Ilya Sergey (Ed.)

Programming
Languages
and Systems

31st European Symposium on Programming, ESOP 2022
Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2022
Munich, Germany, April 2-7, 2022

Proceedings

f‘\ ETAPS

LNCS 13240 | ARCoSS

EUROPEAN JOINT CONFERENCES ON

TPHEORY & PRACTICE OF SOFTWARE |
— I £

Lecture Notes in Computer Science 13240

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA Gerhard Woeginger ®, Germany
Wen Gao, China Moti Yung®, USA
Bernhard Steffen®, Germany

Advanced Research in Computing and Software Science

Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy
Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany

Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen®, University of Dortmund, Germany

Deng Xiaotie, Peking University, Beijing, China

Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873
https://orcid.org/0000-0001-9619-1558

More information about this series at https://link.springer.com/bookseries/558

https://link.springer.com/bookseries/558

Ilya Sergey (Ed.)

Programming
LLanguages
and Systems

31st European Symposium on Programming, ESOP 2022
Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2022
Munich, Germany, April 2-7, 2022

Proceedings

@ Springer

Editor

Ilya Sergey

National University of Singapore
Singapore, Singapore

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-99335-1 ISBN 978-3-030-99336-8 (eBook)

https://doi.org/10.1007/978-3-030-99336-8

© The Editor(s) (if applicable) and The Author(s) 2022. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-4250-5392
https://doi.org/10.1007/978-3-030-99336-8
http://creativecommons.org/licenses/by/4.0/

ETAPS Foreword

Welcome to the 25th ETAPS! ETAPS 2022 took place in Munich, the beautiful capital
of Bavaria, in Germany.

ETAPS 2022 is the 25th instance of the European Joint Conferences on Theory and
Practice of Software. ETAPS is an annual federated conference established in 1998,
and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each
conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from theo-
retical computer science to foundations of programming languages, analysis tools, and
formal approaches to software engineering. Organizing these conferences in a coherent,
highly synchronized conference program enables researchers to participate in an
exciting event, having the possibility to meet many colleagues working in different
directions in the field, and to easily attend talks of different conferences. On the
weekend before the main conference, numerous satellite workshops took place that
attract many researchers from all over the globe.

ETAPS 2022 received 362 submissions in total, 111 of which were accepted,
yielding an overall acceptance rate of 30.7%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2022 featured the unifying invited speakers Alexandra Silva (University
College London, UK, and Cornell University, USA) and Toma$ Vojnar (Brno
University of Technology, Czech Republic) and the conference-specific invited
speakers Nathalie Bertrand (Inria Rennes, France) for FoSSaCS and Lenore Zuck
(University of Illinois at Chicago, USA) for TACAS. Invited tutorials were provided by
Stacey Jeffery (CWI and QuSoft, The Netherlands) on quantum computing and
Nicholas Lane (University of Cambridge and Samsung AI Lab, UK) on federated
learning.

As this event was the 25th edition of ETAPS, part of the program was a special
celebration where we looked back on the achievements of ETAPS and its constituting
conferences in the past, but we also looked into the future, and discussed the challenges
ahead for research in software science. This edition also reinstated the ETAPS men-
toring workshop for PhD students.

ETAPS 2022 took place in Munich, Germany, and was organized jointly by the
Technical University of Munich (TUM) and the LMU Munich. The former was
founded in 1868, and the latter in 1472 as the 6th oldest German university still running
today. Together, they have 100,000 enrolled students, regularly rank among the top
100 universities worldwide (with TUM’s computer-science department ranked #1 in
the European Union), and their researchers and alumni include 60 Nobel laureates.

vi ETAPS Foreword

The local organization team consisted of Jan Kietinsky (general chair), Dirk Beyer
(general, financial, and workshop chair), Julia Eisentraut (organization chair), and
Alexandros Evangelidis (local proceedings chair).

ETAPS 2022 was further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), and EASST
(European Association of Software Science and Technology).

The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board consists of Holger Hermanns
(Saarbriicken), Marieke Huisman (Twente, chair), Jan Kofroii (Prague), Barbara Konig
(Duisburg), Thomas Noll (Aachen), Caterina Urban (Paris), Tarmo Uustalu (Reykjavik
and Tallinn), and Lenore Zuck (Chicago).

Other members of the Steering Committee are Patricia Bouyer (Paris), Einar Broch
Johnsen (Oslo), Dana Fisman (Be’er Sheva), Reiko Heckel (Leicester), Joost-Pieter
Katoen (Aachen and Twente), Fabrice Kordon (Paris), Jan Kietinsky (Munich), Orna
Kupferman (Jerusalem), Leen Lambers (Cottbus), Tiziana Margaria (Limerick),
Andrew M. Pitts (Cambridge), Elizabeth Polgreen (Edinburgh), Grigore Rosu (Illinois),
Peter Ryan (Luxembourg), Sriram Sankaranarayanan (Boulder), Don Sannella
(Edinburgh), Lutz Schréder (Erlangen), Ilya Sergey (Singapore), Natasha Sharygina
(Lugano), Pawel Sobocinski (Tallinn), Peter Thiemann (Freiburg), Sebastidn Uchitel
(London and Buenos Aires), Jan Vitek (Prague), Andrzej Wasowski (Copenhagen),
Thomas Wies (New York), Anton Wijs (Eindhoven), and Manuel Wimmer (Linz).

I’d like to take this opportunity to thank all authors, attendees, organizers of the
satellite workshops, and Springer-Verlag GmbH for their support. I hope you all
enjoyed ETAPS 2022.

Finally, a big thanks to Jan, Julia, Dirk, and their local organization team for all their
enormous efforts to make ETAPS a fantastic event.

February 2022 Marieke Huisman
ETAPS SC Chair
ETAPS e.V. President

Preface

This volume contains the papers accepted at the 31st European Symposium on
Programming (ESOP 2022), held during April 5-7, 2022, in Munich, Germany
(COVID-19 permitting). ESOP is one of the European Joint Conferences on Theory
and Practice of Software (ETAPS); it is dedicated to fundamental issues in the spec-
ification, design, analysis, and implementation of programming languages and systems.

The 21 papers in this volume were selected by the Program Committee (PC) from
64 submissions. Each submission received between three and four reviews. After
receiving the initial reviews, the authors had a chance to respond to questions and
clarify misunderstandings of the reviewers. After the author response period, the papers
were discussed electronically using the HotCRP system by the 33 Program Committee
members and 33 external reviewers. Two papers, for which the PC chair had a conflict
of interest, were kindly managed by Zena Ariola. The reviewing for ESOP 2022 was
double-anonymous, and only authors of the eventually accepted papers have been
revealed.

Following the example set by other major conferences in programming languages,
for the first time in its history, ESOP featured optional artifact evaluation. Authors
of the accepted manuscripts were invited to submit artifacts, such as code, datasets, and
mechanized proofs, that supported the conclusions of their papers. Members of the
Artifact Evaluation Committee (AEC) read the papers and explored the artifacts,
assessing their quality and checking that they supported the authors’ claims. The
authors of eleven of the accepted papers submitted artifacts, which were evaluated by
20 AEC members, with each artifact receiving four reviews. Authors of papers with
accepted artifacts were assigned official EAPLS artifact evaluation badges, indicating
that they have taken the extra time and have undergone the extra scrutiny to prepare a
useful artifact. The ESOP 2022 AEC awarded Artifacts Functional and Artifacts
(Functional and) Reusable badges. All submitted artifacts were deemed Functional, and
all but one were found to be Reusable.

My sincere thanks go to all who contributed to the success of the conference and to
its exciting program. This includes the authors who submitted papers for consideration;
the external reviewers who provided timely expert reviews sometimes on very short
notice; the AEC members and chairs who took great care of this new aspect of ESOP;
and, of course, the members of the ESOP 2022 Program Committee. I was extremely
impressed by the excellent quality of the reviews, the amount of constructive feedback
given to the authors, and the criticism delivered in a professional and friendly tone.
I am very grateful to Andreea Costea and KC Sivaramakrishnan who kindly agreed to
serve as co-chairs for the ESOP 2022 Artifact Evaluation Committee. I would like to
thank the ESOP 2021 chair Nobuko Yoshida for her advice, patience, and the many
insightful discussions on the process of running the conference. I thank all who con-
tributed to the organization of ESOP: the ESOP steering committee and its chair Peter
Thiemann, as well as the ETAPS steering committee and its chair Marieke Huisman.

viii Preface

Finally, I would like to thank Barbara Kénig and Alexandros Evangelidis for their help
with assembling the proceedings.

February 2022 Ilya Sergey

Program Chair

Ilya Sergey

Program Committee

Michael D. Adams
Danel Ahman

Aws Albarghouthi
Zena M. Ariola
Ahmed Bouajjani
Giuseppe Castagna
Cristina David
Mariangiola Dezani
Rayna Dimitrova

Jana Dunfield
Aquinas Hobor
Guilhem Jaber
Jeehoon Kang
Ekaterina Komendantskaya
Ori Lahav

Ivan Lanese

Dan Licata

Sam Lindley
Andreas Lochbihler
Cristina Lopes

P. Madhusudan
Stefan Marr

James Noble

Burcu Kulahcioglu Ozkan
Andreas Pavlogiannis
Vincent Rahli

Robert Rand
Christine Rizkallah
Alejandro Russo
Gagandeep Singh
Gordon Stewart
Joseph Tassarotti
Bernardo Toninho

Organization

National University of Singapore, Singapore

Yale-NUS College, Singapore

University of Ljubljana, Slovenia

University of Wisconsin-Madison, USA

University of Oregon, USA

Université de Paris, France

CNRS, Université de Paris, France

University of Bristol, UK

Universita di Torino, Italy

CISPA Helmholtz Center for Information Security,
Germany

Queen’s University, Canada

University College London, UK

Université de Nantes, France

KAIST, South Korea

Heriot-Watt University, UK

Tel Aviv University, Israel

Universita di Bologna, Italy, and Inria, France

Wesleyan University, USA

University of Edinburgh, UK

Digital Asset, Switzerland

University of California, Irvine, USA

University of Illinois at Urbana-Champaign, USA

University of Kent, UK

Victoria University of Wellington, New Zealand

Delft University of Technology, The Netherlands

Aarhus University, Denmark

University of Birmingham, UK

University of Chicago, USA

University of Melbourne, Australia

Chalmers University of Technology, Sweden

University of Illinois at Urbana-Champaign, USA

BedRock Systems, USA

Boston College, USA

Universidade NOVA de Lisboa, Portugal

X Organization

Additional Reviewers

Andreas Abel
Guillaume Allais
Kalev Alpernas
Davide Ancona
Stephanie Balzer
Giovanni Bernardi
Soham Chakraborty
Arthur Chargueraud
Ranald Clouston
Fredrik Dahlqvist
Olivier Danvy
Benjamin Delaware
Dominique Devriese
Paul Downen
Yannick Forster
Milad K. Ghale
Kiran Gopinathan
Tristan Knoth

Paul Levy

Umang Mathur
McKenna McCall
Garrett Morris
Fredrik Nordvall Forsberg
José N. Oliveira
Alex Potanin
Susmit Sarkar

Filip Sieczkowski
Kartik Singhal
Sandro Stucki

Amin Timany

Klaus v. Gleissenthall
Thomas Wies
Vladimir Zamdzhiev

Gothenburg University, Sweden

University of St Andrews, UK

Tel Aviv University, Israel

Universita di Genova, Italy

Carnegie Mellon University, USA

Université de Paris, France

Delft University of Technology, The Netherlands

Inria, France

Australian National University, Australia

University College London, UK

Yale-NUS College, Singapore

Purdue University, USA

KU Leuven, Belgium

University of Massachusetts, Lowell, USA

Saarland University, Germany

University of New South Wales, Australia

National University of Singapore, Singapore

University of California, San Diego, USA

University of Birmingham, UK

National University of Singapore, Singapore

Carnegie Mellon University, USA

University of Iowa, USA

University of Strathclyde, UK

University of Minho, Portugal

Australian National University, Australia

University of St Andrews, UK

Heriot-Watt University, UK

University of Chicago, USA

Chalmers University of Technology and University
of Gothenburg, Sweden

Aarhus University, Denmark

Vrije Universiteit Amsterdam, The Netherlands

New York University, USA

Inria, Loria, Université de Lorraine, France

Artifact Evaluation Committee Chairs

Andreea Costea
K. C. Sivaramakrishnan

National University of Singapore, Singapore
IIT Madras, India

Artifact Evaluation Committee

Utpal Bora
Darion Cassel

IIT Hyderabad, India
Carnegie Mellon University, USA

Pritam Choudhury

Jan de Muijnck-Hughes
Darius Foo

Léo Gourdin

Daniel Hillerstrom
Jules Jacobs

Chaitanya Koparkar
Yinling Liu

Yiyun Liu

Kristof Marussy

Orestis Melkonian
Shouvick Mondal
Krishna Narasimhan
Mario Pereira
Goran Piskachev
Somesh Singh
Yahui Song

Vimala Soundarapandian

Organization Xi

University of Pennsylvania, USA

University of Glasgow, UK

National University of Singapore, Singapore

Université Grenoble-Alpes, France

University of Edinburgh, UK

Radboud University, The Netherlands

Indiana University, USA

Toulouse Computer Science Research Center, France

University of Pennsylvania, USA

Budapest University of Technology and Economics,
Hungary

University of Edinburgh, UK

Concordia University, Canada

TU Darmstadt, Germany

Universidade NOVA de Lisboa, Portugal

Fraunhofer IEM, Germany

Inria, France

National University of Singapore, Singapore

IIT Madras, India

Contents

Categorical Foundations of Gradient-Based Learning. 1
Geoffrey S. H. Cruttwell, Bruno Gavranovi¢, Neil Ghani, Paul Wilson,
and Fabio Zanasi

Compiling Universal Probabilistic Programming Languages with Efficient

Parallel Sequential Monte Carlo Inference 29
Daniel Lundén, Joey Ohman, Jan Kudlicka, Viktor Senderov,
Fredrik Ronquist, and David Broman

Foundations for Entailment Checking in Quantitative Separation Logic 57
Kevin Batz, Ira Fesefeldt, Marvin Jansen, Joost-Pieter Katoen,
Florian Kefler, Christoph Matheja, and Thomas Noll

Extracting total Amb programs from proofs 85
Ulrich Berger and Hideki Tsuiki

Why3-do: The Way of Harmonious Distributed System Proofs. 114
Claudio Belo Lourengo and Jorge Sousa Pinto

Relaxed virtual memory in Armv8-A. 143
Ben Simner, Alasdair Armstrong, Jean Pichon-Pharabod,
Christopher Pulte, Richard Grisenthwaite, and Peter Sewell

Verified Security for the Morello Capability-enhanced Prototype

Arm Architecture 174
Thomas Bauereiss, Brian Campbell, Thomas Sewell,
Alasdair Armstrong, Lawrence Esswood, lan Stark, Graeme Barnes,
Robert N. M. Watson, and Peter Sewell

The Trusted Computing Base of the CompCert Verified Compiler 204
David Monniaux and Sylvain Boulmé

View-Based Owicki—Gries Reasoning for Persistent x86-TSO. 234
Eleni Vafeiadi Bila, Brijesh Dongol, Ori Lahav, Azalea Raad,
and John Wickerson

Abstraction for Crash-Resilient Objects 262
Artem Khyzha and Ori Lahav

Static Race Detection for Periodic Programs. 290
Varsha P Suresh, Rekha Pai, Deepak D’Souza, Meenakshi D Souza,
and Sujit Kumar Chakrabarti

X1v Contents

Probabilistic Total Store Orderingot .. 317
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Raj Aryan Agarwal,
Adwait Godbole, and Krishna S.

Linearity and Uniqueness: An Entente Cordiale 346
Daniel Marshall, Michael Vollmer, and Dominic Orchard

A Framework for Substructural Type Systems 376
James Wood and Robert Atkey

A Dependent Dependency Calculus. 403
Pritam Choudhury, Harley Eades III, and Stephanie Weirich

Polarized Subtyping. 431
Zeeshan Lakhani, Ankush Das, Henry DeYoung, Andreia Mordido,
and Frank Pfenning

Structured Handling of Scoped Effects. 462
Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den Berg,
and Tom Schrijvers

Region-based Resource Management and Lexical Exception Handlers

in Continuation-Passing Style. 492
Philipp Schuster, Jonathan Immanuel Brachthduser,
and Klaus Ostermann

A Predicate Transformer for Choreographies: Computing Preconditions
in Choreographic Programming. 520
Sung-Shik Jongmans and Petra van den Bos

Comparing the Expressiveness of the n-calculus and CCS 548
Rob van Glabbeek

Concurrent NetKAT: Modeling and analyzing stateful,

concurrent networks 575
Jana Wagemaker, Nate Foster, Tobias Kappé, Dexter Kozen,
Jurriaan Rot, and Alexandra Silva

Author Index e 603

®

Check for
updates

Categorical Foundations of Gradient-Based Learning

Geoffrey S. H. Cruttwell’! (=)@, Bruno Gavranovi¢? (=)@, Neil Ghani® (X)®,

Paul Wilson* (=)@, and Fabio Zanasi* (¥)

! Mount Allison University, Canada
2 University of Strathclyde, United Kingdom
3 University College London

Abstract. We propose a categorical semantics of gradient-based ma-
chine learning algorithms in terms of lenses, parametric maps, and re-
verse derivative categories. This foundation provides a powerful explana-
tory and unifying framework: it encompasses a variety of gradient descent
algorithms such as ADAM, AdaGrad, and Nesterov momentum, as well
as a variety of loss functions such as MSE and Softmax cross-entropy,
shedding new light on their similarities and differences. Our approach to
gradient-based learning has examples generalising beyond the familiar
continuous domains (modelled in categories of smooth maps) and can
be realized in the discrete setting of boolean circuits. Finally, we demon-
strate the practical significance of our framework with an implementation
in Python.

1 Introduction

The last decade has witnessed a surge of interest in machine learning, fuelled by
the numerous successes and applications that these methodologies have found in
many fields of science and technology. As machine learning techniques become
increasingly pervasive, algorithms and models become more sophisticated, posing
a significant challenge both to the software developers and the users that need to
interface, execute and maintain these systems. In spite of this rapidly evolving
picture, the formal analysis of many learning algorithms mostly takes place at a
heuristic level [41], or using definitions that fail to provide a general and scalable
framework for describing machine learning. Indeed, it is commonly acknowledged
through academia, industry, policy makers and funding agencies that there is a
pressing need for a unifying perspective, which can make this growing body of
work more systematic, rigorous, transparent and accessible both for users and
developers [2, 36].

Consider, for example, one of the most common machine learning scenar-
ios: supervised learning with a neural network. This technique trains the model
towards a certain task, e.g. the recognition of patterns in a data set (cf. Fig-
ure 1). There are several different ways of implementing this scenario. Typically,
at their core, there is a gradient update algorithm (often called the “optimiser”),
depending on a given loss function, which updates in steps the parameters of the
network, based on some learning rate controlling the “scaling” of the update. All

© The Author(s) 2022
I. Sergey (Ed.): ESOP 2022, LNCS 13240, pp. 1-28, 2022.
https://doi.org/10.1007/978-3-030-99336-8_1

http://orcid.org/0000-0001-8742-6263
http://orcid.org/0000-0002-6069-5727
http://orcid.org/0000-0002-3988-2560
http://orcid.org/0000-0003-3575-135X
http://orcid.org/0000-0001-6457-1345
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99336-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-99336-8_1

2 Cruttwell, Gavranovi¢, Ghani, Wilson, and Zanasi

of these components can vary independently in a supervised learning algorithm
and a number of choices is available for loss maps (quadratic error, Softmax
cross entropy, dot product, etc.) and optimisers (Adagrad [20], Momentum [37],
and Adam [32], etc.).

ﬁ\ Labels
™ Learning Rate e
Input 0 Dog +
0 Horse
PN\ P\ o Optimiser S,
Ope
Parameters N’q

Predlct|on Loss Map

0.7 Cat +

0.2 Dog +

Neural Network il o

Fig. 1: An informal illustration of gradient-based learning. This neural network
is trained to distinguish different kinds of animals in the input image. Given an
input X, the network predicts an output Y, which is compared by a ‘loss map’
with what would be the correct answer (‘label’). The loss map returns a real
value expressing the error of the prediction; this information, together with the
learning rate (a weight controlling how much the model should be changed in
response to error) is used by an optimiser, which computes by gradient-descent
the update of the parameters of the network, with the aim of improving its
accuracy. The neural network, the loss map, the optimiser and the learning rate
are all components of a supervised learning system, and can vary independently
of one another.

This scenario highlights several questions: is there a uniform mathemati-
cal language capturing the different components of the learning process? Can
we develop a unifying picture of the various optimisation techniques, allowing
for their comparative analysis? Moreover, it should be noted that supervised
learning is not limited to neural networks. For example, supervised learning is
surprisingly applicable to the discrete setting of boolean circuits [50] where con-
tinuous functions are replaced by boolean-valued functions. Can we identify an
abstract perspective encompassing both the real-valued and the boolean case?
In a nutshell, this paper seeks to answer the question:

what are the fundamental mathematical structures underpinning gradient-
based learning?

Our approach to this question stems from the identification of three funda-
mental aspects of the gradient-descent learning process:
(I) computation is parametric, e.g. in the simplest case we are given a function
f: Px X — Y and learning consists of finding a parameter p : P such

Categorical Foundations of Gradient-Based Learning 3

that f(p, —) is the best function according to some criteria. Specifically, the
weights on the internal nodes of a neural network are a parameter which the
learning is seeking to optimize. Parameters also arise elsewhere, e.g. in the
loss function (see later).

(IT) information flows bidirectionally: in the forward direction, the computa-
tion turns inputs via a sequence of layers into predicted outputs, and then
into a loss value; in the reverse direction, backpropagation is used propa-
gate the changes backwards through the layers, and then turn them into
parameter updates.

(III) the basis of parameter update via gradient descent is differentiation e.g.
in the simple case we differentiate the function mapping a parameter to its
associated loss to reduce that loss.

We model bidirectionality via lenses [6,12,29] and based upon the above
three insights, we propose the notion of parametric lens as the fundamental
semantic structure of learning. In a nutshell, a parametric lens is a process with
three kinds of interfaces: inputs, outputs, and parameters. On each interface,
information flows both ways, i.e. computations are bidirectional. These data
are best explained with our graphical representation of parametric lenses, with
inputs A, A’, outputs B, B’, parameters P, P’, and arrows indicating information
flow (below left). The graphical notation also makes evident that parametric
lenses are open systems, which may be composed along their interfaces (below
center and right).

Qe
PP pp QC |1
L] LT 5 L1
Ae— B A —| = —c rl |
A— — B
Al — — B’

This pictorial formalism is not just an intuitive sketch: as we will show, it can
be understood as a completely formal (graphical) syntax using the formalism of
string diagrams [39], in a way similar to how other computational phenomena
have been recently analysed e.g. in quantum theory [14], control theory [5,8],
and digital circuit theory [26].

It is intuitively clear how parametric lenses express aspects (I) and (II) above,
whereas (IIT) will be achieved by studying them in a space of ‘differentiable
objects’ (in a sense that will be made precise). The main technical contribution
of our paper is showing how the various ingredients involved in learning (the
model, the optimiser, the error map and the learning rate) can be uniformly
understood as being built from parametric lenses.

We will use category theory as the formal language to develop our notion of
parametric lenses, and make Figure 2 mathematically precise. The categorical
perspective brings several advantages, which are well-known, established princi-
ples in programming language semantics [3,40,49]. Three of them are particularly

4 Cruttwell, Gavranovi¢, Ghani, Wilson, and Zanasi

A P P B
Optimiser
P P’ I
B/
A B L
Learning
Model Loss
rate
A’ B’ L’

Fig. 2: The parametric lens that captures the learning process informally sketched
in Figure 1. Note each component is a lens itself, whose composition yields the
interactions described in Figure 1. Defining this picture formally will be the
subject of Sections 3-4.

important to our contribution, as they constitute distinctive advantages of our
semantic foundations:

Abstraction Our approach studies which categorical structures are sufficient
to perform gradient-based learning. This analysis abstracts away from the
standard case of neural networks in several different ways: as we will see, it
encompasses other models (namely Boolean circuits), different kinds of op-
timisers (including Adagrad, Adam, Nesterov momentum), and error maps
(including quadratic and softmax cross entropy loss). These can be all un-
derstood as parametric lenses, and different forms of learning result from
their interaction.

Uniformity As seen in Figure 1, learning involves ingredients that are seem-
ingly quite different: a model, an optimiser, a loss map, etc. We will show
how all these notions may be seen as instances of the categorical defini-
tion of a parametric lens, thus yielding a remarkably uniform description of
the learning process, and supporting our claim of parametric lenses being a
fundamental semantic structure of learning.

Compositionality The use of categorical structures to describe computation
naturally enables compositional reasoning whereby complex systems are anal-
ysed in terms of smaller, and hence easier to understand, components. Com-
positionality is a fundamental tenet of programming language semantics; in
the last few years, it has found application in the study of diverse kinds of
computational models, across different fields— see e.g. [8,14,25,45]. As made
evident by Figure 2, our approach models a neural network as a parametric
lens, resulting from the composition of simpler parametric lenses, capturing
the different ingredients involved in the learning process. Moreover, as all
the simpler parametric lenses are themselves composable, one may engineer
a different learning process by simply plugging a new lens on the left or right
of existing ones. This means that one can glue together smaller and relatively
simple networks to create larger and more sophisticated neural networks.

Categorical Foundations of Gradient-Based Learning 5

We now give a synopsis of our contributions:

— In Section 2, we introduce the tools necessary to define our notion of para-
metric lens. First, in Section 2.1, we introduce a notion of parametric cat-
egories, which amounts to a functor Para(—) turning a category C into one
Para(C) of ‘parametric C-maps’. Second, we recall lenses (Section 2.2). In a
nutshell, a lens is a categorical morphism equipped with operations to view
and update values in a certain data structure. Lenses play a prominent role
in functional programming [47], as well as in the foundations of database
theory [31] and more recently game theory [25]. Considering lenses in C sim-
ply amounts to the application of a functorial construction Lens(—), yield-
ing Lens(C). Finally, we recall the notion of a cartesian reverse differential
category (CRDC): a categorical structure axiomatising the notion of differ-
entiation [13] (Section 2.4). We wrap up in Section 2.3, by combining these
ingredients into the notion of parametric lens, formally defined as a morphism
in Para(Lens(C)) for a CRDC C. In terms of our desiderata (I)-(III) above,
note that Para(—) accounts for (I), Lens(—) accounts for (II), and the CRDC
structure accounts for (III).

— As seen in Figure 1, in the learning process there are many components at
work: the model, the optimiser, the loss map, the learning rate, etc.. In Sec-
tion 3, we show how the notion of parametric lens provides a uniform char-
acterisation for such components. Moreover, for each of them, we show how
different variations appearing in the literature become instances of our ab-

stract characterisation. The plan is as follows:

o In Section 3.1, we show how the combinatorial model subject of the training
can be seen as a parametric lens. The conditions we provide are met by the
‘standard’ case of neural networks, but also enables the study of learning for
other classes of models. In particular, another instance are Boolean circuits:
learning of these structures is relevant to binarisation [16] and it has been
explored recently using a categorical approach [50], which turns out to be
a particular case of our framework.

o In Section 3.2, we show how the loss maps associated with training are also
parametric lenses. Our approach covers the cases of quadratic error, Boolean
error, Softmax cross entropy, but also the ‘dot product loss’ associated with
the phenomenon of deep dreaming [19, 34, 35, 44].

o In Section 3.3, we model the learning rate as a parametric lens. This
analysis also allows us to contrast how learning rate is handled in the ‘real-
valued’ case of neural networks with respect to the ‘Boolean-valued’ case of
Boolean circuits.

o In Section 3.4, we show how optimisers can be modelled as ‘reparame-
terisations’ of models as parametric lenses. As case studies, in addition to
basic gradient update, we consider the stateful variants: Momentum [37],
Nesterov Momentum [48], Adagrad [20], and Adam (Adaptive Moment Es-
timation) [32]. Also, on Boolean circuits, we show how the reverse derivative
ascent of [50] can be also regarded in such way.

— In Section 4, we study how the composition of the lenses defined in Section 3
yields a description of different kinds of learning processes.

6 Cruttwell, Gavranovi¢, Ghani, Wilson, and Zanasi

o Section 4.1 is dedicated to modelling supervised learning of parameters,
in the way described in Figure 1. This amounts essentially to study of
the composite of lenses expressed in Figure 2, for different choices of the
various components. In particular we look at (i) quadratic loss with basic
gradient descent, (ii) softmax cross entropy loss with basic gradient descent,
(iii) quadratic loss with Nesterov momentum, and (iv) learning in Boolean
circuits with XOR loss and basic gradient ascent.

o In order to showcase the flexibility of our approach, in Section 4.2 we de-
part from our ‘core’ case study of parameter learning, and turn attention
to supervised learning of inputs, also called deep dreaming — the idea
behind this technique is that, instead of the network parameters, one up-
dates the inputs, in order to elicit a particular interpretation [19,34,35,44].
Deep dreaming can be easily expressed within our approach, with a differ-
ent rearrangement of the parametric lenses involved in the learning process,
see (8) below. The abstract viewpoint of categorical semantics provides a
mathematically precise and visually captivating description of the differ-
ences between the usual parameter learning process and deep dreaming.

— In Section 5 we describe a proof-of-concept Python implementation, avail-
able at [17], based on the theory developed in this paper. This code is intended
to show more concretely the payoff of our approach. Model architectures, as
well as the various components participating in the learning process, are now
expressed in a uniform, principled mathematical language, in terms of lenses.
As a result, computing network gradients is greatly simplified, as it amounts
to lens composition. Moreover, the modularity of this approach allows one to
more easily tune the various parameters of training.

We show our library via a number of experiments, and prove correctness by

achieving accuracy on par with an equivalent model in Keras, a mainstream

deep learning framework [11]. In particular, we create a working non-trivial

neural network model for the MNIST image-classification problem [33].

— Finally, in Sections 6 and 7, we discuss related and future work.

2 Categorical Toolkit

In this section we describe the three categorical components of our framework,
each corresponding to an aspect of gradient-based learning: (I) the Para con-
struction (Section 2.1), which builds a category of parametric maps, (II) the
Lens construction, which builds a category of “bidirectional” maps (Section
2.2), and (IIT) the combination of these two constructions into the notion of
“parametric lenses” (Section 2.3). Finally (IV) we recall Cartesian reverse dif-
ferential categories — categories equipped with an abstract gradient operator.

Notation We shall use f;g for sequential composition of morphisms f: A — B
and g: B — C in a category, 14 for the identity morphism on A, and I for the
unit object of a symmetric monoidal category.

Categorical Foundations of Gradient-Based Learning 7

2.1 Parametric Maps

In supervised learning one is typically interested in approximating a function
g : R" — R™ for some n and m. To do this, one begins by building a neural
network, which is a smooth map f : RP x R® — R™ where R? is the set of
possible weights of that neural network. Then one looks for a value of ¢ € R?
such that the function f(g, —) : R™ — R™ closely approximates g. We formalise
these maps categorically via the Para construction [9,23,24,30].

Definition 1 (Parametric category). Let (C,®,I) be a strict* symmetric
monoidal category. We define a category Para(C) with objects those of C, and
a map from A to B a pair (P, f), with P an object of C and f : P® A —
B. The composite of maps (P, f) : A — B and (P',f") : B — C is the pair
(PP P,(1p ® f);). The identity on A is the pair (I,14).

Example 1. Take the category Smooth whose objects are natural numbers and
whose morphisms f : n — m are smooth maps from R" to R™. As described
above, the category Para(Smooth) can be thought of as a category of neural
networks: a map in this category from n to m consists of a choice of p and a
map [: RP x R™ — R™ with R? representing the set of possible weights of the
neural network.

As we will see in the next sections, the interplay of the various components
at work in the learning process becomes much clearer once represented the mor-
phisms of Para(C) using the pictorial formalism of string diagrams, which we
now recall. In fact, we will mildly massage the traditional notation for string
diagrams (below left), by representing a morphism f: A — B in Para(C) as

below right.

This is to emphasise the special role played by P, reflecting the fact that in
machine learning data and parameters have different semantics. String diagram-
matic notations also allows to neatly represent composition of maps (P, f) : A —
Band (P, f') : B — C (below left), and “reparameterisation” of (P, f): A — B
by amap « : @ — P (below right), yielding a new map (@, (a«®14); f) : A — B.

P N H (2)

;

4 One can also define Para(C) in the case when C is non-strict; however, the result
would be not a category but a bicategory.

8 Cruttwell, Gavranovi¢, Ghani, Wilson, and Zanasi

Intuitively, reparameterisation changes the parameter space of (P, f) : A — B to
some other object), via some map « : @ — P. We shall see later that gradient
descent and its many variants can naturally be viewed as reparameterisations.

Note coherence rules in combining the two operations in (2) just work as ex-
pected, as these diagrams can be ultimately ‘compiled” down to string diagrams
for monoidal categories.

2.2 Lenses

In machine learning (or even learning in general) it is fundamental that infor-
mation flows both forwards and backwards: the ‘forward’ flow corresponds to a
model’s predictions, and the ‘backwards’ flow to corrections to the model. The
category of lenses is the ideal setting to capture this type of structure, as it is a
category consisting of maps with both a “forward” and a “backward” part.

Definition 2. For any Cartesian category C, the category of (bimorphic) lenses
in C, Lens(C), is the category with the following data. Objects are pairs (A, A’)
of objects in C. A map from (A, A") to (B, B’) consists of a pair (f, f*) where
f A — B (called the get or forward part of the lens) and f* : A x B’ —
A’ (called the put or backwards part of the lens). The composite of (f, f*) :
(A, A" — (B,B’) and (g9,9%) : (B,B’) — (C,C") is given by get f;g and put
(o, {mo; f,m1); g%); f*. The identity on (A, A’) is the pair (14,71).

The embedding of Lens(C) into the category of Tambara modules over C
(see [7, Thm. 23]) provides a rich string diagrammatic language, in which lenses
may be represented with forward/backward wires indicating the information
flow. In this language, a morphism (f, f*) : (4,4") — (B, B’) is written as
below left, which can be ‘expanded’ as below right.

[7] 5
L]

L |
A e

It is clear in this language how to describe the composite of (f, f*) : (4, A4") —
(B, B') and (g,°) : (B, B') > (C,C");

Categorical Foundations of Gradient-Based Learning 9

2.3 Parametric Lenses

The fundamental category where supervised learning takes place is the composite
Para(Lens(C)) of the two constructions in the previous sections:

Definition 3. The category Para(Lens(C)) of parametric lenses on C has
as objects pairs (A, A’) of objects from C. A morphism from (A, A’) to (B,B’),
called a parametric lens®, is a choice of parameter pair (P, P') and a lens (f, f*) :
(P,P'Yx(AA") = (B,B’) sothat f : PxA — B and f* : PxAxB — P' x A

String diagrams for parametric lenses are built by simply composing the graph-
ical languages of the previous two sections — see (1), where respectively a mor-
phism, a composition of morphisms, and a reparameterisation are depicted.

Given a generic morphism in Para(Lens(C)) as depicted in (1) on the left,
one can see how it is possible to “learn” new values from f: it takes as input an
input A, a parameter P, and a change B’, and outputs a change in A, a value
of B, and a change P’. This last element is the key component for supervised
learning: intuitively, it says how to change the parameter values to get the neural
network closer to the true value of the desired function.

The question, then, is how one is to define such a parametric lens given
nothing more than a neural network, ie., a parametric map (P, f) : A — B.
This is precisely what the gradient operation provides, and its generalization to
categories is explored in the next subsection.

2.4 Cartesian Reverse Differential Categories

Fundamental to all types of gradient-based learning is, of course, the gradient
operation. In most cases this gradient operation is performed in the category of
smooth maps between Euclidean spaces. However, recent work [50] has shown
that gradient-based learning can also work well in other categories; for example,
in a category of boolean circuits. Thus, to encompass these examples in a single
framework, we will work in a category with an abstract gradient operation.

Definition 4. A Cartesian left additive category [13, Defn. 1] consists of
a category C with chosen finite products (including a terminal object), and an
addition operation and zero morphism in each homset, satisfying various axioms.
A Cartesian reverse differential category (CRDC) [13, Defn. 13] consists
of a Cartesian left additive category C, together with an operation which provides,
for each map f : A — B in C, a map R[f] : A x B — A satisfying various
azioms.

For f : A — B, the pair (f, R[f]) forms a lens from (A, A) to (B, B). We
will pursue the idea that R[f] acts as backwards map, thus giving a means to
“learn” f.

5 In [23], these are called learners. However, in this paper we study them in a much
broader light; see Section 6.

10 Cruttwell, Gavranovi¢, Ghani, Wilson, and Zanasi

Note that assigning type Ax B — A to R[f] hides some relevant information:
B-values in the domain and A-values in the codomain of R[f] do not play the
same role as values of the same types in f: A — B: in R[f], they really take in a
tangent vector at B and output a tangent vector at A (cf. the definition of R[f]
in Smooth, Example 2 below). To emphasise this, we will type R[f] as a map
A x B" — A’ (even though in reality A = A" and B = B’), thus meaning that
(f, R[f]) is actually a lens from (A, A’) to (B, B’). This typing distinction will
be helpful later on, when we want to add additional components to our learning
algorithms.

The following two examples of CRDCs will serve as the basis for the learning
scenarios of the upcoming sections.

Ezample 2. The category Smooth (Example 1) is Cartesian with product given
by addition, and it is also a Cartesian reverse differential category: given a
smooth map f : R" — R™, the map R[f]: R® x R™ — R" sends a pair (z,v)
to J[f]¥ (z) - v: the transpose of the Jacobian of f at z in the direction v. For
example, if f : R? — R? is defined as f(z1,22) := (23 + 22172, 22, sin(z1)), then

2 U1
R[f] : R? x R3 — R? is given by (x,v) 31:12?;123% (1) cos(()xl) vg | . Using
U3

the reverse derivative (as opposed to the forward derivative) is well-known to be
much more computationally efficient for functions f : R™ — R™ when m < n
(for example, see [28]), as is the case in most supervised learning situations
(where often m = 1).

Ezample 3. Another CRDC is the symmetric monoidal category POLY 7, [13,
Example 14] with objects the natural numbers and morphisms f: A — B the B-
tuples of polynomials Zs[x; ...z 4]. When presented by generators and relations
these morphisms can be viewed as a syntax for boolean circuits, with parametric
lenses for such circuits (and their reverse derivative) described in [50].

3 Components of learning as Parametric Lenses

As seen in the introduction, in the learning process there are many components
at work: a model, an optimiser, a loss map, a learning rate, etc. In this section
we show how each such component can be understood as a parametric lens.
Moreover, for each component, we show how our framework encompasses several
variations of the gradient-descent algorithms, thus offering a unifying perspective
on many different approaches that appear in the literature.

3.1 Models as Parametric Lenses

We begin by characterising the models used for training as parametric lenses.
In essence, our approach identifies a set of abstract requirements necessary to
perform training by gradient descent, which covers the case studies that we will
consider in the next sections.

Categorical Foundations of Gradient-Based Learning 11

The leading intuition is that a suitable model is a parametric map, equipped
with a reverse derivative operator. Using the formal developments of Section 2,
this amounts to assuming that a model is a morphism in Para(C), for a CRDC
C. In order to visualise such morphism as a parametric lens, it then suffices to
apply under Para(—) the canonical morphism R: C — Lens(C) (which exists
for any CRDC C, see [13, Prop. 31]), mapping f to (f, R[f]). This yields a functor
Para(R) : Para(C) — Para(Lens(C)), pictorially defined as

P
P N (@)

A R[f] B

Ezample 4 (Neural networks). As noted previously, to learn a function of type
R™ — R™, one constructs a neural network, which can be seen as a function of
type R? x R™” — R™ where R? is the space of parameters of the neural network.
As seen in Example 1, this is a map in the category Para(Smooth) of type
R™ — R™ with parameter space RP. Then one can apply the functor in (4)
to present a neural network together with its reverse derivative operator as a
parametric lens, i.e. a morphism in Para(Lens(Smooth)).

Example 5 (Boolean circuits). For learning of Boolean circuits as described in
[50], the recipe is the same as in Example 4, except that the base category is
POLY7z, (see Example 3). The important observation here is that POLYz, is a
CRDC, see [13,50], and thus we can apply the functor in (4).

Note a model/parametric lens f can take as inputs an element of A, an
element of B’ (a change in B) and a parameter P and outputs an element of
B, a change in A, and a change in P. This is not yet sufficient to do machine
learning! When we perform learning, we want to input a parameter P and a pair
A x B and receive a new parameter P. Instead, f expects a change in B (not an
element of B) and outputs a change in P (not an element of P). Deep dreaming,
on the other hand, wants to return an element of A (not a change in A). Thus, to
do machine learning (or deep dreaming) we need to add additional components
to f; we will consider these additional components in the next sections.

3.2 Loss Maps as Parametric Lenses

Another key component of any learning algorithm is the choice of loss map.
This gives a measurement of how far the current output of the model is from
the desired output. In standard learning in Smooth, this loss map is viewed as
a map of type B x B — R. However, in our setup, this is naturally viewed as a

12 Cruttwell, Gavranovi¢, Ghani, Wilson, and Zanasi

parametric map from B to R with parameter space B.® We also generalize the
codomain to an arbitrary object L.

Definition 5. A loss map on B consists of a parametric map (B,loss) :
Para(C)(B, L) for some object L.

Note that we can precompose a loss map (B,loss): B — L with a neural
network (P, f) : A — B (below left), and apply the functor in (4) (with C =
Smooth) to obtain the parametric lens below right.

P’ B B’
P B [|1
7 B

A— — loss — L (5)
B — , ,
A L A’ RIf] 51 RJloss] F— L

This is getting closer to the parametric lens we want: it can now receive
inputs of type B. However, this is at the cost of now needing an input to L’; we
consider how to handle this in the next section.

P
l

Ezample 6 (Quadratic error). In Smooth, the standard loss function on R’ is
quadratic error: it uses L = R and has parametric map e : R’ xR’ - R given
by e(by, by) = 3 Zszl((bp)i —(by)i)?, where we think of b; as the “true” value and
b, the predicted value. This has reverse derivative R[e] : R” x R” x R — R” x R?
given by Rle](bs, by,) = - (b, — b, by — by) — note a suggests the idea of
learning rate, which we will explore in Section 3.3.

Ezxample 7 (Boolean error). In POLYz,, the loss function on Z® which is im-
plicitly used in [50] is a bit different: it uses L = Z’ and has parametric map
e: 70 x 7P — 7P given by

e(bt, bp) = bt + bp.

(Note that this is 4+ in Zs; equivalently this is given by XOR.) Its reverse deriva-
tive is of type Rle] : Zb x ZP x Z° — 7Z° x 7" given by R[e](b;, by,) = (a,).

Ezample 8 (Softmaz cross entropy). The Softmax cross entropy loss is a R®-
parametric map R” — R defined by e(b;, b,) = Z?Zl(bt)i((bp)i—log(Softmax(bp)i))

where Softmax(b,) = —=22{(lr)i)

S, exp((by);) is defined componentwise for each class i.

We note that, although b; needs to be a probability distribution, at the
moment there is no need to ponder the question of interaction of probability
distributions with the reverse derivative framework: one can simply consider b,
as the image of some logits under the Softmax function.

5 Here the loss map has its parameter space equal to its input space. However, putting
loss maps on the same footing as models lends itself to further generalizations where
the parameter space is different, and where the loss map can itself be learned. See
Generative Adversarial Networks, [9, Figure 7.].

Categorical Foundations of Gradient-Based Learning 13

Ezample 9 (Dot product). In Deep Dreaming (Section 4.2) we often want to focus
only on a particular element of the network output R®. This is done by supplying
a one-hot vector b; as the ground truth to the loss function e(bt, b,) = b;-b, which
computes the dot product of two vectors. If the ground truth vector y is a one-
hot vector (active at the i-th element), then the dot product performs masking of
all inputs except the i-th one. Note the reverse derivative Rle]: R® x R” x R —
R x R” of the dot product is defined as Rle](bt, by,) = (- by, v - by).

3.3 Learning Rates as Parametric Lenses

After models and loss maps, another ingredient of the learning process are learn-
ing rates, which we formalise as follows.

Definition 6. A learning rate o on L consists of a lens from (L, L") to (1,1)
where 1 is a terminal object in C.

Note that the get component of the learning rate lens must be the unique map
to 1, while the put component is a map L x 1 — L’; that is, simply a map
a* : L — L’. Thus we can view « as a parametric lens from (L,L") — (1,1)
(with trivial parameter space) and compose it in Para(Lens(C)) with a model
and a loss map (cf. (5)) to get

P P B B’

T, 11,
A— f loss o (6)
A’— R[f] 5 R]loss] 7

Ezxample 10. In standard supervised learning in Smooth, one fixes some € > 0
as a learning rate, and this is used to define a: « is simply constantly —e, ie.,
a(l) = —e for any | € L.

Example 11. In supervised learning in POLYy,, the standard learning rate is
quite different: for a given L it is defined as the identity function, «(l) = 1.

Other learning rate morphisms are possible as well: for example, one could
fix some € > 0 and define a learning rate in Smooth by «(l) = —e - [. Such a
choice would take into account how far away the network is from its desired goal
and adjust the learning rate accordingly.

3.4 Optimisers as Reparameterisations

In this section we consider how to implement gradient descent (and its variants)
into our framework. To this aim, note that the parametric lens (f, R[f]) rep-
resenting our model (see (4)) outputs a P’, which represents a change in the
parameter space. Now, we would like to receive not just the requested change
in the parameter, but the new parameter itself. This is precisely what gradient
descent accomplishes, when formalised as a lens.

14 Cruttwell, Gavranovi¢, Ghani, Wilson, and Zanasi

Definition 7. In any CRDC C we can define gradient update as a map G in
Lens(C) from (P, P) to (P, P’) consisting of (G,G*) : (P,P) — (P, P’), where
G(p) =p and G*(p,p) =p +p'".

Intuitively, such a lens allows one to receive the requested change in parameter
and implement that change by adding that value to the current parameter. By its
type, we can now “plug” the gradient descent lens G: (P, P) — (P, P’) above the
model (f, R[f]) in (4) — formally, this is accomplished as a reparameterisation
of the parametric morphism (f, R[f]), ¢f. Section 2.1. This gives us Figure 3
(left).

P P SxP SxP
{H Optimiser
P P’ P P’
A B A B
— —
Model Model
A’ B’ A’ B’

Fig.3: Model reparameterised by basic gradient descent (left) and a generic
stateful optimiser (right).

Ezample 12 (Gradient update in Smooth). In Smooth, the gradient descent repa-
rameterisation will take the output from P’ and add it to the current value of
P to get a new value of P.

Ezample 13 (Gradient update in Boolean circuits). In the CRDC POLY7,, the
gradient descent reparameterisation will again take the output from P’ and
add it to the current value of P to get a new value of P; however, since + in
Zso is the same as XOR, this can be also be seen as taking the XOR of the
current parameter and the requested change; this is exactly how this algorithm
is implemented in [50].

Other variants of gradient descent also fit naturally into this framework by
allowing for additional input/output data with P. In particular, many of them
keep track of the history of previous updates and use that to inform the next one.
This is easy to model in our setup: instead of asking for a lens (P, P) — (P, P’),
we ask instead for a lens (S x P, S x P) — (P, P’") where S is some “state” object.

7 Note that as in the discussion in Section 2.4, we are implicitly assuming that P = P’;
we have merely notated them differently to emphasize the different “roles” they play
(the first P can be thought of as “points”, the second as “vectors”)

Categorical Foundations of Gradient-Based Learning 15

Definition 8. A stateful parameter update consists of a choice of object S
(the state object) and a lens U : (S x P,S x P) — (P, P’).

Again, we view this optimiser as a reparameterisation which may be “plugged
in” a model as in Figure 3 (right). Let us now consider how several well-known
optimisers can be implemented in this way.

Ezample 1/ (Momentum). In the momentum variant of gradient descent, one
keeps track of the previous change and uses this to inform how the current
parameter should be changed. Thus, in this case, we set S = P, fix some v >
0, and define the momentum lens (U,U*) : (P x P,P x P) — (P,P’) . by
U(s,p) =pand U*(s,p,p') = (s',p+s'), where s’ = —ys + p’. Note momentum
recovers gradient descent when v = 0.

In both standard gradient descent and momentum, our lens representation
has trivial get part. However, as soon as we move to more complicated variants,
this is not anymore the case, as for instance in Nesterov momentum below.

Ezample 15 (Nesterov momentum). In Nesterov momentum, one uses the mo-
mentum from previous updates to tweak the input parameter supplied to the
network. We can precisely capture this by using a small variation of the lens in
the previous example. Again, we set S = P, fix some v > 0, and define the Nes-
terov momentum lens (U, U*): (P x P,P x P) — (P,P’) by U(s,p) =p+~s
and U* as in the previous example.

Ezample 16 (Adagrad). Given any fixed € > 0 and § ~ 1077, Adagrad [20] is
given by S = P, with the lens whose get part is (g, p) — p. The put is (g, p, p’) —
(¢,p+ 6+i/_¢7 ©p') where ¢’ = g+p' @ p’ and © is the elementwise (Hadamard)
product. Unlike with other optimization algorithms where the learning rate is
the same for all parameters, Adagrad divides the learning rate of each individual

parameter with the square root of the past accumulated gradients.

Ezample 17 (Adam). Adaptive Moment Estimation (Adam) [32] is another method
that computes adaptive learning rates for each parameter by storing exponen-
tially decaying average of past gradients (m) and past squared gradients (v). For
fixed 81,82 € [0,1), € > 0, and 6 ~ 1078, Adam is given by S = P x P, with
the lens whose get part is (m, v, p) — p and whose put part is put(m,v,p,p’) =
(m', 0", p + ﬁ ©m’) where m’ = Bym + (1 — B1)p’, v/ = Bav + (1 — Ba)p'?,
and m’ =

~ v’

v = .
1-p5

m/
5
Note that, so far, optimsers/reparameterisations have been added to the

P/P’ wires. In order to change the model’s parameters (Fig. 3). In Section 4.2
we will study them on the A/A’ wires instead, giving deep dreaming.

4 Learning with Parametric Lenses

In the previous section we have seen how all the components of learning can be
modeled as parametric lenses. We now study how all these components can be

16 Cruttwell, Gavranovi¢, Ghani, Wilson, and Zanasi

put together to form supervised learning systems. In addition to studying the
most common examples of supervised learning: systems that learn parameters,
we also study different kinds systems: those that learn their inputs. This is a
technique commonly known as deep dreaming, and we present it as a natural
counterpart of supervised learning of parameters.

Before we describe these systems, it will be convenient to represent all the
inputs and outputs of our parametric lenses as parameters. In (6), we see the
P/P’" and B/B’ inputs and outputs as parameters; however, the A/A’ wires are
not. To view the A/A’ inputs as parameters, we compose that system with the
parametric lens we now define. The parametric lens 7 has the type (1,1) —
(A, A”) with parameter space (A, A’) defined by (get, = 14, put,, = 1) and can

A

A
be depicted graphically as . Composing 1 with the rest of the learning

!

system in (6) gives us the closed parametric lens

A A’

P P’ B B’
LR BT
Model Loss @ (7)

A B’ r

This composite is now a map in Para(Lens(C)) from (1, 1) to (1, 1); all its inputs
and outputs are now vertical wires, ie., parameters. Unpacking it further, this is
a lens of type (A x P x B, A’ x P’ x B') — (1,1) whose get map is the terminal
map, and whose put map is of the type A x P x B — A’ x P’ x B’. It can be
unpacked as the composite put(a,p,b;) = (a’,p’,b}), where

bp = f(p,a) (b, b,) = Rloss|(be, by, afloss(be, by))) (P, a") = R[f)(p, a,bp).

In the next two sections we consider further additions to the image above which
correspond to different types of supervised learning.

4.1 Supervised Learning of Parameters

The most common type of learning performed on (7) is supervised learning of
parameters. This is done by reparameterising (cf. Section 2.1) the image in the
following manner. The parameter ports are reparameterised by one of the (pos-
sibly stateful) optimisers described in the previous section, while the backward
wires A’ of inputs and B’ of outputs are discarded. This finally yields the com-
plete picture of a system which learns the parameters in a supervised manner:

Categorical Foundations of Gradient-Based Learning 17

A SxP SxP

B
Optimiser
P P’ I
B/
A B L
Model Loss (¢
A B’ L

Fixing a particular optimiser (U,U*) : (S x P,S x P) — (P, P') we again
unpack the entire construction. This is a map in Para(Lens(C)) from (1,1) to
(1,1) whose parameter space is (A x S x P x B,S x P). In other words, this
is a lens of type (A x S x P x B,S x P) — (1,1) whose get component is the
terminal map. Its put map has the type A x S x P x B — S x P and unpacks
to put(a, s,p,b;) = U*(s,p,p’), where

D= U(svp) bp = f(ﬁ» a)
(b4, by,) = Rlloss|(bs, by, a(loss(be, b)) (p',a") = R[f](P. a,b},).

While this formulation might seem daunting, we note that it just explicitly
specifies the computation performed by a supervised learning system. The vari-
able p represents the parameter supplied to the network by the stateful gradient
update rule (in many cases this is equal to p); b, represents the prediction of
the network (contrast this with b; which represents the ground truth from the
dataset). Variables with a tick ' represent changes: b, and b; are the changes
on predictions and true values respectively, while p’ and a’ are changes on the
parameters and inputs. Furthermore, this arises automatically out of the rule for
lens composition (3); what we needed to specify is just the lenses themselves.

We justify and illustrate our approach on a series of case studies drawn from
the literature. This presentation has the advantage of treating all these instances
uniformly in terms of basic constructs, highlighting their similarities and differ-
ences. First, we fix some parametric map (R?, f) : Para(Smooth)(R*,R") in
Smooth and the constant negative learning rate o : R (Example 10). We then
vary the loss function and the gradient update, seeing how the put map above
reduces to many of the known cases in the literature.

Ezample 18 (Quadratic error, basic gradient descent). Fix the quadratic error
(Example 6) as the loss map and basic gradient update (Example 12). Then the
aforementioned put map simplifies. Since there is no state, its type reduces to
A x P x B — P, and we have put(a, p,b;) = p+p’, where (p',a’) = R[f](p,a,
(f(p,a) — b)). Note that « here is simply a constant, and due to the linearity
of the reverse derivative (Def 4), we can slide the o from the costate into the
basic gradient update lens. Rewriting this update, and performing this sliding we
obtain a closed form update step put(a,p, b)) = p+a-(R[f](p, a, f(p,a) —b:); 7o),

18 Cruttwell, Gavranovi¢, Ghani, Wilson, and Zanasi

where the negative descent component of gradient descent is here contained in
the choice of the negative constant .

This example gives us a variety of regression algorithms solved iteratively
by gradient descent: it embeds some parametric map (RP, f): R* — R® into the
system which performs regression on input data - where a denotes the input to
the model and b; denotes the ground truth. If the corresponding f is linear and
b = 1, we recover simple linear regression with gradient descent. If the codomain
is multi-dimensional, i.e. we are predicting multiple scalars, then we recover
multivariate linear regression. Likewise, we can model a multi-layer perceptron or
even more complex neural network architectures performing supervised learning
of parameters simply by changing the underlying parametric map.

Ezample 19 (Softmaz cross entropy, basic gradient descent). Fix Softmax cross
entropy (Example 8) as the loss map and basic gradient update (Example 12).
Again the put map simplifies. The type reduces to A x P x B — P and we have
put(a,p,b:) = p+ p’ where (p',a’) = R[f](P, a,« - (Softmax(f(p,a)) — b¢)). The
same rewriting performed on the previous example can be done here.

This example recovers logistic regression, e.g. classification.

Ezample 20 (Mean squared error, Nesterov Momentum). Fix the quadratic error
(Example 6) as the loss map and Nesterov momentum (Example 15) as the
gradient update. This time the put map A x S x P x B — S x P does not have a
simplified type. The implementation of put reduces to put(a, s,p, b;) = (s', p+5’),
where D =p+ s, (p/,d') = R[f](P,a,a - (f(B,a) — b)), and s’ = —ys+p'.

This example with Nesterov momentum differs in two key points from all
the other ones: i) the optimiser is stateful, and ii) its get map is not trivial.
While many other optimisers are stateful, the non-triviality of the get map here
showcases the importance of lenses. They allow us to make precise the notion of
computing a “lookahead” value for Nesterov momentum, something that is in
practice usually handled in ad-hoc ways. Here, the algebra of lens composition
handles this case naturally by using the get map, a seemingly trivial, unused
piece of data for previous optimisers.

Our last example, using a different base category POLYz,, shows that our
framework captures learning in not just continuous, but discrete settings too.
Again, we fix a parametric map (Z?, f) : POLYy, (Za,Zb) but this time we fix
the identity learning rate (Example 11), instead of a constant one.

Ezample 21 (Basic learning in Boolean circuits). Fix XOR as the loss map (Ex-
ample 7) and the basic gradient update (Example 13). The put map again
simplifies. The type reduces to A x P x B — P and the implementation to

put(a,p,b;) = p +p’ where (p',a’) = R[f](p, a, f(p,a) + b;).

A sketch of learning iteration. Having described a number of examples in
supervised learning, we outline how to model learning iteration in our framework.
Recall the aforementioned put map whose type is A x P x B — P (for simplicity

Categorical Foundations of Gradient-Based Learning 19

here modelled without state S). This map takes an input-output pair (ag, bo),
the current parameter p; and produces an updated parameter p; 1. At the next
time step, it takes a potentially different input-output pair (aq, b1), the updated
parameter p;+; and produces p;42. This process is then repeated. We can model
this iteration as a composition of the put map with itself, as a composite (A x
put X B); put whose type is A X A X P x B x B — P. This map takes two input-
output pairs A x B, a parameter and produces a new parameter by processing
these datapoints in sequence. One can see how this process can be iterated any
number of times, and even represented as a string diagram.

But we note that with a slight reformulation of the put map, it is possible
to obtain a conceptually much simpler definition. The key insight lies in seeing
that the map put : Ax P x B — P is essentially an endo-map P — P with some
extra inputs A X B; it’s a parametric map!

In other words, we can recast the put map as a parametric map (A4 x B, put) :
Para(C)(P, P). Being an endo-map, it can be composed with itself. The resulting
composite is an endo-map taking two “parameters”: input-output pair at the
time step 0 and time step 1. This process can then be repeated, with Para
composition automatically taking care of the algebra of iteration.

AXxB AXB AXxXB

P put L put R put P

This reformulation captures the essence of parameter iteration: one can think
of it as a trajectory p;,pi+1,Pit2,... through the parameter space; but it is a
trajectory parameterised by the dataset. With different datasets the algorithm
will take a different path through this space and learn different things.

4.2 Deep Dreaming: Supervised Learning of Inputs

We have seen that reparameterising the parameter port with gradient descent
allows us to capture supervised parameter learning. In this section we describe
how reparameterising the input port provides us with a way to enhance an input
image to elicit a particular interpretation. This is the idea behind the technique
called Deep Dreaming, appearing in the literature in many forms [19, 34, 35,44].

SxA SxA P B

|1

Optimiser

A A’
B/
A B L
Model Loss a > (8)
A’ B’ L'

20 Cruttwell, Gavranovi¢, Ghani, Wilson, and Zanasi

Deep dreaming is a technique which uses the parameters p of some trained
classifier network to iteratively dream up, or amplify some features of a class b on
a chosen input a. For example, if we start with an image of a landscape ag, a label
b of a “cat” and a parameter p of a sufficiently well-trained classifier, we can start
performing “learning” as usual: computing the predicted class for the landscape
ag for the network with parameters p, and then computing the distance between
the prediction and our label of a cat b. When performing backpropagation, the
respective changes computed for each layer tell us how the activations of that
layer should have been changed to be more “cat” like. This includes the first
(input) layer of the landscape ag. Usually, we discard this changes and apply
gradient update to the parameters. In deep dreaming we discard the parameters
and apply gradient update to the input (see (8)). Gradient update here takes these
changes and computes a new image a1 which is the same image of the landscape,
but changed slightly so to look more like whatever the network thinks a cat looks
like. This is the essence of deep dreaming, where iteration of this process allows
networks to dream up features and shapes on a particular chosen image [1].

Just like in the previous subsection, we can write this deep dreaming system
as a map in Para(Lens(C)) from (1, 1) to (1, 1) whose parameter space is (S x A x
PxB,SxA). In other words, this is a lens of type (Sx AxPxB,SxA) — (1,1)
whose get map is trivial. Its put map has the type S x AXx Px B — S x A
and unpacks to put(s,a,p,b;) = U*(s,a,a’), where @ = U(s,a), b, = f(p,a),
(bt, by,) = Rfloss] (b, by, a(loss(by, by))), and (p',a’) = R[f](p,a,b;,).

We note that deep dreaming is usually presented without any loss function as
a maximisation of a particular activation in the last layer of the network output
[44, Section 2.]. This maximisation is done with gradient ascent, as opposed to
gradient descent. However, this is just a special case of our framework where
the loss function is the dot product (Example 9). The choice of the particular
activation is encoded as a one-hot vector, and the loss function in that case
essentially masks the network output, leaving active only the particular chosen
activation. The final component is the gradient ascent: this is simply recovered
by choosing a positive, instead of a negative learning rate [44]. We explicitly
unpack this in the following example.

Ezample 22 (Deep dreaming, dot product loss, basic gradient update). Fix Smooth
as base category, a parametric map (RP, f) : Para(Smooth)(Ra,Rb), the dot
product loss (Example 9), basic gradient update (Example 12), and a positive
learning rate « : R. Then the above put map simplifies. Since there is no state, its
type reduces to A x P x B — A and its implementation to put(a,p,b:) = a+d/,
where (p/,a’) = R[f](p, a, - b;). Like in Example 18, this update can be rewrit-
ten as put(a,p,b) = a + « - (R[f](p, a,bs);71), making a few things apparent.
This update does not depend on the prediction f(p,a): no matter what the net-
work has predicted, the goal is always to maximize particular activations. Which
activations? The ones chosen by b;. When b; is a one-hot vector, this picks out
the activation of just one class to maximize, which is often done in practice.

While we present only the most basic image, there is plenty of room left
for exploration. The work of [44, Section 2.] adds an extra regularization term

Categorical Foundations of Gradient-Based Learning 21

to the image. In general, the neural network f is sometimes changed to copy
a number of internal activations which are then exposed on the output layer.
Maximizing all these activations often produces more visually appealing results.
In the literature we did not find an example which uses the Softmax-cross entropy
(Example 8) as a loss function in deep dreaming, which seems like the more
natural choice in this setting. Furthermore, while deep dreaming commonly uses
basic gradient descent, there is nothing preventing the use of any of the optimiser
lenses discussed in the previous section, or even doing deep dreaming in the
context of Boolean circuits. Lastly, learning iteration which was described in at
the end of previous subsection can be modelled here in an analogous way.

5 Implementation

We provide a proof-of-concept implementation as a Python library — full usage
examples, source code, and experiments can be found at [17]. We demonstrate
the correctness of our library empirically using a number of experiments im-
plemented both in our library and in Keras [11], a popular framework for deep
learning. For example, one experiment is a model for the MNIST image clas-
sification problem [33]: we implement the same model in both frameworks and
achieve comparable accuracy. Note that despite similarities between the user in-
terfaces of our library and of Keras, a model in our framework is constructed
as a composition of parametric lenses. This is fundamentally different to the
approach taken by Keras and other existing libraries, and highlights how our
proposed algebraic structures naturally guide programming practice

In summary, our implementation demonstrates the advantages of our ap-
proach. Firstly, computing the gradients of the network is greatly simplified
through the use of lens composition. Secondly, model architectures can be ex-
pressed in a principled, mathematical language; as morphisms of a monoidal
category. Finally, the modularity of our approach makes it easy to see how var-
ious aspects of training can be modified: for example, one can define a new
optimization algorithm simply by defining an appropriate lens. We now give a
brief sketch of our implementation.

5.1 Constructing a Model with Lens and Para

We model a lens (f, f*) in our library with the Lens class, which consists of a
pair of maps fwd and rev corresponding to f and f*, respectively. For example,
we write the identity lens (14,72) as follows:

identity = Lens(lambda x: x, lambda x.dy: x.dy[1])

The composition (in diagrammatic order) of Lens values £ and g is written
f >> g, and monoidal composition as £ @ g. Similarly, the type of Para maps
is modeled by the Para class, with composition and monoidal product written
the same way. Our library provides several primitive Lens and Para values.

22 Cruttwell, Gavranovi¢, Ghani, Wilson, and Zanasi

Let us now see how to construct a single layer neural network from the com-
position of such primitives. Diagramatically, we wish to construct the following
model, representing a single ‘dense’ layer of a neural network:

bea bea Rb Rb
11, L1 .
i“*) linear bias activation*) RZ (9)
1 R® R’ TR
Here, the parameters of 1inear are the coefficients of a b x ¢ matrix, and the
underlying lens has as its forward map the function (M, z) — M -z, where M is
the b x a matrix whose coefficients are the R®*® parameters, and z € R® is the
input vector. The bias map is even simpler: the forward map of the underlying
lens is simply pointwise addition of inputs and parameters: (b, z) — b+z. Finally,
the activation map simply applies a nonlinear function (e.g., sigmoid) to the
input, and thus has the trivial (unit) parameter space. The representation of
this composition in code is straightforward: we can simply compose the three

primitive Para maps as in (9):

def dense(a, b, activation):
return linear (a, b) >> bias(b) >> activation

Note that by constructing model architectures in this way, the computation
of reverse derivatives is greatly simplified: we obtain the reverse derivative ‘for
free’ as the put map of the model. Furthermore, adding new primitives is also
simplified: the user need simply provide a function and its reverse derivative in
the form of a Para map. Finally, notice also that our approach is truly composi-
tional: we can define a hidden layer neural network with n hidden units simply
by composing two dense layers, as follows:

dense(a, n, activation) >> dense(n, b, activation)

5.2 Learning

Now that we have constructed a model, we also need to use it to learn from
data. Concretely, we will construct a full parametric lens as in Figure 2 then
extract its put map to iterate over the dataset.

By way of example, let us see how to construct the following parametric lens,
representing basic gradient descent over a single layer neural network with a
fixed learning rate:

A PP B
—H
P P’ T ,
A B L -
L dense loss E; (10)

Categorical Foundations of Gradient-Based Learning 23

This morphism is constructed essentially as below, where apply_update («,
f) represents the ‘vertical stacking’ of « atop f:

apply_update (basic_update , dense) >> loss >> learning_rate (€)

Now, given the parametric lens of (10), one can construct a morphism step :
B x Px A — P which is simply the put map of the lens. Training the model then
consists of iterating the step function over dataset examples (x,y) € AX B to op-
timise some initial choice of parameters 6y € P, by letting 0,11 = step(y;, 0;, x;).

Note that our library also provides a utility function to construct step from
its various pieces:

step = supervised_step (model, update, loss, learning.rate)

For an end-to-end example of model training and iteration, we refer the
interested reader to the experiments accompanying the code [17].

6 Related Work

The work [23] is closely related to ours, in that it provides an abstract categorical
model of backpropagation. However, it differs in a number of key aspects. We
give a complete lens-theoretic explanation of what is back-propagated via (i)
the use of CRDCs to model gradients; and (ii) the Para construction to model
parametric functions and parameter update. We thus can go well beyond [23]
in terms of examples - their example of smooth functions and basic gradient
descent is covered in our subsection 4.1.

We also explain some of the constructions of [23] in a more structured way.
For example, rather than considering the category Learn of [23] as primitive,
here we construct it as a composite of two more basic constructions (the Para
and Lens constructions). The flexibility could be used, for example, to com-
positionally replace Para with a variant allowing parameters to come from a
different category, or lenses with the category of optics [38] enabling us to model
things such as control flow using prisms.

One more relevant aspect is functoriality. We use a functor to augment a
parametric map with its backward pass, just like [23]. However, they additionally
augmented this map with a loss map and gradient descent using a functor as
well. This added extra conditions on the partial derivatives of the loss function:
it needed to be invertible in the 2nd variable. This constraint was not justified
in [23], nor is it a constraint that appears in machine learning practice. This led
us to reexamine their constructions, coming up with our reformulation that does
not require it. While loss maps and optimisers are mentioned in [23] as parts of
the aforementioned functor, here they are extracted out and play a key role: loss
maps are parametric lenses and optimisers are reparameterisations. Thus, in this
paper we instead use Para-composition to add the loss map to the model, and
Para 2-cells to add optimisers. The mentioned inverse of the partial derivative
of the loss map in the 2"¢ variable was also hypothesised to be relevant to deep
dreaming. We have investigated this possibility thoroughly in our paper, showing

24 Cruttwell, Gavranovi¢, Ghani, Wilson, and Zanasi

it is gradient update which is used to dream up pictures. We also correct a small
issue in Theorem II1.2 of [23]. There, the morphisms of Learn were defined up to
an equivalence (pg. 4 of [23]) but, unfortunately, the functor defined in Theorem
II1.2 does not respect this equivalence relation. Our approach instead uses 2-cells
which comes from the universal property of Para — a 2-cell from (P, f): A — B
to (@,9) : A — B is a lens, and hence has two components: a map «: Q — P
and a* : Q x P — Q. By comparison, we can see the equivalence relation of [23]
as being induced by map « : Q — P, and not a lens. Our approach highlights
the importance of the 2-categorical structure of learners. In addition, it does not
treat the functor Para(C) — Learn as a primitive. In our case, this functor
has the type Para(C) — Para(Lens(C)) and arises from applying Para to a
canonical functor C — Lens(C) existing for any reverse derivative category, not
just Smooth. Lastly, in our paper we took advantage of the graphical calculus
for Para, redrawing many diagrams appearing in [23] in a structured way.

Other than [23], there are a few more relevant papers. The work of [18] con-
tains a sketch of some of the ideas this paper evolved from. They are based
on the interplay of optics with parameterisation, albeit framed in the setting of
diffeological spaces, and requiring cartesian and local cartesian closed structure
on the base category. Lenses and Learners are studied in the eponymous work
of [22] which observes that learners are parametric lenses. They do not explore
any of the relevant Para or CRDC structure, but make the distinction between
symmetric and asymmetric lenses, studying how they are related to learners de-
fined in [23]. A lens-like implementation of automatic differentiation is the focus
of [21], but learning algorithms aren’t studied. A relationship between category-
theoretic perspective on probabilistic modeling and gradient-based optimisation
is studied in [42] which also studies a variant of the Para construction. Usage of
Cartesian differential categories to study learning is found in [46]. They extend
the differential operator to work on stateful maps, but do not study lenses, pa-
rameterisation nor update maps. The work of [24] studies deep learning in the
context of Cycle-consistent Generative Adversarial Networks [51] and formalises
it via free and quotient categories, making parallels to the categorical formula-
tions of database theory [45]. They do use the Para construction, but do not
relate it to lenses nor reverse derivative categories. A general survey of category
theoretic approaches to machine learning, covering many of the above papers,
can be found in [43]. Lastly, the concept of parametric lenses has started appear-
ing in recent formulations of categorical game theory and cybernetics [9,10]. The
work of [9] generalises the study of parametric lenses into parametric optics and
connects it to game thereotic concepts such as Nash equilibria.

7 Conclusions and Future Directions

We have given a categorical foundation of gradient-based learning algorithms
which achieves a number of important goals. The foundation is principled and
mathematically clean, based on the fundamental idea of a parametric lens. The
foundation covers a wide variety of examples: different optimisers and loss maps

Categorical Foundations of Gradient-Based Learning 25

in gradient-based learning, different settings where gradient-based learning hap-
pens (smooth functions vs. boolean circuits), and both learning of parameters
and learning of inputs (deep dreaming). Finally, the foundation is more than
a mere abstraction: we have also shown how it can be used to give a practical
implementation of learning, as discussed in Section 5.

There are a number of important directions which are possible to explore
because of this work. One of the most exciting ones is the extension to more
complex neural network architectures. Our formulation of the loss map as a
parametric lens should pave the way for Generative Adversarial Networks [27],
an exciting new architecture whose loss map can be said to be learned in tandem
with the base network. In all our settings we have fixed an optimiser beforehand.
The work of [4] describes a meta-learning approach which sees the optimiser as a
neural network whose parameters and gradient update rule can be learned. This
is an exciting prospect since one can model optimisers as parametric lenses;
and our framework covers learning with parametric lenses. Recurrent neural
networks are another example of a more complex architecture, which has already
been studied in the context of differential categories in [46]. When it comes to
architectures, future work includes modelling some classical systems as well, such
as the Support Vector Machines [15], which should be possible with the usage
of loss maps such as Hinge loss.

Future work also includes using the full power of CRDC axioms. In particular,
axioms RD.6 or RD.7, which deal with the behaviour of higher-order derivatives,
were not exploited in our work, but they should play a role in modelling some
supervised learning algorithms using higher-order derivatives (for example, the
Hessian) for additional optimisations. Taking this idea in a different direction,
one can see that much of our work can be applied to any functor of the form
F :C — Lens(C) - F does not necessarily have to be of the form f +— (f, R[f])
for a CRDC R. Moreover, by working with more generalised forms of the lens
category (such as dependent lenses), we may be able to capture ideas related
to supervised learning on manifolds. And, of course, we can vary the parameter
space to endow it with different structure from the functions we wish to learn. In
this vein, we wish to use fibrations/dependent types to model the use of tangent
bundles: this would foster the extension of the correct by construction paradigm
to machine learning, and thereby addressing the widely acknowledged problem
of trusted machine learning. The possibilities are made much easier by the com-
positional nature of our framework. Another key topic for future work is to link
gradient-based learning with game theory. At a high level, the former takes lit-
tle incremental steps to achieve an equilibrium while the later aims to do so in
one fell swoop. Formalising this intuition is possible with our lens-based frame-
work and the lens-based framework for game theory [25]. Finally, because our
framework is quite general, in future work we plan to consider further modifica-
tions and additions to encompass non-supervised, probabilistic and non-gradient
based learning. This includes genetic algorithms and reinforcement learning.

Acknowledgements Fabio Zanasi acknowledges support from EPSRC EP/V002376/1.
Geoff Cruttwell acknowledges support from NSERC.

26 Cruttwell, Gavranovi¢, Ghani, Wilson, and Zanasi
References
1. Inceptionism: Going deeper into neural networks (2015), https://ai.googleblog.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

com/2015/06/inceptionism-going-deeper-into-neural.html

Explainable AI: the basics - policy briefing (2019), royalsociety.org/ai-
interpretability

Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Pro-
ceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004.
pp. 415-425 (2004). https://doi.org/10.1109/L1CS.2004.1319636

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M.W., Pfau, D., Schaul, T.,
Shillingford, B., de Freitas, N.: Learning to learn by gradient descent by gradient
descent. In: 30th Conference on Neural Information Processings Systems (NIPS)
(2016)

Baez, J.C., Erbele, J.: Categories in Control. Theory and Applications of Categories
30(24), 836-881 (2015)

Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt, A.: Boomerang:
Resourceful lenses for string data. SIGPLAN Not. 43(1), 407-419 (Jan 2008).
https://doi.org/10.1145/1328897.1328487

Boisseau, G.: String Diagrams for Optics. arXiv:2002.11480 (2020)

Bonchi, F., Sobocinski, P., Zanasi, F.: The calculus of signal flow di-
agrams I: linear relations on streams. Inf. Comput. 252, 2-29 (2017).
https://doi.org/10.1016/j.ic.2016.03.002, https://doi.org/10.1016/j.ic.2016.
03.002

Capucci, M., Gavranovi’c, B., Hedges, J., Rischel, E.F.: Towards foundations of
categorical cybernetics. arXiv:2105.06332 (2021)

Capucci, M., Ghani, N., Ledent, J., Nordvall Forsberg, F.: Translating Extensive
Form Games to Open Games with Agency. arXiv:2105.06763 (2021)

Chollet, F., et al.: Keras (2015), https://github.com/fchollet/keras

Clarke, B., Elkins, D., Gibbons, J., Loregian, F., Milewski, B., Pillmore, E., Romén,
M.: Profunctor optics, a categorical update. arXiv:2001.07488 (2020)

Cockett, J.R.B., Cruttwell, G.S.H., Gallagher, J., Lemay, J.S.P., MacAdam, B.,
Plotkin, G.D., Pronk, D.: Reverse derivative categories. In: Proceedings of the
28th Computer Science Logic (CSL) conference (2020)

Coecke, B., Kissinger, A.: Picturing Quantum Processes: A First Course in Quan-
tum Theory and Diagrammatic Reasoning. Cambridge University Press (2017).
https://doi.org/10.1017/9781316219317

Cortes, C., Vapnik, V.: Support-vector networks. Machine learning 20(3), 273—-297
(1995)

Courbariaux, M., Bengio, Y., David, J.P.: BinaryConnect: Training Deep Neural
Networks with binary weights during propagations. arXiv:1511.00363
CRCoauthors, A.: Numeric Optics: A python library for constructing and training
neural networks based on lenses and reverse derivatives. https://github.com/
anonymous-cOde/esop-2022

Dalrymple, D.: Dioptics: a common generalization of open games and gradient-
based learners. SYCO7 (2019), https://research.protocol.ai/publications/
dioptics-a-common-generalization-of-open-games-and-gradient-based-
learners/dalrymple2019.pdf

Dosovitskiy, A., Brox, T.: Inverting convolutional networks with convolutional net-
works. arXiv:1506.02753 (2015)

https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://royalsociety.org/ai-interpretability
https://royalsociety.org/ai-interpretability
https://doi.org/10.1109/LICS.2004.1319636
https://doi.org/10.1145/1328897.1328487
https://doi.org/10.1016/j.ic.2016.03.002
https://doi.org/10.1016/j.ic.2016.03.002
https://doi.org/10.1016/j.ic.2016.03.002
https://github.com/fchollet/keras
https://doi.org/10.1017/9781316219317
https://arxiv.org/abs/1511.00363
https://github.com/anonymous-c0de/esop-2022
https://github.com/anonymous-c0de/esop-2022
https://research.protocol.ai/publications/dioptics-a-common-generalization-of-open-games-and-gradient-based-learners/dalrymple2019.pdf
https://research.protocol.ai/publications/dioptics-a-common-generalization-of-open-games-and-gradient-based-learners/dalrymple2019.pdf
https://research.protocol.ai/publications/dioptics-a-common-generalization-of-open-games-and-gradient-based-learners/dalrymple2019.pdf

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

Categorical Foundations of Gradient-Based Learning 27

Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research 12(Jul), 2121—
2159 (2011)

Elliott, C.: The simple essence of automatic differentiation (differentiable functional
programming made easy). arXiv:1804.00746 (2018)

Fong, B., Johnson, M.: Lenses and learners. In: Proceedings of the 8th International
Workshop on Bidirectional transformations (Bx@PLW) (2019)

Fong, B., Spivak, D.I., Tuyéras, R.: Backprop as functor: A compositional per-
spective on supervised learning. In: Proceedings of the Thirty fourth Annual IEEE
Symposium on Logic in Computer Science (LICS 2019). pp. 1-13. IEEE Computer
Society Press (June 2019)

Gavranovic, B.: Compositional deep learning. arXiv:1907.08292 (2019)

Ghani, N., Hedges, J., Winschel, V., Zahn, P.: Compositional game theory. In:
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science. p. 472-481. LICS ’18 (2018). https://doi.org/10.1145/3209108.3209165
Ghica, D.R., Jung, A., Lopez, A.: Diagrammatic Semantics for Digital Circuits.
arXiv:1703.10247 (2017)

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in
Neural Information Processing Systems 27, pp. 2672—2680 (2014), http://papers.
nips.cc/paper/5423-generative-adversarial-nets.pdf

Griewank, A., Walther, A.: Evaluating derivatives: principles and techniques of
algorithmic differentiation. Society for Industrial and Applied Mathematics (2008)
Hedges, J.: Limits of bimorphic lenses. arXiv:1808.05545 (2018)

Hermida, C., Tennent, R.D.: Monoidal indeterminates and cate-
gories of possible worlds. Theor. Comput. Sci. 430, 3-22 (Apr 2012).
https://doi.org/10.1016/j.tcs.2012.01.001

Johnson, M., Rosebrugh, R., Wood, R.: Lenses, fibrations and universal transla-
tions. Mathematical structures in computer science 22, 25-42 (2012)

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Bengio,
Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
(2015), http://arxiv.org/abs/1412.6980

Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied
to document recognition. In: Proceedings of the IEEE. pp. 2278-2324 (1998).
https://doi.org/10.1109/5.726791

Mahendran, A., Vedaldi, A.: Understanding deep image representations by invert-
ing them. arXiv:1412.0035 (2014)

Nguyen, A.M., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. arXiv:1412.1897 (2014)

Olah, C.: Neural networks, types, and functional programming (2015), http://
colah.github.io/posts/2015-09-NN-Types-FP/

Polyak, B.: Some methods of speeding up the convergence of iteration meth-
ods. USSR Computational Mathematics and Mathematical Physics 4(5), 1 —
17 (1964). https://doi.org/https://doi.org/10.1016/0041-5553(64)90137-5, http:
//www.sciencedirect.com/science/article/pii/0041555364901375

Riley, M.: Categories of optics. arXiv:1809.00738 (2018)

Selinger, P.: A survey of graphical languages for monoidal categories. Lecture Notes
in Physics p. 289-355 (2010)

https://doi.org/10.1145/3209108.3209165
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://doi.org/10.1016/j.tcs.2012.01.001
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/5.726791
http://colah.github.io/posts/2015-09-NN-Types-FP/
http://colah.github.io/posts/2015-09-NN-Types-FP/
https://doi.org/https://doi.org/10.1016/0041-5553(64)90137-5
http://www.sciencedirect.com/science/article/pii/0041555364901375
http://www.sciencedirect.com/science/article/pii/0041555364901375

28

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Cruttwell, Gavranovi¢, Ghani, Wilson, and Zanasi

Selinger, P.: Control categories and duality: on the categorical semantics of the
lambda-mu calculus. Mathematical Structures in Computer Science 11(02), 207—
260 (4 2001). https://doi.org/null, http://journals.cambridge.org/article_
S096012950000311X

Seshia, S.A., Sadigh, D.: Towards verified artificial intelligence. CoRR
abs/1606.08514 (2016), http://arxiv.org/abs/1606.08514

Shiebler, D.: Categorical Stochastic Processes and Likelihood. Compositionality
3(1) (2021)

Shiebler, D., Gavranovié¢, B., Wilson, P.: Category Theory in Machine Learning.
arXiv:2106.07032 (2021)

Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks:
Visualising image classification models and saliency maps. arXiv:1312.6034 (2014)
Spivak, D.I.: Functorial data migration. arXiv:1009.1166 (2010)

Sprunger, D., Katsumata, S.y.: Differentiable causal computations via delayed
trace. In: Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in
Computer Science. LICS 19, IEEE Press (2019)

Steckermeier, A.:. Lenses in functional programming. Preprint, available at
https://sinusoid.es/misc/lager/lenses.pdf (2015)

Sutskever, 1., Martens, J., Dahl, G., Hinton, G.: On the importance of initial-
ization and momentum in deep learning. In: Dasgupta, S., McAllester, D. (eds.)
Proceedings of the 30th International Conference on Machine Learning. vol. 28,
pp. 1139-1147 (2013), http://proceedings.mlr.press/v28/sutskever13.html
Turi, D., Plotkin, G.: Towards a mathematical operational semantics. In: Pro-
ceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science. pp.
280-291 (1997). https://doi.org/10.1109/L1CS.1997.614955

Wilson, P., Zanasi, F.: Reverse derivative ascent: A categorical approach to learn-
ing boolean circuits. In: Proceedings of Applied Category Theory (ACT) (2020),
https://cgi.cse.unsw.edu.au/~eptcs/paper.cgi?ACT2020:31

Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks. arXiv:1703.10593 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/

4.0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/null
http://journals.cambridge.org/article_S096012950000311X
http://journals.cambridge.org/article_S096012950000311X
http://arxiv.org/abs/1606.08514
http://proceedings.mlr.press/v28/sutskever13.html
https://doi.org/10.1109/LICS.1997.614955
https://cgi.cse.unsw.edu.au/~eptcs/paper.cgi?ACT2020:31
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Check for
updates

Compiling Universal Probabilistic Programming
Languages with Efficient Parallel Sequential
Monte Carlo Inference*

Daniel Lundén! (=)®, Joey Ohman?®, Jan Kudlicka?®, Viktor Senderov*®,
Fredrik Ronquist*®®), and David Broman'

! EECS and Digital Futures, KTH Royal Institute of Technology, Stockholm,
Sweden, {dlunde,dbro}@kth.se
2 AI Sweden, Stockholm, Sweden, joey.ohman@ai.se
3 Department of Data Science and Analytics, BI Norwegian Business School, Oslo,
Norway, jan.kudlicka®@bi.no
4 Department of Bioinformatics and Genetics, Swedish Museum of Natural History,
Stockholm, Sweden, {viktor.senderov,fredrik.ronquist}@nrm.se
5 Department of Zoology, Stockholm University

Abstract. Probabilistic programming languages (PPLs) allow users to
encode arbitrary inference problems, and PPL implementations provide
general-purpose automatic inference for these problems. However, con-
structing inference implementations that are efficient enough is challeng-
ing for many real-world problems. Often, this is due to PPLs not fully ex-
ploiting available parallelization and optimization opportunities. For ex-
ample, handling probabilistic checkpoints in PPLs through continuation-
passing style transformations or non-preemptive multitasking—as is done
in many popular PPLs—often disallows compilation to low-level lan-
guages required for high-performance platforms such as GPUs. To solve
the checkpoint problem, we introduce the concept of PPL control-flow
graphs (PCFGs)—a simple and efficient approach to checkpoints in low-
level languages. We use this approach to implement RootPPL: a low-level
PPL built on CUDA and C++ with OpenMP, providing highly effi-
cient and massively parallel SMC inference. We also introduce a general
method of compiling universal high-level PPLs to PCFGs and illustrate
its application when compiling Miking CorePPL—a high-level universal
PPL—to RootPPL. The approach is the first to compile a universal PPL
to GPUs with SMC inference. We evaluate RootPPL and the CorePPL
compiler through a set of real-world experiments in the domains of phylo-
genetics and epidemiology, demonstrating up to 6 x speedups over state-
of-the-art PPLs implementing SMC inference.

Keywords: Probabilistic Programming Languages - Compilers - Se-
quential Monte Carlo - GPU Compilation

* This project is financially supported by the Swedish Foundation for Strategic Re-
search (FFL15-0032 and RIT15-0012), the European Union’s Horizon 2020 re-
search and innovation program under the Marie Sktodowska-Curie grant agreement
PhyPPL (No 898120), and the Swedish Research Council (grant number 2018-04620).

© The Author(s) 2022
I. Sergey (Ed.): ESOP 2022, LNCS 13240, pp. 29-56, 2022.
https://doi.org/10.1007/978-3-030-99336-8_2

http://orcid.org/0000-0003-3127-5640
http://orcid.org/0000-0001-6342-268X
http://orcid.org/0000-0003-3806-4950
http://orcid.org/0000-0003-3340-5963
http://orcid.org/0000-0002-3929-251X
http://orcid.org/0000-0001-8457-4105
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99336-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-99336-8_2

30 D. Lundén et al.
1 Introduction

Probabilistic programming languages (PPLs) allow for encoding a wide range of
statistical inference problems and provide inference algorithms as part of their
implementations. Specifically, PPLs allow language users to focus solely on en-
coding their statistical problems, which the language implementation then solves
automatically. Many such languages exist and are applied in, e.g., statistics, ma-
chine learning, and artificial intelligence. Some example PPLs are WebPPL [20],
Birch [32], Anglican [40], and Pyro [10].

However, implementing efficient PPL inference algorithms is challenging for
many real-world problems. Most often, universal® PPLs implement general-
purpose inference algorithms—most commonly sequential Monte Carlo (SMC)
methods [14], Markov chain Monte Carlo (MCMC) methods [18], Hamiltonian
Monte Carlo (HMC) methods [12], variational inference (VI) [39], or a combina-
tion of these. In some cases, poor efficiency may be due to an inference algorithm
not well suited to the particular PPL program. However, in other cases, the PPL
implementations do not fully exploit opportunities for parallelization and opti-
mization on the available hardware. Unfortunately, doing this is often tricky
without introducing complexity for end-users of PPLs.

A critical performance consideration is handling probabilistic checkpoints [37]
in PPLs. Checkpoints are locations in probabilistic programs where inference al-
gorithms must interject, for example, to resample in SMC inference or record
random draw locations where MCMC inference can explore alternative execution
paths. The most common approach to checkpoints—used in universal PPLs such
as WebPPL [20], Anglican [40], and Birch [32]—is to associate them with PPL-
specific language constructs. In general, PPL users can place these constructs
without restriction, and inference algorithms interject through continuation-
passing style (CPS) transformations [9,20,40] or non-preemptive multitasking
[32] (e.g., coroutines) that enable pausing and resuming executions. These so-
lutions are often not available in languages such as C and CUDA [1] used for
high-performance platforms such as graphics processing units (GPUs), making
compiling PPLs to these languages and platforms challenging. Some approaches
for running PPLs on GPUs do exist, however. LibBi [29] runs on GPUs with
SMC inference but is not universal. Stan [12] and AugurV2 [22] partially run
MCMC inference on GPUs but have limited expressive power. Pyro [10] runs on
GPUs, but currently not in combination with SMC. In this paper, we compile a
universal PPL and run it with SMC on GPUs for the first time.

A more straightforward approach to checkpoints, used for SMC in Birch [32]
and Pyro [10], is to encode models with a step function called iteratively. Check-
points then occur each time step returns. This paper presents a new approach to
checkpoint handling, generalizing the step function approach. We write prob-
abilistic programs as a set of code blocks connected in what we term a PPL

6 A term due to Goodman et al. [19]. No precise definition exists, but in principle, a
universal PPL program can perform probabilistic operations at any point. In partic-
ular, it is not always possible to statically determine the number of random variables.

Compiling Universal PPLs with Efficient Parallel SMC Inference 31

iSection 2 EESection 4 /i Section 3

CorePPL |:-> Compiler LI?> Language — Cerialer C)| Executable

T T [RootPPLSMC |- 5}

Inference Engine

Fig.1: The CorePPL and RootPPL toolchain. Solid rectangular components
(gray) represent programs and rounded components (blue) translations. The
dashed rectangles indicate paper sections.

control-flow graph (PCFG). PPL checkpoints are restricted to only occur at
tail position in these blocks, and communication between blocks is only allowed
through an explicit PCFG state. As a result, pausing and resuming executions
is straightforward: it is simply a matter of stopping after executing a block and
then resuming by running the next block. A variable in the PCFG state, set from
within the blocks, determines the next block. This variable allows for loops and
branching and gives the same expressive power as other universal PPLs. We im-
plement the above approach in RootPPL: a low-level universal PPL framework
built using C++ and CUDA with highly efficient and parallel SMC inference.
RootPPL consists of both an inference engine and a simple macro-based PPL.

A problem with RootPPL is that it is low-level and, therefore, challenging
to write programs in. In particular, sending data between blocks through the
PCFG state can quickly get difficult for more complex models. To solve this, we
develop a general technique for compiling high-level universal PPLs to PCFGs.
The key idea is to decompose functions in the high-level language to a set of
PCFG blocks, such that checkpoints in the original function always occur at
tail position in blocks. As a result of the decomposition, the PCFG state must
store a part of the call stack. The compiler adds code for handling this call
stack explicitly in the PCFG blocks. We illustrate the compilation technique by
introducing a high-level source language, Miking CorePPL, and compiling it to
RootPPL. Fig. 1 illustrates the overall toolchain.

In summary, we make the following contributions.

— We introduce PCFGs, a framework for checkpoint handling in PPLs, and use
it to implement RootPPL: a low-level universal PPL with highly efficient and
parallel SMC inference (Section 3).

— We develop an approach for compiling high-level universal PPLs to PCFGs
and use it to compile Miking CorePPL to RootPPL. In particular, we give an
algorithm for decomposing high-level functions to PCFG blocks (Section 4).

Furthermore, we introduce Miking CorePPL in Section 2 and evaluate the
performance of RootPPL and the CorePPL compiler in Section 5 on real-world
models from phylogenetics and epidemiology, achieving up to 6x speedups over
the state-of-the-art. An artifact accompanying this paper supports the evalua-
tion [26]. An extended version of this article is also available [27]. A T symbol in
the text indicates more information is available in the extended version.

31 D. Lundén et al.

2 Miking CorePPL

This section introduces the Miking CorePPL language, used as a source language
for the compiler in Section 4. We discuss design considerations (Section 2.1) and
present the syntax and semantics (Section 2.2).

2.1 Design Considerations

Miking CorePPL (or CorePPL for short) is an intermediate representation (IR)
PPL, similar to IRs used by LLVM [6] and GCC [2]. This allows the reuse
of CorePPL as a target for domain-specific high-level PPLs and PPL compiler
back-ends. Consequently, CorePPL needs to be expressive enough to allow easy
translation from various domain-specific PPLs and simple enough for practical
use as a shared IR for compilers. Therefore, we base CorePPL on the lambda
calculus, extended with standard data types and constructs.

We must also consider which PPL-specific constructs to include. Critically,
most PPLs include constructs for defining random variables and likelihood up-
dating [21]. CorePPL includes such constructs, including first-class probability
distributions, to match the expressive power of existing PPLs.

2.2 Syntax and Semantics

We build CorePPL on top of the Miking framework [11]: a meta-language system
for creating domain-specific and general-purpose languages. This allows reusing
many existing Miking language components and transformations when building
the CorePPL language. More precisely, CorePPL extends Miking Core—a core
functional programming language in Miking—with PPL constructs.

A CorePPL program t is inductively defined by

ti=z |lamx. t |ty tz | let z =t; inty | C t | ¢

| recursive [let z = t| in

| match t; with p then ty else t3 | [t;, ta, ..., t,] (1)
| {1 =t1, lIp = tg, ..., I3 = t3}
| assume t | weight t | observe t; to | D t; to ... tjp)

where the metavariable x ranges over a set of variable names; C over a set of data
constructor names; p over a set of patterns; [over a set of record labels; and ¢ over
various literals, such as integers, floating-point numbers, booleans, and strings, as
well as over various built-in functions in prefix form such as addi (adds integers).
The notation [let x = t] indicates a sequence of mutually recursive let bindings.
The metavariable D ranges over a set of probability distribution names, with |D|
indicating the number of parameters for a distribution D. For example, for the
normal distribution, |[N| = 2. In addition to (1), we will also use the standard
syntactic sugar ; to indicate sequencing, as well as if t; then ty else t3 for
match t; with true then ty; else tj.

Compiling Universal PPLs with Efficient Parallel SMC Inference 33

<
=

Standard geometric
1|recursive let geometric = lam p. >
- . . = 0.2
2| let x = assume (Bernoulli p) in Z
3| 1if x then <
< ighted tri
. weight (log 1.5); o 04 Weighted geometric
5 addi 1 (geometric p) A 0.2 l..-
0
o elsel 0123456789...
7/in geometric 0.5 Outcome
(a) (b)

Fig.2: A toy example encoding a skewed geometric distribution, illustrating
CorePPL. Part (a) gives the CorePPL program, and part (b) the corresponding
distribution. The upper part of (b) shows the distribution for (a) with line 4
omitted, and the lower part of (b) shows it with line 4 included.

Consider the simple but illustrative CorePPL program in Fig. 2a. The pro-
gram encodes a variation of the geometric distribution, for which the result is the
number of times a coin is flipped until the result is tails. The program’s core is
the recursive function geometric, defined using a function over the probability
of heads for the coin, p. We initially call this function at line 7 with the argument
0.5, indicating a fair coin. On line 2, we define the random variable x to have a
Bernoulli distribution (i.e., a single coin flip) using the assume construct (often
known as sample in PPLs with sampling-based inference). If the random variable
is false (tails), we stop and return the result 1. If the random variable is true
(heads), we keep flipping the coin by a recursive call to geometric and add 1 to
this result. To illustrate likelihood updating, we make a contrived modification
to the standard geometric distribution by adding weight (log 1.5) on line 4.
This construct weights the execution by a factor of 1.5 each time the result is
heads. Note that CorePPL weight computations are in log-space for numerical
stability (hence the log 1.5 to factor by 1.5). Thus, the unnormalized probabil-
ity of seeing n coin flips, including the final tails, is 0.5"-1.5"~'—where 1.5" ! is
the factor introduced by the n—1 calls to weight. The difference compared to the
standard geometric distribution is illustrated in Fig. 2b. The weight construct
is also commonly named factor or score in other PPLs.

What separates PPLs from ordinary programming languages is the ability to
modify the likelihood of execution paths, akin to the use of weight in Fig. 2a. We
often use likelihood modification to condition a probabilistic model on observed
data. For this purpose, CorePPL includes an explicit observe construct, which
allows for modifying the likelihood based on observed data assumed to originate
from a given probability distribution. For instance, observe 0.3 (Normal 0 1)
updates the likelihood with fxr(9,1)(0.3) (note that this can equivalently be ex-
pressed through weight), where fir(o,1) is the probability density function of
the standard normal distribution. This conditioning can be related to Bayes’
theorem: the random variables defined in a program define a prior distribution
(e.g., the upper part of Fig. 2b), the use of the weight and observe primitives a

34 D. Lundén et al.

likelihood function, and the inference algorithm of the PPL infers the posterior
distribution (e.g., the lower part of Fig. 2b)

CorePPL includes sequences, recursive variants, records, and pattern match-
ing, standard in functional languages. For example, [1, 2, 3] defines a se-
quence of length 3, {a = false, b = 1.2} a record with labels a and b, and
Leaf {age = 1.0} a variant with the constructor name Leaf, containing a
record with the label age. The match construct allows pattern matching. For ex-
ample, match a with Leaf {age = f} then f else 0.0 checks if a is a Leaf
and returns its age if so, or 0.0 otherwise. Here, f is a pattern variable that is
bound to the value of the age element of a in the then branch of the match.

The data types and pattern matching features in Miking, and consequently
CorePPL, are not directly related to the paper’s key contributions. Therefore,
we do not discuss them further. However, the CorePPL compiler in Section 4.3
supports the features, and the CorePPL models in Section 5 make frequent use
of them. We consider CorePPL again in Section 4 when compiling to PCFGs.

3 PPL control-flow graphs and RootPPL

This section introduces the new PCFG concept (Section 3.1) and shows how to
apply SMC over these (Section 3.2). Finally, we present the PCFG and SMC-
based RootPPL framework (Section 3.3).

3.1 PPL Control-Flow Graphs

In order to handle checkpoints efficiently without CPS or non-preemptive mul-
titasking, we introduce PPL control-flow graphs (PCFGs). In contrast to tra-
ditional PPLs, where checkpoints are most often implicit, we make them ex-
plicit and central in the PCFG framework. The main benefit of this approach
is that the handling of checkpoints in inference algorithms is greatly simplified,
which allows for implementing the framework in low-level languages. However,
the explicit checkpoint approach makes PCFGs relatively low-level, and they are
mainly intended as a target when compiling from high-level PPLs. We introduce
such a compiler in Section 4.

Formally, we define a PCFG as a 6-tuple (B, S, sim, b, bstop, £). The first
component B is a set of basic blocks inspired by basic blocks used as a part
of the control-flow analysis in traditional compilers [8]. In practice, the blocks
in B are pieces of code that together make up a complete probabilistic pro-
gram. Unlike basic blocks used in traditional compilers, we allow these pieces of
code to contain branches internally. The second component S is a set of states,
representing collections of information that flow between basic blocks. In prac-
tice, this state often contains local variables that live between blocks and an
accumulated likelihood. The blocks and states form the domain of the function
sim : Bx S — B xS x {false, true}. This function performs computation specific
for the given block over the given state and outputs a successor block indicating

Compiling Universal PPLs with Efficient Parallel SMC Inference 35

bs D sim(bo, s0) — (b1, s1, false)
/ \4 stm (b1, s1) — (b2, s2, true)
bo — b by —> Dstop sim(ba, s2) +— (ba, s3, true)
bs stm(ba, s3) — (bstop, S4, false)
(a)

Fig.3: A PCFQG illustration. Part (a) shows an example PCFG. The arrows de-
note the possible flows of control between the blocks, with regular arrows denot-
ing checkpoint transitions and arrows with open tips non-checkpoint transitions.
Part (b) shows a possible execution sequence with sim for (a).

Algorithm 1 A standard SMC algorithm applied to PCFGs.

Input: A PCFG (B, S, sim, bo, bstop, £). A set of initial states {s, }h_;.
Output: An updated set of states {s, }3_;.

1. Initialization: For each 1 <n < N, let a, = by and ¢,, := false.

2. Propagation: If all a, = bgstop, terminate and output {sn}ﬁ;l. If not, for each
1 < n < N where ¢, = false, let (an, $n,cn) = sim(an, sn). If all ¢, = true, go
to 3. If not, repeat 2.

3. Resampling: For each 1 < n < N, let p, = L(sn)/ S~ , L(s;). For each 1
n < N, draw a new index i from {i}/L, with probabilities {p;}X_. Let (s}, b,)
(84, b;). Finally, for each 1 <n < N, let (sn, bn, cn) = (s5,, by, false). Go to 2.

A

what to execute next, an updated state, and a boolean indicating whether or
not there is a checkpoint at the end of the executed block.

To illustrate this formalization, consider the PCFG in Fig. 3a for which
B = {bo,b1,...,ba, bstop}. The block by is present in every PCFG and represents
its entry point. Similarly, the block bstop is a unique block indicating termination,
which must be reachable from all other blocks. For some initial state sqg € S,
Fig. 3b illustrates a possible execution sequence starting at by in Fig. 3a before
terminating at bsiop. The structure of a PCFG restricts checkpoints to only occur
at the end of basic blocks and confines communication between blocks to the
state. These restrictions greatly simplify inference algorithm implementations.
More precisely, rather than relying on CPS or non-preemptive multitasking, the
inference algorithm can simply run a block b with sim, handle the checkpoint,
and then run the successor block indicated by the output of sim.

3.2 SMC and PCFGs

To prepare for introducing RootPPL in Section 3.3, we present how to apply
SMC inference to PCFGs. The work by Naesseth et al. [33] contains a more
general and pedagogical introduction to SMC. At a high level, SMC inference
works by simulating many instances—known as particles in SMC literature—of

36 D. Lundén et al.

a PCFG program concurrently, occasionally resampling the different particles
based on their current likelihoods. In CorePPL, for example, such likelihoods
are determined by weight and observe. Resampling allows the downstream
simulation to focus on particles with a higher likelihood.

In order to apply SMC inference over PCFGs, we need some way of deter-
mining the likelihood of the SMC particles. For this, we use the final component
of the PCFG definition, £ : S — R>¢, which is a function mapping states to a
likelihood (a non-negative real number). Concretely, this likelihood is most often
stored directly in the state as a real number, and £ simply extracts it.

Algorithm 1 defines an SMC algorithm over PCFGs. It takes a PCFG as
input, together with a set of N states {s,})_;, which represent the SMC par-
ticles. Step 1 in the algorithm sets up variables a,, and ¢, indicating for each
particle its current block and whether or not a checkpoint has occurred in it.
Step 2 simulates all particles that have not yet reached a checkpoint using sim.
This step repeats until all particles have reached a checkpoint (this is a synchro-
nization point for parallel implementations). Step 3 uses the likelihood function
L to compute the relative likelihoods of all particles and then resamples them
based on this. That is, we sample N particles from the existing N particles (with
replacement) based on the relative likelihoods. After resampling, we return to
step 2. If all particles have reached the termination block bgtop, the algorithm
terminates and returns the current states.

Note in Algorithm 1 that the input states are not required to be identical. For
example, each state should have a unique seed used to generate random num-
bers (e.g., with assume in CorePPL). Non-identical initial states in Algorithm 1
imply that different particles may traverse the blocks in B differently and reach
checkpoints at different times. Although this means that different particles can
be at different blocks concurrently, the SMC algorithm is still correct [24]. This
PCFG property is essential as it allows for the encoding of universal probabilis-
tic programs in PCFG-based PPLs. Furthermore, it implies that some particles
may reach bgiop earlier than others. To solve this, we require in Algorithm 1 that
sim(bstop,) = (bstop, S, true) holds for all states s. That is, particles that have
finished also participate in resampling and cannot cause step 2 to loop infinitely.

Next, we describe our implementation of PCFGs with SMC: RootPPL.

3.3 RootPPL

We make use of the PCFG framework when implementing RootPPL: a new
low-level PPL framework built on top of CUDA C++ and C++, intended
for highly optimized and massively parallel SMC inference on general-purpose
GPUs. RootPPL consists of two major components: a macro-based C+-+ PPL
for encoding probabilistic models and an SMC inference engine.

The macro-based language has two purposes: to support compiling the same
program to either CPU or GPU and to simplify the encoding of models for
programmers. As a result, the macros hide all hardware details from the pro-
grammer. To illustrate this macro-based PPL, consider the example RootPPL

Compiling Universal PPLs with Efficient Parallel SMC Inference 37

BBLOCK(init, progState_t, {
PSTATE.x = SAMPLE(normal, 0.0, 100);
PSTATE.t = 0O;
NEXT=iter;
BBLOCK_JUMP (iter) ; struct progState.t {
19 double x;

int t;

®|N|o ok w o e

BBLOCK(iter, progState_t, {

PSTATE.x = SAMPLE(normal, PSTATE.x + 2.0, 1); };
10| OBSERVE(normal, PSTATE.x, 5.0, data[PSTATE.t]);
11| if (++PSTATE.t == T) NEXT=NULL; (b) Program state
12|}

©

(a) RootPPL program

Fig.4: Part (a) illustrates a RootPPL program encoding the state-space model
in (2). The text provides details. We set NEXT at line 4 rather than in iter as an
optimization. Part (b) defines the RootPPL program state type progState_t.

program in Fig. 4a. This program encodes a simple state-space model for an
object moving along an axis in R, given by

XONN(O,].OO), XtNN(Z't71+2,1)7 KNN(mt,5)7].StéT (2)

Here, X is the initial position, X; the following positions, and Y; a set of noisy
observations of the object position. The inference goal is to determine the dis-
tribution of X7 (the final position of the object) conditioned on all Y;.

Fig. 4a implements (2) with two basic blocks, introduced with the BBLOCK
macro in RootPPL. The first block init draws X using the SAMPLE macro
(equivalent to assume in CorePPL) on line 2 and stores the drawn value in the
program state variable x through the PSTATE macro. This program state is the
RootPPL instantiation of the PCFG state introduced in Section 3.1. Another
program state variable, t (corresponding to the index ¢ in the model), is ini-
tialized on line 3. As preparation for iterating over the iter block, we set the
NEXT construct to iter at line 4. Finally, the block exits by making a direct
non-checkpoint transition to iter using the BBLOCK_JUMP macro at line 5.

In iter, we sample X; at line 9 and write the result to x (overwriting the
previous Xy, which is no longer needed). Line 10 updates the likelihood using
the OBSERVE macro (equivalent to observe in CorePPL), corresponding to ob-
serving Y; in the model. We access all Y; through the data array, a shared global
constant, avoiding memory duplication in the program state. Finally, at line 11,
we check if we are at time T (a shared global constant for T'). If this is the case,
NEXT is set to NULL, indicating termination. This is equivalent to moving to bstop
in the PCFG formalization. Otherwise, NEXT keeps its value set at line 4 and
jumps to the beginning of the iter block. Not using BBLOCK_JUMP allows iter
to return to the inference engine between iterations, indicating checkpoint tran-
sitions. In RootPPL, this means that SMC inference will resample the instances
before returning to iter for the next iteration.

The programmer defines the RootPPL program state for each RootPPL pro-
gram as an arbitrary C++ struct type and passes this type (e.g., progState_t

38 D. Lundén et al.

in Fig. 4a) to each basic block. The PSTATE macro accesses the variables in the
struct. Fig. 4b illustrates the program state for the example program in Fig. 4a.
As described in Section 3.1, this program state is the only possible means to
pass data from one basic block to another in RootPPL.

This minimal example does not illustrate all RootPPL language features (e.g.,
WEIGHT). Further details on the RootPPL language are available at GitHub [4].

The second part of the RootPPL framework is the SMC inference engine.
It is crucial to take advantage of the highly parallel nature of SMC and avail-
able hardware for parallelization to achieve high performance. For this purpose,
RootPPL supports compilation to either C+-+ on single-core, C++ on multicore
through OpenMP [3], and CUDA C++ [1] with massive parallelism on the GPU.

We present the main inference loop in RootPPL below (cf. Algorithm 1).

1. Initialize random seeds.

2. Execute the basic block indicated by NEXT for all particles. This execution
may include a chain of blocks with non-checkpoint transitions between them
(using the BBLOCK_JUMP macro) before returning to the inference engine.

3. If all particles have terminated (i.e., NEXT = NULL), stop.

4. Resample all particles and go to 2.

The random seeds in step 1 are initialized differently depending on the compile
target. For plain C++ on a single core, one seed is shared between all particles
because they are executed sequentially. However, for OpenMP and CUDA, the
parallel execution requires that we assign each thread a unique seed shared
between all particles running on it. For CUDA, these seeds are placed in thread-
local CUDA memory for each particle to minimize memory overhead when using
SAMPLE (which is performance-critical). In addition, when compiling to CUDA,
we initialize the seeds in parallel using a CUDA compute kernel.

Step 2 executes the particles sequentially, in parallel using OpenMP threads,
or in parallel using a CUDA compute kernel. Step 3 then performs a termi-
nation check. First, we check if the first particle has terminated. If it has not
terminated, we directly move to the resampling step. If it has terminated, we it-
eratively check other particles to either find a particle that has not terminated or
conclude that all particles have terminated and stop the inference. This approach
both allows for particles terminating at different times and introduces minimal
overhead for the case when all particles terminate simultaneously (which is quite
common). When all particles terminate simultaneously, it is enough to check the
first particle in all iterations of step 3 except the last.

The resampling step is the most difficult one to parallelize efficiently. The
reason is the normalizing sum (e.g., ZZV:I L(s;) in Algorithm 1) that we must
compute in order to determine resampling probabilities. We use systematic re-
sampling for single-core and OpenMP and parallel systematic resampling for
CUDA, as described in Murray et al. [31] (we do not use in-place propagation).
We compute the normalizing sum in parallel via the Thrust library [7] for CUDA.

Another important consideration for the inference engine is memory allo-
cation. In particular, the memory allocated for NEXT, the likelihood, and the
PSTATE for each particle, is laid out as separate arrays in memory, rather than

Compiling Universal PPLs with Efficient Parallel SMC Inference 39

one big array of structs. This approach, known as memory coalescing, avoids
strided memory accesses in global memory and is preferred for parallel opera-
tions, particularly for CUDA. Another memory consideration is particle dupli-
cation during resampling. For this, we use a custom aligned memory transfer
in CUDA because the standard memcpy implementation in CUDA proved to be
a bottleneck. With a single core and OpenMP, memcpy runs without issue. Ad-
ditionally, we perform a specific optimization when copying the program state
used in the CorePPL compiler. This program state consists of a possibly large
stack (with user-definable size) together with a stack pointer, and we ensure not
to copy the unused part of the stack located beyond the stack pointer. This is a
critical optimization for the CorePPL compiler.

Other things supported in RootPPL are the estimation of normalizing con-
stants for encoded models and adaptive resampling based on the current effective
sample size (ESS). These are standard concepts in SMC inference. For more de-
tails, see, e.g., Naesseth et al. [33].

Next, we use RootPPL as the target language for the CorePPL compiler.

4 Compiling to PCFGs

This section introduces the ideas for compiling high-level universal PPLs to
PCFGs. We present the key transformation—function decomposition into basic
blocks—using a toy example (Section 4.1), a formal algorithm (Section 4.2), a
high-level overview of the CorePPL-to-RootPPL compiler (Section 4.3), and the
compilers strengths and limitations (Section 4.4).

4.1 Function Decomposition Example

The major challenge when compiling high-level PPLs is implementing pausing
and resuming at checkpoints to yield control to an inference algorithm temporar-
ily. Pausing and resuming in low-level languages is especially difficult due to run-
time limitations. We solve this problem by compiling to the PCFGs introduced in
Section 3, specifically designed for implementation in low-level target languages.
A challenge with this approach is that checkpoints can occur at arbitrary loca-
tions in high-level probabilistic programs, whereas in PCFGs, checkpoints must
always occur at tail position in basic blocks. We solve this by decomposing func-
tions in the source language into a set of basic blocks. Our approach is similar
to how functions are decomposed into basic blocks in standard compilers such
as GCC [2] and LLVM [6] (see, e.g., Aho et al. [8]). The difference is that we
only decompose as needed, based on where checkpoints occur. In particular, we
do not decompose functions, and parts of functions, in which checkpoints are
guaranteed not to occur. This allows for more optimizations by the underlying
compiler (e.g., NVCC or GCC for RootPPL).

Consider the toy CorePPL function in Fig. 5a and the resulting compila-
tion to a RootPPL PCFG in Fig. 5c. For this example, we introduce an explicit
SMC checkpoint resample in CorePPL, indicating where SMC should pause

40

(c¢) Compiled RootPPL PCFG illustration. Some RootPPL constructs are omitted or
slightly modified for readability. In particular, we omit the BBLOCK construct used in
Fig. 4a. Instead, we illustrate the blocks as nodes in a graph, numbered by indices. The
arrows indicate control flow between the blocks, with the incoming arrow to block 1
representing the call to £ and the outgoing arrow from block 4 representing the return
from f£.

Fig.5: Compilation of a CorePPL program (a) to a RootPPL PCFG (c). Part
(b) illustrates an intermediate ANF representation of (a) and also indicates the
parts of the program corresponding to the blocks in (¢). We provide further

D. Lundén et al.

(a) Source CorePPL program.

recursive let f: Float -> Float = j|recursive let f: Float -> Float =
lam p. 2| lam p.
let sl = assume (Gamma p p) in 3| |[let s1 = assume (Gamma p p) in
resample; 4| |resample; !
let s2 = 5/ |let t1 = geqf s1 1. in
if geqf s1 1. then 2. 6| |[let s2 = if t1 then 2. else 3. in
else 3. in 7| |let t2 = leqf s2 4. in
let s3 = 8| [let s3 =
if leqf s2 4. then 9 if t2 then
let s4 = 10 let t3 = eqf s2 5. in 2
if eqf s2 5. then 6. 11 let s4 =
else £ 7. in 12 if t3 then 6. else f 7. in
addf s4 s4 13 [addf s4 s4|3
else 8. in 14 else 8. in
mulf s3 s3 15| [mulf s3 s3(4
in 16|in

(b) Intermediate ANF representation.

details in the text.

2
1 J7 1|struct STACK_f *sf = ...;
2(char t1 = sf->s1 >= 1.;
1|struct STACK_f *sf = 3|double s2;
2| PSTATE.stack 4|if (t1 ==1) {s2=2.; }
3| + PSTATE.stackPtr slelse { s2 = 3.; }
4 - sizeof (struct STACK_f); 6|char t2 = s2 <= 4.;
5|sf->s1 = 7|if (£2 == 1) {
6| SAMPLE(gamma, sf->p, sf->p); 8| char t3 = s2 == 5.3
7|NEXT = 2; 9| if (£3 == 1) {
10 sf->s4 = 6.
N1t BBLOCK_JUMP(3) ;
3 12| } else {
1|struct STACK_f *sf = ...; |<t 13 struct STACK_f *callsf =
14 PSTATE.stack
2|sf->s3 = sf->sd + sf->s4; 15 + PSTATE. stackPtr;
3|BBLOCK_JUMP (4) ; e callsf->ra = 3;
17 callsf->p = 7.;
4 18 callsf->retValLoc =
19 &(sf->s4)
1|struct STACK_f *sf = ...; <t || 20 - PSTATE.stack;
2|double t = sf->s3 * sf->s3; 21 PSTATE.stackPtr =
3|*(PSTATE.stack + sf->retValloc) = t; 22 PSTATE.stackPtr
4 |PSTATE.stackPtr = 23 + sizeof (struct STACK_f);
5| PSTATE.stackPtr H 24 BBLOCK_JUMP (1) ;
6| - sizeof(struct STACK_f); 25| }
7|BBLOCK_JUMP (sf->ra) ; 26|} else {
27| sf->s3 = 8.;
J; '~ 28| BBLOCK_JUMP(4);
29|}

Compiling Universal PPLs with Efficient Parallel SMC Inference 41

executions in order to resample. The resample construct is the sole checkpoint
considered in this example (and the CorePPL compiler), but the method gener-
ally applies for arbitrary checkpoints. Optimally, the resample construct should
be automatically inserted by the compiler [25]. However, we do not consider this
problem in this paper and assume resamples are inserted prior to compilation.
The first step in the decomposition is to translate the program into A-normal
form (ANF) [15], illustrated in Fig. 5b. ANF is commonly used in compilers and
ensures that non-trivial expressions (e.g., function applications and checkpoints)
are always name-bound. For CorePPL, ANF guarantees that the body of each
let expression, or expression in tail position, is trivial, contains at most one
function application, or is an if expression with a trivial condition, resulting
in simplified decomposition. We will use the program in Fig. 5b as the target
for decomposition in the following. Note that variables introduced by ANF start
with a t in Fig. 5b, while the original variables from Fig. 5a start with an s.

The goal with the decomposition is to ensure that we immediately return
control to the inference engine at checkpoints. In the PCFG framework, the only
way to fulfill this is to ensure that checkpoints occur at tail position in basic
blocks. First, consider the resample checkpoint at line 4 in Fig. 5b, causing a
split into blocks 1 and 2 in the compiled RootPPL PCFG in Fig. 5c. Note that in
block 1, NEXT is set to 2 at line 7 before returning, indicating that the inference
engine should resume execution at block 2 after handling the checkpoint, also
illustrated by a closed arrow. Note the stack frame pointer sf in block 1 for
this invocation of f, which points to a location in an explicit call stack in the
RootPPL program state PSTATE. We require such a call stack due to compiling
to PCFGs—any data that lives between basic blocks (e.g., a call stack), such
as s1, must be put in the program state. We define the stack frame pointer sf
equivalently at the top of all blocks for the decomposed function f in Fig. 5¢ but
replace the definition with ... in blocks other than the first for brevity.

It is not sufficient to split into blocks at explicit checkpoints. Consider, for
example, the recursive call to f in the else branch on line 12 in Fig. 5b. During
this function call, we encounter at least one resample, resulting in at least one
block split within the function, meaning that all data required by £ must be put
in an explicit stack frame and stored in the program state. If not, we lose the
data between the basic blocks of f. In particular, the block return address ra is
stored in the stack frame, indicating which block to return to at the end of the
function call. In the case of the call to £ at line 12 in Fig. 5b, we must return
to line 13. Therefore, we must place line 13 at the beginning of a basic block in
Fig. 5¢ (block 3). In general, we must place all calls to decomposed functions (i.e.,
functions that may, directly or indirectly, encounter a checkpoint) at tail position
in basic blocks. Besides line 13 in Fig. 5b, this also means that line 15 in Fig. 5b
cannot be part of block 2. It cannot be part of block 3 either because it may be
executed independently of line 13 in Fig. 5b if we take the else branch of the
if at line 9 in Fig. 5b. Consequently, we must put it in a separate block (block
4 in Fig. 5¢). The decomposition of function applications and if expressions is
similar to how standard compilers decompose machine instructions into basic

42 D. Lundén et al.

blocks (sequences of instructions without any internal jumps or branches) [§].
The difference, however, is that we do not split into blocks at all if expressions
and function calls. For example, the if at line 6 in Fig. 5b is guaranteed not to
include a checkpoint and can be left untouched (lines 4-5 in Fig. 5¢). Similarly,
the call to geqf at line 5 in Fig 5b is guaranteed not to encounter any checkpoints.
Conservatively determining which functions are guaranteed not to encounter any
checkpoints can be done through static analysis. Such a static analysis phase is
part of the CorePPL compiler, described in Section 4.3.

We now take a closer look at the call stack handling in Fig. 5¢. The following
description is specific for RootPPL, but similar solutions must be applied if
compiling to other target languages utilizing PCFGs. First, the program state
PSTATE consists of a byte array stack and a pointer to the top of this stack named
stackPtr. We increment and decrement this stack pointer when stack frames
are added and removed, respectively, at function calls and returns. The type
STACK_f represents the stack frame for the function f (such a stack frame type
must be determined and set up for each function we decompose) and contains
its block return address ra, its parameter p (functions with multiple parameters
have one entry for each parameter), and an address retValloc at which we write
its return value. Additionally, it contains the local variables s1, s3, and s4 that
travel across the blocks in f. Note, however, that local variables used only within
a single block do not need to go in the stack frame (e.g., t1 and s2), and the
underlying target language (e.g., CUDA for RootPPL) can instead handle them
directly. Lines 13-24 in block 2 in Fig. 5c¢ illustrate the recursive call to £ at line
12 in Fig. 5b. Here, we allocate a new complete stack frame callsf and initialize
ra, p, and retValloc. Allocating the complete stack frame prior to the function
call is different from most standard compilers, which most often allocate the part
of the stack frame containing local variables at the start of the called function.
This strategy allows for making the allocation size dependent on, e.g., function
arguments. Here, we instead know all stack frame sizes at compile time. After
setting up the stack frame, we increment the stack pointer at lines 21-23 and
pass control to the recursive invocation of £ by using BBLOCK_JUMP at line 24.
Inversely, we illustrate function return in block 4 on lines 3-7. First, we set the
return value, and second, we decrement the stack pointer. Finally, we retrieve
the return block from the stack frame and pass control to this block at line 7.

4.2 Function Decomposition Algorithm

We now turn to a formal description of the decomposition algorithm. To avoid
going into specifics of the underlying target language, and in particular the call
stack handling, we take an abstract view of function bodies and regard them as
lists of statements of the form

stmt := checkpoint | call | if [stmt]| [stmt] | other. (3)

Here, the [stmt] syntax indicates a list of stmts. Thus, the if construct induc-
tively contains two lists of stmts—one for each branch.

Compiling Universal PPLs with Efficient Parallel SMC Inference 43

1
' "

1] [2| other
2| other, 2| other, J 3| if
3| checkpoint, 3| checkpoint 2 4 [other |
4| other, 4] 5 [other]
5| if [other] [other], 6 ?ther
6| other, 3 7| if |
7| if | [8 other

1 .
s other, 2| other, ’ it [
9 if . 41 10 other,

3| jump 4| . 3
10 [other] o] 11 jump
11 [call], 12 11
12 other 13 call 3

; 4
13|] [other], 14]
14| other 1[)]
15|] 2| other, <« |16 other,
3| jump return| |17 jump 4
(a) The program from Fig. 5b 4] s]
translated to type [stmt]. I]

(b) Decomposition of (a) into [tstmt] basic blocks.

Fig. 6: Hlustrating Algorithm 2 on the example from Fig. 5.

We illustrate the representation stmt through an example. Consider the pro-
gram in Fig. 5b and its mapping to stmts in Fig. 6a. Due to ANF, we can view
the body of £ as a sequence of let bindings and operations separated by ;,
each performing a single operation of some kind (e.g., a checkpoint or a function
application). We map each such operation to a stmt in Fig. 6a. The resample
checkpoint at line 4 in Fig. 5b maps to a checkpoint at line 3 in Fig. 6a, and
the application of £ at line 12 maps to a call at line 11. However, other applica-
tions, such as geqf and leqf, are guaranteed not to encounter any checkpoints.
Therefore, they map to others, and not calls. The three ifs at lines 6, 9, and
12 map to ifs. Note that we always lift the if conditions in Fig. 5b to a separate
let as a result of ANF, and they are therefore not part of the if representation
in stmt. We map all remaining operations to others.

While the illustration above only shows how to map a CorePPL function body
to stmts, the representation is general. For example, in the CorePPL compiler
(Section 4.3), the decomposition is performed after translation to C, and not at
the CorePPL stage. The reason is that there are no basic blocks in CorePPL. It
is, therefore, more natural to perform this translation closer to RootPPL.

We now turn to the full decomposition algorithm over lists of stmts, given
in Algorithm 2. The target language representation is a small extension of stmt,

44 D. Lundén et al.

Algorithm 2 A functional-style algorithm for function decomposition into basic
blocks. We denote tuples with comma-separated expressions within parentheses
and sequences with comma-separated items within square brackets. We denote
type annotation with the : character, the cons operator with :: characters, and se-
quence concatenation with +. The non-pure function newlndex returns a unique
number from N at every call.

1 function DECOMPOSE srcs: [stmt] — (N — [tstmt]) =

2 let (block, blocks,) = REC ([], @, return) srcs in

3 blocks U (newlIndex (), block)

4

5 function INITNEXT next: next; — next =

6 match next with none — newlndex () | _ — next

7

8 function REC (block, blocks, next) srcs: ace — [stmt] — acc =

9 match srcs with

10 | | = match next with

11 | none — (block, blocks, next)

12 | n | return — (block 4+ [jump next], blocks, next)

13 | src :: srcs — match src with

14 | checkpoint | call — match srcs with

15 -

16 let next = INITNEXT next in

17 (block 4 [src next], blocks, next)

18 | _ —>

19 let index = newlndex () in

20 let block = block 4 [src index] in

21 let (nextBlock, blocks, next) = REC ([], blocks, INITNEXT next) srcs in
22 (block, blocks U (index, nextBlock), next)

23 | other — REC (block 4 [other], blocks, next) srcs

24 | if thn els — match srcs with

25 10—

26 let (thn, thnBlocks, thnNext) = REC ({[], blocks, next) thn in

27 let (els, elsBlocks, elsNext) = REC ([], thnBlocks, thnNext) els in
28 let thn = if next # elsNext A thnNext = none

29 then thn 4 [jump elsNext] else thn in
30 (block +- [if thn els], elsBlocks, elsNext)
31 | —
32 let (thn, thnBlocks, thnNext) = REC (][], blocks, none) thn in
33 let (els, elsBlocks, elsNext) = REC ([], thnBlocks, thnNext) els in
34 if elsNext = none then REC (block + [if thn els], elsBlocks, next) srcs
35 else
36 let thn = if thnNext = none then thn 4 [jump elsNext] else thn in
37 let (nextBlock, blocks, next) =
38 REC ([], elsBlocks, INITNEXT next) srcs in

39 (block 4 [if thn els], blocks U (elsNext, nextBlock), next)

Compiling Universal PPLs with Efficient Parallel SMC Inference 45

adding transitions between N-indexed basic blocks. It is given by

tstmt == checkpoint next | call next

(4)

| if [tstmt] [tstmt] | jump next | other.

In particular, we annotate checkpoints and calls with the type next, given by
next == return | n, where n € N. For checkpoints, the next indicates which
block to jump to after handling the checkpoint, and for calls, it indicates the
block to return to (e.g., the value set for ra in Fig 5¢) at the end of the function
invocation. We also include a jump in tstmt for directly jumping to another block
(corresponding to BBLOCK_JUMP in Fig. 5¢). The return case of next indicates
that the return address gives the next block for the current function call. For
example, BBLOCK_JUMP (sf->ra) is equivalent to jump return.

Fig. 6b shows the result of applying Algorithm 2 on the [stmt] in Fig. 6a.
Note that the block structure in Fig. 6b mirrors that of Fig. 5c. The entry point
in Algorithm 2 is the function DECOMPOSE, which accepts a [stmt] as input,
and produces a map from indices to [tstmt] as output (e.g., Fig 6b). The core of
Algorithm 2 is the function REC, which recursively constructs the basic blocks.
It is called from DECOMPOSE, and makes use of the function INITNEXT. The
accumulator is the triple (block, blocks, next) of type acc == [stmt] x (N —
[stmt]) x next, where block is the current block being constructed, blocks are
all blocks constructed so far, and next indicates the action to take at tail position
in the current block. The type next. is defined as next, ::= next | none. When
reaching the end of a block, a value none for next means do nothing, a value
return indicates that the next block is the return block for the current function
invocation, and a natural number n means that the next block has index n.

We now walk through the translation of Fig. 6a to Fig. 6b. We set the ac-
cumulator to ([], @, return) at line 2 in Algorithm 2 just before the initial call
to REC, indicating that the current block is empty, that we have accumulated
no complete blocks so far, and that we must use the return block address when
reaching the end of the current block. In the first call to REC, the other at
line 2 in Fig. 6a triggers the case at line 23 in Algorithm 2, which accumulates
the other in the current block. Next, the checkpoint triggers the case at line
14, followed by line 18, since the checkpoint is not at tail position. At line
19, we create a new index for the following block. We then close the current
block by tagging the checkpoint with the new index, resulting in block 1 in
Fig. 6b. Next, we recursively create the block following the checkpoint at line
21. Finally, we add the recursively created block with the new index to the map
of complete blocks (now also populated by the recursive call) and return the
updated accumulator triple at line 22.

The complex part of Algorithm 2 involves handling of ifs. In particular, we
must handle cases where there are block splits within the branches with care.
In our example, the first if at line 5 in Fig. 6a triggers the case at line 31 since
it is not in tail position. To determine whether or not there is at least one split
within the branches, we set next to none for the call on line 32. If a block is split
during this call, INN'TNEXT will be applied on next, and thnNext at line 32 will

46 D. Lundén et al.

Miking

ANF .)
CorePPL C>E> Static Analysis

C Translation
RootPPL Cj Code C] Function
Language Generation Decomposition ():D

Fig. 7: The main components of the CorePPL-to-RootPPL compiler. Grey blocks
are programs, and blue blocks are transformations or analyzes.

be a natural number, indicating where the branch jumped to (either through a
jump, checkpoint, or call) at tail position. However, if there is no split in the
branch, the resulting thnNext remains none. There is no split in the first branch
of the if at line 5 in Fig. 6a, and none is passed to the recursive call at line 33
as well. Again, there is no split in the second branch, triggering the then case at
line 34, and we accumulate the if in the same way as an other.

The ifs at lines 7 and 9 in Fig. 6a do contain a split due to the call at line
11, resulting in blocks 2, 3, and 4, shown in Fig. 6b. The elsNext is a natural
number for these ifs, and the else case at line 35 is triggered. Here, we must
take particular care if there is only a split in the second branch of the if and not
the first. In that case, thnNext is none, and unlike the second branch, we do not
add a block jump to the end of this branch in the call at line 32. Therefore, we
must instead add it at line 36. We add the jump at line 11 in block 2 in Fig. 6b
in this way. Note that we do not require an equivalent step to the above for the
second branch if the split is only in the first branch, since we pass the next from
the first branch to the recursive call for the second branch. After handling the if
itself, we recursively create the new block following the if at lines 37-38 (note
that we pass the next given as argument to REC here, and use INITNEXT on it
to indicate a split has occurred), and give it the index ELSNEXT at line 39.

The case where if is at tail position, at line 25, is handled similarly to the
case at line 31. The difference is that we do mot pass none to the first branch
since there is nothing following the if which we can jump to. Instead, we directly
pass the current next to the first call at line 26.

In the blocks resulting from Algorithm 2, call and checkpoint only occurs
in tail-position by construction. As discussed in Section 4.1, this is precisely the
required property when compiling to PCFGs.

4.3 CorePPL-to-RootPPL Compiler

Fig. 7 gives an overview of the CorePPL-to-RootPPL compiler components. Be-
sides the techniques described previously, an integral part of the compiler is the C
translation step, which translates many of the CorePPL language features to C,
including data type definitions and pattern matching. More precisely, CorePPL
records and variants are translated to C structs and tagged unions, respectively,
while pattern matching is compiled to C if statements.

A simple static analysis phase discovering functions that are guaranteed not
to encounter any resamples is also part of the compiler. It iterates through all

Compiling Universal PPLs with Efficient Parallel SMC Inference 47

functions and marks a function as containing a resample if it either directly
contains a resample or calls another function containing a resample. We do
not need to decompose resample-free functions, and invocations can be handled
directly by the C++ or CUDA compiler (and we do not need to set up an explicit
stack frame). An example of such a function invocation is the geqf s1 1. at line
5 in Fig. 5b. We disallow passing functions as arguments to other functions as
it complicates the analysis. A solution to allow passing functions as arguments
is to use static analysis techniques such as 0-CFA [35] instead.

The code generation stage in Fig. 7 adds RootPPL boilerplate code and emits
a complete RootPPL program that is provided as input to a C++ or CUDA
compiler together with the RootPPL inference engine (see Fig. 1). The CorePPL
compiler implementation is hosted at GitHub [4] and consists of approximately
3000 lines of code (a contribution of this paper). Note that the ANF, static
analysis, and C translation steps are quite standard, with no new contributions.

An important detail concerning memory allocation in the compiler is the
translation between relative and absolute addresses. Fig. 5c illustrates this trans-
lation. On line 3 in block 4, we convert the retValLoc relative pointer to an
absolute pointer prior to dereferencing, and at lines 18-20 in block 2, the ad-
dress of s4 is translated to a relative address with respect to the start of the
stack before being assigned to retValLoc. This translation is needed because,
at checkpoints in RootPPL, resampling copies and moves SMC executions in
memory. Therefore, we cannot use absolute addresses to refer to data on the
PSTATE stack and must instead use addresses relative to the start of the stack.

4.4 Compiler Strengths and Limitations

The main strength of the CorePPL compiler, compared to using other PPL com-
pilers and tools, is the execution time of the compiled programs. In particular,
the compilation from a universal PPL to CUDA is the first of its kind and allows
for utilizing GPUs for massively parallel SMC inference.

The compiler does, however, have some limitations. Most importantly, the
lack of standard garbage collectors in C++ and CUDA leads to restrictions for
automatic data allocation. Currently, we support only stack-based allocation,
which means that CorePPL programs that allocate and return dynamically sized
data structures (e.g., trees or linked lists) from functions are not supported. Con-
sequently, the current compiler cannot handle probabilistic programs encoding
distributions over such data structures (e.g., phylogenetic trees)—the distribu-
tion must be over fixed-size data types. However, as the evaluation in Section 5
suggests, practically significant universal probabilistic programs over fixed-sized
data types are plentiful. In general, the compiler supports universal CorePPL
programs including both stochastic branching and an unbound number of (stack-
allocated) random variables. Automatic heap-based data allocation is a general
challenge when compiling to GPUs and not specific to our approach. Exploring
the use of garbage collectors or other means for automatic memory management
on GPUs is an interesting direction for future research.

48 D. Lundén et al.

The compiler also lacks support for some features, which we foresee no sub-
stantial technical challenges in implementing in the near future. In particu-
lar, the compiler does not support first-class distributions—we restrict distri-
butions to occur immediately at assumes (e.g., the Bernoulli distribution in
assume (Bernoulli p) in Fig. 2a). Another possible feature is to add limited
support for nested and higher-order functions.

5 Evaluation

This section evaluates RootPPL and the CorePPL-to-RootPPL compiler. The
source code for all experiments is publicly available [26]. We compare RootPPL
and CorePPL to state-of-the-art SMC PPL implementations on two models: a
constant rate birth-death (CRBD) model from evolutionary biology (Sections 5.1
and 5.3) and a vector-borne disease model from epidemiology (Section 5.2).
Previous work shows that SMC handles these models particularly well [36,28],
and they are therefore good candidates for this evaluation. Comparison with
other types of inference algorithms is a challenging problem and beyond the
scope of this paper. For example, comparing SMC with variational inference
(VI) is challenging as VI is approximate and SMC is asymptotically exact.

In addition to CorePPL (compiled to RootPPL) and RootPPL (hand-tuned),
we implement the models above in a set of state-of-the-art PPLs with SMC
inference: Birch [32], WebPPL [20], and Pyro [10]. For each PPL, we implement
the two models as efficiently as possible, given the available language features. We
compile RootPPL with GCC 7.5.0 for single-core and multicore and with CUDA
11.4 for GPU. We compile Birch 1.634 with GCC 7.5.0. We use WebPPL 0.9.15
with Node.js 14.17.6. We use Pyro 1.7.0 with PyTorch 1.9.0 and CUDA 10.2.
Additionally, we use Numba 0.54.0—a just-in-time (JIT) compiler for Python—
to improve the Pyro performance for the Section 5.1 experiment.

To aid the comparison between languages both in the text and in the figures,
we use the (S), (M), and (G) symbols suffixed to PPL names to indicate if
they run on single-core, multicore, or GPU, respectively. Despite the CUDA
dependency for Pyro, we did not observe any GPU usage during Pyro SMC
runs. In Pyro, SMC is a minor inference algorithm, with variational inference
instead being the main focus. This may explain this lack of GPU support for
SMC. Consequently, we classify SMC in Pyro as (M) and not (G).

We ran all experiments on a machine with a 12-core (24 threads) Intel Xeon
Gold 6136 CPU, 64 GB of memory, and an NVIDIA TITAN RTX GPU with 24
GB of memory and 4608 CUDA cores.

5.1 Experiment: Constant-Rate Birth Death

In this experiment, we consider the non-trivial CRBD model described in Ron-
quist et al. [36]. This model encodes the posterior distributions of the rates with
which new evolutionary lineages arise (birth rate) and die out (death rate), con-
ditioned on the input of a fixed evolutionary tree (phylogeny). We use the dated

Compiling Universal PPLs with Efficient Parallel SMC Inference 49

N =10000 N = 100000 N = 1000000

2.25 ==
BRE—

g
o

60

2.42

—
o1

34.78

40

Time [sec|
£
3.38

—
o

o
o
o
o

o
o

- 0.17
M) [rois
- 0.57
- 0.57
N
L 140
iy
*1.13
* 0.75
N
o
= 13.76
%1448
v)
- 6.20
- 109

els:z:z228¢ eesz=z28e8 eeszzz2z
= ~ VJ — R VJ - a = ~ VJ —
a2 -5 Fazao a2 « Sz azxa a2 S gFgaza
o [a Ny o
Q_D-—D.:Q'g_ o Q_CL-D.:G'Q_ [a% a_D-—D.tc"g_ o
s 53 ED % S % B s 8 E® % S S % s 5 E@® % S % =
5 9 5 £ 5 £ 3 5 9 5 £ 5 £ 3 5 8 5 £ 5 £ 3
o O o O o O
o x Z S & O x O x Z S 2 O x O X Z S @& U &
g e g
> > >
a a9 a

Fig. 8: Execution times for the CRBD experiment, for different numbers of parti-
cles N. The vertical line at the top of each bar indicates one standard deviation.
PPLs with an (S) runs on a single core, (M) on multicore, and (G) on the GPU.

Alcedinidae phylogeny (Kingfisher birds) referenced in Ronquist et al. [36], and
introduced in Jetz et al. [23]. A notable feature of this model is that it contains
recursive tree constructions, which are only expressible in universal PPLs. The
CorePPL implementation of this model consists of 118 lines of code!.

We measure execution time. To ensure fairness, we disabled variance-reducing
techniques such as delayed sampling [28] and ESS-triggered resampling in all
PPLs where available. Consequently, all implementations use precisely the same
SMC inference algorithm. We checked this and the implementations’ correct-
ness by considering the output normalizing constant estimates in all runs’. The
variance and mean of these estimates were comparable for all PPLs.

The results of the experiment are shown in Fig. 8 for three different numbers
of SMC particles: 10000, 100 000, and 1000 000. We ran the PPL implementa-
tions for 100 iterations (a number determined by available time and hardware)
for each number of SMC particles. The exception to this is WebPPL (S) and
Pyro (M), which we ran only for 10000 particles due to excessive execution
times. For 10000 particles, WebPPL (S) ran for 55 seconds (standard deviation
0.63 seconds), and Pyro (M) for 250 seconds (standard deviation 28 seconds).
We omit WebPPL (S) and Pyro (M) from Fig. 8. Pyro relies heavily upon vec-
torization through PyTorch, and the expensive operations in the CRBD model
are recursive and stochastic tree constructions, which are difficult to vectorize.
This explains the particularly abnormal execution times for Pyro (M).

RootPPL is the best alternative in all categories. We conjecture that the
difference compared to CorePPL is due to hand-tuned details in the RootPPL
model. The RootPPL model uses efficient array encodings of the observed tree,
precomputes the recursion order over this tree, and encodes it as an iterative pro-
cedure. CorePPL instead compiles the tree as a tagged union type with pointers

50 D. Lundén et al.

N =10000 N = 50000 N = 100000
12 60 120

.36
46.27
2.18

10 50 100

11.08 =

30 60

Time [sec]
(=]
= 25.66
- 49.32

40

g g
@ 5
10 I 20 l
0 0 0

=259
2.7
-219
=223
. 1263
*10.28
- 12.62
= 25.03
*18.79
23,99

— o~~~ o~ = -~ —_ e~ o~ =~ e~~~ o~ D~
neLe=s=ssz2008 nwL=ssz=200 nL==5s52009
VJVVVVUJ \:JVUVVVJ :’JVVVV_/J
— o - <} — <} 4
a e 8257z aa a e 8 5S57Fazaa a e £ S5Faaa
e S & Faxa g a &S & FZaxa a & 4 Fa o 5
£8 ® g5t s g8 @ g3 g g " o 893
o O O o O O o O O
O S e & x O o S e & O S e &«

Fig.9: Execution times for the Vector-Borne Disease experiment, for different
numbers of particles N. The vertical line at the top of each bar indicates one
standard deviation. PPLs with an (S) runs on a single core, (M) on multicore,
and (G) on the GPU.

to subtrees in each node and traverses it via recursion. Automatically discovering
this transformation from trees to arrays and recursion to iteration is non-trivial
and not considered here but could have potential for future work.

To improve the performance of Pyro, we also applied Numba to parallelize
the recursive tree construction in the model manually. The parallelization we ap-
ply is more fine-grained than the natural SMC particle parallelism and resulted
in an order-of-magnitude performance boost over Pyro (M). Unlike CorePPL,
RootPPL, and Birch, the execution times for Pyro/Numba (M) seems to grow
sub-linearly when going from 100 000 to 1 000 000 particles, as this only increases
mean execution time from 6.72 seconds to 13.76. We conjecture that this is re-
lated to the different type of parallelism introduced with Numba, in combina-
tion with its JIT compilation. Therefore, looking at adding such parallelism to
RootPPL and CorePPL is an interesting direction for future work.

5.2 Experiment: Vector-Borne Disease

Next, we consider the vector-borne disease model from Funk et al. [16], which
is also studied further in Murray et al. [28]. This epidemiological model encodes
a dengue outbreak in Micronesia and includes the spread of disease between
mosquito and human populations. The inference is over the number of suscep-
tible, exposed, infectious, and recovered (SEIR) individuals in the populations
at discrete time steps (days), and the observations are daily numbers of re-
ported new cases at health centers (the data is available in Funk et al. [16]). The
CorePPL implementation of this model consists of 140 lines of codef.

The experiment setup is identical to Section 5.1 but with fewer SMC particles
due to more demanding computations in the model. Fig. 9 shows the results. We

Compiling Universal PPLs with Efficient Parallel SMC Inference 51

N =10000 N = 100000 N = 1000000

10 60

10.63 =

400

64.49
45.98

o 300
2 40
— 6 «
[©
<
E 30 200 8
=g 2 ©
N 20 = g
o 0 ©
2 o a 2 100 ~
@® - 10 ~ © <
min [[:
. .
0 0 0
— —_ = o~ — —_ e~ — =~
2 g £ = © 2 g £ = © 2 g £ = ¢©
s = I I 4 Z 2 - I3 - 2 - I3
e ©] o a [© o o o a © o o o
Nl = o o o < = a o o fe = a o
° £ o = B B8 £ m =) B B £ o0 = B
P2 s 8 8 3 g 3 s £ 3
© £ x @ x = x x £ € &
e e e
> > >
o o [a

Fig. 10: Execution times for the CRBD experiment with variance-reducing tech-
niques for different numbers of particles V. The vertical line at the top of each
bar indicates one standard deviation. PPLs with an (S) runs on a single core,
(M) on multicore, and (G) on the GPU. Note the 6 x speedup of RootPPL (M)
over Birch (M) for N = 100 000.

omit WebPPL (S) entirely due to high execution times. However, we include Pyro
(M) because the simple non-stochastic control-flow in this model allows much
better vectorization than the CRBD model. The Numba optimization in Sec-
tion 5.1 relied on the recursive structure of the model. We exclude Pyro/Numba
(M) here, as such an optimization is not possible in this model.

This time, CorePPL is the best option, by a small margin, over RootPPL.
We conjecture that this is due to how RootPPL preallocates memory, which is
instead dynamically allocated in CorePPL. This results in copying slightly more
memory during resampling for this model in RootPPL.

The difference between GPU and CPU for CorePPL and RootPPL is not as
significant as in Fig. 8. We conjecture that this is due to the lower numbers of
SMC particles used and RootPPL using different implementations for binomial
distribution sampling on the CPU and GPU. The GPU uses a custom, and less
efficient version, because the C++ standard library binomial sampling imple-
mentation is not available in CUDA. Because binomial sampling is the most
expensive operation in this model, this can improve GPU performance further.

5.3 Experiment: CRBD with Variance-Reducing Techniques

In this experiment, we again consider the CRBD model from Section 5.1, but
with delayed sampling and ESS-triggered resampling allowed. Also, we now con-
sider a different, more challenging phylogeny of Tyrant flycatchers [36,23].

Fig. 10 shows the results. Other than the changes above, the setup is identical
to Section 5.1. We added static delayed sampling manually to all models to

52 D. Lundén et al.

ensure fairness. Note, however, that automatic and dynamic delayed sampling,
as introduced in Murray et al. [28], is also natively supported in Birch (but
introduces some unfair overhead). CorePPL is omitted here, as adding efficient
delayed sampling to the model is rendered more difficult by the current lack of
support for mutable data structures. Based on the experiment in Section 5.1,
WebPPL (S) and Pyro (M) are also not considered here.

The results offer no surprise over Fig 8, and RootPPL is again the best
alternative. Note the increased execution times here compared to Fig 8 due to
the more challenging phylogeny and delayed sampling overhead (which is greatly
compensated by increased inference accuracy).

6 Related Work

There are quite a few PPL implementations making use of SMC inference. Most
closely related to the contributions in this paper is Birch [32]. Similarly to
RootPPL, Birch implements SMC inference, and the target language for com-
pilation is C++. However, while performance is one of the main goals with
Birch, some overhead is inevitably introduced by supporting various quality-of-
life C++ features—including automatic heap allocation [30] and object-oriented
features. RootPPL does not support such features in favor of performance. Simi-
larly to RootPPL, Birch supports CPU parallelism through the use of OpenMP.
Compilation to GPUs is, however, currently not supported in Birch.

The PCFG concept can also be related to Birch. In Birch, users write models
for SMC inference as a method simulate which the inference algorithm calls
iteratively. Resampling only occurs between calls to this method. Furthermore,
data is passed between calls to simulate through particle variables stored in an
object defined as part of the model (similar to the PCFG state). We can view
PCFG basic blocks as a natural generalization of the Birch simulate method,
conceptually allowing for many simulate methods with arbitrary control-flow
in between them. In particular, SMC particles can take different paths through
the PCFG. As with PCFG blocks, the explicit simulate function used in Birch
can potentially make it more challenging to express models for programmers.
This is not a problem when using our approach of compiling into PCFGs, as we
then do the block decomposition automatically.

Besides Birch, parallelism for SMC inference in PPLs is surprisingly absent
in previous work. The predecessor of Birch, LibBi [29], is an exception to this
and implements highly performant SMC inference through SIMD instructions,
OpenMP, and CUDA. However, in contrast with RootPPL and CorePPL, the
LibBi modeling language is not universal. In other words, LibBi can not express
many probabilistic models.

Pyro [10] is a PPL mainly focused on stochastic variational inference, sup-
porting MCMC and SMC in addition. SMC in Pyro is similar to Birch in that
models are constructed using an explicit step function (equivalent to simulate
in Birch). In general, Pyro supports parallelism through vectorization using Py-

Compiling Universal PPLs with Efficient Parallel SMC Inference 53

Torch [5] tensors, which is powerful but also restrictive. We saw this in Sec-
tion 5.1, where we could not use Pyro tensors to parallelize the tree recursion.

Other universal PPLs implementing SMC inference include WebPPL [20]
and Anglican [40]. These languages are embedded in JavaScript, and Clojure, re-
spectively, and implement several inference algorithms (including SMC) through
CPS transformations. The focus is on ease of modeling through functional-style
constructs supported by complex runtimes (V8 for JavaScript and the JVM
for Clojure) and supporting many different inference algorithms. Parallelism for
SMC is not directly supported, which is different from CorePPL and RootPPL,
where the focus is parallelism and performance.

Stan [12] and AugurV2 [22] support GPU parallelization of MCMC. Their
modeling languages are, however, more restricted than CorePPL. Stan supports
explicit parallelization of specific functions, and the AugurV2 compiler can com-
pile to MCMC algorithms running partially in parallel on CUDA. This is quite
different from the natural SMC parallelism in CorePPL and RootPPL.

There are also many other probabilistic programming tools, libraries, and
languages available, for instance, Gen [13]|, Turing [17], Hakaru [34], and Ed-
ward [38]. Generally, these either focus on assisting users in manually construct-
ing inference algorithms tailored for their specific models or on providing efficient
inference for a restricted set of models.

7 Conclusion

This paper introduced the concept of PCFGs and a general method for compil-
ing universal PPLs to PCFGs. We illustrated these contributions further through
the RootPPL implementation and the CorePPL compiler. This is the first work
compiling a universal PPL to GPU with SMC inference. Furthermore, the evalua-
tion showed that CorePPL and RootPPL can deal with real-world SMC inference
problems and outperform the current state-of-the-art with up to 6x speedups
for challenging models (and even more when compared across CPU and GPU).
This gives strong empirical support for the usefulness of the contributions.

Possible improvements upon this work include the exploration of more com-
plex CUDA and C++ runtimes for RootPPL, e.g., runtimes with automatic
memory management through garbage collection. Additionally, high-performance
implementations similar to RootPPL for other inference methods (e.g., MCMC)
are highly relevant for many probabilistic models—for instance, various models
from phylogenetics [36]. We leave these topics for future work.

Acknowledgments

We thank Lawrence Murray for his assistance with Birch; the anonymous re-
viewers at ESOP for their valuable comments; Gizem Caylak for her valuable
comments and contributions to CorePPL and Miking; Lars Hummelgren, Viktor
Palmkvist, and Oscar Eriksson for their valuable comments and contributions to
Miking; and finally all other Miking developers for their contributions to Miking.

54 D. Lundén et al.
References
1. CUDA Toolkit | NVIDIA Developer. https://developer.nvidia.com/cuda-toolkit

10.

11.

12.

13.

14.

15.

16.

17.

18.

(2021), accessed: 2021-09-20

GCC, the GNU Compiler Collection - GNU Project. https://gce.gnu.org/ (2021),
accessed: 2021-09-20

Home - OpenMP. https://www.openmp.org/ (2021), accessed: 2021-09-20
Miking DPPL. https://github.com/miking-lang/miking-dppl (2021), accessed:
2021-12-01

PyTorch. https://pytorch.org/ (2021), accessed: 2021-10-11

The LLVM Compiler Infrastructure Project. https://llvm.org/ (2021), accessed:
2021-09-20

Thrust - Parallel Algorithms Library. https://thrust.github.io/ (2021), accessed:
2021-09-24

Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: principles, techniques
and tools. Addison-Wesley (2006)

Appel, A.W.: Compiling with Continuations. Cambridge University Press (1991)
Bingham, E., Chen, J.P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karalet-
sos, T., Singh, R., Szerlip, P., Horsfall, P., Goodman, N.D.: Pyro: Deep universal
probabilistic programming. Journal of Machine Learning Research 20(28), 1-6
(2019)

Broman, D.: A vision of miking: Interactive programmatic modeling, sound lan-
guage composition, and self-learning compilation. In: Proceedings of the 12th ACM
SIGPLAN International Conference on Software Language Engineering. p. 55-60.
SLE 2019, ACM, New York, NY, USA (2019)

Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M., Guo, J., Li, P., Riddell, A.: Stan: A probabilistic programming
language. Journal of Statistical Software, Articles 76(1), 1-32 (2017)
Cusumano-Towner, M.F., Saad, F.A., Lew, A.K., Mansinghka, V.K.: Gen: A
general-purpose probabilistic programming system with programmable inference.
In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. pp. 221-236. PLDI 2019, ACM, New York,
NY, USA (2019)

Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Prac-
tice. Information Science and Statistics, Springer New York (2001)

Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. In: Proceedings of the ACM SIGPLAN 1993 Conference on Pro-
gramming Language Design and Implementation. p. 237-247. PLDI 1993, ACM,
New York, NY, USA (1993)

Funk, S., Kucharski, A.J., Camacho, A., Eggo, R.M., Yakob, L., Murray, L.M.,
Edmunds, W.J.: Comparative analysis of dengue and zika outbreaks reveals dif-
ferences by setting and virus. PLOS Neglected Tropical Diseases 10(12), 1-16 (12
2016)

Ge, H., Xu, K., Ghahramani, Z.: Turing: a language for flexible probabilistic in-
ference. In: International Conference on Artificial Intelligence and Statistics, AIS-
TATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain. pp.
1682-1690 (2018)

Gilks, W., Richardson, S., Spiegelhalter, D.: Markov Chain Monte Carlo in Prac-
tice. Chapman & Hall/CRC Interdisciplinary Statistics, Taylor & Francis (1995)

https://developer.nvidia.com/cuda-toolkit
https://gcc.gnu.org/
https://www.openmp.org/
https://github.com/miking-lang/miking-dppl
https://pytorch.org/
https://llvm.org/
https://thrust.github.io/

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Compiling Universal PPLs with Efficient Parallel SMC Inference 55

Goodman, N.D.; Mansinghka, V.K., Roy, D., Bonawitz, K., Tenenbaum, J.B.:
Church: A language for generative models. In: Proceedings of the Twenty-Fourth
Conference on Uncertainty in Artificial Intelligence. pp. 220-229. AUAI Press
(2008)

Goodman, N.D., Stuhlmiiller, A.: The design and implementation of probabilistic
programming languages. http://dippl.org (2014), accessed: 2020-07-09

Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: Future of Software Engineering Proceedings. p. 167-181. FOSE
2014, ACM, New York, NY, USA (2014)

Huang, D., Tristan, J.B., Morrisett, G.: Compiling markov chain monte carlo al-
gorithms for probabilistic modeling. In: Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation. p. 111-125.
PLDI 2017, ACM, New York, NY, USA (2017)

Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K., Mooers, A.O.: The global di-
versity of birds in space and time. Nature 491(7424), 444-448 (Nov 2012)
Lundén, D., Borgstrom, J., Broman, D.: Correctness of sequential Monte Carlo
inference for probabilistic programming languages. In: Programming Languages
and Systems. pp. 404-431. Springer International Publishing, Cham (2021)
Lundén, D.,; Broman, D., Ronquist, F., Murray, L.M.: Automatic alignment of
sequential Monte Carlo inference in higher-order probabilistic programs. arXiv e-
prints p. arXiv:1812.07439 (2018)

Lundén, D., Ohman, J., Kudlicka, J., Senderov, V., Ronquist, F., Bro-
man, D.: Artifact: Compiling Universal Probabilistic Programming Lan-
guages with Efficient Parallel Sequential Monte Carlo Inference (Jan 2022).
https://doi.org/10.5281 /zenodo.5914164

Lundén, D., Ohman, J., Kudlicka, J., Senderov, V., Ronquist, F., Broman, D.:
Compiling universal probabilistic programming languages with efficient parallel
sequential monte carlo inference. arXiv e-prints p. arXiv:2112.00364 (2022)
Murray, L., Lundén, D., Kudlicka, J., Broman, D., Schén, T.: Delayed sampling
and automatic Rao-Blackwellization of probabilistic programs. In: Proceedings of
the Twenty-First International Conference on Artificial Intelligence and Statistics.
vol. 84, pp. 1037-1046. PMLR (2018)

Murray, L.M.: Bayesian state-space modelling on high-performance hardware using
LibBi. arXiv e-prints p. arXiv:1306.3277 (2013)

Murray, L.M.: Lazy object copy as a platform for population-based probabilistic
programming. arXiv e-prints p. arXiv:2001.05293 (2020)

Murray, L.M., Lee, A., Jacob, P.E.: Parallel resampling in the particle filter. Journal
of Computational and Graphical Statistics 25(3), 789-805 (2016)

Murray, L.M., Schon, T.B.: Automated learning with a probabilistic programming
language: Birch. Annual Reviews in Control 46, 29-43 (2018)

Naesseth, C.,; Lindsten, F., Schon, T.: Elements of Sequential Monte Carlo. Foun-
dations and Trends in Machine Learning Series, Now Publishers (2019)
Narayanan, P., Carette, J., Romano, W., Shan, C., Zinkov, R.: Probabilistic in-
ference by program transformation in Hakaru (system description). In: Interna-
tional Symposium on Functional and Logic Programming - 13th International
Symposium, FLOPS 2016, Kochi, Japan, March 4-6, 2016, Proceedings. pp. 62-79.
Springer (2016)

Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-
Verlag (1999)

http://dippl.org
https://doi.org/10.5281/zenodo.5914164

56

36.

37.

38.

39.

40.

D. Lundén et al.

Ronquist, F., Kudlicka, J., Senderov, V., Borgstrom, J., Lartillot, N., Lundén, D.,
Murray, L., Schoén, T.B., Broman, D.: Universal probabilistic programming offers a
powerful approach to statistical phylogenetics. Communications Biology 4(1), 244
(Feb 2021)

Tolpin, D., van de Meent, J.W., Yang, H., Wood, F.: Design and implementa-
tion of probabilistic programming language Anglican. In: Proceedings of the 28th
Symposium on the Implementation and Application of Functional Programming
Languages. IFL 2016, ACM, New York, NY, USA (2016)

Tran, D., Kucukelbir, A., Dieng, A.B., Rudolph, M., Liang, D., Blei, D.M.: Edward:
A library for probabilistic modeling, inference, and criticism. arXiv e-prints p.
arXiv:1610.09787 (2016)

Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and varia-
tional inference. Foundations and Trends in Machine Learning 1(1-2), 1-305 (2008)
Wood, F., Meent, J.W., Mansinghka, V.: A new approach to probabilistic pro-
gramming inference. In: Proceedings of the Seventeenth International Conference
on Artificial Intelligence and Statistics. vol. 33, pp. 1024-1032. PMLR (2014)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

)

Check for
updates

Foundations for Entailment Checking
in Quantitative Separation Logic*

Kevin Batz! (X)®, Ira Fesefeldt! ()@, Marvin Jansen®, Joost-Pieter
Katoen! (<)@, Florian Kefller!, Christoph Matheja?3(=)®, and
Thomas Noll! (<)

1 Software Modeling and Verification Group, RWTH Aachen University, Germany
{kevin.batz,fesefeldt,katoen,noll}@cs.rwth-aachen.de
2 Programming Methodology Group, ETH Ziirich, Switzerland
3 Technical University of Denmark, chmat@dtu.dk

Abstract. Quantitative separation logic (QSL) is an extension of sep-
aration logic (SL) for the verification of probabilistic pointer programs.
In QSL, formulae evaluate to real numbers instead of truth values, e.g.,
the probability of memory-safe termination in a given symbolic heap. As
with SL, one of the key problems when reasoning with QSL is entailment:
does a formula f entail another formula g?

We give a generic reduction from entailment checking in QSL to entail-
ment checking in SL. This allows to leverage the large body of SL research
for the automated verification of probabilistic pointer programs. We an-
alyze the complexity of our approach and demonstrate its applicability.
In particular, we obtain the first decidability results for the verification
of such programs by applying our reduction to a quantitative extension
of the well-known symbolic-heap fragment of separation logic.

1 Introduction

Separation logic [29] (SL) is a popular formalism for Hoare-style verification of
imperative, heap-manipulating and, possibly, concurrent programs. Its assertion
language extends first-order logic with two connectives—the separating conjunc-
tion x and the magic wand —s—that enable concise specifications of how pro-
gram memory, or other resources, can be split-up and combined. SL builds upon
these connectives to champion local reasoning about the resources employed
by programs. Consequently, program parts can be verified by considering only
those resources they actually access—a crucial property for building scalable
tools including automated verifiers [46,12,16,44,31], static analyzers [10,24,14],
and interactive theorem provers [32]. At the foundation of almost any automated
approach based on SL, lies the entailment problem ¢ |= 1: are all models of SL
formula ¢ also models of SL formula ¥? For example, Hoare-style verifiers need
to solve entailments whenever they invoke the rule of consequence, and static

* This work is partially supported by the ERC AdG project 787914 FRAPPANT.

© The Author(s) 2022
I. Sergey (Ed.): ESOP 2022, LNCS 13240, pp. 57-84, 2022.
https://doi.org/10.1007/978-3-030-99336-8_3

http://orcid.org/0000-0001-8705-2564
http://orcid.org/0000-0001-7837-2611
http://orcid.org/0000-0002-6143-1926
http://orcid.org/0000-0001-9151-0441
http://orcid.org/0000-0002-1865-1798
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99336-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-99336-8_3

58 Batz et al.

analyzers ultimately solve entailments to perform abstraction. While undecid-
able in general [1], the wide adoption of SL and the central role of the entailment
problem have triggered a massive research effort to identify SL fragments with
a decidable entailment problem [11,17,21,22,27,28,35,40,47,18,20], and to build
practical entailment solvers [46,12,16,50].

Probabilistic programs, that is, programs with the ability to sample from prob-
ability distributions, are an increasingly popular formalism for, amongst others,
designing efficient randomized algorithms [42] and describing uncertainty in sys-
tems [23,15]. While formal reasoning techniques for probabilistic programs exist
since the 80s (cf., [37,38,49]), they are rarely automated and typically target only
simplistic programming languages. For example, verification techniques that sup-
port reasoning about both randomization and data structures are, with notable
exceptions [51,9], rare—a surprising situation given that randomized algorithms
typically rely on dynamic data structures.

Quantitative separation logic (QSL) is a weakest-precondition-style verifica-
tion technique that targets randomized algorithms manipulating complex data
structures; it marries SL and weakest preexpectations [43]—a well-established
calculus for reasoning about probabilistic programs. In contrast to classical
SL, QSL’s assertion language does not consist of predicates, which evaluate to
Boolean values, but expectations (or: random variables), which evaluate to real
numbers. QSL has been successfully applied to the verification of randomized
algorithms, and QSL expectations have been formalized in Isabelle/HOL [26].
However, reasoning is far from automated—mainly due to the lack of decision
procedures or solvers for entailments between expectations in QSL.

This paper presents, to the best of our knowledge, the first technique for
automatically deciding QSL entailments. More precisely, we reduce QSL quanti-
tative entailments to classical entailments between SL formulas. Hence, we can
leverage two decades of separation logic research to advance QSL entailment
checking, and thus also automated reasoning about probabilistic programs.

Contributions. We make the following technical contributions:

— We present a generic construction that reduces the entailment problem for
quantitative separation logic to solving multiple entailments in fragments
of SL; if we reduce to an SL fragment where entailment is decidable, our
construction yields a QSL fragment with a decidable entailment problem.

— We provide simple criteria for whether one can leverage a decision procedure
or a practical entailment solver for SL to build an entailment solver for QSL.

— We analyze the complexity of our approach parameterized in the complexity
of solving entailments in a given SL fragment; whenever we identify a decid-
able QSL fragment, it is thus accompanied by upper complexity bounds.

— We use our construction to derive the QSL fragment of quantitative symbolic
heaps for which entailment is decidable via a reduction to the Bernays-
Schénfinkel-Ramsey fragment of SL [20].

Outline. Section 2 introduces (quantitative) separation logic. Section 3 motivates
our approach by providing the foundations for probabilistic pointer program

Foundations for Entailment Checking in Quantitative Separation Logic 59

verification with QSL together with several examples. We present the key ideas
and our main contribution of reducing QSL entailment checking to SL entailment
checking in Section 4. We analyse the complexity of our approach in Section 5.
In Section 6, we apply our approach to obtain the first decidability results for
probabilistic pointer verification. Finally, Section 7 discusses related work and
Section 8 concludes.

Detailed proofs are found in an extended version of this paper [7].

Table 1. Metavariables used throughout this paper.

Entities Metavariables Domain
Natural numbers n, i, j, k N
Rational probabilities p,q, o, 3,7, 6 P
Programs C hpGCL
Stacks s Stacks
Heaps h Heaps,
Variables T,Y, 2 Vars
Values V, W Vals
Locations L Locs
Predicates e P (States)
one-bounded expectations X E<:

SL formulae P, 0,9 SL[]
Pure formulae T

QSL formulae fyg,u, 1 QSL[]

2 (Quantitative) Separation Logic

2.1 Program States

Let Vals be a countably infinite set of values, and let Vars be a countably infinite
set of variables with domain Vals. The set of stacks is given by

Stacks = { s | s: Vars — Vals } .

Let Locs C Vals be an infinite set of locations. We denote locations by ¢ and
variations thereof. We fix a natural number k > 1 and a heap model where finite

60 Batz et al.

Table 2. Semantics of SL [2] formulae.

@ (s,h) = o iff

9 (s,h) € [V]

- (5,1) v

YAY (s,h) =9 and (s,h) =9

Y VI (s,h) Evpor(s,h) =9

Jz: o (s[xz:=v],h) = 1 for some v € Vals

Vo (s[xz:=v],h) = for all v € Vals

P *19 (s,h1) E 4 and (s, he) = 0 for some hy xhy = h
P — U (s,hxh') =9 for all K’ L h with (s,h) E 9

sets of locations are mapped to fixed-size records over Vals of size k. Put more
formally, the set of heaps is given by

Heaps, = {h ‘ h: L — Vals®, L C Locs, |L| < oo}.
The set of program states is then given by

States = {(s,h) | s € Stacks, h € Heaps } .

Given a program state (s,h) and an expression ¢ over Vars, we denote by #(s)
the evaluation of expression t in s, i.e., the value that is obtained by evaluating
t after replacing any occurrence of any variable x € Vars in ¢t by the value s(z).

We write s [z:=v] to indicate that we set variable x to value v € Vals in s, i.e.%,

v, ify==x
s(y), ify#a.

For heap h, h[€:=(v1,...,vx)] is defined analogously. For a given heap h: L —
Vals®, we denote by dom (h) its domain L. Two heaps hi, ho are disjoint, denoted
hi L hg, if their domains do not overlap, i.e., dom (hy) N dom (hy) = 0. The
disjoint union of two disjoint heaps hy: L1 — Vals® and hy: Ly — Vals® is

slxi=v] = Ay. {

. hl(é), if £ € dom (hl)
hy % hs : dom (hy) U dom (h Vals®, (hyxhy)(0) =
1% o dom (k) U dom (ha) — Vals®, (k1 h2) (6) {hQ(ﬁ), if £ € dom (hs).

2.2 Separation Logic

A predicate @ € P (States) is a set of states. A predicate @ is called pure if it

does not depend on the heap, i.e, for every stack s and heaps h,h', we have
(s,h) € @ iff (s,h) € D.

4 We use A-expressions to denote functions: Function AX. f applied to an argument
v evaluates to f in which every occurrence of X is replaced by v.

Foundations for Entailment Checking in Quantitative Separation Logic 61

We consider a separation logic SL [2(] with standard semantics [48]. A distin-
guishing aspect is that SL [2(] is parametrized by a set 2 of predicate symbols
1 with given semantics [¢] € P (States). We often identify predicate symbols
with their predicates [¢]. Elements of 2 build the atoms of SL [2(]. Our reduc-
tion from quantitative entailments to qualitative entailments does not depend
on the choice of these predicate symbols. We therefore take a generic approach
that allows for user-defined atoms, e.g., list or tree predicates.

Definition 1. Let 2 be a countable set of predicate symbols. Formulae in sepa-
ration logic SL [2A] with atoms in 2 adhere to the grammar

o = V| p | pAp | Ve | dzip | Voip | pxo | o —tp,
where ¥ € A, and where x € Vars. A

The Boolean connectives —, A, and V as well as the quantifiers 3 and V are
standard. % is the separation conjunction and — is the magic wand.

The semantics [¢] € P (States) of a formula ¢ € SL [2] is defined by induction
on the structure of ¢ as shown in Table 2. Recall that we assume the semantics
[#] of predicate symbols ¢ € 2 to be given. We often write (s, h) = ¢ instead
of (s,h) € [p]. For ¢,v € SL[2], we say that ¢ entails ¥, denoted ¢ | 1, if
whenever (s, h) € States such that (s, h) = ¢, also (s, h) = .

Ezxample 1. Let Vals = Z, Locs = N5, and k = 1. A term t is either a variable
x € Vars or the constant 0 € Vals. The set 2 of predicate symbols is

A = {true,emp,x — t,t =t t £t Is(t,t') | = € Vars,t,t' terms }
Here, apart from standard predicates for true, equalities, and disequalities,
1. emp is the empty-heap predicate, i.e.,
(s,h) =emp iff dom(h)=0,
2. x > t is the points-to predicate, i.e.,
(s,h) Ex—t iff dom(h)={s(z)} and h(s(x)) =¢(s) ,

3. the list predicate Is(t,t') asserts that the heap models a singly-linked list
segment from ¢ to t':

(s,h) Els(t,t")
iff dom (h) =0 and t(s) = t'(s) or
there exist n > 1 and terms t1,...,t, with ¢, =t such that

(s,h) Et=tyi k... ktp_1 >ty .

In this setting, SL [2(] contains, e.g., the well-known symbolic heap fragment of
separation logic with lists. For instance, the SL [] formula

Jy: Jz: x> yxy— zxls(z,0) .

asserts that the heap consists of a list with head x of length at least 2. A

62 Batz et al.

Table 3. Semantics of QSL [] formulae.

f [f] (s, h)

[¥] [¥] (s, h)

[7]- g+ [~ u (7] (s, h) - [g] (s, h) + [=7] (s, h) - [u] (s, h)
-9+0—=q-uv q-lgl(sh)+ (1 —q) [ul (s h)

g-u [g] (s,) - [u] (s, k)

l-g 1—[g] (s,)

gmaxu max{[g] (s, h), [u] (s, h)}

gminu min{[g] (s, k), [u] (s, h)}

2z: g max{[[g]] (s[z:=v],h) | veVaIs}

(x:g min{[[g]](s[x:=v],h) | UEVals}

gxu max {[[¢] (s, h1) - [u] (s,h2) | h=hixhsa}
Y] —+ g inf {[g] (s,hxh') | K" L hand [¢](s,h) =1}

2.3 Quantitative Separation Logic

In quantitative separation logic [9,39], formulae evaluate to non-negative real
numbers or infinity instead of truth values. By conservatively extending the
weakest preexpectation calculus by Mclver & Morgan [41], this enables the com-
positional verification of probabilistic pointer programs by reasoning about ex-
pected list-sizes, probabilities of terminating with an empty heap, and alike.

We consider here a fragment of quantitative separation logic suitable for rea-
soning about the likelihood of events in probabilistic pointer programs such as,
e.g., the probability of terminating in a given symbolic heap. The formulae we
consider evaluate to rational probabilities rather than arbitrary reals or infinity.
We denote the set [0,1] N Qx> of rational probabilities by P. Like SL [2(], quanti-
tative separation logic is parameterized by a set 2 of predicate symbols ¢ with
given semantics [¢] € P (States), building the atoms of QSL [2(].

Definition 2. Let 2 be a countable set of predicate symbols. Formulae in quan-
titative separation logic QSL [2(] with atoms in 2 adhere to the grammar

fro= W f+lnlf e f+Q=a-f [ff
| 1—f | fmaxf | fminf | Sx: f | {x: f
| fxf | W] —+f,

where ¢, m € A with m pure, ¢ € P, and where x € Vars. A

The semantics of a formula f € QSL[2] is a (one-bounded) expectation. The set
E<; of one-bounded expectations is defined as

E<: = {X | X: States—[0,1]} .

Foundations for Entailment Checking in Quantitative Separation Logic 63

We use the Iverson bracket [30] notation [®] to associate with predicate @ its
indicator function. Formally,

[8]: States — {0,1}, [0](s,h) = {1’ if (s,h) € 0

0, if (s,h) ¢ & .
Given a predicate symbol 1, we often write [¢)] instead of [[¢]]. The semantics
[f] € E<1 of f € QSL [] is defined by induction on the structure of f in Table 3.
We write f = g if f and g are equivalent, i.e. if [f] = [¢]. Infima and suprema are
taken over the complete lattice ([0, 1], <). In particular, inf) = 1 and sup @ = 0.

Theorem 1. The semantics of QSL[2] formulae is well-defined, i.e., for all
f € QSL 2], we have [f] € E<1.

Proof. By induction on the structure of f.

Let us go over the individual constructs. Formulae of the form [¢] are the atomic
formulae. [7] - g + [-7] - u is a Boolean choice between g and u that does not
depend upon the heap since [7] is pure. ¢- g+ (1 —¢q) - u is a convex combination
of g and u. g-u is the pointwise multiplication of ¢ and u. 1—g is the quantitative
(or probabilistic) negation of g. g maxw and g minwu is the pointwise maximum
and minimum of g and u, respectively.

Sx: g is the supremum quantification that, given a state (s, h), evaluates to
the supremum of the set obtained from evaluating g in (s[x:=v],h) for every
value v € Vals. In our setting, this supremum is actually a maximum. Dually,
{x: g is the infimum quantification.

* and — are the quantitative analogous of the separating conjunction and
the magic wand from separation logic as defined in [9]. g * u is the quantitative
separating conjunction of g and w. Intuitively speaking, whereas the qualitative
separating conjunction maximizes a truth value under all appropriate partition-
ings of the heap, the quantitative separating conjunction maximizes a probability.
[t)] — u is the quantitative magic wand. Whereas the qualitative magic wand
minimizes a truth value under all appropriate extensions of the heap, the quan-
titative magic wand minimizes a probability. For an in-depth treatment of these
connectives, we refer to [9].

Ezample 2. Let Vals, Locs, k, and 2 be as in Example 1. Then QSL [2(] contains,
e.g., a quantitative extension of the symbolic heap fragment of separation logic
with lists. For instance, the QSL [] formula

0.7-(Cy: 2z: [z y]x[yr 2] *[ls(2,0)]) + 0.3 - [emp]

expresses that with probability 0.7 the heap consists of a list with head x of
length at least 2 and that with probability 0.3 the heap is empty. A

Finally, given f,g € QSL [2], we say that f entails g, denoted f = g, if
for all (s, h) € States: [f] (s, h) < [g] (s,h) .

64 Batz et al.

Quantitative entailments f = g generalize classical entailments in the sense that
f (pointwise) lower-bounds the quantity g. For example, if g assigns to each
state the probability that some program C' terminates without a memory error,
then the entailment [true] = ¢g means that C' terminates almost-surely, i.e., with
probability one. Our problem statement now reads as follows: Reduce entailment
checking in QSL [] to checking finitely many entailments in SL [2(].

3 Entailments in Probabilistic Program Verification

Our primary motivation for studying the entailment problem for quantitative
separation logic is to provide foundations for the automated verification of proba-
bilistic pointer programs. In this section, we consider examples of such programs
written in hpGCL—an extension of Mclver & Morgan’s probabilistic guarded
command language (cf., [41]) by heap-manipulating instructions— and the en-
tailments that arise from their verification. We briefly formalize reasoning about
hpGCL programs with weakest liberal preexpectations; for a thorough introduc-
tion of hpGCL programs and techniques for their verification, we refer to [9,39].

3.1 Heap-manipulating pGCL

Recall from Section 2.1 that heaps map memory locations to fixed-size records (or
tuples) of length k > 1. The set of programs in heap-manipulating probabilistic
guarded command language for k = 1, Vals = Z and Locs = N+, denoted hpGCL,
is given by the grammar

C — skip (effectless program)
| z:=F (assignment)
| {C}[p]l{C} (prob. choice)
| C;C (seq. composition)
| if (B){C} else {C} (conditional choice)
| while(B){C} (loop)
| = :=new(F) (allocation)
| free(E), (disposal)
| z:=<E> (lookup)
| <E>:=F' (mutation)

where x € Vars, p € P, E, E’ are arithmetic expressions and B is a Boolean
expression. We assume that expressions do not depend on the heap. For now,
we do not fix a specific syntax for expressions but assume evaluation mappings

E: Stacks -+ Z and B: Stacks — {true,false} .

In addition to the usual control flow structures for sequential composition, con-
ditionals, and loops, skip does nothing, x := E assigns the value E(s) obtained

Foundations for Entailment Checking in Quantitative Separation Logic 65

Table 4. Rules for compositionally computing weakest liberal preexpectations. Here, f
is a QSL [2] formula representing the postexpectation. f [z:=E] denotes the substitution

of every free occurrence of z by E in f. [E — —] desugars to 2z: [E +— z].
9 wip[C] (f)
skip !
z:=FE flz:=E]
{Ci}[p]{Ca} p-wip[C1] () + (1 —p) - wip[C2] (/)
C1; Ce wip[C1] (wip[C2] (f))
if (B){Ci}else {Co} [B]-wip[Ci] (f) + [=B] - wip[C2] (f)
© = new (E) Ly Iy B] — f[o:=]
free(E) [Ew— —]xf
x:=<E> 2y: [E s y]x ([B— y] —+ f[z:=y])
<E>:=F' [E— =]x([E—E] —f)

from evaluating expression E in the current program state (s, h) to z, and the
probabilistic choice {C; } [p] { C2} flips a coin with bias p—it executes C if
the coin flip yields heads, and Cy otherwise. The allocation x := new (E) non-
deterministically selects a fresh location, stores it in x, and puts a record with
value E on the heap at that location. Since we assume an infinite address space,
allocation never fails. Conversely, free(E) disposes the record at location F
from the heap; it fails if no such location exists. The mutation < E> := E’ and
the lookup = := < E'> update to E’ resp. assign to x the value stored at location
E; both statements fail if the heap contains no such location.

3.2 Weakest Liberal Preexpectations

We formalize reasoning about hpGCL programs in terms of the weakest liberal
preexpectation transformer wlp: hpGCL — (QSL[] — QSL [2(]), where A at
least contains formulae of the form [F +— E’]; Table 4 summarizes the rules for
computing wlp of loop-free programs on the program structure.

Conceptually, the weakest liberal preexpectation [wlp[C] (f)] (s,h) of pro-
gram C with respect to postexpectation f € QSL[2(] on (s,h) is the least ex-
pected value of [f] (measured in the final states) after successful® termination
of C on initial state (s, h), plus the probability that C' does not terminate on
(s, h). Adding the non-termination probability can be thought of as a partial cor-
rectness view: we include the non-termination probability of C' on state (s, k) in
the wlp of C just as we include the state (s, h) in the weakest liberal precondition
of C in case C does not terminate on (s, h).

5 i.e., without encountering a memory error.

66 Batz et al.

A reader familiar with separation logic will realize the close similarity be-
tween the rules in Table 4 and the weakest preconditions for SL by Ishtiaq and
O’Hearn [29]. The main differences are (1) the use of the quantitative connec-
tives x, —st, and -, and +, and (2) the additional rule for probabilistic choice,
wip[{ C1} [p] {C2}] (f), which is a convex sum that weights wip[C1] (f) and
wip[C2] (f) by p and (1 — p), respectively.

The transformer wlp is well-defined in the sense that, for every loop-free
hpGCL-program and every QSL [2(] formula, we obtain—under mild conditions—
again a QSL [2] formula:

Theorem 2. Let C' € hpGCL be loop-free and 2 be a set of predicate symbols. If

1. A contains the points-to predicate for all variables and all expressions occur-
ring in allocation, disposal, lookup and mutation in C,

2. A contains all guards and their negations occurring in C, and

3. all predicates in A are closed under substitution of variables by variables and
arithmetic expressions occurring on right-hand sides of assignments in C,

then, for every QSL[] formula f, wip[C] (f) € QSL [2].
Proof. By induction on loop-free C.

For loops, wlp[while (B){C}] (f) is typically characterized as the greatest
fixed point of loop unrollings. However, we fixed an explicit syntax of formu-
lae instead of allowing arbitrary expectations; the above fixed point is in general
not expressible in our syntax.% To deal with loops, we thus require a user-supplied
invariant I and apply the following proof rule (cf., [34]) to approximate wlp:

I'=[-B]-f+[B]-wlp[C’] (I) implies I = wlp[while(B){C"}](f)

Notice that verifying that I is indeed an invariant via the above rule requires
proving an entailment between QSL [] formulae.

3.3 Interfered Swap

Our first example concerns a program Cgyap, implemented in hpGCL below, that
attempts to swap the contents of two memory locations = and y. However, since
variable z is shared with a concurrently running process, writing to can be un-
reliable, that is, instead of the intended value, the concurrently running process
may write a corrupted value err into memory with some probability, say 0.001.
A similar situation occurs, e.g., when using the protocol described in [2].

Coswap tmpl :=<x>;
tmp2 :=<y>;
{<x>:=tmp2}[0.999] {<z> :=err};
<y>:=tmpl.

6 It is noteworthy that a sufficiently expressive syntax for weakest preexpectation
reasoning without heaps has been developed only recently [8].

Foundations for Entailment Checking in Quantitative Separation Logic 67

We can use wlp to verify an upper bound on the probability that an erroneous
write operation happened by solving the QSL entailment

WIp[Cswap] ([x + 22] * [y — 21])
E [z2=err] - ([z = z1]x [y — 22]) + [22 Z err] - (0.999 - ([x — z1] * [y — 22])) .

That is, the probability that Cswap successfully swaps the contents of and y is
at most 0.999 if y does initially not point to the corrupt value err.

As we will see in Section 6.1, our approach for solving QSL entailments is
capable of deciding the above entailment, where wlp[Cswap] ([z — 22] * [y — 21])
is computed according to the rules in Table 4.

3.4 Avoiding Magic Wands

Recall from Table 4 that computing wlp introduces a magic wand (—s) for
almost every statement that accesses the heap. This is unfortunate because many
decidable separation logic fragments as well as practical entailment solvers do
not support magic wands.

In particular, in Section 6.1 we present a QSL fragment with a decidable
entailment problem that supports magic wands only on the left-hand side of
entailments. Hence, proving a lower bound on the probability that the program
Cswap from above successfully swapped the contents of two memory cells, e.g.,

0.98 - ([& = 2] x [y = 21]) = WIp[Cwapll ([z = 2] * [y = 22]) (1)

might still be possible with our technique but requires a different separation
logic fragment to reduce to.

Fortunately, we can often avoid introducing magic wands by employing lo-
cal reasoning and rules for computing wlp for specific pre- and postexpecta-
tions. In particular, the wlp calculus features (1) the frame rule from sepa-
ration logic, i.e., if no free variable in g is modified by C, then wlp[C] (f) *
g = wlp[C] (f xg), (2) super-distributivity for convex combinations and maxi-
mum, ie., ¢-wip[C] (f) + (1 —q) - wIp[C] (9) = wip[C] (¢ f + (1 —q) - g) and
wip[C] (f) maxwlp[C] (¢9) = wip[C] (f max g), and (3) monotonicity, i.e., f E g
implies wip[C] (f) = wip[C] (g). Moreover, we give four examples of specialized
rules that avoid magic wands but require specific postexpectations: if z is not a
free variable of F or f, and x and y are distinct variables, then

) wip[z :=<E>](([E = y] [z =y])x f) = [E > y]* [z:=y];
(ii) wip[<E> :=FE'|([E— E'lxf)=[E— —]*f;

i) wip[z :=new (2)] (Cy: [z — y]* f) = f[y:=z] ; and

) wip[z :=new (y)] (x—y|*xf)=[.

Similar rules have been used successfully for symbolic execution with separation
logic in non-probabilistic settings [13]. Combining the above rules with fram-
ing, distributivity, and monotonicity often allows avoiding magic wands. In such
cases, we have a richer set of decidable SL fragments upon which to build solvers

68 Batz et al.

for QSL entailments at our disposal. Coming back to the entailment () from
above and writing Cgwap = C1; C2; C3; Cy, we calculate

WIp[Cswap] ([# = 21] * [y = 22])
— WIp[Couap] ([y > tmp1] % [+ tmp2] - [tmp = 25] - [tmp2 = 24])
(monotonicity)
= wip[Cy; Cq; Cs](wip[C4] ([y — tmpl]) (framing)
x ([x = tmp2] - ([tmpl = 23] - [tmp2 = 21])))
=1 wip[C1; Ca; Cs] ([y = =] ([z = tmp2] - ([tmpl = 2o] - [tmp2 = 21])))
(Rule (ii))

= wip[C1] (0.999 - ([y — z1] * ([tmpl = 29 - [x — —])) + 0.001 - [false])
(Rule (1))
= 0.999 - wip[C1] (([z — 22] - [tmpl = 23]) * [y — 21]) + 0.001 - [false]
(super-distributivity, monotonicity and commutativity)

= 0.999 - ([z — 2] * [y — 21]) + 0.001 - [false] (Rule (1))

which yields a preexpectation without magic wand. Hence, we obtain a magic

wand-free entailment in (). We have used our technique to transform this quan-
titative entailment into several qualitative entailments and checked them success-
fully using the separation logic extension of CVC4 [47]. Detailed calculuations,
the resulting qualitative entailments, and the input for CVC4 in SMT-LIB 2
format are found in the extended version [7].

3.5 Randomized List Population

Our second example populates a singly-linked list by flipping coins and adding
a list element until the coin flip yields heads, i.e., we consider the program

Chopulate : while (¢ #0){
{c:=0}[05]{z :=new(z)}
b
where z is the head of a linked list. Assume we would like to determine a lower
bound on the probability that the above program does not crash and produces a
list of length at least two”. For that, recall from Example 1 the separation logic
formula Is(x,y) for singly-linked list segments. The aforementioned probability
is then given by wip[Cpopulate] (f) for postexpectation
f = 2y: 2z: [z y]x[yr— 2] *x][ls(z,0)] .

7 plus the probability of nontermination, which is 0.

Foundations for Entailment Checking in Quantitative Separation Logic 69

We propose the loop invariant I below to show that I = wlp[Chopulate] (f), i-€.,
I is a lower bound on the sought-after probability.

I =2y: [z—ylx([c=0]-2z: [y~ 2]*][ls(z,0)]
+lc#0] -2 (B2 [y~ 2] [Is(2,0)] + /2 [Is(z,0)])) .
To verify that I is indeed a loop invariant (hint: it is), we need to prove that
I'E [e=0-f+[c#0]-wip[{c:=0}[0.5]{x :=new(x)}](I) .

As described in Section 3.4, we can compute wlp in a way such that the resulting
formula contains no magic wands. Our reduction from QSL entailments to stan-
dard SL entailments then allows us to discharge the above invariant check using
existing separation logic solvers with support for fixed list predicates, e.g., [46].

4 Quantitative Entailment Checking

We present our main contribution of reducing entailment checking in QSL [2(] to
entailment checking in SL []. We consider the key observations leading to our
reduction in Section 4.1. We then deal with the formalization and more technical
considerations of our approach in Sections 4.2 and 4.3.

4.1 Idea and Key Observations
We reduce entailment checking in QSL [2(] to entailment checking in SL [2(], i.e.,

Given f,g € QSL[2l], we reduce checking f |E g to checking finitely many
entatlments of the form ¢ = with o, € SL[].

We instantiate QSL [2] and SL [2(], respectively, for the sake of concreteness. For
that, we fix the set 2 of predicate symbols given by

A = {true, emp, x =y, x#y, x—y | z,y €Vars}.

Now, consider the following entailment u; = us as a running example:

up = 04-([x—=yl*xly—2])+06-[z—y] E 0.6 (x+— y]*[true]) = us .

Intuitively speaking, u; expresses that with probability 0.4 the heap consists
of two cells where = points to y and separately y points to z, and that with
probability 0.6 the heap consists of a single cell where x points to y. Formula us
expresses that with probability 0.6 the heap contains a cell where = points to y.
How can we reduce the problem of checking whether u; |= ug holds to checking
finitely many entailments in SL [2(]? We rely on two key observations:

Observation 1. For every f € QSL[2], the set
Eval (f) = {[fl(s,h) | (s,h) € States} C P

is finite. Moreover, there is an effectively constructible finite and sound overap-
prozimation Val[f] of Eval (f), i.e., Eval (f) C Val [f].

70 Batz et al.

Ezample 3. Consider the expectation w; from our running example: We have
Eval (u1) = {0,0.4,0.6}. We construct a finite overapproximation of Eval (u;) as
follows: First, we observe that both subformulae g; and go evaluate to a value
in {0,1}, i.e, Val[g1] = Val[g2] = {0,1}. From Val[¢g1] and Val[g2], we obtain a
finite overapproximation Val [u;] of Eval (u;) given by

Val[u;] = {04-a+0.6-5 |acVallgi], € Val[ge]} = {0,0.4,0.6,1} .
Notice that Val [u;] is a proper superset of Eval (u;) since 1 & Eval (uq). A
We consider the construction of Val [f] for arbitrary f € QSL[2(] in Section 4.2.
Observation 2. Given f € QSL[2] and a probability a € P, there is an effec-

tively constructible SL [] formula, which we denote by [« < f7], such that (s, h)
is a model of [< f] if and only if f evaluates at least to « on state (s, h), i.e.,

(s,h) = [a=xf] it o < [f](sh) .
—_— ——

in SL[A] in QSL[(]

We can thus lower bound QSL [2(] formulae in terms of SL [2(] formulae.

Ezample 4. Continuing our running example, we construct [0.5 < uq], i.e., an
SL 2] formula evaluating to true on state (s,h) if and only if u; evaluates at
least to 0.5. We start by considering the subformulae of wu;. Since both ¢g; and
g2 embed SL [2] predicates, we have for every o € P

[a 2¢g1] = trueifa=0else x = y*xyr— 2
and [a=g] = trueifa=0elsez—y.

The intuition is as follows: @ = 0 lower bounds every probability. Conversely, if
a > 0 then « lower bounds g1 (resp. g2) on state (s, k) if and only if (s, h) satisfies
the predicate g; (resp. g2). Now, when does u; evaluate at least to 0.57 Given
Val [g1] and Val [g2] and the fact that the valuation of u; is a convex combination
of the valuations of g; and go, there are (at most) two cases: Either both g1 and
g2 evaluate to (at least) 1, or go (but not necessarily g;) evaluates to (at least) 1.
Given [1 < g1] and [1 =< g2], the aforementioned informal disjunction translates
to a formal disjunction in SL [2]:

(05 <ui] = ([1=2g1]A[1=g2]) V1= g2
= (z—yxy—=2)Azy)Vay.
Notice that—as it is the case for Val [u]—we construct [0.5 < u1] syntactically.

In particular, we disregard that the disjunct (z — yxy — 2) Az — y is
unsatisfiable and therefore equivalent to false. A

We provide the construction of [a < f] for arbitrary QSL[2(] formulae f—
including quantitative quantifiers and the magic wand—in Section 4.3.

Finally, Observations 1 and 2 together yield our reduction from f | g to
finitely many entailments in SL [2(]. Intuitively speaking, we formalize that

Foundations for Entailment Checking in Quantitative Separation Logic

Table 5. Inductive definition of Val [f].

f € QSL[Y] Val[f]C P

9] 0.1}

[7] g+ [-7]-u Val [g] U Val [u]

7 9+(1—q)u p-Val[g] + (1 —p) - Val[u]
g-u Val [g] - Val [u]
1—g 1 — Val[g]
gmaxu Val [g] max Val [u]
gminu Val [g] min Val [u]
cz:yg Val [g]

lx: g Val [g]

gxu Val [g] - Val [u]
[] —tg Val [g]

whenever f evaluates at least to «, then g too evaluates at least to o

71

equivalently in terms of finitely many SL[2l] entailments. Put more formally,
since Val [f] is finite, we have

fEg
ifft for all (s,h): [f] (s,h) < [g](s,h) (by definition)
iff for all (s,h) and all « € Val [f]: a < [f] (s, h) implies o < [g] (s, h)
(by Observation 1)
iff for all (s,h) and all « € Val[f]: (s,h) = [a = f] implies (s,h) = [a < ¢]
(by Observation 2)
iff forallaeVal[f]: [a=XflEJa=g]. (by definition)
Ezample 5. Reconsider our running example. Since |Val[u1]| = 4, the QSL[2]

entailment u; = ug is equivalent to the four entailments

[a = u1] E [a = ug| forac{0,0.4,0.6,1}

in SL[2A], each of which actually holds.

4.2 Constructing Finite Overapproximations of Eval (f)

We consider the formal construction underlying Observation 1 from the previous
section, i.e., given f € QSL[2], we provide a syntactic construction of a finite

72 Batz et al.

overapproximation Val [f] of Eval (f). This construction is by induction on the
structure of f as shown in Table 5. For that, we define some shorthands. Given
a € P, V,IW CP, and a binary operation o: P x P — P, we define

aV={a-p| eV} and VoW = {Boy | eV, yeW} .

Let us now go over the individual cases.
The case f = [1]. We have [¢] (s, h) € {0,1} by definition.

The case f = [r] - g + [-7] - u. For every (s,h), the formula f either evalu-
ates to [g] (s, h) or to [u] (s, h), depending on whether (s,h) = 7 holds.

The case f =p-g+ (1 —p)-u. The formula f evaluates to p-a+ (1 —p)- 3 for
some «a € Val[g] and 8 € Val [u].

The case f = g-u or f = g*u. The formula f evaluates to a - 8 for some
« € Val[g] and 8 € Val [u].

The case f =1 — g. The formula f evaluates to 1 — « for some « € Val [g].

The case f = gou for o € {max, min}. Since max and min are defined point-
wise, the formula f evaluates to some value «o § for o € Val[g], 8 € Val [u].

The case f = @x: g or f = {x: g. Since Val [g] overapproximates the set of
all valuations of g, quantitative quantifiers do not add any valuation.
The case f = [)] — g. Recall that

[f1(s.h) = inf{[g] (s,hxR") | ' Lhand [¢](s,h') =1} .

If the above set is non-empty, the infimum is actually a minimum and therefore
f evaluates to some value in Val [g]. If the above set is empty, then [f] (s, h) = 1.
It is easy to verify that 1 is necessarily an element of Val [g] (cf., [7, Lemma 4]).
Summarizing our considerations on Val [f], we get:

Theorem 3. For every f € QSL[2], the effectively constructible set Val [f] C P
given in Table 5 satisfies

[Val [f]| < oo and Eval(f) C Val[f] .
Proof. Straightforward by induction on f.

4.3 Lower Bounding QSL [] by SL [2(] Formulae

We now consider the formal construction underlying Observation 2 from Sec-
tion 4.1. That is, given f € QSL[] and « € P, we provide the syntactic con-
struction of an SL [2] formula [a < f] evaluating to true on state (s, h) if and

Foundations for Entailment Checking in Quantitative Separation Logic 73

Table 6. Inductive definition of [a <X f] for a given a € P.

f € QSL[¥] [a = f]1eSL[
[¥] true if @ = 0 else ¥
) g+ [- (m A& < gl V (=7 Aa < u])
7-9+1—q)u Vsevaligl vevaliul p 8+ (1-pyvza 18 S gIA Ty S u]
g-u Visevallglrevaliul,5y5a 1B gl A [y 2 ul
1—g true if @ = 0 else = [§ <X f]

for6 =min{feVallg] | >1—-a}
gmaxu [a = g]V[a=u]
gminu [a =g Ao = u]
2x: g Jz: [a < g]
lz: g Va: [a = g]
gxu Visevalglrevaliu),paza 18S9l [y 2ul
[Y] —tg Y —+ Ja 2 g]

only if f evaluates at least to o on (s, h). This construction relies on Val [f] from
the previous section and is given by induction on the structure of f as shown in
Table 6. We consider the individual constructs. For that, we fix some state (s, h).

The case f = [¢]. There are two cases. If & = 0, then « trivially lower bounds
the value of [¢]. Conversely, if & > 0, then « lower bounds [¢] on state (s, h) if
and only if (s, h) satisfies 1.

For the composite cases, recall that by Theorem 3 there are effectively con-
structible finite sets Val [g], Val [u] covering all values g and u evaluate to.

The case f = [r]-g+[—-7]-u. The formula f represents a Boolean choice between
the formulae g and u, depending on the truth value of 7. Hence, there are two
cases: If (s, h) does satisfy 7, then « lower bounds f iff o lower bounds g. Con-
versely, if (s, h) does not satisfy m, then « lower bounds f iff « lower bounds w.

The case f = p-g+ (1 —p) - u. Since Val[g] and Val [u] cover every possible
valuation of g and wu, respectively, it follows that a lower bounds the valua-
tion of f if and only if there are 8 € Val[g] and v € Val[u] such that (1) 8
lower bounds g, (2) 7 lower bounds u, and (3) a lower bounds the convex sum

p-B+(1-p) 7.

The case f = g-u. The reasoning is analogous to the previous case.

74 Batz et al.

The case f =1 — g. We write a < [1—g] (s,h) equivalently as =(1 — o <
[g] (s,h)). In order to turn the strict inequality into a non-strict one, we con-
sider the successor § of 1 — « in Val [g], i.e., the smallest ¢ in Val [g] greater than
1 — a. Since Val [¢] is finite, such a ¢ always exists if 1 —a # 1. We illustrate the
idea in the following picture, where all elements in Val[g] are marked by e.

ottt

0 1—a & [g](s,h) 1

For the successor 4, checking if § is a lower bound of [g] (s, h) is equivalent to
checking if 1 — « is a strict lower bound - if § is not a lower bound, then we ran
out of possible valuations that are strictly lower bounded by 1 — a.

The case f = gowu for o € {max, min}. The probability « lower bounds the
maximum of g and u on state (s, h) if and only if o lower bounds g or « lower
bounds u. For o = min, the reasoning is dual.

The case f = 2x: g. Recall that

[f](s,h) = max{[g](s[z:=v],h) | v € Vals}.

Now observe that « lower bounds the above maximum if and only if « lower
bounds some element of the above set, i.e., if and only if there is some v with

a < [g]) (s[z:=v],h) which is equivalent to (s,h) E Jz: [a=<g].
The case f = Cx: g. Recall that
[f](s,h) = min{[g] (s[z:=v],h) | v € Vals} .

Since a lower bounds the above minimum if and only if « lower bounds all ele-
ments of the above set, the reasoning is dual to the previous case.

The case f = g xu. Recall that

[F1(s;h) = max{[g] (s, 1) - [ul (s,h2) | h=hixha} .

Since Val [g] and Val [u] cover every possible valuation of g and u, respectively,
« lower bounds the evaluation of f on (s, h) iff there are 8 € Val[g],~ € Val[u]
and hy, hy with hy xhe = h such that (1) 8 lower bounds g on (s, h1), (2) v lower
bounds u on (s, hs), and (3) « lower bounds § - 7. Given such 8 andy, we can
phrase this equivalently in SL [2] as

(s,h) E [B=gl*[y=Zul.
The case f = [)] —+ g. Recall that

[£1(s,h) = inf{[g] (s,h*xh') | W' L hand [¢](s,h') =1} .

Foundations for Entailment Checking in Quantitative Separation Logic 75

Probability « lower bounds the above infimum if and only if for every extension
h' of the heap h such that the stack s together with A’ satisfy v, probability «
is a lower bound on [g] (s, hxh’). Put more formally, the latter statement reads

for all B’ L h with (s,h/) E¢: (s,hxh') E[a=<g],
which is equivalent to (s, h) =9 — [a = g].

Our construction thus applies to arbitrary QSL [2(] formulae and we get:

Theorem 4. For every f € QSL[] and all o € P there is an effectively con-
structible SL[2(] formula [a < f] such that for all (s, h) € States, we have

(s,h) E [a=fl iff o < [fI(s,h).
Proof. By induction on f.

Finally, we obtain our main theorem.

Theorem 5. Entailment checking in QSL [] reduces to entailment checking in
SL[, i.e, for all f,g € QSL[], we have

fEg ff JoralaeVallf): [a=f] E [a=g].
Proof. Follows from Theorems 3 and 4 and the reasoning at the end of Section 4.1.

Remark 1 (Avoiding true in SL[A] entailments). Formulae of the form [a =<
f1 € SL[2(] may introduce the atom true, which is not admitted by some decid-
able separation logic fragments, such as [27]. Fortunately, we can avoid true in
[a % f] formulae. true is only required in formulae of the form [0 < f], which
arise in two situations when applying Theorem 5: (1) in entailment checks of the
form [0 < f] = [0 =< g], which always hold and can thus be omitted, and (2) if
f=p-g+ (1 —p)-u. In the latter case, if we have a # 0 in

[a X f] = V [B=glA[y=ul,

B€eVallg],yeVal[u],p-B+(1-p)-y>«

then either 8 # 0 or v # 0 holds for every disjunct. Hence, subformulae of the
form [0 < g] or [0 < u] can be omitted, as well. A

5 Complexity

We now analyze the complexity of our approach. Recall that Theorem 5 reduces
checking f = g in QSL [2] to checking

for all a € Val[f]: [a=<f] E [a=g]

in SL[2(]. We consider two aspects: (1) the number of SL[] entailments and
(2) the size of the resulting SL[] formulae occurring in each entailment. We

76 Batz et al.

express these quantities in terms of the size of a QSL [] formula f and a SL [2]
formula ¢ and denote them as |f| and || respectively. In these sizes, we count
every construct in the formula and require that the size of atoms are defined
at instantiation. Moreover, we assume that every atom in 2 is at least of size
1 and especially the atom true is of size 1. Additionally we count in an QSL []
formula f the constructs that increase the number of possible evaluation results
of f, namely ¢- g+ (1 —¢q)-u, g-u and g xu, and denote it as | f|,.®

We will see that for an entailment f = ¢ in QSL [2(], (1) the number of SL [2(]
entailments is in 2€(f1») in the worst case (see Theorem 6) and (2) the size of the
resulting SL [2] formulae are in (’)(\f|)-2o(‘f|i) and O(\g|)~2o<|g|§) respectively in
the worst case (see Theorem 7). Now let us assume we have an entailment checker
for SL [2(] formulae that can solve entailments of the form [a < f] E [a < ¢g]
and which has a runtime complexity of SL-Time(n, m) where n and m are the
size of SL[2] formulae on the left and right side of an entailment respectively.
Putting the above together, checking the entailment f = g in QSL [2] then has
a runtime complexity of

20(f1») . ST,-Time <0(|f|) 20UFE) O(|g]) - 20(\g\§))
+O(|f)) - 20(/13) 4+ O(lg]) - 90(lgl2)

If we furthermore reasonably assume that SL-Time(n, m) is at least linear in both
arguments (otherwise the entailment checker can only check trivial entailments
anyway), the runtime complexity simplifies to

90(/1) . ST ,-Time (O(UI) -20U71) o(lg]) - 20(\9\2)) _

As for aspect (1), we first observe that checking f |= g by means of Theorem 5
requires checking |Val [f] | entailments in SL [2(]. However, only the constructs we
count with |f|, increase the number of possible evaluations, which in turn will
also increase the size of the overapproximation Val [f]. Every time any of these
constructs occur, the number of possible evaluations Eval (f) may double. Con-
sequently, also the overapproximation Val[f] doubles in size when any of these
constructs occur. Other constructs do not increase the number of evaluations,
but instead inherit the evaluations from their subformulae.

Theorem 6. We have |Val [f]| < 2/l»+1. Hence, checking f = g by means of
Theorem 5 requires checking 2°UF1e) entailments in SL[].

Proof. By induction on f.

For the size of the resulting SL [2(] formulae, i.e., aspect (2), recall that we con-
struct entailments of the form

[a=fl F [a=g].

8 For a formal definition see [7].

Foundations for Entailment Checking in Quantitative Separation Logic 7

We thus determine an upper bound on the size of any SL [] formula [a < f].
Here we make a similar observation as in aspect (1): whenever one of the con-
structs we count with | f|, appears, the size of the formula increases by the expo-
nential factor |Val[f]|. Such a multiplication of increasing exponential expres-
sions then results asymptotically in a squared exponent. The other constructs
increase the size by only a constant per construct. By combining both observa-
tions we can finally conclude an upper bound on the size of the formula [a < f].

Theorem 7. For any formula f € QSL [2] and all probabilities o € P, the SL []
formula [<X f] has at most size 3| f] 2Uf1o+D% | Hence the size of the formula
[a < f] is in O(| f]) - 200712,

Proof. By induction on f.

Remark 2 (Complexity of SL[U] Entailments in QSL[]). By Theorem 6 and
Theorem 7, the number of entailments and the size of formulae [< f] is only
exponential if | f|, is not constant. However, we would assume that an entailment
f E g in QSL [2], where neither in f nor in g the probabilistic choice p-g+(1—p)-u
appears, should have a similar runtime complexity as SL [2] entailment. While
it is easy to see that Val [f] = {0,1} has constant size in this setting, the size
of the formula is still exponential. In the case where no probabilistic choice is
present, we generate multiple exponentially-sized tautologies of the form [0 < f].
However, due to Remark 1 we can eliminate all occurrences of [0 < f]. That
means, if f does not contain p- g+ (1 — p) - u, then for a # 0, we can construct
an equivalent formula to [a < f] in such a way that its size is in O(|f]) and
Val[f] | = 2.

6 Application: Decidable hpGCL Verification

Since entailment in full separation logic is undecidable, it is common to con-
sider fragments of separation logic with a (semi-)decidable entailment problem.
Given a QSL [2] fragment Q, we provide sufficient and easy-to-check characteri-
zations on SL [2] fragments S ensuring that entailment checking in Q reduces to
entailment checking in S. This simplifies the search for decidable fragments of
quantitative separation logic.

We then apply our results in Section 6.1 to show the decidability of entail-
ment checking for quantitative symbolic heaps—a quantitative extension of the
well-known symbolic heap fragment of separation logic—and demonstrate the
applicability to the verification of probabilistic pointer programs.

Our reduction from entailments in QSL [] to entailments in SL [2(] relies on the
construction of the [a < f] formulae from Section 4.3. This suggests to define:

Definition 3. Let Q be a QSL [2] fragment. We say that an SL[2A] fragment S
is Q-admissible if [a < f] € S holds for all f € Q and all a € P. A

78 Batz et al.

Table 7. SL [2] requirements for entailment checking in QSL [2(].

Q fragment contains S contains/is closed under
[¥] P, true

[7]- f+[-7]-g w2, A, V
p-f+(1-p)g Y%

f-g AV

1—f -, true
fmaxg Y

fming A

Sx: f 3

lx: f \

fxg *, V

[f] —+ f Y —*-

The syntactic nature of our construction of the S formulae [a < f] allows for a
syntactic criterion on SL [] fragments to be Q-admissible.

Lemma 1. Let Q be a QSL[A] fragment. If an SL[2A] fragment S satisfies the
requirements provided in Table 7, then S is Q-admissible.

Proof. By induction on f.

Finally, we provide a sufficient criterion for the decidability of entailment in
QSL [2] fragments given SL [2l] fragments with a decidable entailment problem.
Since entailment checks ¢ = 9 in SL [2(] can often (but not always) be reduced
to unsatisfiability checks ¢ A =1, we take a more fine-grained perspective and
distinguish between fragments for the left- and the right-hand side of entail-
ments, respectively. This distinction matters when, e.g., SL [] fragments with a
decidable satisfiability problem impose restrictions on quantifiers (cf., [20]).

Theorem 8. Let Q1,Q2 be QSL[] fragments, and let S1,So be SL[] frag-
ments. If Sy is Qq-admissible and So is Qo-admissible, then

p E 1 for p €Sy,9 €Sy is decidable
implies gE f for g € Qq, f € Qq is decidable .

Proof. This is a consequence of Theorem 5. O

6.1 Quantitative Symbolic Heaps

We now demonstrate that our approach can facilitate the automated verification
of probabilistic pointer programs by providing a sample QSL fragment with a
decidable entailment problem.

Recall that QSL [2(] is parameterized by a set 2 of predicate symbols. We
obtain the quantitative symbolic heap fragment of QSL by instantiating 2I.

Foundations for Entailment Checking in Quantitative Separation Logic 79

Definition 4. Let 2 be the set of predicate symbols given by
A = {true,emp} U {z— (y1,...,%) | ®,v1,...,yx € Vars }
U{az=y, z#y, c=yAemp, z#ZyAemp | x,y € Vars}.

Then the set QSH of quantitative symbolic heaps is given by the grammar

fo= W | mf+lnl-flaf+Q=—q-f | x:f | fxf. A

Quantitative symbolic heaps naturally extend the symbolic heap fragment of
separation logic. Intuitively speaking, a quantitative symbolic heap f specifies
probability (sub-)distributions over (symbolic) heaps. By applying Theorem 5,
we obtain the following decidability result.

Theorem 9. For loop- and allocation-free hpGCL programs C (that only per-
form pointer operations, no arithmetic, and guards from the pure fragment of)
and f1, fa € QSH, it is decidable whether the entailment wip[C] (f1) | f2 holds.

Hence, for loop- and allocation-free programs C' as above, upper bounds (in terms
of quantitative symbolic heaps f3) on the probability wip[C] (f1) of terminating
in a given quantitative symbolic heap f; are decidable. We refer to Section 3.3
for an example entailment involving quantitative symbolic heaps. In the sequel,
we show how to prove the above result.

Proof of Theorem 9. The proof relies on extended quantitative symbolic heaps
eQSH, which include magic wands with points-to formulae on their left-hand side.

Definition 5. The set eQSH of extended quantitative symbolic heaps is given
by the grammar

g — W | [*-g+7]-9]aqag+(1-9-g | gxg
| @z:g | [z (y1,--,yx)] —* g - A

Notice that indeed QSH C eQSH.

Lemma 2. For every loop- and allocation-free program C € hpGCL without
arithmetic and only with guards of the pure fragment of A, extended quantitative
symbolic heaps are closed under wip[C], i.e.,

for all g € eQSH: wlp[C] (g) € eQSH .
In particular, since QSH C eQSH, we have
forall f € QSH: wlIp[C] (f) € eQSH .
Proof. By induction on the structure of loop- and allocation-free program C'.

Hence, if g = f is decidable for g € eQSH and f € QSH, Theorem 9 follows.

80 Batz et al.
Lemma 3. For g € eQSH and f € QSH, it is decidable whether g = f holds.

Proof. We employ Lemma 1 to determine two SL [2(] fragments Sy, Sa such that
S; is eQSH-admissible and Sy is QSH-admissible. Then, by Theorem 8, decid-
ability of g = f follows from decidability of ¢ = v for ¢ € S; and ¥ € Ss. For
that, we exploit the equivalence

pEY iff © A =) is unsatisfiable .

The latter is decidable by [20, Theorem 3.3] since ¢ A = is equivalent to a
formula of the form F*V*: 1 with ¥ quantifier-free and no formula ©; — ¥
occurring in ¥ contains a universally quantified variable.

7 Related Work

Weakest preexpectations. Weakest precondition reasoning was established in a
classical setting by Dijkstra [19] and has been extended to provide semantic foun-
dations for probabilistic programs by Kozen [38,37] and Mclver & Morgan [41],
who also coined the term weakest preexpectations. Their relation to operational
models is studied in [25]. Moreover, weakest preexpectation reasoning has been
shown to be useful for obtaining bounds on the expected resource consumption
[45] and, in particular, the expected run-time [33] of probabilistic programs.

Logics for probabilistic pointer programs. Although many algorithms rely on
randomized dynamic data structures, formal reasoning about programs that are
both probabilistic and heap manipulating has received scarce attention. A no-
table exception is the work by Tassarotti and Harper [51], who introduce a con-
current separation logic with support for probabilistic reasoning, called Polaris.
Their focus is on program refinement, employing a semantic model that is based
on the idea of coupling, which underlies recent work on probabilistic relational
Hoare logics [4]. However, no other decision procedures targeting entailments for
QSL or other logics targeting probabilistic pointer programs exist.

Leveraging SL research. As shown in Table 7, building QSL entailment checkers
by employing our reduction technique requires the availability of SL fragments
that support certain logical operations, and whose entailment problem is decid-
able. Since the inception of separation logic [29], the latter has been extensively
studied. In particular, the symbolic heap fragment of SL has received a lot of
attention. Table 8 gives an overview of related approaches. *

¥ x is always covered. Supported (Boolean or separating) connectives are marked with

“+”, unsupported ones with “~”. “x” means that the restrictions on the connec-
tive are more involved. “Pure” means that the connective can only appear in pure

formulae and “flat” means that the quantifier needs to be on the outermost level.

Foundations for Entailment Checking in Quantitative Separation Logic 81

Table 8. SL fragments with decidable entailment problem.

Paper - AV — 3V Ind. predicates Complexity

1] pure pure pure — flat — user defined ExPTIME-hard

1] (177 - pure - - - - Lists Polynomial

[21] e user defined 2-ExpPTIME-complete
[22] e user defined 2-ExPTIME-complete
[27] -+ - - flat- user defined ?

[28] - pure - - flat - user defined ExPTIME-complete
[35] e user defined 2-ExXPTIME

[40] x4+ 4+ ok = - user defined 2-EXPTIME

[47] + o+ o+ o+ - - - ?

[18] + + 4+ - - - Lists PSPACE-complete
[20] + + 4+ % ox % - PSPACE-complete

8 Discussion and Conclusion

We studied entailment checking in QSL by means of a reduction to entailment
checking in SL. We analyzed the complexity of our approach and demonstrated
its applicability by means of several examples. In particular, our reduction yields
the first decidability result for probabilistic pointer program verification.

Our primary goal was to investigate the entailment problem for QSL to pave
the way for automated verification of probabilistic pointer programs. Theorem 8
provides a generic result that enables building upon the large body of work
dealing with classical SL entailments to obtain both theoretical and practical
insights. Theoretically, Theorem 8 gives sufficient criteria to derive QSL frag-
ments with a decidable entailment problem from a classical SL fragment. We
derived a QSL fragment such that reasoning about a simple probabilistic heap-
manipulating language becomes decidable. More practically, Theorem 8 allows
reusing existing (possibly incomplete) SL solvers to solve the entailments de-
rived by our construction—an empirical evaluation of how well existing solvers
can deal with these entailments is an interesting direction for future work.

We believe that our fine-grained complexity analysis demonstrates that our
approach can be practically feasible: the exponential blow-up in Theorem 7 stems
from the number of probabilistic constructs in the given QSL formulae. We ex-
pect the number of such constructs to be small for many randomized algorithms.
We remark that existing approaches on checking quantitative entailments be-
tween heap-independent expectations encounter similar exponential blow-ups
(cf., [36,6]). There is thus some evidence that such exponential blow-ups do
not prohibit one from automatically verifying non-trivial properties. We are not
aware of work on checking quantitative entailments between expectations that
avoids such exponential blow-ups.

Future work includes considering richer classes of QSL and applications of
entailment checking such as k-induction [6]. Another interesting direction is the
applicability of our reduction to other approaches that aim for local reasoning
about the resources employed by probabilistic programs, such as [51,3,5].

82

Batz et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Antonopoulos, T., Gorogiannis, N., Haase, C., Kanovich, M.I., Ouaknine, J.: Foun-

dations for decision problems in separation logic with general inductive predicates.
In: FoSSaCS. Lecture Notes in Computer Science, vol. 8412, pp. 411-425. Springer
(2014)

. Baier, C., Engel, B., Kliippelholz, S., Mércker, S., Tews, H., Volp, M.: A proba-

bilistic quantitative analysis of probabilistic-write/copy-select. In: NASA Formal
Methods. LNCS, vol. 7871, pp. 307-321. Springer (2013)

Bao, J., Docherty, S., Hsu, J., Silva, A.: A bunched logic for conditional indepen-
dence. In: LICS. pp. 1-14. IEEE (2021)

Barthe, G., Grégoire, B., Hsu, J., Strub, P.Y.: Coupling proofs are probabilistic
product programs. In: POPL. p. 161-174. ACM (2017)

Barthe, G., Hsu, J., Liao, K.: A probabilistic separation logic. Proc. ACM Program.
Lang. 4(POPL), 55:1-55:30 (2020)

Batz, K., Chen, M., Kaminski, B.L., Katoen, J., Matheja, C., Schréer, P.: Latticed
k-induction with an application to probabilistic programs. In: CAV (2). Lecture
Notes in Computer Science, vol. 12760, pp. 524-549. Springer (2021)

Batz, K., Fesefeldt, 1., Jansen, M., Katoen, J.P., Kefller, F., Matheja, C., Noll,
T.: Foundations for entailment checking in quantitative separation logic (extended
version). CoRR abs/2201.11464 (2022)

Batz, K., Kaminski, B.L., Katoen, J., Matheja, C.: Relatively complete verification
of probabilistic programs: an expressive language for expectation-based reasoning.
Proc. ACM Program. Lang. 5(POPL), 1-30 (2021)

Batz, K., Kaminski, B.L., Katoen, J., Matheja, C., Noll, T.: Quantitative separa-
tion logic: a logic for reasoning about probabilistic pointer programs. Proc. ACM
Program. Lang. 3(POPL), 34:1-34:29 (2019)

Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang,
H.: Shape analysis for composite data structures. In: CAV. Lecture Notes in Com-
puter Science, vol. 4590, pp. 178-192. Springer (2007)

Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic.
In: FSTTCS. Lecture Notes in Computer Science, vol. 3328, pp. 97-109. Springer
(2004)

Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic assertion
checking with separation logic. In: FMCO. Lecture Notes in Computer Science,
vol. 4111, pp. 115-137. Springer (2005)

Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: APLAS. Lecture Notes in Computer Science, vol. 3780, pp. 52—68.
Springer (2005)

Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. J. ACM 58(6), 26:1-26:66 (2011)

Carbin, M., Misailovic, S., Rinard, M.C.: Verifying quantitative reliability for pro-
grams that execute on unreliable hardware. Commun. ACM 59(8), 83-91 (2016)
Chin, W., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size
and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program. 77(9), 1006-1036 (2012)

Cook, B., Haase, C., Ouaknine, J., Parkinson, M.J., Worrell, J.: Tractable reason-
ing in a fragment of separation logic. In: CONCUR. Lecture Notes in Computer
Science, vol. 6901, pp. 235-249. Springer (2011)

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.

Foundations for Entailment Checking in Quantitative Separation Logic 83

Demri, S., Lozes, E., Mansutti, A.: The effects of adding reachability predicates in
propositional separation logic. In: Foundations of Software Science and Computa-
tion Structures. LNCS, vol. 10803, pp. 476-493. Springer (2018)

Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976)

Echenim, M., Iosif, R., Peltier, N.: The Bernays-Schonfinkel-Ramsey class of sep-
aration logic with uninterpreted predicates. ACM Trans. Comput. Log. 21(3),
19:1-19:46 (2020)

Echenim, M., Iosif, R., Peltier, N.: Decidable entailments in separation logic with
inductive definitions: Beyond establishment. In: CSL. LIPIcs, vol. 183, pp. 20:1-
20:18. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2021)

Echenim, M., Tosif, R., Peltier, N.: Unifying decidable entailments in separation
logic with inductive definitions. In: CADE. Lecture Notes in Computer Science,
vol. 12699, pp. 183-199. Springer (2021)

Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: FOSE. pp. 167-181. ACM (2014)

Gotsman, A., Berdine, J., Cook, B., Sagiv, M.: Thread-modular shape analysis.
In: PLDI. pp. 266-277. ACM (2007)

Gretz, F., Katoen, J.P., Mclver, A.: Operational versus weakest pre-expectation se-
mantics for the probabilistic guarded command language. Performance Evaluation
73, 110-132 (2014)

Haslbeck, M.P.L.: Verified Quantitative Analysis of Imperative Algorithms. Ph.D.
thesis, Technical University of Munich, Germany (2021)

Tosif, R., Rogalewicz, A., Simdcek, J.: The tree width of separation logic with
recursive definitions. In: CADE. Lecture Notes in Computer Science, vol. 7898,
pp. 21-38. Springer (2013)

Tosif, R., Rogalewicz, A., Vojnar, T.: Deciding entailments in inductive separation
logic with tree automata. In: ATVA. Lecture Notes in Computer Science, vol. 8837,
pp. 201-218. Springer (2014)

Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data struc-
tures. In: POPL. pp. 14-26. ACM (2001)

Iverson, K.E.: A Programming Language. John Wiley & Sons, Inc., USA (1962)
Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
Verifast: A powerful, sound, predictable, fast verifier for C and java. In: NASA
Formal Methods. Lecture Notes in Computer Science, vol. 6617, pp. 41-55. Springer
(2011)

Jung, R., Krebbers, R., Jourdan, J., Bizjak, A., Birkedal, L., Dreyer, D.: Iris from
the ground up: A modular foundation for higher-order concurrent separation logic.
J. Funct. Program. 28, 20 (2018)

Kaminski, B.L., Katoen, J.P., Matheja, C., Olmedo, F.: Weakest precondition rea-
soning for expected runtimes of randomized algorithms. J. ACM 65(5) (2018)
Kaminski, B.L.: Advanced weakest precondition calculi for probabilistic programs.
Ph.D. thesis, RWTH Aachen University, Germany (2019)

Katelaan, J., Matheja, C., Zuleger, F.: Effective entailment checking for separa-
tion logic with inductive definitions. In: TACAS (2). Lecture Notes in Computer
Science, vol. 11428, pp. 319-336. Springer (2019)

Katoen, J., Mclver, A., Meinicke, L., Morgan, C.C.: Linear-invariant generation
for probabilistic programs: - automated support for proof-based methods. In: SAS.
Lecture Notes in Computer Science, vol. 6337, pp. 390-406. Springer (2010)
Kozen, D.: Semantics of probabilistic programs. In: FOCS. pp. 101-114. IEEE
Computer Society (1979)

84

38.
39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Batz et al.

Kozen, D.: A probabilistic PDL. In: STOC. pp. 291-297. ACM (1983)

Matheja, C.: Automated reasoning and randomization in separation logic. Ph.D.
thesis, RWTH Aachen University, Germany (2020)

Matheja, C., Pagel, J., Zuleger, F.: Complete entailment checking for separation
logic with inductive definitions. CoRR abs/2002.01202 (2020)

Mclver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science, Springer (2005)

Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press (2005)

Morgan, C.; Mclver, A., Seidel, K.: Probabilistic predicate transformers. ACM
Trans. Program. Lang. Syst. 18(3), 325-353 (may 1996)

Miiller, P., Schwerhoff, M., Summers, A.J.: Viper: A verification infrastructure for
permission-based reasoning. In: Dependable Software Systems Engineering, NATO
Science for Peace and Security Series - D: Information and Communication Secu-
rity, vol. 50, pp. 104-125. IOS Press (2017)

Ngo, V.C., Carbonneaux, Q., Hoffmann, J.: Bounded expectations: Resource anal-
ysis for probabilistic programs. SIGPLAN Not. 53(4), 496-512 (2018)

Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In:
CAV. Lecture Notes in Computer Science, vol. 8044, pp. 773-789. Springer (2013)
Reynolds, A., losif, R., Serban, C., King, T.: A decision procedure for separation
logic in SMT. In: ATVA. Lecture Notes in Computer Science, vol. 9938, pp. 244—
261 (2016)

Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS. pp. 55-74. IEEE Computer Society (2002)

Saheb-Djahromi, N.: Probabilistic lcf. In: Winkowski, J. (ed.) Mathematical Foun-
dations of Computer Science 1978. pp. 442-451. Springer, Berlin, Heidelberg (1978)
Ta, Q., Le, T.C., Khoo, S., Chin, W.: Automated lemma synthesis in symbolic-heap
separation logic. Proc. ACM Program. Lang. 2(POPL), 9:1-9:29 (2018)
Tassarotti, J., Harper, R.: A separation logic for concurrent randomized programs.
Proc. ACM Program. Lang. 3(POPL), 64:1-64:30 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Extracting total Amb programs from proofs

Ulrich Berger'™ @ and Hideki Tsuiki?=

! Swansea University, Swansea, UK
u.berger@swansea.ac.uk

2 Kyoto University, Kyoto, Japan
tsuiki@i.h.kyoto-u.ac.jp

Abstract. We present a logical system CFP (Concurrent Fixed Point
Logic) that supports the extraction of nondeterministic and concurrent
programs that are provably total and correct. CFP is an intuitionistic
first-order logic with inductive and coinductive definitions extended by
two propositional operators, B|a (restriction, a strengthening of impli-
cation) and || (B) (total concurrency). The source of the extraction are
formal CFP proofs, the target is a lambda calculus with constructors and
recursion extended by a constructor Amb (for McCarthy’s amb) which
is interpreted operationally as globally angelic choice and is used to im-
plement nondeterminism and concurrency. The correctness of extracted
programs is proven via an intermediate domain-theoretic denotational
semantics. We demonstrate the usefulness of our system by extracting
a nondeterministic program that translates infinite Gray code into the
signed digit representation. A noteworthy feature of our system is that
the proof rules for restriction and concurrency involve variants of the
classical law of excluded middle that would not be interpretable compu-
tationally without Amb.

1 Introduction

Nondeterministic bottom-avoiding choice is an important and useful idea. With
the wide-spread use of hardware that supports parallel computation, it has the
possibility to speed up practical computation and, at the same time, it is related
to computation over mathematical structures like real numbers [20,42]. On the
other hand, it is not easy to apply theoretical tools like denotational semantics
to nondeterministic bottom-avoiding choice [24,29] and guaranteeing correctness
and totality of such programs through logical systems is a difficult task.

To explain the subtleness of the problem, let us start with an example. Sup-
pose that M and N are partial programs that, under the conditions A and —A,
respectively, are guaranteed to terminate and produce values satisfying specifica-
tion B. Then, by executing M and N in parallel and taking the result obtained
first, we should always obtain a result satisfying B. This kind of bottom-avoiding
nondeterministic program is known as McCarthy’s amb (ambiguous) operator
[32], and we denote such a program by Amb(M, N). Amb is called the angelic
choice operator and is usually studied as one of the three nondeterministic choice

© The Author(s) 2022
L. Sergey (Ed.): ESOP 2022, LNCS 13240, pp. 85-113, 2022.
https://doi.org/10.1007 /978-3-030-99336-8_4

Check for
updates

http://orcid.org/0000-0002-7677-3582
http://orcid.org/0000-0003-0854-948X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99336-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-99336-8_4

86 U. Berger and H. Tsuiki

operators (the other two are erratic choice and demonic choice). On the other
hand, we are interested in this operator not only from a theoretical point of view
but also from the way it behaves as a concurrent program running on a parallel
execution mechanism.

If one tries to formalize this idea naively, one will face some obstacles. Let
M r B (“M realizes B”) denote the fact that a program M satisfies a specification
B and let || (B) be the specification that can be satisfied by a concurrent program
of the form Amb(M, N) that always terminates and produces a value satisfying
B. Then, the above inference could be written as

A— (MrB) -A—(NrB)
Amb(M,N)r |[(B)

However, this inference is not sound for the following reason. Suppose that A
does not hold, that is, =A holds. Then, the execution of N will produce a value
satisfying B. But the execution of M may terminate as well, and with a data that
does not satisfy B since there is no condition on M if A does not hold. Therefore,
if M terminates first in the execution of Amb(M, N), then we obtain a result
that may not satisfy B.

To amend this problem, we add a new operator B|a (pronounced “B re-
stricted to A”) and consider the rule

Mr(B|a) Nr(B|-a)
Amb (M, N)r ||(B) (1)

Intuitively, M r (B|4) means two things: (1) M terminates if A holds, and
(2) if M terminates, then the result satisfies B even for the case A does not hold.
As we will see in Sect. 5.2, the above rule is derivable in classical logic and can
therefore be used to prove total correctness of Amb programs.

In this paper, we go a step further and introduce a logical system CFP
whose formulas can be interpreted as specifications of nondeterministic programs
although they do not talk about programs explicitly. CFP is defined by adding
the two logical operators B|4 and ||(B) to the system IFP, a logic for program
extraction [12] (see also [4,9,7]). A related approach has been developed in the
proof system Minlog [38,6,39]. IFP supports the extraction of lazy functional
programs from inductive/coinductive proofs in intuitionistic first-order logic. It
has a prototype implementation in Haskell, called Prawf [§].

We show that from a CFP-proof of a formula, both a program and a proof
that the program satisfies the specification can be extracted (Soundness theorem,
Theorem 3). For example, in CFP we have the rule

Bla Bl-a
1(B) (2)
which is realized by the program Aa.A\b.Amb(a,b), and whose correctness is

expressed by the rule (1). Programs extracted from CFP proofs can be executed
in Haskell, implementing Amb with the concurrent Haskell package.

(Conc-lem)

Extracting total Amb programs from proofs 87

Compared with program verification, the extraction approach has the benefit
that (a) the proofs programs are extracted from take place in a formal system
that is of a very high level of abstraction and therefore is simpler and easier to use
than a logic that formalizes concurrent programs (in particular, programs do not
have to be written manually at all); (b) not only the complete extracted program
is proven correct but also all its sub-programs come with their specifications and
correctness proofs since these correspond to sub-proofs. This makes it easier to
locally modify programs without the danger of compromising overall correctness.

As an application, we extract a nondeterministic program that converts in-
finite Gray code to signed digit representation, where infinite Gray code is a
coding of real numbers by partial digit streams that are allowed to contain a
L, that is, a digit whose computation does not terminate [18,42]. Partiality and
multi-valuedness are common phenomena in computable analysis and exact real
number computation [46,30]. This case study connects these two aspects through
a nondeterministic and concurrent program whose correctness is guaranteed by
a CFP-proof. The extracted Haskell programs are available in the repository [3].

Organization of the paper: In Sects. 2 and 3 we present the denotational and
operational semantics of a functional language with Amb and prove that they
match (Thms. 1 and 2). Sects. 4 and 5 describe the formal system CFP and
its realizability interpretation which our program extraction method is based
on (Thms. 3 and 5). In Sect. 6 we extract a concurrent program that converts
representation of real numbers and study its behaviour in Sect. 7. Most proofs,
unless very short, are omitted do to space limitation. Full proofs of the main
results can be found in the extended version [11].

2 Denotational semantics of globally angelic choice

In [32], McCarthy defined the ambiguity operator amb as

x (z#1)
amb(z,y) = ¢y (y# 1)
Llz=y=1)

where 1 means ‘undefined’ and z and y are taken nondeterministically when
both and y are not L. This is called locally angelic nondeterministic choice
since convergence is chosen over divergence for each local call for the computa-
tion of amb(z,y). It can be implemented by executing both of the arguments
in parallel and taking the result obtained first. Despite being a simple construc-
tion, amb is known to have a lot of expressive power, and many constructions
of nondeterministic and parallel computation such as erratic choice, countable
choice (random assignment), and ‘parallel or’ can be encoded through it [28].
These multifarious aspects of the operator amb are reflected by the difficulty of
its mathematical treatment in denotational semantics. For example, amb is not
monotonic when interpreted over powerdomains with the Egli-Milner order [14].

On the other hand, one can consider an interpretation of amb as globally
angelic choice, where an argument of amb is chosen so that the whole ambient

88 U. Berger and H. Tsuiki

computation converges, if convergence is possible at all [17,40]. Since globally
angelic choice is not defined compositionally, it is not easy to integrate it into a
design of a programming language with clear denotational semantics. However,
it can be easily implemented by running the whole computation for both of the
arguments of amb in parallel and taking the result obtained first. Denotationally,
globally angelic choice can be modelled by the Hoare powerdomain construction.
However, this would not be suitable for analyzing total correctness because the
ordering of the Hoare powerdomain does not discriminate X and X U{L} [23,24].
Instead, we consider a two-staged approach (see Sect. 2.2).

The difference between the locally and the globally angelic interpretation of
amb is highlighted by the fact that the former does not commute with function
application. For example, if f(0) = 0 but f(1) diverges, then amb(f(0), f(1))
will always terminate with the value 0, whereas f(amb(0,1)) may return 0
or diverge. On the other hand, the latter term will always return 0 if amb is
implemented with a globally angelic semantics. As suggested in [17], we use this
commutation property to realize the globally angelic semantics.

2.1 Programs and types

Our target language for program extraction is an untyped lambda calculus with
recursion operator and constructors as in [12], but extended by an additional
constructor Amb that corresponds to globally angelic version of McCarthy’s
amb. This could be easily generalized to an Amb operator of any arity > 2.

Programs > M,N,L,P,Q,R ::=a,b,..., f,g (program variables)
| Xa. M | MN | M|{N | recM | L
| Nil | Left(M) | Right(M) | Pair(M, N)| Amb(M, N)
| case M of {Left(a) — L;Right(b) — R}
| case M of {Pair(a,b) - N}
| case M of {Amb(a,b) — N}

Denotationally, Amb is just another pairing operator. Its interpretation as glob-
ally angelic choice will come to effect only through its operational semantics.
Though essentially a call-by-name language, it also has strict application M| N,
needed for realizing the rules for restriction and the concurrency operator.

We use a,...,g for program variables to distinguish them from the vari-
ables z, y, z of the logical system CFP (Sect. 4). Nil, Left, Right, Pair, Amb are
called constructors. Constructors different from Amb are called data construc-
tors. C4 denotes the set of data constructors. Left| M stands for (Aa.Left(a))] M,

etc., and we sometimes write Left and Right for Left(Nil) and Right(Nil).

Natural numbers are encoded as 0 %' Left, 1 et Right(Left), and so on.

Although programs are untyped, programs extracted from proofs will be
typable by the following system of simple recursive types:

Types 3 p,o0 ::= « (type variables) |1 |px o |p+o|p=o|fixa.p| Ap)

Extracting total Amb programs from proofs 89

Here, A(p) is the type of programs which, if they terminate (see Sect. 3), reduce
to a form Amb(M,N) with M, N : p. The formation of fix«.p has the side
conditions that « occurs freely in p, p is strictly positive in « (that is, there is no
free occurrence of « in p which is in the left part of a function type), and not of
the form a or A(«). These conditions ensure, among other things, that the type
transformer « — p has a unique fixed point, which is taken as the semantics of
fix a. p (see below). We require in A(p) that p is neither a variable nor of the
form fix g fixa, . A(p’) (n > 0). This enables the interpretation of Amb
as a bottom-avoiding choice operator (see the explanation below Corollary 1).
We call types that satisfy all these conditions reqular. An example of a regular

type is the type of lazy (partial) natural numbers, nat 2 fx .1+ a.

I''a:pkFa:p I'FNil: 1 r-1:p
I'-M:p I'-M:o
I'Left(M):p+o I' - Right(M) :p+o
I'EM:p I'EN:o I'-M:p I'-N:p
I'-Pair(M,N):pxo I'- Amb(M, N) : A(p)
la:pEM:o Ia:pk-Ma: .
Fl—Aa.pM:p:>a Fl—f‘ecM:pp (a not free in M)
I'-M:p=o I'EN:p I'M:p=o0o I'EN:p
I'EFMN :o I'EM|N : 0o
I't M :plfixa.p/a] I'EM:fixa.p
I'-M:fixa.p I'M:plfixa.p/a]

I'-M:p4+0 ILa:pFL:7 Ib:okFR:T
I' - case M of {Left(a) — L; Right(b) — R} : 7

I'tM:pxo Ta:pb:obEN:7T '-M:A(p) Lab:pEN:T
I' + case M of {Pair(a,b) - N} : 7 I' - case M of {Amb(a,b) > N} : 7

Fig. 1. Typing rules

The typing rules are listed in Fig. 1. They are valid w.r.t. the denotational
semantics given in Sect. 2.2 and extend the rules given in [12]. Recursive types
are equirecursive [35] in that M : fix a. p iff M : plfix . p/a].

As an example of a program consider

2" Xa.case a of {Left(_) — Left; Right(_) — L} (3)

which implements the function f discussed earlier, i.e., fO = 0 and f1 = L.
f has type nat = nat. Since Amb(0,1) has type A(nat), the application
f Amb(0, 1) is not well-typed. Instead, we consider mapamb f Amb(0, 1) where
mapamb : (p — o) = A(p) — A(o) is defined as

mapamb Def Af. Ac. casecof {Amb(a,b) — Amb(fla, flb)}

90 U. Berger and H. Tsuiki

This operator realizes the globally angelic semantics: mapamb f Amb(0,1) is
reduced to Amb(f10, f}1), and f]0 and f|1 (which are the same as f 0 and f 1
since 0 and 1 are defined) are computed concurrently and the whole expression
is reduced to 0, using the operational semantics in Section 3. In Sect. 5, we will
introduce a concurrent (or nondeterministic) version of Modus Ponens, (Conc-
mp), which will automatically generate an application of mapamb.

2.2 Denotational semantics

The denotational semantics has two phases: Phase I interprets programs in a
Scott domain D defined by the following recursive domain equation

D = (Nil4Left(D)+Right(D)+Pair(D x D)+Amb(D x D)+Fun(D — D)) .

where + and x denote separated sum and cartesian product, and the operation
-1 adds a least element L ([21] is a recommended reference for domain theory
and the solution of domain equations). A closed program M denotes an element
[M] € D as defined in Fig. 2. Note that Amb is interpreted (like Pair) as a
simple pairing operator.

A type is interpreted as a subdomain, which is a subset of D that is down-
ward closed and closed under suprema of bounded subsets. We use the following
operations on subdomains:

(X +Y), 2 {Left(a) | a € X} U {Right(b) | be Y} U{L}

(X x V), % {Pair(a,b) |a € X,be Y}U{L}

(X =Y), 2 {Fun(f) | f: D — D continuous, Ya € X(f(a) € Y)} U {L}.

Through the semantics in Fig. 2, closed programs denote elements of D and
closed types denote subdomains of D such that the typing rules (Fig. 1) are
sound.

In Phase II we assign to every a € D a set data(a) C D that reveals the role
of Amb as a choice operator. The relation ‘d € data(a)’ is defined (coinductively)
as the largest relation satisfying

d € data(a) £ (a= Amb(d,b')Nd # L Adcdata(d)) v
(a = Amb(d',b') AV # L Ad € data(b')) V
(a=Amb(L, L)Ad=1)V

\ <a =Cla)nd=C(d) A N\d; e data(a;)> Vv
CeCqy i
(a=Fun(f)Ad=a) V(ie=d=1).

Now, every closed program M denotes the set data([M]) C D containing all
possible globally angelic choices derived form its denotation in D. For example,
data(Amb(0,1)) = {0,1} and, for f as defined in (3), we have, as expected,

Extracting total Amb programs from proofs 91

[aln = n(a)
[Aa. M]n = Fun(f) where f(d) = [M]n[a — d]
[M Ny = f(INln) if [M]n = Fun()
[MINTn = F(INT) if [M]n = Fun(f) and [N] # L
[rec M]n = the least fixed point of f if [M]n = Fun(f)
[C(My,...,Mp)]n=C([Mi]n,...,[Mk]n) (C a constructor (including Amb))
[case M of Ci}]n = [K]n[@ — d] if [M]n = C(d) and C(@) — K € Cl
[M]n = L in all other cases, in particular [L]n = L

7 is an environment that assigns elements of D to variables.
DS =¢(a), D§ = {Nil L},
Déxa_p = m{X <D | Dg[o‘HX] cCX} (X < D means X is a subdomain of D)

Dgoa:(DEODg)i (0€{+5Xa:>})
¢ is a type environment that assigns subdomains D to type variables.

Fig. 2. Denotational semantics of programs (Phase I) and types

data(mapamb f Amb(0,1)) = data(Amb(0, L)) = {0}. In Sect. 3 we will define
an operational semantics whose fair execution sequences starting with a regular-
typed program M compute exactly the elements in data([M]).

Ezample 1. Let M = rec Aa.Amb(Left(Nil), Right(a)). M is a closed program
of type fixa. A(1 + «). We have data(M) = {0,1,2,...}. Thus, we can express
countable choice (random assignment) with Amb.

Lemma 1. Ifa € D belongs to a reqular type, then the following are equivalent:
(1) ac{Ll,Amb(L,1)}; (2) {L} =data(a); (3) L € data(a).

3 Operational semantics

We define a small-step operational semantics that, in the limit, reduces each
closed program M nondeterministically to an element in data([M]) (Thm. 1).
If M has a regular type, the converse holds as well: For every d € data([M])
there exists a reduction sequence for M computing d in the limit (Thm. 2). If M
denotes a compact data, then the limit is obtained after finitely many reductions.
In the following, all programs are assumed to be closed.

3.1 Reduction to weak head normal form

A program is called a weak head normal form (w.h.n.f.) if it begins with a
constructor (including Amb), or has the form Aa.M. We define inductively a

92 U. Berger and H. Tsuiki

small-step leftmost-outermost reduction relation ~» on programs where C' ranges
over constructors.

(Aa. M) N ~ M|N/a)

M ~s M’

(s+)
M NN
)
)

(s-ii

(s-iii) (Aa. M){N ~~ M[N/a] if N is a w.h.n.f.

!/
(s-iv Mj\]é :: %/U\f if N is a w.hon.f.
(S—V) N ~~ N/
MIN ~ MIN'

(s-vi) rec M ~» M (rec M)

(s-vii) case C(M)of {...;C(b) = N;...} ~ N[M/b]
M~ M’

case M of {Cﬁ} ~ case M’ of {C_”l}

(s-ix) M ~» L if M is L-like (see below)

(s-viii)

1-like programs are such that their syntactic forms immediately imply that
they denote L, more precisely they are of the form L, C(M)N, C (M)N, and
case M of {...} where M is a lambda-abstraction or of the form C(M) such
that there is no clause in {...} which is of the form C(@) — N. W.h.n.f.s are
never 1-like, and the only typeable |-like program is L.

Lemma 2. (1) ~ is deterministic (i.e., M ~ M’ for at most one M’).

(2) ~ preserves the denotational semantics (i.e., [M] = [M'] if M ~ M’').
(8) M is a ~>-normal form iff M is a w.h.n.f.

(4) [Adequacy Lemma] If [M] # L, then there is a w.h.n.f. V s.t. M ~* V.

3.2 Making choices

Next, we define the reduction relation ~ (‘c’ for ’choice’) that reduces arguments
of Amb in parallel.

N M~ M
(C_l) c
M ~ M’
.. My ~ Mj
(c-ii) C
1411’11)(]\417 Mg) ~ Amb(M{, Mg)
M2 ~ Mé

(c-ii’ .
) .AII‘I]I)(]\417 Mg) ~ Amb(Ml, Mé)

(c-ii) Amb(My, My) ~5 M, if M, is a w.h.n.f.
(c-iii’) Amb(My, My) ~5 My if My is a w.h.n.f.

Extracting total Amb programs from proofs 93

From this definition and Lemma 2, it is immediate that M is a ~>-normal
form iff M is a deterministic weak head normal form (d.w.h.n.f.), that is, a
w.h.n.f. that does not begin with Amb. Finally, we define a reduction relation
% that reduces arguments of data constructors in parallel.

(i) M~ M
PV e
3 M; % M (i=1,....k
(p-ii) (pZ) (C e Cy)
C(My, ..., M) > C(M],...,, M)

(p-iii) Aa. M % Xa. M

Every (closed) program reduces under 2 (easy proof by structural induction).
For example, Nil 2 Nil by (p-ii). In the following, all $s-reduction sequences
are assumed to be infinite.

We call a ~>-reduction sequence unfair if, intuitively, from some point on, one
side of an Amb term is permanently reduced but not the other. More precisely,
we inductively define M; L M, L .. to be unfair if

— each M; is of the form Amb(L;, R) (with fixed R) and L; ~» L;41, or
— each M; is of the form Amb(L, R;) (with fixed L) and R; ~ R;41, or
— each M; is of the form C(N;1,...,N;) (with a fixed n-ary constructor C')

p D . .
and Nj ~» Naj ~> ... is unfair for some k, or

the tail of the sequence, Mo 2 M. ., is unfair.

A P-reduction sequence is fair if it is not unfair.

Intuitively, reduction by 25 proceeds as follows: A program L is head reduced
by ~ to a w.h.nf. I/, and if I/ is a data constructor term, all arguments are
reduced in parallel by (p-ii). If L’ has the form Amb(M, N), two concurrent
threads are invoked for the reductions of M and N in parallel, and the one
reduced to a w.h.n.f. first is used. Fairness corresponds to the fact that the
‘speed’ of each thread is positive which means, in particular, that no thread can
block another. Note that ~% is not used for the reductions of M and N in (s-ii),
(s-iv), (s-v) and (s-viii). This means that ~> is applied only to the outermost
redex. Also, (c-ii) is defined through ~~, not ~%, and thus no thread creates new
threads. This ability to limit the bound of threads was not available in an earlier
version of this language [5] (see also the discussion in Sect. 8.1).

3.3 Computational adequacy: Matching denotational and
operational semantics

We define Mp € D by structural induction on programs:
C(M17"'3M}€)D:C(M1D7"'aMkD) (Cecd)
(Aa.M)p = [Aa.M]
Mp =1 otherwise

94 U. Berger and H. Tsuiki

Since clearly M X N implies Mp Cp Np, for every computation sequence
My % My % ..., the sequence ((M;)p)ien is increasing and therefore has a
least upper bound in D. Intuitively, Mp is the part of M that has been fully
evaluated to a data.

A computation of M is an infinite fair sequence M = M, X My B

Theorem 1 (Computational Adequacy: Soundness). For every computa-
tion M = My > My % ..., Ujen(M;)p € data([M]).

The converse does not hold in general, i.e. d € data([M]) does not nec-
essarily imply d = U;en((M;)p) for some computation of M. For example,
for M 2 rec \a. Amb(a, L) (for which [M] = [Amb(M, L1)]) one sees that
d € data([M]) for every d € D while M ~ M and Mp = L. But M has the

type fix @. A(a) which is not regular (see Sect. 2.1). For programs of a regular
type, the converse of Thm. 1 holds.

Theorem 2 (Computational Adequacy: Completeness). If M has a reg-
ular type, then for every d € data([M]), there is a computation M = My 2

A computation M = M B My R s productive if some M; is a determin-
istic w.h.n.f. Clearly, this is the case iff L;en((M;)p) # L. Therefore, by the
Adequacy Theorem and Lemma 1:

Corollary 1. For a program M of regular type, the following are equivalent.

(1) One of the computations of M is productive.
(2) All computations of M are productive.
(3) [M] is neither L nor Amb(L, L1).

The corollary does not hold without the regularity condition. For example, M =
Amb(Amb(Nil, Nil), Amb(L, 1)) can be reduced to M; = Amb(L, 1) and
then repeats M; forever, whereas it can also be reduced to Nil. McCarthy’s amb
operator is bottom-avoiding in that when it can terminate, it always terminates.
Corollary 1 guarantees a similar property for our globally angelic choice operator
Amb.

4 CFP (Concurrent Fixed Point Logic)

In [12], the system IFP (Intuitionistic Fixed Point Logic) was introduced. IFP is
an intuitionistic first-order logic with strictly positive inductive and coinductive
definitions, from the proofs of which programs can be extracted. CFP is obtained
by adding to IFP two propositional operators, B|4 and || (B), that facilitate the
extraction of nondeterministic and concurrent programs.

Extracting total Amb programs from proofs 95

4.1 Syntax

CFP is defined relative to a many-sorted first-order language. CFP-formulas
have the form AANB, AV B, A — B, Vz A, Jz A, s =t (s, t terms of the
same sort), P(t) (for a predicate P and terms ¢ of fitting arities), as well as B|4
(restriction) and ||(B) (concurrency). Predicates are either predicate constants
(as given by the first-order language), or predicate variables (denoted X,Y...),
or comprehensions A\Z A (where A is a formula and Z is a tuple of first-order
variables), or fixed points u(®) and v(P) (least fixed point aka inductive predicate
and greatest fixed point aka coinductive predicate) where @ is a strictly positive
(s.p.) operator. Operators are of the form AX @ where X is a predicate variable
and @ is a predicate of the same arity as X. AX @ is s.p. if every free occurrence
of X in @ is at a strictly positive position, that is, at a position that is not in the
left part of an implication. We identify (A\Z A)() with A[t/#] where [t/#] means
capture avoiding substitution.

The following syntactic properties of expressions (i.e., formulas, predicates
and operators) will be important. A Harrop expression is one that contains at
strictly positive positions neither free predicate variables nor disjunctions (V)
nor restrictions (|) nor concurrency (]|). An expression is non-Harrop if it is
not Harrop; it is non-computational (nc) if it contains neither disjunctions, nor
restrictions nor concurrency nor free predicate variables. Every nc-formula is
Harrop but not conversely. Finally, we define, recursively, when a formula is
strict: Harrop formulas and disjunctions are strict. A non-Harrop conjunction is
strict if either both conjuncts are non-Harrop or it is a conjunction of a Harrop
formula and a strict formula. A non-Harrop implication is strict if the premise is
non-Harrop. Formulas of the form oz A (¢ € {V,3}) or OAXAZ A) (O € {u,v})
are strict if A is strict. Formulas of other forms (e.g., B|a, || (A), X (#)) are not
strict. The significance of these definitions is that Harropness ensures that (a
proof of) the formula will have no computational content. Strictness ensures,
among other things, that L is not a realizer (see Sect. 5).

As an additional requirement for formulas to be wellformed we demand that
in formulas of the form B|4 or |[(B), B must be strict.

Notation: P(t) will also be written & € P, and if & is AX Q, then &(P) stands

for Q[P/X]. Definitions (on the meta level) of the form P ef 0(P) (O € {u,v})

where @ = AX AZ A, will usually be written P(Z) = A[P/X]. We write P C Q
for VZ (P(Z) — Q(&)), Vo € P A for Vz (P(z) — A), and 3z € P A for
Jz (P(z)NA). A 2" A - False where False ' w(AX X).

4.2 Proof rules

The proof rules of CFP contain those of IFP, which are the usual natural de-
duction rules for intuitionistic first-order logic with equality (see e.g. [53]), plus
the following rules for induction and coinduction, where & is a s.p. operator:

®(P)C P

&P IND(&, P)

96 U. Berger and H. Tsuiki

o(P)

COCL(®) =@

TP @) COIND(%, P)

The rules for restriction and concurrency are (with the earlier mentioned condi-
tion that in formulas of the form B|4 or || (B), B must be strict):

A— (BoV B1) —A— BoABi Rest-intro
(BO Vv B1)‘A (A, B(), B1 Harrop)
B|A B — (B/|A)

Bla Rest-bind Biﬁq Rest-return
A' > A Bl . Bla A
T Rest-antimon 5 Rest-mp
Rest-efq B7|A Rest-stab
BlFaise Bl--4
M Conc-lem 4 Conc-return
1(B) 1L(A)
A=B WA (e
1L(B)

In Sect. 5 we will prove that each of these rules is realized by a program from
our programming language in Sect. 2.

4.3 Tarskian semantics, axioms and classical logic

Although we are mainly interested in the realizability interpretation of CFP, it
is important that all proof rules of CFP are also valid w.r.t. a standard Tarskian
semantics, provided we identify B|4 with A — B and || (B) with B.

Like TFP, CFP is parametric in a set A of axzioms, which have to be closed
nc-formulas. The significance of the restriction to nc-formulas is that these are
identical to their (formalized) realizability interpretation (see Sect. 5), in partic-
ular, Tarskian and realizability semantics coincide for them. Axioms should be
chosen such that they are true in an intended Tarskian model. Since Tarskian
semantics admits classical logic, this means that a fair amount of classical logic
is available through axioms. For example, for each closed nc-formula A(Z), sta-
bility, V& (——A(Z) — A(Z)) can be postulated as axiom. In addition, the rule
(Conc-lem) is a variant of the classical law of excluded middle and (Rest-stab)
permits stability for arbitrary right arguments of restriction.

In our examples and case studies we will use an instance of CFP with a
sort for real numbers and some standard axiomatization of real closed fields
formulated as a set of nc-formulas. In particular, we will freely use constants,
operations and relations such as 0,1, 4+, —, *, <, |- |,/ and assume their expected
properties as axioms (expressed as nc-formulas).

Extracting total Amb programs from proofs 97

5 Program extraction

We define a realizability interpretation of CFP that will enable us to extract
concurrent programs from proofs. Since the interpretation extends the one in
IFP [12], it suffices to define realizability for the restriction and concurrency op-
erators and prove that their proof rules are realizable (Sects. 5.2). All definitions
and proofs of this section can be carried out in a formal system RCFP (realiz-
ability logic for CFP) which is CFP without | and || but with classical logic and
an extended first-order language that contains the earlier introduced programs
and types as terms and the typing relation ‘.’ as a predicate constant, and de-
scribes their semantics through suitable axioms. In particular, RCFP proves the
correctness of extracted programs (Soundness Theorem 3). Since it only matters
that RCFP is classically correct (since no realizability interpretation is applied
to it), details of RCFP do not matter and are therefore omitted.

5.1 Realizability

Realizability for CFP is formalized in RCFP and follows the pattern in [12].
For every non-Harrop CFP-formula A a type 7(A) and a RCFP-predicate R(A)
are defined such that R(A) is a subset of 7(A) (more precisely, RCFP proves
Va(R(A)(a) = a : 7(A)) hence the interpretation of R(A) is a subset of D_,,).
We often write ar A for R(A4)(a) (‘a realizes A’) and r A for JaR(A)(a) (‘A is
realizable’).

Since Harrop formulas (see Sect. 4.1) have trivial computational content, it
only matters whether they are realizable or not. Therefore, we define for a Harrop
formula A, a RCFP-formula H(A) that represents the realizability interpretation
of A, but with suppressed realizer. Formally, we define by simultaneous recursion,
for every Harrop CFP-expression E an RCFP-expressions H(E), and for every
non-Harrop CFP-expressions E an RCFP-expressions R(FE). It is convenient to

set, in addition, for Harrop formulas 7(A) 20 1 and R(A4) et Aa (a = Nil A
H(A)), so that 7(A) and R(A) are defined for all CFP-formulas.

The complete definition, which is shown in Fig. 3, assumes that to each
CFP predicate variable X there are assigned a fresh type variable ax and a
fresh RCFP predicate variable X with one extra argument for domain elements.
Furthermore, to define realizability for the fixed points of a Harrop operator

AX P, we use the notation
Def > >
Hx(P) = H(P[X/X])[X/X]

where X is a fresh predicate constant assigned to the (non-Harrop) predicate
variable X. This is motivated by the fact that AX P is Harrop iff P[X/X] is.
The idea is that Hx (P) is the same as H(P) but considering X as a (Harrop)
predicate constant.

To see that the definitions make sense, note that a formula P(f) is Harrop iff
P is, predicate variables and disjunctions are always non-Harrop, a conjunction
is Harrop iff both conjuncts are, an implication A — B is Harrop iff B is, and

98 U. Berger and H. Tsuiki

For Harrop formulas A: 7(A) =1 and R(A) = Aa (a = Nil A H(A)).

7(E) for non-Harrop expressions E:

T(P(t)) = 7(P) T(AV B) = 7(A) + 7(B)
7(A) x 7(B) (A, B non-Harrop)
T(AANB) = { T(A) (B Harrop)
7(B) (A Harrop)
[7(A) = 7(B) (A non-Harrop)
T4 B)= {T(B) (A Harrop)
T(Bla) =7(B) 7(l(B)) = A(7(B))
T(ox A) = 7(A) (0 €{v,3})
7(X) =ax T(P)=1 (P a predicate constant)
T(AZA) =71(A) 7(O(AX P)) = fixax .7(P) (O e{u,v})

R(F) for non-Harrop expressions E:

R(P(#)) = Aa (R(P)(t, a))
R(AV B) = Ac(Ja(c = Left(a) Aar A) vV 3b(c = Right(b) Abr B))

Ac(3a,b(c = Pair(a,b) Nar AN br B)) (A, B non-Harrop)
R(AAB) = { Aa (ar ANH(B)) (B Harrop)
Ab(H(A) Abr B) (A Harrop)
[Ac(c:T(A) = 7(B)AVa(ar A— (ca)rB)) (A non-Harrop)
R(A— B) = { b (b: 7(B) A (H(A) — br B)) (4 Harop)

R(B|a) =X (b:7(B)A(rA—=b# L)A(b# L —brB))
R(ll(B)) = Ac3a,b (c= Amb(a,b) Aa,b: T7(B)A(a# LVb# 1) A
(a#L—>arB)AN(b# L —brB))
R(Cz A) = Xa(Czx (ar A)) (©e{v,3})

R(X)
R(O(\X P))

X R(AZA) = A\(Z,a) (ar A)
OAXR(P) (D€ {uv})

H(E) for Harrop expressions E:

H(P(H) = H(P)(#) H(AA B) = H(A) A H(B)

rA— H(B) (A non-Harrop)
H(A) — H(B) (A Harrop)

H(Cz A) =COzH(A) (¢ e{v,3})

H(A—>B):{

H(P) =P (P a predicate constant) H(\ZA) =\TH(A)
H(O(\X P) = OOX Hx(P)) (O € {s})

Fig. 3. Realizability interpretation of CFP

Extracting total Amb programs from proofs 99

Vo A, dz A, \@ A are Harrop iff A is. The rationale and correctness of realizability
for restriction and concurrency are discussed in Sect. 5.2.

If a formula A is nc, then it is Harrop (see Sect. 4.1 for definitions) but in
addition A and H(A) are syntactically identical. In contrast, in general, a Harrop
formula A neither implies nor is implied by H(A).

Lemma 3. For every CFP-formula A:

(1) 7(A) is a regular type.

(2) If A is strict, then L does not realize A, provably in RCFP.

(3) Amb(L, 1) is not a realizer of A.

(4) For a program M that realizes A, t.f.a.e.: (i) M has some productive com-
putation; (i) all computations of M are productive; (iii) [M] # L.

Proof. (1) and (2) are easily proved by structural induction on formulas. (3)
follows from the fact that if A is of the form Amb(B), then B must be strict.
(4) is proved by (3) and Corollary 1 (3).

Remarks and examples. The main difference of our interpretation to the usual
realizability interpretation of intuitionistic number theory lies in the interpreta-
tion of quantifiers. While in number theory variables range over natural num-
bers, which have concrete computationally meaningful representations, we make
no general assumption of this kind, since it is our goal to extract programs from
proofs in abstract mathematics. This is the reason why we interpret quantifiers
uniformly, that is, a realizer of a universal statement must be independent of the
quantified variable and a realizer of an existential statement does not contain
a witness. A similar uniform interpretation of quantifiers can be found in the
Minlog system. The usual definition of realizability of quantifiers in intuitionis-
tic number theory can be recovered by relativization to an inductively defined
predicate IN describing natural numbers in unary representation:

N(@#z) £2z=0VN(z-1)

which is shorthand for N ' wAX Az (z = 0V X(z — 1))). The type 7(N)
assigned to N is the recursive type of unary natural numbers

nat %' fixa. 1 + a.
Realizability for N works out as
arN(z) £ (a = Left Az = 0) v 3b(a = Right(b) Abr N(z — 1)) .

Thus, N(0), N(1), N(2) are realized by Left (i.e., Left(Nil)), Right(Left),
Right(Right(Left)), and so on. Therefore, the (unique) realizer of N(n) is the
unary representation of n. Other ways of defining natural numbers may induce
different representations. An example of a formula with interesting realizers is
the formula expressing that the sum of two natural number is a natural number,

Yo,y (N(z) = N(y) = N(z +y)). (4)

100 U. Berger and H. Tsuiki

It has type nat — nat — nat and is realized by a function f that, given realizers
of N(z) and N(y), returns a realizer of N(z + y), hence f performs addition of
unary numbers.

Ezample 2 (Non-terminating realizer). Let

D(:E)DZEfx;«éO%(:L‘SO\/mZO).

Then 7(D) = 2 where 2 =1+ 1, and ar D(z) unfolds to
a:7(2)A(x #0— (a=Left Az <0)V (a=Right Az > 0)).

Therefore, D(z) is realized by Left if z < 0 and by Right if x > 0. If x = 0, any
element of 7(2) realizes D(z), in particular L. Hence, nonterminating programs,
which, by Lemma 3 (4), denote L, realize D(z). In contrast, strict formulas are
never realized by a nonterminating program, as shown in Lemma 3 (2).

5.2 Partial correctness and concurrency

We explain realizability for B|4 and || (B) and show that the associated proof
rules are sound.

As we have seen in Example 2, a realizer of an implication A — B where
A is a Harrop formula is realized by a ‘conditionally correct’ program M, that
is, if H(A), then M realizes B, but otherwise no condition is imposed on M, in
particular M may be non-terminating. However, M may terminate but fail to
realize B. This means that termination of a realizer of A — B is not a sufficient
condition for correctness (correctness meaning to realize B). But, as explained
in the Introduction, this is what we need to concurrently realize a formula. The
definition of realizability for the new logical operator | (shown in Fig. 3) achieves
exactly this: A realizer of a restriction B|4 is ‘partially correct’ in the sense that
it is correct iff it terminates. By Lemma 3 (4), for a program M to realize B
means that M has type 7(B), and if A is realizable then all the computations of
M are productive, and conversely, if M has a productive computation then M
always (that is, independently of the realizability of A) realizes B.

To highlight the difference between restriction and implication in a more
concrete situation, consider (A V B)|a vs. A — (A V B) where A is Harrop.
Clearly Left realizes A — (A V B), but in general (A V B)|4 is not realizable.
Note that Left even realizes A = (AV B) where —» is Schwichtenberg’s uniform
implication [39], hence restriction is also different from uniform implication.

The intuition of Amb(a,b) realizing ||(A) is that it is a pair of candidate
realizers at least one of which is productive, and each productive one is a realizer.

Lemma 4. The rules for restriction and concurrency are realizable.

Proof. The table below shows the realizers of each rule for the (most interesting)
case where the conclusion is non-Harrop, using the definitions

leftright 2% \b.case b of {Left(.) — Left; Right(_) — Right},
mapamb Def Af. Ac. casecof {Amb(a,b) - Amb(fla, flb)}.

Extracting total Amb programs from proofs 101

Proofs of their correctness are in [11]. For (Rest-intro), (Rest-stab), and (Conc-

lem), classical logic is needed. Here, we set aseqb Def (Ac. b)la.

bI’(A—}(BQ\/Bl)) H(_\A—>B0/\Bl)

Rest-int A,By,B; H
(Ieftright b) r (BO v Bl)|A est-mtro (0, D1 arrop)

arBla fr(B — (B’|a)) Rest-bind (B non-Harrop) arB
(fla)r B'|4 ((aseq f)r B'|4 (B Harrop)) ar B|a

r(A—= A) arBl|a Restanti br Bla rAR .
ar Bl est-antimon br B est-mp

bI‘B|A

Rest-efq W Rest-stab
——A

Rest-return

lr B|False

arBla brB|oa G | ar A
Amb(a,b)r |[(B) "™ "Amb(a, L)r ||(A

fr(A— B) crll(A) Conc-mp (A non-Harrop)
(mapamb f ¢)r |[(B) (Amb(f, L)r||(B) (A Harrop))

) Conc-return

Lemma 5. CFP derives the following rules. The rules are displayed together
with their extracted realizers.

; ar Bola, brBila, H(—(4gV 4))

(1)~ Amb(Left|a, Right|b) || (Bo v B1)
ar(BVC)|p

(2) casea of {Left(_) — L;Right(b) = b} rC|psr-5

(C strict)

Ezample 8. Continuing Example 2, we modify D(z) to

D' (z) 2 (2 <0V 2> 0)|aso.

A realizer of D’(x), which has type 2, may or may not terminate (non-termination
occurs when 2 = 0). However, in case of termination, the result is guaranteed to
realize x < 0V x > 0. Note that, a realizer of D(z) also has type 2 and may or
may not terminate, but there is no guarantee that it realizes x < 0V x > 0 when
it does terminate. Nevertheless, D C D’ follows from (Rest-intro) (since = # 0
implies z < 0 Az > 0) and is realized by leftright. D’ C D holds trivially.

Example 4. This builds on the examples 2 and 3 and will be used in Sect. 6. Let

t(z) = 1 — 2|z| and consider the predicates E(x) Def D(z) AD(t(z)) and

ConSD(z) &' [|(z <0V z >0)V |z < 1/2).

102 U. Berger and H. Tsuiki

We show E C ConSD: From E(z) and Example 3 we get D’(z) and D’ (t(z))
which unfolds to (z < 0V x > 0)[z20 and (Jz[> 1/2 V |z < 1/2)j5£1/2-
By Lemma 5 (2), (|z] < 1/2)|z/<1/2- Since ==((z # 0) V |z| < 1/2), we have
ConSD(z) by Lemma 5 (1). Moreover, 7(E) = 2 x 2 and 7(ConSD) = A(3)

where 3 Def 2 + 1. The extracted realizer of E C ConSD is

conSD =" \c.case c of {Pair(a,b) — Amb(Left|(leftright a),
Right|(casebof {Left(_) — L;Right(.) — Nil}))}

of type 7(E C ConSD) = 2 x 2 — A(3). Explanation of this program: a is Left
or Right depending on whether z < 0 or > 0 but may also be L if z =0. b is
Left or Right depending on whether |z| < 1/2 or |z| > 1/2 but may also be L if
|x] = 1/2. Since x = 0 and x = 1/2 do not happen simultaneously, by evaluating
a and b concurrently, we obtain one of them from which we can determine one
of the cases <0, z >0, or |z| < 1/2.

5.3 Soundness and program extraction

As we did in the above example, one can extract from any CFP-proof of a formula
a program that realizes it. This property is called the Soundness Theorem of
realizability. Its proof is the same as for IFP [12] but extended by the rules for
the new logical operators whose realizability we proved in Sects. 5.2.

Theorem 3 (Soundness Theorem I). From a CFP-proof of a formula A
from a set of axioms one can extract a program M of type T(A) (which is a
regular type) such that RIFP proves M r A from the same azioms.

In CFP, we have a second Soundness Theorem which ensures the correctness
of all results of fair computation paths of an extracted program M. More pre-
cisely, correctness of M means that all d € data([M]) realize the formula A~
obtained from A by deleting all concurrency operators ||. Since A~ is an IFP
formula, the Theorem relates the realizability interpretations of CFP and IFP.

However, such a correctness result only holds for formulas whose realizers do
not contain Amb in the scope of a lambda-abstraction. This restriction is en-
forced by the following syntactic admissibility condition: An expression is called
admissible if it contains neither free predicate variables nor restrictions (|), and
all occurrences of concurrency (]|) are strictly positive and at non-F-position.
Here, the notion of a subexpression at F-position in a CFP expression is de-
fined inductively by three rules: (i) A subexpression of the form A — B where
A and B are both non-Harrop is at F-position. (ii) A subexpression OAX @
(O € {u,v}) is at F-position if @ has a free occurrence of X at F-position. (iii)
A subexpression within a subexpression at F-Position is at F-position.

For example, || (u(AX Az (x = 0V Vy (N(y) = X(f(z,v)))))) is admissible,
whereas p(AX Az [|(z = 0V Vy (N(y) — X(f(x,y))))) is not. The predicate
ConSD in Example 4 is admissible.

Theorem 4 (Faithfulness). If a € D realizes an admissible formula A, then
all d € data(a) realize A~.

Extracting total Amb programs from proofs 103

Theorems 3 and 4 imply:

Theorem 5 (Soundness Theorem II). From a CFP proof of an admissible
formula A from a set of axioms one can extract a program M : 7(A) such that
RCFP proves Vd € data([M])dr A~ from the same set of axioms.

Thms. 5 and 1, together with and classical soundness (see Sect. 4.3), yield:

Theorem 6 (Program Extraction). From a CFP proof of an admissible for-
mula A from a set of axioms one can extract a program M : T(A) such that for
any computation M = My L8 M, B ooy Uien(M;) p realizes A~ in every model
of the axioms.

6 Application

As our main case study, we extract a concurrent conversion program between
two representations of real numbers in [-1, 1], the signed digit representation and
infinite Gray code. In the following, we also write d : p for Pair(d, p).

The signed digit representation is an extension of the usual binary expansion
that uses the set SD = {=1,0,1} of signed digits. The following predicate S(z)
expresses coinductively that = has a signed digit representation.

S(z) £ |z| <1A3d € SDS(2z —d),
with SD(d) %' (d = —1vd = 1) vV d = 0. The type of S is 7(S) = 3“ where
g 2! (1+1)+1 and 0¥ 2 fix .6 x «, and its realizability interpretation is
prS(z) £ |z|<1AIdeSDI (p=d:p Ap'rS(2r—d))

which expresses indeed that p is a signed digit representation of x, that is,
p=dy:di:...withd; € SDandz =), d;2- 0+ Here, we identified the
three digits d = —1, 1,0 with their realizers Left(Left), Left(Right), Right.
Infinite Gray code ([18,42]) is an almost redundancy free representation of
real numbers in [-1, 1] using the partial digits {—1,1,1}. A stream p = d :
dy : ... of such digits is an infinite Gray code of z iff d; = sgb(t‘(z)) where
t is the tent function t(x) = 1 — |22| and sgb is a multi-valued version of the
sign function for which sgb(0) is any element of {—1,1, L} (see also Example 4).
One easily sees that t'(z) = 0 for at most one i. Therefore, this coding has
little redundancy in that the code is uniquely determined and total except for at
most one digit which may be undefined. Hence, infinite Gray code is accessible
through concurrent computation with two threads. The coinductive predicate
G(z) = |z| < 1AD(z) A G(t(x)),
where D is the predicate D(x) et o #0 = (zx <0Vz > 0) from Exam-
ple 2, expresses that x has an infinite Gray code (identifying —1,1, L with
Left, Right, 1). Indeed, 7(G) = 2% and

prG(z) = x| < 1A, p (p=d: p'Alx#0—dr(z <0vVe > 0)) Ap' rG(t(z))).

104 U. Berger and H. Tsuiki

In [12], the inclusion S C G was proved in IFP and a sequential conversion
function from signed digit representation to infinite Gray code extracted. On
the other hand, a program producing a signed digit representation from an in-
finite Gray code cannot access its input sequentially from left to right since it
will diverge when it accesses L. Therefore, the program needs to evaluate two
consecutive digits concurrently to obtain at least one of them. With this idea in
mind, we define a concurrent version of S as

Sa(z) £ |z| < 1A [[(3d € SD Sy (22 — d))

with 7(S2) = fixa. A(3 x a) and prove G C Sy in CFP (Thm. 7). Then we
can extract from the proof a concurrent algorithm that converts infinite Gray
code to signed digit representation. Note that, while the formula G C S5 is not
admissible (it contains || at an F-position), the formula So(x) is. Therefore, if
for some real number z we can prove G(z), the proof of G C Sy will give us
a proof of Sy(z) to which Theorem 6 applies. Since Sq(x)~ is S(x), this means
that we have a nondeterministic program all whose fair computation paths will
result in a (deterministic) signed digit representation of x.

Now we carry out the proof of G C Ss. For simplicity, we use pattern match-

ing on constructor expressions for defining functions. For example, we write

f(a:t) 200 for £ Az. case z of {Pair(a,t) - M}.

The crucial step in the proof is accomplished by Example 4, since it yields
nondeterministic information about the first digit of the signed digit represen-
tation of z, as expressed by the predicate

ConSD(z) &' [|(z <0V z >0)V |z < 1/2).

Lemma 6. G C ConSD.
Proof. G(z) implies D(x) and D(t(z)), and hence ConSD, by Example 4.

The extracted program gscomp : 2% = A(3) uses the program conSD defined in

Example 4:
Def

gscomp (a:b:p) = conSD (Pair(a,b)).
We also need the following closure properties of G:
Lemma 7. Assume G(x). Then:
(1) G(t(x)), G(|z|), and G(—x);
(2) if © >0, then G(2x — 1) and G(1 — x);
(3) if || <1/2, then G(2z).

Proof. This follows directly from the definition of G and elementary properties
of the tent function t. The extracted programs consist of simple manipulations
of the given digit stream realizing G(x), concerning only its tail and first two
digits. No nondeterminism is involved. A detailed proof is in [11].

Theorem 7. G C S,.

Extracting total Amb programs from proofs 105

Def

Proof. By coinduction. Setting A(z) = 3d € SD G(2z — d), we have to show

G(x) = 2] < 1A (). (5)
Assume G(z). Then ConSD(x), by Lemma 6. Therefore, it suffices to show
ConSD(z) — [[(A(z)) (6)
which, with the help of the rule (Conc-mp), can be reduced to
(x<0VvVax>0V|z]<1/2) - A(x). (7)

(7) can be easily shown using Lemma 7: If < 0, then t(z) = 2z + 1. Since
G(t(z)), we have G(2z — d) for d = —1. If > 0, then G(2z — d) for d =1 by
(2). If |z|] < 1/2, then G(2z — d) for d = 0 by (3).

The program onedigit : 2¢ = 3 = 3 x 2% extracted from the proof of (7)
from the assumption G(z) is

onedigit (a:b:p) c 2 case cof {Left(d) — casedof {
Left(.) — Pair(—1,b: p);
Right(-) — Pair(1, (not b) : p) };
Right(_) — Pair(0,a : (nh p))}
not a %' case a of {Left(.) — Right;
Right(.) — Left}
nh (a: p) f(not a):p

This is lifted to a proof of (6) using mapamb (the realizer of (Conc-mp)). Hence
the extracted realizer s : 2 = A(3 x 2¥) of (5) is

sp Def mapamb (onedigit p) (gscomp p)

The main program extracted from the proof of Theorem 7 is obtained from
the step function s by a special form of recursion, commonly known as coiteration.
Formally, we use the realizer of the coinduction rule COIND(&Psg,, G) where Pg,
is the operator used to define G as largest fixed point, i.e.

s, ZAX Az|z| < 1A |(3d € SD X (22 — d)).

The realizer of coinduction (whose correctness is shown in [12]) also uses a pro-
gram mon : (ax = ay) = A(8Xxax) = A(3xay) extracted from the canonical
proof of the monotonicity of @g,:

mon f p = mapamb (mon’ f) p
where mon’ f (a:t)=a: ft

106 U. Berger and H. Tsuiki

Putting everything together, we obtain the infinite Gray code to signed digit
representation conversion program gtos : 2¥ = fixa. A(3 X)

gtos = (mon gtos) o's

Using the equational theory of RIFP, one can simplify gtos to the following
program. The soundness of RIFP axioms with respect to the denotational se-
mantics and the adequacy property of our language guarantees that these two
programs are equivalent.

gtos (a:b:t) = Amb(
(caseaof {Left(_) — —1: gtos (b: t);
Right(-) — 1: gtos((not b) : £)}),
(casebof {Right(_) — 0 : gtos(a : (nh ¢))})).
Left(_) — L})).

In [43], a Gray-code to signed digit conversion program was written with
the locally angelic Amb operator that evaluates the first two cells a and b in
parallel and continues the computation based on the value obtained first. In that
program, if the value of b is first obtained and it is Left, then it has to evaluate a
again. With globally angelic choice, as the above program shows, one can simply
neglect the value to use the value of the other thread. Globally angelic choice also
has the possibility to speed up the computation if the two threads of Amb are
computed in parallel and the whole computation based on the secondly-obtained
value of Amb terminates first.

7 Implementation

Since our programming language can be viewed as a fragment of Haskell, we can
execute the extracted program in Haskell by implementing the Amb operator
with the Haskell concurrency module. We comment on the essential points of
the implementation. The full code is available from [3].

First, we define the domain D as a Haskell data type:

data D = Nil | Le D | Ri D | Pair(D, D) | Fun(D -> D) | Amb(D, D)

The ~»-reduction, which preserves the Phase I denotational semantics and re-
duces a program to a w.h.n.f. with the leftmost outermost reduction strategy,
coincides with reduction in Haskell. Thus, we can identify extracted programs
with programs of type D that compute that phase.

The ~> reduction that concurrently calculates the arguments of Amb can
be implemented with the Haskell concurrency module. In [19], the (locally an-
gelic) amb operator was implemented in Glasgow Distributed Haskell (GDH).
Here, we implemented it with the Haskell libraries Control.Concurrent and
Control.Exception as a simple function ambL :: [b] -> I0 b that concur-
rently evaluates the elements of a list and writes the result first obtained in a
mutable variable.

Extracting total Amb programs from proofs 107

Finally, the function ed :: D -> I0 D produces an element of data(a) from
a € D by activating ambL for the case of Amb(a,b). It corresponds to ~»-
reduction though it computes arguments of a pair sequentially. This function is
nondeterministic since the result of executing ed (Amb a b) depends on which
of the arguments a,b delivers a result first. The set of all possible results of ed a
corresponds to the set data(a).

We executed the program extracted in Section 6 with ed. As we have noted,
the number 0 has three Gray-codes (i.e., realizers of G(0)): a = L:1:(—1)¥,
b=1:1:(—-1)“, and ¢ = —1:1:(—1)¥. On the other hand, the set of signed digit
representations of 0 is AU BUC where A = {0¢}, B = {0*:1:(-1)* | k > 0},
and C = {0F:(~1):1¥ | k > 0}, i.e., AU B UC is the set of realizers of S(0).
One can calculate

gtos(a) = Amb(L,0: Amb(L,0:...))

and data(gtos(a)) = A. Thus gtos(a) is reduced uniquely to 0:0: ... by the
operational semantics. On the other hand, one can calculate data(gtos(b)) =
AU B and data(gtos(c)) = AUC. They are subsets of the set of realizers of S(0)
as Theorem 5 says, and gtos(b) is reduced to an element of AU B as Theorem 6
says.

We wrote a program that produces a {—1, 1, L}-sequence with the speed of
computation of each digit (—1 and 1) be controlled. Then, apply it to gtos and
then to ed to obtain expected results.

8 Conclusion

We introduced the logical system CFP by extending IFP [12] with two propo-
sitional operators B|s and ||(A), and developed a method for extracting non-
deterministic and concurrent programs that are provably total and satisfy their
specifications.

While TFP already imports classical logic through nc-axioms that need only
be true classically, in CFP the access to classical logic is considerably widened
through the rule (Conc-lem) which, when interpreting B|4 as A — B and identi-
fying || (A) with A, is constructively invalid but has nontrivial nondeterministic
computational content.

We applied our system to extract a concurrent translation from infinite Gray
code to the signed digit representation, thus demonstrating that this approach
not only is about program extraction ‘in principle’ but can be used to solve
nontrivial concurrent computation problems through program extraction.

After an overview of related work, we conclude with some ideas for follow-up
research.

8.1 Related work

The CSL 2016 paper [5] is an early attempt to capture concurrency via pro-
gram extraction and can be seen as the starting point of our work. Our main

108 U. Berger and H. Tsuiki

advances, compared to that paper, are that it is formalized as a logic for concur-
rent execution of partial programs by a globally angelic choice operator which
is formalized by introducing a new connective B|4, and that we are able to ex-
press bounded nondeterminism with complete control of the number of threads
while [5] modelled nondeterminism with countably infinite branching, which is
unsuitable or an overkill for most applications. Furthermore, our approach has a
typing discipline, a sound and complete small-step reduction, and has the ability
to switch between global and local nondeterminism (see Sect. 8.2 below).

As for the study of angelic nondeterminism, it is not easy to develop a de-
notational semantics as we noted in Section 2, and it has been mainly studied
from the operational point of view, e.g., notions of equivalence or refinement of
processes and associated proof methods, which are all fundamental for correct-
ness and termination [28,33,27,37,16,29]. Regarding imperative languages, Hoare
logic and its extensions have been applied to nondeterminism and proving total-
ity from the very beginning ([2] is a good survey on this subject). [31] studies
angelic nondeterminism with an extension of Hoare Logic.

There are many logical approaches to concurrency. An example is an ap-
proach based on extensions of Reynolds’ separation logic [36] to the concurrent
and higher-order setting [34,13,25]. Logics for session types and process calculi
[45,15,26] form another approach that is oriented more towards the formulae-as-
types/proofs-as-programs [22,44] or rather proofs-as-processes paradigm [1]. All
these approaches provide highly specialized logics and expression languages that
are able to model and reason about concurrent programs with a fine control of
memory and access management and complex communication patterns.

8.2 Modelling locally angelic choice

We remarked earlier that our interpretation of Amb corresponds to globally
angelic choice. Surprisingly, locally angelic choice can be modelled by a slight
modification of the restriction and the total concurrency operators: We simply
replace A by the logically equivalent formula A V False, more precisely, we set

Bl Def (B V False)|4 and ||'(A) Def 1l(A Vv False). Then the proof rules in
Sect. 4 with | and || replaced by |" and ||’, respectively but without the strictness
condition, are theorems of CFP. To see that the operator ||’ indeed corresponds
to locally angelic choice it is best to compare the realizers of the rule (Conc-mp)
for || and ||’. Assume A, B are non-Harrop and f is a realizer of A — B. Then,
if Amb(a,b) realizes || (A), then Amb(fla, f|b) realizes ||(B). This means that
to choose, say, the left argument of Amb as a result, ¢ must terminate and so
must the ambient (global) computation fla. On the other hand, the program
extracted from the proof of (Conc-mp) for || takes a realizer Amb(a, b) of ||’ (A)
and returns Amb((upo fodown)la, (upo f odown)|b) as realizer of ||"(B), where

up and down are the realizers of B — (B V False) and (AV False) — A, namely,

up 2 . Left(a) and down 2 \c. case cof {Left(a) — a}. Now, to choose

the left argument of Amb, it is enough for a to terminate since the non-strict
operation up will immediately produce a w.h.n.f. without invoking the ambient

Extracting total Amb programs from proofs 109

computation. By redefining realizers of B|4 and |[(A) as realizers of B|/, and
1l"(A) and the realizers of the rules of CFP as those extracted from the proofs of
the corresponding rules for | and ||’, we have another realizability interpretation
of CFP that models locally angelic choice.

8.3 Markov’s principle with restriction

So far, (Rest-intro) is the only rule that derives a restriction in a non-trivial way.
However, there are other such rules, for example

Vo € N(P(z) V =P(x))
3z € N P(x)|3eN P(a)

Rest-Markov

If P(z) is Harrop, then (Rest-Markov) is realized by minimization. More pre-
cisely, if f realizes Vo € N(P(z) V ~P(x)), then min(f) realizes the formula
3z € N P(2)|5zen p(2), Where min(f) computes the least & € N such that
f k = Left if such k exists, and does not terminate, otherwise. One might expect
as conclusion of (Rest-Markov) the formula 3z € N P(2)|(~-3zeN P(x))- However,
because of (Rest-stab) (which is realized by the identity), this wouldn’t make a
difference. The rule (Rest-Markov) can be used, for example, to prove that Har-
rop predicates that are recursively enumerable (re) and have re complements are
decidable. From the proof one can extract a program that concurrently searches
for evidence of membership in the predicate and its complement.

8.4 Further directions for research

The undecidability of equality of real numbers, which is at the heart of our case
study on infinite Gray code, is also a critical point in Gaussian elimination where
one needs to find a non-zero entry in a non-singular matrix. As shown in [10], our
approach makes it possible to search for such ‘pivot elements’ in a concurrent
way. A further promising research direction is to extend the work on coinductive
presentations of compact sets in [41] to the concurrent setting.

Acknowledgements This work was supported by IRSES Nr. 612638 CORCON
and Nr. 294962 COMPUTAL of the European Commission, the JSPS Core-to-
Core Program, A. Advanced research Networks and JSPS KAKENHI 15K00015
as well as the Marie Curie RISE project CID (H2020-MSCA-RISE-2016-731143).

References

1. Abramsky, S.: Proofs as processes. Theoretical Computer Science 135(1), 5-9
(Apr 1992). https://doi.org/10.1016,/0304-3975(94)00103-0

2. Apt, K., Olderog, E.: Fifty years of Hoare’s logic. Formal Aspects of Computing
31, 751 — 807 (2019). https://doi.org/10.1007/s00165-019-00501-3

3. Berger, U.: CFP (concurrent fixed point logic) repository, https://github.com/
ujberger/cfp

https://doi.org/10.1016/0304-3975(94)00103-0
https://doi.org/10.1016/0304-3975(94)00103-0
https://doi.org/10.1007/s00165-019-00501-3
https://doi.org/10.1007/s00165-019-00501-3
https://github.com/ujberger/cfp
https://github.com/ujberger/cfp

110

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

U. Berger and H. Tsuiki

Berger, U.: From coinductive proofs to exact real arithmetic: theory and appli-
cations. Logical Methods in Comput. Sci. 7(1), 1-24 (2011). https://doi.org/10.
2168/LMCS-7(1:8)2011

Berger, U.: Extracting Non-Deterministic Concurrent Programs. In: Talbot, J.M.,
Regnier, L. (eds.) 25th EACSL Annual Conference on Computer Science Logic
(CSL 2016). Leibniz International Proceedings in Informatics (LIPIcs), vol. 62,
pp- 26:1-26:21. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-
many (2016). https://doi.org/10.4230/LIPIcs.CSL.2016.26

Berger, U., Miyamoto, K., Schwichtenberg, H., Seisenberger, M.: Minlog - a tool
for program extraction for supporting algebra and coalgebra. In: CALCO-Tools.
Lecture Notes in Computer Science, vol. 6859, pp. 393—-399. Springer (2011). https:
//doi.org/10.1007/978-3-642-22944-2_29

Berger, U., Petrovska, O.: Optimized program extraction for induction and coin-
duction. In: CiE 2018: Sailing Routes in the World of Computation. LNCS,
vol. 10936, pp. 70-80. Springer Verlag, Berlin, Heidelberg, New York (2018).
https://doi.org/10.1007/978-3-319-94418-0_7

. Berger, U., Petrovska, O., Tsuiki, H.: Prawf: An interactive proof system for pro-

gram extraction. In: Anselmo, M., Vedova, G., Manea, F., Pauly, A. (eds.) Beyond
the Horizon of Computability - 16th Conference on Computability in Europe, CiE
2020. Lecture Notes in Computer Science, vol. 12098, pp. 137-148. Springer (2020).
https://doi.org/10.1007/978-3-030-51466-2_12

Berger, U., Seisenberger, M.: Proofs, programs, processes. Theory of Computing
Systems 51(3), 213-329 (2012). https://doi.org/10.1007/s00224-011-9325-8
Berger, U., Seisenberger, M., Spreen, D., Tsuiki, H.: Concurrent Gaussian elimi-
nation. To appear (2022)

Berger, U., Tsuiki, H.: Extracting total amb programs from proofs (2021), https:
//arxiv.org/abs/2104.14669

Berger, U., Tsuiki, H.: Intuitionistic fixed point logic. Annals of Pure and Applied
Logic 172(3), 102903 (2021). https://doi.org/10.1016/j.apal.2020.102903
Brookes, S.: A semantics for concurrent separation logic. Theoretical Computer
Science 375, 227-370 (2007). https://doi.org/10.1016/j.tcs.2006.12.034

Broy, M.: A theory for nondeterminism, parallelism, communication, and concur-
rency. Theoretical Computer Science 45, 1 — 61 (1986). https://doi.org/10.1016/
0304-3975(86)90040-X

Caires, L., Pfenning, F., Toninho, B.: Linear logic propositions as session types.
Mathematical Structures in Computer Science 26, 367-423 (2016). https://doi.
org/10.1017/S0960129514000218

Carayol, A., Hirschkoff, D., Sangiorgi, D.: On the representation of mccarthy’s
amb in the m-calculus. Theoretical Computer Science 330(3), 439 — 473 (2005).
https://doi.org/10.1016/j.tcs.2004.10.005, expressiveness in Concurrency

Clinger, W., Halpern, C.: Alternative semantics for McCarthy’s amb. In:
Brookes S.D., Roscoe A.W., W.G. (ed.) Seminar on Concurrency. CONCUR-
RENCY 1984. Lecture Notes in Computer Science, vol. 197. Springer (1985).
https://doi.org/10.1007/3-540-15670-4_22

Di Gianantonio, P.: An abstract data type for real numbers. Theoretical Computer
Science 221(1-2), 205-326 (1999). https://doi.org/10.1016/S0304-3975(99)00036-5
Du Bois, A., Pointon, R., Loidl, H.-W., Trinder, P.: Implementing declarative
parallel bottom-avoiding choice. In: 14th Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD 2002), 28-30 October 2002, Vi-
toria, Espirito Santo, Brazil. pp. 82-92. IEEE Computer Society (2002). https:
//doi.org/10.1109/CAHPC.2002.1180763

https://doi.org/10.2168/LMCS-7(1:8)2011
https://doi.org/10.2168/LMCS-7(1:8)2011
https://doi.org/10.2168/LMCS-7(1:8)2011
https://doi.org/10.2168/LMCS-7(1:8)2011
https://doi.org/10.4230/LIPIcs.CSL.2016.26
https://doi.org/10.4230/LIPIcs.CSL.2016.26
https://doi.org/10.1007/978-3-642-22944-2_29
https://doi.org/10.1007/978-3-642-22944-2_29
https://doi.org/10.1007/978-3-642-22944-2_29
https://doi.org/10.1007/978-3-642-22944-2_29
https://doi.org/10.1007/978-3-319-94418-0_7
https://doi.org/10.1007/978-3-319-94418-0_7
https://doi.org/10.1007/978-3-030-51466-2_12
https://doi.org/10.1007/978-3-030-51466-2_12
https://doi.org/10.1007/s00224-011-9325-8
https://doi.org/10.1007/s00224-011-9325-8
https://arxiv.org/abs/2104.14669
https://arxiv.org/abs/2104.14669
https://doi.org/10.1016/j.apal.2020.102903
https://doi.org/10.1016/j.apal.2020.102903
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1016/0304-3975(86)90040-X
https://doi.org/10.1016/0304-3975(86)90040-X
https://doi.org/10.1016/0304-3975(86)90040-X
https://doi.org/10.1016/0304-3975(86)90040-X
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.1016/j.tcs.2004.10.005
https://doi.org/10.1016/j.tcs.2004.10.005
https://doi.org/10.1007/3-540-15670-4_22
https://doi.org/10.1007/3-540-15670-4_22
https://doi.org/10.1016/S0304-3975(99)00036-5
https://doi.org/10.1016/S0304-3975(99)00036-5
https://doi.org/10.1109/CAHPC.2002.1180763
https://doi.org/10.1109/CAHPC.2002.1180763
https://doi.org/10.1109/CAHPC.2002.1180763
https://doi.org/10.1109/CAHPC.2002.1180763

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Extracting total Amb programs from proofs 111

Escardo, M.H.: PCF extended with real numbers. Theoretical Computer Science
162, 79-115 (1996). https://doi.org/10.1016/0304-3975(95)00250-2

Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Con-
tinuous Lattices and Domains, Encyclopedia of Mathematics and its Applications,
vol. 93. Cambridge University Press (2003)

Howard, W.A.: The formulae-as-types notion of construction. In: Seldin, J.P., Hind-
ley, J.R. (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, pp. 479-490. Academic Press (1980)

Hughes, J., Moran, A.: A semantics for locally bottom-avoiding choice. In: Launch-
bury, J., Sansom, P.M. (eds.) Functional Programming, Glasgow 1992, Proceed-
ings of the 1992 Glasgow Workshop on Functional Programming, Ayr, Scot-
land, UK, 6-8 July 1992. pp. 102-112. Workshops in Computing, Springer (1992).
https://doi.org/10.1007/978-1-4471-3215-8_9

Hughes, J., O’Donnell, J.: Expressing and reasoning about non-deterministic func-
tional programs. In: Davis, K., Hughes, J. (eds.) Functional Programming, Pro-
ceedings of the 1989 Glasgow Workshop, 21-23 August 1989, Fraserburgh, Scotland,
UK. pp. 308-328. Workshops in Computing, Springer (1989)

Jung, R., Krebbers, R., Jourdan, J.H., Bizjak, A., Birkedal, L., Dreyer, D.: Iris
from the ground up. Journal of Functional Programming 28, 1-73 (2018). https:
//doi.org/10.1017/S0956796818000151

Kouzapas, D., Nobuko, Y., Hu, R., Honda, K.: On asynchronous eventful ses-
sion semantics. Mathematical Structures in Computer Science 26, 303-364 (2016).
https://doi.org/10.1017/5S096012951400019X

Lassen, S.B.: Normal Form Simulation for McCarthy’s Amb. Electronic Notes in
Theoretical Computer Science 155, 445 — 465 (2006). https://doi.org/10.1016/j.
entcs.2005.11.068, proceedings of the 21st Annual Conference on Mathematical
Foundations of Programming Semantics (MFPS XXI)

Lassen, S.B., Moran, A.: Unique Fixed Point Induction for McCarthy’s Amb.
In: Kutylowski, M., Pacholski, L., Wierzbicki, T. (eds.) Mathematical Founda-
tions of Computer Science 1999, 24th International Symposium, MFCS’99, Szk-
larska Poreba, Poland, September 6-10, 1999, Proceedings. Lecture Notes in Com-
puter Science, vol. 1672, pp. 198-208. Springer (1999). https://doi.org/10.1007/
3-540-48340-3_-18

Levy, P.B.: Amb breaks Well-Pointedness, Ground Amb doesn’t. Electronic Notes
in Theoretical Computer Science 173, 221 — 239 (2007). https://doi.org/10.1016/
j-entcs.2007.02.036, proceedings of the 23rd Annual Conference on Mathematical
Foundations of Programming Semantics (MFPS XXIII)

Luckhardt, H.: A fundamental effect in computations on real numbers. Theoretical
Computer Science 5(3), 321-324 (1977). https://doi.org/10.1016/0304-3975(77)
90048-2

Mamouras, K.: Synthesis of strategies and the hoare logic of angelic nondeter-
minism. In: Pitts, A.M. (ed.) Foundations of Software Science and Computa-
tion Structures - 18th International Conference, FoSSaCS 2015. Lecture Notes in
Computer Science, vol. 9034, pp. 25-40. Springer (2015). https://doi.org/10.1007/
978-3-662-46678-0-2

McCarthy, J.: A basis for a mathematical theory of computation. In: Braffort,
P., Hirschberg, D. (eds.) Computer Programming and Formal Systems, Studies in
Logic and the Foundations of Mathematics, vol. 35, pp. 33 — 70. Elsevier (1963).
https://doi.org/10.1016/S0049-237X(08)72018-4

https://doi.org/10.1016/0304-3975(95)00250-2
https://doi.org/10.1016/0304-3975(95)00250-2
https://doi.org/10.1007/978-1-4471-3215-8_9
https://doi.org/10.1007/978-1-4471-3215-8_9
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S096012951400019X
https://doi.org/10.1017/S096012951400019X
https://doi.org/10.1016/j.entcs.2005.11.068
https://doi.org/10.1016/j.entcs.2005.11.068
https://doi.org/10.1016/j.entcs.2005.11.068
https://doi.org/10.1016/j.entcs.2005.11.068
https://doi.org/10.1007/3-540-48340-3_18
https://doi.org/10.1007/3-540-48340-3_18
https://doi.org/10.1007/3-540-48340-3_18
https://doi.org/10.1007/3-540-48340-3_18
https://doi.org/10.1016/j.entcs.2007.02.036
https://doi.org/10.1016/j.entcs.2007.02.036
https://doi.org/10.1016/j.entcs.2007.02.036
https://doi.org/10.1016/j.entcs.2007.02.036
https://doi.org/10.1016/0304-3975(77)90048-2
https://doi.org/10.1016/0304-3975(77)90048-2
https://doi.org/10.1016/0304-3975(77)90048-2
https://doi.org/10.1016/0304-3975(77)90048-2
https://doi.org/10.1007/978-3-662-46678-0_2
https://doi.org/10.1007/978-3-662-46678-0_2
https://doi.org/10.1007/978-3-662-46678-0_2
https://doi.org/10.1007/978-3-662-46678-0_2
https://doi.org/10.1016/S0049-237X(08)72018-4
https://doi.org/10.1016/S0049-237X(08)72018-4

112

33.

34.

35.
36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

U. Berger and H. Tsuiki

Moran, A., Sands, D., Carlsson, M.: Erratic fudgets: a semantic theory for an em-
bedded coordination language. Science of Computer Programming 46(1), 99 — 135
(2003). https://doi.org/10.1016,/S0167-6423(02)00088-6, special Issue on Coordi-
nation Languages and Architectures

O’Hearn, P.: Resources, concurrency, and local reasoning. Theoretical Computer
Science 375(1), 271-307 (2007). https://doi.org/10.1016/j.tcs.2006.12.035

Pierce, B.C.: Types and Programming Languages. The MIT Press (2002)
Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science.
pp. 55-74. LICS ’02, IEEE Computer Society, Washington, DC, USA (2002). https:
//doi.org/10.1109/LICS.2002.1029817

Sabel, D., Schmidt-Schauss, M.: A call-by-need lambda calculus with locally
bottom-avoiding choice: context lemma and correctness of transformations. Math-
ematical Structures in Computer Science 18(3), 501-553 (2008). https://doi.org/
10.1017/S0960129508006774

Schwichtenberg, H.: Minlog. In: Wiedijk, F. (ed.) The Seventeen Provers of the
World. pp. 151-157. No. 3600 in Lecture Notes in Artificial Intell. (2006). https:
//doi.org/10.1016/j.jlap.2004.07.005

Schwichtenberg, H., Wainer, S.S.: Proofs and Computations. Cambridge University
Press (2012)

Sondergard, H., Sestoft, P.: Non-determinism in Functional Languages. The Com-
puter Journal 35(5), 514-523 (1992). https://doi.org/10.1093/comjnl/35.5.514
Spreen, D.: Computing with continuous objects: a uniform co-inductive approach.
Mathematical Structures in Computer Science 31(2), 144-192 (2021). https://doi.
org/10.1017/S0960129521000116

Tsuiki, H.: Real number computation through Gray code embedding. The-
oretical Computer Science 284(2), 467-485 (2002). https://doi.org/10.1016/
S0304-3975(01)00104-9

Tsuiki, H.: Real number computation with committed choice logic programming
languages. J. Log. Algebr. Program. 64(1), 61-84 (2005). https://doi.org/10.1016/
j-j1lap.2004.07.005

Wadler, P.: Propositions as sessions. Journal of Functional Programming 24, 384—
418 (2014). https://doi.org/10.1017/S095679681400001X

Wadler, P.: Propositions as types. Communications of the ACM 58(12), 75-84
(2014). https://doi.org/10.1145/2699407

Weihrauch, K.: Computable Analysis. Springer (2000)

https://doi.org/10.1016/S0167-6423(02)00088-6
https://doi.org/10.1016/S0167-6423(02)00088-6
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1017/S0960129508006774
https://doi.org/10.1017/S0960129508006774
https://doi.org/10.1017/S0960129508006774
https://doi.org/10.1017/S0960129508006774
https://doi.org/10.1016/j.jlap.2004.07.005
https://doi.org/10.1016/j.jlap.2004.07.005
https://doi.org/10.1016/j.jlap.2004.07.005
https://doi.org/10.1016/j.jlap.2004.07.005
https://doi.org/10.1093/comjnl/35.5.514
https://doi.org/10.1093/comjnl/35.5.514
https://doi.org/10.1017/S0960129521000116
https://doi.org/10.1017/S0960129521000116
https://doi.org/10.1017/S0960129521000116
https://doi.org/10.1017/S0960129521000116
https://doi.org/10.1016/S0304-3975(01)00104-9
https://doi.org/10.1016/S0304-3975(01)00104-9
https://doi.org/10.1016/S0304-3975(01)00104-9
https://doi.org/10.1016/S0304-3975(01)00104-9
https://doi.org/10.1016/j.jlap.2004.07.005
https://doi.org/10.1016/j.jlap.2004.07.005
https://doi.org/10.1016/j.jlap.2004.07.005
https://doi.org/10.1016/j.jlap.2004.07.005
https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1145/2699407
https://doi.org/10.1145/2699407

Extracting total Amb programs from proofs 113

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

) NRPA
P——
Check for

e Why3-do: The Way of Harmonious
Distributed System Proofs

Claudio Belo Lourengo! ® and Jorge Sousa Pinto? X

! Huawei Research Centre, United Kingdom, claudio.lourenco@huawei.com
2 HASLab/INESC TEC & Universidade do Minho, Portugal, jsp@di.uminho.pt

Abstract. We study principles and models for reasoning inductively
about properties of distributed systems, based on programmed atomic
handlers equipped with contracts. We present the Why3-do library, lever-
aging a state of the art software verifier for reasoning about distributed
systems based on our models. A number of examples involving invariants
containing existential and nested quantifiers (including Dijsktra’s self-
stabilizing systems) illustrate how the library promotes contract-based
modular development, abstraction barriers, and automated proofs.

1 Introduction

The formal verification of properties of distributed algorithms and protocols is
an important and notoriously difficult activity. The dominant approaches are:
(i) Automatic exploration of the state space, known as model checking [10,4],
a technique that can be used for both safety and liveness properties, expressed
using variants of temporal logic. Its application to distributed systems is a consol-
idated area that has held many significant results. However, the state explosion
phenomenon means that in practice only systems of modest size can be verified.
(ii) Deductive reasoning based on the use of inductive invariants. A number of
tools [26,18,13] now exist for the verification of single-threaded systems based
on first-order logic (FOL), loop invariants, and contracts, with solid theoretical
foundations [21,16]. Reasoning about distributed systems using inductive invari-
ants was, until recently, mostly a pen-and-paper activity, but tools like Verdi [42],
IronFleet [20], and Ivy [34] have made significant advances to this state of things
(see Section 7 for details). Relying on external provers (and in the case of Iron-
Fleet, on the Dafny verifier to check the sequential code), these tools support
verification of asynchronous message-passing systems based on atomic handlers,
reusable network/fault models, and different abstract specification mechanisms.

Based on the same principles, we propose in this paper a conceptual contract-
based framework for reasoning about distributed systems, as well as the Why3-do
library for the Why3 verifier [18]. Distinctive aspects of our approach include
the following:

— It allows for reasoning about distributed systems using a standard program
verification tool (rather than a dedicated tool or a proof assistant), and
methods and techniques that are standard for sequential software.

© The Author(s) 2022
I. Sergey (Ed.): ESOP 2022, LNCS 13240, pp. 114-142, 2022.
https://doi.org/10.1007/978-3-030-99336-8_5

http://orcid.org/0000-0001-8828-8843
http://orcid.org/0000-0002-0892-3577
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99336-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-99336-8_5

Why3-do: The Way of Harmonious Distributed System Proofs 115

— Systems and protocols are described algorithmically by means of programmed
handlers equipped with contracts that guarantee the inductiveness of invari-
ants. Thus Why3-do brings modular development using the popular pro-
gramming by contract methodology to the scope of distributed systems.

— Why3-do offers other system models in addition to message-passing. We
illustrate this in this paper by describing a locally shared memory model.

— It takes advantage of Why3’s state of the art proof management (including
replayability, bisection of hypotheses, and inconsistency detection); ability to
interact with all major proof tools (automated and interactive); and internal
transformations that allow for a combination of interactive and automated
development, avoiding the use of proof assistants for inductive proofs.

Contributions of the Paper. We contribute to the state of the art of dis-
tributed system verification, and in general to software verification with Why3:

(i) We introduce (Section 3) principles for modular verification of distributed
systems based on clonable models, capturing in a uniform way different system
semantics. Each model declares a set of handlers equipped with contracts.

(ii) We present (sections 4, 5, 6) a Why3 library with different system models and
fault semantics. A concrete system is defined by cloning a model and defining
its handlers and invariants. Handler implementations are required to respect the
contracts declared in the model, which in particular ensures inductiveness of the
invariants. Although Dafny contracts can also be used in IronFleet, the novelty
in Why3-do is the presence of dedicated contracts in the library models, that
are used to automatically generate verification conditions when cloning.

(iii) We introduce (Section 5) a model-independent specification mechanism
based on system traces, to act as abstraction barrier between specification (ob-
servable properties) and implementation. Traces are a common specification
mechanism; the novelty here is the support for modular development through
the use of model-independent clonable specification modules; different implemen-
tations can be given for a specification, using different system models.

(iv) We present (Section 6) a locally-shared memory model illustrating how our
approach is applied uniformly beyond message-passing models. As far as we are
aware Verdi, IronFleet and Ivy work with message-passing systems only.

(v) We formalize and verify one of Dijsktra’s self-stabilizing systems [15] and
verify its closure (safety) and convergence (liveness) properties using Why3-do.
This verification is of independent interest: our proof of convergence, using a
measure function, takes advantage of SMT solvers and significantly improves on
previous, much more laborious efforts using proof assistants (Section 6).

(vi) We propose two techniques for reasoning with inductive invariants contain-
ing existential and nested quantifiers: stepwise bounded validation (Section 6),
and the use of dual definitions containing both code and logic (sections 4 and
6). Together with Why3’s ability to interact with multiple solvers with different
strengths, dual definitions allow for more robust and natural specifications, as
well as for easier automated proofs, without the need for tricks like quantifier
hiding [20]. Both techniques are explained by means of examples.

116 Cldaudio Belo Lourenco and Jorge Sousa Pinto P<

module MapList
use int.Int, list.List, list.Mem, list.Length, list.NthNoOpt

val function f (x:int) : int requires {x >= 0} ensures {result >= 0}
predicate nonNeg (l:list int) = forall x :int. mem x 1 -> x >= 0

let rec map_list (1l:list int) : list int
requires { nonNeg 1 }
ensures { nonNeg result /\ forall j. 0<=j<length 1 -> nth j result = f(ath j 1) }
variant { 1 }
= match 1 with
| Nil -> Nil
| Cons h t -> Cons (f h) (map_list t)
end
end (* module MapList *)

module MapFib
use int.Int, list.List, list.Mem, list.Length, list.NthNoOpt, ref.Ref

inductive fibpred int int =

| zero : fibpred 0 O

| one : fibpred 1 1

| oth : forall n rl r2 :int. n>=2 -> fibpred (n-1) r1 /\ fibpred (n-2) r2 -> fibpred n (ri+r2)

let function calcfib (m:int) : int
requires { m >= 0 }
ensures { result >= 0 /\ forall r. fibpred m r <-> r=result }
= let n =ref O in let x = ref 0 in let y = ref 1 in
while !'n < m do
invariant { 0 <= 'n <=m /\ !x >= 0 /\ ly >= 0}
invariant { forall r. (fibpred !'m r <-> r = !x) /\ (fibpred (!n+1) r <-> r = ly) }
variant { m - 'n }
let tmp = !x in x := l!y; y := !y+tmp; n := !n+l;
done;
'x

clone MapList with val f = calcfib
lemma mapFib_lm: forall 1l:list int.nonNeg 1-> let fibl = map_list 1 in

nonNeg fibl /\ forall j.O0<=j<length 1-> nth j fibl = calcfib (ath j 1)
end (* module MapFib *)

Listing 2.1. Why3 example

All the models and example modules mentioned in the paper are available
for experimentation in the Why3-do artifact [28].

2 The Why3 Languages in a Nutshell

The example in Listing 2.1 illustrates the use of Why3’s logic and program-
ming languages, as well as the module cloning mechanism. The MapList module
first imports a number of theories for mathematical integers and lists from the
standard library. Why3 includes a wide range of theories, usable across provers.
A program function f is then declared with the val keyword, including a sim-
ple contract: a precondition requiring its argument to be nonnegative, and a
postcondition stating that the result is also nonnegative. In the rest of the mod-
ule this contract will be assumed to hold for f. Next, a logic predicate nonNeg

Why3-do: The Way of Harmonious Distributed System Proofs 117

is defined. It uses a universal quantifier to state that every element of its ar-
gument list is nonnegative. Finally, the map_list program function is defined.
The definition includes both the function’s recursive definition and a contract,
in particular a postcondition that uses a universal quantifier to state the map-
ping property (result refers to the return value). From this module, Why3 will
generate verification conditions (VCs) ensuring that the definition is consistent
with its contract, assuming the definition of f keeps to its own contract. This
interplay between contracts plays a fundamental role in deductive verification.

This little example allows us to elaborate on another aspect of Why3. nonNeg
is also a function (returning a truth value), but it lives in a different namespace
from map_list, which is a WhyML program function. nonNeg belongs to Why3’s
logic language [17], and its definition contains a quantifier, which cannot be
used in programs. However, pure program functions, which do not modify the
global state, may also be used in the logic, if their declaration includes the
function keyword. This is the case of £, used in both the code and the contract
of map_list. We will refer to program functions that can be used in the logic as
“let functions”. map_list is also pure, but is not declared as a let function.

Why3 encodes both the code and contracts of let functions, so one may choose
to write certain logic functions algorithmically or logically, or both. For instance
nonNeg could be defined alternatively as follows (the postcondition is optional):

let rec predicate nonNeg (1l:list int)
ensures { result <-> forall x :int. mem x 1 -> x >= 0 }

= match 1 with
| Nil -> true | Cons h t -> h>=0 && nonNeg t end

If the postcondition is present, the logic encoding of the predicate will contain
redundancy (no inconsistency can be created since the definition must respect the
contract). Writing such “dual definitions” of logic functions may be a good idea
for a number of reasons, namely the possibility of including preconditions, and
termination checks based on user-provided variants. Moreover, dual definitions
increase the robustness of specifications and may facilitate automated proofs
of results involving quantifiers. Not every logic function can be defined as a
let function: since the latter must remain executable, they may not contain
for instance occurrences of logic equality or quantifiers. In these cases let ghost
functions can be used. These are pure logic definitions that are not meant to be
executed, but are still written as programs.

A second module, MapFib, defines a program function calcfib that com-
putes Fibonacci numbers using a loop. The recursive definition of the Fibonacci
sequence (used in the function and loop invariant of calcfib) cannot be written
as a logic function, since it is not total. It could be defined as a let function with
a precondition restricting its domain, but we use instead an inductive predicate
fibpred: the formula fibpred n f means that £ is the nth. Fibonacci number.
Inductive predicates, familiar to readers acquainted with proof assistants, are de-
fined by means of a set of inference rules. They are used in our models to define
non-deterministic transition relations on distributed system configurations.

Why3 will generate and successfully discharge VCs ensuring the correctness
of calcfib with respect to its contract. Now, since calcfib is in accordance with

118 Cldaudio Belo Lourenco and Jorge Sousa Pinto P<

the contract of £ in MapList, this module can be cloned instantiating the latter
function with the former. This imports into the current module a copy of every
element of MapList, with calcfib substituted for £, and generates refinement
VCs, to ensure that calcfib’s contract is stronger than f’s. Finally, the lemma
mapFib_1m states that indeed map_list maps the function calcfib as expected.

3 Distributed Systems and Models

A distributed system consists of a set N of nodes, each of which can at any
moment be in a state taken from a set X, together with additional elements,
such as a communication network or a shared memory. We will call the global
state of such a system a world and denote by W the set of all worlds. In general,
worlds will include the local state of every node in the system, captured as
a mapping IS : N — Y. Different models will specialize this basic setting to
define different notions of distributed system (and consequently also of world),
including for instance different communication and fault models (we will always
write N, X, or W in the context of a specific system model, left implicit).

Models are handler-based: systems are described by writing code executed
by nodes in response to certain events, such as receiving a message from the
network or an input from the local environment, or simply being enabled by a
guard predicate that becomes true. Handlers are assumed to execute atomically.
Each model defines a transition semantics describing how worlds evolve step by
step, allowing for all possible schedules (both locally and globally). Each model
contains a set of rules inferring judgments of the form w ~~ w’, meaning that
the system’s global state w evolves to w’. The general form of the rules states
the following: if the world w' results from w when a handler is executed by one
of the system’s nodes, then w ~ w'.

Let wy correspond to the initial state of the system, and ~~* denote the
reflexive-transitive closure of ~». A world w is said to be reachable if wg ~* w.
Let @ be some property of worlds; we will write w = @ to signify that & is
satisfied by the world w . A system is said to be correct with respect to @ if
w = @ holds for every reachable world w. A typical correctness proof involves
finding an inductive invariant: a property I such that (i) wo | I, and (ii) for
every pair w, w’ of worlds, if w = I and w ~» w’, then w’ |= 1. If w |= I implies
w |= @, this is sufficient to guarantee correctness.

Contract-based Models. We introduce the use of handler contracts for designing
and verifying distributed systems. Let us consider a model with worlds of the
form (IS,...), with ... standing for other components of worlds in addition to
the state function. The signature and contract of a handling function will be of
the following general form, where I is a candidate invariant predicate, and other
arguments and return values (...) may be present:

handle(n : N,IS: N = X, ..): (0: X,...)
requires I(IS,...)
ensures [(IS[n — o],...)

Why3-do: The Way of Harmonious Distributed System Proofs 119

The function returns the new state o of the node n that executes the handler in
a world with state function IS. This general form will be adapted with modifica-
tions in different models. For instance, handling functions may have access only
to the local state and not to the entire state function IS, or they may return,
in addition to a new state, a list of messages to be sent by n. Transition rules
have the following general form, updating the state of the node that executes
the handler, and reflecting in the world other effects of the execution.

handle(n, 1S, ...) = (o,...)
(IS,...) ~ (IS[n — o], ...)

The handler’s contract, consisting of precondition I(IS,...) and postcondition
I{IS[n +— o], ...), ensures that if the handler is executed in a world satisfying the
invariant I, then the world resulting from this transition still satisfies I.

It is common for handlers to have access only to the state o of the node n
where they are being executed. In this case it is not possible to include I{IS,...)
as a precondition in the contract, since IS is not passed as a parameter. Preser-
vation of the invariant can be written instead as a conditional postcondition,
stating that for every world satisfying I in which o is the state of node n and
this node executes the handler, then the resulting world still satisfies I:

handle(n : N,o : X,...): (o' : X,...)
ensures VisNox. 0 =I1Sn — I(IS,...) — I{ISn+—od'], ...)

The Why3-do Library. Listing 3.1 illustrates how contract-based models are
written as Why3 modules. The World module declares basic types and func-
tions, and defines the world structured type. The Steps module includes val
declarations for (i) the initial world, (ii) an inductive invariant predicate, and
(iii) a set of handling functions (illustrated here by handle_1). Contracts en-
force that the inductive invariant is satisfied by the initial world, and preserved
by handlers. Each handler’s contract makes use of a step_1 auxiliary function,
that is also used in the definition of the transition semantics through the step
inductive predicate. The module ends with the definition of reachable world, and
a lemma stating that the invariant holds in all reachable worlds (this is proved
inductively for each model, using proof transformations and SMT solvers).
That is all that is required to define a system model, which may now be cloned
to produce concrete distributed systems. Listing 3.2 illustrates how simple this
is. We write a System module that defines, first of all, types for nodes, states,
messages, and other relevant elements, and if appropriate, well-formedness pred-
icates for different entities. The World module from the desired Why3-do library
model can then be cloned, after which the following are defined: (i) the initial
world, (ii) a candidate inductive invariant predicate, and (iii) handler functions
specifying the behavior of the system’s nodes/processes. The Steps module from
the same model is now cloned, instantiating these elements. Why3 will produce
a set of VCs, generated from the contracts contained in the cloned module, en-
suring that the invariant is inductive. Properties of interest can at last be stated
and proved (which may involve writing additional definitions and lemmas).

120 Cldaudio Belo Lourenco and Jorge Sousa Pinto P<

module World (* file model.mlw *)

type node

type state

type world = (map node state, ...)

function localState (w:world) : map node state = (* projection functions for worlds *)
let (1S, ...) = w in 18

end (* module World *)
module Steps (* file model.mlw *)

val function initState (node) : state (* init functions for world components *)
constant initWorld : world = (initState, ...)

val ghost predicate indpred (w:world)
ensures { w=initWorld -> result } (* initial world must satisfy invariant *)

(* specifying the new world that results from w when n executes a handler yielding results r *)

function step_1 (w:world) (m:node) (r:(state, ...)) : world =
let (st, ...) = r in
let newLocalState = set (localState w) n st in
(newLocalState, ...)

(* handlers’ arguments include a node h and its state; results include a new state for h *)
val function handle_1 (h:node) (sig:state) ... : (state, ...)
ensures { forall w :world. indpred w -> sig = localState w h -> ... —>
indpred (step_1 w h result) }

inductive step world world =
| step_1 : forall w :world, n :node.

step w (step_1 w n (handle_1 n (localState w n) ...))
|

inductive step_TR world world =
| base : forall w :world. step_TR w w
| step : forall w w’ w’’ :world. step_TR w w’ -> step w’ w’’ -> step_TR w w’’

predicate reachable (w:world) = step_TR initWorld w
(* inductive invariant holds in all reachable worlds *)

lemma indpred_reachable : forall w :world. reachable w -> indpred w
end (* module Steps *)

Listing 3.1. Basic structure of a Why3-do model

4 The Basic Message-Passing Model

In this model nodes communicate by exchanging packets: triples of the form
(d, s,m), carrying a message m € Msg from node s € N to node d € N, with
Msg a given set of messages. Worlds are pairs (IS, nt) where IS : N — X is a
function assigning a state to each node and nt : Msg” is a network, abstracted as
a list of packets. In a system based on this asynchronous model, nodes execute
a message handler whenever they receive a message, and may in turn send
messages to other nodes. The handleM function implements this local message-
handling behavior. Its parameters include the node i handling the message, the
node that sent the message, the state of the handling node, and the message
itself. It returns a new state for h and a list of packets to be sent to the network.

Why3-do: The Way of Harmonious Distributed System Proofs 121

module System (* file system.mlw *)
type node = int
type state = int
clone model.World with type node, type state
let function initState (n:node) : state = ...
let ghost predicate indpred (w:world) = ...
let function handle_1 (h:node) (1S:map node state) : state = ...
clone model.Steps with type node, type state, val initState, val indpred, val handle_1
goal systemProperty : forall w :world. reachable w -> ...
end (* module System *)
Listing 3.2. Basic structure of a Why3-do system module
Its signature and contract are (with I a candidate invariant):
handleM(h : N,s: N,m : Msg,o: X) : (¢/ : X, nt’ : Msg™)
ensures Vis.N— 5 nt:Msg*- 0 = ISh — (h,s,m) € nt
— I(IS, nt) = I{IS[h — '], nt’ + nt — {(h,s,m)}))
The semantics of the model are given by the following transition rule:
/
handleM(h, s, m,IS(h)) = (o, nt’) (h,s,m) € nt (message)
(IS, nt) ~ (IS[h — o], nt' + nt — {(h,s,m)})
We use notation +, —, and € for list concatenation, difference, and membership.

Any packet that is in transit in the network may be selected by the rule to be
delivered and handled by the receiving node. The rule removes the packet from
the network, updates the state of the handling node, and sends new packets as
prescribed by the handler. The semantics takes into account all possible orders
of message delivery, since any message may be extracted from the packet pool.
The semantics is otherwise idealized, but the library contains additional models
in which messages may be dropped or duplicated by the network (an example
verification of a system assuming message duplication is given in Section 5).
The contract of handleM ensures that executions of (message) preserve the
invariant I. Let ok!(handleM) signify that the implementation of the handler
adheres to its contract, instantiated with the candidate invariant I. If I holds in
the initial world then it is indeed inductive and holds in all reachable worlds:

Lemma 1. Let wo,w € W and I be a predicate such that ok!(handleM). If
wo =1 and wo ~* w then w = I.

A simplified version of the corresponding Why3-do model is shown in List-
ing 4.1. The World module defines the tuple types packet and world and
auxiliary functions. Steps declares the following elements to be instantiated
when cloning: the ok_Msg well-formedness predicate; initState and initMsgs,

122 Cldaudio Belo Lourenco and Jorge Sousa Pinto P<

module World

type node type state type msg

type packet = (node, node, msg)

function dest (p:packet) : node = let (d,_,_)=p in d

function src (p:packet) : node = let (_,s,_)=p in s

function payload (p:packet) : msg = let (_,_,m)=p in m

type world = (map node state, list packet)

function localState (w:world) : map node state = let (1S,_)=w in 1S
function inFlightMsgs (w:world) : list packet = let (_,ifM)=w in ifM
end (* module World *)

module Steps
predicate ok_Msg (node) (node) (msg)

val function initState (node) : state
val constant initMsgs : list packet
constant initWorld : world = (initState, initMsgs)

val ghost predicate indpred (w:world)
ensures { w=initWorld -> result }
ensures { result -> forall p: packet. mem p (inFlightMsgs w) ->
ok_Msg (dest p) (src p) (payload p) }

function step_message (w:world) (p:packet) (r:(state, list packet)) : world
= let (st, ms) = r in let localState = set (localState w) (dest p) st in
let inFlightMsgs = ms ++ (remove p (inFlightMsgs w)) in (localState, inFlightMsgs)

val function handleMsg (h:node) (s:node) (m:msg) (sig:state) : (state, list packet)
requires { ok_Msg h s m }
ensures { forall w :world. indpred w -> mem (h, s, m) (inFlightMsgs w) ->
sig = localState w h -> indpred (step_message w (h, s, m) result) }

inductive step world world =
| step_msg : forall w :world, p :packet. mem p (inFlightMsgs w) ->
step w (step_message w p
(handleMsg (dest p) (src p) (payload p) (localState w (dest p))))

inductive step_TR world world .
predicate reachable (w:world) = step_TR initWorld w

lemma indpred_reachable : forall w :world. reachable w -> indpred w
end (* module Steps *)

Listing 4.1. Message-passing model: mode1MP

used to construct initWorld; the inductive invariant indpred; and finally the
handleMsg handler. The contract of indpred ensures that it is satisfied by
the initial world, and that all messages in the network are well-formed. Well-
formedness conditions are singled out from the invariant because the handler
function may need to assume basic facts about messages. The module ends with
lemma indpred_reachable, corresponding to Lemma 1 (the ok’ (handleM) and
wg = I premises are enforced by the contracts of indpred and handleMsg). It is
proved using a Why3 transformation for predicate induction, and SMT solvers.

Ezxample: Leader Election on a Ring. Leader Election is a coordination problem,
where a set of processes or nodes collectively designate one of them to act as
leader. One of the simplest solutions to this problem on a unidirectional ring
network is the maximum-finding distributed algorithm devised by Chang and

Why3-do: The Way of Harmonious Distributed System Proofs 123

Roberts [7]. Let each node have a distinct identifier of some type equipped with
a total order relation. Informally the algorithm can be described as follows: (i)
messages are node identifiers; each node starts by sending its id to the next node
in the ring. (ii) Each node then enters a message-handling loop. If a received
message has a higher value than the receiver’s id, the message is forwarded to
the next node. Otherwise, it is discarded. (iii) If a node receives back a message
with its own id, it claims to be the leader. The fundamental property to be
proved of this system is that at most one node claims to be leader. The system
has been used as example in [34] and later in [29]. The Ivy description of the
system is based on the decidable EPR fragment of FOL (See Section 7), whereas
our formalization below uses unrestricted quantification.

The Why3-do encoding of this algorithm is given in Listing 4.2, based on
the modelMP library model. The first step is to define types for nodes, identifiers,
states, and messages. Identifiers are uniquely associated to nodes by means of the
id function and the uniqueIds axiom. The constant n_nodes is the number of
nodes in the ring. A minimum of 3 nodes is assumed, with no upper bound. The
constant maxId_global corresponds to the (unique) node having the highest-
value id in the ring. Node states are records having a single field leader of
Boolean type, which indicates when a node claims to be leader. The ok_Msg
predicate describes the notion of well-formed message in the ring topology.

The types for nodes and identifiers could be left undefined, with a set of
axioms for the next function and the maxId_global constant. But in our expe-
rience, using library types, as well as defined constants, predicates, and functions
when adequate, is advantageous from the point of view of provability, and also re-
duces the danger of introducing inconsistencies. For instance the maxId_global
constant is defined algorithmically using a recursive let function maxId_fn with
a “dual definition” (it is equipped with a contract describing precisely what it
does). We could instead simply write an axiom concerning maxId_global, but
using the dual definition let function, containing code, not only increases the
degree of assurance in what is being specified, but also makes it easier to reason
about, since Why3 will generate a more easily provable set of VCs.

Cloning the module modelMP.World introduces new composed types and
auxiliary definitions. The system description then proceeds to give the initial
conditions of the system, by means of a state function initState, and a con-
stant initMsgs for the list of messages that are sent upon booting, also defined
by means of a recursive let function. The handler definition then follows. The
next element in the module is the invariant indpred, defined as a let predicate
(since logic elements like quantifiers and equality are required, it is defined as a
let ghost predicate using an auxiliary predicate inv, see Section 2). It states
that every inflight message is well-formed; it contains the id of some node in the
ring, with value not less than the sender’s id, and it is not the id of any node
i such that maxId_global is located between i and the message’s destination
node (an auxiliary predicate between is used to express this). Moreover if the
message contains its destination’s id then that id is the highest in the network.
Finally, any node that is claiming to be the leader has the highest id in the ring.

124 Cldaudio Belo Lourenco and Jorge Sousa Pinto P<

type node = int

val constant n_nodes : int

axiom n_nodes_ax : 3 <= n_nodes

let function next (x:node) : node = mod (x+1) n_nodes

type id = int
val function id (node) : id
axiom uniquelds : forall i j :node. id i = id j <-> i=j

let rec function maxId_fn (n:int) : node
requires { 1 <= n <= n_nodes }
ensures { 0 <= result < n}
ensures { forall k :node. 0<=k<n -> k<>result -> id k < id result}
variant { n }
= if n=1 then 0
else let m = maxId_fn (n-1) in if id (n-1) > id m then n-1 else m

constant maxId_global : id = maxId_fn n_nodes
type state = { leader : bool }

type msg = id
predicate ok_Msg (dest:node) (src:node) (m:msg) =
0 <= dest < n_nodes /\ 0 <= src < n_nodes /\ dest = next src

clone modelMP.World with type node = node, type state = state, type msg = msg
let function initState (i:node) : state = { leader = false }

let rec function initMsgs_fn (n:node) : list packet
requires { 0<=n<=n_nodes }
ensures { forall s d :node, m :msg. mem (d, s, m) result ->
m = id s /\ d = next s /\ n<=s<n_nodes /\
(forall i :node. between i maxId_global d -> m <> id i) /\
(m = id d -> d = maxId_global) }
variant { n_nodes-n }
= if (0<=n<n_nodes) then Cons (next n, n, id n) (initMsgs_fn (n+1))
else Nil

let constant initMsgs : list packet = initMsgs_fn O

let function handleMsg (h:node) (src:node) (m:msg) (s:state) : (state, list packet)
= if m = (id h) then ({ leader = true }, Nil)
else if m > id h then (s, Cons (mext h, h, m) Nil)
else (s, Nil)

predicate between (lo:node) (i:node) (hi:node) =
(lo < i <hi) \/ (hi < 1o < i) \/ (i < hi < lo)

lemma btw_next_lm : forall i j k :node.
0 <= i < n_nodes -> 0 <= j < n_nodes -> 0 <= k < n_nodes -> i <> k ->
between (next i) j k -> between i j k

predicate inv (1S:map node state) (iFM:list packet) =
(forall s d :node, m :msg. mem (d, s, m) iFM ->
(ok_ Msg d sm /\ m > id s /\
(exists i :node. 0 <= i < n_nodes /\ m = id i) /\
(forall i :node. between i maxId_global d -> m <> id i) /\
(m = id d -> d = maxId_global))) /\
(forall i:node. 0<=i<n_nodes -> (1S i).leader = true -> i = maxId_global)

let ghost predicate indpred (w:world) = inv (localState w) (inFlightMsgs w)

clone modelMP.Steps with type node, type state, type msg, predicate ok_Msg,
val initState, val initMsgs, val indpred, val handlelMsg

goal uniqueLeader :
forall w :world, i j:node.
reachable w -> 0<=i<n_nodes -> 0<=j<n_nodes ->
(localState w i).leader = true -> (localState w j).leader = true -> i = j

Listing 4.2. Leader election on a ring (Chang-Roberts)

Why3-do: The Way of Harmonious Distributed System Proofs 125

The module then clones the Steps module from modelMP instantiating the
necessary elements, and formulates the uniqueLeader proof goal. The verifica-
tion results depend on the provers that are available. In our setup we were able to
prove automatically all VCs using the Alt-Ergo [11], CVC4 [5], and Vampire [36]
SMT solvers after (i) providing lemma btw_next_lm, proved automatically by
Alt-Ergo; and (ii) including in the postcondition of function initMsgs_fn the
relevant facts relating in-transit messages and maxId_global, as required by
the invariant. Observe that this postcondition is proved automatically by the
program verification engine following the recursive definition of the function.

5 Trace Specifications

In the previous section we have considered a specification property expressed at
the implementation level, with access to internal node states. Other internal ele-
ments of worlds, including messages, could be mentioned in such implementation-
level properties. It is however very useful to introduce an abstraction barrier be-
tween specifications and implementation details. This can be achieved by logging
certain observable events onto a trace of the system, and then writing specifi-
cations as properties of the trace. Models in our setting can be equipped with
traces, allowing for protocols and systems to be specified in this way.

We will illustrate this by equipping the message-passing model of Section 4
with traces. Each system using this model defines an Out type of outputs, and
the model defines external events as Evt = N x Out, outputs paired with the
node that originated them (other models may use additional notions of external
event, such as inputs received by nodes from their local environments). A trace
is a sequence of external events; the function rec : N — Out™ — Evt™ produces
a trace from a sequence of outputs, pairing them with the source node. Given a
predicate v on traces and 7 € Evt*, we will write 7 = v when 7 satisfies v.

A commit specification (u,, py) consists of a predicate u, (X, X) and a func-
tion pp (X, X) : Out”, expressing respectively when outputs should be produced,
and what those outputs should be. The signature of the message handler is sim-
ilar to that in the model of Section 4, with a trace as additional output. Its
contract states that it complies with a given commit specification.

handleM(h :N,s :N,m :Msg, o : X)) : (¢/: X, nt' :Msg*,l : Out™)
ensures Vis.N— 5 nt:Msg- 0 = ISh — (h,s,m) € nt

I(IS, nty — I{IS[h + ¢'], nt’ + nt — {(h,s,m)})
ensures (p,(0,0') = 1= ps(o,0') A (—~pp(o,0’) = 1 =¢)

We will write ok!#»#s (handleM) to signify that the implementation of handleM
adheres to its contract, with invariant I and commit specification (pp, pt¢).

Worlds are tuples (IS, nt, 7) with IS: N — X' nt: Msg™, and 7 : Evt®. The
semantics will now be given by the relation ~C W x N x W, with w ~, w’
meaning that world w transitions to w’ with node n executing a handler. The
following transition rule commits outputs to the trace:

126 Cldaudio Belo Lourenco and Jorge Sousa Pinto P<

handleM(h, s, m,IS(h)) = (o, nt’,1) (h,s,m) € nt
(IS, nt, 7)~p(IS[h — o], nt’ +nt — {(h,s,m)}, recy(l) + 7)

(message)

A specification is a triple (up, ptf,) consisting of a commit specification and
a predicate v(Evt") expressing some notion of trace consistency. Correctness
implies that the commit specification is respected and traces are consistent.

Definition 1. A system with initial world wy € W is said to be correct with
respect to a specification (fp, pf,v) if

1. for all w = (IS,nt,7) € W, w' = (IS',nt',7) € W and n € N such that
wo ~* W~y W if pp(1S(n),1S'(n)) then 7' = rec, (1y(1S(n),15'(n))) + 7,
otherwise 7' =T

2. 7 = v for every world w = (IS, nt,7) € W such that wo ~* w

Lemma 2. Let (pp, g, v) be a specification, and I a predicate such that
okT##s (handleM), wo |= I, and for every world w = (IS, nt, 7), w = I implies
T = v. Then the system is correct with respect to (fp, pif, V).

As usual the lemma is proved mechanically in the Why3-do module for this
model. Every Why3-do model extended with traces contains a similar lemma.

A simplified version of the modelMPTrace model is shown in Listing 5.1 (...
indicate elements that are preserved from the modelMP module). The world
type extends the tuple of modelMP with a trace of type list externalEvent.
The functions/predicates commitp, commitf, and consistent, corresponding
respectively to p,, uy, and v, are to be instantiated when cloning the model. The
indpred inductive predicate gains a new postcondition ensuring that it enforces
consistency of the system’s trace (following the conditions of Lemma 2). The
step inductive predicate is modified to include as an additional parameter the
node involved in each transition. The commit_step and consistent_reachable
lemmas (mechanically proved, using the contracts of indpred and handleMsg)
together correspond to Lemma 2 above.

Example: Distributed Lock. This example will show how Why3-do models can
be extended in a flexible way. Its verification was first carried out in [20] and
later also in [34] and [29]. We adapt it here to make use of trace specifications,
which will allow us to demonstrate their effectiveness as an abstraction barrier.
In addition to traces, the example also illustrates the use of guarded actions in
models (through the use of enabling predicates), as well as the use of a non-
idealized network model, in which in-transit messages can be duplicated. Two
implementations will be given: one that is in accordance with the trace spec if the
idealized model is used, and a second implementation that tolerates duplicating
messages. The specification of the distributed lock system is the following;:

1. the state of each node must include information on whether it is holding a
lock (a Boolean), together with the lock’s current epoch (an integer);
2. whenever a node acquires a lock it outputs its current epoch;

Why3-do: The Way of Harmonious Distributed System Proofs 127

module World

type externalEvent c

type world = (map node state, list packet, list externalEvent)
function trace (w:world) : list externalEvent = let (_,_,t)=w in t
end (* module World *)

module Steps

type output

type externalEvent

val function record_outputs (n:node) (outs:list output) : list externalEvent
predicate commitp (state) (state)

function commitf (state) (state) : list output

predicate consistent (t:list externalEvent)

val ghost predicate indpred (w:world)
ensures { ... /\ result -> consistent (trace w) }

function step_message (w:world) (p:packet) (r:(state, list packet, list output)) : world =
let (st, ms, outs) = r in let localState = set (localState w) (dest p) st in
let inFlightMsgs = ms ++ (remove p (inFlightMsgs w)) in
let trace = (record_outputs (dest p) outs) ++ (trace w) in
(localState, inFlightMsgs, trace)

val function handleMsg (h:node) (s:node) (m:msg) (sig:state) : (state, list packet, list output)
requires { ... }
ensures { ... /\ let (s’,_,lo) = result in (commitp s s’ ->
lo = commitf s s’) /\ (not (commitp s s’) -> lo = Nil) }

inductive step world node world =
| step_msg : forall w :world, p :packet.
mem p (inFlightMsgs w) -> step w (dest p) (step_message w p
(handleMsg (dest p) (src p) (payload p) (localState w (dest p))))

lemma commit_step :
forall w w’ :world, n :node. reachable w -> step wn w’ ->
(commitp (localState w n) (localState w’ n) ->
trace w’ = (record_outputs n (commitf (localState w n) (localState w’ n))) ++ trace w)
/\ (not (commitp (localState w n) (localState w’ n)) -> trace w’ = trace w)

lemma consistent_reachable :
forall w :world. reachable w -> consistent (trace w)
end (* module Steps *)

Listing 5.1. Message-passing model: mode1MPTrace

3. in every reachable world an output n is stored in position n of the trace.

The system’s trace stores the sequence of outputs sent by different nodes. To-
gether, these requirements mean that a node acquiring the lock at epoch n writes
to position n of the trace, which implies (since traces are only modified by ap-
pending at the head) that no two nodes acquire the lock in the same epoch.
Specifications are written as Why3-do modules defining the output and
externalEvent types, together with projection and the record_outputs func-
tions. Most importantly, they define the commitp and consistent predicates, as
well as the commitf function. However, the specification is abstract and does not
impose the use of any specific system model. It requires the presence of certain
types, but does not specify how the types are implemented. The requirement
that states should contain specific information is included by declaring functions

128 Cldaudio Belo Lourenco and Jorge Sousa Pinto P<

module Spec
(* to be instantiated when cloning this module *)
type node
type state
function getEpochS (s:state) : int
predicate getHeldS (s:state)

type output = | Locked int

function getEpoch0O (o:output) : int =
match o with | Locked e -> e end

type externalEvent = (node, output)

function node (e:externalEvent) : node = let (n,_) = e in n

function outp (e:externalEvent) : output = let (_,0) = e in o

let rec function record_outputs (n:node) (outs:list output) : list externalEvent
ensures { forall i :int. O<=i<length outs -> nth i result = (n, nth i outs) }

predicate commitp (s:state) (s’:state) = not (getHeldS s) /\ getHeldS s’
function commitf (_:state) (s’:state) : list output = Cons (Locked (getEpochS s’)) Nil
predicate consistent (t:list externalEvent) =
match t with
| Nil -> true
| Cons (_,0) tt -> getEpochO o = length t /\ consistent tt
end
end (* module Spec *)

Listing 5.2. Specification module for distributed lock

and /or predicates on states. Implementation modules will define these types and
functions and clone the specification module, instantiating them.

This specification of the distributed lock is written as the Why3-do module
of Listing 5.2. It assumes the use of a system model defining types node, state,
output, and externalEvent. The above requirements are formalized as follows:

1. the functions getEpochS and getHeldS express required state information;

2. the output type has a single constructor carrying an integer; externalEvents
are outputs paired with nodes; the commitp predicate states that outputs
are produced when the state of a node changes from not holding to holding a
lock, and the commitf function returns a list with the node’s current epoch;

3. the consistent predicate uses the list length function to require that the
output stored in each position n of the trace contains epoch n.

We will consider two message-passing implementations for this specification
based on a ring topology, shown in listings 5.3 and 5.4. Node states are records
with two fields: a Boolean held indicating whether the node holds the lock, and
its current epoch. After the appropriate type definitions, both implementation
modules clone the same Spec module, and then the World module from the ap-
propriate model. The idealized model modelMPEnabledTrace is used in the im-
plementation of Listing 5.3, whereas Listing 5.4 uses modelMPEnabledTraceDupl
in which messages can be duplicated. Both are extensions of modelMPTrace (List-
ing 5.1) with an enabling predicate. Enabling predicates allow for nodes to ex-
ecute guarded actions: when cloning the model, the enabled predicate (with a
node and its state as parameters) and the handleEnbld function are instantiated;
the semantics states that the handler may be executed whenever the predicate

Why3-do: The Way of Harmonious Distributed System Proofs 129

type node = int

val constant n_nodes : int

axiom n_nodes_ax : 2 <= n_nodes

let function next (x:node) : node = mod (x+1) n_nodes

type state = { held : bool; epoch : int }
function getEpochS (s:state) : int = epoch s
predicate getHeldS (s:state) = held s

type msg = int
predicate ok_Msg (dest:node) (src:node) (_:msg) =
0<=dest<n_nodes /\ 0<=src<n_nodes /\ dest = next src

clone specLDT.Spec with type node, type state, function getEpochS, predicate getHeldS

clone modelMPEnabledTrace.World with type node, type state,
type msg, type output, type externalEvent

let function initState (n:node) : state
= let h = if n=0 then true else false in
let e = if n=0 then 1 else 0 in
{ held = h; epoch = e }
let constant initMsgs : list packet = Nil
let constant initTrace : list externalEvent = Cons (0,Locked(1)) Nil

let function handleMsg (_:node)(_:node) (m:msg) (s:state) :(state, list packet, list output)
= if (not (held s)) then ({ held = True; epoch = m }, Nil, Cons (Locked m) Nil)
else (s, Nil, Nil)

let ghost predicate enabled (s:state) (i:node)
= 0<=i<n_nodes && held s

let function handleEnbld (h:node) (s:state) : (state, list packet, list output)
= let e = epoch s in ({ held = False; epoch = e }, Cons (next h, h, e+1) Nil, Nil)

let rec ghost predicate zeroHeld (1S:map node state) (nm:int) = ...
let rec ghost predicate oneHeld (1S:map node state) (n:int) = ...
let rec ghost predicate oneMsg (lp:list packet) = length 1p = 1
let rec ghost predicate noMsgs (lp:list packet) = length 1lp = 0

let rec ghost predicate ok_trace (t:list externalEvent)
ensures { result -> consistent t }

= match t with

Nil -> true

Cons (_,0) Nil -> getEpoch0 o = 1

Cons (_,01) os ->

match os with

| Nil -> true

| Cons (_,02) _ -> getEpochO ol=(getEpoch0 02)+1 && ok_trace os

end

end

predicate inv (1S:map node state) (iFM:list packet)
(tr:list externalEvent)
= (forall p: packet. mem p iFM -> ok_Msg(dest p) (src p) (payload p))
/\ ((oneMsg iFM /\ zeroHeld 1S n_nodes)
\/ (noMsgs iFM /\ oneHeld 1S n_nodes))
/\ (forall n :node. 0<=n<n_nodes -> held (1S n) ->
n = node (hd tr) /\ epoch (1S n) = getEpochO(outp (hd tr)))
/\ (forall p: packet. mem p iFM ->
src p = node (hd tr) /\ payload p=getEpochO(outp (hd tr))+1)
/\ length tr > 0 /\ ok_trace tr

let ghost predicate indpred (w:world)
= inv (localState w) (inFlightMsgs w) (trace w)

clone modelMPEnabledTrace.Steps with ...

Listing 5.3. Distributed lock with idealized model

130 Cldaudio Belo Lourenco and Jorge Sousa Pinto P<

let function handleMsg (_:node) (_:node) (m:msg) (s:state)
: (s’:state, lp:list packet, lo:list output)
= let nop = (s, Nil, Nil) in
if (held s) || m <= epoch s then nop
else ({ held = True; epoch = m }, Nil, Cons (Locked m) Nil)

(* helper definitions for invariant predicate *)

let rec ghost predicate zeroHeld (1S:map node state)(n:int) ...

let rec ghost predicate atMostOneHeld (1S:map node state) (n:int)...
let rec ghost predicate isFresh (p: packet) (1S:map node state)...
let rec ghost predicate allStale (1S:) (1lp:list packet)...

let rec ghost predicate atMostOneFresh (1S:...)(1p:...)...

let rec ghost predicate ok_trace (t:1list externalEvent)...

predicate inv (1S:map node state) (iFM:list packet)
(tr:list externalEvent)
= (forall p: packet. mem p iFM -> ok_Msg (dest p) (src p) (payload p))
/\ atMostOneFresh 1S iFM /\ atMostOneHeld 1S n_nodes
/\ (zeroHeld 1S n_nodes \/ allStale 1S iFM)
/\ (forall n :node. 0<=n<n_nodes -> held (1S n) ->
n = node (hd tr) /\ epoch (1S n) = getEpochO(outp (hd tr)))
/\ (forall p: packet. mem p iFM -> isFresh p 1S ->
src p = node (hd tr) /\ payload p = getEpochO(outp (hd tr))+1)
/\ length tr > 0 /\ ok_trace tr

Listing 5.4. Distributed lock with duplicating messages model

is true. In the present example, enabled is defined as true when a node holds a
lock, in which case it is free to release it. The lock is released when handleEnbld
executes, sending a message to the next node in the ring. The message includes
the value of the sender’s current epoch, incremented by one.

The system is initialized with node 0 holding the lock (and this fact is reg-
istered in the system trace). The handling functions then follow. The enabling
predicate and the corresponding handler are the same in both implementations;
it is in the message handlers that they differ. With the idealized model nodes
can trust that messages are never stale, so they react by blindly acquiring the
lock. With the duplicating model the receiving node first checks whether the
epoch in the received message is higher than its present epoch (in which case
it cannot be a stale copy of a previous message). The inductive invariants are
also different for both implementations, but both include a property expressed
with the ok_trace predicate, stating that events in the trace contain incremen-
tal epochs, starting from 1. This implies consistency of the trace (as defined in
the specification), and is easier to check for inductiveness.

Let us consider in detail the system of Listing 5.4. A message is fresh if
the current epoch of its destination node is lower than the message. Transfer
messages are always sent from the highest epoch node (holding the lock) and
thus, at the time of sending, the destination has a lower epoch, which will be
updated when the message is received and the lock acquired. Other copies of the
message are stale because their destinations’ epochs have since increased. The
system’s invariant is given as the conjunction of the following properties, using
the zeroHeld, atMostOneHeld, allStale, and atMostOneFresh predicates: (i)

Why3-do: The Way of Harmonious Distributed System Proofs 131

in-transit messages are well-formed; (ii) there is at most one in-transit fresh
message, and at most one node holding a lock; if a node holds a lock then all
in-transit messages are stale; (iii) If node n holds the lock then the last Locked x
was written in the trace by n, and z is the current epoch of n; (iv) if there exists a
fresh in-transit message, then it was sent by the last node that output Locked x,
and it carries the value x + 1; (v) the trace obeys the ok_trace predicate.

The VCs generated for the modules of listings 5.3 and 5.4, proved automati-
cally, establish the correctness of each system with respect to the specification of
Listing 5.2: events are being logged in the specified way, and traces are consistent.

6 Locally Shared Memory Model

Dijkstra described certain distributed systems (including the self-stabilizing sys-
tems described below) using a guarded processes model, in which nodes/pro-
cesses do not exchange messages, but instead have direct read access to each
other’s states. Although particular systems will only require read access to a
limited set of states (typically its immediate neighbors’), our model allows read
access universally. This is not a shared-memory model in all generality, but it
may be implemented over shared memory, with a single-writer multiple-reader
data structure for each node’s state (and readers—writer locks for atomicity).
We formalize this in our setting as a model where worlds are simply of the
form (IS) with IS : N — X a state-assigning function. A system based on this
model is programmed by defining an enabling predicate on nodes and a han-
dling function describing the behavior that can be executed whenever a node
is enabled. Formally we will consider that the enabling predicate has signature
ep(n: N,IS: N — X)), taking as parameters a node and a global state assigning
function, and the handling function has the following signature and contract:

handleE(h : N,IS: N — X): (0 : X))
requires ep(h,IS) A I(IS)
ensures [(IS[h — o]})

The enabling predicate and the handler code have read access to every node’s
state, but the handler may only modify the state of the node where it is running.
This semantics is given by the following rule:
handleE(h,IS) = o ep(h,IS)
(IS) ~>p, (IS[h — o)

(enabled)

where ~»;, means that node h runs the handler. The contract of handleE ensures
that executions of the (enabled) transition rule preserve the property I (the
contract ensures this if the node is enabled, and the semantics only allow for
transitions satisfying this requirement). We will write ok’ (ep, handleE) when the
implementation of the handling function handleE adheres to its contract, with
invariant I and enabling predicate ep. Listing 6.1 shows a simplified version of
the Why3-do modelReadallEnabled module, including the following Lemma,
proved using an induction transformation and SMT solvers.

132 Cldaudio Belo Lourenco and Jorge Sousa Pinto P<

module World
type node, type state, type world = map node state
end
module Steps
val predicate validNd (n:node)
val function initState (node) : state
constant initWorld : world = initState
val ghost predicate indpred (w:world)
ensures { w=initWorld -> result }
val ghost predicate enabled (map node state) (i:node)
requires { validNd i }
function step_enbld (w:world) (n:node) (st:state) : world = set w n st
val function handleEnbld (h:node) (1S:map node state) : state
requires { validNd h /\ enabled 1S h /\ indpred 1S }
ensures { indpred (step_enbld 1S h result) }
inductive step world node world =
| step_enbld : forall w :world, n :node. validNd n -> enabled w n ->
step w n (step_enbld w n (handleEnbld n w))
lemma indpred_step :
forall w w’ :world, n :node. step w n w’ -> indpred w -> indpred w’
lemma step_preserves_states :
forall w w’ :world, n i :node. step wn w’> -> i<>n > wi=w i
(* keeps track of number of transition steps *)
inductive step_TR world world int =
| base : forall w :world. step_TR w w O
| step : forall w w’ w’’ :world, n :node, steps :int.
step_TR w w’ steps -> step w’ n w’’ -> step_TR w w’’ (steps+1)
lemma noNeg_step_TR : forall w w’ :world, steps :int. step_TR w w’ steps -> steps >= 0
lemma indpred_manySteps :
forall w w’ :world, steps :int . step_TR w w’ steps -> indpred w -> indpred w’
predicate reachable (w:world) = exists steps :int. step_TR initWorld w steps
lemma indpred_reachable : forall w :world. reachable w -> indpred w
end

Listing 6.1. Locally shared memory model: modelReadallEnabled

Lemma 3. Let wo,w € W, with ep and I predicates such that ok’ (ep, handleE),
wo =1, and wy ~* w. Then w [I.

Ezample: Stabilizing Mutual Ezclusion. Self-stabilizing systems [15,38] are de-
signed to tolerate failures resulting from “horrible errors” (such as data cor-
ruption), by including a recovery mechanism. Given some notion of legal con-
figuration, a system is said to be self-stabilizing if (i) starting from an illegal
configuration, all executions eventually converge to a legal configuration (a live-
ness property), and (ii) legal configurations are closed under normal execution
steps, i.e. no illegal configuration is reachable if no corruption of data occurs
(a safety property). One of Dijkstra’s examples of such a system in his seminal
paper [15] was a directed ring of processes sharing a resource, with mutual exclu-
sion enforced by means of a circulating token. Legal configurations are those in

Why3-do: The Way of Harmonious Distributed System Proofs 133

module SelfStab_Ring_Closure
type node = int
val constant n_nodes : int
axiom n_nodes_bounds : 2 < n_nodes
let predicate validNd (n:node) = 0 <= n < n_nodes
type state = int
val constant k_states : int axiom k_states_lower_bound : n_nodes < k_states
let function incre (x:state) : state = mod (x+1) k_states

clone modelReadallEnabled.World with type node, type state
let function initState (n:node) : state = if n=n_nodes-1 then 1 else 0O

predicate has_token (1S:map node state) (i:node) =
(i=0/\ 1S i= 1S (n_nodes-1)) \/ (i > 0 /\ i < n_nodes /\ 1S i <> 1S (i-1))
let ghost predicate enabled (1S:map node state) (i:node) = has_token 1S i

let function handleEnbld (h:node) (1S:map node state) : state
= if h = 0 then incre (1S (n_nodes-1)) else 1S (h-1)

let rec ghost predicate atLeastOneToken (1S:map node state) (n:int)
requires { validNd n }
ensures { result <-> exists k :int. 0<=k<n /\ has_token 1S k }
variant { n }

=n > 0 && (has_token 1S (n-1) || atLeastOneToken 1S (n-1))

predicate atMostOneToken (1S:map node state) (n:int) = validNd n ->
forall i j :int. 0<=i<n -> 0<=j<n -> has_token 1S i -> has_token 1S j -> i=j

lemma first_last : forall n: int, 1S :map node state.
n >= 0 -> (forall j :int. 0<j<=n -> 1S j = 1S (j-1)) -> 1S 0 =1Sn
lemma atLeastOneTokenLm : forall w :world. atLeastOneToken w n_nodes

predicate inv (1S:map node state) =
(forall n :int. validNd n -> 0 <= 1S n < k_states) /\ atMostOneToken 1S n_nodes
let ghost predicate indpred (w:world) = inv w

clone modelReadallEnabled.Steps with type node, type state,
val validNd, val initState, val indpred, val enabled, val handleEnbld

predicate oneToken (w:world) = atMostOneToken w n_nodes /\ atLeastOneToken w n_nodes
goal oneToken : forall w :world. reachable w -> oneToken w
end

Listing 6.2. Self-stabilizing mutual exclusion on a ring — Closure

which exactly one process carries a token. In case of failure the system converges
back into a single-token configuration. Dijkstra’s proposal for self-stabilizing mu-
tual exclusion was the following: processes have integer numbers in {0, ... K —1}
as states, with K greater than the size of the ring. Each process observes the
state of its predecessor in the ring; the process with index 0 holds a token when
its state is the same as that of its predecessor (the last process in the ring);
other processes hold a token when their state is different from their predeces-
sor’s. When holding a token, each process may modify its state by copying its
predecessor’s state; node 0 additionally increments (modulo K) this state.
Listing 6.2 shows the Why3-do formalization of this system, based on the

locally shared memory model. Nodes and states are both integers; n_nodes and
k_states are the size of the ring and the number of different states. The en-

134 Cldaudio Belo Lourenco and Jorge Sousa Pinto P<

abling predicate is defined as true for a node exactly when it is carrying a token,
as specified by the has_token predicate. The handler defined by handleEnbld
copies states as previously described. Mutual exclusion is expressed using pred-
icates atLeastOneToken and atMostOneToken that apply to the first n nodes.

The module of Listing 6.2 verifies the closure property. The invariant ex-
presses that node states are within bounds, and there is no more than one token
in the ring. One possible (legal) initial configuration of the system is described
by the initState let function. These definitions are instantiated when cloning
modelReadallEnabled. The module ends with the oneToken goal, stating that
there exists exactly one token in all reachable configurations.

Stepwise Bounded Validation. In the verification of closure we use the following
technique: we introduce an axiom bounding the size of the system, passed to
the solvers to make automated proofs easier (soundness of the verification may
be compromised at this point). We then introduce parts of the invariant step
by step, and check them in this bounded system in order to gain insight as to
their validity. Once we feel confident about the elected invariant, we remove
the bounding axiom to achieve soundness of the verification, possibly stating
additional lemmas or strengthening the invariant. For the present system:

1. We started with the following invariant. Inductiveness is proved automatically,
but the oneToken goal cannot be proved from it (as expected):

forall i :int. validNd i -> 0 <= 1S i < k_states.

2. Next, we included atMostOnetoken 1S n_nodes in the invariant; preservation
was proved automatically, but oneToken could still not be proved. We then added
a bounding axiom n_nodes <= 10, which allowed the goal to be proved.

3. We strengthened the invariant with atLeastOnetoken 1S n_nodes and removed
the bounding axiom. The oneToken goal was proved trivially; however, the VC
pertaining to the preservation of the invariant could not be proved.

4. Preservation could be proved by reintroducing a bound on n_nodes (with a
bound of 1000, all VCs could be proved within 30 seconds in our setup).

These bounded proof results indicate that, in all likelihood, (i) the property
atLeastOnetoken 1S n_nodes is preserved by system transitions, and thus induc-
tive, but (ii) it is not necessary to include it in the inductive invariant to prove
oneToken: in our development the oneToken goal could be proved for a number
of processes up to 10 without including the former property in the invariant. The
reason for this is that in fact the atLeastOnetoken 1S n_nodes property is satis-
fied by definition in all configurations: in order for a token to be present, either
any two adjacent processes have different states, or the first and last processes
have the same state. If all processes have the same state, then the second case
holds. Including the property in the invariant still requires a bound (to prove
preservation), but this can now have a much higher value (1000 rather than 10).

An unbounded proof is obtained by including in the module the first_last
lemma (proved by induction on n). This allows for the goal to be proved au-
tomatically without atLeastOnetoken 1S n_nodes in the invariant, and with
no upper bound on n_nodes. We remark that the dual definition (recursive +

Why3-do: The Way of Harmonious Distributed System Proofs 135
TLAPS Verdi IronFleet Ivy Why3-do
Contract-based design v (partial) v
DS models generic MP MP MP MP; LSM
Reusable Models v v v
Different fault models v v
Verified system transforms v
Abstract Specifications state machines;| observ.| state machines; observ. traces
spec to protocol| traces | spec to protocol (model-
refinement refinement independent)
Liveness properties v (TLC) v (TLC)
Logic TLA+ FOL FOL EPR FOL
Invar. discovery support v
Automated provers multiple 73 73 multiple
Proof assistants multiple Coq multiple
Programming language PlusCal Gallina | state machines; RML ‘WhyML
(F) Dafny (F/I) (F/T)
Implementation support UDP model/ mutable/machine
machine types (WhyML) types
Generation of executables v v

Table 7.1. Comparison of DS deductive verification frameworks

MP: message-passing, LSM: locally shared memory, F: functional, I: imperative

contract) of the atLeastOneToken let function was crucial for proving the goal
automatically (this was not possible with a logic definition).

The convergence property is more challenging; its Why3-do formalization
can be found in the artifact [28]. We have also verified Dijkstra’s version of this
system with a bidirectional array topology. Bounded exploration again allowed
us to validate parts of the invariant; attaining an unbounded verification required
strengthening the invariant, rather than a lemma.

7 Related Work

Deductive verification methods are typically based on first-order logic reasoning
and focus on safety properties, with correctness proofs requiring users to man-
ually provide appropriate invariants and to discharge (either automatically or
interactively) proof obligations generated in the process. Invariants may apply
to loops, recursive functions, or non-deterministic transition relations, and al-
low for correctness proofs by induction on the length of executions. In the last
few years a number of frameworks and tools have been proposed for reasoning
about asynchronous message-passing systems using inductive invariants, based
on atomic handler models and different specification mechanisms. We will now
briefly survey these and compare them with Why3-do in terms of design choices.

Verdi [42] introduced the use of models based on worlds and atomic handlers,
with models capturing different fault semantics. Why3-do’s semantic framework
is inspired by Verdi; we enrich handlers with interface specifications in the form
of contracts, allowing for the use of methods that are standard in deductive
verification of single-thread software. Verdi is a Coq development, and reasoning
is carried out within the Coq proof assistant [22]. The implementation of our

136 Cldaudio Belo Lourenco and Jorge Sousa Pinto P<

framework as a Why3 library allows for the use of automated tools (all the proofs
in this paper use SMT solvers and a few Why3 transformations).

Whereas Verdi handlers are defined in a purely functional style, in Why3-
do they are written in WhyML, combining functional and imperative features.
Verdi supports system transformations that allow for verified systems to be ob-
tained from systems verified with simpler models (additional mechanisms may
be automatically introduced to compensate for the presence of faults). Trans-
formations are verified once and for all, so the resulting systems do not need to
be verified. An important difference is that Verdi targets exclusively message-
passing systems, whereas Why3-do covers different system models. Verdi sup-
ports traces, but specifications may not be written in a completely abstract,
model-independent way. In Why3-do this is achieved through the use of clonable
specification modules defining commit specifications and trace consistency.

The IronFleet [20] platform is built on top of a deductive verification tool,
Dafny [26], which uses the Z3 [31] SMT solver for proofs. Like Verdi, it supports
only message-passing systems. A major difference with respect to Why3-do and
Verdi is that, instead of a specification mechanism based on traces, IronFleet sep-
arates development in a specification level (where worlds are viewed abstractly)
and a concrete protocol level, both described in FOL as state machines. A refine-
ment function [1] maps protocol worlds to the specification level, and a refine-
ment proof shows that protocol steps are compatible with the abstract behavior
(in Why3-do this is achieved by trace consistency proofs). There is a third, im-
plementation level, where event handlers are programmed using mutable data
structures and machine types, for performance and realism. IronFleet extends
Dafny with a UDP specification to support networking, which allows non-atomic
handlers to be developed assuming low-level interleaving. In order to establish
refinement proofs between low-level implementations and protocols, reduction-
based reasoning is supported. IronFleet also includes an embedding of TLA that
makes possible reasoning about liveness properties. It is overall an ambitious
tool that has been used by its authors to verify practical systems.

Up to a point Why3-do implementations cover both the protocol and imple-
mentation levels, since WhyML accommodates both functional programs and
stateful code with mutable structures and machine types. Why3 supports code
extraction from verified WhyML programs, and it should not be difficult to ob-
tain a distributed implementation from a verified Why3-do system, using one of
the available OCaml libraries. Our framework allows for diverse system models,
with different implementation infrastructure requirements. In general each node
must run a scheduler that will, for instance, receive incoming local inputs and
messages from the network, check enabling predicates, and run the appropriate
handlers, reflecting locally and globally the effects prescribed by the semantics.

The Ivy tool [34] differs from Why3-do and the previous frameworks in sev-
eral important ways. It uses a dedicated modeling/programming language called
RML, and a logic language restricted to the effectively propositional (EPR) class
of formulas, whose satisfiability is decidable (Ivy also uses Z3). Specifications
may refer to any part of the model (no specification/protocol distinct layers or

Why3-do: The Way of Harmonious Distributed System Proofs 137

observation traces are used). The use of EPR imposes severe restrictions: RML
does not allow arithmetic operations, so for instance a ring topology cannot be
modeled using integer modulo arithmetic. A verification methodology based on
the use of EPR, and details on how it has been used to verify variants of the
PAXOS protocol, are extensively described in [33] (the method proposed for re-
ducing quantifier alternation is of general interest, even when unrestricted FOL
is used). Leveraging the decidability of the logic, Ivy focuses on assisting the
user in writing the protocol and its specification, and in discovering adequate
inductive invariants. A few initial steps of execution are first considered, which
may allow for bugs to be found in the protocol and/or target properties; Ivy
then assists the user in finding an inductive invariant by performing interactive
strengthening and generalization steps, and representing states visually.

A more general, comprehensive framework for reasoning about distributed
systems has been constructed around the TLA+ specification language, based
on the Temporal Logic of Actions [25]. TLA+ is without any doubt a widely suc-
cessful toolset, and its adoption in practice is well documented [32]. The toolset
comprises the specification language itself; the PlusCal algorithmic language; the
TLC model checker [43]; the TLAPS proof system [8]; and a development envi-
ronment. Correctness proofs are based on the notion of refinement mapping [1]. If
one writes a TLA+ specification and a PlusCal implementation, and then trans-
lates the latter to TLA+, its correctness can be stated as a refinement problem,
whose VC is itself written as a TLA+ formula. The TLAPS proof system is an
ongoing effort but can already be used to prove many such refinements. TLAPS
proofs [12] are constructed using both proof assistants and SMT solvers.

Table 7.1 summarizes the distinctive aspects of the discussed tools. Addition-
ally, the 14 technique has been proposed [29] based on the automatic synthesis
(by model checking) of inductive invariants for small instances of protocols, fol-
lowed by their generalization. Invariants are checked with Ivy, and if necessary
the process is repeated, considering a bigger instance or a pruned invariant.
Kaizen [23] is a verified blockchain system that has been developed using an
approach similar to IronFleet. Implementations of distributed systems that have
been formally verified using different tools have been empirically scrutinized
in [19].

Program logics for distributed systems have also been the subject of recent
work, typically based on or inspired by concurrent separation logics [6], and
mechanized in the Coq proof assistant. Notable examples include DISEL [39],
which focuses on modularity and compositionality, and Aneris [24], which in-
cludes support for node-level concurrency in addition to inter-node reasoning.
ModP [14] is an actor-based compositional programming framework that offers
assume-guarantee reasoning principles to support compositional system testing.

The self-stabilizing ring system has been verified interactively using the
PVS [35] and Isabelle [30] proof assistants, and also by symbolic model check-
ing [41,9]. A general framework for building certified proofs of self-stabilizing
algorithms (using Coq) is described in [3].

138 Cldaudio Belo Lourenco and Jorge Sousa Pinto P<

8 Conclusion

In this paper we have proposed principles for contract-based verification of dis-
tributed systems, based on a library promoting modular development. The ap-
proach enables the use of state of the art sequential software verifiers for reason-
ing about distributed systems, supports model-independent trace specifications,
and is uniform across system models, beyond the message-passing setting.

To implement these principles we have chosen the Why3 verification platform.
We have shown how specific features of Why3, such as the ability to interface
with different solvers and the use of dual definitions, contribute to successful
automated proofs. For instance, we were able to prove the inductiveness of an
invariant for the leader election protocol containing a quantifier ‘alternation’ (a
sequence of the form V3 [33], outside the decidable EPR logic). In particular,
the Alt-Ergo and Vampire solvers were able to prove these VCs, whereas 73
and CVCA4 failed (with a generous timeout value). On the other hand, the dual
definition of the atLeastOneToken predicate in the self-stabilization systems,
when the invariant included this predicate containing an existential quantifier,
allowed Z3 or CVC4 (not the other solvers) to prove inductiveness. In neither
case was it necessary to employ invariant quantifier hiding, as in [20].

Unbounded domains (nodes, messages, etc.) are typical of distributed sys-
tems. Considering bounded systems, in combination with dual definitions, al-
lowed us to explore the inductiveness of invariant properties before tackling the
unbounded case (by strengthening invariants or writing lemmas). This should
not be mistaken with the use of bounded verification in Ivy, which considers the
first few system steps in order to debug models, or in 14, which produces finite
quantifier-free instances of problems, amenable to model checking.

The limitations of the framework are that, in the spirit of verification of se-
quential programs with Why3, Why3-do targets the verification of distributed
systems at the algorithmic level, and is not intended for reasoning about exe-
cutable implementations (but see the discussion on implementation extraction in
Section 7). Also, no support for reasoning with non-atomic handlers is included.

Why3 is a stable tool, actively developed by a solid team, with a growing
user community and very low risk of obsolescence. It is being successfully used
for formal verification in contexts as diverse as safety-critical programming [2],
multicore schedulers [27], or blockchain smart contracts [37,40]. Why3-do brings
Why3’s strengths in terms of usability and proof engineering to the mechanical
verification of distributed systems, making it available to a wider community.

Acknowledgments. The development of Why3-do was initiated during a visit of
the second author to the Toccata team at Inria Saclay-Ile-de-France/LRI Univ
Paris-Saclay/CNRS and greatly benefited from the team’s hospitality and Why3
expertise. This work is financed by the ERDF — European Regional Development
Fund through the North Portugal Regional Operational Programme - NORTE
2020 Programme and by National Funds through the Portuguese funding agency,
FCT - Fundacao para a Ciéncia e a Tecnologia within project NORTE-01-0145-
FEDER-028550 - PTDC/EEI-COM/28550/2017.

Why3-do: The Way of Harmonious Distributed System Proofs 139

References

10.
11.

12.

13.

14.

15.

16.

17.

. Abadi, M., Lamport, L.: The existence of refinement mappings. Theoretical Com-

puter Science 82(2), 253-284 (1991). https://doi.org/10.1016/0304-3975(91)90224-
P

AdaCore and Altran UK Ltd: SPARK 2014 Reference Manual — Release 2020
(2020)

. Altisen, K., Corbineau, P., Devismes, S.: A framework for certified self-

stabilization. In: Albert, E., Lanese, I. (eds.) Formal Techniques for Distributed
Objects, Components, and Systems. pp. 36-51. Springer International Publishing,
Cham (2016)

Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovié, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) Com-
puter Aided Verification. pp. 171-177. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2011)

Brookes, S., O’'Hearn, P.W.: Concurrent separation logic. ACM SIGLOG News
3(3), 47-65 (Aug 2016). https://doi.org/10.1145/2984450.2984457

Chang, E., Roberts, R.: An improved algorithm for decentralized extrema-finding
in circular configurations of processes. Commun. ACM 22(5), 281-283 (May 1979).
https://doi.org/10.1145/359104.359108

Chaudhuri, K., Doligez, D., Lamport, L., Merz, S.: Verifying safety properties with
the TLA + proof system. In: Giesl, J., Hdhnle, R. (eds.) Automated Reasoning.
pp. 142-148. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

Chen, J., Abujarad, F., Kulkarni, S.: Towards scalable model checking of self-
stabilizing programs. Journal of Parallel and Distributed Computing 73(4), 400—
410 (2013). https://doi.org/10.1016/j.jpdc.2012.12.009

Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press (2001)
Conchon, S., Coquereau, A., Iguernlala, M., Mebsout, A.: Alt-Ergo 2.2. In: SMT
Workshop: International Workshop on Satisfiability Modulo Theories. Oxford,
United Kingdom (Jul 2018)

Cousineau, D., Doligez, D., Lamport, L., Merz, S., Ricketts, D., Vanzetto, H.:
TLA + proofs. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012: Formal Methods.
pp. 147-154. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski,
B.: Frama-C - A software analysis perspective. In: Eleftherakis, G., Hinchey, M.,
Holcombe, M. (eds.) Software Engineering and Formal Methods - 10th Interna-
tional Conference, SEFM 2012, Thessaloniki, Greece, October 1-5, 2012. Proceed-
ings. Lecture Notes in Computer Science, vol. 7504, pp. 233—-247. Springer (2012).
https://doi.org/10.1007 /978-3-642-33826-7_16

Desai, A., Phanishayee, A., Qadeer, S., Seshia, S.A.: Compositional program-
ming and testing of dynamic distributed systems. Proc. ACM Program. Lang.
2(OOPSLA) (oct 2018). https://doi.org/10.1145/3276529

Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643-644 (Nov 1974). https://doi.org/10.1145/361179.361202
Dijkstra, E.W., Scholten, C.S.: Predicate calculus and program semantics.
Springer-Verlag New York, Inc., New York, NY, USA (1990)

Fillidtre, J.: One logic to use them all. In: Bonacina, M.P. (ed.) Automated De-
duction - CADE-24 - 24th International Conference on Automated Deduction,
Lake Placid, NY, USA, June 9-14, 2013. Proceedings. Lecture Notes in Computer

https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1145/2984450.2984457
https://doi.org/10.1145/359104.359108
https://doi.org/10.1016/j.jpdc.2012.12.009
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1145/3276529
https://doi.org/10.1145/361179.361202

140

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Cldaudio Belo Lourenco and Jorge Sousa Pinto P<

Science, vol. 7898, pp. 1-20. Springer (2013). https://doi.org/10.1007/978-3-642-
38574-2_1

Filliatre, J.C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) Proceedings of the 22nd European Symposium on Program-
ming. Lecture Notes in Computer Science, vol. 7792, pp. 125-128. Springer (Mar
2013

FonsZ}ca7 P., Zhang, K., Wang, X., Krishnamurthy, A.: An empirical study
on the correctness of formally verified distributed systems. In: Proceedings
of the Twelfth European Conference on Computer Systems. p. 328-343. Eu-
roSys’l7, Association for Computing Machinery, New York, NY, USA (2017).
https://doi.org/10.1145/3064176.3064183

Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S., Zill, B.: Ironfleet: Proving practical distributed systems correct. In:
Proceedings of the 25th Symposium on Operating Systems Principles. p. 1-17.
SOSP’15, Association for Computing Machinery, New York, NY, USA (2015).
https://doi.org/10.1145/2815400.2815428

Hoare, C.A.R.: An Axiomatic Basis For Computer Programming. Communications
of the ACM 12, 576-580 (1969)

Huet, G., Kahn, G., Paulin-Mohring, C.: The Coq proof assistant : A tutorial :
Version 6.1. Tech. rep., INRIA (07 1997)

Kalim, F., Palmskog, K., Mehar, J., Murali, A., Gupta, 1., Madhusudan, P.: Kaizen:
Building a performant blockchain system verified for consensus and integrity. In:
2019 Formal Methods in Computer Aided Design (FMCAD). pp. 96-104 (2019).
https://doi.org/10.23919/FMCAD.2019.8894248

Krogh-Jespersen, M., Timany, A., Ohlenbusch, M.E., Gregersen, S.O., Birkedal,
L.: Aneris: A mechanised logic for modular reasoning about distributed systems.
In: Miiller, P. (ed.) Programming Languages and Systems. pp. 336—-365. Springer
International Publishing, Cham (2020)

Lamport, L.: The temporal logic of actions. Tech. Rep. 79, Digital Equipment Cor-
poration (May 1994), aCM Transactions on Programming Languages and Systems
16

Leino, R.: Dafny: An automatic program verifier for functional correctness. In: 16th
International Conference, LPAR-16, Dakar, Senegal. pp. 348-370. Springer Berlin
Heidelberg (April 2010)

Lepers, B., Gouicem, R., Carver, D., Lozi, J.P., Palix, N., Aponte, M.V,
Zwaenepoel, W., Sopena, J., Lawall, J., Muller, G.: Provable multicore
schedulers with ipanema: Application to work conservation. In: Proceed-
ings of the Fifteenth European Conference on Computer Systems. Eu-
roSys’20, Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3342195.3387544

Lourengo, C.B., Pinto, J.S.: Why3-do: The way of harmonious distributed system
proofs. ESOP 2022 Artifact (2022). https://doi.org/10.5281/zenodo.5914171

Ma, H., Goel, A., Jeannin, J.B., Kapritsos, M., Kasikci, B., Sakallah, K.A.: 14: In-
cremental inference of inductive invariants for verification of distributed protocols.
In: Proceedings of the 27th ACM Symposium on Operating Systems Principles. p.
370-384. SOSP '19, Association for Computing Machinery, New York, NY, USA
(2019). https://doi.org/10.1145/3341301.3359651

Merz, S.: On the verification of a self-stabilizing algorithm. Tech. rep., University
of Munich (1998)

de Moura, L., Bjgrner, N.: Z3: An Efficient SMT Solver, Lecture Notes in Computer
Science, vol. 4963/2008, pp. 337-340. Springer Berlin (April 2008)

https://doi.org/10.1007/978-3-642-38574-2_1
https://doi.org/10.1007/978-3-642-38574-2_1
https://doi.org/10.1145/3064176.3064183
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.23919/FMCAD.2019.8894248
https://doi.org/10.1145/3342195.3387544
https://doi.org/10.5281/zenodo.5914171
https://doi.org/10.1145/3341301.3359651

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Why3-do: The Way of Harmonious Distributed System Proofs 141

Newcombe, C.: Why amazon chose TLA+. In: Ait Ameur, Y., Schewe, K.D. (eds.)
Abstract State Machines, Alloy, B, TLA, VDM, and Z. pp. 25-39. Springer Berlin
Heidelberg, Berlin, Heidelberg (2014)

Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: Decidable reasoning
about distributed protocols. Proc. ACM Program. Lang. 1(OOPSLA) (Oct 2017).
https://doi.org/10.1145/3140568

Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: Safety verifi-
cation by interactive generalization. In: Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation. p. 614-630.
PLDI ’16, Association for Computing Machinery, New York, NY, USA (2016).
https://doi.org/10.1145,/2908080.2908118

Qadeer, S., Shankar, N.: Verifying a self-stabilizing mutual exclusion algorithm. In:
Proceedings of the IFIP TC2/WG2.2,2.3 International Conference on Program-
ming Concepts and Methods. pp. 424-443. PROCOMET ’98, Chapman & Hall,
Ltd. (1998)

Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI
Commun. 15(2-3), 91-110 (2002)

Rognier, B.: Verify a smart contract with archetype. https://medium.com/
coinmonks/verify-a-smart-contract-with-archetype-6e0ea548e2da (2019)
Schneider, M.: Self-stabilization. ACM Comput. Surv. 25(1), 4567 (Mar 1993).
https://doi.org/10.1145/151254.151256

Sergey, I., Wilcox, J.R., Tatlock, Z.: Programming and proving with dis-
tributed protocols. Proc. ACM Program. Lang. 2(POPL) (Dec 2017).
https://doi.org/10.1145/3158116

Tolmach, P., Li, Y., Lin, SSW., Liu, Y., Li, Z.: A survey of smart contract formal
specification and verification. ArXiv abs/2008.02712 (2020)

Tsuchiya, T., ichi Nagano, S., Paidi, R.B., Kikuno, T.: Symbolic model checking for
self-stabilizing algorithms. IEEE Trans. Parallel Distrib. Syst. 12(1), 81-95 (2001)
Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X., Ernst, M.D.,
Anderson, T.: Verdi: A framework for implementing and formally verify-
ing distributed systems. In: Proceedings of the 36th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. p. 357-368.
PLDI ’15, Association for Computing Machinery, New York, NY, USA (2015).
https://doi.org/10.1145/2737924.2737958

Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,
L., Kropf, T. (eds.) Correct Hardware Design and Verification Methods. pp. 54-66.
Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

https://doi.org/10.1145/3140568
https://doi.org/10.1145/2908080.2908118
https://medium.com/coinmonks/verify-a-smart-contract-with-archetype-6e0ea548e2da
https://medium.com/coinmonks/verify-a-smart-contract-with-archetype-6e0ea548e2da
https://doi.org/10.1145/151254.151256
https://doi.org/10.1145/3158116
https://doi.org/10.1145/2737924.2737958

142 Cldaudio Belo Lourenco and Jorge Sousa Pinto P<

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Relaxed virtual memory in Armv8-A

Ben Simner'™ Alasdair Armstrong! Jean Pichon-Pharabod?
Christopher Pulte! Richard Grisenthwaite® Peter Sewell!

! University of Cambridge, UK first.last@cl.cam.ac.uk
2 Aarhus University, Denmark jean.pichon@cs.au.dk
3 Arm Ltd., UK first.last@arm.com

Abstract. Virtual memory is an essential mechanism for enforcing se-
curity boundaries, but its relaxed-memory concurrency semantics has
not previously been investigated in detail. The concurrent systems code
managing virtual memory has been left on an entirely informal basis,
and OS and hypervisor verification has had to make major simplifying
assumptions.

We explore the design space for relaxed virtual memory semantics
in the Armv8-A architecture, to support future system-software verifica-
tion. We identify many design questions, in discussion with Arm; develop
a test suite, including use cases from the pKVM production hypervisor
under development by Google; delimit the design space with axiomatic-
style concurrency models; prove that under simple stable configurations
our architectural model collapses to previous “user” models; develop tool-
ing to compute allowed behaviours in the model integrated with the full
Armv8-A ISA semantics; and develop a hardware test harness.

This lays out some of the main issues in relaxed virtual memory
bringing these security-critical systems phenomena into the domain of
programming-language semantics and verification with foundational ar-
chitecture semantics.

1 Introduction

Computing relies on virtual memory to enforce security boundaries: hypervisors
and operating systems manage mappings from virtual to physical addresses to
restrict access to physical memory and memory-mapped devices, and thereby to
ensure that processes and virtual machines cannot interfere with each other, or
with the parent OS or hypervisor. In a world with endemic use of memory-unsafe
languages for critical infrastructure, and of hardware that does not enforce fine-
grained protection, virtual memory is one of the few mechanisms one has to
enforce strong security guarantees. This has driven interest in hypervisors and
virtual machines, and it provides a compelling motivation for verification of the
OS-kernel and hypervisor code that manages virtual memory to provide security.

However, any such verification requires a semantics for the protection mech-
anisms provided by the underlying hardware architecture. There are two major
challenges in establishing such a semantics. First, there is its sequential intricacy:

© The Author(s) 2022
I. Sergey (Ed.): ESOP 2022, LNCS 13240, pp. 143-173, 2022.
https://doi.org/10.1007/978-3-030-99336-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99336-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-99336-8_6

144 Simner et al.

virtual memory is one of the most complex aspects of a modern general-purpose
architecture. For 64-bit Armv8-A (AArch64) it is described in a 166-page chap-
ter of the prose reference manual [13, Ch.D5| and includes a host of features and
options. Second, and more fundamentally, there is its relaxed memory behaviour.
Hardware implementations of virtual memory use in-memory representations of
the virtual-to-physical address mappings, represented as hierarchical page tables.
For performance, there are dedicated cache structures for commonly used map-
ping data, in Translation Lookaside Buffers (TLBs). Translations are used often
— a single load instruction might need 40 or more page-table entries to translate
its fetch and access addresses — but they are changed only rarely, and by systems
code not user code. Architectures therefore require manual management of TLB
caching, e.g. with specific instructions to invalidate old TLB entries that should
no longer be used, instead of providing the simpler coherent memory abstrac-
tion that they do for normal accesses. All this gives rise to new relaxed-memory
effects, with subtle constraints determining when translations are required or
forbidden to read from specific writes to the page tables, and systems code has
to handle these appropriately to provide the desired virtual-memory abstraction
and its security properties.

Previous work has developed hand-written sequential semantics for some as-
pects of address translation in Arm [57,59,58,60,44,38,41] and x86 [34,35,29,62],
but these are at best lightly validated formalisations, and there is no well-
validated relaxed-memory concurrency semantics of virtual memory. In the ab-
sence of that (and of proof techniques above it), previous OS and hypervisor
verification work, e.g. on sel.4, CertiKOS, KCore, Hyper-V, the PROSPER hy-
pervisor, and SeKVM [25,40,37,44,11,38,43,61] has had to make major simplify-
ing assumptions, either assuming correctness of TLB management and a single-
threaded setting (selL4), or assuming sequentially consistent concurrency with
one of those hand-written sequential semantics, or assuming an extended notion
of data-race-freedom (we return to the related work in §7).

We explore the design space for Armv8-A relaxed virtual memory semantics,
to support future systems-software verification. We contribute:

— A description of the current Arm architectural intent as we understand it,
and a set of design questions and issues arising from its relaxed virtual
memory semantics (§3).

— A relaxed virtual memory test suite, comprising of a set of hand-written
litmus tests which illustrate the aforementioned design questions and capture
key use cases from pKVM, a production hypervisor under development by
Google (§4).

— An axiomatic-style concurrency model for relaxed virtual memory in
Armv8 (§5), which to the best of our knowledge and ability captures the
architectural intent described in §3. We also define a weaker model, moti-
vated by the properties pKVM relies on.

— We prove that, for stable injective page-tables, the first model collapses to
the previous Armv8-A user-mode concurrency model (§5).

— We extend our Isla tool [15], enabling it to compute the allowed behaviours
of virtual memory litmus tests with respect to arbitrary axiomatic models,

Relaxed virtual memory in Armv8-A 145

using the authoritative Arm ASL definition of the intra-instruction semantics
including pagetable walks (§6.1).

— We develop a test harness that lets us run virtual-memory litmus tests bare-
metal, albeit currently only for Stage 1 tests, and report results from running
these on hardware (§6.2).

Mainstream industrial architecture specifications evolve over many years,
balancing hardware-implementation and systems-software concerns. Experience
with “user” relaxed-memory concurrency has shown that the process of devel-
oping rigorous semantics for arbitrary code provides a useful third input into
this process, leading one to ask questions which help clarify the architectural
intent. The architects, hardware designers, and system-software authors typi-
cally have a deep understanding of the area, but there is usually not, a priori, a
well-understood informal specification that just needs to be formalised; instead
that needs to be iteratively and collaboratively developed. Our §3 is based on
detailed discussion with the Arm Chief Architect (a co-author of this paper);
on the current Arm prose documentation [13]; on discussion with the pKVM
development team; and on our experimental testing. To the best of our knowl-
edge, our models provide a reasonable basis for software development and for
verification, but this paper is surely not the last word on the subject, and it
does not give an authoritative definition of the Armv8-A architecture. The his-
tory of relaxed-memory models shows that it typically takes multiple years, and
gradual refinement of models, to converge on something reasonably stable for a
production architecture or language, and even then they continue to change as
new knowledge or features arise; with hindsight, few are definitive. Our goal here
is rather to lay out some of the main issues, bringing this security-critical sys-
tems code into the domain of programming-language semantics and verification,
above foundational architecture semantics.

We begin in §2 with an informal introduction to virtual memory in a simple
sequential setting, to make this self-contained. This paper is necessarily con-
densed; an extended version, with our tests, models, proofs, and Isla tooling, is
available at https://www.cl.cam.ac.uk/users/pes20/RelaxedVM-Arm/ .

Scope and non-goals Our scope is Armv8-A virtual memory for the 64-bit
(AArch64) architecture, aiming especially to support aspects relevant to hy-
pervisors such as pKVM. Accordingly, we consider translation with multiple
stages (for both hypervisor and OS), multiple levels, and the full Armv8-A intra-
instruction semantics and translation walk behaviour (as defined by Arm in ASL
and auto-translated to Sail [14]). Our models cover the Armv8-A ETS option as
work in progress. We discuss some mixed-size aspects, but our models do not
currently cover them. To keep things manageable, we do not consider hardware
management of access flags or dirty bits, conflict aborts, FEAT BBM, FEAT _CNP,
FEAT _ XS, the interactions between virtual memory and instruction-fetch, or all
the relaxed behaviour of exceptions, and we handle only some of the many vari-
eties of the TLBI instruction. We focus on the specification of the architecturally
allowed envelope of functional behaviour, not on side-channel phenomena. We

https://www.cl.cam.ac.uk/users/pes20/RelaxedVM-Arm/

146 Simner et al.

include some experimental testing, as a sanity check of our models, but our prin-
cipal goal is to capture the architectural intent, and our principal validation is
from discussion with Arm. Many of the issues should also be relevant to other
architectures, but here we address only Armv8-A.

2 Background: A Crash Course on Virtual Memory

2.1 Virtualising addressing

In conventional computer systems, the underlying memory is indexed by physical
addresses (PAs), as are memory-mapped devices. For a small microcontroller
running trusted code, accessing resources directly via physical addresses may
suffice. Larger systems rely heavily on virtual addressing: they interpose one or
more layers of indirection between virtual addresses (VAs) used by instructions
and the underlying physical addresses. This lets them:

1. partition resources among different programs, giving each access only to
those it needs;

2. provide convenient numeric ranges of virtual addresses to each program; and

3. dynamically extend and change the mapping from virtual to physical ad-
dresses, e.g. to support copy-on-write, swapping, or shared buffers.

A simple system might have many processes managed by an operating system,
each of which (including the OS) has a partial function that gives the physical
address and permissions for the virtual addresses it can use, roughly:

translate : VirtualAddress — PhysicalAddress x 2{ReadWriteExecute}

Typically each process would have access to a subset of the physical addresses
(the range of its translate function), disjoint from those of the other processes
and from that of the OS, while the OS would have sole access to its own working
memory and also access to that of the processes. This is implemented with a
combination of hardware and system software. The hardware memory manage-
ment unit (MMU) automatically translates virtual to physical addresses when
doing an access needed to execute an instruction. If the function is undefined,
the instruction traps with a page fault; if it is defined but does not have the ap-
propriate accesses, it traps with a permission fault; and if it is defined with the
right permissions, the hardware performs the required access using the resulting
physical address. The OS has to set up the translate functions, ensure that the
appropriate function is used when switching to a new process, and handle those
faults. Translation functions are not necessarily injective, and the full translate
function has permissions per exception-level, and includes not just access per-
missions but additional fields for cacheability, shareability, security, contiguity,
and others which we elide for simplicity here.

Relaxed virtual memory in Armv8-A 147

2.2 The translation-table walk

The current translate function for execution is determined by a system register,
a translation table base register or TTBR, that contains the physical address of
a lookup-tree data structure in memory. The details of this structure are (in
Armv8-A) highly configurable, e.g. for different page sizes, controlled by various
system registers. In a common configuration used by Linux, it maps 4096-byte
pages and has a tree up to four levels (0-3) deep. Each non-leaf node of the tree
has 512 64-bit entries, indexed by specific bit ranges of the virtual address. Each
entry can be either invalid, meaning that the translate function is undefined for
this part of the domain; a block (at levels 1 or 2) or page descriptor entry (at
level 3), returning an output address and permissions; or a table (at levels 0, 1,
or 2), with the physical (or intermediate physical) address of a next-level table
with which to continue recursively.

This translation-table walk function is fully defined in the Arm ASL language.

2.3 Multiple stages of translation

The above suffices for an operating system isolating multiple processes from
each other, but one often wants to isolate multiple operating systems (or other
guests), managed by a hypervisor. To support this, the architecture provides
a second layer of indirection: instead of going straight from virtual to physical
addresses, with a single stage of mapping controlled by the OS, one can have two
stages, with the OS managing a Stage 1 table which maps virtual addresses to an
intermediate physical addresses (IPAs), composed with a hypervisor-managed
Stage 2 table, mapping IPAs to PAs. The full translation composes the two,
intersecting their permissions.

translate_stagel : VirtualAddress — IPA x 2{Read.WriteExecute}
translate_stage2 : IPA — PhysicalAddress X o{Read Write,Execute}

Armv8-A has various exception levels (ELs), including ELO (for user processes),
EL1 (for OSs or other guests), and EL2 (for a hypervisor). These each have
associated translation-table base registers:

— TTBRO_EL1: contains a pointer (IPA) to the Stage 1 table for EL1&0, lower
VA range (process addresses), producing IPAs, controlled by OS at EL1

— TTBR1_EL1: contains a pointer (IPA) to the Stage 1 table for EL1&0, upper
VA range (OS kernel addresses), producing IPAs, controlled by OS at EL1

— VTTBR_EL2: contains a pointer (PA) to the Stage 2 table (second stage for
IPAs translated at EL1&0), producing PAs, controlled by hypervisor at EL2

— TTBRO_EL2: contains a pointer (PA) to the single-stage table for EL2 (hyper-
visor’s own addresses), producing PAs, controlled by hypervisor at EL2

Each hardware thread has its own base registers (and other system registers),
and so different hardware threads can be using different address spaces (for
example, for different processes) at the same time.

148 Simner et al.

2.4 Caching translations in TLBs

A naive hardware implementation of address translation would need many trans-
lation memory reads — with four levels, up to 24 with both stages enabled,
for every instruction-fetch, read, or write. This would have unacceptable per-
formance, so processors have specialised caches for translation-table walk reads
called translation lookaside buffers (or TLBs). Under normal operation the TLBs
are invisible to user code, but systems code has to manage them explicitly, to
change which translation table is currently in use (e.g. when context switching),
or to make changes to the tables for one process or guest. Without correct man-
agement a TLB could hold incorrect (stale) data, breaking the protection that
the address translation is intended to provide.

The architecture supports explicit TLB maintenance with various flavours of
the TLBI instruction (TLB invalidate), to invalidate old entries for specific ranges
of virtual or intermediate physical addresses, or even whole ASIDs or VMIDs at
once. The memory management unit (MMU) is responsible for performing these
translations. It does this by looking at the TLB and, if the TLB does not contain
an entry for the given address (called a miss), it performs the translation table
walk function as described earlier and caches the result in the TLB (a fill).

TLB maintenance and TLB misses are expensive, and one would not want
the cost of TLB invalidation on every context switch, so the architecture provides
address space identifiers (ASIDs). The translation table base registers include
an ASID in addition to the table base address, and when translation data is
cached in a TLB it is tagged with the current ASID, giving the illusion of sepa-
rate TLBs per ASID, and allowing switching from one to another without TLB
maintenance. Eventually the system will need to reclaim and reuse a previously
used ASID, and then TLB maintenance is required to clean that ASID’s old
entries. There are similar identifiers for Stage 2 intermediate physical memory,
known as virtual-machine identifiers or VMIDs.

3 Concurrency Architecture Design Questions

Now we will introduce the main concurrency architecture design questions that
arise for Armv8-A virtual memory, within the scope laid out in the introduction.
As usual, the architecture has to define an envelope of behaviour that provides
the guarantees needed by software, while admitting the relaxed behaviour of the
microarchitectural techniques necessary for performance. That means we have to
discuss both, including just enough microarchitecture to understand the possible
programmer-visible behaviour, before we abstract it in the semantic models we
give in §5. The discussion includes points of several kinds: some that are clear in
the current Arm documentation, some where Arm have a change in flight, some
that are not documented but where the semantics is (after discussion) obviously
constrained by existing hardware or software practice, and some where there is a
tentative Arm intent but it is not yet fixed upon; our modelling raised a number
of questions of the latter two. To make this as coherent as possible, we discuss
all these in a logical order, laying out the design principles. We have developed a

Relaxed virtual memory in Armv8-A 149

suite comprised of 214 hand-written Isla-compatible virtual-memory litmus tests
that illustrate the issues, but to keep this concise we just give the main ideas
here. In the extended version, we link to tests for each issue. As a sample, we
explain one pKVM test in detail in §4.

3.1 Coherence with respect to physical or virtual addresses

For normal memory accesses, the most fundamental guarantee that architectures
provide is coherence: in any execution, for each memory location, there is a to-
tal order of the accesses to that location, consistent with the program order of
each thread, with reads reading from the most recent write in that order. Hard-
ware implementations provide this, despite their elaborate cache hierarchies and
out-of-order pipelines, by coherent cache protocols and pipeline hazard check-
ing, identifying and restarting instructions when possible coherence violations
are detected. Previous work on relaxed-memory semantics for architectures has
taken virtual addresses as primitive, implicitly considering only execution with
well-formed, constant, and injective address translation mappings.

Now, we have to consider whether coherence is with respect to virtual or phys-
ical addresses, for non-injective mappings. For Arm, coherence is w.r.t. physical
addresses [13, D5.11.1 (p2812)]. This means that if two virtual addresses alias
to the same physical address, then (still assuming well-formed and constant
translation): a load from one virtual address cannot ignore a program-order (po)
previous store to the other; and a load from one virtual address can have its
value forwarded from a store to the other, and similarly on a speculative branch.

3.2 Relaxed behaviour from TLB caching

There are two main aspects of the concurrency semantics of virtual memory: the
relaxed behaviour arising directly from TLB caching, and the relaxed behaviour
of the not-from-TLB (non-TLB) memory accesses for translation reads that
read from memory or by forwarding from po-previous writes, and that might
supply TLB cache fills. We discuss them in this and the following subsection
respectively.

What can be cached: The MMU can cache information from successful trans-
lations, and also from translations that result in permission faults, but it is archi-
tecturally forbidden from caching information from attempted translations that
result in translation faults. This ensures that the handlers of those faults do not
need to do TLB maintenance to remove the faulting entry [13, D5.8.1 (p2780)],
and makes the potential behaviour for page-table updates from invalid-to-valid
and valid-to-any quite different, as we shall see.

TLB implementations might cache any combination of individual page-table
entries and partial or complete translations, e.g. from the virtual address and
context to the physical address of the last-level page. Conceptually, however, we
can simply view a TLB as containing a set of cached page-table-entry writes
(i.e., writes that have been read from for a translation), including at least:

150 Simner et al.

— the context information of the translation: the VMID, ASID, and the origi-
nating exception level;

— the virtual address, intermediate physical address, and/or physical address
of the translation;

— the translation stage and level at which the write was used;

— the system register values used in the translation (those which can be
cached); and

— for an entry used for a Stage 1 translation, whether it has been invalidated
at both stages.

That additional information allows the various TLBI instructions to target spe-
cific entries. A translation walk can arbitrarily use either a cached write (if one
exists) or do a non-TLB read, either from memory or by forwarding from a
po-previous write, for any stage or level.

Caching of multiple entries for the same virtual address and con-
text: High-performance hardware implementations may have elaborate TLB
structures, including multiple “micro TLBs” per thread. These can be seen as a
conceptual single per-thread TLB that can hold zero, one, or more entries for
each combination of input address and the other information above. If zero, a
translation will necessarily read from memory (with ordering constrained as dis-
cussed below). If one or more, a translation may use any of those entries or read
from memory (and the write read from might or might not be cached). However,
in some cases multiple entries constitute a break-before-make failure, leading to
relatively unconstrained behaviour; we return to this below.

When can page-table entries be cached: Any memory read by a translation
can be cached. Any thread can spontaneously do a translation for any virtual ad-
dress at any program point, with respect to its context at that point (though this
interacts with the system-register write/read semantics). Spontaneous transla-
tions model hardware prefetching, speculative execution, and branch prediction.
They mean that, in the absence of cache maintenance, translations may use TLB
entries from arbitrarily old writes. Additionally, any thread may do a sponta-
neous translation at any point using the configuration from any exception level
higher than the current one, but not for lower levels. Preventing spontaneous
walks at lower EL is essential, as during an EL2 hypervisor switch between
VMs, the EL1 control registers will be in an inconsistent state. Allowing spon-
taneous walks at higher EL models arbitrary interrupts to the higher level and
then doing a spontaneous walk there.

Each virtual-memory access by a thread involves a non-spontaneous transla-
tion which is constrained by the normal inter-instruction constraints on out-of-
order and speculative execution by the thread. These constraints are especially
important in order to understand when a translation must fault: as invalid en-
tries cannot be cached, a translation that gives rise to such a fault must be at
least in part from a non-TLB read, subject to these ordering constraints.

Relaxed virtual memory in Armv8-A 151

Coherence of translations: Due to the TLB caching as described above, trans-
lations of the same virtual address by the same thread need not see a coherent
view of page-table memory. This is in sharp contrast to normal accesses, but
analogous to instruction-fetch reads [56] and reads from persistent memory [51].

Removing cached entries: TLBs may spontaneously forget any cached infor-
mation at any point. To ensure that a cached entry is removed, software must
ensure that it will not be spontaneously re-cached. It can do this with a write of
an invalid entry and then a DSB instruction (data synchronization barrier) to
ensure that it is visible across the system, followed by a TLBI.

Break-before-make failures: When changing an existing translation map-
ping, from one valid entry to another valid entry, Arm require in many cases the
use of a break-before-make (BBM) sequence: breaking the old mapping with a
write of an invalid entry; a DSB to ensure that is visible across the system; and a
broadcast TLBI to invalidate any cached entries for all relevant threads; a DSB
to wait for the TLBI to finish; then making the new mapping with a write of the
new entry, and additional synchronisation to ensure that it is visible to trans-
lations. The current Arm text [13, D5.10.1 (p2795)] identifies six cases of page-
table updates that without such a sequence constitute BBM failures, and gives
very severe architectural consequences thereof: failures of coherency, single-copy
atomicity, ordering, or uniprocessor semantics. Note that these consequences are
architecturally allowed if there could exist a break-before-make-failure change
to the translation tables for some virtual address, irrespective of whether the
program architecturally accesses it.

This severity is because, in some of the six cases, hardware implementations
could give rather arbitrary behaviour, e.g. an amalgamation of old and new
entries. From a software point of view, it seems that one must treat such cases
more-or-less as fatal errors. This is analogous to the Data-race-free-or-catch-
fire semantics underlying the C/C++ relaxed memory model [4,33,22,20], in
which any program with a consistent execution that includes a race between
nonatomic accesses is deemed to have undefined behaviour, and the C/C+-+
standards do not constrain implementation behaviour for such programs in any
way. This makes many potential litmus tests that change between valid entries
uninteresting, as they simply exhibit BBM failures.

However, for a processor architecture that supports virtualisation, one cannot
regard BBM failures as allowing completely arbitrary behaviour for the entire
machine: if one guest virtual machine (at EL1) changes one of its own translation
mappings without correctly following the BBM sequence, either mistakenly or
maliciously, that should not impact security of the hypervisor (at EL2) or other
guests. Instead, one has to bound the arbitrary behaviour to that virtual ma-
chine, allowing arbitrary memory and register accesses that are possible within
its context. In our exhaustively executable semantics, to keep litmus-test execu-
tions finite, we currently simply detect BBM failures; we do not explicitly model
that arbitrary behaviour.

152 Simner et al.

In reality, these six BBM failure cases include some where hardware may
give such weakly constrained behaviour and others where, because coherence
is over physical addresses and the mapping may be temporarily indeterminate,
software might see well-defined but nondeterministic or surprising results. These
were architected as a guide for system software to produce predictable behaviour,
and future versions of the architecture might refine this.

When a hypervisor installs a new guest, it has to be able to reset to a clean
state. It can do so with a TLBI covering all the previous guest’s processes address
space. There seems to be no need or support for finer-grain cleanup.

3.3 Relaxed behaviour of translation-walk non-TLB reads

Now we turn to the semantics of translation-walk non-TLB reads, those that are
satisfied from memory or by forwarding, not from a TLB. This matters especially
when one knows that there are no relevant cached TLB entries, e.g. when an
invalid entry has been written and a TLBI performed.

Ordering among the translation-walk reads of an access: Each
translation-table walk for a virtual-memory access can involve many memory
reads, one for each level of the table for each stage of translation.

The diagram on the right is an example walk, where
each Tn is read of level n of the Stage 1 table. Each of ~T11 T2t T31 T41 T_f
those Stage 1 reads must first be translated to get the —Ti2[T22 (132 (142 [T 2
PA (as the table contains IPAs) and so each Tnk is a sl ths | ths | Tha TiS
read of level k of the Stage 2 table for the address of the 3, |34 | 144 | Tha | 14
Stage 1 table at level n. Once the full Stage 1 walk has '
been completed the final output IPA must be translated
to the final PA, and those are the final 4 T_n reads, of the Stage 2 table at level n.
The reads are ordered one after another in the order they appear in the ASL
walk function. This ordering must be respected by hardware as software relies
on it when building the tables bottom-up.

v v * \
T1 T2 T3 T4 aRx=v

Dependencies into translation-walk non-TLB reads: Address dependen-
cies into a memory-access instruction in classic “user” models are now explainable
as dataflow dependencies to the translation reads of those accesses, as the address
has to be available before a walk can start. These are virtual-address dataflow
dependencies (contrasting with physical-address coherence).

Translation-walk non-TLB reads from non-speculative same-thread
writes:

PO-past A translation-walk non-TLB read might read from a po-previous page-
table-entry write, but it is only guaranteed to see such a write if there is enough
intervening synchronisation. Arm have recently introduced Enhanced Transla-
tion Synchronization (ETS), optional in Armv8.0 and mandatory from Armv8.7.
Armv8-A implementations without ETS require both a DSB, to make the write

Relaxed virtual memory in Armv8-A 153

visible to translation-walk non-TLB reads, and an ISB, to ensure that any trans-
lations for later instructions that were done out-of-order, before the write, are
restarted. With ETS, only the DSB is required for a translation-walk non-TLB
read to definitely see the write, though one might still need an ISB if the
new translation enables new instruction fetch. Because invalid entries cannot
be cached, this means that if an entry is initially invalid, then after a write of a
valid entry and a DSB;ISB/DSB, translations will use that valid entry. However,
the DSB;ISB/DSB does not remove cached entries, so an initially valid entry
might be cached by a spontaneous walk, so even after a write (of an invalid or
non-BBM-failure valid entry) and a DSB;ISB/DSB, the old entry could still be
used by translations. One would need a TLBI sequence to remove old cached
entries, which we return to below.

PO-future The Armv8-A architecture allows load-store reordering, but it does
not allow writes to become visible to other threads while they are still specula-
tive. In the same vein, translation-walk non-TLB reads cannot read from po-later
page-table-entry writes [13, D5.2.5 (p2683)]. Before the po-earlier translation is
complete, one cannot know that it is not going to fault, so the later write has to
be considered speculative. This prevents a thread-local self-satisfying translation
cycle, analogous to the prevention of load-store cycles with dependencies.

PO-present On the margin, can a translation-walk non-TLB read for a write
access see that write, or a distinct write from the same instruction? The second
case could arise from a store-pair or misaligned store that does two writes, with
one to a page-table-entry that could be used by the other, though real code
would typically not do this intentionally. This is explicitly allowed by the cur-
rent architecture text [13, D5.2.5 (p2683)]. However that text does not specify
whether the translations for those two writes could both read from the other, a
self-satisfying translation cycle where the writes write each others translations.
In general such self-satisfying cycles give rise to thin air behaviours and the
architectural intent is to forbid them.

Translation-walk non-TLB reads from speculative same-thread writes:
Speculative execution requires translation walks, which might result in addi-
tional page-table entries being cached, but in most cases this is indistinguishable
from the effects of a non-speculative spontaneous walk. However, one has to ask
whether a translation-walk non-TLB read can see a po-previous write that is
still speculative, e.g. while both instructions follow an as-yet-unresolved condi-
tional branch. It is clear that the result of such a walk should not be persistently
cached, or made visible to other threads (via a shared TLB), while it remains
speculative. Moreover, such translations could lead to arbitrary reads of read-
sensitive device locations, which one normally relies on the MMU to prevent.
The conclusion is therefore that this must be forbidden.

Translation-walk non-TLB reads from same-thread writes, forbidden
past (same-thread TLBI completion): To remove an existing mapping on a
single thread, one needs first to write an invalid entry, then a DSB to ensure that

154 Simner et al.

has reached memory and thus is visible to translation-walk non-TLB reads (to
prevent spontaneous re-caching), then a TLBI to invalidate any cached entries,
then a DSB to wait for TLBI completion. Without ETS, one also needs an ISB
to ensure that po-later translations that have been done early are restarted.
With ETS, the ISB is not always necessary, though might still be needed for its
instruction-cache effects if the change of mapping affects instruction fetch. After
all that, an attempted access by that thread is guaranteed to fault.

Translation-walk non-TLB reads from other-thread writes, guaran-
teed past, initially invalid: Now consider when a translation-walk non-TLB
read is guaranteed to see a write by another thread of a new entry, assuming
that the entry was previously invalid and any cached entries for it invalidated.
Consider a two-thread message-passing case, where a producer PO writes a new
valid page table entry (pte_valid),
then has some ordering before a PO Pl

write of a flag, while a consumer P1 |a:W pte(x)=pte_valid|c:R flag=1

reads the flag, then has some order- |<P roducer ordering> |[<Receiver ordering>
ing before an access Rx or Wx that [0:W flag=l d:Tx, for a Rx or Wx
needs that entry for a translation Tx of virtual address x.

On some Armv8-A implementations that do not support ETS, some “ob-
vious” combinations of ordering on PO and P1 could lead to an abort of the
translation of (d), which some OS software would find difficult to handle. This
was the main motivation for ETS: implementations without it can have weak be-
haviour, requiring strong synchronisation to prevent the abort, while with ETS
the architecture is stronger, requiring only weaker ordering to prevent the abort.

Without ETS, two combinations of ordering are architected as sufficient to
ensure that the translation (d) sees the new valid entry:

1. PO has any ordered-before relationship, and P1 has DSB-+ISB.
2. PO has DSB; TLBI; DSB, and P1 has any ordered-before relationship.

In Case 1, the message-passing is enough to ensure the write (a) is in main
memory, the P1 ISB ensures that any out-of-order translation of (d) is restarted,
and the P1 DSB keeps the read (c) and that ISB in order. In Case 2, the first DSB
ensures the write is visible to all threads, the TLBI (broadcast, for the virtual
address x) invalidates any older cached entry on P1, and the second DSB waits
for that TLBI to be complete, after which any new translation on P1 will have to
see the new entry. However, it appears that the probability of an unhandleable
abort in practice, where one usually does not have these operations immediately
adjacent, and where in many cases the abort could be handled, has been judged
low enough that OS code is not necessarily using either of these.

With ETS, the architecture says [13, D5.2.5,p2683| that “if a memory access
RW1 is Ordered-before a second memory access RW2, then RW1 is also Ordered-
before any translation table walk generated by RW2 that generates a Translation
fault, Address size fault, or Access flag fault.” Microarchitecturally, the intuition
here is that with ETS any translation done while speculative that leads to such

Relaxed virtual memory in Armv8-A 155

a fault will have to be reconfirmed as faulting when execution is no longer spec-
ulative, so an early faulting translation of (d) would have to be restarted after
the ordered-before edges have ensured that (a) is visible. However, in the case
that the RW2 instruction faults, there is no read or write event, and if the fault
is a translation fault, there is no physical address. One therefore has to ask what
the meaning of ordered-before edges into RW2 is, especially for the parts of
ordered-before dependent on physical addresses, such as coherence. The conclu-
sion is that this should be only the non-physical-address parts of ordered-before
into RW2, and in modelling one needs a “ghost” event to properly record what
the dependencies would have been if it had succeeded. Note that this includes
ordered-before to RW2 that ends with a data dependency into a write, even
though that data would not normally be necessary for the translation.

Even with ETS, one might need an ISB on P1 if the new translation affects
instruction fetch.

Translation-walk non-TLB reads from other-thread writes, guaranteed
past, initially valid (other-thread TLBI completion): The following test
has a read-only mapping for some physical address that is updated with a new
writeable mapping to the same

physical address, followed by a PO Pl
message-pass to another thread STR pte_writeable, [pte(z)]| LDR X0, [y]
that attempts to write. There is DSB SY DMB SY

no requirement for break-before- TLBI VAAELLS, [page(z)] MoV X1,#1
make here, as the output address I?I(S)\BI)S(;(" LO;TR X1 (2]
has not changed, but TLB main- STR x7' Wl e
tenance is required to ensure that Forbid: 1:X0=1 & permission_fault(LO,z)?

the new writeable entry is guar-
anteed to be used by later translation reads.

Arm forbid the outcome where the STR faults due to a permission check. This
is because the TLBI only completes once all instructions using any old translations
which would be invalidated by the TLBI, on all other threads that the TLBI
affects, have also completed, and the following DSB waits for that (the same-
thread case is different; see §3.3). In practice this means that once the TLBI
completes, one of the following holds: either the final STR has not performed its
translation of z yet and will be required to see the writeable mapping for its page
table entry (pte); or the STR has translated using the new writeable mapping; or
the STR has already translated using the old read-only mapping, in which case we
know that the STR has finished and performed its write, since the TLBI could not
complete while it was still in-progress. In that case if the STR has completed, then
so must have the locally-ordered-before LDR, and that must have read 0. This
explanation also covers the make-after-break case above, for non-ETS Case 2.

This is reflected in text to be included in future versions of the Arm ARM:
A TLB maintenance operation [without nXS] generated by a TLB maintenance
instruction is finished for a PE when:

1. all memory accesses generated by that PE using in-scope old translation in-
formation are complete.

156 Simner et al.

2. all memory accesses RWx generated by that PE are complete. RWx is the set
of all memory accesses generated by instructions for that PE that appear in
program order before an instruction (I1) executed by that PE where:

(a) I1 uses the in-scope old translation information, and

(b) the use of the in-scope old translation information generates a syn-
chronous data abort, and

(c¢) if I1 did not generate an abort from use of the in-scope old translation
information, I1 would generate a memory access that RWx would be
locally-ordered-before.

Translation-walk reads from same- and other-thread writes, forbidden
past (break-before-make): Now we can finally return to the break-before-
make sequence. Normal reads cannot read from the coherence-predecessors of
the most coherence-recent write that is visible to them, but translation reads
can read old (non-invalid) values from a TLB. To prevent this, and to ensure
that a translation read sees a new page-table entry, one has to both ensure that
any old TLB entries are invalidated, with a suitable TLBI, and that the new
entry is visible to translation-walk non-TLB reads.

Armv8-A says [13, D5.10.1 (p2795)| “A break-before-make sequence on chang-
ing from an old translation table entry to a new translation table entry requires
the following steps: (1) Replace the old translation table entry with an invalid
entry, and execute a DSB instruction. (2) Invalidate the translation table entry
with a broadcast TLB invalidation instruction, and execute a DSB instruction
to ensure the completion of that invalidation. (8) Write the new translation table
entry, and execute a DSB instruction to ensure that the new entry is visible.”.

Typically the write of an invalid entry and TLBI would be on the
same thread, but more generally, any shape as below should be forbidden,
where Tx is a translation-walk read for an
access of x and the trf relation shows
the page-table write it reads from. In wpepzinvald TLBI Wpte(x)=desc(x)
other words, the sequence ensures that ob ob
the write of the invalid entry, and of any ¢ ¢ / ¢

PO P1 P2

co-predecessor writes, are hidden behind DsB DSB DsSB
the new page-table entry as far as new ot v
translations are concerned. Here the PO ISB (if ...)
DSB and P0-to-P1 ob ensure the PO write v
has propagated to memory before the P1 Tx faults

TLBI starts; the P1 DSB waits for that TLBI to have finished on all threads; the
P1-to-P2 ob ensures that has happened before the new page-table-entry write
starts; and the DSB ensures the new write has reached memory and so is vis-
ible to translation before subsequent instructions. The P2 ISB is needed if on
non-ETS hardware, to force restarts of any out-of-order translations for po-later
instructions, or (on any hardware) if P2=P1, to ensure any later translations on
the TLBI thread are restarted, or if the new mapping affects instruction fetch.
This generalisation seems necessary, as a TLBI might be performed by a
virtual CPU at EL1 which is interrupted and rescheduled by an EL2 hypervisor.

Relaxed virtual memory in Armv8-A 157

One should be able to rely on the hypervisor doing a DSB on the same hardware
thread as part of the context switch, and that has to suffice. It is sound because
the DSBs and TLBI are all broadcast, though note that the DSB waiting for
TLBI completion has to be on the same hardware thread as it.

Translation-walk non-TLB reads from other-thread writes, forbidden
future: Above we saw that translation-walk non-TLB reads should not read
from po-later writes. How should that be generalised to multiple threads? For
the simplest example, consider the trans- PO P1

lation version of the LB test on the
right, in which two threads translation- uf 00
read from each other’s po-future (iio re- A ¢
lates translation reads to their accesses). Wete(y) Wete(x)
Standard LB shapes for normal accesses without dependencies are allowed in
Armv8-A, but this example should be forbidden: until each translation is done,
one cannot know that the first instruction on each thread will not abort, so one
could not make the po-later write visible to the other thread without inter-thread
roll-back. In other words, the possibility of translation aborts creates ordering
rather like a control dependency from translation reads to po-later writes.

X iio Rx Ty iio Ry

Multicopy atomicity of translation-walk non-TLB reads: The ARMv7
and early Armv8-A architectures for normal accesses were non-multicopy-atomic:
a write could become visible to some other threads before becoming visible to all
threads, broadly similar in this respect to the IBM POWER architecture [1,53].
This is one of the most fundamental choices for a relaxed memory model. In
2017 Arm revised their Armv8-A architecture to be multicopy-atomic (other
multicopy-atomic, or OMCA, in their terminology), a considerable simplifica-
tion [49,12]. However, there was no consideration at the time of whether this
should also apply to the visibility of writes by translation-walk non-TLB reads,
or of the force of the ARM statement that a translation table walk is considered
to be a separate observer [13, D5.10.2 (p2808)].

For example, consider the following translation-read analogue of the classic
WRC+addrs test, which would be forbidden in OMCA Armv8-A for normal
reads. Suppose one has ETS, the last-level page-table entries for x and y are

initially invalid and not cached PO P1 P2
in any TLB, PO writes a valid wpepmvaid > Tx — » Rx Ty oo gy
entry for x, P1 does a transla- \-\\\\"‘agd‘i‘m uf addri

tion that sees that entry and Wpte(y)=valid Tt ey Fault
then (via an address depen-

dency) writes a valid entry for y, then P2 does a translation that sees that
entry and then (via an address dependency) tries a translation for x, is that last
guaranteed to see the valid entry instead of faulting? This might be exhibited
by a microarchitecture with a shared TLB between PO and P1 (e.g. if they are
SMT threads on the same core, or have a shared TLB for a subcluster). The
tentative Arm conclusion is that this should be forbidden, to avoid software
issues with unexpected aborts similar to those motivating ETS. Now consider

158 Simner et al.

the above translation version of LB, generalising from po-future writes to other
ob-future writes. For transitive combinations of reads-from and dependencies, it
should clearly still be forbidden, to avoid needing inter-thread roll-back, but for
ob including coherence edges (coe) one can imagine that a translate read could
see a write before the coherence relationships are established, analogous to the
weakness of coherence in the Power non-MCA model.

Discussion of these and others with Arm led to the tentative conclusion for
Armv8-A that translation-walk non-TLB reads (like normal reads) do not see any
non-OMCA behaviour. In other words, there is no programmer-visible caching
observable to some non-singleton subsets of threads’ translations but not others.

3.4 Further issues

Our discussions with Arm identified and clarified various other architectural
choices, though for lack of space we cannot discuss them fully here, and our mod-
els do not cover them at present. To give a flavour: (1) Misaligned or load/store-
pair instructions give rise to multiple accesses, which might be to different pages.
Each has their own translation; not ordered w.r.t. each other, and with no pri-
oritisation of faults between them. As noted in §3.3, one might translate-read
from the other, but not both simultaneously. (2) Normal registers act like a per-
thread sequential memory, with reads reading from the most recent po-previous
write, but the system registers that control translations can have more relaxed
behaviour, requiring ISBs to enforce sequential behaviour. (3) The architecture
requires, and OSs rely on, the fact that turning on the MMU does not need
TLB maintenance. However, in a two-stage world, if Stage 1 is off, one is still
using the TLB for Stage 2, so entries do get added to the TLB. When one later
turns on Stage 1, it is essential that the entries added from those earlier Stage 2
translations are not used, so one has to regard them as from a 257’th ASID.

4 Virtual memory in the pK'VM production hypervisor

Protected KVM, or pKVM [30,27,2], is currently being developed by Google to
provide a common hypervisor for Android, to provide improved compartmental-
isation by a small trusted computing base (TCB) between the Linux kernel and
other services. pPKVM is built as a component of Linux. During boot, the Linux
kernel hands over control of EL2 to the pKVM code, which constructs a memory
map for itself and a Stage 2 memory map to encapsulate the Linux kernel. The
Linux kernel thereafter runs only at EL1 (managing EL1&0 Stage 1 memory
maps for itself and for user processes), as the principal guest, also known as the
host (not to be confused with the host hardware). Other services can run as other
guests, which are protected from the kernel and vice versa. The kernel remains
responsible for scheduling, but context switching and inter-guest communication
is done by hypervisor calls to the pKVM code at EL2. This gives us an ideal
setting in which to examine the management of virtual memory by production
code for Armv8-A relaxed-memory-concurrency, with both one and two stages

Relaxed virtual memory in Armv8-A 159

of translation (for EL2 and EL1&0 respectively). The pKVM codebase is small,
so it is feasible to examine all uses of TLB management, and we benefit from dis-
cussions with the pKVM development team. We have manually abstracted the
main pKVM relaxed-virtual-memory scenarios into 14 tests. To give a flavour of
these, we give one test in detail, which also illustrates the general form of virtual
memory litmus tests; the others are described in the extended version.

In the simplest case where pKVM is just switching from one virtual CPU
(vCPU) to another vCPU in a different VM, pKVM restores the per-CPU reg-
ister state and sets the VTTBR with the new VMID. So long as the two vCPUs
are using disjoint VMIDs there is no requirement for TLB maintenance.

This test, pKVM.vcpu_run, is below, typeset (lightly hand-edited) from the

AArch64 pKVM.vcpu_run

Page table setup: Initial state:
option default_tables = false;| PSTATE.EL=0b10 // initial exception level is EL2
virtual x; VBAR_EL2=0x1000 // exception vector base address
physical pal pa2; ELR EL2=L0: // exception link register, to return to from EL2
intermediate ipal ipa2; SPSR_EL2=0b00101 // saved program status
sltable hyp_map 0x200000 { TTBRO_EL1=ttbr (asid=0x00,base=vml_stagel) // EL1 Stage 1
identity 0x1000 with code; |VTTBR EL2=ttbr(vmid=0x0001,base=vml_stage2) // Stage 2
x+—invalid; } TTBRO_EL2=ttbr (base=hyp_map,asid=0x00) // EL2
sltable vml stagel 0x2C0000 { | x@=ttbr(asid=0x00,base=vm2_stagel)
x> 1ipal; } x1=ttbr(base=vm2_stage2,vmid=0x0002)
sltable vm2_stagel 0x300000 { | x3=x
x> ipa2; } Thread 0 (with pKVM source lines)
stable vml_stage2 0x240000 { msr ttbro_ell, x0 // kvm/hyp/sysreg—sr.h:96
%pal>—>;.3a1; . msr vttbr_el2, x1 // include/asmfam nmu.h:276
ipaz — invalid; eret // kvm/hyp/nvhe/host .S
sltable vml_stagel; } Lo:

s2table vm2_stage2 0x280000 {

)) i ldr x2, [x3] // in guest
:.Lpal > invalid; Thread 0 EL2 handler
ipa2 — pa2;
sltable vm2_stagel; } 0x1400:
xpa2 = 1; mov x2, #0

Final state: 0:x2=0

TOML input format of our Isla tool (§6.1). Here there is a single physical CPU,
initially running a virtual machine VM1, with VMID 0x0001, at EL1. The section
on the left defines the initial and all potential states of the page tables, and any
other memory state. This test sets up separate translation tables for pKVM at
EL2 (which has just a single stage) and for two VMs (each with two stages, Stage
2 controlled by pKVM and Stage 1 controlled by the VM). pKVM’s own mapping
hyp_map maps its code. VM1’s own Stage 1 mapping vml_stagel maps virtual
address x to ipal, and the initial pKVM-managed Stage 2 mapping vml_stage2
maps that ipal to pal, which implicitly initially holds 0. These page tables are
described concisely by a small declarative language we developed, determining
the page-table memory (here ~30k) required for the Armv8-A page-table walks.

The top-right block gives the initial Thread 0 register values, including the
various page-table base registers. The bottom-right blocks give the code of the
test. This starts running at EL2, as one can see from the PSTATE.EL register

160 Simner et al.

value. The key assembly lines are annotated with the pKVM source line num-
bers they correspond to. To switch to run another virtual machine VM2, with
VMID 0x0002, on this same physical CPU, pKVM changes VTTBR_EL2 to the
new vm2_stage2 mapping and, as part of the context-switch register-file changes,
restores TTBRO_EL1 to the VM2’s own Stage 1 mapping vm2_stagel. The code
then executes an ERET (“exception-return”) instruction to return to ELI, and
then tries to read x. The test includes a final assertion of the relaxed outcome
that register x2=0, which could occur if the ldr translation used the old VM1
mapping instead of VM2’s mapping. In this case that should not be allowed.

Other tests capture more elaborate scenarios. For example, currently the host
kernel manages VMIDs and assigns each VM its own VMID. If the host runs out
of VMIDs to allocate to new vCPUs, it currently revokes all previously allocated
VMIDs and re-allocates from the beginning, during which pKVM has to ensure
that any old vCPUSs’ translations using that VMID are expelled from any TLBs
(pKVM.vepu_run.update_vmid). If there is a concurrently executing vCPU using
that VMID, that vCPU must be paused until after the new VMID generation
(and hence any required TLB maintenance), before continuing with the freshly
allocated VMID (pKVM.vcpu_run.update_vmid.concurrent).

For another example, for pKVM to maintain the illusion that each vCPU is
on its own core, the per-core state must be cleaned between running different
vCPUs, including ensuring that translations for one vCPU are not cached and
visible to another, even if they happen to be in the same VM (and using the
same VMID) (pKVM.vcpu_run.same_vm).

5 Model

We now define a semantic model for Armv8-A relaxed virtual memory that, to
the best of our knowledge, captures the Arm architectural intent for the scope
laid out in §1 and discussed in §3, including Stage 1 and Stage 2 translation-table
walks and the required TLB maintenance. For some important questions, most
notably for multi-copy atomicity, the Arm intent is currently tentative, so it is
not possible to be more definitive. To capture just the synchronization required
for “simple” software such as pKVM to work correctly we also give a weaker
model: instead of trying to exactly capture the architecture or the behaviour of
hardware, it has individual axioms for each behaviour that such software needs
to rely on. This gives an over-approximation to the architecture, which we prove
sound with respect to the model given in this section. The two models together
delimit the design space.

In §3 and §4 we described the design issues in microarchitectural terms,
discussing the behaviour of TLB caching and translation-walk non-TLB reads,
along with the needs of system software. We now abstract from microarchitec-
ture: instead of explicitly modelling TLBs, we simply include a translation-read
event for each read performed by architected translation-table walks, and de-
fine which writes each such translation-read can read from. We give the model
in an axiomatic Herd-like [9] style, as an extension to the base Armv8-A se-

Relaxed virtual memory in Armv8-A 161

mantics [26,49,13|. In principle it would be desirable to also have equivalent
abstract-microarchitectural operational models, as for base Armv8-A [49,48] but
with explicit TLBs for each thread and events for reading from and into the
TLB. However, address translation introduces many more events to litmus-test
executions, which would make them harder to explore exhaustively, and a proof
of equivalence would be a major undertaking, so we leave this to future work.

The base Armv8-A axiomatic model is defined as a predicate over candidate
executions, each of which is a graph with various events (reads, writes, barriers)
and relations over them, notably the per-thread program order po, the location
coherence order co, the reads-from relation rf from writes to reads, the address,
data, and control-dependency (addr, data, ctrl) subsets of po, and others. The
base model is essentially the conjunction of an external (inter-thread) acyclicity
property, effectively stating that the execution must respect some total order of
events hitting the shared memory, constrained by the derived ordered-before (ob)
relation; an internal acyclicity property, enforcing per-location coherence; and
an atomic axiom for atomic and exclusive operations. As usual in Herd-style mod-
els, relations are suffixed e or i to restrict to their inter-thread or intra-thread
parts. The Herd concrete syntax for relational algebra uses [X] for the identity on
a set X, ; for composition, ~ for complement, | and & for union and intersection,
and * for product. We add translation data to events, including virtual, interme-
diate physical, and physical addresses (as determined by the translation regime).
We add events for translation reads (T), TLB maintenance (TLBI), taking and
returning from an exception (TE and ERET), and writing system registers (e.g. MSR
TTBR). We modify the loc and co relations to relate events with the same physi-
cal address, and add a translation-reads-from trf to relate W to the T that read
from it. To identify events with the same address we add same-va and same-ipa
relations, relating events to the same virtual or intermediate physical address,
and same-{va, ipa}-page for events in the same page. To identify events with the
same address space or virtual machine ID, we use same-vmid and same-asid. The
translate-read events within an instruction are related in the order they appear
in the sequential ASL/Sail execution, both to each other and to any memory
access or fault event, with the iio (“intra-instruction order”) relation. We de-
rive the addr relation from a new primitive tdata relation which relates read
events to events that use that read value in the translation or computation of an
address. For convenience we define new event sets: € for all cache-maintenance
operations (DC, IC, and TLBI instructions); T_f for all translation-read events
which read a descriptor which causes a fault; W_inv for all the write events which
write an invalid descriptor; Stagel and Stage2 for the T events which originate
from the respective stage of translation; ContextChange for all context-changing
events (such as writes to translation-controlling system registers); and CSE for all
context-synchronizing events (taking and returning from exceptions and ISB).

The model is in Fig. 1, in full except for the tlb-affects relation. Its basic
form is very similar to previous multicopy-atomic Armv8-A models. It still has
external, internal, and atomic axioms, to which we add a translation-internal
axiom for ensuring translations do not read from po-later writes.

162 Simner et al.

let tlb-affects =
(*x see extended version x)

let TLB_barrier =
([TLBI] ; tlb-affects ; [T]
& weco

;otfro; [W)~-1

let maybe_TLB_cached =
([T] ; trf*-1 ; wco ;
affects™-1

[TLBI-S1]) & tlb-

let tcachel [T & Stagel]

= ; tfr ; TLB_barrier
let tcache2 = [T & Stage2]

; tfr ; TLB_barrier

let speculative =

ctrl

addr; po

[T] ; instruction-order

(* translation-ordered-before x*)

let tob =
[T_f] ; tfre
| (IT_f1 ; tfri)
& (po ; [DSB.SY] ; instruction-order)”-1
| [T] ; iio ; [RIW] ; po ; [W]

| speculative ; trfi
(* observed by x)
let obs = rfe | fr | wco
| trfe
(* ordered-before TLBI and translate *)
let obtlbi_translate =

tcachel
| tcache2

& (iio~-1 ; [T & Stagel] ; trf~-1 ; wco™-1)
| (tcache2 ; wco? ; [TLBI-S1])

& (iio™-1 ; [T & Stagel] ; maybe_TLB_cached

)

(* ordered-before TLBI *)
let obtlbi =
obtlbi_translate
| [R|W|Fault] ; iio™-1 ; (obtlbi_translate &
ext) ; [TLBI]

(* context-change ordered-before x)

let ctxob =
speculative ; [MSR]
| [CSE] ; instruction-order
| [ContextChange] ; po ; [CSE]
| speculative ; [CSE]
| po ; [ERET] ; instruction-order ; [T]

(* ordered-before a translation fault x)
let obfault =

data ; [Fault & IsFromW]
| speculative ; [Fault & IsFromW]
| [dmbst] ; po ; [Fault & IsFromW]
| [dmbld] ; po ; [Fault & (IsFromW|IsFromR)]
| [A|Q] ; po ; [Fault & (IsFromW | IsFromR)]
| [RIW] ; po ; [Fault & IsFromW & IsReleaseW]
(* ETS-ordered-before *)
let ObETS =
(obfault ; [Fault]) ; iio™-1 ; [T_f]
| ([TLBI] ; po ; [dsb] ; instruction-order

[T]) & tlb-affects

(* dependency-ordered-before *)
let dob =

addr | data

speculative ; [W]

addr; po; [W]

(addr | data); rfi

(addr | data); trfi

(* atomic-ordered-before x)
let aob = rmw
| [range(rmw)];

rfi; [A] Q]

(* barrier-ordered-before x*)

let bob = [R] ; po ; [dmbld]
| [W] ; po ; [dmbst]
| [dmbst]; po; [W]
| [dmbld]; po; [R|W]
| [L1; po; [A]
| [A | Ql; po; [R | W]
| [R | WI; po; [L]
| [F | Cl; po; [dsbsy]
| [dsb] ; po

(* Ordered-before *)
let ob = (obs | dob | aob | bob
| iio | tob | obtlbi | ctxob | obfault |
ObETS) "+

(* Internal visibility requirement *)

acyclic po-loc | fr | co | rf as internal

(* External visibility requirement x)

irreflexive ob as external

(* Atomic requirement x)

empty rmw & (fre; coe) as atomic

(* Writes cannot forward to po-future
translates x)

acyclic (po-pa | trfi) as translation-internal

Fig. 1: Strong Model (with baseline Armv8-A model parts in gray)

Most of the changes to the model are in the external axiom, where we add
several relations to ordered-before (ob): iio relates the intra-instruction events
ordered by the ASL; tob (“translation ordered-before”) ensures the order arising
from the act of translation itself is respected; obtlbi orders translates and their
explicit memory events with TLBIs which affect these translations; and ctxob
(“context ordered-before”) orders events which must come before some context-
changing operation or after some context-synchronizing operation. We also add
a generalised coherence-order relation, wco, an existentially quantified total order
expressing when TLBIs complete w.r.t. writes.

Relaxed virtual memory in Armv8-A 163

Coherence: By making loc (and therefore rf and co) relate events with the
same physical addresses, we get coherence over physical addresses rather than
virtual. Coherence of writes to translation tables is expressed in two places: in-
cluding trfe in obs captures the fact that translation-table reads from memory
microarchitecturally come from the ‘flat’ coherent storage subsystem, and so
the writes that they read from must have been propagated before the transla-
tion happened; and the translation-internal axiom forbids forwarding against
program-order.

TLB maintenance and break-before-make: The obtlbi relation ensures
that instructions whose translations read from writes which are “hidden” by
some TLBI instruction are ordered before the completion of that TLBI. This is
achieved by the two clauses of obtlbi: the first clause ensures the translation-
before-TLBI ordering is preserved, and the second clause orders the explicit
memory access of any such instruction with the same TLBI as the first clause. To
do this, the model computes the set of writes which are in effect “barriered” by
a given TLBI instruction. This is done with the tcache relations, which decides
which TLBIs effect which translations by looking at the addresses each use and
the wco ordering between the TLBIs and related writes.

To accurately match up each of the various TLBI instructions with the transla-
tions they may affect, we define a tlb-affects relation which relates TLBI events
with the T events they are relevant to. We elide the full definition here, as it is
simply the product of the enumeration of TLBI variants with the set of trans-
lations that match the exception level, stage, address, ASID or VMID given in
the TLBI instruction. obtlbi_translate then uses tlb-affects and wco to order
any translations that read-from ‘stale’ writes from before the invalidation with
the TLBI that invalidated those writes. One notable subtlety here is in Stage 2
translations: since the TLB could store whole VA to PA mappings we must check
that the correct Stage 1 invalidations have been performed, in addition to the
Stage 2 ones, to be able to order the Stage 2 translation with the TLBI.

Translation-table-walk reading from memory: As noted in §3.3, a transla-
tion which results in a translation fault must read from memory or be forwarded
from program-order earlier instructions, and those memory reads behave multi-
copy atomically. In general the only time the model can guarantee that such a
memory read happens is when the read results in a translation fault, since entries
that result in a translation fault cannot be stored in the TLB (§3.2). The model
captures this succinctly by including [T_f];tfr in ob.

In general, a translation-read is ordered after the write which it reads from,
as captured by the inclusion of the trfe edge in ob; this is strong enough to
ensure that TLB fills and faulting memory walks pull values out of the memory
system in a coherent way, but still weak enough to allow other-multi-copy-atomic
behaviour such as forwarding.

As mentioned in §3.3, a DSB ensures that writes are propagated out to mem-
ory. For translations this amounts to ensuring that a faulting translation cannot
read-from something older than a po-previous DSB-barriered write, as captured

164 Simner et al.

by the last edge in tob which says that a tfri edge from such a faulting trans-
lation must not have an interposing DSB.

Note that the absence of the full tfr relation in ob for non-faulting trans-
lations intentionally allows some incoherence, in essence allowing a translation-
read to “ignore” a newer write.

Context-changing operations: In general, the sequential semantics takes care
of the context, such as current base register and system register state, for us.
The ctxob relation simply ensures that such context-changing operations cannot
be taken speculatively, and that context-synchronization ensures that all po-
previous context-changing operations are ordered-before po-later translations.

Detecting BBM Violations: As discussed in §3.2, we do not model in detail
the bounded-catch-fire semantics that currently architecturally results from a
missing break-before-make sequence, as that would make it hard to enumerate
possible litmus-test executions. Instead, because what one normally wants to
know for litmus tests is that a test does not exhibit a BBM failure, we conser-
vatively detect the existence of such violations and flag them for the user. This
is achieved through a per-candidate-execute predicate, written in SMT, which
looks for a situation which could be a break-before-make violation. It does this
by asserting that there does not exist a pair of writes which conflict such that
there is no interposing break-and-TLBI sequence. This approach is slightly over-
approximate, as it might look for two writes that technically conflict even if they
(for other reasons) are not used at the same time. This means that while we sup-
port programs that switch from one page table to another, we do not support
programs that garbage collect page-table memory and then repurpose it.

ETS: We discussed the Armv8-A optional ETS feature, providing additional
ordering strength for translations. The intuition is that the model would have
ghost events in the event an instruction faults, to represent the explicit read or
write which would have happened had the instruction not faulted. The model
would then have to compute a special variant of ob including such dependencies,
but without the physical-address-dependent relations such as loc, rf and co.
Then any edge in the version of ob with the ghost events would become an
edge in the real ob but attached to the faulting translation. To capture this,
our model produces fault events which have the correct dependencies (and fault
information) and the model orders the fault event with respect to program-order
previous events which would have ordered and place those into ob. This involves
manually adding [dmb] ; po ; [fault], addr ; po ; [fault & FromW], etc. to
ob. The obETS relation then orders translations which result in a translation
fault after anything the fault is ordered-after.

Metatheory: To establish that our models provide a simple and sound abstrac-
tion we prove three theorems: that for static injectively-mapped address spaces,
any execution which is consistent in the model with translation, erasing transla-
tion events gives an execution that is consistent in the original Armv8-A model

Relaxed virtual memory in Armv8-A 165

without translation; that for any consistent execution in the original Armv8-A
model, there is a corresponding consistent execution in our extended model with
translations; and that our weak model is a sound over-approximation of our full
translation model, i.e., that for any consistent execution in our full translation
model, that same execution is consistent in the weak translation model.

6 Tooling

6.1 Isla-based model evaluation

Making relaxed-memory semantics exhaustively executable is essential for ex-
ploring their behaviour on examples [66,54,53,20,9,36,65,23,63,49,56]. Handling
relaxed virtual memory brings several new challenges. First, even just the se-
quential definition of Armv8-A address translation, with the page-table walk and
its options, is remarkably intricate, defined in thousands of lines of Arm’s ASL
instruction description language. Manually reimplementing a simplified version
would be error-prone and incomplete, so we instead build on our Isla tool [15],
which integrates the full 123,000 line Armv8-A ISA semantics (as defined by Arm
in ASL and automatically translated into Sail [14]), with SMT-based tooling to
evaluate tests w.r.t. axiomatic concurrency models. Previously Isla supported
only “user” models, expressed in a language based on relational-algebra similar
to the Cat language of Herd [9].

Previous litmus tests typically involved only a few abstract memory locations
and events, but even simple virtual memory tests require 30kB of page tables,
each “user” memory access might have 24 or more page-table accesses, and each
64-bit descriptor may be represented by a symbolic value representing all possible
states that descriptor can be in. To avoid overwhelming the SMT solver during
symbolic execution, the formula representing each symbolic descriptor is created
dynamically when read. When encoding the final SMT problem that decides
whether a candidate execution is allowed, we ensure that only the parts of the
page tables actually used by that candidate execution are included. We also
implemented a model-specific optimization that removes irrelevant translation
events which cannot affect the result of the test, improving performance by a
factor of 13 on average, and up to 90 times for some tests. Third, we had to
provide a convenient way to express the page table configuration for each test,
with the declarative language of which we saw a small part on the left-hand side
of the §4 test.

Initial State

co <
; - ; idr x0.[x1] N
‘str X0, [x1]: W 13pte(x) (8): 13desc(z)} uf T 13pte(x) L_'ﬂH'i R pal (8): ?‘ M 1dr x0, [x1]: R x (8): 2
i H i . >

co N \/ po
T amesva-pag
—— Idr x2, [x3, x4]
strx2, [x3, x4]: W 2 (8): 1 i |Tr 13pte(x) o EXC

po

A good user interface is essential. Above, we show an Isla-generated execution
for a WRC test like that of §3.3, showing how uninteresting translation events
can be suppressed in the output to avoid overwhelming noise.

166 Simner et al.

The main result is that, in the strong model, all 214 litmus tests and 14 pKVM
tests are allowed or forbidden as intended, based on our discussion with Arm of
their architectural intent, except two pKVM tests which time out. Additionally,
we tested that the weak model never forbids any test allowed by the strong
model. The tool performance is eminently usable in practice: most tests take
around 1 minute, and the full set of litmus tests can be run in less than 2 hours
CPU time, on a 36-core Intel Xeon Gold 6240.

We also ran our model on an existing suite of “user” litmus tests, including
1927 additional generated tests, with a constant identity-mapped pagetable and
checked the results match RMEM [31] and the official Armv8-A model [26,49,13].

6.2 Experimental testing of hardware

Validation of the models through experimental testing has been a vital part of
past relaxed memory semantics [24,54,3,8]. This is equally true here. However
experimental testing of the concurrent aspects of virtual memory is a far harder
problem: these tests need to be able to access privileged parts of the instruction
set; they need to be able to setup and use their own exception handlers, pre-
venting building these tools ontop of standard distributions like Linux; Stage 2
tests and bare-metal Stage 1 tests require direct access to hardware, preventing
the use of hypervisors such as KVM around the harness. To achieve this we
build a harness that can run bare-metal on Armv8 devices to run Stage 1 (but
as yet, not Stage 2) concurrent virtual memory litmus tests, which can be found
at https://github.com/rems-project/system-litmus-harness. At present this and
Isla use different test formats, so we have some tests manually written in both.

We ran tests on three devices with standard Arm cores (A53, A72). The data
we collected suggests that in practice, aside from known errata, these cores: re-
spect coherence over physical locations; correctly implement TLB maintenance;
are multi-copy atomic w.r.t translation-table walks; and generally do not dis-
agree with our model, except in one instance where we observed an anomalous
result which is under discussion with Arm.

Further testing on other platforms would be desirable, but our emphasis in
this work is principally on exploring the design space and capturing the archi-
tectural intent, and the main validation is from discussion with the Arm Chief
Architect, who ultimately is responsible for determining what the architecture
is. In this context, experimental data serves mainly to provide reassurance that
some envisaged architecture strength is not invalidated by extant hardware im-
plementations.

7 Related work

There is extensive previous work on “user” relaxed-memory semantics of
modern architectures, but very little extending this to cover systems as-
pects such as virtual memory. We build on the approaches established in

https://github.com/rems-project/system-litmus-harness

Relaxed virtual memory in Armv8-A 167

“user” models for x86, IBM Power, Arm, and RISC-V, combining executable-
as-test-oracle models, discussion with architects, and experimental test-
ing [54,5,7,47,55,53,21,52,46,9,36,31,32,49,64|.

Arm publish a machine-readable version of their Armv8-A relaxed memory
model [45], in the Cat language of the Herd7 tool [6], but that model does
not currently cover the relaxed virtual-memory semantics. Independent work
in progress by Alglave et al. is similarly aiming to characterise this, and to
update Arm’s published model in due course, but with complementary scope
to the current paper: including hardware updates of access and dirty bits, but
without integration with the full ASL/Sail instruction semantics and its multiple
levels and stages of translation. Both have been informed by discussion with
senior Arm staff, and one would hope to synthesise the understanding in future.
Hossain et al. [39] develop an “estimated” model for virtual memory in x86
(which has a much less relaxed base semantics) in a broadly similar axiomatic
style. Tao et al. [61] axiomatise six conditions for weak data-race-freedom that
should be satisfied by Armv8-A kernel code that uses virtual memory in simple
ways, and an extension of Promising-Arm [50] that effectively builds in these
conditions; they extend the sequential verification of the SeKVM hypervisor by
Li et al. [43] to show it satisfies these conditions. The paper does not attempt
to characterise the exact guarantees provided by the Armv8-A architecture, or
discuss the issues of our §3. A foundational model such as our §5 would let one
ground such results on the actual architecture. Simner et al. [56] study relaxed
instruction-fetch semantics.

Several works give non-relaxed-memory semantics for Arm or x86 address
translation, more or less simplified and with or without TLBs: Bauereiss [14],
Goel et al. [34,35], Syeda and Klein [57,59,58,60], Degenbaev [29] (used for veri-
fication of a hypervisor shadow pagetable implementation [42,28,11,10]), Barthe
et al. [19,17,18,16], Tews et al. [62], Kolanski [41], and Guanciale et al. [38].

8 Acknowledgments

We thank Arm Ltd. for its support of Simner’s PhD and the wider project of
which this is part. We thank the Google pKVM development team, especially
Will Deacon, Quentin Perret, Andrew Scull, Andrew Walbran, and Serban Con-
stantinescu, for discussions on pKVM, and the Google Project Oak team, Ben
Laurie, Hong-Seok Kim, and Sarah de Haas, for their support. We thank Luc
Maranget for comments on a draft.

This work was partially funded by an Arm/EPSRC iCASE PhD studentship
(Simner), Arm Limited, Google, ERC Advanced Grant (AdG) 789108 ELVER,
and the UK Government Industrial Strategy Challenge Fund (ISCF) under the
Digital Security by Design (DSbD) Programme, to deliver a DSbDtech enabled
digital platform (grant 105694).

168

Simner et al.

References

10.

11.

12.

13.

14.

Power ISA™ Version 2.07. IBM (2013)

pKVM source. https://android-kvm.googlesource.com/linux/+ /refs/heads/
pkvm/arch/arm64/kvm/hyp/nvhe/ (2021), accessed 2021-07-06

Adir, A., Attiya, H., Shurek, G.: Information-flow models for shared memory with
an application to the PowerPC architecture. IEEE Trans. Parallel Distrib. Syst.
14(5), 502-515 (2003). https://doi.org/10.1109/TPDS.2003.1199067

. Adve, S.V., Hill, M.D.: Weak ordering — a new definition. In: Proceedings of the

17th Annual International Symposium on Computer Architecture. pp. 2-14. ISCA
90, ACM, New York, NY, USA (1990). https://doi.org/10.1145/325164.325100
Alglave, J., Fox, A., Ishtiaq, S., Myreen, M.O., Sarkar, S., Sewell, P.,
Zappa Nardelli, F.: The semantics of Power and ARM multiprocessor machine
code. In: Proc. DAMP 2009 (Jan 2009)

Alglave, J., Maranget, L.: The herd7 tool. http://diy.inria.fr/doc/herd.html/
(2019), accessed 2019-07-08

Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Fences in weak memory models.
In: Proc. CAV (2010)

. Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Litmus: running tests against

hardware. In: Proceedings of TACAS 2011: the 17th international conference on
Tools and Algorithms for the Construction and Analysis of Systems. pp. 41—
44. Springer-Verlag, Berlin, Heidelberg (2011), http://dl.acm.org/citation.cfm?id=
1987389.1987395

Alglave, J., Maranget, L., Tautschnig, M.: Herding Cats: Modelling, Simulation,
Testing, and Data Mining for Weak Memory. ACM TOPLAS 36(2), 7:1-7:74 (Jul
2014). https://doi.org/10.1145 /2627752

Alkassar, E., Cohen, E., Hillebrand, M.A., Kovalev, M., Paul, W.J.: Verifying
shadow page table algorithms. In: Bloem, R., Sharygina, N. (eds.) Proceedings
of 10th International Conference on Formal Methods in Computer-Aided Design,
FMCAD 2010, Lugano, Switzerland, October 20-23. pp. 267-270. IEEE (2010),
http:/ /ieeexplore.ieee.org/document /5770958 /

Alkassar, E., Cohen, E., Kovalev, M., Paul, W.J.: Verification of TLB vir-
tualization implemented in C. In: Joshi, R., Miiller, P., Podelski, A. (eds.)
Verified Software: Theories, Tools, Experiments - 4th International Confer-
ence, VSTTE 2012, Philadelphia, PA, USA, January 28-29, 2012. Proceed-
ings. Lecture Notes in Computer Science, vol. 7152, pp. 209-224. Springer
(2012). https://doi.org/10.1007/978-3-642-27705-4 17, https://doi.org/10.1007/
978-3-642-27705-4 17

ARM Limited: ARM architecture reference manual. ARMv8, for ARMv8-A archi-
tecture profile. https://developer.arm.com/documentation/ddi0487/latest/ (Mar
2017), b.a Armv8.1 EAC, v8.2 Beta. ARM DDI 0487B.a (ID0331117). 6354pp
Arm Limited: Arm architecture reference manual. Armv8, for Armv8-A archi-
tecture profile. https://developer.arm.com/documentation/ddi0487/latest/ (Jan
2021), g.a Armv8.7 EAC. ARM DDI 0487G.a (ID011921). 8538pp

Armstrong, A., Bauereiss, T., Campbell, B., Reid, A., Gray, K.E., Norton, R.M.,
Mundkur, P.; Wassell, M., French, J., Pulte, C., Flur, S., Stark, I., Krishnaswami,
N., Sewell, P.: ISA semantics for ARMv8-A, RISC-V, and CHERI-MIPS. In: Proc.
46th ACM SIGPLAN Symposium on Principles of Programming Languages (Jan
2019). https://doi.org/10.1145 /3290384, proc. ACM Program. Lang. 3, POPL, Ar-
ticle 71

https://android-kvm.googlesource.com/linux/+/refs/heads/pkvm/arch/arm64/kvm/hyp/nvhe/
https://android-kvm.googlesource.com/linux/+/refs/heads/pkvm/arch/arm64/kvm/hyp/nvhe/
https://doi.org/10.1109/TPDS.2003.1199067
https://doi.org/10.1145/325164.325100
http://diy.inria.fr/doc/herd.html/
http://dl.acm.org/citation.cfm?id=1987389.1987395
http://dl.acm.org/citation.cfm?id=1987389.1987395
https://doi.org/10.1145/2627752
http://ieeexplore.ieee.org/document/5770958/
https://doi.org/10.1007/978-3-642-27705-4_17
https://doi.org/10.1007/978-3-642-27705-4_17
https://doi.org/10.1007/978-3-642-27705-4_17
https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/ddi0487/latest/
https://doi.org/10.1145/3290384

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

Relaxed virtual memory in Armv8-A 169

Armstrong, A., Campbell, B., Simner, B., Pulte, C., Sewell, P.: Isla: Integrating
full-scale ISA semantics and axiomatic concurrency models. In: In Proc. 33rd Inter-
national Conference on Computer-Aided Verification (Jul 2021), extended version
available at https://www.cl.cam.ac.uk/~ pes20/isla/isla-cav2021-extended.pdf
Barthe, G., Betarte, G., Campo, J.D., Chimento, J.M., Luna, C.: Formally
verified implementation of an idealized model of virtualization. In: Matthes,
R., Schubert, A. (eds.) 19th International Conference on Types for Proofs
and Programs, TYPES 2013, April 22-26, 2013, Toulouse, France. LIPIcs,
vol. 26, pp. 45—63. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2013).
https://doi.org/10.4230 /LIPIcs. TYPES.2013.45, https://doi.org/10.4230/LIPIcs.
TYPES.2013.45

Barthe, G., Betarte, G., Campo, J.D., Luna, C.: Formally verifying isolation and
availability in an idealized model of virtualization. In: Butler, M.J., Schulte, W.
(eds.) FM 2011: Formal Methods - 17th International Symposium on Formal Meth-
ods, Limerick, Ireland, June 20-24, 2011. Proceedings. Lecture Notes in Computer
Science, vol. 6664, pp. 231-245. Springer (2011). https://doi.org/10.1007/978-3-
642-21437-0 19, https://doi.org/10.1007/978-3-642-21437-0 19

Barthe, G., Betarte, G., Campo, J.D., Luna, C.: Cache-leakage resilient OS
isolation in an idealized model of virtualization. In: Chong, S. (ed.) 25th
IEEE Computer Security Foundations Symposium, CSF 2012, Cambridge,
MA, USA, June 25-27, 2012. pp. 186-197. IEEE Computer Society (2012).
https://doi.org/10.1109/CSF.2012.17, https://doi.org/10.1109/CSF.2012.17
Barthe, G., Kunz, C., Sacchini, J.L.: Certified reasoning in memory hierar-
chies. In: Ramalingam, G. (ed.) Programming Languages and Systems, Gth
Asian Symposium, APLAS 2008, Bangalore, India, December 9-11, 2008. Pro-
ceedings. Lecture Notes in Computer Science, vol. 5356, pp. 75-90. Springer
(2008). https://doi.org/10.1007/978-3-540-89330-1 6, https://doi.org/10.1007/
978-3-540-89330-1_6

Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C-++ con-
currency. In: Proc. POPL (2011)

Batty, M., Memarian, K., Owens, S., Sarkar, S., Sewell, P.: Clarifying and
Compiling C/C++ Concurrency: from C++11 to POWER. In: Proceed-
ings of POPL 2012: The 39th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (Philadelphia). pp. 509-520 (2012).
https://doi.org/10.1145/2103656.2103717

Boehm, H.J., Adve, S.: Foundations of the C+-+ concurrency memory model. In:
Proc. PLDI (2008). https://doi.org/http://doi.acm.org/10.1145/1375581.1375591
Bornholt, J., Torlak, E.: Synthesizing memory models from framework sketches
and litmus tests. In: Cohen, A., Vechev, M.T. (eds.) Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017. pp. 467-481.
ACM (2017). https://doi.org/10.1145/3062341.3062353, https://doi.org/10.1145/
3062341.3062353

Collier, W.W.: Reasoning about parallel architectures. Prentice Hall (1992)
Data61/CSIRO: Frequently asked questions on seL4: The proof. http://seld.
systems/Info/FAQ/proof.pml, accessed 2019-07-01 (2019)

Deacon, W.: The ARMvS8 application level memory model. https://github.
com/herd /herdtools7/blob/master /herd /libdir /aarch64.cat (accessed 2019-07-01)
2016

I()eaccgn, W.: Virtualization for the masses: Exposing KVM on Android. https:
//www.youtube.com/watch?v=wY-ubn75iXc (Nov 2020), kVM Forum Talk

https://www.cl.cam.ac.uk/~pes20/isla/isla-cav2021-extended.pdf
https://doi.org/10.4230/LIPIcs.TYPES.2013.45
https://doi.org/10.4230/LIPIcs.TYPES.2013.45
https://doi.org/10.4230/LIPIcs.TYPES.2013.45
https://doi.org/10.1007/978-3-642-21437-0_19
https://doi.org/10.1007/978-3-642-21437-0_19
https://doi.org/10.1007/978-3-642-21437-0_19
https://doi.org/10.1109/CSF.2012.17
https://doi.org/10.1109/CSF.2012.17
https://doi.org/10.1007/978-3-540-89330-1_6
https://doi.org/10.1007/978-3-540-89330-1_6
https://doi.org/10.1007/978-3-540-89330-1_6
https://doi.org/10.1145/2103656.2103717
https://doi.org/http://doi.acm.org/10.1145/1375581.1375591
https://doi.org/10.1145/3062341.3062353
https://doi.org/10.1145/3062341.3062353
https://doi.org/10.1145/3062341.3062353
http://sel4.systems/Info/FAQ/proof.pml
http://sel4.systems/Info/FAQ/proof.pml
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://www.youtube.com/watch?v=wY-u6n75iXc
https://www.youtube.com/watch?v=wY-u6n75iXc

170

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Simner et al.

Degenbaev, U.: Formal specification of the x86 instruction set architecture. Ph.D.
thesis, Saarland University (2012), http://scidok.sulb.uni-saarland.de/volltexte/
2012/4707/

Degenbaev, U., Paul, W.J., Schirmer, N.: Pervasive theory of memory. In: Al-
bers, S., Alt, H., Naher, S. (eds.) Efficient Algorithms, Essays Dedicated to Kurt
Mehlhorn on the Occasion of His 60th Birthday. Lecture Notes in Computer Sci-
ence, vol. 5760, pp. 74-98. Springer (2009). https://doi.org/10.1007/978-3-642-
03456-5 5, https://doi.org/10.1007/978-3-642-03456-5 5

Edge, J.: KVM for Android. https://lwn.net/Articles/836693/ (Nov 2020)

Flur, S., Gray, K.E., Pulte, C., Sarkar, S., Sezgin, A., Maranget, L., Deacon, W.,
Sewell, P.: Modelling the ARMv8 architecture, operationally: Concurrency and
ISA. In: Proceedings of POPL: the 43rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (2016)

Flur, S., Sarkar, S., Pulte, C., Nienhuis, K., Maranget, L., Gray, K.E., Sezgin,
A., Batty, M., Sewell, P.: Mixed-size concurrency: ARM, POWER, C/C++11,
and SC. In: The 44st Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, Paris, France. pp. 429-442 (Jan 2017).
https://doi.org/10.1145/3009837.3009839

Gharachorloo, K., Adve, S.V., Gupta, A., Hennessy, J.L., Hill, M.D.: Programming
for different memory consistency models. J. Parallel Distributed Comput. 15(4),
399-407 (1992). https://doi.org/10.1016/0743-7315(92)90052-0O, https://doi.org/
10.1016/0743-7315(92)90052-O

Goel, S.: Formal Verification of Application and System Programs Based on a
Validated x86 ISA Model. Ph.D. thesis, University of Texas at Austin (2016),
https://repositories.lib.utexas.edu/handle /2152 /46437

Goel, S., Jr., W.A.H., Kaufmann, M.: Engineering a formal, executable x86
ISA simulator for software verification. In: Provably Correct Systems, pp.
173-209 (2017). https://doi.org/10.1007/978-3-319-48628-4 &, https://doi.org/
10.1007/978-3-319-48628-4 8

Gray, K.E., Kerneis, G., Mulligan, D., Pulte, C., Sarkar, S., Sewell, P.: An in-
tegrated concurrency and core-ISA architectural envelope definition, and test or-
acle, for IBM POWER multiprocessors. In: Proc. MICRO-48, the 48th Annual
IEEE/ACM International Symposium on Microarchitecture (Dec 2015)

Gu, R., Shao, Z., Chen, H., Wu, X.N., Kim, J., Sjéberg, V., Costanzo, D.: Cer-
tiKOS: An extensible architecture for building certified concurrent OS kernels.
In: 12th USENIX Symposium on Operating Systems Design and Implementa-
tion, OSDI 2016, Savannah, GA, USA, November 2-4, 2016. pp. 653-669 (2016),
https://www.usenix.org/conference/osdil6/technical-sessions/presentation/gu
Guanciale, R., Nemati, H., Dam, M., Baumann, C.: Provably secure mem-
ory isolation for linux on ARM. J. Comput. Secur. 24(6), 793-837 (2016).
https://doi.org/10.3233/JCS-160558, https://doi.org/10.3233/JCS-160558
Hossain, N., Trippel, C., Martonosi, M.: Transform: Formally specify-
ing transistency models and synthesizing enhanced litmus tests. In: 47th
ACM/IEEE Annual International Symposium on Computer Architecture,
ISCA 2020, Valencia, Spain, May 30 - June 3, 2020. pp. 874-887. IEEE
(2020). https://doi.org/10.1109/ISCA45697.2020.00076, https://doi.org/10.1109/
ISCA45697.2020.00076

Klein, G., Andronmick, J., Elphinstone, K., Murray, T., Sewell, T., Kolan-
ski, R., Heiser, G.: Comprehensive formal verification of an OS microker-
nel. ACM Transactions on Computer Systems 32(1), 2:1-2:70 (Feb 2014).
https://doi.org/10.1145 /2560537

http://scidok.sulb.uni-saarland.de/volltexte/2012/4707/
http://scidok.sulb.uni-saarland.de/volltexte/2012/4707/
https://doi.org/10.1007/978-3-642-03456-5_5
https://doi.org/10.1007/978-3-642-03456-5_5
https://doi.org/10.1007/978-3-642-03456-5_5
https://lwn.net/Articles/836693/
https://doi.org/10.1145/3009837.3009839
https://doi.org/10.1016/0743-7315(92)90052-O
https://doi.org/10.1016/0743-7315(92)90052-O
https://doi.org/10.1016/0743-7315(92)90052-O
https://repositories.lib.utexas.edu/handle/2152/46437
https://doi.org/10.1007/978-3-319-48628-4_8
https://doi.org/10.1007/978-3-319-48628-4_8
https://doi.org/10.1007/978-3-319-48628-4_8
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://doi.org/10.3233/JCS-160558
https://doi.org/10.3233/JCS-160558
https://doi.org/10.1109/ISCA45697.2020.00076
https://doi.org/10.1109/ISCA45697.2020.00076
https://doi.org/10.1109/ISCA45697.2020.00076
https://doi.org/10.1145/2560537

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Relaxed virtual memory in Armv8-A 171

Kolanski, R.: Verification of programs in virtual memory using separation logic.
Ph.D. thesis, University of New South Wales, Sydney, Australia (2011), http://
handle.unsw.edu.au,/1959.4/51288

Kovalev, M.: TLB virtualization in the context of hypervisor verification. Ph.D.
thesis, Saarland University (2013), http://scidok.sulb.uni-saarland.de/volltexte/
2013/5215/

Li, S., Li, X., Gu, R., Nieh, J., Hui, J.Z.: Formally verified memory protection
for a commodity multiprocessor hypervisor. In: Bailey, M., Greenstadt, R. (eds.)
30th USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021.
pp- 3953-3970. USENIX Association (2021), https://www.usenix.org/conference/
usenixsecurity21/presentation /li-shih-wei

Li, SSW., Li, X., Gu, R., Nieh, J., Hui, J.Z.: A secure and formally
verified Linux KVM hypervisor. In: 2021 IEEE Symposium on Security
and Privacy (SP). pp. 839-856. IEEE Computer Society, Los Alamitos,
CA, USA (may 2021). https://doi.org/10.1109/SP40001.2021.00049, https://doi.
ieeecomputersociety.org/10.1109/SP40001.2021.00049

Ltd., A.. Memory model tool. https://developer.arm.com/architectures/
cpu-architecture/a-profile/memory-model-tool (Jan 2022), accessed 2022-01-
18

Maranget, L., Sarkar, S., Sewell, P.: A tutorial introduction to the ARM and
POWER relaxed memory models. Draft available from http://www.cl.cam.ac.uk/
“pes20/ppc-supplemental /test7.pdf (2012)

Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In: Pro-
ceedings of TPHOLSs 2009: Theorem Proving in Higher Order Logics, LNCS 5674.
pp. 391-407 (2009)

Pulte, C.: The Semantics of Multicopy Atomic ARMv8 and RISC-V. Ph.D. thesis,
University of Cambridge (2019), https://doi.org/10.17863/CAM.39379

Pulte, C., Flur, S., Deacon, W., French, J., Sarkar, S., Sewell, P.: Simplifying ARM
Concurrency: Multicopy-atomic Axiomatic and Operational Models for ARMvS.
In: Proceedings of the 45th ACM SIGPLAN Symposium on Principles of Program-
ming Languages (Jan 2018). https://doi.org/10.1145/3158107

Pulte, C., Pichon-Pharabod, J., Kang, J., Lee, S.H., Hur, C.: Promising-
ARM/RISC-V: a simpler and faster operational concurrency model. In:
McKinley, K.S., Fisher, K. (eds.) Proceedings of the 40th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. pp. 1-15.
ACM (2019). https://doi.org/10.1145/3314221.3314624, https://doi.org/10.1145/
3314221.3314624

Raad, A., Vafeiadis, V.: Persistence semantics for weak memory: Integrating epoch
persistency with the tso memory model. Proc. ACM Program. Lang. 2(OOPSLA)
(oct 2018). https://doi.org/10.1145 /3276507, https://doi.org/10.1145/3276507
Sarkar, S., Memarian, K., Owens, S., Batty, M., Sewell, P., Maranget, L.,
Alglave, J., Williams, D.: Synchronising C/C++ and POWER. In: Pro-
ceedings of PLDI 2012, the 33rd ACM SIGPLAN conference on Program-
ming Language Design and Implementation (Beijing). pp. 311-322 (2012).
https://doi.org/10.1145/2254064.2254102

Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding
POWER multiprocessors. In: Proceedings of PLDI 2011: the 32nd ACM SIGPLAN
conference on Programming Language Design and Implementation. pp. 175-186
(2011). https://doi.org/10.1145/1993498.1993520

http://handle.unsw.edu.au/1959.4/51288
http://handle.unsw.edu.au/1959.4/51288
http://scidok.sulb.uni-saarland.de/volltexte/2013/5215/
http://scidok.sulb.uni-saarland.de/volltexte/2013/5215/
https://www.usenix.org/conference/usenixsecurity21/presentation/li-shih-wei
https://www.usenix.org/conference/usenixsecurity21/presentation/li-shih-wei
https://doi.org/10.1109/SP40001.2021.00049
https://doi.ieeecomputersociety.org/10.1109/SP40001.2021.00049
https://doi.ieeecomputersociety.org/10.1109/SP40001.2021.00049
https://developer.arm.com/architectures/cpu-architecture/a-profile/memory-model-tool
https://developer.arm.com/architectures/cpu-architecture/a-profile/memory-model-tool
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
https://doi.org/10.17863/CAM.39379
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3314221.3314624
https://doi.org/10.1145/3314221.3314624
https://doi.org/10.1145/3314221.3314624
https://doi.org/10.1145/3276507
https://doi.org/10.1145/3276507
https://doi.org/10.1145/2254064.2254102
https://doi.org/10.1145/1993498.1993520

172

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Simner et al.

Sarkar, S., Sewell, P., Zappa Nardelli, F., Owens, S., Ridge, T., Braibant,
T., Myreen, M., Alglave, J.: The semantics of x86-CC multiprocessor machine
code. In: Proceedings of POPL 2009: the 36th annual ACM SIGPLAN-SIGACT
symposium on Principles of Programming Languages. pp. 379-391 (Jan 2009).
https://doi.org/10.1145/1594834.1480929

Sewell, P., Sarkar, S., Owens, S., Zappa Nardelli, F., Myreen, M.O.: x86-TSO: A
rigorous and usable programmer’s model for x86 multiprocessors. Communications
of the ACM 53(7), 89-97 (Jul 2010), (Research Highlights)

Simner, B., Flur, S., Pulte, C., Armstrong, A., Pichon-Pharabod, J., Maranget,
L., Sewell, P.. ARMv8-A system semantics: instruction fetch in relaxed architec-
tures (extended version). In: Proceedings of the 29th European Symposium on
Programming (Apr 2020)

Syeda, H., Klein, G.: Reasoning about translation lookaside buffers. In: LPAR-
21, 21st International Conference on Logic for Programming, Artificial Intelligence
and Reasoning, Maun, Botswana, May 7-12, 2017. pp. 490-508 (2017), http://
www.easychair.org/publications/paper/340347

Syeda, H.T.: Low-level program verification under cached address translation.
Ph.D. thesis, University of New South Wales, Sydney, Australia (2019), http:
//handle.unsw.edu.au/1959.4/63277

Syeda, H.T., Klein, G.: Program verification in the presence of cached address
translation. In: Interactive Theorem Proving - 9th International Conference, ITP
2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK,
July 9-12, 2018, Proceedings. pp. 542-559 (2018). https://doi.org/10.1007/978-3-
319-94821-8 32

Syeda, H.T., Klein, G.: Formal reasoning under cached address translation. J. Au-
tom. Reason. 64(5), 911-945 (2020). https://doi.org/10.1007/s10817-019-09539-7,
https://doi.org/10.1007/s10817-019-09539-7

Tao, R., Yao, J., Li, X., Li, S.W., Nieh, J., Gu, R.: Formal verification of a multipro-
cessor hypervisor on arm relaxed memory hardware. In: SOSP 2021: Proceedings
of the 28th ACM Symposium on Operating Systems Principles (Oct 2021)

Tews, H., Volp, M., Weber, T.. Formal memory models for the verifica-
tion of low-level operating-system code. J. Autom. Reason. 42(2-4), 189-
227 (2009). https://doi.org/10.1007/s10817-009-9122-0, https://doi.org/10.1007/
s10817-009-9122-0

Trippel, C., Manerkar, Y.A., Lustig, D., Pellauer, M., Martonosi, M.: Tricheck:
Memory model verification at the trisection of software, hardware, and ISA. In:
Chen, Y., Temam, O., Carter, J. (eds.) Proceedings of the Twenty-Second Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2017, Xi’an, China, April 8-12, 2017. pp. 119-133.
ACM (2017). https://doi.org/10.1145/3037697.3037719, https://doi.org/10.1145/
3037697.3037719

https://doi.org/10.1145/1594834.1480929
http://www.easychair.org/publications/paper/340347
http://www.easychair.org/publications/paper/340347
http://handle.unsw.edu.au/1959.4/63277
http://handle.unsw.edu.au/1959.4/63277
https://doi.org/10.1007/978-3-319-94821-8_32
https://doi.org/10.1007/978-3-319-94821-8_32
https://doi.org/10.1007/s10817-019-09539-7
https://doi.org/10.1007/s10817-019-09539-7
https://doi.org/10.1007/s10817-009-9122-0
https://doi.org/10.1007/s10817-009-9122-0
https://doi.org/10.1007/s10817-009-9122-0
https://doi.org/10.1145/3037697.3037719
https://doi.org/10.1145/3037697.3037719
https://doi.org/10.1145/3037697.3037719

Relaxed virtual memory in Armv8-A 173

64. Waterman, A., Asanovié¢, K. (eds.): The RISC-V Instruction Set Manual Vol-
ume I: Unprivileged ISA (Dec 2018), document Version 20181221-Public-Review-
draft. Contributors: Arvind, Krste Asanovi¢, Rimas Avizienis, Jacob Bachmeyer,
Christopher F. Batten, Allen J. Baum, Alex Bradbury, Scott Beamer, Preston
Briggs, Christopher Celio, Chuanhua Chang, David Chisnall, Paul Clayton, Palmer
Dabbelt, Roger Espasa, Shaked Flur, Stefan Freudenberger, Jan Gray, Michael
Hamburg, John Hauser, David Horner, Bruce Hoult, Alexandre Joannou, Olof
Johansson, Ben Keller, Yunsup Lee, Paul Loewenstein, Daniel Lustig, Yatin Man-
erkar, Luc Maranget, Margaret Martonosi, Joseph Myers, Vijayanand Nagarajan,
Rishiyur Nikhil, Jonas Oberhauser, Stefan O’Rear, Albert Ou, John Ousterhout,
David Patterson, Christopher Pulte, Jose Renau, Colin Schmidt, Peter Sewell,
Susmit Sarkar, Michael Taylor, Wesley Terpstra, Matt Thomas, Tommy Thorn,
Caroline Trippel, Ray VanDeWalker, Muralidaran Vijayaraghavan, Megan Wachs,
Andrew Waterman, Robert Watson, Derek Williams, Andrew Wright, Reinoud
Zandijk, and Sizhuo Zhang

65. Wickerson, J., Batty, M., Sorensen, T., Constantinides, G.A.: Automatically com-
paring memory consistency models. In: Castagna, G., Gordon, A.D. (eds.) Pro-
ceedings of the 44th ACM SIGPLAN Symposium on Principles of Program-
ming Languages, POPL 2017, Paris, France, January 18-20, 2017. pp. 190-204.
ACM (2017). https://doi.org/10.1145/3009837.3009838, https://doi.org/10.1145/
3009837.3009838

66. Yang, Y., Gopalakrishnan, G., Lindstrom, G., Slind, K.: Nemos: A framework for
axiomatic and executable specifications of memory consistency models. In: 18th
International Parallel and Distributed Processing Symposium (IPDPS 2004), CD-
ROM / Abstracts Proceedings, 26-30 April 2004, Santa Fe, New Mexico, USA
(2004). https://doi.org/10.1109/IPDPS.2004.1302944

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by,/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3009837.3009838
https://doi.org/10.1145/3009837.3009838
https://doi.org/10.1145/3009837.3009838
https://doi.org/10.1109/IPDPS.2004.1302944
http://creativecommons.org/licenses/by/4.0/

q

Check for

e Verified Security for the Morello
Capability-enhanced Prototype Arm Architecture

Thomas Bauereiss'®=®, Brian Campbell?®, Thomas Sewell'®,
Alasdair Armstrong!, Lawrence Esswood!, Ian Stark?, Graeme Barnes?,
Robert N. M. Watson', and Peter Sewell!

! University of Cambridge, Cambridge, UK
first.last@cl.cam.ac.uk
2 University of Edinburgh, Edinburgh, UK
first.last@ed.ac.uk
3 Arm Ltd., Cambridge, UK
first.last@arm.com

Abstract. Memory safety bugs continue to be a major source of secu-
rity vulnerabilities in our critical infrastructure. The CHERI project has
proposed extending conventional architectures with hardware-supported
capabilities to enable fine-grained memory protection and scalable com-
partmentalisation, allowing historically memory-unsafe C and C++ to
be adapted to deterministically mitigate large classes of vulnerabilities,
while requiring only minor changes to existing system software sources.
Arm is currently designing and building Morello, a CHERI-enabled pro-
totype architecture, processor, SoC, and board, extending the high-per-
formance Neoverse N1, to enable industrial evaluation of CHERI and
pave the way for potential mass-market adoption. However, for such a
major new security-oriented architecture feature, it is important to es-
tablish high confidence that it does provide the intended protections, and
that cannot be done with conventional engineering techniques.

In this paper we put the Morello architecture on a solid mathemat-
ical footing from the outset. We define the fundamental security prop-
erty that Morello aims to provide, reachable capability monotonicity, and
prove that the architecture definition satisfies it. This proof is mechanised
in Isabelle/HOL, and applies to a translation of the official Arm spec-
ification of the Morello instruction-set architecture (ISA) into Isabelle.
The main challenge is handling the complexity and scale of a production
architecture: 62,000 lines of specification, translated to 210,000 lines of
Isabelle. We do so by factoring the proof via a narrow abstraction cap-
turing essential properties of arbitrary CHERI ISAs, expressed above
a monadic intra-instruction semantics. We also develop a model-based
test generator, which generates instruction-sequence tests that give good
specification coverage, used in early testing of the Morello implementa-
tion and in Morello QEMU development, and we use Arm’s internal test
suite to validate our model.

This gives us machine-checked mathematical proofs of whole-ISA se-
curity properties of a full-scale industry architecture, at design-time. To
the best of our knowledge, this is the first demonstration that that is
feasible, and it significantly increases confidence in Morello.

© The Author(s) 2022
I. Sergey (Ed.): ESOP 2022, LNCS 13240, pp. 174-203, 2022.
https://doi.org/10.1007/978-3-030-99336-8_7

https://orcid.org/0000-0001-9607-8942
https://orcid.org/0000-0001-6941-5034
https://orcid.org/0000-0002-4891-0797
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99336-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-99336-8_7

Verified Security for the Morello Capability-enhanced Prototype Arm Architecture 175

1 Introduction

Memory safety bugs continue to be a major source of security vulnerabilities, re-
sponsible for around 70% of those addressed by Microsoft security updates, and
around 70% of the high-severity bugs impacting Chromium [30,14]. Their root
causes are well-known legacy design choices and limitations of normal practice:
pervasive uses of systems programming languages that do not enforce memory
protection; hardware that enforces only coarse-grain protection, using virtual
memory; and test-and-debug development methods that cannot provide high as-
surance. These are baked in to the critical systems codebase across the industry,
and the result, in today’s adversarial environment, is that programming errors
can often lead to exploitable vulnerabilities.

There are many possible approaches to improving this situation, including
development of safer programming languages, techniques for full functional-
correctness verification, and better bug-finding tools. Each is the subject of much
research in programming languages and semantics, and all are worthwhile, but
the legacy investment, the need for systems code to work close to the machine,
and the inability of bug-finding to provide high assurance, have made it very
hard to radically improve mass-market systems.

Another path, less well explored, is to change the architectural interface to
provide hardware mechanisms that enable better enforcement of memory pro-
tection. Over the last twelve years, the CHERI project [1] has been extend-
ing conventional hardware Instruction-Set Architectures (ISAs) with new archi-
tectural features to enable fine-grained memory protection and highly scalable
software compartmentalisation. The CHERI memory protection features allow
historically memory-unsafe programming languages such as C and C++ to be
adapted to have quite different semantics, replacing many unpredictable unde-
fined behaviour (UB) cases with predictable fail-stop traps, to provide strong
and efficient protection against many currently widely exploited vulnerabilities.
Crucially, this requires only minor changes to the sources of existing systems
software. The CHERI scalable compartmentalisation features enable the fine-
grained decomposition of operating-system (OS) and application code, to limit
the effects of security vulnerabilities.

CHERI provides these via hardware support for unforgeable capabilities: in
a CHERI ISA [54], instead of using simple 64-bit machine-word virtual-address
pointer values to access memory, restricted only by the memory management
unit (MMU), one can use 128+1-bit capabilities that encode a virtual address
together with the base and bounds of the memory it can access. Encoding these
within the capability enables a fast access-time check, faulting if there is a safety
violation. A one-bit tag per capability-sized and aligned unit of memory, cleared
in the hardware by any non-capability write and not directly addressable, en-
sures capability integrity by preventing forging, and the ISA design lets code
shrink capabilities but never grow them. This architectural mechanism, along
with additional sealed-capability features for secure encapsulation, can be used
by programming language implementations and systems software in many ways.

176 T. Bauereiss et al.

Previous academic work on CHERI has developed CHERI-MIPS and CHERI-
RISC-V architectures, FPGA processor implementations, and system software
including adaptions of Clang/LLVM, linkers, debuggers, FreeRTOS, FreeBSD,
and WebKit. The CHERI processor prototypes implement techniques such as
compressed capability bounds [58], and a tag controller and cache [26] required
to implement memory tagging on off-the-shelf DRAM. The software prototypes
use CHERDI’s architectural features to implement memory-safe CHERI C/C++
programming languages [55], fine-grained spatial memory safety [15], heap tem-
poral memory safety [15], and scalable software compartmentalisation [57]. An
analysis of vulnerabilities reported to the Microsoft Security Response Center
(MSRC) in 2019 suggested that CHERI memory safety would have determinis-
tically mitigated 30%—70%, depending on the usage scenario [27], and porting
the FreeBSD kernel and userspace to CHERI required changes only to 0.18%
and 0.04% LoC respectively. Analysis of an open-source desktop stack [53] esti-
mated a 73.8% vulnerability mitigation rate through a combination of memory
protection and software compartmentalisation requiring a 0.026% LoC change.

Achieving widespread adoption of any substantial new architectural feature
is also challenging, of course, but the issues differ from those for adoption of
a new high-level programming language. It needs coordinated hardware and
software change, which is hard to arrange, but on the plus side there are very
few architecture vendors, so if a feature becomes (say) part of the mainline Arm
architecture, and there is pull from major partners, then it will be implemented
in all conforming Arm implementations and become ubiquitously available in
devices. For CHERI, the academic results are encouraging, but achieving such
adoption first needs an industry-scale evaluation of a high-performance silicon
processor implementation and software stack above it, to demonstrate viability
and enable that pull. This is beyond what can be done academically, but hard to
justify as a purely commercial project. The 2019-24 UKRI Digital Security by
Design (DSbD) challenge resolves this chicken-and-egg difficulty with a combined
public-sector and industry (£70m+117m) programme to build and evaluate such
demonstration platform, and support research and development above it [52].

Arm, supported in part by DSbD, is currently designing and building Morello,
a CHERI-enabled prototype architecture, processor, system-on-chip (SoC), and
development board, extending the Armv8.2-A architecture and the high-perfor-
mance Neoverse N1 processor [6,8]. The Morello processor and SoC implement
the CHERI ISAv8 protection model, and utilise CHERI’s compressed capabil-
ity bounds and tagged memory approaches. As of 2021-01, the architecture,
emulators, initial development boards with Morello silicon, and initial software
toolchains, have all been developed. This will allow evaluation of the CHERI
mechanisms in a variety of configurations and use cases on a state-of-the-art
hardware platform, and paves the way for the potential adoption of CHERI into
future production architectures and devices.

In this paper, we describe work to put the Morello architecture and its se-
curity properties on a solid mathematical footing from the outset, and to use
semantics to ease conventional engineering.

Verified Security for the Morello Capability-enhanced Prototype Arm Architecture 177

Morello Security Proofs Abstract CHERI
. — <
sail Isabelle Isabelle Isabelle
| Morello Checking Morello
) Isla SMT compression
VI asl_to_sail Morello /IV
il sall
s =2 T—= Morello Validation wrt
\ C emulator Morello ACK
isla-testgen
ISA tests Testing of Morello
asm h/w and QEMU

Fig. 1. From Morello ASL source (blue) to auto-generated artifacts (yellow) and veri-
fication outcomes (green)

For a new architecture that aims to provide security guarantees, it is es-
pecially important to provide high assurance that it actually does. Otherwise,
any security flaw in the architecture will be present in any conforming hardware
implementation, quite likely impossible to fix or work around after deployment,
and the resulting loss of confidence might make further adoption impossible.

For Morello, this is challenging in two ways. First, CHERI needs to be deeply
integrated into each base architecture it gets adapted to, most obviously by mod-
ifying all virtual-memory-accessing instructions to check bounds and permissions
of capabilities, and by adding instructions to explicitly manipulate capabilities,
but also in more subtle ways relating to exceptions, virtualisation, and so on.
Second, the architecture specification is large and complex. The base Armv8-A
architecture is defined in an 8200-page manual [7], to which the Morello archi-
tecture supplement adds 1200 more [8]. Fortunately, Arm have recently shifted
to using an executable version of their ASL language for instruction-set archi-
tecture specification [40,41]. The sequential behaviour is all defined in ASL, and
this is what appears in instruction descriptions and auxiliary functions (e.g. for
capability compression and address translation) in the documentation. However,
it remains very large, 62 000 non-whitespace lines of specification (LoS), and ASL
does not itself have a mechanised semantics.

The main intended security property of the Morello architecture is reachable
capability monotonicity, with the intuition that the available capabilities cannot
be increased during normal execution (i.e., they are monotonically decreasing).
This is a whole-system property about arbitrary machine execution, and conven-
tional techniques cannot provide high assurance that the architecture satisfies
it. Instead, it needs proof. We translate the Arm ASL definition via the Sail [9]
language into Isabelle/HOL [39], extending previous work for Armv8-A, and give
a mechanised statement and proof that the property holds of the architecture.

We deal with the challenge of scale by factoring the proof via a narrow
abstraction: four relatively simple properties of arbitrary CHERI instruction ex-
ecution that capture essential aspects of their behaviour. Our intra-instruction
semantics focusses on the behaviour of instructions in isolation, interacting with
registers and memory, rather than viewing each thread as a single state machine;
this monadic interface lets us conveniently express these abstract-CHERI prop-
erties of instructions in terms of their register and memory effects. We prove

178 T. Bauereiss et al.

capability monotonicity for arbitrary sequences of instructions above this ab-
straction, and we instantiate the abstraction for Morello and prove that its many
instructions satisfy the required properties. Manual proof effort was required for
a number of helper functions defined in the architecture for manipulating and
using capabilities, but the bulk of the architecture is handled by automatic proof
tools and tactics. Previous work by Nienhuis et al. [38] proved similar results for
the much simpler and smaller (6k LoS) CHERI-MIPS architecture with a dif-
ferent approach, manually defining a larger set of abstract actions and proving
that those do abstract the instruction semantics. That let one capture instruc-
tion intentions more explicitly, but needed more ad hoc machinery, while the
new approach we follow here handles the 10x scale-up successfully.

Our proof was developed while the architecture and hardware design were
still evolving, using weekly snapshots of Arm’s ASL specification, with our au-
tomation letting us quickly adapt to changes. This let us identify a number of
bugs that could be fixed before the architecture and hardware were finalised.

To validate the ASL-to-Sail translation of the Morello specification, we used
the C emulator automatically generated from the Sail model to compare it
against Arm’s internal Architecture Compliance Kit (ACK) test suite.

Finally, we developed a test generator, using the Isla symbolic execution tool-
ing for Sail [10], to automatically generate interesting instruction-sequence tests,
aiming at good specification coverage. These complemented Arm’s test suite and
were used by Arm as part of their pre-tape-out validation, and were used as the
main test suite for development of a Morello version of the QEMU emulator.
This helped uncover some bugs in our own tooling as well as discrepancies be-
tween different Morello models and emulators. We also used Isla and an earlier
Sail-to-SMT flow for quick checking of properties of capability compression.

To summarise, our contributions are:

— A formal and executable semantics of the Morello ISA (§3), automatically
translated from the Arm ASL to Sail, Isabelle, and C, and validated against
the Arm ACK (§6).

— An abstract characterisation of the essential properties of CHERI ISA in-
structions, expressed over their intra-instruction semantics (§4).

— A mechanised proof of capability monotonicity for the full sequential Morello
ISA specification (including all instructions, system registers, capability com-
pression, etc.), with large parts of the proof automatically generated, making
the proof more maintainable as the architecture was developed (§5).

— Automatic ISA test generation from the specification (§7).

This gives us machine-checked mathematical proofs of whole-ISA security
properties of a full-scale industry architecture, at design-time. To the best of our
knowledge, this is the first demonstration that that is feasible, and it significantly
increases confidence in Morello.

The main proof took only around 24 person-months, by two people between
2020-03 and 2021-07, following around 23 person-months of preliminary work
to get the model into usable Sail and Isabelle forms, to develop our CHERI
abstraction in the context of earlier CHERI architectures, and on our Sail-to-

Verified Security for the Morello Capability-enhanced Prototype Arm Architecture 179

SMT flow. Test generation and ACK validation took an additional 17 person-
months, including Morello-specific work on Isla. This suggests that such proof
could be not just technically but also economically viable for new architecture
design, particularly as doing this routinely, as an established flow, would reduce
the effort substantially.

As a side benefit, our well-validated Morello semantics is reusable for future
software or hardware verification. The Armv8-A ISA is, along with x86, one
of the two most important low-level programming languages, and if Morello is
successful, then one would expect CHERI extensions to be similarly widely used.

Sail and Isabelle versions of the Morello specification, as well as our definitions
and proofs, are available online [3].

Non-goals and limitations (1) Our results establish confidence that the Morello
instruction set architecture design satisfies its fundamental intended security
properties. We do not address correctness of the Morello hardware implemen-
tation of that architecture, which would be an extremely challenging hardware
verification task, and we do not cover system components that are not specified
by the ISA itself, e.g. the Generic Interrupt Controller (GIC). (2) The archi-
tecture, as usual, expresses only functional correctness properties, not timing
or power properties, to allow hardware implementation freedom. Properties and
proofs about the architecture therefore cannot address side channels, but see [56]
for discussion of side-channels and CHERI. (3) We consider only the sequential
architecture. Studying concurrency effects would require a more complex system
model integrating the Morello sequential semantics with a whole-system concur-
rency memory model, which we leave to future work, but we expect the capability
properties to be largely orthogonal to concurrency issues, as long as the write
of a capability body and tag appear atomic. (4) We assume an arbitrary but
fixed translation mapping. CHERI capabilities are in terms of virtual addresses,
so system software that manages translations has to be trusted or verified. We
also assume that the privileged capability creation instructions are disabled and
no external debugger is active, because these features can in general be used to
circumvent the capability protections, as discussed in §5.1. (5) Our capability
monotonicity property is the most fundamental property one would expect to
hold of a CHERI architecture, but it is by no means the only such property.
However, stronger properties typically involve specific software idioms, e.g. call-
ing conventions or exception handlers, and their proofs use techniques that have
not yet been scaled up to full architectures. We return to this in §8. (6) We
prove monotonicity of the Morello specification formally in Isabelle, however,
our proof depends on an SMT solver as an oracle for one lemma, as discussed in
§5. (7) Our conversion from ASL via Sail to Isabelle is not subject to verification,
as neither ASL nor Sail have an independent formal semantics — their semantics
is effectively defined by this translation. However, it is nontrivial, and there is the
possibility of mismatches with the Sail-generated C emulator used for validation;
we do not attempt to verify that correspondence. (8) The ASL specification is
subject to the limitations documented by Arm in [7, Appendix K14], e.g. with
respect to implementation-defined behaviour.

180 T. Bauereiss et al.

2 Overview of the Morello CHERI Architecture

CHERI is an architectural protection model that extends ISAs with a new data
type, the architectural capability [54]. The Morello architecture adds CHERI
capabilities to Armv8.2-A, the ISA implemented by the Neoverse N1 CPU on
which the Morello hardware implementation is based [8].

2.1 CHERI Capabilities on Morello

CHERI capabilities are twice the natural address size of the architecture plus an
out-of-band tag bit, which is not independently addressable; for Morello, capa-
bilities are 128+1 bits. The lower 64 bits are the “value”, which in most cases rep-
resents a virtual address. The upper 64 bits encode metadata, including bounds,
permissions, and other mechanisms. The tag provides integrity protection: it is
preserved only by legitimate operations on capabilities, and cleared by others.

A capability can only be used as such, e.g. for a dereference, if its tag is set.
0

perms[17:2] |e|g| otype[14:0] | bounds[86:56]

value[63:0]

A sophisticated compression scheme allows a capability to include 64-bit
lower and upper virtual-address bounds, encoded into 87 bits in total, with 56 of
those shared with the value field (see [8, §2.5.1],[58] for details). Small regions can
be described precisely, with an arbitrary size in bytes, while for larger regions,
only certain bounds and sizes are expressible. The capability value must be either
within the bounds or within a certain range above or below, allowing for common
C idioms that transiently construct (but do not dereference) slightly out-of-
bounds pointers; other combinations of value and bounds are not representable.
This scheme trades off bounds precision for reduced capability size: supporting
arbitrary bounds would require more than 128+-1 bits per capability, which would
have unacceptable performance costs.

Four of the 18 permission bits are reserved for software, while the others have
architecturally defined meaning. The Load, Store, and Execute permissions con-
trol whether a capability can be used for loading or storing data or fetching
instructions. Permission bits for loading and storing capabilities, as opposed to
data, also exist. The System permission controls access to system registers and
operations, in addition to the access control mechanisms of the base Arm archi-
tecture. Capabilities can also be sealed, making them immutable and unusable
for anything but branching to them; this allows controlled transitions between
different security domains. Sealing (or unsealing) a capability requires an au-
thority capability with the Seal (or Unseal) permission; more on this below.

2.2 Capabilities in Registers and Memory

Morello extends the Armv8-A general-purpose integer register file, as well as cer-
tain control and status registers, from 64 bits to 12841 bits. Memory is extended
with a tag bit for each 128-bit sized and aligned unit of DRAM.

Verified Security for the Morello Capability-enhanced Prototype Arm Architecture 181

The Program Counter (PC) is extended to become a Program-Counter Ca-
pability (PCC), constraining instruction fetch as well as PC-relative loads (e.g.,
of global variables). A new Default Data Capability (DDC) special register con-
trols and transforms memory accesses relative to machine-word pointer values
by legacy (non-capability) instructions, for legacy code using integer pointers.

2.3 Capability-aware Instructions

Morello extends Armv8-A with new instructions and modifies existing instruc-
tions to use and respect capabilities. For example, a Load capability (literal)
instruction LDR <Ct>,<label> calculates an address from the PCC value and an
immediate offset, loads a capability from memory, and writes it to capability
register Ct [8, §4.4.76]. If the PCC capability does not have the load permission,
or the calculated address is outside its bounds, a capability fault exception is
raised. The tag of the PCC capability is also checked (as part of instruction
fetching). Most other instructions authorise loads and stores via a capability in
an explicitly identified register, or use DDC, rather than implicitly use PCC.

Conventional execution flow is also controlled by capabilities, with branch
instructions to capability destinations (or implicitly w.r.t. the PCC for legacy
instructions). Here too the capability must have its tag set and the target virtual
address must be within the bounds, and in this case it must authorise execution.

Then there are instructions to access and manipulate the fields of a capa-
bility, including arithmetic on its virtual-address value field (corresponding to
conventional pointer arithmetic), comparisons, and other operations to extract
and manipulate its permissions and other data.

2.4 Domain Transition

CHERI distinguishes between sealed and unsealed capabilities. An unsealed ca-
pability can be used directly (e.g. to load and store), but a sealed capability can
only be used to request actions be taken by other software. This feature can be
used in the context of protection domains or software compartments, in which
whole subsystems are given access to a limited subset of memory.

Domain X may have no direct authority to domain Y, but may call into
domain Y by invoking one or more sealed capabilities originally sealed by (or
for) Y. The invocation will install unsealed versions of the invoked capabilities
in registers. This always includes replacing the current PCC, thus, this performs
a jump to a specific code entry point provided by domain Y. These domain
transitions are non-monotonic and must be treated specially in our proof.

Variations on this sealing and invocation mechanism enable slightly different
calling styles. When sealing capabilities, they can be labelled with an object type,
if the authorising capability has that object type in its bounds. The “branch to
sealed capability pair” instruction invokes a given code capability and also an ar-
gument data capability, checking their object types match, providing object-style
encapsulation. Three kinds of specialised sentry (sealed entry) capabilities may

182 T. Bauereiss et al.

be used transparently by direct branch instructions, memory-indirect branch
instructions, and memory-indirect branch-to-pair instructions, respectively.

2.5 Exceptions and the Memory Management Unit

In addition to compiler-facing instructions, system functionality such as virtual
memory, cache management, and exception handling is also extended, e.g. adding
new exception cause codes, and page-table permission bits for loading or storing
capabilities. Because exception handling is able to restore reserved registers dur-
ing exception-level transitions, it is also a form of domain transition, as reserved
registers may contain capabilities not available to the executing code.

2.6 Using CHERI in Software

For context, we sketch how CHERI’s capability mechanisms are used by soft-
ware to control and constrain execution. The CHERI team has adapted a large
open-source software stack to CHERI, including the LLVM compiler, linkers,
debuggers, multiple OSs, and application suites. The verification in this paper
is motivated by this software usage, but is itself purely about the architecture.

One of the main uses of capabilities is fine-grain memory protection. Spatial
memory safety is achieved in CHERI C/C++ by implementing explicit point-
ers (those visible in the language, e.g. variables with pointer type) and implied
pointers (used by the generated code and runtime, e.g. the stack pointer, PLT en-
tries, and Global Offset Table pointers) with capabilities instead of conventional
machine-word integers. These are protected (from corruption or reinjection) by
the CHERI tag mechanism and monotonicity, and hence the memory contents
they point to are protected, by the capability permissions and bounds checks,
so long as no other capabilities give undesired access to them. This relies on
compiler-generated code, the kernel, run-time linker, and C runtime (e.g., heap
allocator) narrowing capability bounds and permissions during execution as ap-
propriate. This protects against many cases in which a C/C++ coding error
could lead to an exploitable vulnerability.

Temporal memory safety, additionally protecting against reuse-after-reallo-
cation errors, is not directly supported by the architecture, but there are a
variety of techniques to implement it, especially for heap memory, using CHERI'’s
features [22]. Morello extends the page-table mechanism to allow capability flow
to be tracked through memory, supporting revocation of old capabilities.

The other main use of CHERI is software compartmentalisation, splitting the
address space into different compartments running separate software. The capa-
bility monotonicity property ensures these components are contained in their
compartment boundaries. Domain transitions are possible via the sealed capa-
bility mechanism, which can be used to set up various inter-compartment inter-
faces. Often these transitions will all be to a privileged control component, but
the architecture also supports direct transition between two mutually distrusting
pieces of code. Various software models are supported, from implementing fast
inter-process IPC to sandboxed libraries within processes.

Verified Security for the Morello Capability-enhanced Prototype Arm Architecture 183

1 function clause __DecodeA64 ((pc, ([bitone,bitzero,bitzero,bitzero,bitzero,bitzero,
2 bitone,bitzero,bitzero,bitzero, ,_,_, s s —]
3 as __opcode)) if SEE < 99) = {
4 SEE = 99; let imml7 = Slice(__opcode, 5, 17); let Ct = Slice(__opcode, 0, 5);
5 decode_LDR_C_I_C(imml7, Ct) }
6
7 val decode LDR_C_I_C : (bits(17), bits(5)) -> unit
8 function decode LDR C_I_C (imml7, Ct) = {
9 let 't = UInt(Ct);
10 let offset : bits(64) = SignExtend(imml7 @ ©b0OOO, 64);
11 execute_LDR_C_I_C(offset, t) }
12
13 val execute LDR_C_I_C : forall (’'t:Int),(0<='t & ’'t<=31). (bits(64),int(’t)) -> unit
14 function execute LDR.C_I_C (offset, t) = {
15 CheckCapabilitiesEnabled();
16 let base : VirtualAddress = VAFromCapability(PCC);
17 let address : bits(64) = Align(VAddress(base) + offset, CAPABILITY_DBYTES);
18 VACheckAddress(base, address, CAPABILITY_DBYTES, CAP_PERM_LOAD, AccType_NORMAL);
19 data : bits(129) = MemC_read(address, AccType_NORMAL);
20 let data : bits(129) = CapSquashPostLoadCap(data, base);
21 C_set(t) = data }
22
23 val VACheckAddress : forall (’size : Int).
24 (VirtualAddress, bits(64), int(’size), bits(64), AccType) -> unit
25 function VACheckAddress (base, addr64, size, requested_perms, acctype) = {
26 C : bits(129) = undefined;
27 if VAIsBits64(base) then { c = DDC_read() }
28 else { c = VAToCapability(base) };
29 __ignore_15 = CheckCapability(c, addr64, size, requested_perms, acctype) }
30
31 val CheckCapability : forall (’size : Int).
32 (bits(129), bits(64), int(’'size), bits(64), AccType) -> bits(64)
33 function CheckCapability (c, address, size, requested_perms, acctype) = {
34 let el : bits(2) = AArch64_AccessUsesEL(acctype);
35 let 'msbit = AddrTop(address, el);
36 let sl enabled : bool = AArch64_IsStageOneEnabled(acctype);
37 addressforbounds : bits(64) = address; [...7 lines setting addressforbounds...
38 fault_type : Fault = Fault_None;
39 if CapIsTagClear(c) then { fault_type = Fault_CapTag }
40 else if CapIsSealed(c) then { fault_type = Fault_CapSeal }
41 else if not_bool(CapCheckPermissions(c, requested_perms))
42 then { fault_type = Fault_CapPerm }
43 else if (requested_perms & CAP_PERM_EXECUTE) != CAP_PERM_NONE
44 & not_bool(CapIsExecutePermitted(c)) then { fault_type = Fault_CapPerm }
45 else if not_bool(CapIsRangeInBounds(c, addressforbounds, size[64 .. 0]))
46 then { fault_type = Fault_CapBounds };
47 if fault_type != Fault_None then {
48 let is_store : bool = CapPermsInclude(requested_perms, CAP_PERM_STORE);
49 let fault : FaultRecord = CapabilityFault(fault_type, acctype, is_store);
50 AArch64_Abort(address, fault) };
51 return(address) }

Fig. 2. Sample Morello instruction semantics, in Sail, for parts of the LDR (lit-
eral) instruction [8, §4.4.76] for loading a capability from a PCC-relative address.
Lines 1-5 are the relevant opcode pattern-match clause. That calls the decode func-
tion on Lines 7-11, which calls the execute function on Lines 13-21. That uses
auxiliary function VACheckAddress (Lines 23-29) to check that the PCC capability
(wrapped in a VirtualAddress structure) has the right bounds and permissions, rais-
ing an exception otherwise (Lines 47-50). MemC_read (Line 19) performs the load, and
CapSquashPostLoadCap (Line 20) performs additional checks, in particular clearing the
tag of the loaded capability if the authorising capability does not have capability load
permission.

184 T. Bauereiss et al.

3 Concrete Semantics of Morello

The basis for our verification and validation work for Morello is the ISA speci-
fication written by Arm in their ASL language. It includes sequential semantics
of the capability mechanisms and instructions, along with all of the Armv8-A
AArch64 base architecture and its extensions supported by Morello, e.g. float-
ing point and vector instructions, system registers, exceptions, user mode, sys-
tem mode, hypervisor mode, some debugging features, and virtual memory ad-
dress translation. In total, the Morello ASL specification is around 62 000 non-
whitespace lines, covering 409 instructions, 1050 encodings, 600 automatically
generated accessor functions for reading and writing system registers, and 1500
additional helper functions. Arm provided weekly snapshots of the ASL specifi-
cation while it was being developed.

ASL is a first-order imperative language with exceptions. Originally a pa-
per language only, it was made executable by Reid et al. [40,41]. It supports
bitvectors of computed sizes, but bitvector indexing is not statically checked;
it also supports mathematical integers and some limited structured types. The
Arm documentation provides an informal description of the language [7, Ap-
pendix K14], but does not provide a formal semantics. We obtain a formal se-
mantics of Morello by translating the ASL specification into Sail [9], a similar
language but with a richer type system and open-source tooling, and thence into
Isabelle/HOL, as 90000 and 210000 LoS respectively. Fig. 2 shows parts of the
Sail semantics for the Morello LDR (literal) instruction for loading a capability
from a PCC-relative address. This is just an iceberg-tip of the whole semantics,
even just for this instruction: the MemC_read involves all of address translation,
and the call graph of the definitions shown amounts to 7300 lines of Sail.

We reused the existing open-source Sail tooling and ASL-to-Sail transla-
tion [9,10] mostly as-is, with only minor improvements and some engineering
work needed to handle Morello. In addition to the Isabelle definitions, we gen-
erate a C emulator for validation (§6) using the Sail tool, and we reuse the Isla
symbolic execution engine for Sail [10] to generate tests (§7).

4 Abstract Formal Model of Capability Monotonicity

The main challenge in proving whole-ISA security properties of Morello is the
scale and complexity of the model. Rather than a direct proof above the 210 000-
line Isabelle specification, we factor the proof via an abstraction (instantiated
for Morello in §5) that captures the essential properties of arbitrary instruction
behaviour in any CHERI ISA. It has to spell out aspects of CHERI in some
detail, e.g. the different kinds of non-monotonic domain transitions (cf. §2.4), but
it abstracts away ISA details not directly relevant for capability monotonicity.

4.1 ISA Abstraction

The abstraction is defined as properties of an arbitrary sequential ISA semantics,
encoded in a monadic type with a trace semantics that exposes the individual

Verified Security for the Morello Capability-enhanced Prototype Arm Architecture 185

register and memory effects of instructions. This interface was originally designed
to connect Sail ISA semantics to relaxed memory models, but we found the
factorisation via effects useful for reasoning even in a simple sequential setting.

The monad essentially corresponds to a free monad over an effect datatype.
It is parameterised with a return type 'a, an exception type 'e, and a sum type
of register value types 'regval (automatically generated by Sail for each ISA):
type M 'regval 'a 'e =

| Done of 'a | Fail of string | Exception of 'e

| Read_memt of kind * addr * nat * ((bytes x tag) -> M ’'regval

| Read_reg of register_name * ('regval -> M ’'regval 'a ’'e)

’
’

’ ’

a'e)

’

Finished outcomes either indicate successful termination with a return value a
(denoted as Done a), an exception (Exception e) which can be caught using a
try_catch combinator, or a failure (Fail msg), e.g. due to a failed assertion. Ef-
fect outcomes carry a continuation that expects a response and returns the next
monadic outcome. Monadic return wraps a value in Done, while bind just nests
the outcomes without interpreting the effects. We also define a corresponding
type of events, e.g. E_read_reg (with only concrete values, not continuations),
along with an effect trace semantics for monadic expression. We define our re-
quirements on CHERI ISAs in terms of constraints on these traces in §4.4.

4.2 CHERI ISA Parameters

In addition to the ISA semantics themselves, our properties are parameterised on
aspects of the ISA relevant to CHERI. This includes names of special registers,
in particular the program counter capability register PCC, the invoked data
capability register IDC (capability register 29 on Morello, r31 on CHERI-RISC-
V), registers holding capabilities to exception handlers (VBAR_ELn on Morello),
and privileged registers requiring system register access permission.

Moreover, we need to know which instructions may perform sealed capability
invocations, as this potentially constitutes a non-monotonic security domain
transition. We model this as functions taking an instruction identifier and an
effect trace of a particular execution, and returning, respectively, the directly or
indirectly invoked sealed capabilities in the trace. For example, the Morello BRS
instruction invokes the sealed capabilities in its two input registers, and other
branch instructions can also invoke sealed capabilities if they are sentries.

Finally, the mapping from virtual to physical memory addresses is captured
by a pure partial function taking a virtual address and a (partial) instruction
execution trace, from which it can extract the required information about the ad-
dress mapping to determine the physical address, if any. This is needed because
capabilities are in terms of virtual addresses, but the memory effects produced
by the ISA semantics are in terms of physical addresses, so we need a way to
translate between those when formulating requirements on memory accesses in
the abstract model. We also assume another function as a parameter to distin-
guish memory operations that happen as part of an in-memory translation table
walk, as the constraints on them differ from those on other memory operations.

186 T. Bauereiss et al.

4.3 Capability Abstraction

We capture capabilities in the abstract model via a typeclass that provides meth-
ods for accessing the various fields of capabilities, as well as sealing and unseal-
ing operations. We also define a notion of derivability that serves as an upper
bound on the capability manipulations that instructions are normally allowed
to perform. Starting from a set of capabilities C, e.g. provided as inputs to an
instruction, the set of capabilities derivable from C' is defined inductively as the
smallest set that contains C' itself as well as capabilities obtained from other
derivable ones via one of the following;:

— manipulating an unsealed capability c into ¢’ such that bounds or permissions
are not increased, formalised using an ordering where ¢’ < c iff either ¢/ = c,
or ¢ is untagged, or both are tagged and unsealed and the bounds and
permissions of ¢ include those of ¢’;

— turning a capability into a sealed entry capability;

— sealing a capability using another derivable sealing authority capability, set-
ting the object type of the sealed capability to the current address value of
the authority capability (interpreted as an object type), if the authorising
capability is tagged and unsealed, has sealing permission, and its value (and
therefore the object type) is within its bounds; or

— unsealing a capability using another derivable unsealing authority capability,
if the latter is tagged and unsealed, has unsealing permission, and its value
is within bounds and matches the object type of the sealed capability.

Of these operations, unsealing is the only one that may grant new privileges that
are not already granted by the input capabilities. However, unsealing requires
specific authority. An operating system, for example, can control what capabil-
ities a user-space process can unseal by only handing out unsealing authority
capabilities with a limited set of object types in their bounds.

4.4 CHERI ISA Intra-instruction Properties

Our abstraction is defined as the conjunction of four instruction-local properties.
They are relatively straightforward to verify for a concrete ISA, and we will
describe the proof for Morello in §5. At the same time, the properties imply the
whole-ISA property of reachable capability monotonicity, as explained in §4.5.
Hence, they serve as a useful intermediate abstraction layer for structuring the
overall proof.

The central security guarantee that CHERI ISAs aim to provide is that
software cannot forge capabilities and thereby escalate its privileges. Hence, we
require that instructions only produce capabilities via the above derivation rules,
except for the effects of well-defined transition mechanisms for switching control
to another security domain.

Property 1 (Capability register writes). In any execution trace of a single in-
struction, for every write of a tagged capability to a register at a given point in
the trace, one of the following holds:

Verified Security for the Morello Capability-enhanced Prototype Arm Architecture 187

1. The capability is derivable from the capabilities that the instruction has
available at this point in the trace.

2. The capability is an invoked capability and written to the PCC or IDC
register as part of a sealed capability invocation.

3. The capability has been loaded from an exception handler base register and
is written to the PCC register as part of raising an ISA exception.

The first case permits the normal operation of instructions, manipulating
capabilities according to the above derivability rules. We allow instructions to
use their available capabilities in these operations, which normally includes ca-
pabilities read from registers or loaded from memory up to the given point in
the trace, with some exceptions: First, capabilities read from privileged registers
are unavailable unless the system access permission is also available, i.e. if a
tagged and unsealed capability with that permission has been read from PCC
before. Second, we exclude capabilities loaded as part of translation table walks,
as those loads are not subject to capability checks (although none of the existing
CHERI ISAs attempt to load capabilities during translation table walks). Third,
capabilities used in a domain transition, e.g. capabilities loaded from memory
as part of an indirect sealed capability invocation, are unavailable for normal
operations and handled separately by the other cases of Property 1 as follows.

The sealed capability invocation case applies when the capability being writ-
ten is an invoked capability of the current instruction, as declared when instan-
tiating the CHERI ISA abstraction (see §4.2). Such an invocation performs a
branch to the unsealed code capability by writing it to the PCC register, and
possibly writes an unsealed data capability to IDC. One of the following cases
must hold, representing the different supported kinds of capability invocation:

Sealed pair A pair of capabilities sealed with the same, non-sentry object type
and with BranchSealedPair permission is available, the capability that is
being written is an unsealed version of one of those, and it is written either
to PCC and it has the execute permission, or it is written to the invoked
data capability register IDC and does not have the execute permission.

Direct sentry The capability is written to PCC, and a version of it that is
sealed with a sentry object type is available to the instruction.

Indirect sentry An indirect sentry capability is available and used to load ei-
ther two capabilities from memory that may be written to the PCC and IDC
registers, or one capability that may be written to PCC while the unsealed
version of the indirect sentry itself may be written to IDC.

The ISA exception case is signalled in the Morello model by the helper func-
tion AArch64.TakeException throwing a (Sail language) exception after setting
up the branch to the exception handler. In this case, we allow a capability to the
exception handler to be read from a privileged exception handler base register
and written to PCC, even if system register access permission is not available.
However, the definition of available capabilities together with our properties
guarantee that this capability is not used for any other operations.

188 T. Bauereiss et al.

let store _cap reg aziom ISA has ex invoked caps invoked indirect caps t =

let use_mem _caps = (invoked _indirect caps = {}) in
(Vicr. (writes_to_reg_at_idxit=Justr A ¢ € (writes_reg_caps_at_idx ISA i t))
—

(* Only store monotonically derivable capabilities to registers x*)
(cap_derivable (available caps ISA use_mem_caps i t) ¢ V
(* ... or perform one of the following non — monotonic register writes: x)
(* Exception *)
(has_ex A ¢ € exception targets at idx ISA i t A r € ISA.PCC) V
(* Capability pair invocation *)
(3 cc ed. ((¢ < (unseal cc) A r € ISA.PCC) V (¢ < (unseal cd) A r € ISA.IDC)) A
cap_derivable (available caps ISA use _mem_caps i t) cc A
cap_derivable (available caps ISA use _mem _caps i t) ¢d N
invokable cc cd A ¢ € invoked _caps) V
(* Direct sentry invocation x)
(3 ¢s. ¢ < (unseal cs) A is_sentry cs A is_sealed ¢s A r € ISA.PCC A
cap_ derivable (available_caps ISA use_mem_caps i t) cs A
¢ € invoked _caps) V
(* Indirect sentry invocation (writing the unsealed sentry to IDC) %)
(3 ¢s. ¢ < (unseal ¢s) A r € ISA.IDC A is_indirect_sentry cs A is_sealed cs A
cap_derivable (available reg caps ISA i t) ¢s A
¢ € invoked _indirect_caps) V
(* Indirect capability (pair) invocation)
(* (writing the loaded capability/capabilities to PCC/IDC))
(3 ¢. ((c < (unseal ¢') A is_sealed ¢’ Ais_sentry ¢’ A r € ISA.PCC) v
(¢ < ¢ Are (ISA.PCC U ISA.IDC))) A
cap_derivable (available mem caps ISA i t) ¢’ A
¢ € invoked _caps A invoked _indirect _caps # {})))

Fig. 3. Formal definition of capability register write Property 1, slightly simplified

We formalise Property 1 as a predicate on traces, given in Fig. 3. It takes
a number of arguments that we instantiate using the CHERI ISA parameters
of §4.2, e.g. with invoked _caps set to the capabilities that the given instruction
invokes in the given trace. The predicate details the different cases (and invoca-
tion subcases) of Property 1 for all capabilities written to registers, using helper
definitions such as available caps or invokable (checking permissions and object
types of a pair of sealed capabilities).

The other three properties state that capabilities stored to memory must be
derivable from available capabilities (here there are no non-monotonic exception
cases), and that accesses to memory or privileged registers must be authorised
by capabilities with sufficient permissions and bounds.

Property 2 (Capability stores). Every tagged capability stored to memory at a
given point in an execution trace of a single instruction is derivable from the
available capabilities at that point in the trace.

Property 3 (Privileged registers). Reads from or writes to privileged registers
in an execution trace of a single instruction happen only after a tagged and
unsealed capability with system register access permission has been read from
PCC, unless an ISA exception is raised in the trace and the event is a read from
an exception handler base register.

Verified Security for the Morello Capability-enhanced Prototype Arm Architecture 189

Property 4 (Memory accesses). For every load or store event at a given point in
an execution trace of a single instruction, there is a tagged capability available at
that point in the trace that authorises the memory operation (further explained
below), unless the event is part of a translation table walk. The authorising ca-
pability must be unsealed, unless it is an indirect sentry capability being invoked
in this trace and the event is a load. If the event is a load or a store of a tagged
capability, then the address must be aligned to the capability size.

The authorising capability for memory accesses must be tagged and have the
right bounds and permissions: the latter must include load/store permission,
and there must be a virtual address range covered by the bounds of the capabil-
ity that translates to the physical address range covered by the memory event.
Loading/storing capabilities (and not just untagged data) requires additional
permission bits. The authorising capability must also normally be unsealed; the
only allowed case of using a sealed capability for a memory operation is the
invocation of an indirect sentry capability. In that case, Property 1 allows the
loaded capability (or pair of capabilities) to be written to PCC (or IDC). How-
ever, due to the definition of available capabilities, the loaded capabilities will in
this case be unavailable for other purposes. Only capabilities loaded via unsealed
authorising capabilities can be used for regular operations.

In addition to the instruction semantics, our ISA models also contain ASL/Sail
code defining instruction fetch and decode behaviour. We use this for generating
emulators, but also for stating the whole-ISA monotonicity theorem below with
respect to multi-instruction traces produced by a fetch-decode-execute loop. For
the fetch segments of these traces, we require the same properties to hold as
for individual instruction execution traces, with the only difference being in the
authorisation of memory loads: we assume that instruction fetching only loads
instructions from memory, so we do not allow instruction fetching to perform
capability memory loads, and we require that it checks for the execute rather
than the load permission in the authorising capability.

4.5 Capability Monotonicity Theorem

The above single-instruction properties are sufficient to prove a whole-ISA mono-
tonicity theorem for reachable capabilities. This set of reachable capabilities for a
given state of the system is defined inductively as the smallest set that includes:

— capabilities in non-privileged registers, and those in privileged registers if a
tagged and unsealed capability with system access permission is reachable;

— in-memory capabilities at capability-aligned virtual addresses, if there is a
reachable capability that authorises loading the capability; and

— capabilities derivable from reachable capabilities via the rules of §4.3, i.e. re-
stricting bounds or permissions, creating sentry capabilities, or sealing/un-
sealing capabilities (if a suitable authorising capability is also reachable).

This set is intended to provide an upper bound on the set of capabilities that
software can construct (on its own) when starting execution in the given state,
and the monotonicity theorem confirms that it is indeed an upper bound.

190 T. Bauereiss et al.

We assume a sequential setting and state the theorem with respect to ex-
ecutions of a sequential fetch-decode-execute loop; reasoning about concurrent
behaviour is beyond the scope of this paper. Executing an effect trace ¢ from
a state s leading to a state s’, written s % s, is possible if the register and
memory contents in read events along the trace ¢ correspond to the last written
values, if any, or the contents in the initial state s otherwise, and if s’ results
from s by updating register and memory contents with the values in ¢.

Proving the instruction-local properties of the last subsection for a concrete
ISA might also require certain architecture-specific assumptions. We allow the
specification of both a capability invariant that is preserved by capability deriva-
tion and assumed to hold initially, and a predicate on traces capturing further
assumptions, e.g. about system registers. We say that an architecture is a CHERI
ISA if all possible traces of instruction execution and fetching that satisfy the
architecture-specific trace assumptions, and that read only capabilities satisfy-
ing the architecture-specific capability invariants, satisfy the properties of §4.4.
Reachable capability monotonicity then holds for executions of arbitrary se-
quences of instructions, unless and until a transition to another security domain
occurs via an ISA exception or sealed capability invocation.

Theorem 1 (Reachable Capability Monotonicity). Let t = tfy - teq - tfs -
tes - ... be a trace of the fetch-decode-execute loop of a CHERI ISA, alternating
fetch/decode traces tf; and instruction execution traces te;, and let s be a state
such that s 4 s'. If all of the following hold:

all traces tf; and te; satisfy the architecture-specific assumptions,

the capabilities in s satisfy the architecture-specific capability invariants,
none of the fetch and execute traces tf; and te; raise an ISA exception,
the address translation mapping stays invariant along t, and

unsealed versions of the invoked sealed capabilities in t are reachable in s,

Crds o o =

the set of capabilities Teachable in s’ is a subset of the capabilities reachable in s.

This guarantees that software cannot escalate its privileges by forging capa-
bilities that are not reachable from the starting state. Non-monotonic changes
in the set of reachable capabilities are limited to the specific mechanisms defined
above for transferring control to another security domain, i.e. ISA exceptions
or sealed capability invocations, installing capabilities belonging to the new do-
main in the PCC (and possibly IDC) register. The monotonicity guarantee stops
before such a domain transition happens. Sealed capability invocations within
a security domain are monotonic, however; the theorem does cover capability
invocation instructions, e.g. branch instructions taking sentry capabilities, if the
unsealed invoked capability is reachable in the current security domain (con-
dition 5 above). The translation invariance assumption (condition 4) rules out
non-monotonicity due to the interpretation of capabilities changing when the
memory mapping changes. It is assumed to hold for the duration of the given
intra-domain trace, but after a domain transition and return, e.g. a system call,
one could continue using this theorem with a modified translation mapping.

Verified Security for the Morello Capability-enhanced Prototype Arm Architecture 191

The proof of Theorem 1 starts with an induction on the number of instruc-
tions in the trace. For each individual subtrace ¢ of an instruction fetch or exe-
cution with s % s’, we show that the available capabilities at any point in ¢ are
reachable in s, as the definition of available capabilities excludes non-monotonic
cases and only includes capabilities that are accessed with suitable permission
due to the properties we require. Hence, state updates along ¢ leading to s’ (only
writing available or invoked, but reachable capabilities due to the requirements
and assumptions) are monotonic.

5 Proof of Capability Monotonicity in Morello

5.1 Instantiation of the Abstract Model

In order to instantiate Theorem 1 for Morello, we instantiate the parameters of
the abstract model, e.g. the set of privileged registers or the concrete capability
representation. We do not currently instantiate the address translation mapping,
effectively treating address translation as a black box and assuming an arbitrary
but fixed partial mapping, together with a predicate on events to capture as-
sumptions on register and memory contents, under which the mapping produced
by the ASL address translation code is guaranteed to coincide with the given
mapping. A candidate for instantiating this is the purely functional character-
isation of address translation presented in [9, §8] and proved correct there for
the base Armv8.3 architecture, under some assumptions about control registers.
Using this would also allow (and require) us to substantiate the translation in-
variance assumption of Theorem 1. In particular, since the translation control
registers are protected by the system register access permission, code running
without that permission and without write access to the in-memory translation
tables cannot modify the translation mapping.

For the monotonicity proof, the main architecture-specific assumption we
make is that two privileged system features that could be used to violate mono-
tonicity are inactive: external debuggers, and the experimental instructions SCTAG
and STCT that allow setting tags of arbitrary capability bit patterns. Hence, we
make assumptions on the contents of certain control registers to disable these
(e.g. EDSCR.STATUS = 2 to model non-debug state); the tag setting instructions
can also be disabled by removing the system access permission.

The capability invariant that we assume in the initial state is that bounds
do not go beyond the 64-bit address space and that their length is non-negative,
e.g. to rule out memory accesses that wrap around the edge of the address
space. There exist capability encodings that violate this property, but the only
way to generate them on Morello is via the tag setting instructions or an external
debugger, which we assume to be disabled.

We also assume that the PCC capability is initially unsealed, if it is tagged,
which the ASL code relies on in a few places. We proved this as an invariant
after a bug we found in a branching helper function (see §5.4) was fixed.

Finally, we have to limit certain kinds of “constrained unpredictable” be-
haviour. For example, the LDP instruction loads a pair of words into two desti-

192 T. Bauereiss et al.

nation registers. However, if the same register index is used for both destination
register arguments to the instruction, then it is left underspecified what value is
written to the destination register, if any. One might expect this to be either the
original register value or one of the loaded values, but Morello inherits from the
base Armv8-A architecture the specification that the register value may be set to
an architecturally UNKNOWN value in such cases. For capabilities, the Morello spec-
ification [8] further constrains this in rule TSNJF: “If an UNKNOWN value is written
to a capability register or to capability-tagged memory, the write does not in-
crease the Capability defined rights available to software.” We formalise this by
adding an assumption that, in traces for which we want to use the monotonicity
theorem, all UNKNOWN capabilities used (appearing in traces in nondeterministic
choice events) are reachable from the initial state of the trace.

5.2 Manual Proofs about Capability Encoding Functions

We have to prove that the various functions that make changes to the concrete
129-bit capability representation (as used by the instruction semantics) do so in
a monotonic way. The challenging aspect is the compressed capability bounds
encoding introduced in [58] and used by Morello (as opposed to the version of
CHERI-MIPS targeted by previous verification work [38], which used a simpler,
uncompressed 256+1-bit encoding). The compression scheme allows the capa-
bility address value and both bounds, three 64-bit values, to be encoded in less
than 128 bits. This exploits the fact that in well-behaved code the address should
be within the bounds or nearby, so the bounds can be expressed as smaller off-
sets from it. They are encoded in a floating-point style, with an exponent and a
floating “mantissa” window. Typical smaller capabilities have precise bounds, but
large capabilities require aligned bounds, to save encoding space; the encoding
uses various optimisations to maximise precision [58], [8, §2.5.1].

We initially SMT-checked the encoding functions using Sail’s existing SMT
backend. This provided early design feedback, including discovering an issue in
the CapSetBounds function (see §5.4).

When moving from SMT checks to Isabelle proofs that can be integrated
into the overall proof, one challenging function is CapIsRepresentableFast, which
checks that an update to the capability value by an offset does not change
the decoding of the bounds. It is important for performance that this check is
done quickly. This fast version only considers the offset arithmetic within the
mantissa window, making pessimistic assumptions about overflow /underflow in
lower bits. We can prove that this check is sufficient, using algebraic methods in
Isabelle/HOL without bit-blasting or SMT proofs.

The most challenging function for us to verify is called CapSetBounds, and is
used to narrow capability bounds. The function checks that the requested new
bounds fit monotonically in the existing bounds. It also picks an appropriate
exponent, aligns to that exponent, and encodes an updated capability.

The main complication is that aligning the bounds to an exponent changes
the length slightly, which may be an increase that requires a higher exponent.

Verified Security for the Morello Capability-enhanced Prototype Arm Architecture 193

The core argument for monotonicity here is non-trivial: the chosen alignment
is the minimum one for which bounds can be encoded which enclose the requested
bounds. Since the original capability also enclosed this range, its alignment can-
not be less than this minimum, thus the bounds of the original capability are
already aligned to the selected exponent. This finally implies that coercing the
requested bounds to the selected exponent does not move them across the orig-
inal bounds. A part of the proof of this lemma involved a brute-force split into
cases for all possible selected exponents and reducing the cases to SMT bitvector
lemmas which we pass to the CVC4 SMT solver [11]. This relies on the solver
as an oracle, as replay of bitvector proofs in Isabelle is only experimental. Initial
work on the CHERI compression scheme [58] included HOL4 proofs about these
two functions, but this is the first time the crucial monotonicity proof has been
done for the set-bounds function.

5.3 Proof Engineering

With the model instantiation and lemmas about auxiliary functions in place, the
remaining task is to prove that the rest of the ISA uses these functions correctly
and satisfies the properties defined in §4.4. We tackle this using a combination
of custom proof tactics within Isabelle and an external tool that automatically
generates lemmas about the functions and instructions in the architecture. This
simple approach worked sufficiently well that we were able to keep up with weekly
snapshots of the ASL specification while it was being developed. Re-running the
lemma generation tool mostly worked without affecting the existing manually
written parts of the proof, with only few exceptions, e.g. when a refactoring of
the (crucial) VACheckAddress function broke some lemmas about it.

The generated lemmas are stated in terms of predicates that reformulate the
properties of §4.4 into properties of partial traces, taking an additional param-
eter that summarises the capabilities available at the start of this part of the
trace. This allows us to split up an instruction proof into proofs that the auxiliary
functions satisfy the properties and that they are used correctly, e.g. that a func-
tion performing a memory store is only called if a suitable authorising capability
is available. Most of these proofs are automatically handled by straightforward
proof tactics, but our tooling allows manually overriding specific parts of gener-
ated lemmas where necessary. We do this for about 100 of the ASL functions and
instructions, generally taking the form of small patches, e.g. giving additional
hints to the proof tactics, such as additional simplification rules or loop invari-
ants, or adding side conditions to lemma statements, such as assumptions about
capability checks for memory-accessing helper functions. The tool outputs the
generated lemmas in theory files which are then checked by Isabelle; hence, the
external tool does not need to be trusted. The proof consists of around 37000
generated lines, 8 600 manually written lines, as well as 8900 lines for the ab-
stract model, monotonicity proof, and proof tools. The proof executes in Thrs
20mins CPU time on an i7-10510U CPU at 1.80GHz, but only 3hrs 23mins real
time thanks to parallel execution, with peak memory consumption of 18GB.

194 T. Bauereiss et al.

5.4 Bugs and Issues Found

Our verification work uncovered several bugs and issues in the ASL specification.

During our initial SMT-checking of the capability manipulation helper func-
tions, one issue we discovered that was not known previously was a bug in the
top-byte normalisation logic of the CapSetBounds function, which could have led
to some of the top bits of the lower or upper bound of a capability changing when
modifying some of their lower bits, even if the requested bounds were within the
original bounds of the input capability, thereby violating monotonicity.

Our Isabelle proof uncovered a bug in the BranchToCapability function where
the branch target capability was modified without a check that it is unsealed.
Hence, branch instructions could have modified sealed capabilities. The result
would not have been directly available to the code that performed the branch,
because the modified sealed capability would be installed into PCC, and the
subsequent instruction fetch would fault with a sealed capability exception, but
as part of exception handling the modified sealed capability would then have been
written to the CELR register and become accessible to the exception handler.

Another issue we found was a case of missing capability checks in the im-
plementation of the DC ZVA instruction. This would have allowed software to
overwrite memory regions with zeros without capability authorisation.

We also found various issues that were already known to Arm, e.g. the STP
instruction checking the tag of the wrong capability, as well as functional bugs
not directly affecting our proof of security properties, e.g. a bug in the LDNP and
STNP instructions where the wrong memory access type was used.

We reported all of our findings to Arm, and the issues have been fixed.

6 Validating the Concrete Semantics

Confidence in our results about Morello’s security properties relies on our trans-
lation of the specification (from ASL into Sail and Isabelle) accurately reflecting
the intended architecture. A key part of ensuring that hardware designs imple-
ment Arm architectures correctly is to test against Arm’s internal Architectural
Compliance Kit (ACK); to validate our translation we ran a large collection of
tests from the Morello ACK against a Sail generated C emulator. This approach
was also taken with an earlier AArch64 Sail model [9]. These tests are typically
self-contained executables that can be run directly after processor reset without
an operating system or peripherals, except for a simple serial device for reporting
results and diagnostic information. Each test executes tens or even hundreds of
thousands of instructions, so using our fast C emulator was essential.

The ACK covers Morello-specific functionality alongside the relevant parts of
the base Arm-v8.2 architecture in more than 25000 tests. Its scope is wider than
the ASL model, including features such as performance counters, debug, and
tracing, where the ASL has only interfaces or partial information, leaving the
detailed specification to prose descriptions. There are also tests for the generic
interrupt controller (GIC), a distinct system-on-chip component with a separate

Verified Security for the Morello Capability-enhanced Prototype Arm Architecture 195

specification which is not part of the ISA. Moreover, for the Morello-feature
suites, the “implementation defined” behaviour expected by the tests is more
constrained than normal to match the single Morello hardware design.

To manage this complexity we first obtained baseline results from a Morello
Arm Fast Model simulator, without the additional support normally used in the
ACK testing environment. This matches the contents of the ASL specification
more closely. We then excluded tests which required features that are not fully
modelled, and adjusted the “implementation defined” portions of the specification
to approximate the hardware. By comparing the results from our Sail generated
emulator against the baseline we could identify and repair faults in both the ASL
specification and our translation. Repairing these issues was important both to
ensure that our understanding of the problem was correct and to ensure that
tests could run to completion to rule out further issues.

Specific issues that we encountered involved minutiae about how system reg-
ister bits behave when features are not present (such as AArch32 instructions),
a couple of missing cases in our built-in operations used by SIMD instructions, a
variable shadowing issue in our translation tools, corner cases in the ASL speci-
fication handling of page table capability tracking, and a few exception handling
problems. None of these issues affect capability monotonicity.

The resulting pass rate was 98.1% compared with the baseline. The discrepan-
cies were mostly due to limitations of the ASL model, such as limited debugging
support, corner cases in address space handling, and the lack of secure memorys;
a few details with some SIMD instructions and particular processor exceptions
require further investigation, but again, they do not affect monotonicity.

7 Model-based Test Generation

In addition to the ACK, and before we had access to it, we generated a test
suite from the model to check core instruction and capability functions against
the implementations; and also to adapt QEMU to support most of Morello. We
use symbolic execution, well-established as a way to generate high coverage test
suites [12,43] and used previously for a much simpler CHERI architecture [13],
both to perturb the initial state to explore different instruction behaviours and
to control whether processor exceptions are taken. The latter is particularly
useful for CHERI ISAs because most input values would trivially fault at one
of the capability checks (e.g. see CheckCapability in Fig. 2). Instruction set
specifications are good candidates for symbolic execution because the languages
tend to be relatively simple and the number of paths for any given instruction
is bounded. To build a test generator for Morello we were able to reuse the Isla
symbolic execution tool, which was already being developed for work combining
Sail ISAs with relaxed memory models [10].

The test generator operates on traces of instructions, partially or fully chosen
at random from the encoding diagrams included in the original ASL. Isla’s sym-
bolic execution was extended with a simple sequential memory model using SM'T
arrays for the main memory and tags. In outline, the generator: 1. initialises the

196 T. Bauereiss et al.

model by running the processor reset function in the symbolic executor (this
is deterministic and does not involve any symbolic state); 2. alters the state so
that the parts the test harness can change are symbolic, and fix other values as
necessary (e.g., for memory translation); 3. symbolically executes each instruc-
tion in turn to find feasible behaviours and pick one; 4. passes the accumulated
path conditions to the Z3 SMT solver [16] to find suitable concrete values for the
initial and final states; and 5. constructs the final test with the instructions and
the test harness which will set up the initial state and check the final state after
execution. This harness is hand-written (although automatically producing it in
the style of Martignoni et al. [29] would be interesting to explore), so to accel-
erate development we first restricted our attention to fault-free behaviours with
memory management turned off, then gradually added support for exceptions,
for a simple fixed memory mapping, and checks of more of the processor state
after execution.

Our coverage goal for test generation was to ensure that all of the specifi-
cation code for manipulating capabilities and for instructions that were added
or modified for Morello would be executed in some test. This was complicated
by non-determinism in parts of the specification. Some instructions have “con-
strained unpredictable” forms which can have one of several effects; e.g., a load-
pair where both destination registers are the same might write UNKNOWN to them,
do nothing, or take a fault. In principle allowing for all of these is possible, but
the resulting disjunctions are likely to be much more difficult to solve, and the
behaviours themselves are not very interesting, so we discarded these paths.

Another area of non-determinism in the specification is the load/store ex-
clusive instructions that are used for synchronisation. Even during single-core
execution these instructions have such behaviour due to the particular mem-
ory architecture choices, which are left as unimplemented primitive operations
in the specification. To test these instructions we added a simple model of the
guaranteed behaviour in Sail, which includes assertions to avoid uncertain cases.

While the number of paths to explore in any instruction is bounded, the num-
ber of paths found for some instructions remains impractically large. The main
cause is the case splits in the capability compression scheme. We reduce these
to a single path by pushing the decisions into the SMT solver using Isla’s lin-
earisation feature, extended to support more of the language, which transforms
functions with no side effects into a single SMT expression. This was sufficient
to perform large-scale test generation with the Morello model.

We checked our progress against our coverage goal using the Sail C back-
end’s coverage measurement support, counting, for each expression in a Sail
specification, the number of tests that exercise it. Once we had enough tests
that the accumulated coverage began to level out, it was apparent that certain
instructions and corner cases were not exercised enough. Overriding the ran-
dom instruction choice filled in most of the gaps, and temporarily disabling the
linearisation allowed exhaustive testing of a key capability function.

The tests found a few minor issues in our tooling and some more bugs in
the original ASL specification: several undefined variants of instructions were

Verified Security for the Morello Capability-enhanced Prototype Arm Architecture 197

included, a new load-pair that should have been marked “constrained unpre-
dictable”, a set-bounds operation could read the wrong register, and a translation
fault could be missed in a load-tags instruction. Corrections were made to the
specification for these issues; a couple also arose in one of the implementations
of Morello, which were then fixed.

Comparing the coverage of these tests with the ACK is instructive. As we
used the Sail coverage as a goal, we hit a few gaps in the ACK, such as the
set-bounds issue, and a rare corner case in a core capability function. However,
the ACK’s coverage goals included semantic notions that we cannot capture
easily. For example, if a conditional is supposed to be false because the first
of three checks will fail, human-authored coverage includes the other checks
passing, whereas our generator does not reason about the other checks because
the symbolic execution does not reach them.

The generated test suite was also used as the basis for test-driven develop-
ment of an extension of QEMU’s Armv8-A support to Morello. After adding
basics, such as tagged memory and the expanded register file, the tests guided
which features to implement, easing development. Small errors were picked up
automatically, such as confusing the stack pointer and zero registers (which share
an encoding) and sign extension bugs, including one in the pre-existing QEMU
code where a previous attempt to fix it had missed a subtle issue.

The adapted QEMU now boots CheriBSD, a version of FreeBSD with capa-
bility support, although this required some fixes for issues that were not found
by the generated test suite. A few involved parts of the state that were not
explicitly included in the self-test, particularly around exception handling, but
most of them concerned out-of-scope system features.

8 Related Work

Nienhuis et al. [38] proved similar results for the CHERI-MIPS architecture,
above the Isabelle generated from L3 [23]. CHERI-MIPS is much smaller than
Morello (6k LoS), and much simpler, without page tables, virtualisation, vector
instructions, etc. They identified 9 properties of the ISA semantics that sufficed
to show reachable capability monotonicity and a secure encapsulation result.
These captured the capability-relevant intentions of instructions explicitly, but
were expressed in terms of a conventional whole-system semantics, instead of
the intra-instruction semantics we use here, and that was key to scaling. Each
instruction had to be annotated with its intention, extensive work was needed
to prove commutativity results, and the properties were MIPS-specific.

The other most closely related work, proving properties of capability archi-
tectures, establishes stronger results but for highly idealised architecture defi-
nitions. While our monotonicity theorem is about arbitrary machine execution
up to a domain crossing, Skorstengaard et al. and Georges et al. [46,47,49,48,24]
establish logical-relation methods for reasoning about combinations of arbitrary
and known code, the latter mechanised in Iris [28], but for idealised machines
rather than full architectures. These add new features to help enforcing strong

198 T. Bauereiss et al.

properties, but with unclear hardware implementation cost. Strydonck et al. [50]
and El-Korashy et al. [19] study secure compilation in similarly idealised settings.
Ultimately one would like to scale all these methods to production CHERI archi-
tectures. de Amorim et al. [5,4] verify information-flow properties of their SAFE
architecture, also for a simplified model.

Capabilities have also been used in the interfaces of numerous operating sys-
tems. PSOS [37] uses a similar hardware tag bit to CHERI, but all capability
operations are implemented in the OS rather than hardware. Various other oper-
ating system use standard hardware but have capabilities as part of their inter-
faces. These systems are very different to CHERI, but their security models have
many similarities. Proofs that a (simplified) OS interface matches an abstract
capability security model have been done for the EROS OS [45] and for the seL.4
kernel [20]. A subsequent proof connects to the seL4 implementation [44]. Each
of these abstract models somewhat resembles ours, e.g. with notions of reachable
and derivable capabilities. Our observation that domain-crossing events create
extra complications also seems to apply to sel.4.

There is a great deal of work devoted to other approaches to improve mem-
ory safety which we cannot detail here, but see the review [51]. For just a sam-
ple, many projects have developed software-implemented variants of C or C++
that provide greater safety, but typically with rather different performance and
code-porting costs to CHERI, and without considering whole-system aspects
outside a single C/C++ program [25,36,34,35,17,42,21]. Then there are many
hardware-accelerated approaches, e.g. MPX and WatchdogLite, Watchdog, and
Hardbound [33,32,31,18]. A different line of work aims at bug-finding rather than
deterministic mitigation, e.g. AddressSanitizer [2| and many others.

If widely adopted, Morello would radically change the landscape for such
work, and for computer security more generally.

Acknowledgements We thank all the members of the wider CHERI and
Morello teams, for their work to make Morello a reality. This work was sup-
ported by the UK Industrial Strategy Challenge Fund (ISCF) under the Digital
Security by Design (DSbD) Programme, to deliver a DSbDtech enabled digital
platform (grant 105694), EPSRC programme grant EP /K008528/1 REMS, ERC
AdG 789108 ELVER, Arm iCASE awards, EPSRC TAA KTF funds, the Isaac
Newton Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-
Security, Microsoft Research Cambridge, Arm, Google, Google DeepMind, HP
Enterprise, and the Gates Cambridge Trust. Approved for public release; distri-
bution is unlimited. This work was supported by the Defense Advanced Research
Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL),
under contracts FA8750-10-C-0237 (“CTSRD”), FA8750-11-C-0249 (“MRC2”),
HRO0011-18-C-0016 (“ECATS”), and FA8650-18-C-7809 (“CIFV”), as part of the
DARPA CRASH, MRC, and SSITH research programs. The views, opinions,
and/or findings contained in this report are those of the authors and should not
be interpreted as representing the official views or policies of the Department of
Defense or the U.S. Government.

Verified Security for the Morello Capability-enhanced Prototype Arm Architecture 199

References

10.

11.

12.

13.

14.

CHERI. www.cheri-cpu.org (2021), accessed 2021-06-29

Sanitizers home page. https://github.com/google/sanitizers (2021), accessed 2021-
07-01

Morello Sail definitions and proofs. https://github.com/CTSRD-CHERI/
sail-morello-proofs (2022)

. de Amorim, A.A. Collins, N., DeHon, A., Demange, D., Hritcu, C., Pichardie, D.,

Pierce, B.C., Pollack, R., Tolmach, A.: A verified information-flow architecture.
In: Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA,
USA, January 20-21, 2014. pp. 165-178. ACM (2014). https://doi.org/10.1145/
2535838.2535839

de Amorim, A.A., Collins, N., DeHon, A., Demange, D., Hritcu, C., Pichardie, D.,
Pierce, B.C., Pollack, R., Tolmach, A.: A verified information-flow architecture. J.
Comput. Secur. 24(6), 689-734 (2016). https://doi.org/10.3233/JCS-15784

Arm: Arm Morello Program. https://developer.arm.com/architectures/
cpu-architecture/a-profile/morello, accessed 2021-06-29

Arm: Arm Architecture Reference Manual (Armv8, for Armv8-A architecture
profile) (Sep 2017), Arm DDI 0487F.c (ID072120). https://developer.arm.com/
documentation/ddi0487/fc/?lang=en. 8248 pages. Accessed 2021-07-02

Arm: Arm Architecture Reference Manual Supplement Morello for A-profile Ar-
chitecture. https://developer.arm.com/documentation/ddi0606 /latest (Jun 2021),
DDI0O606A.j. 1288pp. Accessed 2021-06-29

Armstrong, A., Bauereiss, T., Campbell, B., Reid, A., Gray, K.E., Norton, R.M.,
Mundkur, P.; Wassell, M., French, J., Pulte, C., Flur, S., Stark, I., Krishnaswami,
N., Sewell, P.: ISA semantics for ARMv8-A, RISC-V, and CHERI-MIPS. In: Pro-
ceedings of the 46th ACM SIGPLAN Symposium on Principles of Programming
Languages (Jan 2019). https://doi.org/10.1145/3290384, proc. ACM Program.
Lang. 3, POPL, Article 71

Armstrong, A., Campbell, B., Simner, B., Pulte, C., Sewell, P.: Isla: Integrating
full-scale ISA semantics and axiomatic concurrency models. In: In Proc. 33rd Inter-
national Conference on Computer-Aided Verification (Jul 2021), extended version
available at https://www.cl.cam.ac.uk/~ pes20/isla/isla-cav2021-extended.pdf
Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovi¢, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: International Conference on Computer Aided
Verification. pp. 171-177. Springer (2011)

Boyer, R.S., Elspas, B., Levitt, K.N.: SELECT—a formal system for testing and
debugging programs by symbolic execution. In: Proceedings of the International
Conference on Reliable Software. pp. 234-245. ACM, New York, NY, USA (1975).
https://doi.org/10.1145/800027.808445

Campbell, B., Stark, I.: Extracting behaviour from an executable instruction set
model. In: Piskac, R., Talupur, M. (eds.) 2016 Formal Methods in Computer-Aided
Design, FMCAD 2016, Mountain View, CA, USA, October 3-6, 2016. pp. 33—40.
IEEE (2016). https://doi.org/10.1109/FMCAD.2016.7886658

Chromium: Chromium security. https://www.chromium.org/Home/
chromium-security /memory-safety, accessed 2021-06-29

https://cheri-cpu.org
https://github.com/google/sanitizers
https://github.com/CTSRD-CHERI/sail-morello-proofs
https://github.com/CTSRD-CHERI/sail-morello-proofs
https://doi.org/10.1145/2535838.2535839
https://doi.org/10.1145/2535838.2535839
https://doi.org/10.3233/JCS-15784
https://developer.arm.com/architectures/cpu-architecture/a-profile/morello
https://developer.arm.com/architectures/cpu-architecture/a-profile/morello
https://developer.arm.com/documentation/ddi0487/fc/?lang=en
https://developer.arm.com/documentation/ddi0487/fc/?lang=en
https://developer.arm.com/documentation/ddi0606/latest
https://doi.org/10.1145/3290384
https://www.cl.cam.ac.uk/~pes20/isla/isla-cav2021-extended.pdf
https://doi.org/10.1145/800027.808445
https://doi.org/10.1109/FMCAD.2016.7886658
https://www.chromium.org/Home/chromium-security/memory-safety
https://www.chromium.org/Home/chromium-security/memory-safety

200

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

T. Bauereiss et al.

Davis, B., Watson, R.N.M., Richardson, A., Neumann, P.G., Moore, S.W., Bald-
win, J., Chisnall, D., Clarke, J., Filardo, N.W., Gudka, K., Joannou, A., Laurie,
B., Markettos, A.T., Maste, J.E., Mazzinghi, A., Napierala, E.T., Norton, R.M.,
Roe, M., Sewell, P., Son, S., Woodruff, J.: CheriABI: Enforcing Valid Pointer
Provenance and Minimizing Pointer Privilege in the POSIX C Run-time Envi-
ronment. In: Proceedings of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems. pp. 379—
393. ASPLOS '19, ACM (2019). https://doi.org/10.1145/3297858.3304042, https:
//www.cl.cam.ac.uk /research /security/ctsrd /pdfs/201904-asplos-cheriabi.pdf

De Moura, L., Bjgrner, N.: Z3: An efficient SMT solver. In: International conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337—
340. Springer (2008)

DeLozier, C., Eisenberg, R.A., Nagarakatte, S., Osera, P., Martin, M.M.K.,
Zdancewic, S.: Ironclad C++: a library-augmented type-safe subset of C++. In:
Hosking, A.L., Eugster, P.T., Lopes, C.V. (eds.) Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis,
IN, USA, October 26-31, 2013. pp. 287-304. ACM (2013). https://doi.org/10.1145/
2509136.2509550

Devietti, J., Blundell, C., Martin, M.M.K., Zdancewic, S.: Hardbound: archi-
tectural support for spatial safety of the C programming language. In: Eggers,
S.J., Larus, J.R. (eds.) Proceedings of the 13th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, AS-
PLOS 2008, Seattle, WA, USA, March 1-5, 2008. pp. 103-114. ACM (2008).
https://doi.org/10.1145/1346281.1346295

El-Korashy, A., Tsampas, S., Patrignani, M., Devriese, D., Garg, D., Piessens, F.:
CapablePtrs: Securely compiling partial programs using the pointers-as-capabilities
principle. In: IEEE Symposium on Computer Security Foundations (CSF) (2021)
Elkaduwe, D., Klein, G., Elphinstone, K.: Verified protection model of the sel.4
microkernel. In: Working Conference on Verified Software: Theories, Tools, and
Experiments. pp. 99-114. Springer (2008)

Elliott, A.S., Ruef, A., Hicks, M., Tarditi, D.: Checked C: making C safe by exten-
sion. In: 2018 IEEE Cybersecurity Development, SecDev 2018, Cambridge, MA,
USA, September 30 - October 2, 2018. pp. 53-60. IEEE Computer Society (2018).
https://doi.org/10.1109/SecDev.2018.00015

Filardo, N.W., Gutstein, B.F., Woodruff, J., Ainsworth, S., Paul-Trifu, L., Davis,
B., Xia, H., Napierala, E.T., Richardson, A., Baldwin, J., Chisnall, D., Clarke,
J., Gudka, K., Joannou, A., Markettos, A.T., Mazzinghi, A., Norton, R.M.,
Roe, M., Sewell, P., Son, S., Jones, T.M., Moore, S.W., Neumann, P.G., Wat-
son, R.N.M.: Cornucopia: Temporal Safety for CHERI Heaps. In: Proceedings
of the 41st IEEE Symposium on Security and Privacy (SP). pp. 1507-1524.
IEEE Computer Society, Los Alamitos, CA, USA (May 2020). https://doi.org/
10.1109/SP40000.2020.00098, https://www.cl.cam.ac.uk/research /security/ctsrd/
pdfs/20200akland-cornucopia.pdf

Fox, A.C.: Directions in ISA specification. In: ITP. pp. 338-344 (2012). https:
//doi.org/10.1007/978-3-642-32347-8 23

Georges, A.L., Guéneau, A., Strydonck, T.V., Timany, A., Trieu, A., Huyghebaert,
S., Devriese, D., Birkedal, L.: Efficient and provable local capability revocation
using uninitialized capabilities. Proc. ACM Program. Lang. 5(POPL), 1-30 (2021).
https://doi.org/10.1145/3434287

https://doi.org/10.1145/3297858.3304042
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201904-asplos-cheriabi.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201904-asplos-cheriabi.pdf
https://doi.org/10.1145/2509136.2509550
https://doi.org/10.1145/2509136.2509550
https://doi.org/10.1145/1346281.1346295
https://doi.org/10.1109/SecDev.2018.00015
https://doi.org/10.1109/SP40000.2020.00098
https://doi.org/10.1109/SP40000.2020.00098
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2020oakland-cornucopia.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2020oakland-cornucopia.pdf
https://doi.org/10.1007/978-3-642-32347-8_23
https://doi.org/10.1007/978-3-642-32347-8_23
https://doi.org/10.1145/3434287

Verified Security for the Morello Capability-enhanced Prototype Arm Architecture 201

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Jim, T., Morrisett, J.G., Grossman, D., Hicks, M.W., Cheney, J., Wang, Y.: Cy-
clone: A safe dialect of C. In: USENIX Annual Technical Conference, General
Track. pp. 275-288 (2002)

Joannou, A., Woodruff, J., Kovacsics, R., Moore, S.W., Bradbury, A., Xia, H.,
Watson, R.N.M., Chisnall, D., Roe, M., Davis, B., Napierala, E., Baldwin, J.,
Gudka, K., Neumann, P.G., Mazzinghi, A., Richardson, A., Son, S., Markettos,
A.T.: Efficient tagged memory. In: Proceedings of the 2017 IEEE 35th International
Conference on Computer Design (ICCD) (Nov 2017)

Joly, N., ElSherei, S., Amar, S.: Security analysis of CHERI ISA.
https://github.com/microsoft /MSRC-Security-Research /blob/master /papers/
2020/Securityanalysisof CHERIISA.pdf (Oct 2020), accessed 2021-06-29

Jung, R., Krebbers, R., Jourdan, J., Bizjak, A., Birkedal, L., Dreyer, D.: Iris from
the ground up: A modular foundation for higher-order concurrent separation logic.
J. Funct. Program. 28, €20 (2018). https://doi.org/10.1017/S0956796818000151
Martignoni, L., McCamant, S., Poosankam, P., Song, D., Maniatis, P.: Path-
exploration lifting: hi-fi tests for lo-fi emulators. In: Harris, T., Scott, M.L. (eds.)
Proceedings of the 17th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS 2012, London, UK, March
3-7, 2012. pp. 337-348. ACM (2012). https://doi.org/10.1145/2150976.2151012
Miller, M.: Trends, challenges, and strategic shifts in the software vulnerability
mitigation landscape. https://github.com/microsoft/ MSRC-Security-Research/
raw/master /presentations /2019 02 BlueHatIL/2019 01-BlueHatIL-Trends,
challenge,andshiftsinsoftwarevulnerabilitymitigation.pdf (Feb 2019), Microsoft
Security Response Center (MSRC) BlueHat IL presentation. Accessed 2021-06-29
Nagarakatte, S., Martin, M.M.K., Zdancewic, S.: Watchdog: Hardware for safe and
secure manual memory management and full memory safety. In: 39th International
Symposium on Computer Architecture (ISCA 2012), June 9-13, 2012, Portland,
OR, USA. pp. 189-200. IEEE Computer Society (2012). https://doi.org/10.1109/
ISCA.2012.6237017

Nagarakatte, S., Martin, M.M.K., Zdancewic, S.: Hardware-enforced comprehen-
sive memory safety. IEEE Micro 33(3), 38-47 (2013). https://doi.org/10.1109/
MM.2013.26

Nagarakatte, S., Martin, M.M.K., Zdancewic, S.: WatchdoglLite: Hardware-
accelerated compiler-based pointer checking. In: Kaeli, D.R., Moseley, T. (eds.)
12th Annual IEEE/ACM International Symposium on Code Generation and Op-
timization, CGO 2014, Orlando, FL, USA, February 15-19, 2014. p. 175. ACM
(2014), https://dl.acm.org/citation.cfm?id=2544147

Nagarakatte, S., Zhao, J., Martin, M.M.K., Zdancewic, S.: SoftBound: highly com-
patible and complete spatial memory safety for C. In: Hind, M., Diwan, A. (eds.)
Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009. pp.
245-258. ACM (2009). https://doi.org/10.1145/1542476.1542504

Nagarakatte, S., Zhao, J., Martin, M.M.K., Zdancewic, S.: CETS: compiler en-
forced temporal safety for C. In: Vitek, J., Lea, D. (eds.) Proceedings of the 9th
International Symposium on Memory Management, ISMM 2010, Toronto, Ontario,
Canada, June 5-6, 2010. pp. 31-40. ACM (2010). https://doi.org/10.1145/1806651.
1806657

Necula, G.C., McPeak, S., Weimer, W.: CCured: Type-safe retrofitting of legacy
code. In: ACM SIGPLAN Notices. vol. 37, pp. 128-139. ACM (2002)

Neumann, P.G., Feiertag, R.J.: PSOS revisited. In: 19th Annual Computer Security
Applications Conference, 2003. Proceedings. pp. 208-216. IEEE (2003)

https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security analysis of CHERI ISA.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security analysis of CHERI ISA.pdf
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2150976.2151012
https://github.com/microsoft/MSRC-Security-Research/raw/master/presentations/2019_02_BlueHatIL/2019_01 - BlueHatIL - Trends, challenge, and shifts in software vulnerability mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/raw/master/presentations/2019_02_BlueHatIL/2019_01 - BlueHatIL - Trends, challenge, and shifts in software vulnerability mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/raw/master/presentations/2019_02_BlueHatIL/2019_01 - BlueHatIL - Trends, challenge, and shifts in software vulnerability mitigation.pdf
https://doi.org/10.1109/ISCA.2012.6237017
https://doi.org/10.1109/ISCA.2012.6237017
https://doi.org/10.1109/MM.2013.26
https://doi.org/10.1109/MM.2013.26
https://dl.acm.org/citation.cfm?id=2544147
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/1806651.1806657
https://doi.org/10.1145/1806651.1806657

202

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

T. Bauereiss et al.

Nienhuis, K., Joannou, A., Bauereiss, T., Fox, A., Roe, M., Campbell, B., Naylor,
M., Norton, R.M., Moore, S.W., Neumann, P.G., Stark, I., Watson, R.N.M., Sewell,
P.: Rigorous engineering for hardware security: Formal modelling and proof in
the CHERI design and implementation process. In: Proceedings of the 41st IEEE
Symposium on Security and Privacy (SP). pp. 1007-1024 (May 2020). https://doi.
org/10.1109/SP40000.2020.00055

Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer (2012)

Reid, A.: Who guards the guards? Formal validation of the Arm v8-M architecture
specification. Proceedings of the ACM on Programming Languages 1(OOPSLA),
88 (2017)

Reid, A.: Defining interfaces between hardware and software: Quality and perfor-
mance. Ph.D. thesis, School of Computing Science, University of Glasgow (March
2019

Ruef? A., Lampropoulos, L., Sweet, 1., Tarditi, D., Hicks, M.: Achieving safety in-
crementally with Checked C. In: Nielson, F., Sands, D. (eds.) Principles of Security
and Trust - 8th International Conference, POST 2019, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech
Republic, April 6-11, 2019, Proceedings. Lecture Notes in Computer Science, vol.
11426, pp. 76-98. Springer (2019). https://doi.org/10.1007/978-3-030-17138-4 4
Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
Wermelinger, M., Gall, H.C. (eds.) Proceedings of the 10th European Software En-
gineering Conference held jointly with 13th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, 2005, Lisbon, Portugal, September
5-9, 2005. pp. 263-272. ACM (2005). https://doi.org/10.1145/1081706.1081750
Sewell, T., Winwood, S., Gammie, P., Murray, T., Andronick, J., Klein, G.: sel.4
enforces integrity. In: International Conference on Interactive Theorem Proving.
pp. 325-340. Springer (2011)

Shapiro, J.S.: The practical application of a decidable access model. Tech. rep.,
Citeseer (2003)

Skorstengaard, L., Devriese, D., Birkedal, L.: Reasoning about a machine with local
capabilities. In: European Symposium on Programming. pp. 475-501. Springer
2018

(Sl«:orszengauaurd7 L., Devriese, D., Birkedal, L.: StkTokens: enforcing well-bracketed
control flow and stack encapsulation using linear capabilities. Proc. ACM Program.
Lang. 3(POPL), 19:1-19:28 (2019). https://doi.org/10.1145/3290332
Skorstengaard, L., Devriese, D., Birkedal, L.: Reasoning about a machine with
local capabilities: Provably safe stack and return pointer management. ACM Trans.
Program. Lang. Syst. 42(1), 5:1-5:53 (2020). https://doi.org/10.1145/3363519
Skorstengaard, L., Devriese, D., Birkedal, L.: StkTokens: Enforcing well-bracketed
control flow and stack encapsulation using linear capabilities. J. Funct. Program.
31, €9 (2021). https://doi.org/10.1017/S095679682100006X

Strydonck, T.V., Piessens, F., Devriese, D.: Linear capabilities for fully abstract
compilation of separation-logic-verified code. J. Funct. Program. 31, e6 (2021).
https://doi.org/10.1017/S0956796821000022

Szekeres, L., Payer, M., Wei, T., Sekar, R.: Eternal war in memory. IEEE Secur.
Priv. 12(3), 45-53 (2014). https://doi.org/10.1109/MSP.2014.44

UKRI: Digital security by design. https://www.dsbd.tech/ and https:
/ /www.ukri.org/our-work /our-main-funds/industrial-strategy-challenge-fund/
artificial-intelligence-and-data-economy /digital-security-by-design-challenge/,
accessed 2021-06-29

https://doi.org/10.1109/SP40000.2020.00055
https://doi.org/10.1109/SP40000.2020.00055
https://doi.org/10.1007/978-3-030-17138-4_4
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/3290332
https://doi.org/10.1145/3363519
https://doi.org/10.1017/S095679682100006X
https://doi.org/10.1017/S0956796821000022
https://doi.org/10.1109/MSP.2014.44
https://www.dsbd.tech/
https://www.ukri.org/our-work/our-main-funds/industrial-strategy-challenge-fund/artificial-intelligence-and-data-economy/digital-security-by-design-challenge/
https://www.ukri.org/our-work/our-main-funds/industrial-strategy-challenge-fund/artificial-intelligence-and-data-economy/digital-security-by-design-challenge/
https://www.ukri.org/our-work/our-main-funds/industrial-strategy-challenge-fund/artificial-intelligence-and-data-economy/digital-security-by-design-challenge/

Verified Security for the Morello Capability-enhanced Prototype Arm Architecture 203

53. Watson, R.N.M., Laurie, B., Richardson, A.: Assessing the Viability of an Open-
Source CHERI Desktop Software Ecosystem. http://www.capabilitieslimited.
co.uk/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf ~(Septem-
ber 2021)

54. Watson, R.N.M., Neumann, P.G., Woodruff, J., Roe, M., Almatary, H., Anderson,
J., Baldwin, J., Barnes, G., Chisnall, D., Clarke, J., Davis, B., Eisen, L., Filardo,
N.W., Grisenthwaite, R., Joannou, A., Laurie, B., Markettos, A.T., Moore, S.W.,
Murdoch, S.J., Nienhuis, K., Norton, R., Richardson, A., Rugg, P., Sewell, P., Son,
S., Xia, H.: Capability Hardware Enhanced RISC Instructions: CHERI Instruction-
Set Architecture (Version 8). Tech. Rep. UCAM-CL-TR-951, University of Cam-
bridge, Computer Laboratory (Oct 2020). https://doi.org/10.48456/tr-951, https:
//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf

55. Watson, R.N.M., Richardson, A., Davis, B., Baldwin, J., Chisnall, D., Clarke,
J., Filardo, N., Moore, S.W., Napierala, E., Sewell, P., Neumann, P.G.: CHERI
C/C++ Programming Guide. Tech. Rep. UCAM-CL-TR~947, University of Cam-
bridge, Computer Laboratory (Jun 2020). https://doi.org/10.48456/tr-947, https:
//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf

56. Watson, R.N.M., Woodruff, J., Roe, M., Moore, S.W., Neumann, P.G.: Ca-
pability Hardware Enhanced RISC Instructions (CHERI): Notes on the Melt-
down and Spectre Attacks. Tech. Rep. UCAM-CL-TR-916, University of Cam-
bridge, Computer Laboratory (Feb 2018). https://doi.org/10.48456/tr-916, https:
//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-916.pdf

57. Watson, R.N., Woodruff, J., Neumann, P.G., Moore, S.W., Anderson, J., Chisnall,
D., Dave, N., Davis, B., Gudka, K., Laurie, B., et al.. CHERI: A hybrid capability-
system architecture for scalable software compartmentalization. In: IEEE Sympo-
sium on Security and Privacy (2015)

58. Woodruff, J., Joannou, A., Xia, H., Fox, A., Norton, R., Baureiss, T., Chis-
nall, D., Davis, B., Gudka, K., Filardo, N.W., Markettos, A.T., Roe, M.,
Neumann, P.G., Watson, R.N.M., Moore, S.W.: CHERI Concentrate: Practi-
cal Compressed Capabilities. IEEE Transactions on Computers 68(10), 1455—
1469 (Oct 2019). https://doi.org/10.1109/TC.2019.2914037, https://www.cl.cam.
ac.uk/research/security/ctsrd/pdfs/2019tc-cheri-concentrate.pdf

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://www.capabilitieslimited.co.uk/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf
http://www.capabilitieslimited.co.uk/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf
https://doi.org/10.48456/tr-951
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf
https://doi.org/10.48456/tr-947
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf
https://doi.org/10.48456/tr-916
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-916.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-916.pdf
https://doi.org/10.1109/TC.2019.2914037
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2019tc-cheri-concentrate.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2019tc-cheri-concentrate.pdf
http://creativecommons.org/licenses/by/4.0/

l‘) ‘\f:_:.:\ V‘
e The Trusted Computing Base
of the CompCert Verified Compiler*

David Monniaux ®™ and Sylvain Boulmé ®>

Univ. Grenoble Alpes, CNRS, Grenoble INP, Verimag
{David.Monniaux,Sylvain.Boulme}@univ-grenoble-alpes.fr

Abstract. CompCert is the first realistic formally verified compiler: it
provides a machine-checked mathematical proof that the code it gener-
ates matches the source code. Yet, there could be loopholes in this ap-
proach. We comprehensively analyze aspects of CompCert where errors
could lead to incorrect code being generated. Possible issues range from
the modeling of the source and the target languages to some techniques
used to call external algorithms from within the compiler.

Keywords: Formally Verified Software - The Coq Proof Assistant

1 Introduction

CompCert [35,34,36] is a formally verified compiler for a large subset of the C99
language (extended with some C11 features): there is a proof, checked by a proof
assistant, that if the compiler succeeded in compiling a C program and that
program executes with no undefined behavior, then the assembly code produced
executes correctly with the same observable behavior. Yet, this impressive claim
comes with some caveats; in fact, there have been bugs in CompCert, some of
which could result in incorrect code being produced without warning [57]. How
is this possible?

The question of the Trusted Computing Base (TCB) of CompCert has been
alluded to in general overviews of CompCert [37,27], but there has been so far
no detailed technical discussion of that topic. While our discussion will focus
on CompCert and Coq, we expect that much of the general ideas and insights
will apply to similar projects and other proof assistants: other verified compilers,
verified static analysis tools, verified solvers, etc.

We analyze the TCB of the official releases of CompCert,' and two forks:
CompCert-KVX,? adding various optimizations and a backend for the Kalray KVX
VLIW (very large instruction word) core, and CompCert-SSA,? adding optimiza-
tions based on single static assignment (SSA) form [6,18]. Versions and changes

* A software artefact is available from https://doi.org/10.5281/zenodo.5913981
! https://github.com/AbsInt/CompCert

2 https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil /compcert-kvx

3 https://gitlab.inria.fr/compcertssa/compcertssa

© The Author(s) 2022

I. Sergey (Ed.): ESOP 2022, LNCS 13240, pp. 204-233, 2022.
https://doi.org/10.1007/978-3-030-99336-8_8

http://orcid.org/0000-0001-7671-6126
http://orcid.org/0000-0002-9501-9606
https://doi.org/10.5281/zenodo.5913981
https://github.com/AbsInt/CompCert
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-kvx
https://gitlab.inria.fr/compcertssa/compcertssa
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99336-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-99336-8_8

The Trusted Computing Base of the CompCert Verified Compiler 205

to these software packages are referred to by git commit hashes. We discuss al-
ternate solutions, some of which already implemented in other projects, their
applicability to CompCert, as well as related work.

Sections 2 and 3 analyze the TCB part coming from Coq usage. Section 4
presents the TCB part connecting the Coq specification of CompCert’s inputs
(source code) to the user view of these inputs. Sections 5 and 6 analyze the TCB
part connecting the Coq specification of CompCert’s generated programs to the
actual platform running these programs. The conclusion (7) summarizes which
TCB parts of CompCert (and its forks) are the most error-prone, and discusses
possible improvements.

2 The Coq Proof Assistant

CompCert is mostly implemented in Coq,* an interactive proof assistant [2]. Coq
is based on a strict functional programming language, Gallina, based on the
Calculus of Inductive Constructions, a higher-order A-calculus. This language
allows writing executable programs, theorem statements about these programs,
and proofs of these theorems. CompCert is not directly executed within Coq. In-
stead, the Coq code is extracted to OCaml code, then linked with some manually
written OCaml code. We now discuss how issues in the Coq implementation may
impact the correctness of CompCert.

2.1 Issues in Coq Proof Checking

Proofs written directly in Gallina would be extremely tedious and unmaintain-
able, so proofs are usually built using Coq tactics. While some other proof as-
sistants trust tactics to apply only correct logical steps, this is not the case with
Coq: what the tactics build is a A-term, which could have been typed directly in
Gallina if not for the tedium, and this A-term is checked to be correctly typed
by the Coq kernel. This allows tactics to be implemented in arbitrary ways,
including calling external tools, without increasing the TCB.

A theorem statement is proved when a A-term is shown to have the type
of that statement (the Curry-Howard correspondence thus identifies statements
and types, and proofs and A-terms). Thus, all logical reasoning in Coq relies on
the correctness of the Coq kernel, and some driver routines. In addition to the
Coq compiler coqc and Coq toplevel coqtop, a proof checker coqchk provides
some level of independent checking.

Coq is a mature development, however “on average, one critical bug has
been found every year in Coq” [51]. Let us comment on the official list of these
bugs.? Interestingly, the list classifies their risk according to whether they can be
exploited by accident. We can probably assume that the designers of CompCert
would not deliberately write code meant to trigger a specific bug in Coq and

* https://coq.inria.fr/
5 https://github.com/coq/coq/blob/master/dev/doc/critical-bugs

https://coq.inria.fr/
https://github.com/coq/coq/blob/master/dev/doc/critical-bugs

206 David Monniaux, Sylvain Boulmé

prove false facts about compiled code: exploiting a Coq bug by mistake in a
way sufficiently innocuous to evade inspection of the source code, to accept an
incorrect optimization that would be triggered only in very specific cases (to
evade being found through testing), seems highly unlikely.

Proofs are checked by Coq’s kernel, which is essentially a type-checker for
the A-calculus implemented by Coq (the Calculus of Inductive Constructions
with universes). There have been a number of critical bugs involving Coq’s ker-
nel, particularly the checking of the guard conditions (whether some inductively
defined function truly performs structural induction) and of the universe condi-
tions (Coq has a countable infinity of type universes, all syntactically called Type,
distinguished by arithmetic constraints, which must then be checked for valid-
ity). These conditions prevent building some terms having paradoxical types.
Furthermore, there are options (in the source code or the command-line) that
disable checking guard, universe or positivity conditions. For instance, if one dis-
ables the guard condition to build a nonterminating function as though it were
a terminating one, it is possible to prove “false”:

Unset Guard Checking.
Fixpoint loop {A: Type} (n : nat) {struct n}: A := loop n.
Lemma false: False. Proof. apply loop. exact 0. Qed.

coqchk -o lists which guard conditions have been disabled—mnone in CompCert.

The Coq kernel can evaluate terms (reduce them to a normal form), but is
rather slow in doing so. For faster evaluation, it has been extended with a virtual
machine (vm_compute) [24] and a native evaluator (native_compute) [10]. Both
are complex machinery, and a number of critical bugs have been found in them.®
In CompCert, there is a few direct calls to vm_compute, none to native_compute;
but there may be indirect calls through tactics calling these evaluators.

2.2 Issues in Coq Extraction

Coq’s extractor, as used in CompCert, produces OCaml code from Coq code,
which is then compiled and linked together with some other OCaml code. Ex-
traction [39,38], roughly speaking, corresponds to removing non-computational
(proof) content, compensating for some typing issues (see below), renaming some
identifiers (due to different reserved words), and of course printing out the result.
Coq’s extractor and OCaml are in the TCB of CompCert.

OCaml’s type safety ensures that, barring the use of certain features that
circumvent this type safety (unsafe array accesses, marshaling, calls to external
C functions, the 0bj module allowing unsafe low-level memory accesses. ..), no
type mismatch or memory corruption can happen at runtime within that OCaml
code. None of these features are used within CompCert, except for calling C

5 For instance, there used to be a bug with respect to types with more than 255 con-
structors that allowed proving “false” https://github.com/clarus/falso, so ludicrous
that it made it into a satirical site https://inutile.club/estatis/falso/.

https://github.com/clarus/falso
https://inutile.club/estatis/falso/

The Trusted Computing Base of the CompCert Verified Compiler 207

functions implementing the OCaml standard library, and some calls to 0bj.magic,
a universal unsafe cast operator, produced by Coq’s extractor.

Calls to 0bj.magic are used by the extractor to force OCaml to accept con-
structs (dependent types, arbitrary type polymorphism) that are correctly typed
inside Coq but that, when mapped to OCaml types, result in ill-typed programs.
The following program is correct in Coq (or in System F) but cannot be typed
within OCaml’s Hindley-Milner style of polymorphism, so uses Obj.magic:’

Definition m (g : V {T}, list T — list T) : Type =
((g (false :: nil)), (g (0 :: mnil))). Extraction m.

The following program, which is similar to some code in the Builtins0.v Com-
pCert module, uses dependent types

Inductive data := DNat : nat — data | DBool : bool — data.
Definition get_type (d : data) : Type =

match d with DNat _ = nat | DBool _ = bool end.
Definition extract (d : data) : get_type d =

match d with DNat n = n | DBool b = b end.
Require Extraction. Extraction extract.

Its extraction uses Obj.magic:®

let extract = function DNat n -> 0Obj.magic n
| DBool b -> 0Obj.magic b

Thus, incorrect behavior in the Coq extractor could, in theory at least, pro-
duce OCaml code that would not be type-safe, in addition to producing code not
matching the Coq behavior. Is this serious cause for concern? On the one hand,
the extraction process is quite syntactic and generic. It seems unlikely that it
could produce valid OCaml code that would compile, pass tests, yet occasionally
would have subtly incorrect behavior.” On the other hand, CompCert is perhaps
the only major project using the extractor, which is thus not thoroughly tested.
We do not know of any extractor bug that could result in CompCert miscompil-
ing. Another related potential source of bugs comes from the link of OCaml code
extracted from Coq and “external” OCaml code. This is discussed in Section 3.2.

Sozeau-et-al [51] study an approach to reduce the TCB of Coq by providing
a formally verified (in Coq) implementation of a significant subset of its ker-
nel and paving the road for a formally verified extraction. However, the target
language of the extraction (OCaml ?) would still be in the TCB. An alterna-
tive solution would be direct generation of assembly code from Gallina, as done
by (Euf [42]; however parts of CompCert are currently written in OCaml and
would have to be rewritten into Gallina. (Euf extracts Gallina to Cminor, one of

7 Some System F-like polymorphism was added to OCaml: structure types with poly-
morphic fields. This is not used by Coq’s extractor as of Coq 8.13.2.

8 Variants of this example correspond to general algebratic data types (GADTSs), an-
other recent addition to OCaml’s type system not yet exploited by the extractor.

9 Coq’s bug tracker lists extractor bugs that, to the best of our knowledge, result in
programs that are rejected by OCaml compilers.

https://github.com/coq/coq/labels/part%3A%20extraction

208 David Monniaux, Sylvain Boulmé

the early intermediate languages of CompCert, then produces code using Com-
pCert.'0 CertiCoq'! [45,44] also extracts to Clight, which may be compiled with
any C compiler.

3 Use of Axioms in Coq

Coq, as other proof assistants, checks that theorems are properly deduced from
a (possibly empty) set of axioms. Axioms are also introduced as a mechanism
to link Gallina programs to external OCaml code through extraction. Improper
use of axioms may lead to two forms of inconsistency: logical inconsistency and
inconsistency between the Coq proof and the OCaml external code.

3.1 Logical Inconsistency

Coq is based on type theory, with logical statements seen through the Curry-
Howard correspondence: a proof of a logical statement is the same thing as a
program having a certain type. In other words, a theorem is proved if and only
if there is a A-term inhabiting the type corresponding to the statement of the
theorem. An axiom is thus just the statement that a certain constant, given
without definition, inhabits a certain type.

The danger of using axioms is that they may introduce inconsistency, that is,
being able to prove a contradiction; from which, through ez falso quodlibet, any
arbitrary statement is provable. Furthermore, it is possible that several axioms
are innocuous individually, but create inconsistency when added together.

There are several common use cases for axioms in Coq. One is being able
to use modes of reasoning that are not supported by Coq’s default logic: Com-
pCert'? adds the excluded-middle (VP, PV —P) for classical logic, functional
extensionality (f = g if and only if Va, f(z) = g(x)), and proof irrelevance

10 Other systems meant to generate code from definitions in a proof assistant, generate
code directly rather than reuse an existant compiler. This approach is promoted [31]
with the argument that such a process is safer than textual extraction to, say, OCaml.
This is not so clear to us. On the one hand, extracting (without proof of correctness)
Gallina to a subset of OCaml, printing the result, then running the OCaml compiler,
surely adds a lot to the TCB. On the other hand, it is typically difficult to get right in
a compiler the modeling of the assembly instructions, the ABI, the foreign function
interface, as discussed in Section 5. Bugs at that level are caught by extensive testing.
Surely, the OCaml code generator, the many libraries using OCaml’s foreign function
interface, are more thoroughly tested by usage than a code generator used to extract
a few specific projects developed in a proof assistant.

M https://github.com/CertiCoq/certicoq

12 CompCert module Axioms.v imports module FunctionalExtensionality from the
Coq standard library, which both states functional extensionality and states proof
irrelevance as axioms. Some CompCert modules import the standard Classical
module, which states excluded-middle as an axiom. Since proof irrelevance is a
consequence of excluded-middle, it should be possible to just import Classical
in Axioms.v and deduce proof irrelevance from it.

https://github.com/CertiCoq/certicoq

The Trusted Computing Base of the CompCert Verified Compiler 209

(one assumes that the precise statement of a proof as a A-term is irrelevant).
Meta-theoretical arguments have shown that these three axioms do not introduce
inconsistencies.'?

Another use case for axioms is to introduce names for types, constants and
functions defined in OCaml, with a relationship between these and those of the
OCaml types and functions to be specified for Coq’s extraction facility. For in-
stance, to call an OCaml function f: nat -> bool list one would use

Axiom f: mnat — list bool. Extract Inlined Constant f="£f".

This is used extensively in CompCert, to call algorithms implemented in OCaml
for efficiency, using machine integers and imperative data structures; see 3.3
Similarly, one can refer to an OCaml constant as follows'*

Axiom size : nat. Extract Inlined Constant size = "size".

Incorrect use of axioms to be realized through extraction can lead to logical
inconsistency. Consider, for instance this variant, where the size external defini-
tion is supposed to be a negative natural number (maybe because we mistakenly
typed n < 0 instead of n < 10); one can easily derive False from it:

‘Axiom size : { n : nat | n < 0 }.

One approach for avoiding such logical inconsistencies is to avoid axioms that
specify types carrying logical specifications, that is, proofs (e.g., here n < 0);
this is anyway a good idea, because such types may also result in mismatches
(see 3.2). No OCaml function in CompCert accessed from Coq has Coq type
carrying logical specification, with one exception, in CompCert-KVX:

Axiom profiling_id: Type.
Axiom profiling_id_eq: V (x y : profiling_id), {x=y} + {x<>y}.

These axioms state that there exists a type called profiling_id fitted with a
decidable equality, both of which are defined in OCaml. This decidable equality
is a technical dependency of the decidable equality over instructions.

In order to avoid logical inconsistencies due to axioms referring to external
definitions, one can prove that the type in which the Axiom command states that

13 There is a model of Coq’s core calculus in Zermelo-Fraenkel set theory with the
Axiom of Choice and inaccessible cardinals [32,53]. Such a model is compatible
with these axioms. Previously, in times when Coq’s Set sort was impredicative (it
can still be selected to be so by a command-line option), it became apparent that
this was incompatible with excluded-middle and forms of choice suitable for finding
representatives of quotient sets [15,16]. This should be a cause of caution, though
we think it unlikely to exploit such paradoxes by accident.

This may allow compiling a Coq development once (Coq compilation may be ex-
pensive, certain proofs take a lot of time) and then adjust some constants when
compiling and linking the extracted OCaml code, maybe for different use cases. This
is not used in CompCert, which, instead for flexibility, allows certain features to be
selected at run-time through command-line options.

14

210 David Monniaux, Sylvain Boulmé

there exists a certain term is actually inhabited; this establishes that the axiom
does not introduce inconsistency. For instance, one can specify an OCaml con-
stant n < 10, to be resolved at compile-time, and exclude logical inconsistency
by showing that such a constant actually exists:

Axiom size : { n : nat | n < 10 }.
Lemma size_can_exist: { n : nat | n < 10 }.
Proof. exists 0; lia. Qed.

This approach is occasionally used in Coq and CompCert for axiomatizing alge-
braic structures. For instance, Coq specifies constructive reals axiomatically, then
provides an implementation that satisfies that specification; CompCert-KVX’s im-
pure monad (discussed in Section 3.3) is specified axiomatically, but the authors
provide several implementations satisfying that specification [11]. Similarly, the
authors could have provided an implementation of profiling_id (e.g., natural
numbers) and profiling_id_eq to show that these two axioms did not introduce
logical inconsistencies.

3.2 Mismatches between Coq and OCaml

Though safe, the extractor can be used inappropriately. We have just seen that
adding an axiom standing for an OCaml function can, if that axiom is not realiz-
able in Coq, lead to logical inconsistency. Even if the axiom is logically consistent,
extraction to arbitrary OCaml code can lead to undesirable runtime behavior.
An obvious case is when, in addition to an axiom specifying a constant re-
ferring, at extraction time, to an OCaml function, one adds an axiom specifying
the behavior of that function, and that behavior does not match the specifica-
tion. For instance, one can specify £ to be a function returning a natural number
greater than or equal to 3, then, through extraction, define it to return O:

Axiom f : nat — nat. Axiom f_ge_ 3 : V x, (f x) > 3.
Definition g x := Nat.leb 1 (f x).
Extract Constant f = "fun x — 0".

Unsurprisingly, it is possible to prove in Coq that g always returns true, and
yet to run the OCaml code and see that it returns false. It is similarly possi-
ble to write Coq code with impossible cases that the extractor will extract to
assert false, and the extracted code will actually reach this statement and die
with an uncaught exception—an after all better outcome than producing out-
put that contradicts theorems that have been proved. In the following code,
False_rec _ _ eliminates on False, which is obtained from contradiction with
x > 3, and is extracted to an always failing assertion.

Program Definition h x := match f x with
| 0 = False_rec _ _ | S 0 = False_rec
| S (8 0) = False_rec _ _ | S (s (S x)) = x
end .

The Trusted Computing Base of the CompCert Verified Compiler 211

Axiomatizing the behavior of externally defined functions circumvents the
idea of verified software; nowhere in the CompCert source code is there such
axiomatization. An equivalent but perhaps more discreet way of axiomatizing
the behavior of OCaml function is through dependent types. Consider, again,

Axiom size : { n : nat | n < 10 }.

It is possible, through extraction mechanisms, to bind size to the OCaml con-
stant 11; this is because the type of size is extracted to the same exact OCaml
type as nat, the proof component is discarded. It is then possible to similarly
lead the OCaml code extracted from Coq to cases that should be impossible.

The only case of such axiomatization, in CompCert-KVX, is the previously
introduced profiling_id_eq axiom, which is bound to the Digest.equal function
from OCaml’s standard library, and defined to be string equality. We can surely
assume that OCaml’s string equality test to be correct, otherwise many things
in Coq and other tools used to build CompCert are likely incorrect as well.

It is also possible to instruct the extractor to extract certain Coq types to
specific OCaml types, instead of emitting a normal declaration for them. The
main use for this is to extract Coq types such as 1ist or bool to the correspond-
ing types in the OCaml standard library, as opposed to introducing a second
list type, a second Boolean type; this is in fact so common that the standard
Coq.extraction.ExtrOcamlBasic specifies a number of such specific extrac-
tions, and so does CompCert. This is not controversial. The extractor also allows
fully specifying how a Coq type maps to OCaml, including the constructor and
“match” destructor; the only use of this feature in CompCert is in CompCert-KVX
for implementing some forms of hash-consing (Sec. 3.4).

An in-depth discussion of further aspects of Coq/OCaml interfacing may be
found in Boulmé’s habilitation thesis [11].

3.3 Interfacing External Code as Pure Functions

Coq is based on a pure functional programming language; as in mathematics,
if the same function gets called twice with the same arguments, it returns the
same value. OCaml is an impure language, and the same function called with
the same arguments may return different values over time, whether it depends
on mutable state internal to the program or on external calls (user input, etc.).
By binding Coq axioms to impure functions, we can, again, lead OCaml code
extracted from Coq to places it should not go.

For instance, the z Boolean expression extracted from this Coq program is
false though it is proved to be true: it calls the same function twice with the
same argument and compares the result'®; but since that function is impure
and returns the value of a counter incremented at each call, two successive calls
always return unequal values.

!5 This result is computed by the “Nat .eqb” Boolean equality over naturals (in contrast,
the Coq propositional equality, written “=”, is only logical).

212 David Monniaux, Sylvain Boulmé

Axiom f: unit — nat.
Extract Constant f =
"let count = ref 0 in fun () — count : = S (!count); !count".
Definition z: bool := Nat.egb (f tt) (f tt).
Lemma ztrue: z = true.
unfold z; rewrite Nat.egb_refl; congruence.
Qed.

CompCert calls a number of OCaml auxiliary functions as pure functions,
most notably the register allocator. These functions are “oracles”, in the sense
that they are not trusted to return correct results; their results are used to guide
compilation choices, and may be submitted to checks. Both CompCert-SSA and
CompCert-KVX add further oracles.

Could impure program constructs, in particular mutable state, in these ora-
cles, lead to runtime inconsistencies? The code of some of these oracles is simple
enough that it can be checked to behave overall functionally: mutable state, if
any, is created locally within the function and does not persist across function
calls. In the register allocator, there are a few global mutable variables (e.g.,
max_age, max_num_eqs), and perhaps it is possible to obtain different register al-
locations for the same function by running the allocator several times. It seems
unlikely that some CompCert code would intentionally call a (possibly computa-
tionally expensive) oracle twice with same inputs, then go to an incorrect answer
if the two returned values differ. Yet, it is not obvious that this cannot happen.

To avoid such uncertainties, the CompCert-KVX authors encapsulated some
of their oracles, in particular oracles used within simulation checkers by symbolic
execution [48,47,49], inside the may-return monad of [11]. The monad models
nondeterministic behavior: the same function may return different values when
called with the same argument without leading into inconsistent cases. Beyond
soundness, a major feature of this approach is to provide “theorems for free”
about polymorphic higher-order foreign OCaml code. In other words, this ap-
proach ensures for free (i.e., by the OCaml typechecker) that some invariants
proved on the Coq side are preserved by untrusted OCaml code [11]. While
this technique has been intensively applied within the Verified Polyhedron Li-
brary [12], it is only marginally used within the current CompCert-KVX; only for
a linear-time inclusion test between lists.

This approach however has two drawbacks. Firstly, despite the introduction
of tactics based on weakest liberal precondition calculus, the proof effort is heav-
ier than for code written with pure functions without a monadic style. Secondly,
all the code calling impure functions modeled within the may-return monad also
becomes impure code modeled within that monad, meaning that a significant
part of the rest of CompCert (at least the code calling the sequence of optimiza-
tion phases and their proofs) would have to be rewritten using that monad.'¢

16 Much of CompCert is already written in an error monad, with respect to which,
the may-return monad is a straightforward generalization. It thus seems feasible to
rewrite CompCert with the may-return monad instead of the existing error monad. In

The Trusted Computing Base of the CompCert Verified Compiler 213

CompCert’s Coq code accesses mutable variables storing command-line op-
tions through helper functions. This supposes that these variables stay constant
once the command line has been parsed, which is the case.

In Coq, all functions must be shown to be terminating (because nontermi-
nating terms can be used to establish inconsistencies). Arguments for the ter-
mination of a function are sometimes more intricate and painful to write in
Coq than those for its partial correctness, and termination is not really useful
in practice: from the point of view of the end-user there is no difference be-
tween a terminating function that takes prohibitively long time to terminate,
and a nonterminating function. For this reason, some procedures in CompCert
and forks that search for a solution to a problem (e.g., a fixpoint of an operator)
are defined by induction on a positive number, and return a default or error
value if the base case of the induction is reached before the solution is found.
Iteration.PrimIter, used for instance in the implementation of Kildall’s fix-
point solving algorithm for dataflow analysis, thus uses a large positive constant
num_iterations=10'2. Such numbers are often informally known as fuel.

CompCert-SSA takes an even more radical view: a natural number fuel is
left undefined, as an axiom, inside the Coq source code, and is extracted to
OCaml code 1let rec fuel = S fuel, meaning that fuel is circularly defined as
its own successor, and in practice acts as an infinite stream of successors. Why
that choice? num_iterations is a huge constant belonging to the positive type,
which models positive integers in binary notation; there is a custom induction
scheme for this type that implements the usual well-founded ordering on posi-
tive integers. In contrast, fuel is a natural number in unary notation, on which
inductive functions may be defined by structural induction, which is a bit easier
than with a custom induction scheme; but it is impossible to define a huge con-
stant in unary notation. The num_iterations scheme is cleaner, but we have not
identified any actual problem with the fuel scheme. The OCaml code extracted
from Coq has no way to distinguish fuel from a large constant.

The fuel trick however breaks if pointer equality is exposed on the natural
number type [11]. The following program, defined using a “may return” monad,
where phys_eq_nat is pointer equality on natural numbers, can be proved not to
return true; yet, it does return true at runtime.

Definition fuel_eq_pred =
match fuel with
| 0 = Impure.ret false
| S x = phys_eq_nat fuel x
end.

practice, this represents a lot of reengineering work. For example, currently, the may-
return monad provides a tactic in backward reasoning, based a weakest-precondition
calculus. In contrast, CompCert provides a tactic for forward reasoning on the error
monad. Thus, defining a tactic on the may-return monad that behaves like the one of
the error monad would help in reducing the amount of changes in CompCert proofs.

214 David Monniaux, Sylvain Boulmé

3.4 Pointer Equality and Hash-Consing

The normal way in Coq to decide the equality of two tree-like data structures
is to traverse them recursively. The worst-case of this approach is reached when
the structures are equal, in which case they will be traversed completely. Un-
fortunately this case is frequent in many applications for verified compilation,
verified static analysis, etc.: when the data structures represent abstract sets of
states (in abstract interpretation), equality signals the equality of these abstract
sets, which indicates that a fixed point is reached; equality between symbolic
expressions is used for translation validation through symbolic execution [48].
Furthermore, there are many algorithms that traverse pairs of tree-like struc-
tures for which there are shortcuts if two substructures are equal: for instance, if
this algorithm computes the union of two sets, then if these sets are equal, then
the union is the same [41, §5]; being able to exploit such cases has long been
known to be important for the speed of static analyzers [8, §6.1.2].

If we were programming in OCaml, we could simply use pointer equality (==)
for a quick check that two objects are equal: if they are at the same memory
location, then they are necessarily structurally equal (the converse is not true in
general). In Cog, a naive formalization of this approach could be:

Parameter A: Type.
Axiom phys_eq: A — A — bool.
Axiom phys_eq_implies_eq: V x y, phys_eq x y = true — x = y.

This approach is however unsound.!” We prove that x_eq_x and x_eq_y are
equal; yet in the extracted code, the former evaluates to true, the second to false.

Definition x =8 0. (¥ 1 %) Definition y =5 0. (% 1 %)
Definition x_eq_x=phys_eq x x. Definition x_eq_y-=phys_eq x y.

Extract Inlined Constant phys_eq = "@E9".
Recursive Extraction x_eq_x X_eq_y.
Lemma same : X_eq_X = X_eq_y. Proof. reflexivity. Qed.

To summarize, OCaml pointer equality can distinguish two structurally equal
objects, whereas this is provably impossible for Coq functions: for Coq, x and
y are the same, so they are interchangeable as arguments to phys_eq. This is
the functionality issue of Section 3.3 in another guise: the same OCaml function
must be allowed to return different values when called with the same argument.

The solution used in CompCert-KVX for checking that symbolic values are
equal was thus to model pointer equality as a nondeterministic function in a
“may return” monad. In this model [11], pointer equality nondeterministically

17 We saw in the preceding section another possible cause of unsoundness: if circular
data structures are defined in OCaml inside inductive types, pointer equality can
be used to establish that a term is equal to one of its strict subterms, which is
normally impossible, thus leads to an absurd case at execution time. To avoid this,
either completely disallow linking to circular terms constructed in OCaml, or restrict
pointer equality test to types where such circular terms are not constructed.

The Trusted Computing Base of the CompCert Verified Compiler 215

discovers some structural equalities.'® This solution has one drawback: the whole
of the symbolic execution checker is defined within this monad, and the authors
unsafely exit from that monad to avoid running much of CompCert through it. It
is uncontroversial that pointer equality implies equality of the pointed objects.
The only cause for unsoundness in such an approach could be the unsafe exit.
Yet, again, why would CompCert-KVX call twice the symbolic execution engine
with the same arguments to reach an absurd case for different outcomes?

Opportunistic detection of identical substructures through pointer equality
was implemented for instance in Astrée [8]. This approach takes advantage of the
fact that many algorithms operating on functional data structures simply copy
pointers to parts of structures that are left intact: The opportunistic approach
detects that some parts of structures have been left untouched, skipping costly
traversals. It however does not work if a structure is reconstructed from scratch,
for instance as the result of a symbolic execution algorithms: if two symbolic
executions yield the same result, these results are defined by isomorphic data
structures but the pointers are different. What is needed then is hash-consing:
when constructing a new node, search a hash-table containing all currently ex-
isting nodes for an identical node and return it if it exists, otherwise create a new
node and insert it into the table. Hash-consing is widely used in symbolic com-
putation, SMT-solvers etc.; there exist libraries making it easy in OCaml [19],
and the OCaml standard library contains a weak hash-table module, one of the
main uses of which is being a basic block for hash-consing.

The difficulty is that, though overall the construction of new objects behaves
functionally (it returns objects that are structurally identical to what a direct
application of a constructor would produce), it internally keeps a global state
inside the hash-table. Several solutions have been proposed to that problem [14];
one is to keep that global state explicitly inside a state monad, which amounts
to threading the current state of the hash table through all computations. In
the original version from [14], this implied implementing the hash-table by em-
ulating an array using functional data structures, which was very inefficient.
Coq 8.13 introduced primitive 63-bit integers and arrays (with a functional in-
terface), optimized for cases where the old version of an updated array is never
used anymore [17, §2.3], which, through special extraction directives, may be
extracted to OCaml native integers and arrays. That solution was not adopted
for CompCert-KVX, only because Coq 8.13 had not yet been released when the
project started. Instead, CompCert-KVX has experimented with two alternative
approaches for hash-consing.

The first approach used in CompCert-KVX introduces an untrusted OCaml
function (modeled as a nondeterministic function within the may-return monad)
that constructs terms through the hash-consing mechanism (searching in the
hash-table etc.); these terms are then quickly checked for equivalence with the de-
sired terms, using a provably correct checker. For instance, if a term c(aq, . .., ay)
is to be constructed, and the function returns a term ¢, then the root constructor

18 In this model, a given Coq term is not necessarily equal to “itself” for pointer equality,
because, in a Coq proposition, “itself” implicitly means a structural copy of “itself”.

216 David Monniaux, Sylvain Boulmé

of t is checked to be ¢, then the arguments to that constructor are checked to
be equal to ai,...,a, by pointer equality.!” This solution does not add any-
thing to the trusted computing base, apart from pointer equality. A may-return
monad is used because the OCaml code is untrusted, and in particular is not
trusted to behave functionally. The drawback is that, though the OCaml code
will always make sure that there are never two identical terms in memory at
different pointer addresses, this is not reflected from the point of view of proofs:
in the Coq model (discussed above) of pointer equality within the may-return
monad, pointer equality implies structural equality, but structural equality does
not imply pointer equality. However, only the former is needed for a symbolic
execution engine that checks that two executions are indeed equivalent by struc-
tural equality of terms, as in the scheduler in CompCert-KVX [48].

Having to thread a whole computation through a monad, further adding to
proof complexity, for actions that are expected to behave functionally overall, is
onerous. One solution is to add hash-consing natively inside the runtime system;
for instance, the GimML language,?’ from the ML family [23,22,21], automat-
ically performs hash-consing on datatypes on which it is safe to do so, which
is for instance used to implement efficient finite sets and maps. This can be
emulated by a “smart constructor” approach [14], replacing, through the ex-
traction mechanism, calls to the term constructor, term pattern matching, and
term equality by calls to appropriate OCaml procedures: the constructor per-
forms hash-consing, the pattern matcher performs pattern matching ignoring
the internal-use “unique identifier” field used for hash-consing, and term equal-
ity is defined to be pointer equality; appropriate OCaml encapsulation prevents
manipulation of these terms except through these three functions, and in par-
ticular prevent them from being constructed by other methods than the smart
constructor. Assuming that this OCaml code is correct, this is indeed sound, due
to the global invariant that there never exist two distinct yet structurally iden-
tical terms of the hash-consed type currently reachable inside memory. Because
terms can only be built using the smart constructor, and that hash-consing en-
sures that pointer equality is equivalent to structural equality, pointer equality
can indeed be treated as a deterministic function, without need for a monad.
This approach has the benefit of an easy-to-understand interface and simple
proofs; this was the second approach experimented within CompCert-KVX and
was used for the HashedSet module [41].

This second approach adds significantly more OCaml code to the trusted com-
puting base than just assuming that pointer equality implies structural equality.
Yet, this OCaml code is small, with few execution paths, and can be easily tested
and audited. It assumes the correctness of OCaml’s weak hash-tables; however,
Coq’s kernel includes a module (Hashset) that is also implemented using these
weak hash-tables, so one already assumes that correctness when using Coq.

19 A unique identifier is added as an extra field to each object, for reasons including
efficient hashing. Structural equality is thus modulo differences in unique identifiers.
20 https://projects.Isv.fr/agreg/7page_id=258 Formerly HimML.

https://projects.lsv.fr/agreg/?page_id=258

The Trusted Computing Base of the CompCert Verified Compiler 217
4 Front-end and semantic issues

CompCert parses C and assigns a formal semantics to it. As such, it depends
on a formal model of the C syntax and a formal semantics for it, supposed to
reflect the English specification given in the international standard [4]. CompCert
supports an extensive subset of C99 [3] (notable missing items are variable-length
arrays and some forms of unstructured branching, & la Duff’s device) and some
C11 features (note that in C11, support for variable-length arrays is optional).?!

The formal semantics of C supported by CompCert is called “CompCert C”.
Converting the source program, given in a text file, to the CompCert C AST
(abstract syntax tree) on which the formal semantics is defined, relies on many
nontrivial transformations: preprocessing, lexing (lexical analysis), parsing (AST
building) and typechecking. Most of them are unverified, but trusted. There are
two important exceptions: significant parts of the parser and the typechecker of
CompCert C are formally verified. The formally verified parser is implemented
using the Menhir parser generator, and there is a formal verification of its cor-
rectness with respect to an attribute LR(1) grammar [25]. It relies on an un-
verified “pre-parser” to distinguish identifier types introduced by typedef from
other identifiers (a well-known issue of context-free parsing of C programs). It
produces an AST which is then simplified and annotated with types, by an-
other unverified pass, called “elaboration”. Finally, the resulting CompCert C
program is typechecked, by the formally verified typechecker. This is where the
fully verified frontend of CompCert really starts.

Obviously, a divergence between the semantics of C as understood by Com-
pCert and that semantics as commonly understood by programmers to be com-
piled may lead to problems. Validating such semantics is an important issue [9].
The standard has evolved over time for taking into account common program-
ming practices or for solving some contradictions.?? CompCert semantics has also
evolved to get closer to the standard, see [30]. In the last years, a few minor di-
vergences have been spotted. For instance, there was a minor misimplementation
of scoping rules (commit 99918e4) that led the following program to allocate s
of size 3 (sizeof(t) being interpreted with t the global variable, whereas the
standard mandates it should refer to the t variable declared before it on the
same line) instead of 4:

char t[]1={1,2,32};
int main() { char t[]={1,2,3,4}, sl[sizeof(t)];
return sizeof(s); }

Another example: CompCert and other compilers accepted some extension to the
syntax of C99 (anonymous fields in structures and unions) but assigned slightly
different meanings to it (different behavior during initialization, issue 411).

21 The CH2O project (https://robbertkrebbers.nl/research/ch20/) aims at formalizing
the ISO C11 standard in Coq. This development is unrelated to the formalization
inside CompCert.

22 See an example on http://www.open-std.org/jtcl/sc22/wgld/www/docs/dr_260.htm.

https://github.com/AbsInt/CompCert/commit/99918e4118e0ea644b20e37a13ceb31d935fdda5
https://github.com/AbsInt/CompCert/issues/411
https://robbertkrebbers.nl/research/ch2o/
http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.htm

218 David Monniaux, Sylvain Boulmé

The C standard leaves many behaviors undefined—anything can happen if
the program exercises such a behavior (the compiler may refuse the program, the
program may compile and run but halt abruptly when encountering the message,
or may continue running with arbitrary behavior). Some undefined behaviors,
such as array access out of bounds, are exploited in malicious attacks. The
C standard also leaves many behaviors unspecified, meaning the compiler may
choose to implement them arbitrarily within a certain range of possibilities—
e.g., the order of evaluation of parts of certain expressions with respect to side
effects.?3 Actually, distinguishing between unspecified and undefined behavior in
the evaluation order is rather complex: see [29] for a formal semantics. Further-
more, many compilers implement extensions to the standard. Some deviate from
the standard’s mandated behavior in some respects.?*

Many programs, be them applications, libraries or system libraries, rely on
the behavior of the default compiler on their platform (e.g., gcc on Linux, clang
on MacOS, Microsoft Visual Studio for Windows).?> If compilation just fails,
then issues are relatively easy (though maintaining support for multiple compil-
ers, often through conditional compilation and preprocessor definitions, is error-
prone); subtler problems may be encountered when software compiles but has
different behavior with different compilers.?® It may be difficult to narrow dif-
ferences in outcomes to a bug (including reliance on undefined behavior) or to
a difference in valid implementations of unspecified behavior.

The only semantic issue that we know of regarding CompCert’s forthcoming
version 3.10 is with respect to bitfields. A write to a bitfield is implemented us-
ing bitshift and bitwise Boolean operations, and these operations produced the
“undefined” value if one of their operands is “undefined”. Writing to a bitfield
originally stored in an uninitialized machine word or long word, which is the
case for local variables, thus results in an “undefined” value, whereas the bits
written to are actually defined. Reading from that bitfield will then produce the
“undefined” value, as can be witnessed by running the program in CompCert’s
reference interpreter, which stops complaining of undefined behavior. Fixing this
issue would entail using a bit-wise memory model (issue 418).27 It may be pos-

23 This should not be confused with syntactic associativity, which is fully defined by
the standard.

24 For instance, Intel’s compiler, at least at some point, deliberately deviated from stan-
dard floating-point behavior to produce more efficient code. An option was needed to
get standard compliance. In contrast, gcc would by default comply with the standard,
and enable optimizations similar to Intel’s when passed options such as -ffast-math
or the aptly-named -funsafe-math-optimizations [40].

25 On Linux, compiling software with gcc -std=c99, which disables some GNU-specific
extensions, often fails. On the KVX, CompCert-KVX includes a kludge for defining
a __int128 type suitable enough for processing system header files.

26 As an example, C compilers are allowed to replace a*xb+c by a fused multiply-add
fma(a, b, c), which may produce slightly different results. Such replacements may
be disabled by a command-line option or a pragma.

2T Questions of “undefined” and “poison” values are notoriously difficult to get right
in semantics; see [33] for a discussion of intricate bugs in LLVM.

https://github.com/AbsInt/CompCert/issues/418

The Trusted Computing Base of the CompCert Verified Compiler 219

sible to write and prove correct a phase that would replace this “undefined”
value by an arbitrary value and thus result in miscompilation. We do not know,
however, of any phase that would produce this in CompCert or variants.

CompCert-KVX’s test suite includes calling compiler fuzzers CSmith?® and
YarpGen:?° random programs are generated, compiled with gcc and CompCert-
KVX and run on a simulated target—an error is flagged if final checksums diverge.

Due to possible semantic differences for the subset of the C language between
the tools that they use for their formal proofs and CompCert, Gernot Heiser,
lead designer of the selL4 verified kernel, argues that translation validation of the
results of black-box compilation by gcc is a safer route:

[...] using CompCert would not give us a complete proof chain. It uses
a different logic to our Isabelle proofs, and we cannot be certain that its
assumptions on C semantics are the same as of our Isabelle proofs.

Another option, for C code produced from a higher-level language by code
generators, is to replace CompCert’s frontend by a verified a code generator for
that language, directly targeting one of CompCert’s intermediate representations
(e.g., Clight) and semantics, as done for instance for Velus [13] for a subset of
the Lustre synchronous programming language.

Some features of the C programming language are not supported by Com-
pCert’s formally verified core, but can be supported through optional unveri-
fied preprocessing, chosen by common line options: -fstruct-passing allows
passing structures (and unions) as value as parameters to functions, as well as
returning them from a function;?° -fbitfields allows bit fields in structures.?!
Preprocessing implements these operations using lower-level constructs (mem-
ory copy builtin, bit shift operators), sometimes in ways incompatible with other
compilers—CompCert’s manual details such incompatibilities.

In addition, option -finline-asm allows inline assembly code with param-
eter passing, in a way compatible with gcc (implementing a subset of gec’s
parameter specification). The semantics of inline assembly code is defined as
clobbering registers and memory as specified, and emitting an externally ob-
servable event. Option -fall activates structure passing, bitfields, and inline
assembly, for maximal compatibility with other compilers.

28 https://github.com/csmith-project /csmith and [57]

29 https://github.com/intel /yarpgen

30 In C, passing pointers to structures that container parameters or are meant to con-
tainer return values is a common idiom. The language however also allows passing or
returning the structures themselves, and this is implement in various ways by com-
pilers, including passing pointers to temporary structures or, for structures small
enough to fit within a (long) machine word, directly as an integer register. How
to do so on a given platform is specified by the ABI.Parameter passing, with all
particular cases, may be a quite delicate and convoluted part of the ABI.

Recently, direct verified handling of bitfields was added to CompCert (com-
mit d2595e3). This should be available in release 3.10.

3

hat

https://sel4.discourse.group/t/compiling-sel4-with-compcert/115
https://github.com/csmith-project/csmith
https://github.com/intel/yarpgen
https://github.com/AbsInt/CompCert/commit/d2595e3afb8c38a3391a66c3fc3f7a92fff9eff4

220 David Monniaux, Sylvain Boulmé

Because inline assembly is difficult to use,?? and because its semantics in-
volves emitting an event, preventing many optimizations, CompCert also pro-
vides builtin functions that call specific processor instructions. If a builtin has
been given an arithmetic semantics, then it can be compiled into arithmetic
operators suitable for optimization; this is the case, for instance, of the “fused
multiply add” operator on the KVX.In contrast, instructions that change special
processor registers are defined to emit observable events.

5 Assembly back-end issues

The verified parts of CompCert do not output machine code, let alone textual
assembly code. Instead, they construct a data structure describing a set of global
definitions: variables and functions; a function contains a sequence of instructions
and labels. The instructions at that level may be actual processor instructions,
or pseudo-instructions, which are expanded by unverified OCaml into a sequence
of actual processor instructions. The resulting program is printed to textual as-
sembly code by the TargetPrinter module; most of it consists in printing the
appropriate assembly mnemonic for each instruction, together with calling func-
tions for printing addressing modes and register names correctly, but there is
some arcane code dealing with proper loading of pointers to global symbols,
printing of constant pools, etc. Some of this code depends on linking peculiari-
ties and on the target operating system, not only on the target processor.

5.1 Printing Issues

An obvious source of potential problems is the huge “match” statement with
one case per instruction, each mapping to a “print” statement. If the “print”
statement is incorrect, then the instruction printed will not correspond to the one
in the data structure. Printing an ill-formed instruction is not a serious problem,
as the assembler will refuse it and compilation will fail. There have however been
recent cases where CompCert printed well-formed text assembly instructions that
did not correspond to the instruction in the data structure. The reason why
such bugs were not caught earlier is that these instructions are rarely used.
Commit 2ce5e496 fixed a bug resulting in some fused multiply-add instructions
being printed with arguments in the wrong order; these instructions are selected
only if the source code contains an explicit fused multiply-add builtin call, which
is rare. In CompCert-KVX, commit e2618b31 fixed a bug—“nand” instructions
would be printed as “and”; “nand” is selected only for the rare ~(a & b) pattern.
The bug was found by compiling randomly generated programs.

In some early versions of CompCert there used to be a code generation bug [57,
§3.1] that resulted in an exceedingly large offset being used in relative addressing
on the PowerPC architecture; this offset was rejected by the assembler. Similar

32 Tnline assembly is so error-prone that specialized tools have been designed to check
that pieces of assembly code match their read/write/clobber specification [46].

https://github.com/AbsInt/CompCert/commit/2ce5e496b8d4c838c87c9f00a84ed23d1abc26fc
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-kvx/-/commit/e2618b31dac9aa0cd859466b0e6af13ed00dc877

The Trusted Computing Base of the CompCert Verified Compiler 221

issues surfaced later in CakeML on the MIPS-64 architecture [20] and in Com-
pCert on AArch64 (commit c8ccecc). This is a sign that constraints on immediate
operand sizes are easily forgotten or mishandled,3 and a caution: incorrect value
sizes could result in situations not resulting in assembler errors.

5.2 Pseudo-Instructions

In addition to instructions corresponding to actual assembly instructions, the
assembler abstract syntax in CompCert features pseudo-instructions, or macro-
instructions, most notably: allocation and deallocation of a stack frame; copying
a memory block of a statically known size; jumping through a table. The rea-
sons why these are expanded in unverified OCaml code are twofold. First, the
correspondence between the semantics of such operations and their decomposi-
tion cannot be easily expressed within CompCert’s framework for assembly-level
small-step semantics, especially the memory model. CompCert models memory
as a set of distinct blocks, and pointers as pairs (block identifier, offset within
the block); 34 stack allocation and deallocation create or remove memory blocks
by moving the stack pointer, which is just a positive integer. Jump tables (used
for compiling certain switch statements) are arrays of pointers to instructions
within the current function, whereas CompCert only knows about function point-
ers. Second, their expansion may use special instructions (load/store of multiple
registers, hardware loops. ..) not normally selected, the behavior of which may
be difficult to express in the semantics®® or the memory model. This is typically
the case for memory copy; see below.

Stack Frame (De)Allocation Stack (de)allocation pseudo-instructions address
the gap between the abstract representation of the memory as a set of blocks
completely separated from each other and the flat addressing space implemented
by most processors, call frames laid out consecutively, allocation and deallocation
amounting to subtracting or adding to the stack pointer. A refined view, with
a correctness proof going to the flat addressing level, was proposed for the x86
target [55] but not merged into mainline CompCert.

33 For instance, CompCert-KVX generates loads and stores of register pairs on AArch64,
with special care: their offset range is smaller than for ordinary loads and stores.
This reflects the C standard’s view that variables and blocks live each in their own
separate memory space. For instance, in C, comparisons between pointers to dis-
tinct variables have undefined behavior [4, §6.5.8]. Some CompCert versions in which
pointers truly are considered to be integers have been proposed [7,43].

Hardware loops, on processors such as the KVX, involve special registers. When the
program counter equals the “loop exit” register, and there remain loop iterations to
be done, control is transferred to the location specified by the “loop start” register.
In all existant CompCert assembly language semantics, non-branching instructions
go to the next instruction. Modeling hardware loops would thus involve changing
all instruction semantics to transfer control according to whether the loop exit is
reached, proving invariants regarding the hardware loop registers, etc. This could be
worth it if the hardware loops could be selected for regular code, not just builtins,
but this itself would entail considerable changes in previous compiler phases.

34

https://github.com/AbsInt/CompCert/commit/c8ccecc783671fb699a33f432c34e3c1cd1dc801

222 David Monniaux, Sylvain Boulmé

Loading Constants Certain instructions may need some expansion and case anal-
ysis, and possibly auxiliary tables. For instance, on the ARM architecture, long
constants must be loaded from constant pools addressed relatively to the pro-
gram counter; thus emitting a constant load instruction entails emitting a load
and populating the constant pool, which must be flushed regularly since the
range of adressing offsets is small. Getting the address of a global or local symbol
(global or static) variable may also entail multiple instructions, and perhaps a
case analysis depending on whether the code is to be position-independent, and,
in CompCert-KVX, whether the symbol resides in a thread-local program sec-
tion.?® The low-level workings of the implementation of these pseudo-instructions
rely on the linker performing relocations, on the application binary interface
specifying that certain registers point to certain memory sections, etc.

Builtins CompCert allows the user to call special “builtins”, dealing mainly with
special machine registers and instructions (memory barriers, etc.). These builtins
are expanded in Asmexpand or TargetPrinter into actual assembly instructions.

As an example, consider the memory copy builtin, which may both be used by
the user (with _builtin_memcpy_aligned()) to request copying a memory block of
known size, and is also issued by the compiler for copying structures. Expanding
that builtin may go through a case analysis on block size and alignment: smaller
blocks will be copied by a sequence of loads and stores, larger blocks using a loop.
The scratch registers may be different in each case, and this case analysis must
be replicated in the specification; alternatively, the specification may contain
a upper-bound on the set of clobbered registers, but in any case no clobbered
register should be forgotten. There may also be a complicated distinction of cases
regarding which source register is alias to which other source register, or which
scratch one. A bug in that builtin, which did not check alignment and generated
improper offsets for load instructions, was found in CompCert on AArch64; the
assembler would reject the generated code (commit c8ccecc). Another bug in the
same builtin, on four architectures (ARM, AArch64, PowerPC, RISC-V), due
to an incorrect test about register aliasing, resulted in successful compilation,
assembly and linking with incorrect code being emitted (commit c2c871c).

One bug was found in the CompCert-KVX stack frame allocation code, which
had no adverse consequence unless a very large stack frame or many parameters
were used, which explains why it was not detected earlier (commit fccfa9).

Clobbered Registers Expansions of pseudo-instructions and builtins often use
scratch registers. The registers that are clobbered by each pseudo-instruction and
builtin are defined in the Coq file (Asm.v) giving the semantics of the abstract
assembly language. Thus, changes to expansions must affect coherently both the
Asm.v specification and the AsmExpand and/or TargetPrinter OCaml module.

36 In C11 [4], the _Thread_local storage class specifies that one separate copy of the
variable exists for each thread. Typically, a processor register points to the thread-
local memory area and these variables are accessed by offsets from that register.
CompCert has no notion of concurrency, but on the KVX, some system variables are
thread-local and must be accessed as such even from single-threaded programs.

https://github.com/AbsInt/CompCert/commit/c8ccecc783671fb699a33f432c34e3c1cd1dc801
https://github.com/AbsInt/CompCert/commit/c2c871c78d4021a28be8ba5c2d8454cfc10fad22
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-kvx/-/commit/fccfa9b6ac74953af188a2538eb9cd7258544c1a

The Trusted Computing Base of the CompCert Verified Compiler 223

In the last few years, several specification bugs about registers clobbered by
pseudo-instructions and builtins were found in CompCert, on several architec-
tures. Commit 0df99dc4 fixes several wrong specifications of clobbered registers
on AArch64; commit a4cfb9c2 on ARM;commit 3971078 on RISC-V. It seems
that none of these bugs could result in the generation of incorrect code, for
the registers that were wrongly specified not to be clobbered were not used by
the CompCert code generator to store persistent data. The problem is that it
was possible to modify the code generator with full correctness proof, and have
CompCert generate incorrect code. For instance, some pseudo-instructions would
use the return address register as a scratch register, not specified as clobbered.
Some compilers perform leaf function optimization: the prologues and epilogues
of functions that never call other functions do not save and restore the return
address. CompCert applies this optimization only on the PowerPC architecture,
and even then only partially; if one had added this optimization to AArch64 or
RISC-V, incorrect code would be generated in leaf functions using the wrongly
specified pseudo-instructions, though all proofs would go through.

Bugs in expansion of builtins due to incorrect specification of clobbered reg-
isters (or memory), and those related to outcome depending on compiler choices
(e.g., register aliases), eerily resemble those due to improper use of inline assem-
bly in C programs [46]. Perhaps similar methods of validation could be used.

As an alternative, we propose moving the parts that deal with case distinc-
tions (register aliasing, sizes, alignments. . .) out of the untrusted code base into
the trusted code base, possibly one pseudo-assembly instruction for each case.
For instance, there could be one “memory copy” pseudo-assembly instruction
for each different code sequence to be generated, with fixed “clobbered” regis-
ters and explicit constraints on alignment, size etc. in the specification of the
instruction. Verified Coq code would select the proper pseudo-instruction to use.
This would likely avoid bugs due to case distinctions in trusted code, alleviate
difficulties in properly specifying the pseudo-instructions and keeping this spec-
ification synchronized with their expansion, and make it easier to perform unit
testing on the expansions.

5.3 Microarchitectural Concerns

CompCert-KVX introduced instruction scheduling to CompCert.3” Instruction
scheduling reorders instructions while preserving semantics so as to minimize
execution time. Current high-performance processors dynamically reorder in-
structions, but this is complex and consumes extra energy; in-order processors
need the compiler to schedule instructions for good performance, taking into
account latencies (the number of clock cycles between the operands of an in-
struction being read and the results being produced) and resource constraints
(the number of instructions that can be simultaneously executed; e.g., a proces-
sor may be able to execute two instructions at a time, but only one of them may
be a memory access, and only one of them may be floating-point).

37 Tristan & Leroy [54] had developed scheduling for CompCert but their developments
were not made publicly available, let alone integrated into CompCert releases.

https://github.com/AbsInt/CompCert/commit/0df99dc46209a9fe5026b83227ef73280f0dab70
https://github.com/AbsInt/CompCert/commit/a4cfb9c2ffdef07fa0d478e66f279687c9823d42
https://github.com/AbsInt/CompCert/commit/39710f78062a4a999c079b58181a58e62b78c30b

224 David Monniaux, Sylvain Boulmé

Tables of resource uses and latencies are cumbersome to build, and often
involve access to private documentation and/or reverse engineering; there are
thus likely incorrect.?® Fortunately, all targets of CompCert-KVX have interlocked
pipelines, meaning that, if a value is read from a register that awaits a write,
the instruction is stalled; thus sequential semantics are preserved: the worst
that can happen if incorrect latencies are used is that the pipeline stalls for
some cycles, which is a performance, not a correctness, issue. In contrast, on
processors with non-interlocked pipelines the latencies belong to the semantic
definition of the assembly code: a read from a register that awaits a write yields
the previous value held in that register. Regarding resource constraints, on a very
large instruction word (VLIW) processor, bundles of instructions that exceed
resource constraints will be refused by the assembler; on a conventional multiple-
issue processor, successive instructions that cannot be issued at the same cycle
for lack of resources will be issued sequentially, which is equivalent since the
processor preserves sequential semantics even when issuing several instructions.
We conclude that pipeline modeling issues have no impact on the correctness of
the generated code of CompCert-KVX, but solely on its performance.?’

5.4 Assembling and Linking

CompCert produces assembly code in textual form, which must then be assembled
and linked using another toolchain, such as gcc (the GNU Compiler Collection)
or clang (LLVM). This toolchain is thus within the TCB. Absint GmbH, which
sells the commercial releases of CompCert, also sells for certain architectures
the Valex tool which matches the CompCert code to the binary code [37,27]. An
alternative is direct generation of machine code, as in CakeML [31]; CompCertELF
extends CompCert with a verified assembler for the x86 target [56].

Finally, CompCert’s correctness proof was originally meant for a “closed
world”: a program wholly compiled with it as a single module. In reality, most
large C projects are compiled from multiple files which are then linked. The
correctness proof was later extended, in version 2.7, to account for separate
compilation and linking, following [26]. There have been proposals for more am-
bitious formalizations of the linking process [50], even implementing a verified
linker for a subset of ELF on the x86-32 architecture [56]; “° Specifying and
proving correct a general ELF linker is itself a fairly ambitious project [28].

6 Modeling and Application Binary Interface Issues

The semantics of assembly instructions is defined, for each architecture, in the
official manuals from the architecture designers. The application binary inter-

38 The CompCert-KVX team had private documentation on the KVX; despite that, due
to the tedium of building tables, they had a few bugs, as shown by commit logs. Their
tables for AArch64 and RISC-V are based on the source code of other compilers.

39 The situation would of course be very different in the case of a tool bounding worst
case execution time through precise processor modeling.

40 ELF is a standard file format for object code.

The Trusted Computing Base of the CompCert Verified Compiler 225

face (ABI), specific to each combination of architecture and operating system
(or execution environment), defines how parameters are to be passed (in which
registers, etc.), what kind of different global symbols exist and how they are
accessed, what registers are reserved for system use, how the execution stack is
to be laid out, what values the high-order bits of long registers may contain if
the register contains a shorter value, etc. In contrast, CompCert’s vision of val-
ues is somewhat abstract, even at the assembly level, which may pose problems
especially when interfacing to other parts of the runtime system.

6.1 Modeling of Values

CompCert considers that a value, e.g., stored in a register, is either a 32-bit
integer; a 64-bit integer; a 32-bit single precision floating-point number; a 64-bit
double precision floating-point number; a pointer, consisting in a block identifier
and an offset; or “undefined”, a value that can be refined into any other value,
modeling undefined behavior that does not stop program execution (because not
yet externally observed). This is, however, an abstraction of reality. Pointers, in
reality, are not a pair (block, offset) but a single 32-bit or 64-bit integer. How is
a 32-bit value stored in a 64-bit register? Are the higher-order bits indifferent,
supposed to be 0 (0-extension) or equal to the sign bit (sign-extension)?

These modeling issues have subtle consequences on the implementation of cer-
tain instructions. If the application binary interface specifies that 32-bit values
stored in 64-bit processor registers are O-extended, then the 0-extension opera-
tion as defined in CompCert (taking a 32-bit unsigned value and returning the
same value as a 64-bit unsigned integer) can be implemented as a no-operation
at assembly level (with the special annotation, for the register allocator, that
the target register should be the same as the source register).*! Similarly, if
the application binary interface specifies that 32-bit values stored in 64-bit pro-
cessor registers are sign-extended, then the sign-extension operation as defined
in CompCert can be implemented as a no-operation at assembly level. Finally,
the application binary interface may specify that the higher 32 bits of a 64-bit
register containing a 32-bit value are arbitrary.

Since none of the CompCert semantics specifies register contents at the bit
level, it is up to the backend designer to be consistent in what instructions
assume and ensure, and this consistency is never formally verified. Consistency
must extend to the foreign function interface: for instance, if a CompCert function
is called from a function compiled with another compiler that considers that the
higher order 32 bits contain arbitrary values, but CompCert assumes that values
are 0-extended, then incorrect behavior may ensue.

The modeling of certain instructions is delicate. The KVX processor sup-
ports, in addition to normal loads from memory, speculative loads, otherwise

41 This also explains why on some platforms, the code produced by CompCert contains
useless moves. If a 32-bit value needs to be extended to 64 bits in a way that both
the 32-bit and 64-bit version are live after extension, then these two values, even
if they are implemented by the same bit-string, will have to reside in two different
registers, since CompCert value semantics distinguishes 32-bit from 64-bit values.

226 David Monniaux, Sylvain Boulmé

known as non-trapping or dismissible loads. A normal load from an incorrect
memory address will trap; on the KVX, a speculative load from an incorrect ad-
dress returns 0 instead of trapping. Here, “incorrect” is meant with respect to the
page tables of the processor. In the intermediate representations of CompCert-
KVX, speculative loads from incorrect memory locations return the special value
“undefined”, whereas a normal load would terminate execution. “Undefined” is
a form of “poison value” propagating through operations, e.g., adding it to an
integer yields “undefined”. The assembly-level semantics, however, defined the
value returned by a speculative load from an incorrect memory location as 0, as
per the processor documentation. 0 is a valid refinement of “undefined”, and the
proofs go through. This is however incorrect modeling, because it conflates two
different notions: memory accesses invalid with respect to CompCert semantics,
and memory accesses invalid with respect to the processor memory management
unit:*? the former are strictly included in the latter:*3, a valid CompCert mem-
ory block may occupy a portion of a valid memory page, but the processor will
allow accesses to the whole page. Using this incorrect semantics, one could per-
form a speculative load from a location known to be incorrect with respect to
CompCert semantics (for instance, just past the end of a block allocated on the
stack) and assume that this load would return 0, whereas this location, when
read, would return another value. Commit 5798f56b replaced this default value
by “undefined”, which is correct: any value is a valid refinement of “undefined”.

6.2 Foreign Function Interface

CompCert’s application binary interface (ABI) is not specified in a single point in
CompCert: it comprises the calling convention, the value conventions implicit in
the choice of instructions, etc. The correctness theorem of CompCert relates the
execution of a C program, started from the main function, to the execution of
the assembly program produced by its compilation, also started from the main
function. It does not discuss functions compiled with other compilers calling a
function compiled using CompCert. It also assumes that functions called from
CompCert use the same calling convention. As explained in CompCert’s manual

CompCert attempts to generate object code that respects the Application
Binary Interface of the target platform and that can, therefore, be linked
with object code and libraries compiled by other C compilers.

The manual then describes areas where CompCert’s ABI differs from those of
other compilers on the targets that it supports. Again, none of these other ABIs
were formalized, so the statement of differences in the manual is not based on
formal analysis of compatibility, but rather on human analysis.

42 Or, rather, the association of the processor memory management unit and the virtual
memory subsystem of the operating system.

43 In the case of memory over-commit by the OS, a valid memory access with respect
to CompCert semantics may result in a segmentation violation. We do not consider
this issue here, since it is a case of the OS promising resources to the program then
reneging on its promises, and thus not supplying a stable execution environment.

https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-kvx/-/commit/5798f56b8a8630e43dbed84a824811a5626a1503

The Trusted Computing Base of the CompCert Verified Compiler 227

6.3 Runtime System

The runtime system for C is rather limited compared to other languages. It
uses the C standard library supplied by the target platform. CompCert makes
no assumption about it—calls to the standard library are just calls to external
functions, and the sequence of these calls, as observable events, in the source se-
mantics is reflected in the assembly code—except for the heap memory allocation
and deallocation functions malloc() and free(), which have special treatment
and are given specific semantics (creation and destruction of memory blocks in
the CompCert memory model). CompCert assumes that this allocator is correct
with respect to CompCert’s infinite memory model. In particular, CompCert as-
sumes that malloc always succeeds and never returns the null pointer, which
seems unsound: in theory, some formally verified optimizations may incorrectly
remove defensive checks against heap overflow. In practice, we do not know of
any optimization in CompCert exploiting this model of malloc. This assumption
of infinite memory has been removed in CompCertS[7], at the price of a large
extension of CompCert.

In CompCert, basic floating-point operations have a semantics defined ac-
cording to IEEE-754 in round-to-nearest mode. This assumes no change to the
rounding mode through a library call or direct access to special CPU registers.

Some processors do not support some expensive arithmetic operations (e.g.
floating-point operations, division) in hardware. These are replaced by calls to
functions in the runtime system, which are axiomatized to perform the required
operation by a combination of elementary instructions. This creates a somewhat
paradoxical situation where, for the same operation (say, 32-bit integer division):
(i) if the operation is implemented in hardware, then it is trusted; (ii) if imple-
mented in software through a call to the runtime system, then it is trusted; (iii) if
implemented in software through expansion inside CompCert, then one has to
provide a full proof that this expansion implements the operation: its execution
coincides with that of the operator on argument values on which this operator
has defined behavior. One argument is that the hardware is likely to have been
designed from existant floating-point designs and thoroughly tested with many
test vectors,** Software emulation is likely to be from a well-tested established
library,*> whereas expansion in CompCert probably has not been tested so well.

7 Insights and Conclusion

Some natural questions about “verified” software is: how truly safe is it? What
kind of constructs should we be considered as suspicious? As more designs come

44 E.g. the Berkeley hard float library (https://github.com/ucb-bar/berkeley-hardfloat) is
used in certain RISC-V designs. Yet, they remind potential users that “These units
are works in progress. They may not be yet completely free of bugs [...]”.

45 E.g. the Berkeley soft float library (http://www.jhauser.us/arithmetic/SoftFloat.html);
but, again “Releases 3 through 3c of Berkeley SoftFloat contain bugs in the square
root functions that may be of concern for some uses. Those bugs are believed to be
repaired in Release 3d and later.”

https://github.com/ucb-bar/berkeley-hardfloat
http://www.jhauser.us/arithmetic/SoftFloat.html

228 David Monniaux, Sylvain Boulmé

with some formal proofs of correctness, even regulatory agencies have had to
provide guidelines [1]. It is of course perilous to draw general conclusions from
the analysis of one single project; here are some insights.

None of the problems found were in the verified parts of CompCert: chances
seem slim to stumble into a proof checker bug by accident, not notice something
is amiss, and think to have proved a theorem that actually does not hold. This
explains why the number of bugs found in CompCert releases is many orders of
magnitude below usual compilers [52]. By construction, the bugs of CompCert
are located in a limited subpart of the software, called its TCB, which may
however not be as small as we may naively expect.

Two bugs were found in the front-end elaboration rules, “corner cases” that
should be rarely found in real programs (thus their late discovery). A few sub-
tle semantic bugs were also found in some back-ends. However, most bugs were
found in the very last part of the back-end, which expands and prints assembly
instructions. The causes of these bugs are: (i) the tedium of writing correct print-
ers for each instruction with appropriate operand ordering, and the lack of sys-
tematic unit testing of the printers; (ii) the number of different cases, especially
in the choice of register arguments, in the expansion of pseudo-instructions, and
again the lack of systematic testing that all cases are correct; (iii) the difficulties
in keeping synchronized the specification of the pseudo-assembly instructions (in
Coq) and the code performing their expansion, in two different files. All these
seem to be common software engineering issues, amenable to standard software
engineering solutions such as systematic testing of all cases.

All these issues pertain to the specification and trusted (but unverified) parts
of the CompCert back-end, which echoes the results of early experiments that
found bugs in these parts [57]. In contrast, no bugs due to the use of axioms for
interfacing untrusted code, or the use of the extractor to OCaml, were found.
In academic circles, however, much attention is often given to doing away with
such axioms and the extractor; this may not reflect the most pressing needs.
There seems to be a chasm between, on the one hand, what feels relevant and
interesting for experts in proof assistants or type theoreticians, on the other hand
what would actually increase reliability in verified compilers or similar tools.

In our opinion, the primary focus for increasing trust in CompCert (and re-
moving possible further bugs) should be a validation mechanism of its assembly
and ABI specification with respect to the actual execution platform. For ex-
ample, SAIL provides a formal ISA semantics for ARMv8 that has been tested
against the ARM Architecture Validation Suite [5]. However, CompCert cannot
be directly plugged on SAIL, because of its more abstract view of the ISA. And
this would not solve the issues related to the runtime environment and the ABI.

Acknowledgements

We wish to thank A. Miquel for helpful references on the metatheory of Coq, as
well as L. Gourdin, X. Leroy and C. Six for discussions about CompCert.

The Trusted Computing Base of the CompCert Verified Compiler 229

References

1.

10.

11.

12.

13.

Requirements on the use of Coq in the context of common crite-
ria evaluations. Tech. rep., French National Cybersecurity Agency
(ANSSI) and INRIA (Sep 2020), https://www.ssi.gouv.fr/uploads/2014/11/
anssi-requirements-on-the-use-of-cog-in-the-context-of-common-criteria-evaluations-v1.
0-en.pdf

The Coq Reference Manual, 8.13.2 edn. (Apr 2021), https://github.com/coq/coq/
releases/download/V8.13.2/coq-8.13.2-reference-manual.pdf

International standard—programming languages—C. Tech. rep., ISO/IEC
(9899:1999)

International standard—programming languages—C. Tech. rep., ISO/IEC
(9899:2011)

. Armstrong, A., Bauereiss, T., Campbell, B., Reid, A., Gray, K.E., Norton, R.M.,

Mundkur, P.; Wassell, M., French, J., Pulte, C., Flur, S., Stark, I., Krishnaswami,
N., Sewell, P.: ISA semantics for ARMv8-a, RISC-V, and CHERI-MIPS. Proc.
ACM Program. Lang. 3(POPL) (jan 2019). https://doi.org/10.1145/3290384,
https://doi.org/10.1145/3290384

Barthe, G., Demange, D., Pichardie, D.: A formally verified SSA-based middle-
end - static single assignment meets CompCert. In: Seidl, H. (ed.) Programming
Languages and Systems (ESOP). Lecture Notes in Computer Science, vol. 7211,
pp. 47-66. Springer (2012). https://doi.org/10.1007/978-3-642-28869-2_3

Besson, F., Blazy, S., Wilke, P.: CompCertS: a memory-aware verified C compiler
using a pointer as integer semantics. J. Autom. Reason. 63(2), 369-392 (2019).
https://doi.org/10.1007 /s10817-018-9496-y

Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monni-
aux, D., Rival, X.: A static analyzer for large safety-critical software. In: ACM SIG-
PLAN Conference on Programming language design and implementation (PLDI).
pp. 196-207. ACM (2003). https://doi.org/10.1145/781131.781153

Blazy, S.: Experiments in validating formal semantics for C. In: C/C++ Verifica-
tion Workshop. pp. 95-102. Oxford, United Kingdom (2007), https://hal.inria.fr/
inria-00292043

Boespflug, M., Dénes, M., Grégoire, B.: Full reduction at full throttle. In:
Jouannaud, J., Shao, Z. (eds.) Certified Programs and Proofs - First Interna-
tional Conference, CPP 2011, Kenting, Taiwan, December 7-9, 2011. Proceed-
ings. Lecture Notes in Computer Science, vol. 7086, pp. 362-377. Springer (2011).
https://doi.org/10.1007/978-3-642-25379-9_26

Boulmé, S.: Formally Verified Defensive Programming (efficient Coqg-verified com-
putations from untrusted ML oracles). Habilitation & diriger des recherches, Uni-
versité Grenoble-Alpes (Sep 2021), https://hal.archives-ouvertes.fr/tel-03356701,
see also http://www-verimag.imag.fr/~boulme/hdr.html

Boulmé, S., Maréchal, A., Monniaux, D., Périn, M., Yu, H.: The ver-
ified polyhedron library: an overview. In: 20th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC
2018, Timisoara, Romania, September 20-23, 2018. pp. 9-17. IEEE Com-
puter Society (2018). https://doi.org/10.1109/SYNASC.2018.00014, https://hal.
archives-ouvertes.fr/hal-02100006

Bourke, T., Brun, L., Evariste Dagand, P., Leroy, X., Pouzet, M., Rieg, L.: A
formally verified compiler for Lustre. In: PLDI 2017: Programming Language De-
sign and Implementation. pp. 586-601. ACM Press (2017), http://xavierleroy.org/
publi/velus-pldil7.pdf

https://www.ssi.gouv.fr/uploads/2014/11/anssi-requirements-on-the-use-of-coq-in-the-context-of-common-criteria-evaluations-v1.0-en.pdf
https://www.ssi.gouv.fr/uploads/2014/11/anssi-requirements-on-the-use-of-coq-in-the-context-of-common-criteria-evaluations-v1.0-en.pdf
https://www.ssi.gouv.fr/uploads/2014/11/anssi-requirements-on-the-use-of-coq-in-the-context-of-common-criteria-evaluations-v1.0-en.pdf
https://github.com/coq/coq/releases/download/V8.13.2/coq-8.13.2-reference-manual.pdf
https://github.com/coq/coq/releases/download/V8.13.2/coq-8.13.2-reference-manual.pdf
https://doi.org/10.1145/3290384
https://doi.org/10.1145/3290384
https://doi.org/10.1007/978-3-642-28869-2_3
https://doi.org/10.1007/s10817-018-9496-y
https://doi.org/10.1145/781131.781153
https://hal.inria.fr/inria-00292043
https://hal.inria.fr/inria-00292043
https://doi.org/10.1007/978-3-642-25379-9_26
https://hal.archives-ouvertes.fr/tel-03356701
http://www-verimag.imag.fr/~boulme/hdr.html
https://doi.org/10.1109/SYNASC.2018.00014
https://hal.archives-ouvertes.fr/hal-02100006
https://hal.archives-ouvertes.fr/hal-02100006
http://xavierleroy.org/publi/velus-pldi17.pdf
http://xavierleroy.org/publi/velus-pldi17.pdf

230

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

David Monniaux, Sylvain Boulmé

Braibant, T., Jourdan, J.H., Monniaux, D.: Implementing and reasoning
about hash-consed data structures in Coq. Journal of Automated Reason-
ing pp. 1-34 (Jun 2014). https://doi.org/10.1007/s10817-014-9306-0, https://hal.
archives-ouvertes.fr/hal-00816672

Chicli, L., Pottier, L., Simpson, C.: Mathematical quotients and quotient types in
coq. In: Geuvers, H., Wiedijk, F. (eds.) Types for Proofs and Programs, Second
International Workshop, TYPES 2002, Berg en Dal, The Netherlands, April 24-28,
2002, Selected Papers. Lecture Notes in Computer Science, vol. 2646, pp. 95-107.
Springer (2002). https://doi.org/10.1007/3-540-39185-1_6

Chicli, L.I.: Sur la formalisation des mathématiques dans le Calcul des Construc-
tions Inductives. Ph.D. thesis, Université de Nice (2003), http://www-sop.inria.fr/
lemme/Laurent.Chicli/these_chicli.ps

Conchon, S., Fillidtre, J.: A persistent union-find data structure. In:
Russo, C.V., Dreyer, D. (eds.) Proceedings of the ACM Workshop on
ML, 2007, Freiburg, Germany, October 5, 2007. pp. 37-46. ACM (2007).
https://doi.org/10.1145/1292535.1292541

Demange, D.: Semantic foundations of intermediate program representations.
(Fondements sémantiques des représentations intermédiaires de programmes).
Ph.D. thesis, Ecole normale supérieure de Cachan, France (2012), https://tel.
archives-ouvertes.fr /tel-00905442

Filliatre, J., Conchon, S.: Type-safe modular hash-consing. In: Kennedy,
A., Pottier, F. (eds.) Proceedings of the ACM Workshop on ML, 2006,
Portland, Oregon, USA, September 16, 2006. pp. 12-19. ACM (2006).
https://doi.org/10.1145/1159876.1159880

Fox, A.C.J., Myreen, M.O., Tan, Y.K., Kumar, R.: Verified compilation of
cakeml to multiple machine-code targets. In: Bertot, Y., Vafeiadis, V. (eds.)
Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs
and Proofs, CPP 2017, Paris, France, January 16-17, 2017. pp. 125-137.
ACM (2017). https://doi.org/10.1145/3018610.3018621, https://doi.org/10.1145/
3018610.3018621

Goubault, J.: Implementing functional languages with fast equality, sets and maps:
an exercise in hash consing. Tech. rep., Bull S.A. Corporate Research Center
(June 1992), http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.41.1757&
rep=repl&type=pdf, may 1994 version also available

Goubault, J.: HimML: Standard ML with fast sets and maps. In: In 5th ACM SIG-
PLAN Workshop on ML and its Applications. ACM Press (1994), http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.40.4967&rep=repl&type=pdf, also IN-
RIA RR-2265

Goubault-Larrecq, J.: The GimML reference manual, version 1.0 edn. (Jul 2021),
http://www.lsv.fr/~goubault/GimML /refman.pdf

Grégoire, B., Leroy, X.: A compiled implementation of strong reduction.
In: Wand, M., Jones, S.L.P. (eds.) Proceedings of the Seventh ACM SIG-
PLAN International Conference on Functional Programming (ICFP ’02), Pitts-
burgh, Pennsylvania, USA, October 4-6, 2002. pp. 235-246. ACM (2002).
https://doi.org/10.1145/581478.581501

Jourdan, J.H., Pottier, F., Leroy, X.: Validating LR(1) parsers. In: Programming
Languages and Systems — 21st European Symposium on Programming, ESOP
2012. Lecture Notes in Computer Science, vol. 7211, pp. 397-416. Springer (2012),
http://xavierleroy.org/publi/validated-parser.pdf

https://doi.org/10.1007/s10817-014-9306-0
https://hal.archives-ouvertes.fr/hal-00816672
https://hal.archives-ouvertes.fr/hal-00816672
https://doi.org/10.1007/3-540-39185-1_6
http://www-sop.inria.fr/lemme/Laurent.Chicli/these_chicli.ps
http://www-sop.inria.fr/lemme/Laurent.Chicli/these_chicli.ps
https://doi.org/10.1145/1292535.1292541
https://tel.archives-ouvertes.fr/tel-00905442
https://tel.archives-ouvertes.fr/tel-00905442
https://doi.org/10.1145/1159876.1159880
https://doi.org/10.1145/3018610.3018621
https://doi.org/10.1145/3018610.3018621
https://doi.org/10.1145/3018610.3018621
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.41.1757&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.41.1757&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.4967&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.4967&rep=rep1&type=pdf
http://www.lsv.fr/~goubault/GimML/refman.pdf
https://doi.org/10.1145/581478.581501
http://xavierleroy.org/publi/validated-parser.pdf

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

The Trusted Computing Base of the CompCert Verified Compiler 231

Kang, J., Kim, Y., Hur, C.K., Dreyer, D., Vafeiadis, V.: Lightweight veri-
fication of separate compilation. SIGPLAN Not. 51(1), 178-190 (Jan 2016).
https://doi.org/10.1145/2914770.2837642

Kastner, D., Leroy, X., Blazy, S., Schommer, B., Schmidt, M., Ferdinand, C.: Clos-
ing the gap — the formally verified optimizing compiler CompCert. In: SSS’17: De-
velopments in System Safety Engineering: Proceedings of the Twenty-fifth Safety-
critical Systems Symposium. pp. 163—-180. CreateSpace (2017)

Kell, S., Mulligan, D.P., Sewell, P.: The missing link: explaining ELF static link-
ing, semantically. In: Visser, E., Smaragdakis, Y. (eds.) Proceedings of the 2016
ACM SIGPLAN International Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2016, part of SPLASH 2016, Am-
sterdam, The Netherlands, October 30 - November 4, 2016. pp. 607-623. ACM
(2016). https://doi.org/10.1145/2983990.2983996

Krebbers, R.: A formal C memory model for separation logic. J. Autom. Reason.
57(4), 319-387 (2016). https://doi.org/10.1007/s10817-016-9369-1

Krebbers, R., Leroy, X., Wiedijk, F.: Formal C semantics: CompCert and the C
standard. In: ITP 2014: Interactive Theorem Proving. pp. 543-548. No. 8558 in
LNCS, Springer (2014). https://doi.org/10.1007/978-3-319-08970-6_36

Kumar, R., Mullen, E., Tatlock, Z., Myreen, M.O.: Software verification with
itps should use binary code extraction to reduce the TCB - (short paper).
In: Avigad, J., Mahboubi, A. (eds.) Interactive Theorem Proving (ITP). Lec-
ture Notes in Computer Science, vol. 10895, pp. 362-369. Springer (2018).
https://doi.org/10.1007/978-3-319-94821-8_21

Lee, G., Werner, B.: Proof-irrelevant model of CC with predicative in-
duction and judgmental equality. Log. Methods Comput. Sci. 7(4) (2011).
https://doi.org/10.2168/LMCS-7(4:5)2011, https://doi.org/10.2168 /LMCS-7(4:5)
2011

Lee, J., Kim, Y., Song, Y., Hur, C., Das, S., Majnemer, D., Regehr, J., Lopes,
N.P.: Taming undefined behavior in LLVM. In: Cohen, A., Vechev, M.T. (eds.)
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017. pp.
633-647. ACM (2017). https://doi.org/10.1145/3062341.3062343

Leroy, X.: Formal verification of a realistic compiler. Communications of the ACM
52(7) (2009). https://doi.org/10.1145/1538788.1538814

Leroy, X.: A formally verified compiler back-end. Journal of Automated Reasoning
43(4), 363-446 (2009), http://xavierleroy.org/publi/compcert-backend.pdf
Leroy, X.: The CompCert C verified compiler, 3.9 edn. (May 2021), an up-to-date
version is at https://compcert.org/man/

Leroy, X., Blazy, S., Késtner, D., Schommer, B., Pister, M., Ferdinand, C.: Com-
pCert — a formally verified optimizing compiler. In: ERTS 2016: Embedded Real
Time Software and Systems. SEE (2016)

Letouzey, P.: Programmation fonctionnelle certifiée : L’extraction de programmes
dans l'assistant Coq. (Certified functional programming : Program extraction
within Coq proof assistant). Ph.D. thesis, University of Paris-Sud, Orsay, France
(2004), https://tel.archives-ouvertes.fr/tel-00150912

Letouzey, P.: Extraction in Coq: An overview. In: Logic and Theory of Algorithms,
Fourth Conference on Computability in Europe, CiE 2008. Lecture Notes in Com-
puter Science, vol. 5028, pp. 359-369. Springer (2008)

Monniaux, D.: The pitfalls of verifying floating-point computations. TOPLAS
30(3), 12 (May 2008). https://doi.org/10.1145/1353445.1353446, http://hal.
archives-ouvertes.fr/hal-00128124 /en/

https://doi.org/10.1145/2914770.2837642
https://doi.org/10.1145/2983990.2983996
https://doi.org/10.1007/s10817-016-9369-1
https://doi.org/10.1007/978-3-319-08970-6_36
https://doi.org/10.1007/978-3-319-94821-8_21
https://doi.org/10.2168/LMCS-7(4:5)2011
https://doi.org/10.2168/LMCS-7(4:5)2011
https://doi.org/10.2168/LMCS-7(4:5)2011
https://doi.org/10.1145/3062341.3062343
https://doi.org/10.1145/1538788.1538814
http://xavierleroy.org/publi/compcert-backend.pdf
https://compcert.org/man/
https://tel.archives-ouvertes.fr/tel-00150912
https://doi.org/10.1145/1353445.1353446
http://hal.archives-ouvertes.fr/hal-00128124/en/
http://hal.archives-ouvertes.fr/hal-00128124/en/

232

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

David Monniaux, Sylvain Boulmé

Monniaux, D., Six, C.: Simple, light, yet formally verified, global common subex-
pression elimination and loop-invariant code motion. In: Henkel, J., Liu, X. (eds.)
LCTES ’21: 22nd ACM SIGPLAN/SIGBED International Conference on Lan-
guages, Compilers, and Tools for Embedded Systems, Virtual Event, Canada, 22
June, 2021. pp. 85-96. ACM (2021). https://doi.org/10.1145/3461648.3463850
Mullen, E., Pernsteiner, S., Wilcox, J.R., Tatlock, Z., Grossman, D.: (Euf:
Minimizing the Coq extraction TCB. In: Proceedings of the 7th ACM SIG-
PLAN International Conference on Certified Programs and Proofs. p. 172-185.
CPP 2018, Association for Computing Machinery, New York, NY, USA (2018).
https://doi.org/10.1145/3167089

Mullen, E., Zuniga, D., Tatlock, Z., Grossman, D.: Verified peephole
optimizations for compcert. SIGPLAN Not. 51(6), 448-461 (Jun 2016).
https://doi.org/10.1145/2980983.2908109

Paraskevopoulou, Z.: Verified Optimizations for Functional Languages. Ph.D. the-
sis, Princeton University (Nov 2020), http://zoep.github.io/thesis_final.pdf
Paraskevopoulou, Z., Li, J.M., Appel, AW.. Compositional optimiza-
tions for certicoq. Proc. ACM Program. Lang. 5(ICFP), 1-30 (2021).
https://doi.org/10.1145/3473591

Recoules, F., Bardin, S., Bonichon, R., Lemerre, M., Mounier, L., Potet, M.:
Interface compliance of inline assembly: Automatically check, patch and re-
fine. In: 43rd IEEE/ACM International Conference on Software Engineering,
ICSE 2021, Madrid, Spain, 22-30 May 2021. pp. 1236-1247. IEEE (2021).
https://doi.org/10.1109/1CSE43902.2021.00113

Six, C.: Optimized and formally-verified compilation for a VLIW processor. Ph.D.
thesis, Université Grenoble Alpes, France (Jul 2021), https://hal.archives-ouvertes.
fr/tel-03326923

Six, C., Boulmé, S., Monniaux, D.: Certified and efficient instruction schedul-
ing: application to interlocked VLIW processors. Proc. ACM Program. Lang.
4(OOPSLA), 129:1-129:29 (2020). https://doi.org/10.1145/3428197

Six, C., Gourdin, L., Boulmé, S., Monniaux, D., Fasse, J., Nardino, N.: Formally
Verified Superblock Scheduling. In: Certified Programs and Proofs (CPP ’22).
Philadelphia, United States (Jan 2022). https://doi.org/10.1145/3497775.3503679
Song, Y., Cho, M., Kim, D., Kim, Y., Kang, J., Hur, C.K.: CompCertM: Com-
pCert with C-assembly linking and lightweight modular verification. Proc. ACM
Program. Lang. 4(POPL) (Dec 2019). https://doi.org/10.1145/3371091

Sozeau, M., Boulier, S., Forster, Y., Tabareau, N., Winterhalter, T.: Coq coq cor-
rect! verification of type checking and erasure for coq, in coq. Proc. ACM Program.
Lang. 4(POPL’20), 8:1-8:28 (2020). https://doi.org/10.1145/3371076

Sun, C., Le, V., Zhang, Q., Su, Z.: Toward understanding compiler bugs in GCC
and LLVM. In: Proceedings of the 25th International Symposium on Software Test-
ing and Analysis. p. 294-305. ISSTA 2016, Association for Computing Machinery,
New York, NY, USA (2016). https://doi.org/10.1145/2931037.2931074

Timany, A., Sozeau, M.: Consistency of the Predicative Calculus of Cumulative
Inductive Constructions (pCulC). Research Report RR-9105, KU Leuven, Belgium
; Inria Paris (Oct 2017), https://hal.inria.fr /hal-01615123

Tristan, J.B., Leroy, X.: Formal verification of translation validators: A case study
on instruction scheduling optimizations. In: Proceedings of the 35th ACM Sympo-
sium on Principles of Programming Languages (POPL’08). pp. 17-27. ACM Press
(Jan 2008), http://xavierleroy.org/publi/validation-scheduling.pdf

https://doi.org/10.1145/3461648.3463850
https://doi.org/10.1145/3167089
https://doi.org/10.1145/2980983.2908109
http://zoep.github.io/thesis_final.pdf
https://doi.org/10.1145/3473591
https://doi.org/10.1109/ICSE43902.2021.00113
https://hal.archives-ouvertes.fr/tel-03326923
https://hal.archives-ouvertes.fr/tel-03326923
https://doi.org/10.1145/3428197
https://doi.org/10.1145/3497775.3503679
https://doi.org/10.1145/3371091
https://doi.org/10.1145/3371076
https://doi.org/10.1145/2931037.2931074
https://hal.inria.fr/hal-01615123
http://xavierleroy.org/publi/validation-scheduling.pdf

The Trusted Computing Base of the CompCert Verified Compiler 233

55. Wang, Y., Wilke, P., Shao, Z.: An abstract stack based approach to verified compo-
sitional compilation to machine code. Proc. ACM Program. Lang. 3(POPL) (Jan
2019). https://doi.org/10.1145/3290375

56. Wang, Y., Xu, X., Wilke, P., Shao, Z.: CompCertELF: Verified separate compila-
tion of C programs into ELF object files. Proc. ACM Program. Lang. 4(OOPSLA)
(Nov 2020). https://doi.org/10.1145/3428265

57. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding
bugs in C compilers. In: Programming Language Design and Implemen-
tation (PLDI). pp. 283-294. Association for Computing Machinery (2011).
https://doi.org/10.1145/1993498.1993532

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3290375
https://doi.org/10.1145/3428265
https://doi.org/10.1145/1993498.1993532
http://creativecommons.org/licenses/by/4.0/

q

Check for
updates

View-Based Owicki—Gries Reasoning for
Persistent x86-TSO*

Eleni Vafeiadi Bila'®, Brijesh Dongol!(®)®, Ori Lahav?®, Azalea Raad?
and John Wickerson?®

)

1 University of Surrey, Guildford, UK b.dongol@surrey.ac.uk
2 Tel Aviv University, Tel Aviv, Israel
3 Imperial College London, London, UK

Abstract. The rise of persistent memory is disrupting computing to
its core. Our work aims to help programmers navigate this brave new
world by providing a program logic for reasoning about x86 code that
uses low-level operations such as memory accesses and fences, as well as
persistency primitives such as flushes. Our logic, PIEROGI, benefits from a
simple underlying operational semantics based on views, is able to handle
optimised flush operations, and is mechanised in the Isabelle/HOL proof
assistant. We detail the proof rules of PIEROGI and prove them sound.
We also show how PIEROGI can be used to reason about a range of
challenging single- and multi-threaded persistent programs.

Keywords: Persistent memory, x86-TSO, Owicki-Gries, Isabelle/HOL, verifi-
cation

1 Introduction

In our era of big data, the long-established boundary between ‘memory’ and
‘storage’ is increasingly blurred. Persistent memory is a technology that sits in
both camps, promising both the durability of disks and data access times similar
to those of DRAM. Embracing this technology requires rethinking our decades-
old programming paradigms. As data held in memory is no longer wiped after a
system restart, there is an opportunity to write persistent programs — programs
that can recover their progress and continue computing even after a crash.
However, writing persistent programs is extremely challenging, as it requires
the programmer to keep track of which memory writes have become persistent,

* Vafeiadi Bila is supported by VeTSS. Dongol is supported by EPSRC grants
EP/V038915/1, EP/R032556/1, EP/R025134/2 and ARC Discovery Grant
DP190102142. Lahav is supported by the Israel Science Foundation (grant 1566/18),
by the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement no. 851811), and by the Alon
Young Faculty Fellowship. Raad is supported by a UKRI Future Leaders Fellowship
[grant number MR /V024299/1]. Wickerson is supported by an EPSRC Programme
Grant (EP/R006865/1).

© The Author(s) 2022
I. Sergey (Ed.): ESOP 2022, LNCS 13240, pp. 234-261, 2022.
https://doi.org/10.1007/978-3-030-99336-8_9

http://orcid.org/0000-0003-3399-0736
http://orcid.org/0000-0003-0446-3507
http://orcid.org/0000-0003-4305-6998
http://orcid.org/0000-0002-2319-3242
http://orcid.org/0000-0001-6735-5533
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99336-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-99336-8_9

View-Based Owicki-Gries Reasoning for Persistent x86-TSO 235

and which have not. This is further complicated in a multi-threaded setting by
the intricate interplay between the rules of memory persistency (which determine
the order in which writes become persistent) and those of memory consistency
(which determine what data can be observed by which threads).

To address this difficulty, we provide a foundation for persistent program-
ming. We develop a program logic, PIEROGI, for reasoning about x86 code that
uses low-level operations such as memory accesses and fences, as well as per-
sistency primitives such as flushes. We demonstrate the utility of PIEROGI by
using it to reason about a range of challenging single- and multi-threaded per-
sistent programs, including some that demonstrate the subtle interplay between
optimised flush (flush,p;) and store fence (sfence) instructions. Using the Is-
abelle/HOL proof assistant, we have mechanised the PIEROGI rules and proved
them sound with respect to an operational semantics for x86 persistency [9]. One
benefit of our Isabelle/HOL formalisation is that PIEROGI is already partially au-
tomated: once the user has produced a proof outline (i.e. annotated each instruc-
tion with a postcondition), they can simply use Isabelle/HOL’s sledgehammer,
which automatically decides which axioms and rules of the proof system need
invoking to verify the whole program. Our mechanisation, which includes all the
example programs discussed in this paper, is available as auxiliary material [4,5].
State of the art To our knowledge, the only program logic for persistent
programs is POG (Persistent Owicki—Gries) [31]. As with P1ErOGI, POG en-
ables reasoning about persistent x86 programs and is based on the Owicki—Gries
method [30]. However, unlike PIEROGI, POG is not mechanised in a proof as-
sistant, and does not support optimised flush (flush,py) instructions. Optimised
flush instructions are an important persistency primitive as they are considerably
faster than ordinary flush instructions. Indeed, Intel’s experiments on their Sky-
lake microarchitecture indicate that they can be nine times faster when applied
to buffers that hold tens of kilobytes of data [19, p. 289], and hence programmers
are impelled, “If flush,, is available, use flush,p; over flush.” However, flush,
is a tricky instruction for programmers and program logic designers alike: com-
pared to flush, flush,,, can be reordered with more instructions under x86.

PIEROGI can reason efficiently about x86 persistency (including flushgp in-
structions) thanks to two key recent advances: 1) Px86yiew [9], the view-based op-
erational semantics of x86 persistency; and 2) the C11 Owicki-Gries logic [11-13]
to reason about view-based operational semantics, which we adapt to Px86icw-

Our contributions 1) We present a program logic, called PIEROGI, for reason-
ing about persistent x86 programs. 2) We mechanise (and partially automate)
PIEROGI in Isabelle/HOL, and prove it sound relative to an established opera-
tional semantics for x86 persistency. 3) We demonstrate the utility of PIEROGI
by using it to verify several idiomatic persistent x86 programs.

Outline We begin with an overview of memory consistency and persistency
in x86 and provide an example-driven account of PIEROGI reasoning (§2). We
describe the assertion language and proof rules of PIEROGI in §3, and verify a se-
lection of programs using PIEROGI in §4. We present the view-based operational
semantics of x86 persistency and prove the soundness of PIEROGI in §5.

236 E. Vafeiadi Bila, B. Dongol, O. Lahav, A. Raad and J. Wickerson

Auxiliary material Additional examples as well as the proofs of theorems
stated in the paper are given in the accompanying technical appendix [5]. Our
Isabelle/HOL mechanisation is available as auxiliary material [4].

2 Overview and Motivation

Recent operational models for weak memory use views to capture relaxed be-
haviours of concurrent programs [9, 11,21, 22], where the memory records the
entire history of writes that have taken place thus far. This way, different threads
can have different subsets of these writes (i.e. different views) visible to them. Be-
low, we review Px86yiew, a view-based operational semantics for x86 persistency
(§2.1); we then describe PIEROGI (§2.2) using a series of running examples.

2.1 Px86,icw at a Glance

In the literature of concurrency semantics, consistency models describe the per-
mitted behaviours of programs by constraining the volatile memory order, i.e.
the order in which memory writes are made visible to other threads, while per-
sistency models describe the permitted behaviours of programs upon recovering
from a crash (e.g. a power failure) by defining the persistent memory order, i.e.
the order in which writes are committed to persistent memory. To distinguish
between the two, memory stores are differentiated from memory persists: the
former denotes the process of making a write visible to other threads, whilst the
latter denotes the process of committing writes to persistent memory (durably).

Px86,;0, Consistency The consistency semantics of Px86iew is that of the
well-known TSO (total store ordering) [36] model, where later (in program or-
der) reads can be reordered before earlier writes on different locations. This is
illustrated in the store buffering (SB) example below (left):

store z 1; store y 1; store x 42; a :=load y;
a:=loady b:=loadz (SB) store y 7 b:=loadz (MP)
a=0Ab=0:V a=TANb=0:X

Specifically, assuming x =y =0 initially, since a :=load y (resp. b :=load x) can
be reordered before store = 1 (resp. store y 1), it is possible to observe the weak
behaviour a=0Ab=0. A well-known way of modelling such reorderings in TSO
is through store buffers: when a thread T executes a write store x v, its effects
are not immediately made visible to other threads; rather they are delayed in a
thread-local (store) buffer only visible to 7, and propagated to the memory at
a later time, whereby they become visible to other threads. For instance, when
store z 1 and store y 1 are delayed in the respective thread buffers (and thus
not visible to one another), then a :=load y and b :=load x may both read 0.
Cho et al. [9] capture this by associating each thread T with a coherence view
(also called a thread-observable view), describing the writes observable by 7.
Distinct threads may have different coherence views. For instance, after executing
store z 1 and store y 1, the coherence view of the left thread may include

View-Based Owicki-Gries Reasoning for Persistent x86-TSO 237

store z 1 and not store y 1, while that of the right may include store y 1 and
not store x 1. This way, a :=load y (resp. b :=load x) may read the initial value
0, as its coherence view does not include store y 1 (resp. store z 1).

After SC (sequential consistency) [27], TSO is one of the strongest consistency
models and supports synchronisation patterns such as message passing, as shown
in MP above, where a = 7 A b = 0 cannot be observed. Specifically, (assuming
x=y=0 initially) if the right thread reads 7 from y (written by the left thread),
then the left thread passes a message to the right. Under TSO, message passing
ensures that the instruction writing the message and all those ordered before it
(e.g. store z 42;store y 7) are executed (ordered) before the instruction reading
it (e.g. a :=loady). As such, since b :=load x is executed after a :=loady, if
a=T (i.e. store x 42 is executed before a :=load y), then b=42.

Px86 ;e Persistency Cho et al. [9] recently developed the Px86yicy, model,
a view-based description of the Intel-x86 persistency semantics, which follows
a buffered, relazed persistency model. Under a buffered model, memory persists
occur asynchronously [10]: they are buffered in a queue to be committed to persis-
tent memory at a future time. This way, persists occur after their corresponding
stores and as prescribed by the persistency semantics, while allowing the execu-
tion to proceed ahead of persists. As such, after recovering from a crash, only
a prefiz of the persistent memory order may have persisted. (The alternative is
unbuffered persistency in which stores and persists happen simultaneously.)

Under relaxed persistency, the volatile and persistent memory orders may
disagree: the order in which the writes are made visible to other threads may
differ from the order in which they are persisted. (The alternative is strict per-
sistency in which the volatile and persistent memory orders coincide.)

The relaxed and buffered persistency of Px86yiew is shown in Fig. la. If a
crash occurs during (or after) the execution of Fig. la, at crash time either write
may have persisted and thus x,y € {0, 1} upon recovery. Note that the two writes
cannot be reordered under Intel-x86 (TSO) consistency and thus at no point
during the normal (non-crashing) execution of Fig. la is =0,y=1 observable.
Nevertheless, in case of a crash it is possible to observe =0, y=1 after recovery.
That is, due to the relaxed persistency of Px86;ew, the store order (x before y)
is separate from the persist order (y before). More concretely, under Px86.ew
the writes may persist 1) in any order, when they are on distinct locations; or
2) in the volatile memory order, when they are on the same location.*

To afford more control over when pending writes are persisted, Intel-x86
provides explicit persist instructions such as flush x and flush,p; = that can be
used to persist the pending writes on 2.5 This is illustrated in Fig. 1b: executing
flush z persists the earlier write on x (i.e. store z 1) to memory. As such, if

4 Given a cache line (a set of locations), writes on distinct cache lines may persist in
any order, while writes on the same cache line persist in the volatile memory order.
For brevity, we assume that each cache line contains a single location, thus forgoing
the need for cache lines. However, it is straightforward to lift this assumption.

5 Executing flush = or flushepe = persists the pending writes on all locations in the
cache line of x. However, as discussed, we assume cache lines contain single locations.

238 E. Vafeiadi Bila, B. Dongol, O. Lahav, A. Raad and J. Wickerson

store z 1;
store x 1; store x 1; flushope x; |store x 1; || a :=load y;
store x 1; flush z; flushope sfence; flush z; if (a=1)
store y 1 store y 1 store y 1 store y 1 store y 1 store z 1
(a) (b) (c) (d) (e)
b, ye{0,1}| fiy=1 = 2=1| f:x,ye{0,1} | :y=1 = =1 4 2=1 = z=1

Fig. 1: Example Px86yicw programs and possible values after recovery from a
crash (4). In all examples z, y, z are distinct locations in persistent memory
such that x=y=z=0 initially, and a is a (thread-local) register.

the execution of Fig. 1b crashes and upon recovery y=1, then x=1. That is, if
store y 1 has executed and persisted before the crash, then so must the earlier
store z 1;flush z. Note that y=1 = x=1 describes a crash invariant, in that it
holds upon crash recovery regardless of when (i.e. at which program point) the
crash may have occurred. Observe that this crash invariant is guaranteed thanks
to the ordering constraints on flush instructions. Specifically, flush instructions
are ordered with respect to all writes; as such, flush z in Fig. 1b cannot be
reordered with respect to either write, and thus upon recovery y=1 = z=1.

However, instruction reordering means that persist instructions may not exe-
cute at the intended program point and thus not guarantee the intended persist
ordering. Specifically, flush,,; is only ordered with respect to earlier writes on
z, and may be reordered with respect to later writes, as well as earlier writes on
different locations. This is illustrated in Fig. 1c: flushyp, x is not ordered with
respect to store y 1 and may be reordered after it. Therefore, if a crash occurs
after store y 1 has executed and persisted but before flush,,; = has executed,
then it is possible to observe y=1, x=0 on recovery. That is, there is no guarantee
that store z 1 persists before store y 1, despite the intervening flushqp .

In order to prevent such reorderings and to strengthen the ordering con-
straints between flush,p; and later instructions, one can use either fence instruc-
tions, namely sfence (store fence) and mfence (memory fence), or atomic read-
modify-write (RMW) instructions such as compare-and-set (CAS) and fetch-
and-add (FAA). More concretely, sfence, mfence and RMW instructions are
ordered with respect to all (both earlier and later) flush,p, flush and write in-
structions, and can be used to prevent reorderings such as that in Fig. 1c. This
is illustrated in Fig. 1d. Unlike in Fig. 1c, the intervening sfence ensures that
flush,; in Fig. 1d is ordered with respect to store y 1 and cannot be reordered
after it, ensuring that store x 1 persists before store y 1 (i.e. y=1 = z=1 upon
recovery), as in Fig. 1b. Note that replacing sfence in Fig. 1d with mfence or an
RMW yields the same result. Alternatively, one can think of flush,p = executing
asynchronously, in that its effect (persisting) does not take place immediately
upon execution, but rather at a later time. However, upon executing a barrier
instruction (i.e. mfence, sfence or an RMW), execution is blocked until the
effect of earlier flush,; instructions take place; that is, executing such barrier
instructions ensures that earlier flush,,;, behave synchronously (like flush).

View-Based Owicki-Gries Reasoning for Persistent x86-TSO 239

P:{a=b=0AVr € {1,2}.[z], = [y]- = {0}}

Pr:{T¢ [yl2 Aa=0} Q1 {lyl2 C{O. T} A (T € [yl2 = (y, T)[z]2 = {42})}
store z 42; // SP1, Cons a:=loady; // LP;

Py {lai ={42} A7 ¢ [yl2} || Q2: {a€{0, T} A(a=T= [z]2 = {42})}
store y 7; // SP1, Cons b:=load z; // LP1, Cons

Ps : {true} Qs:{a=7=b=142}

Q:{a:7:>b:42}

Fig.2: A PIEROGI proof sketch of message passing (MP), where the // annota-
tion at each step identifies the PIEROGI proof rule (in §3.4) applied, and the
highlighted assertions capture the effects of the preceding instruction.

The example in Fig. le illustrates how message passing can impose persist
orderings on the writes of different threads. (Note that the program in the left
thread of Fig. le is that of Fig. 1b.) As in MP, if a = 1, then store z 1;flush x
is executed before a :=load y (thanks to message passing). Consequently, since
store z 1 is executed after a :=load y when a = 1, we know store z 1;flush x
is executed before store z 1. Therefore, if upon recovery z=1 (i.e. store z 1 has
persisted before the crash), then =1 (store z 1;flush z must have also per-
sisted before the crash). As before, replacing flush x in Fig. le with flush,p z; C
yields the same result upon recovery when C'is an sfence/mfence or an RMW.

2.2 PIEROGI: View-Based Owicki—Gries Reasoning for Px86icw

Sequential Reasoning about Consistency using Views In Fig. 2 we present
a PIEROGI proof sketch of MP. Recall that in order to account for possible write-
read reorderings on Intel-x86 architectures, Px86iey associates each thread 7
with a coherence view, describing the writes visible to 7. To reason about such
thread-observable views, PIEROGI supports assertions of the form [z], = 5,
stating that 7 may read any value in the set S for location z. That is, the
coherence view of 7 for x consists of the writes whose values are those in S.

In the remainder of this article we enumerate the threads in our examples
from left to right; e.g. the left and right threads in Fig. 2 are identified as 1
and 2, respectively. Moreover, we assume the registers of distinct threads have
distinct names. The precondition P in Fig. 2 thus states that both threads may
initially only read 0 for both = and y: Vre{1,2}. [z], =[y], ={0}.

In the case of thread 1, we can weaken P (using the standard rule of conse-
quence of Hoare logic — see Cons in §3) to obtain P;. Upon executing store = 42
(1) we weaken the resulting assertion by dropping the a = 0 conjunct; and
(2) we update the observable view of thread 1 on z to reflect the new value of
x: [z]; = {42}; that is, after executing store x 42, the only value observable
by thread 1 for z is 42. Similarly, after executing store y 7, we could assert
[y]1 = {7}; however, this is not necessary for establishing the final postcondition
@, and we thus simply weaken the postcondition to true (Ps).

240 E. Vafeiadi Bila, B. Dongol, O. Lahav, A. Raad and J. Wickerson

{ly)]” = {0}}
{[y]P = {O}} store = 1; // SPy
store z 1; // SPy {lzl = {1} A [y)" = {0}}
{iwh = {1} A)" = {0} fushop, a; // O,
flush z; // FPy {[m]lz{l} A [x]?:{l} A [y]P:{O}}
{[1]1 ={D A ={1}A[y" = {0}} sfence; // SFP;
store y 1; // SP1 {[w]lz{l} A [xr:{l} A [y]P:{O}}
{leh = (W} A [2]” = {1} A [l = {13} store y 1;)/ SP:
{4 ={1}= " ={1}} {leh={1} A [z]°={1} A [yh={1}}
{4 W ={1}= " ={1}}

Fig. 3: Proof sketches of Fig. 1b (left) and Fig. 1d (right)

Analogously, in the case of thread 2 we weaken P to obtain Qi: [y]2 = {0}
implies [yl € {0,7} and 7 € [y]s = (y,7)[z]2 = {42}. Note that 7 € [y]zs =
(y, "[z]2 = {42} yields a vacuously true implication as [y]2 = {0} and thus
7 & [y]2- The (y, 7)[x]2 denotes a conditional view assertion [11] that describes
how reading a value on one location (y) affects the thread-observable view on a
different location (x). More concretely, (y, 7)[z]s = {42} states that if thread 2
executes a load on y and reads value 7, it subsequently may only observe value
42 for z. This is indeed the essence of message passing in MP: once thread 2
reads 7 from y, it may only read 42 for x thereafter. As such, after executing
the read instruction a:=loady (1) we apply the LP; rule (in Fig. 7) which
simply replaces [y]> with the local register a in which the value of y is read; and
(2) we replace the conditional assertion (y,7)[x]e = {42} with the implication
a =T = [z]s = {42}, stating that if the value read by thread 2 for y (in a) is
7, then its observable view for x is {42}. Similarly, upon executing b :=load x
we simply apply LP; to replace [z]o with the local register b in which the value
of x is read. Lastly, the final postcondition @ is given by the conjunction of the
thread-local postconditions (Ps A Q3).

Concurrent Reasoning and Stability In our description of the PIEROGI
proof sketch in Fig. 2 thus far we focused on sequential (per-thread) reasoning,
ignoring how concurrent threads may affect the validity of assertions at each
program point. Specifically, as in existing concurrent logics [11, 26, 30, 31], we
must ensure that the assertions at each program point are stable under con-
current operations. For instance, to ensure that P; remains stable under the
concurrent operation a :=load y, we require that executing a :=load y on states
satisfying the conjunction of P; and the precondition of a :=loady (i.e. Q1)
not invalidate P;, in that the resulting states continue to satisfy Pp; that is,
{Pl A Ql}a :=load y{Pl} holds. Similarly, we must ensure that P; is stable
under b :=load z, i.e. {P1 A Qg}b :=load x{Pl} holds. Analogously, we must
establish the stability of P, P3, @1, Q2 and @3 under concurrent operations. In
§3 we present syntactic rules that simplify the task of checking stability obliga-
tions. It is then straightforward to show that the assertions in Fig. 2 are stable.

View-Based Owicki-Gries Reasoning for Persistent x86-TSO 241

Reasoning about flush Persistency To reason about the relaxed, buffered
persistency of Px86yiew, Cho et al. [9] introduce persistency views, determining
the possible persisted values for each location; i.e. the values of those writes that
may have persisted to memory. Note that the persistency view determines the
possible values observable upon recovery from a crash. By contrast, the (per-
thread) coherence views determine the observable values during normal (non-
crashing) executions, and have no bearing on the post-crash values.

Analogously, we extend PIEROGI with assertions of the form [z]P = S, stating
that the persistent view for x includes writes whose values are given by S. To
see this, consider the PIEROGI proof sketch of Fig. 1b in Fig. 3 (left). Initially,
y holds 0 in persistent memory: [y]P = {0}. (Note that the precondition could
additionally include [z]; = [y]1 = {0} A [z]P = {0} to denote that initially the
thread may only observe 0 for x and y and that = holds 0 in persistent memory;
however, this is not needed for the proof and we thus forgo it.)

As before, after executing store x 1, the observable value for z is updated, as
denoted by [z]; = {1}. Moreover, after executing flush z, the persisted value for
x is 1, as denoted by [z]” = {1}, by committing (persisting) the observable value
for x (i.e., [z]; = {1}) to memory (see FP; in Fig. 7). Finally, after executing
store y 1, the observable value for y is updated, as denoted by [y]; = {1}.

Crash Invariants Recall that /: y=1 = x=1 in Fig. 1b denotes a crash in-
variant in that it describes the persistent memory upon recover from a crash at
any program point. This is because we have no control over when a crash may
occur. To capture such invariants, in PIEROGI we write quadruples of the form
{P} C {Q}{{é : I}}, where {P} C {Q} denotes a Hoare triple and I denotes
the crash invariant. If C' is a sequential program, I must follow from every as-
sertion (including P and Q) in the proof. For instance, in the proof outline of
Fig. 3 (left) all four assertions imply the invariant [y]? = {1} = [z]° = {1}. We
discuss the meaning of crash invariants for concurrent programs below.
Reasoning about flush,,. Persistency Recall that unlike flush, flush,p
instructions (due to instruction reordering) may behave asynchronously and
their effects may not take place immediately after execution. As such, unlike
for flush z, after executing flush,p we cannot simply copy the observable
view on x to the persistent view on .

To capture the asynchronous nature of flush,y, Cho et al. [9] introduce
yet another set of views, namely the thread-local asynchronous view: the asyn-
chronous view of thread 7 on = describes the values (writes) that will be persisted
at a later time (asynchronously) by 7 upon executing a barrier instruction. That
is, 1) when thread 7 executes flush,p; z, its asynchronous view of z is advanced
to at least its observable view of x; and 2) when 7 executes a barrier (sfence,
mfence or RMW), then its persistent view for each location is advanced to at
least its corresponding asynchronous view. We model this in PIEROGI by 1) set-
ting []? to be a subset of [z], when flush,,; = is executed; and 2) setting [z]P
to be a subset of [z]? (for each location) when a barrier is executed.

This is illustrated in the proof sketch of Fig. 1d in Fig. 3 (right). In particular,
unlike the proof sketch of Fig. 1b in Fig. 3 (left), after executing flush,p, = we

242 E. Vafeiadi Bila, B. Dongol, O. Lahav, A. Raad and J. Wickerson

P:{a=0AVo€ {z,y,2},7 € {1,2}.[0] = [o]° = {0}}

P {[yla = {0} A [2]° = {0} Aa =0} {true}
store x 1; //SPy a :=load y;
Py {[yla ={0} A [2]" = {0} Aa=0A[z]: = {1}} {true}
flush z; // FP1, Cons if (a=1)
Py {[z]" = {1}} {a=1}
store y 1; // SP1, Cons store z 1;
Py {[z]" = {1}} {true}
Q: o) = {1}}

If{e 27 = {1} = [2]” = {1} }}
Fig.4: A PIEROGI proof sketch of Fig. le

cannot simply copy the thread-observable view to the persistent view. Rather,
we copy the thread-observable view [z]; to its asynchronous view and assert
[z]) = {1}; and upon executing the subsequent sfence, we copy the thread-
asynchronous view to the persistent view and assert [z]7 = {1}.

Putting It All Together We next present a PIEROGI proof sketch of Fig. le
in Fig. 4. The proof of the left thread is analogous to that in Fig. 3 (left);
the proof of the right thread is straightforward and applies standard reasoning
principles. The final postcondition @ is obtained by weakening the conjunction
of per-thread postconditions.

Note that the crash invariant I follows from the assertions at each program
point of thread 1 (i.e. P,V P,V P3V Py = I). That is, the crash invariant must
follow from the assertions at all program points of some thread (e.g. thread 1
in Fig. 4). In the case of sequential programs (e.g. in Fig. 3), this amounts to all
program points (of the only executing thread). Intuitively, we must ensure that
the crash invariant holds at every program point regardless of how the underlying
state changes. As the assertions are stable under concurrent operations, it is
thus sufficient to ensure that there exists some thread whose assertions at each
program point imply the crash invariant.

3 The PIEROGI Proof rules and Reasoning Principles

We proceed with a description of our verification framework. As with prior
work [11], the view-based semantics for persistent TSO [9] allows us to use the
standard Owicki—Gries rules [2,30] for compound statements. The main ad-
justment is the introduction of a new specialised assertion language capable of
expressing properties about the different “views” described intuitively in §2. As
such, since view updates are highly non-deterministic, the standard “assignment
axiom” of Hoare Logic (and by extension Owicki—Gries) is no longer applicable.
Moreover, unlike SC, reads in a weak memory setting have a side-effect: their
interaction with the memory location being read causes the view of the executing

View-Based Owicki-Gries Reasoning for Persistent x86-TSO 243

v,u€VALEN z,y,...€Loc a,b,...cREc 7€TmD 2N i,j,k,...cLaB

a,b,... € AUXVAR é € AuxExpu=v|a|ét+é]---
e€Expu=v|alete] - B € BExp :=true | BAB|---
a € AST ::=skip |a:=e|a:=loadz | store z e

| a :=CAS z e e | sfence | mfence | flush z | flushopt
ls € LST =« goto j | if B goto j else to k | (a goto j,d := é)
IT € PrROG £ Tip x LAB — LST pt € PC 2 Tip — LaB

Fig. 5: The PIEROGI domains and programming language

thread to advance. Therefore, we resort to a set of proof rules that describe how
views are modified and manipulated, as formalised by our view-based assertions.

3.1 The P1EROGI Programming Language

We present the programming language in Fig. 5. Atomic statements (in AST)
comprise skip, assignment, memory reads and writes, barrier instructions and
explicit persists. Specifically, a :=¢e evaluates expression e and returns it in
(thread-local) register a; a :=load = reads from memory location = and returns
it in register a; and store x e writes the evaluated value of e into location x. The
a:=CAS x e; eo denotes ‘compare-and-set’ on location z, from the evaluated
value of e; to the evaluated value of es, and sets a to 1 if the CAS succeeds and
to 0, otherwise. Finally, mfence denotes a memory fence, sfence denotes a store
fence, and flush z and flush,,; « denote explicit persist instructions (see §2).

Formally, we model a program IT as a function mapping each pair (7,4) of
thread identifier and label to the labelled statement (in LST) to be executed. A
labelled statement may be 1) a plain statement of the form « goto j, comprising
an atomic statement a to be executed and the label j of the next statement;
2) a conditional statement of the form if B goto j else to k to accommodate
branching, which proceeds to label j if B holds and to k, otherwise; or 3) a state-
ment with an auxiliary update (a goto j,a := é), which behaves as « goto j,
but in addition (in the same atomic step) updates the value of the auxiliary
variable a with the auxiliary expression é. It is well known that Owicki-Gries
proofs require auxiliary variables to record the history of executions to differ-
entiate states that would otherwise not be distinguishable [30]. We show how
auxiliary variables are used in PIEROGI in the flush buffering example (§4).

We track the control flow within each thread via the program counter func-
tion, pc, recording the program counter of each thread. We assume a designated
label, « € LAB, representing the initial label; i.e. each thread begins execu-
tion with pe(7) = ¢. Similarly, (€ LAB represents the final label. Moreover,
if pe(r) = i at the current execution step, then: 1) when I1(7,i) = a goto j
or II(7,i) = (o goto j,a := &), then pe(r) = j at the next step; 2) when
II(7,i)=if B goto j else to k at the current step, then if B holds in the current
state, then pt(7)=7 at the next step; otherwise pe(7) =k at the next step.

244 E. Vafeiadi Bila, B. Dongol, O. Lahav, A. Raad and J. Wickerson

Ezxample 1. The program in Fig. 4, assuming that the left thread has id 1, is
given as follows. The formalisation of the right thread is omitted, but is similar.
e (1,) — store z 1 goto 2,(1,2) — flush z goto 3,
(1,3) — store y 1 goto (, ...

3.2 View-Based Expressions

As with prior work on the RC11 model [21], we interpret PIEROGI expressions
directly over a view-based state. We use expressions tailored for the view-based
Px86yiew model [9], which allow us to express relationships between different
system components, including the persistent memory.

Our expressions fall into one of four categories: 1) current view expressions,
which describe the current views of different system components (e.g. the per-
sistent view); 2) conditional view expressions [11], which describe a view on a
location after reading a particular value on a different location; 3) last view ex-
pressions, which hold if a component is viewing the last write to a location; and
4) write-count expressions, which describe the number of writes to a location.

Our current view expressions comprise [z],, [z]P and [z]2, as described below;
as shown in §2, each of these expressions describes a set of possible values.

[z]; denotes the coherence view of thread 7: the set of values 7 may read for z.

[z]P denotes the persistent memory view: the set of values that z may hold in
(persistent) memory.

[z]} denotes the asynchronous memory view of thread 7: the set of values that
can be persisted after a barrier instruction (sfence/mfence/RMW) is ex-
ecuted by 7 (see rule OP in Fig. 7). Asynchronous views are updated after
executing a flush,,:; however, unlike persistent memory views, the values
in asynchronous views are not guaranteed to be persisted until a subsequent
barrier is executed by the same thread.

Conditional view expressions are of the form (z,v)[y],, as described below.
As discussed in §2, conditional expressions capture the crux of message passing.

(x,v)[y], returns a set of values that 7 may read for y after it reads value v
for . In particular, if (x,v)[y], = S holds for some set S and 7 executes
a :=load z, then in the state immediately after the load, if a = v, then
[y]r € S (see LPy in Fig. 7).

Last-view expressions (cf. [16]) are boolean-valued and hold if a particular
component is synchronised (i.e. observes the latest value) on the given location.
Such expressions provide determinism guarantees on load and flush. For in-
stance if the view of 7 is the last write on z, then a read from z by 7 will load
this last value. Last-view expressions comprise [[2]),; and [[«]):

[z]l- holds iff 7 is currently viewing the last write to x. Thus, for example, if
]l holds, then a load from x by 7 reads the last write to x. Note that
unlike architectural operational models [36], in the view model [9], writes are
visible to all threads as soon as they occur.

View-Based Owicki-Gries Reasoning for Persistent x86-TSO 245

T2]F holds iff a flush of = by 7 is guaranteed to flush the last write to = to
persistent memory.

Lastly, write-count expressions are of the form |z, v|, as described below. Such
assertions are useful for inferring view expressions from known facts about the
number of writes in the system with a particular value (see Fig. 11).

|z, v| returns the number of writes to x with value v. If |2, v| holds and T writes
to y # x, or writes a value u # v, then |x,v| continues to hold afterwards.

3.3 Owicki—Gries Reasoning

We present the PIEROGI proof system, as an extension of Hoare Logic with
Owicki—Gries reasoning to account for concurrency. The main differences are that
1) our program annotations contain view-based assertions that allow reasoning
about weak and persistent memory behaviours; and 2) we define a crash invariant
to describe the recoverable state of the program after a crash. We proceed by first
defining proof outlines, then providing syntactic rules for proving their validity.
Our proof rules are syntactic, and thus can be understood and used without
having to understand the details of the underlying Px86ew model.

We let ASSERTION;, be the set of assertions (i.e. predicates over Px86yicw
states) that use view-based expressions (§3.2). A crash invariant, I € INV C
ASSERTIONgy, is defined over persistent views only, i.e. it only comprises the
persistent view expressions of the form [z]”. We model program annotations via
an annotation function, ann € ANN = TID x LAB — ASSERTION,,, associating
each program point (7,4) with its associated assertion. A proof outline is a tuple
(in, ann, I, fin), where in, fin € ASSERTION, are the initial and final assertions.

Example 2. The annotation of the proof in Fig. 4 is given by ann, with the
mappings of thread 1 as shown below; the mappings of thread 2 are similar.

ann £ {(1,¢) — Pi,(1,2) = P2, (1,3) = P, (1,{) = Py,... }

Additionally, we have in = a = 0 AVo € {z,y,2},7 € {1,2}.[0]; = [0o]° = {0},
fin 2 [2]” = {1} and I £ []° = {1} = [2]" = {1}.

Definition 1 (Valid proof outline). A proof outline (in, ann, I, fin) is valid
for a program I iff the following hold:

Initialisation. For all 7 € TID, in = ann(T,¢).
Finalisation. (A cp,, ann(r,C)) = fin.
Local correctness. For all 7 € TID and i € LAB, either:
— II(7,i) = a goto j and {ann(7,i)} o {ann(r,j)}; or
— II(r,i) = if B goto j else to k and both ann(r,i) A B = ann(r,j) and
ann(7,1) A =B = ann(7, k) hold; or
— II(1,i) = (o goto j,a :=é) and {ann(r,i)} o {ann(r,j)é¢/a]}.
Stability. For all 7, 75 € TID such that 7 # 75 and 41,4, € LAB:
— if II(7y,41) = o goto j, then {ann(r2,i2) A ann(ry,i1)} o {ann(rs,i2) };

246 E. Vafeiadi Bila, B. Dongol, O. Lahav, A. Raad and J. Wickerson

— if II(11,41) = (@ goto j,a := €), then
{ann(ra,i2) A ann(r,i1)} o {ann(r,iz)[é/a]}.
Persistence. There exists 7 € TID such that for all i € LaB, ann(r,i) = 1.

Intuitively, Initialisation (resp. Finalisation) ensures that the initial (resp. final)
assertion of each thread holds at the beginning (resp. end); Local correctness
establishes annotation validity for each thread; Stability ensures that each (local)
thread annotation is interference-free under the execution of other threads [30];
and Persistence ensures that the crash invariant holds at every program point
for some thread.

Example 3. Given the program in Example 1 and its annotation in Example 2,
both Initialisation and Finalisation clearly hold. Moreover, Persistence holds for
thread 1. For Local correctness of thread 1, we must prove (1)—(3) below; Local
correctness of thread 2 is similar.

{P,} store z 1 { P} (1)

{Ps} store y 1 { P4} (3)

For Stability of P (the precondition of store x 1 in thread 1) against thread 2
we must prove:

{Pi} a:=loady { P} (4)

{PiANa=1} storez1 {P} (5)

Stability of other assertions (i.e., P,—P;) is similar. We prove (1)—(5) in §3.4.

3.4 PIEROGI Proof rules

One of the main benefits of PIEROGI is the ability to perform proofs at a high
level of abstraction. In this section, we provide the set of proof rules that we use.
The annotation within a proof outline is, in essence, an invariant mapping each
program location to an assertion that holds at the program location. Thus, we
prove local correctness by checking that each atomic step of a thread establishes
the assertions in that thread. Similarly, we check stability by checking each
assertion in one thread against each atomic step of the other threads. To enable
proof abstraction, we introduce a set of proof rules that describe the interaction
between the assertions from §3.2 and the atomic program steps. We will use
the standard decomposition rules from Hoare Logic to reduce proof outlines and
enable our rules over atomic steps to be applied.

Standard Decomposition Rules The standard decomposition rules we use
are given in Fig. 6, which allow one to weaken preconditions and strengthen
postconditions, and decompose conjunctions and disjunctions.

Rules for Atomic Statements and View-Based Assertions Weak and
persistent memory models (e.g. Px86) are inherently non-deterministic. More-
over in contrast to sequential consistent, in view-based operational semantics

View-Based Owicki-Gries Reasoning for Persistent x86-TSO 247

PP=P Q=@ {P1} I {Q1} {P1} T {Q1}
e PHIAQ (@ (P 0Qi)
{P'} 1 {Q'} {P1 AP} 1T {Q1 A Q2} {PrVv P} 1T {Q1V Q2}

Fig. 6: Standard decomposition rules of PIEROGI

Precondition Statement Postcondition Const. | Ref.

{lz] = S} {aeSA[z], CS} LP;

{ue [z]r = (x, u)[y =S} a:=loadz {a =u= [y]T c S} LP,
{lz,ul = 1A [zl Alz] = {u}} {a=u=[z]; = {u}} LPs3
{true} {lz]- = {v}} SPy

{[‘Z'}TIIS} {[x}TI:SU{U}} T#T’ SP,

{[z]} =5}

{[x]P S} store = v
{lyl- =S Av ¢zl }
{true}
{|x,v\:n}

[2h = SU {o}} 5Py
[x]" = Su{v}} SPs
z,v)[yl,» C S} T#7 |SPs
Tzl A =75} SPs
x v\ =n-+ 1} SP7

—

AR A A A

|
{lz], = S} [P CSA[z]? C S} FP;
{[x]P S} flush = {[z]° C S} FP,
{2l A 2] = {u}A [E2LS; [2]° = {u}} FPs
{[z], = SV [z]} = S} flushey z {[z]} C S} oP
{=f=5Sv [x]P S} sfence {[z]" C S} SFP

Fig. 7: Selected proof rules for atomic statements executed by thread 7

(such as Px86yicyw) instructions such as a :=load x have may a side-effect since
they may update the view of the thread performing the load (c¢f. [11]). There-
fore, unlike Hoare Logic, which contains a single rule for assignment, we have a
set of rules for atomic statements, describing their interaction with view-based
assertions. Each of the rules in this section has been proved sound with respect
to the view-based semantics encoded in Isabelle/HOL.

A selection of these rules for the atomic statements is given in Fig. 7, where
the statement is assumed to be executed by thread 7. The first column contains
the pre/post condition triple, the second any additional constraints and the
third, labels that we use to refer to the rules in our descriptions below. Unless
explicitly mentioned as a constraint, we do not assume that threads, locations
and values are distinct; e.g. rule LP3 (referring to 7 and 7’) holds regardless of
whether 7 = 7/ or not.

The rules in Fig. 7 provide high-level insights into the low-level semantics of
Px86yiew without having to understand the operational details. The LP; rules
are for statement a :=load x. Rule LP; states that if 7’s view of z is the set
of values S, then in the post state a is an element of S and moreover 7’s view
of x is a subset of S (since 7’s view may have shifted). By LP;, provided the
conditional view of 7 on y (with condition z =) is S, if the load returns value
u, then the view of 7 is shifted so that [y], € S. We only have [y}, C S in the
postcondition because there may be multiple writes to with value u; reading x

248 E. Vafeiadi Bila, B. Dongol, O. Lahav, A. Raad and J. Wickerson

read may shift the view to the latter write, thus reducing the set of values that
7 can read for y. LP3 describes conditions for a deterministic load by thread 7.
The precondition assumes that there is only one write to x with value u, that
some thread 7/ sees the last write to z with value u. Then, if 7 reads u, its view
of x is also constrained to just the set containing u.

The store rules, SP;, reflect that fact that a new write modifies the views of
the other threads as well as the persistent memory and asynchronous views. The
first four rules describe the interaction of a store by thread 7 with current view
assertions. By SPjp, the store ensures that the current view of 7 is solely the
value v written by 7. This is because in Px86iew, new writes are introduced by
the executing thread, 7, with a maximal timestamp (see STORE rule in Fig. 12),
and 7’s view is updated to this new write. SP,, SP3 and SP4 are similar, and
assuming that the view (of another thread, persistent memory and asynchronous
view, respectively) in the pre-state is S, shows that the view in the post state
is S U {v}. Rule SPs allows one to introduce a conditional observation assertion
(x,v)[y]~ where 7" # 7. The pre-state of SPs assumes that 7’s view of y is
the set S, and that 7/ cannot view value v for y. Rule SPg introduces last-view
assertions for 7 after T performs a write to x, and finally SP; states that the
number of writes to x with value v increases by 1 after executing store x v.

Rules FP; describe the effect of flush x on the state. FP; states that, provided
that the current view of 7 for x is the set of values S, after executing flush z, we
are guaranteed that both the persistent view and asynchronous view of 7 for x are
subsets of S. We obtain a subset in the post state since the Px86ew semantics
potentially moves the persistent and asynchronous views forward. Similarly, by
FP, if the current persistent view of = is S, then after executing flush = the
persistent view will be a subset of S. Finally, FP3 provides a mechanism for
establishing a deterministic persistent view u for xz. The precondition assumes
that some thread’s view of x is the last write with value u and that 7’s view is
such that the flush is guaranted to flush to this last write to z.

Rule OP describes how the asynchronous view of 7 in the postcondition of
flush,, x is related to the current view of 7 and the asynchronous view in the
precondition. Finally, rule SFP describes the relationship between the persistent
view in the postcondition and the asynchronous view and persistent view in the
precondition for an sfence instruction.

Our Isabelle/HOL development contains further rules for the other instruc-
tions, including mfence and cas, which we omit here for space reasons. In
addition, we prove the stability of several assertions (see Fig. 8 for a selection).
An assertion P is stable over a statement « executed by 7 iff {P} o {P} holds.

Well-formedness The final major aspect of our framework is a well-formedness
condition that describes the set of reachable states in the Px86,;cw Semantics.
The condition is expressed as an invariant of the semantics: it holds initially, and
is stable under every possible transition of Px86iew. In fact, the rules in Figs. 7
and 8 are proved with respect to this well-formedness condition.

The majority of the well-formedness constraints are straightforward, e.g. de-
scribing the relationship between the views of different components. The most

View-Based Owicki-Gries Reasoning for Persistent x86-TSO 249

Statement |Stable Assert.|Const.|Ref. || Statement |Stable Assert.|Const. |Ref.
{[y}T’ :S} T # 7 |LS1 {[y]T’ = S} z#y |WS;
{ly]” = S} LS> {yP =S} |z#y |WS:
a:=load x {[?J}ﬁ/ — S} LS {[y]/:, — S} z#y |WSs
a=k LS, || storezv Ea =k WS,
”yﬂT/ LSS ”yﬂT/ x 7& Yy WSS
Tl = 5] FS) W d |ezy |wse
{lyf =8} |z#y |FS2 {ly,v'| =n} |z #yV|WS;
flush « {TyT-} FSs v#
ES; FSs {l], = 5} 051
{‘y7fu‘ = TL} FS5 ﬂuShopt x §|[y]P |: S}} OS2
z]; =S SFS; Yy, vl =n 0Ss3
sfence Hm! v = n}} SFS;

Fig. 8: Selection of stable assertions for atomic statements executed by thread 7

important component of the well-formedness condition is a non-emptiness con-
dition on views, which states that [z], # 0 A [#] # 0 A [2]? # 0. For instance, a
consequence of this condition is that, in combination with LP;, we have:

{lv)- ={v}} a:=loadz {[y). = {v}} (6)

Worked Example We now return to the proof obligations from Example 3 and
demonstrate how they can be discharged using the proof rules described above.
For Local correctness, condition (1) holds by Conj (from Fig. 6) together with
stability rules WSy, WS, and WS, (from Fig. 8) which establish the first three
conjunctions in the postcondition, and SP; from Fig. 7, which establishes the
final conjunction. Condition (2) holds by FP; in Fig. 7 together with Cons (from
Fig. 6). Finally, condition (3) holds by WS, (from Fig. 8).

Both the Stability conditions (4) and (5) from Example 3 hold by the stability
rules in Fig. 8 together with Cons and Conj (from Fig. 6). In particular, for (4),
we use rules LSy, LS, and LSy, and for (5), we use WSy, WS, and WS,.

4 Examples

In this section we present a selection of programs that we have verified in Is-
abelle/HOL. These examples highlight specific aspects of Px86, in particular, the
interaction between flush,,; and sfence, as well as aspects of our view-based
assertion language that simplifies verification.

Optimised Message Passing We start by considering a variant of Fig. le,
which contains two optimisations. First, we notice that flushing of the write to x
in thread 1 can be moved to thread 2 since the write to z is guarded by whether
or not thread 2 reads the flag y. Second, it is possible to replace the flush by a
more optimised flush,y; followed by an sfence. We confirm correctness of these
optimisations via the proof outline in Fig. 9. The optimised message passing
in Fig. 9 ensures the same persistent invariant as Fig. le. However, the way in

250 E. Vafeiadi Bila, B. Dongol, O. Lahav, A. Raad and J. Wickerson

{Vo € {z,y,2},7 € {1,2}.[0]- = [0]" = [0]? = {0}

(1€ bl = (D)l = (1) Ayl € 0.1} 1" = (01}
a :=l1oady;
- {(a=1= [zl = (1) A[=]" = {0}
A Jirazo
{[y]z :{b}A } f{JSE];— {1} A [z _{0}}
St[ﬁé Zl{;l} {f[»ﬂ? = {17} Al2]” = {0}}
{true} {[CL‘]P :’ {1}}
store z 1;
{l21° = {0} v [2]” = {1}}

{[z —{0}\/ —{1}}
{¢ " =)= :L]P—{1}}}

Fig. 9: Proof outline for optimised message passing

which this is established differs. In particular, in Fig. le, the persistent invariant
holds due to thread 1, whereas in Fig. 9 it holds due to thread 2.

With respect to the persistent invariant, the most important sequence of
steps takes place in thread 2 if it reads 1 for y. Note that by the conditional
view assertion in the precondition of a :=load y, thread 2 is guaranteed to read
1 for z after reading 1 for y. Thus, if the test of if statement succeeds, then
thread 2 must see 1 for . This view is translated into an asynchronous view
after the flush,y, is executed, and then to the persistent view after executing
sfence. Note that until this occurs, we can guarantee that [2]7 = {0}, which
trivially guarantees the persistent invariant.

Flush Buffering Our next example is a variation of store buffering (SB) and is
used to highlight how writes by different threads on different locations interact
with flushes. Here, thread 1 writes to x and flushes y, while thread 2 writes to y
then flushes x.% The writes to w and z are used to witness whether the flushes in
both threads have occurred. The persistent invariant states that, if both w and
z hold 1 in persistent memory, then either = or y has the new value (i.e. 1) in
persistent memory. If both threads perform their flush operations, then at least
one must flush value 1 since a flush cannot be reordered with a store.

Although simple to state, the proof is non-trivial since it requires careful
analysis of the order in which the stores to # and y occur. In the semantics of
Cho et al. [9], the flush corresponding to the second store instruction executed
synchronises with writes to all locations. Thus, for example, if thread 1’s store to
x is executed after thread 2’s store to y, then the subsequent flush in thread 1
is guaranteed to flush the new write to y.

The above intuition requires reasoning about the order in which operations
occur. To facilitate this, we use auxiliary variables @ and b to record the order
in which the writes to = and y occur; @ = 1 iff the write to x occurs before the

6 Note that the flush operations here are analogous to the load instructions in SB.

View-Based Owicki-Gries Reasoning for Persistent x86-TSO 251

{VO €{w,z,y, 2}, 7 €{1,2}. [OJT = [O}P = {0}}

(a,b=0,0A[z]" = {0}) v (@,b=0,0 A [w]” = {0}) v
(- WW“{}) (= o)
2 = A [w]? = {0 z]1 = {1} A [2]F = {0
(store z 1,d := b+ 1); (store y 1,b:=a+1);
a=1Abe{0,2}N b=1Aa€{0,2} A
(([] :{O}v[mr’:{l})v (([wr’f{oww f{m)
(a,i:z ATy A) (a,i):l,mﬁxﬂlA
A\l = {1} 1 Tyl Alw® = {0}) I[lxh = {1} ATelE Al2] = {0}
ush y; ush z;
a=1Abeg{0,2} A b=1Aa€{0,2} A
{((L] ={0}v[a:]P—{1}))>v} {(([] —{O}V[y]P—{l})) }
(a, =1271A[y} ={1}) (ab—ll 24 [2]7 = {1})
store w 1; store 2
a:mi)e{o 2} A b=1Aa€{0,2} A
{ ([21° ={0}v[a:]”—{1}))v} {((H —{O}V[y]”—{l})) }
(4,6 =2,1A[y" = {1}) (a,b=1,2A[z]" ={1})

{(a 13—172A[I]P={1})V(&75=2,1/\[y]P={1})}
{6 wl” = AL ={1}= k"= {1} v ={1}}

Fig. 10: Proof outline for flush buffering

write to y, and a = 2 iff the write to x occurs after the write to y. Let us now
consider the precondition of flush y (the reasoning for flush z is symmetric).
There are two disjuncts to consider.

— The first disjunct describes the case in which thread 1 executes its store
before thread 2. From here, there is a danger that the thread 1 can terminate
having flushed 0 for y. However, from this state, thread 2 is guaranteed to
flush 1 for = before setting z to 1, satisfying the persistent invariant, as
described by the second disjunct of each assertion in thread 2.

— The second disjunct describes the case in which thread 1 executes its store
after thread 2. In this case, thread 1 is guaranteed to flush 1 for y, and this
fact is captured by the conjunct [y]l2 Alylo = {1} A[[y]]}, which ensures that
1) thread 2 sees the last write to y; 2) the only value visible for y to thread 2
is 1; and 3) a flush performed by thread 1 is guaranteed to flush the last
write to y. Note that by 1) and 2), we are guaranteed that the last write
to y has value 1. We use these three facts to deduce that [y]” = {1} in the
second disjunct of the postcondition of flush y using rule FP3.

Epoch Persistency In our next example, we demonstrate how writes of dif-
ferent threads on the same location interact with an optimised flush in the same
location, as well as how the ordering of optimised flushes/loads alters the per-
sistency behaviour. The crash invariant of Fig. 11 states that if z and y hold the
value 1 in persistent memory then z has the value 2 in persistent memory.

In order for thread 2 to read value 2 for x, the store of 2 at x must be
performed before the store of 1 and [z]; = {1,2}. Establishing the persistent

252 E. Vafeiadi Bila, B. Dongol, O. Lahav, A. Raad and J. Wickerson

{(vr € {1,2},0 € {z,y,2}.[], = [0 ={0}) Aa= 0}
{l]” = {0} A [2]” = {0} A (|2, 2] € {0,1})}

store x 1;

2]y = [2]a = {1,2} A |2,2| =1 A
{&P]— {ol}igz]”f“i o) A}

{|7a([2|]—06\ 2y = 0) } a :=load z;
zlo =0A [x]1 = \ _ zlo = P ZP:
(([x]2:1/\[ac]1:{0,1})) flo=2= [ah =P AL = {0 AR = {0}

flushopt x;
e =1 A {(a=2= [al} = {21) Ayl = {0} A [P = {0}}
(ﬂzﬂm[azh:{z}A> ife=2) . -
[z]> C {1,2} v {[I]z ={2}A[y]" ={0} A [2]" = {O}}

]2 € {0,1,2} storey L -
(12 = 2}V WP = (0D A 1P = (0}
{1 = {2} v o) = {03}
store z 1;

{lz)" = {2} v[y)" = {0} v [s]” = {0}}
{[2)° = {2} v[y)" = {0} V[s]" = {0} }
{¢ W ={ A" ={1} = [2]" = {2}}}

Fig. 11: Proof outline for epoch persistency

invariant for thread 2 requires reasoning about the view of thread 2 for address
x (i.e. [z]2) after the execution of the instruction a :=load z. Notice here that
a :=load z is ordered with respect to the later flush,p¢ = instruction. Conse-
quently, any impact of the execution of the load on [z]2, will also affect [x]5.
Taking into account the ordering of the writes at the address x, we can conclude
that if thread 2 reads the value 2, it reads the value of the last write at x. This
is expressed with the assertion [[z]]; in the precondition of a :=load z, which
states that the threads 1’s view of x is the last write to x. By rule LP3, if a thread
7’s view of an address x contains only the last write at this address, and the last
value written at this address appears only once at the memory, then if a thread
7 read this value at z, its view of x (i.e. [z],) is guaranteed to contain only the
last written value at x. Consequently, after reading value 2, thread 2’s view of x
contains only the value 2 (i.e. [v]2 = {2}). Execution of flush, = ensures [z]}
(by rule OP). As a result, in the case that the if statement succeeds, after the
execution of the sfence it is guaranteed that the value 2 is persisted at z (i.e.
[z]P = {2}). In the case that the if statement fails, [y]” = {0} must hold, thus
the persistent invariant holds trivially.

5 PIEROGI Soundness

In this section we present the Px86yicw model from [9] (§5.1), formally interpret
our assertions as predicates on states of that model (§5.2), and establish the
soundness of the proposed reasoning technique (§5.3).

View-Based Owicki-Gries Reasoning for Persistent x86-TSO 253

(STORE) (LOAD-INTERNAL)
(ASSIGN) o = store x e a=a:=loadz
a=a:=e v = T.regs(e) Mt] = (x ::11)
v = T.regs(e) M' = M ++ [(z:=v)] T.coh(z) =
T' = T[regs(a) — v] T' = T[coh(z) > |M]] T' = T[regs(a) v]
(M) S (T, M) (M) S (T 0) (T, M) 5 (T, M)
(LOAD-EXTERNAL)
a=a:=loadz regs(a) — v, (SFENCE)
Mt] = (x:=w) T T coh(z) — t, a = sfence
T.coh(z) < t o ViNew U 1, 7 | VeReady U T.maxcoh,
x Q M(t..T.VrNeW} VpReady F>U t o VpCommit F7U T~VpAsync
(T, M) = (T", M) (T, M) = (T, M)
(FLUSH)
a = flush z (FLUSHOPT)
T Vpasyne (Z) —>u T.maxcoh, a = flushop: «
- VpCommit (T) —>1 T.maxcoh T = T'[Vpasync (z) —1 T.coh(z) U T .VpRready]

(T, M) & (T, M) (T, M)y % (T', M)

(PROGRAM-NORMAL) (PROGRA_M'IF) o _
pe(r) =i II(r,i) = a goto j pe(r) =14 II(7,i) = if B goto j else to k
(T'(r), M) = (T, M) sy 3 T(7).regs(B) = true
pe’ = pe[T > 4] T =Tt T'] k T(r).regs(B) = false
(e, T, M,G) = (pt/,T',M',G) (pe, T, M,G) =5 (pt/, T, M,G)

p%’ =pC

(PROGRAM-GHOST)
pe(T) =1 . II(1,1) = (o goto j,a := é)
) (F(r), M) = (T,)

pt’ = pefr > j] T = T[T —T') G' = Gla — G(&)]
(pe, T, M, G) = (', T',M', &)

Fig. 12: Transitions of Px86iew for a program IT

5.1 The Px86,;cww Model

Like previous view-based models, Px86;ew employs a non-standard memory cap-
turing all previously executed writes, alongside so-called “thread views” that
track several position(s) of each thread in that history and enforce limitations
on the ability of the thread to read from and write to the memory. In addition,
the thread views contain the necessary information for determining the possible
contents of the non-volatile memory upon a system crash. Formally, Px86iew’s
memory and thread states are defined as follows.

Definition 2 (Px86yiew’s memory). A memory M € MEMORY is a list of
messages, where each message has the form (z:=wv) for some x € Loc and
v € VAL. We use w.loc and w.val to refer to the two components of a message

254 E. Vafeiadi Bila, B. Dongol, O. Lahav, A. Raad and J. Wickerson

w. We use standard list notations for memories (e.g. My + My for appending
memories, [w] for a singleton memory, and |M| for the length of M). We refer
to indices (starting from 0) in a memory M as timestamps, and denote the t’th
element of M as M[t]. We use U for obtaining the maximum among timestamps
(i.e. t1 Ute = max(t1,t2)), and extend this notation pointwise to functions. We
write &€ M (t3..t1] for the condition Vio < t < t;. M[t].loc # x.

Definition 3 (Px86yicw’s thread states). A thread state T € THREAD is a
record consisting of the following fields: coh : LOC — N, Vinew : N, VpReady @ N,
Vpasyne : LOC — N, and vpcommit : LOC — N. We use standard function/record
update notation (e.g. 77 = T[coh(x) — t] denotes the thread state obtained from
T be modifying the x entry in the coh component of T to t). In addition, —,
is used to incorporate certain timestamps in fields (e.g. T[Vinew —u t] denotes
the thread state obtained from 7T be modifying the vinew component of T to
T.ViNew U t). We denote by T.maxcoh the maximum among the coherence view
timestamps (T.maxcoh = | |, T.coh(z)).

The two components, together with program counters and the “ghost mem-
ory”, are combined in Px86;cy’s machine states as defined next.

Definition 4 (Px86yiew’s machine states). A machine state is a tuple o =
(pe, f, M, G) where pt : TID — LAB is a mapping assigning the next program
label to be executed by each thread, T : TID — THREAD is a mapping assigning
the current thread state to each thread, M € MEMORY is the current memory,
and G : AUXVAR — VAL is storing the current values of the auxiliary variables.
Below we assume that G is extended to expressions é € AUXEXP in a standard
way. We denote the components of a machine state o by ¢.pc, a.f, o.M, and 0.G.
In addition, we denote by o.maxpCommit(x) the maximum among the persistency
view timestamps for location 2 (o.maxpCommit = | |_ U.f(T).vpcommit(x)).

The transitions of Px86yicw are presented in Fig. 12. These closely follow
the model in [9] with minor presentational simplifications. Note, however, that,
for simplicity and following [23], we conservatively assume that writes persist
atomically at the location granularity (representing, e.g. machine words) rather
than at the granularity of the width of a cache line. We refer the interested
reader to [9] for a detailed discussion of the transitions rules in Fig. 12.

The above operational definitions naturally induce a notion of a execution
(or a “run”) of Px86yiew On a certain program I7 starting from some initial state
of the form (A7. ., T, M, G). A system crash might occur at any point during the
execution. Again, following the model of [9], the non-volatile memory (NVM)
is not modeled as a concrete part of the state. Instead, the possible contents of
the NVM can be inferred from the machine state (specifically from the memory
and the Vocommit views of the different threads), as defined next. This definition
is presented as “crash transition” in [9].

Definition 5. A non-volatile memory NVM : LoC — VAL is possible in a state
o if for every x € Loc, there exists some ¢ such that o.M[t] = (z:= NVM (z))
and z & o.M (t..c.maxpCommit(z)].

View-Based Owicki-Gries Reasoning for Persistent x86-TSO 255

5.2 The Semantics of PIEROGI Assertions

We present the formal definitions of the expressions introduced in §3.2 in terms
of Px86iew s machine states.

Current and conditional views When formalising the current and condi-
tional view expressions, we start with auxiliary functions that return the sets of
observable timestamps visible to the components in question, then extract the
values in memory corresponding these timestamps. To facilitate this, we define

Vals(M,TS) £ {M[t].loc | t € TS}
where M € MEMORY and TS is a set of timestamps.

Thread view To define the meaning of the thread view expression, [z],, we use:

TS (0, z,t) 2 {t' | o.M[t'].loc = 2 A 0.T(7).coh(z) < t' A& & 0. M(t'.t]}
TS, (0,2) 2 TSOF (0, 2, 0. T(7) Venew)

TSOF (0, z,t) returns the set of timestamps that are observable from times-
tamp ¢t for thread 7 to read for location z in state o; and TS, (o, z) returns the
set of timestamps that are observable for 7 to read x in o. Note that after in-
stantiating ¢ to 0.T(7) .Vinew in TSOF (0, z, 1), we obtain the premises of the load
rules in Fig. 12. Then, [z], £ \o. Vals(0.M, TS, (0,z)), i.e. is the set of values in
o.M corresponding to the timestamps in TS, (o, x).

Persistent memory view For the persistent memory view expression, [x]"
we use:

)

TSP(0,2) = {t | o.M[t].loc = 2 A x & o.M (t..c.maxpCommit(x)]}
which returns the set of timestamps that are observable to the persistent memory
for 2 in 0. Then, [z]? £ \o. Vals(o.M, TSP (o, x)). Note that the second conjunct

within the definition of TSP(o,) is precisely the condition that links Px86icy
states to NVM states (Definition 5). Given this definition, we have:

Proposition 1. A non-volatile memory NVM : Loc — VAL is possible in a
state o iff NVM (z) € [x] (o) for every x € Loc.

Asynchronous memory view To define the meaning of the asynchronous
memory view, [z]2, we use:
TSA(0,2) 2 {t | o.M[t].loc = & A & & 0. M (£..0.T(T) Vpnsync ()]}

which returns the timestamps of the asynchronous view of thread 7 in location
x and state o. Then, as before, [2]2 £ \o. Vals(o.M, TS? (0, x)).

Conditional view The functions used to define conditional memory view,
(x,v)[y]-, are slightly more sophisticated than those above. We define:

t' | 3 eTS,(o,2). o.M[t].val = v A
TSV (0, z,v) 2 ' =ift = 0.T(7).coh(z) then o.T(T).ViNew
else t LI U.f(r).v,NeW

TSSO (0,2, 0,9) £ [J{TS (0,9, 1) |t € TSV (0,2,0)}

256 E. Vafeiadi Bila, B. Dongol, O. Lahav, A. Raad and J. Wickerson

where TSOV (0, 2, v) returns the set of timestamps that 7 can observe for z with
value v. Assuming ¢ is a timestamp that 7 can observe for x, and the value for x at
t is v, the corresponding timestamp ¢’ that TSOV(a, x, v) returns is 0.7 (7).ViNew if
7’s coherence view for z is ¢, and the maximum of ¢ and 0.7 (T).Vnew, Otherwise.
Given this, TSSO(a, x, v, y) returns the timestamps that 7 can observe for y, from
any timestamp t € TSV (o, x,v). Finally, the set of conditional values is defined
by (x,v)[y], = Ao. Vals(a.M, TSEC (0, 7, v,9)).
Last view assertions We use the following auxiliary definition:

Last(M,z) = | [{t | M[t].loc = z}
which returns the timestamp of the last write to in M. Then, the last view
assertions are given by:

— [[#]l £ {0 | TS, (0,x) = {Last(0.M,z)}}, i.e. T's view of = in o is the last
write to z in o.

— «]F £ {0 | Last(c.M,) < 0.T(7).maxcoh LI o.maxpCommit(z)}, i.e. the max-
imum of 7’s maximum coherence view and the maximum commit view of
(over all threads) is beyond the last write to in o. This means that exe-
cuting a flush x operation in 7 will cause the last write of z to be flushed
(see FLUSH rule in Fig. 12).

Value count Finally, the value count expression is defined as follows:
|z, v] 2 Xo. |{t | o.M[t] = (x:=v)}|

5.3 Soundness of PIEROGI

Given the above building blocks, the soundness of the proposed reasoning tech-
nique is stated as follows.

Theorem 1 (Soundness of PIEROGI). Suppose that a program II has a
valid proof outline {in, ann, I, fin). Let o be a state of Px86,ie that is reachable
in an execution of II from some state oy of the form (At L7T;n;t,J\/.finit,Ginit>
such that oyt € in. Then, the following hold:

1) For every T € TID, we have that o € ann (T, 0.pe(T)).

2) If o.pt(r) = ¢ for every T € TID, then o € fin.

3) Every non-volatile memory NVM that is possible in o salisfies the crash
invariant I.

Finally, it is straightforward to show the soundness of a standard “auxiliary
variable transformation” [30] which removes all auxiliary variables from a pro-
gram IT (translating each command (« goto j,d := é) into « goto j) provided
that the crash invariant and the final assertion do not contain occurrences of
the auxiliary variables. Indeed, it is easy to see that the auxiliary memory G in
the operational semantics in Fig. 12 serves only as an instrumentation, and does
not restrict the possible runs. (Formally, if II’ is obtained from IT by removing
all auxiliary variables and (pe, f, M, G") is reachable in =7 from some initial
state, then (pe, T, M, G) is reachable in =7 from the same state for some G.)

View-Based Owicki-Gries Reasoning for Persistent x86-TSO 257
6 Mechanisation

Perhaps the greatest strength of our development is an integrated Isabelle/HOL
mechanisation providing a fully fledged semi-automated verification tool for
Px86yiew programs. This mechanisation builds on the existing work on Owicki—
Gries for RC11 by Dalvandi et al [11,12] applying it to the Px86;cw semantics.
We start by encoding the operational semantics of Cho et al. [9], followed by the
view-based assertions described in §3.2. Then, we prove correctness of all of the
proof rules for the atomic statements, including those described in §3.4. These
rules can be challenging to prove since they require unfolding of the assertions
and examination of the low-level operational semantics and their effect on the
views of different system components.

Once proved, the rules provided are highly reusable, and are key to making
verification feasible. Specifically, when showing the validity of a proof outline
(Definition 1), Isabelle/HOL generates the necessary proof obligations (after mi-
nor interactions) and automatically finds the set of high-level proof rules needed
to discharge each proof obligation via the built-in sledgehammer tool [6]. This
enables a high degree of experimentation and debugging of proof outlines, includ-
ing the ability to reduce assertion complexity once a proof outline is validated.

The base development (semantics, view-based assertions, and soundness of
proof rules) comprise ~7000 lines of Isabelle/HOL code. With this base devel-
opment in place, each example comprises 200400 lines of code (including the
encoding of the program, the annotations, and the proofs of validity). The entire
development took approximately 3 months of full-time work.

7 Related Work

The soundness of PIEROGI is proven relative to the Px86yiey of Cho et al. [9];
there are however other equivalent models in the literature [1,23,32,34], as well
as other persistency models [33,35]. While the original persistent x86 semantics
has asynchronous explicit persist instructions [34], the underlying model assumed
here is due to Cho et al. [9] with synchronous persist instructions. Nevertheless,
Khyzha and Lahav [23] formally proved that the two alternatives are equivalent
when reasoning about states after crashes (e.g. using our “crash invariants”).
As mentioned in §1, the only existing program logic for persistent programs
is POG |[31], which (as with PIEROGI) is a descendent of Owicki-Gries [30].
PIEROGI goes beyond POG by handling examples that involve flush,y instruc-
tions, which cannot be directly verified using POG. Raad et al. [31] provide a
transformation technique to replace certain patterns of flush,,; and sfence with
flush. Specifically, given a program II that includes flush,; instructions, pro-
vided that IT meets certain conditions, this transformation mechanism rewrites
IT into an equivalent program II’ that uses flush instructions instead, allowing
one to use POG. However, there are three limitations to this strategy: 1) the
rewriting is an external mechanism that requires stepping outside the POG logic;
2) the rewriting is potentially expensive and must be done for every program

258 E. Vafeiadi Bila, B. Dongol, O. Lahav, A. Raad and J. Wickerson

that includes flush,p; and 3) the transformation technique is incomplete in that
not all programs meet the stipulated conditions (e.g. Epoch Persistency 2), and
thus cannot be verified using this technique. PIEROGI has no such limitations, as
we showed in the examples in Section 4. Moreover, POG has no corresponding
mechanisation, and developing a mechanisation that also efficiently handles the
program transformation for flush,¢ instructions would be non-trivial.

The Owicki—Gries method was first applied to non-SC memory consistency by
Lahav et al. [26]. One way that their approach, which targets the release/acquire
memory model, is different from ours is that they aim to use standard SC-like
assertions; in order to retain soundness under a weak memory model, they had
to strengthen the standard stability conditions on proof outlines. Dalvandi et
al. [11,13] took a different approach when designing their Owicki-Gries logic
for the release/acquire fragment of C11: by employing a more expressive, view-
based assertion language, they were able to stick with the standard stability
requirement. In our work, we follow Dalvandi et al.’s approach. However, our
assertions are fine-tuned to cope with the other types of view present in Px86iew,
such as those corresponding to the persistent and the asynchronous views. It is
interesting that some of the principles of view-based reasoning apply to different
memory models, and future work could look at unifying reasoning across models.

Dalvandi et al. [13] have developed a deeper integration of their view-based
logic using the Owicki-Gries encoding of Nipkow and Prensa Nieto [28] in Is-
abelle/HOL. Such an integration would be straightforward for PIEROGI too,
allowing verification to take place without translating programs into a transi-
tion system. This would be much more difficult for POG since Owicki—Gries rules
themselves are different from the standard encoding in Isabelle/HOL, in addition
to the transformation required for flush,; instructions discussed above.

The idea of extending Hoare triples with crash conditions first appeared in
the work of Chen et al. [8]. However, that work supports neither concurrency
nor explicit flushing instructions. Related ideas are found in the works of Ntzik
et al. [29] and Chajed et al. [7]. However, in contrast to PIEROGI, both of these
works 1) assume sequentially consistent memory, as opposed to a weak memory
model such as TSO; 2) assume strict persistency (where store and persist orders
coincide); and 3) assume there is a synchronous flush operation, which is easier
to reason about than the asynchronous flush, operation.

Besides program logics, there have been other recent efforts to help program-
mers reason about persistent programs. For instance, Abdulla et al. [1] have
proven that state-reachability for persistent x86 is decidable, thus opening the
door to automatic verification of persistent programs, and Gorjiara et al. [18]
and Kokologiannakis et al. [25] have developed model checkers for finding bugs
in persistent programs. Recent works have considered durable atomic objects
such as concurrent data structures [17] and transactional memory [3] and their
verification [3, 14, 15|, which have been designed to satisfy conditions such as
durable linearizability [20,24] and durable opacity [3]. These proofs assume per-
sistency under SC; our work provides foundations for extending these proofs to
persistent x86-TSO.

View-Based Owicki-Gries Reasoning for Persistent x86-TSO 259

References

1.

10.

11.

12.

Abdulla, P.A., Atig, M.F., Bouajjani, A., Kumar, K.N., Saivasan, P.: Deciding
reachability under persistent x86-TSO. Proc. ACM Program. Lang. 5(POPL), 1-
32 (2021). https://doi.org/10.1145/3434337

Apt, K.R., de Boer, F.S., Olderog, E.: Verification of Sequential and
Concurrent Programs. Texts in Computer Science, Springer (2009).
https://doi.org/10.1007 /978-1-84882-745-5

Bila, E., Doherty, S., Dongol, B., Derrick, J., Schellhorn, G., Wehrheim, H.: Defin-
ing and verifying durable opacity: Correctness for persistent software transactional
memory. In: Gotsman, A., Sokolova, A. (eds.) FORTE. Lecture Notes in Computer
Science, vol. 12136, pp. 39-58. Springer (2020). https://doi.org/10.1007/978-3-030-
50086-3 3

Bila, EK/., Dongol, B., Lahav, O., Raad, A., Wickerson, J.: Isabelle/HOL files
for "View-Based Owicki-Gries Reasoning for Persistent x86-TSO" (Jan 2022).
https://doi.org/10.6084/m9.figshare.18469103

Bila, E.V., Dongol, B., Lahav, O., Raad, A., Wickerson, J.: View-based Owicki-
Gries reasoning for persistent x86-TSO (extended version) (2022), https://arxiv.
org/abs/2201.05860

Bohme, S., Nipkow, T.: Sledgehammer: Judgement day. In: Giesl, J., Hahnle, R.
(eds.) Automated Reasoning, 5th International Joint Conference, IJCAR 2010,
Edinburgh, UK, July 16-19, 2010. Proceedings. LNCS, vol. 6173, pp. 107-121.
Springer (2010). https://doi.org/10.1007/978-3-642-14203-1 9

Chajed, T., Tassarotti, J., Kaashoek, M.F., Zeldovich, N.: Verifying concurrent,
crash-safe systems with perennial. In: Brecht, T., Williamson, C. (eds.) Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP
2019, Huntsville, ON, Canada, October 27-30, 2019. pp. 243-258. ACM (2019).
https://doi.org/10.1145/3341301.3359632

Chen, H., Ziegler, D., Chajed, T., Chlipala, A., Kaashoek, M.F., Zeldovich, N.:
Using crash hoare logic for certifying the FSCQ file system. In: Miller, E.L., Hand,
S. (eds.) Proceedings of the 25th Symposium on Operating Systems Principles,
SOSP 2015, Monterey, CA, USA, October 4-7, 2015. pp. 18-37. ACM (2015).
https://doi.org/10.1145/2815400.2815402

Cho, K., Lee, S.H., Raad, A., Kang, J.: Revamping hardware persistency models:
view-based and axiomatic persistency models for Intel-x86 and Armv8. In: Freund,
S.N., Yahav, E. (eds.) PLDI "21: 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, Virtual Event, Canada, June
20-25, 2021. pp. 16-31. ACM (2021). https://doi.org/10.1145/3453483.3454027
Condit, J., Nightingale, E.B., Frost, C., Ipek, E., Lee, B., Burger, D., Co-
etzee, D.: Better I/O through byte-addressable, persistent memory. In: Pro-
ceedings of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles. pp. 133-146. SOSP '09, ACM, New York, NY, USA (2009).
https://doi.org/10.1145/1629575.1629589

Dalvandi, S., Doherty, S., Dongol, B., Wehrheim, H.: Owicki-Gries reasoning for
C11 RAR. In: Hirschfeld, R., Pape, T. (eds.) 34th European Conference on Object-
Oriented Programming, ECOOP 2020, November 15-17, 2020, Berlin, Germany
(Virtual Conference). LIPIcs, vol. 166, pp. 11:1-11:26. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik (2020). https://doi.org/10.4230/LIPIcs. ECOOP.2020.11
Dalvandi, S., Doherty, S., Dongol, B., Wehrheim, H.: Owicki-Gries reason-
ing for C11 RAR (artifact). Dagstuhl Artifacts Ser. 6(2), 15:1-15:2 (2020).
https://doi.org/10.4230/DARTS.6.2.15

https://doi.org/10.1145/3434337
https://doi.org/10.1007/978-1-84882-745-5
https://doi.org/10.1007/978-3-030-50086-3_3
https://doi.org/10.1007/978-3-030-50086-3_3
https://doi.org/10.6084/m9.figshare.18469103
https://arxiv.org/abs/2201.05860
https://arxiv.org/abs/2201.05860
https://doi.org/10.1007/978-3-642-14203-1_9
https://doi.org/10.1145/3341301.3359632
https://doi.org/10.1145/2815400.2815402
https://doi.org/10.1145/3453483.3454027
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.4230/LIPIcs.ECOOP.2020.11
https://doi.org/10.4230/DARTS.6.2.15

260

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

E. Vafeiadi Bila, B. Dongol, O. Lahav, A. Raad and J. Wickerson

Dalvandi, S., Dongol, B., Doherty, S., Wehrheim, H.: Integrating Owicki-Gries for
Cl1-style memory models into Isabelle/HOL. J. Autom. Reason. 66(1), 141-171
(2022). https://doi.org/10.1007/s10817-021-09610-2

Derrick, J., Doherty, S., Dongol, B., Schellhorn, G., Wehrheim, H.: Verify-
ing correctness of persistent concurrent data structures. In: ter Beek, M.H.,
Mclver, A., Oliveira, J.N. (eds.) Formal Methods - The Next 30 Years - Third
World Congress, FM 2019, Porto, Portugal, October 7-11, 2019, Proceedings.
Lecture Notes in Computer Science, vol. 11800, pp. 179-195. Springer (2019).
https://doi.org/10.1007,/978-3-030-30942-8 12

Derrick, J., Doherty, S., Dongol, B., Schellhorn, G., Wehrheim, H.:
Verifying correctness of persistent concurrent data structures: a sound
and complete method. Formal Aspects Comput. 33(4-5), 547-573 (2021).
https://doi.org/10.1007/s00165-021-00541-8

Doherty, S., Dongol, B., Wehrheim, H., Derrick, J.: Verifying C11 programs oper-
ationally. In: Hollingsworth, J.K., Keidar, I. (eds.) Proceedings of the 24th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
2019, Washington, DC, USA, February 16-20, 2019. pp. 355-365. ACM (2019).
https://doi.org/10.1145/3293883.3295702

Friedman, M., Herlihy, M., Marathe, V.J., Petrank, E.: A persistent lock-free queue
for non-volatile memory. In: Krall, A., Gross, T.R. (eds.) Proceedings of the 23rd
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP 2018, Vienna, Austria, February 24-28, 2018. pp. 28-40. ACM (2018).
https://doi.org/10.1145/3178487.3178490

Gorjiara, H., Xu, G.H., Demsky, B.: Jaaru: efficiently model checking persistent
memory programs. In: Sherwood, T., Berger, E.D., Kozyrakis, C. (eds.) ASPLOS
’21: 26th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Virtual Event, USA, April 19-23, 2021.
pp. 415-428. ACM (2021). https://doi.org/10.1145/3445814.3446735

Intel Corporation: Intel 64 and IA-32 Architectures Optimization Reference
Manual (2021), https://software.intel.com/content /dam/develop/external /us/en/
documents-tps,/64-ia-32-architectures-optimization-manual.pdf

Izraelevitz, J., Mendes, H., Scott, M.L.: Linearizability of persistent memory ob-
jects under a full-system-crash failure model. In: Gavoille, C., Ilcinkas, D. (eds.)
Distributed Computing - 30th International Symposium, DISC 2016, Paris, France,
September 27-29, 2016. Proceedings. Lecture Notes in Computer Science, vol. 9888,
pp. 313-327. Springer (2016). https://doi.org/10.1007/978-3-662-53426-7 23
Kaiser, J., Dang, H.H., Dreyer, D., Lahav, O., Vafeiadis, V.: Strong logic for weak
memory: Reasoning about release-acquire consistency in Iris. In: ECOOP (2017)
Kang, J., Hur, C., Lahav, O., Vafeiadis, V., Dreyer, D.: A promising semantics
for relaxed-memory concurrency. In: Castagna, G., Gordon, A.D. (eds.) Proceed-
ings of the 44th ACM SIGPLAN Symposium on Principles of Programming Lan-
guages, POPL 2017, Paris, France, January 18-20, 2017. pp. 175-189. ACM (2017).
https://doi.org/10.1145/3009837.3009850

Khyzha, A., Lahav, O.: Taming x86-TSO persistency. Proc. ACM Program. Lang.
5(POPL), 1-29 (2021). https://doi.org/10.1145/3434328

Khyzha, A., Lahav, O.: Abstraction for crash-resilient objects. In: Programming
Languages and Systems. Springer International Publishing, Cham (2022)
Kokologiannakis, M., Kaysin, I., Raad, A., Vafeiadis, V.: Persevere: Persistency
semantics for verification under ext4. Proc. ACM Program. Lang. 5(POPL) (jan
2021). https://doi.org/10.1145/3434324

https://doi.org/10.1007/s10817-021-09610-2
https://doi.org/10.1007/978-3-030-30942-8_12
https://doi.org/10.1007/s00165-021-00541-8
https://doi.org/10.1145/3293883.3295702
https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1145/3445814.3446735
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/64-ia-32-architectures-optimization-manual.pdf
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3434328
https://doi.org/10.1145/3434324

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

View-Based Owicki-Gries Reasoning for Persistent x86-TSO 261

Lahav, O., Vafeiadis, V.: Owicki-Gries reasoning for weak memory models. In:
Halldorsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) Automata,
Languages, and Programming. pp. 311-323. Springer, Berlin, Heidelberg (2015)
Lamport, L.: How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Computers 28(9), 690-691 (Sep 1979).
https://doi.org/10.1109/TC.1979.1675439

Nipkow, T., Prensa Nieto, L.: Owicki/Gries in Isabelle/HOL. In: Finance, J. (ed.)
FASE. Lecture Notes in Computer Science, vol. 1577, pp. 188-203. Springer (1999).
https://doi.org/10.1007/978-3-540-49020-3 13

Ntzik, G., da Rocha Pinto, P., Gardner, P.: Fault-tolerant resource reasoning. In:
Feng, X., Park, S. (eds.) APLAS. Lecture Notes in Computer Science, vol. 9458,
pp. 169-188. Springer (2015). https://doi.org/10.1007/978-3-319-26529-2 10
Owicki, S.S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta
Informatica 6, 319-340 (1976). https://doi.org/10.1007/BF00268134

Raad, A., Lahav, O., Vafeiadis, V.: Persistent Owicki-Gries reasoning: a program
logic for reasoning about persistent programs on Intel-x86. Proc. ACM Program.
Lang. 4(OOPSLA), 151:1-151:28 (2020). https://doi.org/10.1145/3428219

Raad, A., Maranget, L., Vafeiadis, V.. Extending Intel-X86 consistency
and persistency: Formalising the semantics of Intel-X86 memory types and
non-temporal stores. Proc. ACM Program. Lang. 6(POPL) (jan 2022).
https://doi.org/10.1145/3498683

Raad, A., Vafeiadis, V.: Persistence semantics for weak memory: Integrating epoch
persistency with the TSO memory model. Proc. ACM Program. Lang. 2(OOPSLA)
(oct 2018). https://doi.org/10.1145/3276507

Raad, A., Wickerson, J., Neiger, G., Vafeiadis, V.: Persistency semantics of the
Intel-x86 architecture. Proc. ACM Program. Lang. 4(POPL), 11:1-11:31 (2020).
https://doi.org/10.1145,/3371079

Raad, A., Wickerson, J., Vafeiadis, V.: Weak persistency semantics from
the ground wup: Formalising the persistency semantics of ARMv8 and
transactional models. Proc. ACM Program. Lang. 3(OOPSLA) (oct 2019).
https://doi.org/10.1145/3360561

Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: A rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7),
89-97 (Jul 2010). https://doi.org/10.1145/1785414.1785443

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1007/978-3-540-49020-3_13
https://doi.org/10.1007/978-3-319-26529-2_10
https://doi.org/10.1007/BF00268134
https://doi.org/10.1145/3428219
https://doi.org/10.1145/3498683
https://doi.org/10.1145/3276507
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3360561
https://doi.org/10.1145/1785414.1785443
http://creativecommons.org/licenses/by/4.0/

q

Check for

% Abstraction for Crash-Resilient Objects*

Artem Khyzha**® and Ori Lahav (=)

Tel Aviv University, Tel Aviv, Israel
artkhyzha@mail.tau.ac.il and orilahav@tau.ac.il

Abstract. We study abstraction for crash-resilient concurrent objects
using non-volatile memory (NVM). We develop a library-correctness
criterion that is sound for ensuring contextual refinement in this set-
ting, thus allowing clients to reason about library behaviors in terms
of their abstract specifications, and library developers to verify their
implementations against the specifications abstracting away from par-
ticular client programs. As a semantic foundation we employ a recent
NVM model, called Persistent Sequential Consistency, and extend its
language and operational semantics with useful specification constructs.
The proposed correctness criterion accounts for NVM-related interac-
tions between client and library code due to explicit persist instructions,
and for calling policies enforced by libraries. We illustrate our approach
on two implementations and specifications of simple persistent objects
with different prototypical durability guarantees. Our results provide the
first approach to formal compositional reasoning under NVM.

Keywords: Non-volatile memory - Linearizability - Library abstraction

1 Introduction

Non-volatile memory, or NVM for short, is an emerging technology that enables
byte addressable and high performant storage alongside with data persistency
across system crashes. This combination of features allows researchers and prac-
titioners to develop a variety of efficient crash-resilient data structures (see, e.g.,
[14,32]). Recently, NVM has started to become available in commodity architec-
tures of manufacturers such as Intel and ARM [4, 23], and formal (operational
and declarative) models of these systems have been proposed [10,25, 30].
Unfortunately, like other new technologies, NVM puts more burden on pro-
grammers. Indeed, to get close to the performance of DRAM, writes to the NVM
are first kept in volatile (i.e., losing contents upon crashes) caches, and only later
persist (i.e., propagate to the NVM), possibly not in the order in which they were

* This research was supported by the Israel Science Foundation (grants 1566/18 and
2005/17) and by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement no. 851811).
Additionally, the first author was supported by the Blavatnik Family Foundation,
and the second by the Alon Young Faculty Fellowship.

** Now at Arm Ltd, Cambridge, UK

© The Author(s) 2022
I. Sergey (Ed.): ESOP 2022, LNCS 13240, pp. 262-289, 2022.
https://doi.org/10.1007/978-3-030-99336-8_10

http://orcid.org/0000-0002-6781-9665
http://orcid.org/0000-0003-4305-6998
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99336-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-99336-8_10

Abstraction for Crash-Resilient Objects 263

issued. This results in counterintuitive behaviors even for sequential programs
and requires careful management using barriers of different kinds, a.k.a. explicit
persist instructions, for guaranteeing that the system recovers to a consistent
state upon a failure. Combined with standard concurrency issues, programming
on such machines is highly challenging.

To tackle the complexity and make NVM widely applicable, one would natu-
rally want to draw on libraries encapsulating highly optimized concurrent crash-
resilient data structures (a.k.a. persistent objects). This approach goes both
ways: programmers should be able to reason about their code using abstract
library specifications that hide the implementation details, and in turn, library
developers should be able to verify “once and for all” their implementations
against their specifications abstracting away from a particular client program.
From a formal standpoint, this indispensable modularity requires us to have a
so-called (library) abstraction theorem: a correctness condition that guarantees
the soundness of client reasoning that assumes the specification instead of the
implementation. Put differently, the abstraction theorem should allow one to es-
tablish contextual refinement, i.e., conclude that the specification reproduces the
implementation’s client-observable behaviors under any (valid) context. To the
best of our knowledge, while several correctness criteria for persistent objects,
akin to classical linearizability, have been proposed and have been established for
multiple sophisticated implementations, none of them has been formally related
to contextual refinement by an abstraction theorem of this kind.

In this paper we formulate and prove an abstraction theorem for concurrent
programs utilizing non-volatile memory. We target the “Persistent Sequential
Consistency” model of [25], or PSC, which enriches the standard sequentially con-
sistent shared-memory with non-volatile storage using per-location FIFO buffers
to account for delayed and out-of-order persistence of writes. PSC constitutes a
relatively simple model that is very close to developer’s informal understanding
of NVM. While existing hardware does not implement PSC as is, [25] presented
compiler mappings from PSC to x86 (based on its persistency model from [30]),
which can be used to ensure PSC semantics on Intel machines. Directly support-
ing relaxed memory models is left for future work.

Auxiliary material. An extended version, including proofs of theorems stated
in the paper, is available at https://arxiv.org/abs/2111.03881.

2 Key Challenges and Ideas

We outline the main challenges and the key ideas in our solutions. We keep the
discussion informal, leaving the formal development to later sections.

2.1 Library Specifications

A choice of a formalism for specifying library behaviors is integral in stating a li-
brary abstraction theorem. For libraries of concurrent data structures (a.k.a. con-
current objects), a popular approach is to give specifications in terms of sequen-
tial objects with the help of the classical notion of linearizability [21], which

https://arxiv.org/abs/2111.03881

264 A. Khyzha and O. Lahav

requires every sequence of method calls and returns that is possible to produce
in a concurrent program to correspond to a sequence that can be generated by
the sequential object. In this approach, a sequential object, represented by a
set of sequences of pairs of method invocations and their associated responses,
constitutes the library specification. Then, abstraction allows the client to rea-
son about calls to a concurrent library as if they execute atomically on a single
thread, or, equivalently, protected by a global lock [7,13].

For libraries of crash-resilient objects, there is more than one natural way of
interpreting sequential specifications and adapting the linearizability definition,
and no single notion of correctness w.r.t. sequential specifications captures all
different options. A crash-resilient object may ensure that all methods completed
by the moment of crash survive through it, or that some prefix of them does. It
may also choose different possibilities for methods in progress at the moment of
crash (whether they are allowed take their effect at some later point after the
crash or not). Multiple adaptations of linearizability have been proposed, each
relating crash-resilient objects to sequential specifications in a different way. This
includes: strict linearizability [3], persistent atomicity [19], and durable lineariz-
ability and its buffered variant [24]. Among them, buffered durable linearizability,
which allows for efficient implementations, ended up not being compositional,
which means that it may happen that two (non-interacting) libraries are both
correct, but their combination is not. In fact, since each of the different notions
is useful for particular objects, one may naturally want to mix different correct-
ness notions in a single client program. This would force the client to reason
with several alternatives for interpreting sequential specifications, and to make
sure that they compose well with one another.

To approach this variety, we believe it is necessary to follow a different ap-
proach, which is standard in concurrent program verification (see, e.g., [18, 20,
26]), and was applied before for deriving abstraction theorems in different con-
texts [8,16,17]. The idea is to take a library’s specification to be just another
library, where the latter is intended to have a simpler implementation. Then,
we define a library correctness condition stating what it means for one library
L to refine another library L* (equivalently, for L* to abstract L), and prove an
abstraction theorem that ensures that when the library correctness condition is
met, the behaviors of any client using L are contained in the behaviors of the
client using L*. Such a theorem is only useful if the correctness condition avoids
quantification over all possible clients, which would make the theorem trivial.

Using code for specifying libraries has several advantages over correctness
notions based on sequential specifications. First, specifications and implementa-
tions are expressed and reasoned about in a unified framework, alleviating the
need to interpret the use of sequential specifications by concurrent programs with
system failures. Instead, the client of the theorem replaces complex library code
with simpler specification code, and thus works with the semantics of a single
language. Second, it enables a layered verification technique for library devel-
opers, allowing them to prove library correctness by introducing one or more
intermediate implementations between L and L*. Finally, this formulation of

Abstraction for Crash-Resilient Objects 265

the abstraction theorem is compositional (a.k.a. local) by construction, meaning
that objects can be specified and verified in isolation.

Now, “code as a specification” is only useful if the programming language is
sufficiently expressive for desirable specifications. For concurrent objects, “atomic
blocks”, often included in theoretic programming languages, provide a handy
specification construct. For NVM, one needs a way to govern the persistence
similarly, offering intuitive specifications for libraries that simplify client reason-
ing. For that matter, viewing the out-of-order persistence of writes to different
cache lines as the major source of counterintuitive behaviors in NVM, we propose
a new specification construct, which we call persistence blocks. Roughly speak-
ing, such blocks may only persist in their entirety, so that persistence blocks
ensure an “all-or-nothing” persistency behaviors to the writes they protect.

For example, when recovering after a crash during a run of the tiny program
x := 1; y := 1,* due to out-of-order persistence (writes to different cache lines
are not guaranteed to persist in the order in which there were issued), we may
reach any combination of values satisfying x € {0,1} Ay € {0,1}. In turn, if a
persistence block is used, as in beginPB(x,y); x := 1; y := 1; endPB(%, y), then
only x =y =0V x =y =1 are possible upon recovery.

Our blocks are closely related to persistent transactions of the PMDK li-
brary [22] (but we avoid the term transaction, since persistence blocks do not
ensure isolation when executed concurrently). In our technical development, we
extend the PSC model with instructions for persistence blocks, and carefully con-
struct their semantics (see §4.2) to allow the abstraction result. We believe that
persistence blocks are a useful specification construct for various data structures,
where data consistency naturally involves multiple locations (often, pointers) be-
ing in-sync with one another.

2.2 Client-Library Interaction Using Explicit Persist Instructions

The key to establishing a library abstraction theorem is in decomposing a pro-
gram into two interacting sub-parts, a client and a library, and understanding
the interactions between them. These interactions are usually defined in terms
of histories, taken to be sequences of method invocations and responses, along
with the values being passed. The library correctness condition (the premise of
the abstraction theorem) requires that histories produced by using a library L
are also produced by its specification L* when both libraries are used by a cer-
tain “most general client” (MGC, for short) that concurrently invokes arbitrary
methods of L an arbitrary number of times with every possible argument. The
abstraction theorem ensures that if the library correctness condition holds, then
L refines L* for any client.

Thus, for the abstraction theorem to hold, one has to make sure that the
interactions between any client and the library are fully captured in the his-
tory produced by the library when used by the MGC. In crash-free sequentially

1 'We use “overdots” to denote non-volatile variables. We assume that all variables are
initialized to 0 and that x and y lie on different cache lines.

266 A. Khyzha and O. Lahav

consistent shared memory semantics, this is ensured by the standard assump-
tion that the client and the library manipulate disjoint set of memory locations.
Indeed, this restriction guarantees that clients can communicate with libraries
only via values passed to and returned from method invocations.

However, we observe that under NVM, mutual interactions between the client
and the library go beyond passed values, even when assuming disjointness of
memory locations, which makes the standard notion of a library history in-
sufficient. As a simple example, consider an interface with just one method
f, specified by L* = [f — sfence; return|. The sfence instruction, called
“store fence”, is an explicit persist instruction meant to be used in conjunc-
tion with optimized barriers called “flush-optimal” (denoted by fo). Its role is
to guarantee the persistence of previous write instructions that are guarded by
flush-optimal instructions. Concretely, under PSC (following x86), after a thread
executes x := 1; fo(x); sfence, we know that the write of 1 to & has persisted
(i.e., been propagated to the NVM), while without the sfence, it may still sit
in the volatile part of the memory system.

In turn, consider an implementation L, given by L = [f +— return|, that
implements f by doing nothing. Clearly, L does not implement L* correctly.
Indeed, for the (sequential) client program x := 1; fo(x); call(f); y := 1 that
uses L* we have y = 1 == x = 1 as a global invariant: if the system has
crashed and we have y = 1 in the NVM, then the sfence ensures that x = 1
is in the NVM as well. Nevertheless, due to out-of-order persistence, if we use
L in this program, we may get y = 1 A x = 0 after a crash. Now, the client
and the libraries above mention disjoint locations, and the histories that L may
produce for the MGC are exactly the histories that L* produces (all well-formed
sequences of “call” and “return”). Thus, when inspecting histories of L and of
L*, we do not have sufficient information to observe the difference between them.

Generally speaking, the challenge stems from the fact that certain explicit
persist instructions (sfence and other instructions whose implementation in the
hardware contains an implicit store fence, such as RMWs in x86), which can be
executed by the library, impose conditions on the persistence of writes performed
by the client that ran earlier on the same processor.

We address this challenge in two ways. First, we can sidestep the problem
by weakening the semantics of store fences, making them relative to a set of
locations (those used by the library or those used by the client). To do so, we ex-
tend the programming language with a specification construct similar to a store
fence, but only affecting a given set of locations, and we restrict its use by each
component to mention only the locations it owns. The use of these localized
instructions instead of store fences is sufficient to ensure that the interaction
between client and library is fully captured in histories, and allows us to estab-
lish the expected abstraction theorem. Libraries that do not intend to provide
a store fence functionality to their clients can readily replace store fences with
their localized counterparts. Doing so gives more freedom to alternative imple-
mentations of the same specification, which may, e.g., use alternative persist
instructions without the store fence functionality (such as CLFLUSH in [23]).

Abstraction for Crash-Resilient Objects 267

On the other hand, it is possible that in performance-critical systems, clients
would like to rely on a store fence that is executed anyway by the library for the
library’s own needs. For that, the library developer needs to use a standard store
fence in the library’s specification rather than the localized counterpart, and the
abstraction theorem has to handle store fences with their standard, non-localized
semantics. To do so, we expose in histories not only method invocations and
responses, but also store fences. Roughly speaking, it means that in addition to
the standard requirement on values passed by method invocations and responses,
for L to refine L* we would also require that L performs a store fence whenever
L* does (which does not hold for the example above). Our notion of history in §5
is set to allow store fences (alongside with their weaker localized versions), and
the abstraction theorem in §6 shows that these extended histories are expressive
enough for defining the library-correctness condition.

2.3 Handling Calling Policies

The third challenge we address concerns abstraction for libraries that enforce
certain calling policies on their clients.? For instance, a library implementing a
lock may require that the calls of each thread for acquiring and releasing the
lock perfectly interleave, and a library implementing a single-producer queue
may require that only one thread is calling the enqueue method. In the context
of NVM, libraries often demand that a distinguished recovery method is called
after every crash before invoking any other method of the library. When the client
uses the library in a way that violates the calling policy, the library developer
ensures nothing, and the blame is assigned to the client.

In the presence of calling policies, the contextual refinement guaranteed by
the library abstraction theorem, stating that all behaviors of a program Pr[L]
that uses L are also behaviors of the program Pr[L*] that uses L*, is only appli-
cable for a program Pr that respects the calling policy. An interesting compo-
sitionality question arises: Are we allowed to assume the library’s specification
when checking whether a program adheres to the calling policy (that is, require
that Pr[L*] adheres to the policy), or should this obligation be satisfied for the
library’s implementation (that is, require that Pr[L] adheres to the policy)?

The latter option would limit the applicability of the abstraction theorem
for client reasoning. Indeed, it may be the case that establishing that Pr[L]
adheres to the policy depends on the implementation L, whereas the abstraction
theorem should allow reasoning without knowing the implementation at all. On
the other hand, the former option seems circular, as it uses contextual refinement
to establish its own precondition.

In this paper we show that requiring that Pr[L*] adheres to the policy is
actually sufficient for ensuring contextual refinement. Roughly speaking, our
proof avoids circular reasoning by inspecting a minimal contextual refinement
violation, for which we are able to establish policy adherence when using L, given

2 This challenge is not particular to NVM, but, interestingly, to the best of our knowl-
edge, it has not been addressed in previous work establishing abstraction theorems.

268 A. Khyzha and O. Lahav

policy adherence when using L*. To the best of our knowledge, this is a novel
argument in the context of library abstraction. It is akin to DRF (data-race
freedom) guarantees in weak memory concurrency, where often programs are
guaranteed to have strong semantics (usually, sequential consistency) provided
that certain race-freedom conditions hold in all runs under the strong semantics.

We note that many library’s calling policies are “structural”, namely they
only enforce certain ordering constraints on the clients that do not depend on
the values returned by the library (in particular, “execute recovery first” is
a structural policy). In these cases, policy adherence holds even for an over-
approximation Lgt,}, of L that returns arbitrary values. Certainly, however, this
is not always the case. For example, a library L implementing standard list meth-
ods, cons and head, may require that head is only called on non-empty lists (like,
e.g., pop_front in C++ that triggers undefined behavior if applied to an empty
list [1]). Then, invoking head with the value returned from cons does adhere
to the calling policy, but this is not the case for the over-approximated library
Lgtup, which allows cons to return the empty list.

3 NVM Programs: Syntax and Semantics

In this section we begin to present the formal settings for our results. As standard
in memory models, it is convenient to break the operational semantics into:
a program semantics (a.k.a. thread subsystem) and a memory semantics. We
represent both components as labeled transition systems whose transition labels
correspond to the operations they perform. We then consider the synchronized
runs of the program and the memory, where program actions that interact with
the memory are matched by actions executed by the memory system (see §4.1).

Next, we focus on the program part of the semantics, presenting both syntax
(§3.1) and semantics (§3.2). We use the following standard notations.

Notation for finite sequences. For a finite alphabet X, we denote by X*
(respectively, 37) the set of all (non-empty) sequences over Y. We use € to
denote the empty sequence. The length of a sequence s is denoted by |s|. We often

identify sequences with their underlying functions (whose domain is {1, ... ,|s|}),
and write s(k) for the symbol at position 1 < k < |s| in s. We write o € s
if o appears in s, that is if s(k) = o for some 1 < k < |s|. We use “” for

concatenating sequences, and identify symbols with sequences of length 1.

3.1 Program Syntax

The domains and metavariables used to range over them are as follows:
values v,u € Val ={0,1,2,...}
shared non-volatile variables &,y € NVVar = {x,y, ...}
shared volatile variables — &,§ € VVar = {%x,7,...}
shared variables x,y € Var = NVVar U VVar
register names — r € Reg = {a,b,...}
thread identifiers — 7,m € Tid = {Ty, T, ... ,In}
method names f €F main ¢ F

Abstraction for Crash-Resilient Objects 269

Thus, there are three kinds of variables: shared non-volatile, shared volatile, and
thread-local ones (called registers), which are also volatile. A distinguished name
main is reserved for the starting point of the program execution.

For concreteness, we present a simple programming-language syntax. Its ex-

pressions and instructions are given by the following grammar:?
ex= r|v|ete|e=e|efe| ..
inst :==r:=e | if egotomny 1...1ny | havoc | z:=¢ | r:==z

| £1(2) | fo(z) | sfence | call(f) | return

| 1sfence(X) | beginPB(X) | endPB(X)

Expressions are constructed with arithmetic and boolean operations over
registers and values. Instructions consist of a local assignment r := e; a condi-

tional if e goto my I ... | n,, for non-deterministically jumping to a program
counter from {nq,...,n,} when e evaluates to non-zero or, otherwise, skipping
(goto ny 1 ... 1 ny, can be encoded as if 1 goto ny 1 ... I Ny,); havoc for arbitrar-

ily modifying all registers; a write to memory x := e; and a read from memory
r:= x. There are also explicit persist instructions: a flush instruction £1(&) and
its optimized version fo(x), called flush-optimal (referred to as CLFLUSH and
CLFLUSHOPT in [23]), as well as the store fence instruction sfence (see §2.2).

This standard instruction set is extended to support calling and specifying
library methods. There is a call instruction call(f) and a return instruction
return. The novel specification constructs include the local store fence instruc-
tion lsfence(X) that relaxes the semantics of sfence by only enforcing the
persistence ordering for the given set X of variables (thus, 1sfence(NVVar) is
equivalent to sfence); and instructions to begin and end a persistence block,
beginPB(X) and endPB(X), respectively. The persistence block demarks the
writes that need to persist simultaneously after the block ends, either non-
deterministically or triggered by a flush on some variable in X.

Next, we employ three syntactic categories:

e Instruction sequences represent the (sequential) implementation of each method
(including main). Formally, an instruction sequence I is a function from a non-
empty finite domain of the form {0, ... ,n} (representing the possible program
counters) to the set of instructions. We say that an instruction sequence is
flat if it does not include an instruction of the form call(.).

e Sequential programs consist of a “main” method accompanied with imple-
mentations of every method f € F. Formally, a sequential program S is a
function assigning an instruction sequence to every f € {main} UF. To avoid
modeling a call stack and simplify the presentation, we require that S(f) is a
flat instruction sequence for every f € F.

e Concurrent programs are top-level parallel compositions of sequential pro-
grams, all accompanied by the same method implementations. Formally, a
(concurrent) program Pr is a mapping assigning a sequential program to ev-
ery 7 € Tid, with Pr(7)(f) = Pr(n)(f) for every 7,7 € Tid and f € F. Below,
we write Pr(f) for Pr(Ty)(f).

3 In the extended version of this paper, we also include read-modify-write instructions.

270 A. Khyzha and O. Lahav

3.2 Program Semantics
We give semantics to the syntactic objects using labeled transition systems.

Definition 1. A labeled transition system (LTS) is a tuple A = (X, Q, qinit, T,
where X is a set of transition labels, @) is a set of states, qnix € @ is the initial
state, and T C @Q x X' x @ is a set of transitions. We often write ¢ <> ¢’ to denote
a transition (g, o,q’). We denote by A.%, A.Q, A.qunit, and A.T the components
of an LTS A. We write %4 for the relation {(¢,¢') | ¢ = ¢’ € AT} and —4
for UUGZ] Zy 4 . For a sequence t € A.X*, we write Ly, for the composition

ﬂ)A I MA . A sequence t € A.3* such that A.qut LA q for some

q € A.Qis called a trace of A. We denote by traces(A) the set of all traces of A.
A state g € A.Q is called reachable in A if A.qunit LA q for some t € traces(A).

Next, we define the LTSs induced by instruction sequences, sequential pro-
grams, and concurrent programs. We will often identify the syntactic objects
with the LTS they induce (e.g., when writing expressions like S.Q for a sequen-
tial program S). The transition labels of these LTSs feature action labels.

Definition 2. An action label takes one of the following forms: a read R(z,v), a
write W(z, v), a flush FL(), a flush-opt FO(&), an sfence SF, a local sfence LSF(X),
a start beginPB(X) or an end endPB(X) of a persistence block, a call CALL(f, ¢),
or a return RET(f, $), where = € Var, v € Val, & € NVVar, X C NVVar, f € F,
and ¢ : Reg — Val. We denote by Lab the set of all action labels. The functions
typ and var retrieve (when applicable) the type (R/W/...) and variable (z or &)
of an action label. We write varset(l) for the set of variables mentioned in [
(e.g., varset(R(x,v)) = {z}, varset(LSF(X)) = X, and varset(SF) =).

Action labels represent the interactions that a program has with the memory.

Definition 3. The LTS induced by an instruction sequence I is given by:

e The transition labels are action labels, extended with € for silent transitions.

e The states are pairs (pc, ¢) where pc € N; called program counter, stores the
current instruction pointer inside the sequence, and ¢ : Reg — Val, called
local store, records the values of the registers. We assume that local stores are
extended to expressions in the obvious way.

e The initial state is (0, Pinit), where @it £ 0.

e The transitions are as follows:

I(pc) = if egotonii...inm
I(pc)=r:=¢ #(e) #0 = pc’ € {n1,... nm}
¢ = ¢[r — ¢(e)] dle) =0 = pc' =pc+1 I(pc) = havoc
(pc,) 1 (pe+1,9¢") {pe, @) 51 (pc’, d) (pe,) 51 (pe+1,¢")

£1(),o()
I(pc)=r:==x I(pc) € ¢ sfence,lsfence(),
I(pc)=x:=¢e Il =R(z,v) beginPB(_), endPB(_)
l=W(z,d(e)) ¢ = d[r —] I = matching_label(I(pc))

(pe,d) L1 (pc+1,¢) (pc,d) L1 (pe+1,¢") (pc,d) L1 (pc+1,¢)

Abstraction for Crash-Resilient Objects 271

Recall that program semantics is separate from memory semantics, which
is why the transitions above completely ignore the restrictions arising from the
memory system. In particular, the write to memory x := e only announces
itself in the label. The read from memory 7 := z loads an arbitrary value v
into the destination register r, announcing that value in the read label. Other
instructions act as no-ops, and simply announce themselves in the transition
label, using the function matching_label that maps each instruction to its label
(£f1(&) — FL(Z), fo(&) — FO(Z), and so on).

Finally, call(f) and return instructions are not handled in this level, but
receive special semantics at the level of sequential programs, as defined next.

Definition 4. The LTS induced by a sequential program S is given by:
e The transition labels are action labels, extended with € for silent transitions.
e The states are tuples ¢ = (pc, ¢, pcq, f), where:

— (pc, @) is a state of the instruction sequence (see Def. 3) storing the state
of the sequence currently running.

— pc, € NU{L}, called the stored program counter, is used to remember the
program position to jump to when the current instruction sequence returns,
whereas pcg = L means that the main method is currently running. (Recall
that we assume that S(f) is flat for every f € F, so we do not need to record
the call stack.)

— f € FU{main}, called the active method, tracks the method that is currently
running.

We denote by q.pc, q.¢, qg.pcs, and g.f the components of a state ¢ € S.Q.

e The initial state is {0, dinit, L, main).
e The transitions are given by:

NORMAL

loelabU{e} fe{man}UF " §(main)(pc) = call()
(pe,) LS50y (pc',) | = CALL(f, ¢)
(pe, b, pes, f) S5 (pe', @', pes, f) (pe, d, L, main) Lg (0,0, pc + 1, 1)
RETURN NON-DET-SFENCE
S(f)(pc) = return [=RET(f, ¢) [=SF
(pe, ¢, peg,) s (peg, ¢, L, main) (pe, ¢, peg,) Ls (pe, d, peg, f)

The NORMAL transition lifts the instruction-sequence transition to the level
of sequential programs. Note that the transition applies for any method (main or
other). The CALL transition passes control from the main method to some other
method, jumping the program counter to the first instruction and storing the
return point (pc+1). The RETURN transition passes control back using the stored
return point. For simplicity, we do not have any argument passing mechanism
and use the full register store for that matter. (If needed, each component may
store the values it needs in the memory, and reload them later on.)

Finally, NON-DET-SFENCE is a non-standard transition that we find techni-
cally convenient to have. It allows the program to non-deterministically execute

272 A. Khyzha and O. Lahav

an sfence at any point. Since, as will become apparent when presenting the mem-
ory system, sfences only restrict the possible behaviors, this transition is safe to
include in the program semantics. It is particularly useful for simplifying the li-
brary correctness condition that only considers inclusion of sets of histories (see
§5). For instance, switching the roles of L and L* from §2.2, the library imple-
menting f using sfence should be considered a refinement of the one that simply
returns. For that, we allow the no-op specification to perform non-deterministic
sfences that match the ones executed by the concrete implementation.
Finally, the LTS induced by a concurrent program is defined as follows.

Definition 5. The LTS induced by a (concurrent) program Pr is given by:

e The set of transition labels is given by (Tid x (LabU{e}))U{4}. The functions
on action labels (e.g., typ, var) are lifted to these labels in the obvious way.

e The states, denoted by @, assign a state in Pr(7).Q to every 7 € Tid.

e The initial state is composed from the initial state of each thread:
Tinie = (Pr(T1)-Qnits -, Pr(TN) -Qunit) -

e The transitions are interleaved thread transitions or crash transitions reini-
tializing the program state:

— le
ZE € LabU {6} Q(T) — Pr(7) ql
NORMAL CRASH

— Tl — _
7 S p gt —] q

1=

Pr Qinit

4 The PSC Memory System

We present PSC (“Persistent Sequential Consistency”), the persistency model
used as the memory system. We first introduce the model as it is in [25] (extended
with standard volatile memory alongside with the non-volatile one), following
its operational presentation as an LTS with non-deterministic memory-internal
transitions that flush stores from the volatile part to the non-volatile part. In
§4.1, we define the synchronization of programs with the PSC memory system.
In §4.2, we present the extensions added in this paper that are useful for library
abstraction. Finally, in §4.3, we establish certain separation properties of PSC
that are essential in our proofs.

Roughly speaking, a state in PSC counsists of a non-volatile memory (map-
ping from non-volatile variables to values) and a volatile memory (mapping from
volatile variables to values). The volatile memory works just as a normal sequen-
tially consistent memory, keeping track of the latest written value to every vari-
able and returning that value for reads. Upon crash, the contents of the volatile
memory is reset to its initial state. The non-volatile memory behaves observa-
tionally the same between crashes, but its contents survive crashes. To model de-
layed and out-of-order persistence of writes, write steps to non-volatile variables
do not alter the non-volatile memory immediately when issued. Instead, writes
first go to volatile per-variable persistence FIFO buffers, which maintain the
writes to each variable that are yet to persist. Then, PSC non-deterministically
takes persist steps that apply the oldest update from a persistence buffer in the

Abstraction for Crash-Resilient Objects 273

non-volatile memory. Reads from non-volatile variables retrieve the latest value
in the relevant buffer, or the value from the non-volatile memory if that buffer is
empty, thus providing standard sequentially consistent semantics in the absence
of system crashes. Upon crash the buffers are reset to their initial (empty) state,
but the contents of the non-volatile memory remains intact.

Explicit persist instructions can be used to control the persistence of writes.
A “flush” barrier for a certain variable blocks the execution until the relevant
persistence buffer is empty, thus forcing all previous writes to that variable to
persist. Alternatively, a (cheaper) “flush-optimal” barrier for a certain variable
enqueues a special marker in the persistence buffer of this variable accompanied
by the thread identifier of the thread that issued the barrier. The effect of flush-
optimal is delayed until the same thread performs an sfence, which blocks the
execution until all flush-optimal markers of that thread are dequeued from all
buffers. The fact that the persistence buffers are FIFO ensures that an sfence by
some thread forces the persistence of all writes executed before a flush-optimal
issued by the same thread.

Definition 6. PSC is the LTS defined as follows:

e The transition labels are given by (Tid x Lab) U {per, 4 }. That is, a transition
label can be a pair of the thread identifier and the action label of the operation,
per denoting the internal propagation action, or 4 denoting a system crash.

e The states are tuples M = (rh, m, P), where:

— m : NVVar — Val is called the non-volatile memory.

— m : VVar — Val is called the wvolatile memory.

— P : NVVar — PLBuff is called the persistence buffer. Here, PLBuff denotes
the set of all per-location persistence buffers, each of which is a finite se-
quence p of entries of the form W(v) for v € Val (writes), or FO(7) for 7 € Tid
(flush optimal markers). The persistence buffer P assigns a per-location
persistence buffer to every non-volatile variable.*

We denote by M.m, M.m, and M.P the components of a state M € PSC.Q, and
write M[X — Y] for the state obtained from M by setting M.X to Y.

« e . def . ~ . def . ~ def
e The initial state is Minie = (rnit, Minits Pinit), where mgie = A&. 0, My =

A7.0, and Py = \i. €.

e The transitions of PSC are presented in Fig. 1, using an auxiliary function
for looking up the most recent value of a variable: we let M (z) be M.m(x) for
x € VVar, and, for z € NVVar, either the value v of the last write (rightmost)
entry M.P(x) or, when there is no such entry, M.m(x).

The transitions follow the intuitive account above. Those corresponding to
program transitions are labeled with pairs in Tid x Lab. For instance, a transition
labeled with (7,R(z,vg)) means that thread 7 reads the value vy from (volatile
or non-volatile) shared variable z.

4 We conservatively assume that writes persist at the location granularity, rather than
at the cache-line granularity as happens in real machines.

274 A. Khyzha and O. Lahav

V-WRITE NV-WRITE READ
I =W(Z,v) L =W(z,v) I = R(z,v)
m' = MA[E — v] p’ = M.P(&) - W(v) P’ = M.P[i s p] M(z) =wv
M Zlypse M — /] M Zlypse M[P— P’ M Dlpsc M
FLUSH FLUSH-OPT SFENCE
| = FL(&) I = FO(x) | =SF
M.P(¢) =€ p’ = M.P(i) - FO(T) P' = M.P[z +— p'] Vi.FO(T) &€ M.P(&)
M Tlpse M M Zlypse M[P — P'] M Tlpsc M
PERSIST-WRITE PERSIST-FO
| = per M.P(z) =W) - p | = per M.P(2) =FO(T) -p CRASH
P’ = M.P[i — p] m’ = M.a[i — v] P’ = M.P[i — p] =1
M Ypsc M /P — P'] M Lipsc M[P — P’ M Lipsc Mgl — M.

Fig. 1. Transitions of PSC

4.1 Linking Programs and Memories

To give semantics of programs running under PSC, the thread system is synchro-
nized with the PSC memory system. Formally, the synchronization of a program
Pr with PSC, is another LTS, denoted by PrxPSC, defined as follows:

e The set of transition labels is Pr.XUPSC.X, i.e., (Tid x (LabU{e}))U{per, 4 }.
e The states are pairs (g, M) € Pr.Q x PSC.Q.

e The initial state is (G, Minit)-

e The transitions are given by:

SYNCHRONIZED PROGRAM-INTERNAL MEMORY-INTERNAL

a € (Tid x Lab) U {4} a € Tid x {e} a = per
T5p. 7 M Zpsc M’ T5p. 7 M Zypsc M’

(@, M) % prwpsc (@, M) (@, M) % prwpsc (@, M) (@, M) =5 prwpsc (g, M)

The above transitions are “synchronized transitions” of Pr and PSC, using the
labels to decide what to synchronize on. Both the program and the memory
take the same step for transition labels that are common to both LTSs, only the
program steps for transition labels that are only program transitions, and only
the memory steps for transition labels that are only memory transitions.

4.2 Extending PSC for Library Abstraction

We present the modifications of PSC for supporting the new specification con-
structs: localized sfences and persistence blocks. When referring to PSC in the
sequel we mean the following revised version.

Local store fences. Localized sfences are straightforwardly supported by the
following additional memory transition:

| =LSF(X) Vi€ X.FO(r) ¢ M.P()

1
M Topse M

LOCAL SFENCE

Abstraction for Crash-Resilient Objects 275

Here, instead of blocking until all FO(7) entries are removed from all buffers,
we only require that such entries are not present in buffers associated with
variables from a certain set (mentioned in the action label and corresponding to

the argument of the 1sfence(X) instruction).

Persistence blocks. We assume an infinite set BlockID of block identifiers

that are non-deterministically allocated when blocks are opened. The state of

the memory system keeps track of a mapping assigning the current open block

identifier to every thread and non-volatile variable, or L if the variable is not a

part of an open block of the thread. When writing to non-volatile variables, the

associated block identifiers are attached to the write entry in the per-location
persistence buffer. In turn, the propagation from the buffers to the NVM ensures
that blocks are propagated only after they are not open and only in their entirety.

To do so, we generalize the persist step of PSC to allow simultaneous propagation

of multiple entries from the buffers. To respect the per-variable FIFO order, the

propagated entries should form a prefix of each buffer.
Formally, this requires the following modifications:

1. Write entries in buffers take the form j:W(v) where j € BlocklD U {Ll} and
v € Val (instead of W(v)). A write entry of the form L:W(v) means that the
corresponding write was not a part of a persistence block.

2. States are extended to be quintuples M = (11, m, P, B, Bid), where:

— B : Tid = NVVar — (BlockID U {L}) is called the active-block mapping. It
assigns a block identifier (or L if there is no active block) to every thread
identifier and non-volatile variable.

— Bid C BlocklD x P(NVVar) is called the block identifiers set. It is used to
store all persistence block identifiers occurring so far, each accompanied by
the set of non-volatile variables that it protects.

We denote by M.B and M .Bid the additional components of a state M. We

impose the following well-formedness conditions:

— If jW(_) € M.P(&), then (j, {#} U X) € M.Bid for some X C NVVar.

— If MB(r)(i) # L, then (M.B(7)(i),{#}UX) € M.Bid for some X C
NVVar.

3. The initial state is given by M o <m|n;t,m|n;t,P|n;t,B.n;t,Bidm;t}, where
Binit £ A7 \i. L, and Bidyix = 0.

4. The NV-WRITE transition records the current active block in the added entry:

l=v(z,v) p’ = M.P(¢) - M.B(7)(&):W(v) P'= MPlz s p]

NV-WRITE .
M T—’>PSC M[P — Pl]

5. The following two transitions for opening and closing blocks are added:

BEGINPB . ENDPB
l = beginPB(X) [= endPB(X)
Vi € X. M.B(r)(z) = L
if & € X then j ;o _if & € X then L
else M.B(7)(%) | B =MB|T = A else M.B(7)()
(j,.) ¢ MBid Bid' = M.Bid U {{j, X)}

M Zlpsc M[B+— B',Bid — Bid'] M Zlypsc M[B+— B']

B' = MB |7 — \i.

276 A. Khyzha and O. Lahav

Thus, opening a block allocates a fresh identifier and sets the active-block
mapping accordingly. In turn, closing a block resets the relevant variables in
the active-block mapping.

6. The following transition is used instead of PERSIST-WRITE and PERSIST-FO. It
generalizes both PERSIST-WRITE and PERSIST-FO by simultaneously persisting
several entries together (each p; below stands for a sequence of entries).

| = per Vi. M.P(£) = p; - P'(%)
Vi (3% jW() € ps) = Vi. (V7. M.B(T)(Z) # j A j:W() € P'(%))
w v last write entry in p; has value v
mo= k. L : -
M.am(z) there are no write entries in p;
PERSIST

M Lipsc M 1/, P s P']

This step imposes two restrictions. First, the persisted entries from each buffer
(pz:) should form a prefix of that buffer, so that FIFO semantics is maintained.
Second, to respect the persistence blocks, if some entry of a given block is
persisted (3i. j:W(_) € p;) then that block should not be currently active by
any thread (Vi, 7. M.B(7)(&) # j) and no entries of that block should remain
in the volatile buffers (V. 7:W(_) &€ P’(z))).

We note that nested and interleaved blocks are allowed. The beginPB(x, j);
program on the right demonstrates such a case. Here, x = 1 x:=1;

and y = 1 must persist together; z = 1 and w = 1 must per- beginPB(z,w);
sist together; but these two pairs can persist independently z:=1;w:=1;
of each other in any order. Thus, provided that the client endPB(z, w);

and the library use blocks of their own locations, the block yi= 1§. .
instructions by each component are invisible to the other. endPB(%, y);

4.3 Separation Properties

To enable our library abstraction proof, the required key property of PSC, which
we preserved in its extensions, is the ability to separate PSC states into disjoint
parts (the library’s part and the client’s part) and capture each memory tran-
sition in terms of its effect on the two parts. Next, we formulate this property,
which we will later use to prove library abstraction. In fact, our arguments for
library abstraction rely only on the properties below, and never “unfold” the
PSC-related definitions. This allows one to refine and extend PSC, as long as the
separation properties are preserved.

The separation of PSC states is stated in terms of the following restriction
operator relative to a set of variables. For persistence blocks to behave correctly,
we need an auxiliary condition on this set: we say that a set X C NVVar separates
a state M € PSC.Qif for every (j,Y) € M.Bid, wehave Y C X or Y C NVVar\ X.

Definition 7. The restriction of M € PSC.Q onto a set X C Var such that
X NNVVar separates M, denoted by M|, is the state M’ € PSC.Q given by:

o M'm(z) is M.am(z) if £ € NVVarn X, or 0 otherwise.

o M'm(z)is M.m(z) if € VVarnN X, or 0 otherwise.

Abstraction for Crash-Resilient Objects 277

e M'P(%)is M.P(&) if £ € NVVarn X, or e otherwise.
e For each 7 € Tid, M'.B(7)(&) is M.B(7)(#) if # € NVVarN X, or L otherwise.
o M'Bid={(j,Y) e MBid|Y C X}.

The next lemma states the separation property of PSC, providing a precise
characterization of each PSC transition in terms of transitions on the restrictions
M|x and Mlya.n x- A special case is needed for store fence transitions, since
taking these transitions enforces conditions on both restrictions.

Lemma 1. Let X C Var such that X N NVVar separates a state M;.
1. For every 7 € Tid and ! € Lab \ {SF} with varset(l) C X,
My Thpse My <= (M| x “hpsc My|x A Milvan x = Malvar\x)
2. For every 7 € Tid,
My Z85psc My <= (Mi]x 255psc Ma|x A Milvar x —25psc Malvar x)
3. My 2Eipse My = (My|x 2psc Malx A Milvan x 2ospsc Ma|var x)
4. My Lipsc My <= (M| x Lrpsc Ma|x A M |van x Lpsc Malvar\ x)

The proof of Lemma 1 proceeds by standard case analysis ranging over all
possible transitions of PSC. Finally, the following operation is used below to
compose a state from a client and a library components (see Lemma 2).

Definition 8. Let My, My be states of PSC, and X, Xo C Var such that X; N
X = 0. The merge of My and My w.r.t. X1 and X5, denoted by (M, X;) @
(M3, X5), is the state M € PSC.Q defined by:

Mia(z) &€ X3

SN . . similar definitions .. {{,YyeM;Bid|Y C X;}U
Mm(x) = < Myan(z) z€ X2. for M.&, M.P, M.B M.Bid = (G, Y) € M,.Bid | v C Xo)
0 otherwise -

5 Libraries and Their Clients

We present the notions of libraries and clients, as well as the necessary definitions
for stating the abstraction theorem: histories and most general clients.

Libraries. We take a library L to be a function assigning to method names in
dom(L) C F flat instruction sequences representing the method bodies. In the
context of some library L, we refer to the implementations of the methods in
{main} UF \ dom(L) in a program Pr as the client of L.

Client-library composition. We consider the common case where libraries
and their clients never access the same shared variables. To formally define this
restriction, we use the following notations for sets of locations used by instruction
sequences, libraries, and their clients:

e Var(I) denotes the set of shared variables mentioned in an instruction sequence

I (possibly as a part of a set X of variables, e.g., in beginPB(X)).

e For a library L, Var(L) < Uredom(r) Var(L(f)).

e For a program Pr and a set F' C F,

Var(Pr\ F) = Useria Var(Pr(7)(main)) U U g p Var(Pr(f)).

278 A. Khyzha and O. Lahav

Then, client-library composition is defined as follows.

Definition 9. A library L is safe for a program Pr if Var(L)NVar(Pr\dom(L)) =
(). When L is safe for Pr, we write Pr[L] for the program obtained from Pr by
setting Pr(7)(f) = L(f) for every 7 € Tid and f € dom(L).

Note that we always have Var(Pr[L] \ dom(L)) = Var(Pr \ dom(L)).

Histories. Histories record the interactions between libraries and clients. For-
mally, a history h of a library L is a sequence of transition labels representing a
crash, a call to a method of L, a return from a method of L, or an sfence, i.e.,
labels from the set HTLabgoy,(r), which is defined as follows:

def

Labp = {SF} U {CALL(f, ¢),RET(f,¢) | f € F, ¢ : Reg — Val}
HTLabp = (Tid x Labg) U {4}
Definition 10. Let t be a trace of PrxPSC for some program Pr. The history
induced by t w.r.t. a set F C F, denoted by Hp(t), is the subsequence of ¢ over
HTLabg consisting of (in the same order they appear in t): call and return labels
(1,CALL(f, ¢)) and (7,RET(f, ¢)) with f € F; SF-labels (7, SF); and crash labels.
The notation Hg(t) is extended to sets of traces in the obvious way. The set of
histories w.r.t. F' of Pr, denoted by Hg(Pr), is given by Hp(traces(PrxPSC)).
When F = F (i.e., the set of all method names), we simply write H(¢) and H(Pr).

Most general clients. We encompass library calling policies (see §2.3) using
the notion of a “most general client”—a non-deterministic client that invokes
the library methods in the most general way allowed by the policy. Formally, a
most general client MGC is given as a (concurrent) program. Adherence to the
calling policy is defined as follows.

Definition 11. Let L be a library, and Pr and MGC' be programs such that L
is safe for both Pr and MGC. We say that Pr correctly calls L w.r.t. MGC' if
Hdom(L)(Pr[L]) - Hdom(L)(MGC[L])

The policy of a library with no restrictions on its clients (beyond the separa-
tion of shared resources) is expressed by an MGC, called MGC'ee, that repeat-
edly invokes arbitrary library methods with arbitrary initial stores. Often persis-
tent objects include a recovery method meant to be executed after a crash before
any other method is invoked. We call such a policy MGC'ec. Formally, MGClee
(for dom(L) = {f1,....Jn}) and MGC\e (for dom(L) = {fi,fn} & {recover})
assign the following main method to each thread 7:

MG Cree(T)(main) = MGCec(7)(main) =

BEGIN : havoc; a:= CAS(%,0,1); if a = 0 goto REC; goto WAIT;
goto f11...1 £, | END; REC : call(recover); ¥ := 1; goto BEGIN;

f1 : call(fi); goto BEGIN; WAIT : a:=7§; if a = 0 goto WAIT; goto BEGIN;

BEGIN : ...rest of the code as in MG Clee ...
£, : call(f,); goto BEGIN;
END :
In MGC e, using a compare-and-swap, one thread performs the recovery. All
other threads wait until recovery ends to start their method invocations.

Abstraction for Crash-Resilient Objects 279

6 The Library Abstraction Theorem

In this section we state and prove the library abstraction theorem. The premise
of this theorem, the library correctness condition, is formulated as follows.

Definition 12. Let L and L* be libraries, both safe for a program MGC. We
say that L refines L* w.r.t. MGC, denoted by L Cyge L*, if both libraries
implement the same methods and H(MGC[L]) C H(MGC[L*)).

Next, the abstraction theorem states that L C ;cc L* ensures that any client
adhering to the library’s calling policy may safely use the implementation L while
reasoning about possible behaviors in terms of the specification L¥. Our notion
of “a behavior” includes the generated histories, as well as the reachable states,
by the composition of the program and the memory system. Including reachable
states is intended to assist safety verification. Clearly, we cannot require that the
program states match for threads that are currently executing a method of L. In
addition, since I and L*¥ may update the memory differently (e.g., use different
variables), we should only consider the variables of the client when inspecting
the memory states. This leads us to the following statement.

Theorem 1 (Abstraction). Suppose that L Cyeo L*. Let MGC and Pr be
programs such that both L and L* are safe for MGC and Pr, and Pr correctly
calls L* w.r.t. MGC. If (Gnix, Minit) AP,.[L]NPS(; (q, M), then there exist t* and
(g%, M*) such that the following hold:

® (Ginie> Minit) i>Pr[m]m>sc (@, M*).

o H(t*) = H(t).

e For every T € Tid, if g(7).£ & dom(L), then g*(t) = q(7).

o M#|Var(P7"\dom(L)) = M|Var(Pr\dom(L)) (566 Def 7)

Note that L Cpge L* is necessary for the conclusion to hold: otherwise,
MGC itself is a client that can observe behaviors of L that are impossible for
L*. Following §2.3, we also note that policy adherence is required w.r.t. to L*.

To prove the abstraction theorem, the following key lemma is used multiple
times (with different arguments). It allows us to compose the client’s part from
one trace with the library’s part from another into one combined trace.

Lemma 2 (Composition). Let L and L’ be libraries implementing the
same set F' of methods such that both are safe for a program Pr, and L is
also safe for a program Pr’. Suppose that (Gjir; Minit) tinar[y]mPSC (o, Ma),
<qlnit7M|nit> tli}PT”[L]NPSC <6|ib7Mib>7 and HF(td) = HF(t“b). Then, there exists
a trace ¢ such that H(¢) = H(¢tq) and (G, Minit) i>Pr[L]><1PSC (g, M), for:
\r. (@ib(7)-PC, Qin(7)-0, 0 (T) PCs, Toi(T)-£) (7). £ EF

(1) otherwise
o M = (MC||Var(pr\F),Var(Pr \ F))y (Mib|Va,(L),Var(L)> (see Def. 8).

Oq:

280 A. Khyzha and O. Lahav

The proof of Lemma 2 is based on the inherent disjointness in client-library
composition provided by a library safe for its client program, which we leverage
in the following two ways.

Firstly, we extract client-local and library-local transition properties from all
transitions of Pr[L']xPSC and Pr'[L]xPSC. Thus, when we consider a transition
by Pr[L'|xPSC corresponding to an instruction outside of a method of L', we
show that an analogous transition is possible with the same program state,
but with memory state zeroing out locations used by the library L’. Similarly,
when we consider a transition by Pr/[L]xPSC corresponding to an instruction
in a method of L, we show that an analogous transition is possible with almost
the same program state, except we alter its stored program counter, and with
memory state zeroing out locations used by the client Pr’. The justifications for
these steps follow by the (=) directions of Lemma 1.

Secondly, we compose the client-local transition properties Pr exhibits in ¢
and the library-local transition properties L exhibits in t;, while constructing
transitions of Pr[L]xPSC for a trace ¢. Knowing that L is safe for Pr, we con-
sider client-local transition properties from t; corresponding to transitions we
wish to recreate in ¢, and replace zeroed-out memory locations with locations of
L. Dually, we consider library-local transition properties from ¢, corresponding
to transitions we wish to recreate in t, and replace zeroed-out memory locations
with locations of Pr. The (<) directions of Lemma 1 justify such transforma-
tions. For instance, non-SF-transitions can be composed, provided that the client
program preserves the library memory state, and vice versa; while crashes and
SF-transitions record an interaction between a client program and a library and
therefore need to be performed in synchrony.

We use these two ideas in proving Lemma 2 by induction on the sum of
lengths of t¢ and %j;p, and use their local transition properties to justify composing
them in synchrony. For the base case, we can simply take ¢ = €. For the induction
step, we consider the last labels in ¢ and ¢, as well as the cases when one of the
traces is empty. When tq = _- ag and), = _ - ayip, we use ¢’ from the induction
hypothesis for ¢y and ¢, with the last action removed from either or both of
them, and let t =t - ag or t =t - qyjp.

Then, the abstraction theorem is proved as follows.

Proof outline for Thm. 1. It suffices to show H(Pr[L]) C H(Pr[L*]); then the
claim follows using Lemma 2 by letting L := L* L’ := L, Pr := Pr, and Pr’ :=
Pr. Suppose otherwise, and let h be a shortest history in H(Pr[L]) \ H(Pr[L*)).
Let ¢ be a shortest trace in traces(Pr[L]xPSC) with H(¢) = h. Consider the last
transition label « in ¢. The minimality of & and ¢ ensures that o must be a return
transition label for some f € dom(L). Indeed, otherwise, we can show that « is
enabled in the end of a corresponding trace of Pr[L*]xPSC, which contradicts
the fact that h ¢ H(Pr[L*]). (The full argument here requires applying Lemma 2
with L := L*¥ L' := L, Pr:= Pr, and Pr’' := Pr.)

Now, using the fact that Pr correctly calls L* w.r.t. MGC, we again apply
Lemma 2 with L := L, L' := L*, Pr := MGC, and Pr’ := Pr, and derive
that « is enabled in the end of a corresponding trace of MGC[L]xPSC. Then,

Abstraction for Crash-Resilient Objects 281

L Eyge L* ensures that Hyonr) (t) € Haomr) (MGC[L*]). Using Lemma 2 for
the last time (applied with L := L* L' := L, Pr := Pr, and Pr’ := MGC), we
obtain that h = H(t) € H(Pr[L*]), which contradicts our assumption. O

The following corollary of Thm. 1 states that, like classical linearizability,
our correctness condition is compositional (a.k.a. local), meaning that a library
consisting of several (non-interacting) libraries can be abstracted by considering
each sub-library separately. Formally, the composition of libraries L1, ... ,L, with
pairwise disjoint sets of declared methods, denoted by LiW... WL, is defined to
be the library obtained by taking the union of Ly,...,L,. Compositionality is
formulated as follows.

Corollary 1 (Compositionality). The following two conditions together
imply that L1W...WL, Cyee LiW...WLE:
1. Var(Ly),...,Var(Ly,,), Var(L%), ... Var(L*),Var(MGC \ dom(L1¥...6L,,)) are
pairwise disjoint.
2. For all i, L; Cyee, LY for MGCy; = MGC[LYw...wLY_| WL} . WL

To end this section, we provide a simple lemma that allows one to establish
L Cyee L* by applying standard simulation arguments for crashless traces
(with observable transitions being those that induce history labels). For that
matter, we require a simulation relation on non-volatile memories generated by
MGC[L)xPSC and MGC[L*]xPSC that holds for the very initial memory and
preserved during crashless executions.

Lemma 3. A trace t is 1729-to-11 if (G, Minie[t — 1120]) < prapsc (G, M — 1))

for some g and M. Suppose that some relation R on NVVar — Val satisfies:

o (1unit, Munit) € R.

o If (1hg,m¥) € R, then for every mg-to-mn crashless trace t of MGC[L]xPSC,
there exist a non-volatile memory m* and an rmf-to-m* crashless trace t* of
MGC[L*]xPSC, such that (1, m*) € R and H(t) = H(t*).

Then, assuming dom(L) = dom(L*), we have that L Cyqco L*.

Furthermore, if MGC[L*] has no fo(-) and sfence instructions, then MGC[L*]
xPSC can take non-deterministic sfence steps (see §3) when MGC[L]xPSC
takes SF- steps, so store fences can be ignored when checking H(t) = H(t*).

7 An Application: Persistent Pairs

We illustrate the use of the library abstraction theorem for a simple concurrent
and persistent data structure—a pair of values that supports write and read
operations. We present two specifications and an implementation for each spec-
ification. Both specifications ensure atomicity (i.e., linearizability if the system
does not crash), and “data consistency” (reads return values written by a single
write invocation), but they differ in their persistency guarantees. For the concur-
rency aspect, the implementations follow the sequence lock (seqlock, for short)

282 A. Khyzha and O. Lahav

mechanism, which uses a version counter along with the pair and allows read-
ers to avoid blocking [6]. For durability, the implementations employ different
techniques: one uses a “redo log” and the other is based on “checkpoints”.

A durable pair. The first specification, a library we denote by L’;aiw consists

of three methods: write for writing the two values of the pair, read for reading
the pair, and recover for recovering from a crash. The specification is as follows:®

write: read :

LOCK: if CAS(1,0,1) LOCK: if CAS(1,0,1)
goto LOCK; goto LOCK;

beginPB(x1,%2); a = >'<1;~a2 =Xy

X1 := ay; Xp = ag; UNLOCK: 1 := 0;

endPB(x1,X2); return;

£1(%:);

UNLOCK: 1 := 0; recover :

return; return;

A volatile lock (1) is used to ensure atomicity. For durability, writes use persis-
tence blocks, which ensure that the two parts of the pair persist simultaneously.
After the block is ended, £1(%;) (equivalent here to £1(x3) due to the persis-
tence block) ensures that the block persists. If the system crashes after a write
completed, the written values are guaranteed to survive the crash. Thus, there is
nothing to be done at recovery. Nevertheless, aiming to allow implementations,
the library policy requires that recovery is executed after every crash before
other methods are invoked (MGC\c in §5).

Next, we present an implementation of L;air, which we denote by Lpai,. We
write x := y instead of a read of y (to some fresh register) followed by a write
to z. We also omit some necessary register bookkeeping: since histories record
the whole register store in call/return labels, strictly speaking, implementations
must unroll changes to registers not used to pass return values.

write: read : recover :
LOCK: if CAS(1,0,1) BEGIN: a := §; if even(s)

goto LOCK; if odd(a) goto END;
1% = ay; fo(x1%); x3°7 1= ag; fo(x3%); goto BEGIN; X1 := %1575 fo(x1);
sfence; a) := X31; ag 1= Xp; X2 1= x5°"; fo(%2);
s:=s5+1; £1(8); ifs#a sfence;
%1 1= a1; fo(x1); X2 := ag; fo(x2); goto BEGIN; END: $:= 0;
sfence; return; return,
s:=841;
UNLOCK: 1 :=0;
return;

Ignoring crashes, atomicity is guaranteed here using a seqlock. As for persistency,
observe first that writing directly to the NVM is wrong since we cannot control
the non-deterministic propagation: if a crash occurs during the execution of
write, it is possible that only one part of the pair has persisted, and the recovery
method will not have sufficient information for reinitializing the pair correctly.

Instead, write first records its “job” in (x5°¥, x5°¥). Then, if a crash happens and

5 Our simplified language has no mechanism for argument passing. We assume that
write receives arguments (read returns results) via designated registers, a; and as.

Abstraction for Crash-Resilient Objects 283

the write was in the middle of updating (x1,%,) (as identified via observing an
odd version number), the recovery will complete the job of the writer. We note
that the (rather extensive) use of flushes (or flush-optimals followed by an sfence)
is necessary here in order to restrict the out-of-order persistence. The final write
to s in write does not have to be explicitly persisted. Indeed, if a crash happens
between this write and its persistence, recovery will redo the (idempotent) job.

Theorem 2. L. Cyco,. Lgair.
Our proof sketch uses Lemma 3, letting (rn,m*) € R if the following hold:
o If 71 (&) is even, then 7h(x;) = m*(x4) and m(xy) = m*(x,).
o If 71(8) is odd, then i (x3%¥) = m*(x;) and m(35%") = m*(xa).

Using the abstraction theorem, we obtain that for a program Pr that uses
L air correctly (i.e., calls recovery first after every crash), for every state (g, M)
that is reachable in Pr[Ly,i]xPSC, there exists a state (g*, M*) reachable in
Pr[L} ;.]xPSC and indistinguishable from (g, M) from the client perspective.
A buffered durable pair. A second specification, denoted by Lﬁpair, allows for
“buffered” behaviors, which enable faster implementations by weakening persis-
tency guarantees [24]. Instead of requiring operations to persist before returning,
it only requires that operations are “persistently ordered” before returning.

write: read: recover:
LOCK: if CAS(1,0,1) LOCK: if CAS(1,0,1) return;
goto LOCK; goto LOCK;
beginPB(x1,%2); a; := X1; ag := X; sync:
X1 1= a1; Xp 1= ag; UNLOCK: 1 :=0; £1(x1);
endPB(%1, X2); return; return;
UNLOCK: 1 :=0;
return;
Compared to LY ;. the explicit flush instruction £1(%;) from the write method

is omitted, which means that a crash after a completed write may take the pair
back to its state before the write. Thus, the state after a crash need not necessar-
ily be fully up-to-date. An additional method, called sync, can used to ensure that
previous writes have persisted. Without sync, an implementation could simply
ignore persistency and store the pair in the volatile memory, which corresponds
to an execution of L¥ in which the persistency buffers are never being flushed.

bpair
An implementation can be obtained as follows:
write: read: sync:
LOCK: if cAS(1,0,1) BEGIN: a:= §; LOCK: if cAS(1,0,1)
goto LOCK; if odd(a) goto BEGIN; goto LOCK;
S:=85+1; al 1= Xi; az 1= Xo; a1 1= X1 a2 1= Xo;
X1 := aj; Xp 1= a; if § # a goto BEGIN; 27 = 11 fo(5);
§:=85+1; return; 2 = 15 fo(BT);
UNLOCK: 1 := 0; recover: §fence; '
return; if £ = 1 goto PREV; f = 1;.fl(f); '
o }-{xlxext; %y 1= }-{gext; N]]ix?: Xlllext = a'l; fO(Xrllext);
return; 17 1= ag; £o(837);
PREV: %1 := 37" % := %575 sfence;
f:=0; £1(4); f:=0; £1(f);

UNLOCK: 1 :=0;
return;

return;

284 A. Khyzha and O. Lahav

This implementation exploits the freedom allowed by the specification. Writes
and reads again employ a seqlock, but this time they only use volatile variables.
In turn, sync sets a “checkpoint”, and recovery rolls the state back to the lat-
est complete checkpoint. For that matter, a non-volatile flag £ is used to de-
tect crashes during the setting the checkpoint (x7°**, x3°**). Thus, before storing
the checkpoint, the previous checkpoint is stored in the non-volatile variables
(x57" x57"). Upon recovery, given the value of the flag, we know if we can re-
store the state from the current stored checkpoint, or, if a crash happened during
the store of this checkpoint (which means that sync did not return), set the pair

to the previous stored one.
#
Theorem 3. prair EMGCrec prair‘

Our proof sketch uses Lemma 3, letting (rn,m*) € R if the following hold:
o If ri(f) = 0, then 1 (x2°**) = 1*(x;) and i (x5°%Y) = m*(x2).
o If 1i(f) = 1, then m(X5™") = m*(x,) and r(x5™°") = m*(x2).

8 Related and Future Work

Library abstraction theorems. Previous work has developed library abstrac-
tion theorems for crashless shared memory concurrency. First, [13] formalized the
intuition that standard linearizability as defined in [21] corresponds to contextual
refinement (and also proved a completeness result: the converse also holds pro-
vided that threads have other means of interaction besides the library). Later, [7]
refined and formulated this result using history inclusion instead of linearizabil-
ity, which is closer to our formalization. Other abstraction results account for
liveness [16], resource-transferring programs [17], and x86-TSO [8]. Our compo-
sition lemma (Lemma 2) is inspired by [8], which addresses a challenge that is
close to the challenge posed by store fence instructions in NVM, where actions
of the client and the library affect each other even if they access to distinct
locations. To do so, the notion of a history is extended to expose events that
correspond to the flushing certain entries from the x86-TSO store buffers, which
is close to what we do to handle store fences. Our alternative approach to this
problem, i.e., introducing a relaxed version of the store fence, is novel.

While our framework is operational, library abstraction was also studied
before for declarative shared memory concurrency semantics, particularly in the
context of the C11 weak memory model [5,28].

Linearizability notions for persistent objects. Different approaches for
adapting the standard linearizability criterion that is based on crash-free se-
quential specifications [21] were proposed before [3,19,24], but were not formally
related to contextual refinement. Since methods like recover and sync (see §7) are
meaningless in crash-free sequential specifications, they require an ad-hoc exter-
nal treatment in these linearizability adaptations. The variety of approaches to
interpret crash-free sequential specifications for crash-resilient concurrent objects

Abstraction for Crash-Resilient Objects 285

makes it hard, in particular, to combine libraries with different linearizability
guarantees in a single program.

In turn, these existing notions are typically expressible in the refinement
framework that we employ. For example, in the crashless setting, by wrapping
each method of a sequential implementation S of some object inside a global
lock, one obtains an abstract library L¥% for that object that corresponds to the
conditions imposed by standard linearizability [7] (a library L is linearizable
w.r.t. S iff every crashless history induced by a trace of MGC[L] is also induced
by some trace of MGC[L%]). Now, when crashes are involved, by wrapping each
method of S inside a global lock and a persistence block followed by an explicit
flush instruction (like Lj.; in §7), one obtains an abstract library L%, that
corresponds to the conditions imposed by strict linearizability of [3] (L is strictly
linearizable w.r.t. S iff L Cpyge L% p). Thus, our results can be used to derive
contextual refinement (using L%, as a specification) from strictly linearizable
objects. We note that while the original definition of strict linearizability was for
a model with per-processor failure, what we consider here is its application for
full system crashes.

Durable linearizability [24] weakens strict linearizability by allowing methods
that were active during a crash to take their effect at any later point in the
execution (or never), instead of requiring that the effect of such methods is
visible immediately after the crash (or never). This weakening aims to allow lazy
recovery for large structures, where either the recovery procedure is executed in
parallel to other methods after a crash, or the methods themselves participate
in recovering the data structure when they are further executed. This notion
can be also expressible as an abstract implementation in our language. For this
matter, every update method in the specification would: first record its task
in a work-set; remove the task from the work-set; flush the updated work-set;
and perform the task like in L% ; described above. In turn, every query method
may choose to complete any task it finds in the work-set, since the method
performing such a task has crashed during its invocation. For persistent pairs
(see §7), this is illustrated by the specification below. The non-volatile variable
w is the multiset holding the work-set with atomic add and remove operations,
and 1., is an abstract multiple-readers-single-writer lock used to resolve races
on the work-set.

write: read:

LOCK1: acquire 1., as a reader; goto {LOCK1, BEGIN};

add (a1, a2) to w; LOCK1: acquire 1., as a writer;

remove (ai,az) from w; pick some (a1, a2) € w;

£1(w); remove (ai,as) from w;

UNLOCK1: release 1,y; £1(w);

...continue as in write of L% ;. (§7)... ... write (a1, az) to (x,y) as in write of L} ;. (§7) ...
recover : UNLOCK1: release 1l.y;

return; BEGIN: ...continue as in read of L} ;. (§7) ...

A “buffered” version of strict linearizability, which only requires the exis-
tence of a prefix of the completed invocations to be observed after a crash, is
also naturally derived by considering L¥ 41 Which is obtained from a sequential
implementation S by wrapping each method of S inside a global lock and a per-

286 A. Khyzha and O. Lahav

sistence block (without an explicit flush instruction) and ensuring that there is a
single non-volatile variable that is written to by all library methods (introducing
such a variable if needed).’

An alternative operational characterization of durable linearizability using
Input/Output automata was developed in [12] and used to formally establish
this property for the persistent queue of [14] by providing a full-blown simulation
proof using the KIV proof assistant.” Nevertheless, this work does not relate the
proved correctness criterion to contextual refinement.

Persistency models. The underlying model we assume is PSC by [25], a
strengthening of Px86 [30] that formalizes the Intel-x86 persistency. The pa-
per [25] provided compiler mappings that ensure PSC semantics on machines
guaranteeing Px86 semantics. We extended the general semantic framework with
libraries, and extended PSC with local store fences and persistence blocks.

Future work. Future work includes extending our proof method and results
for weaker persistency models, such as persistent x86-TSO [30] and ARM [10];
handling random access shared memory with allocations and deallocations (in-
stead of the simplified shared variables model we employ); and lifting the strict
condition that libraries and clients live in disjoint address spaces by allowing
them to transfer ownership of certain locations (as was done in [17] for standard
volatile memory).

In addition, extending and adapting methods for refinement verification un-
der volatile memory is needed in order to provide library developers with means
to validate our library-correctness conditions. Such methods may include au-
tomated checking by approximation [7], layered interactive verification in the
style of [20,27], and formal logics as the one in [26]. Similarly, developing formal
methods and tools that allow using library specifications for client reasoning is
left for future work, including decidable reachability analysis [2], program log-
ics [29], and principled testing [15]. Finally, it is interesting to see how logical
atomicity notions established by program logics, such as [11,31], which has been
extended to cover crashes in disk-based storage systems [9], can be adapted for
establishing our correctness condition and/or for client reasoning.

6 Since the corresponding “buffered” correctness notion is not compositional, while the
refinement-based notion is (see Corollary 1), one cannot expect to have a per-object
translation of a sequential implementation S into a concurrent and persistent imple-
mentation L% 4b- Indeed, the addition of a single non-volatile variable that is written
to by all library methods is a not a per-object translation (i.e., for two sequential
library implementations implementing disjoint sets of methods and operating on
disjoint variables, S1 and S2, we will not have L#Sluszéb = L’gléb U L’gzéb).

7 See https://kiv.isse.de/projects/Durable-Queue.html.

https://kiv.isse.de/projects/Durable-Queue.html

Abstraction for Crash-Resilient Objects 287

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

C++ reference (std:list::pop_front explanation), https://www.cplusplus.com/
reference/list/list /pop_front/ [Accessed Jan-2022]

Abdulla, P.A.| Haziza, F., Holik, L., Jonsson, B., Rezine, A.: An integrated specifi-
cation and verification technique for highly concurrent data structures. In: TACAS.
pp. 324-338. Springer (2013)

. Aguilera, M.K., Frglund, S.: Strict linearizability and the power of aborting. Tech-

nical Report HPL-2003-241 (2003)

. ARM: ARM architecture reference manual: ARMvS8, for ARMv8-A architecture

profile (2021), https://developer.arm.com/documentation/ddi0487/latest/ [Ac-
cessed July-2021]

. Batty, M., Dodds, M., Gotsman, A.: Library abstraction for C/C++ concurrency.

In: POPL. pp. 235-248. ACM, New York, NY, USA (2013)

. Boehm, H.J.: Can Seqlocks get along with programming language memory models?

In: MSPC. pp. 12-20. ACM, New York, NY, USA (2012), http://doi.acm.org/10.
1145/2247684.2247688

. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Tractable refinement checking for

concurrent objects. In: POPL. p. 651-662. ACM, New York, NY, USA (2015),
https://doi.org/10.1145/2676726.2677002

. Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent library correct-

ness on the TSO memory model. In: ESOP. pp. 87-107. Springer, Berlin, Heidelberg
(2012)

. Chajed, T., Tassarotti, J., Theng, M., Jung, R., Kaashoek, M.F., Zeldovich, N.:

Gojournal: a verified, concurrent, crash-safe journaling system. In: OSDI. pp. 423—
439. USENIX Association (Jul 2021), https://www.usenix.org/conference/osdi21/
presentation/chajed

Cho, K., Lee, S.H., Raad, A., Kang, J.: Revamping hardware persistency models:
View-based and axiomatic persistency models for Intel-x86 and Armv8. In: PLDI.
p. 16-31. ACM, New York, NY, USA (2021), https://doi.org/10.1145/3453483.
3454027

da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: A logic for time and
data abstraction. In: ECOOP. pp. 207-231. Springer (Jul 2014), https://doi.org/
10.1007/978-3-662-44202-9_9

Derrick, J., Doherty, S., Dongol, B., Schellhorn, G., Wehrheim, H.: Verifying cor-
rectness of persistent concurrent data structures: a sound and complete method.
Formal Aspects of Computing pp. 1-27 (2021)

Filipovié, 1., O’Hearn, P., Rinetzky, N., Yang, H.: Abstraction for concurrent ob-
jects. Theoretical Computer Science 411(51), 4379-4398 (2010), https://www.
sciencedirect.com/science/article/pii/S0304397510005001

Friedman, M., Herlihy, M., Marathe, V., Petrank, E.: A persistent lock-free queue
for non-volatile memory. In: PPoPP. pp. 28-40. ACM, New York, NY, USA (2018),
http://doi.acm.org/10.1145/3178487.3178490

Gorjiara, H., Xu, G.H., Demsky, B.: Jaaru: Efficiently model checking persistent
memory programs. In: ASPLOS. p. 415-428. ACM, New York, NY, USA (2021),
https://doi.org/10.1145/3445814.3446735

Gotsman, A., Yang, H.: Liveness-preserving atomicity abstraction. In: ICALP. pp.
453-465. Springer, Berlin, Heidelberg (2011)

Gotsman, A., Yang, H.: Linearizability with Ownership Transfer. Logical Methods
in Computer Science Volume 9, Issue 3 (Sep 2013), https://lmcs.episciences.
org/931

https://www.cplusplus.com/reference/list/list/pop_front/
https://www.cplusplus.com/reference/list/list/pop_front/
https://developer.arm.com/documentation/ddi0487/latest/
http://doi.acm.org/10.1145/2247684.2247688
http://doi.acm.org/10.1145/2247684.2247688
https://doi.org/10.1145/2676726.2677002
https://www.usenix.org/conference/osdi21/presentation/chajed
https://www.usenix.org/conference/osdi21/presentation/chajed
https://doi.org/10.1145/3453483.3454027
https://doi.org/10.1145/3453483.3454027
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1007/978-3-662-44202-9_9
https://www.sciencedirect.com/science/article/pii/S0304397510005001
https://www.sciencedirect.com/science/article/pii/S0304397510005001
http://doi.acm.org/10.1145/3178487.3178490
https://doi.org/10.1145/3445814.3446735
https://lmcs.episciences.org/931
https://lmcs.episciences.org/931

288

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

A. Khyzha and O. Lahav

Gu, R., Koenig, J., Ramananandro, T., Shao, Z., Wu, X.N., Weng, S.C., Zhang, H.,
Guo, Y.: Deep specifications and certified abstraction layers. In: POPL. p. 595-608.
ACM, New York, NY, USA (2015), https://doi.org/10.1145/2676726.2676975
Guerraoui, R., Levy, R.R.: Robust emulations of shared memory in a crash-recovery
model. In: ICDCS. p. 400-407. IEEE Computer Society, USA (2004)

Hawblitzel, C., Petrank, E., Qadeer, S., Tasiran, S.: Automated and modular re-
finement reasoning for concurrent programs. In: CAV. pp. 449-465. Springer, Cham
(2015)

Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463-492 (Jul 1990), http://doi.
acm.org/10.1145/78969.78972

Intel: Persistent Memory Programming (2015), http://pmem.io/

Intel: Intel 64 and ia-32 architectures software developer’s manual (combined vol-
umes) (May 2019), https://software.intel.com/sites/default/files/managed/39/c5/
325462-sdm-vol-1-2abcd-3abed.pdf, order Number: 325462-069US

Izraelevitz, J., Mendes, H., Scott, M.L.: Linearizability of persistent memory ob-
jects under a full-system-crash failure model. In: DISC. pp. 313-327. Springer,
Berlin, Heidelberg (2016)

Khyzha, A., Lahav, O.: Taming x86-TSO persistency. Proc. ACM Program. Lang.
5(POPL), 47:1-47:29 (Jan 2021), https://doi.org/10.1145/3434328

Liang, H., Feng, X., Fu, M.: Rely-guarantee-based simulation for compositional
verification of concurrent program transformations. ACM Trans. Program. Lang.
Syst. 36(1) (Mar 2014), https://doi.org/10.1145/2576235

Lorch, J.R., Chen, Y., Kapritsos, M., Parno, B., Qadeer, S., Sharma, U., Wilcox,
J.R., Zhao, X.: Armada: Low-effort verification of high-performance concurrent
programs. In: PLDI. p. 197-210. ACM, New York, NY, USA (2020), https://doi.
org/10.1145/3385412.3385971

Raad, A., Doko, M., Rozié¢, L., Lahav, O., Vafeiadis, V.: On library correctness un-
der weak memory consistency: Specifying and verifying concurrent libraries under
declarative consistency models. Proc. ACM Program. Lang. 3(POPL), 68:1-68:31
(Jan 2019), http://doi.acm.org/10.1145/3290381

Raad, A., Lahav, O., Vafeiadis, V.: Persistent Owicki-Gries reasoning: A program
logic for reasoning about persistent programs on Intel-x86. Proc. ACM Program.
Lang. 4(OOPSLA) (Nov 2020), https://doi.org/10.1145/3428219

Raad, A., Wickerson, J., Neiger, G., Vafeiadis, V.: Persistency semantics of the
Intel-x86 architecture. Proc. ACM Program. Lang. 4(POPL) (Jan 2020), https:
//doi.org/10.1145/3371079

Svendsen, K., Birkedal, L., Parkinson, M.: Modular reasoning about separation of
concurrent data structures. In: ECOOP. pp. 169-188. Springer, Berlin, Heidelberg
(2013)

Zuriel, Y., Friedman, M., Sheffi, G., Cohen, N., Petrank, E.: Efficient lock-free
durable sets. Proc. ACM Program. Lang. 3(OOPSLA), 128:1-128:26 (Oct 2019),
http://doi.acm.org/10.1145/3360554

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

https://doi.org/10.1145/2676726.2676975
http://doi.acm.org/10.1145/78969.78972
http://doi.acm.org/10.1145/78969.78972
http://pmem.io/
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://doi.org/10.1145/3434328
https://doi.org/10.1145/2576235
https://doi.org/10.1145/3385412.3385971
https://doi.org/10.1145/3385412.3385971
http://doi.acm.org/10.1145/3290381
https://doi.org/10.1145/3428219
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3371079
http://doi.acm.org/10.1145/3360554
http://creativecommons.org/licenses/by/4.0/

Abstraction for Crash-Resilient Objects 289

source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

o)

Check for
updates

Static Race Detection for Periodic Programs*

Varsha P Suresh! (2)®, Rekha Pai?®, Deepak D’Souza?(X)
Meenakshi D’Souza! ()@, and Sujit Kumar Chakrabarti®

! International Institute of Information Technology Bangalore, Bengaluru, India
2 Indian Institute of Science, Bengaluru, India.
{rekhapai,deepakd}@iisc.ac.in
{varsha.suresh,meenakshi,sujitkc}@iiitb.ac.in

Abstract. We consider the problem of statically detecting data races in
periodic real-time programs that use locks, and run on a single processor
platform. We propose a technique based on a small set of rules that
exploits the priority, periodicity, locking, and timing information of tasks
in the program. One of the key requirements is a response time analysis
for such programs, and we propose an algorithm to compute this for
the case of non-nested locks. We have implemented our analysis for real-
time programs written in C in a tool called PEPRACER and evaluated
its performance on a small set of benchmarks from the literature.

Keywords: Real-Time systems - periodic programs - static analysis -
data races - WCRT Analysis

1 Introduction

Periodic real-time applications (or simply periodic programs) are a class of real-
time systems that comprise a set of tasks, each of which comes with an associated
priority and periodicity, and are executed according to a scheduling policy like
priority-based preemptive scheduling, on a real-time operating system. Thus
each task is made ready to run at the beginning of its period (though it may
actually get to execute only later depending on its priority and how long it has
been waiting in the ready queue), and may be preempted during its execution by
higher priority tasks that have been made ready to run. Many of these systems
are safety-critical in nature, being widely employed in avionics, robotics, and
autonomous systems.

These systems are also essentially concurrent in nature (even if we consider
single processor platforms), since a running task may be preempted by a higher
priority task, causing them to interleave in time. With concurrency come the
attendant problems of data-races: it is not difficult to imagine a scenario where
a low priority task is updating a shared data-structure or even a multi-word
variable like a long int, when it is preempted by a higher priority task that

* Supported by University Grants Commission (UGC), New Delhi, India and Royal
Academy of Engineering, UK

© The Author(s) 2022
I. Sergey (Ed.): ESOP 2022, LNCS 13240, pp. 290-316, 2022.
https://doi.org/10.1007/978-3-030-99336-8_11

http://orcid.org/0000-0003-1756-4438
http://orcid.org/0000-0002-5964-8819
http://orcid.org/0000-0002-6629-6604
http://orcid.org/0000-0003-3640-6240
http://orcid.org/0000-0001-8422-2900
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99336-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-99336-8_11

Static Race Detection for Periodic Programs 291

goes on to access the potentially inconsistent shared data. Thus it is common for
real-time application developers to use synchronization mechanisms like locks to
protect accesses to shared data structures (like the ones used to control wheel
movement in a robot) or resources (like an LCD display). Real-Time operating
systems typically provide a variety of lock mechanisms from standard locks or
semaphores to priority-inheritance based locks [18].

Our focus in this paper is on giving a way to statically (that is by analyzing
the source code of the application, rather than running it) detect races in periodic
programs that use standard locks. The emphasis in static analysis techniques
is on soundness: we do not eliminate a pair of conflicting accesses unless we
can prove that they do not race. The other side of the coin is precision: how
close is the set of potential races reported to the actual set of races in the
program. The basic technique used in the programming languages community
to statically detect races is a lockset analysis, which computes the set of locks that
are must-held at each statement in a task, and declares two statements to be non-
racy if they hold a common lock. More recent techniques [17,20] exploit priority
information to declare accesses to be non-racy: for instance a high-priority task
does not need to protect its accesses from a lower priority task.

However, none of these techniques seek to exploit the inherent periodic na-
ture or execution times of the tasks in these programs. For example, a simple
observation is that if two tasks have the same period and don’t take any locks,
they can never overlap in time. Exploiting timing information is also key to
improving the precision of a race analysis technique for these programs. The
notion of worst-case response time (WCRT) of a task measures the maximum
time an instance of the task may take to complete its execution starting from the
beginning of its period. As an example of how we can use conservative WCRT
estimates, if we can conclude from the WCRT information that a low-priority
task always finishes execution before the next arrival of a high-priority task, we
can declare them to be non-racy.

While computing the WCRT of tasks in periodic programs is well-studied
in the real-time systems community, starting from [13,12] for periodic programs
without locks, and for periodic programs with priority-inheritance-based locks
[18], as far as we are aware there are no techniques available for periodic programs
with standard locks. One of the contributions of this paper is to extend the
classical technique of [12] to compute WCRT estimates for programs with non-
nested locks, given worst-case execution time (WCET) estimates of tasks and
lock-unlock blocks (or critical sections).

We then go on to give a set of six rules (in the spirit of the ideas described
above) to soundly eliminate pairs of conflicting accesses, leading to a sound,
efficient, and fairly precise race-detection technique for such programs.

We have implemented our analysis in a tool called PEPRACER for detecting
races in such programs written in C. One of the inputs to the tool is a WCET
analysis for different blocks in the program tasks, which we obtain using the
WCET analysis tool Heptane [11]. We have run our tool on several benchmarks,
including robot controllers from the nxtOSEK project [2]. Our tool runs in a

292 V. P. Suresh et al.

fraction of a second on these benchmarks, and on the average eliminates 97% of
conflicting access pairs as non-racy.

An overview of our technique is presented in the next section on an exam-
ple adapted from one of our benchmarks. Periodic programs and their execution
semantics are introduced in Sec. 3. Sec. 4 formally defines the notions of conflict-
ing accesses and data races. Algorithms for computing safe bounds on response
times of periodic programs with locks are presented in Sec. 5.2. Sec. 6 gives
the rules for disjointedness of tasks and the race detection algorithm for peri-
odic programs. Our experiments on benchmark examples are detailed in Sec. 7,
followed by a discussion on related work in Sec. 8.

2 Overview

We provide an overview of our technique with an illustrative example adapted
from the “lego_osek” robot controller, based on the OSEK operating system,
from [2]. Fig. 1 shows some excerpts from this example. The controller’s job is
to control the motion of the two-wheeled robot to follow a line (that it detects
using light sensors), it also detects obstacles along the way (using a sonar sensor)
and avoids them by braking and moving to the left. The controller has two tasks
TaskControl and TaskObstAvoid that do the line-following control and obsta-
cle detection and avoidance respectively. TaskControl has high priority (higher
value indicates higher priority) and runs every 10ms, while TaskObstAvoid has
low priority and runs every 30ms. The two tasks access some shared locations,
including structures for actuating the left and right wheel motors, an LCD dis-
play, and a boolean “obstacle-detected” flag. TaskControl reads two light sensor
values, does some computation with them, and writes them to the LCD dis-
play. The access to the LCD display is protected by acquiring and releasing the
lcd_lock lock. Finally it computes the new speed and brake values that are
then written to the wheel motor structures, after checking that the obstacle
flag is not set. The TaskObstAvoid task reads the sonar and left light sensors,
does some computation on them, sets the obstacle flag based on these values,
and displays them on the LCD (making sure to take a lock on it first). If the
obstacle flag was set, it goes on to write to the left wheel structure to brake
and turn the robot to the left.

We note that there are several conflicting accesses to the shared variables,
including lines 13 and 33 to lcd, lines 16 and 29 and 16 and 31 on obstacle,
and lines 19-20 and 36-37 on left_wheel. Apart from the accesses to 1cd which
are protected by a lock, the other accesses appear to be racy at first glance. For
instance, while TaskObstAvoid is updating the left wheel structure, it could be
preempted by the higher priority TaskControl which goes on to write to the
same structure, potentially leading to a harmful race.

Our key idea is to exploit the priority, periodicity, and worst case response
times of the tasks, to show that these accesses cannot race. Fig. 2 shows the
periodic execution of the two tasks. Notice that if the low priority task is guar-
anteed to finish its execution before the next instance of the higher priority task

Static Race Detection for Periodic Programs 293

1. // Shared structures and variables 23. void TaskObstAvoid() {// Per 30, Prio 1 (low)
2. struct motor right_wheel; 24, int sonar_value, sensor_left;

3. struct motor left_wheel; 25. // Read and calibrate sensor values
4. struct display lcd; 26. sonar_value = get_sonar_sensor();

5. bool obstacle = 0; 27. sensor_left = get_light_sensor(left);

28. if (...)

6. void TaskControl() {// Per 10, Prio 2 (high) 29. obstacle = 1;

7. int sensor_right, sensor_left; 30. else

8. // Read and calibrate sensor values 31. obstacle = 0;

9. sensor_right = get_light_sensor(right); 32. lock(lcd_lock);

10. sensor_left = get_light_sensor(left); 33. show_var (sonar_value, sensor_left);
11. lock(lcd_lock); 34. unlock(lcd_lock);

12. // display sensor values on LCD 35. if (obstacle) { // avoid by moving left
13. show_var(sensor_right , sensor_left); 36. left_wheel.speed = ...;

14. unlock(lcd_lock); 37. left_wheel.brake = 1;

15. // Motor control, uses sensor values 38. }

16. if (lobstacle) { 39. }

17. right_wheel.speed = ...;

18. right_wheel.brake = 0;

19. left_wheel.speed = ...;
20. left_wheel.brake = 0;
21. }
22. }

Fig. 1: An example periodic program adapted from Lego-OSEK

is scheduled, there can be no interleaving of the two tasks, and we can declare
all the conflicting accesses as non-racy. However, concluding this in the presence
of locks is not easy, and our first contribution is a way of computing an estimate
of the worst case response times for tasks that take non-nested locks (like in
the example program). Using raw WCET times of the tasks and its lock blocks
(like lines 11-14) for the platform the robot controller is to be run on, we use
Algo. 2 (described in Sec. 5) to compute an estimate of the response time of
TaskObstAvoid. Rule 3 (described in Sec. 6) then allows us to eliminate all the
pairs of conflicting accesses as non-racy.

We note that techniques such as [17,20] that consider task priorities and locks
(but not periodicities and response times) would not be able to eliminate any of
the conflicting access pairs, except the accesses to 1cd which are protected by a
lock.

‘WCRT est. of task L
TL

Fig. 2: Task timelines for Lego-OSEK example

294 V. P. Suresh et al.

3 Periodic Programs

A periodic program is a collection of tasks. Each task has an associated function,
period, and priority. There is a designated init task which is the only task that
is ready to run initially. An execution of the program begins with running the
function associated with the init task, which initializes shared variables. It then
makes other tasks ready to run using the start command. The init task runs
only once.

The execution of the tasks is orchestrated by a priority-based preemptive
scheduler. It is important to point out here that we are assuming a single pro-
cessor platform. The scheduler selects one of the enabled tasks for execution
on a highest-priority-first basis. A task with period T is enabled every T time
units. If there are more than one tasks of the highest priority ready to run, the
longest waiting task is picked for execution. This is also known as First-Come-
First-Served (FCFS) scheduling.

The task functions operate on a set of shared variables V using assignment
statements and accesses to the shared variables can be synchronized using the
lock-unlock commands. The set of commands (over a set of variables V') Cmdy
that can be used in a periodic program are shown in Table 1.

Table 1: Periodic Program Commands Cmdy

Statement Description

start Make all tasks ready for execution.
begin Begins execution of the task.

end Ends execution of the task.

skip Do nothing.

rx:=e Assign the value of expression e to z.

assume(b) |Enabled only if expression b evaluates to true;
does nothing.

lock(l) Take lock [if available;

otherwise block till [becomes available.
unlock(l) |Release lock L

Formally, a periodic program P is a tuple (V, L, T) where V is a finite set of
shared variables, L is a finite set of locks, and 7 is a finite set of tasks, including
a designated init task. A task 7 € T is a tuple (G, Tr, p-), where G is the task
function, T is the period of the task, and p, is its priority. The task function
G is represented as a Control Flow Graph (CFG) G, = (Loc;, I, ent,, ext.),
where Loc, is the finite set of locations of 7, I, C Loc, x Cmdy X Loc, is the
set of instructions of 7, and ent,, ext, € Loc, are the entry and exit locations
respectively of 7. We denote the set of locations and instructions in P by Locp =
U, e Loc; and Ip = |, .7 I respectively, assuming the set of locations to be

Static Race Detection for Periodic Programs 295

disjoint across tasks. We will drop the subscripts whenever they are clear from
the context.

An example periodic program and the CFG representation of one of its tasks
ObsDect are shown in Fig. 3. The periodic program has two tasks that imple-
ments a simple robotic controller, apart from the default init task. The ObsDect
task function detects an obstacle based on the sensor input in the sIn variable
and makes a corrective action. The MoveForward task function directs the robot
to move forward if there is no obstacle. The ObsDect task has high priority (value
2) and runs every 100 time units, while the MoveForward task has lower priority
(value 1) and runs only every 200 time units. Both the tasks access the shared
variables obstacle and forward.

init:

1. obstacle := 0;
2. forward := 0;
3. sIn := 0;
4.

start; .10

bstacle:=0
// Period = 100, Prio = 2 cbstacte

ObsDect: 11
10. obstacle := 0; b
11. if (sIn <= 10) { assume (sIn<=10) assume (sIn>10)
12. obstacle := 1; o
13. forward := -100;
4.} obstacle:=1
15.
o3

// Period = 200, Prio = 1 forward:=—100

MoveForward:
20. if (lobstacle) P
21. forward := 100;
22. skip
o 15
(a) An example program (b) CFG of the ObsDect task

Fig. 3: Example program and the CFG representation

We now define the semantics of a periodic program P = (V, L, T) as a labeled
transition system Sp = (S, $;n,, =) where S is the set of states, s;, € S is the
initial state, and = is the transition relation, as defined below. In the following,
Q7 denotes the set of possible task priority queues and € denotes an empty queue.
We also assume that the tasks have distinct priorities in P = {1,...,k} with
a higher value indicating higher priority. For an integer expression e, boolean
expression b, and an environment ¢ for V, we denote by [e]s the integer value
that e evaluates to in ¢, and [b]4 denotes the boolean value that b evaluates to
in ¢. For a function f : X — Y, and elements x € X and y € Y, we use the
notation f[x — y] to denote the function f': X — Y given by f'(x) = y, and
f'(z) = f(z) for all z different from z.

A state s € S is a tuple (R, W, A, B, pc, ¢, tick,r) where

— R is a priority queue of tasks that are ready to run,

296 V. P. Suresh et al.

— W C T is the set of tasks that are waiting to be scheduled,

— A € L — T is a partial map that gives, for each lock, the task that has
acquired the lock,

— B e L — Qf is a map that gives, for each lock, the priority queue of tasks

that are blocked on the lock,

pc € T — Locp is a map giving the current location of each task,

¢ € V — 7Z is a variable to value map,

tick € N is the time units elapsed since the program started, and

r € T is the currently running task.

The initial state s;,, is defined to be (¢, T — {init}, 0,0, At.ent-, Ax.0, 0, init)
denoting the fact that initially the init task is the running task while no other
tasks are ready to run and instead are waiting to be scheduled, none of the tasks
have acquired locks and hence they are not blocked, all the tasks are at their
entry locations, all the variables are initialized to zero, and so is the tick counter.

We now define the transition relation = C S x Ip x S as follows. For a state
s = (R,W, A, B, pc, d, tick, r), a task 7, and an instruction ¢« = (I,¢,1’) in G,
we have s =, s’ iff one of the rules in Fig. 4 is satisfied. If for a command ¢, the
conditions on state s specified in the antecedent (the ones mentioned above the
line) holds then s =, s’ in the consequent (the one below the line) also holds.

In the START rule, for the start command executed by the init task, all the
tasks in W that are waiting to be scheduled onto the ready queue are enqueued
onto R. We now pick the highest priority task, which is at the head of the
updated ready queue, to be the next running task. Once the init task executes
the start command, it plays no role in the rest of the execution.

The rule uses the ENQ(Q, S) function which when given a priority queue @
of tasks and a set S of tasks, enqueues each task in S onto the queue Q). The
function enq(@Q, s) is the standard enqueue function for a priority queue Q. The
function deq(Q) returns the queue with the head element removed. The function
head(Q) when given a priority queue @ of tasks returns the task with the highest
priority, which is at the head of Q.

The END rule is defined for the end command to signal completion of the
currently running task. Hence the task is inserted into the wait list YW. Moreover,
the highest priority task in the ready queue R, which is at its head, is removed
from R and made the running task. The rule requires that the ready queue R
be non-empty.

The ALOCK rule is defined for the lock(m) command. If the running task r
requests for a lock m which is not acquired by any task (as given by A(m) =
undef) then the running task proceeds with acquiring the lock. The BLOCK rule
is defined for the lock(m) command when the running task cannot acquire the
lock. If the running task r requests for a lock m which is acquired by a task 7/
(as given by A(m) = 7’) then the running task r is blocked by en-queuing it
onto the blocked queue B(m). This calls for a re-schedule and hence the highest
priority task from the non-empty ready queue R is made the running task.

The UNLOCK rule is defined for the unlock(m) command. If the running
task r requests for the release of the lock m which it was holding or it was the

Static Race Detection for Periodic Programs 297

c=skip pc(r)=1 T=r
s =, (R,W, A, B, pe[r = U], ¢, tick,r)

SKIP

c=x:=e pc(r)=1 T=r ASSIGN

5= (R7 W,A,B,pC[T = l,}7¢[1’ = IIe]]¢]7 tiCva)

c=begin pe(t)=1 T=7r
s =, (R,W, A, B, pe[r — U], ¢, tick,)

BEGIN

c=assume(b) pe(t)=1 T=7r [b]e= true

s =, (RyW, A, B, pc[r — U], ¢, tick,r)

ASSUME

c=start pe(r)=1 7=r=1nit

s =, (deq(ENQ(R, W)), 0, A, B, pc[r — U], &, tick, head(ENQ(R, W)))
c=end pc(r)=1 T7=r R#e _
s =, (deq(R), WU {r}, A, B, pc[r + '], ¢, tick, head(R)) o
c=1lock(m) pc(r)=1 7=r A(m)=undef
s =, (R,W, Alm — 1], B, pc[t — U], ¢, tick,r) Arock
c=1lock(m) pc(r)=1 7=7r Am)=17 R#e
BLOCK

s =, (deq(R), W, A, Blm +— enq(B(m),)], pc, ¢, tick, head(R))
c¢=unlock(m) pc(r)=1 7=r (A(m)=rV.Am)=undef) B(m)=c¢
s =, (R,W, Alm — undef], B, pc[t + '], ¢, tick,r)

UNLOCK

c=unlock(m) pec(r)=1 7=r Am)=r Q=DB(m)#e¢ head(Q)=1" p <pr
s =, (enq(R,7"), W, A[m — undef], B[m — deq(Q)], pc[T — U], ¢, tick,r) e

c=unlock(m) pc(r)=1 7=r Am)=r Q=B(m)#e head(Q)=7" p, > pr s
s =, (enq(R,), W, Alm — undef], Bim — deq(Q)], pc[r + '], ¢, tick, "))

v =inc(tick) S ={r' € W v is a multiple of T+} K
s = (deq(ENQ(R, SU {r})), W\ S, A, B, pc, $,v,head(ENQ(R, SU {r})))

Fig. 4: Transition relation capturing the execution semantics of a periodic pro-

gram

298 V. P. Suresh et al.

case that no task was holding the lock (as given by A(m) = r VvV A(m) = undef)
then the running task can proceed with releasing the lock. Further, if there are
no tasks blocked on this lock m (as given by B(m) = €) then the current task
continues to be the running task. The UNL-WK rule is defined for the unlock(m)
command when a low priority task is blocked on the lock. If the running task
requests for the release of the lock m which it was holding and a task 7/, at
the head of the blocked priority queue B(m), is blocked on the lock, of priority
lower than the running task, then 7/ is unblocked by dequeing it from its blocked
priority queue B(m) and enqueing it onto the ready queue R. Task r continues
to be the running task. The UNL-CS rule is defined for the unlock(m) command
when a high priority task is blocked on lock m. If the running task requests for
the release of the lock m which it was holding and a high priority task 7’ is
blocked on the lock then 7’ is unblocked by dequeing it from its blocked queue
B(m). The task 7/, being of higher priority, is selected as the next running task
while the current running task r is enqueued onto the ready queue R.

The TiCK rule models the handling of a timer interrupt, signalling that a
unit of time has elapsed. The tick counter is incremented by one, and the tasks
in W whose periods divide the tick count, are moved to the ready queue R. The
current running task r is also enqueued onto the ready queue. We now pick the
highest priority task in the updated ready queue, which is at its head, as the
next task to run.

The Skip, BEGIN, ASSIGN, and ASSUME rules for the skip, begin, assign-
ment, and assume commands, respectively, are standard.

An execution of a periodic program P is a finite sequence of transitions
p=01,...,0, (n > 1), such that there exists a sequence of states sg,..., s, of
S, with each §; € = of the form (s;_1, ¢, s;) for some ¢;, and sy = $;p.

The semantics we have defined so far abstracts away the “real-time” aspect of
a periodic program. We can obtain the real-time semantics of a periodic program
by considering a concrete execution environment which fixes the execution time
of each instruction (say in a bounded interval of time), and restricting ourselves
to executions where the tick interrupt is driven by a real-time clock and is con-
sistent with the time taken to execute instructions between two ticks. Henceforth
we fix such an environment and focus on the induced subset of executions of a
periodic program.

4 Data Races

Let P = (V, L, T) be a periodic program. In an execution of P, tasks are executed
periodically and hence during the course of execution of P many instances of
a task get executed. Consider two tasks 73 and 75 in 7, and two non-empty
paths 7 and 7' in G, and G.,,, respectively. We say m and 7’ may happen in
parallel in P if there is an execution p of P, and instances of 7 and 7 in p which
execute along the paths 7w and 7’ respectively, in such a way that the paths =
and 7’ interleave (that is, either 7’ begins after m has begun but not yet ended;
or vice-versa).

Static Race Detection for Periodic Programs 299

We now define when two statements s; and sy (corresponding, to instructions
11 = (l1,¢1,11) and g = (I3, ¢o,1%)) in tasks 71 and 72, respectively, may happen
in parallel. Consider the program P’ obtained from P by enclosing the statements
s1 and so in skip statements. Formally, we obtain P’ by replacing the instruction
t1 by the instructions (Iy, skip,m1), (mq,c1,m}), and (mf, skip,}), where my

and m) are new locations in Loc. ; and similarly for ¢5. Let m; be the path

skip c skip . . .
Ii = mp = m) = I} in G/, and similarly m in G,;. We now say s; and sz

may happen in parallel in P, if the paths m; and 75 may happen in parallel in
the program P’.

Two statements are called conflicting if they are read/write accesses to the
same variable, and at least one of them is a write. We say two statements s; and
s9 in P are involved in a data race (or are simply racy) if they are conflicting
accesses that may happen in parallel. As an example, in the example program
of Fig. 3, the accesses to obstacle in lines 10 and 20 are conflicting. Without
any assumptions on the execution time of these two tasks, these two statements
are also racy, since there is an execution of the augmented program in which the
skip-blocks around these two statements interleave.

Finally, we define what it means for a “block” of code to happen in parallel
with another. A block of code in P is specified by a pair (I, X), where for some
task 7in P, l is a location in Loc, and X C Loc, is a subset of locations reachable
from [, in task 7. An initial path in a block B = (I, X) of a task 7 in P, is a non-
empty path in G, that begins at [and stays within the set of locations X, except
possibly for the last location in the path. We say a statement s = (m,c,m’) in
P belongs to block B = (I, X) if m belongs to the set X. We say two blocks B
and By of P may happen in parallel if there are two initial paths 7 in By and
o in Bs, which may happen in parallel with each other. Otherwise, B; and Bs
are disjoint.

5 Response Time and its Computation

Our aim in this section is to give a way of computing a safe bound on the
response time of tasks in a periodic program with locks. We begin by recalling
some of the basic notions.

Consider a sequential piece of compiled code B executing on a given hardware
platform. Assume that the code does not have to compete for the processor time
with other processes (in particular there is no preemption, and lock statements
succeed without blocking). The execution time of B may still vary depending
on reads of input and other shared locations, which are assumed to return non-
deterministic values during the execution. If we consider the supremum of these
execution times we obtain the worst-case execution time (WCET) of B on the
given platform. There are many static analysis techniques and tools that help us
obtain conservative estimates on the WCET of a program on a given platform.
We refer the reader to [21] for a survey of these techniques and tools.

Let us now consider a periodic program P = (V,L,T) which we want to
execute in a given execution environment. Let 7 be a task in 7. Consider an

300 V. P. Suresh et al.

execution p of P in this environment. There could be many instances of 7 exe-
cuting in p. Let us consider one such instance, where at time ¢, 7 moves into the
ready queue with the program counter pointing to its start location. Let ¢’ be
the time at which this instance completes (that is 7 executes its end instruction).
Then the response time of this instance of 7 is ¢’ — t. We are interested in the
worst case response time (WCRT) of 7 which is defined to be the supremum of
the response time of instances of 7 over all instances of 7 and all executions of
P in the given environment.

In a similar way we can define the WCRT of a block of code B in 7, where
we take the initial time t to be time the instance of 7 is in the ready queue with
the program counter pointing to the beginning of B, and t’ to be the time the
last instruction of B completes.

We note that the response time of a task (or a block of code) may exceed its
WCET, as the task may lose processor time due to preemption by higher priority
tasks, or due to blocking lock attempts. To illustrate this, consider a periodic
program with three tasks 71 (priority 1, period 20), 7 (priority 2, period 13), and
73 (priority 3, period 8). Suppose the tasks have a simple structure comprising
straight-line code, and each of them takes and releases a common lock . Let the
WCET for each segment of the tasks be as shown in Fig. 5. Consider a portion of
a possible execution of P shown in Fig. 6. We note that 75, which has a WCET
of 3, is ready to run at time 39 but completes execution only at time 44. Thus
its response time in this instance is 5. This was due to the 2 units of processor
time taken away by task 73 in its interruption during m’s execution. Notice also
that the top priority task 73 is delayed by 1 unit of time waiting for m to release
the lock it had acquired before it was preempted.

lock(1) unlock(l)
B3

T3 — —] —
1 0.5 05

lock(1l) unlock(l)
B2

T2
0.5 1.5 1

lock(l) unlock(l)
B!

T1
1 1 1

Fig. 5: Block WCETs of tasks of example program

We say a periodic program P is schedulable if the WCRT of each task is
less than or equal to its period. However, since it is difficult to know the exact
WCRT, we will look for a conservative WCRT estimate which is less than or
equal to the period of the task, to declare that a program is schedulable.

Static Race Detection for Periodic Programs 301

BN
| =

T3

T2

Fig. 6: Illustrating response time

5.1 Computing Response time without Locks

In the classical setting of periodic programs without locks a conservative estimate
of the WCRT for each task can be computed using Eq (1) below [12,13]. Let
P = (V,L,T) be a periodic program. We assume for convenience in the rest of
this section that P has tasks 71,...,7, with distinct priorities (we ignore the
init task). Without loss of generality we assume 7; has priority i. Further, each
task 7; has a WCET estimate C;. Consider the equation below from [12| which
in turn is based on the analysis in [13]. Here the R;’s are variables representing
the WCRT of task 7; respectively.

R; ZCrFZ((Ri/Tﬂ - Cj). (1)

j>i

Theorem 1 ([12,13]). The least solution to Eq 1, whenever it exists, is an
upper bound on the WCRT of task ;.

Proof. Let L be any solution to Eq (1). We argue that L must upper bound the
response time of any instance of task 7;. Consider an instance of task 7; that
is enabled (enters the ready queue) at time ¢. Consider the time point ¢ + L.
If we ask ourselves how much processor time can be taken away in the interval
[t,t+ L] by a higher priority task 7;, it is clearly bounded by [L/Tj] - C;. Thus,
the total time that can be taken away by all higher priority tasks put together
is bounded by > . ;([L/T;] - Cj). This leaves at least C; time for task 7; to
execute, and hence it must complete execution by ¢ + L. O

Algo. 1 below, which is similar to the recursive procedure proposed in [12],
computes the least solutions to Eq (1) to compute conservative estimates of the
WCRT of tasks, and thereby tells whether a periodic program is schedulable or
not.

5.2 Computing Response Time with Locks

Thm. 1 no longer holds (and Algo. 1 is no longer sound) when tasks are allowed
to take locks. This can be seen from the example program and sample execution

302 V. P. Suresh et al.

Algorithm 1: Check Schedulability (No Locks)

Data: Periodic program P without locks, WCET estimates C; for 7;
Result: P schedulable or not, and if so WCRT estimate for each task
foreach task 7; do
L™ .= 0;
L; := Ci;
while (L; is not a solution to Eq (1) and L; < T;) do
tmp = Lj;
Li=Li+ 3, ,([L:/ Ty] = [LT™/ T51) - Cj);
L™ .= tmp;
end
if (L; does not satisfy Eq (1) or L; > T;) then
‘ return “Unschedulable”;
end

end
return “Schedulable”, Li,..., Ly;

in Figs. 5 and 6, where for instance task 73 has a response time of 3, but the
least solution to the corresponding Eq (1) is 2. However, as we show below, it is
possible to extend the classical approach to handle non-nested locks.

Before we consider the general case, it will be instructive to first consider the
example program of Fig. 5. Let C1, Cs, C3 stand for the WCET estimates for
tasks 71, 72, 73 respectively, and C}, C?, C} for the WCET estimates of the blocks
B', B2, B3 respectively. Let us first begin by asking what is the response-time
of the block B!. Recall that this is the portion of code between the lock(l)-
unlock(l) statements in 71. Since B' does not contain any lock statements, the
response time for this follows Eq (1), and we can write Eq (6) to capture its
response time, Ull. In a similar way the response time, Ul2, of the block B? is
given by Eq. (5). It is easy to see that the response time, Ul?’, of the block B? in
the highest priority task 73 is simply C}.

Next, we consider the top priority task 73. The only extra time it may spend
is in waiting for its lock(l) instruction to succeed. This may happen because one
of the lower priority tasks has acquired lock [and is yet to release it. Suppose
this task is 7. Then 75 must be somewhere in block B2. But how long can it be
before 75 releases [? This is at most the response time for B2. In a similar way,
if 71 has taken the lock, 73 may end up waiting for at most the response time of
B!. Note also that 73 may have to wait for at most one of 75 or 7 to complete
its lock block, never both. Thus, its response time is given by Eq (2).

Now let us consider task 7. It may be delayed either (a) waiting for its
lock(l) statement to succeed because T has taken the lock I; or (b) because 73
takes away some time by preempting it. The former is bounded by the response-
time of B!, while the latter is bounded by the number of times 75 can interrupt

Static Race Detection for Periodic Programs 303

it times the WCET of 75. Thus the response time of 75 is captured by Eq (3).

Ry = C3 + max(U2, U}) (2
Ry = Co + Ul + [Ry/ T3] - C3 (3
Ry =Ci1+[R)/T3]-Cs+ [Ry/Ts] - Cy (4
U =CP + [U} /T3] - Cs (5
Ul =Cl +[U}/Ts] - Cs+ [U}/ T] - Cy (6

N — ~— — ~—

To find the least solution to Eqs (2-6), we can apply the analogue of Algo. 1
to first compute U? = 3.5 and U}'! = 6 using Egs (5-6). We can now use these
values to compute the values Ry = 8, Ry = 13, and R3 = 8. Since these are
within the respective time periods of the tasks, we declare that the program is
schedulable.

We can now tackle the general case. Consider a periodic program P =
(V, L, T) satisfying the following assumptions (in addition to distinct priorities):

— P does not use nested locks. In particular, each task 7; has a finite number
of lock(l)-blocks Bl’;17 e Bli7”l.i’ with n;; > 0, for each lock variable [€ L.
These blocks are pairwise disjoint.

— There is a bound Nli on the number of times 7; takes lock [in any of its
executions.

— The WCET of each task 7; is C;, and of each block Bi i s Cli, &

The equations below capture the WCRT of the tasks and lock blocks of P.
The variables here are the R;’s representing the WCRT of task 7;, and the Ul’fk’s

representing the WCRT of blocks Blj 1 Tespectively.

Ri=Cot YN -max Ufy) + S2(1R/ T3] - C) ™
leL J J>i
Uli,k = Cli,k + Z((Ul{k/Tﬂ -Cy) (8)
J>i

Theorem 2. The least solution to the system of Eqs (7,8), whenever it exists,
is an upper bound on the corresponding WCRT of tasks 7; and the blocks Bf’k.

Proof. Once again we show that any solution to the systems of equations (7) and
(8) is an upper bound on the WCRT of the tasks and lock blocks of P respec-
tively. Let L1,..., L, and Lj, (fori € {1,...,n},1 € L, and k € {1,...,n1,})
be a solution to the equations above. We first argue that the WCRT of a block
Bi % is bounded by Li & Since the block is free of lock statements, this is like the
classical case and a similar argument to Thm. 1 applies to conclude that L’ik is
an upper bound on the WCRT of Bli’k.

To argue that the WCRT of task 7; is bounded by L;, consider an execution
of an instance of task 7; where it is made ready at time ¢. Consider the time
interval ¢ to t+ L;. We claim that 7; must finish its execution before ¢+ L;. Task

304 V. P. Suresh et al.

7; may lose time because of two reasons: (a) it is blocked on one of its lock(l)
instructions because some other task 7 has taken the lock [. Now it must be the
case that 7 is a lower priority task than 7;. Suppose 7 had a higher priority than
7. Then either it must have got blocked after acquiring ! and before releasing
it, or it was preempted by a still higher priority task 7/. The former case is
ruled out since we don’t allow nested locks. We can now apply similar reasoning
to 7/, and so on; but the buck must stop at the highest priority task. Since it
cannot be preempted, it must be blocked waiting to acquire another lock; this is
a contradiction to our no nested lock assumption. Thus, the total time that can
be taken away due to 7; waiting for a lock is bounded by Y7, (N} -max;; L] ;)
(corresponding to the second term in Eq. (7)). The second reason 7; may lose
time is (b) because of preemption by higher priority tasks. Like before, this is
bounded by . ;([Li/T;] - C;) (the third term in Eq. (7)). Thus, there must
remain at least C; amount of time in the interval ¢ to t 4+ L; for 7; to execute,
and hence it must complete execution before t + L;. O

Algo. 2 is an algorithm to compute the least solution to the system of
Egs. (7,8), and check schedulability of a periodic program with non-nested locks.

6 Rules for Disjointness

In this section we describe a set of rules which tell us when two tasks of a periodic
program are disjoint (that is, can never happen in parallel). We will then use
these rules to propose a race-detection algorithm for periodic programs.

6.1 Disjoint Block Rules

Let P = (V,L,T) be a periodic program that (a) satisfies the no-nested-lock
condition of Sec. 5.2, and (b) has WCRT estimates R, for each task 7 satisfying
R, < T, (that is, P is schedulable). The rules below tell us when two whole task
bodies, or two blocks within them, are disjoint. Fig. 7 illustrates Rules 1-5.

— Rule 1 (Same-Priority): Let 7 and 7’ be two distinct tasks in T such that:
e 7 and 7' have the same priority (i.e. pr = p,); and
e Neither T nor 7' shares a lock with a lower priority task.
Then T and 7' are disjoint.

— Rule 2 (Same-Period): Let 7 and 7' be two distinct tasks in T such that:
e 7 and 7' have the same period (i.e. T. = T,); and
e Neither T nor 7' shares a lock with a lower priority task.
Then T and 7' are disjoint.

— Rule 3 (Low-Multiple-of-High): Let 7, and 7, be two tasks in T such that:
e 7, has a lower priority than T; (i.e. pr, < pr,);

Static Race Detection for Periodic Programs 305

Algorithm 2: Check Schedulability With Locks
Data: Periodic program P with locks, WCET estimates C; for 7; and Cli,k for

lock block B,
Result: P schedulable or not; if schedulable, WCRT estimates for each task

foreach block B,i,k do

Ly =0

Ll’k = CZ’k; '

while (Lj ;. does not satisfy Eq (8) and Lj; < T;) do
tmp = Lfyk;
Lig o= Lo+ 2055 (TLie/ Ti1 = TLy™ [Ti1) - C5);
Ly = tmp;

end
if (Li, does not satisfy Eq (8) or Lj, > T;) then
‘ return “Unschedulable”;

end
end
foreach task 7; do
L' .= 0;
Li = CZ —+ ZZEL(NZZ . 1’1’1an<7; L{,k) ;
while (L; does not satisfy Eq (7) and L; < T;) do
tmp = Ly;
Li=Li+> 0,5, (([Li/ T;1 = [L7™/ T41) - Cy);
LYY .= tmp;
end
if (L; does not satisfy Eq (7) or L; > T;) then
‘ return “Unschedulable”;
end
end

return “Schedulable”, Li,..., Ly;

o The period of T, is a multiple of the period of 7, (i.e. Tr, = k- Ty, for

some k € N);
e 7, does not share a lock with a task of lower priority than 1;; and

o The WCRT estimate R, of 71 is at most the period of 7, (i.e. Ry, < Ty,).

Then 7 and T, are disjoint.

— Rule 4 (High-Multiple-of-Low): Let 7; and 15, be two tasks in T such that:

e 7, has a lower priority than Ty;
e The period of 1, is a multiple of the period of T;; and
e 73, does not share a lock with a task of lower priority than ;.

Then 1 and T, are disjoint.

— Rule 5 (Low-WCRT): Let 7y and 7, be two tasks in T such that:

e 7; has a lower priority than Ty;
e 7, and T, have periods such that neither is a multiple of the other.

306 V. P. Suresh et al.

e 7, does not share a lock with a task of lower priority than 7.
e Let m be the minimum strictly positive value in the set

{(k-T;,) mod T, | ke N}

(note that such an m must exist by the second condition above). The
WCRT estimate R, of 7 is at most m (i.e. R, < m).
Then 7 and T, are disjoint.

— Rule 6 (Lock): Let B; and Bj be two lock(l)-unlock(l) blocks in distinct
tasks 7 and 7’ respectively. Then B; and B, are disjoint.

We now show that Rules 1-6 are sound.

Theorem 3. Consider a periodic program P, with no nested locks, and WCRT
estimates which make it schedulable. Consider two blocks which satisfy the premise
of one of the rules; then the identified blocks are indeed disjoint in P.

Proof. Let us fix a periodic program P without nested locks, and with WCRT
estimates R, for each task 7 in P, which witness the schedulability of P. Now
suppose 7 and 7’ are two tasks in P satisfying the premise of Rule 1, namely
that they have the same priority and neither of them shares a lock with a lower
priority task. Now if there were no higher priority tasks and 7 and 7’ took no locks
at all, then clearly 7 and 7’ can never overlap in their execution instances, since
neither can preempt the other. However, even if there was a higher priority task
say 7", note that by our scheduling semantics, if 7"/ were to interrupt 7 during
its execution, 7 would resume execution ahead of any other tasks of the same
priority that may be ready. So 7 and 7’ cannot interleave due to the preemption
by a higher priority task. The other possible cause for interleaving could be
because say 7 gets blocked while trying to take a lock ! that is already held by
some other task of higher or lower priority. However, as argued earlier, a higher
priority task holding [is ruled out. The case of a lower priority task holding [is
ruled out by the premise of Rule 1. Thus it follows that 7 and 7" cannot overlap
in any execution. The soundness of Rule 2 follows a similar argument.

For Rule 3, suppose the period of 7; is a multiple of 7,. Let us say 7; is made
ready at some time ¢ (which must be a multiple of its period T,). Now either
t is also a multiple of T, , in which case 75, will begin execution before 7, or
7y, is next scheduled at some time ¢’ > ¢. In the former case, the only reason 7,
may not complete before 7; gets to execute, is that 7, is blocked on acquiring a
lock. As in earlier arguments, this lock can only have been acquired by a task
of priority lower than 7;. But this is ruled out by the premise of the rule. In the
latter case, by the premise of the rule, t + R, < t’. Hence 7; will complete its
execution before 7;, can preempt it at t'.

For Rule 4, suppose T, is a multiple of T,. Consider a time ¢ when 7;
is made ready. If 7 is not also enabled at ¢, then by schedulability, 7; must
complete before ¢t 4+ T, which is before the time 7, is enabled next. Hence they
cannot overlap in this case. If 7, is also enabled along with 7; at ¢, then it must

Static Race Detection for Periodic Programs

Rule 1

e i i
N2 A A 4

Rule 2
Th

T
R; (WCRT est. of ;)

Rule 3

S < O < >

Ty

Rule 4

Th
= =t s
Ty
R; (WCRT est. of 77)

Rule 5

Fig. 7: Illustrating Rules 1-5

307

308 V. P. Suresh et al.

begin execution before 7; does. The only reason it may not complete before 7; is
allowed to begin execution, is that it is blocked on a acquiring a lock ! held by
a task of lower priority than 7;. But this is ruled out by the premise of the rule.

For Rule 5, again consider 7; and 75, satisfying the premise of the rule. Let ¢
be a time point where 7; is made ready. Either ¢ is a multiple of T, , in which
case T, is also made ready at the same time; or it is not, and arrives at some
time t' later than ¢. The former case is similar to the situation considered in
earlier cases, and the instances of 7; and 75, cannot overlap. In the latter case, by
the premise of the rule, we must have t + R, < ¢+ m < ', and hence 7, would
finish its execution by ¢', and the two tasks cannot overlap. The soundness of
Rule 6 is standard. O

6.2 Computing the value m in Rule 5

Rule 5 requires us to compute the value m which is the smallest positive re-
mainder that we can get by dividing an integral multiple of T, by T,. It is
not difficult to see that all possible remainders must occur in the interval [0, T
where T is the LCM of T, and T, . Thus it is sufficient to look at the multiples
of T;, upto T, and set m to be the minimum positive remainder we get by
dividing these by T7,.

6.3 Race Detection Algorithm

We now present the algorithm to detect races in periodic programs. Algo. 3 first
identifies the set of shared variables accessed in the program and then lists all
the conflicting access pairs, which are all assumed to be potentially racy initially.
The algorithm, using the rules in Sect. 6 and the lockset analysis, described next,
then prunes out the pairs of accesses found to be non-racy.

An iterative lockset analysis computes the set of locks held at each statement
in a program P. At the program entry, it is assumed that no locks are held. For
the lock(l) command, locks held are the set of locks held before this command
along with the lock . For the unlock(l) command, locks held are the set of locks
held before this command with the lock [removed. For any other command, the
lockset remains the same as held in the previous command. The join operation,
in this analysis, is the intersection of locksets.

The algorithm uses the notion of covers which needs further explanation. Let
71 and 7o be two tasks in a periodic program P and s; and s be two statements
in P. We say the pair of tasks (71,72) covers the pair of statements (s1,s2) if
either s; is a statement in G, and s is a statement in G, or vice versa (i.e. s1
in G, and sg in G,).

7 Experimental Evaluation

In this section we first describe the implementation of Algo. 3 to detect races
in periodic programs. We then explain the benchmarks used to evaluate the
implementation followed by a discussion of the results.

Static Race Detection for Periodic Programs 309

Algorithm 3: Race Detection

Data: Periodic program P
Result: List of potential races PR
Identify the set of shared variables V;
Find the list CA of conflicting accesses on V;
PR := CA;
Find list DT of disjoint tasks using rules in Sec. 6;
foreach pair (s1,s2) of conflicting accesses in PR do
if there is a pair (11,72) of tasks in DT, such that (T1,72) covers (si,s2)
then
// (s1,s2) are non-racy
PR = PR — {(51,82)};
end

end
Perform lockset analysis on each task in P;
foreach pair (s1,s2) of conflicting accesses in PR do
let L1 be the lockset at s; and Lo be that at so;
if L1 N Lz # () then

// (s1,s2) are non-racy

PR := PR — {(s1,82) };
end

end
return PR; // Set of potential races

7.1 Implementation

We implemented Algo. 3 in the tool PEPRACER [19] as shown in Fig. 8. The
tool has a preprocessor, which inlines the functions in the input program, a time
analyzer which computes WCET of tasks using Heptane [11], and then their
WCRT using Algo. 2. The CA generator identifies the shared accesses, which
are essentially accesses to global variables or shared locations through pointers,
in the program, and then lists the conflicting access pairs. The Rules Checker
identifies disjoint task pairs using the response times and eliminates conflicting
accesses that are non-racy. The rules, described in Sec. 6, are applied on the
conflicting accesses to eliminate non-racy pairs. The Lockset Analyzer computes
the locks held at each statement in the program and further eliminates the
remaining conflicting accesses that are non-racy. The tool finally displays the
potentially racy pairs.

We implemented PEPRACER in the OCaml based C Intermediate Language
(CIL) static analysis framework [15]. The Inliner step in PEPRACER uses the
built-in inline pass in CIL while the lockset algorithm and Rules Checker are
implemented as new passes in CIL. The implementation of the WCET Analyzer
is explained next.

WCET Analysis WCET analysis was carried out on the benchmarks using the
Heptane [11] tool. Heptane accepts inputs in the form of C programs. To prepare

310 V. P. Suresh et al.

Exec.
WCET WCRT
Analyzer Analyzer
Resp. Times
. Inlined
Program Inliner Program Checker
CA PR’ List
CA List
Generator

Lockset

Analyzer
NS
PR List

Fig. 8: Schematic of PEPRACER

the benchmark programs the following modifications were made to them: All
non-C constructs in the benchmarks were translated to suitable C constructs, e.g.
TASKs in OSEK programs were converted to correspondingly named functions.
All code was merged into a single C file. Some benchmark programs did not
have the source for some of their parts. Heptane needs the source code for the
entire program being analysed. Hence, all code for which source code was not
available was replaced with minimal stubs. Loop bounds were provided using
ANNOT_MAXITER as required by Heptane. These loop bounds were computed by
manual inspection.

For each benchmark the WCET was separately computed for each of its
task entry functions. Heptane supports WCET analysis for ARM and MIPS
architectures. Where possible, WCET was run using default settings for both
architectures. The difference between the WCET results for both architectures
were found to average around 4%, never exceeding 20%. In our analysis we use
the values for the ARM architecture.

Some aspects which may lead to our WCET estimates not being conservative
are as follows:

1. Stub functions were used for those parts of the code whose source was not
available. This accounts for < 1% of the total code analysed.

2. Loop bounds were defined using manual inspection.

3. A small number of lines of code had to be masked to prevent Heptane from
crashing.

For more accurate WCET analysis, data corresponding to the specific target
architecture being considered should be used. Several WCET analysis tools are

Static Race Detection for Periodic Programs 311

available [21] both in the commercial and academic domain. The choice of the
analysis tool would influence the accuracy of the WCET analysis.

7.2 Benchmarks

We tested the implementation on a few benchmark periodic programs shown
in Table 2. Most of the real-world periodic programs are proprietary and diffi-
cult to gain access to. Hence we resorted to some programs from the nxtOSEK
benchmark set, lego-osek-master project, ev3OSEK benchmark set, nxt-osek-
sumo-master project, AADLib benchmark set [1] and examples in [10] and [14]
for evaluation of the tool. The programs in AADLib are configured to run on
FreeRTOS while the others are designed to run on the OSEK real time oper-
ating system. The program fse_obstacle.c implements a simplified version of
a robotic controller which detects obstacles in its proximity while avionics.c
specifies the general functions, data interactions, and timing constraints for a hy-
pothetical avionics Mission Control Computer (MCC) system. Biped_robot.c
is a sample program for LATTEBOX NXTe/LSC based biped robot. Sumo.c
implements a robot which attempts to push its opponent out of a circle. A Blue-
tooth based radio controlled car is implemented in nxtgt.c. In lego_osek.c
a robot detects obstacles and avoids collision by changing angle and speed.
Objectfollower.c implements a follower. It goes forward as an object goes
forward; when the object stops moving, it stops as well, and follower.c is
similar. A two wheeled self-balancing radio controlled robot is implemented in
nxtway_gs.c. Ardupilot.c, taken from [1], is a simple version of the popular
autopilot system supporting many vehicle types. sumoR.c and carR.c are racy
versions of the programs sumo.c and car.c respectively.

We have annotated the programs with task attributes like periodicity, prior-
ity, and WCET time, along with details of locks held. The non-periodic tasks
in some of the programs are taken to be tasks with high period. We have in-
lined the helper functions called in the tasks along with the calls to library
functions. This will bring out the accesses to shared structures in the library.
For example, the ecrobot library function ecrobot_set_motor_speed, which is
called in lego_osek. c, accesses the shared NXT_PORT_A port. The GetResource
and ReleaseResource functions used to take and release locks, respectively, are
taken to be the lock and unlock command in our analysis. It is to be noted
that in OSEK, resources are locked according to the Priority Ceiling Protocol
(PCP). But for our evaluation, we assume these programs are using standard
locks. We believe the placements of locks would not change even if the developer
were using standard locks. FreeRTOS supports the use of standard locks.

7.3 Results

We ran our tool on the benchmark programs on an Intel Quad Core i7-3770
3.40GHz machine running Ubuntu 18.04.4. Table 2 shows the results of running
our tool. The “Tasks” column gives the number of tasks in the program, “Sched.”
gives whether the program is schedulable or not (by Algo. 2), the number of

312 V. P. Suresh et al.

conflicting accesses in a program is listed under the “CA” column, and the count
of potentially racy pairs are given under the “PR” column. The “%Elim.” column
gives the percentage of conflicting accesses that are found to be non-racy. The
last column gives the time taken by the tool, which was calculated using the
Linux time command.

Table 2: Results

Program LoC|Tasks|Sched.] CA|PR %. Time

Elim.|(sec)
fse obstacle.c 24 20 Y 3| 0] 100(0.12
avionics.c 588 15| N 51| 42| 18| 0.13
biped robot.c | 340 3 Y 1| 0| 100| 0.22
sumo.c 5287 4°Y 146/ 0 100| 0.32
nxtgt.c 209 4 Y 3| 0] 100| 0.21
lego osek.c 2036 2| 'Y |1320| O] 100| 0.12
objectfollower.c|1878 3 Y 14| 0| 100| 0.31
nxtway gs.c |2263 3 Y 4| 0| 100/ 0.37
car.c 1329 4 Y 670/ 0| 100/ 0.28
ardupilot.c 1392 4 Y 17| 0| 100| 0.24
follower.c 2769 71 Y |1179] 0] 100| 0.30
sumoR.c 5287 4°Y 146| 77| 47| 0.31
carR.c 1329 4 Y 670{125| 81| 0.28

Our tool detects the avionics.c program to be non-schedulable, which is
also detected by [14]. Rules 3, 4, and 5 depend on the response times of the tasks
and we bypassed the application of these rules for avionics.c. The “PR” column
in the table for avionics.c gives the count of potentially racy pairs detected
after the application of other rules. The last two rows of the table shows the
data for some of the benchmarks which have been modified to make them racy
by changing the periods, execution times, etc. Our tool is able to filter out a
large part of the conflicting access (CA) pairs as non-racy (on an average 97%
of CA pairs are eliminated).

Table 3 gives the coverage of the rules (Rules 1-6). Here each rule is indepen-
dently applied on the conflicting accesses to demonstrate the value of each rule
separately. Column “R1” gives the count of CA pairs flagged as non-racy due to
Rule 1 only. The case is similar with other columns. Recall that the non-trivial
rules like Rules 3-5 use periodicity and/or response time to declare CA pairs as
non-racy. A careful analysis of the count for these in Table 3 reveals their use-
fulness in flagging non-racy pairs. Some pairs are detected by these rules while
not covered by the other simpler rules. It is even worthwhile observing that the
CA pairs detected as non-racy by Rule 6 (the one based on locks) are covered
by other rules. The developers can use this information to decide on whether to
use expensive constructs like lock-unlock to ensure mutual exclusion when the
task periodicity and response time can themselves ensure it.

Static Race Detection for Periodic Programs 313

Table 3: Rule Coverage

Program CAs|R1| R2| R3| R4| R5| R6
fse obstacle.c 3] 0| O0f 3] 0 0f O
avionics.c 51 0 9 -l - 0
biped robot.c 1 0 0of o0f 0O 1 1
Sumo.c 146| 35| 69| 69| 69[112 6
nxtgt.c 3 0| O 0 3] 0 0
lego_osek.c 1320/ 0| 0|1320{ 0| 0/1320
objectfollower.c| 14| 0/ 0| 11| 0| 3 0
nxtway gs.c 4 0] 0 4 0] 0 0
car.c 670 0| 90| 133|164|463| 117
ardupilot.c 17\ Of 17| 17| 17| O 0
follower.c 1179] 0]144| 144|204|975 4
sumoR.c 146| 35| 69| 69| 69| 35 6
carR.c 670/ 0| O 0| 74|463| 117

8 Related Work

We begin with work related to computing response times and schedulability
analysis. Apart from the work of [13,12] already mentioned, feasibility analysis
for real-time periodic tasks without locks have been studied by Baruah et al [4]
and Pellizzoni and Lipari [16]. Baruah [3] studies schedulability under Earliest
Deadline First and Stack Resource Policy (EDF+SRP) and gives an efficient
algorithm for checking schedulability. Bertogna et al [5] study resource holding
times (how long a task may hold on to a lock/resource) and give algorithms for
computing and minimizing these times.

In closely-related classical work on real-time systems that use locks, Sha et
al [18] consider a very general setting of priority-based preemptive scheduling,
with FCFS among waiting tasks of the same priority (similar to our setting),
with arbitrarily nested locks, and give sufficient conditions for schedulability of
programs under these conditions. However the locks they consider are priority
inheritance based locks which elevate the priority of a task if it is in a critical
section to a level based on the priorities of the tasks waiting for (or that might
acquire) this resource. Programs with such locks have the useful property that
the blocking time of a task is bound by the longest WCET of a lock block (critical
section) of a lower priority task. This facilitates their analysis and bounds on
response time. In our setting of standard locks (though restricted to be non-
nested) it is not clear if such properties can be exploited.

Related work on verification of periodic programs can be broadly classified
into two categories: Verification of periodic programs using techniques like model
checking, symbolic execution etc., and detecting data races in programs for em-
bedded applications similar to periodic programs, using static analysis tech-
niques.

Periodic programs with tasks prioritized in a rate monotonic fashion and
communicating using shared variables, have been verified against safety proper-

314 V. P. Suresh et al.

ties using bounded model checking with different kinds of locks in [7], [6] and [8].
In their first paper of the series [7], the authors provide a time-bounded verifica-
tion of safety properties where the sequentializations of programs are considered
with respect to number of jobs of each task within the time bound. Priority
and preemption locks are considered in [7] and the work is extended to include
Priority Inheritance Protocol (PIP) loc