Decarbonizing Freight Transport
Acceptance and Policy Implications
Decarbonizing Freight Transport
Decarbonizing Freight Transport
Acceptance and Policy Implications
Sarah Pfoser
Logistikum Steyr
University of Applied Sciences Upper Austria
Steyr, Austria

This thesis was financially supported by the Government of Upper Austria and the University of Applied Sciences Upper Austria within the funding programs “FTI Grundlagenforschung” & “Dissertationsprogramm der Fachhochschule OÖ 2019”.

https://doi.org/10.1007/978-3-658-37103-6

© The Editor(s) (if applicable) and The Author(s) 2022. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Marija Kojic
This Springer Gabler imprint is published by the registered company Springer Fachmedien Wiesbaden GmbH part of Springer Nature.
The registered company address is: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany
Climate change is affecting our today’s and tomorrow’s society and will significantly impact the entire freight transport sector by massive structural changes. The megatrend of decarbonizing our economy and logistics cannot be neglected. But which measures are best suited in this context to ensure that the climate targets defined by various political parties can actually be achieved? And what is the contribution of freight transport to this, or in what way are freight transport systems affected by this?

The dissertation of Sarah Pfoser is embedded in this highly relevant research area and deals with this topic from different perspectives. As Ms. Pfoser’s work clearly demonstrates, it is not enough to replace conventional fuels with alternative fuels in order to implement sustainable transport chains. The reduction of greenhouse gas emissions can only be achieved through the intelligent combination of modern information technologies, fuel substitution and modern cooperative organizational measures.

To transform freight transports to sustainable systems it is necessary to employ IT systems in order to consolidate traffic streams and additionally introduce horizontal cooperation. Essentially, the simultaneous avoidance, shift and improvement of freight transport needs to be targeted. Consequently, this dissertation examines the determinants which positively influence the acceptance of sustainable freight transport concepts and which reduce the overall negative impact of freight transport.

In this light, the work of Ms. Pfoser represents a successful interplay of micro-, macro- and meta-logistic levels of observation. Tomorrow’s freight transports can only be sustainable—in an ecological sense—if each individual actor in the overall system recognizes the necessity of changing. Furthermore, the external framework conditions need to reward the implementation of decarbonization measures and need to encourage the joint implementation of decarbonization targets.
The cumulative dissertation comprises four journal publications that address the aforementioned aspects using a mixture of qualitative and quantitative methods. It is demonstrated that the use of the Physical Internet has a positive impact on sustainable logistics. In this context, a central orchestration of resources plays a significant role to promote sustainable solutions. It is also shown that sustainable transport concepts must rely on multimodality and that the share of rail and waterborne transport must be much higher than it is today. Ms. Pfoser’s thesis clearly shows the underlying barriers in this regard and proposes measures to reduce these obstacles. The dissertation also addresses the possibility of using LNG as an alternative fuel in general and how the shift to this bridge fuel can be achieved.

Kudos for this work by Ms Pfoser, not only because she participated in the scientific discourse at an early stage of her career, but also as she impressively demonstrates a methodological and theoretical pluralism. This work contributes to a subject which is still in its infancy and which will have a significant impact in our future. With the expertise she has gained and her tenacity, I am convinced that the comprehensive knowledge generated by Ms. Pfoser will be highly recognized not only in science and practice, but also from a political perspective.

Bremen

23.01.2021

Prof. Dr. Herbert Kotzab
Writing a doctoral thesis is no sprint; instead it’s a marathon consisting of a lot of small steps (or a long-haul delivery with many stopovers, since this thesis is written in the field of logistics). To be honest, I cannot say exactly when I started to run this marathon. I commenced doing research in 2013 with the simple objective of acquiring new knowledge within our research projects and sharing it with the research community. From the very beginning I was dedicated to the topic of sustainable freight transport, as I felt a personal passion for this research area. I did several research projects dealing with different strategies to decarbonize freight transport—among them the Physical Internet, multimodality and LNG. At a certain point in time I started to realize that there are clear patterns across these different strategies. I had talked to a lot of different logistics companies and I felt that no matter if I was asking them about horizontal collaboration or about a new technology such as LNG, they gave me similar opinions and answers about their acceptance of the strategies. This was the motivation to write this thesis—I wanted to put down all these patterns that I observed and derive implications about the general acceptance of sustainable freight transport. I feel that one of my main functions as a researcher is to support policy makers. Therefore I intended to develop policy recommendations based on my findings. These policy recommendations reflect the true requirements of the “users” of transport as they were developed in a process of collaboration with the logistics companies. It is obvious that policy measures are much more effective if they meet the needs of those who are targeted by the measures. The underlying idea was therefore to involve those who are targeted, i.e. the logistics companies, to create user-centric measures. The result is a set of applicable measures which promote the implementation of sustainable freight transport. The close collaboration with Austrian policy makers (Ministry of Transport (BMK) and the State of Upper Austria) throughout all
of the research projects ensures that the recommendations are forwarded to the responsible parties. My greatest practical success was the scientific support of the construction of the first LNG fueling station in Austria in 2017 and the shift of road transport to multimodal rail transport by an Austrian plastics enterprise in 2019. Hopefully this was just the beginning and this thesis may encourage even more practitioners and scientists to promote sustainable freight transport practices, because we only have one earth and there is no planet B!
Danksagung

An dieser Stelle dürfen auch meine Ko-Autor*innen nicht fehlen, etwa Yasel Costa, der mich in die quantitative Forschungswelt eingeführt hat, und allen voran Michael Plasch, der mit mir eine 2,5-jährige Reise namens JBL-Einreichung angetreten hat. Wir haben in dieser Zeit beide sehr viel gelernt und uns sehr stark weiterentwickelt. Ich kann dir nur zustimmen, dass ich mir nach dieser langen Zeit gar nicht mehr vorstellen kann, eine Revision-Runde ohne dich durchzuboxen!
Danksagung

Dank gebührt auch den studentischen Mitarbeiter*innen Verena Stockhammer, Andrea Buchbauer und Thomas Berger, die mich im Laufe der letzten Jahre bei meinen Forschungsprojekten unterstützt und mich wesentlich entlastet haben, sodass ich die zeitlichen Kapazitäten für das Ausarbeiten der Dissertation zusammenkratzen konnte.

Abschließend möchte ich meine allergrößte Dankbarkeit gegenüber meinen Eltern ausdrücken, die mich mit besonderer Fürsorge unterstützen und immerzu an mich glauben. Ihr habt immer schon sehr gut einschätzen können, was gut für mich ist, und ihr habt auch bei meiner Arbeit in der Forschung recht behalten! Ich widme euch daher diese Arbeit.

Steyr
November 2021

Sarah Pfoser
Abstract

One of the grand challenges the logistics industry is facing today is the question of how to limit the negative impact of freight transport. Freight transport demand is continuously rising and must be satisfied by logistics. The ever-increasing share of trucks is problematic due to the high external costs of road transport. European politics has dedicated itself to these problems and shows strong commitment to decarbonize logistics. For example, policy action plans are released and emission limits are set.

Despite the political endeavors, the environmental performance of the transport system has not improved so far. It seems that the existing measures are not sufficient to motivate transport users to implement sustainable freight transport strategies. Without transport users’ willingness to realize sustainable freight transport, the strategies will fail. As a matter of fact, studies on transport users’ demand for sustainable freight transport strategies are scarce. It is therefore difficult to consider their needs and requirements towards sustainable freight transport. To address this gap and promote sustainable practices, this thesis studies the acceptance of sustainable freight transport. Knowing the determinants of acceptance makes it possible to design measures which attract transport users to implement sustainable freight transport and help decarbonize logistics.

By involving a number of logistics companies (i.e. the users of the transport system), a user-centric perspective is ensured in this thesis. The idea is to gain a profound understanding of logistics companies’ needs and requirements by studying their sustainable freight transport acceptance. Knowing the determinants of acceptance makes it possible to design policy measures which attract logistics companies to implement sustainable freight transport methods and help decarbonize logistics.
The case of three different strategies for sustainable freight transport is studied in the thesis: (1) horizontal collaboration in a Physical Internet network, (2) multimodal freight transport and (3) liquefied natural gas (LNG) as alternative truck fuel. Each of these three strategies falls within a different pillar of the avoid-shift-reduce framework. The avoid-shift-reduce framework is a well-known approach to classify sustainable transport strategies. Horizontal collaboration aims to avoid transport by enabling the bundling of transport streams and by increasing the utilization of transport capacities. Multimodal transport aims to shift freight to sustainable transport modes. And finally, LNG is a technological solution which aims to improve the environmental impact of road transport.

Studying the acceptance of sustainable freight transport revealed that there are different stages of acceptance which involve a varying degree of commitment by transport users. In context of this thesis, acceptance refers to the stages of willingness to use or the actual use of sustainable freight transport strategies. Within the empirical investigation (in-depth interviews, online survey), five main determinants were identified which influence the acceptance of the above mentioned avoid, shift and improve strategies. These determinants are profitability, customer demand, availability of infrastructure, organizational efforts and legal framework. Theoretical support for these determinants comes from the technology acceptance model.

Later on it is reported that severe market failures exist which inhibit the efficient diffusion of sustainable transport strategies. Logistics companies need an incentive to introduce sustainable freight transport. Currently they do not have an incentive because they do not (exclusively) benefit from the positive effects of introducing sustainable freight transport (tragedy of the commons). Even worse, they are not called to account for the negative externalities they produce. In some cases, insufficient information prevents the implementation of sustainable freight transport.

As the above mentioned market failures exist, it cannot be expected that sustainable transport strategies will be efficiently implemented without any policy intervention. For sustainable transport strategies to be diffused at a sufficient scale and speed, it will therefore be necessary to set suitable policy measures. Based on the information collected on the determinants of acceptance and existing market failures, policy measures are hence developed. Again, a user-centric approach is applied as logistics companies are involved in interviews and focus groups. This gives them the opportunity to bring in their opinion and needs. Theoretical support for the developed policy measures is derived from various organizational theories. According to these theories, the implementation of sustainable practices may either result from organizational obligations, organizational capabilities or organizational functioning.
To classify the developed policy measures, a new typology is developed. The reason is that the existing sticks-carrots-sermons typology falls short in a user-centric context. This is due to the fact that logistics companies do not favor restrictive command and control measures ("sticks"). Instead, they require "means", i.e. appropriate infrastructure and framework conditions, which support them with introducing sustainable freight transport. Infrastructure development, information & transparency and the adaptation of the legal framework constitute means. Beside means, transport users desire monetary incentives ("carrots") to ensure that the investment for sustainable freight transport is cost-efficient. The third type of policy measures ("sermons") refers to awareness raising activities or education & training. The intention of sermons is to create knowledge and consciousness for sustainable freight transport.

It is well known that whether an innovation will be accepted or rejected by its target group depends heavily on the way that user needs are integrated in the development of this innovation. The determinants of acceptance and suggested policy measures in this thesis reflect transport users’ needs towards sustainable freight transport. This should support policy makers and the logistics industry to implement sustainable practices and achieve the ambitious emission targets by decarbonizing freight transport.
List of Publications of the Cumulative Thesis

PAPER I
Plasch, Michael; Pfoser, Sarah; Gerschberger, Markus; Schauer, Oliver; Gattringer, Regina (2021): Why collaborate in a Physical Internet network?—Motives and success factors. In Journal of Business Logistics. DOI: 10.1111/jbl.12260.

PAPER II

PAPER III
Pfoser, Sarah; Schauer, Oliver; Costa, Yasel (2018): Acceptance of LNG as an alternative fuel: Determinants and policy implications. In Energy Policy 120, pp. 259–267. DOI: 10.1016/j.enpol.2018.05.046.

PAPER IV
Pfoser, Sarah; Aschauer, Gerald; Simmer, Laura; Schauer, Oliver (2016): Facilitating the implementation of LNG as an alternative fuel technology in landlocked Europe: A study from Austria. In Research in Transportation Business & Management 18, pp. 77–84. DOI: 10.1016/j.rtbm.2016.01.004.
Contents

1 Introduction .. 1
 1.1 Motivation and Background 1
 1.2 Research Gap and Objectives 4
 1.3 Structure and Research Questions 8
 1.4 Outline ... 12

2 Conceptual Background ... 15
 2.1 Definition of the Term Acceptance 15
 2.1.1 Stages of Acceptance 15
 2.1.2 Further Differentiation of Acceptance 17
 2.1.3 Defining Acceptance in Context of Sustainable Freight Transport 18
 2.2 Definition and Classification of Policy Measures 20
 2.2.1 Regulation (Sticks) 21
 2.2.2 Economic Incentives (Carrots) 22
 2.2.3 Information (Sermons) 22

3 Research Design .. 25
 3.1 Methodology and Data Collection 25
 3.2 Theoretical Perspectives 29

4 Strategies for Sustainable Freight Transport 31
 4.1 Avoid-Shift-Improve (ASI) Framework 31
 4.2 Avoid Transport—PI Collaboration & Bundling 33
 4.3 Shift Transport—Multimodality 38
 4.4 Improve Transport—LNG as an Alternative Fuel 42
 4.5 Comparison of the ASI Pillars 46
5 The Acceptance of Sustainable Freight Transport
5.1 Theoretical Background on Behavioral Intention
and Technology Acceptance
5.1.1 Theory of Reasoned Action
5.1.2 Theory of Planned Behavior
5.1.3 Technology Acceptance Model
5.2 Determinants of Sustainable Freight Transport Acceptance
5.2.1 Overview / Comparison of Determinants
5.2.2 Profitability
5.2.3 Customer Demand
5.2.4 Availability of Infrastructure
5.2.5 Organizational Efforts
5.2.6 Legal Framework
6 Policy Measures to Promote Sustainable Freight Transport
6.1 Theoretical Background on Organizational Management
6.1.1 Organizational Obligations
6.1.2 Organizational Capabilities
6.1.3 Organizational Functioning
6.2 Market Failures in Sustainable Freight Transport
6.2.1 Tragedy of the Commons
6.2.2 Existence of Externalities
6.2.3 Information Failure
6.2.4 Free-rider Behavior
6.3 Policy Measures to Promote Sustainable Freight Transport
6.3.1 Overview / Comparison
6.3.2 Carrots for Sustainable Freight Transport
6.3.3 Means for Sustainable Freight Transport
6.3.4 Sermons for Sustainable Freight Transport
6.3.5 Theoretical Support for the Identified Policy Measures
7 Conclusion
7.1 Synthesis of Results
7.2 Responses to the Research Questions
7.3 Contributions to the Domain of Sustainable Freight Transport
7.4 Limitations, Further Research and Outlook
References
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASI</td>
<td>Avoid shift improve</td>
</tr>
<tr>
<td>CNG</td>
<td>Compressed natural gas</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gas emissions</td>
</tr>
<tr>
<td>GLEC</td>
<td>Global Logistics Emissions Council</td>
</tr>
<tr>
<td>H2</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>HGV</td>
<td>Heavy goods vehicle</td>
</tr>
<tr>
<td>ICT</td>
<td>Information and communication technology</td>
</tr>
<tr>
<td>ITS</td>
<td>Intelligent transport services</td>
</tr>
<tr>
<td>LNG</td>
<td>Liquefied natural gas</td>
</tr>
<tr>
<td>LSP</td>
<td>Logistics service provider</td>
</tr>
<tr>
<td>NO$_x$</td>
<td>Nitrogen oxide</td>
</tr>
<tr>
<td>PI</td>
<td>Physical Internet</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate matter</td>
</tr>
<tr>
<td>R&D</td>
<td>Research and development</td>
</tr>
<tr>
<td>RQ</td>
<td>Research question</td>
</tr>
<tr>
<td>SCM</td>
<td>Supply chain management</td>
</tr>
<tr>
<td>SO$_x$</td>
<td>Sulfur oxide</td>
</tr>
<tr>
<td>tkm</td>
<td>ton kilometers</td>
</tr>
<tr>
<td>TRA</td>
<td>Theory of reasoned action</td>
</tr>
<tr>
<td>UNFCCC</td>
<td>United Nations Framework Convention on Climate Change</td>
</tr>
<tr>
<td>WTW</td>
<td>Well-to-wheel</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1.1 Freight transport volume and modal split within the EU .. 2
Figure 1.2 Sum of external costs for different transport modes 3
Figure 1.3 Innovation diffusion process and related objectives of the thesis .. 8
Figure 1.4 Structure of the thesis .. 9
Figure 2.1 Stages of acceptance .. 16
Figure 2.2 Classification of policy measures 21
Figure 3.1 Procedure and time frame of empirical work 26
Figure 3.2 Main freight transport parties 27
Figure 3.3 Theoretical perspectives in the thesis 30
Figure 4.1 Share of European transport GHG emissions by transport mode .. 32
Figure 4.2 Comparison of collaboration models in logistics 35
Figure 4.3 Indicative emission ranges for different types of freight transport .. 39
Figure 4.4 Classification of multimodal transport concepts 41
Figure 5.1 Theory of reasoned action 52
Figure 5.2 Theory of planned behavior 53
Figure 5.3 Technology acceptance model 54
Figure 5.4 Technology acceptance model specified for sustainable freight transport strategies 58
Figure 6.1 Venn diagram illustrating the three pillars of sustainability .. 68
Figure 6.2 Theoretical framework to explain the adoption of sustainable freight transport strategies 69
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>Microeconomic effects of negative externalities</td>
<td>76</td>
</tr>
<tr>
<td>6.4</td>
<td>Classification of user-centric policy measures for sustainable freight transport</td>
<td>81</td>
</tr>
<tr>
<td>6.5</td>
<td>Theoretical support for identified policy measures</td>
<td>88</td>
</tr>
<tr>
<td>7.1</td>
<td>Comparison of market failures and policy measures</td>
<td>94</td>
</tr>
<tr>
<td>7.2</td>
<td>Overview of sustainable freight transport strategies</td>
<td>96</td>
</tr>
<tr>
<td>7.3</td>
<td>Determinants of sustainable freight transport acceptance</td>
<td>97</td>
</tr>
<tr>
<td>7.4</td>
<td>Transport customers as relevant decisions makers</td>
<td>106</td>
</tr>
<tr>
<td>7.5</td>
<td>Synergetic effects of sustainable freight transport strategies</td>
<td>106</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Studies on the supply of sustainable transport strategies</td>
<td>5</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Overview of methods and materials used in this thesis</td>
<td>28</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Application range of different alternative fuel technologies</td>
<td>42</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Impact and timeframe of alternative fuels for road freight transport</td>
<td>44</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Comparison of sustainable freight transport strategies in this thesis</td>
<td>47</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>List of studies using TAM in context of sustainable transport strategies</td>
<td>55</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Determinants of sustainable freight transport acceptance</td>
<td>59</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Theories explaining the occurrence of sustainable freight transport practices</td>
<td>72</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Policy measures to promote sustainable freight transport</td>
<td>80</td>
</tr>
<tr>
<td>Table 7.1</td>
<td>Comparison of determinants of acceptance and policy measures for sustainable freight transport</td>
<td>91</td>
</tr>
</tbody>
</table>
1.1 Motivation and Background

Logistics processes typically involve a high number of resources and activities which have a substantial impact on the sustainability performance of an organization. The most relevant logistics activity with the highest impact on sustainability is without a doubt transportation (Bretzke, 2011). As a matter of fact, the transport sector is one of the highest energy consuming and highest emission causing sectors (European Commission, 2011). However, the transport sector is key to delivering economic growth. Recent changes in customers’ expectations have shown significant changes in consumer behavior. Services such as same-day-deliveries and free return of goods have become natural prerequisites in e-commerce (Morganti et al., 2014). In B2B relations, just-in-time or even just-in-sequence deliveries have become common practice in specific industries such as automotive (Battini et al., 2013). These developments result in growing freight volumes which have to be managed by logistics. Figure 1.1 shows the trend of increasing freight volumes. It can be seen that current freight volumes are considerably higher than two decades ago. Figure 1.1 also illustrates the modal split of freight transport at intra-EU level, where road transport has the highest share at slightly more than 50%, followed by a relatively high share of maritime transport (30%). In inland freight transport, the share of road transport is even higher, at around 75% (European Commission, 2019). This means that three quarters of the inland freight transport is carried out on roads, thus leaving a significant environmental footprint.
It is projected that the environmental problems will even continue to grow within the next decades; in particular the share of road transport is predicted to rise further (McKinnon et al., 2015). This is critical because road transport causes a lot of negative effects compared to other transport modes, not only emissions, but also other external costs such as noise, congestion or accidents. Figure 1.2 summarizes the external costs of road transport, rail transport and inland waterway transport. The external costs of road transport amount to 2.01 cent per ton-kilometer and thus are substantially higher than the external costs of railway transport (0.80 cent per ton-kilometer) and inland waterways (0.27 cent per ton-kilometer).

In view of these statistics and recent developments, it becomes evident that measures have to be taken to counteract the negative environmental performance of freight transport. For quite a long time, governments all over Europe have recognized the environmental harm of the transport sector and have committed themselves towards sustainable development as a policy goal. This has resulted in a vast number of national and international strategies, environmental conventions as well as regional development programs (Howes et al., 2017). On the global level, the Paris Agreement (UNFCCC, 2016) was a key milestone for world-wide climate policy. The Paris Agreement was adopted by the United Nations Framework Convention on Climate Change (UNFCCC) at the Paris climate conference (COP21) in December 2015. It is the first binding agreement that sets a specific

Figure 1.1 Freight transport volume and modal split within the EU. (data from European Environment Agency, 2019a)
1.1 Motivation and Background

Figure 1.2 Sum of external costs for different transport modes. (average values for selected transports of bulk goods, via donau, 2019)

limit for global warming. The aim is to combat climate change by keeping global warming to well below 2 °C (UNFCCC, 2016). Compared to the preceding Kyoto Protocol, the Paris Agreement is an important step forward as it involves the commitment of 195 contractual parties. The Kyoto Protocol only targeted industrial countries (and only those which ratified the convention).

In accordance with the Paris Agreement, each party has to set measures to comply with the climate targets. Europe has taken a leading role as it aims to become the first climate-neutral continent. For that purpose, the European Green Deal was released, which provides an ambitious action plan to ensure that there are no net emissions of greenhouse gases by 2050. The action plan includes measures to facilitate the efficient use of resources by advancing towards a circular economy. Biodiversity should be restored and emissions should be cut. It is intended to convert the political commitment into a legally binding obligation to ensure that the Green Deal does not turn into empty promises. A proposal for a European Climate Law (COM(2020) 80 final) has been developed, which aims to write into law the goal to become the first climate-neutral continent. The law involves measures to keep track of progress and enables the adjustment of actions to reach the targets. In accordance with the global stock take exercise set out in the Paris Agreement, progress should be analyzed every five years.
To realize the goals of the European Green Deal, transport emissions will need to be reduced dramatically. This is a challenging task since global transport demand is predicted to triple by the year of 2050, which would result in twice as many carbon emissions (International Transport Forum, 2019). An ambitious roadmap published by the European Technology Platform ALICE suggests a framework to reduce all logistics-related emissions to zero by 2050 (Punte et al., 2019). Efficiency gains should be leveraged to better use transport capacities and increase the productivity of the whole freight system. The deployment of sustainable vehicle technologies should additionally support the decarbonization of freight transport (Punte et al., 2019). The ALICE roadmap towards zero emission logistics is indisputably an important step towards green and sustainable future logistics. However, it remains unclear whether the measures suggested in this roadmap will be accepted and enforced by the relevant stakeholders.

1.2 Research Gap and Objectives

Despite the intense political endeavors described above, the environmental performance of the transport system has not improved so far (Islam et al., 2016; European Commission, 2019). It seems that existing measures are not sufficient to motivate transport users to implement sustainable freight transport strategies. To set measures which efficiently encourage the introduction of sustainable freight transport, the demand for and acceptance of sustainable freight transport must be understood. Without transport users’ demand for environmental transport practices, sustainable freight transport will fail (Lindholm and Blinge, 2014). It is therefore important that policy measures address the needs of transport users and promote their demand for sustainable freight transport.

Many different alternatives exist to realize sustainable freight transport, but studies on the demand for these alternatives are scarce. In the course of this thesis, three sustainable freight transport strategies will be discussed in detail. These three strategies are horizontal collaboration in a Physical Internet (PI) network, multimodal freight transport and Liquefied Natural Gas (LNG) as alternative fuel. Each of these three strategies contributes in a different way to the goal of reducing greenhouse gas emissions from freight transport. Horizontal collaboration aims to avoid transport by enabling the bundling of transport streams and by increasing the utilization of transport capacities. Multimodal transport aims to shift freight to sustainable transport modes. And finally, LNG is a technological solution which aims to improve the environmental impact of road transport.
Considerable research has already been conducted on each of these three sustainable freight transport strategies. However, the majority of publications focus on the supply of these three sustainable strategies. The following Table 1.1 gives an overview of supply-related literature on the three strategies.

<table>
<thead>
<tr>
<th>Sustainable transport strategy</th>
<th>Supply-related topics covered in the literature</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal collaboration & transport bundling in a PI network</td>
<td>Design and use of containers in the PI network: standardization, modularization, handling cost, intelligent containers,…</td>
<td>Hofman et al. (2016), Sallez et al. (2015), Landschützer et al. (2015), Lin et al. (2014)</td>
</tr>
<tr>
<td></td>
<td>Inventory problems in the PI network: optimized inventory levels, warehousing services, reduced inventory costs, maximized utilization,…</td>
<td>Ji et al. (2019), Yang et al. (2017), Darvish et al. (2016), Pan et al. (2015)</td>
</tr>
<tr>
<td></td>
<td>Dynamic pricing and auction trading in the PI network</td>
<td>Qiao et al. (2019), Qiao et al. (2018), van Riessen et al. (2017), Kong et al. (2016)</td>
</tr>
<tr>
<td></td>
<td>Multimodal pricing: cost allocation and pricing schemes,…</td>
<td>Zheng et al. (2016), Kordnejad (2014), Shi and Li (2010)</td>
</tr>
<tr>
<td>LNG as an alternative fuel</td>
<td>Vehicle technology: pressure of LNG vehicles, vehicle design,…</td>
<td>Yonggang et al. (2013), Shangbing (2009), Wiens et al. (2001)</td>
</tr>
</tbody>
</table>

(continued)
As can be seen in Table 1.1, a multitude of topics associated with the supply of sustainable freight transport is covered by the literature. The literature on PI indicates how to design and use containers in the PI, how to solve inventory problems in the PI, how to optimize distribution and transport and how to price PI services. All of these topics are important for the supply of PI services. Similarly, the multimodal literature supports multimodal terminal design, multimodal transport scheduling and multimodal pricing. Again, these questions are related to the supply of multimodal services. And finally, the LNG literature specifies the LNG vehicle technology, fueling systems, safety in LNG operations and it provides lifecycle analyses—all of which is relevant to supply LNG.

All of the topics listed in Table 1.1 are undoubtedly important for the provision and implementation of sustainable freight transport. However, these topics mostly neglect the transport users’ perspective and needs. As explained above, sustainable freight transport will not be implemented without transport users’ demand to do so. As a matter of fact, studies on transport users’ demand of the aforementioned three sustainable freight transport strategies are scarce. Kim et al. (2017) was critical about the fact that few studies consider the relationship between demand-side characteristics and the choice of transport services. Perboli et al. (2017) deal with horizontal logistics collaboration (synchronmodality, a preliminary stage of PI) and find that existing literature is very much focused on the technical, ICT and optimization issues. This finding was confirmed by Pfosser et al. (in press), where a comprehensive literature review of 85 publications on synchronmodality was conducted. Out of these 85 publications, hardly any study focuses on demand-side questions of horizontal logistics collaboration. Literature reviews on multimodal freight transport come to the same conclusion. SteadieSeifi

Table 1.1 (continued)

<table>
<thead>
<tr>
<th>Sustainable transport strategy</th>
<th>Supply-related topics covered in the literature</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lifecycle analyses of LNG applications</td>
<td>Langshaw et al. (2020), Xunmin (2019), Song et al. (2017), Arteconí et al. (2010)</td>
</tr>
</tbody>
</table>
et al. (2014) and Agamez-Arias and Moyano-Fuentes (2017) clearly show that multimodal literature predominantly deals with multimodal freight transportation planning, i.e. the optimization of multimodal service supply. Finally, the same can be said for LNG as an alternative fuel. Osorio-Tejada et al. (2017, p. 790) write that “the main difficulties for the deployment of LNG-fueled trucks are market related”. Further research is therefore needed to evaluate the requirements of the market and the demand conditions for LNG.

The excessive focus on technological and supply-related questions of sustainable freight transport bears the risk of designing services and concepts which are not matching with the industrial needs (Perboli et al., 2017). As illustrated above, there is a clear lack of market-related research on the demand for sustainable freight transport. This thesis contributes to the larger body of literature by providing insights into the demand for sustainable freight transport. The acceptance of an innovation is an important precondition and first step of the demand for this innovation (Dillon and Morris, 1996). Since many strategies for sustainable freight transport are in an early development stage, acceptance of these strategies must emerge before they can find widespread application and demand (McKinnon, 2018). The thesis therefore aims to analyze the determinants of sustainable freight transport acceptance. The intention is to understand acceptance in order to be able to propose measures to influence acceptance (and finally demand) for sustainable freight transport. Knowing the determinants of acceptance allows the design of measures which attract transport users to implement sustainable freight transport and help decarbonize logistics.

Based on the research gap described above, two main objectives can be derived for this thesis (Figure 1.3). The first objective is to analyze the determinants of transport users’ sustainable freight transport acceptance. The second objective is to develop user-centric policy measures which promote the implementation of sustainable freight transport.

Both objectives of this thesis aim to advance the diffusion of sustainable freight transport. The objectives refer to different steps in the innovation diffusion process described by Reusswig et al. (2004) (see Figure 1.3): the first objective is related to the acceptance step which involves users’ demand for sustainable freight transport. While many authors claim to have measured acceptance (see list of acceptance studies later in Section 5.1.3), they barely deliver a profound understanding of what actually influences acceptance and what leads to increased acceptance (Adell et al., 2018). It is therefore an important contribution of this thesis to deliver an understanding of users’ profound needs and requirements towards the introduction of sustainable freight transport. The second objective is related to the implementation step since the developed policy measures target
1 Introduction

Perception

Reception

Acceptance

Implementation

Users recognize sustainable freight transport strategies

Users demand sustainable freight transport strategies

Users realize sustainable freight transport strategies

Objective 1: Analyze the determinants of sustainable freight transport acceptance

Objective 2: Develop user-centric measures to promote sustainable freight transport

Figure 1.3 Innovation diffusion process and related objectives of the thesis. (own illustration based on Reusswig et al., 2004)

the implementation of sustainable freight transport. The development of policy measures is based on the previously defined determinants of sustainable freight transport acceptance. According to Mattauch et al. (2016), demand-side regulations have been recommended to be effective by transport research for a long time. Therefore, the acceptance for sustainable freight transport will be analyzed in this thesis to develop measures which precisely address the requirements of the demand side. To summarize, the overall motivation of this thesis is to encourage the diffusion of sustainable freight transport by gaining an understanding for the acceptance of sustainable freight transport and suggesting suitable policy measures.

1.3 Structure and Research Questions

In this thesis, three different strategies for sustainable freight transport are under investigation, namely (1) horizontal collaboration in a PI network (2) multimodal freight transport and (3) LNG as an alternative fuel. Each of the three strategies falls within another pillar of the common ASI (avoid-shift-improve) framework. The ASI framework is widely used to structure strategies for sustainable transport. The fact that this thesis covers all three ASI pillars allows the comparison of the similarities and differences that exist between the different types of strategies.
As stated above, the objective of the thesis is first to study the acceptance of three specific sustainable freight transport strategies, and then develop policy measures which promote sustainable freight transport. The cases of the three sustainable freight transport strategies (PI collaboration, multimodality, LNG) were studied in detail within different research projects where the author of this thesis was involved in recent years. The findings of the three cases reveal the determinants of acceptance and policy measures to promote the three strategies for sustainable freight transport. These findings are summarized in various publications, which form the basis of this cumulative thesis (Figure 1.4). The aim of the present manuscript is to juxtapose the results of the individual publications and evaluate the patterns among the three strategies. This results in a list of overarching determinants which influence the acceptance of sustainable freight transport in general as well as overarching policy measures which are suitable to promote sustainable freight transport in general.

Figure 1.4 Structure of the thesis

The four papers contribute to answer the research questions underlying this thesis. The first research question aims to explain why PI collaboration, multimodality and LNG have been chosen as sustainability strategies under investigation in this thesis:
RQ 1: Which sustainable freight transport strategies exist to reduce the negative environmental impact of freight transport?

RQ 1 will be answered in Chapter 4 “Strategies for sustainable freight transport”. Here, an introduction of the ASI-framework will be given to present a classification of sustainable freight transport strategies. Afterwards, three particular strategies (each representing a different ASI pillar) will be introduced in detail. As mentioned above, these three strategies are horizontal collaboration in a PI (avoid pillar), multimodality (shift pillar) and LNG as an alternative fuel (improve pillar).

The subsequent second research question refers to the acceptance of the three sustainable freight transport strategies under investigation in this thesis and contains three sub research questions:

RQ 2: Which determinants influence the acceptance of sustainable freight transport strategies?

RQ 2.1: Which motives support the acceptance of horizontal collaboration in a PI network?

RQ 2.2: Which barriers prevent the acceptance of multimodal freight transport?

RQ 2.3: Which determinants influence the acceptance of LNG as an alternative fuel?

The three sub research questions are answered in the four papers which constitute this thesis. Plasch et al. (2021) [Paper I] analyze the motives to enter horizontal collaboration in a PI network. These motives are defined as the reasons which encourage logistics companies to become part of the PI network. The motives determine the demand for PI collaboration, and as such they represent the determinants of PI acceptance (RQ 2.1). Pfoser (in press) [Paper II] evaluates the barriers to multimodal freight transport. Detailed insights into logistics companies’ considerations of multimodality are given. From these insights, conclusions can be drawn about the determinants of multimodal freight transport acceptance to answer RQ 2.2. Pfoser et al. (2018d) [Paper III] show the determinants of LNG acceptance, which answers RQ 2.3. Additional insights about the acceptance of LNG are included from another paper, namely Pfoser et al. (2016a) [PAPER IV]. In Subchapter 3.3 “Determinants of sustainable freight transport acceptance”, the
results of the sub research questions 2.1 – 2.3 are merged to answer the overarching RQ 2 and summarize the determinants of sustainable freight transport acceptance.

Assuming rational behavior of decision makers, sustainable freight transport strategies should be used much more than it is currently the case since they increase the efficiency (as they decrease the emissions) of the whole logistics system (McKinnon et al., 2015). The hesitant use of sustainable strategies suggests that market failures exist which distort the acceptance of sustainable strategies at present (Engel and Saleska, 2005; Sinnandavar et al., 2018). The third research question will therefore examine:

RQ 3: Which market failures currently distort the acceptance of sustainable freight transport?

RQ 3 will be answered in Subchapter 4.3 “Market failures in sustainable freight transport”. A number of market failures will be presented which result from the empirical investigation in this thesis. These market failures represent a relevant basis for the development of policy measures since policy measures should target the elimination of the market failures (Pindyck and Rubinfeld, 2013).

The fourth and final research question comes along with three sub research questions to develop policy measures for sustainable freight transport:

RQ 4: Which policy measures promote the implementation of sustainable freight transport strategies?

RQ 4.1: Which success factors promote the implementation of PI networks?

RQ 4.2: Which policy measures promote the implementation of multimodal transport?

RQ 4.3: Which policy measures promote the implementation of LNG as an alternative fuel?

Again, the three sub research questions are answered in the three papers which constitute this thesis. Plasch et al. (2021) [Paper I] elaborate success factors for horizontal collaboration in a PI network. Success factors represent requirements needed to collaborate continuously in the PI network. If the success factors are not present, the partners will leave (or not even join) the PI network. Therefore, measures can be derived on how to establish the required success factors (RQ
3.1). Pfoser (in press) [Paper II] develops policy measures to facilitate multimodal freight transport (RQ 3.2). Pfoser et al. (2018d) [Paper III] present policy measures to promote LNG as an alternative fuel (RQ 3.3). In the present manuscript, the results of the sub research questions 3.1 – 3.3 are merged to answer the overarching RQ 3 and summarize the policy measures for sustainable freight transport acceptance.

1.4 Outline

The remainder of this thesis is organized as follows: Chapter 2 gives the conceptual background for this thesis. It will be defined what acceptance means in the context of sustainable freight transport. Furthermore, the prevalent typology to classify policy measures for sustainable freight transport is presented. Chapter 3 describes the research design of this thesis. Chapter 4 introduces the ASI (avoid-shift-improve) framework and gives an overview of existing strategies for sustainable freight transport. In particular, the three strategies chosen as subject of this thesis (PI, multimodality, LNG) will be presented and differentiated from similar concepts. It will be justified why these three particular strategies have been chosen as subject of this thesis.

Chapter 5 discusses the acceptance of sustainable freight transport strategies. First, the theoretical foundation of sustainable freight transport acceptance will be given. Finally, the acceptance of horizontal collaboration in a PI network, the acceptance of multimodal freight transport, and the acceptance of LNG as an alternative fuel are compared and the overarching determinants for the acceptance of sustainable freight transport are derived.

Chapter 6 presents policy measures to promote sustainable freight transport. First, a theoretical framework is developed to support the development of policy measures. This is followed by an overview of market failures in the sustainable freight transport market to point out which problems have to be addressed by the policy measures. Finally, policy measures for horizontal collaboration in a PI network, multimodal freight transport, and for LNG as an alternative fuel are compared and overarching policy measures to promote the acceptance of sustainable freight transport are suggested.

The concluding Chapter 7 closes this thesis with a synthesis of results, responses to the research questions, a presentation of the contributions to the domain of sustainable freight transport and a short outlook with some suggestions for future research.
Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
2.1 Definition of the Term Acceptance

Existing literature offers a myriad of different definitions and classifications of the concept of acceptance. The ambiguous use of the term acceptance is problematic since a clear definition is needed before it can be evaluated and understood how acceptance is formed (Adell et al., 2018). If there exists no clear definition, there is a severe risk of misinterpretation and misjudgment of research results concerning users’ acceptance. This subchapter is therefore dedicated to the definition of the term acceptance.

Studying the acceptance of a target group is an important task because acceptance is a critical success factor for the realization of innovations (Geldmacher et al., 2017). Acceptance constitutes “a psychological process that starts with pure interest in an innovation and leads toward the (regular) use of this innovation” (Geldmacher et al., 2017, p. 272). Notably, the actual start and end of the acceptance process depend heavily on the specific definition. Several definitions refer to different stages of acceptance: some definitions require system use as a result of acceptance, others only refer to a positive attitude as the end of the acceptance process. Due to this variety of nuances, the different stages of acceptance will be discussed in the following.

2.1.1 Stages of Acceptance

Existing definitions on acceptance vary considerably regarding the degree of commitment required for the specific innovation under study. Different stages of acceptance can be identified ranging from stages with low commitment required
to characterize acceptance (e.g. usefulness) to stages where high commitment is required to characterize acceptance (actual system use). Figure 2.1 illustrates the different stages of acceptance, which are related to the constructs of the technology acceptance model (usefulness, attitude, intention to use and actual system use; to be later discussed in subchapter 5.1.3).

Figure 2.1 Stages of acceptance

Defining acceptance by the usefulness
The most elementary stage of acceptance is usefulness, i.e. the benefits or gain that users expect to obtain by adopting an innovation. Some authors refer to usefulness to define acceptance, as they claim that users accept a system or a technology when they find it useful. For example, Nielsen (1993, p. 24) states that acceptance is “basically the question whether the system is good enough to satisfy all the needs and requirements of the users and other potential stakeholders”. An example for this first acceptance stage would be if an organization (or its transport manager) considers alternative fuels as useful to reduce their carbon footprint. However, this explanation of acceptance falls very short as considering a system as useful does not imply that an individual would actually use this system.

Defining acceptance by the attitude
The next stage of acceptance involves having a positive attitude about an innovation. Attitude can be described as “a psychological tendency that is expressed by evaluating a particular entity with some degree of favor or disfavor” (Eagly and Chaiken, 1993, p. 1). Some authors state that having a positive opinion and mindset towards a system or technology implies that the system/technology is accepted. For example, Risser and Lehner (1998, p. 8) describe that “acceptance refers to what the objects or contents for which acceptance is measured are associated to; what do those objects or contents imply for the asked person”. Compared to the first stage of acceptance which is bound up with rational considerations about the usability of an innovation, this second stage of acceptance is additionally driven by the users’
2.1 Definition of the Term Acceptance

emotions towards the innovation, which are reflected in their attitude (Adell et al., 2018). This second stage of acceptance is also referred to as attitudinal acceptance (Ausserer and Risser, 2005). Attitudinal acceptance is a consequence of considering the usefulness of an innovation. An example for attitudinal acceptance would be if an organization appreciates alternative fuels as effective and viable option to reduce their carbon footprint, but they think they do not need alternative fuels for their company. Therefore, the second acceptance stage is still not related to the use of an innovation (Ausserer and Risser, 2005).

Defining acceptance by the intention to use
The third stage of acceptance is related to the will to use an innovation or a technology, which is also called the intention to use. Some authors equate acceptance with intention to use, for example Chismar and Wiley-Patton (2003). The intention to use can either rest on practical experience of the system or on theoretical knowledge and judgment (Adell et al., 2018). The latter is also known as “a priori acceptance”, i.e. the evaluation of a system or technology before having actual contact to the system/technology (Payre et al., 2014). The intention to use an innovation is a consequence of attitudinal acceptance. An example for this acceptance stage would be if an organization is willing to use alternative fuels though they are not using them at currently (and possibly have no experience with alternative fuels).

Defining acceptance by the actual system use
The last stage of acceptance involves full commitment to an innovation, as the innovation is already in practical use at this stage. Several authors stipulate that acceptance only occurs in combination with actual system use, for example Dillon and Morris (1996) state that acceptance must be demonstrable by the employment of the technology under study. This type of acceptance is also referred to as behavioral acceptance, because acceptance is expressed by actual behavior (Schmalfuß et al., 2017). Actual system use is a consequence of the intention to use an innovation. An example for this last acceptance stage would be if an organization actually uses alternative fuels.

2.1.2 Further Differentiation of Acceptance

Beside the above described classification of acceptance stages, there are some further ways to differentiate various types of acceptance. To better grasp the concept of acceptance, some common differentiations that frequently occur in the literature will be discussed in the following.
The classification of *attitudinal and behavioral acceptance* has already been introduced above: attitudinal acceptance is based on the opinion and emotion regarding the innovation, while behavioral acceptance is based on observable behavior such as actual system use (Sadvandi and Halkias, 2019). Attitudinal and behavioral acceptance related to transport (e.g. intelligent transport systems or automated driving) is for example differentiated in Ausserer and Risser (2005), Schmalfuß et al. (2017), Xu et al. (2018) or Sadvandi and Halkias (2019).

Another type of acceptance frequently mentioned in the literature is *conditional acceptance*. Conditional acceptance suggests that acceptance depends upon specific conditions or requirements. Ziefle et al. (2015) evaluate the conditional acceptance of electric mobility in public transport and find that safety and security issues are a precondition for acceptance. Conditional acceptance in context of transport can be found in Grisolía and López del Pino (2008) or Ziefle et al. (2015).

Similar to conditional acceptance, *contextual acceptance* refers to acceptance which depends on situational factors and the context (Adell et al., 2018). Saad (2004) states that situational context plays an important role to induce behavioral change. An example for contextual acceptance would be if multimodal freight transport is accepted for regular transport services, but not in the context of time-critical express deliveries.

The concept of a *priori acceptance* has already been explained above: it is the acceptance without any practical experience of the technology or system. Payre et al. (2014), Brookhuis et al. (2019) and Kaye et al. (2020) study the a priori acceptance of automated cars and driver assistance systems. The counterpart of a priori acceptance is *a posteriori acceptance*, which means acceptance after having tried a technology or system (Adell et al., 2018). Schmid and Graf (2016) suggest that a priori and a posteriori acceptance of a navigation display for aviation are diverging.

2.1.3 Defining Acceptance in Context of Sustainable Freight Transport

As illustrated in the preceding Subchapters 2.1.1 and 2.1.2, there are manifold ways to define and view acceptance. Common to all of the above described definitions is that the user (either potential or factual) of a system or technology makes a judgement about the system or technology. To specify how the concept
of acceptance is understood in this thesis, a definition of acceptance in context of sustainable freight transport will be given now. Based on the considerations of different types of acceptance elaborated above, the following definition of acceptance is proposed for this thesis:

Acceptance is the extent to which an organization is willing to implement a sustainable freight transport strategy and, when available, to incorporate the strategy in the logistics companies’ transport operations.

This definition accounts for several key aspects of acceptance, which ensures that acceptance is a functional construct when developing and promoting sustainable transport strategies. First of all, the definition stresses a user-centric view, as logistics companies are the users of sustainable transport strategies, i.e. they are those players that realize sustainable freight transport. It is the logistics companies’ perception and understanding of sustainable transport strategies which is relevant for the implementation of these strategies, and not the actual effects that are bound up with the strategies (Schade and Baum, 2007). For example, if logistics companies do not perceive it beneficial to collaborate in a PI network, then the PI will fail, although it is proven by pilot studies (e.g. Sarraj et al., 2014) that there are benefits. It is also important to view the benefits from the logistics companies’ perspective, since the organizational perspective often deviates from the societal/political perspective (Adell et al., 2018). For example, organizations value profitability very high, while the societal/political perspective also emphasizes the ecological benefits.

By referring to “the extent of acceptance”, this definition acknowledges that the different stages of acceptance as described above exist. It thereby reflects the continuous nature of the construct acceptance. For a low-carbon freight transport system it is important that sustainable strategies are realized in practice, which emphasizes those stages of acceptance which are related to behavioral changes, namely intention to use and actual system use (Adell et al., 2018). Due to the fact that sustainable transport strategies can only bring positive effects when they are actually used, the definition focuses on the latter two acceptance stages (intention to use and actual system use). Xu et al. (2018) argue that the determinants of attitudinal acceptance are not necessarily the same as the determinants for actual use of a technology. Attitudinal acceptance does not materialize the actual uptake of an innovation and is therefore not targeted by the definition.
2.2 Definition and Classification of Policy Measures

Policy measures are instruments used by governmental authorities to effect or prevent a particular societal change (Vedung, 2010). In context of this thesis, the desired societal change is the implementation of sustainable transport strategies in the logistics industry. Policy measures to promote sustainable freight transport belong to the wide group of environmental policy instruments. Environmental policy instruments have been previously defined as “the set of techniques by which governmental authorities wield their power in attempting to affect society—in terms of values and beliefs, action and organization— in such a way as to improve, or to prevent the deterioration of, the quality of the natural environment” (Mickwitz, 2003, p. 419). This definition is useful to explain policy measures for sustainable freight transport. Hence, it can be substantiated that policy measures for sustainable freight transport aim to affect logistics companies in terms of values and beliefs, action and organization, such that the negative environmental impact of freight transport is mitigated.

A plethora of different policy measures exists, likewise there are a variety of classification schemes (Vedung, 2010). Essentially, policy measures can be classified according to the level of intervention, i.e. the degree of authoritative force they involve (Weber et al., 2014). Figure 2.2 shows that there is a difference between hard policy measures and soft policy measures. The former are mandatory and quite restrictive, as they force a specific behavior (high intervention level), while the latter are less restrictive and rely on voluntary behavioral change (low intervention level). Policy instrument theories typically refer to three main types of measures, namely regulation (“sticks”), economic incentives (“carrots”) and information instruments (“sermons”) (Bax, 2011).

An alternative approach is to differentiate between technology push instruments and market-pull instruments (Vollenbroek, 2002; Horbach et al., 2012). Technology-push measures promote technological advancement, for example by research and development programs. Market-Pull measures aim to increase the demand for sustainable innovations, e.g. through awareness campaigns or eco-labelling (Al-Saleh and Mahroum, 2015). The technology-push and market-pull typology has, however, been criticized as both push and pull rely heavily on subsidization and are not necessarily sustainably efficient (Taylor, 2008). Hereafter, the popular typology of sticks, carrots and sermons (Figure 2.2) will be used to discuss the variety of potential policy measures. Each measure will be presented in detail in the following subsections.
2.2 Definition and Classification of Policy Measures

2.2.1 Regulation (Sticks)

Regulations limit users’ opportunities to follow a specific behavior, e.g. by setting standards, technology controls, bans or permits or by introducing zoning and other input restrictions or output quotas (Mickwitz, 2003; Perman et al., 2003). Regulations may be derived from official legislative acts, such as directives, but they may be also derived from so-called “soft law” such as action plans, policy targets, guidelines and other policy documents (Bax, 2011). Regulation measures are mandatory by nature as they imply rules of conduct and prescribe a particular behavior. Thereby, they are also referred to as “command and control”. The advantage of regulations is that they allow governmental authorities to enforce the desired behavior by law, thus there is high confidence about the target groups’ compliance with the restrictions (Taylor et al., 2012). Monitoring and enforcing the compliance may however be costly and onerous, therefore regulations are typically part of a policy mix which includes other instruments as well (Simeonova and Diaz-Bone, 2005). Regulations often involve negative connotations, as they are associated with threats of unfavorable sanctions such as punishments, fines, etc. (Vedung, 2010). Despite that, setting regulations is quite a frequently used intervention option in many industrialized regions (Mickwitz, 2003).
2.2.2 Economic Incentives (Carrots)

Economic policy measures, also called monetary policy measures, are designed to promote the market uptake of a particular behavior. This may happen by influencing the money, time or effort that has to be spent to pursue this behavior (Vedung, 2010). Economic incentives make a particular behavior cheaper or more costly for the involved market players. A major difference compared to regulations is that the target group is not forced to adopt the desired behavior in the case of economic / monetary incentives. Instead, there is still the freedom to choose whether to change the behavior or not (Perman et al., 2003). For example, if governments offer subsidies for companies, the companies are not obliged to claim these subsidies, they can decide independently if the subsidy is worth changing a particular behavior or taking a particular action desired by the government. Monetary disincentives function in a similar manner (Vedung, 2010). For example, if governments raise a tax to prevent a particular behavior, they do not prohibit this behavior, they simply make the behavior more expensive and thus still leave the freedom to choose up to the market players. An alternative type of economic incentive is to create a market for environmental resources, e.g. through tradable emissions certificates or through the introduction of resource quotas (Opschoor, 1994).

Economic incentives are known to be more cost-effective than command and control measures, however it is less predictable whether economic incentives will suffice since it is uncertain whether the addressed target group will react to the market measures provided (Gunningham and Sinclair, 1999). Economic incentives can also have unintended side effects, for example distributional effects which negatively affect the poor or distortions pushing up prices (Taylor et al., 2012).

2.2.3 Information (Sermons)

Education and information measures aim for knowledge transfer to persuade target groups to change their behavior. They are therefore also called “suasive policy measures” (Mickwitz, 2003). Different means of communication are available to inform about current problems, possible solutions and actions required to tackle these problems, as well as reasoned arguments to convince the target group to adopt the desired behavior. Among the diverse set of communication options there are printed materials (flyers, booklets, brochures, etc.), training programs (courses, lecture series, information talks, etc.) or demonstration programs
2.2 Definition and Classification of Policy Measures

(Vedung, 2010). All these instruments are suitable to inform about recommended actions and behavior suggested to achieve a policy goal. Information measures also include instruments where the public authority authorizes private actors to distribute environmental information. This is the case with eco-labelling or environmental management systems, which are also suitable to convince market players of sustainable behavior (Mickwitz, 2003).

Similar to the economic incentives, no mandatory obligation results from education and information instruments—target groups still have the freedom to choose whether they follow the behavior advised according to the education measures (Vedung, 2010). A main difference compared to economic incentives is that no resources are given to or taken from the target groups to influence their behavior. Information and education measures are therefore relatively non-intrusive and non-coercive in nature (Gunningham and Sinclair, 1999) and constitute the least restrictive type of policy measures. At the same time, information measures are the instrument with the lowest reliability, because they are based on voluntariness and awareness of the target group (Taylor et al., 2012). Despite that, the use of information measures has recently gained popularity in Europe as it is regarded a contemporary way to elicit the desired behavior simply by allowing for an improved understanding of the consequences of the target groups’ actions (Bax, 2011).
3.1 Methodology and Data Collection

In this thesis, the cases of three different sustainable freight transport strategies are studied to be able to compare the acceptance of these strategies and evaluate if there are any patterns among them. As illustrated above, these three strategies are horizontal collaboration in a PI network, multimodal freight transport and LNG as an alternative fuel. This approach makes it possible to derive overarching determinants of sustainable freight transport acceptance and general policy measures which are suitable to promote sustainable freight transport. A rich data set was collected for all three cases to provide empirical evidence for this thesis. For collecting this data, a mixture of qualitative and quantitative research methods were used (Table 3.1), though the main focus was on qualitative methods (in-depth interviews, focus groups) due to the explorative nature of the research objectives. Figure 3.1 gives an overview of the empirical work conducted in the course of this thesis.

The data set was collected within the framework of several large research projects in which the author took part. These research projects are:

- **ATROPINE**—Fast track to the Physical Internet, funded by the State of Upper Austria in order to design a ‘Physical Internet Innovation Chain’ for the economic region of Upper Austria. The duration of this project was from December 2015 to May 2018.
- **ChemMultimodal**—Promotion of multimodal transport in the chemical industry, funded by Interreg Central Europe in order to increase the share of multimodal transport in the chemical goods industry. The duration of this project was from June 2016 to May 2019.
LNG Masterplan for Rhine-Main-Danube—funded by the European TEN-T programme to facilitate the implementation of LNG as an alternative fuel in line with the EU transport, energy and environmental policy goals. The duration of this project was from January 2013 to December 2015.

LiquID—Identifying the market potential of LNG in Austria, funded by the Austrian Ministry of Transport to assess the feasibility of introducing LNG as an alternative fuel in Austria. The duration of this project was from October 2015 to September 2016.

All four research projects are characterized by an intense involvement of the relevant stakeholders. The projects aimed to promote the specific sustainable transport strategy, be it the PI, multimodality or LNG, and therefore the main target group(s) of these strategies are addressed in the study. Table 3.1 shows which stakeholders were involved in which case study. The intense target group involvement fits with the “demand perspective” described in subchapter 1.2, which is currently neglected in sustainable freight transport studies. It is well known that whether an innovation will be accepted or rejected by its target group depends heavily on the way that user needs are integrated in the development of this innovation (Ausserer and Risser, 2005). It is recommended to involve users as early as possible in the development process to ensure their acceptance of new
innovations such as sustainable freight transport strategies. This is why the target groups are deeply involved in the projects. The aim is to obtain user-centric measures which fit the needs of the target group and thereby encourage the implementation of sustainable freight transport. But who are the target groups of the sustainable freight transport strategies under study in this thesis? Three main parties in freight transport come into question (Figure 3.2). First, there are transport providers, who supply the required infrastructure (e.g. multimodal terminals or refueling stations). Logistics companies, e.g. logistics service providers (LSPs) are the transport users, because they operate transport services in their daily business. And finally, transport customers consume the transport services offered by the logistics companies. Shippers such as manufacturers and other industrial companies belong to the group of transport customers.

Figure 3.2 Main freight transport parties

Logistics companies are the party which realizes freight transport and in this regard they have the authority to implement sustainable practices. Transport providers are the ones that enable sustainable freight transport by supplying the required infrastructure. Transport customers are the ones that may request sustainable practices from their LSP. But in the end, the logistics company is the party which has the competence (and opportunity) to enforce sustainable freight transport (Martinsen, 2014). The logistics company has to share its resources in a PI network, and the logistics company has to operate LNG trucks. Therefore, it can be expected that logistics companies are affected the most by sustainable
freight transport strategies. The focus of this thesis is therefore on logistics companies as the “users” of the transport system, and the intention is to develop user-centric policy measures which meet logistics companies’ requirements and promote their acceptance of sustainable freight transport. The three cases involve a number of Austrian logistics companies and bring in their perspectives on the PI, multimodality and LNG. The logistics companies are either involved as interview partners, focus group participants, or survey respondents. Additionally, some of them provided archival data about their business (Table 3.1).

Beside the undisputed importance of logistics companies, other stakeholders are relevant as well. For that reason, other parties are involved in the empirical investigations. As mentioned above, infrastructure providers supply the required facilities for sustainable freight transport. Shippers influence transport services with their requests. Other stakeholder groups are also relevant, as they know the market mechanisms of sustainable freight transport very well, e.g. research and development (R&D) institutions or regional development agencies. All these parties enrich the discussion of the three cases as they provide additional viewpoints and insights. Especially for the focus groups it was vital to have multifaceted discussions about the topic, therefore additional stakeholders were involved.

Table 3.1 Overview of methods and materials used in this thesis

<table>
<thead>
<tr>
<th>Method</th>
<th>Target group (respondents/participants)</th>
<th>Time frame of data collection</th>
<th>Output (data collected)</th>
<th>Published in</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI case study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-depth interviews</td>
<td>Three LSPs and four shippers</td>
<td>Autumn 2016 – spring 2017</td>
<td>17 semi-structured interviews, each recorded and transcribed</td>
<td>Plasch et al. (2021)</td>
</tr>
<tr>
<td>Focus groups</td>
<td>Three LSPs and four shippers</td>
<td>February 2017 and April 2017</td>
<td>Two focus groups with more than 40 participants. Detailed protocols and meeting notes</td>
<td>Plasch et al. (2021)</td>
</tr>
<tr>
<td>Archival data</td>
<td>Seven shippers/LSPs</td>
<td>Autumn 2016 – spring 2017</td>
<td>Data about transport routes, warehouse utilization and shipment demands for one fiscal year</td>
<td>Plasch et al. (2021)</td>
</tr>
</tbody>
</table>

(continued)
Table 3.1 (continued)

<table>
<thead>
<tr>
<th>Method</th>
<th>Target group (respondents/participants)</th>
<th>Time frame of data collection</th>
<th>Output (data collected)</th>
<th>Published in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multimodality case study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-depth interviews</td>
<td>Ten LSPs</td>
<td>Spring/summer 2018</td>
<td>Ten semi-structured interviews, each recorded and transcribed</td>
<td>Pfoser (in press)</td>
</tr>
<tr>
<td>Focus groups</td>
<td>Ten LSPs + infrastructure providers, shippers, regional development agencies and R&D</td>
<td>November 2018 and March 2019</td>
<td>Two focus groups with more than 30 participants. Detailed protocols and meeting notes</td>
<td>Pfoser (in press)</td>
</tr>
<tr>
<td>Archival data</td>
<td>Three shippers/LSPs</td>
<td>Spring/summer 2018</td>
<td>Data about transport routes and shipment demands</td>
<td>Pfoser (in press)</td>
</tr>
<tr>
<td>LNG case study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-depth interviews</td>
<td>Six LSPs + nine other HGV fleet operators</td>
<td>Summer 2014</td>
<td>15 semi-structured interviews, detailed notes and protocols</td>
<td>Pfoser et al. (2016)</td>
</tr>
<tr>
<td>Online survey</td>
<td>Stakeholders along the LNG value chain</td>
<td>Summer 2016</td>
<td>Filled questionnaires (157 responses)</td>
<td>Pfoser et al. (2018d)</td>
</tr>
<tr>
<td>Focus group</td>
<td>Stakeholders along the LNG value chain</td>
<td>September 2016</td>
<td>Focus group with 18 participants. Detailed protocol and meeting notes</td>
<td>Pfoser et al. (2018d)</td>
</tr>
</tbody>
</table>

3.2 Theoretical Perspectives

The research process in this thesis also comprises the development of a theoretical framework to establish the theoretical background of the underlying two research objectives. The theoretical background is twofold (Figure 3.3). On the one hand, the acceptance of sustainable freight transport strategies (research objective 1 of this thesis) is explained. For that purpose, behavioral theories are used to describe
logistics companies’ acceptance (Subchapter 5.1). On the other hand, theoretical support for the development of policy measures is given (research objective 2 of this thesis). A number of organizational theories are used to derive implications on how to set policy measures which encourage logistics companies to implement sustainable practices (Subchapter 6.1).

Research objective 1: Analyze the determinants of sustainable freight transport acceptance

Behavioral theories to explain which factors drive logistics companies to adopt sustainable freight transport strategies

Research objective 2: Develop user-centric measures to promote sustainable freight transport

Organizational theories to explain the mechanisms that encourage logistics companies to adopt sustainable freight transport strategies

Figure 3.3 Theoretical perspectives in the thesis

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
4.1 Avoid-Shift-Improve (ASI) Framework

The most prominent and frequently quoted definition of sustainability is published in the Brundtland Report, where it is written that “sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their needs” (World Commission on Environment and Development, 1987, p. 8). According to Daly (1990), there are three main operational guidelines that should be followed to ensure sustainable development, namely:

- Renewable resources should not be used faster than their regeneration rates.
- Non-renewable resources should not be used faster than substitutes become available.
- Pollution emissions should not exceed the assimilative capacity of the environment.

It is well known that the transportation sector extensively contravenes all of these three guidelines (McKinnon et al., 2015; Szyliowicz, 2003). Transport contributes a quarter of total greenhouse gas emissions in the EU-28, most of which comes from road transport (Figure 4.1). Nearly three quarters of the total transport GHG emissions stems from road transport, followed by aviation (13.9%) and maritime transport (13.3%). The share of emissions from railways and other transport modes (inland waterway transport, pipelines,...) amounts to 1% and are therefore negligible (European Environment Agency, 2019b).
32 4 Strategies for Sustainable Freight Transport

Figure 4.1 Share of European transport GHG emissions by transport mode. (data from European Environment Agency, 2019b)

Figure 4.1 clearly underlines that strategies have to be implemented to mitigate the environmental impact of road transport. The avoid-shift-improve (ASI) approach is a well-known framework to summarize the three main strategies that exist to reduce GHG emissions from transport in general, and from road transport in particular (Bongardt et al., 2019). These three main strategies constitute the three pillars of ASI (Dalkmann and Brannigan, 2014):

1. **Avoid or reduce transport**: Aims to improve the overall efficiency of the transport system as a whole by implementing strategies that reduce the number of shipments or trip length.
2. **Shift transport**: Aims to improve individual shipment efficiency by promoting a modal shift from the most energy consuming transport mode (road) towards low-carbon transport modes (railways, waterways).
3. **Improve transport**: Aims to improve the energy efficiency of transport modes and related vehicle technology, e.g. by using low-carbon fuels and increasing fuel efficiency.

The ASI approach is focused on demand side measures for sustainable transport and offers a holistic framework for an overall optimization of the transport system regarding sustainability aspects (Bongardt et al., 2019). The initial development of the ASI approach dates back to the early 1990s in Germany, where ASI was
established to structure policy measures for sustainable transport (Bongardt et al., 2019). ASI was first mentioned in 1994 in a report by the German parliament’s Enquete Commission (Deutscher Bundestag, 1994). There is a hierarchy among the three pillars of the ASI approach which should be observed when implementing sustainable transport measures: Avoid strategies should be of first priority as they have the highest potential to reduce the environmental impact of freight transport. However, avoid strategies are challenging to implement as they are bound up with renunciation and abandonment (Mauch et al., 2001). Next, shift strategies should be implemented; and finally, when the other two strategies are fully exhausted, improve strategies should be realized (Kagermeier, 1998). The ASI approach is a universal framework into which a large range of diverse policies, regulatory instruments and best practices fit. ASI does not stipulate the scope of the measures- gradual and incremental changes are covered as well as radical paradigm shifts (Bakker et al., 2014). There is increasing attention on the ASI framework. A number of international NGOs and development organizations have already dedicated themselves to the ASI approach, not only in Europe, but also on other continents like Asia or Latin America (Huizenga and Leather, 2012). The International Energy Agency also refers to the ASI approach in their scenarios depicting the GHG emissions mitigation potential of the transport sector to reach the 2° C limit of global warming by 2050 (Fulton et al., 2013).

In the following subchapters, the three pillars of ASI will be investigated further. For each pillar, one strategy to implement this pillar will be introduced in detail, namely:

- Horizontal collaboration and bundling in a PI network (AVOID)
- Multimodality (SHIFT)
- LNG as an alternative fuel (IMPROVE).

The state-of-the-art knowledge on these strategies will be presented and it will be justified why these three strategies have been chosen to represent the respective ASI pillar.
transport activities to avert empty trucks. Avoiding transport is the most effective, but also the most difficult strategy to achieve more sustainable transport. For the sustained reduction of freight transport, a paradigm shift will be necessary to change the habits and behavior of transport stakeholders (McKinnon, 2018; Wittenbrink, 2015). The formation of collaborative relationships is a key strategy to avoid transport by bundling transport streams and increasing the utilization of transport assets (Bretzke, 2014). Partnerships between different organizations in the logistics chain are seen as a promising solution to overcome the problem of increasing freight volumes in future (Punte et al., 2019; Wittenbrink, 2015; Bretzke, 2014). Based on the level of interaction among organizations involved in the partnership it is distinguished between coordination, cooperation and collaboration (Kotzab et al., 2018). Coordination denotes the lowest level of interaction where single activities are harmonized or synchronized between organizations. Cooperation means working together as equal partners, whereas collaboration calls for organizations to act as one single entity (Kotzab et al., 2018).

Collaboration in the context of logistics and supply chain management dates back to the mid-1990s when the strategy of collaborative planning forecasting and replenishment became popular (Barratt, 2004). Horizontal logistics collaboration is a particular type of partnership that involves active collaboration between two or more organizations that operate on the same level of the supply chain and perform comparable logistics services (Pomponi et al., 2015). Mason et al. (2007) stated that horizontal transport collaboration comes along with various synergies such as cost minimization, value creation, improved service levels or increased end customer satisfaction. There exist several requirements to realize these synergies, including trust among partners, common suppliers and delivery bases, a capable orchestrator and an effective business model, including a fair gain sharing system (Sanchez Rodrigues et al., 2015; Cruijssen et al., 2007). Horizontal collaboration constitutes a megatrend in transport and logistics that is predicted to influence the logistics industry tremendously during the coming decades (Grazia Speranza, 2018; Stank et al., 2015).

In past, several types of collaboration models evolved in logistics each of which has distinct characteristics and operating principles (Figure 4.2). A myriad of different names were attached to these collaboration models, including transport marketplaces, alliances, coalitions, logistics pooling, synchromodality or the Physical Internet, to name just a few (Pan et al., 2019).
The Physical Internet (PI) is a recently emerging logistics concept which can be considered as the most advanced collaboration model currently existing in transport and logistics (Figure 4.2). The PI is a vision which uses today’s interdependent IT networks and the digital internet environment as a role model to reorganize freight transport (Montreuil, 2011; Montreuil et al., 2013). Collaboration plays a central role in the idea of the PI. PI involves horizontal collaboration among logistics service providers and also among shippers to reduce the environmental impact of their freight transport activities (Ambra et al., 2019).

Compared to the other concepts presented in Figure 4.2, the PI is progressive. The PI tries to utilize the advantages of several collaboration models by minimizing their disadvantages. For example, partnerships in the PI aim for global long-term relations, as opposed to transport marketplaces, where short-term, operational transactions take place only to perform single transport requests between individual partners (Caplice, 2007). Long-term collaboration is desirable because it involves mutual trust, increased commitment and higher reliability compared to short-term relationships (Humphries and Wilding, 2004). However, transport marketplaces are designed for cooperation at a temporary, operational level and they are mostly based on bilateral peer-to-peer agreements (Huang and Xu, 2013). Single LSP collaborations (or single carrier collaborations, Hernández et al., 2011)
also take place on a bilateral level as there are only two parties involved which collaborate with each other. However, compared to transport marketplaces, single LSP collaborations are entered for a longer period of time, and not only for single transport requests (Hernández et al., 2011). The goals of single LSP collaborations from an LSPs’ viewpoint are reduced transport costs, the acquisition of external capacities and improved customer services (Buijs et al., 2016; Puettmann and Stadtler, 2010). Due to the bundling of transport requests, there will also be positive environmental effects resulting from single LSP collaboration.

An **alliance or coalition** between transport companies already promotes a more integrated and holistic view of freight transport as compared to transport marketplaces and single LSP collaborations (Pan et al., 2019). In an alliance/coalition the collaboration is more stable and efficient, because it is no longer based on bilateral exchange, but on multilateral exchange (Pan et al., 2019). The terms alliance and coalition are sometimes misused interchangeably, however, the difference is that an alliance is based on decentralized planning while a coalition is based on centralized planning (Dai and Chen, 2012; Li et al., 2015).

Logistics pooling is an approach that is even more integrated than an alliance or coalition between transport companies. Logistics pooling is a collaboration model where vertical and horizontal collaboration are combined to exploit synergies between different supply chains (Mason et al., 2007, Rodrigues et al., 2015). Resources such as warehouses or transport resources are pooled and shared between the partners (Pan et al., 2019). It is therefore quite a strategic and long-term type of collaboration model (Figure 4.2).

Synchromodality and the **Physical Internet** are the two most integrated and most strategic types of collaboration. Synchromodality and PI are interrelated to each other and reinforce each other (Ambra et al., 2019). Both are quite new transport concepts that have been developed during the past ten years (Ambra et al., 2019). Synchromodality and PI promote a holistic view of freight transport, including and combining all available transport capacities in a transport network in a highly flexible way (Montreuil, 2011; Behdani et al., 2016). Compared with scheduling each transport request individually, the integrated network approach of synchromodality and PI provides a more efficient transportation plan resulting in a higher overall utilization of resources. An important principle which distinguishes synchromodality and PI from other logistics collaboration models is the fact that there is a central orchestrator, that means a neutral entity, which is allowed to modify transport constraints imposed by the shipper (van der Vorst et al., 2016; Vanovermeire et al., 2014). The central network orchestrator is sometimes also referred to as the “control tower” (Monios and Bergqvist, 2015). The central orchestrator has a holistic view of all transport demands and available
resources in the network and is therefore able to consolidate freight flows, which
leads to a better use of network capacities. (van Riessen et al., 2015). In syn-
chronomodality, shippers book a-modal or mode-free transport services (Behdani et al., 2016; Pfoser et al., 2018a), which means that the shipper only determines basic framework conditions (delivery time, price cap) but not the transport mode. The a-modal booking allows the central orchestrator to make optimized decisions and real-time changes to the transportation plan (Guo et al., 2017). Synchro-
modalty is already a quite advanced type of collaboration (and could be a first step to realize PI), but PI is even more progressive. Unlike synchronomodality, PI is additionally characterized by highly modularized, standardized and interoper-
able transport operations (Pan et al., 2019). In PI, freight is moved in similar ways to data (packets) – smart, seamlessly within synchronized corridors and through hubs using the (open) networks of others (Lemmens et al., 2019; Sáenz, 2016). Interoperability between all players involved in PI requires revolutionized planning, selection and pricing strategies in logistics networks with competitors collaborating (i.e. coopetition). The vision of PI also employs open and shared networks, using standard technical protocols, dynamic routing, deployment logics, control and optimizing intelligence and modular containers etc. (Montreuil, 2009).

The PI collaboration model was chosen as the focus of this thesis because it is the most advanced concept which entails the highest potential to exploit synergies between the collaborating partners. The implementation of the PI is also high on the political agenda in Europe. The technology platform ALICE includes the concept PI in their roadmap for logistics and supply chain management innovation (Zijm and Klumpp, 2016). ALICE anticipates a diverse number of benefits bound up with the full-fledged implementation of a PI network (Punte et al., 2019; Sternberg and Norrman, 2017 Sarraj et al., 2014; Montreuil, 2011):

- **Load consolidation**: Efficient pooling and cross-docking of loads from different suppliers and shippers. High capacity vehicles can be used for bigger load volumes and weights for longer distances. Pallets can be built from a mixture of different products, which allows for mixed load and weight volumes utilizing available space.
- **Asset sharing, open warehouses and transport networks**: Companies make use of the same vehicles (and other assets) to share idle capacities and increase asset utilization.
38 4 Strategies for Sustainable Freight Transport

- **Back-hauling**: Empty returns can be avoided by picking up or delivering freight for collaborating partners on return trips.
- **Modular packaging and boxes**: collaborative re-design of transport packaging and containers to introduce modularity and optimal fit, allow efficient handling, consolidation and pooling.

Despite these numerous benefits, horizontal collaboration is challenging to achieve in the transport sector (Pfoser et al., 2016b; van der Horst and Langen, 2008). Realizing the PI constitutes a paradigm shift in the current organization of transport and logistics (Ambra et al., 2017). For the successful implementation of the PI it is necessary to know what influences the willingness to collaborate in a PI network, and how organizations can be encouraged to enter the PI network. These questions will be assessed in the subsequent Chapters 5 and 6.

4.3 Shift Transport—Multimodality

As illustrated in the introduction, the majority of freight transport is carried out by truck, and this is problematic because road transport causes a lot of negative externalities. Figure 4.3 compares the emission range of different transport modes. The numbers are based on default factors from the Global Logistics Emissions Council (GLEC) Framework, a globally recognized methodology for harmonized calculation and reporting of the logistics GHG footprint (Greene and Lewis, 2019). As can be seen in Figure 4.3, road transport and air transport produce much more emissions than any other transport mode. The emission ranges in Figure 4.3 represent well-to-wheel (WTW) emissions, which means that not only the environmental effects of burning the fuel in the vehicle are considered, but also the effects of producing and distributing the fuel are taken into account (Ramachandran and Stimming, 2015). The emission level of road freight transport depends on the type of vehicle that is used. Light-duty vehicles like vans or urban trucks cause far more emissions per ton kilometer than heavy goods vehicles (HGV). Anyway, the emissions of HGVs are still much higher than the emissions of inland waterways or railways. This illustrates the need for a modal shift away from roads to sustainable transport modes to reduce the environmental impact of logistics.
The concept of multimodal freight transport (in short: multimodality) was already proposed four decades ago in order to shift cargo from road transport to sustainable transport modes. The original definition was set up by UNCTAD (1980) and characterizes multimodal transport as “the carriage of goods by at least two different modes of transport”. Due to the combined use of multiple transport modes, the strengths of each mode can be utilized and the weaknesses can be compensated by the other mode(s). Thus, the cost effectiveness and sustainability of railway and waterways can be combined with the flexibility and speed of road transport (SteadieSeifi et al., 2014).

Ever since the first definition of multimodality, a number of associated concepts arose which have to be distinguished carefully (Figure 4.4). These concepts include intermodal transport, combined transport, and co-modal transport. Out of all these transport concepts, multimodal transport is the most generic since it only requires the use of two or more modes of transport. Intermodal transport can be considered as a specific type of multimodal transport, “whereby two or more modes of transport are used to transport the same loading unit or truck in an integrated manner, without loading or unloading, in a [door to door] transport chain”
40 Strategies for Sustainable Freight Transport

(UN/ECE, ECMT, EC, United Nations, 2001). This means the cargo remains in one and the same loading unit during the whole transport chain, as opposed to split transport where cargo is reloaded during the transport process (Posset et al., 2014). Combined transport then again is a specific type of intermodal transport, where environmentally friendly transport modes (rail, inland waterways or short sea) are used for the major part of the journey (ECMT, 1998). Any pre- and post-haulage processes carried out by road are attempted to be kept as short as possible. Thus, combined transport adds the aspect of sustainability to the concept of intermodal transport (Reis, 2015). In respect of combined transport, it can be further differentiated between accompanied and unaccompanied transport, depending on whether the driver is travelling together with the truck on the long leg of the journey. Accompanied transport is possible on railroads as well as waterways. For railroads, the rolling motorway is a well-known example of accompanied transport (Danielis and Rotaris, 2014). On the rolling motorway, road trucks or trailers are carried by rail, and drivers may be seated in accommodation wagons or couchettes during rail travel (Dalla Chiara et al., 2008). On waterways, so-called roll-on/roll-off (ro-ro) vessels can be used for accompanied, but also for unaccompanied transport. Road trucks, trailers or rail cars can be carried by ro-ro vessels (Fischer et al., 2016). It is sometimes stated that multimodal transport solutions are only cost-efficient if they are carried out in an unaccompanied manner (López-Navarro et al., 2011). In fact, the principal advantage of unaccompanied multimodal services is the reduction in personnel costs during the railborne / waterborne leg of the journey (Morales-Fusco et al., 2018). However, the difficulty of unaccompanied shipments is the availability of drivers for the last mile of the transport chain, which will most probably be carried out on roads at the final freight destination.

In the further course of this thesis, the term multimodal transport will be used to denote the modal shift concepts presented in Figure 4.4, as multimodality serves as an umbrella term, which is often interchangeably used in the scientific literature and in practice. There is one more concept related to multimodality, which is not depicted in Figure 4.4, namely co-modal transport. Co-modality was defined by the European Commission in the midterm review of the White Paper on Transport (European Commission, 2006). The concept of co-modality strongly focuses on efficiency and the optimized use of transportation modes. It is defined as „the efficient use of different modes on their own and in combination” (European Commission, 2006, p. 4). Compared to the other transport concepts (multimodality, intermodality and combined transport), co-modality rather neglects the aspect of sustainability as unimodal road transport could also achieve the goal of co-modality, namely highest efficiency (Reis, 2015). A modal
shift is therefore not inherent in co-modal transport. It should be noted that the term co-modality was mainly used by the European Commission and did not gain much practical importance. Co-modal transport is not within the scope of this thesis as sustainability is not a main goal of co-modal transport.

Although the idea of multimodal transport is already 40 years old, the relevance of this concept is still very high today. There exist strong political efforts to promote multimodal freight transport. For example, the European Commission has called for 2018 to be the “Year of Multimodality”—a year during which the Commission raised the importance of multimodality for the EU transport system in a series of activities (van Leijen, 2018). This commitment shows that European politics has strongly dedicated itself to multimodal freight transport as an effective way to improve the quality of life of European citizens, reduce air pollution and congestion, and reach the sustainability goals. Nevertheless, the share of sustainable transport modes is still very small compared to road transport in all European countries (European Commission, 2019). In 2014, the European Commission carried out a public consultation on multimodality and combined transport to get insights whether and how they should go on and promote these
modal shift concepts (European Commission, 2014). Responses were collected from 18 EU member states and two non-member states, the respondents were mainly business representatives. The results were unambiguously in favor of multimodal transport. The vast majority of the respondents (94%) claimed that the European Commission should definitely continue to support multimodal transport operations (European Commission, 2014). Otherwise they expect a reverse shift, i.e. back from multimodal transport to unimodal road transport. The use of effective measures is therefore necessary to support the expansion and reinforcement of multimodal freight operations in future.

4.4 Improve Transport—LNG as an Alternative Fuel

Improve strategies aim to increase the eco-efficiency of (mostly road) vehicles and fleets (Mauch et al., 2001). The increase in eco-efficiency is enabled by a number of clean technologies, for example low rolling-resistance tires, lightweight design (e.g. aluminum wheels) or truck platooning (Punte et al., 2019). Particular potential for eco-efficiency lies also in the development of alternative fuels and propulsion systems. In the recent decades, several alternative fuel technologies have emerged including hydrogen, biofuels, electric and natural gas vehicles. In the area of medium and heavy truck transport, natural gas is the alternative which in the short-term is considered to be the best substitute for conventional fuels since it comprises the potential to reduce environmental impacts and it is readily available and accessible (Yeh, 2007). LNG, i.e. natural gas in its liquid state, is the only alternative fuel which is well suited for heavy trucks of more than 18 metric tons (Table 4.1).

Table 4.1 Application range of different alternative fuel technologies. (based on Feldpausch-Jaegers et al., 2016)

<table>
<thead>
<tr>
<th></th>
<th>Diesel</th>
<th>CNG</th>
<th>LNG</th>
<th>H2</th>
<th>Electric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car (short distance)</td>
<td>++</td>
<td>++</td>
<td>--</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Car (long distance)</td>
<td>++</td>
<td>++</td>
<td>--</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Light truck (3.5 – 7.5 t)</td>
<td>++</td>
<td>++</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Medium truck (7.5 – 18 t)</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heavy truck (>18 t)</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

++ fully applicable, + minor restrictions, - large restrictions, -- not applicable
The energy density of LNG is very high compared to other fuels. To convert natural gas to LNG, it has to be cooled down to a temperature of -162°C where it becomes liquid and reduces its volume roughly 600 times (Arteconi et al., 2010). Due to this volume reduction, the energy density of LNG is much higher than, for example, of CNG (compressed natural gas), which is the reason why LNG can conveniently be used for heavy-duty and long distance transport, while CNG is rather used for passenger transport. The maximum driving range of LNG trucks is currently 1600 kilometers, while the maximum driving range of CNG vehicles is only 500 kilometers (Anderhofstadt and Spinler, 2019). The driving range of electric vehicles is even less, namely only up to 200 kilometers. This restricts the application areas of electric vehicles to urban logistics with short-distance transports and light vehicles (Anderhofstadt and Spinler, 2019). Further barriers for electric trucks consist in the high weight of battery packs which reduces the payload; and the recharging time, which is significantly longer and requires more energy for electric trucks than for electric cars (Engerer and Horn, 2010). Another type of alternative fuels is biofuel, e.g. bioethanol or biodiesel. Biofuels are gaseous or liquid fuels generated from biomass such as plant or animal waste (Kluschke et al., 2019). The main problem with biofuels is their limited availability which occurs because land use is primarily dedicated for food production (Duarte et al., 2014; Simio et al., 2013).

Due to the above described shortages of existing alternative fuel technologies, several truck manufacturers like Iveco and Scania currently focus on the development of LNG fueled trucks. Pioneering fleet owners have already started to purchase these LNG trucks. In summer 2018, the German Federal Ministry of Transport started a funding program to subsidize energy-efficient heavy-duty vehicles producing low CO$_2$ emissions. Statistics from October 2019 reveal that out of 1390 funding requests, 994 trucks were LNG-fueled, 339 trucks were CNG-fueled and only 57 trucks were electric (Völklein, 2019). Later on in February 2020, in total 1915 funding requests were submitted to the German Federal Ministry of Transport, out of which a high number of 1500 requests encompass LNG-fueled trucks, despite the fact that at that time the toll exemptions for LNG trucks were expected to expire at the end of 2019 (Landwehr, 2020).

In the long run, hydrogen is considered a highly promising alternative fuel technology by many experts (Table 4.2). Hydrogen trucks have an on-board hydrogen storage to generate electricity within a fuel cell (Kluschke et al., 2019). Prospects for the introduction of hydrogen as a transport fuel already started in the 1970s and tended to be too optimistic throughout the last decades, with
early forecasts predicting an important role for hydrogen as transport fuel by 2010 or even much earlier (Moriarty and Honnery, 2019). Hydrogen vehicles could significantly reduce GHG from transport, but the production of hydrogen is very costly and needs further research and development (Durbin and Malardier-Jugroot, 2013). There are still many unresolved questions regarding the production, distribution and storage of hydrogen (Gondal and Sahir, 2012). Passenger cars running on hydrogen are already commercially available in Germany and Austria, but hydrogen trucks are still in their prototype stage (Anderhofstadt and Spinler, 2019). Notably, it is predicted that hydrogen will predominantly be important for freight transport and not so much for passenger transport (Moriarty and Honnery, 2019). Already in the early 2000s it was recommended that the ecological benefits and cost efficiency would be higher if hydrogen was introduced for freight transport (Farrell et al., 2003). The reason is that freight transport entails “a small number of relatively large vehicles that are operated by professional crews along a limited number of point-to-point routes or within a small geographic area” (Farrell et al., 2003, p. 1357). Furthermore, heavy-duty vehicles are produced to order and each vehicle receives considerable engineering attention, which facilitates technological innovation (as compared to passengers cars which are manufactured in large quantities on assembly lines) (Farrell et al., 2003).

Table 4.2 Impact and timeframe of alternative fuels for road freight transport. (based on Punte et al., 2019)

<table>
<thead>
<tr>
<th>GHG emissions reduction impact</th>
<th>Timeframe</th>
<th>Medium (2023–2030)</th>
<th>Long (2031–2050)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short (today–2022)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High (>20%)</td>
<td>• Electric/hybrids urban</td>
<td></td>
<td>• Hydrogen and hydrogen-related fuels</td>
</tr>
<tr>
<td>Medium (10–20%)</td>
<td>• Electric/hybrids (long-haul)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low (<10%)</td>
<td>• Cleaner diesel</td>
<td>• Biofuels</td>
<td>• CNG</td>
</tr>
</tbody>
</table>
The impact of LNG is estimated to be rather low and short-term according to Table 4.2. Apparently, conventional natural gas is still a fossil fuel and therefore not suitable to comply with the 2050 zero emission logistics targets of the European Union (Punte et al., 2019). Despite that, LNG can play an important role along the way to zero emission logistics in several respects. On the one hand, natural gas is considered to be a bridge fuel in the transition process from oil and coal to a (near-)zero emission energy system (Zhang et al., 2016). Though natural gas is fossil, it is the cleanest burning fossil fuel. The combustion of LNG causes nearly 99% less particulate matter (PM) and sulfur oxide (SO$_x$) emissions, around 80% less nitrogen oxides (NO$_x$) and around 20% less carbon dioxide compared to diesel (Kumar et al., 2011). Vehicles fueled with LNG also produce lower noise levels, which allows them to enter zones with driving bans, like specific inner cities or making deliveries at night time (Peters-von Rosenstiel et al., 2015). And most importantly, the LNG technology is already available and ready to use, as opposed to hydrogen. The first use of natural gas vehicles dates back to the 1930s, and today there is a wide range of natural gas vehicles available (Osorio-Tejada et al., 2015; Yeh, 2007). Using LNG trucks could be a first step to reduce emissions from freight transport until zero emission fuel cell trucks are mature and ready for the market. Recent literature also suggests that there are synergies between natural gas and hydrogen technology in a way that natural gas infrastructure could help enable a transition to the long-term application of hydrogen in transportation (Ogden et al., 2018). The synergies result from the fact that natural gas and hydrogen share some physical similarities (both can be stored as compressed gases or cryogenic liquids) and they use similar infrastructural components (such as compressors, storage tanks and pipelines) (Ogden et al., 2018). It is therefore being discussed whether natural gas infrastructure can be re-used or designed for compatibility with the emerging hydrogen technology to promote the introduction of hydrogen. For example, the existing natural gas pipeline network could be used to distribute hydrogen initially. Blending hydrogen and natural gas is technically possible up to a mix of 17% hydrogen (Gondal and Sahir, 2012). This way, the use of natural gas (and LNG) at present can promote the future deployment of zero emission fuels like hydrogen.

On the other hand, the environmental impact of LNG can be further improved if bio-methane from renewable sources is used to produce LNG. LNG made from bio-methane is then referred to as “renewable LNG” (r-LNG) or “bio-LNG”. Fossil methane and bio-methane can be mixed to produce LNG. LNG purely made from bio-methane has the potential to reduce CO$_2$ emissions between 43–67%
(depending on the engine technology) as compared to diesel vehicles (Alamia et al., 2016). Shell even announced that they are going to construct a liquefaction plant in Germany which enables them to provide CO2-neutral bio-LNG in the upcoming years (Reichel, 2020). For the distribution of bio-methane the same infrastructure and networks as for LNG and CNG can be used. The risk associated with the introduction of bio-methane as alternative fuel is therefore expected to be limited (Thrän et al., 2014). The production costs of renewable LNG are relatively high at the moment compared to the production costs of fossil LNG or diesel (Scheitrum et al., 2017). However, it is estimated that bio-methane will become more widely available in the upcoming years due to advancements in biomass gasification technologies and integration with the distribution networks of LNG and CNG (Alamia et al., 2016). Therefore, the use of LNG trucks could serve as a transitional solution until the large-scale production of bio-methane is possible at competitive price in the coming years (Osorio-Tejada et al., 2017).

The above discussions show that LNG is currently the only viable alternative for heavy-duty vehicles and long-haul transportation. In some European countries, LNG is already a fully accepted technology. For example, the development stage of LNG as transport fuel in Spain, the Netherlands and the United Kingdom is estimated to be between demonstration and early market (Osorio-Tejada et al., 2017). Nevertheless, in countries like Germany and Austria, the use of LNG is rather moderate and demand is fairly low except for some first pioneer users (Anderhofstadt and Spinler, 2019). It is therefore necessary to learn the reasons which cause the hesitation of the fleet owners and find measures to encourage the widespread adoption of LNG.

4.5 Comparison of the ASI Pillars

Sections 4.2–4.4 presented three different strategies for sustainable freight transport, each of which can be classified as a different pillar of the ASI approach. Table 4.3 gives an overview of the characteristics of these three strategies under further investigation in this thesis. As can be seen, a variety of specific strategies for sustainable freight transport are covered which allows the analysis and comparison of similarities as well as differences between the acceptance and promotion of these diverse strategies.
Environmental science adopts three basic principles that lead to sustainable development: sufficiency, consistency and efficiency. Each ASI pillar, and accordingly each implementation strategy under study in this thesis, is subject to one of the three principles. The avoid pillar is based on the *sufficiency principle*, which aims to lower the level of transports (Muller, 2008). “Sufficiency means more intensive utilization or shared utilization of goods” (Mauch *et al.*, 2001, p. 133). This is exactly what the PI network aims to achieve by means of horizontal collaboration: transport resources should be shared among all partners for a better overall utilization. Sufficiency is aimed at the change of human behavior. Human beings need to alter their lifestyles and move towards more sustainable patterns of consumption (Samadi *et al.*, 2017). The shift pillar is based on the *consistency principle*, where a certain level of transports should be provided using other, less polluting ways of transport. Consistency aims at fundamental changes in transport by substituting high emission transport modes like road transport with environmentally friendly modes (Samadi *et al.*, 2017). Multimodality is an example for realizing the consistency principle, as multimodality allows the shift of freight to more sustainable transport modes. The improve pillar is based on the *efficiency principle*, which rests on technological innovations to increase resource productivity and resource efficiency. According to the efficiency principle, a certain level of transport services should be provided with lower resource input (Muller, 2008). Notably, the introduction of improve/efficiency measures bears the risk of

Table 4.3 Comparison of sustainable freight transport strategies in this thesis

<table>
<thead>
<tr>
<th>ASI pillar</th>
<th>Implementation strategy</th>
<th>Underlying sustainability principle</th>
<th>Type of change</th>
<th>Transport distances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid</td>
<td>Bundling enabled by horizontal collaboration in a PI network</td>
<td>Sufficiency > fewer transport ways = reduce transport</td>
<td>Organizational change</td>
<td>Short-long distance</td>
</tr>
<tr>
<td>Shift</td>
<td>Modal shift enabled by multimodality</td>
<td>Consistency > other transport ways = substitute road transport</td>
<td>Organizational & (partly) technological change</td>
<td>Mainly long distance</td>
</tr>
<tr>
<td>Improve</td>
<td>LNG as an alternative fuel</td>
<td>Efficiency > better transport ways = technological advancement</td>
<td>Technological change</td>
<td>Mainly medium-long distance</td>
</tr>
</tbody>
</table>
rebound effects. A rebound effect describes the paradox between resource efficiency and resource consumption (Wang and Lu, 2014). The efficiency gains of improved technologies may be offset due to changes of consumer behavior (for example, due to the introduction of alternative fuels for road vehicles the use of road transport may increase, which offsets the efficiency gains of alternative fuels) (Matos and Silva, 2011). There is widespread agreement that to achieve a sustainable development of the transport sector, a combination of all three principles (sufficiency, consistency and efficiency) will be needed (Muller, 2008; Mauch et al., 2001). This thesis will therefore cover all three principles to compare them and gain knowledge about how to promote the implementation of the principles.

As regards the type of change, the strategies for sustainable freight transport either involve organizational change, technological change, or both. Horizontal collaboration in a PI network is subject to organizational change: Due to the collaboration, the transport organization is modified, e.g. transport requests are shared with others, transport capacities of collaborating partners can be taken into account etc., but there is no (substantial) additional technology required. Multimodality also involves organizational changes, as new transport modes and their requirements must be regarded in the transport organization (e.g. booking of train slots,…). Partly, multimodality may also involve technological change, for example infrastructure to enable smooth transition between transport modes (terminals, cranes, etc.). Alternative fuels such as LNG require technological change, as the transition towards alternative fuels is bound up with new technology like propulsion systems, fueling stations, etc.

Finally, the three strategies for sustainable freight transport under study in this thesis also cover a diverse range of transport distances. While bundling transport streams in a PI network is basically possible for every distance (short, medium and long distance), a modal shift is limited to long distance transport. A distance of 300 kilometers is suggested by the European Commission as the minimum where multimodal transport constitutes an economically feasible alternative (European Commission, 2011). Practitioners suggest that 500 kilometers is a more realistic minimum distance. The use of alternative fuels is possible for every type of distance (Table 4.1), but the use of LNG is particularly recommended for medium or long distances. This is due to the high energy density and the (currently) limited network of filling stations (Anderhofstadt and Spinler, 2019).
4.5 Comparison of the ASI Pillars

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Acceptance of Sustainable Freight Transport

5.1 Theoretical Background on Behavioral Intention and Technology Acceptance

In this subchapter, multiple theoretical perspectives are considered which are suitable to explain why logistics service providers are willing to implement sustainable freight transport strategies in theory. The conceptual framework illustrated in this subchapter provides the theoretical foundation for the second research question (Which determinants influence the acceptance of sustainable freight transport strategies?). The primary theory which informs the second research question is the technology acceptance Model (TAM) published by Davis (1989). TAM belongs to the group of so-called behavioral theories (Yuen et al., 2017) which try to explain individuals’ behavioral intention. In the following, the most prominent and widely used behavioral theories will be explained in detail.

5.1.1 Theory of Reasoned Action

Researchers aimed to estimate the acceptance of innovations and new technologies for decades. A very early and fundamental model which contributes to understanding the concept of acceptance is the “theory of reasoned action” (TRA), published by Fishbein and Ajzen (1975). TRA is considered to be one of the most influential models in the social and psychological literature (Staats, 2004). TRA aims to predict a person’s intention to behave in a certain way. Fishbein and Ajzen postulate that behavioral intention will ultimately lead to behavior. According to TRA, there are two determinants which influence behavioral intention, namely the attitude towards the behavior on the one hand, and subjective
norm on the other hand (Figure 5.1). The attitude represents an individual’s tendency to assess the specific behavior as positive or negative (Ajzen and Fishbein, 1980). In the case of companies, attitude is often reflected in the companies’ management philosophy (Yuen et al., 2017). The management philosophy can promote or hamper sustainable business practices such as sustainable transport strategies. Subjective norm can be described as social influence or pressure which supports or impedes a particular behavior (Schepers and Wetzels, 2007). In the business context, subjective norms may be caused by shareholders or stakeholders who approve or disapprove specific business practices (Yuen et al., 2017).

![Figure 5.1](image.png)
Figure 5.1 Theory of reasoned action. (Fishbein and Ajzen, 1975)

5.1.2 Theory of Planned Behavior

An important assumption of TRA is that individuals act upon volitional control, which means that they suppose to be able to perform the behavior whenever they are willing to do so (Madden et al., 1992). However, behavioral control is often a variable determinant, as it is depending on the individual capabilities and opportunities of the person or company in charge (Staats, 2004). To address this aspect, Ajzen refined TRA and developed the theory of planned behavior (TPB; Ajzen, 1985; Ajzen, 1991). Compared to TRA, TPB additionally involves the construct *perceived behavioral control* (Figure 5.2). Perceived behavioral control describes the degree to which individuals believe they are able to accomplish a task or execute a behavior due to their competences or external circumstances (Staats, 2004). Most often, sustainable strategies are also dependent on competences or external circumstances, e.g. knowledge or existing facilities. For example, LNG can only be used if there are
refueling stations available, and realizing a modal shift requires knowledge about the organization of multimodal transport services. TPB therefore improves the understanding of why and how sustainable strategies are implemented.

![Diagram of Theory of Planned Behavior](image)

Figure 5.2 Theory of planned behavior. (Ajzen, 1991)

5.1.3 Technology Acceptance Model

One of the most influential and most widely used extensions of the theory of reasoned action (Fishbein and Ajzen, 1975) and the theory of planned behavior (Ajzen, 1991) is the technology acceptance model (Davis, 1989). According to Fishbein and Ajzens’ work there is close coherence between attitude and behavior: Figure 5.1 and Figure 5.2 illustrate that behavioral intention, such as the intention to use a technology, is determined by a person’s attitude. Davis (1989) specifies the construct “attitude toward using a technology” by introducing two external variables. These new variables are *perceived usefulness* and *perceived ease of use* (Figure 5.3). Perceived usefulness denotes the degree to which it is believed that using a particular system is advantageous to enhance the overall performance (Davis, 1989). Perceived ease of use is defined as “the degree to which a person believes that using a particular system would be free of effort” (Davis, 1989, p. 320). Davis claims that all else being equal, a technology is more likely to be accepted by users if its application is considered to be useful and easy to use.
Davis’ technology acceptance model (TAM) originally focused on assessing the acceptance of information technology. By now TAM has already been employed on various other technologies from different research fields, as diverse as health care (Holden and Karsh, 2010), energy technologies (Chen et al., 2017), pedagogy (Alharbi and Drew, 2014), nutritional science (Ronteltap et al., 2008), and many more. A main advantage of TAM is that it is very simple and easy to use, yet a powerful model to explain users’ technology acceptance (Lee et al., 2003). TAM has been frequently applied in the context of transport and logistics. Manifold studies exist using TAM in context of sustainable transport strategies (Table 5.1). As can be seen in Table 5.1, TAM is suitable to explain the acceptance of avoid, shift as well as improve strategies for sustainable transport. Many studies refer to passenger transport, but TAM is also used to model the acceptance of innovations and technologies in freight transport. As a matter of fact, the majority of studies listed in Table 5.1 regard “improve strategies”, which constitute technological innovations to achieve sustainability (see Chapter 4). For example, there are studies about alternative fuels acceptance (e.g. Hackbarth and Madlener, 2013; van Rijnsoever et al., 2013) or truck platooning (Castritius et al., 2020). The technology acceptance model is especially suitable to explain improve strategies, since TAM was originally designed to study technology acceptance. However, other studies also use TAM to assess the acceptance of avoid strategies (e.g. reducing transport by pooling rides or car-sharing; Wang et al., 2018 and Geldmacher et al., 2017) and shift strategies (e.g. modal shift towards public transport or bicycles; Chen and Chao, 2011 and Hazen et al., 2015).
<table>
<thead>
<tr>
<th>ASI pillar</th>
<th>Sustainable transport strategy</th>
<th>Reference</th>
<th>Determinants of acceptance (additional to the determinants proposed by Davis (1989))</th>
</tr>
</thead>
<tbody>
<tr>
<td>avoid</td>
<td>Ride-sharing services</td>
<td>Wang et al. (2018)</td>
<td>Personal innovativeness, perceived risk, environmental awareness</td>
</tr>
<tr>
<td></td>
<td>Car-sharing</td>
<td>Fleury et al. (2017)</td>
<td>Perceived environmental friendliness, effort expectancy, performance expectancy, facilitating conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geldmacher et al. (2017)</td>
<td>Social influence, effort expectancy, performance expectancy, facilitating conditions</td>
</tr>
<tr>
<td>shift</td>
<td>Public transport</td>
<td>Chen and Chao (2011)</td>
<td>Habit, perceived behavior control, subjective norm</td>
</tr>
<tr>
<td></td>
<td>Public bicycle systems</td>
<td>Hazen et al. (2015)</td>
<td>Perceived convenience, perceived quality, perceived value</td>
</tr>
<tr>
<td>improve</td>
<td>Alternative fuel vehicles</td>
<td>Hackbarth and Madlener (2013)</td>
<td>Purchase price, fuel cost, CO₂ emissions, driving range, fuel availability, refueling time, battery recharging time, policy incentives</td>
</tr>
<tr>
<td></td>
<td></td>
<td>van Rijnsoever et al. (2013)</td>
<td>Initial purchase price, fuel price, driving range, time to refuel, availability of fuel, local emissions</td>
</tr>
<tr>
<td></td>
<td>Electric vehicles</td>
<td>Wang et al. (2016)</td>
<td>Environmental concern, attitude toward adopting a hybrid electric vehicle (HEV), subjective norm, perceived behavioral control, personal moral norm, intention to adopt a HEV</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>ASI pillar</th>
<th>Sustainable transport strategy</th>
<th>Reference</th>
<th>Determinants of acceptance (additional to the determinants proposed by Davis (1989))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Zhang et al. (2011)</td>
<td>Demographic variables, understanding of alternative fuel vehicles, experience, vehicle performance, government policy, environmental requirement, opinion of peers, vehicle price, tax reduction, fuel price, fuel availability, maintenance cost, vehicle safety</td>
</tr>
<tr>
<td>Hydrogen vehicles</td>
<td></td>
<td>Huijts et al. (2014)</td>
<td>Intention to act, attitude towards acting, perceived effects of the technology, subjective norm, perceived behavioural control, personal norm, outcome efficacy, environmental problem perception, energy security problem perception, problem perception, trust in the municipality, trust in the industry, distributive fairness, positive affect, negative affect</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tarigan et al. (2012)</td>
<td>Demographic variables, knowledge, environmental attitude, willingness to pay more to purchase hydrogen vehicles</td>
</tr>
</tbody>
</table>
Table 5.1 (continued)

<table>
<thead>
<tr>
<th>ASI pillar</th>
<th>Sustainable transport strategy</th>
<th>Reference</th>
<th>Determinants of acceptance (additional to the determinants proposed by Davis (1989))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kang and Park (2011)</td>
<td>Psychological needs, perception towards hydrogen fuel cell vehicles, values, experience</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thesen and Langhelle (2008)</td>
<td>Demographic variables, hydrogen support, environmental and hydrogen knowledge, attitude</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zachariah-Wolff and Hemmes, 2006</td>
<td>Demographic variables, knowledge, perception, attitude</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O’Garra et al. (2005)</td>
<td>Demographic variables, environmental attitude, environmental knowledge, environmental behavior knowledge about hydrogen and fuel cells, attitude toward science and technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schulte et al. (2004)</td>
<td>Perception of product, values of person in question, wants of person in question, needs of person in question, past experience, social background</td>
</tr>
<tr>
<td>Natural gas vehicles</td>
<td></td>
<td>Pfoser et al. (2018d)</td>
<td>Accessibility/availability of technology and refueling stations, attitude towards alternative fuels and interest in LNG, safety concerns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jayaraman et al. (2015)</td>
<td>Refueling station availability, payback period, petrol price, refueling time</td>
</tr>
<tr>
<td>Truck platooning</td>
<td></td>
<td>Castritius et al. (2020)</td>
<td>Image, driving safety, technology affinity, trust in automated systems</td>
</tr>
</tbody>
</table>
5.2 Determinants of Sustainable Freight Transport Acceptance

In the following subchapter, the determinants of sustainable freight transport acceptance will be elaborated. The technology acceptance model postulates that acceptance is determined by two main factors, namely usefulness and ease of use, which lead to a specific attitude about a system or technology. The aim of the following subchapter is to gain further insights on how usefulness and ease of use are formed in the context of sustainable transport strategies.

5.2.1 Overview / Comparison of Determinants

In Plasch et al. (2021), Pfoser (in press), Pfoser et al. (2016a) and Pfoser et al. (2018d) the factors which motivate (or hinder) logistics companies to implement sustainable freight transport strategies were elaborated. Each paper refers to one of the three ASI pillars: Plasch et al. (2021) describe the motives to enter a PI network, Pfoser (in press) analyzes the barriers to use multimodal freight transport, and Pfoser et al. (2018d) as well as Pfoser et al. (2016a) raise the determinants of LNG acceptance. In the following, the findings from the three papers will be juxtaposed to see what are the overarching determinants that influence the acceptance of sustainable freight transport strategies in general. Table 5.2 gives a comparison of the higher-level determinants which occur in context of PI, multimodality as well as LNG. There are some determinants which specify the usefulness of sustainable freight transport strategies, while other determinants specify the ease of using sustainable freight transport strategies (Figure 5.4). The following subchapters will describe the determinants in detail.

![Figure 5.4 Technology acceptance model specified for sustainable freight transport strategies](image-url)
Table 5.2 Determinants of sustainable freight transport acceptance

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Profitability (~usefulness)</td>
<td>++ Cost reduction</td>
<td>++ Investment costs, shipment characteristics</td>
<td>++ Investment costs</td>
</tr>
<tr>
<td>Customer demand (~usefulness)</td>
<td></td>
<td>++ Request from customers</td>
<td>++ Request from customers</td>
</tr>
<tr>
<td>Availability of infrastructure (~ease of use)</td>
<td>+ No physical infrastructure but neutral IT platform</td>
<td>+ Multimodal terminals, railway sidings</td>
<td>+ Refueling stations</td>
</tr>
<tr>
<td>Organizational efforts (~ease of use)</td>
<td>+ Efficient orchestration and sharing mechanisms</td>
<td>+ Administrative effort, pre- and post-haulage</td>
<td>+ Route planning</td>
</tr>
<tr>
<td>Legal framework (~ease of use)</td>
<td>+ + Data sharing policies, antitrust law</td>
<td>+ + Licensing processes, railway regulations</td>
<td>+ + Licensing processes</td>
</tr>
</tbody>
</table>

++ … high relevance, + … medium relevance

5.2.2 Profitability

The determinant which is clearly the most important factor influencing the acceptance of sustainable freight transport strategies is profitability. Profitability influences the perceived usefulness of sustainable freight transport strategies. Hardly any LSPs would introduce sustainable transport practices without expecting a cost reduction, or at least cost neutrality as compared to their “business as usual” strategy. This finding holds for all three types of sustainable strategies under analysis in this thesis; avoid, shift and improve.

In the case of technological innovations such as LNG trucks, it is important for LSPs that the purchase cost of the assets amortize during the expected useful life (Pfoser et al., 2016a). LSPs face significantly higher investment costs when
building up an LNG fleet since LNG trucks cost around one third more than diesel trucks (Scania, 2020). To evaluate the profitability of their investment, LSPs usually consider the total cost of ownership (TCO) and not only the initial purchase price of an asset (Pfoser et al., 2016a). The increased investment for LNG trucks can therefore be offset by low operational costs (e.g. lower fuel prices compared to diesel).

To implement multimodal freight transport there might also be some investments required, for example to acquire multimodal (craneable) loading units. The main focus of the profitability considerations in the context of multimodal transport is however not on investment costs but rather on shipment characteristics (Pfoser, in press). As a matter of fact, multimodality is not suitable for every type of shipment. Transport distances and cargo volumes influence the economic viability of multimodal operations. The efficiency of multimodal freight transport is rather limited on short distances, for low cargo volumes and for time-sensitive cargo (Guglielminetti et al., 2017). LSPs and shippers therefore evaluate carefully before setting up multimodal routes. The importance of economic viability towards a modal shift is also reflected in a myriad of mode choice studies. Meixell and Norbis (2008), Flodén et al. (2017) and Pfoser et al. (2018c) conducted literature reviews to compare the results of mode choice studies and all of them found that cost is usually the most important determinant that occurs in every study on mode choice.

Entering horizontal collaboration in a PI network is usually not bound up with the purchase of new assets and investment costs, instead it is more of a strategic decision. However, also in this case profitability is the most important driving force that influences the decision to participate in a PI network (Plasch et al., 2021). The commitment to horizontal collaboration is bound up with some sacrifices, for example sharing data, resources or customer orders with competing organizations (Pan et al., 2019). In return for making these sacrifices, logistics companies expect to gain economic advantages such as cost savings or increased turnover. All case companies in Plasch et al. (2021) stressed that the reduction of logistics costs is of very high priority to them. Achieving these cost reductions by bundling capacities in a PI network is a strong incentive for them to collaborate.

It should be noted that environmental benefits are a “nice to have” but not a decisive determinant for LSPs to introduce sustainable practices (Pfoser et al., 2016a). Most LSPs acknowledge that emission savings and other environmental benefits are well suited for marketing purposes (“green washing”, McKinnon et al. (2015)), but what really matters for them is profitability. This came up very clearly in the context of all three sustainable freight transport strategies under study in this thesis. For example, during the in-depth interviews on multimodality, the respondent of LSP#4 affirmed:
“I am working for quite some time in the transport sector and the topic of green logistics has been discussed for about ten years now... but I can tell you that we never, ever, had a customer who was willing to pay one Euro more for the transport service just to reduce CO₂ emissions!”

This shows the limited importance that is put on environmental issues when deciding on a transport service, which is again confirmed by a vast number of mode choice studies (e.g. Flodén et al. (2017); Arencibia et al. (2015); Guilbault and Cruz (2010)). As stated by Flodén et al. (2017), the environmental impact in the selection process of a transport solution only accounts for 5% and is therefore only of minor importance for the acceptance of sustainable freight transport strategies.

5.2.3 Customer Demand

Implementing sustainable freight transport strategies can also be useful to meet the expectations and demand from customers and clients. For two types of sustainable transport strategy (multimodality and LNG) it turned out that requests from their customers constitute a main incentive for LSPs to introduce sustainable practices. In turn, if customers have a bad perception of sustainable freight transport strategies, LSPs will be reluctant to introduce these strategies (Pfoser, in press).

Pfoser et al. (2016a) found that an explicit customer request to use alternative fuels can be a main driver for LSPs to introduce LNG. Pfoser (in press) stated that customers’ perception significantly influences the use of multimodal services. The reason is that it is the customer of the LSP (i.e. the shipper or cargo owner) who ultimately decides whether sustainable transport strategies are an option or not. If customers reject sustainable practices, then LSPs do not have an incentive to introduce these sustainable practices. This is also reflected in other studies which conclude that customer pressure strongly influence the green offerings of LSPs (e.g. Lin and Ho, 2011; Isaksson and Huge-Brodin, 2013; Chu et al., 2019). Only for the PI it has not been found that a specific customer request supports the participation in a PI network. However, the general request for sustainable transport operations might encourage logistics companies to enter a PI network.

The empirical evidence collected within this thesis showed up where the case companies intended to implement sustainable transport strategies upon customer
request. For example, a large manufacturer of commercial vehicles reported during the LNG focus group that a Dutch partner wanted them to construct an LNG refueling station at their company site in Austria. However, it turned out that the Dutch partner did not have enough transport volumes to fully utilize the refueling station. The internal plans to construct the refueling station were abandoned subsequently after the Dutch partner of the manufacturer withdrew their request. This example reveals that in the case of the manufacturer, the external request was the most decisive reason to implement LNG, and without this request the plans to implement LNG were abandoned. The same applies for multimodality. Out of ten LSPs which were asked about their intentions to use multimodal freight transport during the in-depth interviews, eight stated that this decision (at least partly) depends on their customers. For example, the respondent of LSP#10 stated:

“We completely adapt to the customer requirements. If the customer demands multimodal transport, we organize multimodal transport. In most cases, the customer defines a specific delivery date or specifies the price that he is willing to pay. Then we have to check whether multimodal transport meets these customer requirements.”

5.2.4 Availability of Infrastructure

The availability of infrastructure is another determinant which influences the acceptance of all three sustainable freight transport strategies under evaluation in this thesis. A relevant difference between the three strategies is that for multimodality and LNG it is predominantly physical infrastructure that is needed, whereas for the PI no (additional) physical infrastructure is needed but rather a digital platform.

Infrastructure readiness plays an important role to promote market penetration and the acceptance of alternative fuels such as LNG. Refueling stations constitute the critical infrastructure which is necessary to introduce alternative fuels within LSPs’ truck fleets (Pfoser et al., 2018d). Arteconi and Polonara (2013) found that the use of LNG vehicles is directly related to the distance between the refueling infrastructure. At the moment, the density of the LNG refueling network is not very high, but it is continuously growing (Feldpausch-Jaegers et al., 2016), which is beneficial for the acceptance of LNG.

In the case of multimodal freight transport, infrastructure such as multimodal terminals or railway sidings is required to operate multimodal services. This
infrastructure often constitutes a crucial bottleneck hampering the uptake of multimodal transport due to low capacities and restricted opening hours (European Commission, 2011). Multimodal terminals are major nodes where all transport modes run together, thus they have an important role to facilitate a modal shift. If there is no infrastructure and equipment available to enable sufficient transshipment between the transport modes, the acceptance of multimodality is at risk (Pfoser, in press). Not only is physical infrastructure such as terminals crucial for the implementation of multimodal transport, but also digital infrastructure such as Information and communication technology (ICT) or intelligent transport systems (ITS). Various types of contextual information are required for an efficient organization of multimodal transports, e.g. data on weather, location of cargo, traffic information or potentially disturbances (Singh and van Sinderen, 2015). It is the task of ICT to provide high quality and standardized data that support multimodal transport decisions.

As mentioned above, the infrastructural requirements for establishing a PI network involve the set-up of a platform which acts as a neutral orchestrator. This neutral orchestrator can be described as a nonpartisan trustee, not involved in the operational activities, whose responsibility is to “maximize the total synergy gains of the network while keeping its impartiality” (Ciprés and de la Cruz, M. Teresa, 2019, p. 211). Essentially, without the neutral platform the performance of the PI network would be inferior and the acceptance of entering the PI network would be deterred.

Lacking the required infrastructure means that the ease of using sustainable freight transport is substantially reduced for LSPs. The provision of infrastructure for sustainable transport is often accompanied by a chicken-and-egg problem. This means that the supply of the relevant infrastructure (e.g. refueling stations, multimodal terminals or PI platform) is hampered by the fact that the demand for sustainable freight transport is quite low. At the same time, demand for sustainable freight transport is restrained because the relevant infrastructure is missing.

5.2.5 Organizational Efforts

Organizational efforts also influence how well a company accepts a sustainable freight transport strategy. If a sustainable practice is bound up with high organizational complexity, it decreases the ease of using this practice, and therefore the acceptance will be limited.
Especially multimodal transport is bound up with increased organizational effort compared to the less sustainable option unimodal road transport (Pfoser, in press). The reason is that sustainable transport modes such as railways or inland waterways have a lower network density, which means that it is difficult to establish point-to-point connections using these modes. Therefore, pre-haulage and/or post-haulage have to be organized in the course of multimodal transport. Another organizational burden are administrative barriers, which occur especially in transnational multimodal transport (Pfoser et al., 2018b). Customs procedures, inspection processes and other formalities are time consuming and inhibit the acceptance of multimodality (Pfoser, in press). LSP#7 (in-depth interview on multimodality) named some further organizational efforts that might occur:

„Compared to truck transport, multimodal transport is more complex because an increased number of players are involved and there are more interfaces to other organizations (e.g. railway companies) that you cannot influence.

Organizational efforts may also arise from horizontal collaboration in a PI network due to the transactions with partners (e.g. asset sharing, exchange of transport requests, etc.) (Plasch et al., 2021). Although it is the task of the network orchestrator to minimize the organizational efforts for the partners collaborating, there may remain some organizational issues (for example setting up the initial collaboration agreement).

In connection to LNG there might be some organizational efforts resulting from the low network density of refueling stations and the driving range (which is still somewhat shorter than that of diesel trucks). Due to these circumstances, route planning might be more complex for LNG fueled trucks (Pfoser et al., 2016a).

5.2.6 Legal Framework

The legal framework is another determinant which influences the acceptance of sustainable freight transport. Logistics companies expect clear regulatory guidelines which support the introduction of sustainable strategies and which create legal security. In general, harmonization among the EU member states is desirable to ensure consistent regulations for transnational transport operations. This applies, for example, to the approval procedures required to authorize LNG vehicles and infrastructure (Pfoser et al., 2016a) or to the issuing of safety certificates
5.2 Determinants of Sustainable Freight Transport Acceptance

for multimodal railway undertakings (Pfoser, in press). At the moment, the licensing processes are often long-winded and discourage the use of sustainable freight transport strategies. In the focus group on LNG it was stated by a liquid gas provider that the legal framework conditions constitute the main barrier for the uptake of LNG in Austria. Also in the focus group on multimodality it was discussed that legislation is a crucial determinant of multimodal transport acceptance. A complex legal framework basically impedes infrastructure investments, for example for refueling stations or multimodal terminals (Reis et al., 2013).

Another legal issue that has a large impact on multimodal road-rail transport is the state regulation of railways. Unlike the US, where rail infrastructure is mostly privately owned, rail infrastructure in Europe is a publicly owned monopoly which hampers competition. This is problematic because competition is decisive in enhancing the performance of the railway system and ensuring efficiency in terms of costs, quality of service and investment plans (Smith et al., 2018; Mortimer and Islam, 2014; Clausen and Voll, 2013). To address this problem, the European Commission already adopted four legislative railway packages which target the liberalization of the European railway market (Smith et al., 2018). However, Austrian LSPs only noticed a few improvements towards the liberalization and are not very satisfied with the railway providers (Pfoser, in press).

In the case of a PI network, specific legal issues emerge from the horizontal collaboration between partners, for example from the obligation to share data within the PI network. Logistics companies may have distinct data policies, i.e. terms and conditions that restrict data sharing and open data. Cooperation agreements should be drafted among these logistics companies to contract peer-to-peer connections (Hofman et al., 2016). Knol et al. (2014) describe different scenarios for data sharing among transport actors. They recommend restricted open access and non-obligatory data sharing patterns to encourage information exchange in global transport chains. Horizontal collaboration in the PI network may not only be hampered because stakeholders are reluctant to work together, but they may simply not even be allowed to work together due to antitrust policies and regulations (Geerlings et al., 2017). Here, governments have to intervene and create legal security for shippers and LSPs to enable horizontal collaboration.
6.1 Theoretical Background on Organizational Management

Attempts at theory-building in sustainable SCM and logistics are to date rather scarce. Many papers in the field of sustainable SCM and logistics lack a theoretical lens to provide theoretical perspectives (Touboulcic and Walker, 2015). Several authors stress the theoretical dearth in the field of sustainable SCM (Touboulcic and Walker, 2015; Carter and Easton, 2011; Sarkis et al., 2011). However, there are some popular organizational theories which were repeatedly used in the past to study problems related to sustainable SCM/logistics. In order to successfully employ policy measures which encourage organizations’ environmental commitment, the fundamental principles of organizational management must be understood. The profound understanding of how a company works and knowledge on organizations’ operational principles allow the setting of precise and target-oriented measures for sustainability. In this subchapter, multiple theoretical lenses are used to understand organizational management and derive implications on how to influence organizational behavior with suitable policy measures. The conceptual framework illustrated in this subchapter provides the theoretical foundation for the fourth research question (Which policy measures promote the implementation of sustainable freight transport strategies?).

Organizational theories aim to provide “a management insight that can help explain or describe organizational behaviors, designs, or structures” (Sarkis et al., 2011, p. 2). A wide range of disciplines contributed to the development of organizational theories, among them sociology, psychology, economics, political science and engineering (Hatch, 2018). Several literature reviews exist which map the theoretical framework of sustainable SCM and logistics studies (e.g. Liu et al.,
2018; Dubey et al., 2017; Touboulc and Walker, 2015; Carter and Easton, 2011; Sarkis et al., 2011; Carter and Rogers, 2008). The collection of theories presented in these literature reviews were examined carefully in the course of this thesis. Those theories which indicate how to motivate the implementation of sustainable practices (such as sustainable freight transport strategies) were chosen as relevant theoretical lenses. Table 6.1 describes the theories that were classified as relevant and gives examples of studies which borrow from these theories in the context of sustainable SCM/logistics/transport practices.

Eight theories were chosen as relevant for deriving indications on how to encourage sustainable practices. These eight theories can be classified according to three different dimensions related to organizational existence, namely (1) organizational obligations (2) organizational capabilities (3) organizational functioning. Figure 6.2 depicts the three dimensions and their related theories using a Venn diagram. A Venn diagram is a popular way to illustrate the three pillars of sustainability (economic, social and environmental performance) using three circles that intersect (Lozano, 2008). The overlap of all three circles in the center of the diagram represents truly sustainable performance (Figure 6.1). An overlap of two circles represents partial sustainability and is referred to as equitable, bearable or viable performance (Figure 6.1). The three organizational dimensions (obligations, capabilities and functioning) each represent one of the three pillars of sustainability (economic, social and environmental) and thus can be also depicted using a Venn diagram.

Figure 6.1 Venn diagram illustrating the three pillars of sustainability. (based on Dalal-Clayton and Bass, 2002)
Organizational obligations represent social responsibility which organizations have towards their stakeholders. Organizational functioning constitutes the operational principles of organizations’ performance which are predominantly based on economic considerations. And finally, organizational capabilities refer to the capacities and resources that organizations have access to, which are often limited by environmental conditions. Since the three dimensions of organizational obligations, capabilities and functioning each represent one of the sustainability pillars, they can also be classified according to equitable, bearable, viable and sustainable practices. For example, practices that comply with organizational obligations and organizational functioning are referred to as equitable in Figure 6.2. Practices that comply with organizational obligations and organizational capabilities are referred to as bearable, and practices that comply with organizational functioning and organizational capabilities are referred to as viable. In the following, each organizational dimension and their associated theories will be explained in detail. Later, in Subchapter 6.3.5, the theories will be used to support the policy measures for sustainable freight transport.

Figure 6.2 Theoretical framework to explain the adoption of sustainable freight transport strategies
6.1.1 Organizational Obligations

Several theories exist which refer to the companies’ relationship to other organizations and the resulting obligations. Within their corporate activities, companies have to satisfy the needs of several parties, not only shareholders (owners), but also other stakeholders like governments, industrial interest groups, NGOs, customers, and society as a whole (Sen and Cowley, 2013). The stakeholder theory (Freeman, 1984) illustrates the responsibility of organizations to meet the expectations of their manifold stakeholders. These expectations also involve environmental concerns of stakeholders. Stakeholder theory is one of the most used theories in the context of sustainable SCM (Touboulic and Walker, 2015). Stakeholder theory postulates that stakeholder pressure influences the sustainable behavior of organizations. If stakeholders express environmental needs, then organizations tend to introduce sustainable strategies (Yuen et al., 2017). The agency theory (Eisenhardt, 1989) uses a similar approach to explain companies’ environmental engagement. The essence of agency theory is that one organization (the principal) authorizes another organization (the agent) to act on behalf of the principal (Sarkis et al., 2011). Within their role as agents, companies are obligated to meet the sustainability concerns of the principals (Berrone and Gomez-Mejia, 2009). Principals may use incentives (such as reward systems) to stimulate pro-environmental behavior (Cordeiro and Sarkis, 2008).

Additionally the institutional theory (DiMaggio and Powell, 1983) is helpful to understand how companies can be motivated towards more sustainable behavior. According to the institutional theory, coercive, normative and mimetic pressures constitute an incentive that drives sustainable transport practices or discourage unsustainable transport practices (Morali and Searcy, 2013). Environmental regulations represent an example of coercive pressure. Coercive pressure often comes from governments or government agencies (Rivera, 2004). In contrast, normative pressure is mostly caused by customer and market requirements (Zhu et al., 2013). Mimetic pressure appears when an organization imitates the actions of successful competitors (e.g. “green champions”) in the same industry (Sancha et al., 2015).

6.1.2 Organizational Capabilities

Several theories related to resources describe companies’ capabilities to adopt sustainable strategies. The resource-based view (RBV) claims that companies gain a competitive advantage through their valuable, rare, inimitable and non-substitutable resources (Barney, 1991; Wernerfelt, 1984). In terms of sustainable
transport practices, RBV teaches us that specific resources are required to enhance the environmental, social and economic performance in the supply chain (Touboulic and Walker, 2015). Aiming for sustainable business activities and greening the supply chain is also an opportunity to gain a competitive advantage (for example via differentiation and increased market power) (Sarkis et al., 2011). In this context, knowledge resources and organizational learning provide additional important capabilities which enable sustainable transport practices (knowledge-based view, Grant, 1996). Green knowledge, sometimes also called green intellectual capital, is a fundamental resource which provides the basis for dynamic capabilities needed in unstable, competitive business environments (Wu, 2010). The natural-resource-based view (NRBV, Hart, 1995) is an extension of RBV which accounts for the fact that the natural environment may constitute a severe constraint for creating a competitive advantage. As early as 1995, the originator of NRBV anticipated that “it is likely that strategy and competitive advantage in the coming years will be rooted in capabilities that facilitate environmentally sustainable economic activity—a natural-resource-based view of the firm” (Hart, 1995, p. 991). Today, with the ever-increasing rise of the climate change, this statement holds true even more (Hart and Dowell, 2011).

The theories on organizational capabilities described above demonstrate that different types of resources enable (or limit) the organizational potential for sustainable action. Thus, it can be expected that supporting companies to gain the required resources for sustainable practices will motivate them towards environmental engagement (Morali and Searcy, 2013).

6.1.3 Organizational Functioning

Transaction cost economics and resource dependence theory are two theories which explain organizational functioning, i.e. the principles outlining how companies work or operate in a proper way. The basic assumption of transaction cost economics (TCE) is that two organizations engaged in a business activity incur costs as well as efforts (Williamson, 1981). Their goal is to establish management instruments and control systems such as contractual arrangements to minimize their transaction costs (Touboulic and Walker, 2015). Several elements of TCE can be utilized to explain decisions on investments and strategies towards sustainable transport practices (Sarkis et al., 2011). The most evident implication of TCE is that the occurrence of transaction costs has an impact on the acceptance of sustainable practices (Touboulic and Walker, 2015). According to TCE, organizations are going to evaluate carefully the actual costs on different types
Table 6.1 Theories explaining the occurrence of sustainable freight transport practices

<table>
<thead>
<tr>
<th>Theory and originator</th>
<th>Originating discipline</th>
<th>Organizational dimension</th>
<th>Implications for the promotion of sustainable freight transport</th>
<th>Studies using the theory in context of sustainable SCM/transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency theory (Eisenhardt, 1989)</td>
<td>Economics, sociology, political science</td>
<td>Organizational obligations</td>
<td>Within their role as agents, companies can be motivated by principals to show environmental engagement (e.g. through reward systems)</td>
<td>Lozano et al. (2015); van Hoof and Lyon (2013); Berrone and Gomez-Mejia (2009); Cordeiro and Sarkis (2008)</td>
</tr>
<tr>
<td>Institutional theory (DiMaggio and Powell, 1983; Scott, 1987; Oliver, 1991)</td>
<td>Sociology, psychology</td>
<td>Organizational obligations</td>
<td>Institutional structures (e.g. rules, norms or routines) elicit external pressure for a company to act sustainably</td>
<td>Yang (2018); Dubey and Bag (2013); Morali and Searcy (2013); Zhu et al. (2013)</td>
</tr>
<tr>
<td>Knowledge-based view (Grant, 1996)</td>
<td>Strategic management</td>
<td>Organizational capabilities</td>
<td>The green intellectual capital or green knowledge of a company enables environmental protection</td>
<td>Schrettle et al. (2014); Aguilera-Caracuel et al. (2012); Sheu and Chen (2012)</td>
</tr>
<tr>
<td>(Natural-) resource based view (Wernerfelt, 1984; Barney, 1991; Hart, 1995)</td>
<td>Strategic management, micro-economics</td>
<td>Organizational capabilities</td>
<td>Key resources are required to achieve a sustainable performance in the supply chain. Pro-environmental practices could lead to a competitive advantage</td>
<td>Lozano et al. (2015); Morali and Searcy (2013); Guang Shi et al. (2012); Gold et al. (2010)</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Theory and originator</th>
<th>Originating discipline</th>
<th>Organizational dimension</th>
<th>Implications for the promotion of sustainable freight transport</th>
<th>Studies using the theory in context of sustainable SCM/transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource dependence theory (Pfeffer and Salancik, 1978; Ulrich and Barney, 1984)</td>
<td>Sociology, political science</td>
<td>Organizational functioning</td>
<td>Organizations need to cooperate with others because they depend on resources from outside parties to realize sustainable practices</td>
<td>Yuen et al. (2017); Caniëls et al. (2013); Morali and Searcy (2013); Shang et al. (2010)</td>
</tr>
<tr>
<td>Stakeholder theory (Freeman, 1984; Donaldson and Preston, 1995)</td>
<td>Business ethics</td>
<td>Organizational obligations</td>
<td>Stakeholder pressure influences sustainable behavior > sustainable strategies are taken to meet stakeholders’ environmental needs</td>
<td>Yuen et al. (2017); Lozano et al. (2015); Morali and Searcy (2013); Sen and Cowley (2013); Kim and Lee (2012);</td>
</tr>
<tr>
<td>Transaction cost economics (Williamson, 1981)</td>
<td>Economics</td>
<td>Organizational functioning</td>
<td>The occurrence of transaction costs has an impact on the acceptance of sustainable practices</td>
<td>Meinschmidt et al. (2018); Barari et al. (2012); Chaabane et al. (2012); King (2007)</td>
</tr>
</tbody>
</table>
6.2 Market Failures in Sustainable Freight Transport

The empirical investigation (interviews, focus group discussions) in the course of this thesis revealed that many problems related to sustainable freight transport are a result of market failures. Market failures are caused by the fact that individuals usually follow their self-interest and make the correct decision for themselves, instead of taking into account what is best for the whole group of individuals (Ledyard, 2008). In many cases, the individuals’ decisions are not optimal from the societal point of view, which leads to market failures (Krugman and Wells, 2017). The Industry Commission (1998) underlined that the existence of market failures can be combated by policies that achieve better outcomes for society as a whole. Therefore, in this subchapter the main market failures which influence sustainable freight transport practices will be presented to show which problems have to be addressed by policy measures.

6.2.1 Tragedy of the Commons

The transportation system involves both, individual goods (e.g. transport assets such as trucks) and common goods (e.g. the environment or atmosphere)
6.2 Market Failures in Sustainable Freight Transport

(Richardson, 2005). The problem is that if private organizations such as logistics companies make any investments towards sustainable innovations, the value of this investment will most probably benefit third parties, such as society more than the organization itself (Richardson, 2005). For example, if an LSP purchases a truck which emits fewer emissions, the LSP has to bear the expenses for this investment although it only obtains a small share of the benefit (i.e. better air quality). Therefore, there is little motivation for organizations to realize sustainable transport policies because there is a disparity between the costs incurred and the benefits gained (Howes et al., 2017).

The problem described is an example of the tragedy of the commons (Hardin, 1968). The tragedy of the commons predicts that common resources will suffer from overconsumption, under-investment and ultimately the depletion of the common resource due to the fact that others cannot be excluded from using the resource (Burger and Gochfeld, 1998; Faysse, 2005). Common resources are not owned by any individuals but by society as a whole, and this causes individuals to exploit the common resources to a degree that is inefficient at the collective level (Faysse, 2005). Although it would be desirable from the collective viewpoint to protect the common resources from overconsumption, it is economically irrational for an individual player (e.g. a company) to do so (Engel and Saleska, 2005). Market mechanisms have to appropriately manage the common resources to ensure that they are not reaped beyond their carrying capacity (Jenkins, 2002). Since the markets currently fail to do so, government regulations are necessary to address this problem. One participant of the multimodality focus group put it in a nutshell:

“Governmental regulation is absolutely needed to manage the consumption of natural resources and handle the problem of air pollution. If there were no regulations which restrict the maximum permitted speed, everyone would speed on the roads. The same applies to environmental issues—no company would consider them unless they are forced to.”

Regulating the consumption of the commons is something that has to be implemented on a transnational level, otherwise no efficient results will be obtained.

6.2.2 Existence of Externalities

The transport sector is responsible for a multitude of negative externalities which are currently not sufficiently reflected in transport prices. These negative externalities include emissions, congestion, accidents, noise, vibration and other harmful
effects which negatively affect third parties (Demir et al., 2015). Prices aim to deliver a market equilibrium, but due to the existence of externalities in the transport market, the prices will lead to an inefficient resource allocation (Figure 6.3). In theory, negative externalities lead to market volumes that are too high because the prices are too low (Pindyck and Rubinfeld, 2013). In the transport sector, the excess volumes caused by the negative externalities are perfectly illustrated in practice by road congestion.

![Microeconomic effects of negative externalities. (based on Pindyck and Rubinfeld, 2013)](image)

Figure 6.3 Microeconomic effects of negative externalities. (based on Pindyck and Rubinfeld, 2013)

Internalizing negative externalities is therefore an important task for policy to take on. This was also discussed during the focus group on multimodality. One participant of the multimodality focus group stated very clearly:

“The internalization of external costs is much more appropriate to create an economic incentive than the introduction of subsidies for multimodal transport. The reason is that subsidies rather distort competition while the internalization of external costs reflect the true cost of transport”
6.2 Market Failures in Sustainable Freight Transport

The other participants of the focus group strongly shared this opinion and recommended that politicians should make intensive efforts to internalize the external costs of road transport. The participants of the focus group stated that subsidies would cause controversy and dissent about the foundation for granting the subsidies. For example, the truck lobby associations will complain if railways receive funding from politics. However, if the “polluter pays” principle comes into effect, there is a clear rationale for the reallocation of economic burden. This will create a level playing field between all transport modes and make external costs part of the decision-making process of shippers (van Essen et al., 2019).

6.2.3 Information Failure

Information failure is another type of market failure that occurs in many different markets, including the transport and logistics market. There exist two main types of information failure: asymmetric information and imperfect information (Pindyck and Rubinfeld, 2013). Asymmetric (or unbalanced) information occurs if one party has more knowledge than the other party within a business transaction. This may lead to opportunistic behavior of the party with advanced knowledge (Sinnandavar et al., 2018). In context of sustainable freight transport, imperfect information is more relevant than asymmetric information. Imperfect information refers to the situation where a party does not have all the information required to make an informed business decision (Pindyck and Rubinfeld, 2013). Due to imperfect information, in many cases it is difficult for the logistics companies to understand the importance of sustainable transport (Chen et al., 2018). A lack of efficient information and knowledge leads to incomplete markets where the resources are allocated insufficiently (Pratt and Phillips, 2000). The information failure is caused by the fact that it is hard for logistics companies to capture relevant information on sustainable freight transport solutions. Due to the lack of knowledge and information, an investment into sustainable strategies is perceived as risky by logistics companies, which leads to under-investment for sustainability (Nakamura et al., 2003).

The problem of insufficient information was discussed during the focus group on multimodality. A shipper from the plastics industry stated that it is tremendously difficult for him to find information about multimodal transport offers. The participants agreed that multimodal transport is more complex than unimodal truck transport, and many companies are therefore reluctant to implement multimodality since they lack the required information. There also seems to be some kind of information asymmetry between the shippers (i.e. the cargo owners) and
the freight forwarding companies. The shipper from the plastics industry reported that he tried to get transport offers from several multimodal transport operators, but these refused to inform him since they only deal with requests from freight forwarding companies. Due to these information failures, the implementation of sustainable transport strategies is inhibited in the logistics industry.

6.2.4 Free-rider Behavior

A free-rider problem occurs when costs and benefits of a strategy or action are not distributed equally among the parties involved (Pindyck and Rubinfeld, 2013). Implementing sustainable freight transport strategies is a typical scenario which creates an opportunity for free-riding. If one organization takes measures to reduce the ecological impact of transport, it incurs the costs of this measure but it will not fully obtain the benefits since other organizations gain the benefit as well, whether or not they set own sustainability measures (Engel and Saleska, 2005). The free-rider problem is similar to the tragedy of the commons, but it can also occur with goods that are non-rival and non-excludable in use, for example knowledge (Pindyck and Rubinfeld, 2013).

Horizontal collaboration between partners often involves the risk of free-rider behavior, for example because one partner may invest into assets (e.g. ICT systems), and the other partner may benefit from these investments without adequately sharing the costs (van der Horst and Langen, 2008). Efficient gain-sharing mechanisms must therefore be set up to allocate the benefits and prevent partners from free-riding. LSP#1 from the PI case study explains his expectations about a gain-sharing mechanism:

“Fair accounting should be achieved—executed by a neutral entity—with agreed unit prices, as well as with transparent and flexible pricing models”

6.3 Policy Measures to Promote Sustainable Freight Transport

The following subchapter presents policy measures that are (from the logistics companies’ point of view) suitable to promote sustainable transport. These policy measures were developed within the focus groups of different projects on the topics of PI, multimodality and LNG. Several measures proved to be relevant for all three pillars of sustainable freight transport (avoid, shift, improve). These overarching measures will be presented below.
6.3 Policy Measures to Promote Sustainable Freight Transport

6.3.1 Overview / Comparison

In Plasch et al. (2021), Pfoser (in press), Pfoser et al. (2016a) and Pfoser et al. (2018d) it was elaborated which policy measures and/or success factors encourage logistics companies to implement sustainable freight transport strategies. Each paper refers to one of the three ASI pillars: Plasch et al. (2021) describe the success factors of a PI network, Pfoser (in press) analyzes policy measures to promote multimodal freight transport, and Pfoser et al. (2018d) as well as Pfoser et al. (2016a) raise policy measures and enablers to facilitate LNG as an alternative truck fuel. Together, these publications allow for a comparison of the policy measures that promote sustainable transport. The comparison of policy measures of different ASI pillars is illustrated in Table 6.2.

As described above, environmental policy theories refer to three types of policy measures—sticks, carrots and sermons (see 2.2 Typology of policy measures). An important implication resulting from the user-centric approach in this study is that logistics companies do not favor command & control measures (i.e. sticks) to promote sustainable freight transport. As can be seen in Table 6.2 no regulations or other command & control measures were proposed in any of the focus groups. Instead, another type of measures arose which is not covered by the common threefold sticks-carrots-sermons typology. This new type of measures involves the provision of basic infrastructure and framework conditions needed to use sustainable freight transport. The provision of infrastructure and other framework conditions is referred to as “means” in Table 6.2. At first glance, the instrument means shares some similarities with regulations and economic incentives. This is because, on the one hand, means can be provided by enacting laws and regulations (e.g. to create favorable legal conditions for sustainable transport) and on the other hand, means can be provided by using monetary resources (e.g. for infrastructure development). Despite these similarities, there are attributes that clearly distinguish means from sticks and carrots. The regulations that are issued to provide means do not force logistics companies to implement sustainable freight transport. They still have the freedom to choose whether they want to implement sustainable transport strategies. Thereby, means are different from sticks. And second, as opposed to economic incentives, the monetary resources that are spent on means are not intended to make it cheaper or more expensive for logistics companies to implement sustainable freight transport. Instead, the monetary resources are intended to enable logistics companies to implement sustainable freight transport. Therefore, means are also different from economic incentives.
Table 6.2 Policy measures to promote sustainable freight transport

<table>
<thead>
<tr>
<th>Policy measure</th>
<th>Type</th>
<th>Avoid: Measure suitable to promote PI collaboration (cf. Plasch et al., 2021)</th>
<th>Shift: Measure suitable to promote multimodality (cf. Pfoser, in press)</th>
<th>Improve: Measure suitable to promote LNG (cf. Pfoser et al., 2016a and Pfoser et al., 2018d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monetary instruments</td>
<td>Carrots</td>
<td>+ +</td>
<td>++ Internalization of external costs</td>
<td>+ + Security of investment, subsidies, R&D funds</td>
</tr>
<tr>
<td>Infrastructure development</td>
<td>Means</td>
<td>+ Open used infrastructure</td>
<td>+ + Increased capacity of multimodal terminals, better railway interoperability</td>
<td>+ + Refueling station network</td>
</tr>
<tr>
<td>Information & transparency</td>
<td>Means</td>
<td>+ + Enforce full network transparency</td>
<td>+ + Track performance, establish a one-stop-shop for multimodal bookings</td>
<td></td>
</tr>
<tr>
<td>Adaptation of legal framework</td>
<td>Means</td>
<td>+ + Antitrust laws</td>
<td>+ + Harmonization of rail standards, increased weight limits</td>
<td>+ + Simplification of concession processes</td>
</tr>
<tr>
<td>Awareness raising</td>
<td>Sermons</td>
<td>+ + Trust-building measures</td>
<td>+ + Information campaigns, roadshows</td>
<td>+ + Demonstration of technology</td>
</tr>
<tr>
<td>Education & training</td>
<td>Sermons</td>
<td>+ + Courses, training sessions</td>
<td>+ + Mobilization of pioneer users</td>
<td></td>
</tr>
</tbody>
</table>

++ ... high relevance, + ... medium relevance
To conclude, the new typology suggested to effectively promote sustainable freight transport strategies would be carrots-means-sermons instead of sticks-carrots-sermons (Figure 6.4). In this new typology, carrots can be considered the most restrictive and sermons the least restrictive measure. In the following subsections, the three types of measures suggested to promote sustainable freight transport will be presented in detail.

6.3.2 Carrots for Sustainable Freight Transport

The implementation of sustainable transport strategies can be quite capital-intensive. The first (and from logistics companies’ point of view most important) category of policy measures for sustainable freight transport is therefore carrots, i.e. monetary incentives. Monetary incentives address the fundamental need of logistics companies for profitability (see explanations in 5.2.2).

In the context of LNG, subsidies and grants constitute important monetary instruments to foster logistics companies’ investment into LNG fueled vehicles (Pfoser et al., 2018d). The higher investment cost of LNG fueled trucks is one of the main barriers for fleet operators because the acquisition of alternatively fueled vehicles has to pay off for them (Pfoser et al., 2016a; Ma et al., 2013). Receiving funding for LNG vehicles from the public sector is therefore a fundamental driving force that encourages logistics companies to start up LNG fleets (Engerer and Horn, 2010; Osorio-Tejada et al., 2015; Wang et al., 2015). Governments have different options to incentivize LNG usage with monetary instruments. On
the one hand, they can support the fuel price by granting tax advantages for LNG, which makes LNG cheaper as compared to diesel (Yeh, 2007). This is already practiced in several European countries (Peters-von Rosenstiel et al., 2015). On the other hand, the purchase price of LNG vehicles could be subsidized by investment bonuses or loans. This has also been realized in some European countries, for example in Sweden an investment subsidy of €17,000 per truck was granted (Peters-von Rosenstiel et al., 2015) and in Germany an investment subsidy of €12,000 per truck was recently announced and already used by several companies (Landwehr, 2020). Importantly, these subsidies should only be necessary to stimulate initial demand and encourage first pioneer users. After a sufficient increase of the demand has taken place, the production volumes of LNG vehicles should rise to such an extent that the purchase prices fall (Pfoser et al., 2018d).

Also in the context of multimodality logistics companies emphasized that economic incentives are of utmost importance for them. Out of ten respondents from the interviews, eight affirmed that cost reduction is a very important or an important measure to increase the share of multimodal transport. However, compared to the study on LNG, a different approach was suggested by the respondents to reduce the costs of multimodal transport. In the focus group it was discussed that neither subsidies nor grants should be offered as monetary incentives to promote multimodal transport, but instead the external costs of transport should be internalized appropriately (Pfoser, in press). The reason is that subsidies distort competition while the internalization of external costs reflects the true cost of transport according to the “polluter pays” principle. An internalization of external costs would be in favor of the sustainable transport modes, including multimodal transport. Since the main variable of mode choice is transport price (Pfoser et al., 2018c), it would be highly efficient if transport prices are based on true-cost pricing and thus fully reflect external costs (Mostert and Limbourg, 2016). The internalization of external costs aims to create a level playing field between all transport modes such that external costs become part of the decision-making process in the logistics industry. At the moment, road transport is too cheap because it does not reflect the emissions, noise, congestion etc. that it causes (van Essen et al., 2019). This is why road transport dominates in the transport sector. In the focus group on multimodal transport, the internalization of external costs was rated as the most feasible and at the same time also the most effective policy measure to promote a modal shift, it is therefore considered as a high-impact measure (Pfoser, in press).

The remaining ASI pillar, avoid, does not require any economic policy measures. This is related to the fact that no additional assets or infrastructure are
needed for the avoid strategies such as horizontal collaboration. Though profitability is equally important for horizontal logistics collaboration as well, it is expected that cost savings will result from bundling of transport streams and economies of scale (Plasch et al., 2021; Vanovermeire et al., 2014). Additional external monetary incentives are not necessary from the logistics companies’ point of view.

6.3.3 Means for Sustainable Freight Transport

The empirical investigation revealed that logistics companies desire three different means that support the implementation of sustainable freight transport: Infrastructural development, information & transparency and adaptation of the legal framework.

Infrastructural development is relevant for all three ASI pillars, especially for multimodality and LNG. Multimodal transport requires sufficient terminals that combine different modes of transport (Šakalys and Batarliene, 2017; Kreutzberger and Konings, 2016). LNG requires an appropriate network of refueling stations (Osorio-Tejada et al., 2017; Chang et al., 2008). According to the logistics companies, governmental authorities should support the development of this infrastructure by putting forward development plans and funding the construction (Pfoser et al., 2018d; Pfoser, in press). Importantly, logistics companies claim not only new and additional infrastructure needs to be built, but also the existing infrastructure should be improved by efficiency gains. As a matter of fact, the number of multimodal terminals is considered to be appropriate at the moment, but proper planning, extended opening hours and increased utilization are measures advised to improve existing infrastructure (Pfoser, in press). Also horizontal collaboration in the PI requires infrastructure, but as mentioned before, this infrastructure will not be newly constructed, but instead used in a different way. Specifically, warehouses and transport capacities will be used in an open and shared way by logistics companies (Vanovermeire et al., 2014). Policy measures can present an impetus for companies to start thinking about sharing warehouses and other logistics infrastructure, although policy measures alone may not be sufficient to convince logistics companies to open their infrastructure to others. This is because the strategic alliance with (potential) competitors is a radical change for companies. The preferential treatment of horizontal logistics collaborations in tender procedures may constitute a measure to encourage the PI.

Promoting information and transparency is another measure that is suitable to support sustainable freight transport, namely the two pillars avoid and shift.
For horizontal collaboration to work, full network transparency is a vital feature for logistics companies. Political authorities can advance the occurrence of full network transparency by enforcing the monitoring of the PI performance. This monitoring can be accomplished by establishing control levers for tracing and documenting operational process performance in the PI network, e.g. delivery time and quality (Plasch et al., 2021). In the case of multimodality, tracking transport performance to allow for quality improvements and increased reliability of the service is also an important issue raised by the logistics companies (Pfoser, in press). In the focus group on multimodality, participants affirmed that they would highly appreciate the establishment of a one-stop-shop to make multimodal operations more flexible and easy-to-use (Pfoser, in press). The focus group participants rated this measure to be the second most important for promoting a modal shift. Various types of information can be transmitted in such a one-stop-shop, e.g. customs related data, estimated time of arrival or frequency of service (Islam et al., 2016). Another function is to comprehensively inform new entrants about the multimodal offers and make the booking of multimodal services as easy as booking road transport.

The adaption of the legal framework is a means that is expected to facilitate all three pillars of sustainable freight transport. Horizontal collaboration in a PI network needs an appropriate legal framework, since logistics companies may not be allowed to work together due to antitrust policies and regulations (Geerlings et al., 2017). Here, governments have to intervene and create legal certainty to enable horizontal collaboration (Pfoser et al., in press). For multimodal transport, a harmonization of the rail standards would be highly beneficial due to the fact that currently the multimodal business suffers from a variety of different standards among the European countries (Pfoser, in press). Another legal adaptation suggested to promote multimodality is increased weight permissions (e.g. increased maximum permissible weight for multimodal pre- and post-haulage or increased axle loads for railways). An increased permissible total weight reduces the number of transshipments and hence the cost per metric ton (Mortimer and Islam, 2014; Rodrigue and Notteboom, 2010). To promote LNG, a simplification of the concession processes is suggested as a useful measure (Pfoser et al., 2016a). Since LNG is classified as a dangerous good, the admission procedures are cumbersome and bureaucratic (Osorio-Tejada et al., 2017). Authorities can harmonize and simplify the application formalities and thus support the dissemination of LNG technology. Furthermore, the legal framework regarding safe storage, handling and bunkering of LNG needs to be harmonized since there are currently gaps and differences among various countries across the world (Aneziris et al., 2020).
6.3 Policy Measures to Promote Sustainable Freight Transport

6.3.4 Sermons for Sustainable Freight Transport

The third category of measures to promote sustainable freight transport is sermons. Sermons are the least restrictive type of measures since they do not force or push any behavior, but they rather suggest or recommend a specific behavior. Despite being less vigorous, these “soft” measures aiming for consciousness and understanding are rated as very important by the logistics companies (Pfoser, in press). The sermons category includes awareness raising activities as well as education and training.

Awareness building measures are relevant for all three types of sustainable freight transport. In context of horizontal collaboration, awareness for the positive effects of commonly operating transport and sharing logistics resources with partners must be in place (Plasch et al., 2021). Many stakeholders are hesitant to collaborate because they do not fully trust each other and refuse data exchange (Kurapati et al., 2018). A mental shift is needed for logistics companies to accept new types of collaborative transport (Pfoser et al., in press). Trust building measures are suitable to induce such a mental shift as they break up competitive thinking and suspicion among partners (Plasch et al., 2021). To promote multimodal freight transport, awareness building measures are also needed. Awareness raising campaigns (e.g. roadshows presenting successful business cases) should induce a mental shift in a way that logistics companies (especially shippers as “customers” of transport) start to regard multimodality as a viable transport option (Pfoser, in press). Importantly, awareness raising also includes managing customers’ expectations: Shippers are most often used to the fact that goods arrive within a short period of time, and for that reason many shippers dramatically reduce their stocks. This behavior makes it difficult to implement multimodal solutions, as these solutions need some lead time and are rather suited for large cargo volumes put into interim storage. Shippers must accept the need to plan ahead and allow for interim stocks to facilitate multimodal transport (Pfoser, in press). Finally, awareness must also be raised for LNG as alternative truck fuel. Information campaigns and the demonstration of this technology may encourage users to invest in LNG vehicles (Pfoser et al., 2018d). LNG roadshows allow visitors to test the latest LNG truck technology. Within these events, visitors are allowed to drive LNG trucks, and they also gain an understanding of operational and maintenance issues related to this alternative fuel. This helps to reduce their concerns as they obtain practical insights and get in touch with the new technology (Pfoser et al., 2018d).

Education and training measures aim to raise knowledge of sustainable freight transport and provide logistics companies with experience of new technologies.
and services they might not have used before (Pfoser, in press). This is of particular importance for the shift and improve strategies which both involve special equipment and operations that might be new for the logistics companies. For example, using LNG as an alternative fuel requires the handling of a cryogenic liquid, which might deter fleet operators to switch to LNG trucks (Anderhofstadt and Spinler, 2019). In fact, the extremely low temperature of LNG constitutes a hazard for humans and materials that get in contact with it (Aneziris et al., 2020). LNG fueling and storage also involve the risk of fires or explosions (Vanem et al., 2008). These hazards can however be avoided through proper training of the employees handling LNG. For example, driver training familiarizes truck drivers with the operation of LNG fueled trucks. These measures address logistics companies’ need for safety in transport (Pfoser et al., 2016a) and popularize LNG as viable fuel option. Also in the field of multimodal transport education and training can be useful, for example to teach operators how to perform multimodal transport efficiently, but also for example to increase knowledge on which funding schemes exist to receive financial support (Pfoser, in press; Pfoser et al., 2020).

6.3.5 Theoretical Support for the Identified Policy Measures

Based on the theoretical background presented in Subchapter 6.1, theoretical support can be provided for the identified policy measures. Figure 6.5 gives an overview of the theoretical implications that result for the identified policy measures using the theories introduced in Subchapter 6.1.

The use of monetary incentives to promote sustainable freight transport is supported by transaction cost economics. TCE teaches us that companies seek to reduce their transaction costs (Williamson, 1981). If the implementation of sustainable freight transport is subsidized, companies will incur reduced expenses and will be therefore encouraged to introduce sustainable strategies.

The resource-based view explains why infrastructure development and the adaptation of the legal framework are suitable to promote sustainable freight transport. According to RBV, resources are crucial to gain a competitive advantage (Barney, 1991). The natural resource-based view teaches us that pro-environmental practices may constitute a competitive advantage (Hart, 1995). Indeed, many logistics companies see sustainable transport as an opportunity to distinguish themselves from competitors (Pfoser, in press). It is therefore recommended to provide them with the required resources they need for sustainable freight transport. The resources that are needed to implement sustainable
6.3 Policy Measures to Promote Sustainable Freight Transport

strategies include, for example, refueling infrastructure or multimodal terminals. Notably, resources are not always physical, but they may also constitute intangible framework conditions, such as the legal framework for sustainable freight transport.

The institutional theory gives indications of how information and transparency can be created within the transport system. As stated above, it is very important for stakeholders that the performance of a transport system (e.g. multimodal network or PI network) is monitored. This ensures that performance remains at the desired level and outcomes are satisfactory. However, transparency will probably not be granted automatically. Institutional theory (DiMaggio and Powell, 1983; Scott, 1987) suggests that coercive pressure is a suitable measure to dictate information and transparency. Coercive pressure constitutes the formal or informal constraints that are put on organizations (DiMaggio and Powell, 1983). These constraints are imposed by third parties upon which the organizations are dependent on, for example the legal regulatory system (Oliver, 1991). If regulatory authorities stipulate the monitoring of transport performance, stakeholders will have to obey. This will be beneficial for the efficiency (and thus the acceptance) of sustainable freight transport systems. Beside coercive pressure, another element of institutional theory can be borrowed for the development of policy measures, namely mimetic pressure. Mimetic pressure means that companies imitate the behavior of other organizations to avoid falling behind the technology leaders in their industry (DiMaggio and Powell, 1983). This mimetic behavior implies that pilot projects and business cases of pioneering companies in sustainable freight transport should be disseminated extensively to create mimetic pressure for others to follow the early adopters. The dissemination of pilot cases can be realized by information campaigns, roadshows or other awareness raising activities.

Awareness raising activities are intended to influence stakeholders in a way that they demand sustainable freight transport from their transport providers. The rationale for awareness raising measures is rooted in stakeholder theory and agency theory, which both explain the importance of stakeholders’ expectations for the realization of sustainable practices. Following stakeholder theory (Freeman, 1984; Donaldson and Preston, 1995), companies are prompted to implement sustainable strategies if their stakeholders exhibit environmental needs. Similarly, agency theory (Eisenhardt, 1989) assumes that if their principals require sustainable behavior, companies (as agents) are motivated to show environmental commitment. Due to the significant power of the stakeholders, it is advisable to set awareness raising measures which target the environmental consciousness of the stakeholders. As argued in Section 5.2.3, the transport customers are the most
important stakeholders for logistics service providers. Awareness raising measures should therefore specifically target transport customers, but also all other stakeholders including the logistics companies themselves.

Theoretical support for education and training measures comes from the knowledge-based view. According to the knowledge-based view, knowledge is strategically the most important resource an organization may possess (Grant, 1996). Appropriate knowledge allows organizations to gain a competitive advantage. In view of sustainable freight transport, green intellectual capital is relevant to implement environmentally friendly transport services. Education and training measures are therefore required to create this green intellectual capital. Practical experience and knowledge will reduce reluctance towards sustainable freight transport (Lazuras et al., 2011).

![Diagram showing theoretical support for identified policy measures](image)

Figure 6.5 Theoretical support for identified policy measures
6.3 Policy Measures to Promote Sustainable Freight Transport

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Conclusion

7.1 Synthesis of Results

This research uses an intense stakeholder dialogue with logistics companies to investigate the determinants of sustainable freight transport acceptance and identify user-centric policy measures to promote sustainable freight transport. A comparison of the determinants of acceptance and the suggested policy measures shows that each policy measure addresses a determinant of acceptance. Table 7.1 juxtaposes the determinants of acceptance and the policy measures and gives the underlying theoretical support as argued in Section 6.3.5.

Table 7.1 Comparison of determinants of acceptance and policy measures for sustainable freight transport

<table>
<thead>
<tr>
<th>Determinant of acceptance</th>
<th>Policy measure</th>
<th>Theoretical support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profitability</td>
<td>Monetary instruments</td>
<td>Transaction cost economics</td>
</tr>
<tr>
<td>Customer demand</td>
<td>Awareness raising, education & training</td>
<td>Stakeholder theory, agency theory, knowledge-based view</td>
</tr>
<tr>
<td>Availability of infrastructure</td>
<td>Infrastructure development</td>
<td>Resource-based view</td>
</tr>
<tr>
<td>Organizational efforts</td>
<td>Stipulate information & transparency</td>
<td>Institutional theory</td>
</tr>
<tr>
<td>Legal framework</td>
<td>Adaptation of legal framework</td>
<td>Resource-based view</td>
</tr>
</tbody>
</table>

LSPs’ need for profitability can be addressed by monetary instruments such as the internalization of external costs or subsidies. These instruments will reduce the initial cost for establishing sustainable freight transport which will motivate...
companies to try and test sustainable practices. In the medium and long term, the costs for realizing the sustainable practices will decline automatically due to the market uptake of these practices and funding will not be required anymore.

Customer demand is an important driver for LSPs’ acceptance to implement sustainable freight transport strategies. Customers’ demand for sustainable freight transport can be evoked by awareness raising measures which create consciousness and a positive attitude towards sustainable practices. Managers buying transport services from LSPs must be aware that their buying decision has an enormous impact on the sustainable development of the transport system. This study revealed that hardly any LSP offers sustainable options without being requested to do so. This holds true for all three pillars of sustainable transport—avoid, shift as well as improve. During the empirical investigations it turned out that none of the sustainable strategies under study in this thesis would be established without customers (i.e. shippers) asking for environmentally friendly transport. Awareness raising is therefore a highly important instrument.

A policy measure that is related to awareness raising is education & training. Both, awareness raising and education & training target the creation of knowledge. While awareness raising creates theoretical knowledge and consciousness, education & training aims for practical knowledge and application-oriented skills to promote the implementation of sustainable practices. If LSPs have practical knowledge on how to operate sustainable transport, customers are encouraged to demand sustainable transport from them because they trust in the capabilities of the LSPs.

A basic prerequisite to realize sustainable freight transport (and thus a fundamental determinant of its acceptance) is the presence of the required infrastructure. In many cases, the implementation of sustainable practices is hampered simply because the infrastructure is missing. Policy should therefore accelerate the development of appropriate infrastructure and equipment. For example, they can fund the construction of infrastructure and announce public tenders for that purpose. This ensures that the resources required for sustainable freight transport are available.

Organizational efforts have been identified as another determinant of sustainable freight transport acceptance. If LSPs perceive it as complex to introduce sustainable practices, they will hesitate to do so. It turned out that many stakeholders perceive sustainable freight transport markets as non-transparent and difficult to enter. To reduce the perceived complexity, information and transparency about the organization, operation and performance of sustainable freight transport need to be provided. This transparency needs to be dictated by public authorities because transport providers will most probably not supply the required information on a voluntary basis.
Finally, the legal framework determines the acceptance of sustainable freight transport. Legal conditions can favor sustainable practices, e.g. they may give special permissions and preferential treatment to sustainable freight transport. As an example, truck transports within multimodal operations may be privileged by the granting of higher weight permissions. Another example is that LNG trucks are sometimes allowed to enter low-emission zones in city centers. However, the legal framework can also prevent the dissemination of sustainable freight strategies, for example in the case of cumbersome admission procedures. Policy measures should therefore target the creation of favorable legal framework conditions for logistics companies to introduce sustainable freight transport.

The preceding explanations in Subchapter 6.2 showed the existence of severe market failures in the sustainable freight transport market. It was demonstrated that due to these market failures, LSPs currently do not have an incentive for introducing sustainable freight strategies. For example, LSPs are reluctant to use sustainable practices because they do not (exclusively) benefit from the positive effects of introducing sustainable freight transport. This problem is known as the tragedy of the commons. Some LSPs also feel that there is no need for them to apply sustainable strategies because others might care for the environmental problems and shoulder this responsibility (free-rider behavior). Another problem is that there is imperfect information, such that many stakeholders do not possess the appropriate knowledge about sustainable freight transport. Finally, the existence of externalities hampers sustainable freight transport because the costs of environmental pollution are not reflected in transport prices (Figure 7.1).

The identified policy measures are able to minimize some of the market failures that currently exist in the sustainable freight transport market. For example, awareness raising measures can be used to create consciousness for common goods and prevent companies from exploiting these common resources such as air quality. The originator of the tragedy of commons, Garrett Hardin (1968), mentioned that there is no technical solution to overcome the economic problem of resource depletion. Instead, Hardin (1968, p. 1243) suggested that “a fundamental extension of morality” would be necessary to address the tragedy of commons. In fact, it has been proposed that sustainability problems should be framed as moral scarcity issue and not only as resource scarcity issue (Brown et al., 2019). Thus, moral norms need to be developed to fight collective exploitation of common goods. Awareness raising measures are able to deliver moral norms and communicate ethic principles of sustainability.
To resolve the information failure that currently dominates sustainable freight transport, education and training is an appropriate measure. Education and training creates knowledge and thus removes imperfect information. Having better information and expertise in the field of sustainable freight transport will support LSPs to introduce environmentally friendly practices. Another information failure in sustainable freight transport markets is asymmetric information. Asymmetric information exists because some parties have better information on sustainable freight transport than other parties. This problem can be addressed by stipulating information and transparency for all players in the market. For example, shippers should have access to all required information on multimodal transport, e.g. service providers, costs, timetables, performance parameters, etc.

Finally, the existence of negative externalities can be prevented by using monetary instruments which aim to internalize external costs. Monetary instruments enforce the “polluter pays principle” and thus charge the causing of negative externalities. This creates a level playing field among all transport modes because external costs become part of the decision makers’ choice process. At the
moment, only direct costs such as operational costs, taxes or travel time opportunity cost are considered within the selection of a transport service (Márquez and Cantillo, 2013). The external costs (which are currently borne by society) are not adequately reflected in transport prices. The price of sustainable freight transport is therefore too high and must be altered by monetary instruments (emission charging, taxes, etc.).

7.2 Responses to the Research Questions

Based on the findings of this thesis, the research questions can be answered as follows. The first research question (which sustainable freight transport strategies exist to reduce the negative environmental impact of freight transport?) is answered by introducing the ASI framework (Chapter 4). The ASI framework is a well-known approach to classify strategies for sustainable freight transport. According to the ASI approach, there exist three main strategies to decarbonize freight transport, each of which represents a pillar of the framework: to avoid transport, to shift transport, and to improve transport (Figure 7.2). The papers of this thesis refer to three particular strategies, each of which addresses one of the three aforementioned pillars. Plasch et al. (2021) discuss horizontal collaboration in a PI network (avoid pillar), Pfoser (in press) elucidates multimodal freight transport (shift pillar) and Pfoser et al. (2018d) / Pfoser et al. (2016a) address LNG as an alternative fuel (improve pillar). It has been shown that all of these strategies are suitable and highly promising to reduce the negative environmental impact of freight transport, though their approach on how to achieve this goal is quite different. Horizontal collaboration has the potential to better utilize transport resources and reduce empty runs, and thereby reduce the environmental burden of transport. Multimodal freight transport is the combined use of multiple transport modes in a way such that the strengths of each mode can be utilized and the weaknesses can be compensated by the other mode(s). In this sense, multimodality creates better conditions for the use of sustainable transport modes, such as railways or waterways. And finally, LNG is at present the only viable alternative fuel for heavy-duty vehicles and long-haul transports. The technology for LNG is mature and readily available on the market, while other alternative fuels are still in a stage of development.
Though European politics shows strong commitment for all of the three strategies presented in Figure 7.2, they have not succeeded so far in promoting the acceptance and use of these strategies. Therefore, the second research question is framed as follows: Which determinants influence the acceptance of sustainable freight transport strategies? Theoretical support for answering the second research questions comes from the technology acceptance model. The technology acceptance model (Davis, 1989) is a widely used theory to explain why decision makers adopt a specific technology or behavior. TAM postulates that two main determinants influence acceptance: the perceived usefulness and the perceived ease of use. The sub research questions regarding the acceptance of PI, multimodality and LNG (RQ 2.1–RQ 2.3) were answered by providing the individual determinants for these transport strategies (Table 5.2). Plasch et al. (2021) describe the motives to collaborate in a PI network, which are used to derive knowledge on the determinants of PI acceptance (RQ 2.1). Pfoser (in press) elaborates on the barriers to multimodality, which are used to derive the determinants of multimodality acceptance (RQ 2.2). Finally, Pfoser et al. (2018d) and Pfoser et al. (2016a) reveal the determinants of LNG acceptance (RQ 2.3). The individual determinants elaborated for each strategy were compared in Chapter 5 to derive overarching determinants of sustainable freight transport acceptance. Five main determinants were identified which influence the acceptance of avoid, shift and
improve strategies (Figure 7.3). These determinants are profitability and customer demand (both of which refer to usability), as well as availability of infrastructure, organizational efforts and legal framework (which refer to the ease of using sustainable freight transport). These five determinants present the answer to the second research question.

![Figure 7.3 Determinants of sustainable freight transport acceptance](image)

The third research question in this thesis examines which market failures occur in the area of sustainable freight transport and currently distort the acceptance of sustainable strategies (RQ 3). According to neoclassical welfare economics, the presence of market failures justifies the use of policy instruments to intervene in the markets (Al-Saleh and Mahroum, 2015). Four types of market failures were identified in Chapter 6.2, namely the tragedy of commons, the existence of externalities, information failure and free-rider behavior. The policy measures developed in the thesis should address and solve these market failures.

The fourth and final research question in this thesis is dedicated to the development of user-centric policy measures. Organizational theories were used as theoretical foundation to explain the mechanisms which drive transport users to adopt sustainable practices. These theories reveal that three main dimensions support the adoption of sustainable freight transport, namely (1) organizational obligations, (2) organizational capabilities and (3) organizational functioning. It can be concluded that policy measures should address these three dimensions to set mechanisms which effectively promote sustainable practices.

Based on a user-centric approach involving numerous LSPs, concrete suggestions for policy measures were developed. The sub research questions regarding policy measures to promote the PI, multimodality and LNG (RQ 4.1–RQ 4.3) were answered by providing individual policy measures for these three transport
strategies (Table 6.2). Plasch et al. (2021) describe the success factors to collaborate in a PI network, which are used to derive policy measures for PI (RQ 4.1). Pfoser (in press) develops policy measures to promote multimodality (RQ 4.2). Finally, Pfoser et al. (2018d) and Pfoser et al. (2016a) suggest policy measures to foster LNG (RQ 4.3). The individual policy measures elaborated for each strategy were compared in Chapter 6 to derive overarching policy measures to promote sustainable freight transport. Due to the user-centric approach, it appeared that the common sticks-carrots-sermons classification previously used to categorize policy measures does not meet transport users’ needs. Instead, a new typology is suggested, namely carrots-means-sermons. This typology provides an answer for the fourth research question (which policy measures promote the implementation of sustainable freight transport strategies?): on the one hand, monetary instruments (“carrots”) may push environmental practices. On the other hand, the provision of basic infrastructure and framework conditions (“means”) is an important impetus to implement sustainable strategies. Infrastructure development, information & transparency and the adaptation of the legal framework constitute means. Finally, the third category of policy instruments aims to create consciousness, knowledge and understanding to promote sustainable freight transport (“sermons”). Sermons are the least restrictive type of policy measures since they do not force or push any behavior, but rather suggest or recommend a specific behavior. Activities for awareness raising and education & training fall within this type of policy measure.

7.3 Contributions to the Domain of Sustainable Freight Transport

This thesis closes several research gaps and thereby makes theoretical as well as practical contributions to the domain of sustainable freight transport. The first research gap is the lack of a common definition of the construct acceptance in context of sustainable freight transport, which leads to an ambiguous use of this construct. Second, sustainable freight transport strategies have been previously studied in an isolated manner, whereas a holistic contemplation would lead to a more comprehensive strategy towards their introduction. Another research gap is the theoretical dearth that exists in green SCM. A topic which is absolutely under researched is the market failures that occur in the sustainable freight transport market. From a managerial perspective, there is a lack of research studies which incorporate a user-centric view to develop policy measures. This leads to the introduction of policy measures which do not meet the needs of transport users.
(i.e. logistics companies). This calls for a redesign of the common sticks-carrots-sermons typology to classify policy measures, since this typology fails to take users’ needs into account.

Resulting from the aforementioned research gaps that were tackled in the thesis, there are four theoretical and two practical contributions to the domain of sustainable freight transport. These contributions will be presented hereafter.

Theoretical contribution 1: Setting a concise definition of acceptance in context of sustainable freight transport
A variety of definitions of the construct acceptance have been developed in the recent literature comprising different suggestions of how to describe users’ acceptance of innovations or new technologies. This variety of definitions bears the risk of misinterpreting the results from different studies due to a missing common perception of the construct acceptance (Adell et al., 2018). For instance, some studies refer to acceptance if users perceive an innovation as useful, other studies require the actual use of innovations for acceptance to take place. To eliminate this confusion, this thesis developed a concise definition of acceptance in the context of sustainable freight transport. The definition developed in Subchapter 2.1 emphasizes the need for using (or at least being willing to use) sustainable freight transport strategies to realize their intended benefits (i.e. decarbonizing freight transport). For acceptance to take place it is not enough to appreciate the usefulness of a strategy, instead there must be a clear willingness to implement the strategy, otherwise the positive effects of sustainable transport will not materialize. The definition also focuses on the logistics companies’ perspective to account for the transport users’ subjective judgment of sustainable freight transport strategies and logistics companies’ expected gains from implementing these strategies. This fits with the overall user-oriented focus of this thesis, which brings transport users to the fore. To summarize, it is important to understand that acceptance is based on the transport users’ judgment of an innovation or a new technology such as sustainable transport strategies. It is therefore necessary that users recognize the benefits or gains of using the innovation.

Theoretical contribution 2: Holistic view of different approaches to reduce carbon footprint of freight transport
In this thesis, the topic of sustainable freight transport is viewed from a holistic perspective. The study allows for the in-depth comparison of three different, heterogeneous approaches to reduce the environmental impact of freight transport. These three approaches are (1) to avoid transport (2) to shift transport and (3) to
improve transport (ASI framework). Existing studies only refer to one individual strategy limited to reducing the carbon footprint of transport, for example a specific transport concept such as combined transport only, or a specific technology such as a particular alternative powertrain only. There are hardly any studies which refer to different approaches and compare them. On the contrary, this study simultaneously examines avoid, shift and reduce strategies which allows the contextualization and juxtaposition of the characteristics and specificities of these three different approaches. Based on this holistic view, higher-level implications for the realization of the approaches can be derived and interrelationships can be identified. The holistic perspective allows the display of the transport sector as a whole system with various components that contribute to the overall goal, namely the decarbonization of freight transport. This thesis showed which overarching determinants affect the acceptance of sustainable freight transport in general. Based on that, some overarching policy measures were defined which promote the implementation of sustainable freight transport. Becoming acquainted with the higher-level determinants and the higher-level policy measures allows the gain of a better understanding for the basic direction in which the transport system has to move to become more sustainable. One individual strategy will not suffice to combat the environmental problems of the transport sector. The integrated and holistic view is therefore important to see the whole picture and form a comprehensive strategy for sustainable freight transport. This supports efficient policy making and promotes the decarbonization of freight transport.

Theoretical contribution 3: Developing a theoretical framework to explain the adoption of sustainable freight transport strategies

Recent literature underlines the theoretical dearth that exists in green SCM (Touboulic and Walker, 2015; Carter and Easton, 2011; Sarkis et al., 2011). Sustainable freight transport can be considered a subdomain of green SCM (Putz et al., 2018) and also lacks an appropriate theoretical underpinning. This thesis addresses the gap as it provides a comprehensive theoretical framework explaining the adoption of sustainable freight transport strategies (Subchapter 6.1). Well-established organizational theories are used to explain how logistics companies are encouraged to implement sustainable freight transport. Three dimensions of organizational existence are identified to substantiate why sustainable practices are introduced by LSPs. These three dimensions are organizational obligations, organizational capabilities and organizational functioning. Organizational obligations result from the logistics companies’ responsibility towards their stakeholders (stakeholder theory, agency theory, institutional theory). If stakeholders (such as customers) expect green operations, LSPs are encouraged for sustainable freight
transport. Organizational capabilities determine the ability to introduce sustainable practices (resource-based view, knowledge-based view). If LSPs do not have the resources (physical resources or knowledge) to implement sustainable strategies, they will not be able to do so. Finally, organizational functioning, i.e. the companies’ operational principles, influences the implementation of sustainable strategies. LSPs try to minimize transaction costs (transaction cost economics), thus they will be eager to introduce green practices if they see the possibility to reduce transaction costs and thus maintain their organizational functioning.

The categorization of organizational dimensions (obligations, capabilities and functioning) is new and provides a useful theoretical framework for future research in the domain of sustainable freight transport. The categorization encompasses all relevant areas of organizational existence. The proposed theoretical framework can be used to explain the occurrence of sustainable practices in green SCM and logistics. This will deepen the understanding of logistics companies’ motives towards pro-environmental behavior and provides a starting point to define ways to encourage pro-environmental behavior.

Theoretical contribution 4: Explaining market failures which inhibit the implementation of sustainable freight transport

This is the first study that identifies different types of market failure to explain the reasons for the hesitant implementation of sustainable freight transport strategies. Hardly any studies refer to market failures as a rationale for the poor environmental performance of the logistics and transport sector. If at all, existing work only uses one individual type of market failure as an explanation. However, as shown in Subchapter 6.2, substantial market failures exist in the sustainable freight transport markets, and these market failures explain the rejection of sustainable strategies to a significant degree. The reason is that due to the existence of these market failures, logistics companies do not have an incentive to introduce sustainable freight transport. For example, logistics companies are not prevented from exploiting common resources (tragedy of the commons) and thus do not have an incentive to decarbonize their transport operations. Transport prices do not reflect environmental costs (existence of negative externalities), thus logistics companies are not encouraged to use sustainable transport. Additionally, many companies lack the required knowledge to introduce sustainable practices (imperfect information). As can be seen, the consideration of market failures allows insights into why the decarbonization of logistics is currently inhibited. Thereby, this thesis reveals important mechanisms and a new reasoning for the environmental problems of freight transport.
Practical contribution 1: User-centric view to promote the acceptance of sustainable freight transport

The users of sustainable freight transport are crucial players for the implementation of environmentally friendly transport systems. This thesis is one of the first studies which brings the users of sustainable freight transport to the fore as it analyzes the determinants of users’ acceptance and collects users’ suggestions for policy measures. Existing work strongly concentrates on the supply of sustainable freight transport and neglects the demand perspective. For example, studies on horizontal collaboration in a PI network predominantly deal with supply-related questions such as the design of PI containers to be used in the network or the development of decision support models to assist the operation of PI services (Plasch et al., 2021). Similarly, studies on horizontal collaboration in a synchromodal network have also focused tremendously on the supply side, for example by developing ICT systems and planning models for synchronmodality (Pfoser et al., in press). The same problem persists within the literature on multimodal transport planning, i.e. the design and optimization of multimodal transport chains (Agamez-Arias and Moyano-Fuentes, 2017). By contrast, there are only few studies which examine the demand for multimodal freight transport. Finally, also the literature on LNG as alternative truck fuel suffers from the same problem. A lot of technical studies exist covering supply-related topics such as the optimum fuel pressure of LNG vehicles, fuel tank systems, safety of storage facilities, and so on. Many publications also exist offering life-cycle analyses of GHG emissions. However, only a few studies refer to demand-related issues of LNG as an alternative fuel.

As illustrated above, the existing literature perfectly supports the supply of sustainable freight transport by developing knowledge about technology-related questions regarding the provision of sustainable freight transport (e.g. ICT systems or infrastructure such as terminals or refueling systems) or by providing planning models (e.g. for the transport service design). The supply-related studies are important to stimulate the provision of sustainable freight transport. However, it is equally important to understand the demand for sustainable freight transport, because without users’ demand, sustainable strategies will not be realized in practice. Users’ requirements and motives need to be considered in the process of advancing sustainable strategies to ensure their acceptance. Information on users’ requirements and motives is essential to adequately address the needs of those who finally implement sustainable freight transport. However, the abundance of supply-related studies do not provide information on users’ needs and demand. The present thesis contributes to this gap as it provides information on
7.3 Contributions to the Domain of Sustainable Freight Transport

The determinants of users’ sustainable freight transport acceptance. The thesis also presents policy measures which are from users’ viewpoint appropriate to promote sustainable freight transport. These policy measures reflect the needs of those who use sustainable freight transport and therefore these measures have the potential to really initiate the decarbonization of freight transport.

Practical contribution 2: Extending the common environmental policy typology from the users’ perspective

The commonly used typology to classify environmental policy measures is the threefold sticks-carrots-sermons approach (Subchapter 2.2). This thesis reveals that from transport users’ perspective, the sticks-carrots-sermons typology falls short when applied to the field of sustainable freight transport. As illustrated in Subchapter 6.3, logistics companies do not favor the instrument of sticks (i.e. regulations and sanctions) to force sustainable practices. Instead, they suggest a new type of policy measure which is not covered by the previous sticks-carrots-sermons typology, namely means. The instrument of means involves the development of infrastructure and other framework conditions to support logistics companies with the introduction of sustainable freight transport. Means may constitute regulations (legal framework), but they are different from sticks as they do not force the target group to use the innovation. Means may also constitute economic instruments as infrastructure provision will be bound up with monetary investments. However, means differ from carrots as they do not make it cheaper or more expensive for the target group to use the innovation, but they make it possible to use the innovation.

Extending the existing threefold environmental policy typology by the category “means” is an important contribution for the domain of sustainable freight transport. Means (such as infrastructural development) have the potential to encourage logistics companies towards more sustainable behavior while at the same time maintaining the decision makers’ freedom to choose and not to oblige them to adopt a specific behavior. The intention of means is to encourage potential users by changing the built environment (Mattauch et al., 2016) or framework conditions. Means are a valuable complement to the original sticks, carrots and sermons instruments. The acceptance of means is expected to be high since it is a measure directly suggested by transport users. Policy makers should therefore consider means as a powerful instrument when seeking to promote sustainable freight transport.
7.4 Limitations, Further Research and Outlook

This thesis has several limitations that call for further research. First, the thesis claims to provide a holistic view of sustainable freight transport by juxtaposing different strategies that fall within different pillars of sustainable freight transport. However, within the scope of this thesis only three exemplary strategies were investigated, one for each pillar of the ASI model. Future research is needed to examine other strategies as well and ensure that they follow the same principles and lead to the same conclusions regarding the acceptance and policy measures for sustainable freight transport.

Second, the acceptance study is primarily based on qualitative research (interviews, focus groups). Qualitative research is limited to the results that emerge from the specific case companies under investigation. Although the case companies were selected deliberately to achieve a heterogeneous sample, it cannot be concluded without a doubt that the findings about sustainable freight transport acceptance are transferable to any logistics company in any industry. Further research could examine if the results also hold within other research settings, e.g. companies with different size, cultural context or organizational background.

Third, the thesis takes a user-centric perspective, which means that assessing the measures from the political perspective is not part of this study and should be covered by future research. The policy measures were developed within a qualitative and user-focused research process and reflect logistics companies’ needs towards sustainable freight transport. To account for the political perspective, it will be necessary to evaluate the viability and potential effects of the suggested measures. It is another limitation of this thesis that the suggested strategies are viewed in an isolated manner. In practice, single policy measures are hardly ever used on their own. Instead, it is more common (and more efficient) to use a mixture of these (Glasbergen, 1992; Taylor et al., 2012). Further research should therefore also focus on the question which combination of the suggested policy measures is the best to promote sustainable freight transport. Special attention must also be paid to the problem of rebound effects. A rebound effect offsets the positive effects of a policy measure (e.g. sustainable freight transport strategy) due to changed customer behavior (Matos and Silva, 2011). For example, due to the promotion of alternative fuels for road vehicles the use of road transport may increase, which offsets the efficiency gains of alternative fuels. Potential rebound effects that may occur along with the proposed strategies must therefore be identified and evaluated.

Subchapter 6.2 outlined several market failures that occur in the sustainable freight transport market. This outline is only an initial attempt to capture the
market failures that impede sustainable freight transport. Further research should aim for an in-depth econometric analysis of the mechanisms causing these market failures. The characteristics of sustainable freight transport markets must be studied in more detail to understand which problems hinder the decarbonization of logistics. The basic assumption of welfare economics should be proved for the context of sustainable freight transport. This will help to gain further insights into how to remove the barriers which currently inhibit sustainable freight transport.

The empirical investigation in this thesis revealed that customer relationships are an extremely important lever to facilitate sustainable freight transport. Nearly all logistics companies stated that they would implement sustainable practices if they are requested to do so by their customers. They argue that in the end, it is the customer who has to pay for the transport services. If the customer is willing to pay for sustainable transport, then the logistics companies would implement sustainable practices. This finding is substantiated by two popular theories, stakeholder theory (Freeman, 1984) and agency theory (Eisenhardt, 1989). Both theories hypothesize that organizations follow the external pressure and needs from their stakeholders or agents, which are for example their customers. Since customer demand for sustainable freight transport is one of the most powerful motivators for LSPs to decarbonize their transport operations, future actions must involve customers, i.e. shippers (Figure 7.4). This call is consistent with Eng-Larsson and Kohn (2012) who criticize that most research addresses the logistics’ perspective and neglects the shippers’ contextual viewpoints. Shippers must develop environmental awareness to drive their LSPs towards sustainable behavior. In general, environmental performance must become part of the freight transport and logistics procurement processes, which is currently not the case. The planning, tendering and contracting processes should consider environmental KPIs such as emission intensity. Currently, the transport price is the most decisive factor for transport customers in the logistics procurement process. In the future, the reduction in carbon footprint should be a relevant goal for shippers in their freight transport and logistics procurement.

As a final remark it should be noted that the sustainable freight transport strategies under study in this thesis (ASI strategies) reinforce each other and create synergetic effects when implemented together. Figure 7.5 illustrates some of these synergetic effects that occur between the individual strategies. For example, horizontal collaboration allows for the bundling of transportation flows which in turn facilitates multimodal transport (as multimodal transport requires large cargo volumes to utilize the higher capacities of sustainable transport modes). Similarly, horizontal collaboration may encourage the use of alternative fuels as risk sharing and asset sharing reduce the uncertainty that is bound up with new technologies
for logistics companies. Alternative fuels and multimodal transport also reinforce each other since alternative fuels make the first mile and last mile of multimodal operations greener and thereby make multimodal transport more competitive.

Due to the synergetic effects described above it is suggested that the ASI strategies should be implemented together and all of them should be promoted equally. This finding confirms the appropriateness of the holistic approach of this thesis, i.e. to regard all three ASI strategies simultaneously and compare the similarities concerning their determinants of acceptance and policy measures. Policy makers are advised to incorporate the synergetic effects and develop an integrated sustainable transport system where all three ASI pillars are implemented appropriately.
Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Freeman, R.E. (1984), Strategic management: A stakeholder approach, Pitman, Boston.

Montreuil, B. (2009), *Physical Internet manifesto: Globally transforming the way physical objects are handled, moved, stored, realized, supplied and used*.

Sáenz, M. (2016), *The Physical Internet: Logistics reimagined?*

