANs that are trained using
β = 1000. This confirms the expectations.

The same trend can be observed when visualizing the 90% confidence inter-
vals (CIs) of the obtained scores s for each SGAN and variant log size setup
over all systems, as visualized in Fig. 2. Whereas this visualization cannot pro-
vide statistical proof due to the small sample size, it shows the decreasing trend
satisfyingly. Since the CIs for a 10/90 split ratio and the baseline 70/30 split
ratio for both SGAN setups are non-overlapping, it can be concluded that a
10/90 split ratio performs statistically poorer than a 70/30 split ratio with 90%
confidence.

Fig. 2. 90% CIs of the mean scores s for each SGAN setup of different L+ sizes over
all systems S11−15

To provide an answer to RQ2, the GAN performance decreases with less
variants contained in L+ with respect to |VS |. These experiments prove that the
SGANs of AVATAR trained with a 70/30 split ratio perform statistically signif-
icantly better compared to a 10/90 split ratio. For GAN1000, the experiments
show that a 70/30 split ratio leads to statistically significantly better perfor-
mance compared to 30/70, 20/80, and 10/90 split ratios. Further experiments
with a larger sample size are required to provide statistical proof.
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6.3 Biased Variant Log Results

For all systems, the SGAN using β = 100 on the biased setup b1 performs poorly.
However, when training using β = 1000, the performance seems to be increasing.
The β parameter indicates an impact on the performance when L+ is biased.
However, the details of the impact remain unclear. Overall, the SGANs trained
with β = 1000 seem to perform better in general.

Furthermore, the performance seems to increase when L+ is less restrictively
biased, i.e., with the setups b3 and b4 compared to b1 and b2, respectively.
This indicates that less bias leads to better performance. Additionally, b2 seems
to perform better than b1, and b4 performs better than b3. The same can be
observed when visualizing the 90% CIs of the scores s per SGAN setup over all
systems in Fig. 3. Comments on the statistical significance of each CI cannot
be made due to the small sample size. However, the CI mean values indicate
the observed trend. The baseline SGANs are the best-performing models. When
introducing leaky bias with b3 and b4, the performance reduces on average. Strict
bias, such as with setups b1 and b2, leads to a further decrease of performance
in unveiling VS . The large CIs for the SGANs trained using β = 1000 and using
the setups b3 and b4 can be either a randomness artifact or a sign that the β
hyperparameter can accommodate for non-strict bias in specific situations.

Fig. 3. 90% CIs of the mean scores s for each biased L+ and baseline SGAN setup
over all systems S11−15

To answer RQ3, the GANs are sensitive to bias and perform with a s value
that decreases proportionally to the significance of present variant length bias in
L+. Further experiments with larger sample sizes of ground truth systems are
anticipated to provide statistical evidence and insights on the potential impact
of β to accommodate for bias.

7 Conclusion

Regarding RQ1, the experiments have shown that k = 10, 000 is generally a good
choice. However, an individual value for k is required depending on the under-
lying system complexity to fine-tune the GAN performance. Linear regression
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with quadratic features indicated a good fit to estimate an optimized value for
k given the desired performance score s, the total number of system variants,
and the maximum variant length of the underlying system. For RQ2, the GAN
performance in modeling VS generally tends to decrease when fewer variants of
the system are contained in L+. Finally, the GANs of AVATAR seem to be sen-
sitive towards biased variant logs, as an answer to RQ3. The performance of the
underlying SGANs decreases the more significant the bias in L+ is. Moreover,
the experimental results show the potential that the SGAN hyperparameter β
might be able to accommodate for bias in specific situations.

While the experimental results unequivocally highlight certain conditions of
the GANs that need to be considered when applying AVATAR, detailed statis-
tical evidence remains mostly missing due to limited sample sizes. Hence, the
results of this paper should raise awareness to the research community and pro-
vide the following three research directions. First, the results of the parameter
k investigations motivate future experimental evaluations to derive a rule-of-
thumb to select an optimal value k. This requires an experimental evaluation
using a large set of different ground truth systems to derive a robust rule-of-
thumb. Second, a larger set of experiments need to be conducted to investigate
the required variant log size to train a converging GAN such that AVATAR can
be applied confidently. Third, the bias sensitivity of the GANs of AVATAR needs
to be investigated with a larger set of ground truth systems and with different
β hyperparameter values to unveil a potential relationship between β and the
GAN sensitivity towards bias.
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Abstract. Clinical guidelines support physicians in the evidence-based
treatment of patients. The technical verification of guideline compliance
is not trivial, since guideline knowledge is usually represented textually
and none of the approaches to computer-interpretable guideline represen-
tation has yet been able to establish itself. Due to the procedural nature
of treatment sequences, this case study examines the applicability of a
guideline process model to real hospital data for verification of guide-
line compliance. For this purpose, the limitations and challenges in the
transformation of clinical data into an event log and in the application
of conformance checking to align the data with the guideline reference
model are investigated. As a data set, we use treatment data of skin
tumor patients from a cancer registry enriched by hospital information
system data. The results show the difficulty of applying process mining
to medically complex and heterogeneous data and the need for complex
preprocessing. The variability of clinical processes makes the application
of global conformance checking algorithms challenging. In addition, the
work shows the semantic weakness of the alignments and the need for
new semantically sensitive approaches.

Keywords: Process mining · Multi-perspective Conformance
checking · Clinical guidelines · Guideline compliance

1 Introduction

Evidence-based medicine states that patient-centered medical treatment deci-
sions should be based on empirically proven effectiveness whenever possible [23].

The healthcAIre project is funded by the ministry of science and health of the German
state Rhineland-Palatinate and the Pre-OnkoCase project is funded by the National
Care Conference on Skin Cancer (NVKH) e.V.
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This knowledge is documented in clinical guidelines [25]. The degree to which
clinical treatment processes in practice are guideline-compliant and thereby
evidence-based is unknown [9,14]. The verification of guideline compliance is
relevant, e.g., for the certification of oncology centers1, the development of clin-
ical decision support systems [2,15] and medical research [3,12]. An approach
to check the compliance of treatment processes against guidelines is to interpret
individual treatment processes as process instances and the guideline as a refer-
ence process model [10]. This would enable the use of conformance checking, a
process mining technique, which raises two challenges though. First, the transfor-
mation of the guideline knowledge into a process model. Second, the provision of
clinical data as event logs and their preprocessing. Due to the lack of standardiza-
tion of clinical data storage and the associated structure heterogeneity, naming
and data quality, a preprocessing of this data is necessary [13]. Furthermore,
clinical processes are characterized as highly variable, ad-hoc, multidisciplinary
and vary from hospital to hospital [22].

As part of the Pre-OnkoCase2 project, a process model was developed for a
section of the malignant melanoma guideline. In this case study, we investigate
to what extent the model can be applied to real clinical data, what preprocess-
ing is necessary and what limitations exist. The case study was conducted in
collaboration with the skin tumor center of the Münster University Hospital3.

The remainder of the paper is organized as follows. Section 2 provides back-
ground information about the medical context, the process reference model and
conformance checking details. Section 3 describes the research method and shows
how the event log is created. Section 4 describes the implementation of the con-
formance checking and the required preprocessing. In Sect. 5, the results are
discussed and Sect. 6 concludes the paper.

2 Background

Within the Pre-OnkoCase research project, we investigated how a clinical guide-
line can be represented procedurally. Since guidelines assume tacit knowledge,
they provide an incomplete representation of the treatment processes. There-
fore, missing information had to be supplemented by experts’ knowledge. In
workshops with domain experts of the skin tumor center in Münster, a con-
ceptual model of a section of the evidence-based guideline for the treatment of
malignant melanoma (skin cancer) [6] was created. Due to the size and com-
plexity of the model Fig. 1 shows just a sketch of the fundamental treatment
process. Each element of the sketch is a representative of a treatment section
in the treatment courses of patients who have been diagnosed with melanoma
and consists of a set of activities. If malignant melanoma is diagnosed during
the clinical and histopathological examination, which is part of the Diagnosis of
Melanoma section, then several treatment options are available to the patient.
1 https://www.krebsgesellschaft.de/deutsche-krebsgesellschaft/zertifizierung.html.
2 https://nvkh.de/projekte/pre-oncocase.
3 https://www.ukm.de/index.php?id=hauttumorzentrum.

https://www.krebsgesellschaft.de/deutsche-krebsgesellschaft/zertifizierung.html
https://nvkh.de/projekte/pre-oncocase
https://www.ukm.de/index.php?id=hauttumorzentrum
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– Re-Excision: Repeated excision ensures that no tumor residues remain.
– Sentinel Lymph Node Biopsy : The patient can receive a lymph node sonogra-

phy and receives a re-excision together with the sentinel lymph node biopsy.
– Other Diagnostic Measures: The patient can receive diagnostics to confirm

metastases or further examinations with imaging techniques.
– Staging up to IIB & Staging IIC and III : Depending on prior examinations,

the patient can come to staging, which provides patients and physicians the
critical benchmark for defining prognosis and for determining the best treat-
ment approach [8].

– Lymphadenectomy : The patient receives a lymphadenectomy, can receive
radiotherapy afterwards and receives a drug therapy.

– Adjuvant Therapy : The patient receives additional cancer treatment after
initial treatment to reduce the risk of recurrence.

Diagnosis of
Melanoma

Other 
Diagnostic
Measures

Re-ExcisionSentinel Lymph
Node Biopsy

Staging
IIC and III

Staging
up to IIB

Adjuvant 
Therapy

Lymph-
adenectomy

…

…… …

… …

…

Fig. 1. Reduced overview of the considered clinical guideline section for the treatment
of malignant melanoma patients. Paths marked with “...” are treatment areas, which
are not covered in the model, e.g., the treatment of stage IV patients or follow-up care.

The final conceptual model was then transferred into a Data Petri Net (DPN)
by Geyer [11]. A DPN is an extended Petri net that can map data and time
information [16]. The modeled DPN consists of 50 places and 76 transitions (see
Fig. 2). Due to the many decisions made in treatment based on examination
results, there are 52 transitions with a guard. The resulting model represents all
conditions and recommendations of the selected guideline section.
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Fig. 2. Overview of the DPN reference model

In the following, the basic terminology in the context of multi-perspective
conformance checking is explained. Multi-perspective conformance checking
describes the process of identifying discrepancies between the desired behavior
of the process, represented by the process model, and the actual behavior involv-
ing multiple perspectives such as the data perspective or the time perspective.
Most approaches use alignments for this purpose, which are a mapping of the
process instance to the process model. In the context of alignments, a log move
is executed by the alignment algorithm for events that are recorded in the event
log but do not occur in the process model. A model move is executed if events
occur in the process model but do not occur in the event log. If the event from
the event log matches the activity in the process model, but the values of the
variables do not match, this is called incorrect synchronous move. If everything
matches, the move is defined as correct synchronous move [16].

Most of the process mining algorithms which are capable of calculating multi-
perspective alignments are using the Alpha* algorithm [5] in combination with
MILP (Mixed Integer Linear Programming) [24]. The state-of-the-art approach is
from Mannhardt [17] where DPNs are used for calculating multi-perspective opti-
mal alignments [7]. It is also possible to calculate multi-perspective alignments
by using MP-Declare a multi-perspective version of Declare [21]. This method
was developed by Mawoko [19] and utilized a similar approach as Mannhardt.

3 Research Method

The exemplary data set used in this project represents the treatment of a total of
five real patients diagnosed with malignant melanoma from Münster University
Hospital. For data privacy reasons, the data were anonymized. The treatment
data are provided in the format of the ADT/GEKID basic data set4. The uniform
oncological ADT/GEKID basic data set describes a common coding scheme for
the documentation of oncological treatments in Germany in the form of an XML
schema. A major advantage of using data in the format of the basic data set is
that it is used by all German cancer registries and results are thus transferable

4 https://www.gekid.de/adt-gekid-basisdatensatz.

https://www.gekid.de/adt-gekid-basisdatensatz
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and comparable. The basic data set includes among others patient master data,
diagnostic data, histology data, cancer classification data, surgical data, therapy
data and tumor conference data.

Each entry in the basic data set is provided with a timestamp and a treating
resource and uniquely assignable to a patient and a treatment case. The structure
of the basic data set is based on the obligation of hospitals in Germany to report
the course of cancer cases to cancer registries. Accordingly, the data on individual
treatment activities are assigned to reporting elements in the XML format and
enriched with treatment-specific information. In order to apply conformance
checking, the data are transferred into the XES event log format [1]. For this
purpose, a generic XML to XES converter was implemented in Python and
configured to convert ADT/GEKID data to XES.

The resulting process log covers many areas important for determining guide-
line compliance, such as surgeries and diagnoses. Also, additional information
on follow-up examinations, medical therapies and tumor conferences are con-
tained. However, it lacks information on, e.g., histological examinations, certain
tumor markers, or lymphadenectomy. The resulting event log contains 24 differ-
ent events while considering different medical procedures as different events.

ADT/GEKID

HIS Data

Pre-Processing Conformance
CheckingXES

Fig. 3. Overview of the process steps up to conformance checking

In order to be able to take these data into account in conformance checking,
the log was enriched with treatment data from the hospital information system
(HIS). For this purpose, data from the HIS were exported as CSV and imported
into the XES file. Most of the entries could be transferred automatically, since
they are structured and timestamped. However, individual details of the treat-
ment process had to be extracted manually from the free text of the diagnostic
findings and doctor’s letters. The final event log contains 179 different events
and a total of 1114 events, an average of 222 events per patient.

4 Implementation

The following describes the adjustments that were necessary to perform con-
formance checking. An overview of the individual procedures in the project are
shown in Fig. 3.
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4.1 Preprocessing

The final event log contains 179 different events, while the guideline reference
model has only 20 different events. The difference results from the fact that
the event log contains events of other medical domains such as nursing and
psychosocial care and from the fact that the granularity in which events are
represented is inconsistent. In addition, it is also due to the fact that there
are deviations from the guideline. In order to perform an alignment between
the event log and the guideline reference model, extensive preprocessing had
to be performed: removal of explicitly irrelevant events, reduction of therapy
events to the respective initial therapy event, harmonization of granularity, event
aggregation and event and variable name matching.

In the first step, events that were explicitly irrelevant for conformance check-
ing were removed. These include events from perspectives not considered by
the guideline, such as the nursing and psychosocial domains, events such as
tumor conferences, which neither establish new diagnoses nor provide direct
treatment, and events such as follow-up care, which are outside the selected
guideline section. The events were identified using the event names and a HIS-
internal ID. Subsequently, in the second step, the therapy sequences of the same
therapy were reduced to the respective starting event. This is necessary because
cancer therapies are usually performed several times and the reference model
of the guideline, however, only addresses whether a patient with certain diag-
noses receives a certain therapy and then implies that this therapy is subse-
quently performed correctly. The granularity of the event log in terms of the
event description is in many ways finer than in the reference model. While the
reference model refers to “excision”, the ICPM (International Classification of
Procedures in Medicine) classification used in the data set defines over 30 dif-
ferent excisions. Therefore, the data set is harmonized in terms of granularity.
For this purpose, the ICPM code is abstracted in the hierarchically structured
coding scheme to such an extent that the description matches the identifiers
of the reference model. This results in partial events with identical designation
and identical timestamp, which originally described, e.g., surgeries with several
similar individual events are aggregated to one event. It is essential that the
names of the same variables and events in the guideline reference model and
in the event log are identical. For this purpose, a comparison of the identifiers
of the event log with identifiers of the model was performed. This was partic-
ularly time-consuming because identifiers were not consistent and unique. This
is on the one hand due to the fact that the data set is based on data from two
systems and on the other hand due to the fact that the treatment documenta-
tion is partially in free text and identifiers were accordingly heterogeneous. The
resulting event log forms the basis for the conformance check. After applying
the described preprocessing steps, the event log only contains 40 different events
directly related to treatment instead of the initial 179. The discrepancy between
20 activities in the model and 40 events in the log was deliberately accepted in
order to have complete traces and a comparison between guideline specifications
and reality.
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4.2 Conformance Checking

The in the following presented conformance checking approach is considered
as a global conformance checking technique, which views the process reference
model as an accurate representation of the overall process behavior. It is assumed
that the whole process is modeled and can therefore be checked. This method
enables not only the identification of the deviations but also the identification of
the exact source causing the problem [17]. We have chosen a global conformance
checking approach as this corresponds to the medical practice of considering
entire treatment processes.

Therefore, ProM [26] was used with the Multi-perspective Process Explorer
(MPE) [18], which uses the multi-perspective alignment algorithm developed by
Mannhardt [17]. A fundamental feature of the conformance checking algorithm
is the definition of a cost function. The cost function should be defined in a way
that the calculated alignments are semantically correct. We define semantically
correct alignments as a meaningful and logical alignment concerning a process
instance with deviations. A semantically correct alignment does not need to be
an optimal alignment but should be correct in a sense that a domain expert
would consider this alignment as meaningful.

First, the standard cost function is used. This cost function defines the cost as
3 for log move (delete), 2 for model move (insert), and 1 for incorrect synchronous
move (data write). The standard cost function results in semantically incorrect
alignments, because the alignment algorithm changes the attribute values of
events to create an optimal alignment. In the medical context, this is semantically
incorrect, as the data collected by the doctor represents reality and should be
immutable for the algorithm. In this case, the standard cost function generates
unusable alignments.

To achieve the desired result, the cost for data writes is increased such that
it is higher than for the other two operations. Also, the delete cost for events
that are not part of the staging process is reduced to 0, since in the course of
the medical examination it is possible that multiple additional examinations are
undertaken, that are needed to perform but are not depicted by the process
model. Thus, costs were defined as 1 for log move (delete), and model move
(insert), 0 for log move (for events not defined in the model) and incorrect
synchronous move (non-data write) and 2 for incorrect synchronous move (data
write).

Moreover, it is important to mention that the cost for the non-data writes
was set to 0, because this allows the alignment algorithm to make insert oper-
ations that are associated with attribute values, without paying the cost for
the data writes. The calculated fitness value itself was not considered, since the
focus of the use case is on the calculated deviations on the event level. Due to
privacy regulations it is not possible to show the resulting alignments, thus the
results will be explained in a qualitative way. Two of the alignments are semanti-
cally correct. These traces correspond perfectly to the guideline but also contain
medical examinations, which are not depicted in the process model, but were
needed to perform. The additional undertaken examinations are deleted by the
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alignment algorithm, which is semantically correct since these examinations are
a positive deviation from the guideline, which have the cost of 0. For the other
three traces a semantically correct alignment was not possible. This is mainly
due to the occurrence of events that are depicted of the process model but are
occurring at other positions as expected. In this case, the alignment algorithm
seeks the shortest or least expensive path through the process model and deletes
correct events or inserts new events, which already have been executed. Here, the
least expensive path allowed by the process model is not semantically correct in
every case, as our alignments show. As stated by [17] the algorithm only shows
one alignment and this is the optimal one in terms of alignment costs. However,
there are also possible alignments that might be better in terms of semantics
but worse in terms of alignment costs.

In summary, it was not possible to define a cost function which leads to
semantically correct alignments for all traces. Nevertheless, it was possible to
identify the medical examinations that are not part of the guideline but were
executed by the physician.

5 Discussion

The following section discusses the results of the project and the associated
problems and limitations identified. Although the domain experts attempted to
provide the most heterogeneous and complex patient data possible for this case
study, it should be noted that additional challenges and issues may arise as
additional patient cases are examined.

Several problems, partially typical for medical data, were found in the data
set used. The following issues and characteristics were identified: high variabil-
ity of treatment processes, time delays, incomplete data, none-activity-data and
mapping ambiguities between reference activities. The treatment histories have
a high degree of variability typical for medical data. Patient treatment data
have shown that there are activities in treatment that can occur at any time and
any number of times. Thus, such activities occur more frequently than described
in the guideline. These treatment activities pose a challenge in guideline com-
pliance checking because they are explicitly mentioned in the guideline only at
specific points in treatment. Consequently, guideline-compliant modeling does
not represent all contingencies of medical treatment, leading to the identification
of activities as deviations where they do occur additionally. Another important
aspect at this point is that some of these activities may play a crucial role in
the further course of treatment. For this reason, the activities must be able to
occur at any time in the model and they must have paths to all possible sub-
sequent treatments. However, based on the data collected so far, it is apparent
that mapping all options would increase the complexity of the model and thus
the effort to maintain it is no longer manageable.

A similar problem occurs due to time delays in treatment. For example, in
the treatment of patients, surgical procedures are followed by histological labo-
ratory examinations in which, e.g., tissue or lymph nodes are examined. Conse-
quently, the obvious modeling approach is to place the laboratory testing after
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surgery. In practice, treatment data have shown that some time elapses between
surgery and laboratory examination, and patients continue to receive treatment
in the meantime. This leads to the issue of valid activities being identified as
a deviation or violation. The data from the systems are incomplete as they
only represent the clinically documented course and parts of the out-of-hospital
treatment and diagnosis are missing. This is particularly evident in the data for
events at the beginning of the treatment process. Although it is evident from a
medical view that all patients should have passed through the same diagnostic
steps, patients start with different events. This is due to the fact that parts of the
treatment such as excision, histological examination, initial clinical examination,
etc. were performed out-of-hospital. Parts of the ADT/GEKID data are none-
activity-data and thus cannot be assigned to an event or timestamp. For this
data, it is neither possible to determine when nor in the course of which activity
it was collected. This affects the master data, which also includes attributes such
as age, which are crucial for guideline recommendations. The same applies to
the diagnostic data, which only reflects the current status and not the proce-
dural progression over time. Therefore, it is not possible to track staging over
the progression of treatment with ADT/GEKID. In the context of the reference
model, mapping ambiguities between reference activities occurs in the
data. Thus, there are events in the event log which could imply the execution
of certain activities by numerous attributes. However, the collection of the value
does not necessarily imply the use of the value and thus the execution of the
activity in the process model. Standard laboratory tests, e.g., involve the collec-
tion of numerous values, including tumor markers. However, the documentation
of the values does not allow any conclusion to be drawn about the observation,
analysis and usage of the tumor markers. Thus, at no point in the process can
it be determined whether a particular tumor marker was considered or not.

During conformance checking, process mining specific problems were iden-
tified in addition to the data set related ones. The following problems have been
identified: semantically inappropriate control-flow alignments, semantically inap-
propriate data alignments and definition of cost function. The semantically
inappropriate control-flow alignments describe a conflict between the goal
of the algorithm and the medical intent. By default, the algorithm uses a cost
function where aligning data values is cheaper than aligning events. As a result,
patient examination values are modified during alignments, such as changing
the staging value, to restore conformance. The examination values are of utmost
importance for the course of treatment, but should only be modifiable by new
diagnoses of the physicians and not by the algorithm. Accordingly, to produce
the desired behavior, in the configuration, aligning data values is more expen-
sive than aligning events. As a result, the sequence of events is aligned, but not
in the desired way. Consequently, situations arise where the alignment changes
only a single data value, e.g., making it the most favorable path for the align-
ment. This approach ends the patient’s path as fast as possible and implies,
e.g., that no melanoma was found during the initial clinical examination and the
patient is discharged from the hospital. Therefore, from a medical point of view,
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it becomes apparent that the most favorable path represents not the best pos-
sible course of treatment. Based on this finding, further efforts should be made
to examine whether the current conformance checking approach is suitable for
checking medical treatment processes for guideline compliance. Since treatment
courses are highly dynamic, a potentially more appropriate approach would be
to examine whether a possible path of the process model can be reconstructed
via sequence segments of the corresponding treatment course. Since guideline
specifications only partially describe steps or sequences anyway, an alignment
of sequence segments would provide a means for medical conformance checking.
A suitable approach could be a local conformance checking technique, which
describes the process of checking the conformance by using a set of indepen-
dent rules regarding the process. Therefore, only specific parts of the process
are checked not the process as a whole. These rules are often defined in LTL or
in declarative modeling languages like Declare [4]. Furthermore, semantically
inappropriate data alignments could be identified when performing con-
formance checking. These occurred when a guard was violated by an improper
value. For example, a patient may receive radiotherapy after a lymphadenectomy
if they have a count of three or more lymph nodes affected with cancer. In an
alignment, the value was generically set to 1000, which satisfies the condition but
creates semantic incorrectness. At this point, it becomes evident once again that
data values should not be adaptable across the board in medical conformance
checking. The medical context is highly relevant in and between treatment steps,
which is why simple value alignments to satisfy guards are not sufficient. If a
conformance checking algorithm should indeed have the authority to make data
alignments, then semantic technologies must be used in order to draw proper
conclusions and achieve meaningful results. Another problem became apparent
in the attempt to define a generally valid cost function for the patients. Thus,
although desired alignments could be achieved sporadically by changing costs,
they could only ever be achieved for an individual patient. Since the medical
conditions for a patient in treatment are highly dynamic and individual, it is
not possible to achieve globally desired results by defining costs.

6 Conclusion

In this work, we focused on the applicability of conformance checking to deter-
mine clinical guideline compliance on clinical data. For our case study, we used
real data of non-trivial treatment and diagnosis of malignant melanoma pro-
vided by Münster University Hospital and a procedural guideline representation
created in collaboration with medical professionals. The data used were in the
format of the ADT/GEKID data set, which is used by the German cancer reg-
istries, and enriched with data from a HIS where necessary.

We showed that it is possible to use conformance checking to verify clini-
cal guideline conformance of real-world clinical data. Unfortunately, there are
a number of application problems, mostly rooted in the data, but also in the
conformance checking algorithm and the process model. In particular, the char-
acteristically high variability of clinical treatment processes is a challenge. Both
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the execution and the order of execution of activities in clinical treatment pro-
cesses are subject to a variety of factors, including co-morbidities, time delays
in the process and patient preferences, resulting in highly variable processes. In
addition, incomplete processes, e.g., when data from treatments in other organi-
zations are not available, need to be handled. Moreover, alignments by writing
attribute values or deleting activities partially resulted in semantically incor-
rect alignments. Further challenges lie in the preprocessing of the data, as they
were inconsistent in granularity, contained activities irrelevant to conformance
checking, and most importantly were documented heterogeneously and partially
unstructured, requiring a complex preprocessing process.

We plan to extend the evaluation to other guidelines, including time-con-
straints such as follow-up care. We are also working on fitness functions based
on sub-processes and an analogy-based alignment approach. In this context, we
plan to further investigate the clinical data and define similarity measures for
treatment-relevant parameters with medical experts. Also, we want to test other
approaches such as deep-align [20] and investigate how they address the identi-
fied problems. Many problems are due to semantic violations of the alignment.
Here, we are working on an ontology-supported hybrid alignment procedure that
detects semantically incorrect alignments and tries to prevent them.
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Abstract. Heart failure is one of the leading causes of hospitalization
and rehospitalization in American hospitals, leading to high expenditures
and increased medical risk for patients. The discharge location has a
strong association with the risk of rehospitalization and mortality, which
makes determining the most suitable discharge location for a patient a
crucial task. So far, work regarding patient discharge classification is lim-
ited to the state of the patients at the end of the treatment, including
statistical analysis and machine learning. However, the treatment pro-
cess has not been considered yet. In this contribution, the methods of
process outcome prediction are utilized to predict the discharge location
for patients with heart failure by incorporating the patient’s department
visits and measurements during the treatment process. This paper shows
that, with the help of convolutional neural networks, an accuracy of 77%
can be achieved for the hospital discharge classification of heart failure
patients. The model has been trained and evaluated on the MIMIC-IV
real-world dataset on hospitalizations in the US.

Keywords: Discharge Classification · Process Outcome Prediction ·
Machine Learning · Heart Failure

1 Introduction

With a rehospitalization rate of up to 45% within six months of discharge, heart
failure is the leading cause of rehospitalization and a significant cause of hos-
pitalization for patients over the age of 65 in American hospitals [2,4]. This
constitutes a high medical risk for the patients and leads to high expenditures
and workload for hospitals and other treatment facilities patients are discharged
to after treatment in the hospital. However, as the rehospitalization rate varies
depending on the discharge location, the decision on the most suitable discharge
location is of high importance [7].

Up to now, determining characteristics and actual prediction models for the
discharge location are primarily based on statistical methods, which mainly look
at the patient’s state at the end of hospitalization [2,12]. The idea of this contri-
bution is to incorporate the treatment process of heart failure patients to make
c© The Author(s) 2022
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the final decision about the discharge location based on the whole treatment pro-
cess. Therefore, this paper applies process outcome prediction, a business pro-
cess management technique, using machine learning to predict hospital discharge
locations. In practice, this approach can serve as a decision support system to
choose the appropriate discharge location more accurately, as we consider the
treatment process instead of merely looking at the patient’s state at the end of
treatment.

The remainder of the paper is structured as follows: Sect. 2 lays the theoretical
foundation on heart failure, process outcome prediction, and convolutional neural
networks, followed by an overview of related work. The specifics of the MIMIC-
IV dataset, which we used as a foundation for the subsequent work, are covered
in Sect. 3. In Sect. 4, we describe our approach and elaborate on the discharge
location prediction using convolutional neural networks trained on the MIMIC-
IV dataset. Results and a discussion are part of the evaluation in Sect. 5. Section 6
summarizes our contribution and outlines future work.

2 Preliminaries and Related Work

This section provides an overview of the domain of heart failure and introduces
the concepts used in the remainder of this paper. Additionally, we present related
work regarding patient discharge classification and process outcome prediction.

2.1 Heart Failure

Following the American Heart Association (AHA)/American College of Cardiol-
ogy guidelines [10], Roger defines heart failure as “a complex clinical syndrome
that can result from any structural or functional cardiac disorder that impairs
the ability of the ventricle to fill or eject blood” [17]. Heart failure was chosen
as the application area as this is the leading cause of rehospitalization for peo-
ple older than 65 years with a rehospitalization rate within six months of up to
45% [2,4,18]. According to Howie et al., the rehospitalization risk strongly varies
depending on the discharge location [2,7]. In their study, heart failure patients
discharged to home or home health care had a 2.6 times higher risk of rehospi-
talization than those discharged to skilled nursing facilities (SNF), emphasizing
the importance of the decision on the discharge location.

2.2 Process Outcome Prediction

“Business Process Management (BPM) includes concepts, methods, and tech-
niques to support the design, administration, configuration, enactment, and anal-
ysis of business processes” [21]. The area of business process monitoring as a
branch of business process management provides means to analyze events occur-
ring during process executions, allowing for insights on the overall process and
how to improve it. A subfield of business process monitoring, predictive business
process monitoring, aims at making predictions about future states of current
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process executions based on the activities performed so far and other previously
executed process instances.

One technique emerging from that field in recent years is process outcome
prediction. According to Teinemaa et al., it can be defined as “classifying each
ongoing case of a process according to a given set of possible categorical out-
comes” with case in this context referring to a single process execution [19].
The advantages of this technique are better predictability and the potential
to improve the decision-making during process executions [22]. Approaches to
process outcome prediction are settled in the fields of statistics and supervised
machine learning as a classification problem [8,19].

2.3 CNN

Convolutional Neural Networks (CNNs) are deep neural networks that are com-
monly used for sequence classification tasks and process outcome prediction
[14,20,22]. Originally, CNNs became popular for pattern recognition in, for
example, computer vision tasks, i.e., the analysis of images. A CNN architec-
ture comprises three elements: convolutional layers, pooling layers, and fully-
connected layers. Convolutional layers perform convolutions using kernels of dif-
ferent sizes to extract relevant high-level features from the input data, reduc-
ing dimensionality. Pooling layers are used to perform down-sampling to reduce
the complexity for subsequent layers. In fully-connected layers, each node has
a direct connection to every node in the next layer up to the final layer, that
finally produces the output [1].

2.4 Related Work

Research has been conducted on determining factors leading to patients being
discharged to different discharge locations using statistical approaches. In [12],
Kobewka et al. performed a systematic review to identify models and variables
with predictive power for discharge location decisions after stays in intensive care
units. Their results show that age, impaired physical function, and the absence
of an informal caregiver are of high importance. Similarly, Allen et al. conducted
an observational analysis of heart failure patients at the age of 65 or above to
determine the most relevant aspects of patients and hospitals associated with
discharge to SNF [2]. Their most influential predictors are the total length of stay,
patient age, different comorbidities, and gender. Apart from statistical analysis,
machine learning has been applied to classify the discharge location of patients
by incorporating the patient’s temperature, blood pressure, comfort, and more
at the end of the treatment process [6].

In the field of process outcome prediction, Teinemaa et al. present a system-
atic review and taxonomy of process outcome prediction methods together with
a comparative experimental evaluation of a subset of these methods [19]. The
approaches taken into account primarily focus on features that are not changing
throughout the process. In contrast, Le et al. introduced an approach they call
Markov sequence alignment, which focuses on temporal features. Their method is
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an extension of Markov models that uses temporal categorical features extracted
from past process executions to predict the following steps during process execu-
tion, as well as the process outcomes [13]. Leontjeva et al. present a multi-class
sequence classification approach to incorporate constant and temporal features
where a hidden Markov model or Long Short-Term Memory (LSTM) is trained
on the temporal features followed by a random forest model trained on the con-
stant features enriched by the temporal model’s results [14]. Recent research has
evaluated the application of CNNs in the field of process outcome prediction.
In their comparison of CNN with LSTM architectures, Weytjens et al. conclude
that “CNNs deliver the same results as the state-of-the-art LSTMs at a fraction
of the time and can therefore be recommended as the first choice for practition-
ers” [22].

Applying process outcome prediction to the discharge location classification
of heart failure patients allows for early resource allocation for the discharge
facilities due to the improved predictability during a patient stay. Patients cur-
rently undergoing treatment in a hospital can be assigned the most probable
discharge location, allowing treatment facilities and services, such as SNF, to
predict their workload better and adjust their resource planning and staffing
accordingly. Furthermore, process outcome prediction enables a process oriented
decision-making by making the decision not only based on the patient’s state
at the end of the treatment but also on the development of the patient’s state
during the treatment process.

3 Dataset

We use the Medical Information Mart for Intensive Care (MIMIC)-IV database
[11] as a data foundation for the discharge location prediction. The database
is publicly available on PhysioNet [5] (authorized access due to privacy regula-
tions - see license1) and contains information on over 40,000 patients admitted
to the Beth Israel Deaconess Medical Center in Boston, Massachusetts, from
2008 to 2019. The data is stored in a relational database format. All informa-
tion was de-identified by obfuscating the exact time of events while retaining
their chronological order, which allows for the application of process mining and
process outcome prediction.

The MIMIC-IV dataset consists of 35 tables in which, amongst other informa-
tion, the following patient data is stored: Demographic information on patients,
such as their age and marital status, transfers between departments during their
stay, as well as the medications they received in each of them. Furthermore,
various information on diagnoses is provided, e.g., International Classification
of Diseases (ICD) codes, Diagnosis-related Group (DRG) codes, and laboratory
values resulting from laboratory tests for patients, e.g., hemoglobin, creatinine,
and urea nitrogen values.

1 https://physionet.org/content/mimiciv/view-license/0.4/.

https://physionet.org/content/mimiciv/view-license/0.4/
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4 Contribution

The contribution is presented in three steps. First, we describe the process of
selecting the cohort. Second, the steps of feature selection and preprocessing are
explained. Lastly, we describe the architecture of the prediction model.

4.1 Cohort Selection

The cohort of patients was selected based on the diagnosis, and the DRG of the
hospital stay to identify patients where heart failure was treated. The dataset
stores diagnoses as so-called ICD codes. Thus, we selected all patients who had
a heart failure related diagnosis as their primary diagnosis. Today, two ICD
coding systems co-exist in hospitals, which are ICD-9 and ICD-10. For ICD-9,
the codes starting with 428 are related to heart failure, whereas for ICD-10, the
codes starting with I50 are heart failure related.

Second, we used DRG codes to identify only those patients whose primary
reason for hospitalization was heart failure. DRG codes correspond to the main
reason for a patient’s stay at the hospital. All cardiac related DRG codes2 were
considered, which can be seen in the script for data extraction from the MIMIC-
IV database3.

With the combination of a heart failure primary diagnosis and a cardiac-
related DRG, it is known that the patients suffered from heart failure and that
this was the primary reason for their hospitalization. Filtering for these charac-
teristics, the dataset provides a total of 12,306 stays of 7,693 patients.

The discharge location is stored for each patient stay, with 13 different dis-
charge locations available. The three most frequent discharge locations for heart
failure patients found in the MIMIC-IV dataset are home (3,430 stays, 27.9%),
home health care (4,982 stays, 40.5%), and SNF (2,323 stays, 18.9%). As the
other discharge locations have a frequency of less than 4%, we decided to focus
on the discharge locations listed above to have a sufficient sample size for each
class for model training and testing.

Since the discharge to SNF is associated with high costs and workload for
medical personnel, we also decided to make predicting discharge to SNF the
primary goal of our classification models. Additionally, there is a need to better
characterize the patient population being discharged to SNF [2]. This reduces the
complexity to binary classification where we predict SNF vs. others (representing
discharge to home or home health care).

Considering only heart failure patients discharged to the three most frequent
discharge locations, the resulting number of patient stays serving as data points
for model training, validation, and testing is 10,725.

2 https://www.hcup-us.ahrq.gov/db/nation/nis/APR-DRGsV20Methodology
OverviewandBibliography.pdf.

3 https://github.com/christianwarmuth/treatment-based-patient-discharge-
classification.

https://www.hcup-us.ahrq.gov/db/nation/nis/APR-DRGsV20MethodologyOverviewandBibliography.pdf
https://www.hcup-us.ahrq.gov/db/nation/nis/APR-DRGsV20MethodologyOverviewandBibliography.pdf
https://github.com/christianwarmuth/treatment-based-patient-discharge-classification
https://github.com/christianwarmuth/treatment-based-patient-discharge-classification
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4.2 Feature Selection and Data Preprocessing

In order to represent the process behind the data, i.e., the order of departments
each patient visits during a stay, the data is required to be in a three-dimensional
shape. We consider the different features across multiple time steps for each
patient stay individually. A visualization of the data’s shape is shown in Fig. 1.
This allows us to combine features that do not change during a patient’s stay,
such as age and gender, with features that may be different for every depart-
ment visit, such as the length of stay there and laboratory values measured in a
department.

Initially, the features taken into account were selected based on the litera-
ture presented in Sect. 2.4. This selection included the total length of stay in
the hospital, patient age, and gender, which do not change during a stay. Fur-
thermore, the selection of variables included the stay duration, the med count
representing the number of medications received, and the lab count representing
the number of laboratory values resulting from analyses conducted, which are
different for each stay in a department. Starting with these features, we tested
and compared multiple combinations with additional features and their impact
on the predictive performance, resulting in the final feature selection shown in
Table 1. In addition to the aforementioned features, incorporating information
on the patient’s insurance situation, marital status, ethnicity, and the number
of ICD codes associated with them, meaning the number of different diagnosed
disease patterns, lead to improved predictive performances. Also, taking labo-
ratory values such as creatinine, hemoglobin, red blood cells, glucose, and urea
nitrogen into account resulted in higher accuracy.

Fig. 1. Visualization of the data shape

Given the set of features, the raw data had to be preprocessed to fulfill
the shape and data type requirements of the models to train. Categorical fea-
tures such as the department visited, gender, and marital status were one-hot
encoded to represent them as numerical values that can serve as input for
machine learning analyses. This also prevents the introduction of non-existent
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ordering between the items [16]. To avoid potential biases from different value
ranges, all numerical features were standardized by scaling them to zero mean
and unit variance. In addition, many model architectures require each sequence
of departments to have the same length. Therefore, each sequence shorter than
a specified length was padded with null values while longer sequences were cut
off. The value of the sequence length was derived from the distribution of the
number of departments visited by patients during a single stay.

Due to the disparity in the number of samples between patient stays result-
ing in a discharge to SNF and those resulting in other discharge locations, we
also decided to use balancing techniques. On the one hand, we applied over-
and downsampling, which were found to be effective methods in dealing with
class imbalance [9]. That means we randomly duplicated patient stays where the
patient was discharged to SNF and randomly removed patient stays resulting
in another discharge location until both cases were represented equally. On the
other hand, we introduced class weighting to model training. Thereby, instances
of the underrepresented class, i.e., discharge to SNF, are multiplied with a
weighting factor in the loss function, increasing the penalty for misprediction.
While both techniques improved the predictive performance of our model, espe-
cially with regard to the confusion matrix, class weighting yielded better results
in our case, which is why we chose this technique for our final model.

Table 1. Final selection of features incorporated in the CNN model

Demographic Information Lab Values Stay Information

• Patient age • Creatinine • Department

• Gender • Hemoglobin • Admission Location

• Insurance • Urea Nitrogen • Transfer duration

• Marital Status • Glucose • No. of medications received

• Ethnicity • Red Blood Cells • No. of lab values measured

• No. of ICD codes

4.3 Model Selection and Training

We chose CNNs as our model architecture and trained all models on the prepro-
cessed data for patient discharge classification. In order to get the best model, we
then applied hyperparameter tuning. We defined multiple hyperparameters such
as the kernel sizes of the convolutional layers, the size of the fully connected lay-
ers and pooling layers, and the intermediate activation functions. Each of these
hyperparameters was assigned a range of possible values. Multiple models were
trained with the hyperparameter optimization approach tree-structured Parzen
estimator [3]. The best model parameters were chosen based on the F1-score on
the validation part of the dataset. Afterwards, the models were analyzed using
accuracy, precision, recall, and confusion matrices.
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The final model consists of two 1D-convolutional layers followed by a dropout
and a max-pooling layer. The result is flattened and then serves as input for a
sequence of four fully connected layers and the output layer using the sigmoid
activation function.

5 Evaluation and Discussion

The evaluation starts with the results of model training and validation, followed
by a discussion about the resulting model’s feature importance and limitations.

5.1 Results

The code to reproduce our results, including the result of the hyperparameter
search, can be found on GitHub4. Please note that due to data privacy restric-
tions for the MIMIC-IV database, you will have to get access to the database.
The solution is implemented in Python, and the README of the linked repos-
itory provides instructions on how to run the experiments.

We split our preprocessed dataset into a train and a test set, with the lat-
ter accounting for 25% of the dataset (2684 patient stays). The metrics used
to compare the models resulting from our hyperparameter tuning were calcu-
lated on a validation set consisting of 10% of the train set after training on the
remaining part of the train set. They comprise the following: The accuracy rep-
resents the proportion of data points assigned to the correct discharge location.
Precision reflects the fraction of correct predictions of discharge to SNF over all
predictions of discharge to SNF. In contrast, recall shows the percentage of how
many of the patient stays that resulted in discharge to SNF were predicted as
such. The F1-score then is the harmonic mean of precision and recall. Another
metric, the Area Under ROC Curve (AUROC) is the probability of a randomly
chosen positive data point (discharged to SNF) being ranked higher by the model
than a randomly chosen negative data point. Confusion matrices show for each
true label on the y-axis the distribution of the correctly or incorrectly predicted
labels on the x-axis. If the model predicted everything correctly, the diagonal
from upper left to bottom right would contain only values of 1.0.

The final model reaches an accuracy of 77% with a weighted precision of 81%
and a weighted recall of 77%, respectively. The F1-score is 0.78, and the AUROC
is 0.73. As shown in the confusion matrix in Fig. 2, there is a discrepancy of about
14% between the accuracy of predicting SNF as discharge location on the one
hand and the accuracy of predicting other discharge locations on the other hand.

Figure 3 shows the feature importance of our model as a beeswarm plot using
SHAP values (SHapley Additive exPlanations) [15]. The graph was generated
using the SHAP library5. It shows the impact of the 18 most influential features.
Each dot for each feature corresponds to a single patient stay. The x-axis shows
4 https://github.com/christianwarmuth/treatment-based-patient-discharge-
classification.

5 https://github.com/slundberg/shap.

https://github.com/christianwarmuth/treatment-based-patient-discharge-classification
https://github.com/christianwarmuth/treatment-based-patient-discharge-classification
https://github.com/slundberg/shap
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Fig. 2. Confusion Matrix of the final CNN model

how much impact those features had, with high negative values indicating a
high impact on the decision to SNF as discharge location, high positive values
indicating the opposite. The color of a dot represents the value of the feature,
red representing a high value, blue a low value. Since our data had a three-
dimensional shape, which could not be represented in this graph, we averaged
the SHAP values and the feature values for each patient stay. For example, the
distribution of dots for the patient age shows that a higher age often serves as a
predictor for discharge to SNF.

5.2 Discussion

This contribution suggests considering the treatment process in classifying the
discharge location of heart failure patients. Looking at the feature importance in
Fig. 3, features changing throughout the process have a significant effect on pre-
dicting the discharge location. For example, the development of the laboratory
values creatinine, hemoglobin, glucose, red blood cells, and urea nitrogen impact
the prediction. Furthermore, the number of medications received and the num-
ber of laboratory values measured per department are relevant. Interestingly, a
higher number of medications indicates a discharge to SNF, whereas a higher
number of laboratory values indicates a discharge to other locations.

The departments visited and the admission locations also affected the out-
come, as the admission from SNF resulted in a higher probability of being dis-
charged to SNF. Being referred by a physician to the hospital impacts the dis-
charge decision to home/home health care. A visit to the Medicine/Cardiology
department has only a slight influence on the prediction. The transfer duration,
representing the length of stay in each department, helps to predict the discharge
location.

Additionally, we were able to confirm relevant factors as proposed in current
literature, which includes age, insurance, length of stay, gender, and laboratory
values (creatinine, urea nitrogen, and hemoglobin). Information about the avail-
ability of an informal caregiver is provided in the form of the marital status in
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Fig. 3. Beeswarm plot for the final CNN model

the MIMIC database, which constitutes a relevant factor [2]. However, marital
status is only an indicator and does not represent the guaranteed availability.

With our process oriented approach, we emphasize to incorporate the devel-
opment of the patient’s state throughout the treatment process in the decision-
making. As we identified process characteristics in the different cohorts, a more
precise discharge classification can be achieved by incorporating the treatment
process. It should be noted that we identified patient characteristics regarding
discharge classification based on decisions made by healthcare professionals in
the past. Thus, we only reproduce the decision-making of healthcare profession-
als. Nevertheless, the identified characteristics can be further investigated to
improve the decision-making, for example, why patients with increased creati-
nine get discharged to home/home health care and not to SNF.

Looking at the results in Fig. 2, our model is better in predicting discharge to
other locations (80%) than to SNF (66%), resulting in an overall accuracy of 77%.
We assume that better predictive performance could have been achieved with a
larger sample size, as a sufficiently large sample size can significantly impact the
predictive performance of machine learning models [22]. We performed training
on other models, such as LSTM and XGBoost, while CNNs turned out to provide
the best results. Comparing our results to recent research is difficult, as the
discharge locations are different among the datasets. To our knowledge, there is
no respective model using the MIMIC dataset yet. However, we could confirm
the already identified patient characteristics as described above.
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Furthermore, a more detailed view of the process could improve the results of
our model, as we did not incorporate a comprehensive view of the patient’s diag-
noses, medications, laboratory values, and the procedures performed on them.
Additionally, the mental status and further sociodemographic information could
help to improve the model’s performance.

6 Conclusion and Future Work

This paper discusses the approach of predicting the discharge location for heart
failure patients by incorporating the treatment process.

We have shown that the development of the patient’s state during the pro-
cess and the respective visits in the hospital departments have a considerable
impact on the discharge location prediction. Therefore, taking into account the
treatment process instead of merely looking at the patient’s state at the point
of discharge can serve as a decision support for healthcare professionals.

An accuracy of 77% could be achieved in this contribution, which is a promis-
ing result, but still leaves room for improvement. Therefore, future work could
be conducted by combining the MIMIC-IV dataset with other datasets such
as the HiRID6 database to increase the sample size and improve the predic-
tion results. Furthermore, a more comprehensive representation of the treatment
process might help to increase the accuracy by adding detailed information on
medications received or procedures performed. Besides, it would be worthwhile
to consult domain experts who could point towards additional features not yet
considered.
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Abstract. Recent developments in causal machine learning open per-
spectives for new approaches that support decision-making in healthcare
processes using causal models. In particular, Heterogeneous Treatment
Effect (HTE) inference enables the estimation of causal treatment effects
for individual cases, offering great potential in a process mining context.
At the same time, HTE literature typically focuses on clinical outcome
measures, disregarding process efficiency. This paper shows the potential
of jointly considering the clinical and operational effects of treatments
in the context of healthcare processes. Moreover, we present a simple
pipeline that makes existing HTE machine learning techniques directly
applicable to event logs. Besides these conceptual contributions, a proof-
of-concept application starting from the publicly available sepsis event
log is outlined, forming the basis for a critical reflection regarding HTE
estimation in a process mining context.

Keywords: Heterogeneous Treatment Effect · Process Mining ·
Machine Learning · Event Log

1 Introduction

Process mining techniques aim to extract valuable insights from process execu-
tion data captured in an event log [1]. As it starts from data entries representing
real-life behaviour, instead of the assumed or ideal behaviour [1], process mining
offers evidence-based insights in processes [20]. Within the healthcare domain,
process mining techniques have been used for various use cases, such as auto-
matically discovering the order of activities, assessing whether clinical guidelines
have been followed, or identifying bottlenecks in a healthcare process [24].

While process mining in healthcare often focuses on conveying process
insights to practitioners based on historical data, there is increasing awareness
c© The Author(s) 2022
J. Munoz-Gama and X. Lu (Eds.): ICPM 2021 Workshops, LNBIP 433, pp. 327–339, 2022.
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Fig. 1. The top graph y-axis depicts the positive clinical treatment effect. The bottom
graph y-axis depicts the negative operational treatment effect (i.e., the operational
cost). Along the shared x-axis, a case feature value is varied. Green areas below the
treatment effect curve represent the clinical gain for a given policy. Red areas represent
the operational cost. Filled areas represent the policy if we only take the clinical treat-
ment effect into account. Dashed areas represent the policy when case-level process
efficiency effects are also taken into account. Both clinical and operational effects can
be estimated from event logs. In this example, taking individual operational efficiency
effects into account more than doubles the total clinical effect. (Color figure online)

of the need for a complementary set of proactive techniques that can instigate
actions in active processes [20]. This awareness, combined with recent develop-
ments in causal machine learning, opens perspectives for new approaches that
support decision-making in healthcare processes using causal models.

Causal approaches in healthcare processes are confronted with three chal-
lenges. First, the effect of the same process intervention (e.g., the execution
of a particular activity) can vary widely across patients. Nonetheless, current
intervention guidelines are often developed at the population level and, hence,
tuned to the average case. However, the goal in healthcare process management
is evolving towards determining the optimal intervention for any case. Secondly,
when causal models consider treatment effects at the patient level, there is a
predominant focus on clinical outcome measures, with no regard for process effi-
ciency. In practice, clinical and operational measures are not independent from
each other. For instance, while a process intervention may be desirable from
a clinical perspective (e.g., reduced likelihood for a particular adverse event),
it might have negative implications from an operational point of view (e.g.,
in terms of ICU length-of-stay). Moreover, increased operational efficiency can
also lead to improved clinical outcomes, as more patients receive treatment.
Finally, causal models require assumptions to be made based on a priori domain
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knowledge [22]. In other words, for models to have a causal interpretation, causal
theory needs to be taken into account, preferably before data gathering.

Against the background of these three challenges, this paper explores the
potential of Heterogeneous Treatment Effect (HTE) inference within the con-
text of healthcare processes. Recent advances in causal machine learning enable
the estimation of the causal treatment effect at the level of an individual using
observational data. Consequently, event logs qualify as input for Heterogeneous
Treatment Effect (HTE) modelling. In process mining, a treatment can represent
any intervention within a healthcare process such as admitting a drug, executing
selected activities in a specific order, or letting a particular resource perform an
activity. Typical clinical outcomes include general life expectancy measures (e.g.,
expected days of survival [4]), and disease-specific parameters (e.g., tumor size
[6]). Besides being suitable for HTE modelling, event logs also include important
clues regarding the operational efficiency of a healthcare process (e.g., the length
of stay or the resource involvement). This paper introduces a joint perspective
on clinical and operational efficiency. The importance of adopting this joint per-
spective is illustrated conceptually in Fig. 1. The estimated operational and
clinical treatment effects support crucial decisions within resource-constrained
healthcare processes. This way, using HTE estimation provides detailed insights
into the potential trade-offs between objectives are provided at the case level.
A proof-of-concept application is presented using the publicly available sepsis
event log [18].

The remainder of this paper is structured as follows. Section 2 introduces
HTE inference and discusses the related work. Section 3 presents how HTE
inference can be used in healthcare processes. In Sect. 4 a proof-of-concept is
presented within the context of the sepsis event log. The paper ends with a
discussion in Sect. 5 and a conclusion in Sect. 6.

2 Background

2.1 Heterogeneous Treatment Effects

The goal of HTE estimation is the estimation of the causal effect of a treatment
W ∈ {0, 1} on an outcome Y ∈ R for an individual i characterised by features
X ∈ X ⊂ R

n, where X denotes the n-dimensional universe of features. We adopt
the standard causal effect formulation in line with the standard Rubin/Neyman
Potential Outcomes Framework [25]. In the binary setting, there are two poten-
tial outcomes (POs), Y0 and Y1, that signify the outcomes when W = 0 and
W = 1, respectively. The HTE can then be specified as:

τ(x) := E[Y1 | x] − E[Y0 | x] = E[Y1 − Y0 | x]. (1)

From hereon, we will refer to τ(x) as the HTE.
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Methods for HTE Estimation with Observational Data. From a machine
learning point of view, two central elements distinguish HTE estimation (some-
times referred to as CATE/ITE) from a standard supervised learning problem.
First, the HTE is unobservable for any individual, also referred to as the fun-
damental problem of causal inference [12]. For instance, when we execute an
extra activity (treatment) in the process for an individual, we only observe the
throughput time (outcome) with the extra step. For an individual, when W = 1
we observe Y1, when W = 0 we observe Y0, never both. Effectively, HTE models
estimate something that cannot be observed directly. To still estimate τ(x), the
dominant estimation strategy involves joint modelling of both POs in a multi-
task neural network with one output per potential outcome. An estimate of the
HTE is then constructed as the difference between PO estimates [26].

Second, standard supervised learning methods cannot handle treatment
assignment policies that are not uniformly random, i.e., datasets with assign-
ment bias. Assignment bias thus arises in an observational dataset when the
propensity to receive treatment depends on the characteristics of individuals. In
reality, this is almost always the case. For example, people with a more advanced
stage of cancer will have a higher propensity to receive more radical treatment
options. As such, treatment assignment bias induces the treated and untreated
distributions to differ. In machine learning literature, this is called covariate shift
[27]. Most algorithms for HTE estimation from observational data include some
component to counteract such covariate shift. Examples of such components
include inverse propensity weighting, propensity score matching [16], PPM [26].

Assumptions for HTE Estimation with Observational Data. Even
though machine learning methods have been designed to tackle both aforemen-
tioned challenges, not all requirements can be validated or learned directly from
the data. To guarantee that the treatment effect can be identified in the Rubin-
Neyman PO framework, the following standard assumptions are made:

Assumption 1 (Stable Unit Treatment Value (SUTVA)). First, there
cannot be spillover effects between the potential outcomes of individuals in differ-
ent treatment groups. Second, each unit is assumed to be presented with identical
versions of each treatment. Third, we observe through the factual outcome Y the
potential outcome associated with the assigned treatment.

For example, Frank’s hospital stay length (outcome) should not depend on
whether Sarah received antibiotics (treatment), and the antibiotics both would
receive are the same. When Frank is assigned treatment (W = 1), we observe
potential outcome Y1. This assumption is usually validated based on expert
knowledge.

Assumption 2 (Overlap). For all individuals x ∈ R
n, and all treatments W ∈

{0, 1}, the following holds: 0 < p(W |x) < 1.

Overlap implies that for the whole feature support region every instance has a
non-zero probability of receiving treatment. Intuitively, if there are no examples
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of both potential outcomes for some regions of x, we cannot reliably estimate
the causal effect for those x.

Assumption 3 (No hidden confounders). This assumption implies that all
variables that impact both treatment assignment and outcome are observed. As
such, (Y0, Y1) ⊥⊥ W |x.

For example, to assess the effect of regular walking on mortality, a straightfor-
ward confounder is health status [11]: individuals with poor health walk less –
effect on treatment assignment – and have higher chances of dying – effect on
the outcome. Not including health status would lead a model to overestimate the
causal effect of walking on health. Hence, in this context, it is crucial to collect
health status data to avoid confounding bias.

Assumptions 2 and 3 together constitute strong ignorability given a set of
covariates. When both SUTVA and strong ignorability hold, estimation of causal
effects based on the factual outcomes in observational data is possible [25].
The assumptions regarding hidden confounders and SUTVA are fundamentally
untestable based on observational data alone [14]. As such, expert knowledge
plays a crucial role in HTE inference. The no hidden confounders assumption is
the most difficult to satisfy. But as the dimensionality of X increases, the larger
the probability that hidden confounders are observed. Consequently, a practical
heuristic would be to gather as many features as possible in future event logs.
This guideline facilitates causal learning, but stands in contrast with current pro-
cess mining practices of narrow data gathering, often limited to which activities
have been executed for a patient and when they were executed.

2.2 Related Work

HTE Estimation in Healthcare. Causal effect estimation allows us to address
questions such as ‘how effective is a given treatment in curing this person?’ and
‘which treatment is more effective for this specific individual?’. Such questions
are of critical importance in clinical decision-making. Moreover, recent availabil-
ity of electronic healthcare records (EHR) and methodological advances have
spurred increased interest in HTE inference as a clinical tool [3,4,6,22].

Previous work for healthcare solely considers purely clinical outcomes of
actions. However, it has been shown in a business context that taking into
account costs greatly improves total profit [5,32]. Similarly, it makes sense to
account for overarching operational objectives. While the average treatment
effect has been studied for multiple clinical outcomes (e.g., [17]), no existing
work to our knowledge combines both operational and clinical effects of the
same treatment.

Causality in Process Mining. Within the process mining field, there has been
growing interest in the identification of causal patterns from an event log. This
interest is exemplified by approaches developed to conduct root-cause analysis
[10,28,31], even though they focus on finding characteristics that are correlated



332 S. Verboven and N. Martin

Fig. 2. Basic process flow for using causal models starting from event logs. An HTE
input table can be constructed from an event log, allowing the application of standard
causal machine learning methods. Domain knowledge plays a vital role in the deter-
mination of data collection, the intervention point, the validation of the assumptions,
and final policy guidance.

with certain phenomena, without assessing whether the observed correlations
are causal in nature. In contrast, Hompes et al. [13] and Narenda et al. [21]
identify causal relationships at the process level starting from an event log using
the Granger causality test and structural causal models, respectively.

Limited research has considered causal effects at a case level in the process
mining field. Qafari and van der Aalst [23] use counterfactual reasoning to detect
statements indicating why an undesirable outcome has happened for a particular
case. Bozorgi et al. [7] also focus on the case level by proposing a technique
that provides case level recommendations of treatments. The technique generates
candidate treatments using action rule mining, after which an uplift tree and
associated rules are generated for each candidate treatment. They apply their
approach within the context of a loan application context [7].

Our work extends existing work on causality in process mining in general
and HTE inference in particular, by jointly considering clinical treatment effects
and operational treatment effects at the case level. Moreover, we formalise a
simple pipeline that makes existing HTE machine learning techniques directly
applicable to event logs.

3 Heterogeneous Treatment Effect Inference
in Healthcare Processes

Definition 1 (Event, Trace and Event Log). Let A represent the universe
of attributes. An event e ∈ A � X is an assignment of values to attributes. Let
E = A � X represent the universe of events. A trace t ∈ E∗ is a sequence of
events referring to the same case c. Let T = E∗ represent the universe of traces.
An event log L collects the traces of a set of cases, i.e., L ⊂ T .

Definition 2 (HTE input table). Given an event log L, X represents the uni-
verse of features which can be calculated over L. Let f ∈ L → X be a feature func-
tion assigning values x calculated over L. Then, the HTE input table I consists
of a set of entries γ, one entry ∀c ∈ L. Each entry γ = (X1,X2 . . . , Xn,W, Y ),
where X1, . . . , Xn ∈ X , W ∈ {0, 1} represents whether the treatment has been
assigned, and Y represents the value of the outcome measure.
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Under Assumptions 1 to 3, the HTE is identifiable and can be estimated
using causal machine learning algorithms based on the HTE input table. Then,
using Definitions 1 and 2, we can featurise the event log such that it translates
to a standard set-up that facilitates use of all state-of-the-art machine learning
algorithms for HTE estimation. A visual depiction of this pipeline can be found
in Fig. 2.

4 Proof-of-Concept: Sepsis Event Log

4.1 Case Description

Healthcare process management benefits from a joint perspective on operational
and clinical objectives of interventions. In many real-world healthcare processes,
there is an apparent conflict between operational and clinical objectives. For
instance, from a purely clinical point of view, extended hospital stay and exten-
sive treatment with close supervision of clinicians is often optimal. From an oper-
ational perspective, typical process efficiency measures (e.g., throughput time)
are improved with shorter treatment and earlier discharge. In reality, all health-
care processes are resource-constrained to some extent. Even when not explicitly
considered, choices are made on the efficiency – effectiveness plane. HTE mod-
elling allows mapping of the effects on both dimensions at the individual level,
improving decision-making.

We empirically illustrate the potential of HTE inference in healthcare pro-
cesses based on event logs, using the publicly available sepsis event log [18]. This
event log contains events related to the trajectory of 1050 patients admitted to
the emergency department (ED) of a Dutch hospital with sepsis symptoms [19].
The activities included in the event log relate, amongst others, to the moment
when registration and triage took place, when laboratory results were recorded
in the system, when antibiotics or liquid were administered and when the patient
was discharged from the ED. Moreover, several parameters recorded in the triage
document are available as event attributes. Finally, the observation that swift
treatment with antibiotics is always advised according to the clinical guideline,
but not applied in almost half the cases, illustrates the relevance of operational
efficiency limits in treatment assignment [19].

4.2 Data Setup

Due to the fundamental problem of causal inference, the ground truth HTE is
unobservable, and only one of the potential outcomes – i.e., the factual outcome
– is ever observed. Consequently, we cannot directly assess HTE generalization
performance based on factual data alone (e.g., using MSE, MAE). Furthermore,
the factual outcome distribution reflects biased treatment selection. Hence, a
biased model will perform better than a model that successfully corrects against
assignment bias.
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Table 1. Evaluation axes of Heterogeneous Treatment Effect models.

Model Capacity Counterfactual Estimation

Data Original Semi-synthetic

Metric type Standard (e.g., MSE) Specialised (e.g., PEHE)

These observations are reflected in the standard quantitative evaluation
strategies for HTE estimators (Table 1). These strategies separately assess (i) the
functional capacity to model the underlying response functions, i.e., whether the
model can overfit the factual data, and (ii) its counterfactual estimation capabil-
ities, i.e., whether the model correctly handles assignment bias to yield unbiased
estimates of the potential outcomes. While (i) can be evaluated on the factual
data, (ii) by definition requires a (semi-)synthetic setup. In such a setup the orig-
inal features and treatment assignment are retained, but the potential outcomes
are simulated [2,4,8,14,26,29]. This way, the original assignment bias and fea-
ture structure in the dataset stay intact, while allowing quantitative evaluation
of the HTE model with the Precision in Estimation of Heterogeneous Effects
(PEHE) measure.

PEHE =
1
N

N∑

i=1

(HTEi − ˆHTEi)2 (2)

In line with Alaa and van der Schaar [2], the data generating model for
the clinical potential outcomes is specified by: fc0(x) = ε+exp

((
x + 1

2

)
Ω

)
, and

fc1(x) = ε+Ωx−ω, for no treatment and treatment, respectively. The regression
coefficients are comprised by Ω, and sampled uniformly from [0, 0.1, 0.2, 0.3,
0.4]. ε ∼ N (0, 1) adds i.i.d. sampled zero-centered additive Gaussian Noise to the
potential outcomes. Finally, ω is selected such that the average treatment effect
of the simulated clinical outcome matches the original sepsis event log data.

Next, we use the same functional form for the data generating model for the
potential outcomes of the operational model, fo0 and fo1 . We sample regression
coefficients comprised by Ω from [0, −0.1, 0.2, −0.3, 0.4]. Furthermore, ω is
selected such that the operational cost of treating is always positive. After all,
doing nothing should be cheapest. The synthetic operational efficiency effect has
a mean of 0.69, a standard deviation of 0.17, and ranges from 0.22–1.28. Note
that the original feature structure and treatment assignment bias from the sepsis
log are once more retained.

4.3 Model Setup

We use cfrnet [26], a popular neural network-based HTE estimator that uses an
integral probability metric in its loss function to explicitly balance the covari-
ate distribution of the treated and untreated group within a learned shared
representation. After deletion of observations with missing values, 642 patient
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observations are retained. We hold out 100 observations for validation, 200 for
testing, and use the rest for training. Cfrnet is run twice, once for the clini-
cal outcome, and once for the operational outcome, yielding estimates of ˆHTEC

and ˆHTEO, respectively. We use the same hyperparameters as reported in Shalit
et al. [26].

We validated that cfrnet performs well for both model capacity and coun-
terfactual estimation by assessing validation set MSE and PEHE on the factual
and synthetic data, respectively. Note that outside of proof-of-concept demon-
strations, one should rigorously select an appropriate functional class among
multiple benchmarks to avoid model misspecification [30].

As a benchmark treatment assignment policy, we rank all individuals by
their clinical effect ˆHTEC . This is the standard assignment policy in HTE lit-
erature. Specific to our setting is that we introduce an operational cost that, if
exceeded, prohibits further treatment of individuals. Our synthetic setup reflects
that treating each individual has a unique cost that depends on its features x.
For the second policy, reflecting the joint clinical-operational perspective, we
take into account the impact on the operational budget and treat based on the
estimated clinical effect per unit of operational effect, or ˆHTEC/ ˆHTEO.

4.4 Results

On the test set, taking into account the joint perspective, we treat 170% more
patients and achieve a total clinical effect increase of 57.83%, compared to the
clinical-only baseline, using the same operational resources. The results highlight
the synergy between the process and clinical views. Even with maximisation
of clinical effect in mind, it is thus helpful to adopt a joint perspective. Post-
deployment, a model can be further evaluated by assessing whether following
the model’s recommendations has improved patient outcomes.

5 Discussion

The interplay between causal learning and process mining is a promising frontier
for the management of healthcare processes. However, to empirically validate this
promise, awareness of the practical requirements of HTE inference is required.
Based on the conducted analyses, we enumerate three main lessons. Moreover,
we reflect upon two broader perspectives on HTE inference for process mining.

Lesson 1: The HTE input table enables the use of state-of-the-art
causal machine learning algorithms. The transformation of an event log
to the HTE input table, the standard HTE modelling setup, can be performed
with minimal overhead. Hence, state-of-the-art machine learning methods are
available to the process mining community to develop causal models using event
logs. We believe this simple formalization significantly lowers the threshold for
coalescence between the HTE inference and process mining communities.
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Lesson 2: To take more effective actions in healthcare, effects on
both clinical and operational outcomes need to be modeled. Currently,
many process mining works do not give explicit consideration to clinical pro-
cess outcomes, while the machine learning for healthcare community does not
model operational outcomes. In healthcare, the impact of an action on process
efficiency is often not uniformly distributed across every case or intervention. We
have intuitively illustrated how total clinical gain can be achieved when jointly
modelling the clinical and operational effect of actions. However, to apply this in
a real-life setting, we need the right combination of data and domain knowledge.

Lesson 3: A paradigm-shift for event log building is needed to fully
capitalise on causal learning. To facilitate causal process interventions based
on HTE inference, more a priori planning is required than is the current prac-
tice in the process mining field. First, the causal assumptions (Sect. 2.1) need
to be validated together with domain experts. Second, these assumptions also
translate to explicit data requirements. Currently, event logs mainly highlight
when particular activities were executed on a patient. However, for HTE infer-
ence, confounders also need to be included, which will often require broader
data extraction when building an event log. Finally, to enable jointly modelling
operational and clinical outcomes, representative outcome measures need to be
defined for the application at hand.

Perspective 1: Methodological extensions towards methods that
can learn directly from event logs and capitalise on time dependencies
are on the horizon. While the definition of the HTE input table offers a simple
solution to enable causal learning using event logs, featurising the event log comes
at the cost of losing information. For example, the time-series nature of the data
is often lost when translating to a tabular data structure. Hence, methods that
can learn from the original event logs offer opportunities to learn from richer
data and the time dependencies in the log. Possible solutions could originate
from time-series compatible models, such as RNN, LSTM or Transformer-based
architectures.

Perspective 2: More discussion is needed to establish a consen-
sus on policy standards and ethics. While opportunities arise due to novel
technologies based on observational data, the adoption of decision support sys-
tems in healthcare needs to be soundly motivated. Adoption standards have not
yet been established for learning HTEs from observational data of healthcare
processes. Existing evaluation standards have mainly evolved from the machine
learning field and not from a consensus of requirements from governing bodies
(e.g., EMA, FDA) and healthcare organizations. Although stronger theoretical
underpinnings can increase trust in HTE model predictions, uncertainty esti-
mates offer an explicit measure of model confidence. Ultimately, the level of
uncertainty also influences healthcare process decision making [15]. Finally, we
refer to Eichler et al. [9] for a detailed discussion on the requirements of algo-
rithmic decision-support in healthcare based on observational data.
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6 Conclusion

In this paper, we introduce a joint approach to HTE inference, combining the
clinical and operational perspective of healthcare processes. Despite its potential,
careful consideration is required to incorporate HTE inference in the toolbox of
healthcare organisations. When the prevailing assumptions are not accounted for
when building the event logs, estimates of causal effects will not be identifiable
and, hence, biased. Most importantly, strong cooperation with domain experts is
needed to check for hidden confounders as violations of this assumption cannot
be deduced from the data itself. To the best of our knowledge, no publicly
available event logs have been collected with the HTE assumptions in mind,
which hampers the development and testability of causal learning for process
mining.
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Abstract. Cardiology departments receive many outpatients from pri-
mary care services and it is necessary to differentiate which patients
need special attention. One-stop clinics were deployed in a hospital in
Salamanca (Spain) to triage such patients, separating those who needed
further examination and those who were discharged.

Data (covering December 2018—August 2020) was explored and
there was an iterative process in which clinicians, process miners and
technical staff at the hospital interacted in special interviews or Data
Rodeos. Interactive Process Indicators (IPIs) were generated. During
Data Rodeos data quality problems arose and were tackled, input data
was cleaned and preconditioned, process activities were discovered and
modelled.

The original assumption that the iterative implementation of the IPI
would allow clinicians and managers to have a deeper understanding of
the one-stop cardiology clinics process, was evaluated and validated by
them. After each iteration, they found that the IPI was more useful and
near to the reality they see everyday.

The final IPI was easy to interpret by the clinicians. In the end, many
key indicators were extracted, but most importantly, clinicians had a
comprehensive tool that they could use by themselves, without technical
assistance, to extract and interpret different indicators at any time, pro-
viding a high-quality source of information to improve patient-centered
daily medical care.

Keywords: Process mining · Cardiology · Interactive Process
Mining · Healthcare system · Outpatient care
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1 Introduction

Hospitals have limited resources and they need to constantly evolve to attend
patients in time and differentiate between patients that need extra attention and
diagnosed patients and healthy subjects. Patients that need a heart diagnosis
are usually referred from primary care to the cardiology service. In the normal
pathway, when the patient arrives to the service, the doctor has a consultation
and may require further tests in e.g., a month. Afterwards, the patient goes back
to the cardiologist some weeks later and can be diagnosed as healthy and thus
discharged. They can also be diagnosed with a specific known condition, and a
treatment starts. Finally, the patient may also need extra tests because of a more
complex malady. This process takes a long time and the number of consultations
could be reduced with other approaches.

The model of one-stop clinic reduces the number of patients referred from pri-
mary care through a pathway that aims to provide a higher efficiency in the diag-
nosis of patients. Contrary to the normal pathway, the one-stop clinic aims to cre-
ate more thorough consultations, in which the doctor has support from nursing
staff and full access to specific extra test requests within the cardiology depart-
ment. Many times, a basic echocardiogram (ECHO) or electrocardiogram is per-
formed during the consultation and most patients are discharged, since they can be
directly diagnosed and do not need any more tests. If extra tests or interventions
need to be performed, they are carried out on a different (near) scheduled date.
Tests generate a routine follow-up review. The way one-stop clinics are conducted
makes it possible to quickly rule out most cardiac syndromes and, fundamentally,
to discharge a great proportion of referred patients who do not meet the criteria for
specific follow-up to primary care, saving resources for the sicker cohort of patients
that benefit from a closer surveillance [2], and reducing the length of stay. One-
stop clinics have been extended to European cardiology services in recent years as
a solution for the management of first visits [7].

In the context of a European funded project, a cardiology department that
had implemented one-stop clinics wanted to visualize and take decisions based
on the processes related to these one-stop clinics, with the help of Process Mining
(PM). The goal in the PM methodology is to provide solutions to the experts
(in this case, the clinicians), that help them understand the behavior of the
processes [11]. In the healthcare domain, process indicators need to be extracted
from the data by analysts with the other stakeholders’ help: Managers, clinicians,
and Information Technology (IT) professionals.

PM has been applied to different Cardiology use cases. In [8], it was applied
in a Pakistan Cardiology Hospital. It did not count on real event logs but was
rather based on reports from the physicians. The aim of the research was to
prove that PM could be applied to enhance the medical system in the country.
In [1], Interactive Process Mining (IPM) [4] was applied to investigate how the
time it takes to transfer the patient with myocardial infarction from their home
to the percutaneous intervention center affects the survival rate. There is also
a literature review about cardiovascular diseases studied with PM [9]. In that
publication, they focused on what specific disease each paper had studied and



342 J. J. Lull et al.

which PM method had been used. A deep inspection of the process and the way
it was achieved was not apparent in the referred works.

Key performance indicators (KPIs) are commonly used in clinical settings.
IPM, however, lets the stakeholders define Interactive Process Indicators (IPI)
from the data and the questions that the clinicians and managers have. KPIs
are single-dimension variables, e.g., the ratio of patients discharged per hospi-
talized patients, per week. Differently, IPIs contain a full visual description of
the process, and also contain metadata about process traces and events. KPIs
are just numbers, so errors in the data will not be easily caught, while IPIs show
the process and errors are easily detected. Timing is included in the IPI and
can be visualized, used for differentiating groups, etc. The reader is encouraged
to consult the section Interactive Process Indicators by Example in [5]. IPM
is a methodology that puts the healthcare professionals first, facilitating the
understanding and easiness of exploration of the process indicators.

The structure of the rest of the paper is as follows: The application of IPM in
the cardiology service at Salamanca Hospital, Spain, is explained in the Mate-
rials and Methods section. Afterwards, the results of applying IPM are shown
in Results. Finally, next steps, limitations, and a comment on the COVID pan-
demics are shown in the Conclusion and Discussion section.

2 Materials and Methods

2.1 Data of Origin

For the study, EHR data collected from the Hospital Information Service (HIS)
in the Cardiology Department was used.

Clinical data had been manually introduced in MediConnect R©(Fleischhacker,
Schwerte, Germany), a clinical process management software tool. The timespan
for the data analysis was from December 2018 until August 2020. The records that
were included are defined in Table 1.

Table 1. Records in the initial data provided.

Anonymized
patient ID

Patient identifier

Mediconnect
activity ID

Activity identifier

Activity Name i.e. Nuclear medicine (NM) test, Magnetic Resonance
(MR) test, Holter test, Computerized Tomography (CT)
test, Structural intervention, Outpatient visit, etc.

Agenda Sub-type of activity (e.g. Kind of outpatient visit:
One-stop clinic, general hospital consultation).

Activity code It identified the kind of test in a more specific way, e.g., for
the ECHO test, the code referring to trans-thoracic test.

(continued)
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Table 1. (continued)

Order Status The action could be in one of the following statuses:
Planned, Delayed, Running, Confirmed, Finished, Canceled

Order Date and time when the clinician, nurse or administrative
asked for a new activity.

Order scheduled
Start

Date and time when the appointment was scheduled to
start (the real start time was not available).

Order scheduled
Finish

Date and time when the appointment was scheduled to
finish.

Follow up request It could be one of: – Rehabilitation – NM test – Holter –
Hemodynamic test – Structural intervention – Spirometry
– ECHO – Consultation – Implant – MR – CT

Reason or
symptom(s) for
the request

Logical values for one or more fields among the following:
Asymptomatic, Dyspnea, Dizziness, Palpitations, Murmur,
Syncope.

Diagnostic from
the activity

Logical values for the following fields: Cardiac arrhythmia,
Congenital cardiopathy, Ischemia, Valvular heart disease,
Infectious Endocarditis, Aorta illness, Pericardiac illness,
Structural damage, Lung hypertension, Heart failure,
Myocardiopathy, Sudden death, Pulmonary embolism,
Syncope.

Patient plan The possible values were: Return to primary care,
interconsultation, monographic consultation, request for
tests, request for intervention, request for tests and results,
etc.

Extra fields were also available but were already discarded at an initial data
quality assessment stage, such as the logical field Patient discharge (in that case,
Patient plan: return to primary care was more accurate).

2.2 Variables of Interest for the Clinician

The clinicians had in mind some aspects of the process that they wanted to
measure and dive into. One aspect was the wait lists: They wanted to detect
where and when bottlenecks occurred, along with time from primary care request
for the cardiology department till the patient was attended. Another need was
to discover long time-to-diagnosis and long time-to-treatment of patients with a
cardiac disease.

Clinicians also needed to detect low level of coordination with the gen-
eral practitioner for derivation and follow-up of patients. Another question was
whether there were differences in clinical decision making between junior and
senior doctors, specially through the number of requested tests. Gender and age
inequities in diagnosis and requested tests were of importance, along with the



344 J. J. Lull et al.

impact of Covid-19 pandemic in the number of consultations over the worst
months of the first wave.

2.3 Methods in Data Rodeos

Data rodeos are sessions with all the actors involved (managers, PM analysts,
clinicians, technical staff), where an interactive analysis of the data and latest
process indicators is performed. Each derived IPI helps better understand, quan-
tify, and qualify the process that is being studied. Duration of data rodeos can
range from hours up to one month. The result of each data rodeo, the IPI, must
be validated by healthcare professionals. The process indicator should allow the
clinician to check the representation against the HIS. This leads to an increase of
confidence in the model by the professional, e.g., if privacy allows it, the doctor
can see any patient identification and see that the patient follows the process as
observable in the IPI.

Data rodeos are separated into three stages: Shake down, Research and Pro-
duction [3]. The initial stage requires aggressive data cleaning and fast PM dis-
covery algorithms: It corresponds to the initial interviews between all the parties
and the iterations in the process model must keep doctors attentive. The second
stage, Research, can introduce long processing research tools and must intro-
duce a more respectful data cleaning strategy: In the medical domain, outliers
may be related to patients that follow a different path that is especially impor-
tant to the doctors. The production stage is carried out after the research stage
and the identified IPI is deployed in a live environment and it incorporates the
creation of a dashboard for the hospital, load tests and security and privacy
implementations. In this study, Shake down and Research stages are presented.

Anonymized data files were created by the IT staff at the hospital containing
the information that was described in the Subsect. 2.1. For each IPI, the data
files were ingested, generating a PM log. The log was filtered and processed.
Afterwards PM discovery was applied, and a model was discovered. The model
was processed and, after enhancement and conformance, the IPI was generated.
With each generated IPI, a report with invalid traces and other data quality
problems was created. This let all the actors find any problem in the data or the
IPI. Apart from the soundness of the IPI, it must also be compelling and easy-
to-understand and interact with, by the health professional [10]. Different ways
of achieving an augmented model with metadata have been described, creating
maps where color, node or transition representation size, tags, transparency, etc.
change to show information about the process. During this study color was used
to represent duration in each activity (represented in nodes) and number of traces
(coded in the transitions), both with gradients with value ranges represented in
the legend in each figure.
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3 Results

3.1 First Data Rodeo

During the first Data Rodeo, an initial IPI was generated, as a base to work
on. The main nodes were: 1. Request for One-stop clinic 2. First consultation
3. Consultation (any further consultations, after the first one). 4. ECHO: an
echocardiography had been performed for the patient. 5. Discharge 6. Exitus
(deceased)

Since the time spent in each node was unknown, this could not be introduced
in the IPI, but in the case of the time from request to scheduled consultation.

Figure 1 shows a representation of the IPI where node color implies time
spent at the node and transition colors show the number of executions that go
from node to node (see Heatmap legend).

Fig. 1. Initial IPI from First Data Rodeo.

As mentioned earlier, the process at this stage needed further work, e.g. there
are transitions that start at First Consultation and that cannot happen in reality.
However, those details would be polished later.

In the IPI, most of the information remained in the model but was not visible
at first glance, as in Fig. 1. The following extra data was introduced with filters:
symptoms and diagnostics for each patient.

This data rodeo let us find that, as observable in Fig. 1, there is a high number
of patients who do not need extra tests and are directly discharged. This was
observed in the transitions First consultation → @End, and First consultation
→ Discharge, and it was an approximate measure of efficiency with around 50%
patients discharged after the initial consultation.

Doctors were very interested in watching wait times and other variables
depending on the symptoms. However, they were discarded since most consulta-
tion did not have the information. A second data rodeo was appointed to further
explore the data and obtain a better IPI.
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3.2 Second Data Rodeo

The clinicians wanted to measure the ECHOs that had been solicited to be
performed during the consultation, since the number of ECHOs impacted the
efficiency of the clinic. A node was created for the case of non-request of an
ECHO during the consultation. A view of the process can be seen in Fig. 2.

Fig. 2. Second IPI with Consultation and two nodes for the extra ECHO test and the
absence of it.

Through the creation of trace metadata groups for doctor category (regis-
trars, consultants), the proportion of the during-consultation ECHOs could be
easily seen.

The data about clinicians who had attended the patients in the one-stop had
been introduced, since one question was if registrars (junior clinicians) asked for
more tests than consultant doctors (seniors). The IT team provided the data,
with the following fields, among others: Mediconnect activity ID, Clinician name.
The rest of the fields were discarded since they were not finally used to create the
IPI. With this field, the clinicians involved in the generation of the IPI classified
doctors between consultants and registrars. This information was included in
each trace as Type of doctor.

The clinicians involved could see the percentage of patients that underwent
an ECHO inside the consultation. However, it was estimated later that a rele-
vant percentage of doctors did not fulfill the ECHO forms on the EHRs due to
complexity and time allocation per patient in the clinics, which led to a lack of
information in this regard. Thus, intra-consultation ECHOs had to be removed
from the process.

3.3 Third Data Rodeo

Extra-consultation ECHO tests could be checked, along with other tests and
interventions. Thus, if any test was requested, it was introduced in the IPI as
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trace metadata. Age and gender were also included, as well as the type of doc-
tor. This would let clinicians find out e.g., if registrars asked for more ECHO
tests than consultants. Also, if there were more men than women with heart
problems, etc.

It was also decided that, since the interest was in the first consultation for a
referred patient from primary care, when there was more than one consultation,
only the first consultation would be considered, along with the extra tests and
the discharge. Further events in time would be discarded for the process model.

Fig. 3. Final IPI view.

Figure 3 shows a view of the final IPI. It included the following trace meta-
data: – Month of consultation – Year of consultation – Time to next consulta-
tion, in days (−1 if data was not available) – Gender – Age – Test/intervention
required – Diagnostics (array with the different diagnostics) – Type of doctor.

The IPI was created with 15 nodes, as depicted in Fig. 3. The transition
probability from consultation to discharge was high, 47%.

The number of traces was extracted for each month and year in the available
data. This is shown in the column chart in Fig. 4. It can be observed that 2020
(January to August, amidst the pandemic) had a lower number of clinics than
2019.

Transition probability in 2019 from first consultation to discharge was 50%
while it was reduced to 17% in January to August in 2020. This may be because
of patients not going to the clinic due to the lockdown in the first pandemic
wave. This would increase the percentage of patients that would need an extra
test or intervention.
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Fig. 4. Number of traces per month, equivalent to number of new patient clinics.

The percentage of unspecified tests/intervention requests went up from 10%
in 2019 to 31% in 2020. Also, the most demanded test in 2020 was trans-thoracic
ECHO (23%) compared to an 8% in 2019.

All these data were easy to interpret at one glance watching the IPI view
(Fig. 5) by looking at the color-coded transition probabilities.

(a) 2019 IPI visualization (b) 2020 IPI visualization

Fig. 5. IPI view with same color gradient for 2019 and 2020.

It could also be seen that age groups had different number of clinics depend-
ing on the month. In Fig. 6, August and December 2019 are compared in local
percentage (distribution of 100% between the age groups). Elderly people were
more treated in December than in August, and adults were the ones that coped
with that relative decrease in the same months.

Registrar-requested external ECHOs against those requested by consultants
were compared. Although more clinics were performed by consultants (68.9%)
than by registrars (37.1%), more than half of the ECHO tests were requested by
registrars (specifically, 57,1%).
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Fig. 6. Age group clinics, in relative percentage, depending on the month.

4 Conclusion and Discussion

After the initial IPM Shakedown, clinicians were provided with a comprehen-
sive and easy-to-use tool that allowed them to answer most clinical questions
proposed in the first meeting.

During the last years national and European cardiology societies have stab-
lished metrics and benchmarks that every cardiology department should meet in
the outpatient setting [6]. One of the key markers is average wait for a first con-
sultation since the time a new referral is done. With IPM, clinicians observed the
median waiting time was 19 days and 20 h, showing a clear improvement point
in comparison with national standards. Overall view of gender and age distri-
bution on the patient cohort was obtained, providing a better understanding
of population that access a cardiology department and correlating with general
population aging. These data were extracted by the clinicians by inspection into
the IPI.

Through IPM analysis clinicians could define and classify the outcome of
the clinic in big generic cardiac syndromes or the absence of a specific diagnosis
in patients with a structural normal heart. The discharge rate from the clinic
was 47% reaching the acceptable benchmark set by expert consensus mentioned
before. However, improving communication with other specialists and primary
care and the implementation of novel alternatives such us e-consultation could
be an option to reduce even more unnecessary referrals.

Reducing the number of unnecessary requested tests is of key importance for a
public funded healthcare system. Prior to rationalisation of diagnostic and inter-
ventions, it is fundamental to know the exact volume and statistics of requests
generated by the one-stop clinic. This task was successfully achieved with the
analysis of the process. The IPI is effectively an audit of the outpatient service
that will promote the update of clinical protocols, and refreshment educational
sessions, reducing unnecessary and costly tests, benefiting both patient safety
and the heath system economy.

Time allocated per patient for a one-stop clinic is usually enough for a gen-
eral cardiologist to perform an external ECHO if deemed necessary after formal
clinical interview and physical examination. The existence of too many early
requests of extra ECHOs is perceived as a failure of the main goal of this kind of
clinics. The indicator of 10% of ECHOs directly requested from one-stop clinic
shows an improvement opportunity.
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The SARS-Cov2 pandemic had a major impact in the healthcare system
during 2020, lock-downs and resource reallocation to an over-saturated inpa-
tient care dropped the number of first consultations [12]. Currently, keeping up
with missed appointments is a struggle in outpatients services. IPM analysis has
helped the cardiology department to quantify in an accurate way the damage
made to the outpatient service during the worst months of Covid spread.

In conclusion, clinicians were provided with a useful tool for data analysis.
The results through IPM were used as a complete audit of outpatient service
deriving into clinical protocol changes and exposing improvement opportunities.
Developments in the IPI are still to come (such as introducing the distance
between the patient and the hospital, and other data that will help clinicians
with new questions), but it is mature enough to answer the initial queries.
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Abstract. Patients suffering from multiple diseases (multi-morbid
patients) often have complex clinical pathways. They are diagnosed and
treated by different specialties and undergo other clinical actions related
to various diagnoses. Coordination of care for these patients is often
challenging, and it would be of great benefit to get better insight into
how the clinical pathways develop in reality. Discovering these pathways
using traditional process mining techniques and standard event logs may
be difficult because the patient is involved in several highly independent
clinical processes. Our objective is to explore the potential of analyzing
these pathways using an event log representation reflecting the indepen-
dent clinical processes. Our main research question is: How can we iden-
tify valuable insights by using a multi-entity event data representation
for clinical pathways of multi-morbid patients? Our method was built
on the idea to represent multiple entities in event logs as event graphs.
The MIMIC-III dataset was used to evaluate the feasibility of this app-
roach. Several clinical entities were identified and then mapped into an
event graph. Finally, multi-entity directly follows graphs were discovered
by querying the event graph visualizing them. Our result shows that
paths involving multiple entities include traditional process mining con-
cepts not for one clinical process but all involved processes. In addition,
the relationship between activities of different clinical processes, which
was not recognizable in traditional models, is visible in the event graph
representation.

Keywords: Health care · Multi morbidity · Multi-entity Process
Mining

1 Introduction

Based on the UN annual report, the number of older people is envisaged to be
nearly 2.1 billion by 2050, growing to a size more than twice as large as in 2017 [1].
As a result of the aging population, it is expected that “multi-morbidity” is going
to increase [2]. Multi-morbidity refers to any co-occurrence of conditions in the
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Table 1. Example of event log with single-dimensional or single-entity event data.

Case Identifier Event Timestamps Property-X Property-Y

1 a 2013-10-29T05:00:00 X1 Y1

1 b 2013-10-30T06:00:00 X2 Y2

1 c 2013-10-31T07:00:00 X3 Y3

2 a 2013-10-01T08:00:00 X4 Y4

2 c 2013-10-19T09:00:00 X5 Y5

3 a 2013-10-29T06:00:00 X6 Y6

same person [2]. Sometimes the term “co-morbidity” is used instead of multi-
morbidity, while the term co-morbidity is defined as the combination of extra
disorders besides an index disease [2]. The treatment of multi-morbid patients is
a complicated task since they generate several challenges. These include recog-
nizing signs and symptoms of different illnesses, managing multiple medications
and treatments, interacting between various health conditions, and allocating
resources by medical centers. These lead us to develop care pathways for patients
with multi-morbidity in a way that overcomes these challenges.

Care pathways, as one of the central tools used in healthcare, can be described
as a straightforward statement of the aims, a representation of the interactions
between the health’s resources and patients, or a description of roles, sequen-
tial decisions, and activities related to the care process [3]. The primary goal of
care pathways is reducing variability in the treatment of diseases [4]. Since care
pathways are a set of time-framed events focusing on a specific situation that
delivers guidance about how to deal with conditions that appear during treat-
ment’s processes [4]. It can be itself considered as a process which is a sequence
of events with a common goal [5].

Processes can be graphically represented by process models [5] which explain
responsibilities, inspect compliance, predict performance using simulation [6],
manage complexity, reduce variation, and enhance coordination [5] in processes.
Discovering process models or process discovery from event logs is one of the main
tasks in process mining. Event logs contain sequences of events recorded from
information systems. Any registered event refers to at least (1) an activity (i.e.,
a well-defined step in the process), (2) a case or process instance representing
a single entity, (3) a unique timestamp. Logs fulfilling these requirements are
called single-dimensional or single-entity event data [7], which an example of
this type of log was shown in Table 1. Single entity event data also can refer to
properties (e.g., the person executing or initiating the activity) [5].

If we want to satisfy all practitioners in the healthcare sector and achieve a
holistic process view for care pathways [8], we should consider more than one
clinical process of patients’ care pathways. But, the standard type of event data
forces us to deploy an event log for each clinical process of patient care pathways.
On the other hand, if we have multi-entity event data, meaning events refer
to multiple entities (e.g., each clinical process of a care pathway), relational
databases and traditional process mining techniques are ineffective.
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Table 2. Excerpt of a event log with multi-entity event data relating to multiple
entities that can be converted into an event graph representation [7].

Event Timestamps EntityTypeA EntityTypeB EntityTypeC PropertyX PropertyY

a 2013-10-29T05:00:00 1 Origin 1 Origin 4 X1 Y1

b 2013-10-30T07:00:00 1 Origin 4 X4 Y4

c 2013-10-31T07:00:00 1 Origin 5 X5 Y5

f 2013-10-31T09:00:00 1 Origin 1 Origin 4 X7 Y7

a 2013-10-01T08:00:00 2 Origin 2 Origin 4 X2 Y2

b 2013-10-30T06:00:00 2 Origin 4 X3 Y3

c 2013-10-31T07:00:00 2 Origin 5 X5 Y5

f 2013-10-31T09:00:00 2 Origin 2 Origin 4 X7 Y7

a 2013-10-29T05:00:00 3 Origin 1 Origin 4 X1 Y1

b 2013-10-30T06:00:00 3 Origin 4 X3 Y3

c 2013-10-19T09:00:00 3 Origin 5 X6 Y6

This study explores the potential of analyzing care pathways for patients
with multi-morbidity using a multi-entity event data representation reflecting
the independent clinical processes. Our main research question is: How can we
identify valuable insights by using a multi-entity event data representation for
care pathways of multi-morbid patients? The remainder of this research is struc-
tured as follows. Section 2 reviews state-of-the-art research about the use of
multi-entity event data in process mining and how to represent and store them.
Section 3 introduces MIMIC-III that is used to illustrate and validate our app-
roach. In Sect. 4, we show how to build multi-entity event data for multi-morbid
patients. In Sect. 5, we show preliminary results that are, then, discussed in
Sect. 6. We conclude with an outlook on future work in Sect. 7.

2 Related Work

Multi-entity event data can not be stored in the same way as single-entity event
data; furthermore, in this setting process discovery is not possible with tradi-
tional methods. In this section, we explore the related literature from several
perspectives to select a good format for multi-morbid care pathways event data.

2.1 Multi-entity Event Data

In the approach of [9], known as object-centric process mining, each case notion
is referred to as one object type (e.g., application and vacancy can be two case
notions or two object types, and each of them has its own case identifiers). In that
approach, events can refer to multiple case notions instead of referring to a single
case notion. A process model is first discovered for all objects sequentially. Then,
each directly-follows relation is labeled to its related object type. For example, if
event-1 that is related to object-1 happened right before event-2 that is related
to object-1, event-2 directly follows event-1, and so on.
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Another type of multi-entity event data was proposed by [7]. Based on [7],
there does not need to be a single case notion, but events are related to one or
more entities of different entity types. Entities themselves can also be related to
each other. The required input events have been shown in [7] is similar to the one
shown in Table 2. Information about the relations may also be extracted from
other sources, e.g., relational database keys. Process models can be discovered
in a flexible manner per entity or for various combinations of several entities.
Our event log format for storing multi-entity event data is based on this model.

2.2 Storing Event Data

A classical approach for storing event data is using relational databases (RDBs).
A relatively new approach is using an event graph which is a mathematical graph
data structure that is built by converting relational database concepts to vertices,
edges, nodes, and relationships [7]. This leads to a natural representation of
multi-entity event data and the possibility to discover multi-entity models by
querying from event graphs.

A series of experiments were conducted in [10] to compare the performance
and efficacy of relational databases and event graphs, sho1higher capabilities
of event graphs. Extracting multi-entity event data needs to flatten event data
because only a single case notion can be chosen [7] leading to traditional process
mining. Additionally, a graph database can store all of the case notions of a
multi-entity directly follows graph in only one graph [7].

Recently, event graphs were deployed for storing data. The work in [11]
introduces an approach to store and retrieve single-entity event logs into/from
graph databases. That approach defines how log files shall be stored in a graph
database, and it also illustrates how directly follows graphs (DFG) can be cal-
culated in the graph database. In another recent literature, task executions and
routines in processes were classified and detected using event graphs [12]. In that
research, at first, the event log was transformed into an event graph. Then graph
theory was used to detect task execution patterns and their changes over time.

Converting multi-entity event data to an event graph was formalized in [7] by
conceptualizing event log, events, entities, and classes. Based on [7] each event
log has several events, and each event in one hand correlates to entities, and
on the other hand, can be observed by classes. Meanwhile, the events can be
related to each other if they directly follow each other. Entities can be related
to each other based on the occurrence of their events. As well, the classes can
follow each other by directly following relationships. Based on these reasons, in
sum, an event graph seems to be a better approach compared to the relational
database for storing multi-entity event data.

Vogelsang et al. [13] looks at process mining from multiple dimensions. Still,
these dimensions are related to properties of cases such as region, age of patients,
and not event data. In the approach, several single-entity event data, separated
based on the difference between regions, ages, and so forth, were used.

Overall, we found that the subject of using event graphs in a healthcare
setting and, in particular, discovering care pathways from multi-entity event
data using event graphs was not yet explored in previous literature.
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Table 3. List of patient ICD code and its repetitive in patients.

Diagnoses based on
ICD codes

Patients
frequency

List of Patients
(Admission IDs)

7746 232 A1 - A2 - ... - A232

7661 163 B1 - B2 - ... - B163

7706 142 C1 - C2 - ... - C142

76519 - 76528 99 D1 - D2 - ... - D99

76518 - 76528 68 E1 - E2 - ... - E68

77089 63 F1 - F2 - ... - F63

. . . . . . . . .

3 Multi-entity Event Data in MIMIC-III

For evaluation of the feasibility of using event graphs for clinical pathways of
multi-morbid patients, the MIMIC-III [14] is used. MIMIC-III is a freely accessi-
ble tertiary care database that involves information relating to patients admitted
to critical care units (CCU) of Beth Israel Deaconess Medical Center in Boston,
Massachusetts, during 2001 and 2012. Data from MIMIC-III were downloaded
from several sources such as critical care monitoring information systems, bed-
side monitors, hospital and laboratory electronic health record databases, and
social security administration.

The ninth revision of the international statistical classification of diseases and
related health problems (ICD-9) is widely used diagnostic coding system. Each
ICD-9 code corresponds to a single diagnostic disease except the codes starting
with E and V, which are related to external causes of injury and additional clas-
sification. We use the ICD-9 code system for specifying multi-morbid patients by
considering patients with several ICD-9 codes as patients with multi-morbidity.

We use a subset of data from MIMIC-III. To extract event data from MIMIC-
III, first, from DIAGNOSES ICD Table, values of icd9 code column, excluding codes
start with E and V, were grouped by each distinct patient’s hospital admission
identifier (hadm id). The DIAGNOSES ICD table involves patients identifiers (sub-
ject id), patients hospital admission identifiers (hadm id), the sequence order in
which the ICD-9 diagnoses were made (seq id), and ICD-9 (icd9 code). After
that, the patient admission identifier was grouped by an collection of ICD codes
as shown in Table 3. Each row of Table 3, shows the number of observances of
a disease (or group of diseases), which has been coded by ICD-9 format, at the
time of admission of patients to the hospital. If the first row of the table shows
more than one disease, we consider them as multi-morbidity cases. Meanwhile,
a patient can have several admission identifiers that show the patients admitted
to the hospital several times at different times.

From this initial look at a subset of the MIMIC-II dataset on multi-morbid
patients, multiple entities can be identified, e.g., admissions, diseases (ICD
codes), and so on. We now describe the relevant entities in detail and extract
them to build an event graph representation.
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4 Event Graphs for Multi-morbid Patients Pathways

This study explores how to analyze multi-entity event data for patients with
multi-morbidity based on an event graph. Based on our research question, a
hypothesis for this research was formulated as follows: Applying event graph
produces valuable insights when using multi-entity event data for clinical path-
ways of multi-morbid patients. Our strategy is to design an experiment for the
research to investigate this. This section describes the method we followed to
investigate this question and build event graphs to discover care pathways for
multi-morbid patients.

4.1 Identifying and Extracting Entities

Each distinct clinical process related to patients with multi-morbidity is called
an entity. Since several clinical processes are involved in treating multi-morbid
patients, entities can easily be identified by considering those clinical processes.
We identified the following entities in the subset of the MIMIC-III dataset:

1. Logistic. This entity events contains admission, discharging, registering to
Emergency department (ED), discharging from ED, In-hospital death (if
died), calling-out request (when patients ready to discharge), and transfer-
ring between different services, care unit and wards. Six MIMIC-III tables
were used to download this entity’s events: PATIENTS, ADMISSIONS, CALLOUT,
SERVICES, ICUSTAYS, TRANSFERS.

2. Laboratory Measurement. This entity contains events of the type abnor-
mal laboratory measurements, Which play an essential role in diagnosing and
treating patients’ diseases. For extracting these events label, value, valueuom,
and flag columns of D LABITEMS, and LABEVENTS tables were used.

3. Prescriptions. This entity contains starting and ending timestamps of
medication-related order entries, i.e., prescriptions such as the drug which
is prescribed to the patient, its dose’s value, form, and unit of medication, for
extracting of this entity PRESCRIPTIONS table was used.

4. Diagnosis. This entity was related to the first event at the beginning of
each time of patients admissions. It involves a group of ICD codes showing
patients’ diseases in each admission. DIAGNOSES ICD table relationship with
other tables was used for downloading ICD codes of this entity.

5. Admission. In the end, the hospital admission identifier was appended to
multi-entity event data. If an event is related to the NULL admission number,
it is associated with the outpatient clinic.

Table 4 shows an example of created multi-entity event data for patients
identified 4900. It is possible to extract multi-entity event data for each row
of Table 4, while we consider the admission identifier or its equivalent patient
identifier as a case identifier.
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Fig. 1. Graph creation for Patient 4900: Steps 1 (top), 2 (bottom left), and 3
(bottom right)

Fig. 2. Graph creation for Patient 4900: Steps 4 (top left), 5 (top right), 6 (bottom)
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Table 4. Excerpt of an event log extracted from MIMIC-III with multiple entities. We
abbreviate event labels in the remainder as follows: L Taken = Laboratory Test Taken,
LAM = Laboratory Abnormal Measurement, CA = Coronary Atherosclerosis, DM =
Diabetes Mellitus, HL = Hypercholesterolemia, HT = Hypertension, TBS = Transfers
Between Services, TIW 27 = Transfer Into Ward: 27, HA = Hospital Admission.

Patient Identifier Event Timestamps EntityType Admission

Patient 4900 L Taken 2013-10-29T05:00:00 Lab. Measurement Outpatient

Patient 4900 LAM 2013-10-30T06:00:00 Lab. Measurement Outpatient

Patient 4900 CA DM HL HT 2013-10-31T07:00:00 Diagnosis 115281

Patient 4900 TBS 2013-10-01T08:00:00 Logistic 115281

Patient 4900 TIW 27 2013-10-19T09:00:00 Logistic 115281

Patient 4900 HA 2013-10-29T06:00:00 Logistic 174010

. . . . . . . . . . . . . . .

4.2 Building the Event Graph

We showed the steps we followed to create the event graph from the multi-
entity event data based on the approach introduced in [7] in Figs. 1 and 2: 1
Each record of the event log was converted to a node, called event node; then
another node was created for the event log. After that, relationships from each
event node to the log node was created. 2 Nodes for the cases’ entities and
their properties, called entity nodes was generated, then each event node was
correlated to its relative entity node. 3 The entities nodes were related to each
other based on their event’s sequential occurrence. 4 The relationship between
the entities nodes were reified. 5 Directly follows relation between the events
node was created based on entities and properties, and 6 Event class nodes and
property class nodes were created respectively for distinct events and properties,
and finally aggregated directly follows relationships for the event and property
class nodes were created.

5 Results of Application to MIMIC-III

A preliminary evaluation of our approach relies on a qualitative discussion. We
analyze the generated multi-entity directly follows graphs from the MIMIC-
III database and evaluate to which extend they support our hypothesis. We
implemented the event graph creation using Python and the Neo4J library and
adapted the code provided by [7] for our case1. Multi-entity directly follows
graphs were discovered by querying the event graph with CQL and visualized it
with Graphviz.

The multi-entity directly-follows graphs of two patients are shown in Figs. 3
and 4. These two patients, Patient 4900 and Patient 14606, are examples of

1 Available on https://github.com/mnaeimaei/MIMICIII-Event-Graph.

https://github.com/mnaeimaei/MIMICIII-Event-Graph
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multi-morbid patients who have been admitted to the hospital several times and
had more than one disease at each time of admission.

Based on Fig. 3, before hospital admission, a laboratory measurement was
taken (L Taken Node) for Patient 4900, the abnormal measurements (LAM
node) of laboratory test is one of the bases for diagnosing diseases for that
patient. The patient was admitted to the hospital three times. In each of them,
several diseases were diagnosed for the patient, and after that, several activities
related to Logistic, Laboratory Measurement and Prescriptions entities
happened for the patient. In the first, second, and third admission, respectively,
four, six, and four diseases were diagnosed for the patient. The activities for
Logistic, Laboratory Measurement and Prescriptions entities is differ-
ent in each admission because there is difference between diagnoses diseases
of each three admission. It means the activities done for patients are related to
their diseases. We can see that the disease CA (Coronary Atherosclerosis) and
DM (Diabetes Mellitus type II) was diagnosed in all three admissions, which
indicate some common activities related to entities have occurred in all three
times of admission. On the other hand, we have diseases such as HL (Hyperc-
holesterolemia), HH (Hemorrhage), MN (Malignant neoplasm), MF (Myocardial
Infarction), which were diagnosed in only one admission time. It shows that first,
there are unique activities related to entities related to this disease. Second, they
were treated in hospital.

According to Fig. 4, the patient was admitted to the hospital without any labo-
ratorymeasurement,whichmeans that patient diagnoses related to the first admis-
sion are not related to previous measurements. For patient 14606, a group of dis-
eases was diagnosed in the patient’s first admission: CA (Coronary Atheroscle-
rosis), CS (Coronary Syndrome), HD (Hyperlipidemia), HM (Hypothyroidism),
HT (Hypertension). After that several activities related to Logistic, Labora-
tory Measurement and Prescriptions entities were conducted for treating
those diseases. After the first patient admission, a laboratory test was taken that
was used as the basis of diagnoses for the second admission. In the second admis-
sion of Patient 14606 another group of diseases was diagnosed: DM (Diabetes
mellitus), CC (Carotid Artery Occlusion), VD (Vascular Disease), HL (Hyper-
cholesterolemia), HM (Hypothyroidism), HT (Hypertension) since then activi-
ties related to Logistic, Laboratory Measurement and Prescriptions enti-
ties happen. In the third admission of Patient 14606, another group of diseased
were diagnosed: CH (Congestive Heart Failure), CD (Cardiac Dysrhythmia), HM
(Hypothyroidism), CC (Carotid Artery Occlusion). For the Patient 14606, we can
see that diseases related to coronary disease were not diagnosed in the second and
third time, indicating activities in the first admission treated these diseases. Also,
diseases are repeated in all three admissions, which indicates these diseases are
chronic diseases or the activities are done for the patient were not useful.

6 Discussion

Based on the Figs. 3 and 4, discovered multi-entity directly follows graph for
those patients show all traditional process mining concepts (e.g., sequence of
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Fig. 3. Multi-entity directly-follows graph for Patient 4900. (Color figure online)

activities) and for all involved clinical processes in only one graph. Meanwhile,
the relationship between the different clinical processes activities that were not
detectable in traditional models was clearly shown in discovered directly follows
graph. This graph shows how diagnoses for multi-morbid patients evolved during
the care pathways and how these diagnoses relate to other events, and how the
trajectory of patients varies for each group of diagnoses.

The multi-entity directly-follows graph of Patients 4900 and Patient
14606 involves four entities which each of which has been shown with differ-
ent colors. Before the first Admission of the Patients 4900, the patient had
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Fig. 4. Multi-entity directly-follows graph for Patient 14606 (top) and details (bottom)
(Color figure online)

abnormal values related to out-of-hospital laboratory measurements from clinics
which the patient had visited. These measurements can be one of the bases for
diagnosing diseases for the first Admission of that patients. These diseases were
shown in Diagnoses entity. Meanwhile, in discovered graphs, the admission
number of patients was indicated by separate red edges.

These graphs demonstrate that analyzing care pathways of patients with
multi-morbidity is completely applicable using an event graph. The discov-
ered graphs for distinct patients can illustrate all single-entity concepts such as
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activities, cases, and their properties for all entities simultaneously. Based on
these results, the hypotheses of the research, applying event graphs produce
valuable insights when using multi-entity event data for clinical pathways of
multi-morbid patients, seems to be valid.

7 Conclusions

In this research, we could discover insightful graphs comparing traditional pro-
cess mining by using multi-entity event data stored in an event graph. We evalu-
ate the potential of the event graph approach proposed by Essser and Fahland [7]
for clinical data by using the MIMIC-II database. Some of the limitations of this
paper are related to the case study, such absence of resources in the MIMIC-III
database and shifting times. Another limitation is related to missing visual-
ization methods for multi-entity event data. Creating appropriate visualization
approaches and automating process discovery can be future research. Enabling
to show sub-processes inside an event is a highly insightful capability for graphs,
which can be future work. As well, multi-entity graph notations need to be
researched and created.
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Trust, privacy, and security aspects have been considered in process mining research
from two fundamental perspectives:

A. the application of process mining to investigate whether systems are trustworthy,
whether privacy regulations are adhered to, and whether security properties of
systems have been (actively) violated;

B. the analysis of and the design of process mining techniques such that trust, privacy,
and security properties are provided when applied to analyze processes.

The main objective of the TPSA workshop is to give a forum for the trust, privacy,
and security aspects and the responsible application of process mining including other
concerns such as fairness, transparency, and accuracy. We invite researchers and
industry to share their research, ideas, experience reports, and challenges in this area.
Perspective (A) relates closely to the responsible application of process mining in the
broader context of responsible data science, i.e., how to use process mining while
guaranteeing criteria such as FACT (Fairness, Accuracy, Confidentiality, Trans-
parency). The other perspective (B) is using process mining to determine whether other
systems exhibit behavior that is desired from a trust, privacy, or security viewpoint.

Here privacy relates to the concern that event logs may contain personal data of
both customers and employees and the challenge of protecting the information about
individuals while still being useful for process mining (e.g., differential privacy, k-
anonymity, homomorphic encryption, secure multi-party computing). However, pro-
cess mining could also be used to investigate whether privacy regulations are being
followed and pinpoint compliance violations. Often, security aspects (e.g., encryption)
are closely connected when processing personal data cannot be avoided. On the other
hand, the workshop is about the concept of trust, which is required both from the
perspective of trust in organizational and technological measures that event logs are not
misused (e.g., for worker surveillance) as well as from the perspective of trust that the
results of a process mining analysis faithfully reflect reality (e.g., data quality, trace-
ability, auditability).

We received six papers that cover all three topics and both perspectives. From
them, we were able to accept three full papers for presentation and inclusion in the
workshop proceedings. In addition, we have solicited researchers to send short papers
on their research-in-progress that did not meet the acceptance criteria or was not yet
mature enough for a full paper. We received four extended abstracts for this session,
which are not part of this proceedings.

“Trustworthy Artificial Intelligence and Process Mining: Challenges and Oppor-
tunities” was presented as first paper in the workshop. It gave a broad view on how
process mining relates to the field of trustworthy Artificial Intelligence not only from a
technical but also a regulatory standpoint. The second paper “Process Mining in
Trusted Execution Environments: Towards Hardware Guarantees for Trust-aware Inter-
organizational Process Analysis” proposes a technical solution for enabling process



mining across data from several organizations. The full paper session was wrapped up
with the paper “Quantifying the Re-identification Risk in Published Process Models”
that provided an extension of a method to quantify the re-identification of individuals
from event logs to the risk of re-identifying individuals from published process models.

The following four papers were presented in the research-in-progress session:
“BERMUDA: Towards Maintainable Traceability of Events for Trustworthy Analysis
of Non-process-aware Information Systems”, “a Generalizable Approach for Deter-
mining The Sensitivity of A Trace within An Event Log”, “Utility-aware Event Log
Anonymization for Privacy-Preserving Process Mining?” and “Conceptualizing a Log
Generator for Privacy-aware Event Logs”.

Around 20 attendees were present during the workshop presentations and panel
discussion. Due to the generous support of the ICPM organizers, we have been able to
award the two best presentations. The Best Presentation Award of the TPSA workshop
in 2021 went to Marcel Müller who presented the paper “Process Mining in Trusted
Execution Environments: Towards Hardware Guarantees for Trust-aware Inter-
organizational Process Analysis”. The Runner-up Award was given to Paul Cosma
for presenting his work on “BERMUDA: Towards Maintainable Traceability of Events
for Trustworthy Analysis of Non-process-aware Information Systems”.
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Abstract. Process mining techniques enable business process analy-
sis on event logs extracted from information systems. Currently, indus-
try applications and research in process mining predominantly analyze
intra-organizational processes. Intra-organizational processes deal with
the workflows within a single organization. However, analyzing inter-
organizational processes across separate companies has the potential to
generate further insights. Process analysts can use these insights for opti-
mizations such as workflow improvements and process cost reductions.
It is characteristic for inter-organization process analysis that it is not
possible to uncover the insights by analyzing the event logs of a single
organization in isolation. On the other hand, privacy and trust issues
are a considerable obstacle to adopting inter-organizational process min-
ing applications. The independent companies fear competitive disadvan-
tages by letting third parties access their valuable process logs. This
paper proposes a concept for inter-organizational process mining using
trusted execution environments in a decentralized cloud. The hardware-
based approach aims to technically prevent data leakage to unauthorized
parties without the need for a trusted intermediary. The contributions
of this paper are theoretical and identify future research challenges for
implementing the concept.

Keywords: Process Mining · Privacy · Trusted Execution
Environments · Inter-organizational Process Mining

1 Introduction

Process mining analyzes the real-world execution of business processes. The
analysis utilizes event logs extracted from information systems to construct a
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business process model [1]. A variety of process mining techniques and configu-
rations enable analysts to derive different insights into their processes. Process
mining can be used to identify compliance violations, find process bottlenecks,
and investigate the root causes of undesired process behavior. Usually, process
mining analyzes processes within a specific organization (intra-organizational
processes). Yet, in practice, inter-organizational workflows are standard in var-
ious industries. In an inter-organizational business process, different organiza-
tions execute separate parts of a shared workflow. Examples of such processes
include e-commerce, supply chain management, or international bank trans-
actions. However, analyzing data from other companies is trust- and privacy-
intensive [2–4]. Event logs record valuable information of an organization’s real-
life operation details. These details can be exploited to analyze a collaborator’s
internal processes and to gain competitive advantages. Thus, many organiza-
tions refrain from participating in inter-organizational process mining and opti-
mization. However, mining inter-organizational processes as a whole can enable
different insights and benefits that cannot be derived from analyzing the pri-
vate processes of collaborators in isolation. All parties may benefit from such a
high-level analysis.

Figure 1 illustrates an example inter-organizational hiring processes. The
process model shows how a certain company (the seeking company) finds new
employees for its software development jobs. Since recruiting processes are time-
and cost-intensive, the company outsources the initial recruiting task to three
independent recruiters. The process starts with the seeking company defining the
job requirements. Afterward, the organization contacts three different recruiters
in parallel for the first-level candidate screening. Their task is to find the best-
suited candidates for their job opening. The three recruiters have different strate-
gies to find the best candidates. Recruiter 1 approaches the task by searching
candidates on professional platforms like LinkedIn1. The recruiter sends cold
messages to candidates and conducts a general pre-interview with them. The
objective of the pre-interview is to find out if all formal requirements for the
candidate to become a potential employee are fulfilled. This might include, for
instance, having the right working permits. Afterward, Recruiter 1 conducts a
technical interview to see if the candidate has the right skill set for the job.
In the end, Recruiter 1 decides whether the candidate is suited for the posi-
tion. If yes, the recruiter forwards the CV to the seeking company. Recruiter
2 has a different approach. This recruiter makes a job post on an open online
job board like Indeed2. After a while, the recruiter receives some applications
and assesses the CVs of the candidates. Recruiter 2 does not conduct general
interviews and proceeds directly to the technical interview. After the technical
interview, this recruiter also decides and forwards the candidate to the seeking
company. Recruiter 3 starts the candidate search on a professional platform, like
Recruiter 1. However, Recruiter 3 is not a technical expert and does not conduct
technical interviews after the general pre-interview. All three recruiters forward

1 https://www.linkedin.com/.
2 https://de.indeed.com/.

https://www.linkedin.com/
https://de.indeed.com/


Process Mining in Trusted Execution Environments 371

Fig. 1. Example inter-organizational process in human resources using the BPMN 2.0
standard [5].

their candidates to the seeking company, where a final interview is conducted.
Afterward, the decision of whether or not to hire the candidate is made.

This example shows an inter-organizational process where all four organiza-
tions act independently. Yet, they have a common goal to make to recruiting
process as efficient as possible. Especially the seeking company wants to reduce
their recruiting time. Their final interviews are conducted by the seeking com-
pany’s most skilled tech specialists. This circumstance makes every final inter-
view cost-intensive. In such a case, gathering the event logs from all recruiters
and applying process mining techniques can help determine process dependen-
cies and causalities. However, recruiters do not want to disclose details of their
recruiting process to third parties. They experimented in the past to find the
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best recruiting strategy. Thus, by sharing their detailed approaches, they could
have competitive disadvantages.

This paper proposes a theoretical concept of executing process mining tasks
in trusted execution environments (TEEs). TEEs are hardware-based approaches
that enable processing data in a secure enclave. Thus, there is no technical pos-
sibility to leak the information to unauthorized third parties. The outcome is a
theoretical concept and an identification of research challenges that need to be
solved before the concept can be implemented in practice.

The remainder of this paper is structured as follows. Section 2 reviews the
current state of the art in privacy-preserving inter-organizational process min-
ing and trusted computing. Afterward, Sect. 3 introduces our novel concept for
privacy-aware process mining in TEEs. Section 4 discusses the implementation
challenges of the concept, before Sect. 5 concludes on the impact of this scientific
contribution.

2 Related Work

Recently, privacy aspects of inter-organizational process mining have seen an
increase in academic and professional interest. The current state of the art in
privacy-preserving process mining approaches can be divided into two main seg-
ments. The first segment focuses on privacy preservation of information related
to a individuals encoded in a process log, e.g., employee information. The other
group of approaches focuses on protecting the information of an organization
and its business secrets.

Individual-focused privacy-preserving process mining approaches focus on the
privacy of the information of individuals that are included in event logs. These
concepts have applications in fields like individual health care or manufacturing
workflows [6]. For instance, a large hospital might want to analyze its emergency
room response processes. Therefore, they need data related to specific cases
of emergency room arrivals. The event log might include information specific
to a patient. Regulatory frameworks like the General Data Protection Regula-
tion (GDPR) [7] or the Health Insurance Portability and Accountability Act of
1996 (HIPAA) [8] require this data to be protected. Current research on individ-
ual privacy-preserving process mining employs concepts such as differential pri-
vacy and k-anonymity [9–11]. In addition, other approaches employ encryption as
the main method of privacy preservation. These concepts use standards like the
Advanced Encryption Standard (AES) [12] or the Pallier Cryptosystem [13] to
encrypt personal information encoded in the event log. Such cryptography-based
concepts often also enable privacy preservation of business-related information
as well [14,15].

Organization-focused privacy-preserving process mining techniques have the
ultimate goal to protect business-related information. The leakage of valuable
organizational information to third parties might lead to compliance issues and
competitive disadvantages. Thus, especially inter-organizational business pro-
cesses pose a specific challenge to such organization-focused privacy-preserving
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process mining techniques. It is characteristic of inter-organizational process
mining to acquire event logs from different organizations. These joint insights
may generate a greater value than the insights created from separate event logs
in an isolated manner. Current research in this field proposed different concepts
for executing the mining process. One approach is to mine partitioned data in a
decentralized fashion. The partitions can be used to generate a common model
without revealing the raw data [16]. The common model may differ for organi-
zations since they all have different knowledge. Cryptography-based approaches
encrypt the valuable information [14]. Lately, also approaches that use private
computing paradigms such as homomorphic encryption [15] or secure multi-party
computation [17] emerged. Both of these approaches are famously known as the
privacy-preserving computation (PPC) methodologies. Lately, trusted execution
environments (TEEs) have been introduced [18]. TEEs are a hardware-level
privacy-aware computation paradigm. This paper presents a theoretical concept
for organization-focused privacy-preserving process mining using TEEs.

Trusted execution environments (TEEs) are a hardware-based approach for
trusted computation provided by some modern micro-processors, e.g. Intel Soft-
ware Guard Extension (SGX) [18] and ARM Trustzone [19]. The main compo-
nent of a TEE is a secure element that resides within a separate area of the
CPU chip. Code and data in the secure element are entirely isolated from other
programs and from the host operating system. This paradigm protects the data
from theft and the code from tampering. TEEs, and Intel SGX in particular,
provide low-level primitives for defining specific rules (e.g. which software pack-
age can decrypt a dataset). These rules are enforced by using hardware-based
cryptography. However, expressing complex multi-processor workflows like the
one we have described above requires a higher-level rule system. This rule system
is in charge of orchestrating the encryption of the input data, the provisioning of
several secure enclaves, and the dataflow between them. Distributed ledger tech-
nologies (DLTs) offer a decentralized execution environment with an immutable
record of transactions. Thus, DLTs can be a well-suited platform for orches-
trating process mining. The organizations can use smart contracts to define
authorizations, to record job requests, and to verify remote attestations (proof
of a correct execution in TEE) with no risk of their intent being altered. Current
approaches combining distributed ledgers (for expressing rules) and TEEs (for
enforcing them) for trusted computing include iExec [20] and Ekiden [21].

The primary purpose for adopting the hardware-based TEE (HW TEE) in
our contribution unfolds as follows. Besides enabling data integrity and confiden-
tiality, HW TEEs also ensure code integrity, code confidentiality, programmabil-
ity, attestability, recoverability, and authenticated application launch facilities.
Thus, these characteristics make the HW TEE a suited option for the organiza-
tions for doing privacy-preserving process mining.
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3 A Concept for Privacy-Aware Process Mining in
Trusted Execution Environments

In this paper, we introduce a theoretical concept on how TEEs and blockchains
can be used for privacy-aware inter-organizational process mining. The setup
of the orchestration of the TEEs is inspired by the iExec decentralized cloud
computing framework3. However, the general concepts presented in the following
are independent of any framework to orchestrate TEEs.

3.1 System Architecture

Our concept consists of different system components. The following paragraphs
introduce them and their workflows in the inter-organizational mining process.
The architecture diagram in Fig. 2 visualizes the interactions.

Fig. 2. Architecture diagrams of different roles interacting with each other.

Organizations. In our concept, N organizations have their private information
system where they acquire new events. These private information systems are
isolated from each other.

Secret Management System. The secret management system (SMS) is a key
component that acts as a secure intermediary between the organizations that
provide data and the process miner which processes it. Because TEEs require

3 https://iex.ec.

https://iex.ec
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data be encrypted specifically for a given enclave session, the workflow could not
run asynchronously without it. In our example, this would translate to having
the organizations encrypt their logs after the process mining has started. In our
design, the SMS itself is a secure application running in an enclave. It receives the
decryption keys of all the data from the organizations and manages it according
to the authorized orders. The orders are signed and recorded on the blockchain.
The SMS is thus a critical component that holds all of the decryption keys to
every log file, but the fact that it runs in a TEE guarantees that only no one
and nothing besides its code can access them, not even the administrator of the
machine it is running on.

Blockchain. In our concept, we use the blockchain as tamper-proof storage of
authorization statements using smart contracts [22]. The SMS is only allowed to
give the keys to authorized entities. Thus, the organizations create transactions
to trigger smart contracts stating which miner can retrieve the keys for a specific
order.

Event Log Database. The public event database stores the encrypted event log
files of all organizations. This ensures ensure the integrity of the private logs and
enables the inter-organizational mining process to retrieve them. The database
host never has access to the keys of the event logs.

Miner. The miner is responsible for applying process mining techniques to the
combined event logs of different organizations. The three-step subprocess consists
of combining the event logs, mining the process models, and making the insights
available to the organizations. All mining tasks are executed in a TEE so that
the miner host cannot interfere.

3.2 Workflow

The following sections describe the process of privacy-preserving process mining
using TEEs in detail. Figure 3 shows the process model of our concept.

Prerequisites. We assume that the following activities happened before the core
process. All N organizations need to synchronize the case ids and select a pro-
cess mining technique upfront. In process mining, a case is a unique identifier
that groups a set of events. All events in a case belong logically together. In the
running example, every instance of a recruiting process of a backend developer
consists of different events. Such events may be that a recruiter found a new
candidate or that the hiring company made a decision. All events that belong to
the same instance of the process can be grouped together in a case. A sequential
order of timestamped events within a case is called a trace. The organizations
might use different systems to track the events that fall into their domain. Thus,
they need to synchronize case identifiers. In that way, the process miner can
later merge different sub-traces that belong to the same case in a TEE. It is also
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Fig. 3. Illustration of the high-level process of privacy-preserving process mining using
TEEs. The green boxes indicate workflow executed within a TEE. The diagram uses
the BPMN 2.0 standard for illustration [5]. The collapsed pool indicates a variable
number of organizations that all follow the same logic. (Color figure online)

required that the process miner is in possession of an implementation of the pro-
cess mining technique. Finally, each organization generates a unique symmetric
encryption key and uses it to encrypt an archive containing all of their log files.

Initialization. The core workflow component for privacy-aware process mining in
TEEs is the process mining code, which must be audited and approve it by all of
the organizations. In practice, the source code is shared in a repository that all
organizations can access. All organizations audit the code and if approved they
record a rule linking the hash value of the packaged code to the hashed value of
the encrypted archive. This requirement ensures that the SMS will later give the
right program access to the right data. In our concept, the rules are recorded
in a blockchain smart contract [23] to preserve the integrity of the hashes in a
decentralized fashion. All organizations have blockchain peers and guarantee the
integrity of transactions.
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Review and Data Contribution. After the deployment phase, the process miner
signals readiness to all N organizations. The organizations can review the process
mining code. In this review, they can assess if the code meets all privacy and
compliance requirements. In case an organization decides that the code does not
fulfill its requirements, the process terminates. After a positive code review, the
organizations retrieve their event logs from their private information systems.
They encrypt their event logs separately. Therefore, an organization needs to
encrypt its event log using a symmetric encryption mechanism, such as AES-
256 [12]. A hash of the encrypted data set is submitted to the blockchain with
a transaction. The organizations can later use the hash to ensure the integrity
of the data set. The encrypted event log itself is stored at an independent host
as an encrypted file. The organizations share their symmetric key with a secret
management service (SMS) of their choice. This SMS is a simple program that
lets only authorized entities access keys. The right functionality of the SMS can
be guaranteed because the SMS program is also executed in a TEE. Its code is
open source. Thus, every entity can audit its code. Through the attestation that
a TEE produces, it is possible to prove that only the desired program has been
executed and nothing else.

Mining. A organization needs to trigger the process mining task. This trigger
is expressed through a blockchain transaction as an execution order that needs
to be signed by the requesting organization. The execution order specifies which
code (the selected process mining technique) should be executed and which input
data sets (the N event logs of the organizations) should be mined. The process
miner starts the mining process in a TEE. In that way, the host does not have
any influence on the execution of the mining program, and a remote attestation
proves the correct execution. First, the process miner requests all the encrypted
event logs from the independent event data storage; then, it makes a request
to the SMS to obtain the keys to decrypt the process logs. The SMS uses TEE
primitives to verify that the miner is actually running in an enclave. The SMS
only allows it to access the keys if there is an order that assigns the miner to a task
that includes the data sets of the respective organizations. The correctness of this
logic can be guaranteed through the attestation of the TEE. After the process
miner received and decrypted all event logs in the enclave, the merging of the
logs begins. While merging, the different sub-traces of the separate organizations
are used to end-to-end traces. This trace reflects the full inter-organizational
processes with all the sub-processes of the collaborators. The merging process
yields a full event log that the selected process mining technique can then mine.

Insights. In the end, the process mining TEE compiles the aggregated result of
the mining process. These result is a joined process model that encompasses the
whole inter-organizational process. Furthermore, the TEE distributes them to
all N organizations. In that way, the N organizations only get insights from the
merged and aggregated process. However, they cannot get any insights into the
sub-processes of a specific organization.
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3.3 Security Comparison

The following sections discuss the security and privacy features of our proposed
approach to currently existing technical foundations for privacy-preserving pro-
cess mining. Secure multiparty computation (SMPC), homomorphic encryption
(HE), and differential privacy (DP) enable different mechanisms for ensuring pri-
vacy and confidentiality in inter-organizational process mining. SMPC keeps the
executing system from exposing the input data [24]. However, it does not provide
any guarantees for the output data. HE mitigates potential vulnerabilities in the
storage or computing environment from compromising the data. However, in the
case of HE, if some party gets the access privilege, the authorized party can eas-
ily access entire datasets [25]. DP provides a layer of privacy by obfuscation in
case some data concerning individual entities leaks. Yet, it can not counteract
vulnerabilities in the infrastructure used to store or manage the data [25]. Thus,
executing process mining code in a hardware TEE differs from the current con-
cepts for privacy-preserving process mining. It ensures complete computation
confidentiality through memory encryption at the hardware level. Inputs and
outputs to computing tasks are encrypted. This makes hardware-based TEEs
suitable for developing our multi-organizational trusted process mining frame-
work, as long as the user trusts the hardware design.

4 Implementation Challenges

To implement our presented concept, we need an orchestration layer that can
provide provision TEE resources for process mining tasks. Therefore, we adopt a
decentralized cloud paradigm. There, workers can contribute their TEE resources
to a process mining task. We adopt this paradigm so that the organizations do
not have to deal with the overhead of setting up TEE resources on their premises.
Furthermore, the incentivization mechanism ensures that attestations are always
distributed to all involved organizations.

Currently, the iExec framework [20] and Hyperledger Avalon [26] are the
two only decentralized cloud computing frameworks that can orchestrate Intel
SGX enclaves [18]. Both utilize the blockchain to store orders, resource alloca-
tions, and attestation securely. In the following, we explore the steps needed to
implement the presented concepts using iExec. We make this choice because it
is more advanced in its development maturity than other approaches. However,
our principles are independent of any framework.

The iExec worker infrastructure is deployed on top of the Ethereum
blockchain. A suite of support tools allows anyone to record TEE applications
packaged as Docker containers. Data management tools enable the management
of encrypted data sets and setting fine-grained authorization rules. These autho-
rizations include which application can access which data set and which users
can trigger an execution. The authorization is implemented in iExec with a secret
management service (SMS) similar to our proposed inter-organizational process
mining concept.
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While the iExec framework is the most suited candidate to implement our
concepts, further development is required to support some specific needs for
process mining. Namely, this includes the possibility of assigning several data
sets to a single execution and distributing the result to multiple users. At the
time of writing, iExec does not support consuming multiple data sets in a single
execution. Furthermore, the SMS in iExec is in a prototype stage. Its full imple-
mentation in an Intel SGX TEE is still not complete. The upcoming release of
SGX 2 CPUs by Intel should significantly improve the performance and scala-
bility of the service.

Once these challenges are overcome, the novel approach to privacy-preserving
inter-organizational process mining as presented in this paper can be researched,
implemented, and evaluated further.

5 Conclusion

In this paper, we introduced a novel concept for privacy-aware inter-
organizational process mining using trusted execution environments. The con-
tributions are theoretical. We identified challenges for future work that need to
be solved to implement the concept.

Our concept can enable process mining in application domains with sensi-
tive data that currently do not utilize process analysis in cross-organizational
processes. The first application area we foresee is supply chain management.
Several logistics companies must collaborate to transport a parcel from a sender
to a receiver in international deliveries. All companies want to optimize their
workflows as much as possible. The inclusion of the whole inter-organizational
process could help optimize shipping times and improve customer satisfaction.
Another application area is fraud in finance. Currently, detecting money laundry
circles requires transaction logs from different banks. Due to the privacy require-
ments of their customers, banks are reluctant to share data with any third party.
Introducing our concept for money laundry detection could build trust since all
processing steps of shared data can be audited, and the TEEs guarantee that no
other unauthorized code is executed.
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laborative business processes: an approach to identify uncertainty. IEEE Internet
Comput. 24(6), 17–25 (2020)

4. Elkoumy, G.: Privacy and confidentiality in process mining-threats and research
challenges (2021). arXiv preprint: arXiv:2106.00388

https://doi.org/10.1007/978-3-662-49851-4
http://arxiv.org/abs/2106.00388


380 M. Müller et al.

5. OMG. Business process model and notation (BPMN), version 2.0. https://www.
omg.org/spec/BPMN/2.0/PDF. Accessed on 29 July 2021

6. Mannhardt, F., Petersen, S.A., Oliveira, M.F.: Privacy challenges for process min-
ing in human-centered industrial environments. In: 2018 14th International Con-
ference on Intelligent Environments (IE), pp. 64–71. IEEE (2018)

7. Directive 95/46/ec (general data protection regulation). https://eur-lex.europa.
eu/eli/reg/2016/679/oj. Accessed 30 July 2021

8. Health insurance portability and accountability act of 1996 public law 104–191
(1996). https://www.govinfo.gov/content/pkg/PLAW-104publ191/html/PLAW-
104publ191.htm. Accessed 30 July 2021

9. Mannhardt, F., Koschmider, A., Baracaldo, N., Weidlich, M., Michael, J.: Privacy-
preserving process mining. Bus. Inf. Syst. Eng. 61(5), 595–614 (2019)

10. Fahrenkrog-Petersen, S.A., van der Aa, H., Weidlich, M.: PRETSA: event log san-
itization for privacy-aware process discovery. In: 2019 International Conference on
Process Mining (ICPM), pp. 1–8. IEEE (2019)

11. Fahrenkrog-Petersen, S.A., van der Aa, H., Weidlich, M.: PRIPEL: privacy-
preserving event log publishing including contextual information. In: Fahland, D.,
Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 111–
128. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9 7

12. Daemen, J., Rijmen, V.: AES proposal: Rijndael (1999)
13. Paillier, P.: Public-key cryptosystems based on composite degree residuosity

classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

14. Burattin, A., Conti, M., Turato, D.: Toward an anonymous process mining. In:
2015 3rd International Conference on Future Internet of Things and Cloud, pp.
58–63. IEEE (2015)

15. Tillem, G., Erkin, Z., Lagendijk, R.L.: Mining encrypted software logs using alpha
algorithm. In: SECRYPT, pp. 267–274 (2017)

16. Liu, C., Duan, H., Zeng, Q., Zhou, M., Faming, L., Cheng, J.: Towards comprehen-
sive support for privacy preservation cross-organization business process mining.
IEEE Trans. Serv. Comput. 12(4), 639–653 (2016)

17. Elkoumy, G., et al.: Secure multi-party computation for inter-organizational pro-
cess mining. In: Nurcan, S., Reinhartz-Berger, I., Soffer, P., Zdravkovic, J. (eds.)
BPMDS/EMMSAD -2020. LNBIP, vol. 387, pp. 166–181. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-49418-6 11

18. Costan, V., Devadas, S.: Intel SGX explained. IACR Cryptol. ePrint Arch.
2016(86), 1–118 (2016)

19. Pinto, S., Santos, N.: Demystifying ARM TrustZone: a comprehensive survey. ACM
Comput. Surv. (CSUR) 51(6), 1–36 (2019)

20. Zhang, L., Bakshi, S., Zao, K.: Off-chain trusted computing. IEEE Internet Things
Mag. 3(2), 8–9 (2020)

21. Cheng, R., et al.: Ekiden: a platform for confidentiality-preserving, trustworthy,
and performant smart contracts. In: 2019 IEEE European Symposium on Security
and Privacy (EuroS&P), pp. 185–200. IEEE (2019)

22. Müller, M., Ostern, N., Rosemann, M.: Silver bullet for all trust issues? Blockchain-
based trust patterns for collaborative business processes. In: Asatiani, A., et al.
(eds.) BPM 2020. LNBIP, vol. 393, pp. 3–18. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58779-6 1

23. Buterin, V., et al.: Ethereum white paper. GitHub Repos. 1, 22–23 (2013)

https://www.omg.org/spec/BPMN/2.0/PDF
https://www.omg.org/spec/BPMN/2.0/PDF
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://www.govinfo.gov/content/pkg/PLAW-104publ191/html/PLAW-104publ191.htm
https://www.govinfo.gov/content/pkg/PLAW-104publ191/html/PLAW-104publ191.htm
https://doi.org/10.1007/978-3-030-58666-9_7
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-030-49418-6_11
https://doi.org/10.1007/978-3-030-58779-6_1
https://doi.org/10.1007/978-3-030-58779-6_1


Process Mining in Trusted Execution Environments 381

24. Sayyad, S.: Privacy preserving deep learning using secure multiparty computation.
In: 2020 Second International Conference on Inventive Research in Computing
Applications (ICIRCA), pp. 139–142. IEEE (2020)

25. Zorarpacl, E., Ozel, S.A.: A hybrid approach of homomorphic encryption and dif-
ferential privacy for privacy preserving classification. Int. J. Appl. Math. Electron.
Comput. 8(4), 138–147 (2020)

26. Hyperledger avalon. https://github.com/hyperledger/avalon. Accessed 30 Aug
2021

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://github.com/hyperledger/avalon
http://creativecommons.org/licenses/by/4.0/


Quantifying the Re-identification Risk in
Published Process Models

Karim Maatouk and Felix Mannhardt(B)

Eindhoven University of Technology, Eindhoven, The Netherlands
f.mannhardt@tue.nl

Abstract. Event logs are the basis of process mining operations such as process
discovery, conformance checking, and process optimization. Sensitive informa-
tion may be obtained by adversaries when re-identifying individuals that relate to
the traces of an event log. This re-identification risk is dependent on the assumed
background information of an attacker. Multiple techniques have been proposed
to quantify the re-identification risks for published event logs. However, in many
scenarios there is no need to release the full event log, a discovered process model
annotated with frequencies suffices. This raises the question on how to quantify
the re-identification risk in published process models. We propose a method based
on generating sample traces to quantify this risk for process trees annotated with
frequencies. The method was applied on several real-life event logs and process
trees discovered by Inductive Miner. Our results show that there can be still a sig-
nificant re-identification risk when publishing a process tree; however, this risk is
often lower than that for releasing the original event log.

Keywords: Process mining · Process discovery · Re-identification Risk

1 Introduction

Process mining is the science of understanding processes and improving them based on
event data. Event data is mined for insights that can help industries in optimizing their
processes, re-engineering them, and aiding their decision-making. Process discovery is
one application of process mining allowing to understand the underlying processes by
visualizing a process model of how the process was executed.

This means that event data availability is key to any process mining task; without
event data, there is no process mining. However, the publishing of event data, in many
cases, is subject to constraints due to privacy concerns; hence, limiting the availability
of event data. Fields, such as healthcare make use of process mining techniques for
optimizing their processes and consider patient information whose privacy concerns
are of utmost importance.

So, privacy is an important topic in the process mining field given the growing col-
lection and use of data which may originate from personal activities or process event
logs that contain information on individuals. Maintaining privacy of individuals in pro-
cess mining use cases is difficult since event data is sequential and often individual
cases or events are related to sensitive information about individuals. An example of
c© The Author(s) 2022
J. Munoz-Gama and X. Lu (Eds.): ICPM 2021 Workshops, LNBIP 433, pp. 382–394, 2022.
https://doi.org/10.1007/978-3-030-98581-3_28
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such information would be the information about medical tests performed on a patient
in a hospital. Existing work, therefore, has provided methods to quantify the risk of
re-identification of individual information in a published event log [8,10]. This allows
to assess the risk when releasing the original event log or to judge the effectiveness of a
specific anonymization technique on the privacy of an event log.

The existing work on privacy-risk quantification only considers the various privacy
related risks, e.g., the re-identification risk as in [10], for published event logs or closely
derived representations such as directly-follows graphs [5] (Sect. 3). However, in many
use cases the event log does not need to be public and could be only available to a
process mining system that discovers process models providing an abstract represen-
tation of the source data. Still, there is a risk of re-identification of sensitive infor-
mation based on such published process models that were mined from the event log.
Such re-identification risk of discovered process models and how it differs from the
re-identification risk of the source event log has not yet been investigated.

This work explores which privacy attacks are possible using the information in a
published process model and aims to quantify the re-identification risk for a given
published process model. Such quantification would enable new evaluation options
for anonymization schemes and help to judge whether a certain process model can
be released to a specific audience. The input to our method are frequency-annotated
process models that can be converted to process trees [11] such as, e.g., discovered by
the Inductive Miner [7]. We propose a randomized log replay technique to generate
multiple possible event logs (scenarios) given the constraints of the process model and
its frequencies. Based on these generated event log scenarios, we leverage the existing
re-identification risk measures proposed by Rafaei et al. [8] (Sect. 4). The method was
evaluated on several real-life event logs (Sect. 5) and the results were compared to the
re-identification risk of the original logs.

2 Problem Statement

Process models, which are a graphical representation of the process, can be of different
types such as Petri nets, Process trees, or Directly-Follows Graphs (DFGs). These pro-
cess models can be discovered automatically using process discovery algorithms such
as, e.g., Inductive miner [7]. A process discovery method takes an event log as input
and returns a process model as a compact representation of the process behavior that
was observed.

Events in an event logs contain in addition to case identifiers, which refer to the pro-
cess instance in which the event occurred, other event information such as timestamp,
activity, resource, and cost. For each case that consists of all events with the same case
identifier in an event log, we can write its trace, i.e., the sequence of events ordered by
timestamp, in a concise form representing the activities found in a case. For example,
the trace for case 1 in the event log of Table 1 can be represented as

〈register request, examine thoroughly, check ticket, decide, reject request〉.
A common output format of process discovery algorithms are Petri nets, which are a
graphical representation of a given process. Since both event logs and process mod-
els contain information, there are risks of privacy attacks that seek to reveal sensitive
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Table 1. Fragment of an event log about handling requests for compensation [2]

Case Event Timestamp Activity Resource Cost

1 35654423 30-12-2010:11.02 register request Pete 50

1 35654424 31-12-2010:10.06 examine thoroughly Sue 400

1 35654425 05-01-2011:15.12 check ticket Mike 100

1 35654426 06-01-2011:11.18 decide Sara 200

1 35654427 07-01-2011:14.24 reject request Pete 200

2 35654483 30-12-2010:11.32 register request Mike 50

2 35654485 30-12-2010:12.12 check ticket Mike 100

2 35654487 30-12-2010:14.16 examine casually Pete 400

2 35654488 05-01-2011:11.22 decide Sara 200

2 35654489 08-01-2011:12.05 pay compensation Ellen 200

Fig. 1. Petri net with frequencies of the Medical Center COVID, HIV testing process.

information given the attacker has some background information about the individuals
in an event log or process model. Petri nets can represent a variety of information that
might unintentionally be revealed by the publisher of the Petri net to stakeholders or
to the public. In other scenarios, a privacy attack might occur and an adversary might
be able to disclose sensitive or classified information based on the published Petri net.
Although the data might not be present explicitly in the Petri net, the attacker might be
able to draw out sensitive information by using different techniques; especially when
combined with other data obtained from a breach or other publicly available data about
the individuals. For the purposes of illustration, we use the following example in Fig. 1
of a testing process for COVID and HIV in a medical facility. The process illustrates
the process from the point of registration in the relevant department (COVID or HIV)
up to the testing process, result (negative or positive), and the discharge of the patient.
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The Petri net is frequency-annotated with the number of occurrences of the respective
activities (transitions).

A re-identification attack occurs when an adversary attempts to reverse the
anonymity of certain information that was masked by an operation to remove sensi-
tive information. The adversary can use information that was acquired publicly or from
a data breach. Attacks are most successful when adversaries correlate or match differ-
ent datasets and information to mount an attack. Process models may contain sensitive
information about individuals or processes. The adversary might attempt to use the
information in the process model to re-identify individuals in their attack. In a dataset
or an event log, an adversary will attempt to single out an individual’s identity based on
the uniqueness of a record’s or event’s identifiers in order to mount a re-identification
attack. Singling out a record, the adversary can attempt a linkage attack using other
datasets obtained by the adversary which can lead to the re-identification of individual
information.

In the context of a frequency-annotated process model, a similar paradigm can be
established to understand how an adversary can use the process model information
to re-identify individuals. Singling out individuals in a process model can be done
based on infrequent paths (runs) in the process model. An infrequent path in a pro-
cess model allows an adversary to single out an activity of that process. To illustrate,
in the Petri net shown in Fig. 1, we notice a single case in which a patient transferred
from the HIV testing department to a COVID testing department. This information
does not reveal the individual’s identity; however, coupled with other information that
the attacker might have, it can lead to a successful re-identification by an adversary.
For instance, if the adversary has background information about patients registrations
for COVID department and they detect that a unique individual transferred from HIV
department, without undergoing registration directly for a PCR test, they can conclude
that individual is Carla Sanders from the background information. They can also know
from the process model that Carla Sanders has also undergone an HIV test as well as
the result of the HIV test (positive). Therefore, the individual identity and HIV results
are revealed in that attack. In Fig. 1, there is a single activity transfer reg after ongo-
ing a result back positive hiv as indicated by the frequency on the activity(transition).
Assume that also in the background information, Carla Sanders transferred registration
to COVID department is recorded. Therefore, the adversary can identify Carla Sanders
as the individual belonging to the trace containing transfer reg and also can know the
complete trace prior to the transfer, such as that she had undergone a positive HIV test.

By singling out the infrequent trace transfer reg of frequency 1 of the Petri net in
Fig. 1, the adversary mounts a linkage attack using certain background knowledge re-
identify the individual as Carla Sanders who is the only one that has undergone transfer
on that day April 2, 2020; and thus can identify that she has undergone a positive HIV
test. This shows that a re-identification attack is also possible using the information
available in a published Petri net.

3 Related Work

Privacy preserving process mining has increasingly gained interest in the process min-
ing community. This comes with legislations and data protection regulations across the
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EU becoming stricter, especially with the General Data Protection Regulation (GDPR)
[1]. A main concern for privacy-preserving process mining approaches is how to ensure
privacy when event logs may be published. Since the processes studied can be in fields
dealing with sensitive data such as healthcare, financial institutions, and other critical
fields, privacy is of utmost importance.

Quantifying the re-identification risk is closely related to research on privacy-
preserving process mining. Knowing the risk can help evaluate the effectiveness of
privacy-preserving methods in process mining. It can also act as a comparison measure
before and after applying privacy models. Although re-identification attacks are hugely
researched in different fields [3,4,6,9], there is only a couple of published research in
the process mining community on quantification of disclosure risk in event logs and
directly-follows graphs. Most related to our research are [5,8,10].

In [10], Nunez von Voigt et al. present a method to quantify the re-identification risk
in event logs. The authors propose two measures to quantify the risk. Both measures are
based on uniqueness in the event logs. The two measures are: uniqueness based on case
attributes and uniqueness based on traces. In the first measure, the uniqueness of the
case attributes in an event log is used to estimate the re-identification risk. The second
measure considers the uniqueness of traces in an event log to account for event logs
that do not have a lot of case attributes where the only information in the event log
is the traces themselves. The work quantifies the risk in publicly available event logs
and demonstrates how the re-identification risk can be very high for some of them and
that almost every case can be re-identified in some scenarios. This sheds light on the
need for adequate methods to quantify the re-identification risks and means to protect
against them. In [8], Rafiei et al. introduces two measures for quantifying disclosure
risk in published event logs to evaluate the effectiveness of privacy-preserving tech-
niques. The two proposed measures are identity (case) disclosure and attribute(trace)
disclosure. The first measure, case disclosure, uses uniqueness to measure how trace
owners can be re-identified. The second measure, trace disclosure, measures how the
sensitive attributes such as the complete trace of a case, can be disclosed. The method
takes into account the background knowledge that the attacker might have about the
event log when quantifying the risk. The method considers three types of background
knowledge: set, multiset, and sequence. The set background knowledge is simply the
set of activities in a process that the attacker might know are related to an individual.
A multiset background knowledge provides additional knowledge about the number of
occurrences of the process activities, while the sequence background knowledge pro-
vides additional information about the order in which the activities have occurred for
the trace owner. The paper applies the method on two publicly available real-life event
logs. In [5], Elkoumy et al. discuss the re-identification probability in DFGs, which are
an output of process mining techniques. The work expresses the re-identification and
the guessing advantage of an attacker by calculating the guessing probability given a
DFG.
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4 Approach

Existing re-identification risk quantification techniques calculate re-identification risk
from event logs which constitute of traces. Our main idea is to calculate the re-
identification risk from frequency-annotated process models by generating possible sets
of traces corresponding to the original event log from the process model.

4.1 Approximating Re-identification Risk by Simulation

The generation of the exact traces corresponding to the original log from the frequency-
annotated process model is not possible in all process models. This can be done accu-
rately for process models that do not contain concurrent transitions and cycles as
described in the challenges described earlier. This is due to the fact that when the pro-
cess model contains concurrent transitions and cyclic behaviour, there can be multiple
execution traces, of which we do not know which of them correspond to the trace in the
original event log. The brute force approach to calculate the re-identification risk would
consider the generation of all the combinations of transitions in a process model and
their possible trace sets which could be very computationally expensive.

However, since most process models that describe business processes contain con-
current and cyclic behaviour, we adapt the solution to estimate the quantification risk
using approximation techniques. Our proposed approach is to generate execution traces
from the frequency-annotated process model without considering all the possible traces
sets in a process model. This is because when the process model has many transitions
and especially nested cyclic and concurrent ones, the number of possible traces sets
increases substantially. Afterwards, we employ the existing measures for quantification
of risk on the approximated possible traces of the process model.

The idea is to generate the execution traces in an ordered manner and not consider
all the possible traces combinations. For this purpose we restrict ourselves to process
models or Petri nets that can be represented as process trees. Then, we can traverse the
process model in an ordered manner without randomizing the options to fire transitions,
Therefore, for XOR transitions and concurrent transitions, we only consider a fixed
order of firing of the activities, and not all the combinations possible. In the following,
we assume as input a frequency annotated process tree.

4.2 Process Trees

Process models using graph-based notations can complicate process discovery from
such event logs and result in unsound process models which complicates discovery.
We use process trees or block-structured models that are sound by construction [2]. A
process tree is defined as follows:

Definition 1. (Process Tree) [2]. Let A ⊆ A be a finite set of activities with τ /∈ A.
⊕ = {→,×,∧,�} is the set of process tree operators.

– If a ∈ A ∪ {τ}, then Q = a is a process tree,
– If n ≥ 1, Q1, Q2, ..., Qn are process trees, and ⊕ ∈ {→,×,∧}, then Q =

⊕(Q1, Q2, ...Qn) is a process tree, and
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– If n ≥ 2 and Q1, Q2, ..., Qn are process trees, then Q = (� (Q1, Q2, . . . , Qn) is a
process tree.

LA is the set of all process trees over A.

The leaf nodes of a process tree represent process activities and the other nodes rep-
resent operators. Process trees have four operators: sequence operator, exclusive choice
operator, parallel operator, and loop operator denoted as: {→,×,∧ �} respectively.
The four operators can also be abbreviated as seq, xor, and, xor loop which will be
adopted in this work. The operator nodes define the order of execution of their children
nodes. In the following, we define the semantics of the execution of a process tree by
its operator type:

Definition 2 (Semantics of a Process Tree). Let P be a process tree. Let N ∈ P be
any non-leaf node. Let T (N ) be of range {→,×,∧ �} be the type of NodeN operator.
Let T (N ) have children nodes {a, b} with a being the leftmost node, and b being the
rightmost node. The execution of the children of the node T (N ) is done as follows:

– if T (N ) =→, a is executed then b is executed. Trace is {a, b}
– if T (N ) = ×, a is executed or b is executed. Trace is {a} or {b}
– if T (N ) = ∧, a and b are executed, a or b may come first. Trace is {a, b} or {b, a}.
– if T (N ) =�, a is executed, b can be executed any number of times 0...n. For each
execution of b, a is executed again. Trace is {a} or {a, b, a} or {a, b, a, ..., a, b, a}.

4.3 Frequency Constrained Traversal of the Process Tree

After having assigned all the nodes of the process tree with their respective firing fre-
quencies, the next step is to traverse the process tree according to those frequencies.
This will allow us to generate simulated traces that are similar in their frequencies of
transitions to the inputted Petri net. The traversal of the process tree is done in a top-
bottom approach on the tree while decrementing the counts of the nodes traversed until
the frequencies are fully satisfied in the process tree. The traversals of the tree must
satisfy the counts on the nodes of the tree. We define the execution order of the nodes
in a process tree by our simulation approach as follows:

Definition 3 (Execution Order of Nodes in Process Tree by our Approach). Let P
be a process tree and T (N) be the type of the tree operator at the root node of P which
can be one of {SEQ,XOR,AND,LOOP}. Let N be a node of a process tree which
can be equal to P or any subtree of P that is a non-leaf node. The execution order of
the children of process tree P by our approach is as follows:

1. If T (N) = SEQ: execute leftmost child first followed by second leftmost and so on.
2. If T (N) = AND: execute all the children of the AND node in a fixed order from

left to right.
3. If T (N) = XOR: execute the first child of the XOR node with remaining frequency

> 0
4. If T (N) = LOOP : execute leftmost child, repetition is possible by executing right-

most child additionally then executing the leftmost child again. The overall number
of repetitions is equal to the frequency of the rightmost child of the XOR LOOP node.
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Fig. 2. Frequency Annotated Process Tree of Handling Request For Compensation Log

In Fig. 2, we show the frequency-annotated of the initial example log in Table 1 and
its corresponding frequency-annotated process tree as decorated by our approach in the
previous section. We give one example run of the tree traversal execution order in our
approach according to Definition 3 for the process tree in Fig. 2. The execution of the
process tree should start from the root node and is as follows:

1. root SEQ node is executed
2. children of SEQ node are executed: register request, XOR LOOP, and xor in order

from left to right.
3. When XOR LOOP is executed, children of the loop are executed: SEQ, reinitiate

request. For each execution of the right child of the loop (reinitiate request), the left-
most child (SEQ) of the XOR LOOP is executed again. That is, leftmost child(SEQ)
is executed followed by the execution of AND node, decide node. Next, children of
AND node (check ticket and XOR) are executed in left-to-right order. Next, exam-
ine thoroughly is executed given its remaining frequency > 0; otherwise, examine
casually is executed.

4. XOR is executed, and then its child reject request is executed given its remaining
frequency > 0; otherwise, pay compensation is executed.

The traversal of the process tree is done multiple times until the frequencies of the
process tree are satisfied. While nodes are executed, the count of the executed nodes is
decremented until the count reaches zero satisfying the frequencies observed - at which
the execution is stopped. Therefore, we obtain from the process tree executions that are
equivalent in their activity frequencies to the original event log which the Petri net was
mined from. However, the individual traces may differ due to the higher abstraction
level of the process model.

5 Evaluation

We evaluate our approach on real-life event logs to investigate feasibility and validity.
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Fig. 3. Case disclosure results for the original log and our simulated event logs.

5.1 Experimental Setup

We performed experiments with multiple real-life event logs which are publicly avail-
able at the 4TU Centre for Research Data1. Here, we only report the results on the
Sepsis Cases and the Road Traffic Fine Management (RTFM) logs since they were
frequently used in the related work. For each log, we generate a frequency-annotated
process model using Inductive Miner [7]. From the process model, we obtain five sim-
ulated event logs by applying our approach. We did not opt for more simulations since
there is little variation between the results of the simulated event logs. Afterwards, we
calculate the identity (case) disclosure and trace disclosure measures as mentioned in
our approach in Sect. 4 and implemented in Rafiei et al. in [8] using the p-privacy-qt
library published by their work. Then, we report the case disclosure and trace disclo-
sure for both the original event log and the five simulated event logs generated from the
mined process model of the original event log. Our approach is implemented in Python
and can be found on GitHub2.

5.2 Identity (Case) Disclosure Results

In Fig. 3, we demonstrate the identity (case) disclosure risk on the original Sepsis-cases
log and the simulated logs generated by our approach. The identity (case) disclosure risk
increases with increasing the background knowledge power size. The more background
information available to the attacker, the more the risk of re-identifying individuals in
the event log. The risk also increases with varying the background knowledge type from
set to multiset and sequence respectively which is also explained by more background

1 https://data.4tu.nl/.
2 https://github.com/Karimmaatouk15/quantification reidentification risk process models/.

https://data.4tu.nl/
https://github.com/Karimmaatouk15/quantification_reidentification_risk_process_models/
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Fig. 4. Trace disclosure results for the original Sepsis log and our simulated event logs.

information available to the attacker about the activities. This increase is also noticeable
in all other event logs that are studied in the experiments. As can be seen also in Fig. 3,
the identity (case) disclosure risk in the 5 simulated event logs generated from the pro-
cess model mined from the original Sepsis Cases event log is less than or equal to the
identity (case) disclosure risk in the original event log with the gap between the original
log and the simulated logs increasing with the increase in the background knowledge
power size. The risk of the simulated logs from the process model is an estimator, in
our approach, of the identity (case) disclosure risk of the process model mined from the
original event log.

5.3 Trace Disclosure

We report the results of the experiments to quantify the trace disclosure risk. In Fig. 4,
we notice that the trace disclosure risk increases for the original sepsis-cases event log
but not for the simulated event logs by the increase in the background knowledge power
size. However, for other event logs such as the Road Traffic Fine Management event log
in Fig. 5, the trend is different, we notice that the trace disclosure risk decreases for the
original RTFM log and is varying for the simulated event logs by the increase in the
background knowledge. This indicates that the trace disclosure, indeed, does not follow
the same trend as the identity (case) disclosure risk with the increase in the size of the
background knowledge power. The trace disclosure, then, can be high even for weaker
background knowledge power size, which was also found in [8].

5.4 Discussion

The distributions of the identity disclosure risks of the five simulated logs of the process
model mined from the Sepsis Cases log are all below or equal to the risk of the original
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Fig. 5. Trace disclosure results for the original RTFM log and our simulated event logs.

event log. This result was also observed for all other tested event logs. Therefore, for
all the studied event logs, on average, the identity disclosure risk is less in the simu-
lated logs from process model than the original event log. This confirms our intuition
that a process model abstracts certain behavior and, therefore, provides less informa-
tion to an adversary. It also confirms that our simulation approach is feasible and our
constrained simulation seems to return valid results. Clearly, the identity disclosure risk
of the simulated event logs generated from the process model that was discovered from
the original event log should (overall) not be higher than the risk of the original log.
As we also noted, the identity disclosure risk and trace disclosure risk are varying not
much between the simulated event logs. However, the results of the experimentation on
the event logs does not guarantee that the hypotheses will be fulfilled for all event logs.

We already discussed from a theoretical perspective that a process model reveals
less information than an event log. Thus, it is safe to say that process models are safer to
publish generally than the event logs they were mined from. Moreover, the experiments
also show that the identity disclosure risk is significantly less, on average, in process
models than the original event logs they were mined from. In some cases, however,
the re-identification risk can be equal or lower for some background knowledge sizes
as shown in the results of our experiments. This may be an artefact of our simulation
method but could also indicate that a process model can also have a similar risk in some
cases similar to publishing a log.

Regarding the trace disclosure risk, the results are less clear. Depending on the log,
our simulated event logs result in a higher risk compared to the risk of the original
event log. Indeed, our method may generate less variants than contained in the original
log and the disclosure risk appears to be higher. Thus, our method is not well suited to
investigate the trace disclosure risk.
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6 Conclusion

We discussed possible privacy attacks that an adversary can mount using a published
process model in the form of a block-structured Petri net or process tree. We proposed
a method to quantify the re-identification risk of such models that is based on a con-
strained simulation and leveraging existing work on quantifying re-identification risk.
In our experiments, we validated the feasibility of our approach on several event logs
and reported detailed results on the Sepsis Cases event log. Our conclusion is that
our approach returns results that are in line with the intuition that when discovering
a process model from an event log certain behavior is abstracted from and, thus, the
re-identification is should, in general, be lower than that on the original event log. In
future work, we want to evaluate this method in a more statistically rigorous manner,
and work on more efficient approaches to approximate the re-identification risk directly
from a non-block-structured Petri net without generating event logs.
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Abstract. The premise of this paper is that compliance with Trustwor-
thy AI governance best practices and regulatory frameworks is an inher-
ently fragmented process spanning across diverse organizational units,
external stakeholders, and systems of record, resulting in process uncer-
tainties and in compliance gaps that may expose organizations to rep-
utational and regulatory risks. Moreover, there are complexities associ-
ated with meeting the specific dimensions of Trustworthy AI best prac-
tices such as data governance, conformance testing, quality assurance
of AI model behaviors, transparency, accountability, and confidentiality
requirements. These processes involve multiple steps, hand-offs, re-works,
and human-in-the-loop oversight. In this paper, we demonstrate that
process mining can provide a useful framework for gaining fact-based
visibility to AI compliance process execution, surfacing compliance bot-
tlenecks, and providing for an automated approach to analyze, remediate
and monitor uncertainty in AI regulatory compliance processes.

Keywords: AI ethics · Fairness · Artificial intelligence · Trust
mining · Process mining

1 Introduction

AI-based technologies are becoming pervasive, impacting virtually every facet of
our lives. While AI has a lot of promise, not all of its impacts are good. There
is growing evidence that AI models can embed human and societal biases and
deploy them at scale. As such, the ever-increasing growth of AI highlights the
vital importance of balancing AI utility with the fairness of outcomes, thereby
engender a culture of trustworthy AI. Fairness is the foundation for Trustwor-
thy AI. Intuitively, fairness seems like a simple concept. However, it embodies
consideration of a number of dimensions, such as trade-offs between algorithmic
accuracy versus human values, demographic parity versus policy outcomes and
power-focused questions such as who gets to decide what is fair.
c© The Author(s) 2022
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These are vexing challenges for AI developers, policy-makers and consumers
alike. For AI developers, clarity of what constitutes AI fairness is a key con-
sideration given the juxtaposition of ethical, legal, and reputational issues. For
policy-makers and regulators, the challenge is how to promote innovation while
protecting consumers from the harmful impacts of AI. For consumers of AI, its
about trustworthiness, whether they can rely upon AI outputs to be accurate and
transparent, with safeguards in place to protect them from adverse outcomes.

This paper explores the challenges and opportunities associated with foster-
ing a culture of Trustworthy AI, with particular focus on: (1) The current state
of Trustworthy AI, including a survey of key industry and standards organiza-
tion initiatives with emphasis on the proposed EU Artificial Intelligence Act, (2)
The relationship between Trustworthy AI and Responsible Data Science (RDS),
and (3) Contribution of trust aware process mining to facilitate a data-driven
analytical framework to surface uncertainties, variabilities, and vulnerabilities in
Trustworthy AI compliance processes.

The remainder of the paper is organized as follows. In Sect. 2, we define the
contours of Trustworthy AI principles. In Sect. 3, we explore the proposed EU
Artificial Intelligence Act (AIA) that intends to operationalize and implement
rigorous risk-based prescriptive processes for ensuring a culture of Trustwor-
thy AI. In Sect. 4, we map the relationship between RDS and Trustworthy AI,
including a discussion of challenges associated with contextualizing AI fairness
as a foundation for Trustworthy AI. In Sect. 5, we discuss the applications and
benefits of process mining as an important tool to enable organizations to make
data-driven decisions relating to the obligations and conformance requirements
inherent in the proposed EU AI regulation.

2 Trustworthy AI

Surveys reveal an undercurrent of pervasive distrust of AI systems. Cathy O’Neil,
a leading advocate for AI algorithmic fairness, highlighted three main reasons
behind consumer distrust of AI: opacity, scale, and damage [12]. Fairness is the
foundation for trustworthy AI. It is the connective tissue that binds together
the principles of ethical use, interpretability, transparency, accountability, and
confidentiality that engenders trust and promotes the use of AI for social good.
Trustworthy AI is a governance framework designed to mitigate potential adverse
impacts on consumers as AI is poised to profoundly and indelibly change our
lives. As mentioned in [17], Trustworthy AI is changing the dynamic between
user and system into a relationship.

2.1 Achieving Trust in AI

Trustworthy AI starts with human agency and autonomy. Trust in AI systems
is enhanced when there is a human-in-the-loop who monitors the overall per-
formance of AI systems and when circumstances dictate, remediates potential
adverse outcomes. Trust in AI is strengthened by giving users the ability to
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make informed decisions about the impact of AI on their personal and economic
well-being.

AI is perceived by consumers to be a black box. Data inputs to the AI systems,
their learning models, and how they arrive at decisions are neither visible, nor
understood by consumers. Furthermore, many AI developers defensively protect
their algorithms as proprietary and a competitive differentiator. Interpretability
and explainability of AI are two important elements that strengthen trust in AI.
Interpretability of AI provides insight into the cause and effect between inputs
and outputs of an AI system and how AI predicts outcomes. Explainability of
AI goes one step further by providing users with not only insight into how AI
models work but also traceability of AI decisions and documentation relating
to the process of data gathering, labeling, and methods used for training AI
algorithms.

Consumers have limited recourse to hold AI developers accountable for the
adverse impacts of AI systems. While there is sectoral legislation, e.g., Sect. 5
of the FTC (Federal Trade Commission) Act1, available for consumers to rem-
edy disparate treatment attributable to AI systems it is an onerous process to
prevail. Moreover, for the disparate impact, the burden of proof requires statis-
tical analysis that a protected class is treated differently from others, which is
hardly something that would be accessible to average consumers. For these rea-
sons, accountability, including redress mechanisms in the event of demonstrated
harmful impact need to be addressed to achieve trust in AI.

2.2 The Emergence of Trustworthy AI Principles

We can see efforts being made, to varying degrees, that recognize and deal with
issues relating to trust in AI by the data sciences community (see Sect. 4), stan-
dards organizations, e.g., IEEE [16], NIST (National Institute of Standards and
Technology) [13], and by public sector organizations.

In 2019, OECD member countries adopted OECD Council Recommendation
on Artificial Intelligence2 consisting of five principles of human centered val-
ues of fairness of AI, inclusive investments in AI, transparency, accountability,
and robustness of AI systems. The OECD recommendations were subsequently
endorsed by the G20 with particular reference to the view that the “digital soci-
ety must be built on trust among all stakeholders including governments, civil
society, international organizations, academics, and businesses through shar-
ing common values and principles including equality, justice, transparency, and
accountability taking into account the global economy and interoperability”.

While Trustworthy AI principles serve as a helpful framework, they are just
that. Adherence to Trustworthy AI is fragmented at best and they lack effec-
tive enforcement mechanisms to safeguard against potentially harmful impacts.
For this reason, the momentum has shifted towards the regulation of AI: “The
calls for modest regulation that lets industry take the lead are part of a failed

1 https://www.federalreserve.gov/boarddocs/supmanual/cch/ftca.pdf.
2 https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449.

https://www.federalreserve.gov/boarddocs/supmanual/cch/ftca.pdf
https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449
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regulatory philosophy, one that saw its natural experiment over the past several
decades come up lacking. AI is too important and too promising to be governed
in a hands-off fashion, waiting for problems to develop and then trying to fix
them after the fact”.3

3 The Proposed EU Regulation of AI

On April 20, 2021 the European Commission released the proposal for the reg-
ulation of artificial intelligence4, the ambition of which is to balance the socio-
economic benefits of AI and new risks or negative consequences for individuals
or society. The proposed Artificial Intelligence Act (AIA) takes a risk-based
approach to regulate AI by fostering an “ecosystem of trust that should give
citizens the confidence to take up AI applications and give companies and pub-
lic organisations the legal certainty to innovate using AI”. In the following, we
demonstrate five governing principles for trustworthy AI proposed by AIA.

3.1 Scope of the Proposed Regulation

The proposed AIA applies to all providers, i.e., natural or legal persons, public
authorities, agencies, or any other body that develops an AI system, that places
or makes available on the market or puts into service AI systems or services in
the EU (cf. Article 3). The AIA also assigns responsibility to users, importers,
distributors, and operators who make use of or make substantial modifications
to the functionality and performance of AI systems (cf. Article 26–29). The geo-
graphic scope for the AIA will operate irrespective of whether such providers
are established in the EU or a third country, and so will cover where the system
users are in the EU or the output of the systems is used in the EU (cf. Article 2).
AI systems under the regulation encompass a wide range of methods and algo-
rithms including supervised, unsupervised, and reinforcement machine learning
for a given set of human-defined objectives that generate outputs such as con-
tent, predictions, recommendations, or decisions influencing the environments
they interact with (cf. Article 3).

3.2 Risk-Based Approach

The foundation of the AIA is a risk-based approach that classifies AI systems
into three categories based on a combination of factors that include the intended
purpose, the number of impacted persons, and the potential risk of harms (cf.
Article 5–7):

– Prohibited AI: Systems that use subliminal techniques that cause physiologi-
cal or psychological harm, exploit vulnerable groups, effectuate social scoring
by public authorities that may result in discrimination or unfavorable treat-
ment, and remote biometric systems used by law enforcement in public spaces
(subject to well-defined exceptions) (cf. Article 5).

3 https://www.brookings.edu/research/ai-needs-more-regulation-not-less/.
4 https://ec.europa.eu/commission/presscorner/detail/en/ip 21 1682.

https://www.brookings.edu/research/ai-needs-more-regulation-not-less/
https://ec.europa.eu/commission/presscorner/detail/en/ip_21_1682
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– High Risk: Annex III provides a list of systems that are used in critical infras-
tructures, educational or vocational training, human resources, essential pri-
vate and public services, law enforcement, migration, asylum and border con-
trol management, and administration of justice and democratic processes (cf.
Article 7).

– Low Risk: While not explicitly named (we use the term low risk of our own
choosing), by default, all systems not categorized as prohibited or high-risk.
Providers of such systems are encouraged to institute responsible use of AI
best practices on a voluntary basis (cf. Article 69).

3.3 Promote Fair and Trustworthy AI Best Practices

The AIA sets forth a comprehensive legislative mandate to ensure fairness in the
application of AI systems that safeguards fundamental human values and pro-
motes socio-economic rights. Some of these mandates are as follows: obligation
on providers to implement appropriate risk management measures throughout
the entire lifecycle of AI systems (cf. Article 9), rigorous data governance pro-
cesses (cf. Article 10), technical documentation, and record-keeping processes to
enable monitoring of compliance (cf. Article 11–12), transparency that enables
full interpretation of outputs (cf. Article 13), and Human-in-the-loop oversight
(cf. Article 14).

3.4 Transparency and Accountability

According to the AIA, providers of AI systems will be required to implement
a range of processes to ensure full transparency into and accountability for AI
systems (cf. Article 19–23) such as (1) conformity assessment and certification
processes, (2) auditability, including accessible event logs, and (3) Explainabil-
ity, potentially to coordinate with the human-in-the-loop for adjudication and
remediation.

3.5 Enforcement

The AIA incorporates an onerous enforcement mechanism that even surpasses
the fines under the GDPR (cf. Article 71). Some examples are as follows: up to
e10m or 2% of the total worldwide annual turnover for the supply of incorrect,
incomplete or misleading information to the authorities, up to e20m or 4% of
the total worldwide annual turnover for non-compliance with any other AIA
requirement or obligation, and up to e30m or 6% of the total worldwide annual
turnover for violations of prohibited practices.

While the proposed AIA is far from ratification and still subject to vigor-
ous debate within the EU Parliament and Council, the momentum towards its
adoption is inevitable. Like the GDPR, the AIA will serve as a model for other
jurisdictions that will seek to finally exert control over what has been the unreg-
ulated, hyperbolic growth of AI across the globe.
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4 Responsible Data Science and Trustworthy AI

Responsible Data Science (RDS) is a discipline that is influential in shaping
Trustworthy AI best practices. RDS refers to the collection of techniques and
approaches trying to reap the benefits of data science and big data while ensuring
fairness, accuracy, confidentiality and transparency [2]. To minimize adverse AI
outcomes of AI the role of RDS is to: (1) Avoid unfair conclusions even if they
are true, i.e., the fairness principle, (2) Answer questions with a guaranteed level
of accuracy, i.e., the accuracy principle, (3) Answer questions without revealing
secrets, i.e., the confidentiality principle, and (4) Clarify Answers such that they
become indisputable, i.e., the transparency principle.

Fig. 1. The data science pipeline facing the four FACT challenges [2].

RDS applies a methodology throughout the entire life cycle of information
to support trustworthy AI best practices by applying these four principles of
fairness, accuracy, confidentiality, and transparency to the data science pipeline
resulting in rigorous data governance as illustrated in Fig. 1.

RDS delivers a robust framework for the ethical design of AI systems that
addresses the following key areas: (1) Unbiased outcomes through the applica-
tion of appropriate fairness constraints to the training data, (2) Algorithmic
outcomes interpreted in a manner that is meaningful to end users, (3) Resilience
in how AI systems deliver accurate results and respond to change in inputs, (4)
Accountability for the system’s outcomes, and (5) Safeguarding the confiden-
tiality of training data through privacy enhancing measures. However, providing
each aspect of RDS has its own challenges from contextualizing the aspect to
implementing it in data science and AI systems. In [6], the authors describe the
challenges regarding the confidentiality aspect for process mining which combines
process and data science. In the following, we provide the challenges regarding
the fairness aspect.
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4.1 Contextualizing Fairness in AI Systems: Challenges

The idea of fairness is somewhat amorphous. At its highest level of abstraction,
fairness is a normative concept that comes from our conscience. Dator defines
a fair system as follows: “What is fairness then? We all have desires and we
want people to treat us according to those desires. We also know that people
around us have similar desires and want to be treated accordingly. Fairness is
closely related to fair play so it seems logical to conclude that a fair system is
a system where everybody is treated in a similar way” [4]. There are a number
of challenges associated with contextualizing and applying such a high level of
abstraction to a more concrete algorithmic AI fairness framework.

First, fairness may be influenced by cultural, sociological, economic, and legal
considerations. What may be considered as fair in one culture may be perceived
as unfair in another. Unequal distribution of opportunity may require the appli-
cation of distributive fairness that levels the playing field. For example, in the
context of credit applications, there ought to be an equal probability of loan
eligibility by ensuring that AI algorithmic outcomes do not discriminate against
members of protected groups [3]. There are other instances where the application
of corrective fairness may be necessary, for example, to remedy adverse impacts
in the administration of justice, housing, education, and employment.

Second, equality does not necessarily result in the fairness of outcomes. While
under Human Rights legislations disparate treatment on the basis of race, gen-
der, nationality, disability, and sexual orientation is prohibited there may still
be instances of adverse outcomes, based on other facially-neutral variables that
cause a disparate impact, i.e., unintentional discrimination [5]. Consider Ama-
zon’s free same day delivery service based on an AI algorithm that included
attributes, such as distance to the nearest fulfillment center, local demand in
designated zip code areas, and frequency distribution of prime members to deter-
mine profitable locations for free Same-Day Delivery. The algorithm was found
to be biased against minorities even though race was deemed not to be a factor
in the determination of same day delivery, and minority residents in the selected
zip codes were about half as likely to be eligible as white residents.5

The third challenge is balancing algorithmic fairness with fairness outcomes
[10]. In this context, fairness encompasses policy and legal considerations, and
leads us to ask: what ought to be fair? For example, in the context of hiring
practices, what ought to be a fair percentage of women in management positions
that AI algorithms should incorporate as thresholds to promote gender parity?

The fourth challenge relates to trade-off in balancing demographic parity
with the utility of outcomes. For example, if AI algorithms remove disparate
impact in the incarceration of minorities, how would that impact broader policy
considerations such as the administration of justice?

Finally, fairness implicates issues of power. Before we can decide what is fair,
we need to decide who gets to decide that. The conundrum we must confront
is that the minority groups who are so typically the victims of algorithmic bias

5 https://eu.usatoday.com/.

https://eu.usatoday.com/
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are rarely given a seat at the table when it is time to define what is fair. The
unfortunate result is that far too often, the definition of fairness is simply what
those already in power need it to be to maintain that power.

4.2 Implementing Fairness: Challenges for Data Scientists

Fairness constraints need to be considered in the context of specific use cases
and for desired outcomes. Bias may be introduced at various levels within an AI
system. Training data may introduce proxies that discriminate. Historical bias
may unconsciously result in adverse outcomes, for example through word embed-
dings [4]. Representation bias through under or, over representation of training
data may produce disparate impacts. The algorithms may not sufficiently adjust
for fairness constraints. Inadequate testing for disparate treatment and impact
may have adverse consequences for protected groups. While some argue that AI
algorithms in fact minimize bias there is compelling evidence that they can and
often amplify biases. Examples span facial recognition, criminal justice, hiring
practices, and loan approvals [9].

Regardless of any contextualization, any definition, and any implementation
approach of the fairness which is the cornerstone for Trustworthy AI, what is
essential is to gain visibility to and remediate potential gaps in Trustworthy AI
compliance processes. In the next section, we demonstrate how process mining
could play a role in fulfilling such requirements.

5 Process Mining for Promoting Trustworthy AI

Compliance with the proposed EU AIA requires an understanding of process
execution and interactions between multiple internal and external stakeholders,
risk assessment of diverse systems of record that incorporate AI systems, and
cooperation with various regulatory bodies and standards organizations.

The proposed AI regulation operationalizes and codifies trustworthy AI prin-
ciples with prescribed mandates to institute appropriate data governance and
management practices. The governance mechanism is complex and requires
human and systems-based interactions between diverse internal and external
stakeholders and EU and national regulators. Monitoring conformance with AIA
is delegated to national supervisory authorities, they are empowered to order
companies to take corrective actions, access all information, documentation, and
data required to enforce compliance with the proposed regulation.

Given the complexity and variability of interactions implicit in achieving com-
pliance with the proposed regulation it is our contention that process mining can
be a valuable tool to help organizations gain visibility to various dimensions of
prescribed process flows stipulated by the regulation, accelerate the analysis of
how information flows, surface process bottlenecks, visualize interactions gen-
erated by event logs from disparate systems of record that may reveal areas
of compliance and reputational risks. Process mining bridges the gap between
data science and process science using event data captured from different types
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of information systems [1]. It is a data-driven approach that enables organiza-
tions to gain insight into interactions between people, systems, and organizations
based on “as-is” visualization of process execution.

There are many techniques and activities in the context of process mining.
However, the three main types of activities in process mining are process discov-
ery, conformance checking, and enhancement. Process discovery techniques take
an event log and discover a process model without using any other information.
Conformance checking techniques take a process model and an event log of the
same process to check whether reality, as recorded in the event log, conforms
to the model and vice versa. Enhancement techniques are used to extend or
improve a given process model using the information about the process recorded
in some event logs [1].

Process Mining can facilitate compliance with AIA by many functionalities
such as: (1) Surfacing AI regulatory compliance process gaps and uncertainties,
(2) Capturing user interactions performing compliance tasks, (3) Comparing pro-
cess execution variations, (4) Highlighting compliance task outliers and errors,
(5) Identifying potential root causes for improper execution, (6) Real-time moni-
toring of processes to ensure conformance to prescribed process execution paths,
and (7) Triggering alerts in the event of non-compliant process tasks or changes
in conditions. Furthermore, the AIA proposed regulation is inherently collabo-
rative in nature wherein process execution spans across different organizations.

As discussed in [11], in collaborative processes where different organizations
execute different parts of a shared process, the internal activities carried out
by each organization are beyond the control of the other collaborators resulting
in uncertainty regarding process execution. Whenever there is uncertainty in a
process, there is a need for trust. Hence, collaborative business processes are
especially trust-intensive. In such trust-intensive environments, process mining
can be used to clarify the flow of activity execution among several organizations.

Compliance with AIA constitutes a number of interdependent steps. Perform-
ing these steps may involve variabilities in process execution paths and hand off
between different stakeholders and prescribed conformance obligations to meet
Articles 16–23 and Annex VII of the AIA:

– Step 1: R&D teams develop and bring to market AI systems in accordance
with the risk classification system defined by the proposed regulation. If it is
a high-risk AI system then a priori conformance assessment must be under-
taken and a declaration of conformity must be submitted to the appropriate
National Supervisory Authority. Then the AI system may be placed on the
market.

– Step 2: Legal and Compliance teams must institute compliance measures in
accordance with Sect. 2 of the proposed regulation that ensures adherence
to data governance, accountability, transparency, accuracy, robustness, and
cybersecurity provisions.

– Step 3: Data Science teams must undertake continuous monitoring of AI
systems, collect data on the system’s operation and take corrective action if
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needed. The post-market monitoring system must actively and systematically
collect, document, and analyze relevant data provided by users.

– Step 4: Customer-facing functions such as Sales, Marketing, and Support, are
responsible for providing clarity and certainty as to the expected AI system
inputs and outputs in a way that users are informed that they are interacting
with an AI system, augmented with human oversight who monitor their oper-

Fig. 2. Process mining cadence to meet AIA prescriptive compliance obligations.
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ation and be able to decide, to override or reverse the output of the high-risk
AI system.

– Step 5: Implementation of a Quality Management System with auditable and
traceable documentation relating to the techniques, procedures for the design,
of the high-risk AI systems, including procedures for data management, data
analysis, data labeling, data storage, data aggregation, data retention and
report serious incidents that may result in adverse outcomes.

Figure 2 further maps the compliance steps, the obligation provisions of the
AIA, and process mining functionality to support Trustworthy AI. The figure
illustrates how process mining techniques can facilitate AIA obligations. The
FACT challenges of RDS are also taken into consideration in process mining
as a subdiscipline called Responsible Process Mining (RPM) which is recently
receiving increasing attention [7,8,14,15].

6 Conclusion

Trustworthy AI engenders a climate of trust essential for achieving sustainable
competitive advantages in an intensely competitive environment where the appli-
cation of AI is a disruptive force. The proposed EU regulation of AI is a compre-
hensive prescriptive measure which imposes onerous obligations, redress mecha-
nisms on AI developers and businesses deploying AI systems. To mitigate compli-
ance, reputational, and business risks process mining is poised to provide a data-
driven approach to discover how existing Trustworthy AI compliance processes
work, surface and remediate process bottlenecks, visualize different pathways of
process execution and identify and remediate variations from prescribed proto-
cols. Process mining can be a useful toolbox for ensuring that certain AI systems
are designed and developed in accordance with common necessary requirements
before they are put on the market and operationalized through harmonized tech-
nical standards.
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use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Author Index

Accorsi, Rafael 3
Andrews, Robert 85
Azam, Mamuna 60

Bakullari, Bianka 21
Banham, Adam 85
Barbieri, Luciana 268
Bayo-Monton, Jose Luis 340
Beerepoot, Iris 167
Beige, Oliver 369
Bergmann, Ralph 301
Berti, Alessandro 255
Bertrand, Yannis 98
Braun, Stephan A. 301
Brockhoff, Tobias 47
Burattin, Andrea 60

Chiorrini, Andrea 115
Cid-Menéndez, Adrián 340
Comuzzi, Marco 237
Cremerius, Jonas 314

Darabi, Houshang 281
De Smedt, Johannes 194
De Weerdt, Jochen 98, 127
Depaire, Benoît 73
Di Ciccio, Claudio 3
Di Federico, Gemma 60
Diamantini, Claudia 115
Dumas, Marlon 180

Fani Sani, Mohammadreza 154
Fernandez-Llatas, Carlos 340

Geyer, Tobias 301
Göhner, Heiko 47
Grüger, Joscha 301

Hassani, Marwan 211

Ibanez-Sanchez, Gema 340

Jayarathna, Lakmali 3

Kaiser, Sebastian 140
Kar, Shreya 140

Kas, Stijn 167
König, Maximilian 314
Koopman, Angelique 167
Kuhn, Martin 301

Lebherz, Julian 3
Lee, Suhwan 237
Leemans, Sander J. J. 85
Lu, Xixi 167, 237
Lull, Juan José 340

Maatouk, Karim 382
Madeira, Edmundo Roberto Mauro 268
Mannhardt, Felix 352, 382
Martin, Niels 73, 327
Mircoli, Alex 115
Mokhtarian, Ilia 281
Müller, Marcel 369

Naeimaei Aali, Milad 352
Nikolajsen, Erik Ravn 60

Park, Gyunam 154, 255
Peeperkorn, Jari 127, 194
Pegoraro, Marco 21, 154
Pery, Andrew 395
Post, Ruben 167
Potena, Domenico 115
Pourbafrani, Mahsa 140

Rafiei, Majid 255, 395
Reijers, Hajo 167
Richter, Florian 224

Sanchez, Pedro Luis 340
Schade, Lukas 34
Schuster, Daniel 34
Seidl, Thomas 224
Sengupta, Souvik 369
Serral, Estefanía 98
Shoush, Mahmoud 180
Simon, Michael 395
Simonet-Boulogne, Anthony 369
Spenrath, Yorick 211



410 Author Index

Stevens, Alexander 194
Stroeh, Kleber 268

Terrier, Isabelle 47
Theis, Julian 281
Toussaint, Pieter Jelle 352
Traver, Vicente 340

Uysal, Merih Seran 21, 47

van der Aalst, Wil M. P. 3, 21, 34, 47, 140,
154, 255, 268, 395

van Dongen, Boudewijn F. 211

Van Houdt, Greg 73
van Zelst, Sebastiaan J. 34, 154
vanden Broucke, Seppe 127
Vazifehdoostirani, Mozhgan 154
Verbeek, H. M. W. 3
Verboven, Sam 327

Warmuth, Christian 314
Weske, Mathias 314
Wiewel, Sebastiaan 167
Wimbauer, Anna 224
Wynn, Moe Thandar 3, 85


	 Preface
	 Organization
	 Contents
	XES 2.0 Workshop and Survey
	Rethinking the Input for Process Mining: Insights from the XES Survey and Workshop
	1 Introduction
	2 XES Standard: A Brief Overview
	3 Survey Design and Insights
	4 Adding Context: Reflections from the XES 2.0 Workshop
	5 Conclusion
	References

	EdbA 2021: 2nd International Workshop on Event Data and Behavioral Analytics
	Second International Workshop on Event Data and Behavioral Analytics (EdbA’21)
	Organization
	Workshop Chairs
	Program Committee

	Probability Estimation of Uncertain Process Trace Realizations
	1 Introduction
	2 Related Work
	3 Running Example
	4 Preliminaries
	5 Method
	6 Validation of Probability Estimates
	7 Conclusion
	References

	Visualizing Trace Variants from Partially Ordered Event Data
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Visualizing Trace Variants
	4.1 Approach
	4.2 Formal Guarantees
	4.3 Limitations
	4.4 Implementation

	5 Evaluation
	6 Conclusion
	References

	Analyzing Multi-level BOM-Structured Event Data
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Methods
	4.1 Analysis Methodology
	4.2 M2BOM-Structured Assembly Processes

	5 Case Study
	6 Conclusion
	References

	Linac: A Smart Environment Simulator of Human Activities
	1 Introduction
	2 Existing Solutions
	3 Proposed Simulation Solution
	3.1 Configuration of the Smart Environment
	3.2 Configuration of the Agents' Behavior – AIL Language
	3.3 Simulation Execution
	3.4 Clock Simulation
	3.5 MQTT Output

	4 Implementation
	5 Evaluation
	5.1 Configuration
	5.2 Results

	6 Conclusions and Future Works
	References

	Root Cause Analysis in Process Mining with Probabilistic Temporal Logic
	1 Introduction
	2 Related Work
	3 The AITIA-PM Algorithm
	3.1 Background
	3.2 Algorithmic Procedure

	4 Demonstration
	5 Conclusion
	References

	xPM: A Framework for Process Mining with Exogenous Data
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 A Framework for Process Mining with Exogenous Data
	4.1 Linking
	4.2 Slicing
	4.3 Transformation
	4.4 Discovery
	4.5 Enhancing

	5 Evaluation
	5.1 Procedure
	5.2 Quality Measures
	5.3 Event Logs and Exogenous Data
	5.4 Results and Discussion

	6 Conclusion
	References

	A Bridging Model for Process Mining and IoT
	1 Introduction
	2 Background
	2.1 IoT Ontologies
	2.2 Business Process Context Modelling

	3 Conceptual Ambiguity in IoT and PM
	3.1 IoT Data
	3.2 Context in PM vs Context in IoT
	3.3 Process Event vs IoT Event

	4 Connecting IoT and Process Mining: A Conceptual Model
	5 Use Case Validation
	6 Related Work
	7 Conclusion
	References

	ML4PM 2021: 2nd International Workshop in Leveraging Machine Learning for Process Mining
	2nd International Workshop in Leveraging Machine Learning for Process Mining (ML4PM 2021)
	Organization
	Workshop Chairs
	Program Committee
	Additional Reviewers

	Exploiting Instance Graphs and Graph Neural Networks for Next Activity Prediction
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Building Instance Graphs
	3.2 Data Preprocessing
	3.3 Deep Graph Convolutional Neural Network

	4 Experiments
	4.1 Experimental Setup
	4.2 Results

	5 Conclusions and Future Works
	References

	Can Deep Neural Networks Learn Process Model Structure? An Assessment Framework and Analysis
	1 Introduction
	2 Related Work
	3 A Framework for Assessing the Generalisation Capacity of RNNs
	3.1 The Resampling Procedure
	3.2 Metrics

	4 Experimental Evaluation
	4.1 Process Models
	4.2 Hyperparameter Search
	4.3 Results

	5 Discussion
	6 Conclusion and Future Work
	References

	Remaining Time Prediction for Processes with Inter-case Dynamics
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Related Work
	2.2 RTM Background
	2.3 Performance Spectrum with Error Progression

	3 Approach
	3.1 Detecting Uncertain Segments
	3.2 Identifying Inter-case Dynamics in Uncertain Segments
	3.3 Inter-case Feature Creation
	3.4 Predicting the Next Segment
	3.5 Predicting Waiting Time

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Conclusion
	References

	Event Log Sampling for Predictive Monitoring
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Proposed Sampling Methods
	5 Evaluation
	5.1 Event Logs
	5.2 Implementation
	5.3 Evaluation Setting
	5.4 Experimental Results

	6 Discussion
	7 Conclusion
	References

	Active Anomaly Detection for Key Item Selection in Process Auditing
	1 Introduction
	2 Related Work
	2.1 Anomaly Detection
	2.2 Active Anomaly Detection
	2.3 Trace Visualisation

	3 Active Selection Approach
	3.1 Step One: Encode Process Data
	3.2 Step Two: Assign Anomaly Score
	3.3 Step Three: Actively Label Exceptions

	4 Evaluation
	4.1 Step One: Encode Process Data
	4.2 Step Two: Assign Anomaly Score
	4.3 Step Three: Actively Label Exceptions
	4.4 Performance Results

	5 Discussion
	5.1 Cycle One
	5.2 Cycle Two
	5.3 Cycle Three

	6 Limitations
	7 Conclusion and Future Work
	References

	Prescriptive Process Monitoring Under Resource Constraints: A Causal Inference Approach
	1 Introduction
	2 Background and Related Work
	2.1 Predictive Process Monitoring
	2.2 Prescriptive Process Monitoring
	2.3 Causal Inference

	3 Approach
	3.1 Log Preprocessing
	3.2 Predictive Model
	3.3 Causal Model
	3.4 Resource Allocator

	4 Evaluation
	4.1 Dataset
	4.2 Experiment Setup
	4.3 Results
	4.4 Threats to Validity

	5 Conclusion
	References

	Quantifying Explainability in Outcome-Oriented Predictive Process Monitoring
	1 Introduction
	2 Preliminaries
	3 Explainability in OOPPM
	3.1 Explainability Through Interpretability and Faithfulness
	3.2 Logit Leaf Model
	3.3 Generalized Logistic Rule Model

	4 Experimental Evaluation
	4.1 Benchmark Models
	4.2 Event Logs
	4.3 Implementation
	4.4 Quantitative Metrics Results

	5 Conclusion
	References

	SA4PM 2021: 2nd International Workshop on Streaming Analytics for Process Mining
	2nd International Workshop on Streaming Analytics for Process Mining (SA4PM)
	Organization
	Workshop Chairs
	Program Committee

	Online Prediction of Aggregated Retailer Consumer Behaviour
	1 Introduction
	2 Framework
	2.1 Features
	2.2 Clustering
	2.3 Training
	2.4 Predicting

	3 Experimental Evaluation
	3.1 Experimental Setup
	3.2 Results

	4 Related Work
	5 Conclusion and Future Work
	References

	PErrCas: Process Error Cascade Mining in Trace Streams
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Online Cascade Mining
	4.1 Outlier Segment-Level Events
	4.2 Error Cascade Construction
	4.3 Cascade Patterns

	5 Evaluation
	5.1 Synthetic Data
	5.2 Travel Reimbursement Process

	6 Conclusion
	References

	Continuous Performance Evaluation for Business Process Outcome Monitoring
	1 Introduction
	2 Related Work
	3 Continuous Prediction Evaluation Framework
	4 Performance Evaluation Methods
	4.1 Evaluating Performance Using a Local Timeline
	4.2 Real-Time Model Performance

	5 Experimental Analysis and Results
	6 Conclusions
	References

	PQMI 2021: 6th International Workshop on Process Querying, Manipulation, and Intelligence
	6th International Workshop on Process Querying, Manipulation, and Intelligence (PQMI 2021)
	Organization
	Workshop Organizers
	Program Committee

	An Event Data Extraction Approach from SAP ERP for Process Mining
	1 Introduction
	2 Background
	2.1 Object-Centric Event Logs
	2.2 SAP: Entities and Relationships

	3 Extracting Event Data from SAP ERP: Approach
	3.1 Building Graphs of Relations
	3.2 Extracting Object-Centric Event Logs

	4 Extracting Event Data from SAP ERP: Tool
	5 Assessment
	5.1 Building a Graph of Relations
	5.2 Extracting Object-Centric Event Logs

	6 Related Work
	7 Conclusion
	References

	Towards a Natural Language Conversational Interface for Process Mining
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Pre-processing and Tagging
	3.2 Semantic Parsing
	3.3 PM Tool Interface Mapping

	4 Sample Questions
	5 Proof of Concept
	6 Conclusions and Future Work
	References

	On the Performance Analysis of the Adversarial System Variant Approximation Method to Quantify Process Model Generalization
	1 Introduction
	2 Related Work
	2.1 Generalization Metric
	2.2 Adversarial System Variant Approximation

	3 Notations
	4 Problem Statement
	5 Experimental Setup
	5.1 Sampling Parameter
	5.2 Variant Log Size
	5.3 Biased Variant Logs

	6 Results
	6.1 Sampling Parameter Results
	6.2 Variant Log Size Results
	6.3 Biased Variant Log Results

	7 Conclusion
	References

	PODS4H 2021: 4th International Workshop on Process-Oriented Data Science for Healthcare
	Fourth International Workshop on Process-Oriented Data Science for Healthcare (PODS4H)
	Organization
	Workshop Chairs
	Program Committee

	Verifying Guideline Compliance in Clinical Treatment Using Multi-perspective Conformance Checking: A Case Study
	1 Introduction
	2 Background
	3 Research Method
	4 Implementation
	4.1 Preprocessing
	4.2 Conformance Checking

	5 Discussion
	6 Conclusion
	References

	Patient Discharge Classification Based on the Hospital Treatment Process
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Heart Failure
	2.2 Process Outcome Prediction
	2.3 CNN
	2.4 Related Work

	3 Dataset
	4 Contribution
	4.1 Cohort Selection
	4.2 Feature Selection and Data Preprocessing
	4.3 Model Selection and Training

	5 Evaluation and Discussion
	5.1 Results
	5.2 Discussion

	6 Conclusion and Future Work
	References

	Combining the Clinical and Operational Perspectives in Heterogeneous Treatment Effect Inference in Healthcare Processes
	1 Introduction
	2 Background
	2.1 Heterogeneous Treatment Effects
	2.2 Related Work

	3 Heterogeneous Treatment Effect Inference in Healthcare Processes
	4 Proof-of-Concept: Sepsis Event Log
	4.1 Case Description
	4.2 Data Setup
	4.3 Model Setup
	4.4 Results

	5 Discussion
	6 Conclusion
	References

	Interactive Process Mining Applied in a Cardiology Outpatient Department
	1 Introduction
	2 Materials and Methods
	2.1 Data of Origin
	2.2 Variables of Interest for the Clinician
	2.3 Methods in Data Rodeos

	3 Results
	3.1 First Data Rodeo
	3.2 Second Data Rodeo
	3.3 Third Data Rodeo

	4 Conclusion and Discussion
	References

	Discovering Care Pathways for Multi-morbid Patients Using Event Graphs
	1 Introduction
	2 Related Work
	2.1 Multi-entity Event Data
	2.2 Storing Event Data

	3 Multi-entity Event Data in MIMIC-III
	4 Event Graphs for Multi-morbid Patients Pathways
	4.1 Identifying and Extracting Entities
	4.2 Building the Event Graph

	5 Results of Application to MIMIC-III
	6 Discussion
	7 Conclusions
	References

	TPSA 2021: 2nd International Workshop on Trust, Privacy, and Security in Process Analytics
	2nd International Workshop on Trust, Privacy, and Security in Process Analytics (TPSA)
	Organization
	Organizing Committee
	Program Committee

	Process Mining in Trusted Execution Environments: Towards Hardware Guarantees for Trust-Aware Inter-organizational Process Analysis
	1 Introduction
	2 Related Work
	3 A Concept for Privacy-Aware Process Mining in Trusted Execution Environments
	3.1 System Architecture
	3.2 Workflow
	3.3 Security Comparison

	4 Implementation Challenges
	5 Conclusion
	References

	Quantifying the Re-identification Risk in Published Process Models
	1 Introduction
	2 Problem Statement
	3 Related Work
	4 Approach
	4.1 Approximating Re-identification Risk by Simulation
	4.2 Process Trees
	4.3 Frequency Constrained Traversal of the Process Tree

	5 Evaluation
	5.1 Experimental Setup
	5.2 Identity (Case) Disclosure Results
	5.3 Trace Disclosure
	5.4 Discussion

	6 Conclusion
	References

	Trustworthy Artificial Intelligence and Process Mining: Challenges and Opportunities
	1 Introduction
	2 Trustworthy AI
	2.1 Achieving Trust in AI
	2.2 The Emergence of Trustworthy AI Principles

	3 The Proposed EU Regulation of AI
	3.1 Scope of the Proposed Regulation
	3.2 Risk-Based Approach
	3.3 Promote Fair and Trustworthy AI Best Practices
	3.4 Transparency and Accountability
	3.5 Enforcement

	4 Responsible Data Science and Trustworthy AI
	4.1 Contextualizing Fairness in AI Systems: Challenges
	4.2 Implementing Fairness: Challenges for Data Scientists

	5 Process Mining for Promoting Trustworthy AI
	6 Conclusion
	References

	Author Index

