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Foreword 

Most standardized tests require that examinees complete the required task(s) within a specified 
amount of time. Indeed, time limits can be regarded as a fundamental part of standardiza-
tion by helping to ensure that all examinees complete the examination under comparable time 
constraints. In some instances, time limits may be quite stringent and the expectation is that 
most examinees will not complete the test. This is the case when speed of response is part of the 
construct being measured. In other instances, test scores are interpreted as an indication of the 
extent to which examinees have mastered some domain of knowledge; for these tests, speed of 
response is not part of the construct. This is true for most tests used in both educational testing 
and credentialing, where insufficient time is considered a source of construct-irrelevant vari-
ance. Nonetheless, for administrative and logistic reasons it is still necessary to impose time 
limits. The challenge is to establish limits that encourage examinees to work at a reasonable 
pace without negatively impacting their test performance. 

In order to help determine timing requirements, early timing research focused on eval-
uating simple metrics such as the proportion of examinees who did not complete the test. 
More recently, however, the complexity, importance, and prominence of timing studies have 
increased. With the advent of computerized test delivery, extensive and precise data are avail-
able to shed light on the time examinees allocate to individual test items. In addition, the field 
of assessment has entered an era where change is the norm. The availability of technology 
coupled with the desire for more authentic assessments has led to the development of complex 
item formats that are intended to assess higher-order thinking skills. The drag-and-drop for-
mat, multi-media items, and case-based scenarios are just a few examples of these novel item 
formats that now populate high-stakes examinations in K-12 education and professional cre-
dentialing. These complex items were developed to address a more complex assessment need; 
not surprisingly, this complexity results in needing more time to read and answer these items 
than is typically required for traditional MCQs. Thus, out of necessity, monitoring response 
time has become a routine activity, with some testing agencies subjecting test items and test 
forms to rigorous analyses as part of pretesting. 

Other assessment-related developments and considerations have further challenged con-
ventional thinking about timing and its impact on score interpretation. Examples include: 

• A recognition that the profession lacks evidence-based guidelines for administering tests 
to examinees who are granted additional testing time to accommodate a disability and 
the impact of additional time on construct interpretation. 

• The introduction of technologies that alter the interface between examinees and 
the assessment tasks. Though some of these would be expected to improve examinee 
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performance (e.g., hover text for definitions; pacing aids), others could hinder perfor-
mance (e.g., item text and graphic not fitting within a single screen). 

• The use of commercial test centers for test delivery, which creates a direct relationship 
between testing time and cost to examinees. 

• A rise in the use of computer-adaptive testing (CAT). In many instances, examinees not 
only see different items but also see varying numbers of items during a specified testing 
time. 

• Evolving public expectations about test fairness, with scholarly articles and the popu-
lar press posing serious challenges to the relevance of time constraints on high-stakes 
admissions tests. 

• A growing trend for state-wide assessments in K-12 settings to allow students as much 
time as needed to complete a test (within practical constraints). 

It was in this context that the National Board of Medical Examiners (NBME) conducted a 
randomized experiment to evaluate the impact of time constraints on test performance on 
an examination for physician licensure. Results indicated that examinees did indeed earn 
higher scores under relaxed time constraints and that the benefit was more pronounced for 
low scoring examinees. The findings led to numerous meetings and seminars among NBME 
staff to determine whether test speededness was a problem and, if so, what should be done 
to address it. As one might expect, the obvious solutions also had obvious limitations. For 
example, additional time was not feasible given that the test in question already required a 
full day, and reducing exam length was undesirable due to its impact on reliability and con-
tent representation. 

Inquiry into solutions raised numerous questions such as: To what extent is response speed 
part of the construct of interest? How much does the construct change as a consequence of more 
generous time limits? Do examinees use their time effectively? Should two examinees who obtained 
the same score on a test be considered to have the same level of proficiency if one required sub-
stantially more time to complete the test? Does examinee response time provide information that 
can be used for predictive, diagnostic, or remedial purposes? What expectation do stakeholders 
(e.g., educators, consumers) have regarding time constraints on high-stakes tests and how should 
such expectations be factored into policy decisions regarding testing time? 

In pursuit of answers, NBME initiated a second experiment and completed evaluations of 
numerous alternative test design and administration models. The organization also sought 
input from colleagues in other testing organizations and reached out to experts in academic 
settings who had studied response speed and its influence on cognitive task performance. 
Through these interactions it became evident that the expertise on this specialized but impor-
tant topic was impressive and that, collectively, there were compelling stories to tell, valuable 
data to share, and constructive insights to consider. 

To bring this expertise together, NBME sponsored a conference in October 2017 attended 
by approximately 150 measurement scientists and policy leaders. The conference was affec-
tionately branded as TIME—Timing Impact on Measurement in Education. Its goal was to 
provide a forum for scholars in psychometrics, cognitive science, and education to share 
research and perspectives on timing and pacing for high-stakes tests and discuss the implica-
tions for policy and practice. This volume reflects the ideas that inspired and were discussed 
at that conference. 

The book comprises four sections. Section I provides a historical context for timing in stand-
ardized testing, offers a framework for evaluating the impact of time limits on score inter-
pretations, and discusses policy considerations, including the provision of additional time 
to accommodate examinees with disabilities. Section II documents empirical research on 
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examinee pacing, the relationship between time constraints and testing outcomes, and tim-
ing considerations in the context of different assessment formats and testing modalities. 
Section III reviews research on the relationship between speed of processing and cognitive 
ability, presents a model illustrating the importance of response speed to decision making in 
the work setting, and provides an analysis of speed-accuracy tradeoff models and their impli-
cations for construct interpretation. Section IV describes novel methods for using response 
time data to improve test construction and identify threats to validity due to examinee 
behavior such as lack of engagement and cheating. This book is an excitingly broad compila-
tion of the best research on this topic area and it will be useful to testing personnel, graduate 
students, and faculty with an interest in almost any aspect of examination timing—from the 
very practical to the completely theoretical. 

Those of us who were responsible for organizing the conference and editing this volume 
express our sincere gratitude to the authors and conference participants for making this work 
possible. 

Mark Raymond 
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1 
A History of Test Speededness 

Tracing the Evolution of Theory and Practice 
Daniel P. Jurich 

There are many practical reasons for administering tests with time limits, most of which 
relate to the logistics and efficiency of test administration (Bandalos, 2018, p. 59; Morrison, 
1960; Rindler, 1979). For example, time limits help to control costs for test developers who 
often must pay expenses associated with the testing space as well as staff costs for necessary 
personnel (e.g., test proctors). However, time limits can also serve essential measurement-
related functions. Perhaps most importantly, they help to standardize the testing conditions 
and improve the ability to compare performance across examinees. Concrete evidence of 
timed standardized testing dates back at least to the Chinese Civil Service examinations 
administered in the 15th century. At that time, candidates were given one night and one 
day to complete poems and essays that were used to evaluate their style and penmanship 
(Martin, 1870). In the United States, the Army led early applications of timed structured cog-
nitive and noncognitive testing through exams such as the Army Alpha and Beta. Beginning 
in 1917, these tests were used to evaluate World War I recruits on a variety of cognitive skills 
such as arithmetic reasoning and verbal aptitude (Gregory, 2004; Schnipke & Scrams, 2002). 
Since these beginnings, standardized examinations with time limits have become ubiquitous 
within modern society. 

Although the implementation of time limits in standardized testing usually occurs due to 
reasons unrelated to measurement, time constraints can have substantial impact on the valid-
ity of scores. Accurate measurement is predicated on the assumption that test scores represent 
an examinee’s true proficiency with respect to the intended constructs. When the speed with 
which an examinee completes a test is not of interest, a restrictive time limit that does not allow 
examinees to exhibit their true proficiency can have negative consequences by introducing 
construct-irrelevant variation into examinee performance. Even when purposefully measuring 
speed, an inadequately timed assessment can yield questionable or even invalid results if the 
degree to which speed affects scores is different from what is expected based on the construct 
definition. The potential for speed to threaten the validity of scores has been referred to in the 
literature as test speededness. 

This chapter presents a historical overview of the testing literature that exemplifies the 
theoretical and operational evolution of test speededness. As will be shown, the definition 
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of speededness has evolved throughout the history of measurement and to this day remains 
a debated topic. The current Standards for Educational and Psychological Testing provide a 
framework for conceptualizing test speededness as the “extent to which test takers’ scores 
depend on the rate at which work is performed as well as on the correctness of the responses” 
(AERA, APA, NCME, p. 223). In other words, speededness occurs when the allotted testing 
time influences examinee performance such that both speed and the construct of interest con-
tribute to score variation. Several comprehensive literature reviews have summarized different 
aspects of the relationship between timing and testing (e.g., Lu & Sireci, 2007; Morrison, 1960; 
Schnipke & Scrams, 2002). This chapter presents a historical overview that focuses on how the 
concept of speededness evolved and how this evolution in conceptualization has influenced 
the methods that practitioners have used, and are now using, for evaluations of speededness. 
By describing how the field arrived at current philosophies and exploring the issues that still 
remain unaddressed, this brief historical review intends to serve as a foundation for the subse-
quent chapters within this book. 

The Early Years: Speed and Ability as Interchangeable Measures 

As the scientific study of testing burgeoned after World War I, initial theories posited that 
speed would not influence response quality independent of the intended construct (Spearman, 
1927). Though practitioners recognized that speed and proficiency were conceptually distinct, 
the prevailing theory presumed that the high correlation between the two traits made them 
indistinguishable from a measurement perspective (Davidson & Carroll, 1945). In other words, 
timing could not introduce construct-irrelevant variance because speed was interchangeable 
with the construct of interest. Some context of the testing era is helpful to understand the logic 
in this theory. It is axiomatic that numeric scores, such as number correct, will decrease when 
examinees lack sufficient time to consider all items. However, test scores in this era were pre-
dominately used to rank-order examinees. Although total scores can differ substantially under 
different time limits, rank order would stay comparable if speed and proficiency correlated 
near perfectly (see Ruch & Koerth, 1923). 

There was also an empirical basis for considering the evolution of speed and profi-
ciency as interchangeable. To elaborate on this work, we must distinguish between speed 
tests and power tests, concepts formalized by Gulliksen in 1950 but used colloquially prior 
to Gulliksen’s work. A pure speed test is one that is intended to evaluate how quickly an 
examinee can complete a set of test items within a fixed period of time. As such, speed tests 
are designed to have strict time limits and to include items of such ease that examinees 
can respond to all items correctly. Scores on speed tests then reflect the number of items 
responded to within the time limit and provide an indication of the speed and accuracy with 
which an examinee processes information. In contrast, pure power tests have no time limits 
and contain items of varying difficulty to capture the range of proficiency on the construct(s) 
of interest; scores on these tests reflect the number of items examinees answer correctly out 
of all items and are used to evaluate ability apart from the speed with which questions are 
answered. The distinction between pure speed and power tests is primarily theoretical. Many 
educational examinations function as a mixture of both power and speed tests, intending to 
primarily measure the construct of interest (i.e., power), but also containing a speed com-
ponent resulting from time limits that are imposed to address practical constraints (Lu & 
Sireci, 2007; Chapter 3, this volume). Although theoretical in nature, the concepts of speed 
and power tests served as a foundation for the methodological developments throughout the 
evolution of speededness. 

Restating Spearman’s theory in these terms, rank order should be consistent whether an 
examination is administered as a speed or a power test. The belief that speed served as a proxy 
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for cognitive ability partially stemmed from research in the 1920s and 1930s that investigated 
the relationship between scores from tests taken under both speed and power conditions. This 
research generally involved having examinees take a timed examination with a pencil; when the 
time limit was reached, they then finished taking the test using a different colored pencil or pen 
so that scores under both speed and power conditions could be distinguished (e.g., Paterson & 
Tinker, 1930; Peak & Boring, 1926; Ruch & Koerth, 1923). The empirical evidence indicated 
that scores under the two conditions were highly correlated. For example, Ruch and Koerth 
(1923) administered the aforementioned Alpha Army examination to 122 examinees under 
two timed conditions and a power condition, and multicolored pencils were used to capture 
response markings under the different conditions. Examinees first were given the standard 
amount of time suggested by the testing manual to respond to questions using a black pencil 
(single time). After the first time limit expired, examinees were provided the same amount 
of time to continue or revise answers using a blue pencil (double time), and after that time 
limit expired they switched to a red pencil to complete or change responses under an untimed 
period (untimed). Results indicated that rank ordering remained consistent—single to double 
time total scores correlated at 0.966 and single to untimed total scores correlated at 0.945—and 
therefore seemed to support the comparability between speed and accuracy. 

Distinctions between Speed and Power 

Taken at face value, Spearman’s philosophy implies that time limits could be applied capriciously 
without consequence to validity (Morrison, 1960). As the study of mental testing matured, 
and likely motivated by the implication of Spearman’s theory for practice, empirical research 
began to contradict the interchangeability of time and proficiency (Baxter, 1941; Davidson & 
Carroll, 1945). Davidson and Carroll provided a strong theoretical and empirical critique of 
this accepted practice. The authors expressed strong beliefs that scores from tests administered 
under time limits—particularly restrictive limits—reflected a mixture of examinees’ knowledge 
and rate. This led the authors to claim, “the indiscriminate use of time-limit scores is one of the 
more unfortunate characteristics of current psychological testing …” (p. 411). Davidson and 
Carroll first criticized the established method of correlating scores from timed and untimed 
administrations of the same examination because the untimed score reflects a combination of 
the timed component, responses to the unreached items, and any answer changes made by the 
examinee. As the timed scores represent a part of the total untimed score, this method spuri-
ously inflates correlations. The problems with this approach were exacerbated when the timed 
condition allowed examinees to reach the vast majority of the items. In this situation, the timed 
scores would almost fully reflect the final untimed scores (and the two necessarily would be 
highly correlated). 

The authors followed up their methodological critique with an empirical study focusing 
on establishing a distinction between speed and knowledge. Utilizing various sections from 
a revised Alpha Army and several other examinations measuring a number of different con-
structs, the authors captured responses from examinees under timed and untimed conditions. 
They also collected data on the time it took each examinee to finish the exam after the time 
limit expired. A factor analysis found that scores from the untimed administration and com-
pletion speed loaded on separate orthogonal factors representing power and speed, respec-
tively. Moreover, scores from the timed administration loaded on both the power factor and 
the speed factor, indicating that timed scores represented a mixture of both factors. Stated 
more concretely, time limits introduced variation in score performance unrelated to the con-
struct of interest. 

Around this time, the importance of time in testing became a focus of more sophis-
ticated empirical treatments. Studies reinforced the factorially complex nature of scores 
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produced under time duress for a variety of constructs (Myers, 1952). Mollenkopf 
(1950a, 1950b) explicitly showed that rank order could be influenced by time limits. Other 
investigations into the speed/accuracy relationship for a variety of constructs concluded 
that faster examinees were not always the most accurate (Tate, 1948). Rather, rate of work 
appeared to be a consistent examinee trait across tasks, leading several researchers to posit 
that speed was more influenced by individual characteristics than by proficiency on the con-
struct (Himmelweit, 1946; Kennedy, 1930; Tate, 1948). Researchers also began to use speed 
as a correlate, finding that completion time could explain additional variation above profi-
ciency in external criteria (Lord, 1956). Literature focused on the relationship between time 
and testing outcomes represents an important body of work that continues to be investigated. 
An expanded treatment of this literature can be found in Chapter 5. These and other stud-
ies accumulated considerable evidence demonstrating the multifaceted effect that speed can 
have on test score validity. Due to the growing body of evidence, measurement researchers 
rejected the belief that speed and ability could be considered practically equivalent. Despite 
this understanding, Morrison (1960) expressed frustration with test developers who contin-
ued a nonchalant approach to setting time limits without empirical rationale and failed to 
acknowledge the threat to validity posed by inappropriate time limits. 

Early Developments in Statistical Quantification of Speededness 

Gullisken, Cronbach, and Beyond 

With mounting evidence that speed could introduce construct-irrelevant variation into the 
measures, and perhaps with some frustration regarding arbitrarily set time limits, researchers 
began developing statistical indices to quantify speededness. Gulliksen (1950) led this advance-
ment in his treatise, The Theory of Mental Test Scores. To quantify speededness, Gulliksen 
utilized the following characteristics from examinee response patterns: 

C = Number of items responded to correctly 

W = Number of items responded to incorrectly 

U = Number of unattempted items at the end of the test (assumed to be not reached within 
the time limit) 

Note, although Gulliksen explicitly assumed no examinees omitted items after considera-
tion (1950, p. 230), later authors made a distinction between omitted items and unattempted 
items (e.g., Rindler, 1979). In this distinction, omitted items were assumed when there was 
no response to an item but there were responses to the surrounding items. In contrast, unat-
tempted items were considered to be unreached by the examinee due to speed; these manifested 
as unmarked items at the end of the test. 

It follows that an examinee’s total number incorrect, referred to as error score, corresponds 
to E = W + U, where the variance of E equals: 

2 2 2S  =  SW + SU + 2r , S SU , (1.1)E W U W  

where S2 represents the variance of each respective term and 2rW U, SSW U  represents the covari-
ance between incorrect items and unattempted items. Gulliksen proposed that test speededness 
could be measured through the ratio of standard deviations of U (unattempted items) over E 
(error score) across examinees: SU / SE. The theoretical foundation for this index stems from 
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the definition of pure speed and pure power tests, which were formulized by Gulliksen in the 
same chapter. In a pure power test, the unlimited time allows examinees to attempt all items, 
meaning that U will be zero for all examinees. As there is no variation in U for a power test, the 
U variance component ( )U 

2  and the covariance component (2rW U  W U) drop out of equation 1.1,S , S S 
leaving the error score variance equal to the variance of number wrong (SE 

2 = SW 
2 ). Thus, a pure 

power test will logically yield a test speededness ratio of 0/SE = 0. In a pure speed test, W will be 
zero for all examinees as any item reached will be correct, resulting in SE 

2 = SU 
2  and a speeded-

ness index of SU / SE = 1. Gulliksen recommended that practitioners interpret ratios below 0.10 
as indicating that the test primarily measures power (1950, p. 241). In other words, an SU / SE 

ratio above 0.10 indicates that speed affected variance in scores to a nontrivial degree. 
Unfortunately, the logical parsimony of this index becomes muddled in practice. As has 

been discussed, examinations nearly always reflect an amalgamation of speed and power. 
When speed and power both contribute to performance, the correlation of U and W affects 
the error score variance through the covariance component. A negative correlation can lead 
to SU 

2  being greater than SE 
2 , yielding a speededness ratio greater than 1.0. Gulliksen suggested 

interpreting both the SU / SE and SW / SE ratios concurrently to address this complexity, where 
SW / SE can be thought of as the proportion of power contributing to total error variance. This 
works when one ratio is close to zero, as the other ratio will be close to a value of one and lead 
to the same substantive conclusion. However, this symmetry quickly diminishes. Gulliksen 
himself showed that a SU / SE ratio of 0.75—indicating considerable speededness—could lead 
to a SW / SE  ratio as low as 0.25—also supporting speededness—or as high as 1.75, strongly 
suggesting that power influences variation in scores. Clearly, the contradictory evidence each 
ratio can provide, along with the capability for ratios to exceed one, makes inferences regarding 
speededness from these two ratios incredibly challenging (Rindler, 1979). 

In a paper primarily discussing corrections for the spuriously high reliability estimates 
obtained from speeded tests, Cronbach and Warrington (1951) contributed a speededness 
coefficient (τ) based on two administrations of parallel forms (A and B) under timed (t) and 
untimed power (p) conditions: 

r * rA B  A Bt p  p t1 . (1.2)˜ = −  
rA Bt t  * rA Bp p  

The value yielded by τ reflects the proportion of reliable score variance in the power condi-
tion explainable by scores in the timed condition. Because this is a correlation-based measure, 
it will only capture rank-order differences among examinees. This corresponds with the 
authors’ explicit definition of speeded tests, “A test is completely unspeeded when no subject’s 
standing would be altered if he were given additional time” (p. 184), which aligns with the 
early speededness conceptualizations. The index suffers some administrative complexity, as it 
requires the same examinees to take two versions of the same exam twice to capture the timed 
and power conditions. Although this can be somewhat mitigated by using split-halves of the 
same form, the administration required to estimate this index would seem highly irregular 
to the examinee and would be resource intensive for test developers. Perhaps for these rea-
sons, the multiple administration methods for quantifying speededness would not be widely 
used until slightly modified versions were employed in experimental studies as described in 
Chapter 5. 

This brief tangent describes the challenge that deriving statistical indices related to speed 
presented in this era of paper-and-pencil testing. This illustration is intended to provide 
insight into the complexity of such statistical derivations and to highlight the need for 
methods that were easier to apply in practice at the time. The following list paraphrases 
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the steps for obtaining one of the lower-bound reliability estimate corrections claimed by 
Cronbach and Warrington as “not involved” (which might be translated to mean “straightfor-
ward” or “easy”; 1951, p. 175). 

1. Determine number of items finished for each person. 
2. Create a frequency distribution of examinees at each number finished and compute the 

variance of items finished. 
3. Mark errors on the examinee answer sheet with a distinguishing color and square the 

average score on the last two completed items for each examinee. 
4. Consider N0, all examinees who finish all items, and N1 all examinees who finish all but 

the last item, compute the squared average score on the last two items for N0 and multi-
ply by N1/N0. Add the squared average to this value. 

5. Enter the obtained values along with the variance of total test scores to compute a lower 
bound reliability estimate for single-administration timed exams. 

Despite the fact that these researchers displayed remarkable ingenuity in utilizing the dearth 
of timing information available in paper-and-pencil-based large-scale tests, it is clear that the 
complexity of computation for the standard practitioner should not be understated, as it pre-
sumably resulted in these methods being met with relative indifference in practice. 

In the following years, several other measures to quantify the magnitude of speededness 
were proposed. Helmstadter and Ortmeyer (1953) described two additional techniques that 
relied on performance from speed (timed) and power (untimed) administrations of the same 
exam. The first compared the frequency of incorrect answers for each individual item between 
the speed and power conditions, where considerably more correct responses within the power 
condition indicated that the time limit influenced scores. The second involved subtracting the 
mean error score (E from Gulliksen’s formula) on the power administration from the mean 
error score on the speed administration. A large difference from zero would indicate that the 
test is predominately measuring either speed (if negative) or power (if positive). In an attempt 
to ease computation and interpretation of speededness indices, Stafford (1971) proposed an 
index called the Speededness Quotient (SQ) that was similar to Gulliksen’s ratio. This measure 
only required calculation of the frequencies U and E, which then were summed across exami-
nees and divided to obtain the SQ ratio: 

°USQ =  . (1.3)
° E 

Thus, SQ reflects the proportion of all incorrect responses that were unattempted. Following 
Gulliksen’s logic, an SQ value near zero indicates that the total error scores were composed 
primarily of incorrect responses and, therefore, that speed had little effect on scores. In con-
trast, an SQ value near one indicates that nearly all errors resulted from unattempted items 
and reflects a speeded exam. Despite the continuing work to develop measures that quan-
tify the magnitude of speededness, a review of the literature provides little evidence that 
these statistical estimates were used for the purpose of evaluating the impact of time lim-
its. As noted by Donlon (1973) 20 years after Gulliksen proposed the variance-based ratio, 
“No single technique for characterizing test speediness is widely established” (p. 3). Given 
subsequent developments, however, it can be presumed that the field was awaiting more 
computationally simplistic methods with clear guidance on interpretation. These methods 
reached operational testing when Swineford described what became the seminal guidelines 
on test speededness (1956, 1974). 
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The Reign of Swineford 

In the mid-20th century, there was a general disinterest in using statistics to evaluate speeded-
ness; this disinterest was attributed to several distinct factors: (1) difficulty of interpretation, 
(2) complexity of estimation, and (3) resource-intensive administration procedures (Morrison, 
1960; Rindler, 1979; Stafford, 1971). In the 1956 Educational Testing Service (ETS) techni-
cal manual for test users, Swineford remedied these issues by defining a rule-of-thumb-based 
approach for classifying a test administration as speeded or unspeeded. Under these guidelines, 
a test was considered unspeeded when two conditions were met: 

1. All examinees reached at least 75% of the items. 
2. At least 80% of the examinees reached all of the items. 

Although these criteria were admittedly arbitrary (1956, 1974), the Swineford guidelines 
alleviated the burden on test users by offering an elegantly simple index that required only 
computation of examinee item completion counts and a dichotomous determination of speed-
edness (or lack thereof) based on that computation. It therefore should come as no surprise 
that the Swineford guidelines, despite the author’s own caution regarding the arbitrary criteria, 
gained acceptance as the standard for evaluating test speededness. 

The rate at which the guidelines gained popularity is difficult to determine. Swineford noted 
that the second condition—80% of examinees completing all items—was common in 1949 (prior 
to the guidelines being formalized in the 1956-published technical manual; see Swineford, 1949 
and Chapter 5, this volume). However, Morrison did not refer to the Swineford guidelines in his 
comprehensive 1960 literature review. By the 1970s, authors discussed the Swineford guidelines 
alongside other metrics of speededness (Rindler, 1979) and used the rules as criteria for deter-
mining speededness (Evans & Reilly, 1972). Explicit and implicit use of the Swineford guide-
lines can be seen in testing manuals that were published in the ensuing years, including some 
that were produced over 50 years after the guidelines were formalized (e.g., Data Recognition 
Corporation, 2018; Pearson, 2015). It can also be assumed that the guidelines influenced recom-
mendations provided by the current Standards for Educational and Psychological Testing for 
evaluating test speededness, which state “at a minimum, test developers should examine the pro-
portion of examinees who complete the entire test, as well as the proportion who fail to respond 
to (omit) individual test questions” (AERA, APA, NCME, 2014, Standard 4.14). 

Flaws in Traditional Techniques 

The single-administration methods used to evaluate speededness described in the previous 
sections, including the Swineford guidelines, rely on similar assumptions regarding examinee 
test-taking behavior in order to make inferences about speededness. Each method inherently 
assumes: 

1. All marked items (C and W) represent a fully considered item at the pace required for the 
examinee to provide her or his best response. 

2. Items left blank between marked items (included in W by some authors) must have been 
omitted for reasons unrelated to speed. 

3. All, and only, unmarked items at the end of the examination (U) reflect items excluded 
because the time limit expired. 

Thus, speededness manifests solely through unanswered items at the end of an examina-
tion. Although authors sometimes acknowledged these assumptions, they represent such an 
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unrealistic pattern of behavior as to be highly questionable for use in practice (Rindler, 1979). 
Consider the following quote from Rindler’s poignant critique of these methods, 

“These assumptions are somewhat questionable in theory and certainly violated in prac-
tice, but are nevertheless uniformly shared by methods conventionally employed to esti-
mate speededness from single test administrations.” (p. 265) 

For these assumptions to hold, an examinee must never rush to complete items or guess ran-
domly as time is expiring. This strategy would consequently lower the examinee’s expected 
score in tests that do not penalize for incorrect responses, as no response guarantees an incorrect 
score, whereas a rushed answer or a guess has some probability of being correct. Thus, exams 
where scores have serious consequences for the examinees will likely yield near 100% response 
rates regardless of the time limit and be classified as unspeeded by conventional guidelines. In 
addition, the distinction between omits and unattempted items is nearly impossible to recon-
cile. Examinees may skip complex items expecting to return to them at a later point, a strategy 
endorsed by test developers (College Board, 2019). If the examinees are unable to return to 
these items before the exam ends, the omitted items throughout the test do reflect speeded-
ness. Essentially, these assumptions required examinees to blissfully ignore their remaining 
time and follow test-taking strategies that would lower their expected performance (see Lu & 
Sireci, 2007 and Chapter 5, this volume). Rindler concluded that the traditional single-
administration measures offered no information regarding the influence of time on scores. 

A Shift toward Experimental Design and Psychometric Models 

Although Rindler’s critiques somewhat prophetically predicted the evolution of speed-
edness indices to consider guessing and rapid responses, the difficulties in quantifying 
speededness persisted throughout the 1970s and 1980s. With the increasingly apparent 
flaws in available methods and a lack of data for making reasonable inferences, researchers 
turned their focus to experimental studies that investigated different aspects of speededness. 
Much of this work involved randomly assigning examinees to tests of differing lengths or 
time limits in order to address the methodological problem associated with comparing an 
untimed condition to a subsumed timed condition. These studies investigated the impact 
of time limits on performance for various different demographic subgroups such as gen-
der (Lawrence, 1993; Wild, Durso, & Rubin, 1982), ethnicity (Evans & Reilly, 1972, 1973; 
Lawrence, 1993; Wright, 1984), and students with disabilities (Munger & Loyd, 1991). 
The initial literature consistently indicated that differing levels of time did not alter the 
score differences between subgroups, but further studies revealed a more intricate rela-
tionship between speed and different subgroups (see Bridgeman, 1998; Lawrence, 1993; 
and Chapters 5 and 7, this volume. 

Another area of focus during this time period was the development of statistical models 
that could theoretically incorporate response times as a parameter to explain or predict per-
formance (e.g., Thissen, 1983) as well as early conceptualizations of models that could par-
tition examinees into speeded and unspeeded classes (Bejar, 1985; Yamamoto, 1990). These 
lines of research contributed invaluably to the field’s understanding of complex interactions 
between speed and examinee factors and served as the foundation for future statistical models 
addressing speed. However, in relation to conceptualizing and evaluating speededness, this era 
was largely a precursor to the rapid advances made with the proliferation of computer-based 
testing. Thus, readers are directed to Lu and Sireci (2007), Schnipke and Scrams (2002), and 
Chapter 5, this volume, for in-depth treatments on these studies. 
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The Revolutionary Influence of Computer-Based Testing on Assessment of 
Speededness 

It is difficult to overstate the impact that advancements in computing and internet technology 
had on testing. With the reduced cost and increased efficiency of computing, the 1990s saw a 
transition from paper-and-pencil to computer-based tests (Mills, Potenza, Fremer, & Ward, 
2002). Computing accessibility and power also made widespread application of sophisticated 
statistical models viable. The capability for large-scale computer-based testing specifically 
opened critical new avenues in evaluating test speededness. Perhaps most notably, computers 
could capture examinee response time on individual items. Computers also could track exami-
nee actions throughout the exam. These features have made evaluating actions such as skipping 
items and returning to review items straightforward and have facilitated evaluations of speed-
edness by providing a more detailed representation of examinee behavior. Returning to the 
deficiencies of measures based on unattempted items, response times can indicate whether 
examinees considered each marked item or rapidly answered items to finish the test. Response 
times and behavior patterns can also help determine whether unmarked items resulted from 
expired testing time or intentional omission. 

Researchers quickly took advantage of the availability of this new information and began 
using it to assess speededness. In one of the earliest studies to use computer-based response 
times from a large-scale assessment, Schnipke (1995) used data from 7,218 examinees com-
pleting two analytical sections of a Graduate Record Examination form and analyzed response 
time distributions for individual items in order of the item presentation sequence. The patterns 
that were found showed that the assumptions required by traditional speededness indices did 
not reflect modern examinee testing behavior. Instead of omitting items remaining at the end 
of the exam, many examinees provided responses that were noticeably faster than the time 
required to consider an item fully. Schnipke termed these responses “rapid guessing,” and they 
were classified through visually identifying the item response time where the inferred distri-
bution of rapid guesses and solution behaviors intersected. Supporting the notion that these 
rapid guesses did not represent examinee knowledge, the rapid guesses tended to yield average 
percent correct values near what would be expected by random selection of a response option. 
On the form examined by Schnipke, a few items elicited rapid guesses from as many as 20% 
of the examinees. Results also showed that the frequency of rapid guesses did not increase 
monotonically through the item sequence, indicating that examinees sometimes guessed rap-
idly on earlier items so that they could reach and consider items later in the form. In contrast, 
the Swineford guidelines implied that the sections were essentially unspeeded, with over 98% 
and 97% of examinees reaching 75% of the items and 100% and 96% being reached by 80% of 
examinees for the two sections, respectively. It is evident that traditional methods would have 
grossly underestimated the speededness of this exam by considering only unattempted items. 
Examinees clearly accounted for their remaining time and employed more complex response 
strategies to accommodate the situation, as opposed to leaving items blank. The results of these 
studies led Schnipke to develop a framework that would heavily influence future research and 
timing investigations. 

In her 1995 framework, Schnipke conceptualized that examinees engage in one of two poten-
tial behaviors when responding to items: rapid guessing or solution behavior (where solution 
behavior reflects full consideration of an item; see also, Yamamoto, 1995). Evaluations of item 
response times under this conceptualization gained favor, particularly in the low-stakes assess-
ment literature where rapid guesses typically result from low examinee motivation rather than 
time constraints (DeMars, 2007; Guo et al., 2016; Kong, Wise, & Bhola, 2007; Chapter 11, this 
volume). This perceived dichotomy of response behavior also served as the foundation for 
the development of statistical mixture models that classify examinees into groups representing 
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rapid guessing and solution behavior. In an attempt to remove the influence of rapid guesses 
on item parameter estimates from item response theory (IRT) models, Yamamoto (1990, 
1995) developed one of the earliest of these mixture models by identifying the point in the item 
sequence at which examinees switch from solution behavior to a rapid-guessing strategy. The 
proportion of examinees engaging in rapid guessing at certain item positions then can provide 
an indication of test speededness. 

Whereas Yamamoto’s model estimated behavior strategies using item responses to 
identify a consistent drop in examinee performance, Schnipke and Scrams (1997) directly 
modeled individual item response times to estimate the proportion of rapid-guessing and 
solution behavior for each item. Results indicated that the two-strategy model better pre-
dicted observed response times, particularly for items at the end of the examination where 
rapid guessing was more prevalent. Bolt, Cohen, and Wollack (2002) proposed a mixture 
Rasch IRT model with two classes (representing speeded and non-speeded examinees) based 
on item accuracy toward the end of test. The authors offered a novel take on this literature 
by examining the demographic characteristics of examinees in each class as an alternative for 
exploring potential subgroup differences. For the data in this study, speededness was unre-
lated to gender but was statistically associated with ethnicity, aligning with the consistently 
inconsistent results of studies exploring demographic relationships with speed (Chapter 5). 
Classification methods for estimating speededness appear to have gained some traction as 
researchers continue to propose new—or extend existing—models for assessing test speed-
edness (e.g., Meyer, 2010; Shao, Li, & Cheng, 2016). Unsurprisingly, results of these studies 
consistently show that speededness can be severely underestimated when unattempted items 
are the only consideration. 

Limitations with Rapid Response and Classification Models 

The availability of response times and the feasibility of estimating complex models have inargu-
ably been an aid to practitioners and researchers investigating test speededness. However, these 
methods have limitations when used to describe the nuances of examinee test-taking behavior. 
The classification of rapid guessing still requires assumptions to distinguish these responses 
from solution behavior. The field has no agreed-upon speed threshold—or a method to deter-
mine a threshold—for a pure guess. Numerous methods for establishing thresholds have been 
proposed, including visual inspection of response time distributions, static values (e.g., <5 sec-
onds), or values conditioned on item characteristics (see Wise, 2017). More recently, Guo et al. 
(2016) suggested setting thresholds at the point when the cumulative probability of a correct 
response exceeds chance level. Of course, the selected threshold will influence any conclusions 
that can be drawn from the results. 

More generally, recent studies suggest that the conceptualization of examinee behavior 
into two distinct classes oversimplifies actual examinee strategies in response to time limits 
(Harik et al., 2018; see also Chapter 6, this volume). As mentioned, rapid-guessing methods 
are particularly popular in low-stakes contexts. When the testing context offers examinees 
little incentive to maximize their scores, the potential lack of motivation makes complete 
rapid guessing a reasonable alternative. In contrast, rapid guessing should manifest only in 
extreme cases when scores have serious implications for examinees. In these cases, when an 
examinee perceives that she or he is running out of time, another rational strategy would 
be to alter pacing to balance the remaining time by responding quicker than the desired 
time for each item but still considering enough of each remaining item to inform a reason-
able response. These responses would only partially represent examinee ability, but they 
may result in a higher expected score than rapidly guessing on a series of items near the 
end of an exam. Response times for examinees following this pacing strategy would 
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likely fall above any rapid-guessing threshold, and any decrease in the probability of a cor-
rect response may not be dramatic enough to be captured by accuracy-based models (e.g., 
Yamamoto, 1995). In randomly assigning examinees to complete test sections with dif-
ferent item lengths, Harik et al. (2018) noticed patterns suggestive of this pacing change 
approach. Examinees with the longer test sections performed worse on the items in the 
same item position, even when the groups encountered the item early in the test section. 
Moreover, differences in examinee performance persisted when making the sections com-
parable in length by removing the items at the end of the longer section from calculations 
(e.g., removing the last 12 items from a 44-item condition to compare performance to a 
32-item condition). It seems that examinees were cognizant of the time allotted throughout 
the exam and adjusted pacing accordingly, leading to a detrimental effect on performance 
across all items for those with longer sections. These results align with the speed-accuracy 
tradeoff discussed frequently in psychology and other fields; task accuracy tends to decrease 
as the task is completed more quickly (Heitz, 2014; Luce, 1986). However, the magnitude of 
both response time and performance decreases was largest toward the end of the examina-
tion, suggesting that the contemporary methods for evaluating speededness are likely sensi-
tive to the most serious effects. 

Effects of Speededness on Item and Test Properties 

The discussion so far has focused on how speededness has been conceptualized and 
evaluated as a function of examinee behavior. It should be noted that speededness also 
negatively affects item and test characteristics. Presumably resulting from the increased 
accessibility of complex models, the proliferation of computer-based testing coincided 
with several studies indicating that IRT parameter estimates become biased under speeded 
conditions (Oshima, 1994; Schnipke, 1996, 1999; Wise & DeMars, 2006). To summarize 
the findings, speededness inflates item difficulty (b) and tends to inflate item discrimi-
nation (a) parameters, particularly for items near the end of the exam. Speededness can 
inflate, deflate, or have no effect on test information and reliability depending on multiple 
factors such as degree of speededness, item difficulty, and whether speeded responses are 
independent of each other (Hong & Cheng, 2018; Wise & DeMars, 2006). These find-
ings parallel those that were found or theoretically suggested in early speededness studies 
(Cronbach & Warrington, 1951; Mollenkopf, 1950a) and again align with the logic of the 
speed-accuracy tradeoff (Luce, 1986). These biases, in addition to the contamination of 
scores, represent the potential outcomes of a more general issue when applying basic IRT 
models to speeded tests. IRT assumes that the measured trait is predominately unidimen-
sional in nature. Under speeded conditions, responses no longer predominately reflect 
the construct of interest but instead reflect a mixture of speed and knowledge. Thus, the 
validity of both estimated scores and parameters is always in question with speeded exami-
nations (Hambleton & Swaminathan, 1985). 

Although these results may seem obvious, one potential corollary that perhaps has not 
received necessary attention occurs when item parameter estimates affected by speed are 
treated as known for other test development purposes. In his 2017 paper, van der Linden dis-
cussed two situations when this could occur. First, developers may potentially pretest items 
under different speededness conditions than their operational use. For example, if the pretest 
item’s position is static and toward the end of the examination, the true item difficulty may be 
overestimated. Second, the differential bias in parameter estimates may hinder equating proce-
dures if the item position has changed between the equated forms. The measureable impact of 
these issues has not been thoroughly addressed in the literature. 
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Incorporating Examinee Speed into Test Design 

Given the effects that speededness can have on various aspects of examinee and test properties, 
recent literature has pushed for more direct evaluation and estimation of examinee-level speed 
components to inform critical test development tasks such as form building and time limit set-
ting (e.g., van der Linden, 2006). Wim van der Linden has predominately led this work via a 
lognormal response time model (van der Linden, 2006, 2011a, 2011b, 2017). Comparable to a 
2PL-IRT model, van der Linden’s lognormal response time model predicts item response time 
distributions using an examinee speed parameter and two-item parameters. The examinee 
parameter characterizes an individual’s level of pacing on the test. Thus, as suggested in earlier 
literature (Kennedy, 1930), rate of work is treated as an individual trait that can be estimated 
given appropriate information available from observed response times. The item parameters 
include time intensity, which describes the item’s time demand, and a discrimination param-
eter that indicates the ability to differentiate between examinees with different pacing. In a 
series of empirical analyses (van der Linden, 2006), the model replicated observed response 
times well; this led the author to suggest several applications. Rudimentary uses would involve 
applying the model to examine response time distributions and parameters post hoc to evalu-
ate the speededness of an administered test. Although appropriate, the model is likely overly 
complex to be applied for the purpose of post-administration speededness evaluations alone. 
Examinations of observed item response distributions would be expected to produce similar 
conclusions. 

The primary benefits of van der Linden’s model emerge in applications for test develop-
ment operations of future test forms. When practitioners have estimated the response time 
model item parameters for a pool of items and can specify the expected mean and variance for 
an examinee population’s speed parameter (which can be informed by previous calibrations), 
the model offers a wide variety of operational applications. Estimates can be used to inform 
the selection of a time limit by evaluating the distribution of predicted total test time relative 
to various time limits (van der Linden, 2011a). Theoretically, the parameters in the model can 
also be used to construct equally speeded test forms for a population to reduce potential bias 
(van der Linden, 2011b). van der Linden (2017) summarizes several other applications of the 
model to modern test design challenges. However, the benefits of this model-based approach 
to speededness do incur some drawbacks. This method is mathematically complex, particularly 
when compared to other methods for assessing speededness. This complexity may pose chal-
lenges for operational application and interpretability of the results. Furthermore, the strong 
statements discussed above require certain assumptions and constraints that may not hold 
in practice. It remains to be seen whether practitioners will widely utilize this model, but the 
statistical developments and applications proposed in these studies present opportunities for 
future exploration. 

Current State and Future Directions 

Theories regarding test speededness have evolved rapidly since the early 20th century; Table 1.1 
provides a selected overview of some of the more central theories along with their associated 
evaluation methods and limitations. Once considered ignorable, speed now is recognized 
as a complex factor that can influence various aspects of test validity in numerous nuanced 
ways. Methods to determine the occurrence and degree of speededness also have continued 
to advance. Estimates of spurious correlations between timed and untimed administrations 
of the same test were replaced by statistical indices utilizing information about unattempted 
items, and experimental manipulations to explore the effect of speededness grew in popularity 
as the limitations of traditional methods became known. The advent of computer-based testing 
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Table 1.1 Selected historical approaches to conceptualize and evaluate timing 

Year—Author Theory Evaluation Methods Limitations 

1927—Spearman With generally adequate 
time limits, speed and 
proficiency reflect 
interchangeable measures 
of general intelligence 
due to high correlations 
among these two traits. 

1950—Gulliksen Distinction between speed 
and power tests. A speed 
test contains items so easy 
examinees should never 
give the wrong answer and 
is scored by the number 
of items reached. A power 
test allows examinees 
to fully consider all 
items and is scored by 
number correct. Thus, 
comparing unattempted 
items to incorrect items 
provides an indication 
of how speed influences 
performance. 

1951—Cronbach Speededness as the extent 
and Warrington that true standard scores 

in the group would change 
if more time was allowed. 

1956—Swineford Following Gulliken’s focus 
on unattempted items, 
examined proportion 
of examinees who 
finish exam and percent 
completing individual 
items. 

• No evaluations, 
per se. 

• Concept established 
through correlations 
between scores from 
a timed version of 
a form and scores 
from a form where 
examinees have 
unlimited time to 
finish the form and 
change answers. 

• Examined variation 
in unattempted items 
and incorrect items. 

• Most prominent 
method involved 
taking the ratio of 
standard deviation of 
unattempted items 
(Su) and total error 
(Se): Su /Se. 

• See also, Helmstadter 
& Ortmeyer, 1953, 
Stafford, 1971. 

• Proportion of 
variance in scores 
due to speed as 
measured by 
independently 
administered halves 
of two equivalent 
forms; one half under 
a timed condition, 
and the other half 
under an untimed 
condition. 

• Rule of thumb 
considering a test 
unspeeded if either: 
1. All examinees 

reached at least 
75% of the items. 

2. At least 80% of the 
examinees reached 
all of the items. 

• Initial studies used flawed 
methods that inflated 
correlations by correlating 
a part score (timed test) 
with the whole score (timed 
responses + untimed period 
for corrections). 

• Later studies found that 
speed can have various 
effects on examinee 
behavior. 

• Untenable assumptions 
regarding examinee 
behavior when under 
speeded conditions, such as 
no guessing on items. 

• Test administration can 
be contrived, resulting in 
idiosyncratic examinee 
behavior. 

• Multiple administrations 
can also be resource 
intensive. 

• Arbitrary cutoffs. 
• Assumes speededness only 

manifests at end of exam. 
• Similar to Gulliksen, makes 

unrealistic assumptions 
about how examinees 
behave when under time 
pressure. 

(Continued) 
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Table 1.1 Selected historical approaches to conceptualize and evaluate timing (Continued) 

Year—Author Theory Evaluation Methods Limitations 

1995—Schnipke Speededness is the extent 
to which some examinees 
are disadvantaged by the 
time limit on a test relative 
to other examinees. (p. 4) 

Examinees will guess on 
items when running out 
of time to maximize their 
potential score. 

2011—van der Speededness described as 
Linden (p. 185) the quantified probability 

of running out of time for 
an examinee working at a 
specified pace. 

• Proposed evaluating 
rapid guesses 
that reflect quick 
uninformed 
responses under time 
pressure to quantify 
proportion of 
examinees exhibiting 
solution behavior 
and rapid-guessing 
behavior per item. 

• See also Wise, 2017. 

• Statistical model that 
estimates examinee 
pacing and item 
time intensity, which 
can be used to make 
various time-related 
inferences. 

• No agreed-upon method to 
determine a rapid-response 
threshold. 

• Dichotomous classification 
between rapid guessing 
and solution behavior 
may simplify examinee 
behavior under time duress. 
For example, examinees 
may work slightly faster 
than the time needed to 
fully consider an item but 
longer than what would be 
considered a rapid guess. 

• Increased model 
estimation and parameter 
interpretation complexity 
relative to other 
speededness evaluation 
methods. 

• Involves assumptions 
or constraints that may 
not be realistic in certain 
operational settings. 

opened up a whole new world of exploration by providing practitioners with access to direct 
measures of examinee speed, and increased computing power has created access to complex 
mathematical models that incorporate these metrics. As technological capabilities expand, we 
likely will see that the field is only scratching the surface of methodological potential to assess 
speededness. Unfortunately, the fact remains that despite advances both in methods for evalu-
ating speededness and in understanding the complex influence of speed on test validity, the 
attention paid to this topic in operational settings greatly underrepresents its importance. 

One of the few consistent messages echoed throughout the history of timed testing is that 
time limits are predominately set based on convenience and resource constraints rather than 
supported by evidence related to test validity (Morrison, 1960; Rindler, 1979). It would be naïve 
to think that this practice will change significantly, as testing organizations always must con-
sider the costs of seat time and item development. However, the critical influence that speed 
can have on test validity necessitates empirical evidence defending the selected time limits 
through evaluations of speededness. Computations of standard test evaluation indices are not 
sufficient (Cronbach & Warrington, 1951), nor are outdated rules of thumb regarding unat-
tempted items. Yet the rationale behind time limit decisions is often obscured. Test publishers 
rarely appear to disseminate this information in technical manuals or other sources, a frustra-
tion noted by Mollenkopf (1960) over a half century ago. 

Omission of information related to timing or speed may reflect the lack of treatment speed-
edness has received in the Standards for Educational and Psychological Testing throughout 
time. The first edition of the Standards, termed Technical Recommendations for Psychological 
Test and Diagnostic Techniques (1954), contained two standards referencing timing. The pri-
mary standard, C 18.3, noted that practitioners should provide evidence regarding time limit 
effects on test scores and on correlations with external variables. The manual mentions no 
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additional details on what data could be used to investigate these effects and considered this 
standard as “Very Desirable,” the middle category on a three-point importance scale (between 
Desirable and Essential). Standard D 6.1 guided practitioners away from using split-half or anal-
ysis of variance reliability coefficients with time limit tests (likely stemming from Cronbach & 
Warrington’s 1951 article). Despite the accumulating literature on speededness, the Standards 
(2014) continue to devote only minor coverage to the appropriateness of time limits. The one 
standard devoted to evaluating speed, 4.14, states: 

For a test that has a time limit, test development research should examine the degree to 
which scores include a speed component and should evaluate the appropriateness of that 
component, given the domain the test is designed to measure. (p. 90) 

Speed is indirectly addressed through standards discussing construct definition and test 
specifications (1.1 and 4.2), but it is surprising that a more targeted treatment is not provided 
given the pervasiveness of timed tests meant to approximate power tests (Lu & Sireci, 2007). 
It is hoped that the thoughtful contributions in this book such as guidance on considering 
speed throughout the test design process (see Chapter 3) and discussion of speed in relation to 
validity (see Chapter 2) spur more explicit and detailed treatments of speed in technical recom-
mendations. 

There are several specific areas where additional attention would benefit the field. To 
help measure the construct of interest appropriately, test takers with disabilities are com-
monly offered accommodations in the form of additional testing time. The amount of addi-
tional allotted time appears inconsistently and arbitrarily set across testing organizations, 
however, and the decisions that are made lack documented support from empirical evidence 
(see Chapter 4). Practitioners require guidance to answer vital questions such as how to deter-
mine the appropriate amount of time necessary to neither hinder nor advantage examinees 
receiving accommodations. The validity of time accommodations is further complicated when 
speed is an intended component of the measured construct. 

Innovations in testing methods will require evaluation by test developers in order to fully 
understand the associated timing implications. The use of features such as interactive mul-
timedia in test items will continue to increase as technology develops. These items typically 
require more time than traditional items (Jodoin, 2003; Qian, Woo, & Kim, 2017). These items 
also represent an equity concern if subgroups complete technology-enhanced items at different 
rates. For example, examinees with increased accessibility to similar technology as that used in 
the items may respond more quickly than those requiring time to become accustomed to the 
new features. Other methods gaining in popularity such as simulations and game-based testing 
each present similar challenges. 

Though this review primarily focused on the situation where test developers consider speed 
as construct irrelevant, it should be noted that many of the discussed validity concerns are 
exacerbated when speed is a meaningful part of the construct. In these situations, Standard 
4.14 requires test developers to defend the degree to which speed contributes to assessment 
of the construct of interest. As a corollary, the developers then must empirically support that 
the selected time limits yielded responses with the intended level of variation explained by 
speed and the measured construct across the population of examinees. With increasing calls 
for authentic assessments of behavior, it seems likely that speed will see an increased role in 
construct definitions. 

In conclusion, this historical perspective has described the immense advances the measure-
ment field has made in understanding the complexity of how speededness affects examinee 
behavior. In addition to more refined theories of speededness, the field continues to develop 
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increasingly sophisticated methods that incorporate more meaningful data to evaluate the impact 
of time limits on scores. That being said, test speededness will continue to deserve attention from 
both researchers and practitioners. The issues described in this chapter likely represent only a 
small portion of the underexplored topics related to speededness. Recent literature suggests that 
assumptions made by predominant methods to evaluate speededness simplify actual examinee 
behavior (see Harik et al., 2018; Chapter 6, this volume). More generally, the resource constraints 
that necessitate time limits will inevitably persist. Thus, speed will continue to present a potential 
source of construct-irrelevant variance that threatens the validity of inferences made from test 
scores; practitioners therefore must determine time limits judiciously, based on construct defini-
tions and empirical evidence. If there has been a consistent implication throughout the history 
of this topic, it is that measurement professionals must improve their guidance to practitioners 
regarding the importance of both defining speed in relation to the measured construct and evalu-
ating the influence of speed on scores. Given the challenges to educational measurement posed 
by test speededness, the evolution in understanding and practice that has developed over the past 
century may pale in comparison to what the future will bring. 
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2 
The Impact of Time Limits and Timing

Information on Validity 
Michael Kane 

Time limits play a significant role in the standardization of assessments. Standardization is 
useful in promoting procedural fairness and controlling random errors, but any aspect of 
standardization, including time limits, can have an impact on validity by supporting or under-
mining the proposed interpretation and use of the scores. 

For performance assessments, time constraints that are similar to those associated with the 
kind of performance being assessed can make the performance tasks more realistic and thereby 
tend to support the validity of score interpretations in terms of proficiency in that kind of per-
formance. In addition, for speed tests designed to assess how quickly test takers can perform 
certain kinds of tasks, time constraints are an essential element in test design. 

The most complicated and contentious issues in designing and evaluating time limits occur 
in the context of testing in which the tasks to be performed are highly stylized (e.g., objective 
items, essays) and are not intended to be especially speeded. To the extent that the time limits 
are more or less arbitrary and tight enough that some students cannot comfortably complete 
the test in the time allowed, they can add both systematic and random errors to the scores and 
thereby limit validity. The systematic errors—which can occur at the population level, at a 
group level, or at an individual level—can be particularly troublesome. Time limits that have 
differential construct-irrelevant effects across groups can be considered a source of bias. 

The errors generated by time limits can often be controlled to some extent by loosening the 
time constraints or decreasing the number or complexity of the tasks on a test. In some cases, 
it also may be possible to statistically adjust scores in ways that eliminate or reduce the more 
general systematic errors introduced by time limits (see Chapter 8), but generally it will not 
be possible to address differential effects specific to particular test takers. Alternatively, where 
cut scores are used to categorize test takers, it may be possible to control the general time-limit 
effect (for the population as a whole) by adjusting the cut scores. Test preparation that makes 
prospective test takers aware of the time limits and their implications also may help to limit the 
impact of the time limits. 

The impact of time limits will depend on how tight they are, on the nature of the tasks, on 
whether the score scale is criterion or norm referenced, and on the extent to which time is a 
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significant element in the construct being assessed. In addition to the direct impact of time limits 
on a test taker’s performance, timing data (e.g., the time test takers spend on each item) also can 
provide information about issues such as a test taker’s motivation and possible cheating. 

Power versus Speed 

A distinction can be drawn between attributes defined mainly in terms of speed and those defined 
mainly in terms of level of performance (see Chapters 1 and 7). For speed tests, higher scores are 
intended to reflect speed in performing some kind of task (e.g., typing). For power tests, higher 
scores are intended to reflect ability to perform more demanding tasks. This distinction is, of 
course, more of a continuum than a sharp categorization. The interpretations of scores on most 
educational tests are basically in terms of what the test takers can do, the kinds of tasks that they 
can successfully complete. That is, the results are mainly interpreted in terms of power, but they 
also have an element of speed in that the test taker is expected to complete the tasks in some 
reasonable length of time. If a student takes 2 hours to solve a quadratic equation, we might sus-
pect that he or she is not using algebra. Although the time taken to complete a task is typically of 
some concern, especially if a test taker’s performance is exceptionally slow, most of the attributes 
assessed in education are defined in terms of power, and any impact of time limits therefore typi-
cally would be considered a construct-irrelevant effect. 

Although the distinction between score interpretations that involve an explicit speed com-
ponent and those for which the speed component is implicit and not a major concern is a bit 
fuzzy, the conceptual distinction is useful in talking about the impact of time limits on the 
validity of the proposed interpretation of the test scores. Tests of clerical speed and accuracy 
are the classic examples of speed tests. The kinds of tasks under consideration are fairly limited 
and specific and it is assumed that test takers can perform the tasks (e.g., assembling a piece of 
equipment); the question of interest is how quickly can the test takers perform the tasks. 

At the other extreme are tests that include a range of tasks that vary in conceptual difficulty 
from relatively simple to more complex (e.g., from arithmetic to advanced algebra or trigo-
nometry). Similarly, a reading test might involve a range of passages of increasing complexity 
or questions about the passages of increasing difficulty. Traditionally, to the extent that it is 
feasible, the tasks in such power tests have been arranged, at least roughly, in terms of difficulty 
from the easiest to the most challenging so that students with relatively low levels of compe-
tence in the domain being assessed get a chance to indicate what they know without running 
out of time. For a power test, the time limits are designed to make it likely that most test takers 
have enough time to get to the end of the test. Currently, there is considerable interest in power 
tests based on learning progressions (Shepard, 2018). 

We can also briefly consider a third category of tests in which speed can play a substantial 
and legitimate role. A performance test could be designed to include a strong speed compo-
nent if the performance domain being evaluated requires timely actions, even if speed is not 
explicitly included as a separate component in descriptions of the proposed interpretation. An 
airline pilot landing a plane, a surgeon performing an operation, and a lawyer participating in 
a trial all have to make decisions and take actions in a timely way to be successful. In practice, 
most activities have to be completed within some time constraints, but many important activi-
ties require quick responses to evolving situations (Fitzpatrick & Morrison, 1971). In these 
contexts, the performances typically are intrinsically time sensitive in that they have to be fast 
enough for the purpose at hand, but beyond that threshold faster is not necessarily better. The 
performance is evaluated in terms of how effective it is in achieving some goal, and delays that 
interfere with the effectiveness of the performance count against the quality of the performance. 

To be considered “authentic” or highfidelity, performance tests (or high-fidelity simulations) 
would need to reflect the time demands of the relevant real-world settings in some way and 
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to some extent (Kane, Crooks, & Cohen, 1999). I will refer to such tests as time-sensitive 
performance tests to emphasize that the judged quality of the performance depends in part 
on its timeliness. 

In some performance assessments, timing issues can be considered an integral part of the 
construct being assessed, and in these cases the core issue is whether the time constraints are 
appropriate given the construct being assessed (see Chapters 3, 9, and 10). For many kinds 
of problem solving, a faster accurate performance is considered better than a slower accurate 
performance. 

For speed tests, the construct of interest is defined in terms of speed, and therefore time 
limits are not a source of error. For time-sensitive performance tests, time constraints that 
correspond, at least roughly, to those that occur in the real-world contexts in which the time-
sensitive performances typically occur can contribute to the fidelity of the simulation. If the 
time limits for a time-sensitive performance test are quite different from those in real-world 
practice (i.e., they are either more stringent or more relaxed), the fidelity of the performance 
can be questioned. The time constraints inherent in a real-world situation (landing an airplane, 
treating a stroke patient, deciding whether to object in court) may be dictated within fairly nar-
row limits by the situation. 

For standardized tests (e.g., objective tests, constructed-response tests, low-fidelity simu-
lations), time limits are generally an artificial aspect of standardization and potentially are 
sources of error, especially if the time limits are such that many test takers do not have a chance 
to indicate their level of achievement by completing all of the tasks that they could perform if 
there were no time limit. The time limits for a real-world performance may be dictated by the 
nature of the performance and its context, but the time required to answer a question about the 
activity may be quite different. So the implications of time limits for the validity of a proposed 
interpretation and use are of particular concern for standardized power tests. As suggested 
by the Standards for Educational and Psychological Testing (American Educational Research 
Association [AERA], American Psychological Association [APA], & National Council on 
Measurement in Education [NCME], 2014): 

Standard 4.14: For a test that has a time limit, test development research should examine 
the degree to which scores include a speed component and should evaluate the appro-
priateness of that component, given the domain the test is designed to measure. (p. 90) 

To the extent that the scores on a power test have a substantial speed component, the validity of 
the proposed interpretation can be questioned, at least for those test takers whose scores seem 
to be affected by the speed component. 

As noted above, there are serious timing issues for speed tests and for time-sensitive perfor-
mance tests (see Chapters 1, 7, and 9), but these timing issues are closely tied to the definition 
of the construct being measured and will not be discussed further in this chapter. I will focus 
on the implications of time limits for standardized power tests. 

Validity 

The validation of a proposed interpretation or use of test scores requires an evaluation of the 
plausibility of the interpretation and the reasonableness of the proposed use of the scores. It is 
the interpretations (and uses) of test scores that are validated, and they are validated by devel-
oping evidence that supports the claims being made and evidence that refutes challenges to 
these claims. If the evidence supports the interpretation and use well enough, the interpretation 
and use can be accepted; on the other hand, if, given the evidence, some alternative interpreta-
tion makes more sense, the interpretation and use will not be accepted. 
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An argument-based approach to validation specifies the proposed interpretation and use 
in terms of a chain, or network, of inferences leading from the observed test performances to 
the claims included in the interpretation and to the uses of the test scores (Kane, 2013). An 
interpretation/use argument (IUA) includes the inferences and assumptions inherent in the 
interpretation (and use) of scores, and a separate validity argument provides an evaluation of 
the IUA in terms of its completeness, coherence, and plausibility. 

The kinds of evidence needed to evaluate the interpretation and use are contingent on the 
claims inherent in the interpretation and use. A relatively simple and direct interpretation 
would not need much evidence to be considered valid. For example, the results of a carefully 
developed performance assessment in which test takers are asked to perform some kind of 
task, and for which the only interpretation of the scores is in terms of how well individuals 
can perform the task under consideration, could be validated fairly simply. For test takers who 
performed well on most of the tasks presented to them and therefore have high scores, a claim 
that they can perform this kind of task well is certainly plausible. We might have some concerns 
about whether the tasks might have been too easy or that a test taker had prior exposure to the 
specific tasks included in the assessment, but in general the validity of this kind of interpreta-
tion of high scores on a performance test is relatively easy to justify. 

For test takers with low scores on a performance test, a claim that they cannot perform this 
kind of task well is harder to justify because there may be plausible alternative explanations 
for the poor performance. In addition to concerns about whether the specific tasks included 
in the assessment might be too difficult, we would need to rule out the influence of construct-
irrelevant factors that might interfere with a test taker’s performance, including language dif-
ficulties, disabilities, health issues, lack of motivation, equipment failures, tight time limits, and 
so on. We don’t routinely try to address all such potential threats to validity, but we need to do 
so if there is a reason to suspect that they might be interfering with a test taker’s performance. 

For this kind of simple interpretation, the positive case for the validity of the interpretation 
in terms of expected performance on tasks like those in the test is pretty straightforward, and 
most of the effort in validating score-based claims about performance will involve the evalua-
tion of potential alternative interpretations (particularly, alternative explanations for poor per-
formance). In other cases (particularly standardized, objective tests), making the positive case 
for the proposed interpretation and use may be more demanding, but in all cases, validation 
requires an evaluation of plausible counterclaims. Cronbach made this point particularly aptly: 

The job of validation is not to support an interpretation, but to find out what might be 
wrong with it. A proposition deserves some degree of trust only when it has survived 
serious attempts to falsify it. (Cronbach, 1980, p. 103) 

To be effective, validation requires a critical evaluation of the claims being made. 
For many potential challenges to the proposed interpretation and use, the question is not 

one of making a binary decision about whether the proposed interpretation is true or not but 
rather relates to the extent to which some source of construct-irrelevant variance or construct 
underrepresentation is likely to interfere with the proposed interpretation and use of the scores 
(Messick, 1989). Score interpretations are never perfectly precise, and the claims made are 
usually qualified in some way (Kane, 2013; Toulmin, 1958). For example, in describing a test 
taker’s results on a performance assessment, we might use terms like “almost always” or “usually” 
to indicate the consistency with which the test taker is successful. 

For quantitative score interpretations, the uncertainty in the scores as estimates of the 
attribute of interest can be quantified as estimated errors of measurement, or standard errors, 
and all sources of construct-irrelevant variance contribute to this error. The sources of error 
are essentially sources of variability that are not consistent with the intended interpretation of 
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the scores or are not supposed to be of any significance (Kane, 2011). For example, variability 
in how raters apply a scoring rubric generally would be considered a source of error, because 
the intended interpretation focuses on the performance of the test takers and not on the per-
formance of the raters. Similarly, any impact of time limits on test performance, and thereby 
on scores, would be a source of error on a power test, because the attribute of interest does not 
focus on speed to any significant extent. 

Time Limits as a Source of Systematic and Random Errors 

Tests used to make high-stakes decisions tend to be highly standardized in the kinds of 
tasks included, in the response modes, in the contexts in which the test is taken, and in the 
rubrics and procedures used for scoring. They also are administered under fixed time limits. 
Standardization promotes fairness and the appearance of fairness by subjecting all test takers 
to essentially the same challenges (Porter, 2003), and it helps to control errors of measurement 
by eliminating the irrelevant variability in scores that would result if different test takers had to 
perform under different conditions. That being said, standardization also introduces various 
kinds of systematic error, because even fixed testing conditions can have differential effects on 
test takers’ performance (Kane, 1982). 

If the time limits are tight enough that some test takers do not have time to complete tasks 
that they otherwise could complete successfully, the competence level of these test takers will 
be systematically underestimated. Other test takers may not suffer any disadvantage from the 
time limits, because they tend to work fast (or because they have practiced working quickly in 
preparing for the test). Chapter 5 provides a particularly interesting review of research on the 
effects of speededness on test scores and concludes that the impacts of time limits depend in 
complicated ways on the context, the severity of the time limits, and on test formats, and there-
fore that simple generalizations about the impact of time limits are not possible. Interestingly, 
he notes that it is not necessarily the lowest scoring test takers or the highest scoring test takers 
who are most affected by time limits. 

I will refer to the differences between hypothetical unlimited-time scores and the corre-
sponding time-limited scores as time-limit errors (TLEs). These TLEs do not generally have 
a zero mean, and to the extent that speed is an enduring characteristic, the TLEs can be cor-
related across test forms; they therefore are systematic errors rather than random errors (by 
definition, random errors have a mean of zero and are uncorrelated with each other and with 
other variables). 

The average TLE for a population, the TLEP, is a general systematic error for the time limit, 
the test, and the population. The average TLE for a group (e.g., racial or ethnic groups, students 
with a disability, gender) is a group-level systematic error, or TLEG. To the extent that it is con-
sistent across test administrations, the TLE for an individual test taker, the TLEI, is a specific 
systematic error. As a practical matter, it is not generally possible to estimate TLEs for individ-
ual test takers. To the extent that an individual’s speed in completing test tasks varies from one 
test administration to another, the errors associated with the speed of performance would be 
considered random (e.g., in the context of test-retest reliability), while more stable differences 
in speed would be systematic. Systematic errors tend to be more serious than random errors, 
because they do not cancel out over replications of the assessment. 

As the comment following Standard 4.14 (AERA, APA, & NCME, 2014) suggests: 

… When speed is not a meaningful part of the target construct, time limits should be 
determined so that examinees will have adequate time to demonstrate the targeted 
knowledge and skill. (p. 90) 
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We want the time limits to be loose enough that they do not interfere too much with the 
intended interpretation and use of the scores. 

The impacts of these systematic errors tend to depend on a number of factors, including how 
tight or loose the limits are, the content and task types in the assessment, the assessment design, 
the population being assessed, and test takers’ levels of motivation and test preparation. Further, in 
Chapter 8, Camara and Harris conclude that the modes and devices in technologically supported 
tests can have substantially different time requirements. So the impact of time limits will generally 
need to be evaluated separately for each testing program (see Chapters 5 and 8). 

Impact of Population-Level Time-Limit Errors (TLEPs) on Validity 

The TLEP is a general systematic error estimated as the average value of the TLE over the 
population and is taken to have the same value for all members of the population. For norm-
referenced interpretations, a test taker’s score is interpreted in terms of how it compares to the 
distribution of scores in some population, or equivalently, in terms of the differences between 
the test taker’s score and the scores of other members of the population. The average time-limit 
error for the population, TLEP, is irrelevant for norm-referenced interpretations, because it has 
the same effect on all scores. If we subtract some number of points from everyone’s score, the 
difference between any two scores remains the same. Note that there would be a problem if 
the time limits were changed and scores were compared across administrations with differ-
ent time limits, but as long as time limits and the time-limit effect for the population are the 
same, the TLEP would not interfere with norm-referenced interpretations. 

For criterion-referenced interpretations, a test taker’s score is interpreted in absolute terms 
as indicating some level of performance (against some performance criteria, defined, for exam-
ple, as a learning progression or as performance benchmarks). The TLEP is a general systematic 
error that reflects the average decrease in score levels associated with the time limit on the test. 

If the test scores are used to make pass/fail decisions by comparing scores to a fixed passing 
score (or cut score), the TLEP tends to cause fewer test takers to pass by depressing the aver-
age score for the population. If the magnitude of the TLEP were known, the observed scores 
could be adjusted (increased) or the passing score could be adjusted (decreased) to correct for 
the TLEP. More generally, if we have multiple cut scores, the TLEP effect could be mitigated by 
adjusting either the scores or the cut scores if the TLEP were known with sufficient confidence 
and precision (see Chapter 8). 

The TLEP can be estimated directly, for example, by having a sample of test takers complete 
the assessment under both standard and substantially extended time conditions (with counter-
balancing to control for order effects) and then comparing their performances. In this single 
group design, the average value of the differences between these two scores would provide a 
reasonable estimate of the TLEP (see Chapter 5). 

Alternately, the TLEP could be estimated by dividing a sample of test takers into two ran-
domly equivalent subsamples and either (1) administering the test to one subgroup under the 
standard time limit while administering the test to the other subgroup under a substantially 
extended time limit, or (2) administering the standard test and a shortened version of the test 
under the standard time limit. The difference between the average scores for the two subgroups 
also would provide a reasonable estimate of the TLEP (see Chapter 5). 

We can also get a less direct indication of whether time limits are having any substantial 
impact on scores by analyzing patterns of performance across the tasks/items on the test. 
For example, if a substantial number of test takers has a string of omitted items, apparently 
random responses, or partially informed rapid responses at the end of an objective test, 
it is reasonable to suspect that these test takers ran out of time before completing the test 
(see Chapter 6). 



  

 

 
 
 

 
 
 

 
 

 
 
 
 
 
 
 
 

 

Time Limits, Timing Information, and Validity • 25 

The TLEP typically is not a major problem. First, if the interpretation is norm referenced, the 
TLEP does not generally interfere with the proposed interpretation. Second, if the interpreta-
tion is criterion referenced and the TLEP is found to be negligible (i.e., it does not interfere with 
the proposed interpretation), it can be ignored. If the TLEP is found to be significant, the time 
limits can be increased, the test can be shortened, and/or it may be possible to adjust the scores 
(or the cut scores) if the magnitude of the TLEP is known (see Chapter 8). 

Impact of Group-Level Time-Limit Errors (TLEGs) on Validity 

TLEGs represent the difference in the average TLE across groups. That is, a tight time limit 
could have a bigger impact on one group than on another. Differences in time-limit effects 
for groups (e.g., race, gender, disability, first language, ability levels) raise issues of fairness. 
For example, test takers with visual disabilities who need to take large-print or braille edi-
tions of a test generally would need more time to complete a standardized test and therefore 
would be at a particularly serious disadvantage if a tight time limit were imposed on their 
performances (see Chapter 4). If speed is largely irrelevant to the construct of interest, then 
a TLEG is a group-specific systematic error and a source of bias. 

TLEGs are harder to estimate than TLEPs mainly because of the difficulty in getting adequate 
sample sizes. As discussed above, a TLE can be estimated most directly by having a large sample 
of test takers complete the assessment under the standard time limit and then under a substan-
tially extended time limit (see Chapter 5). The average value of the differences between the two 
scores for the members of a group would provide a direct estimate of TLEG. This approach works 
well in estimating the TLEG for any group with a fairly large sample size (e.g., men, women, some 
racial/ethnic groups, groups with common disabilities). For groups with small sample sizes in 
the population of test takers, it would be difficult to collect large samples, but it might be possible 
to average results over multiple test administrations. In general, getting good, direct estimates of 
the magnitude of a TLEG is difficult. Less direct approaches to detecting TLEGs based on patterns 
in item-level data (e.g., latent-group analyses) are easier to implement and can be used to detect 
TLEGs, but they are not likely to provide quantitative estimates of the magnitudes of the group-
level TLEs (see Chapters 5 and 6). 

Any group-level bias will have an impact on both norm-referenced interpretations and 
criterion-referenced interpretations, and generally it is not possible to correct for these TLEs. 
It is difficult to justify statistical adjustments that are applied to one group of test takers and 
not to other groups. Adjustments to scales (as in equating) or to cut scores that apply to all test 
takers can be considered part of the standardization and scaling processes that define standard-
ized testing, but any adjustments that are made to some scores and not others tend to generate 
serious fairness issues. 

As discussed later in more detail, group-level time-limit errors are a particularly difficult 
problem for groups defined in terms of disabilities, because this umbrella term includes a broad 
array of disabilities and a wide range of severity within disabilities. This problem is not specific 
to disabilities; a broadly defined group (e.g., English language learners) is a collection of special 
cases, but the disabilities category is particularly heterogeneous. One way to address this prob-
lem is to define more homogeneous subgroups (e.g., English language learners with different 
levels of competence in English), but this tends to exacerbate the sample size problem. 

Impact of Individual-Level Time-Limit Errors (TLEIs) on Validity 

The TLEIs would be specific systematic errors to the extent that they were consistent from 
one test administration to another, but they would function as random errors if they varied 



  

 
 
 
 

26 • Michael Kane 

randomly across administrations (i.e., in test-retest analyses). Given that most test takers take 
any particular test only once at any point in their lives, it is not possible to distinguish between 
these two cases. In order to estimate the TLEI for any test taker and distinguish it from sources 
of random error, we would need to have the test taker take the test with and without the time 
limit (preferably several times, with several forms of the test); in almost all cases, this is not 
likely to be feasible. 

As a practical matter, to the extent that the TLEIs vary from one test administration to 
another, they would function as random errors and could be treated as random errors (for 
traits, which are not expected to vary over occasions). To the extent that the TLEIs reflect 
enduring differences in speed of performance that would have essentially the same impact 
across administrations of the test, these individual systematic errors would contribute to the 
universe score variance of generalizability theory or the true score variance of classical test 
theory (i.e., the stable component of observed scores) and therefore would tend to increase the 
generalizability or reliability of the scores. 

To the extent that the TLEIs contribute to the universe scores (as in generalizability theory) 
or true scores (as in classical test theory), they are adding a speed factor to the meaning of the 
scores. This is not likely to be a problem as long as the magnitude of the systematic component 
of the TLE is small compared to the universe-score variance (in G theory) or the true-score 
variance (in reliability analyses). It also is not a problem if speed is considered a legitimate part 
of the construct of interest. 

As discussed by Bridgeman in Chapter 5, running out of time on a computer-adaptive test 
(CAT) can have a particularly severe impact on scores because the scoring algorithm tends to 
weight wrong answers toward the end of the testing period particularly heavily. Test takers who 
are running out of time and start guessing therefore can lower their scores considerably. This effect 
also has an impact on TLEGs and TLEPs, but the effect is likely to be most severe for the TLEIs. 

As indicated above, the role of the TLEIs is complicated. Any random component in the 
TLEIs would add to the overall random error in the assessment, which is of course undesirable. 
Any part of the TLEI that is systematic would tend to increase the estimated generalizability or 
reliability of the scores but would distort the meaning of the attribute being assessed by adding 
construct-irrelevant variance to the scores. Both of these outcomes are undesirable, and we 
have no way of adjusting for any of these effects. So the best strategy would seem to be to take 
steps to make these TLEIs as small as is practical. 

Evaluating Time-Limit Errors 

We generally don’t want large errors of any kind in assessments, and we particularly don’t want 
large systematic errors, but how do we decide if a particular source of error is too large? Two 
general kinds of criteria can be helpful in making such determinations. First, we don’t want the 
TLEs to substantially increase the overall error; for this to be the case, the TLEs have to be small 
compared to other sources of error. Second, we don’t want TLEs to interfere with the intended 
interpretation/use of the scores; we therefore want the TLEs to be small compared to the score 
differences of interest. That is, we don’t want the TLEs to be large enough to make a difference 
in most cases. 

TLEs Compared to Other Sources of Error 

The overall error in scores is the major concern in evaluating assessments, and it generally 
includes multiple, independent sources of error. We don’t want any source of error to be large, 
but it is the total error that is the main concern. 
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We generally consider item and rater sampling as sources of error, and we may consider the 
sampling of occasions and contexts as sources of error. In addition, it is appropriate to consider 
the contributions of time limits as sources of error. 

Independent random errors are not simply additive because it is the error variances that are 
additive rather than the standard deviations of the errors. For example, given two independent 
sources of error, with standard errors of SE1 and SE2, the total standard error would be: 

2 2 1/2 SE = [SE  + SE ]  (2.1)tot  1 2 

The fact that the errors combine in this way has some important implications. In particular, 
relatively large errors have a disproportionally large impact on the overall error, and relatively 
small errors have a disproportionally small impact on the overall error. For example, if one 
source of error has a standard error of 5 and a second source of error has a standard error of 1, 
their combined standard error would be: 

2 2 1/2  1/2 SEtot = [(5) + (1) ]  = [26] = 5.10 (2.2) 

That is, although the second smaller error was a fifth as large as the first error, the addition 
of the second error adds only about 2% to the total standard error that we would have if we 
eliminated the smaller source of error completely. In most cases, this small change would 
be considered negligible. If the second error were one third of the first error, the total error 
would be: 

2 2 1/2  1/2 SEtot = [(3) + (1) ]  = [10] = 3.16 (2.3) 

In this case, the added error is a third as large as the first error, and the addition of the second, 
smaller error adds about 5% to the total standard error. In most cases, this change also would 
be considered negligible. For an added error that is half as large as the first error, we get: 

2 2 1/2  1/2 SEtot = [(2) + (1) ]  = [5] = 2.24 (2.4) 

for an increase of about 12%. 
These analyses of the relative impact of errors apply to any two or more sources of random 

errors or to a source of random errors with a source of systematic error. It generally does not 
apply to the combined effect of two sources of systematic error, because systematic errors can 
be correlated with each other. One rule of thumb for evaluating the impact of TLEs could be 
that the TLEs are substantially smaller than the total SE for other sources of error. If the TLEs 
were a third or less as large as the total error from other sources, the impact of the TLEs would 
be about a 5% increase in the total error; if the TLEs were a fifth as large as the total error from 
other sources, the impact of the TLEs would be about a 2% increase in the total error. So from 
an error-analysis point of view, the TLEs could be considered negligible as long as they were 
not larger than a fifth to a third as large as the total error from other sources (Kane, 2011). That 
is, if one can tolerate a standard error of E score units in some context, one can probably also 
tolerate a standard error of (1.02)E score units or (1.05)E score units. 

Like most model-based analyses, this analysis of the relative impact of different sources of 
error makes some assumptions. In particular, it assumes that all errors are created equal, but 
this generally is not true, and in this case, it clearly is not true. The TLEs are systematic errors, 
and systematic errors generally are more serious than random errors because they do not tend 
to get smaller as the scores are based on more observations. 
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Even if the TLEGs are quite small compared to other sources of error and therefore have a 
relatively small impact on the total error, the kind of analysis illustrated above indicates that 
they tend to be problematic. To the extent that the score is not intended to have a significant 
speed component, any TLEG would constitute a source of bias, and bias is a concern—even if it 
is small—because group-level biases raise ethical, legal, and public-relations issues. 

TLEs Compared to the Score Differences of Interest 

The impact of TLEs on the total SE provides an indication of how small the TLEs need to be in 
order to avoid increasing the overall error substantially. In addition, it is important to ensure 
that the TLEs (and other sources of systematic error) are small enough to not have serious 
impacts on the reported results or on any decisions based on the scores. 

Generally speaking, it would be desirable for TLEs to be small compared to the smallest 
reported/interpreted score differences (Kane, 1996). For example, if scores are rounded to inte-
gers and reported as integers, and a difference of one point could lead to a change in an impor-
tant decision, a TLE of half a point or more could be considered a significant problem. This 
issue is also likely to be most important for group-level TLEs. Because a group-level TLE is a 
systematic effect, it could tend to decrease the scores of everyone in the group (and, by defini-
tion, the average score of the group, by the same amount). 

Both of these criteria could be relaxed to the extent that speededness is relevant to the con-
struct of interest. As noted earlier, the impact of time limits in speed tests and relevant speed 
requirements in performance tests and high-fidelity simulations are not sources of error but 
are intrinsic to the construct of interest. More generally, some cognitive constructs can include 
speed as a component of the construct (see Chapter 9). 

ADA Time-Limit Extensions: A Pragmatic Concern 

As noted earlier, group-specific errors tend to have serious implications for fairness because 
they tend to introduce group-level biases that decrease scores for some groups more than oth-
ers. Bias is a serious concern for any group, but for several reasons the potential for time-limit 
errors is a particularly serious and difficult concern for test takers with disabilities. First, test 
takers with some disabilities may need considerably more time to complete test tasks than com-
parable test takers without any disability; the adjustments that might need to be made therefore 
may be quite large. Second, there are many kinds of disabilities, and for each disability there 
are many gradations. The adjustment needed to correct for the disability would probably vary 
from individual to individual and from test to test, and there is no way to estimate the size of 
the time-limit effect for any individual on any test with any precision. 

Nevertheless, time-limit extensions are the most common kind of accommodation for test 
takers with disabilities, even though we don’t have precise estimates of how long the extensions 
need to be in particular cases. As a result, time-limit extensions tend to be in standard incre-
ments of 25%, 50%, or 100% more time (see Chapter 4). We want to control for possible time-
limit effects due to disabilities, but we don’t want to give test takers with disabilities an undue 
advantage. To maintain a “level playing field,” it is desirable that the time limits be “loose” for 
most test takers so that the TLEs are controlled. 

So, we have a conundrum. Time-limit extensions can improve the validity of the resulting 
scores for test takers with disabilities who might otherwise be subjected to a substantial con-
struct-irrelevant barrier to their test performance. However, these extensions also raise difficult 
issues of fairness, especially in high-stakes contexts. If we do not provide enough of an exten-
sion, the test taker still has a construct-irrelevant disadvantage, although one that is less severe 
than it would be if there had been no extension. If we provide too much of an extension, we may 
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give a test taker with a disability a construct-irrelevant advantage, which may be unfair to other 
test takers (see Chapter 4). The severity of the conundrum can be limited to some extent by 
making the time limits fairly loose for all test takers; this can be accomplished by extending the 
time limits or shortening the test (by including fewer tasks or simplifying the tasks). Providing 
prospective test takers an opportunity to practice taking released forms of the test under realis-
tic time constraints would also probably help. 

The time limits for standardized tests are often dictated by practical constraints (availability 
and cost of testing sites, proctors, etc.), the need for breaks during the day, and concerns about 
the impact of fatigue. In many cases, the most practical way to decrease speediness is likely to 
involve shortening the test. However, shortening the test will generally lead to a decrease in the 
reliability of the scores, and this tradeoff between efforts to decrease TLEs—especially TLEGs 
and the need to control random errors has to be resolved in terms of the details of specific test-
ing programs. If the test is quite long and reliable, as is often the case for high-stakes testing 
programs, accepting some increase in random errors in order to reduce systematic TLEs, and 
thereby to reduce bias, can be a sensible choice. 

The Use of Timing Data in the Scoring of Test Takers’ Performances 

As noted earlier, timing can play a legitimate and important role in scoring a test taker’s 
performance. In speed tests, the test takers’ scores depend mainly on how fast they complete 
tasks, although accuracy also plays a role. More interestingly, in a performance test or a high-
fidelity simulation that uses evaluations of samples of performance from a performance 
domain (e.g., driving a car or truck, flying an airplane, providing medical or nursing care, 
baking cakes) to draw inferences about a test taker’s level of competence in that domain, the 
score is likely to depend on timing to a significant degree because competent performance 
in many tasks depends on the appropriate sequencing of actions and responses and on the 
timing of these actions. In a driving test, one is expected to start slowing down well before 
one gets to a stop sign; in a test of baking skill, it is important to take the cake out of the oven 
soon after the buzzer sounds. As noted earlier, the time taken to perform tasks or parts of 
tasks may be considered an integral part of the constructs of interest, and in these cases the 
issue is whether the impact of time constraints is appropriate given the construct of interest 
(see Chapters 9 and 10). 

Use of Timing Data to Check on the Functioning of the Assessment Program 

With the advent of computer-based testing, much more detailed records of student perfor-
mance have become available, including the time between actions and, in many cases, a detailed 
record of test-taker keystrokes and edits. On written tests (e.g., multiple-choice, essays), the 
only information we might have would be the total time a test taker spent on separately timed 
sections of the test, if that. This new wealth of information about each test taker’s actions and 
the time taken to produce these actions should provide rich opportunities to develop and 
evaluate hypotheses about the cognitive processes engaged in by test takers, and thereby, to 
evaluate the validity of proposed score interpretations. 

In addition to the more or less direct impact of time limits as a potential source of system-
atic errors in using assessment scores to estimate constructs, detailed timing data (e.g., from 
computer-based administrations) can provide information on additional, potential sources of 
systematic errors. For example, patterns in the time taken by test takers to respond to items can 
indicate significant sources of bias due to factors like low motivation, cheating, or item defects 
(see Chapters 11 and 12). 
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Timing information can also provide indications of whether test takers are responding 
to the tasks/items in a test in the ways assumed in the interpretation of the resulting scores 
(see Chapter 7). For example, if it were found that some test takers were taking a lot more 
time to complete word problems on an algebra test than they were on comparably difficult 
problems without much text, one could hypothesize that the test takers are slow readers. If, in 
addition, these test takers tended to omit tasks/items at the end of the test and word problems 
throughout the test, one might conclude that the reading difficulties are introducing construct-
irrelevant variance into the scores. 

Concluding Remarks 

Standardization is very useful in controlling errors in assessments. It reduces many sources of 
random errors, but it has the downside of introducing some systematic errors (Kane, 1982). 
Systematic errors are generally more problematic than random errors because they do not can-
cel out over repeated assessments and thereby introduce bias. The impact of time limits on 
different kinds of error will depend on how tight or loose the limits are, on the content and task 
types involved (e.g., recognition items, routine problem-solving tasks, novel problem-solving 
tasks), on the population taking the test, and on their motivation and test preparation. We gen-
erally don’t want large errors of any kind, but we particularly don’t want large systematic errors. 

For performance assessments and speed tests, time constraints need to be consistent with 
the intended interpretation and use of the scores. This can be operationally difficult, but it is 
not a fundamental problem. The more difficult issues in evaluating time limits occur in the 
context of standardized testing, where the variable of interest does not include a substantial 
speed component. 

To the extent that the time limits are arbitrary, they can add both systematic and random 
error to the scores and thereby limit validity. The systematic errors can occur at the population 
level, at a group level, or at an individual level. The group-level systematic errors tend to be 
particularly troublesome because they raise serious questions of bias, and attempts to control 
this bias by extending time limits for some groups can introduce new forms of group-level bias. 
It is generally not practical to eliminate TLEs, but a case can be made for avoiding test designs 
that impose stringent time limits (see Chapter 3). 

Because the time available for assessment is often quite limited, reducing speededness 
may require that the number of tasks/items in the test be reduced or that tasks that require a 
long time to complete be avoided in test design; the first of these options will tend to reduce 
the generalizability/reliability of scores and the second may reduce validity because of con-
struct underrepresentation. Decreasing generalizability/reliability is, of course, not desirable, 
but some reduction may be advisable if it is needed to control group-level TLEs. Deciding on 
acceptable tradeoffs among these options is a complex problem (see Chapter 6). 
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3 
Timing Considerations in Test Development

and Administration 
Stephen G. Sireci and Sandra M. Botha 

Timing Considerations in Test Development and Administration 

Determining the appropriate amount of testing time for examinees is one of the most sig-
nificant challenges in test development, and test developers’ decisions in this area are likely 
to set the boundaries for the fairness, utility, and validity of the overall assessment process. If 
insufficient time is provided to examinees, the test scores may underestimate examinees’ true 
proficiencies. If too much time is given, the test may measure irrelevant behaviors (e.g., time 
management) or introduce undesirable practical effects, such as increased costs to examinees 
(e.g., costs for “seat time”). In this chapter, we discuss timing considerations in developing 
tests, beginning with defining the construct to be measured by a test and continuing through 
test administration. We believe that properly addressing these issues early in the test develop-
ment process facilitates assessments that are fair to examinees and are more valid with respect 
to accomplishing the purposes of the testing program. Many of the issues we discuss are rooted 
in concerns for psychometric integrity, validity, and fairness. Others reflect practical realities 
involved in administering large-scale assessments. 

Considering Testing Time from the Earliest Stages of Test Development 

After deciding that a test is needed for a particular purpose, a testing program must operation-
ally define the construct to be measured by the test. The current Standards for Educational 
and Psychological Testing (hereafter referred to as the Standards), defines a construct as 
“… the concept or characteristic the test is intended to measure” (American Educational 
Research Association [AERA], American Psychological Association, & National Council on 
Measurement in Education, 2014, p. 11). For example, proficiency in U.S. History may be a 
construct targeted by a high school history test, and proficiency in nursing may be a construct 
targeted by a nursing licensure test. 

In defining the construct measured by a test, test developers must consider how much 
time to allocate for standardized test administration. In some cases, how quickly examinees 
answer test items is part of the construct to be measured by a test. For example, a test for 
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bartending skill may want to gauge how quickly a bartender can make cocktails because the 
speed of task performance is relevant to performance on the job (i.e., the more drinks made in 
a certain timeframe, the more profit made by the establishment). In other testing situations, 
speed of responding to items is not part of the construct being measured. Many of the state-
wide achievement tests in the United States, for example, do not have time limits because they 
want to understand what students know and can do in general, not how quickly they can do it. 
For this reason, the first standard in the AERA et al. (2014) Standards states, “The test devel-
oper should set forth clearly how test scores are intended to be interpreted and consequently 
used … and the construct or constructs that the test is intended to assess should be described 
clearly” (p. 23). 

Thus, in stating how test scores are to be interpreted, test developers need to address 
the issue of whether the test scores reflect speed of responding. Historically, tests have been 
described as either “speed tests” or “power tests” (see Chapter 1). The question of whether a 
test is considered a speed or a power test depends on whether completing the assessment is 
challenging because of a time limit or the difficulty of the items. Gulliksen (1950) defined a pure 
speed test as “a test composed of items so easy that the subjects never give the wrong answer to 
any of them” (p. 230). On the other hand, a pure power test is a test in which “all the items are 
attempted so that the score on the test depends entirely upon the number that are answered, 
and answered correctly” (Gulliksen, 1950, p. 231). In the first case, examinees are scored based 
on how many items they answer (i.e., the speed with which they complete the test), and in the 
second case examinees are scored on the correctness of their answer (i.e., the knowledge with 
which they complete the test). However, pure speed and power tests are theoretical concepts. 
Operationally speaking, many tests involve both speed and power components and so may not 
neatly fit into either one of these two categories. 

Establishing Time Limits for a Test 

Determining whether speed is part of the measured construct is an important part of opera-
tionally defining the measured construct and of interpreting test scores. Regardless of whether 
speed of response is construct relevant, all testing programs must establish standard time limits 
for their program. Establishing appropriate time limits for a test involves several factors. Some 
of these factors are practical, such as how much time can be allocated to the test given compet-
ing needs such as instruction, training, work hours, school hours, room availability, computer 
resources, and test administration costs. In particular, when tests are administered in testing 
centers, or testing proctors need to be hired, the time allotted for testing essentially dictates the 
test administration costs. Other factors to be considered in establishing time limits are psy-
chometric; these involve maximizing the precision and validity of the assessment. One critical 
psychometric issue is construct representation, which requires tests to adequately represent the 
intended construct (Crocker, 2003; Messick, 1989; Sireci, 1998). As part of its construct defini-
tion, for example, an 8th-grade mathematics test may target different content domains such 
as number relations, algebraic equations, geometry, and statistics. As the number of areas to 
be represented increases, so too will the number of items and, by extension, testing time. To 
ensure that test scores provide valid interpretations, construct representation is a prerequisite. 
Therefore, tests must adequately represent the construct as defined in the test specifications 
(AERA et al., 2014; Martone & Sireci, 2009; Sireci, 1998; Sireci & Faulkner-Bond, 2014). 

Another key psychometric issue is reliability, which refers to “the extent to which a test will 
give the same result on successive trials” (Wainer & Thissen, 1996, p. 22). In general, exami-
nees’ scores should not fluctuate widely over different forms of a test or across different test-
ing occasions. In general, the more items on a test, the more reliable the test scores. As the 
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Standards (2014) describe, “Specifications for test length must balance testing time require-
ments with the precision of the resulting scores, with longer tests generally leading to more 
precise scores” (p. 79). 

Thus, when establishing time limits for a test, test developers are faced with both practical 
constraints of testing costs and resources as well as the psychometric goals of construct repre-
sentation and reliability. There are several steps that can be taken to optimally balance these 
factors. The first is to identify the number of items that is needed to adequately represent the 
intended construct. Next, if it is possible to pilot test the items, the amount of time examinees 
need to respond to the items can be estimated. Based on these pilot studies, the amount of 
testing time needed to fully represent the construct and to produce reliable scores can be deter-
mined (e.g., using the Spearman-Brown prophecy formula, Feldt & Brennan, 1989, or an item 
response theory approach based on extrapolating test information from the sample of items; 
see Wainer & Thissen, 1993). If the estimated amount of time is prohibitive either from a prac-
tical or a cost perspective, the construct domain can be reduced or a more efficient test design 
such as computerized adaptive testing (CAT) can be used. 

Test developers can also conduct research to determine if the suggested time limit for a test 
is appropriate. If the test is not designed to measure speed of responding, then research regard-
ing whether examinees can complete the test in the allotted time or whether they feel rushed 
to do so (and hence perform suboptimally) should be conducted. As the Standards (2014) 
recommend, “For a test that has a time limit, test development research should examine the 
degree to which scores include a speed component and should evaluate the appropriateness of 
that component, given the domain the test is designed to measure” (p. 90). 

In a subsequent section of this chapter, we discuss how test developers can assess whether 
power tests are unnecessarily speeded. At this point, we want to underscore the importance 
of establishing time limits that support valid score interpretations. Valid score interpreta-
tions begin with a clear definition of the construct targeted by a test and time limits that allow 
proper measurement of examinees’ proficiencies with respect to that construct. We quote the 
Standards (2014) once again, for a description of these important test development tasks, 

In addition to describing intended uses of the test, the test specifications should define 
the content of the test, the proposed test length, the item formats … [and] also specify the 
amount of time allowed for testing. (AERA et al., 2014, p. 85) 

A summary of the steps needed to develop quality tests that promote valid score interpretations 
and are fair to all examinees is presented in Table 3.1. The degree to which timing considera-
tions are needed at each step is also indicated. A clear conclusion from Table 3.1 is that timing 
considerations are relevant to virtually all stages of test development and are paramount from 
the earliest stages. 

Before leaving this section on timing considerations in test development, it is important to note 
that Step 5, Determine the scoring rules, has implications for the psychometric model used to esti-
mate scores for examinees. If the construct definition specifies that speed of response is relevant 
and will facilitate valid score interpretations, scoring models that include speed of response should 
be considered. Several item–response-theory-based scoring models that incorporate response 
time have been proposed. These include Wang and Hanson (2005); van der Linden (2007, 2009); 
van der Linden, Entink, and Fox (2010); and Molenaar, Bolsinov, and Vermunt (2018). 

Test Administration Models 

Test developers can choose from a number of different approaches to delivering an examina-
tion ranging from the traditional paper-based designs to the newer digital designs; the selected 
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Table 3.1 Summary of test development steps and timing considerations 

Test Development Step Timing Consideration 

1. Establish need for test and specify testing Is measuring how quickly examinees respond to items 
purpose(s) relevant to the testing purpose? 

2. Define the construct to be measured Is measuring how quickly examinees respond to items 
part of the construct intended to be measured? 

3. Determine item formats How efficient are the item formats with respect to 
gathering examinee responses? Will examinees be familiar 
with these formats? 

4. Determine test administration design Will the test be linear or adaptive? Are there costs for 
“seat time”? 

5. Estimate testing time and test length What are the practical constraints on testing time? How 
much time is needed to fully represent the construct? 

6. Determine scoring rules Should speed of responding be included in the scoring 
model? 

7. Develop test specifications Ensure construct representation within the given testing 
time. 

8. Develop test items to represent test specifications Develop sufficient numbers of quality items to support 
adaptive item bank or fixed-length test. 

9. Content and measurement review of test items Are directions clear? 
10. Pilot test items Evaluate item and test response time distributions. 
11. Establish test administration conditions Set time limits and test administration timing 

instructions. 
12. Statistical (item analyses) and qualitative 

(sensitivity) item reviews 
13. Assemble test forms (or panels, or adaptive item Select items with appropriate response time distributions. 

banks) 
14. Fieldtest (mimic operational test length, time 

limits, etc.) 
15. Psychometric research: item analyses, analysis Evaluate testing time limits and scoring algorithms. 

of item response time, speededness research, 
calibration, scaling 

16. Score report design Include information on engagement and speed of 
completion, if relevant. 

17. If necessary: Standard Setting, Norms Consider effects of non-engaged or rushed examinees on 
development norms and standards. 

18. Develop technical documentation Document results of speededness, timing, and other 
relevant analyses. 

model directly impacts the amount of time needed and allowed for navigating and completing 
the test. Paper-and-pencil tests are administered in a “linear” format, which means that the 
items are administered in a predefined sequential order that may be the same for all test tak-
ers. Though computer-based tests (CBT) can also be administered in a linear format, many 
additional test-administration models are possible with CBT that are not possible with paper-
based tests; these include “linear-on-the fly testing” (LOFT) and “adaptive” models (see Luecht 
& Sireci, 2011; Wainer, 1993; Yan, von Davier, & Lewis, 2014). The choice of administration 
model has implications for measurement-related areas, such as test reliability and length, as 
well as for administrative and policy considerations, such as test security, cost, and mainte-
nance. Ideally, choosing a test administration model should be based on a thorough evaluation 
of the model’s usefulness and feasibility as it relates to the goals and purposes of a testing pro-
gram (Luecht & Sireci, 2011). 
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The benefits of CBTs over paper-and-pencil designs include improved test security, more 
flexible test administration schedules, immediate scoring and reporting, and the ability to 
include multimedia in the assessment. In addition, one of the most widely cited advantages of 
CBT is the ability to administer a test “tailored” to the specific characteristics of a test taker. 
This tailoring is achieved by using a computerized selection algorithm that selects items (or 
sets of items) to be administered to a specific examinee based, in part, on the proficiency of the 
examinee. Examinees therefore receive a test tailored to their individual proficiency. Currently, 
there are various computerized-adaptive administrations available that can loosely be classified 
into two general categories: CAT and multistage adaptive testing (MST). 

CAT is a computerized test that is adaptive at the item level. Although the specifics behind 
the working of the item selection algorithm vary across testing programs, all algorithms involve 
estimating an examinee’s proficiency after each item is presented and then using this provi-
sional proficiency estimate to select the next item. This item-selection process occurs after each 
item is presented until the testing process terminates. 

As more items are administered, measurement error decreases. Based on the characteristics 
of item response theory (Hambleton, Swaminathan, & Rogers, 1991; Lord, 1980), a CAT can be 
designed to continue administering items until the measurement error reaches a target mini-
mum. Because examinees are not given items that are far too easy or far too difficult for them, 
CATs can achieve an error of measurement target (or similarly, a reliability target) using about 
half as many items as would be used with a linear design (Luecht & Sireci, 2011; Wainer, 1993). 
For this reason, many testing programs can substantially trim the testing time requirements by 
moving from a linear design to a CAT. 

MST similarly targets the difficulty level of a test to provisional estimates of an examinee’s 
proficiency, but the selection decisions are made after a set of items is administered and 
responded to, rather than after each item. After scoring a set of items, which often is referred 
to as a testlet (Wainer & Kiley, 1987) or a module, a provisional estimate of the examinee’s 
proficiency is calculated and the next set of items is chosen that is best matched to that pro-
ficiency level. The examinee once again starts at a moderate point of difficulty and the test 
is administered in stages. Each of the modules consists of several items that are assembled 
according to pre-established test specifications. All items in the module are chosen so that 
the average difficulty matches a pre-specified target difficulty. After each module, the exami-
nee’s proficiency is estimated and used to select the next module. Although the measure-
ment precision gains relative to a linear design are not as large as that of a CAT design, they 
also can substantially reduce test length (and thus testing time). Research has shown that 
MSTs can be almost as efficient as a CAT with respect to measurement error and have the 
additional advantages of better item pool usage, content coverage, and flexibility in allowing 
examinees to review items within a module. There are complex variations of MST designs 
that are beyond the scope of this chapter; for more detail, interested readers are referred to 
Yan et al. (2014). 

CATs and MSTs have significant implications for test administration and timing. As 
described earlier, they can achieve reliable scores for examinees using fewer items than are 
typically required using non-adaptive designs. This increase in efficiency is a direct result of 
the item selection algorithm, which avoids administering items that are too difficult or too easy 
for a test taker. Therefore, these tests often are significantly shorter than paper-and-pencil tests. 
Although reduced testing time is frequently cited as a great benefit for developers, examinees, 
and administrators, there are additional timing issues to be considered in the administration 
design and process of CAT. 

Although CAT has clear benefits, it is easy to exaggerate the real cost savings that can be 
credited to gains in measurement efficiency. The potential reduction in testing time might 
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be irrelevant if the test is administered at commercial testing centers. These centers usually 
require a guaranteed minimum testing time while charging fixed hourly rates per examinee 
(Luecht & Sireci, 2011). As an example of how this comes into play, consider a situation in 
which the test center vendor negotiates with the developer for a 3-hour test. In this case, the 
same fee may apply whether the actual seat time of the examinee is one, two, or three hours. 
The time savings may be realized for many examinees, but not for the testing agency. Relative 
to linear-based tests, adaptive test designs also may require larger banks of items with sufficient 
statistical properties. 

Timing Considerations in Item Development 

Regardless of the test administration model, sufficient numbers of quality items must be 
developed to support a testing program. Although some testing programs cling to the 20th 
century paper-based format, a hallmark of contemporary educational assessments is the 
use of technology to allow examinees to interact with and respond to items. Item types 
that use technology in some way are often referred to as technology-enhanced items (TEIs). 
TEIs may use technology in varying the presentation of items to examinees (e.g., incorpo-
rating videos, or allowing examinees to access resources while responding to an item) or 
in changing the ways examinees provide their responses (e.g., “drag-and-drop,” “point-
and-click,” “hot spot items,” etc.; see Sireci & Zenisky, 2016). These new item formats 
have a direct impact on testing time, because they have the potential to greatly increase 
the amount of time examinees spend interacting with an item and recording their answers 
to it. For this reason, TEIs should have psychometric advantages (e.g., increased construct 
representation) to justify any increase in testing time (Huff & Sireci, 2001; Jodoin, 2003; 
Paniagua et al., 2017). 

A recent white paper by the Association of Test Publishers (ATP) and Institute for 
Credentialing Excellence (ICE) provides important information regarding how TEIs affect 
testing time (ATP & ICE, 2017). Based on a review of the literature, they recommended that 
testing programs using TEIs, “Evaluate the amount of time that should be provided to exami-
nees to complete the examination when adding [TEIs] since more than one study found that 
[TEIs] were more time consuming than traditional [items]” (p. 24). The studies they reviewed 
included Dwyer, Penny, and Johnson (2015); Jodoin (2003); Krogh and Muckle (2016); and 
Woo, Kim, and Qian (2014). 

The ATP and ICE (2017) white paper drew from McSweeney (2013) to illustrate the impor-
tance of pilot-testing TEIs to gauge the appropriate amount of testing time needed, and also the 
importance of having generous time limits in those pilot studies. As they described, 

when a large [IT] company moved one of its certification exams from task-based items to 
project-based performance items, it discovered during the field test that examinees spent 
much more time reviewing each data point and rechecking instructions—to the extent 
that many of them timed out of the test. Since the test was not designed to be completed 
quickly, the IT company had to revisit the timing (McSweeney, 2013, cited in ATP & ICE, 
2017, p. 21). 

For this reason, ATP and ICE (2017) recommended, “It is particularly important for a program 
that is transitioning to a new format to plan carefully and pay close attention to examinee 
perceptions, item performance, and item/test completion time” (p. 21). 

Given that TEIs will typically require increased testing time, they must add value from a 
construct representation standpoint. That is, TEIs should measure skills that are not measur-
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able using standard item formats that take less time (e.g., multiple-choice items). As ATP and 
ICE (2017) concluded, 

Most certification tests are not speed dependent, so test time must account for any addi-
tional time examinees need. Significant questions are whether there is any additional value 
for the examinee and for the program if an increase in time is required, and can better 
results be obtained that can be balanced against increased expenses for seat time. (p. 21) 

Although the latter quote was in the context of certification testing, it clearly applies to all tests 
that do not include speed of response as part of its operational definition of the construct. 

When testing programs incorporate TEIs, we recommend providing practice tests. This will 
allow examinees to become familiar with the instructions and the interfaces and make it less 
likely that they will need to use valuable testing time learning how to interact with the items. 
Clear directions that minimize verbosity are also important, as is consideration of whether the 
requirements of TEIs may facilitate or interfere with the performance of examinees with special 
needs such as students with disabilities and linguistic minorities (e.g., English learners; Crotts-
Rohor & Sireci, 2017). 

The International Test Commission’s (2005) Guidelines on Computer-Based and Internet 
Delivered Testing also provide useful suggestions for timing considerations. For example, they 
state, “When the CBT/Internet test is timed, design features so that the time required to move 
between questions and for the system to record the answer is not part of the timed element 
(e.g., the test software should deduct these times from the timing of the test or the timing clock 
should stop during access transitions)” (p. 16). We agree with this recommendation so that 
examinees are not penalized for time requirements due to factors—such as item formats or test 
delivery features—that are outside of their control. 

Statistical Analysis of Item Response Time Data 

In the previous sections, we discussed the need to consider timing issues in test development 
and test administration design. In this section, we discuss issues related to the analysis of item 
response time data, which refers to data measuring how long it takes examinees to respond to 
items and to complete a test. As mentioned earlier, some of the analyses of item response time 
data can be used in test development (e.g., selecting items for a test or to estimate total test-
ing time) and in test scoring (e.g., Molenaar et al., 2018; van der Linden, 2007, 2009; Wang & 
Hanson, 2005). However, there are also other important uses of response time data; we discuss 
those next. 

One way that item response time and total testing time data can be used is to evaluate the 
degree to which “speededness” is present in an assessment. Evaluation of the degree to which 
a test is speeded is important whether speed of response is construct relevant (i.e., the test is 
designed to measure speed of responding) or construct irrelevant (i.e., an undesired factor that 
leads to inappropriate interpretations of test scores). The Standards (2014) define “speeded-
ness” as the “extent to which test takers’ scores depend on the rate at which work is performed 
as well as on the correctness of the responses” (p. 233). This definition underscores the impor-
tance of assessing speededness, and estimating its effects, to ensure proper interpretation of 
test scores. 

Methods for Evaluating Test Speededness 

There are several methods for evaluating test speededness. Some are based on experiments, 
others are based on calculating the percentage of examinees who complete a test or portions of 
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a test, and still others are based on evaluations of item response time or modeling of student 
response data (Ying & Sireci, 2007). 

Experimental methods for evaluating speededness include test-retest (alternate-form) 
designs, where examinees are administered tests with and without time limits, and randomly 
equivalent group designs, where examinees are randomly assigned to timed and untimed 
conditions or test sections with different numbers of items to complete within a given time 
period (e.g., Bridgeman, Trapani, & Curley, 2004; Harik et al., 2018; Chapter 6, this volume). 
In the test-retest design, if additional time has no effect on the subjects’ scores, the test may be 
regarded as unspeeded. Cronbach and Warrington (1951) proposed a correlation-based meas-
ure of speededness for this situation, tau, which is based on the correlation of scores from par-
allel tests administered under timed and untimed conditions. Administering two parallel tests 
under timed and untimed conditions is resource intensive, however, and so this approach is 
not used often. Even when repeated test administration is possible, it is hard to keep examinees 
equally motivated for two test administrations. For these reasons, estimates of speededness 
based on a single test administration are more common. 

Estimates of test speededness from a single administration of a test date back at least to 
Gulliksen (1950), who suggested comparing the standard deviation of the number of not 
reached items to the standard deviation of the number of items that were not answered cor-
rectly. If the ratio is small, the test may be regarded as primarily a power test. Swineford (1974) 
suggested that as long as this ratio is less than 0.25, the test may be considered unspeeded. 
Swineford also included a very liberal index based on the percentages of examinees completing 
certain portions of a test. This speededness criterion considers a test unspeeded if at least 80% 
of the examinees reach the last item and all examinees reach at least 75% of the items. However, 
as Ying and Sireci (2007) point out, “Although this ‘Swineford criterion’ is easy to use as a 
standard for flagging speededness, it allows for a speeded exam for 20 percent of the examinees, 
many of whom may come from subgroups that perform relatively low” (p. 33). 

Estimates of speededness based on the number of items at the end of the test that the exami-
nee did not have time to answer have fallen out of favor due both to their limitations as well as 
to the availability of item response time data from CBT. One limitation of these older methods 
is the assumption that an examinee works at a constant pace throughout the test, and when 
time expires, there are “not reached” items. It is much more realistic that examinees keep track 
of time and either skip items when they are running out of time or answer items in a ran-
dom fashion as time expires. Analysis of item response time data (discussed later) makes such 
behaviors easier to identify. 

There are, however, other methods for assessing speededness that do not rely on unat-
tempted items and are based on analysis of data from a single test administration. Specifically, 
factor analysis, multidimensional scaling, and item response theory (IRT) can be used to inves-
tigate whether speed is a significant factor associated with the last section of items in the test. 
For example, a College Board study used factor analysis to analyze students’ responses to SAT 
items and found that factors attributable to speed typically accounted for about 5–10% of the 
variance in examinees’ scores (College Entrance Examination Board, 1984). Bejar (1985) sug-
gested analyzing the fit of the most difficult items on a test to the IRT model for the examinees 
who were most likely to guess due to running out of time. His rationale was that on the dif-
ficult items, lower-ability examinees would perform better than predicted due to random or 
patterned responses. Zenisky, Hambleton, and Sireci (2002) used the Q3 statistic for assessing 
local item dependence within an IRT model and found higher dependence for items associated 
with passages at the end of a test; they claimed that this was due to speededness. Yamamoto 
(1990, 1995) proposed an extended HYBRID IRT model that uses multiple item response mod-
els to estimate the proportion of examinees who switch from an ability-based response strategy 
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to a random response strategy while taking the test. The probability of correct responses when 
an examinee is in “guessing mode” is no longer determined by the traditional IRT models but 
rather by a guessing class-based multinomial model. Others have used IRT mixture models 
(e.g., Cohen, Wollack, Bolt, & Mroch, 2002) to classify examinees into latent classes of speeded 
and non-speeded examinees. Thus, there are several statistical methods for evaluating test 
speededness available to researchers and testing agencies. 

Assessing Speededness on Computer-Based Tests 

When a test is administered digitally (e.g., CBT), the device on which the test is administered 
can track how long it takes examinees to respond to items as well as other test-taking behavior 
(e.g., clicking on different features of an item). These item response time data can be used to 
identify examinees who may be guessing due to running out of time or other factors. Schnipke 
(1995) graphed the standardized natural logarithm of response time of Graduate Record 
Examinations General Test (GRE) items and was able to detect examinees whose responses 
suddenly accelerated and became less accurate, which suggested that they were running out 
of time. She also examined the response time distributions for each item together with the 
proportion of examinees giving correct responses at each response time level. She found that 
items appearing later in the test had more combinations of short response times and inaccurate 
responses. 

Although it may be easy to identify when examinees start guessing rapidly on a CBT, 
the issue of testing time and adaptive testing is more complex. When the stopping criterion 
for an adaptive test is based on score precision, such as a small conditional standard error 
of measurement, examinees are likely to receive different numbers of items and so would 
be expected to need different amounts of time to complete the test. Moreover, examinees 
who do well on an adaptive test will generally see more difficult items; these items may also 
require more time given the associated higher cognitive load (Swygert, 2003). Thus, adap-
tive testing may produce a test that is differentially speeded, and hence unfair, for the most 
proficient examinees. Testing programs may be able to mitigate this problem by using item 
response time statistics in the item selection algorithm to create tests of similar time require-
ments for all examinees (van der Linden, Scrams, & Schnipke, 1999). If not, “it may be inap-
propriate to have a common time limit for examinees with very different proficiencies” (Ying 
& Sireci, 2007, p. 35). 

Response Time Engagement and Speededness 

In addition to test speededness, test-taking motivation is another potential construct-irrele-
vant factor that affects testing time yet may be overlooked in testing research. If examinees 
are unmotivated, they may carelessly rush through a test. Therefore, methods for assessing 
examinee motivation while taking a test (e.g., Wise & DeMars, 2005; Chapter 11, this volume) 
are also relevant for assessing speededness. 

Engagement in the assessment process is typically related to the examinee’s motivation and 
perception of the stakes associated with the consequences of the assessment process. The most 
common way to conceptualize the stakes is by sorting them into two categories: low-stakes 
and high-stakes tests (Wigfield & Eccles, 2000; Wise & DeMars, 2005). Thus, a student might 
perceive a test as low stakes if there were no direct consequences related to their test score (e.g., 
the National Assessment for Educational Progress). In contrast, a student might perceive a test 
as high stakes when test scores have direct consequences, as in the case of a college admissions 
test. Research has shown that students are less motivated during a perceived low-stakes test-
ing event and, consequently, might exhibit low effort during these tests (Barry, Horst, Brown, 
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Finney, & Kopp, 2010). Thus, non-effortful behavior is more prevalent in low-stakes testing. If 
such behavior is not accounted for in assessing speededness, a test may appear to be speeded 
when it is not. 

Measuring examinee effort on a test is difficult because the amount of effort given by the 
examinee is not usually consistent throughout the test. An examinee might show good effort on 
some sections of the test and no effort on other sections. Past research generally has employed 
either (a) self-report measures, (b) person-fit statistics, or (c) behavior-based measures to 
assess test-taking effort. Self-report scales are used commonly but are limited in that they pro-
vide information only at the overall test level and also are vulnerable to several biasing factors 
(Pintrich & Schunk, 2002; Wise & Kong, 2005). For example, examinees may understate their 
effort if they feel that they performed poorly on a test or overstate their effort if they fear ret-
ribution from test administrators for not responding effortfully. Person-fit statistics are based 
on observed responses and, though not vulnerable to the same biasing factors as self-report 
measures, they are sensitive to other sources of misfit that are not attributable to lack of effort 
(Meijer & Sijtsma, 2001; Wise, 2015). 

Measures based primarily on students’ item response times can be used as a more direct 
indicator of examinee engagement. Item response time data are collected unobtrusively and so 
are not subject to potential biases from examinees as is the case with self-report data. Also, item 
response time data are collected for each examinee for each item, which means that effort can 
be assessed at both the item level and the total-test level. Another advantage is that the data are 
collected and stored automatically, requiring no additional effort from examinees, administra-
tors, test users, or test developers. 

Measures of effort based on item response times are grounded in motivation research 
and based on concepts termed rapid-guessing behavior and solution behavior (Schnipke & 
Scrams, 1997). Rapid-guessing behavior is just what it sounds like: an examinee provides a 
rapid and random response to an item. Solution behavior occurs when an examinee answers 
an item in an effortful manner. Thus, an examinee is disengaged when she/he exhibits rapid-
guessing behavior, and such behavior can be interpreted as non-effortful; the reverse then 
is true of examinees who exhibit solution behavior. Rapid-guessing behavior can also occur 
on high-stakes tests when examinees are motivated but are running out of time (see Chapter 6). 
Studies have shown that rapid-guessing behavior has a detrimental effect on score validity 
(Wise, Bhola, & Yang, 2006) and also spuriously increases the internal consistency of test score 
data (Wise, 2006; Wise & DeMars, 2006). 

Methods for identifying rapid-guessing behavior include (a) response time thresholds, 
(b) the solution behavior index, (c) the response time effort index, and (d) the response time 
fidelity index. These methods are mostly applicable in low-stakes assessments, but they can also 
be used in high-stakes assessments where unmotivated examinees may be present or rapid-
guessing behavior occurs because examinees run out of time. Examples of these methods can 
be found in Harik et al. (2018); Wise, Kingsbury, Thomason, and Kong (2004); Wise and Kong 
(2005); Wise (2006); Kong, Wise, and Bhola (2007); and Wise and Ma (2012). 

Evaluating Differential Speededness and Speededness of Constructed-Response Items 

Many of the methods for detecting speededness are appropriate for different item formats, but 
constructed-response items deserve a bit more discussion because the response provided—or 
not provided—by examinees can yield additional information about the appropriateness of the 
amount of time given for completion of these more extended tasks. With insufficient testing 
time, examinees may leave constructed-response items blank or provide answers that are much 
shorter than they would be if there were sufficient time. Sireci, Wells, and Hu (2014), for exam-
ple, found that English language learners were much more likely to leave constructed-response 
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items blank compared to other groups of students. Whether this problem is due to insufficient 
time or due to group proficiency differences deserves further study. The analysis of omit rates is 
one type of validity evidence based on response processes mentioned by the Standards (2014). 

Using Item Response Data in Test Assembly 

In the previous sections, we discussed timing considerations pertaining to construct definition, 
construct representation, establishing reasonable and fair time limits for tests, using adap-
tive designs for reducing testing time, and assessing speededness. In those sections, we briefly 
touched on how item response time could be used in test development. In this section, we focus 
on such use of item response time data and summarize those points. 

Field-testing items and analyzing item response time data is one of the best ways a testing 
agency can establish test lengths and time limits. In many cases, simple descriptive statistics can 
provide valuable information. As mentioned earlier, using the average item response times to 
select items in a computerized-testing environment has also been suggested to make total test-
ing time more consistent across examinees (e.g., van der Linden et al., 1999). Pilot data can be 
useful for calculating item response time statistics. However, the response time characteristics 
of items should be monitored over time, as items become operational. 

Another way item response time data can be used in test development is for evaluating the 
quality of items. For example, when test items are administered across different grade lev-
els, it may be expected that students at higher grade levels would respond more quickly. Such 
hypotheses could be tested by evaluating item response times across grades. As another exam-
ple of evaluating item quality, Wang and Sireci (2013) used item response time to investigate 
whether items measuring higher-order cognitive skills had larger item response times than 
items measuring lower-order cognitive skills. They found significantly longer response times 
for items measuring higher-order cognitive skills, which they claimed provided important 
validity evidence based on response processes. Zenisky and Baldwin (2006) went even fur-
ther in evaluating factors affecting item performance by investigating the relationship between 
median response time and item difficulty, item complexity, and cognitive area. Extrapolating 
from these studies, it is clear that response time data can be used in test development to select 
items whose response time characteristics are consistent with the construct theory describing 
what the items are designed to measure. 

This section of the chapter has provided evidence that item response time data can be valu-
able in both test construction and test score validation. With respect to test construction, such 
data can be used to establish time limits for a test, to select items for a test form or adaptive 
algorithm, or to select quality items that function as intended. With respect to test validation, 
these data can be used to evaluate differences across subgroups of examinees in the amount of 
time taken to respond to items as well as to evaluate the cognitive processes used by examinees 
to respond to items. 

Conclusions and Future Directions 

In this chapter, we addressed several issues related to testing time. These issues included deter-
mining whether speed of responding to items is part of the construct intended to be measured 
on a test, factors to consider in establishing time limits on a test, different test administration 
designs that impact testing time, and analysis of item response time data for test development 
and test evaluation. Although there has been some impressive research conducted in this area, 
we believe that with item response time data becoming more available in computer-based test-
ing programs, this domain of research is still in its infancy. Thus, we look forward to more 
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research that investigates item response time with respect to test design, test administration, 
test scoring, and evaluation of potential biases in testing. 

One area in which we think more immediate research is needed is in studying the differ-
ent amounts of testing time used by students of different levels of proficiency. In some testing 
programs, we have observed that students who are doing very well on an adaptive test require 
much more time to complete a test than students who are doing less well. Such differences in 
total testing time make sense, because students who are doing well on an adaptive test are con-
tinually challenged by more difficult items. If the end result is that some students need much 
more time to complete a test than others, the testing program can be accused of systematic bias 
(i.e., variable [nonstandard] administration conditions). If those examinees who receive the 
most difficult items—and hence need more testing time—are sufficiently rewarded for their 
performance with high scores, perhaps there can be no criticism of bias. These possibilities 
underscore the need for further study of the costs and benefits of testing time and different 
adaptive testing designs. 

A related issue is whether test scores should be flagged if examinees require and receive dif-
ferent amounts of testing time. We believe in the principles of universal test design (Thompson 
& Thurlow, 2002), which suggest that test administration conditions be sufficiently flexible so 
that accommodations such as extended time are not necessary. Given the 21st-century testing 
technology, it seems sensible that different examinees can be granted different time limits based 
upon their needs. However, if speed of response is an intended part of the construct, different 
time limits may affect score interpretation. Thus, as we have consistently emphasized in this 
chapter, definition of the construct must include consideration of the degree to which speed of 
responding to items is construct relevant. Prior research in this area on qualifying score inter-
pretations (e.g., Sireci, 2005) and providing test accommodations (e.g., Crotts-Rohor & Sireci, 
2017; Sireci, Banda, & Wells, 2018; Chapter 4, this volume) should be helpful in this regard. 

In summary, consideration of timing issues in test development, administration, and evalu-
ation necessitates that testing agencies first decide if speed of response is relevant or irrelevant 
and then design the test and its administration accordingly. As Messick (1989) pointed out, 
“Tests are imperfect measures of constructs because they either leave out something that should 
be included … or else include something that should be left out, or both” (p. 34). If speed of 
response is relevant to the construct a testing agency intends to measure, then it should be 
factored into scoring and score reporting. If it is not, speed should not impact scores. Once 
again, we turn to the Standards (2014), which emphasize continual focus on the construct 
measured to support valid interpretations of test scores. Specifically, the Standards state, “All 
steps in the testing process, including test design, validation, development, administration, and 
scoring procedures should be designed in such a manner as to minimize construct-irrelevant 
variance and to promote valid score interpretations for the intended uses for all examinees in 
the intended population” (p. 63). We concur with this advice, and we recommend that it be 
used by testing programs to develop their test development and validation research agendas. 
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4 
Extended Time Testing Accommodations for

Students with Disabilities 
Impact on Score Meaning and Construct Representation 

Benjamin J. Lovett 

By their very nature, standardized tests are designed to be administered to all examinees under 
similar conditions. Indeed, variability in administration across examinees is a clear threat to 
test fairness (Wollack & Case, 2016). That being said, testing accommodations must be pro-
vided when a disability condition keeps an examinee from accessing the test under standard 
administration conditions. Two examples of such accommodations—which change the admin-
istration conditions of the test in some way without changing the actual test content (Lovett & 
Lewandowski, 2015)—are reading the test items aloud to a visually impaired examinee and 
providing an examinee in a wheelchair with a wheelchair-accessible desk for the testing ses-
sion. Accommodations are required under disability discrimination and special education laws 
when needed for examinees to access tests, and the Standards for Educational and Psychological 
Testing (American Educational Research Association, American Psychological Association, & 
National Council on Measurement in Education, 2014) recognizes the responsibility of test 
developers and users to develop and provide appropriate accommodations. 

Testing accommodations are common; during the 2015–16 test cycle, the College Board (which 
administers the SAT, among other tests) received 160,000 requests for accommodations—double 
the number received just 5 years prior to that (Yellin, 2017). Accommodations often modify the 
examinee’s response mode (e.g., allowing dictation of answers), the presentation format of the test 
(e.g., an audio recording of test items), or the scheduling of the test (e.g., in the afternoon, due to 
health problems that flare in the morning). The most common accommodation on virtually every 
test is extended time, and it is exactly what it sounds like: giving an examinee additional time to 
work on the test (see, e.g., U.S. Government Accountability Office, 2011). The present chapter 
focuses on this accommodation, with particular attention to its impact on the meaning of resulting 
test scores and more broadly on the ability of the (accommodated) test to measure all aspects of 
the intended construct.1 
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The Popularity of Extended Time Accommodations 

Many students receiving extended time do not have any sensory or physical handicaps; instead, 
they have been diagnosed with learning, cognitive, or psychiatric disabilities—conditions that 
together are often called “hidden disabilities.” On admission, certification, and licensing tests, 
learning disabilities and attention-deficit/hyperactivity disorder (ADHD) are the most com-
monly accommodated conditions (U.S. Government Accountability Office, 2011). Similarly, 
in school settings, the highest-incidence special education classification is learning disabili-
ties (Heward, 2013). Many testing agencies also have reported an increase in the number of 
students requesting extended time for psychiatric conditions, particularly anxiety. The high 
incidence of hidden disabilities is one reason why extended time is such a common accommo-
dation; another reason is that students who use auxiliary aids or human assistants (e.g., a live 
test reader) often need additional time to utilize these other accommodations. 

Of course, time pressure during tests is an experience that is common to examinees both with and 
without disabilities. Time limits are a known contributor to test anxiety, and so it is not surprising 
that time extensions would be viewed as desirable by many examinees. In their review of the literature 
on students’ perceptions of testing accommodations, Lovett and Leja (2013) concluded that accom-
modations reduce anxiety and discomfort for students with and without disabilities. Extended time 
specifically has been found to do this; for instance, Elliott and Marquart (2004) found that giving 
fourth-grade students 40 minutes instead of 20 minutes to complete a math test (i.e., 100% extended 
time) made the majority of students with and without disabilities feel more relaxed (78% and 75%, 
respectively). The reason for this relaxation may be an expectation of score improvement; in one 
large-scale survey, Lewandowski, Lambert, Lovett, Panahon, and Sytsma (2014) found that the vast 
majority of college students with and without disabilities (approximately 87% of each group) felt that 
50% extended time would lead to at least somewhat higher scores for them on a high-stakes test. 

Students’ perceptions of extended time correspond to the actual effects of the accommodation; 
extended time consistently has been found to improve scores on standardized tests for students with 
and without disabilities. Although some disability advocates (e.g., Shaywitz, 2003) claim otherwise, 
three systematic literature reviews (Cahan, Nirel, & Alkoby, 2016; Lovett, 2010; Sireci, Scarpati, & 
Li, 2005) all have found this nonspecific effect of extended time. Whether students with disabili-
ties benefit more from extended time than do nondisabled students is a more complex issue that 
appears to depend on just how speeded the test is. On moderately speeded tests, some nondisabled 
students are more likely to finish within the standard time limits, making the extended time of neg-
ligible value to that subgroup; on highly speeded tests (cf. Lewandowski, Lovett, Parolin, Gordon, 
& Codding, 2007), most or all nondisabled examinees are working throughout the full (extended) 
time allotment and complete more work during that allotment than do examinees with disabilities, 
thus benefiting more. Finally, some teacher-made classroom tests have such liberal time limits that 
extended time is of little value to anyone with or without a disability. On these tests, most students 
who receive extended time accommodations actually complete their exams within the standard 
time allotment (see, e.g., Spenceley & Wheeler, 2016). However, when there is at least some time 
pressure, students with and without disabilities tend to benefit from extended time. 

Because extended time is so widely desired (and so beneficial), it is especially important 
to develop guidelines for when it should be given. Although no consensus currently exists on 
detailed decision-making algorithms for extended time, Phillips (1994) offered five questions 
that should be asked before providing any accommodation. The questions, which follow, raise 
issues that remain salient a quarter of a century later: 

1. Will format changes or alterations in testing conditions change the skill being measured? 
2. Will the scores of examinees tested under standard conditions have a different meaning 

than scores for examinees tested with the requested accommodation? 
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3. Would nondisabled examinees benefit if allowed the same accommodation? 
4. Does the disabled examinee have any capability for adapting to standard test administra-

tion conditions? 
5. Is the disability evidence or testing accommodations policy based on procedures with 

doubtful validity and reliability? (Phillips, 1994, p. 104) 

The present chapter will focus on the first two of these questions, presenting recent research 
results and analysis (for an earlier review of research on all five questions, see Lovett, 2010). 
Phillips’s second—and narrower—question is addressed first: do test scores obtained under 
extended time conditions have a different meaning than those obtained under standard time 
conditions? The focus here is on studies examining the predictive validity of test scores obtained 
with and without extended time accommodations. The chapter then turns to Phillips’s first 
question: do time extensions change the nature of the skill(s) being measured by a test in ways 
that are problematic, leading to construct underrepresentation for students receiving accom-
modations and to construct-irrelevant variance given the varying time allotments for different 
examinees? Even if the meaning of the score changes, does that imply that the test is no longer 
measuring the construct adequately? This broader question is examined by sampling results 
from a variety of different types of relevant research. The chapter concludes with recommen-
dations for making decisions about extended time accommodations based on the research 
reviewed. 

Extended Time and Score Meaning 

Investigations of the effect of accommodations on score meaning have utilized a wide variety 
of techniques, including factor analysis and differential item functioning. However, predictive 
validity is often “where the rubber meets the road”; score users need to know whether an exam-
inee’s score has the same probability distribution with regard to a predicted outcome regardless 
of whether or not the score was obtained with accommodations. This is all the more important 
now that most if not all testing agencies have stopped “flagging” or “annotating” scores to indi-
cate that the test was administered in a nonstandard fashion (see, e.g., Sireci, 2005). 

Admission tests are an obvious area where predictive validity is paramount. Searcy, Dowd, 
Hughes, Baldwin, and Pigg (2015) conducted an impressive longitudinal predictive validity 
study of students who took the Medical College Admission Test (MCAT) with either a stand-
ard time limit (n = 76,262) or extended time accommodations (n = 449). These investigators 
obtained data from two sets of outcomes: performance on various parts of the United States 
Medical Licensing Examination (USMLE) and graduation from medical school. The two groups 
of MCAT examinees obtained almost identical average MCAT scores (e.g., for the total MCAT 
scores, d = 0.05), suggesting that if the predictive functions were the same, the two groups’ 
outcomes should also be the same. However, the examinees who obtained MCAT scores with 
additional time failed the USMLE at far higher rates (about three times as often) and failed to 
graduate from medical school at similarly higher rates. For instance, 6% of students who took 
the MCAT under standard time conditions failed Step 1 of the USMLE on their first attempt; 
17.9% of students who received extended time on the MCAT failed Step 1 on their first attempt. 
Differences in graduation rates for standard-time and extended-time examinees are even more 
striking: 32.8% of extended-time students failed to graduate from medical school in 4 years 
compared to 13.9% of standard-time students. MCAT scores are clearly not the only factor 
considered in medical school admissions; as such, Searcy et al. also investigated a model that 
used both MCAT scores and undergraduate GPA as predictors and found that there was still 
significant overprediction of USMLE performance and medical school graduation probability 
among those students who had received extended time accommodations on the MCAT. 
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The Law School Admission Council (LSAC) has conducted several similar studies. Sweeney, 
Lauth, Trierweiler, and Pashley (2017) examined the performance of 121,378 law students who 
had taken the Law School Admission Test (LSAT) without accommodations and 880 students 
who had received extended time. As with the MCAT, the two groups’ LSAT performance was 
almost identical (d = 0.05), but following their first year in law school, the group who received 
extended time obtained an average grade that was almost half of a standard deviation 
(d = 0.43) lower than the unaccommodated group. Sweeney et al. also found that even when 
LSAT scores and students’ undergraduate GPAs were combined into an index to predict law 
school performance, the index overpredicted performance of students who received extended 
time on the LSAT, with residuals between 3 and 4 points on a scale with a standard deviation 
of 10. Interestingly, Sweeney et al. also ran regression models comparing nonaccommodated 
students to those who received accommodations other than extended time and found that the 
latter group’s law school performance was actually underestimated (although with a residual 
of only about 1 point). Although only one outcome—first-year law school performance—was 
examined in this study, the LSAC has replicated their results across multiple samples and 
cohort groups (see Amodeo, Marcus, Thornton, & Pashley, 2009; Thornton, Reese, Pashley, 
& Dalessandro, 2001, for earlier work with similar findings). The authors of all three studies 
concluded that LSAT scores obtained with extended time were simply not comparable to those 
obtained under standard time allotments. 

Other studies have been conducted with college admissions tests. For instance, Cahalan, 
Mandinach, and Camara (2002) found that SAT scores of students with learning disabilities 
receiving extended time accommodations were substantially weaker predictors of first-year 
college GPA than were the scores of students who received no accommodations (and who 
generally had no disabilities). These investigators also found that SAT scores obtained with 
extended time overpredicted college GPA for male—but not female—students. Including high 
school GPA in regression models corrected the overprediction for male students, but it caused 
underprediction of female students’ college performance. In this study, then, extended time 
accommodations appeared to further complicate the problem of differential predictive validity 
by gender that other research has noted (cf. Zwick, 2006). 

Admittedly, these predictive validity studies generally have two limitations. First, they largely 
confound disability status and time allotment, making it unclear if the differences in prediction 
functions are due to the extended time per se or due to the nature of the students’ disabili-
ties. (It would be preferable, albeit impractical, to also examine the performance of nondisabled 
students with accommodations and students with disabilities who do not receive accommoda-
tions.) Second, the studies generally do not record whether students receive accommodations on 
the outcome measures (e.g., law school exams, or the USMLE). Despite these limitations, score 
users should know that scores from students who receive extended time accommodations often 
have a different meaning from other scores, even if the reasons for this are not entirely clear. 

Extended Time and Construct Representation 

Time limits during tests are often considered to be a source of construct-irrelevant vari-
ance (e.g., Lu & Sireci, 2007), because some of the variance in scores will reflect variability 
in the proportion of the test that different examinees have an opportunity to reach. In some 
situations, then, extended time accommodations reduce that construct-irrelevant variance by 
allowing additional time for examinees who need it and ensuring that all examinees have the 
opportunity to complete the test. Of course, an assumption lurking behind that analysis is 
that the speed with which examinees complete the test is entirely irrelevant to their skill level. 
Psychometricians and disability advocates often make this assumption after noting obvious 
exceptions where speed is part of the intended construct to be measured (e.g., a typing test). 
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But is the importance of speed really limited to such unusual tests? Or could variability in 
examinees’ test-taking speed actually be a source of construct-relevant variance? To put this in 
a legal context, when is the extension of a time limit a “fundamental alteration” to a test that 
is not a reasonable accommodation under the Americans with Disabilities Act (Weber, 2010)? 

Evidence relevant to answering these questions is spread out widely across different areas of 
research. Before reviewing that evidence, two red herrings are worth noting; they are irrelevant 
research findings that have led some scholars (e.g., Jolly-Ryan, 2007; Kelman & Lester, 1997) to 
doubt the value of speed. First, on any particular test taken by a group of examinees, there often is 
no substantial linear relationship between how long an examinee takes to complete the test and the 
accuracy of his or her answers (e.g., Lovett, Lewandowski, & Potts, 2017). However, this research 
finding only implies that there are roughly as many slow-and-accurate examinees as there are fast-
and-accurate examinees. The finding leaves unanswered the question of whether test users would 
want to rank the fast-and-accurate examinee higher (in skill, competence, etc.) than the slow-but-
accurate examinee. A second red herring is that a given examinee will show a greater tendency 
toward making errors when given a tighter time limit, a phenomenon known as the speed-accuracy 
tradeoff (e.g., Heitz, 2014). However, examinees still vary in how much time they need to achieve 
a given level of performance (accuracy), again raising the question of whether it is valuable to be 
accurate under a tight time limit versus only under a generous one. These two common findings, 
then, raise more questions than they answer about the relevance of speed with respect to skill level. 

Direct Evidence of the Construct Relevance of Speed 

Although the question of the value of speed is a complex one, at times it has been addressed 
by very clear and direct evidence. One example of such evidence concerns the licensing 
examination that is taken by osteopathic medical graduates (those with a DO degree) who 
want to practice medicine in the United States. Like most standardized licensure exams, the 
Comprehensive Osteopathic Medical Licensure Examination of the United States (COMLEX-
USA) exam series is administered with strict time limits; if medical students and resident 
physicians with diagnosed disabilities need additional time to complete an exam, they sub-
mit an application for such an accommodation to the National Board of Osteopathic Medical 
Examiners (NBOME). On one hand, the NBOME has a duty to make its exams accessible to 
examinees with disabilities; on the other hand, the NBOME has a mission to protect the public 
by maintaining high standards of competence for osteopathic physicians. 

NBOME (2013) surveyed 290 faculty members at osteopathic medical schools about 
“knowledge fluency,” which was further defined as the “ability to recall and apply informa-
tion accurately and without hesitation” (emphasis added). Over 93% of respondents agreed 
that “Knowledge fluency is an osteopathic professional standard of competency critical to the 
NBOME mission to ‘protect the public’.” Consistent with this valuing of knowledge fluency, 
over 85% of respondents disagreed with the proposal to remove time limits from COMLEX 
exams. Almost half of respondents went further and agreed with proposals to report the time 
that each examinee took to complete each exam, so as to provide further information about 
knowledge fluency. Based on responses to these and similar questions, the NBOME added the 
following statement to its Bulletin of Information for the COMLEX exams: 

Each COMLEX-USA examination is administered in a standardized, time-measured 
environment, as the ability to recall, interpret, process, and apply clinical knowledge and 
skills without hesitation and in a fluid manner (“knowledge fluency”) is fundamental to 
a generalist osteopathic physician’s competence to practice osteopathic medicine and 
therefore is one of the fundamental competencies and skills the COMLEX-USA exami-
nations assess. (NBOME, 2017, p. 5). 
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It is perhaps worth noting that most COMLEX items involve patient scenarios in which exam-
inees must assess a situation and determine an appropriate diagnostic test, a likely diagnosis, 
or a useful treatment. Therefore, the cognitive processes used in responding to COMLEX 
items are likely to overlap substantially with the cognitive processes used by physicians 
in practice, and if speed is relevant to real-world practice, it is likely to be relevant on the 
COMLEX as well. 

One of the COMLEX exams—Level 2-PE—involves demonstrating relevant clinical skills 
while interacting with simulated patients (i.e., actors who are trained to simulate having differ-
ent medical problems). After careful consideration, the NBOME determined that the ability to 
perform these skills under time pressure was a core competency; as such, the NBOME simply 
will not grant additional time to complete this portion of the exam sequence (NBOME, n.d.). 
However, examinees may request additional break time between the different patients or addi-
tional time to electronically document their findings from the patient encounters (which is a 
required component of the test). This decision demonstrates how accommodations policies 
can be tailored to specific aspects of exams to ensure construct validity, and it further shows the 
relevance of speed to work in the profession of osteopathic medicine. 

Another piece of direct evidence comes from the field of law. Bar exams are timed, and an 
increasing number of bar examinees request extended time for disability conditions, raising 
the question of whether speed is part of the construct that the bar exam is designed to measure. 
Millman (1994, cited in Mehrens, Millman, & Sackett, 1994) studied this question with regard 
to the New York bar exam by surveying over 200 New York attorneys about “how important 
for competent lawyering it is” to “be able to read, think, and write under tight time constraints” 
(p. 43). Questions were posed for each of those three behaviors (reading, thinking, and writ-
ing) and for each of nine separate skills that the New York bar exam sought to measure (e.g., 
identifying and formulating legal issues, generating alternative solutions and strategies, etc.). 
The vast majority of respondents felt that it was at least somewhat important to be able to read 
and think under tight time constraints when performing any of the nine skills, and at least 60% 
of respondents felt the same way with regard to writing under tight time constraints. Many 
respondents (between 20% and 71%) reported that it was very important to be able to perform 
those activities under tight time constraints. 

The National Council of Bar Examiners (NCBE) provided updated support for Millman’s 
findings in its most recent job analysis of new attorneys. As part of the full job analysis, more 
than 1,600 attorneys who had been licensed for between 1 and 3 years were surveyed about the 
skills needed by newly practicing attorneys (i.e., those who were relatively close in time to hav-
ing taken the bar exam; Case, 2013; Nettles & Hellrung, 2012). Respondents were asked to use 
a 0–4 scale to rate the importance of a variety of skills for performing well as a newly licensed 
lawyer. “Working within established time constraints” was rated with an average importance 
of 3.44, which scales between “quite significant” (3) and “extremely significant” (4). Moreover, 
this average rating was identical to the average rating for “interpersonal skills” and higher 
than that of many other traits and skills, such as “diligence” (3.26), “advocacy” (3.24), and 
“interviewing” (2.92). If a bar exam—or, for that matter, a law school exam—is designed at 
least in part to elicit skills relevant to actual legal practice, speed would seem to be a legitimate 
part of the construct being measured (see also Pardy, 2016, for a law professor’s argument that 
his exams are designed in part to measure speed). 

As these examples illustrate, direct evidence of the construct relevance of speed is avail-
able from subject matter experts and individuals who must actually demonstrate the skills that 
tests are designed to measure. Such evidence should be obtained anew for each particular test 
because it is always specific to an individual test with a particular purpose. However, obtain-
ing such evidence does not always require large-scale surveys or other expensive, intensive 
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data collection techniques. For instance, in many educational settings, teachers, professors, 
and administrators have substantial authority over the curriculum and over determining which 
skills are important. These professionals, especially when aided by guided reflection, can deter-
mine whether speed, fluency, automaticity, and other time-related aspects of a skill are impor-
tant and expected outcomes in their particular settings. The key issue is that test designers 
and test score users at every level should pause to consider whether there is any desirability to 
processing the information in test items and responding to them within a limited span of time. 

Indirect Evidence of the Construct Relevance of Speed 

In addition to direct evidence from particular settings, psychological theory and research can 
address the issue of the construct relevance of speed in a more general way. For instance, in 
behavioral psychology, skill development has long been viewed as happening in a series of 
steps or stages where accuracy (performing a response correctly) comes first, and then comes 
fluency (performing the behavior accurately and quickly; e.g., Haring, Lovitt, Eaton, & Hansen, 
1978). Research has repeatedly shown the difference between mere accuracy and deft fluency in 
skills; the time needed to perform a response correctly is an indicator of the depth of a learner’s 
competence. Not only is fluency needed before learners can move on to the generalization stage 
in skill development, which allows them to infer how to solve related problems not encoun-
tered before (Martens & Witt, 2004), but fluency is also needed for retention of skills over 
time (Singer-Dudek & Greer, 2005). Obviously, generalization and retention are at the heart of 
validity arguments for most tests; based on an examinee’s responses to a relatively small sample 
of test item stimuli, test users want to make inferences about how the examinees will respond 
to similar but distinct stimuli (generalization) at some time point after the exam is over (reten-
tion). Another bonus of fluency is endurance; learners who are able to perform responses on 
tests fluently can persist in making those responses for longer periods of time without fatigue 
or a decline in accuracy (Binder, Haughton, & Van Eyk, 1990). In many industrial assessment 
contexts, a selection test provides a brief work sample for the examinee to respond to, and so 
the examinee’s fluency would index her/his ability to persist in performing that work for an 
entire day. Similar examples are found in childhood education; measuring a child’s reading 
fluency is a better indicator (than mere accuracy) of that child’s ability to persist in reading 
through a lengthy passage or an entire book chapter without tiring and giving up. In sum, then, 
fluency—which can only be measured with time limits—is an essential component of high skill 
levels (for further discussion, see Binder, 1996; Kubina & Morrison, 2000). 

Theory and research in cognitive psychology are also relevant; in that field, skill development 
is studied as well, but it is done so from a perspective interested in the internal mental processes 
that change as learners’ skills improve. Cognitive psychologists who study expertise consist-
ently note that, when compared to novices, experts at a skill are both faster and more accurate 
(Anderson, 2000). Therefore, when we compare across examinees who differ in experience or 
expertise, or we follow the same person as she/he acquires experience toward expertise, we find 
that speed and accuracy both improve together, rather than one virtue being sacrificed for the 
other. For instance, in the domain of medical practice, a classic study compared five groups 
(junior and senior medical students, residents, general practitioners, and dermatologists) on 
their ability to identify various skin lesions; as expertise increased, the proportion of correct 
answers increased in a linear fashion, but the amount of time taken to reach correct answers 
decreased (Norman, Rosenthal, Brooks, Allen, & Muzzin, 1989). More recently, Nodine et al. 
(1999) found the same result in the context of judgments of breast lesions based on mammog-
raphy images. As an explanation of these and similar findings, Kellman (2013) noted that, com-
pared to novices, experts (1) focus selectively on relevant information when solving problems 
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and (2) encode information in terms of larger and more deeply meaningful units, increasing 
efficiency and speed. 

Time pressure, then, tends to allow examinees with deeper knowledge to shine. Woods, 
Howey, Brooks, and Norman (2006) further tested this claim by teaching undergraduate col-
lege students information about various diseases. (To control for any prior medical knowl-
edge, the diseases were entirely fictitious.) One group of students was taught only the signs and 
symptoms for each disease, so as to be able to recognize each one algorithmically (superficial 
knowledge). A second group of students was taught the signs and symptoms for each disease 
along with causal explanations of how the diseases worked (deep knowledge). When presented 
with new cases of people to diagnose, the students with deep knowledge only outperformed 
those with superficial knowledge under time-pressured conditions, suggesting that the stu-
dents with superior understanding showed greater fluency but not greater (untimed) accuracy. 

At times, experts may even outperform themselves when placed under time pressure, 
directly contradicting the speed-accuracy tradeoff at a within-person level. Beilock, Bertenthal, 
McCoy, and Carr (2004) examined putting performance by novice and expert golfers under 
timed and untimed conditions. (All golfers were undergraduate students, and the “experts” 
needed to have 2 years of high school golf experience or a handicap below 8.) Novices showed 
the expected speed-accuracy tradeoff, improving their performance under untimed conditions, 
but experts improved significantly under time pressure. Although putting is obviously different 
from many of the skills measured by typical tests in educational settings, Beilock et al.’s pro-
vocative results should challenge casual assumptions that time pressure has a negative effect on 
performance for all examinees. 

Space limitations preclude detailed discussion of additional work showing the relationship 
between time pressure, level of skill, and examinee speed and by extension the relationship 
between increased expertise and the efficiency of problem-solving strategies. Whether involv-
ing simple arithmetic questions (Campbell & Austin, 2002) or college physics problems (Lasry, 
Watkins, Mazur, & Ibrahim, 2013), and whether using behavioral measures of skill (Furlan, 
Agnoli, & Reyna, 2016) or neuroscience tools examining activation of parts of the brain associ-
ated with different cognitive processes (Price, Mazzocco, & Ansari, 2013), there is ample evi-
dence that speeded problem-solving forces examinees to rely on skills associated with deeper 
levels of competence. 

Implications for Extended Time Accommodations Policies 

If time extensions have the potential to alter the meaning of scores and prevent tests from 
measuring what they are designed to measure, are extended time accommodations necessarily 
inappropriate? In a word, no. However, the research reviewed in this chapter suggests a need 
for caution and care when making decisions about altering the time limits for some examinees 
and not others. A comprehensive discussion of accommodation decision-making procedures 
is beyond the scope of the present chapter and must take into consideration laws and regula-
tions, the ability of students with disabilities to adapt to standard conditions, and the complex 
issue of just how much additional time is needed (for coverage of all of these topics, see Lovett 
& Lewandowski, 2015). However, the rest of this section provides a brief overview of a psycho-
metric framework for how decisions ideally would be made. 

A first step toward appropriate decisions involves distinguishing between two sets of skills 
needed to succeed on a test: target skills, which the test is designed to measure, and access 
skills, which are assumed to be present in adequate levels in all examinees to allow for mean-
ingful participation in the test (Ketterlin-Geller, 2008). For instance, doing well on a typical 
exam in a college anthropology course requires knowledge of the anthropology content on the 
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test (a target skill) but also adequate vision (an access skill). Variance in target skills leads to 
construct-relevant variance in test scores; variance in access skills leads to construct-irrelevant 
variance in test scores. The presence of examinees with disability conditions can increase both 
types of variance, because a disability condition may cause an examinee to have low levels of 
target skills, access skills, or both, depending on what a particular test is designed to measure. 

Test developers, in consultation with subject matter experts and test users, should carefully 
consider whether any trait that might vary with test-taking speed (e.g., fluency, automaticity, 
using problem-solving processes requiring deep competence) is a target skill. If after thought-
ful and searching consideration there really is no place for speed-related traits in the target skill 
set, the time limits should be made very liberal and examinees should be able to request even 
more additional time (up to some logistically practical amount) without a need for extensive 
review of disability documentation. This is consistent with principles of “universal design” pro-
cedures for increasing accessibility of assessments for all examinees (Ketterlin-Geller, 2005). 
However, the research reviewed in this chapter suggests that speed-related traits often will be 
(or should be) among the test’s target skills. What then? 

Disability experts have a key role in determining whether a particular examinee has deficits 
in access skills that will lead to a need for accommodations, including extended time. At inde-
pendent testing agencies, higher education institutions, and private K-12 schools, disability 
experts (full-time internal employees and/or contracted disability consultants) who have (a) 
detailed knowledge of the diagnostic assessment procedures used to identify disability condi-
tions as well as (b) knowledge of the task requirements of the tests for which accommodations 
are being requested should review disability documentation submitted by examinees request-
ing additional time. A similar process exists in public K-12 schools, where clinically trained 
professionals conduct a special education evaluation and then review the data with a larger set 
of educational and administrative professionals. The professionals should determine if a legiti-
mate disability condition (e.g., a learning disability) is present (based on whether the submitted 
data shows that official diagnostic criteria for the condition are met), and if so, the evidence 
for deficits in access skills should be carefully scrutinized. If the examinee has a deficit in one 
or more access skills, accommodations then may be appropriate. In particular, if the examinee 
has a deficit in a speed-related access skill, extended time accommodations may be appropriate. 

Consider the example of Susan, a 21-year-old college student with a diagnosis of a learn-
ing disability in reading who is applying for accommodations on a test used for admission to 
graduate/professional schools. Susan might submit documentation that includes reports from 
psychological evaluations, transcripts from college and high school, score reports from college 
admissions tests, information about when and where she has received accommodations before, 
and a personal statement describing how her learning disability affects her life, including her 
educational and test-taking experiences. A disability professional can determine whether Susan 
has provided sufficient evidence of actually meeting the official diagnostic criteria for a learn-
ing disability in reading and then can go on to search for evidence of deficits in relevant access 
skills. Perhaps Susan has consistently obtained below-average scores on norm-referenced diag-
nostic tests measuring her reading fluency and timed reading comprehension skills, and she 
also performed at the 10th percentile on the SAT critical reading section without accommoda-
tions but at the 40th percentile on the ACT reading section with extended time; this generally 
would be evidence consistent with a need for additional time to access exams, although the 
disability professional should always take all of the documentation into account.2 

Variations in Susan’s case show some of the complexities of accommodations decision-
making. If Susan were requesting accommodations on a test where reading speed or reading 
fluency were part of the target skill set, her deficits in these skills would not make extended time 
appropriate; a student who had orthopedic problems leading to slowed motor speed (an access 
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skill rather than a target skill) still might require extended time on such a test. If Susan showed 
no deficits in timed reading skills but had evidence suggesting that she takes longer than most 
people to retrieve information from memory and apply that information to problem-solving, 
extended time might be inappropriate because a test’s target skills might include being able to 
recall and apply information under time-limited conditions. In short, it is difficult to describe 
how decisions should be made without detailed information about the examinee’s disability 
evidence and similarly detailed information about the target skills and access skills of the exam 
in question. 

Conclusions 

Although the term “standardized test” is used in multiple ways, it originates in the understand-
ing that tests should be administered in the same way to different examinees so that resulting 
score variability is attributable to variability in examinee skill levels and not administration 
procedures. Research shows that even slight changes in administration conditions can some-
times affect scores, and altering time limits often will affect scores as was reviewed above (Lee, 
Reynolds, & Wilson, 2003). At the same time, some examinees have disability conditions that 
will prevent them from meaningfully and fairly participating in a test unless some aspect of the 
administration procedures is altered. Due to these two opposing considerations—standardiza-
tion and the ensuring of access—testing entities should be hesitant to alter time limits, unless 
there is evidence that a particular examinee needs such an alteration due to deficits in access 
skills. “Evidence” is the key word here. Rather than assuming that a test does not intend to 
measure anything that is speed-related or assuming that because an examinee reports a disabil-
ity condition she/he meets the criteria for the condition and requires a time extension, ideally 
evidence should be sought at every point where decisions are made. 

Notes 
1 The author wishes to thank Lawrence Lewandowski for comments on a draft of the present chapter, as well as 

Cynthia Searcy and Marc Kroopnick for suggestions on the chapter’s coverage and structure, and discussion of their 
own relevant research. 

2  Just how much extended time to provide to Susan would also depend on a complete review of her disability docu-
mentation as well as information about the test that she is about to take. In the United States, examinees are most 
commonly granted 50% or 100% extended time, although other countries routinely grant 33%, 25%, or even just 
10 additional minutes per hour of testing (about 17%). The few empirical studies comparing different amounts of 
extended time suggest that we in the United States may be overaccommodating even many students with genuine 
disabilities, allowing these students to complete (access) more test items with accommodations than nondisabled 
students can complete under standard time; see Lovett and Lewandowski (2015) for discussion. 
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5 
Relationship between Testing Time

and Testing Outcomes 
Brent Bridgeman 

In many testing situations, the primary reasons for imposing time limits are administrative 
convenience and reduced cost. In these cases, whether test takers can work quickly as well as 
accurately is not assumed to be a part of the construct that is being assessed, and the impact 
of the time limit on scores would be considered a source of construct-irrelevant variance. 
Alternatively, if the ability to work both quickly and accurately is part of the construct being 
assessed (e.g., on an educational or psychological test), it is to be expected that time limits can 
and should impact test scores. Descriptions of the constructs to be assessed by high-stakes 
admissions tests such as the SAT®, ACT®, and Graduate Record Examinations General Test 
(GRE®) suggest that speed is at best a minimal part of the construct being assessed. The claim 
for the current version of the SAT Reading Test is as follows: 

The redesigned SAT’s Reading Test is intended to collect evidence in support of a broad 
claim about student performance: Students can demonstrate college and career readiness 
proficiency in reading and comprehending a broad range of high-quality, appropriately 
challenging literary and informational texts in the content areas of U.S. and world litera-
ture, history/social studies, and science (College Board, 2018a, pp. 41). 

For the SAT Math Test, the claim is: 

The redesigned SAT’s Math Test is intended to collect evidence in support of the follow-
ing claim about student performance: Students have fluency with, understanding of, and 
the ability to apply the mathematical concepts, skills, and practices that are most strongly 
prerequisite and central to their ability to progress through a range of college courses, 
career training, and career opportunities (College Board, 2018a, pp. 132). 

Although the word “fluency” in the Math claim might suggest a speed component, it is not 
addressed in any of the subsequent descriptions. 

Similarly, the ACT Technical Manual says very little about the importance of rapid respond-
ing, but in the section on item tryouts it indicates that, “The time limits for the tryout units per-
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mit the majority of students to respond to all items.” This suggests that speed of responding is 
not a part of the intended construct (ACT, 2019). A description of the version of the GRE that 
was introduced in 2011 notes, “… it is specified that no test section should be delivered under 
speeded conditions” (Robin & Steffen, 2014). Given that (1) speed is not part of the intended 
construct for high-stakes admissions tests but that (2) these tests have time limits such that at 
least some students struggle to finish within the time allowed for the test, it is critical for test 
publishers to establish the effects of the time limits on various item statistics and most crucially 
on students’ scores. 

This chapter focuses primarily on the effects of time limits on admissions tests and K-12 
accountability assessments in which rapid responding is not part of the construct that the 
test is intended to measure. Different issues can be at play in licensing tests in which speed of 
responding can be a legitimate issue (e.g., would you want to give a pilot’s license to someone 
who came up with the appropriate action in an emergency situation only after taking a few 
minutes to respond?), and such tests are not covered here. The complex issues in a medical 
licensing context also are not addressed here, but see Chapter 6 for a discussion of the rel-
evant issues in this context. Similarly, speededness concerns for essay tests are discussed in 
Chapter 7. 

The organization of this chapter is essentially chronological. It begins in the 1940s when 
completion statistics were the primary tool for addressing speededness, moves on to the 1970s, 
when concerns about group fairness with speeded tests became a major issue, and then pro-
ceeds to discuss the new speededness issues that emerged with the introduction of computer-
ized adaptive tests (CATs). Issues with the speededness of state accountability assessments are 
then briefly discussed. Finally, some suggestions for future research efforts are presented. 

Early Research on the Impact of Time Limits on Scores 

Research from the 1940s and 1950s 

Educational Testing Service (ETS) was founded in 1947, and one of the first research reports 
that was produced was entitled Item-Analysis Data from an Experimental Study of the Effects 
on Item-Analysis Data of Changing Item Placement and Test Time Limit (Mollenkopf, 1949). 
The study reached the wholly unremarkable conclusion that items in speeded tests are more 
difficult (i.e., have a lower proportion correct) compared to the difficulty for those same items 
in unspeeded test administrations. Specifically, the author concluded, “The proportion right of 
those attempting the item, the Delta index, and the biserial r were all found to have undesir-
able characteristics for items appearing late in a speeded test.” Although today this conclusion 
is obvious, such a study was likely important in the early days of large-scale testing; at that 
time, there may have been a belief by some that parameters such as item difficulty were inher-
ent in items in specific populations rather than dependent on where in the test that item was 
placed. This issue of parameter determination and item placement remains equally relevant 
today and is a concern because the incorrect specification of item difficulty can affect final 
examinee scores. 

Another relatively early ETS research report (Lord, 1954) explored the impact of speed 
factors on test validity. Tests of vocabulary, spatial relations, and arithmetic reasoning were 
administered to students at the U.S. Naval Academy. Included in the battery were speeded 
and unspeeded—but otherwise parallel—tests of vocabulary, spatial ability, and arithmetic 
reasoning. The unspeeded vocabulary test included 15 items in 7 minutes, while the most 
highly speeded version had 75 items in 5 minutes. The percent of examinees finishing was 
97% for the unspeeded version and 2% for the speeded version, but Lord pointed out that 
these finishers likely included rapid random guessers. (Note that with modern computer 
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administrations, such rapid random responding can be accurately tracked; this technology 
was not available in 1954.) The speeded and unspeeded tests were analyzed together in a 
maximum-likelihood factor analysis and ten factors were extracted. Most factors did not 
have a speed component (e.g., unspeeded tests of verbal reasoning and mathematical reason-
ing), but factors containing the speeded verbal tests and speeded perceptual tests were identi-
fied. Small positive correlations were found between the speed factors and grades, suggesting 
that speededness could produce a small improvement in predictive validity of grades in the 
Naval Academy. 

Swineford Guidelines 

In 1949, Francis Swineford, a psychometrician at ETS, published a statistical report on charac-
teristics of the Law School Admissions Test (LSAT; Swineford, 1949). Table 5.1 in that report 
presented information on the speededness of the test sections with the table description stat-
ing, “It is generally assumed that timing is satisfactory when it allows about 80 percent of the 
candidates to reach the last item.” Although this 80% guideline later would be incorporated 
into what became known as the Swineford guidelines, it is worth noting that Swineford did 
not invent this guideline; it was already “generally assumed” in 1949. Of the ten sections on 
the LSAT at the time, only five met the 80% guideline, and on two of the sections fewer than 
half of the examinees reached the last item. This led Swineford to conclude that, “it is clear 
that two sections are much too highly speeded.” Although these sections were clearly speeded, 
there could not be any assurance that sections that were completed were unspeeded; the score 
on each section simply was the number correct, and there was no correction for guessing. 
Completion would not be a meaningful indicator, because testwise examinees would randomly 
guess to complete a section before allowing time to expire. It therefore appears that LSAT test 
takers in 1949 either were not testwise or reflected cultural norms about the appropriateness of 
random guessing or of responding to an item if they didn’t have a good idea of the answer. This 
assumption that test speededness could be assessed through simple inspection of completion 
rates permeated much of the early research on test speededness and psychometric tools that 
relied on estimates of test speededness. 

Gulliksen provided a method for estimating the reliability of speeded tests given “some rea-
sonable approximation of the ‘number of items’ K in the speeded part of the test …” (Gulliksen, 
1950). But there is no way to determine what the “speeded part of the test” actually is. Some 
might naively assume that the speeded part of the test is represented just by the items near 
the end of the test. Indeed, this might have been a reasonable assumption in 1950 when most 
students were not coached on effective strategies for dealing with tests with strict time limits. 
Students would simply start with the first item and continue answering items in order until 
time ran out. Lord also made this assumption when he published a Research Bulletin entitled A 
Method for Estimating from Speeded Test Data the Power Condition Scores and Item Difficulties 
(Lord, 1950). In order to use this method, Lord noted, “It is assumed that all items are scored 0 or 1 

Table 5.1 Final scores of examinees with identical ability estimates on item 29 (Theta = 1.0) by 
amount of time available to complete the section 

Time to Complete 
GRE-A GRE-Q GRE-V 

Section n M SD M SD M SD 

More time 400 664 32 632 108 479 100 
Less time 419 639 43 631 100 520 97 
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(there is no correction for guessing), that the examinee reads the items in the order in which 
they are administered, and that he does not attempt items that he has not read.” Today, we 
could say that Lord’s method would work only if examinees behaved irrationally. 

This line of thinking continued in 1956 when Swineford made a more formal declaration 
of speededness guidelines in the Technical Manual for Uses of Test Analyses (Swineford, 1956). 
This manual asserted, 

A test may be considered unspeeded if: 

1. virtually all candidates reach 75% of the items, and 
2. at least 80% of the candidates respond to the last item. 

Note that the Swineford guidelines make sense only if examinees behave in a way that rational 
examinees in the 21st century would not be expected to behave. Examinees now are given 
explicit advice that runs counter to the Swineford, Gulliksen, or Lord assumptions that stu-
dents will seriously consider each item in the order presented, continue until time runs out, 
make no random guesses at the end of the test, and not revisit any previously seen items. In 
advice from the College Board, examinees are advised to not just proceed in order from the first 
item to the last. Specifically, 

Don’t dwell on questions that stump you. Circle ones you decide to skip so that you can return 
to them quickly later. Remember that a question you answer easily and quickly is worth as 
much as a question that you struggle with or take a lot of time on. (College Board, 2018b) 

The College Board guidelines go on to say, 

Remember that there’s no penalty for guessing, so you should answer all questions before time 
is up. When you’re not sure of an answer, make an educated guess. (College Board, 2018b) 

Therefore, if used in the 21st century, the Swineford guidelines could make a truly speeded 
test look unspeeded if examinees skip early items (hoping to return to them later), answer 
the last item, and then time runs out before they can return to the skipped items. By conven-
tional definition, they have reached the last item in the test, which therefore is declared to be 
unspeeded. The opposite problem also can exist: Use of the Swineford guidelines can make an 
unspeeded test that has a correction for guessing appear to be speeded because examinees may 
intentionally omit the last few difficult items at the end of the test. On a test with no correction 
for guessing (which describes almost all tests now), even when 100% of the examinees answer 
100% of the questions, the test could be speeded or unspeeded (i.e., scores might have been 
higher if examinees had more time). Given the ambiguity that results when attempting to assess 
the speededness of a test from looking exclusively at completion statistics, random-assignment 
experimental studies may be needed to adequately estimate the speededness of any test. When 
Lord (1954) attempted to assess the contribution of speed factors to predicting grades in aca-
demic courses, he noted, “The exact degree of speededness that will result in the highest validity 
for the admissions examinations can only be determined by an experimental study of the admis-
sions examinations themselves.” By the 1970s and beyond, experimental studies to determine 
the impact of speededness on test scores became more common, although some version of the 
Swineford assumptions continued to be used well into the 21st century (e.g., Shao, Li, & Cheng, 
2015). As experimental methods that did not rely exclusively on test completion statistics became 
more common, focus shifted to how these methods could be used to address the most pressing 
concerns related to test speededness; of particular concern was investigating how speededness 
might differentially impact the performance of minority group members. 
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Differential Impact of Speededness on Examinee Subgroups 

The 1970s brought increased interest in investigating score differences across gender and 
ethnic groups and in identifying test characteristics—such as speededness—that might be 
related to subgroup score differences. In 1972, a study by Evans and Reilly—entitled A Study 
of Speededness as a Source of Test Bias—sought to determine whether time limits on the Law 
School Admissions Test (LSAT) were differentially impacting Black students. They reduced 
the number of items to produce an experimental form that was less speeded than an experi-
mental form with the standard time limit and randomly distributed both forms to students 
in regular test centers and in special centers that had been established to serve colleges whose 
students were predominantly Black. In these special centers, the usual testing fee was waived; 
the authors referred to the students in these centers as “fee-free candidates.” Within these fee-
free centers, 230 students received the speeded form and 235 received the less-speeded form. 
In the regular centers, approximately 5,000 students took each form. The experimental forms 
were administered as part of an operational administration, but the scores on these forms were 
separate from the operational scores. Because students with both the speeded and unspeeded 
forms needed to be tested in the same room, the time limit had to be the same for all students 
(40 minutes). Again, speededness was manipulated by reducing the number of questions to 
create a less-speeded form: The standard form had four reading passages with 35 reading com-
prehension questions (eight or nine questions per passage), and the less-speeded form had 
three passages and a total of 27 questions. The dependent variable was the score on the 
27 questions that were common to both forms. The study authors did not ask the participants 
to explicitly state their ethnicities, but nearly all of the “fee-free candidates” were Black and 
only a very small fraction of the students in the regular centers were from minority groups. 
Although the authors did not need to rely on applying the Swineford guidelines to answer 
their research question, they nevertheless did observe that with the standard timing fewer than 
70% of the fee-free candidates answered the last question compared to 90% of the students in 
the regular test centers. Because the LSAT had no correction for guessing, any well-coached 
student should complete 100% of the test; the results therefore suggest that in 1972 most Black 
students were not well coached. In the experimental analysis of the test scores (not dependent 
on applying the Swineford guidelines), students from regular test centers scored about 22 scale 
score points higher on the less-speeded form (with a scaled score standard deviation of about 100) 
and students from the fee-free centers scored about 33 scale score points higher on the less-
speeded form. Although all students gained from extended time, the gain for the fee-free 
candidates was not significantly larger than the gain for the regular candidates; the authors 
therefore concluded, “reducing speededness is not more beneficial (in terms of increasing the 
number of items answered correctly) to fee-free than to regular center candidates.” The authors 
were accepting the null hypothesis (rather than failing to reject it), but the sample size was 
sufficiently large that it was reasonable to assume that whatever differential gain existed from 
reducing speededness was likely to be trivial. Furthermore, because students in the fee-free 
centers were less likely to randomly guess as they were running out of time on the speeded 
form, the gain from using the unspeeded form was slightly overstated for these students. 

Wild, Durso, and Rubin (1982) used another approach to evaluate differential speededness 
for women and minorities (Black/White only) on the GRE. Rather than having forms with dif-
fering numbers of questions that could be administered within centers where the time limit was 
fixed, they had different timings in different test centers. Although long or short forms were 
randomly distributed to test centers, the authors could not assume that the students in centers 
where the test section had a short time limit were randomly equivalent to students in centers 
where the section had a longer time limit. Therefore, they used the subgroup means in a center 
(rather than persons) as the unit of analysis. The experimental test was administered following 
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an operational test administration in approximately 553 domestic test centers; 250 centers used 
the standard 20-minute time limit and 253 centers used a 30-minute (extended) time limit. 
Within each center, a random half of the forms contained an experimental verbal form and the 
other half contained the experimental quantitative section. The verbal form consisted of 
26 questions (11 passage-based reading comprehension questions and 15 discrete questions); 
the 20-minute time limit allowed 46 seconds per question and the 30-minute time limit allowed 
69 seconds per question. The quantitative test consisted of 14 questions; this translates to about 
86 seconds per question for the 20-minute timing condition and about 129 seconds per question 
in the 30-minute timing condition. At the time of this study, the GRE had a correction for guess-
ing. The dependent variable was the mean formula score (across centers) for each subgroup; the 
operational formula score for the corresponding (Verbal or Quantitative) test section in each 
center was used as a covariate. In both the gender and ethnicity subgroups, scores were higher 
in the extended-time administrations, but the gains were approximately equal across subgroups; 
the authors concluded that test-taking time is not a “biasing agent” for gender or Black/White 
subgroups. Following the focus on subgroups based on gender and ethnicity, attention shifted to 
another subgroup with increasing visibility: students with disabilities. Although there were no a 
priori reasons to expect timing impacts on gender and ethnic groups, impacts for students with 
disabilities were somewhat different because they routinely could get an accommodation for 
extended time. This accommodation was intended to make the assessments fairer for all appli-
cants, but there were some concerns that some students were gaming the system to get possible 
benefits from extended time even in the absence of a legitimate disability. 

The Impact of Time Limits on Scores by Testing Context 

Timing Accommodations and Effects of Extra Time on High-Stakes Admissions Tests 

In 1998, a test candidate took the Graduate Management Admissions Test (GMAT) to apply to 
business school. The candidate had no hands and so was allowed extra time to take the test. At 
the time, nonstandard test administrations, including extended time, resulted in an indication 
on the score report that the test had been taken under nonstandard conditions. The candidate 
did not question the appropriateness of the accommodation, but he did sue ETS for flagging his 
test score. He argued that the flag was a violation of the Americans with Disabilities Act because 
it identified him as a person with a disability and could suggest that his score was artificially 
inflated. The flag was consistent with published professional standards that suggested that scores 
that were obtained under nonstandard conditions should be identified to test users. Thus, there 
was a conflict between the established professional standards and the implications of the federal 
law. ETS initially set out to defend flagging, but as depositions were being obtained, there was a 
change in leadership at ETS and the new president wondered why ETS was, from his perspec-
tive, defending the wrong side. ETS changed its position, settled the suit, and put procedures 
in place to drop flags for almost all accommodations including extra time. After reviewing its 
procedures, the College Board followed suit and decided to drop the flag for SAT scores. 

Although there was little concern with granting accommodations to students with a well-
documented need, there was a concern that some parents would pay to get a diagnosis that 
might not be fully legitimate. This would be less of a concern if the benefits of extra time were 
not substantial, but little was known about the effects of extra time on SAT scores. The College 
Board commissioned a large-scale study to explore this question. 

The study was conducted in the fall of 2000 using special test sections that were part of oper-
ational SAT tests. Because some of the results were surprising, a follow-up study was conducted 
in the fall of 2001 to determine whether the initial results could be replicated using the same 



  Testing Time and Testing Outcomes • 65 

procedures but a different set of questions. Results for both studies were published together 
(Bridgeman, Trapani, & Curley, 2004). Because of the very large sample sizes and replication of 
some surprising results, these studies are discussed in considerable detail below. 

In 2000, every operational form of the SAT contained two 30-minute and one 15-minute 
verbal sections and two 30-minute and one 15-minute math sections. In addition, each test 
contained a 30-minute variable section with either verbal or math questions. This section, 
which did not contribute to a student’s score, could be used for test equating, trying out new 
questions, or other experimental purposes. The questions in this section looked like questions 
in the operational sections and had the same time limit as the operational sections. The test 
takers were not told which section was the variable section, so motivation on this section was 
comparable to motivation on the operational sections. Because the timing for this section was 
fixed at 30 minutes, time per item was manipulated by creating forms with differing numbers 
of items. Specifically, ten forms were created: four forms (two verbal and two math) had the 
standard number of items, two forms (one verbal and one math) had a reduced number of 
items equivalent to time-and-a-quarter, and two forms were equivalent to time-and-a-half. To 
create the short forms, items were deleted from various positions in the full-length forms; just 
deleting the items at the end would have produced an easier form because the items at the end 
tended to be more difficult. However, the last item in the full-length form was retained as the 
last item in each shortened form. Analyses were based on the items that were common across 
all timings (e.g., the 23 items comprising the shortest verbal form were the same 23 items that 
were scored when embedded in the longer verbal forms). The ten experimental forms were 
spiraled in each batch of test forms sent to a testing location such that the distribution was 
random in effect. As part of a large-scale national administration, sample sizes were over 8,000 
examinees for each of the ten forms. In order to investigate possible differential effects of extra 
time for students at different ability levels, three ability groupings were created based on scores 
on the relevant (verbal or math) operational sections on the standard 200–800 scale. Most stu-
dents were in the middle group (410–600), but in each form there were over 800 examinees in 
the lower group and 1,600 in the upper group. 

Analyses were conducted at both the individual item level and at the form score level. One 
of the surprising findings for anyone who believed in the relevance of the Swineford guidelines 
was that effects of a less-speeded test could affect item performance throughout the test and 
not just on the last few items in the test. For item 9 out of the 23 common items in one of the 
verbal forms, the proportion correct was 0.64 in the 35-item test and 0.70 in both of the shorter 
forms. On common item 12 out of the 17 common items on a math form, the proportion cor-
rect was 0.51 in the long form and 0.61 in the shortest form. Similar results were found for 
an experimental administration of the computer-delivered version of the ACT under three 
speededness conditions (Li, Yi, & Harris, 2016). For Reading item 30 out of 40, the proportion 
correct was 0.50 with the standard timing and about 0.65 in both extended-time conditions. 
In both the ACT and SAT studies, differences across timing conditions were actually smaller 
for items near the end of the test than for some items earlier in the test. There have been recent 
attempts to assess speededness by examining items only near the end of the test or beyond the 
“change point” (e.g., Shao, Li, & Cheng, 2015); these attempts may have some value in iden-
tifying extreme cases, but they should be interpreted cautiously as they require belief in the 
assumption that speededness affects only items near the end of a test and this assumption has 
been proven to be incorrect. 

In the Bridgeman et al. (2004) study, speededness effects at the total verbal form score level, 
when expressed on the familiar 200–800 scale, were less than 7 points for both forms; differ-
ences for the math forms were somewhat more variable. For the form that consisted primarily 
of quantitative comparison items, speededness effects were small, again under 7 points on the 
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200–800 scale. But for the form with more standard multiple-choice questions, speededness 
effects varied considerably by ability level. Effects were greatest for moderately high scores at 
about 30 points in the first study and 20 points in the replication study a year later. Effects for 
the lowest ability level (below 400) were very small or negative. It might seem odd that extra 
time could actually produce lower scores, but this is related to the way SAT scores were com-
puted at the time (i.e., with a correction for guessing that penalized an incorrect answer more 
than an omitted answer) and the way forms were assembled (with the most difficult items near 
the end). With extra time, low-ability examinees would attempt difficult items, select attractive 
but incorrect distractors, and therefore get a lower score than they would have gotten if they 
simply ran out of time and omitted these difficult questions. Consistent with findings from 
earlier studies (e.g., Evans & Reilly, 1972; Wild, Durso, & Rubin, 1982), speededness did not 
appear to contribute to racial/ethnic or gender differences. Indeed, with a total sample size of 
over 8,000 per form, not finding any significant (p <0.05) interactions of ethnicity or gender 
with timing condition is quite remarkable. 

A final part of the Bridgeman et al. study examined the validity of scores from speeded and 
less-speeded forms by correlating the scores from these forms with grades assigned in high 
school math courses. Because speed was not supposed to be part of the construct assessed 
by the SAT Math Test, it could be argued that the test should be better able to predict valued 
outcomes as the irrelevant effects of test speededness were reduced. But on the other hand, it 
could be argued that extended time allows students to use strategies, such as working backward 
from the answer choices, which would result in poorer measurement of math reasoning skills. 
Results indicated essentially equal correlations for the speeded and less-speeded tests. 

The timing study for the computerized ACT (Li et al., 2016), mentioned above with respect 
to item-level results, noted a decrease in the number of omitted items with extended time but 
did not evaluate the impact on total scores with different timing conditions. For all four scales 
(English, Mathematics, Reading, and Science), there was a substantial reduction in omit rates 
with an extra 10 minutes of testing time. In the Reading test, for example, 36% of the students 
omitted three or more items with standard timing and this dropped to 18% with the extra 
10 minutes; the difference was even greater for the Science test; omit rates went from 27% with 
standard time to 5% with extended time. Although the results strongly suggest the presence of 
a speed factor, they are difficult to fully understand because there should be no omitting for 
a test with no guessing correction. Furthermore, as acknowledged by the study authors, time-
related effects can be especially difficult to interpret on a test with no stakes for the examinees. 

Research on score gains with extended time for other high-stakes admissions tests—such as 
the Medical College Admissions Test (MCAT)—is rare. MCAT timing research appears to be 
limited to effects of extra time as an accommodation for students with disabilities (e.g., Searcy, 
Dowd, Hughes, Baldwin, & Pigg, 2015). See Chapter 4 for a discussion of the effects of extra 
time as an accommodation. 

Computer-Adaptive Tests 

Speededness can have an especially dramatic effect on scores on a CAT. In a CAT, the difficulty 
level of the next item presented depends on the correctness of the response to the current item. 
An incorrect response reduces the running ability estimate (theta) and means that the next 
item should be a little easier. Now imagine that an examinee runs out of time and has to start 
blindly guessing without even reading the test item. If the examinee is not especially lucky, the 
guess will be incorrect, the theta estimate will be reduced, and an easier item will be admin-
istered next. And when the blind guesses on the next few progressively easier items are also 
incorrect, the theta estimate can start to plunge as the scoring algorithm especially punishes 
wrong answers on increasingly easier items. 
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When the CAT version of the GRE was introduced, there were some students who ran out 
of time and therefore did not receive a score (only scores for complete tests were reported). 
In order to provide a score for these somewhat slower examinees, a rule was introduced that 
allowed a score to be reported if at least 80% of the test was completed. This seemed to be reason-
able, as the student’s estimated ability level (theta) at the 80% point was typically very close to the 
theta estimate for a complete test and nearly all examinees completed 80% of the questions. But 
there was an unfortunate unintended consequence of this rule: Well-coached, test-wise exami-
nees realized that they could have more time per item if they intentionally aimed to answer only 
80% of the items on the test. On the GRE-Analytical section (GRE-A), for example, examinees 
who answered all 35 items in the section had 103 seconds per item and examinees who answered 
80% of the items (i.e., 28 items) had 129 seconds per item—an additional 26 seconds for every 
question. Because presumably well-coached students were more likely to be White than African 
American, and because NOT answering all questions was the optimal strategy, completion rates 
were higher for African American examinees. In order to discourage this benefit to well-coached 
students, a stiff penalty for failing to complete the test was introduced. Completion rates across 
racial/ethnic groups then became very similar, and the score gap between African American and 
White examinees was slightly reduced (Bridgeman, 1998). 

Although the elimination of the 80% rule had some positive consequences, it introduced addi-
tional problems: Students resorted to guessing at the end of their CATs in order to avoid the 
penalty for incomplete tests. For most students, this guessing had relatively little impact on their 
scores, but, as suggested above, a string of incorrect guesses could have dire consequences. In 
some cases, if they made four or five unlucky guesses at the end of the test, scores could drop 
hundreds of points from what their estimated scores were five items from the end of the test. The 
precipitous score drop problem was greatest on the GRE-A on which there were two question 
types: Logical Reasoning (LR) and Analytical Reasoning (AR). The LR items were similar to items 
on the Verbal scale and indeed loaded on the Verbal scale in factor analyses (Wilson, 1984). The 
AR questions in this section provided a scenario with a set of specified relationships. For example: 

A school orchestra conductor is arranging to judge six violinists—R, S, T, U, V, and W. One 
will play each day from Monday through Saturday. And the schedule must meet these conditions: 

R must play earlier in the week than W 

S must play on Thursday 

V cannot play on Tuesday 

Following this setup there would be a series of multiple-choice items, asking questions such as, 
“If R must play on the day immediately after the day on which V plays, who can play on Friday?” 

The test developers assumed that for this type of AR question almost anyone could get it 
right given enough time, so there was a fairly strict time limit for this section. Even with the 
penalty for an incomplete test, about 20% of examinees failed to finish the GRE-A section. Item 
timing studies revealed that items in this section typically took about 2 minutes to answer, but 
half of the examinees had fewer than 6 minutes to answer the last six questions and one-quarter 
of the examinees had fewer than 2 minutes for these final questions. Although there might be 
an expectation that lower-ability examinees would be especially likely to run out of time, this 
was not the case. Bridgeman and Cline (2004) used a regression equation to estimate GRE-A 
scores from the Quantitative and Verbal scores on the test and found that about 24% of the 
students with predicted scores in the 450–540 range had fewer than 2 minutes to answer the 
final six questions compared to 28% of the students in the 650 or higher predicted score range. 
The problem for higher-ability examinees was that the CAT algorithm was giving them pro-
gressively more difficult items. Unfortunately, the way GRE-A items were made more difficult 
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was by adding more constraints in the problem setup; balancing many constraints is both more 
difficult and more time consuming than balancing fewer constraints. 

In a CAT, different examinees get different questions to answer, and some questions may 
take more time to answer than others. An important research question therefore was whether 
examinees who, by chance, were given tests that contained more questions that required more 
time to answer were at a disadvantage relative to examinees who got tests with more ques-
tions that could be answered quickly. This concern led to a study comparing students who had 
taken more or less time-consuming tests but who had reached an identical score level several 
items before finishing the test. Specifically, a comparison was made between examinees who 
had identical GRE-A scores (a theta estimate of 1.0 at item 29 out of 35) but differing amounts 
of time available to answer the last five questions on this speeded test. Final scores on the test 
might then be higher for the examinees who had more time for these final questions. Table 5.1 
shows the results. Consistent with expectations, students who had less time to complete the 
GRE-A section received lower final scores than students who had more time. Of course, the 
luck of the draw in getting more or less time for the GRE-A could have no impact on GRE 
Quantitative section (GRE-Q) or GRE Verbal section (GRE-V) scores; this would be the case if 
both time groups were found to have virtually equal means. Though the results show that this 
finding is clearly seen for GRE-Q, it is not seen for GRE-V, indicating that more than the luck of 
the draw must be involved in getting more testing time. The causal arrow could go in the oppo-
site direction so that somehow students with high verbal skills would get more time-consuming 
GRE-A questions. The verbally loaded LR items came first; examinees with high verbal skills 
would do well on these items, and the CAT algorithm would select more difficult (and more 
time consuming) AR items for these examinees. So long GRE-A tests could not cause higher 
verbal skills, but high verbal skills could cause examinees to get more time-consuming GRE-A 
tests. Given the problems in designing a GRE-A test that was fair for all and that still would 
need to have a fairly strict time limit to adequately assess the intended construct, ETS decided 
to drop the GRE-A and instead use an essay-based analytical writing measure (GRE-AW). 

GRE-A was not the only section with fairness concerns related to speededness; some ques-
tions on GRE-Q took longer to answer than others. For example, a question on simultaneous 
equations took an average of about 90 seconds to answer but a question at the same diffi-
culty level on negative exponents took only 30 seconds to answer (Bridgeman & Cline, 2000). 
Because with a CAT different examinees get a different mix of questions, some examinees 
might get a test with a disproportionate number of questions that took a longer amount of time 
to answer and others might get more short questions. Despite this concern, when examinees 
who got long GRE-Q tests were compared to examinees who got less time-consuming tests, 
no evidence of an impact on total scores was found (Bridgeman & Cline, 2000). As long as the 
test is not too speeded, it may not matter that some students get a more time-consuming test. 

Research using an experimental section at the end of an operational test also suggested that 
time was not a major issue for GRE-V and GRE-Q scores (Bridgeman, Cline, & Hessinger, 
2004). Student volunteers were randomly assigned to take a Verbal or Quantitative section 
with either regular time or time-and-a-half. The extended time raised scores by only 7 points 
for both the Verbal and Quantitative sections on the 200–800 scale, and again there were no 
interactions with ethnicity or gender. 

The GRE was revised to become a multistage test (MST) in 2011. In an MST as compared to 
a CAT, branching is based on a group of items rather than on individual items. This branching 
strategy allows examinees to revisit items within a group and to change answers if they want 
to. When time limits were set for the MST, an effort was made to allow enough time not only 
to reach the last item but also to permit possible item revisits (Robin & Steffen, 2014). For the 
operational MST sections administered in 2012, the average number of item revisits was six or 
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more across ability groups. Item timing information was used to further evaluate the extent to 
which the test was speeded. Rapid responding (defined as answering in less than 10 seconds) 
on a multiple-choice item suggests that the examinee did not have time to read the item and 
fully consider the answer choices. On the operational MST, the average number items with 
rapid responding was less than 0.5 on the Verbal section and less than 0.2 on the Quantitative 
section, suggesting that the test is not speeded. 

The GMAT is a CAT in which examinees must answer questions in the order presented and 
there is no opportunity for revisiting items. Under these conditions, completion rates may be 
a useful speededness index. Completion rates were used to study possible differential speeded-
ness for international examinees for whom English was not their native language (Talento-
Miller, Guo, & Han, 2013). The completion rate for English speakers on the Verbal scale was 
95%; of the 15 foreign language groups studied, completion rates were at least 89% in all but 
two language groups—83% for Mandarin and a very low 47% for Korean. For the Quantitative 
scale, completion rates were somewhat lower; though 86% of English speakers responded to 
all items, in two of the language groups—French and Korean—fewer than 80% completed all 
items (completion rates were 79% for French speakers and 75% for Korean speakers). Mandarin 
speakers, who had one of the lowest completion rates for the Verbal scale, had one of the high-
est completion rates for the Quantitative scale: 88%. Although the Quantitative scale does 
appear to be very speeded for most examinees, these data cannot shed any light on whether the 
apparent speededness observed for certain groups is construct relevant. 

Up to this point, the focus of this review has been on high-stakes admissions tests, as these 
typically are the tests with strict time limits and therefore are the focus of the majority of 
research related to speededness. Nevertheless, there has been some research on K-12 tests used 
in state accountability assessments, and this research is described next. 

K-12 Tests 

In contrast to high-stakes admissions tests, most K-12 tests have no clearly specified time lim-
its. In Michigan, for example, the following guidance is given for test timing: 

Spring 2018 M-STEP tests are untimed and student-paced. Therefore, students must be 
given as much time as they need to complete each session or part of the test …. Some stu-
dents will complete the test in less time than estimated, while others may require additional 
time. Be sure to plan for both contingencies. (Michigan Guide to State Assessments, 2017) 

Similarly, tests from the Smarter Balanced Assessment Consortium are not timed. 
Approximate times are provided for planning purposes, but the instructions indicate, 
“Smarter Balanced assessments are designed as untimed tests; some students may need and 
should be afforded more time …” (Smarter Balanced, 2017). Some state testing for elemen-
tary and high school students does have strict time limits. The Partnership for Assessment 
of Readiness for College and Careers (PARCC) Test Coordinator Manual notes, “PARCC 
tests are strictly timed, and no additional time may be permitted (with the exception of an 
extended time accommodation ….” (PARCC, 2018, p. 9) 

Directions for the Stanford Achievement Tests (grades 1–10) were similar to the Smarter 
Balanced instructions with the Directions for Administering indicating, “Times are included 
for planning purposes only. Stanford 10 is to be administered so that all children have suf-
ficient time to complete it … if necessary, additional time must be provided for a student to 
complete the tests” (as quoted in Brooks, Case, & Young, 2004). These authors conducted a 
study designed to determine whether performance would differ for students tested with the 
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“suggested” time strictly enforced compared to students tested under the standard untimed 
conditions. There were 360,000 students in the untimed standardization sample, and about 
150 classrooms were selected at random to take the test with the suggested times actually 
enforced. Demographic characteristics were similar across both groups. In all subject areas 
and grades, effects (average differences between timed and untimed groups) were less than one 
raw score point. Although all differences were small, the direction of the differences changed 
across grade levels. In grades 1–6, the scores were higher for the untimed group; in grades 
7–10, scores were higher in the timed group. The authors did not speculate on the reasons for 
this reversal, but it could be related to the extra anxiety timing might create for older students. 
Research is needed to confirm the speculation that timing anxiety is greater in older students. 
Although extra anxiety can have negative effects on a high-stakes test, on a no-stakes test it can 
be positive as it simply enhances motivation, reflecting the well-known “inverted U” function 
in which too little or too much arousal (motivation) can be detrimental to performance. Given 
the legitimate concerns with speededness in both admissions tests and accountability assess-
ments, additional research is needed in this area. 

Practical Considerations for Designing and Conducting Timing Research Studies 

As in other areas of educational and psychological research, random assignment studies should 
be the gold standard for studies on the effects of time limits. Examinees can either be randomly 
assigned to tests of equal lengths with different time limits or to tests of different lengths with a 
fixed time limit. An advantage of the latter approach is that it can be less obvious to the exami-
nees that they are part of a research study, and motivational factors related to knowing that a 
test is merely for a study with no individual consequences could be especially problematic in 
studying effects of time limits. Although there may be a temptation to estimate speed effects 
without an experimental manipulation, such studies often require assumptions that are known 
to be untrue. As we have seen, estimating speededness by evaluating completion rates requires 
the assumption that examinees consider each item in order with no skipping and returning to 
items if time permits. And with nearly all tests now just counting the number of right answers, 
all items should be answered even if random guessing is required because of lack of sufficient 
time to fully consider each item. Computer timing of individual items can be helpful in iden-
tifying cases of extreme speededness in which it can be obvious that an examinee answered 
without enough time to seriously consider the item, but when an examinee exceeds this mini-
mum threshold it is impossible to know if a correct answer would be more likely with more 
time. If every examinee answers every item and does not show evidence of very rapid respond-
ing on any item, it is still quite possible that scores would be higher if examinees had more 
time to consider each item. The ideal random assignment study may be impossible because 
of sample size and/or cost considerations. In such cases, an imperfect study is preferable to no 
study. Observational studies can be of some value in estimating the approximate amount of 
time needed to answer questions of different types. When new question types were being con-
sidered for the next version of the SAT, a study was conducted in which students were observed 
as they tried to answer these new question types (Bridgeman, Laitusis, & Cline, 2007). The time 
taken to answer each question then could be used to estimate the amount of time that should be 
allowed for each section of the revised test, and the new version of the test had somewhat more 
generous time limits. Another type of useful observational study for computer-based tests is 
to use the computer to record time to respond to individual items. Although the lack of rapid 
responding on every item cannot assure the lack of speed effects, it is nevertheless useful to get 
item response times, if possible, because the presence of rapid responding can still provide solid 
evidence that a test is speeded. 
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Conclusions 

Test publishers have a responsibility to evaluate the effects of time limits on their tests, and 
test users have a responsibility to demand evidence on the speededness of tests that they use. 
The nature of the required evidence has shifted over time, as the problems with some of the 
early indices have become better known. Speededness studies and guidelines from the early 
days of standardized testing assumed that completion rates were a reasonable way of assessing 
test speededness. At the time this may have been a reasonable assumption, but with growing 
sophistication in test-taking strategies and advice to skip time-consuming items and return to 
them if time permits, completion rates have been rendered essentially useless as a measure of 
test speededness. Experimental manipulation of timing is a viable alternative, either by directly 
manipulating time limits for a given number of items or by adjusting the number of items 
within a given time limit. Computer delivery allows for nonexperimental approaches that can 
evaluate rapid responding rates, but rapid responding can have different interpretations; it can 
indicate serious attempts to answer all items with a time limit that is inadequate, or, particu-
larly with low-stakes tests, it simply may indicate low motivation. 

For any new or revised test in which speed is not intended to be a part of the construct being 
assessed, it is essential that test publishers determine the extent to which test timing affects test 
scores. At the early stages of test development, small-scale observational studies can be useful 
in determining reasonable time expectations for each item; when final forms are assembled, 
experimental manipulations of time limits may be needed. For smaller testing programs, these 
studies should not require the huge samples that are feasible with large-scale national testing 
programs. 

Different testing models can be more or less sensitive to time limits. Although running 
out of time can have negative consequences with any testing format, CATs with item-level 
branching can be especially vulnerable as estimated ability declines with every answer that is 
wrong because the examinee ran out of time. Effects of time limits need to be assessed for both 
multiple-choice and constructed-response formats. For essay tests, extra time generally may be 
beneficial, but this is not always the case. Extra time on an essay may just give weaker exami-
nees a greater opportunity to demonstrate their shortcomings. 

The most reasonable generalization to characterize the effects of time limits on test scores is 
that generalizations are not possible. Extra time under some circumstances has large effects; in 
other cases it has trivial effects and can even have a negative impact on scores. Effects may be 
stronger for lower-ability examinees or for higher-ability examinees. One generalization that 
certainly is true is the familiar mantra that more research is needed. This is especially critical 
when new tests are introduced or major revisions are made to existing tests. 
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6 
How Examinees Use Time 

Examples from a Medical Licensing Examination 
Polina Harik, Richard A. Feinberg, and Brian E. Clauser 

The widespread use of computers in test delivery has made it possible to collect extensive data 
about how examinees use available time as they complete a test. This type of timing data can 
provide important evidence related to the validity of the inferences we make based on test 
scores. For example, timing data can provide insight into the level of examinee engagement as 
they complete a test (see Chapter 11), can help to identify examinees who have had prior access 
to test material (see Chapter 12), and can provide insight into the cognitive processes exami-
nees use in responding to test items (see Chapter 9). These are all important considerations that 
provide useful information about critical aspects of the testing experience. The present chapter 
addresses a different aspect of the use of timing data: it provides a framework for understand-
ing how an examinee’s use of time interfaces with time limits to impact both test performance 
and the validity of inferences made based on test scores. The content of this chapter focuses 
primarily on examinations that are administered as part of the physician licensure process. The 
reason for this focus is twofold. First, examinees completing these high-stakes examinations 
tend to be highly motivated; changes in patterns of responding across the test that result from 
time constraints therefore are not likely to be confounded with changes in the examinees’ level 
of engagement. Second, there is relatively little published research on this topic from other 
assessment contexts. When such research was available, it has been included to the greatest 
extent possible. 

We begin by examining the extent to which timing data can provide an indication that 
examinee scores are impacted by test time limits. Drawing inferences about speededness based 
on observational evidence has been a matter of interest for generations, and the data that have 
become available from computer-based test delivery have created new possibilities for further 
exploring this area. After considering different approaches to assessing speededness based on 
observational timing data, we examine three additional areas. The first focuses on how exami-
nees allocate time for review and how this review impacts their scores. We then consider how 
the response time for an item relates to the probability of answering the item correctly. This is 
followed by an examination of the characteristics of test items that impact response time. We 
conclude with practical recommendations and consideration of how these results and our rec-
ommendations might generalize to assessment contexts outside of physician licensure. 
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Inferences about Test Speededness Based on Observational Data 

It is clear that time limits that significantly impact test scores represent a threat to valid score 
interpretation in many assessment contexts. As a practical matter, however, it is necessary to 
balance this threat against the costs associated with more generous time limits. Time that is 
used to test students is time that is not available for other instructional activities. The cost of 
testing time is even more apparent for tests delivered in commercial test centers, because the 
cost of the scheduled seat time contributes directly to the cost of the test; more generous time 
limits result in higher costs. Balancing these priorities is challenging and clearly requires evi-
dence about the extent to which time limits impact scores. 

As Chapter 5 makes clear, definitive information about how time limits impact examinee 
scores requires data from structured experiments. These experiments typically involve manipu-
lating the number of test items delivered in a fixed amount of time or manipulating the amount 
of time allowed to complete a fixed number of items. Such experiments are the gold stand-
ard for inferring causal relationships between time limits and performance. Unfortunately, as 
Cronbach and Warrington (1951) pointed out more than half a century ago, such experiments 
tend to be expensive and difficult to implement. These practical limitations of experimental 
methods have led researchers and test administrators to look for observational approaches 
that allow for making inferences based on data from operational administrations of the 
examination. One of the simplest of these approaches is often referred to as Swineford’s rule 
of thumb or simply the Swineford rule. This rule states that essentially all examinees should 
complete at least the first 75% of the items and at least 80% of the examinees should respond 
to the final item for a test to be considered non-speeded (Swineford, 1956, cited in Rindler, 
1979). Similarly focusing on items that are not reached, Gulliksen (1950) proposed an index 
based on the ratio of the standard deviations of number of items answered incorrectly to the 
total number of items answered incorrectly and items not reached. Stafford (1971) provided a 
simpler index based on the ratio of the sum of items answered incorrectly to the total of items 
answered incorrectly and items not reached. 

In the context of multiple-choice tests (particularly in the absence of a penalty for guessing), 
these simple observational approaches are likely to be limited because as time runs out exami-
nees may select answers at random hoping that by chance at least a few of the responses will be 
correct. The first significant step forward in interpretation of examinee behavior based on tim-
ing data collected with computer administration was provided by Schnipke (1995; Schnipke & 
Scrams, 1997). She suggested that both (1) items that were not reached, and (2) items that were 
responded to with rapid guesses should be considered in evaluating the impact of time limits. 
The logic of this approach is straightforward. As Schnipke and Scrams state, “We assume that 
examinees choose to engage in either “solution behavior” or “rapid-guessing behavior” on each 
item. Further, we assume that examinees can switch strategies at any point and that they do so 
in response to time constraints on the test” (p. 214). In this context, rapid guessing is defined 
empirically by identifying the amount of time used by examinees who are responding at chance 
level (Kong, Wise, & Bhola, 2007; Harik et al., 2018). 

This two-state solution is an important step forward in understanding how examinees use 
time, but it falls far short of fully describing the complex ways that examinees respond to time 
pressure. The possibility that examinees employ other strategies in response to time constraints 
is ignored by limiting the model to rapid guessing and solution behavior. For example, exami-
nees may substantially speed up near the end of a timed section; this could impact performance 
on those items but not reach the response rate required to categorize the responses as rapid 
guesses. Similarly, examinees may maintain a speeded pace in responding to all items on the 
test, uniformly lowering the probability of a correct response across the item set (Harik et al., 
2018). This speed-accuracy tradeoff that occurs when examinees attempt solution behavior 
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under time constraints is well known (e.g., Heitz, 2014).1 The fact that examinee performance 
will deteriorate as the time constraint becomes more extreme is almost unavoidable. The prac-
tical question then is: To what extent does examinee behavior on a single test administration 
with a fixed time limit provide evidence about the impact of the time limit on performance? Or 
put another way, can we infer whether or not a test is speeded by examining response time data? 

The obvious answer to the latter question is that we can make such inferences, at least at the 
extremes. If all examinees complete the test well before the time limit, it is likely safe to infer 
that more time will not result in higher scores. Similarly, if many examinees either fail to reach 
numerous items near the end of the test or make rapid guesses on these items, it is likely that 
the test is speeded. In other circumstances, we will be less certain about our conclusions. In the 
next sections, we review several types of evidence that can be collected to make such inferences 
and evaluate the usefulness of inferences made based on each type of evidence. 

Metrics Based on Rapid Guessing 

Schnipke’s suggestion that rapid guesses should augment measures of items that are not 
reached in evaluating speededness represented an important step forward in evaluating exami-
nee behavior. In many settings, examinees are likely to have learned that as time runs out 
they should respond to all items, even if there is not enough time to read the questions. As 
noted, however, there is a potential problem with this measure; rapidly guessing the answers 
to the final items in a timed section is only one strategy that examinees may use to adjust their 
test-taking behavior to time constraints. Another strategy is for examinees to pace themselves 
throughout the timed section so that they use relatively similar amounts of time across the 
item sequence. This approach—or a variation of this approach—seems likely in the context 
of high-stakes standardized tests for which practice materials are available. When examinees 
take this approach, we are likely to say that they paced themselves well. Whether this strategy 
optimizes the examinee’s score is a separate question, but it is clear that if examinees are able 
to pace themselves “well,” they will reduce or eliminate instances of rapid guessing that might 
otherwise provide evidence that time constraints are impacting scores. 

The extent to which measures of rapid guessing provide useful evidence about the impact 
of time constraints on test scores is an empirical question, and there is relatively little evidence 
reported in the literature that provides insight into the answer. The work by Schnipke (1995) 
and Schnipke and Scrams (1997) makes it clear that the phenomenon does exist. Numerous 
studies by Wise (e.g., Wise, 2017; Chapter 11, this volume) also report on rapid guessing, but 
these studies were carried out to examine engagement on tests with generous time limits and 
so are not directly relevant to the question of time constraints. 

More recently, Harik et al. (2018) examined a measure of rapid guessing in a randomized 
experiment conducted in the context of the Step 2 Clinical Knowledge component of the 
United States Medical Licensing Examination (USMLE®; a test that physicians with an M.D. 
degree must pass in order to be licensed to practice medicine in the United States). At the time 
of the experiment, the test comprised 8 hour-long timed sections with approximately 44 items 
in each section. For the experiment, the last of the hour-long sections was manipulated to have 
28, 32, 36, 40, or 44 items. The sections were constructed so that each set of 28 items was a 
subset of the set of 32 items; each set of 32 items was a subset of the set of 36 items, etc. Within 
each section, the item sequence was randomized for each examinee. One of these experimental 
sections was randomly assigned to each examinee in the study. The results generally showed a 
modest improvement in performance as the number of items per section decreased from 44 to 
32; reducing the number of items from 32 to 28 provided no additional score increase. 

To examine the extent to which measures of rapid guessing and not-reached items are sen-
sitive to the impact of time constraints, graphs were produced showing these measures as a 
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function of the item presentation sequence. The results showed extremely low levels of rapid 
guessing and not-reached items across the item sequence for the condition with 28 items per 
section. These rates increased noticeably for the condition with 36 items and substantially for 
the most time-intensive condition (44 items per section). Across all conditions, these measures 
remained low for items early in the sequence and increased for the final items. Harik et al. 
(2018) also report evidence that makes it clear that many examinees were pacing themselves in 
a way that reduced their performance but did not show up in these measures. They report that 
the reduction in performance for the final position in the item sequence relative to performance 
earlier in the sequence could not be accounted for by items not reached and rapid guesses. 
Specifically, they note that the mean performance for the first 32 (of 44) items in the sequence 
(before an increase in rapid guesses and not-reached items begins) was 0.71. Accounting for 
examinees who did not reach the final item position and were scored as incorrect, as well as 
examinees with a chance probability of success due to rapid guessing (approximately 0.2), the 
expected proportion correct would have been 0.67. The actual value was 0.64. 

These results suggest that the presence of rapid guessing and not-reached items may provide 
positive evidence that time constraints are impacting test scores. However, concluding that the 
absence of these behaviors demonstrates that the scores are not impacted by time constraints may 
not be justified. It is clear that some examinees whose scores are impacted by time constraints 
pace themselves so that they avoid the need to guess at random or leave items unanswered. 
Again, in situations where practice materials are available, examinees may spend considerable 
practice time learning to pace themselves; such pacing may optimize their performance under 
the specific time constraint, but it cannot make an insufficient amount of time sufficient. 

Metrics Based on Changes in Response Time across the Item Sequence 

The previous section provides evidence that an approach that treats examinees as either 
engaging in (undifferentiated) solution behavior or rapid guessing might oversimplify actual 
examinee behavior. This raises the question of whether it might be more useful to employ a 
measure that recognizes that the speed-accuracy tradeoff is continuous rather than discrete. 
One obvious approach to addressing this question would be to examine the amount of time 
used on items as a function of item sequence. If examinees are running out of time, they may 
need to increase their pace as they approach the end of a timed section. Again, if examinees 
pace themselves well, they will hide this effect, but the approach has the potential to identify 
examinees who increased their pace in a manner that materially impacts their scores without 
reaching the criterion for rapid guessing. 

Harik et al. (2018) also provided experimental evidence related to this question. Using the 
data set described in the previous section, they examined whether the extent of the drop in 
seconds per item near the end of a timed section was predictive of the level of impact associ-
ated with the time limit for the specific condition. Although they did not provide a quantitative 
measure of the change in slope, they made two general statements: (1) an apparent drop in sec-
onds per item (slope) was present for the three more time-intensive conditions in which time 
constraints were shown to impact scores, and (2) the magnitude of the change did not appear 
to be proportional to the magnitude of the impact on scores. 

To follow up on the Harik et al. (2018) study, we examined an additional experimental data 
set from Step 2 of the USMLE. The data set used in the original study was collected in 2012; 
this additional data set was collected in 2015 (for simplicity, we will refer to these data sets 
as the 2012 study and the 2015 study). The basic structure of this experiment was the same 
as that already described. Examinees were randomly assigned to hour-long experimental test 
sections containing different numbers of items. The order of the items within the section was 
randomized for each examinee and the experimental sections were administered as part of 
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Figure 6.1 Average examinee performance on common items by experimental condition with 95% 
confidence intervals. 

an operational administration so that examinees were performing under high-stakes condi-
tions. The structure of this experiment was identical to that described by Harik et al. (2018), 
except that the more recent study did not include the 40-item timing condition: examinees saw 
28, 32, 36, or 44 items in each hour-long experimental block. 

Figure 6.1 presents results showing how performance was impacted by the number of items 
per block. The findings are similar to those presented by Harik et al. (2018), indicating that 
performance was similar with 28 or 32 items per block (in fact, in both studies, examinee per-
formance for the 32-items-per-block condition was slightly higher than that for the condition 
with 28 items per block). Performance then declines when 36 or 44 items are administered in 
each block. Figure 6.2 shows response time as a function of presentation sequence for each of 
the experimental conditions. For all conditions, there appears to be a slight downward trend 
across the presentation sequence, with examinees responding slightly more quickly to items at 
the end of the sequence than they did at the beginning. Perhaps more noteworthy is the find-
ing that for the 36- and 44-item conditions the slope changes for the last items in the sequence 
with the time per item falling off more rapidly near the end. Wainer (1971) provided a simpli-
fied procedure for evaluating whether such a change in slope is statistically significant. The 
results of applying Wainer’s procedure to the data presented in Figure 6.2 show that there is a 
significant change in slope for the 36- and 44-item conditions but not for the 28- or 32-item 
conditions. A review of the results presented by Harik et al. (2018) reveals the same pattern: 
there is a change in slope for the conditions shown to be impacted by time constraints. Based 
on these results, it is tempting to speculate that this change in slope might act as an indicator 
that examinee performance is impacted by the time limit. More work in this area is warranted. 

Metrics Based on the Proportion of Examinees Using all Available Time 

We have already noted that if essentially all examinees complete the test well before reaching 
the time limit, we might conclude that a more generous time limit would have little impact 
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Figure 6.2 Item response time by item presentation sequence for the five experimental conditions. 

on performance. This conclusion raises the question of whether the proportion of exami-
nees using essentially all of the allotted time to complete the test is a marker that the test is at 
least somewhat speeded. This would be a reasonable conclusion if we are willing to make two 
assumptions: (1) there is some meaningful variability in the rate at which examinees are able 
to complete the activities required to respond to test items (e.g., reading, calculation, problem 
solving), and (2) examinees do not use more time than is needed to achieve the highest score 
they are capable of earning. Under these circumstances, if most examinees used all of the avail-
able time, we could conclude that (at least) some had less time than was needed for optimal 
performance. 

There are two papers that provide empirical evidence related to the credibility of the second 
of these assumptions. Wise (2015) reports results from a large-scale K-12 achievement testing 
program. In that context, examinees reduced the time they spent across the last 40 items (on a 
50-item test) from an average of 52 seconds per item to 33 seconds per item. This change was 
not associated with any noticeable change in the probability of a correct response. Although 
there are other possible explanations, this strongly suggests that examinees were working at an 
unnecessarily leisurely pace earlier in the test. Wise commented in the same paper that he had 
observed a similar pattern of performance in a medical licensing examination. 

The Harik et al. (2018) paper cited in previous sections also provided evidence relevant to this 
question. Again, the paper described an experimental study in which examinees were randomly 
assigned to conditions in which they were presented with 28, 32, 36, 40, or 44 items in an hour-
long timed section. In general, the results clearly showed an improvement in performance as the 
number of items per section decreased; reducing the number of items from 32 to 28, however, 
provided no advantage (in fact, performance dropped modestly for the 28-item condition). 
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Nonetheless, examinees used more time when they were given more time, and this increase 
in the use of time per item continued even when the number of items was dropped from 
32 to 28. The results provide compelling evidence that at least in some circumstances exami-
nees will use more time than is necessary to optimize their scores. The results presented in 
Figures 6.1 and 6.2 replicate this pattern of behavior with examinees again using more time 
per item in the 28-item condition than the 32-item condition even though it resulted in no 
score increase. 

Taken together, the results reported by Wise (2015) and those based on the USMLE studies 
suggest that the amount of time examinees use may be a questionable indicator that test scores 
are impacted by time constraints. In the case of the USMLE studies, the examination has very 
high stakes for examinees and caution in checking and rechecking answers is understandable. 
The results reported by Wise are more difficult to explain because they occurred in what is 
likely to be viewed as a relatively low-stakes setting where that level of caution may not be 
expected. 

Examinee Behavior and Item Characteristics 

The approaches discussed to this point all focus on indicators that examinees are running out 
of time. We now take a more focused look at what timing data can tell us about how exami-
nees use testing time. We begin by examining time spent on item review. In this context, we 
consider both the prevalence of review and the impact of review on scores. We then examine 
the relationship between response time and the probability of answering correctly. Finally, we 
consider the characteristics of items that relate to response time. 

Time Spent on Item Review 

We have already discussed the fact that in high-stakes testing situations, examinees want to 
be sure that they have not answered incorrectly because of a careless oversight. This concern 
with careful review may explain why examinees appear to use more time than is required to 
achieve their maximum score. To better understand this behavior, we begin by considering the 
prevalence of item review. 

Kahraman, Cuddy, and Clauser (2014) examined item review behavior in the context of the 
USMLE. They reported that a substantial majority of examinees reviewed at least some of the 
items. A more recent analysis of item review based on data from the 2012 timing study showed 
that item review increased as the number of items in the hour-long section decreased, but even 
for the most time-intensive condition (44 items per section), 5% of examinees revisited all of 
the items. For the 28-item-per-section condition, more than 27% of examinees revisited all 
28 items at least once. By contrast, the number of examinees who did not revisit a single item 
was generally around 2% across conditions. 

With these relatively high rates of item review, we might predict that the rate at which 
scores increase would drop near the end of a timed section—with many examinees review-
ing previously answered items and making relatively few answer changes. If this is true, the 
amount of time examinees spend in a section after achieving their highest score could tell us 
something about the prevalence of this sort of careful checking. To examine this phenomenon, 
we returned to data from the 2012 study. The results are presented in Figures 6.3 through 
6.6. Figure 6.3 shows the cumulative proportion of examinees achieving their maximum score 
and the proportion of examinees completing the section, both as a function of testing time. 
Figure 6.4 shows the distribution of the amount of time used after examinees achieved their 
maximum score but before completing the section. Figures 6.3 and 6.4 present results for the 
28-items-per-section condition (in which most examinees had more time than they needed for 
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Figure 6.3 Cumulative proportion of examinees at different testing times for the 28-items-per-block condition. 

optimal performance). Figures 6.5 and 6.6 provide analogous results for the 44-items-
per-section condition. 

Figures 6.3 and 6.5 present information about the absolute amount of time examinees use 
to achieve their highest score on the section and to complete the section. Figures 6.4 and 6.6 
show how much time examinees spend reviewing items after achieving their highest score. 
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Figure 6.4 Distribution of testing time used by examinees after reaching their maximum score. 
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Figure 6.5 Cumulative proportion of examinees at different testing times for the 44-items-per-block condition. 

(That is, these figures show how much time examinees spent on item review that did not result 
in any score improvement.) Taken together, these figures show that more than 50% of exami-
nees spend 5 minutes or more on such item review. This percentage is greater in the less time 
intensive 28-items-per-section condition. Moving from 28 to 44 items per section increases 
the percentage of examinees using 2 minutes or fewer for review (after achieving their 
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Figure 6.6 Distribution of testing time used by examinees after reaching their maximum score. 
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highest score on the section) and decreases the percentage using 3 minutes or more. These 
results clearly suggest that, when given sufficient time, examinees will use significant amounts 
of time to double-check their answers. 

The results presented in the previous paragraph make it clear that a nontrivial amount of 
time is spent reviewing items without an impact on scores. This raises a more general ques-
tion about the overall impact of item review; clearly item review must occasionally identify 
errors and result in score improvement. In a study investigating answer changes resulting from 
item review, Ouyang, Harik, Clauser, and Paniagua (2019) reported that 99% of examinees 
reviewed at least one item and 68% changed at least one answer. Approximately 45% of exami-
nees increased their scores and 28% decreased their scores by changing answers. On average, 
examinees reviewed 16 items (in a 44-item section) but made changes on only 1.4 items. The 
average score change was positive but extremely small. 

The Relationship between Response Time and the Probability of a Correct Response 

The next question of interest is how does the relative difficulty of an item relate to the amount of 
time examinees allocate to that item? This relationship has been examined in two previous stud-
ies using data from the USMLE. The answer from both studies might be summarized as it takes 
more time to be wrong. Swanson, Case, Ripkey, Clauser, and Holtman (2001) used a hierarchical 
model to examine the relationship between item characteristics and response time and showed 
that examinees generally spent more time responding to more difficult items (for which the prob-
ability of a correct response is lower). Beyond this simple relationship, they reported the presence 
of an interaction with examinee proficiency: lower proficiency examinees spent more time on 
easier items and higher proficiency examinees spent relatively more time on more difficult items. 

To further explore the interaction effect reported by Swanson et al. (2001), we examined 
response time as a function of both item difficulty and examinee proficiency. Figures 6.7 and 6.8 

Figure 6.7 Item duration for examinees of different ability for the 44-items-per-block condition. 
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Figure 6.8 Item duration for examinees of different ability for the 32-items-per-block condition. 

show the amount of time used on the easiest and most difficult 10% of items as a function of 
examinee proficiency (measured by the reported total test score). The data were collected as part 
of the 2015 study; Figure 6.7 presents results for the 44-items-per-section condition and Figure 6.8 
presents results for the 32-item condition. Although the results are more extreme for the 32-item 
condition, both graphs show that for the easier items there is a decrease in seconds per item as 
proficiency increases. For the more difficult items, there appears to be a modest increase in time 
spent per item as a function of proficiency. The results represented in these figures are consistent 
with those reported by Swanson et al. (2001), showing that although all proficiency groups tend 
to spend more time on difficult items than on easy items, the extent of this disparity is greater for 
more proficient examinees who use disproportionately less time on easy items. 

More recently, Feinberg and Jurich (2018) also reported results related to the amount of 
time examinees used on an item and the corresponding probability of a correct response, but 
rather than looking at time use as a function of proficiency they looked at the probability of a 
correct response as a function of time use. They reported that, as expected, very short response 
times were associated with chance levels of performance. As examinees used more time on an 
item, the probability of a correct response rapidly increased and then more slowly declined. 
The time associated with maximum performance was well below the average time spent on 
an item and well below the time available. Figure 6.9 provides an example of this relationship, 
again based on an annual cohort of examinees completing the USMLE Step 2 examination. The 
results do not provide evidence about the direction of causality (or even demonstrate causality), 
but it seems likely that when examinees are immediately sure that they have identified the 
correct answer to an item they are both more likely to be correct and less likely to spend addi-
tional time considering alternative options or returning to the item for review. 

In spite of the seemingly clear message from Figure 6.9, it is important to keep these results 
in perspective. It is evident that examinees who respond to items quickly (but not too quickly) 
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Figure 6.9 Conditional proportion correct by response time. 

have a high probability of responding correctly. The temptation in viewing these results is to 
reverse the directionality and to infer that more proficient examinees uniformly respond more 
quickly. Figure 6.10 (based on the same data set used for Figure 6.9) shows the distribution of 
response rates for the highest, middle, and lowest quintiles of examinees based on the total test 
score. The results do confirm that both the mean number of seconds per item and the modal 
response time are in fact modestly lower for more proficient groups; however, the within-
quintile variability is much greater than the between-quintile variability. 

Characteristics of Items that Relate to Time Intensity 

Clearly, item difficulty relates to how much time an examinee will spend responding to an item. 
There also are more superficial characteristics of items that relate to response time. In the previ-
ously referenced study by Swanson et al. (2001), the authors reported on surface characteristics 

Figure 6.10 Density of response times by examinee proficiency quintile. 
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of items that predicted time intensity in addition to examining time usage as a function of 
examinee proficiency and item difficulty. They reported both a linear and quadratic relation-
ship between word count and response time, with each additional word adding approximately 
half a second to the time required to respond. They also reported that inclusion of a picture as 
part of the stimulus material added approximately 12 seconds to the response time. 

Swanson, Holtzman, Albee, and Clauser (2006) presented results relating the number of 
options presented in the item to testing time. The results showed a clear increase in response 
time associated with an increased number of options; there was no explicit control for word 
count, however, and the authors concluded that much of the increase in response time was 
associated with the increase in word count. 

More recently, Ha, Marsic, and Yaneva (2017) examined the relationship between linguistic 
features of USMLE items and mean response times. They found that the strongest predictors 
were counts of nouns (and noun phrases) and counts of rare words (those that are not in the 
most commonly used 2,000 or 3,000 words). They produced predictive models that had a cor-
relation of approximately 0.60 with actual response times. 

Conclusions 

In this section, we attempt to draw conclusions and provide recommendations for practice 
based on the timing research reported in this chapter. We begin with recommendations on the 
use of observational data as a basis for making inferences about whether time limits are impact-
ing test scores. We then consider the implications of research on (1) item review, and (2) the 
relationship between response time and proficiency. This is followed by a discussion of how 
timing information can improve test construction. Finally, we consider the extent to which the 
results reported in this chapter are likely to generalize to contexts beyond medical licensing. 

Using Timing Data to Identify Speededness 

As stated previously, it is clear that at the extremes, timing data can provide answers about 
whether or not time limits are impacting test scores. If essentially all examinees complete the 
test well before time runs out, it is unlikely that time limits are problematic. Similarly, if many 
examinees fail to reach a substantial number of items near the end of the test or respond to 
those items by rapidly guessing, it is likely that time constraints are significantly impacting test 
scores. Outside of these extremes, the evidence suggests that timing data may provide evidence 
that time constraints are impacting scores. The absence of such evidence, however, only means 
that examinees are maintaining a constant pace across the item presentation sequence. This 
pattern of behavior may result from the fact that they have no need to change pace because the 
allotted time limit is sufficiently generous; it also may indicate that examinees have practiced 
completing the test in the allotted time limit and have learned to maintain a speeded but con-
sistent pace. 

Based on the results presented in this chapter, it seems that patterns of not-reached items 
and rapid guesses are a potentially useful but fairly insensitive measure of the impact of time 
constraints. Examining patterns of drop-off in seconds per item later in the item presentation 
sequence may be more sensitive. Both of these approaches may raise a flag suggesting that 
closer examination is needed, but they are unlikely to provide direct evidence about the magni-
tude of the effect. The main reason for this is that there is ample evidence to suggest that when 
faced with time constraints examinees will increase their pace across all items to minimize the 
need for highly speeded responses near the end of the timed section. Although they may not 
be successful in maintaining a steady pace, they are likely to make an attempt to answer at a 
similar rate across the entire sequence. 
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In this context, it is interesting to reconsider the results reported by Swanson et al. (2001). 
Their results showed that less proficient examinees spend more time on relatively easy items 
and more proficient examinees spend less time on easier items. This may be evidence of a strat-
egy on the part of the less proficient examinees to answer more difficult items quickly because 
they recognize that they do not have sufficient time to devote to these more complex items. 
Apparently, the more proficient examinees can answer the relatively easy items quickly and so 
have more time to devote to the more difficult items. There is every reason to believe that even 
if the strategies are more implicit than explicit examinees do use fairly sophisticated strate-
gies to optimize their scores. It is unlikely that most examinees will engage in undifferentiated 
“solution behavior” until they discover that they have only a few seconds left and then rapidly 
guess the answers to the remaining items. 

The Use of Timing Data to Improve Score Interpretations 

There are a number of conclusions that can be drawn from the research about item review 
and the relationship between proficiency and response time. The results related to item review 
dovetail with those reported by Harik et al. (2018) and those displayed in Figures 6.1 and 6.2 
to make it clear that examinees will use more testing time than is necessary. Some—and per-
haps most—of this extra time is spent reviewing questions that already have been answered. 
In general, this review appears to have little impact on examinee scores. The results also show 
that examinees spend more time on items that they answer incorrectly, in part, it would seem, 
because they are more likely to review items when they are unsure of the answers. 

We previously summarized the first of these results as: When extra time is available, exami-
nees are likely to use more time than they need to achieve their highest score. We summarized 
the second result as: It takes more time to be wrong. These statements are simple descriptions of 
what was observed, but the second statement might suggest to practitioners that response time 
can tell us something about proficiency. It is well established that fluency (the ability to respond 
quickly) may be an indicator of a higher level of mastery than simple accuracy (see Chapter 4). 
Even if the argument for incorporating response time into the score is not based on expand-
ing the construct to include fluency, there are more purely statistical reasons for incorporating 
response time: scores that incorporate accuracy and response time may simply be more precise 
than those based on accuracy alone (van der Linden, 2007; van Rijn & Ali, 2017). These recently 
proposed models have the potential to increase the precision of scores without increasing the 
number of items administered. 

The problem (or perhaps more correctly, one of the problems) with drawing inferences 
based on response time data is that fluency is only one factor that impacts response time. 
Fluency with regard to the proficiency of interest is unlikely to impact an examinee’s propen-
sity to review items. Highly proficient (and fluent) examinees still may feel a compulsion to 
check and recheck their work. If examinees use more time than they need, response time will 
not provide a direct measure of fluency. That is not to say that response time is uncorrelated 
to proficiency; clearly it is. The problem is that other factors that impact the propensity to use 
more time to review items (e.g., self-confidence) are not sources of random error; they are sys-
tematic. As such they do not simply reduce the usefulness of using response time as collateral 
information in producing scores; they introduce bias in the scores. 

If response time were used as collateral information under the current administration con-
ditions, it would penalize examinees who are more cautious and spend more time reviewing 
responses. This certainly would be unfair and could be counterproductive as well (as cautious 
attention to detail very well may be an attractive characteristic for a physician). If, alternatively, 
the conditions of administration were changed by telling examinees that response rate will 
impact their scores, examinees likely would change their behavior. However, two examinees 
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who are capable of completing the test with the same speed and accuracy may still respond at 
different rates (and receive different scores) if the scores are influenced by the ability to make 
good judgments about how to optimize pacing with respect to the scoring algorithm. 

In considering the contribution that speed might make to an examinee’s score, it is worth 
noting that there may be contexts in which speed is clearly a part of the construct of interest. 
In emergency situations or other critical care settings, rapid responses may be important. If 
measures of both speed and accuracy are central to the construct of interest, the logic related 
to the use of information about response time is changed. Such items could be presented in 
a separately timed section with separate instructions for examinees. Even under these condi-
tions, however, it will be necessary to demonstrate that the characteristics that impact response 
time on the items are the same characteristics present in these time-critical practice settings. 
This is likely to be challenging. 

Using Timing Data to Improve Test Development 

Perhaps the most obvious use of timing data to improve test development is to use it to estab-
lish time limits that will be consistent with the intended inferences that are to be made based on 
the test scores. In an optimal scenario, such data would come from randomized experiments, 
but the results reported in this chapter make it clear that useful information can also be col-
lected in observational studies. 

Standardized testing is a process for collecting information to make an inference or decision 
(usually about examinees). Optimizing test development with respect to time means collect-
ing the maximum amount of information in a fixed amount of time, given the construct(s) of 
interest. It also means collecting data that are maximally useful (per unit) for the decision or 
inference that is to be made. The research already discussed by Swanson et al. (2001) relates 
directly to this question. For example, items with more words will generally take longer to com-
plete. Test developers therefore should be cautious about creating complex (and lengthy) sce-
narios unless there is evidence that there is a payoff in terms of improved measurement. This 
improvement could be in the form of items that are more discriminating (providing increased 
statistical information), or it could be in the form of items that are viewed as more directly 
measuring the construct of interest. In either case, it is important to be aware of the tradeoffs 
that may be required to increase authenticity. More complex scenarios may seem more realistic, 
but they almost certainly will require more testing time. Empirical evidence should be collected 
whenever possible to demonstrate that this additional time is justified. 

The same logic applies when considering the addition of other types of stimulus materials. 
It is easy to understand why a test developer might make the decision to require that the physi-
cian identifies the correct diagnosis after listening to a recording of heart sounds rather than 
simply reading a description of the heart sounds, even if the audio version of the item requires 
more time. Nonetheless, audio, video, and graphical stimulus materials are likely to add to 
response time (Holtzman, Swanson, Ouyang, Hussie, & Albee, 2009). Even if it is impossible 
to directly evaluate the value added by the more complex stimuli, the additional time require-
ments should be evaluated. 

As explored in Chapter 3, regardless of the decisions that are made in selecting the types 
of items to include on the test, it will be important to construct test forms (or individually 
timed sections) so that any impact resulting from time limits will be similar across test forms. 
Model-based approaches such as that proposed by van der Linden (1998, 2005) represent one 
strategy. In contexts in which prior information about the time intensity of individual items is 
not available (e.g., when items have not been pretested), characteristics of items such as word 
count or other linguistic characteristics might be used to build forms that will have similar tim-
ing requirements. 
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Implications for Other Testing Contexts 

Most of the results discussed in this chapter come from data collected in the context of medical 
licensing examinations. We focused on these results in part because numerous studies have 
been published based on data collected since these examinations moved to computer admin-
istration. Additionally, the high-stakes nature of the tests reduces the potential confounding 
effects of variable levels of engagement. Nonetheless, it is sensible to consider the extent to 
which these results are likely to generalize to other settings. 

As we have already discussed, licensing examinations are achievement tests. They also 
are administered under high-stakes conditions. The results of these tests determine whether 
or not a physician can practice. In some sense that makes these tests similar to university 
entrance examinations; in both cases, examinees are likely to make substantial efforts to 
maximize their scores. This includes both organized test preparation with respect to the con-
tent of the examination and practice with pacing to minimize the impact of time constraints. 
There are, however, other aspects of achievement tests that may differ substantially from the 
tests described in this chapter. For example, much of the research on the SAT (the current 
form of which may reasonably be viewed as an achievement test) was carried out during a 
time in which there was a penalty for guessing. Items on the SAT also were administered at 
least partially in difficulty order. These characteristics could affect the impact of time con-
straints substantially. Bridgeman, Trapani, and Curley (2004) reported that additional time 
on the math section of the SAT benefitted more proficient examinees. This likely occurred 
because the order of items and a penalty for guessing led to a circumstance in which less 
proficient examinees ran out of knowledge before they ran out of time. Changes in either 
the conditions of administration or the motivation of examinees may affect the impact of 
time constraints. For example, it is unlikely that the results reported in this chapter would 
generalize to low-stakes (for examinees) testing contexts like those described in Chapter 11. 
These characteristics should be taken into consideration in interpreting the results presented 
in this chapter. 

Note 
1 The speed-accuracy tradeoff has been studied in numerous performance-related contexts and has even been 

observed in insects (Chittka, Dyer, Bock, & Dornhaus, 2003). 
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For well over a century, researchers across disciplines have studied different aspects of the 
relationship between speed and performance. The effect of speed on decision-making has been 
studied and reported in the psychology literature since the 1800s (e.g., Donders, 1868); concern 
about the impact of time limits on test performance has been documented since at least the 
1920s (e.g., Yerkes, 1921). More recently, educational measurement researchers have devoted 
considerable attention to understanding how timing and time limits impact test scores. Much 
of this research has been conducted within the context of multiple-choice examinations, and 
numerous large-scale studies have examined both the impact of time limits (Bridgeman, Cline, 
& Hessinger, 2004; Bridgeman, Trapani, & Curley, 2004; Evans & Reilly, 1972; Harik et al., 
2018; Wild, Durso, & Rubin, 1982) and how examinees use available time (Kahraman, Cuddy, 
& Clauser, 2014; Schnipke, 1995; Schnipke & Scrams, 1997) in this context. Despite the efforts 
dedicated to research in this area, relatively little work has been done in other testing contexts. 
The purpose of this chapter is to extend the discussion of timing-related issues to an area that 
has received considerably less attention in the literature: performance assessment. We begin 
by discussing the (somewhat limited) published literature that does exist in this area; this work 
mainly relates to writing tasks. We then address timing considerations in the context of other 
types of performance assessments and report on a previously unpublished experiment exam-
ining timing with respect to performance on computer-based case simulations that are used 
in physician licensure. Finally, we discuss literature on psychometric models that take into 
account both time limits and working speed in addition to performance. We end with a discus-
sion of how research around time limits can be enriched by looking at log files and process data. 

Time Limits in Performance Assessment 

Essay Examinations 

It is perhaps surprising to realize that, two decades into the 21st century, writing tasks remain 
the primary focus of research dedicated to understanding timing considerations in non-
multiple-choice assessments. More studies addressing the effects of time limits on complex 
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simulation- and game-based assessments are likely to emerge in the future, as those types of 
assessments are being used with more frequency in both formative and summative assessment 
contexts. The current state of the literature, however, is that relatively little published research 
exists that examines timing in the context of performance assessment. The research area that 
has been the exception and that has received continued attention over the years is the impact of 
time limits on scores for essay questions. 

Much of the work around time limits on essay tests focuses on the evaluation of timing with 
respect to performance on specific tests, but there are also some studies that address the impact 
of time limits on essay scores more abstractly. We will begin our review by discussing this lat-
ter category of research and then consider the research projects that are specific to individual 
testing programs. 

In a study described by Biola (1982), 96 freshman at Georgia State University were required 
to complete an essay test. Students were assigned to one of two topics and each topic was 
administered under one of two timing conditions (45 or 120 minutes). Analyses investigated 
the impact of time on the resulting scores as well as whether there were differences associated 
with the topics or the interaction between topic and time limit. The findings were straightfor-
ward; more time was associated with higher scores and there were no significant effects for 
topic or for the interaction between topic and time limit. 

Caudery (1990) reported on a similar, but less structured, small-scale study imple-
mented in the context of a class for Cypriot students preparing for the General Certificate 
of Education Ordinary Level (O-level) English examination. In this study, 24 students 
completed two different essays under two different conditions. In the first condition, 
students had a 40-minute time limit to complete the essay in the classroom. In the sec-
ond condition, students had 1 hour to work on the essay in class and then had the next 
2 days to complete the essay at home. Three criteria were used to evaluate the essays: 
organization, language, and overall impression. The only score that differed significantly 
across the two timing conditions was for language. The researcher was surprised that 
organization was not improved when more time was provided, although he noted that 
the students had specifically practiced writing essays within a 40-minute timeframe in 
preparation for the O-level examination. The findings from these two studies do little 
more than demonstrate the obvious, which is that time limits may impact scores on essay 
examinations. The small sample sizes and lack of information about how the specific 
examinee groups might have impacted the results make it difficult to draw other general 
conclusions from this research. 

The remaining studies that we reviewed were motivated by an interest in collecting valid-
ity evidence for specific assessments. Livingston (1987) reported on two studies that used 
a counterbalanced design to examine the impact of additional time on essays completed as 
part of the New Jersey College Basic Skills Placement Test. Two groups of examinees par-
ticipated in the study, all of whom took the test as volunteers (i.e., their scores were not used 
to make placement decisions). The first group of examinees completed two essays under 
different timing conditions: the standard 20-minute time limit and an extended 30-minute 
time limit. Both the order of the essay prompts and the order of the timing conditions were 
counterbalanced. In the second group, examinees were assigned to the same two timing 
conditions except that in the 30-minute condition the additional time was provided for 
planning the essay; examinees either had 10 minutes to plan the essay and 20 minutes to 
write or they had 20 minutes to write with no planning time. The results indicated that 
the most significant difference was between essay prompts; one prompt resulted in higher 
scores than the other. There were no significant differences between timing conditions, sug-
gesting that additional time (whether for planning or writing) was likely to have relatively 
little impact on scores. 
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Klein (1981) reported on the results of a randomized experiment examining timing issues 
on the California Bar Examination. For one administration of the examination, a special sec-
tion was added. Applicants were told that the section was optional, but that if they failed based 
on the regular examination, their performance on the special section would be included in a 
composite score and could result in a passing decision. If examinees passed based on the regu-
lar examination, the special section would not be considered. The special section contained 
two essays (one related to “business law” and one related to “trial law”), and a counterbal-
anced design was used to assign one essay to a shorter (55-minute) timing condition and one 
to a longer (90-minute) timing condition. The results showed that examinees scored higher 
on average when given more time, but there was no evidence that additional time differen-
tially impacted groups defined by age, sex, race, type of law school attended, or repeater status. 
There was similarly no significant relationship between the improvement associated with hav-
ing more time and scores on the full examination. 

In 1992, Hale reported on a study that was similar to Livingston’s (1987) study; 820 interna-
tional students served as paid volunteers and were tested to evaluate the impact of time limits on 
the Test of English as a Foreign Language (TOEFL) test of Written English. Two essay types were 
examined: prose topics and chart/graph topics. For each essay type, two prompts were used along 
with two time limits (standard 30 minutes and extended 45 minutes). Time limits and topics were 
counterbalanced to control for order effects. To allow for estimation of parallel forms reliability, 
a group of examinees responded to both prompts with the same time limit (either 30 minutes or 
45 minutes). Finally, an additional group of examinees participated in a supplemental condition in 
which one prompt was completed with the standard time limit and the other was completed with a 
15 minute planning period followed by 30 minutes for writing. Results were reported both in terms 
of correlations and mean performance across timing conditions. Correlations between scores on 
essays written with a 30-minute and 45-minute time limit were similar to correlations between 
essays written with the same time limit. For the prose topics, the mean correlation between time 
limits was 0.77 and the mean correlation between topics with the same time limit was 0.75. For 
the chart/graph topics, the mean correlation between time limits was 0.69 and the mean correla-
tion between topics with the same time limit was 0.74. Generally speaking, the results showed 
improvements in scores when examinees had additional time to complete the essay. The effect was 
statistically significant and resulted in an improvement of slightly more than a third of a standard 
deviation. Additional analysis indicated that the magnitude of the improvement associated with 
having an additional 15 minutes was similar for high- and low-proficiency examinees. The sup-
plementary condition in which examinees had an additional 15 minutes to plan their essays before 
they began writing did not lead to a significant improvement in essay scores. 

Powers and Fowles (1997) conducted a similar study in which they recruited volunteers to 
examine the impact of time limits on the Graduate Record Examination (GRE) Writing Test. 
Four essay prompts were used with test forms spiraled so that half of the examinees completed 
prompt A followed by B and half completed prompt C followed by D. Two separate adminis-
trations were required to counterbalance the timing conditions: for one administration, there 
was a 40-minute time limit for the first essay and 60 minutes for the second; for the other 
administration, the timing was reversed. Examinees were also administered a questionnaire to 
gather information about their self-perception related to their ability to write quickly and their 
level of frustration with timed writing tests. Both the time limit and the slowness/quickness 
variable extracted from the questionnaire were significantly related to essay scores; there was, 
however, no interaction indicating that examinees who perceived themselves to be slower or 
quicker benefitted more from additional time. 

The fact that Powers and Fowles (1997) showed no differential impact associated with 
providing additional time on the GRE analytic writing assessment opened the way to efforts 
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to reduce the overall time allotted to essays for the redesigned GRE. Robin and Zhao (2014) 
describe an experiment designed to evaluate the best way to divide a reduced amount of time 
between the issue and argument essays that comprise analytic writing. The results may be most 
noteworthy because they highlight the complexity of making interpretations based on data 
collected from volunteers taking the test under low-stakes conditions. Less than half of the 
1,183 volunteers who had previously taken the GRE could be used in the final analysis because 
they either did not complete both the issue and argument tasks or because the required scores 
from the operational test were not available. The original operational timing for the issue and 
argument tasks was 45 and 30 minutes, respectively. In the experimental conditions, the timing 
was 40 minutes and 20 minutes, 35 minutes and 25 minutes, or 30 minutes and 30 minutes. 
Although the volunteer group had scores from the operational test that were above the national 
average, their performance on the experimental essays was approximately a standard deviation 
below that average (even when the timing was the same as the original operational condition). 
Additionally, with the issue essay, providing more time (30, 35, and 40 minutes) led to respec-
tively lower scores. This would seem to provide strong evidence that motivation matters. 

These results related to using volunteers to evaluate the impact of time limits on perfor-
mance are similar to those reported for evaluations of multiple-choice-based tests delivered in 
low-stakes settings. For example, Bridgeman et al. (2004) reported that 46% of the volunteers 
they recruited had to be removed from the analysis because their scores on the experimental 
section were sufficiently different from those on the operational sections that it was reasonable 
to conclude that they had not given serious effort to the voluntary experimental section. A 
similar score anomaly was reported by Evans and Reilly (1972) for a study of the Law School 
Admissions Test in which a subset of the examinees completed the examination at free test 
centers. Taken together, these results argue for considerable caution in generalizing from low-
stakes experimental settings to high-stakes operational conditions. This is troubling, because 
essentially all of the research on essay examinations is based on low-stakes performance. The 
one exception is the study by Klein (1981) in which performance on the experimental essay 
section could help otherwise failing examinees, but even in this study poor performance on the 
experimental section could not impact the examinee. 

If we put this substantial limitation of the research base aside, we might reasonably con-
clude that providing additional time often—but not always—leads to improved performance. 
In those instances in which it does lead to improved performance, the improvement appears to 
be uniform across subgroups, whether those groups are defined by proficiency or in terms of 
self-reported need for more time. It may, however, be imprudent to put the limitations of the 
research base aside, because in the context of multiple-choice items, differences in impact for 
time limits are most clearly apparent in studies implemented in high-stakes conditions (e.g., 
Bridgeman et al., 2004; Harik et al. 2018). 

Simulations Used in Medical Licensing 

Standardized-Patient-Based Clinical Skills Assessment 

As noted previously, much of the timing research related to performance assessments has 
focused on essays. Another context in which timing considerations have been studied is the 
performance assessments that are part of the United States Medical Licensing Examination 
(USMLE). The USMLE, which is required for granting of a license to practice medicine in 
the United States, comprises four separate testing events. The examination sequence includes 
two different performance assessments: the Step 2 Clinical Skills (CS) examination and the 
computer-based case simulation component that is part of the Step 3 examination. Step 2 CS is a 
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day-long examination designed to assess the ability of physician trainees to gather information 
from patients, perform physical examinations, and communicate findings to patients and col-
leagues. Laypeople are trained to portray “standardized patients,” each with a specific clinical 
complaint. During the examination, examinees interact with a series of 12 of these “patients” 
and are allotted a total of 25 minutes for each encounter: A maximum of 15 minutes is per-
mitted for the actual patient interaction in the examination room, and the remaining time 
(a minimum of 10 minutes) is used to complete a structured patient note that requires docu-
menting the findings and recommendations resulting from the encounter. 

A series of studies was implemented to examine how the amount of time used by examinees 
relates to examinee characteristics, characteristics of the simulated cases, and scores from the 
Step 2 CS examination. Swygert and colleagues (Swygert, Scott, Swanson, McKinley, & Boulet, 
2008, 2009) used hierarchical linear modeling procedures to examine how total time taken in 
the patient encounter relates to encounter characteristics. Results indicated that examinees use 
more time for encounters earlier in the test day and that on average they use the most time on 
the first encounter; this finding seems to suggest a warm-up effect. The results also show that 
examinees from U.S. medical schools use less time than those from international schools and 
that women use less time than men. Case content (i.e., the organ system the case focused on) 
was not significantly related to use of time. 

Two follow-up studies examined how time devoted to different aspects of the encoun-
ter related to scores. Swygert, Muller, Swanson, and Scott (2009) examined the relationship 
between two timing variables (total time spent with the standardized patient and time spent 
closing the encounter) and the examinee’s communication and interpersonal skills score 
from the same encounter. (The “closing” period is the time after completing the patient his-
tory and physical examination and before leaving the room; common activities at this point in 
the patient encounter include explaining the findings to the patient, answering the patient’s 
questions, and discussing possible next steps.) Results indicated that both time measures were 
positively related to scores. They also showed that scores improve across the test day, with 
examinees on average receiving their lowest score on the first encounter of the day. 

Finally, Swygert, Muller, Scott, and Swanson (2010) examined how the amount of time 
examinees spent writing the patient note related to scores on that component of the test. Results 
indicated that spending more time writing the note was associated with higher scores; each 
additional minute spent writing was associated with a 0.04 score increase. To put this result in 
perspective, the 0.04 increase represents well under a tenth of a standard deviation for the note 
score; a two standard deviation increase in the amount of time an examinee spent on a note 
would be expected to be associated with a fifth of a standard deviation increase in the score. 

Taken together, the studies by Swygert and colleagues indicate that the use of time in these 
simulations varies across demographic groups and that the amount of time used on a component 
positively covaries with the scores for that component. What is less clear is whether there are any 
existing causal relationships between those characteristics and time. The other potentially impor-
tant result reported in these studies is that examinees use the most time on the first encounter of 
the day and also have the lowest scores on that encounter. This may be an indication that aspects 
of the test that are unrelated to the proficiencies of interest are impacting examinee performance. 

Computer-Based Case Simulations 

The finding of systematic score increases along with a decrease in the amount of time to com-
plete tasks across the testing day closely parallels results of a similar study in the context of the 
USMLE Step 3 computer-based case simulations (Clauser, Margolis, & Clauser, 2017). These 
are dynamic simulations of the patient-care environment in which examinees are expected to 
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manage each “patient” by gathering data and making patient-care decisions based on both the 
data they collect and any changes in the patient’s condition. (See Margolis & Clauser, 2006; 
Harik, Clauser, & Baldwin, 2013 for more information about the simulations and associated 
scoring procedures.) At the time of this research, examinees completed nine cases and had a 
maximum of 25 minutes to complete each case. Different sets of nine cases were used on dif-
ferent test forms, and for any given test form the order of case delivery was randomized by 
examinee. Because of the randomization, results for any specific sequence position were not 
related to the specifics of the cases; all cases occured in each position a similar number of times. 
Results showed that examinees moved more quickly through consecutive cases occurring in 
positions one through eight. The first case took on average about 1.5 minutes longer than the 
second case, and there were modest reductions in time for subsequent cases. The results also 
showed a parallel increase in mean score as a function of sequence position. 

Overall, the results from studies investigating the relationship between time usage and score 
indicate that familiarity with the interface, or perhaps with the demands of the simulation, 
leads to improved performance in less time. It is unclear whether the reduction in time used 
across sequence position reflects increased confidence on the part of examinees, increased 
facility with the interface, or both. The increase in scores as a function of sequence would seem 
to suggest that some aspects of the simulation are associated with construct-irrelevant variance 
in the scores that is reduced with practice. 

One final study in the context of the USMLE Step 3 computer-based case simulations 
approached the question of examination time constraints from a slightly different perspec-
tive than has been typical for this area of research. As described above, much of the research 
investigating time limits both in essay and in other performance assessment testing contexts 
has addressed the question does performance improve if examinees are given (or use) more time? 
This study is different in that it was motivated by evidence suggesting that the time allocation 
for the simulations might be unnecessarily generous. Many examinees finished the simula-
tions with time to spare, and post-examination surveys indicated that relatively few examinees 
reported the desire for additional time. If research suggested that the standard time (25 min-
utes per case) could be reduced without impacting examinee performance, a larger number 
of cases could be administered and would (most likely) positively impact the precision of the 
resulting measure. A 5-minute (20%) reduction for each case would allow for administering 
two additional cases. If the time limit could be reduced to 15 minutes (an additional 20%), the 
test length could be increased from nine to fifteen cases. This increase in test length could have 
a substantial positive impact on the reliability of this part of the examination. (See Clauser, 
Harik, & Clyman, 2000, for generalizability results related to increasing the number of tasks on 
this examination.) 

The research was completed in the context of the operational Step 3 examination, and at 
the time of the study, one or more of the nine cases was unscored in order to collect statistical 
information for quality control and scaling; examinees were not aware of which cases were not 
scored. One of these unscored cases was used for this research. 

Nine cases representing a range of complexity were selected from the case pool. Examinees 
were randomly assigned both to cases and to timing conditions within cases. For each case, 
three timing conditions were examined: 15 minutes, 20 minutes, and 25 minutes (standard 
time). Examinees were aware of these different timing conditions. The bulletin of information 
for the examination described the fact that the cases could be administered with differing time 
allocations, the time limit for each simulation was presented at the beginning of the case, and a 
timer provided feedback about the amount of time remaining. 

Analyses ranged from simple descriptive statistics to analysis of covariance (ANCOVA) and 
were intended to provide insight into several different issues, including (but not limited to) 
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whether there were differences across timing condition after accounting for a number of covar-
iates, whether there was an interaction between examinee proficiency and time (reflecting a 
differential impact for time limits on a subset of examinees), and whether there was evidence 
that changes in timing impact score validity. 

Results indicated a nearly perfectly consistent pattern in which the mean scores decreased 
as time decreased. For all nine cases, differences existed across the levels of the timing vari-
able. For five of the cases, there were significant differences between the variances in the scores 
across the levels of the timing condition; the variances consistently increased as the allotted 
time decreased. ANCOVA was used to examine the score differences across timing conditions 
using examinee characteristics as covariates; these covariates included a proficiency estimate 
based on the multiple-choice section of the examination, examinee gender, English language 
status, location of medical school (U.S. or international), and a variable representing whether 
the examinee was completing the examination for the first time. 

Table 7.1 shows the estimated timing-condition means based on the covariates. There were 
statistically significant differences between scores across the timing conditions for each of the 
nine cases. For the majority of cases, a reduction in time from 25 to 20 minutes did not result 
in a significant score reduction; a reduction from 20 to 15 minutes did. 

The described results suggest that a reduction in the time limit will impact overall examinee 
performance; one obvious question following from that finding is whether this impact is uni-
form across examinees or whether some examinees are affected more than others. The pattern 
of increasing standard deviations associated with shorter time limits might suggest that the 
impact is not uniform. Analytic results indicated significant interactions between examinee 
proficiency and timing condition for four of the nine cases (cases 1, 3, 7, and 9). 

Graphic representation of the results provides insight into the specifics of these interac-
tions. Figures 7.1 and 7.2 present plots in which the score on the studied case is plotted against 
proficiency (based on the multiple-choice portion of the test), with separate lines represent-
ing the separate timing conditions. Figure 7.1 presents an example indicating that decreasing 
the time limit has relatively little impact on performance for high-proficiency examinees and 
substantially greater impact on low-proficiency examinees. Figure 7.2 presents a different pat-
tern in which it appears that with standard time, the case does not discriminate well between 
examinees with medium to high proficiency; with reduced time (15 minutes), the case does 
not discriminate between lower-proficiency examinees. The plots for cases 1 and 3 are similar, 

Table 7.1 Estimated marginal mean scores and standard errors by timing condition 

Timing Condition 

Case 15 minutes 20 minutes 25 minutes 

1 5.102 (0.048)* 5.729 (0.046) 5.775 (0.040) 
2 4.135 (0.055)* 4.479 (0.056) 4.595 (0.053) 
3 5.808 (0.060)* 6.253 (0.050) 6.365 (0.051) 
4 4.746 (0.047)* 5.161 (0.048) 5.182 (0.054) 
5 6.980 (0.047) 6.931 (0.040)* 7.100 (0.045) 
6 4.877 (0.037)* 5.168 (0.038)* 5.065 (0.032) 
7 4.838 (0.042)* 5.325 (0.041)* 5.600 (0.040) 
8 5.314 (0.086)* 5.828 (0.081) 5.898 (0.091) 
9 5.287 (0.042)* 5.437 (0.042) 5.459 (0.048) 

* Estimated mean is signifcantly diferent from the 25-minute condition (p <0.05) 
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Figure 7.1 Estimated marginal means plotted against examinee proficiency for case 1. 

while those for the remaining two cases are different. The plotted values represent a type of 
empirical item characteristic curve for the studied cases. 

The implication of these results is that a 40% reduction in testing time may make a dif-
ference; a 20% reduction may not, although a lack of significance does not demonstrate that 
subgroups within the population are unaffected. Examinee performance tended not to differ 

Figure 7.2 Estimated marginal means plotted against examinee proficiency for case 7. 
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significantly between the 20- and 25-minute conditions, but it did tend to differ significantly 
between the 15- and 25-minute conditions. Beyond this one generalization, the results were 
highly case dependent: the more substantial shift in expected performance tended to be asso-
ciated with a change in timing from 20 minutes to 15 minutes, but for a few cases the change 
from 25 minutes to 20 minutes was more significant. Similarly, for most cases, a reduction 
in timing provided a similar performance disadvantage to examinees across the examinee 
proficiency range, though the expected advantage varied by examinee proficiency level for 
four cases. 

Previous research on the impact of varying time limits has shown that the results may be 
context specific. Given that finding, generalization of the results of this study should be made 
cautiously. That being said, this study extends the available results by providing information 
about the impact of timing on complex constructed-response items; it is one of the few studies 
that was conducted under high-stakes conditions and also is one of the few studies that shows 
differential effects for time limits across examinee groups. 

Psychometric Approaches to Modeling Data from Time-Limited Tests 

The above review has shown that time on task and performance may be related. In the case of 
performance tasks, this appears to be an example of the well-studied speed-accuracy tradeoff. 
Complex performances require continued effort, and insufficient time will lead to sub-optimal 
outcomes. In this section, we discuss why, given this relationship, common approaches to 
integrating timing data into psychometric models may not be appropriate for analysis of per-
formance tasks. We then discuss how these existing models can be extended to accommodate 
complex tasks administered in tests with time limits. We close with a section that provides some 
research directions based on current developments around process and sequence data analysis. 

Current Modeling Approaches Combining Time and Response Data 

One could argue that most psychometric models ignore time on task. Even if time is included 
in the model (e.g., Klein-Entink, Fox, & van der Linden, 2009), working speed is the primary 
concern; time limits are not typically made explicit in the model. In addition, models for time 
used per task either implicitly or explicitly assume that the association between speed and accu-
racy is the same for all items. For example, the hierarchical speed-accuracy model (van der 
Linden, 2007) includes two latent variables and assumes that the relationship between item 
response and accuracy are positive for all items. The model additionally assumes that the rela-
tionship between working speed and time used is strictly monotone and directed the same way 
for all items. The simplicity of this model may seem attractive, but there is a drawback: the 
relationship between accuracy and speed is modeled at the latent variable level as a correlation, 
while in real data (e.g., Yamamoto, Khorramdel, & von Davier, 2013) time on task and prob-
ability of success may be positively related for difficult (complex) items and negatively related 
for easy (simple) items. Appropriately addressing this relationship would require a model that 
allows negative as well as positive associations of a working speed variable at the item level. It 
would also reconceptualize the speed variable as “good time management” rather than “work-
ing speed,” as it would relate to the ability of an examinee to adjust her/his time use to the 
difficulty of the task at hand. 

Model Extensions for Time Limits 

Some recent extensions to this model have explicitly taken into account the fact that most 
tests are administered with time limits. Whether these are writing tests such as single- or 
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multi-prompt essays, mixed-format tests that contain more traditional item formats, or game-
or simulation-based tasks, most come with some explicit maximum time limit. 

Item response models have been extended to allow for the effects of time limits in various 
ways. One of the earliest examples is the Rasch Poisson Count Model. In its simplest form, it 
does not contain a time limit parameter, but it has been extended to include one. The item 
scores are assumed to follow the model: 

r˝ ˙ ˆ )P R( r | ,i , i ) = ) ( (7.1)= ˝ ˙ ˆv exp(−˝ ˙ ˆi v i  
i v i ,

r ! 

where ˙  represents a time limit parameter, is the examinee ability,˛i = exp( )i ˛v = exp(−˛v ) 
and ˛i = exp  bi( ) is the item difficulty. This model allows for analyzing data based on a set of 
items that is administered under different time limits. In this model, scores represent devia-
tions from an ideal solution (zero is best, counts of errors or omissions lead to higher scores); 
holistic human-rater-based scores will need to be recoded to align with this model. Research 
using the Rasch Poisson Count Model suggests that it has good fit for datasets obtained from a 
variety of tests (e.g., Doebler & Holling, 2015; Verhelst & Kamphuis, 2009); application of the 
model to scores from the previously described computer-based case simulations is currently 
being examined. 

Yamamoto’s Speededness HYBRID model provides another example of how time limits 
can be included in scoring models (Boughton & Yamamoto, 2006; Yamamoto & Everson, 
1997). Under this model for binary item response data, it is assumed that time limits may lead 
respondents to switch from a skill-based response process that involves active information 
processing to a heuristic choice or even guessing-based response as they move through the item 
sequence. This change typically would be expected when time is about to run out. Although 
the model implicitly assumes that test takers complete test items in the order they are pre-
sented, it has been shown to provide good fit. If test takers return to items that were previously 
skipped or were previously answered by guessing and they subsequently attempt them in a fully 
engaged mode, this does not contradict the HYBRID model assumption as the model allows for 
the possibility that some test takers answer all items in an engaged mode. 

The Speededness HYBRID model is based on a discrete mixture distribution of respondent 
groups who switch from a problem-solving behavior to a simpler approach to responding at dif-
ferent item positions. The approach may be based on heuristics or, at its most extreme, test tak-
ers may be guessing at random. The probability of a response pattern takes the following form: 

I i I 
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where gk is the guessing probability on item k, P x( j |˛)  is the probability of response x j given 
ability ̃ , and ˜S i=  is the probability of switching to a random/heuristic strategy after item i . 

This model was shown to improve item difficulty estimation and allowed the TOEFL pro-
gram to assess speededness and shorten the test (Boughton et al., 2006). Extensions to perfor-
mance items with polytomous scores can be implemented via the polytomous HYBRID model 
(von Davier, 1996) and the general modeling framework introduced by von Davier (2005, 
2008) for diagnostic testing and multidimensional item response modeling. 

Another potentially useful approach was described by Lee (2007). In this model, time to 
completion of a task can be impacted by time limits that may interfere with completing all 
items. This model assumes dichotomously scored tasks, but extensions to polytomous or count 
scores are straightforward. (See Lee & Chen, 2011, for a recent review of models for timing data 
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and item responses.) This approach seems promising, because examinees who do not finish 
their work before the time limit are likely to have lower scores than those who have sufficient 
time to finish. It is clear that many of these approaches can be used to inform researchers about 
the effects of time limits. That being said, the fact that time measures are indirect indicators of 
examinee behavior and the extent to which time limits actually impact their scores highlights 
the need for continuing research in this area. 

Process Data Analysis to Inform Test Time Limits 

Time on task and the impact of time limits were studied long before computers became com-
mon in test delivery, but these studies were labor intensive and provided limited data. With 
the advent of computer-based testing, rich process data has become readily available. Process 
data results from automated recording of each action taken by the examinee along with a time 
stamp for the action. Actions may include mouse clicks, menu choices, keystrokes, or any other 
interaction with the test delivery platform. These data are structured in the sense that all entries 
in the log file where they are recorded are well defined; they are, however, not structured like 
other response data collected as part of test administration. Process data are, like text or natural 
language, sequence data (Dong & Pei, 2007; Sukkarieh, von Davier & Yamamoto, 2012), and 
different techniques are needed to analyze these new types of data (He & von Davier, 2015, 
2016). 

Process data appear to be another opportunity to study the effect of time limits on perfor-
mance. For writing tasks, Almond, Deane, Quinlan, and Wagner (2012) and Deane (2014) 
provide insight into how key-stroke data can be collected as a tool for gaining a deeper under-
standing of how test takers distribute the available time between planning, writing, and review-
ing/revising their work. In particular, Deane (2014) develops concepts around process and 
product features of the writing task that may be relevant correlates of how respondents utilize 
the available time for task completion. 

Data on how time is allocated between different activities may help to delineate optimal 
versus suboptimal time usage on performance tasks. Classifying process data into categories 
such as orientation, production, review, and disengagement may provide a basis for estimates 
of how much time is spent on different types of activities, and ultimately how this allocation of 
time relates to the score obtained on the performance task. 

Pohl, Ulitzsch, and von Davier (2019) and Pohl and von Davier (2018) describe an approach 
that combines timing information with data about what part of the assessment was not reached 
by the examinee. This approach can be useful when looking at process data in complex perfor-
mance items where respondents are not expected to reach all parts of the assessment. Assessing 
whether test takers engage in responding to the items or whether they utilize heuristics to select 
an option quickly, or even guess a response, can be improved by incorporating timing data 
(Ulitzsch, von Davier, & Pohl, 2019a,b). This allows for estimating ability only based on those 
responses that are considered engaged, and can also be understood as a way of disentangling 
careless responding from effortful, ability-based responding. 

Conclusions 

The ways in which time limits and response speed interact with performance on tests have 
been the focus of considerable attention. The impact of time limits on standardized tests com-
prising multiple-choice items has been carefully studied (see Chapter 5), but as we stated at 
the beginning of this chapter, less attention has been given to time limits for performance 
assessments. Having fairly exhaustively reviewed the available literature in this area, the limita-
tions of that literature should be apparent. Even in the context of essay-based examinations, 
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where relatively more research has been carried out, interpretable and generalizable results 
are difficult to come by because so much of the work is based on examinee responses gathered 
under conditions that differ markedly from those of the actual examination (i.e., differences in 
examinee motivation). 

Even with those limitations, the results of previous studies make it clear that time limits can 
significantly impact scores on performance assessments. Although there is little evidence that 
time constraints differentially impact different demographic groups (defined for example by 
gender or ethnicity), the results reported in this chapter do show that time limits may differen-
tially impact examinees of different proficiency levels. 

The literature reviewed in this chapter also makes it clear that, in comparison to multiple-
choice formats, relatively little attention has been given to scoring models that incorporate 
information about response rate or the impact of time limits. This relative lack of evidence to 
guide development and administration of performance assessments is problematic for a num-
ber of reasons. The importance of understanding the impact of time limits on performance 
assessments is increased because the value of these more complex tasks is typically linked to 
the view that they more directly reflect the real-world behavior of interest. If artificial time 
limits result in response patterns that are systematically different than those in the “real world,” 
the advantage of using a more authentic task may be undermined. This problem can be exac-
erbated by the fact that there are likely to be aspects of the assessments that differ from the 
real-world challenges they are meant to approximate. Using a computer interface to manage a 
patient introduces familiarity with the interface as a variable that could impact both the time 
requirements and performance. Producing an essay using an unfamiliar word processing sys-
tem could similarly impact time requirements and scores. 

As the number of performance tasks that are administered on computer continues to 
increase, it is hoped that the availability of additional response time data will yield impor-
tant evidence to advance our understanding of time limits in the context of performance 
assessments. Advances in this area have the potential to lead to improved test administration, 
increased efficiency, and scores that better support the intended inferences about examinees. 
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8 
Impact of Technology, Digital Devices, and

Test Timing on Score Comparability 
Wayne J. Camara and Deborah J. Harris 

Introduction to the Impact of Technology on Testing 

Over the past two decades, significant technical and technological advances have been made 
across numerous facets of assessment development and administration; among the areas in 
which these advances can be found are test design, item and content generation, test delivery, 
and scoring (Drasgow, Luecht, & Bennett, 2006). In fact, technology has so greatly expanded 
the definition of computer-based testing that it may not adequately describe assessment in the 
21st century. As a general term, computer-based testing (CBT) describes tests administered on a 
computer rather than on paper. Today’s assessments might more appropriately be termed digi-
tal assessment, however, because there are many more testing options now than when CBT was 
introduced. Though modern assessments may comprise a multiple-choice test administered 
on a desktop computer at a proctored test center, they also may include testing on multiple 
devices, remote or no proctoring, and technology-enabled content such as simulations, scenar-
ios, or games. Luecht (2016) notes that the millennium ushered in internet-based testing and 
the possibility of testing anytime and almost anywhere. These variations in the design, delivery, 
and input of assessments may be intended to increase access to more test takers (Winter, 2010), 
utilize different devices purchased by schools (Kajeet, 2018), and/or take advantage of new 
technology (Strain-Seymour, Way, & Dolan, 2009). 

The particular way in which a test is delivered is referred to as the test administration mode: 
paper-and-pencil and CBT represent the most frequently cited standardized testing modes. 
Though there is really only one option for delivering a paper-based test, as noted earlier, digital 
assessment allows for the use of numerous test-delivery options such as tablets, smartphones, 
laptop computers, and desktop computers; these different hardware options are referred to 
as testing devices. The availability of these new device options allows for “personalization” of 
the testing experience to both the test taker and test user, and while this personalization may 
increase access for individuals, at the same time it may eliminate the standardization which 
has been a guiding principle for ensuring score equivalence: “In today’s environment, stand-
ardized testing is more likely to be composed of a collection of testing variations than a single 
controlled venue” (Way, Davis, Keng, & Strain-Seymour, 2016, p. 261). Testing companies 
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now must choose how to administer their tests by considering not only what mode is most 
desirable for their testing program but, should the selected mode be a digital assessment, what 
device(s) will be acceptable and appropriate for test delivery and what if any variations should 
be permitted. 

Standardization and Comparability 

The purpose of standardization is to maximize comparability, replicability, and interoperabil-
ity, as well as to improve measurement (ANSI, 2015). In assessment, standardization implies 
a consistency or uniformity in nearly all facets of test development, administration, scoring 
and reporting, such that common percentiles, norms, and interpretations can be generated 
from test scores. Standardization in assessment attempts to eliminate—or at least minimize— 
differences in the assessment experience to facilitate comparisons of scores across time, 
location, conditions, scoring, and test takers. In fact, the terms “choice” and “flexibility” largely 
have been considered antithetical to standardized testing and are commonly viewed as a poten-
tial source of invalidity by measurement professionals. Consumers, however, value choice and 
flexibility in their products, services, and increasingly their assessments, creating apparent con-
flict between the goals of measurement and the desires of test takers. One’s perspectives on the 
value of standardization or flexibility in the design, presentation, delivery, timing, scoring, and 
technology associated with assessments are likely related to the type of claims that will be made 
about test scores. If a testing company wants to ensure that scores from tests administered in 
different modes and/or across different devices have the same meaning, it is clear that claims 
of comparability will be important. 

Comparability refers to the commonality of score meaning and interpretation across testing 
conditions. When comparability exists, scores can be considered interchangeable (Drasgow 
et al., 2006). Standard 4.4 states that test developers should document changes (or variations) 
to test specifications when different versions of a test are permitted, and they should describe 
the impact of these differences on the validity of score interpretations, score precision, and 
score comparability (AERA, APA, & NCME, 2014). Other Standards state that when changes 
to administration conditions are permitted, all such changes should be examined for construct-
irrelevant variance. 

Winter (2010) contrasted score comparability and score interchangeability. She explains 
that score interchangeability is generally reserved for equated scale scores, but comparabil-
ity is increasingly thought of as a slightly less fine-grained comparison such as score pass/ 
fail decisions or performance-level classifications. Scores may be comparable if variations 
in testing conditions can lead to the same score interpretation, but if those scores cannot be 
equated they are not interchangeable. One testing variation that impacts score-level compara-
bility is the time allowed for the assessment and whether it is the same or varies by the mode 
of administration. This timing issue is the real focus of this chapter, but we felt it critical to 
provide the full context before focusing in on this one specific variation and its impact on 
comparability. 

Impact of Technology on Comparability 

The infusion of technology into assessment and the available variations to testing conditions 
based on accommodations and modifications complicate efforts to establish score compara-
bility (Way et al., 2016). Way et al. (2016) identified two focal issues that relate to the impact 
of technology on comparability. First, does altering the delivery mode or device change the 
construct? Second, does altering the mode or device introduce construct-irrelevant variance? 
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Different stakeholders often will prioritize different claims for comparability. Two such 
claims are illustrated below: 

1. If a test taker took the assessment on another device (or mode), he or she would have 
received the same score. 

2. The test taker took the assessment on the device most likely to produce the most accurate 
estimate of his/her true test score. 

The first statement prioritizes score comparability across test takers and claims device neu-
trality, reflecting a more traditional view of standardization and comparability. Such a claim 
may be valued in contexts where scores are used for norm-referenced purposes and test takers 
are compared (e.g., admissions, selection, scholarships). The second statement allows for the 
possibility that differences exist in devices and testing conditions more generally (e.g., modes, 
tools, timing) and privileges individual differences as long as construct-irrelevant variance is 
not introduced (Dadey, Lyons, & DePascale, 2018). The second claim also prioritizes access 
and the ability to demonstrate maximum performance and may be valued when scores are 
used in criterion-referenced ways (e.g., qualification, certification, and classification/pass-
fail). Such examples create a false dichotomy, however, and there are many conditions and 
caveats with each interpretation that must be weighed by test users before accepting either 
comparability claim. For example, standardization often constrains testing conditions for test 
takers who have disabilities or limitations (e.g., language) in ways that will impact the valid-
ity of individual scores. When standardization is privileged to the extent that exceptions or 
accommodations are not considered, it actually may impact score validity to a greater extent 
than would providing such exceptions. For example, if a state insists on testing all students on 
tablets when students in some districts have not had experience in using them (nor with the 
associated innovative items that require different input methods), it could create a barrier to 
optimum performance. On the other hand, if the standardized administration is altered for a 
test that is used to predict future performance (e.g., college success, job performance), but the 
same accommodations or exceptions are unlikely to be allowed, the precision of the score for 
predicting future performance may be in doubt. Two examples of such situations are (1) when 
a test taker with a disability is allowed to dictate an essay during testing but will be required to 
write in college, and (2) when a job applicant is provided double time on a simulation but will 
not be given similar extra time to perform that same task when working in the actual job. Many 
different features of digital assessments have the potential to impact score validity and claims 
about comparability if the features either vary across devices or if test takers are permitted to 
choose options even when a single device is employed. 

Test Timing and Speededness 

To this point, we have introduced the features of digital assessment that have the poten-
tial to interact with other variables and lead to performance differences. Test timing is one 
of the variables that can lead to different outcomes based on how the timing factors interact 
with the digital assessment features and it is, of course, the main focus of this book. In this 
section, we provide a brief conceptual background on test speededness in order to begin to 
explain how these factors impact score comparability. Please see other chapters in this volume 
(e.g., Chapters 1 and 5) for a more detailed description of the relevant topics. 

Measurement research has long held that ability and speed jointly impact response behavior 
and response accuracy (Lohman, 1989; Thorndike, Bregman, Cobb, & Woodyard, 1926). The 
terms speed test and power test are used frequently to differentiate tests relative to speededness. 
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• Speed is either a component of the construct by design or has a 
significant impact on test taker performance. 

Speeded 
tests 

Aggressively 
timed tests 

Generously 
timed tests 

Power or 
Untimed tests 

• Time limits are designed to allow most students to respond to all 
items, but many test takers must engage in some rapid guessing 
toward the end of the test or section because of insufficient time 
to fully review, process, and respond to all items. 

• Testing is designed to eliminate speed and allow virtually all 
students to reach and respond to all items. 

• Time limits are established for operational reasons (e.g., scheduling, 
standardization, reducing test center costs) and may have some 
impact on some test takers. 

• Testing is designed to allow students to complete all items and 
timing is not an administrative condition. 

• In education, many summative tests are untimed, which allows 
students as much time as required to complete a test. 

Figure 8.1 Common terms used to describe the difference between tests with respect to the speed-
power continuum. 

A speed test may assume that few test takers will reach all items, and a pure power test gener-
ally allows all test takers to attempt all items (Anastasi & Urbina, 1997). If the goal of a test 
is to measure only ability, the time limits should not impact scores or put test takers under 
pressure (van der Linden, 2005). In practice, the distinction between speed and power tests is 
one of degree. Educational assessments are designed as power tests and are either untimed or 
generously timed, with time limits established for operational efficiency. Other assessments— 
including many admissions and certification and licensure tests—do not include speed within 
the definition of the measured construct; these tests are likely to have more aggressive time 
limits than educational assessments for operational reasons such as cost, security, administra-
tive convenience, and event scheduling. The term aggressively timed may best represent such 
assessments, but empirical criteria or precise definitions have not been proposed in the meas-
urement literature for these terms. Figure 8.1 provides descriptions of the commonly described 
terms that are used to describe tests on the speed-power continuum. 

Score Comparability across Modes, Devices, and Items 

Research on mode and device differences is still in a nascent stage, and quantitative studies that 
account for effects on speeded or aggressively timed tests are uncommon. This section provides 
a more detailed discussion of score comparability for large-scale assessment programs that are 
offered across modes or devices. We begin by reviewing many of the variations in testing condi-
tions associated with different devices and the theoretical, logical, or empirical evidence related to 
score comparability. We then describe the interaction of mode and device type with testing time. 
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Finally, we describe research designs, analyses, and some results from studies conducted by ACT 
on timed tests that are administered with variations across modes, devices, and other conditions. 

Comparability within and across Testing Modes 

All national tests used for undergraduate, graduate, and major professional programs are 
offered digitally today (illustrated in Figure 8.2). The ACT and SAT are the major exceptions, 
offering computer administration to state and district testing programs and relying on paper 
for the large majority of test takers. 

Research on mode effects in assessment generally focuses on paper tests versus digital 
assessments administered using a single digital device (which may be a laptop, Chromebook, 
tablet, or other mobile device). Of course, differences across digital devices (e.g., screen size, 
on-screen or external keyboard, mouse or other pointing device, calculator) can introduce dif-
ferences when comparing within the digital mode. This section briefly reviews research on 
mode effects and score comparability. In establishing score comparability within mode (i.e., 
across two paper forms or two digital forms), test questions themselves may be the source 
of variability. There may be differences in speededness within the same mode; for example, 
students with visual impairments who require a large-print test form and answer sheets typi-
cally receive additional testing time. Resulting differences in such instances are still attributable 
to the items, as font size, ink-and-paper or screen contrast, method of indicating responses, 
and so on are typically identical across different forms. However, when looking to establish 
comparability across administration modes or devices, other factors affect timing even if the 
exact same items are employed. Differences may exist in item rendering and presentation or 
in how a test taker responds to an item. Examples of different response methods include using 
a mouse to select a response versus bubbling an answer sheet, needing to scroll to see all the 
answer options versus seeing them all together on the same screen, or working a math problem 
involving a graph directly in a booklet versus not being able to write on the graph on screen. 
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Figure 8.2 Transition of national testing programs from paper to computer. Δ indicates a major revision made 
to the test beyond CBT and * indicates that computer and paper were offered simultaneously. 
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Empirical research to date on comparability across modes (and across devices within mode) 
often differs based on the size of the study; larger studies have tended to focus on score com-
parability and smaller studies on user experience. Though the smaller studies such as cognitive 
labs (sometimes called think-alouds) may be better able to determine whether timing impacts 
score comparability (e.g., in observing how much faster a student responds with a keyboard 
as opposed to a touch screen), the small numbers of students and the observational nature of 
this type of research typically are factors that limit the generalizability of conclusions across 
students, test forms, and operational conditions. In addition, cognitive labs have been used 
prior to conducting large-scale studies. These allow an investigator to observe an examinee 
responding to an item and to measure how long it takes to scroll through a long reading pas-
sage on a tablet, for example, and hear the examinee talk about the experience and whether or 
not it was confusing. Cognitive labs can help to identify problems with instructions and item 
rendering, and they can help researchers estimate timing for different experimental conditions 
in larger studies. 

Recent meta-analyses generally have reported small effect sizes for mode effects between 
paper- and computer-based tests, but findings differ across grades and content areas (Kingston, 
2008; Wang, Jiao, Young, Brooks, & Olsen, 2007). Dadey et al. (2018) noted that more than 
33% of effect sizes reported by Kingston (2008) are large (>1.00), with 22% reporting higher 
performance for the paper condition and 13% indicating higher performance on computer. 
One important and consistent finding is that measurement invariance is generally supported 
across modes, suggesting that any differences may be due to construct-irrelevant variance. A 
preliminary conclusion of this research was that mode effects favored computer administration 
in English language arts and social studies and paper administration in math (Kingston, 2008). 

ACT Research on Comparability 

The ACT has been offered as a linear computer-based test to a limited number of states and 
districts conducting school-day testing. In spring 2017, approximately 81,000 students tested 
on computer, including 43% who used a Chromebook (Z. Cui, personal communication, May 8, 
2017). Research on mode comparability primarily has focused on differences in screen size or 
content displayed within the same device (e.g., laptop, desktop). In an early study comparing 
monitor size differences, Bridgeman, Lennon, and Jackenthal (2003) found that verbal scores 
were 0.25 standard deviations lower when the amount of reading content displayed on screen 
was reduced. When less content is displayed on the screen, more scrolling is required; this may 
increase the demand on short-term memory and cognitive load (Sanchez & Goolsbee, 2010) 
and require additional time for similar performance. This issue may be most prominent when 
dual passages or multiple graphics (e.g., tables, figures) are present or where items and stimuli 
are not displayed on the same screen. Such differences in displays have been cited as a source 
of construct-irrelevant variance, which could provide an advantage for paper over computer 
administration and larger displays over smaller displays (Bridgeman, Lennon, & Jackenthal, 
2001; Chaparro, Shaikh, & Baker, 2005). 

Comparability across Digital Devices 

Devices in Schools 

Numerous digital devices are employed in large-scale educational assessment. In K-8, tablets 
have become the preferred device; laptops are still preferred by high school educators (Pearson, 
2015 and Deloitte, 2016). Table 8.1 illustrates students’ device preference and usage in schools 
across grades as reported in two different studies. In the first study, tablet use was reported to be 
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Table 8.1 Device preference by school grade 

“Which of the following devices do you regularly 
use at school?” (Pearson, 2015) 

“If you had to pick only one 
device at school, which device 
would it be?” (Deloitte, 2016) 

Grade Tablet (%) 
Laptop/ 

Chromebook (%) Smartphone (%) 
Hybrid 

“2 in 1” (%) Tablet (%) 
Laptop/ 

Chromebook (%) 

K-2 
3–5 

78 66 53 10 53 
36 

15 
26 

6–8 69 71 66 8 30 29 
9–12 49 76 82 9 25 37 

highest in elementary schools, with 78% of elementary students versus 49% of high school stu-
dents indicating that they regularly used a tablet; laptop and Chromebook usage was reported 
to be highest in high school (Pearson, 2015). A second survey of student preferences shows a 
similar pattern, with a stronger preference for tablets in earlier grades and a moderate prefer-
ence for laptops and Chromebooks in high school (Deloitte, 2016). Tablets and laptops each 
come with a variety of screen sizes and operating features, not to mention the increased popu-
larity of Chromebooks and the entry of mobile devices for instructional assessment (Deloitte, 
2016). Mobile devices were identified as the number one workplace trend in the Society for 
Industrial Organizational Psychology’s top-ten trends in 2015 (SIOP, 2015). In preemploy-
ment testing, mobile devices are nearly synonymous with unproctored internet-based tests; 
their increased popularity is traced to the desire to assess talent anytime and anyplace as well as 
growth in mobile device ownership (Arthur, Keiser, & Doverspike, 2018). 

Bring Your Own Device (BYOD) paradigms have been cited as the next biggest trend in 
education, but unlike preemployment testing, educational assessment has prescribed minimum 
requirements (e.g., screen size, operating systems, security features). A typical BYOD imple-
mentation may require students to register devices with a school to gain access to software and 
content. BYOD also seems ideally suited for learning assessments, which require more frequent 
interactions. Alternatively, they are rarely used for situations that necessitate making norm-
referenced interpretations, as is the case with many summative assessments. If BYOD efforts 
gain even more popularity and acceptance in education, there will be increased pressure to relax 
existing requirements on technology, which generally prohibit small screens or mobile devices. 
As is evident from this discussion, technological advances increasingly will challenge concepts 
and assumptions of standardization in assessment. However, the result of such conflicts cannot 
be easily dismissed when assessments seek to support claims of score comparability. Greater 
flexibility in digital delivery, input, and interactions creates differences in user experiences and 
performance, which could increase disparities among students (Sager, 2011). 

Device Comparability 

Device studies represent a special case of comparability studies. There have been fewer than a 
dozen large quantitative studies comparing performance across tablets and computers. Overall, 
results generally show few consistent and significant performance differences in students’ total 
scores across content areas or grades examined. However, there are exceptions to the results of 
such studies, which primarily have been conducted on state assessments that are either untimed 
or very generously timed and are considered to be associated with less-motivated test takers 
than assessments with high stakes (Dadey et al., 2018; Davis, Kong, McBridge, & Morrison, 
2016; Steedle, McBride, Johnson, & Keng, 2016). 
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Two major assessment consortia in the K-12 environment appear to have constrained claims 
of comparability to different delivery modes and not to other differences in delivery device, 
input device, or other conditions. The Partnership for Assessment of Readiness for College and 
Careers (PARCC) and the Smarter Balanced Assessment Consortium (SBAC) allow different 
devices for delivery (e.g., tablets, laptops, desktops, Chromebooks), different input methods 
(e.g., touch screen, external keyboard, on-screen keyboard), and different technology-based 
features not suitable for paper testing. SBAC (2017) appears to link paper test scores to the 
scale used for online testing, but they do not specifically explain their methodology or equat-
ing approach (e.g., whether each form is separately linked or a standard mode adjustment is 
employed). In addition, no claims are made about the comparability across different devices. 
Neither consortium appears to have examined the impact of timing or speed across devices 
or modes, possibly because assessments are untimed or generously timed. PARCC notes that 
strict comparability across modes isn’t a goal, but that score interchangeability across devices 
within online testing is desired (Way et al., 2016). 

Research on PARCC assessments provides some of the best insights into device compa-
rability in an operational testing program. Overall results revealed consistent evidence of 
comparability between testing on tablets and non-tablet devices, with similar item response 
theory (IRT) difficulty across devices. That being said, a number of math items on the high 
school assessment were flagged for device effects (Steedle et al., 2016). Results in Ohio, which 
included 14% of all PARCC test takers, demonstrated that students taking the exams on tablets 
performed significantly worse than students testing on computer; results from this state were 
excluded from the final analyses, leading to speculation about the robustness of comparability 
claims (Herold, 2016). 

There is less operational research examining differences across devices, but results from 
mode studies likely would generalize to digital devices: lower scores would be expected for tests 
administered on devices with smaller screens because smaller screens require more scrolling than 
larger screens. This issue related to display variation could be exacerbated with a speeded test, 
because additional scrolling requires greater memorization as less content is displayed. Hence, 
research on variations across digital devices often may differ when tests are unspeeded versus 
speeded. Some research also suggests that this may be more pronounced with more complex 
and difficult items and lower performing test takers (Camara & Tang, 2017; Steedle et al., 2016). 
However, there is a need to disentangle performance differences across devices in speeded con-
ditions to determine if such differences are driven primarily by item difficulty, device familiarity, 
item complexity (e.g., length and complexity of stimulus), or a combination of factors. 

Different devices also incorporate different response options or input methods, both of 
which challenge comparability. Previous research suggested small differences in preference 
and performance favoring larger desktop keyboards over laptop keyboards (Powers & Potenza, 
1996). Touchscreen keyboards and inputs now are common for tablets and mobile devices. 
Input precision is compromised when using a fingertip to move or select objects that are close 
together (Way et al., 2016), but it requires less time than more traditional input methods (e.g., 
mouse, keyboard; Kong, Davis, McBride, & Morrison, 2017). Mixed results have been found 
in this area, with some research suggesting minimal differences between on-screen and exter-
nal keyboards for selected-response items but reduced length of student-produced responses 
on constructed-response tasks. Research also has shown somewhat less accuracy and greater 
fatigue with on-screen keyboards (Davis & Strain-Seymour, 2013). Chaparro, Phan, and 
Jardina (2013) reported that test takers typed significantly faster with an external keyboard 
than an on-screen keyboard but also had more errors. 

Input methods also may result in different experiences, which introduces construct-
irrelevant variance. For example, it is easier, or at least more familiar, for test takers to simply 



  

 

 

112 • Wayne J. Camara and Deborah J. Harris 

draw on paper rather than to use computer tools to construct a similar representation (Morelli, 
Mahan, & Illingworth, 2014; Sax, Lau, & Lawrence, 2011). 

Some data on item latency should be available in large-scale studies of digital devices ena-
bling comparisons, for example, of the time from when an item fully appears on screen to 
the time a student responds and selects the next item. However, it is generally not possible in 
a group setting to tell what factors affect the timing (e.g., is it scrolling, trying to use scratch 
paper, the method of indicating one’s response to a question?). 

In addition to studies conducted by the consortia, several states also have conducted com-
parisons of student scores across devices using operational data. Generally, such studies have 
been conducted on intact groups without random assignment and have not incorporated any 
measure of prior ability or compared groups in terms of background, demographics, familiar-
ity, or experience using technology. 

Evidence to support claims of comparability across technological devices has been identified 
as a critical element in the peer review of state assessment systems by the U.S. Department of 
Education (2015). Critical element 4.6 requires “documented adequate evidence of compara-
bility of the meaning and interpretation of the assessment results.” Dadey et al. (2018) note that 
documentation has been further broken down into two distinct categories: 

1. Documentation that test administration hardware and software delivered across differ-
ent devices are standardized across unaccommodated administrations. 

2. Documentation of score comparability either through a standard comparability study 
(e.g., random equivalent groups or common students across different devices) or research 
showing that variations across devices do not alter claims regarding the interpretation of 
test scores. 

Timing Comparability across Testing Modes and Devices 

Our goal in the previous sections was to provide an introduction to some of the considerations 
associated with the use of technology in testing and the extent to which scores across testing 
modes and devices can be considered comparable when differences in digital assessment fea-
tures across modes and devices exist. We now turn our attention to providing a more focused 
discussion of one specific aspect of digital assessment that may impact testing outcomes and 
the ability to compare scores across modes and devices: timing. 

Mead and Drasgow (1993) conducted a meta-analysis of studies comparing computer-based 
and paper-and-pencil versions of 123 timed power tests and 36 speeded tests. After correcting 
for measurement error across 159 correlations, they reported an estimated cross-mode correla-
tion of 0.97 for power tests and 0.72 for speeded tests, concluding that mode affected speeded 
tests, probably due to the additional time required to read text from screens. Similar results 
have been reported in other studies of speeded tests, but there have been exceptions which 
report no differences between speeded and power tests (Lesson, 2009). 

Response Time Research 

As discussed earlier, all quantitative studies of devices have been conducted in untimed or gen-
erously timed conditions, and studies reporting item response time, latency, or rapid guessing 
behaviors primarily have used these factors as a covariate in examining performance differ-
ences. Therefore, the interaction of these timing factors by item type, item difficulty, device 
familiarity, scrolling or content display, and input options is rare. Testing variations that result 
from different devices clearly impact the experience of test takers in terms of the presentation, 
display, input, and processing of information. As noted earlier, some variations will increase 
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cognitive load and require greater recall, while other variations require different fine motor 
skills; all of these factors can interact with test timing. Because so much research on devices has 
been conducted on untimed assessments and because score differences have been the primary 
outcome of interest, timed testing programs cannot rely on these results as evidence of score 
comparability. 

Response time—the difference in time (seconds) between when an item is presented and 
when it is responded to by a test taker—is an important outcome for studies associated with 
timed tests. Rapid guessing occurs when a test taker responds to an item so quickly that she/he 
could not have had adequate time to have read and considered the item (Schnipke & Scrams, 
1997). In high-stakes testing, rapid guessing is considered a reliable indicator of speededness 
for computer-based tests, but for low-stakes or untimed tests it is often associated with lack of 
effort or motivation (see Chapter 11). 

Kong et al. (2017) used a random-equivalent groups design to examine the results from 
964 high school students completing a low-stakes assessment on either a tablet or a computer. 
Response time effort (RTE) measures the percent of items where students exhibited solution 
behavior and was used to measure student engagement; because the test allowed 80 minutes for 
59 items, it was considered generously timed and not speeded. Overall, no significant or prac-
tical differences in RTE between devices for any of six different item types were found. That 
being said, there was a decrease in RTE for sections administered at the end of the test, which 
may be attributed to fatigue, and there was a gender effect in that males were twice as likely 
to be excluded from RTE analyses because of much lower engagement levels. Students testing 
on tablets did require approximately 1 minute longer for each section—about 3–4 seconds per 
item—than students testing on computer. Effect size differences favoring computers over tab-
lets ranged from 0.29 for hot spots and 0.25 for multiple-choice items to 0.08 for drag-and-drop 
items. The authors concluded that “it appears that the reduced precision resulting from using 
the finger as the input device rather than a mouse may have created a small degree of challenge 
for working with on-screen objects” (2017, p. 22). 

Davis et al. (2016) examined response time differences for a mix of item types adminis-
tered on tablets and computers across reading, science, and math content areas and found 
that students testing on tablets consistently used more time to respond to items. Effect sizes 
were calculated based on data reported in the study and were 0.14, 0.22, and 0.18 across read-
ing, science, and math, respectively. Ling (2016) found no main effect differences on scores or 
response times of eighth grade students on iPads versus computers across multiple-choice or 
constructed-response items. 

Measuring response time is not always straightforward. ACT found that response time may 
be measured and reported differently across different platforms and interfaces, which can result 
in small but systematic differences that impact calculation of latency and response time. For 
example, response time can be captured in different ways, such as (a) timers (captured using 
the count-down clock from the client device), (b) server time (which requires all servers to be 
continuously synchronized to get accurate response latency), or (c) client time (captured by the 
client device as a recorded timestamp). Capturing examinee responses using countdown clocks 
(timers) on the client device avoids the pauses caused by servers, proctors, and internet 
connectivity and the need for network synchronization (R. Zhu, personal communica-
tion, March 21, 2018). Assessment programs seeking to understand item response latency and 
speededness need to understand how response times are captured across devices to determine 
if they are comparable and accurate. 

There are numerous ways to evaluate the comparability of test scores across testing modes 
and devices; these range from comparisons of mean differences and correlations to IRT-based 
approaches. When mode or device effects are found to be significant, alternative scoring tables 
are usually generated to put scores from different conditions on the same scale (Way et al., 2016). 
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The next section reviews: (1) analyses and approaches employed by ACT to examine the com-
parability of scores for large-scale testing programs administered across different modes and 
devices, and (2) statistical adjustments that may be used to mitigate differences. Analyses are 
conducted at both the total test score level and the item level using classical statistics (e.g., 
p-values) and also include some IRT approaches (e.g., comparison of item parameters, differ-
ential item functioning [DIF]). 

Methods Used in ACT Analyses of Testing Time 

When mode comparisons are made in large-scale assessment programs, the typical scenario is 
that the assessment program was established in one mode or on one device and a second mode 
or device then was added at a later time. In such instances, there are many issues that need to 
be addressed. The first issue is ensuring that the construct being assessed has not changed. The 
user experience likely will be different across modes and some devices, but research should 
ensure that the construct is not altered. 

The ACT has been a paper-based test since its inception in 1959, with the current battery 
being introduced in 1989 (ACT, 2017). Online administration of the ACT for states and dis-
tricts participating in school-based testing was desired, and preliminary studies for rendering 
(how the items look on a computer screen) and timing were conducted. The timing study 
included about 3,000 examinees from 58 different schools and included multiple timings for 
each of the four tests in the ACT battery. The selected time limits were implemented in a large-
scale mode comparability study involving more than 5,500 students from 80 high schools. 

Random Equivalent Groups versus Common Students 

Two basic data collection designs are used in examining timing research. The single-group 
design tests the same students under multiple conditions, ideally using counterbalancing and 
creating an environment where students are equally motivated under all conditions; the equiv-
alent-groups design establishes multiple groups, one for each condition, that are comparable 
across all characteristics likely to interact with timing. In practice, it is probable that neither 
method will work ideally. Random assignment within classroom over a large number of class-
rooms is likely to come close to randomly equivalent groups, but at times that is impractical in 
operational settings; covariates therefore are used to try to account for any differences between 
intact groups (see Maxwell, O’Callaghan, & Delaney, 1993). 

ACT typically has adopted a randomly equivalent groups design for studying mode dif-
ferences. A participating test site sends in a roster of students, and examinees are assigned to 
a mode. This information is communicated back to the test centers, which then ensure that 
students test in the assigned mode. Motivation was a concern for some studies, in that exami-
nees who saw no value in an assessment might perform equally poorly across mode whereas 
examinees who were motivated would do their best; this would introduce potential mode 
differences. For this reason, some of the studies involving the ACT resulted in operational 
(college-reportable) scores for the participants (see, e.g., Li, Yi, & Harris, 2017, for additional 
details). In his synthesis of 81 studies dealing with comparability across modes, Kingston 
(2008) states that the study design that was most informative was the one in which students 
were randomly assigned to different modes and had similar motivation to do their best. The 
random assignment tends to result in groups that are equivalent in ability, which simplifies 
many of the comparisons across modes. 

There are logistical difficulties associated with using a random groups design, such as not 
being able to test intact classrooms with the same mode. However, the utility of the results 
offsets the difficulties in situations where the results have important implications, such 
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as adjusting scores from different modes, devices, or testing conditions so that they can be 
reported and used interchangeably. Using a common student design—in which the same 
examinees are administered a test in each mode—has some theoretical advantages, but this 
approach often is problematic in practice. The same student cannot be administered the same 
test form twice, so multiple forms per mode are needed. In addition, motivation typically is 
lower on a student’s second administration. Intact classrooms could be tested by mode, but 
counterbalancing would be better done at the individual level. 

ACT has supplemented its random groups studies with additional studies; some consisted 
of assigning mode by classroom or school, and some were post hoc analyses of existing data 
collected as part of an operational administration or study in which either examinees or sites 
determined the testing mode. For example, in one study, a participating school had a 1:1 ini-
tiative for Chromebooks for students in the grade that was testing. After administration, that 
school was matched to a number of other schools in terms of available demographic charac-
teristics that have been correlated with test performance (e.g., per pupil expenditure and the 
percent of students on free and reduced lunch), and the performance of students who tested on 
Chromebooks was compared to the performance of students testing on other devices. 

Occasionally, timing studies have not been conducted at all when introducing a new mode 
of testing. In one program where sufficient testing time was allowed for all examinees to com-
plete the assessment on paper, additional time was simply added to the new online assess-
ment to provide ample time for scrolling or lack of examinee familiarity with responding on 
a computer. Monitoring of the examinee experience over time was done through observation 
and analysis of latency data. In the case of a software upgrade for WorkKeys (an assessment of 
career readiness used by schools, colleges, and vocational training programs), ACT staff were 
administered the assessments with and without the upgrade and expert judgment was used to 
determine that timing would not be affected (this was confirmed by subsequent monitoring; 
Liu, Zhu, & Gao, 2016). 

Score-Level Analyses 

Data analysis occurs at both the item and the test level. As is sometimes true with context posi-
tion effects, some items may become easier and some items may become more difficult, but the 
overall impact on test scores used for decision-making could be negligible. For mode studies 
for WorkKeys, the ACT, and ACT Aspire, ACT typically looks at the distributions of raw test 
information, such as total testing time and raw scores. If the data are collected using either a 
random groups or single groups design, the distributions should differ only to the extent that 
sampling error and measurement error are factors. Often benchmark data are used. For exam-
ple, if the form of a WorkKeys or ACT test being used in a special study examining different 
devices was previously used as an operational test form online before being retired, that form 
may have been seen by, say, 8,000 examinees. Two samples of 2,000 examinees each could be 
randomly drawn from that 8,000, and the distribution of total test time used can be compared 
across the two samples. The two samples from the special study across mode (or across devices) 
then are compared to the results from the two samples from the same mode (or same device). 
If the differences across mode are similar to the differences across samples within mode, it sup-
ports a negligible difference at the overall test score level. Note that this is supportive—but not 
conclusive—evidence. The essential point is that having a baseline of sample differences within 
mode can be helpful in trying to interpret observed differences. 

Other score-level analyses compare the means and standard deviations of time used, exam-
ining (1) both reliability and conditional standard error of measurement of test scores, and 
(2) combinations of data, such as latency and number of omits and test score together. Examining 
both summary statistics and graphical illustrations is optimal. Test characteristic curves, 



  116 • Wayne J. Camara and Deborah J. Harris 

distributions of theta scores, and bivariate plots of raw score by theta score and reported scale 
score also have been used in ACT studies of timing and mode/device comparability. It is pos-
sible to observe large differences at some places on the score scale that appear to balance out 
over the full sample because of how the sample is distributed. For example, there might be large 
differences in one direction at the high end and equally large differences in the other direction 
at the low end. Perhaps it is the case that high-scoring examinees in math perform much faster 
on one device because these examinees tend to be more familiar with that device due to the 
high-level math apps available for it, whereas mid-level examinees may do better on a different 
device due to their familiarity with it. If the sample used in the mode study has similar numbers 
of high- and mid-level examinees, the group-level statistics may suggest that the time needed 
by device is the same because the overall means of time used are the same. Looking for compa-
rability requires more than just a cursory look at mean latency values. 

Test dimensionality, raw-to-scale-score conversions, and survey results reporting on 
whether examinees felt they had sufficient time also have been examined at the test level. 
Generalizability analyses were conducted for some studies, particularly for WorkKeys and 
the ACT across modes. Kong et al. (2017) ran analysis of variance (ANOVA) in their study 
looking at response time across computers and tablets to examine mean response times by 
device by ethnicity. Additional analyses used to examine mode comparability—not specific to 
timing factors—included the Kolmogorov-Smirnov (KS) test of equivalency to look for statis-
tically significant mode effects for all raw and scale scores, scale score correlations and effec-
tive weights, and exploratory factor analysis. In addition, irregularity reports, phone logs, test 
booklets presented side-by-side with online renderings of the same items, and notes from staff 
who observed onsite administrations have been reviewed as part of comparability analyses. 

Item-Level Analyses 

Item-level analyses also are important in determining if particular item characteristics tend to 
be more or less associated with differential timing across modes or devices. These factors could 
include position in test, length of passages for reading item sets, complexity of graphical mate-
rial, item response required (production vs. selection), item content, and so on. For example, 
Kong et al. (2017) conducted t-tests looking for differences in timing by item types across 
computers and tablets. They found some slight timing differences, with some of the item types 
taking longer on the tablet than the computer. 

Individual item latencies, classical item statistics, IRT statistics, and item characteristic 
curves, both empirical and generated through IRT, as well as item option analyses and omit/ 
not reached rates should be compared in mode studies. Finally, DIF analyses often are con-
ducted across modes and/or devices for individual items. 

Resolving Differences via “Equating” Methodology 

If differences in timing are found across modes and/or across devices, the next logical step is 
determining how to deal with them. Some large-scale testing programs (e.g., PARCC, SBAC, 
certification tests) allow multiple devices, and it is not practical to maintain separate time lim-
its for all possible devices with which an examinee could test. It might be practical to have 
separate time limits for some conditions, such as paper versus online, but accounting for dif-
ferences across operating systems, screen size, keyboard versus touch responding, and so on 
is probably not realistic. However, variations between different devices may be larger than 
those between paper and online test versions given different types of navigation, screen size, 
rendering options, etc. This often is one reason for having certain supported features, such as 
requiring a minimum screen size, or allowing testing on desktops and laptops but not tablets. 
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The best way to address different timing needs is not always obvious. For situations where 
time is not a critical component of standardization or achievement, it may be simplest to go to 
untimed assessments, with each examinee using whatever time is necessary for the particular 
configuration on which he or she is testing. When speed is not a factor in testing, slight differ-
ences will logically have less impact on performance. Another option is to consider differential 
test timing when linking scores across modes. A third option that may be less attractive to an 
operational testing program is to indicate under what conditions the score was produced—in 
essence, having two (or more) different reported score scales, such as one for online and one 
for paper. However, programs that have implemented this solution (e.g., TOEFL) have empha-
sized that scores cannot be used interchangeably. 

Perhaps the best option is to keep different modes and devices in mind when developing 
assessments, trying to create a test experience that does not seem to advantage or disadvantage 
certain modes/devices over others. Depending on what constructs one is assessing this may not 
always be possible, but to the extent that it is possible, it is advantageous from the standpoint of 
comparability across modes/devices and also may reduce some irrelevant noise in the assessment. 

Adjusting scores for reporting—for example, by establishing different time limits and/or 
adjusting scores through equating methodology—can also control for differences between 
modes. Table 8.2 shows raw score results and adjusted scale score results for an identical 
ACT form administered in two modes. The reported scale scores are treated as comparable. 
Whatever the selected approach is for a particular program, perhaps the most important step is 
to continually monitor the results over time. To ensure that comparability is maintained, issues 
such as examinee familiarity with devices, improved test interfaces, practice tests that mimic 
the operational experience, release of new devices and operating systems, use of new item 
types, and other factors may continue to have an impact on the timing for an assessment sub-
sequent to the initial research. ACT detected such differential timing changes in special studies 
related to the ACT test battery. In the initial timing study, results suggested that the paper time 
limits should be extended by an additional 5 minutes for the ACT Reading and Science tests. 
However, it also was noted that the sample was relatively small—and likely unmotivated— 
and that many of the students had not gone through the online tutorial prior to taking the 
assessment. In a subsequent study with a more motivated sample, there had been some minor 
improvements to the interface and students reported they had made use of the tutorial and a 
sample test prior to testing. These later results indicated that the additional 5 minutes were not 
needed, and this timing change was subsequently reversed. Ongoing monitoring, including 
review of item and test latency as well as item and overall test performance, continues to be 
conducted to be sure that the results are still supportive of the original timing conditions. 

Table 8.2 Raw and scale score means and SDs for an identical test form in two modes 

Raw Score Scale Score 

Mode Test N Mean SD Mean SD 

Online 

Paper 

English 
Mathematics 
Reading 
Science 
English 
Mathematics 
Reading 
Science 

1,092 
1,092 
1,092 
1,092 
1,056 
1,056 
1,056 
1,056 

43.62 
30.02 
23.28 
20.73 
41.26 
29.74 
22.00 
20.72 

14.10 
11.76 

7.59 
7.43 

14.43 
11.78 

7.57 
7.20 

19.79 
20.65 
20.93 
20.82 
19.79 
20.58 
20.91 
20.80 

6.06 
5.18 
6.09 
5.06 
6.03 
5.16 
6.07 
4.96 

Table 8.2 provides data combined from Li et al. (2017, Tables 14 and 21). 
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A Final Consideration: Examinee Experience 

In addition to possible impacts on the construct a test is measuring and on the reported scores, 
the examinee experience also may differ across modes and devices and timing may be an 
important component of how an examinee perceives the experience. Regardless of whether 
the examinee’s perception is accurate, some examinees believe that they would perform better 
under certain conditions, such as testing on paper over testing on a tablet. 

Kingston (2008) found that when the question of preference was asked after students were 
administered an online assessment, the majority of students preferred testing on the computer 
to paper. Davis et al. (2016) reported in their survey of high school students that, while paper 
was popular, there was a suggestion of preference for the devices the examinee was familiar 
with and that exposure to tablets in the study increased students’ interest in testing on tablets. 
Younger test takers also are more likely to prefer tablets, but tablets present some unique chal-
lenges for assessments with extended writing or scrolling (Ling, 2016). It is not possible to 
tease out what role, if any, timing-related concerns played in overall examinee preferences. As 
examinees become more familiar with a device, as more schools teach and administer class-
room tests on devices, and as students become more familiar (and hence probably faster) with 
different types of items and methods of responding, testing preferences will no doubt evolve. 

Discussion 

Technology has enabled advances in assessment that may allow for greater personalization in 
task design, test scheduling, choice of tools and features, test delivery, response type, scoring, 
and the types of information reported. Such personalization is viewed as an advantage for diag-
nostic assessments, which are conducted frequently and in real time because it enables research 
on the efficacy of various instructional techniques and solutions work for different types of 
learners (West, 2011). However, personalization of summative assessments that are employed 
for different purposes (e.g., admissions, placement, and accountability) introduces variations 
which challenge assumptions about score comparability. 

Variations across examinee experience, timing, input type, response device, screen size, 
interface, resolution, item type, or other test specifications can introduce device-engineered 
construct-irrelevant variance in standardized assessments (Arthur et al., 2018). Variations in 
essential features of the assessment may remove standardization and largely weaken compari-
sons across test takers. Because schools often invest in different devices and technologies, the 
K-12 environment increasingly demands that vendors deliver assessments across a wide range 
of devices. Not only can this practice threaten the standardization process and weaken claims 
of score comparability, but different testing conditions and technology may risk procedural 
fairness across students and schools. In K-12 tests, where most students are likely to have expe-
rience with the devices used regularly in their classroom and may not have access to those 
particular devices outside of school, familiarity with the testing device is an especially impor-
tant consideration. Adequate time should be afforded students to prepare for the test by com-
pleting a practice test and responding to test items during classroom time with the approved 
device. However, for higher-stakes tests with time limits, such as licensure tests, differential 
timing issues such as item refresh speed across configurations or screen size and the impact of 
scrolling on response time are of special concern. As assessment conditions change, ongoing 
monitoring of timing issues needs to be undertaken, particularly in high-stakes situations with 
multiple modes or devices available. 

For situations in which individuals can select among a range of devices, one concern is that 
some individuals may choose a device that does not optimize their performance. When we 
look at comparability across paper and online modes and across digital devices, there are likely 
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to be some subgroup differences, though perhaps not the subgroups we typically are used to 
considering. For example, an affluent school or a poor school with a grant may both have a 
1:1 tablet or laptop ratio for students which other schools may not have. Those students who 
use a particular device every day may perform better when testing on that device than other stu-
dents who do not use that device on a daily basis. Testing on a familiar platform may decrease 
the time needed to read and respond to test items for those students, as they are used to where 
keys are, the screen size, or the method of responding (e.g., touch screen, keyboard, stylus). 

Comparability across devices, technology, and conditions is most likely to result when it 
is engineered into the assessment design process (such as with evidence-centered design). 
However, there are limits to technological changes which can be anticipated and the flexibility 
that can be accommodated within open architecture and open source systems (Huff, Steinberg, 
& Matts, 2010). Test providers try to balance allowing access to online assessments with ensur-
ing a comparable experience for all testers. Requiring all students to purchase or all schools to 
supply a consistent device configuration of hardware and software is not practical, particularly 
if the students and schools already have made a commitment to different configurations for 
classroom learning. However, having no hardware or software requirements allows students 
to have different experiences, some of which have timing implications, such as screen size and 
the amount of scrolling required to read a stimulus associated with an item. Test providers 
can develop or adopt applications that can run on different devices but that simulate a unified 
test experience once the assessment starts, such as presenting items with a fixed display size 
to standardize the amount of text visible across all devices. In addition, ensuring that there is 
widely available access to practice items and directions regarding how the test delivery system 
works for all approved devices, such as illustrating how to navigate through the test with prac-
tice items, may at least provide opportunities for students to become familiar with the device 
configurations on which they subsequently will be testing. This will help to ensure that their 
time during the operational assessment is not spent trying to figure out, for example, how to 
flag an item for review. Test providers also need to conduct the necessary research studies 
before approving different devices, operating systems, or configurations; this research is espe-
cially important when tests are used for high-stakes purposes such as admissions, licensing, 
and certification. For many high-stakes tests which have time limits (e.g., licensure tests), test 
timing is an important issue, and timing considerations—such as differences in item refresh 
speed across configurations or differences in screen size and therefore the required amount of 
scrolling—are of special concern and should be evaluated as part of any comparability studies. 

Markets and consumers may expect assessments to be accessible across any and all devices 
and include the latest features and tools. However, it is the test developers’ responsibility to 
ensure that research has been conducted to minimize construct-irrelevant differences and 
ensure that scores are comparable, valid, and fair across test takers. When multiple devices, 
tools, and features are permitted in an assessment program, the tacit assumption is that rigor-
ous research has been conducted to ensure that such differences do not impact test perfor-
mance. If that threshold cannot be met, it is better to proceed more slowly and more cautiously 
when scores are used for important decisions. 

Technology changes at a rapid pace, with frequent releases and updates for operating sys-
tems, tools, applications, and response opportunities emerging throughout the typical life 
span of a major assessment program. As technology changes, there is increased demand for 
assessments to adopt and apply innovations that may improve the assessment process in some 
ways and yet disrupt both score comparability and longitudinal trend data. Research on device 
differences has largely been based on simple research designs and performance differences. 
Though differences in item latency and other metrics have been found across devices, the 
research has focused on tests that are unspeeded or generously timed. In this chapter, we have 
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identified a number of challenges associated with attempting to extend research results to tests 
that are speeded or have more aggressive time requirements, and we caution against making 
assumptions of score comparability when the empirical data are so limited. 
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9 
Using Response Time for Measuring

Cognitive Ability Illustrated with Medical 
Diagnostic Reasoning Tasks 

Patrick Kyllonen and Rick Thomas 

Psychometrics and cognitive psychology are concerned with measuring human cognition. 
But at least since Cronbach’s (1957) American Psychological Association address, it has been 
acknowledged that, though they are two associated disciplines, they have been distinct in their 
history, methods, and focus. Cronbach argued for “a true federation of the disciplines”; we 
believe that the analysis and modeling of response time on cognitive tests has served as a bridge 
between disciplines and has enabled such a true federation. In this chapter, we justify that 
belief by reviewing the role of response time measurement in cognitive psychology and recent 
attempts to provide a psychometric foundation for modeling response time. We illustrate 
some of these ideas in the context of a review of a cognitive architecture for medical diagnostic 
reasoning, which incorporates much of what we know about the cognitive processes associ-
ated with medical diagnostic reasoning. We also suggest a program of research to expand our 
understanding of diagnostic reasoning using cognitive psychological and psychometric meth-
ods designed to achieve a process-level understanding of reasoning task performance. 

Foundations: Response Time in Testing and Cognitive Modeling 

Response Time and Error Rates 

For over 50 years, the analysis of response time has been a key methodology for understanding 
cognitive processes. For example, response time analyses have been the basis for identifying 
memory priming (Meyer & Schvaneveldt, 1971), mental rotation (Shepard & Metzler, 1971), 
the fan effect in memory retrieval (Anderson, 1974), and the verbal-articulatory loop in work-
ing memory (Baddeley & Hitch, 1974); differentiating automatic or Type 1 processing from 
controlled or Type 2 processing (Kahneman, 2011; Schneider & Shiffrin, 1977); and many other 
cognitive phenomena (Anderson, 2014; Neisser, 1967/2014). Response time results also have 
fed directly into the creation of cognitive architectures: programming environments enabling 
simulations of the human information processing system that embody the principles identi-
fied through the kinds of experiments referenced above. Cognitive architectures are essentially 
theories of cognition; some examples are EPIC (Executive-Process/Interactive Control; 
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Meyer & Kieras, 1997), ACT-R (Adaptive Control of Thought—Rational; Anderson, 2007), 
4CAPS (Cortical Capacity-Constrained Concurrent Activation-based Production System; Just 
& Varma, 2007), and Soar (State, operator, and result; Newell, 1994). Later in this chapter, we 
present HyGene (Hypothesis Generation; Thomas, Dougherty, Sprenger, & Harbison, 2008), 
which is a cognitive architecture focused on medical diagnostic reasoning. 

Response time has not been the only variable studied in cognitive psychology experiments. 
Error rates, for example, have been the predominant focus of study in problem-solving, deci-
sion-making, category learning, and memory experiments. As in testing, there is a distinction 
between speed and power in cognitive psychology (Carroll, 1993). For some cognitive tasks 
such as working memory tasks or decision-making tasks, most of the performance variability 
is in error rates; this performance variability can be due either to individual differences or 
to task manipulations. For example, working memory or cognitive load refers to the amount 
a respondent is required to remember to succeed at the task. High-load tasks may ask the 
respondent to remember quite a bit (e.g., a busy air traffic control tower), whereas low-load 
tasks (e.g., a quiet air traffic control tower) put less burden on the respondent. Performance 
variability is also studied with respect to individual differences such that a high-working-
memory-capacity individual is one who can cope with high-load tasks more effectively than 
can a low-capacity individual. In psychometrics, this distinction between variability due to task 
manipulations versus variability due to individual differences is expressed as the distinction 
between item difficulty and person ability parameters. 

In other cognitive tasks (e.g., memory retrieval, lexical decision), most of the variability is 
in response time. In much of the classical work in cognitive psychology, response time has 
been a featured variable, and error rates were intentionally kept low by reducing task diffi-
culty to increase the interpretability of response time (Diependaele, Brysbaert, & Neri, 2012). 
When error rates are very low, performance variation due to error rates is low and most of the 
performance variation is reflected in response time. When error rates are high due to items 
being more difficult, interpretation of response time is more problematic. Some portion of 
response time will reflect processing time, some portion will reflect how long an individual 
persists before abandoning solution attempts, and some portion will be an unknown mixture 
of the two. For example, fast guesses and endless ruminations represent opposite ends of the 
persistence continuum. 

In some research, error rates have been treated as interchangeable with response time, with 
experimental manipulations affecting each variable in qualitatively the same way through the 
same mechanisms. In memory research, for example, different items from memory can have 
different levels of activation due to how recently or frequently the item has been accessed. 
Activation level may be treated as affecting both the rate of processing and the probability of 
processing (Lebiere, Anderson, & Reder, 1994). 

Speed-Accuracy Tradeoff 

The phenomenon of the speed-accuracy tradeoff is well established and is critical in under-
standing the place of time limits in assessment; respondents can make fewer errors on a task by 
taking more time (Wickelgren, 1977). Approaches for addressing the speed-accuracy tradeoff 
tend to be oriented toward achieving a uniform tradeoff between participants, through various 
methods (Heitz, 2014; Wickelgren, 1977). One method is to give instructions, such as “work 
as quickly as possible without making errors.” That has proven not to be very effective because 
respondents interpret such instructions differently. Another strategy is to impose a fairly strict 
deadline and then to model performance using information about whether a correct response 
is made within that deadline (Wright & Dennis, 1999), within a time band (minimum and 
maximum time window), or after a response signal (respond only when given a signal to do so). 
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Imposing deadlines in this way limits variability due to choice processes concerning how much 
time to spend on an item and thus minimizes speed-accuracy tradeoff variance. In some cases, 
this has been done by manipulating stimulus presentation speed (e.g., Deary & Stough, 1996; 
Schneider & Shiffrin, 1977; Yellott, 1971), but the response itself is not time limited. Deadline 
manipulations have also been used to differentiate strategy use in situations such as simple 
addition tasks; in these situations, the use of direct memory retrieval (which is done quickly) is 
compared to the use of a procedural strategy (which takes more time; Campbell & Austin, 2002). 

An alternative to deadlines is to partition (or bin) responses into fixed response time inter-
vals (e.g., shorter than 1 second, between 1 and 1.5 seconds, between 1.5 and 2 seconds, etc.) 
after data are collected and then to model accuracy as a function of time taken. This takes 
advantage of respondents’ speed-accuracy tradeoff fluctuations that occur naturally within the 
testing session. This method was experimented with by Lohman (1990) and Evans and Wright 
(1993). More recently, Goldhammer, Steinwascher, Kroehne, and Naumann (2017) devel-
oped an approach capitalizing on the naturally occurring variability within persons, modeling 
the speed-accuracy tradeoff across deadline conditions and the conditional accuracy func-
tion within conditions using a general modeling framework (the generalized mixed modeling 
approach [GLMM]). 

Another strategy is to manipulate incentives for responding quickly versus more carefully 
by varying payoffs for fast-correct, fast-incorrect, slow-correct, or slow-incorrect respond-
ing. This can be done through the scoring rule. For example, Maris and van der Maas (2012) 
developed a scoring rule in which maximum points were obtained with fast-correct answers 
and maximum points were taken away for fast-incorrect answers. At the deadline, zero points 
are gained or lost. Between onset and the deadline, there is a steadily diminishing difference 
between points gained (with a correct response) and points lost (with an incorrect response). 
Van Rijn and Ali (2018) extended the framework to allow varying deadlines for items based on 
item discrimination. 

It should be noted that although speed-accuracy tradeoff has long been accepted as an 
established phenomenon, it has its limits. Speed-accuracy tradeoff applies nicely to speeded 
tasks, that is, those tasks for which everyone in the target population could provide the correct 
response if they took the time to do so. For so-called power tasks, ones in which people may 
vary in the probability of getting the correct answer if given unlimited time, speed-accuracy 
tradeoff might not always be a useful model. Consider the task of remembering one’s high 
school classmates. Williams and Hollan (1981) showed that even after 9 hours (!), respondents 
continued to recall additional names, but they also increasingly made errors (fabrications), 
recalling the names of people who were not in their high school class. Speed-accuracy tradeoff 
by itself does not capture this phenomenon. 

Cognitive Processes 

Cognitive psychology historically has been concerned with the processes underlying responses 
on cognitive tasks. But traditional abilities testing and individual differences research also have 
been concerned with processes. For example, Carroll (1993), similar to Thurstone (1938), 
interprets the results of factor analyses using process language to describe the common and 
distinctive features of tests (e.g., “inductive tasks are those that require subjects to inspect a 
class of stimulus materials [nearly always with more than one instance] and infer [induce, 
educe] a common characteristic underlying these materials—a concept, a class membership, 
a rule, a process, a trend, or a casual relation, for example,” p. 238). But the methodology 
used in cognitive psychology and traditional abilities research differs. In abilities research, pro-
cesses are inferred by subjectively identifying similarities and dissimilarities of task demands 
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from different cognitive tests based on factor analysis results (as illustrated by the quote from 
Carroll). There also may be a grain-sized difference in that abilities testing involves the analysis 
of sum scores over sets of items from many different tests administered to the same group of 
test takers. In contrast, the prototypical cognitive psychology experiment manipulates features 
of a particular test to enable inferences about the mental processes invoked by test variants or 
design conditions. For example, Shepard and Metzler (1971) found that the time it took to rec-
ognize that two perspective drawings represented the same three-dimensional shape increased 
linearly with the angular difference between them, based on response times to many different 
shape pairs varying in their angular disparity. From this finding, it was inferred that partici-
pants mentally rotated the two figures into congruence. 

Beginning in the 1970s, there was interest in incorporating cognitive psychology tasks and 
methods into abilities measurement following Neisser’s (1967/2014) “rallying cry for the cog-
nitive revolution” (borrowing from Hyman’s introduction to the classic edition). Cronbach’s 
“true federation between disciplines” therefore was realized in several ways. A cognitive cor-
relates approach involved administering tasks developed in cognitive psychology laborato-
ries to test takers, treating various task parameters and other outcome measures as test scores 
that could be analyzed in the same way traditional mental abilities measures were analyzed 
(Fairbank, Tirre, & Anderson, 1991; Hunt, Lunneborg, & Lewis, 1975). These task parameters 
and other measures were then correlated with traditional ability measures such as vocabu-
lary and reading comprehension tests of verbal ability. This cognitive correlates approach was 
designed to shed light on what it meant to be high on a traditional abilities factor from the 
standpoint of an information processing perspective; that is, to borrow Hunt et al.’s (1975) 
title, “what does it mean to be high verbal?” A variation of this method involved simply admin-
istering a battery of cognitive tasks developed in the experimental laboratory to a group of 
test takers to identify the factor structure of such tasks or the parameters from such tasks. The 
idea was that individual differences methods could serve as a “crucible of theory construction” 
(Underwood, 1975) by supporting or failing to support a process interpretation of performance. 
For example, Underwood, Boruch, and Malmi (1978) administered a battery of memory tests 
to participants to determine whether traditional distinctions made in the experimental study 
of memory would result in comparable individual differences factors (mostly they did not). 

A cognitive components (or componential analysis) approach was another method designed 
to gain a process interpretation of a traditional ability test score. Cognitive components used 
the method of partial tasks. This method starts with a traditional ability item type, such as a 
verbal analogy (A:B as C:?), from which partial tasks are produced. As an example of a partial 
task, participants would be shown the first part of the item (A:B) and allowed time to study that 
pair (i.e., encode A and B and determine a rule that lined them). After this, the full item was 
presented (A:B as C:?) , and the time to complete the full item was recorded. The time it took to 
complete the full task without seeing the first part minus the time it took to solve the full item 
after being allowed to study the first part provided an estimate of the time it took to process the 
stages other than those associated with the first part (i.e., encoding C, mapping the rule to C to 
infer D, and responding). Creating various partial tasks with more and less information being 
revealed before the full task enabled the isolation of various specific processing components, 
such as encoding or mapping (Sternberg, 1977). 

The unification of cognitive psychology and individual differences psychology has led to 
several changes in testing that are still being felt. A wide variety of cognitive testing item types 
has been introduced and used operationally in personnel selection contexts, particularly in the 
military (Baddeley, 1968; Irvine, 2014; Kyllonen & Christal, 1990). Similarly, a wide variety 
of item types drawn from cognitive psychology investigations has been introduced into test-
ing (Scalise, 2009), including more complex games and simulations (Mislevy et al., 2014) and 
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complex item types used in the Program for International Student Assessment (PISA), such 
as collaborative problem-solving (Organisation for Economic Cooperation and Development 
[OECD], 2017). A resurgence of interest in response time and efforts to consider how it can 
be incorporated in cognitive abilities testing (De Boeck & Jeon, 2019; Kyllonen & Zu, 2016) 
has led to several special issues on the topic, including the British Journal of Mathematical 
and Statistical Psychology (Molenaar & Visser, 2017) and the Journal of Intelligence (Wilhelm, 
2016). Perhaps most importantly, cognitive psychology has inspired the promise that a 
process-level understanding of performance on ability and achievement tests will create oppor-
tunities for improved diagnosis and strategies for improving the skills and knowledge the test 
is designed to measure. 

Cognitive Psychology and Item-Response Theory 

In addition to the unification of cognitive psychology and testing there is an evolving link 
between cognitive psychology and psychometrics, or more specifically, item response the-
ory (IRT). That unification centers around three categories: (a) hierarchical IRT models of 
response time and ability, (b) the use of IRT to model response choice based on the diffusion 
model from cognitive psychology, and (c) linear logistic test models (LLTM). More recently, 
cognitive diagnostic models (CDM) that model response stages within cognitive tasks have also 
been used. The next sections will describe these three categories in greater detail. 

Hierarchical IRT Models 

The hierarchical IRT model (van der Linden, 2007) actually reflects the combination of two 
models. One is a regular IRT model for responses, in which a response is correct (or not) due 
to ability level (theta) and item parameters, particularly item difficulty, item discrimination, 
and guessing (1, 2, and 3 parameter logistic model, respectively). Any of these models can be 
used for the hierarchical IRT model. Jointly, a second model is fit to the response time data in 
which log response time is modeled as a function of the examinee’s speed and the same 1, 2, or 
3 item parameters (or, it could be different parameters). At the second level of the hierarchical 
model, ability and speed are correlated. This model can be used to estimate ability and speed. In 
general, it is typically found that ability is more precisely estimated by using speed as collateral 
information (van der Linden, Klein Entink, & Fox, 2010) as long as there is some correlation 
between ability and speed. It should be pointed out that the speed and ability parameters from 
the hierarchical model are not the same as response time and accuracy. Speed reflects both time 
spent on an item and item characteristics, whereas response time only reflects time spent on 
an item. It is generally expected that test takers will spend more time on harder (i.e., more time 
intense, to use van der Linden’s (2007) terminology) items. 

The hierarchical model accommodates speed-accuracy tradeoff but assumes that a person 
has a fixed ability and a fixed speed that is constant throughout the test. This is referred to as 
the stationarity assumption (van der Linden, 2007); it is as if a person chooses a position on his 
or her own personal speed-accuracy tradeoff curve and sticks with that position throughout the 
duration of the test. Ability and speed can be correlated, but they are the same throughout the 
test. Minor deviations from the stationarity assumption can be detected with residual analyses. 

The hierarchical model also assumes conditional independence between responses and 
response times given one’s ability and one’s speed; in other words, the observed correlations 
between time and accuracy are due only to the correlation between latent speed and latent abil-
ity. This is similar to the conditional (local) independence assumption in IRT: the correlation 
between responses on any two items is due only to both items reflecting the same ability factor; 
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likewise, the correlation between response times on any two items is due only to both items 
reflecting the same speed factor. Van der Linden and Glas (2010) discuss tests of the condi-
tional independence assumption. 

There are a number of reasons to question the assumption of a fixed ability and a fixed 
speed throughout the test, or the assumption of conditional independence between time and 
accuracy; these two assumptions go hand in hand. In cognitive psychology, for example, fast 
guesses (Yellott, 1971) and the phenomenon of post-error slowing have been demonstrated 
repeatedly (Ruitenberg, Abrahamse, de Kleine, & Verwey, 2014). There are various explana-
tions for post-error slowing, such as participants adjusting their speed-accuracy tradeoff to 
emphasize accuracy on subsequent trials, or participants getting distracted by the error causing 
attention to be diverted from the cognitive task on subsequent trials. Other phenomena include 
learning and warm-up effects (in which examinees start slowly then speed up), strategy shifts 
in the middle of the test, fatigue, and end-of-test speedup as the test deadline approaches. All of 
these potential causes can lead to a situation in which time and ability might not be fixed across 
a test, but instead they could change based on events during the test. 

Another reason to question the assumption of a fixed ability and a fixed speed is the find-
ing that even when controlling for item difficulty and item time intensity it is still often found 
that test takers take longer on items they get wrong. More difficult items typically take longer 
to respond to, but the time intensity parameter in the hierarchical model accounts for that— 
item difficulty and item time intensity tend to be highly related (Goldhammer, Naumann, & 
Grieff, 2015; Klein Entink, 2009). Goldhammer et al. (2015) found that after controlling for 
item effects (difficulty and time intensity), longer response times were associated with getting 
the item wrong. This seemed to be particularly true for relatively easy items. Several studies 
(Bolsinova, de Boeck, & Tijmstra, 2017; Liao, 2018; Partchev & de Boeck, 2012) also found that 
responding slower on easy items was associated with getting the item wrong but that respond-
ing slower on hard items was associated with getting the item right (tests included a creden-
tialing exam, PISA 2012 mathematics, and progressive matrices). Goldhammer et al. (2015) 
invoke a rumination explanation (i.e., cognitive processing that does not get closer to a solu-
tion), but they do not suggest why this would happen particularly on easy items nor does it 
explain the findings for hard items. 

Part of the problem for explaining these findings may be that speed estimated in the hierar-
chical model is often incorrectly thought of as a processing speed parameter. The speed param-
eter includes both productive processing time and unproductive rumination time, and it also 
is governed by a termination decision for when to quit the item if the answer is not found. The 
speed parameter in these models therefore might better be described as a tempo parameter: 
the average time one chooses to spend working on items (conditioned on item characteristics). 
Similarly, the time intensity parameter cannot be interpreted as the processing time needed to 
solve the item, as it is measured as the time people tend to spend on the item whether or not 
they get the item correct. 

Bolsinova et al. (2017) and Liao (2018) suggested ways to model the dependence between 
speed and ability; one example is to use response time residuals to improve the model for 
response accuracy. Another approach suggested by Molenaar (2018) was to use a finite mix-
ture modeling approach to identify two response classes (fast responding and slow respond-
ing) which vary item to item. Partchev and de Boeck (2012) present a similar idea based on 
a categorical IRT approach called IRTree. Bolsinova and Molenaar (2018) identify several 
approaches for exploring conditional dependencies between time and accuracy and suggest 
that they could be caused by differential strategy use over different items or by occasional fast 
guessing. All of these studies demonstrate that a model that assumes that one’s speed and abil-
ity change within the test fits the data better than does a model that assumes that speed and 
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ability are fixed throughout the test. A useful feature of these models is that they can be used to 
perform process analysis within cognitive tasks. For example, one could explore item features 
that might elicit slowing down (to become more accurate), as in Type 2 processing, or speeding 
up when the answer is known. 

Another implication of this kind of modeling is that it potentially reveals how time limits on 
tests might be set. For example, for primarily—although not necessarily exclusively—practical 
reasons, time limits are currently set at the test level. However, per-item time limits could be set 
and there are questions about how to do so and what the impact would be. Liao (2018) points 
out, for example, that research has suggested that low-ability examinees tend to benefit more 
from extended time limits, but that dependency modeling enables more refined statements 
about for whom and for what items relaxed time limits might make the most difference. 

IRT, the Diffusion Model, and the Scoring Rule Model 

A second link between cognitive psychology and psychometrics centers around use of the diffu-
sion model. The diffusion model is widely used in cognitive psychology to model the time taken 
to choose a response (referred to as evidence accumulation); it is particularly used for binary 
decisions in memory and perception tasks. The model consists of both decision-time and non-
decision-time (stimulus encoding, motor response) parameters. The model specifies a starting 
point, which typically would be neutral (i.e., halfway between the two choice responses, such as 
true vs. false). The starting point can be altered, however, to favor one response over another; this 
can be done, for example, by priming or by biasing expectations through differential payoffs (e.g., 
the correct answer is more likely to appear in the first rather than the second position). The model 
also specifies boundary separation, which is the difference in the information required between 
making one versus the other response. This is related to speed-accuracy tradeoff; tight boundaries 
favor speed, wide boundaries favor accuracy. The model specifies drift rate, which is the aver-
age rate of evidence accumulation within a trial (i.e., speed of responding). Although this model 
was designed to capture cognitive psychology experimental data, in which starting point and 
boundaries are routinely experimentally manipulated, Tuerlinckx and de Boeck (2005) showed 
that the diffusion model could be expressed as a two-parameter logistic IRT model by separating 
the drift rate into person (ability) and item (difficulty) components. Van der Maas, Molenaar, 
Maris, Kievit, and Borsboom (2011) extended this model and discussed the larger significance of 
linking IRT to cognitive psychology models; they also showed that the diffusion model could be 
used for the more complex tasks used in educational and psychological testing. 

De Boeck and Jeon (2019) point out that the scoring rule models described in the Speed-
Accuracy tradeoff section (Maris & van der Maas, 2012; van Rijn & Ali, 2018) are both methods 
one can apply to combine accuracy and time information from a test and models for behavior 
on a test. That is, they can be seen as competing with the diffusion model as explanations for task 
behavior. In fact, van Rijn and Ali (2018) compared their scoring rule approach with a diffusion 
model and with a hierarchical model (van der Linden, 2007) in fitting data from an eighth-grade 
mathematics and a college-level spelling test. They found that, compared to the hierarchical 
model, the scoring rule approach produced higher score reliabilities and higher external correla-
tions, at least with the mathematics test. They point out that there is not yet software to estimate 
the diffusion model for large N tasks, such as is typically found in standardized testing situations. 

Linear Logistic Test Model and Cognitive Diagnostic Model for Process Modeling 

A third research area linking cognitive psychology and psychometrics relates to the use of the 
LLTM developed by Fischer (1973). The basic idea is to model item response as a function not 
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of the difficulty of a particular item but of the difficulty of each of the cognitive operations or 
information processing steps involved in the item. Technically, the LLTM is a Rasch model 
with linear constraints imposed on the item parameters (i.e., the item difficulties). These con-
straints appear in the form of a design—or Q—matrix, an m attributes × k items matrix that 
reflects which of m attributes are invoked by which of k items. This method can be understood 
as a form of componential analysis in that item success is a function of the attributes (compo-
nents) involved. It is a generalization of Sternberg’s (1977) componential analysis, which also 
uses a Q matrix to represent the difference between partial and full tasks. The differences are 
that (a) Sternberg’s approach uses least squares regression to estimate attribute parameters, 
whereas Fischer’s LLTM is an IRT approach and therefore is estimated using maximum likeli-
hood (ML) (or Bayesian) approaches; and (b) Sternberg modeled item response times, whereas 
as an IRT model the LLTM is typically used to model item responses. However, in his disserta-
tion, Klein Entink (2009; Chapter 3) combined LLTM modeling of responses with loglinear 
modeling of response times on a figural matrix reasoning task. He showed the value of this 
approach in estimating component difficulties and time requirements (i.e., time intensities) for 
matrix solution steps (e.g., performing unique addition, subtraction, and identity operations). 
This approach enabled Klein Entink (2009) to quantify the increase in difficulty caused by the 
inclusion of a particular rule (e.g., the presence of the identity rule resulted in a less difficult 
item, the unique addition rule, a substantially more difficult item) and also the increase in 
expected time (time intensity) to complete an item based on the inclusion of particular rules 
(e.g., items take 57 seconds on average; the presence of the identity rule resulted in 12 seconds 
less time on average). Some attributes had relatively greater effects on time intensity and oth-
ers on difficulty, but for the most part (1) the factors that increased difficulty were the same as 
the ones that increased time intensity, and (2) time intensity and difficulty correlated around 
0.68. Klein Entink (2009) points out that although the design matrix for ability and time typi-
cally would be the same, it does not have to be, and also suggests that there might be theoretical 
reasons why some attributes might be expected to affect difficulty and different attributes to 
affect time. Recently, Zhan, Jiao, and Liao (2018) suggested an approach for using CDM in a 
joint modeling framework to model both responses and response times in a way similar to how 
Klein Entink combined LLTM and response time modeling in his joint model. 

The LLTM (and CDM) framework is the basis for one approach to automatic item genera-
tion (AIG) in which item families (items with the same values on each of the steps) rather than 
items per se are calibrated (Cho, De Boeck, Embretson, & Rabe-Hesketh, 2014; Geerlings, Glas, 
& van der Linden, 2011; Geerlings, van der Linden, & Glas, 2013; Sinharay & Johnson, 2008). 
This allows one to design items and to model the difficulty of items by modeling the effects 
of particular attributes on item difficulty and item time. An argument is that this approach 
provides a sounder theoretical basis for item development in that it relies on an identification 
of the specific components or attributes of the construct being measured (Embretson & Yang, 
2006). This, therefore, has the potential for enabling a deeper, process-level understanding of 
test scores. 

In the previous pages, we have summarized what has been learned in cognitive psychology 
about the meaning and importance of response time in completing cognitive tasks. We have 
also examined how recent psychometric models build (or fail to build) on these lessons from 
cognitive psychology when they include response time in modeling test taker proficiency. In 
the next section, we provide an extended example intended to demonstrate how the lessons 
learned from cognitive psychology might be used to build a complex assessment of cognitive 
skills; the example in this case focuses on diagnostic reasoning in medicine. It is useful to note 
that the research we next outline was conducted without regard to response time issues per 
se. However, the activity of preparing this chapter allowed us to think more specifically about 
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how response time does or could play a role not only in understanding diagnostic reasoning in 
medicine but also in thinking ahead to how we might develop assessments of medical diagnos-
tic reasoning in the future. 

Application: Diagnostic Reasoning in Medicine 

Diagnostic reasoning may be defined as the process of arriving at a logical conclusion or diag-
nosis to explain a set of facts or data. Examples can be found in a mechanic’s thinking about 
an automobile failure, an auditor’s reasoning about an organization’s health based on financial 
records, and a physician’s reasoning about a patient based on his or her history and symptoms. 
A critical component of many diagnostic reasoning tasks involves hypothesis generation: the 
process by which decision makers generate a set of potential explanations from memory to 
explain observed data. Hypothesis generation arguably is the most important component of 
diagnostic reasoning because it determines the set of hypotheses the decision maker ultimately 
considers, which in turn can affect diagnostic accuracy, confidence, and the choice to search for 
additional information (Barrows, Norman, Neufeld, & Feightner, 1982). Thus, the decisions 
one makes based on the outcome of the hypothesis generation process can have important 
consequences for one’s own health (as is the case when people must decide whether to seek 
medical care) and the lives of others (as is the case for diagnostic reasoning by physicians; 
Elstein, Shulman, Sprafka, & Allal, 1978). 

Hypothesis generation processes have important implications for diagnostic accuracy 
(Barrows et al., 1982; Elstein et al., 1978; Thomas, Dougherty, & Buttaccio, 2014). First, iden-
tifying the correct causal interpretation of a pattern of data depends on the early stages of the 
hypothesis generation process. If decision makers fail to generate the correct hypothesis in the 
initial hypothesis set, they are unlikely to arrive at the accurate diagnosis (Asare & Wright, 2003; 
Barrows et al., 1982; Pelaccia et al., 2014; Thomas et al., 2008; Weber, Boeckenholt, Hilton, & 
Wallace, 1993). Second, overconfidence in a selected diagnosis appears to be due primarily to 
generating too few alternative hypotheses (Bailey, Daily, & Phillips, 2011; Dougherty & Hunter, 
2003a, 2003b; Sprenger et al., 2011; Tidwell, Dougherty, Chrabaszcz, Buttaccio, & Thomas, 
2016). Third, there is a strong tendency to search for information suggested by hypotheses 
under consideration (Bhattacharjee & Machuga, 2004)—a notion referred to as hypothesis-
guided search (Dougherty, Thomas, & Lange, 2010; Lange et al., 2014; Thomas et al., 2008; 
Thomas et al., 2014). Hypothesis-guided search explains how people perceive the usefulness of 
the information and has been a valuable construct for elucidating the conditions under which 
people engage in confirmatory versus diagnostic search (Dougherty et al., 2010; Illingworth & 
Thomas, 2015; Lange et al., 2014; Thomas et al., 2014). 

The Role of Cognitive Models/Architectures in Cognitive Theorizing 

Cognitive architectures are programs that enable simulations of the human cognitive system. 
They are widely used in cognitive science to capture theories of cognition and test assump-
tions about the workings of the mind. Cognitive architectures have proven useful because they 
assist the researcher in understanding the results of complex interactions within the cognitive 
system for the behaviors of interest and afford researchers a way of studying the implications 
of their theoretical assumptions by observing the behavior of the model. HyGene (Thomas 
et al., 2008—short for Hypothesis Generation) is a cognitive architecture developed to capture 
the cognitive processes underlying diagnosis—the generation of the most likely explanations 
for some pattern of observed data. HyGene provides a psychologically plausible account of 
how decision makers generate a set of candidate hypotheses, identify the best explanation of 
the data, evaluate the coherence of the generated hypotheses, provide probabilities for the 
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generated hypotheses (Dougherty, Gettys, & Ogden, 1999; Thomas et al., 2008, 2014; Tversky 
& Koehler, 1994), and describe how those hypotheses are tested by exploiting the available 
information sources. 

An Architecture for Hypothesis Generation—HyGene 

HyGene is based on three principles: (1) Cued recall: information in the environment prompts 
the retrieval of associated cues from long-term memory; (2) Limited capacity: working memory 
capacity and task characteristics constrain the number of cues that can be actively considered 
by the decision maker; and (3) Information propagation: hypotheses maintained in working 
memory influence subsequent search behavior. The model assumes three main memory con-
structs: (1) exemplar or episodic memory (experienced cases), (2) semantic memory (book 
knowledge and prototypes), and (3) working memory (consciousness). Figure 9.1 provides a 
schematic overview of HyGene broken down into discrete algorithmic steps (described below). 
These steps are carried out iteratively in real time as the decision maker attempts to make sense 
of data observed in the environment by generating candidate hypotheses. 

Figure 9.1 Overview of HyGene Process Model. 
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Step 1 (Information Sampling): Information or data is observed in the environment (e.g., 
symptoms, history). In medical diagnosis, this can be from patient or caregiver inputs, phy-
sician inputs, and electronic medical records. 

Step 2 (Derivation of Prototypical Representation): The semantic representations operate 
in concert with a set of retrieval operations that enable the decision maker to identify a set 
of candidate (disease) hypotheses to explain the observed data from Step 1 (patient symp-
toms, history). Specifically, a similarity-graded weighting algorithm uses the observed data 
to extract a disease prototype as well as the most likely patterns of co-occurring symptoms 
and test results (cf., Thomas et al., 2008). 

Step 3 (Generation of Candidate Hypotheses): Semantic activation involves a disambigua-
tion process in which the prototype (created in Step 2) is matched against “known” diseases 
(i.e., disease representations) in semantic memory. Importantly, the generation process 
allows the model to define a well-specified hypothesis space, which is necessary for deriving 
posterior probability distributions over hypotheses (Step 4a). 

Step 4a (Probability Estimation): The activations of the hypotheses derived in Step 3 serve 
as input into a comparison process. The hypothesis evaluation mechanism is sensitive both 
to the degree of similarity between a hypothesis and the observed data and to the prior 
probability (i.e., experienced frequency of diseases in the practice of medicine, which can be 
subject to sampling and memory biases) of the hypotheses. 

Step 4b (Hypothesis Testing and Information Search): Hypotheses serve as the basis for 
hypothesis testing and information search via a process called Hypothesis-Guided Search 
(Lange et al., 2014). That is, the usefulness of a particular medical test depends on the 
potential of its possible outcomes to change the physician’s posterior beliefs about the dis-
ease hypotheses under consideration. Hypotheses themselves can be used to make sense of 
available data in the environment as it comes online over time. That is, the beliefs about 
particular disease hypotheses are iteratively reevaluated with the accumulation of additional 
information (e.g., Dx test results). 

Step 5 (Search Termination): Any intelligent system must know when to stop both its 
internal search (memory retrieval) for hypotheses (Step 5a) as well as when to terminate 
external search and the collection of additional data (Step 5b), when further information 
or test outcomes are unlikely to be fruitful (Dougherty & Harbison, 2007; Dougherty, 
Harbison, & Davelaar, 2014; Harbison, Dougherty, Davelaar, & Fayyad, 2009; Harbison, 
Hussey, Dougherty, & Davelaar, 2012; Dougherty et al., 2010; Illingworth & Thomas, 2015; 
Thomas et al., 2014). Essentially, research indicates that search is likely to terminate when 
the estimated utility of decisions based on continued search fail to exceed the estimated 
utility of decisions based on the current information state by a sufficient margin, where suf-
ficient is a threshold parameter that can capture individual differences or even the influence 
of time stress on stopping behavior (Dougherty & Harbison, 2007; Harbison et al., 2012). 

Time Pressure Effects on Hypothesis Generation and Probability Judgment 

HyGene assumes that hypothesis generation is constrained by the amount of time afforded to 
a decision maker to generate hypotheses. Greater time pressure results in the model generat-
ing fewer hypotheses into working memory or the Set of Contenders (SOC). Fewer hypotheses 
considered (i.e., fewer in the SOC) leads to two effects that are well established in the decision-
making literature: (a) each hypothesis in the SOC will be judged to be more probable than it 
actually is; and (b) subadditivity (the sum of the probability judgments for all the hypotheses 
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considered) will be greater than it would have been with more hypotheses. Subadditivity is a 
phenomenon in which the probability of a combined group (e.g., dying from cancer) is judged 
to be lower than the sum of the probabilities of elements of the combined group (e.g., dying 
from lung cancer, breast cancer, colon cancer, or all other cancers). These HyGene findings 
are consistent with the empirical results of Dougherty & Hunter (2003b), who found that time 
pressure led to greater subadditivity in a task requiring participants to judge the probability 
that a person came from a particular state within a region. 

Time Pressure Effects on Hypothesis Testing 

Like probability judgment, hypothesis testing behavior depends only on the hypotheses main-
tained in the SOC—the principle of hypothesis-guided search (Thomas et al., 2008; Dougherty 
et al., 2010). If only one hypothesis is maintained in working memory, hypothesis-guided 
search tends to follow an associative search or confirmation search strategy that can lead to 
preferences for nondiagnostic or positive tests: tests that do not always discriminate between 
differential disease hypotheses because their results may have similar, even identical, likeli-
hoods across relevant disease hypotheses. 

The simultaneous consideration of multiple hypotheses facilitates access to test diagnostic-
ity signals from memory in HyGene. Thus, if more than one hypothesis is actively maintained 
in the SOC, the HyGene model can use a diagnostic search strategy and select tests for which 
the likelihoods of possible results are likely to differ across disease hypotheses. Because it takes 
time to generate multiple hypotheses into the SOC, HyGene predicts that lower time pressure 
will tend to increase the preference for diagnostic tests as a direct consequence of the increased 
likelihood that the model will consider more than one hypothesis (Mynatt, Doherty, & Dragan, 
1993; Lange et al., 2014). HyGene makes specific predictions for when subjective and objective 
diagnosticity of tests will diverge via the particular hypotheses being considered. Studies using 
physicians have invoked the notion of hypothesis-guided search to explain how an initially 
incorrect diagnosis guides information selection, thereby making it less likely to encounter 
data to cue the generation of the correct diagnosis (Pelaccia et al., 2014). 

Timing Phenomena Effects on Diagnosis: Data Acquisition Dynamics 
and Sequence Effects 

When engaged in diagnostic hypothesis generation, data (symptoms and medical test results) 
are often acquired serially (one after the other). Although people should be insensitive to data 
(symptom) sequence, research indicates that people’s decision-making is often sensitive to 
the order of information. The dynamic working memory buffer we use in the HyGene model 
translates the activations of data in working memory into weights governing the contribution 
of each piece of data to the hypothesis generation process. This integrated model produces two 
strong predictions concerning temporal biases in hypothesis generation that have been tested 
empirically. 

The first prediction is a type of recency effect—symptoms presented later will contribute 
more to hypothesis generation and diagnosis than symptoms presented early. Lange, Thomas, 
and Davelaar (2012a) demonstrated such a recency effect empirically in hypothesis generation, 
where the preferred diagnosis (hypothesis) of participants was most consistent with the data 
that appeared later in the presentation sequence. 

The second prediction is that the speed of symptom presentation attenuates the recency 
effect. As symptom acquisition speeds up, the dynamic HyGene model predicts a shift from the 
recency profile to a primacy profile. The model predicts this profile shift from recency to pri-
macy because symptoms presented at the end of the sequence never accumulate enough activa-
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tion to overcome the inhibition imposed from the earlier symptoms to enter working memory. 
Thus, at very fast rates of data acquisition, the HyGene dynamic working memory buffer pre-
dicts a primacy effect—symptoms presented early will contribute more to the hypothesis gen-
eration process than symptoms presented later. This prediction was confirmed in a diagnosis 
task: the recency bias attenuates (Lange, Thomas, Buttaccio, Illingworth, & Davelaar, 2013; 
Lange, Thomas, & Davelaar, 2012a, 2012b; Lange, Davelaar, & Thomas, 2013) and is even 
reversed (Lange, Davelaar, et al., 2013) under faster rates of symptom presentation. Recent 
findings suggest that the recency bias in hypothesis generation may reverse due to increases in 
the complexity of the diagnosis task (Lange et al., 2012b). Buttaccio, Lange, Hahn, and Thomas 
(2014) have recently extended the idea of hypothesis-guided search to the deployment of visual 
attention and search in which possible target representations are generated from long-term 
memory based on external cues (c.f., Lange, Thomas, Buttaccio, & Davelaar, 2012; Lange, 
Buttaccio, Davelaar, & Thomas, 2014). This theory and model directly apply to domains like 
radiology, where the radiologist uses patient information and symptoms to generate hypoth-
eses for possible abnormalities that may appear in an x-ray (Hartzell & Thomas, 2017). 

Buttaccio, Lange, Thomas, and Dougherty (2017) investigated the effects of time pressure 
on visual search by manipulating participant expectations for target characteristics via the 
cues presented before search. Their Experiment 1A indicated that search was less efficient (i.e., 
slower and less direct to the target) when the participants had less time to generate potential 
target characteristics after the cue was presented. Time pressure affected the efficiency of visual 
search presumably because not all relevant hypotheses (likely target characteristics) could be 
generated in the amount of time provided to aid the deployment of visual attention and search. 

Summary of HyGene Findings 

In summary, a critical component of medicine involves diagnostic hypothesis generation. 
Unfortunately, both laypeople and professionals tend to exhibit impoverished hypothesis 
generation and only consider a small subset of the relevant hypotheses. Impoverished hypoth-
esis generation affects downstream behavior, including diagnosis, probability and confidence 
judgments, diagnostic test selection, and even the deployment of visual attention and search. 
Although people, physicians, and HyGene tend to generate the most likely hypothesis first, if 
the correct hypothesis is not generated early, it is unlikely to be generated at all. Importantly, 
task characteristics like time pressure and data timing (sequence and presentation rate) can 
influence diagnostic behaviors because they influence hypothesis generation. The influence of 
time pressure is particularly large when the diagnosis is complex; when multiple hypotheses 
are relevant to the observed data, people tend to exhibit the most bias (e.g., overconfidence 
and inefficient search) due to impoverished hypothesis generation. Because timing phenomena 
arise from a complex system with many interactive components, computational models like 
HyGene could likely play an important role in elucidating the implications of timing phenom-
ena in diagnostic reasoning. 

Other Diagnostic Reasoning Tasks and Abduction 

As mentioned previously, diagnostic reasoning is not confined to medicine; it can also describe 
what mechanics do with cars that do not work, what auditors do when trying to determine the 
health of an organization based on financial records, what police investigators do when trying 
to understand a crime scene, and what scientists do in developing theories to explain data. From 
the standpoint of the philosophy of reasoning, these situations are ones that invoke abduction 
(i.e., “explanatory reasoning”; Douven, 2017), inference to the best explanation (Hobbs, Stickel, 
Appelt, & Martin, 1993), the “generation of hypotheses in order to find potential explanations 
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of puzzling phenomena” (Holland, Holyoak, Nisbett, & Thagard, 1984, p. 136), or “a form of 
inference that takes us from descriptions of data patterns, or better, phenomena, to one or 
more plausible explanations of those phenomena” (Haig, 2018, p. 115). From the statistics liter-
ature they can be thought of as reverse causal inference (“causes of effects”) situations (Gelman 
& Imbens, 2013); that is, diagnostic reasoning involves determining the most likely causes of 
specific effects (symptoms). Gelman and Imbens—focusing on the realm of statistics—suggest 
that such problems can be transformed into forward causal inference problems by hypothesis 
generation and model checking (e.g., determining what information might be missing and 
evaluating such information), similar to the stages in HyGene. 

Abductive reasoning has been cited as characterizing medical diagnostic reasoning (Soldati, 
Smargiassi, Mariani, & Inchingolo, 2017). The framework of Soldati et al., similar to HyGene, 
provides a common framework for abductive reasoning tasks. It involves encoding data (e.g., 
symptoms), searching for explanations (in recency, prototype representation derivation, and 
generation of hypotheses), and then evaluating the hypothesis (hypothesis testing); these steps 
lead to a conclusion of whether to terminate or continue the search. Typically a distinction 
is made between the hypothesis generation and hypothesis evaluation stages of abduction 
(“making judgments of the best of competing explanations,” [Haig, 2008, p. 1020]). 

In the world of standardized testing, there are a few examples of abductive reasoning. On 
the hypothesis generation side, there are measures of creativity. For example, in Frederiksen’s 
(1959) Formulating Hypothesis test (see also, Carlson & Ward, 1988; Frederiksen & Ward, 
1978; Kogan, 2017), examinees are given a short period of time (typically about 2 to 3 minutes) 
to generate possible answers to open-ended prompts and then to indicate which of them are the 
most likely. Two example items from the test are the following: 

In Alcadia, a small country in Central America, the rate of death from infectious diseases 
declined steadily from 1900 to 1980. What factors might account for the decrease? 

The Port Byardia fleet had a mackerel catch that was relatively constant year to year dur-
ing the 1970s, except for a sharp drop in 1974. Think of hypotheses (possible explana-
tions) to account for the finding. 

Other idea generation approaches are found in creativity measures such as Lubart and col-
leagues’ Evaluation du potentiel créatif (Evaluation of the Creative Potential, EPoC) battery 
(Lubart, Besançon, & Barbot, 2011) and Educational Testing Service’s (ETS) kit of cognitive 
reference test battery (Ekstrom, French, Harman, & Dermen, 1976), which includes tests— 
such as Combining Objects and Substitute Uses (from the Flexibility of Use scale)—that involve 
solving problems by using objects in unusual ways. 

On the hypothesis evaluation side, consider the Logical Reasoning item type from a previous 
version of the Graduate Record Examination (GRE) (Educational Testing Service, 1995). This 
test includes questions in which examinees are given a surprising phenomenon (e.g., freez-
ers use less electricity when packed with food than when half packed) and are asked which 
hypothesis, if true, would contribute to the explanation of the phenomenon (e.g., a volume of 
air requires more energy to be maintained at a low temperature than the same volume of food). 

A Research Program to Study the Time Course of Diagnostic Reasoning 

Tasks such as those just discussed or methods such as those used to identify hypothesis gen-
eration and evaluation could be employed in a research program to study the time course 
of diagnostic reasoning (including medical diagnostic reasoning). A program of research 
on assessing the skills involved in medical diagnostic reasoning could be conducted using a 
combination of cognitive correlates (covariate tasks measuring hypothesis generation and 
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evaluation, as outlined in the previous section) and cognitive components approaches (i.e., 
partial task approach and the subtraction method). The LLTM or CDM could be used to ana-
lyze the skills involved in various full and partial tasks, both the responses and response times. 
Examinees could be given a series of medical diagnostic reasoning tasks from symptom presen-
tation to decision and confidence judgments, and conditions of the tasks could be manipulated 
experimentally to enable isolation of the various stages of problemsolving. For example, for 
problem-solving Steps 1–5, the following could be manipulated: 

1. Information Sampling: Manipulate number/type of symptoms and other inputs pre-
sented to examinee. 

2. Derivation of Prototypical Representation: Manipulate the provision of prototypical 
representations (and their features) through a partial task approach. 

3. Generation of Candidate Hypotheses: Manipulate prior knowledge (training of hypoth-
eses), or just provide the hypotheses (partial task approach). 

4a. Probability Estimation: Manipulate the difficulty of this stage by the difference between 
the hypothesis-data similarities (for an easy trial there is one hypothesis close to the data 
and the others are dissimilar; for a hard trial the similarities are close together). 

4b. Hypothesis Testing and Information Search: Manipulate the information value of 
hypothesis tests and the variance in information value among candidate hypotheses. 

5. Search Termination: Manipulate either deadlines or incentives. 

Given a set of responses to whole and partial tasks constructed along the suggested lines, a cog-
nitive diagnostic model (or other LLTM-type model) could be fit to the response data. Tasks 
would vary in their requirements for the various cognitive operations outlined in this chapter. 
A Q-matrix (a design matrix where the rows correspond to the test items and the columns to 
different cognitive operations) would represent task requirements. Cell entries, binary or con-
tinuous, would indicate the extent to which an item elicits a particular cognitive operation. A 
hierarchical response-response time model along the lines of Klein Entink (2009) or cognitive 
diagnostic model (Zhan, Jiao, and Liao, 2018) could be fit to the data to estimate both skills (for 
the various processes) and speed (for those processes). Although this would be an ambitious 
undertaking, the tools and methods for executing it are currently available. 

Conclusions 

The purpose of this chapter was to review the use of response time in cognitive psychology and 
in cognitive abilities research and to explore how response time may play a role in one class 
of cognitive tasks: medical diagnostic reasoning tasks. We also outlined a program of research 
designed to further understand the processes of diagnostic reasoning using response time and 
cognitive psychological methods. 

Several concepts that may be useful to incorporate in future research on diagnostic reason-
ing emerged from the response time and HyGene reviews. First, there is a distinction between 
speed and power tasks; diagnostic reasoning is primarily a power task. This does not mean 
that response time analysis is fruitless, but it does mean that response time can be more chal-
lenging to interpret than it would be for a speeded task. The HyGene analysis suggested that a 
primary limitation on performance was that few hypotheses were generated, which seemed due 
both to working memory capacity limitations and to time limits. Second, the speed-accuracy 
tradeoff often—but not always—is a useful characterization of task performance. Within 
HyGene, speed-accuracy tradeoff has been manipulated through strict deadlines. With lim-
ited time, problemsolving (i.e., reaching a correct diagnosis) suffers due to fewer hypotheses 
being considered. Considering fewer hypotheses results in distorted probability and confidence 
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judgments, poorer selection of diagnostic tests, and inappropriate search for additional infor-
mation. We know little about the degree to which time pressure might affect individuals dif-
ferentially, such as whether there are emotional aspects to performance deterioration (e.g., 
Caviola, Carey, Mammarella, & Szucs, 2017). 

The review identified two research strategies that can be used to gain insight into diag-
nostic reasoning. A cognitive correlates approach examines correlations between performance 
on basic cognitive tasks and performance on the target task—in this case, medical diagnostic 
reasoning—as a way to understand the cognitive components of the target task. A cognitive 
components approach uses partial tasks along with the whole task to understand the processes 
and time dynamics associated with the target task. We suggested here a number of ways that 
the whole task of medical diagnostic reasoning could be broken down into partial tasks, and we 
suggested several psychometric modeling approaches for analyzing performance on the whole 
and partial tasks. 

In recent years, significant advances have been made in modeling response time as well as 
response accuracy using psychometric methods that integrate them; this enables process analy-
ses of complex task performances. Comparable advances have been made in understanding 
diagnostic reasoning—and medical diagnostic reasoning—and in incorporating this knowl-
edge in cognitive architectures such as HyGene. It would be productive to integrate these two 
lines of research to enable further explication of the processes associated with medical diagnos-
tic reasoning generally. 
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10 
Response Times in Cognitive Tests 

Interpretation and Importance 
Paul De Boeck and Frank Rijmen 

Time in the context of cognitive tests is not a simple notion. It refers to the time the test taker is 
using to respond to the items of the test or to take the whole test, and it refers to the time the test 
taker is given for individual items, sections, or for the whole test. These are the response time(s) 
and the time limit(s), respectively. The most relevant question regarding response time is how 
it must be interpreted, in other words, what the value is of response time for cognitive assess-
ment. The interpretation depends on whether the time limit was communicated and whether 
it is used in scoring or not. The most relevant question regarding time limits is how strict or 
lenient they should be. Both these questions are highly complex. Still, an answer to these ques-
tions is important for the main purpose of cognitive tests. For example, the interpretation of 
response times will inform our understanding of cognitive processes; and, likewise, the strin-
gency of a given time limit will affect the validity of the inferences we make from exam scores. 
An excellent overview of issues, models, and findings is given by Kyllonen and Zu (2016). 

In this chapter, we will first discuss the interpretation of response times in the traditional 
type of cognitive ability tests starting from the notions of power and speed and based on 
empirical findings. This is followed by brief discussions of measurement invariance issues, 
response time decompositions and related accommodations for respondents with special 
needs, and response times in next-generation assessments. We close the chapter with practical 
conclusions. 

Power and Speed 

A first and evident possible interpretation of response times is that they are a measurement of 
speed. Speed is a rather ambiguous concept; it can be working speed, cognitive speed, or some-
thing else. It is unclear whether speed is a separate ability or a style, how much it is affected by 
motivation and attention, whether it is not also an indicator of the ability one intends to meas-
ure, and whether it is not simply the result of a chosen speed-accuracy balance. Historically, a 
rather sharp distinction was made between speed and power (e.g., Gulliksen, 1950). In the con-
text of this distinction, speed is measured by how many items one can solve in a given amount 
of time, or, equivalently, how much time it would take to answer a given set of items. To avoid 
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a possible confounding with power, the items need to be easy, so that the time spent on an 
item is the time needed to respond correctly rather than the time spent attempting to answer 
an item by those examinees unable to solve the item even given unlimited time. One can think 
of a number of items completed within a given amount of time or of the time needed to finish 
a given number of items as analogous to miles per hour for a car. Difficulties on the road that 
slow our car down prevent an accurate measure of its speed. 

While difficulty should not play a role for the measurement of speed, time restrictions 
should not play a role for the measurement of power. Power is typically measured in compari-
son with the difficulty level a test taker can manage. A score on a test with a substantial number 
of difficult items is useful in this regard. Difficulty is relative, which is evident, for example, in 
the context of item response theory, wherein the probability of success on a given item depends 
on both the item’s difficulty level and a given examinee’s ability level, which are also both 
expressed on a shared scale. 

In practice, a test never comes with unlimited time, so that, although the conceptual distinc-
tion between speed and power is clear, the distinction is not so clear in practice. An additional 
problem for the two notions is the assumption of maximum performance, which implies that 
the test taker performs at a maximum level: as fast as possible when speed is measured and 
with all available power if power is measured. It is uncertain when and if the assumption of 
maximum performance is met in practical testing situations, although one can easily imagine 
reasons why it may not be. People may have a habitual pace of cognitive work, driven by getting 
things done or by the enjoyment of the cognitive processes they employ; or, people may differ 
in their level of persistence, some never giving up and others abandoning difficult tasks as soon 
as they arise. One other important reason, and possibly one of the factors that affect pace, is the 
balance between speed and accuracy. It is well known that speed can be at the cost of accuracy 
and that a higher accuracy level can be at the cost of speed (Heitz, 2014). Even when a test taker 
is given unlimited time, she/he may still choose to work fast. 

Given that the maximum performance assumptions are not and cannot be met, it makes 
sense that the distinction between power and speed is no longer considered as important as it 
has been in the past. Instead, the terms “speed” and “ability” are used, realizing that they corre-
spond with “effective speed” and “effective ability” (van der Linden, 2009), where the modifica-
tion “effective” refers to the actual level of speed and ability as co-determined by factors other 
than maximum performance, such as the speed-accuracy tradeoff. Note that often the term 
“level” is also used rather than “ability” to replace the older notion of “power” (e.g., Carroll, 
1993; Davidson & Carroll, 1945). It is further commonly assumed that ability measurement is 
not really distorted when time limits are sufficiently lenient. Of course, deciding the degree of 
leniency may be of considerable practical importance given the need for testing efficiency in 
practice. 

Understanding Response Time 

In this section, we will focus on response time and only to some extent on time limits. The 
approach we will take is a bottom-up approach instead of a top-down approach. We are in the 
first place interested in understanding response time data and how they are related to accuracy 
data (correct vs. incorrect responses). For practical considerations and recommendations these 
will be the grounds we rely on as opposed to a more top-down approach based on the con-
structs of speed and ability. Rather than relying on definitions of constructs to interpret results, 
we try to understand the data and data structure before interpreting the results and formulating 
recommendations. 

We will begin by summarizing research findings regarding response times for test tak-
ers presented with cognitive ability tests for which a measure of response time per item 
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is available. Although response times for simple cognitive tasks may be relevant for the study 
of speed (Carroll, 1993), we will not discuss those findings here. The following paragraphs 
summarize findings related to complex cognitive tests. See De Boeck and Jeon (2019) for an 
additional review of this literature. 

1. Based on latent variable modeling of response accuracies and response times, a speed 
dimension and an ability dimension can be differentiated, as in the hierarchical 
model for speed and ability (van der Linden, 2007), with loadings of (log) response 
times on the speed dimension (i.e., negative loadings on speed and positive loadings 
on slowness) and loadings of binary response accuracies on the ability dimension. 
Although we follow the terminology as used by van der Linden (2007), we do not 
refer to the corresponding constructs of speed and ability. The ability latent variable 
is a response accuracy latent variable and the speed latent variable is a response time 
latent variable. The fact that two different latent variables are needed is not a surpris-
ing finding, but it contradicts the layperson belief that more able (higher accuracy) 
persons are faster. 

2. The correlation between ability and speed varies with the test. (See van der Linden, 2009, 
for examples). If the speed-accuracy balance were the sole basis for the correlation, the 
correlation would be negative because focusing on accuracy would make one work 
slower; yet, the correlation can be positive, (almost) zero, or negative. From a purely 
pragmatic perspective, explaining a correlation may seem unnecessary because any cor-
relation—regardless of its sign—will improve the measurement of ability, which is the 
main purpose of cognitive tests. Unfortunately, it is neither clear how the correlations 
should be interpreted nor what the measured ability is, other than that it is the effec-
tive ability, possibly affected by various confounding influences (e.g., speed-accuracy 
tradeoff, motivation). 

3. The correlation between item difficulty and item time intensity (the item-level parameter 
for response time) is positive. (See again van der Linden, 2009, for examples). The more 
difficult items of a test take more time. The robust replication of this finding contrasts 
with the variation of the correlation between ability and speed. A simple explanation is 
that an item that requires more cognitive work creates more opportunities for mistakes— 
any one of which is sufficient for an incorrect result. (The reverse is not necessarily true. 
A higher failure rate does not imply that more work was required. For example, a difficult 
knowledge question (e.g., “what is the capital of Albania?”) may not require any work at 
all if one either realizes one’s lack of knowledge or happens to know the answer.) The 
positive relationship between item response time and item level of accuracy also applies 
in adaptive testing when the test taker is presented with items that more or less match the 
ability level (Shi, 2017). 

4. The latent variable model with two dimensions, one for response times (speed) and one 
for response accuracy (ability), is violated by item-wise dependencies between accuracy 
and response time (Bolsinova, De Boeck, & Tijmstra, 2017; Bolsinova & Maris, 2016; 
Bolsinova, Tijmstra, & Molenaar, 2017; Bolsinova & Tijmstra, 2016; De Boeck, Chen, & 
Davison, 2017; Meng, Tao, & Chang, 2015; Partchev & De Boeck, 2012). These depend-
encies are direct effects of response time on response accuracy (or vice versa) after 
controlling for the latent variables and item parameters and can also be captured through 
correlated residuals. In most studies, the item-wise dependency between response 
time and response accuracy is negative: slower responses tend to be less accurate. The 
dependency means that on average both within a person and within an item there is a 
relationship between response time and response accuracy that cannot be explained by 
the latent variables or item parameters. 
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5. The dependency between response time and response accuracy is positively correlated 
with item difficulty (Bolsinova, De Boeck et al., 2017; Bolsinova, Tijmstra et al., 2017; De 
Boeck et al., 2017). For more difficult items, the dependency is less negative or even posi-
tive (slower is more accurate). This is a robust finding; it generalizes across test formats 
(multiple choice and open format) and across conditions with and without time pressure 
(De Boeck et al., 2017; De Boeck & Jeon, 2019). Based on our recent findings, it also 
applies to adaptive tests. The relationship has also been observed when response time is 
used as a covariate for response accuracy as a dependent variable in the case where an 
ability latent variable and an item parameter are included in the model (Goldhammer 
et al., 2014; Naumann & Goldhammer, 2017). 

6. When the dependency is modeled as depending on the person, it appears to be nega-
tively correlated with ability. This means that the negative dependency between response 
time and response accuracy (slower is less accurate) is more pronounced for high-ability 
test takers and is less pronounced or even reversed for low-ability test takers (Bolsinova, 
Tijmstra et al., 2017; Goldhammer et al., 2014). 

7. Finally, there are indications suggesting that the overall negative relationship between 
residual response time and response accuracy is in fact curvilinear even though the 
linear component of the relationship is negative (Chen, De Boeck, Grady, Yang, & 
Waldschmidt, 2018). For response times that are shorter than can be expected based on 
the average response time of the respondent and the item in question, accuracy increases 
with residual response time up to a certain point (a negative residual response time value 
and a roughly 0.80 proportion of correct responses); for longer response times, the accu-
racy decreases. Because the turning point comes at a below-zero value of the residual, 
the global relationship is negative. This result was obtained from relating bins of double-
centered log response times (x-axis) to proportions of success per bin (y-axis) (Chen et al., 
2018). Interestingly, Bolsinova and Molenaar (2018) also have shown more recently that 
there is curvilinearity in the dependency and that it has the very same shape as found by 
Chen et al. (2018). A curvilinear effect of time-on-task was also found by Naumann and 
Goldhammer (2017). 

The explanation of these findings is not evident. Taken together, points 5 and 6 mean that for 
higher probabilities of success (easy items, high abilities) the dependency is negative (or less 
positive), whereas for lower probabilities of success (difficult items, low abilities) the depend-
ency is less negative or even positive. Yet, while faster is more accurate may seem a general rule, 
for the two reasons we mentioned, it is not. First, it does not apply (or it applies less) to difficult 
items and low abilities; and second, the more precise relationship is most likely curvilinear. 

Several explanations for these findings or subsets of these findings have been presented 
in the literature. The first explanation is based on a dual processing theory (Goldhammer et al., 
2014; Naumann & Goldhammer, 2017). In our view, the theory does not need to imply a cat-
egorical distinction between two types of processing. Instead, there may be a range going from 
completely automated processing such as when readily available knowledge is retrieved (e.g., 
7 × 8 = ?) to fully controlled sequential processing such as when one works through different 
steps (e.g., 8 + 8 = 16 + 8 = 24, etc., or 5 × 8 = 40 + 2 × 8 = 56). Across persons and items, all 
kinds of mixtures between these two extremes may exist. For this dual processing mixture 
explanation to apply, one must assume that automated processing is faster and more accurate 
than controlled processing and that controlled processing takes time to be successful. If this 
interpretation applies, then, what is captured by the hierarchical model of ability and speed 
is an average of automated versus controlled processing, reflected in the latent variables and 
item parameters, while deviations from the average explain the residual associations between 
response time and response accuracy. Furthermore, if it is also assumed that (primarily) automated 
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processing applies for higher abilities and easier items, whereas (primarily) controlled process-
ing applies for lower abilities and more difficult items, then a switch in the dependency follows. 
Fast responding would be more accurate for easy items and high abilities because it is inherent 
to automated processing, whereas controlled processing takes time to be successful so that fast 
responses would be less accurate. Response mixture models have been formulated in line with 
this explanation, with classes of responses for relatively faster and relatively slower responses 
(Molenaar & De Boeck, 2018; Molenaar, Oberski, Vermunt, & De Boeck, 2016). 

Second, if the speed-accuracy balance varies during the test, one can expect response time 
to be positively associated with response accuracy. However, when it’s the activated cognitive 
capacity (e.g., attention, concentration) that varies, one can expect response time to be nega-
tively associated with response accuracy. This would be in line with the diffusion model notion 
of drift rate (accumulation capacity of information). A stronger drift rate makes for faster and 
more accurate responses (Ratcliff, Smith, Brown, & McKoon, 2016), so that a variation of the 
drift rate during the test would lead to a negative dependency between response time and accu-
racy. Because the dependency is on average negative, variation of processing capacity may be 
the explanation (De Boeck et al., 2017). For the correlation of dependency with item difficulty 
and ability, the principle of dominant responses being faster may be invoked: for easy items the 
correct response is the dominant response and therefore faster and for difficult items, incorrect 
responses are dominant and therefore faster. Similarly, for high-ability test takers, the correct 
response is dominant and thus faster, while for low-ability test takers, incorrect responses are 
dominant and thus faster. 

Third, the previous two explanations are difficult to reconcile with a curvilinear relation-
ship between residual response time and response accuracy. Instead we briefly discuss here 
a possible although speculative explanation for the curvilinear relationship, based on two 
assumptions. 

The first assumption is that examinees respond to an item as soon as they identify an answer 
they believe has a good chance of being correct. The chances of a very fast response being correct 
are smaller than for a response after more time, depending on the item and the certainty crite-
rion the respondent is using. The second assumption is that when no likely answer can be found, 
the certainty criterion to release a response is lowered, especially when time is limited, and even-
tually either an educated guess or a blind guess will be made if one is relatively or completely 
uncertain, respectively. In this way, the first assumption explains the upward section of the cur-
vilinear relationship and the second assumption explains the downward section. Depending 
on the specific encounter of a respondent with an item, the solution process works out well or 
not so well due to factors unrelated to systematic person and item factors, which explains the 
deviation from expectation, given the person parameters and the item parameters. The above 
assumptions explain why the proportions of success are a curvilinear function of the double-
centered log response times without contradicting phenomena such as rapid guessing and slow 
guessing. (Rapid guessing simply means that the certainty criterion to release a response is very 
low and slow guessing means that the criterion is lower still after unsuccessful work on an item.) 
This explanation also leaves room for factors such as persistence (the reluctance to lower one’s 
certainty criterion) and speed-accuracy balance (the level of certainty criterion). 

Taken together, the interpretation of these findings remains too speculative to draw conclu-
sions about the response process and its relationship with response time. Therefore, it would be 
premature to propose a joint model for response times and accuracy that would allow us to find 
out and measure more than does the now common hierarchical model for speed and ability. 
Models with extra dependencies between response times and accuracy have a better goodness 
of fit than the hierarchical model and can even improve measurement if certain assumptions 
are made (Bolsinova & Tijmstra, 2018), but a good explanation for the dependency is still lacking. 
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For most practical measurement purposes, we believe that the hierarchical model (van der 
Linden, 2007), although somewhat suboptimal, is a reasonable model to work with for joint 
accuracy and response time data. 

Measurement Invariance as a Function of Time 

There are two findings from the previously discussed studies with potential measurement con-
sequences, because they concern time and measurement invariance. First, the dependencies in 
question imply a lack of measurement invariance as a function of response time. The accuracy 
item parameters of fast responses and slow responses are different, so that the measurement of 
ability is to some degree confounded with the measurement of speed (De Boeck et al., 2017). 
Interestingly, while the item parameters are different, the two ability latent variables (one for 
slow responses and the other for fast responses) cannot always be differentiated or, when they 
are distinct, they are highly correlated (Partchev & De Boeck, 2012). Second, measurement 
is not invariant across strict and lenient response time limits per item (De Boeck et al., 2017) 
although the correlation between the two conditions is again very high—about 0.80 (Davison, 
Semmes, Huang, & Close, 2012). This latter correlation is not as high as the former correlation 
between the abilities underlying spontaneously fast and slow responses, but it was obtained 
from two different but parallel test versions, whereas the former was obtained from the very 
same test. The violation of measurement invariance under the influence of rather drastic time 
pressure conditions as in Davison et al. (2012) or Ren, Wang, Sun, Deng, and Schweizer (2018) 
gives rise to a second dimension; however, the consequences in terms of measurement correla-
tion are only moderate. 

Decomposition of Response Time and Accommodations for Special Needs 

The total response time consists of several components. For example, consider a simple 
arithmetic item “John has five apples. Mary has twice as many apples as John. How many 
apples do they have together?” One can distinguish between reading time (access time), time 
to translate the words into an equation, solving the equation, and formulating a response. 
Each of those processes takes time and contributes to the total response time. There is an 
extant literature on the decomposition of response times for simple cognitive tasks (see 
Chapter 9). 

In educational assessments, tasks are of a higher complexity. Nevertheless, one can, at least 
conceptually, distinguish between components such as access time, time to engage with and 
solve the item, and motor response time. As a matter of fact, this distinction is being proposed 
in Chapter 4 to determine whether a student should be given extra time, where extra time 
would be given to students that require longer access time due to a reading disability, but not 
to students who need more time to devote to processes that are part of the construct—in our 
example, the time needed to solve an equation. 

Depending on the task, the relative weight and the nature (automated versus sequential) of 
the different components are likely to differ, giving rise to different relations between response 
times and ability. Research on the different processes involved in taking a test and how they 
relate to response time, both for the overall population as well as for individual test takers with 
specific learning disabilities, is not only of interest from a research perspective but also helps 
to provide a scientific basis for deciding who should benefit from extended testing time. A 
conceptual analysis to determine which knowledge and skills are involved in taking a test and 
which of these are intended to be reflected by the test score is a prerequisite for determining 
whether extended time limits are appropriate for specific cases. 
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Response Times in Next-Generation Assessments 

In the section on “Understanding response time,” we focused on traditional cognitive ability 
tests. However, several planned and recently launched assessments place a larger emphasis on 
the application of knowledge and skills in real-world scenarios. For example, the next gen-
eration of science standards (NGSS) emphasize three dimensions of science, one of which, 
‘Science and Engineering Practices,’ identifies the need to “describe behaviors that scientists 
engage in as they investigate and build models and theories about the natural world and the key 
set of engineering practices that engineers use as they design and build models and systems” 
(see nextgenscience.org for an overview of the NGSS). Behaviors such as developing and using 
models to explain scientific phenomena take time, and students who are good at science are 
likely to be efficient in carrying out these behaviors as well. Time is likely to become a more 
important part of the construct of next-generation assessments. 

Practical Conclusions 

Our practical conclusion from the results discussed thus far is rather conservative. Although 
time matters, it may not be so crucial that we should start experimenting with alternative mod-
els and alternative time limit practices in cases where the results matter for important decisions. 
Experimenting is beneficial for a better understanding of time and to develop better and more 
accurate models, and we should certainly invest in research of that kind, but for the time being 
our recommendation is not to change existing practices in high-stakes conditions. Although 
some modeling improvements are possible (e.g., including dependencies in the models), we 
wonder whether such improvements lead to larger changes than implied by the generalization 
discrepancy. The generalization discrepancy is the discrepancy between two tests developed by 
experts with the same level of expertise and with the same measurement purpose in mind. The 
issue is whether the improvement obtained with a different (and hopefully better) scoring of a 
given test would lead to a larger discrepancy between scores than the discrepancy between two 
scores obtained from two different tests based on equal levels of expertise from the part of the 
developers and with the same purpose of measurement. 

Our rather conservative conclusion implies that stronger time pressures than the currently 
common and rather lenient time limits are not desirable, but we certainly do not argue against 
adjustments in the other direction for respondents with special needs. However, these adjust-
ments are necessarily based on an ad hoc conceptual and pragmatic analysis and can hardly be 
grounded in empirical research because of the often individual or small-group nature of special 
needs populations. 
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11 
A Cessation of Measurement 

Identifying Test Taker Disengagement Using 
Response Time 

Steven L. Wise and Megan R. Kuhfeld 

Achievement testing is used to measure an individual’s knowledge, skills, and abilities for a 
variety of purposes including educational attainment, proficiency assessment, and certifica-
tion/licensure testing. To measure achievement, we begin by identifying a content domain 
of interest, developing a set of items that collectively represents the intended domain, and 
administering a series of these items to a test taker. The response given to each item provides 
a small amount of information about the test taker’s achievement level. These bits of infor-
mation are then aggregated across items to calculate a test score from which an inference 
can be made regarding the test taker’s achievement level. This familiar measurement process 
has been extensively used for over a century to assess achievement, and our commonly used 
measurement models—both classical and item response theory (IRT) methods—provide the 
psychometric foundations underlying this aggregation of item-response-based information 
into test scores. 

Though this is a straightforward process, the validity of an inference made on the basis 
of a test score rests on a fundamental assumption that all of the item responses reflect 
what the test taker knows and can do regarding the domain of interest. On one level, this 
assumption appears obvious and easy to meet. Careful and competent development of 
items that measure the domain would appear to logically ensure that each of the responses 
to these items reflects the intended domain. But the threat to the assumption comes not 
from the item content, but from the test taker. The assumption requires that the item 
responses come from engaged test takers who devote effort in applying their knowledge, 
skills, and abilities to answer each item they receive. In other words, we assume that if we 
administer an item to a test taker, that test taker will try to use what they know and can do 
to correctly answer the item. 

In reality, however, it sometimes happens that test takers are disengaged during a test event. 
We define disengagement as a test taker responding to an item without applying her/his knowl-
edge, skills, and abilities to provide an answer. In multiple-choice testing, one example of this 
is when the test taker is unmotivated to perform well on the test and does not care to read 
the item and consider its challenge before answering. Another example is the test taker who 
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quickly submits answers to the remaining unanswered items as the test’s time limit is expiring 
(see Chapter 6). Regardless of why it happens, disengagement threatens score validity because 
it introduces construct-irrelevant variance1 that tends to negatively bias test scores (Haladyna & 
Downing, 2004). 

The impact of disengagement on test performance can be sizeable; a synthesis of a number 
of studies found, for example, that unmotivated test takers tend to underperform in compari-
son to their motivated peers by an average of 0.58 standard deviations (Wise & DeMars, 2005). 
The purpose of this chapter is to explore both what happens when test takers disengage and 
how this disengagement should be managed during scoring. 

Measuring Test-Taking Engagement 

Most test takers appear to exhibit adequate levels of engagement throughout their test events. 
How, then, do we know when disengagement has occurred? Several methods have been used to 
assess what has variously been called test motivation, test-taking effort, or test-taking engagement. 
By far the most widely used method has been to ask test takers to complete a brief self-report 
instrument about their degree of engagement immediately after testing (Eklöf, 2006; Sundre & 
Moore, 2002). Another method uses person-fit statistics to assess the degree to which a test taker’s 
responses are consistent with the measurement model being used (Meijer, 2003). Alternatively, 
one might make an inference about test-taking engagement from how carefully a test taker com-
pletes some accompanying task, such as a student survey (Boe, May, & Boruch, 2002; Zamarro, 
Hitt, & Mendez, 2016). A common feature of each of these methods is that they provide an overall 
assessment of a test taker’s engagement. That is, the test event is the unit of analysis. 

When computer-based tests (CBTs) are used, a more fine-grained approach to measuring 
engagement becomes feasible and is based on the time it takes a test taker to respond to an 
item. This suggests that we could evaluate engagement down to the level of individual item 
responses, and that it would be useful to conceptualize the administration of a test not as a uni-
tary event but as a sequence of encounters between a test taker and items.2 This idea was first 
investigated by Schnipke (1995), who studied the responses given during timed, high-stakes, 
multiple-choice tests. She found that as time was running out, some test takers would begin 
to rapidly submit answers to the remaining items, apparently in hopes of getting some correct 
through lucky guessing. Schnipke termed such behavior rapid guessing, as opposed to the more 
typically seen solution behavior, and concluded that the presence of rapid guessing during a test 
event indicated that the test was speeded for that test taker. Schnipke described rapid guessing 
as instances where “the examinee responds rapidly as time expires; accuracy will be at or near 
chance because the examinee is not fully considering the item. The examinee may skim the 
items briefly for keywords, but the examinee does not completely read the item” (p. 5). Later, 
it was discovered that rapid guessing is also commonly present in the data from unspeeded, 
low-stakes tests (Wise & Kong, 2005). In these instances, rapid guessing was due not to time 
pressure but to a lack of test-taker motivation. 

Thus, even though the antecedents differ, rapid guessing sometimes occurs with both low-
stakes and high-stakes tests. In high-stakes contexts, rapid guessing represents a tactical choice 
by a test taker who is trying to maximize his or her score,3 whereas in low-stakes contexts, rapid 
guessing indicates instances in which a test taker was unconcerned about doing well on the 
item. In both instances, however, rapid guessing indicates that the test taker was disengaged: 
she/he chose not to apply her/his knowledge, skills, and abilities when answering the item 
(Wise, 2017). 

Given both the presence of rapid guesses in test data and that they typically impart a sys-
tematic negative bias on test scores, it is natural to contemplate what to do about them. When 
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aggregating item responses from a test event during scoring, should rapid guesses be included 
or excluded? To answer this question, it is helpful to consider the nature and dynamics of 
rapid-guessing behavior. If rapid guesses do not reflect engaged test takers’ knowledge, skills, 
and abilities, what then do they reflect? 

The Nature of Rapid-Guessing Behavior 

This section provides an overview of much of what is known about rapid-guessing behavior. 
We will illustrate some of these findings using data from our organization’s MAP® Growth™ 
assessment, which is a multiple-choice computerized adaptive testing (CAT) system that 
administers interim achievement tests to K-12 students. Because MAP Growth can be consid-
ered low stakes and unspeeded, it is reasonable to assume that rapid guessing on this assessment 
generally reflects unmotivated test taking. 

Several general findings have emerged regarding rapid guessing. First, test takers rarely 
exhibit rapid-guessing behavior throughout a test event. In high-stakes settings, as described 
earlier, it is mostly observed toward the end of test events when time is expiring. In low-stakes 
settings, rapid guessing can occur throughout test events, although its prevalence tends to 
increase across item position. 

Second, it is not uncommon for a test taker to move multiple times between solution behav-
ior and rapid guessing. Figure 11.1 shows the pattern of responses from a MAP Growth Math 
test event in which there was frequent switching between the two behaviors. To provide some 
perspective on the rapidity of responses, for the vast majority of rapid guesses this test taker 
submitted a response to the item within a few seconds of its being displayed. 
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Figure 11.1 Responses from a MAP Growth Math test event in which there was frequent switching between 
solution behavior and rapid-guessing behavior. The rapid-guessing threshold for each 
response was established using the 10% normative threshold method (Wise & Ma, 2012). 
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Third, rapid-guessing behavior appears to correlate with several factors that provide clues 
as to its nature. Rapid guessing has multiple influences and is affected by characteristics of the 
item, the test taker, and the context in which the item is administered (Wise, Pastor, & Kong, 
2009). It is more likely to occur with items that contain more reading or are perceived to be more 
mentally taxing (Wise et al., 2009). Males tend to rapid guess more frequently than females and, 
at the K-12 level, rapid guessing increases with grade (Wise, Ma, Kingsbury, & Hauser, 2010). 
Some studies have found rapid-guessing behavior to be unrelated to a test taker’s achievement 
level (Wise, 2017), while others have found rapid guessing to occur more often with lower 
achievers (Goldhammer, Martens, Christoph, & Lüdtke, 2016; Wise & Gao, 2017; Wise et al., 
2010). Regarding testing context, the likelihood of rapid guessing has been found to be related 
to item position, test stakes, and the time of day testing occurs (Wise et al., 2010). 

The Rapid-Guessing Response Process 

One of the key sources of validity evidence is the response process test takers use when responding 
to test items (AERA, APA, & NCME, 2014). Hubley and Zumbo (2017) noted that “identify-
ing and understanding the mechanisms underlying how different respondents interact with, 
and respond to, test items and tasks is essential to understanding score meaning and test score 
validation” (p. 8). We believe the response process underlying rapid-guessing behavior to be 
fundamentally different from that used during solution behavior. Our evidence for this asser-
tion has three components. First, there is typically a discontinuity between the accuracy levels 
of rapid guessing and solution behaviors. Second, unlike solution behaviors, rapid guesses tend 
to contain little, if any, psychometric information about a test taker’s achievement level. Third, 
across items, the popularity of different response options for a multiple-choice item appears to 
be unrelated to option correctness/incorrectness. 

Accuracy Discontinuity 

In the basic conceptualization of disengaged responses and solution behavior (Wise, 2017), 
each behavior can be characterized by its own distribution of response times, as illustrated in 
Figure 11.2. In this hypothetical example, rapid guesses occur primarily during the first several 
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Figure 11.2 Conceptual distributions of the response times associated with responses to an item under rapid-
guessing and solution behavior. The time threshold is arbitrarily chosen for discussion purposes. 
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Figure 11.3 Discontinuity between rapid-guessing accuracy (to the left of the dotted line) and solution-
behavior accuracy for various response time segments associated with responses to a MAP 
Growth Reading item. 

seconds after the item is administered, and rarely after 10 seconds. In contrast, no solution 
behaviors appear before 5 seconds and they show a distribution that extends well beyond 
50 seconds. If one chose to use a 5-second threshold4 to operationally classify a response as a 
rapid guess, all responses occurring before 5 seconds would be classified as rapid guesses, those 
occurring between 5 and 10 seconds would be a mixture of rapid guesses and solution behav-
iors, and those occurring after 10 seconds would be comprised almost exclusively of solution 
behaviors. By comparing the accuracy of responses from these regions, we gain insights about 
the response processes being used in responding to the item. 

Figure 11.3 summarizes the accuracy of over 200,000 responses to a MAP Growth Reading 
item across various response time segments. The dotted line in the graph indicates the rapid-
guessing threshold, which for this item was 9.48 seconds.5 To the left of the threshold, the accuracy 
of responses classified as rapid guesses is indicated. To the right of the threshold, the accuracy of 
solution behaviors up to the 20-second mark is indicated, followed by the accuracy of successive 
20-second time segments. While the accuracy of rapid guesses was around 28%, the accuracy 
for the first solution behavior time segment jumped up to 42% and remained in the 35–50% range 
throughout the remainder of the time segments.6 Importantly, in the solution behavior portion of 
the graph, adjacent time segments show similar accuracy rates and describe a generally smooth 
accuracy trend. Figure 11.3 shows a clear discontinuity between the relative accuracy of rapid 
guesses and solution behaviors, consistent with the idea that rapid guesses are determined by a 
different response process. Across other MAP Growth Reading items, the discontinuity varies 
in magnitude from minimal to quite large. As will be explained below, an item’s rapid-guessing 
accuracy is not predominantly influenced by the accuracy of its solution behaviors. 

Differential Psychometric Information 

During a test, the correctness of an item response provides the psychometric information that 
is aggregated with that from other item responses to estimate achievement. The potency of 
an item response’s information depends on the strength of a positive relationship between 



A Cessation of Measurement • 155 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 

Figure 11.4 For the same Math Growth item as in Figure 11.3, response accuracy across overall test 
performance quintiles for rapid guesses and several solution behavior response time segments. 
The graphs show that rapid guesses are uninformative, unlike the solution behaviors. 

response correctness and achievement level. This is a familiar concept in measurement: under 
classical test theory we routinely remove items that do not exhibit positive item-total correla-
tions during item analyses, and in IRT we delete, as misfitting, items whose item characteristic 
curves are not monotonically increasing across achievement level. 

Figure 11.4, which is based on responses to the same item shown in Figure 11.3, depicts 
additional information about response accuracy. The overall achievement distribution of the 
respondents to this item was divided into quintiles, each of which contained roughly 40,000 
test takers. Figure 11.4 shows response accuracy, by quintile, for four time segments. The accu-
racy pattern for the initial time segment (i.e., rapid guesses) is clearly non-monotonic, with 
accuracy remaining relatively flat—particularly across the top four quintiles. This illustrates 
that the correctness/incorrectness of a particular rapid guess to this item carries little to no psy-
chometric information about a test taker’s achievement level. In contrast, the other three time 
segments (solution behaviors) exhibited the expected positive relationship between response 
accuracy and achievement level. Figure 11.4 illustrates how dramatically the accuracy pattern 
changed; rapid guesses exhibited an accuracy pattern clearly different from that observed from 
responses occurring a handful of seconds after the time threshold. 

We should note that rapid guesses do sometimes exhibit positive relationships with achieve-
ment level. We inspected the content of several dozen MAP Growth items and identified two 
scenarios in which higher achievers could exhibit higher rapid-guessing accuracy. In the first 
scenario, some Reading items present a reading passage followed by a factual question about 
some aspect of the passage content. Occasionally, the question is about a topic or issue about 
which a test taker might already have some pre-existing knowledge. In this case, disengaged 
test takers who decide not to engage in solution behavior may proceed to quickly answer the 
question without first reading the passage. If higher achievers are more likely to have relevant 
pre-existing knowledge, rapid-guessing accuracy would be expected to show a positive rela-
tionship with achievement. Such rapid guesses, however, could still be considered construct 
irrelevant if one considers that the point of the item was to measure reading comprehension 
rather than factual knowledge that the test taker might possess without reading the passage. 
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In the second scenario, some MAP Growth items require multiple types of reasoning, with 
some types being more mentally taxing than others. For example, some Math items display 
a three-dimensional image of a geometric figure and require the test taker to identify a two-
dimensional pattern that could be folded into the specified figure. Solving the problem under 
solution behavior requires test takers to visualize the folding of the different patterns. Test 
takers may perceive this item to be too mentally taxing and instead choose rapid-guessing 
behavior. In making the rapid guess, however, there may be one or more response options 
that could be easily ruled out by less mentally taxing reasoning. For example, if the geometric 
object is a cube, any response option showing a foldable pattern that did not contain exactly 
six sides could quickly be identified as incorrect. Being able to exclude one or more options 
in this less mentally taxing manner would decrease the effective number of choices, which 
in turn would increase the likelihood of a correct rapid guess. Hence, a rapid guesser might 
recognize this basic characteristic of cubes, while choosing not to engage in the more mentally 
taxing response process (visualization) required under solution behavior to identify the correct 
option. In this scenario, a positive relationship between rapid-guessing accuracy and achieve-
ment could be observed if the likelihood that the “six-sided” requirement would be recognized 
by rapid guessers were positively related to achievement level. 

Despite these exceptions, it is generally the case that the psychometric information inherent 
in the correctness of rapid guesses tends to be extremely limited. At best, it is clearly deficient 
compared to the information provided by solution behaviors. 

Coherence of Response Option Popularity 

An additional characteristic of a well-functioning multiple-choice item is that the correct 
option is the one chosen most often, with the remaining options (i.e., distractors) being far less 
popular. Another way of stating this is that, across a set of items, each option position ought 
to be most popular when it is correct, and less popular when it is incorrect. Figure 11.5 shows 
the popularity of response option selection for responses from 15 MAP Growth Reading items. 
The popularity of options for responses classified as solution behaviors are shown in the upper 
display of Figure 11.5. Each option position exhibited a wide range of popularity and—almost 
without exception—an option was most popular when it was the correct answer to an item. In 
addition, on average, each option appears to be about as popular as the others. These results are 
consistent with what we would normally observe for a set of multiple-choice items. 

In contrast, the results for responses classified as rapid guesses, shown in the lower display 
of Figure 11.5, are markedly different, with several new patterns being evident. First, the range 
of popularity across items for each response option position is much narrower. Second, the 
pattern of options being more popular when they are correct is no longer present. Finally, 
there are clear differences in the average popularity of option positions. Options B and C, for 
example, were markedly more popular than Options A and D. The finding that Option B was 
consistently selected by rapid guessers 30–40% of the time—regardless of option correctness— 
while Option D was selected only 10–20% of the time even when it was correct, strongly sug-
gests that the response process underlying rapid guessing had little to do with the content of 
the response options. 

Under solution behavior, option selection is driven primarily by the location of the correct 
option (as we would expect); under rapid guessing, option selection is driven more by option 
position than by correctness. This helps explain the variation in the magnitudes of the accuracy 
discontinuity we observed with the MAP Growth items. Whenever Option B contained the cor-
rect answer, rapid guesses were consistently correct about a third of the time; when Option D 
contained the correct answer, rapid guesses were correct only about a seventh of the time. 
Thus, because MAP Growth is an adaptive test for which the solution behavior accuracy rate 
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Figure 11.5 Popularity of response option selection for 15 MAP Growth items under solution behavior and 
rapid-guessing behavior. At each option position, the symbols indicate both the percentage of 
the time the option was chosen for an item and whether that option was correct. 

should be near 50%, the accuracy discontinuity appeared larger when Option D was correct 
and smaller when Option B was correct. 

Collectively, the accuracy discontinuity, differential psychometric information, and option 
popularity patterns provide strong evidence that the response process underlying rapid guess-
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ing is very different from that used during solution behavior. Li, Banerjee, and Zumbo (2017) 
noted, however, that response time information “does not actually explain the cognitive pro-
cesses that are involved in question-answering nor why they are used” (p. 172). In the next 
section, we propose an explanation regarding the cognitive processes that occur during rapid 
guessing and test-taking disengagement. 

A Model of Rapid-Guessing Behavior 

On high-stakes tests, rapid-guessing behavior tends to be clustered near the end of test events, 
as motivated test takers seek to maximize their scores as time is running out. On low-stakes 
tests—with test takers who may not be motivated to put forth the effort to attain maximal 
performance on an item—rapid guessing is more idiosyncratic, often appearing intermittently 
and throughout a test event. Can both types of disengagement, with their different antecedent 
conditions and patterns of occurrence, be represented under a single test-taking model? Wise 
(2017) proposed a model for explaining rapid-guessing behavior that involves a test taker mak-
ing two choices. The first choice is whether to engage in solution behavior or rapid-guessing 
behavior. The second is the selection of a particular response option. If both choices are com-
pleted rapidly, disengagement can be inferred. 

The First Choice 

Understanding the first choice made by the test taker between solution behavior and rapid 
guessing involves consideration of two theoretical perspectives. The first is dual-processing the-
ory, which specifies two distinct cognitive processes. The second is the demands-capacity model 
of test-taking effort, which describes how a test taker chooses between these cognitive processes. 

Dual-Processing Theory 

“The distinction between two types of thinking, one fast and intuitive, the other slow and 
deliberative, is both ancient in origin and widespread in philosophical and psychological writ-
ing” (Evans & Stanovich, 2013, p. 223). Empirically, a great deal of evidence has been found 
that the functioning of the brain can be characterized by two different types of cognition that 
have different functions (Stanovich, 2011). The first type of cognitive process, Type 1, has been 
described with numerous attributes, including that it is fast, non-effortful, autonomous, does 
not require working memory, and is relatively undemanding of cognitive capacity. The second, 
Type 2, can be characterized as slow, effortful, controlled, requiring working memory, being 
demanding of cognitive capacity, and involving analytical reasoning. 

In the context of a multiple-choice test, response time could be useful to differentiate 
between Type 1 and Type 2 processes (Freeman & Dale, 2013; Kyllonen & Zu, 2016). Rapid-
guessing behavior appears to be a manifestation of a Type 1 process, whereas solution behavior 
appears to be consistent with a Type 2 process. Moreover, it is important to note that under 
dual-processing theory Type 1 is the default process, and that “cognitive ability also is involved 
in the ability to effectively intervene with Type 2 reasoning and solve the problem” (Evans & 
Stanovich, 2013, p. 237). 

The Demands-Capacity Model 

One of the most interesting characteristics of rapid-guessing behavior is that engagement can 
change from one item to the next (as illustrated in Figure 11.1). The demands-capacity model 
of test-taking effort (Wise & Smith, 2011) was developed to account for this behavior. This 
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model proposes that, when a test taker encounters a test item, two factors determine whether 
or not the test taker engages with the item. The first is the item’s resource demands (RD), which 
basically means: how much work does the item appear to require to fully answer effortfully? RD 
is influenced by factors such as the amount of reading required, how mentally taxing the item 
appears to be, and—to a lesser extent—item difficulty (Wise et al., 2009). The second factor is 
the test taker’s effort capacity (EC), which refers to the amount of effort the test taker is cur-
rently willing and able to give at the time the item is administered. EC is potentially influenced 
by numerous factors such as test stakes, time pressure, performance incentives, fatigue, how 
engaging the previous items were, and a variety of internal test taker factors such as achieve-
ment level, boredom, self-efficacy, conscientiousness, and competitiveness. 

Both RD and EC can change during a test event, as the test taker proceeds through items. 
Items vary in RD, and a test taker’s EC can change as she/he becomes bored, fatigued, more or 
less interested in the test, or feels increasing time pressure. According to the demands-capacity 
model, when encountering an item, the test taker compares his or her level of EC against the 
item’s RD. If EC is higher, the test taker will engage in answering the item and exhibit solution 
behavior. However, if EC is less than RD, the test taker will disengage, resulting in a rapid guess. 
In a high-stakes testing situation in which the test taker perceives meaningful consequences 
associated with test performance, the stakes alone are likely to keep EC at a high enough level 
that solution behavior will consistently occur. In this case, the primary engagement threat is 
the possibility that the test taker will run short of time and resort to rapid guessing in hopes of 
improving their score. In contrast, in a low-stakes situation EC may become low enough that 
the variation in RDs can result in intermittent engagement (i.e., if RD exceeds EC for some 
items, but not others). 

Combining ideas from dual-processing theory with the demands-capacity model, we believe 
that the first choice is essentially that of quickly deciding whether to apply a Type 1 or Type 2 
process to respond to the item. This choice is driven by a comparison between the test taker’s 
current level of EC and the item’s RD. If EC does not exceed RD, the Type 2 process will not be 
applied; this will allow the default Type 1 process to be used in responding to the item. 

The Second Choice 

If a test taker chooses to give a rapid guess to an item, what happens next? Many research-
ers (the first author included) have previously described a rapid guess as a random response. 
This characterization stems from the commonly observed finding that the mean accuracy 
rates of rapid guesses closely resemble those which would be expected by random responding 
(Wise, 2015). Although it is true that, across items, rapid-guessing accuracy looks like random 
responding, when we look more closely a somewhat different picture emerges. For example, 
the lower display of Figure 11.5 shows that the four response option positions were clearly of 
unequal popularity. But if rapid guesses were truly random (i.e., all options had the same prob-
ability of being selected), each option position would have been selected equally often. 

Furthermore, even if test takers intend to respond in a random fashion, could they actually 
do that? To ensure random responding, a test taker would need some type of randomizing 
device (like a coin, a die, a computer, etc.) that they would not typically have access to during 
a test event. It has been well established that people are incapable of simulating a randomizing 
device in their heads (Bar-Hillel & Wagenaar, 1991). 

We believe that having committed to a rapid guess, a test taker’s second choice consists of 
quickly making a largely impressionistic selection among the response alternatives. This guess 
may be influenced by pre-existing knowledge, but it is particularly vulnerable to the bias often 
seen when people are asked to make random choices. Attali and Bar-Hillel (2003) showed 
that when test takers guess the answers to multiple-choice items, they tend to show edge aversion, 
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a common choice bias that occurs in many contexts when people are asked to make random 
choices. In a multiple-choice testing context, edge aversion appears as test takers showing 
greater preference for the middle of the set of options and lesser preference for the first and 
last option. Figure 11.5 shows a good example of this; Options B and C were markedly more 
popular than Options A and D. The presence of edge aversion in rapid-guessing responses 
underscores our assertion that rapid guesses are just that—guesses—and do not reflect the 
cognitive process assumed under solution behavior. 

Under the two-choice disengagement model, rapid guesses represent Type 1 thinking and 
solution behaviors represent Type 2 thinking. Moreover, when we administer achievement 
tests, we tacitly expect engaged test takers to give responses that reflect their Type 2 thinking. 
It is tempting, then, to conclude that Type 1 thinking is antithetical to achievement testing. 
This conclusion, however, comes with a caveat. There is the possibility of instances in which a 
test taker has thoroughly learned some fact or association to the point of automaticity. If a test 
item asks about this, the test taker’s response (probably correct) could occur very quickly and 
reasonably be characterized as both a Type 1 response (Evans & Stanovich, 2013) and classified 
as a rapid guess. This would constitute a misclassification of an engaged response as disen-
gaged.7 Although it is unclear how often this occurs in practice, test givers would be advised to 
review their items in terms of the likelihood that rapid responses represent automaticity rather 
than disengagement. Items that measure basic facts or comprehension would probably be most 
likely to receive responses reflecting automaticity. 

What to Do about Rapid Guesses? 

When we administer an achievement test, we assume that the test taker is engaged in the task 
of demonstrating what they know and can do. The use of item response time to identify rapid-
guessing behavior provides us an item-by-item view into the veracity of that assumption—a 
view that was unavailable prior to the introduction of CBTs. This added information encour-
ages us to consider a test administration not as a unitary event but as a series of item-person 
encounters during which the test taker may be engaged on some items but not on others. 

We have shown evidence to support the basic conclusion that a rapid guess reveals a test tak-
er’s decision not to use her/his knowledge, skills, and abilities in answering an item. Essentially, 
a rapid guess represents an item-person encounter during which the test taker chose not to 
be measured. Such a choice could be due to either a lack of motivation or a lack of remaining 
testing time. Under rapid guessing, the resulting item response—regardless of whether it is 
correct or incorrect—reflects a construct-irrelevant response process and provides little, if any, 
psychometric information about the test taker’s achievement level. 

How, then, should we treat rapid guesses when we score a test? The traditional option is to 
include all item responses during scoring. The test taker receives a set of items and responds 
to those items, and only the correctness/incorrectness of the responses is used to calculate the 
test taker’s score. An alternative option is to somehow take engagement into account during 
scoring. One way this might be done is through de-emphasizing or filtering out rapid guesses 
during scoring (Guo et al., 2016; Wang & Xu, 2015; Wise & DeMars, 2006). If rapid guessing 
were sufficiently pervasive during a test event, another approach might be to simply invalidate 
the test score. For example, our organization recently adopted (and then suspended) a policy of 
invalidating a test event if the percentage of responses classified as rapid guesses exceeds 30%. 

The choice of which scoring option to adopt depends largely on two factors: the type of 
inference to be made about the test score and whether the test stakes are predominantly for the 
test taker or the test giver. Three scenarios representing different combinations of these factors 
will be considered as examples. 
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In the first scenario, test takers are trying to demonstrate some level of proficiency to gain 
something they want. These types of high-stakes assessments include classroom assessments, 
graduation exams, college entrance tests, and certification/licensure tests. Because the infer-
ence to be made is focused on whether or not proficiency has been demonstrated, the stakes 
are clearly higher for the test taker. Consequently, because the responsibility for test perfor-
mance (and therefore engagement) lies with the test taker, the inclusion of rapid guesses during 
scoring could be appropriate—even while recognizing that their presence likely negatively dis-
torted the score. That is, if a test score is negatively distorted due to low motivation or running 
out of time, it might be viewed that test performance is the test taker’s responsibility and that 
the test giver should not feel compelled to correct for the distortion. 

In the second scenario, the focus is on the achievement status of the individual test taker 
when a low-stakes test is used. An inference is to be made about what the test taker has learned 
and perhaps what she/he is ready to learn next. Examples of this include MAP Growth and a 
variety of low-stakes classroom assessments designed to provide instructional information to 
educators. As with most low-stakes tests, the stakes are considerable for the test giver—who 
seeks useful information regarding the achievement status and instructional needs of the test 
taker—and may be lower for the test taker. In this type of situation, because it is important 
that the test giver obtains the most accurate indicator of the test taker’s achievement, it would 
be appropriate to take rapid guessing into account during scoring. Therefore, because of the 
potential to distort achievement estimates, rapid guesses should be excluded from scoring. 

The third scenario combines elements of the first two. The test taker is asked to demon-
strate achievement proficiency, but there are minimal personal consequences associated with 
test performance. In this case, however, the inference to be made is not about that individual’s 
proficiency but about the rate at which proficiency was demonstrated across a group of test 
takers. Examples of this type of low-stakes testing include statewide accountability tests, the 
National Assessment of Educational Progress, and various international achievement testing 
programs (e.g., the Programme for International Student Assessment [PISA]). In these testing 
contexts, the stakes are higher for the test giver, and because the onus is on them to obtain the 
most valid (i.e., accurate) picture of the group’s proficiency, it generally would be advisable for 
rapid guesses to be excluded during scoring. Including rapid guesses would likely lead to an 
underestimation of the number of test takers who were truly proficient—a result that test givers 
would generally consider undesirable. 

Hence, the choice to include/exclude rapid guesses during scoring hinges primarily on 
whether measurement is intended to indicate as accurately as possible what the test taker knows 
and can do or if it represents an achievement hurdle that is considered the test taker’s respon-
sibility to clear. The pursuit of accurate scores implies that rapid guesses should be excluded; 
achievement hurdles represent an exception under which rapid guesses may be included. 

One factor to consider when choosing a scoring option is the degree to which scores are 
likely to be distorted. Although it is clear that the expected amount of distortion increases 
with the number of rapid guesses, until the percentage of rapid guesses exceeds 10%, MAP 
Growth scores do not tend to be meaningfully affected (Wise & Kingsbury, 2016). It is impor-
tant to note, however, that MAP Growth is a CAT. The amount of distortion expected from a 
rapid guess increases with the difference between the test taker’s probability of passing the item 
under solution behavior and the probability of passing under rapid guessing. During a CAT, 
test takers are expected to pass items only about half the time; because of this, distortion will 
be relatively low. In contrast, for tests that administer easier items that test takers have a higher 
probability of passing, rapid guesses will have a higher distortive effect. 

Wise and Kingsbury (2016) described a method for quantifying the degree to which a par-
ticular score was distorted. They estimated distortion as the difference between the usual IRT-
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based MAP Growth score (based on all item responses) and the corresponding effort-moderated 
score, in which rapid guesses were excluded (Wise & DeMars, 2006). They also plotted distor-
tion scores against the proportion of rapid guesses, which revealed the functional relationship 
between the amount of rapid guessing and distortion. Measurement practitioners may find this 
procedure useful for investigating the impact of distortion on their particular test and for estab-
lishing guidelines regarding the amount of rapid guessing required to meaningfully distort scores. 

An additional issue concerns the degree to which rapid guessing also can distort content 
representation. Wise (2020) found the propensity of rapid guessing to vary across item content 
areas, suggesting that the collective content of a test taker’s set of engaged responses may differ 
meaningfully from the intended test blueprint. This finding indicates a previously unexplored 
way in which the presence of rapid guessing can threaten test score validity. 

Concluding Comments 

Measurement practitioners have been aware for many decades that disengaged test taking 
occurs in our achievement tests. Prior to CBTs being introduced, however, inferences about 
a test taker’s engagement had to be made at the level of the individual test event. The ability 
of CBTs to record item response time permits a more fine-grained assessment of engage-
ment through the identification of rapid-guessing behavior. Research using this capability has 
revealed that test takers generally disengage during only a portion of their items and that these 
disengaged responses reflect a momentary cessation of measurement. These findings under-
score the essential role of test-taking engagement in our pursuit of valid scores. 

Furthermore, for test events in which the proportion of rapid guesses is not too large, 
researchers have begun to explore the extent to which validity is improved if rapid guesses 
are excluded during scoring (Guo et al., 2016; Wang & Xu, 2015; Wise & DeMars, 2006). This 
possibility of salvaging valid scores, even when nontrivial amounts of disengagement have 
occurred, represents a promising area for future measurement research efforts. 

Notes 
1 Construct-irrelevant variance is measurement error variance that arises from systematic error (Haladyna & 

Downing, 2004). Conceptually, this refers to a distortive influence on test scores that is unrelated to the construct 
being measured. 

2 Some CBTs allow test takers to go back and review their item responses, which can complicate the calculation of the 
total time a test taker spends interacting with an item. Although a CBT could collect metadata indicating whether 
(and for how long) item review occurred, this issue may not pose a great concern when considering rapid guessing. 
For example, Wise and Gao (2017) investigated disengagement on a CBT that provided item review and identified 
over 2,500 instances of rapid responses to the initial presentation of items. None of these rapid responses, however, 
were subsequently reviewed by test takers. 

3 When number-correct scoring is used, rapid guessing at the end of high-stakes tests is sensible, because unan-
swered items are sure to be incorrect. From an IRT scoring standpoint, however, rapid guessing is rational only if 
unanswered items are to be scored as incorrect. Nevertheless, some test takers may be motivated to answer all of the 
items within the allotted time, regardless of whether the behavior is rational or not. 

4 This is an arbitrarily chosen item threshold for this particular example. In practice, the threshold values typically 
would be unique to each item. 

5 The rapid-guessing threshold for this item was calculated using the 10% normative threshold method (Wise & Ma, 
2012), which sets the threshold at 10% of the mean time that test takers historically spend taking the item (with a 
maximum threshold of 10 seconds). 

6 Because MAP Growth is an adaptive test based on the Rasch model, the solution behavior accuracy rate should be 
near 50% and rapid-guessing accuracy should more closely resemble that from random responding. 

7 There is an additional issue to consider. If a test taker has preknowledge of a test’s items (and the associated answers), 
correct responses could be submitted rapidly. This behavior, which confounds the idea of rapid guessing as disen-
gagement, represents a security threat. It might be differentiated from rapid guessing, however, by its accuracy rate. 
Rapid guesses are mostly incorrect, while responses based on preknowledge would be mostly correct. 
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12 
Concurrent Use of Response Time and

Response Accuracy for Detecting Examinees 
with Item Preknowledge 

Seo Young Lee and James A. Wollack 

Introduction 

It has been well established that item response times can provide useful insight into exami-
nees’ test taking behaviors because observed response time patterns reflect the underlying 
nature of the problem-solving process (Lee & Chen, 2011; Luce, 1986; Schnipke & Scrams, 
2002). Test takers are generally expected to spend a reasonable amount of time on each item 
in the exam. If response times are considerably shorter on some items, it can be indicative 
of a lack of time to complete the exam (i.e., speededness; see Chapter 6) or low motivation 
(see Chapter 11). 

While much of the interest in response times has come from educational and psychological 
perspectives (e.g., Luce, 1986; Ranger & Kuhn, 2015), the application of response time data 
recently has gained traction for evaluating test security (Boughton, Smith, & Ren, 2017; Meijer 
& Sotaridona, 2006; Qian, Staniewska, Reckase, & Woo, 2016). With the transition of testing 
modes from paper and pencil to computer, attempts to memorize, steal, or share test content 
have become a serious threat to test security. Such security breaches can result in some can-
didates entering the testing session with prior knowledge of confidential test material, often 
referred to as item preknowledge. This results in an unfair advantage to those examinees and 
undermines the validity of score interpretations for all candidates. While traditional types 
of cheating such as answer copying or using unauthorized materials can be prevented and 
detected by thorough check-in procedures and proctoring before and during the test, these 
procedures are not useful for controlling item preknowledge. Statistical analysis has the poten-
tial to identify and control this approach to cheating. 

Although no detailed studies exist demonstrating the responding behaviors of candidates 
with preknowledge, it is a commonly held belief that candidates will require less time to 
respond to items for which they have prior knowledge, leaving more time for them to respond 
to the remaining items. Hence, compared to a group of candidates without preknowledge, it 
is expected that candidates with preknowledge may represent another group with different 
response time patterns. In addition, it is reasonable to assume that candidates with preknowl-
edge are more likely to select the correct answers; this would result in higher probabilities of 
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getting the items correct when compared to other examinees of the same ability but without 
such knowledge. To the extent that examinees with preknowledge demonstrate this expected 
behavior, evidence of preknowledge may be present within these two sources of evidence: 
response times and response patterns. However, preknowledge may manifest itself to different 
degrees across the two sources of evidence such that using either in isolation may not be suffi-
cient for identifying groups of respondents with preknowledge. Nevertheless, most methods to 
detect preknowledge have used the data with respect to only one of the two sources of evidence, 
and most have focused on item response accuracy. 

Research on the Detection of Item Preknowledge Using Item Response Accuracy 

A common approach in studies relying on item response accuracy data is to compare exami-
nees’ ability estimates based on items believed to be exposed (hereafter compromised) to 
those based on uncompromised items. The logical basis of this comparison is that examinees 
with item preknowledge would perform significantly better on compromised items than on 
uncompromised items, while examinees without preknowledge would show similar perfor-
mance regardless of the compromised status of the items. The comparison has been evaluated 
by several statistics such as the likelihood ratio test (Sinharay, 2017), the score test (Sinharay, 
2017), and posterior shift (Belov, 2016). In addition, there are approaches for detecting item 
preknowledge based on differences in IRT ability estimated using compromised and uncom-
promised items (Eckerly, Babcock, & Wollack, 2015). 

While these studies have demonstrated that approaches attending entirely to response 
accuracy are effective at flagging examinees whose response patterns contain evidence of pre-
knowledge, there may be cases in which the consideration of response times enables us to bet-
ter detect item preknowledge. For example, there could be normal behaving candidates who 
just happened to have unusual response patterns. Additionally, the evidence of preknowledge 
in response patterns alone may not be sufficient when only a small number of test items are 
exposed to a small group of examinees. 

Research on the Detection of Item Preknowledge Using Response Times 

Though the majority of research in this area has used data on response accuracy to detect 
item preknowledge, there also have been studies that solely used response time data. In 
these studies, aberrance has been identified by comparing observed response times with 
expected response times under a certain type of response time model such as the effec-
tive response time model (Meijer & Sotaridona, 2006), the lognormal response time model 
(van der Linden, Scrams, & Schnipke, 1999; van der Linden, 2006), or the conditional log 
response time model (Toton & Maynes, 2019). Studies have demonstrated that the compar-
ison of response times can be an effective approach for the detection of item preknowledge. 
For example, van der Linden and van Krimpen-Stoop (2003) showed that the residuals 
between the observed response times and expected response times estimated by the lognor-
mal response time model were able to detect examinees with item preknowledge, whereas 
the analyses with only item responses were not effective. Meijer and Sotaridona (2006) 
showed that the mismatches between observed and effective response times were useful 
for detecting examinees with item preknowledge. Van der Linden and Guo (2008) dem-
onstrated that the comparison of observed response times and predicted response times 
estimated by the lognormal response time model (Ln-RT; van der Linden, 2006) worked 
well to flag examinees who showed aberrant behaviors. However, in this study they also 
pointed out that the sole use of response times did not provide definitive evidence that 
such aberrant behaviors were caused by preknowledge; additional evidence obtained from 
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response accuracy provided conclusive diagnosis of item preknowledge. This study 
raised awareness regarding the effectiveness of the concurrent use of response times and 
response accuracy for detecting item preknowledge. 

Research on the Detection of Item Preknowledge Using Both Response Accuracy and 
Response Time 

In addition to the models that use either response accuracy or response time, a model that 
incorporates both sources of data within a hierarchical framework also has been described in 
the literature (H-IRTRT; van der Linden, 2007). Given that the features of item preknowledge 
are likely to be reflected in both item responses and response times, a psychometric model 
that accommodates both data sources has the potential to provide more powerful evidence of 
item preknowledge. In the H-IRTRT model, response accuracy and response time are indepen-
dently modeled at the first level of the hierarchical model. At the second level, the relationship 
between item responses and response times is modeled. Any IRT and response time mod-
els parameterized by item and person parameters are applicable to the H-IRTRT model. To 
account for the relationship, van der Linden introduced multivariate normal distributions 
between item and person parameters at the second level. Note that the joint distribution for 
item parameters is dependent on the models used at the first level. 

Several studies have applied the H-IRTRT model to identify item preknowledge (e.g., 
Boughton et al., 2017; Qian et al., 2016; van der Linden & Guo, 2008). A noticeable feature of 
these studies is that they used a two-step approach; the first step was to analyze response time 
data to flag responses as aberrant and the second step was to use item response accuracy data to 
determine if the flagged responses were caused by item preknowledge. This two-step approach 
assumes that response time is a better indicator of aberrant behavior than item response accu-
racy, but it also considers that response times alone are not sensitive enough to confirm the 
cause(s) of aberrant behavior (e.g., item preknowledge). This two-step model therefore does 
not capitalize on the primary advantage of a single model incorporating both response time 
and accuracy: the potential to simultaneously evaluate both sources of aberrance. A viable way 
to use both item accuracy and response time simultaneously is to identify examinees with item 
preknowledge using a mixture model. 

Mixture Models 

A mixture model approach assumes that there are subpopulations in an overall population and 
distinguishes each subpopulation by allowing different parameter values of the same model 
(Rost, 1990; von Davier & Rost, 2007, 2016) or by applying different models for each subpopu-
lation (von Davier & Yamamoto, 2006; Yamamoto, 1989). The application of mixture models 
in educational testing has become increasingly popular because it enables building a model 
reflecting different response behaviors of examinees in a single population. It is common 
that examinees with different response behaviors exist in the same exam group. For example, 
some examinees may have no problem completing the exam within the allotted time, while 
other examinees run out of time and rush to select answers as they approach the end of the 
exam. In such cases, traditional psychometric models that assume normal response behavior 
are not appropriate and other psychometric models (e.g., mixture models) are required to 
describe and differentiate such behaviors. Several studies have employed mixture models to 
classify irregular response behaviors such as random guessing (Meyer, 2010; Wang & Xu, 
2015; Wang, Xu, Shang, & Kuncel, 2018) and rapid guessing resulting from test speededness 
(Schnipke & Scrams, 1997), but the use of these models in detection of item preknowledge has 
received little attention. 
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Meyer (2010) was the first to propose a mixture model that combines a mixture Rasch model 
(MRM; Rost, 1990) and a mixture lognormal model of response times (MRM-RT) for the pur-
pose of differentiating examinees’ rapid guessing behavior from solution behavior. The appli-
cation of the MRM-RT showed that the use of mixture models that incorporate item accuracy 
and response time is a promising way to distinguish between aberrant and normal behavior. 
However, in contrast to many previous studies that have considered the relationship between 
these two data sources, the MRM-RT approach used by Meyer (2010) assumes that item accu-
racy and response time are independently homogeneous within latent groups. In addition, it 
accounts for the difference in observed response times by the mean difference between latent 
groups without specifying item- and person-specific parameters. The approach implies that 
the development of a mixture model that explains the relationship between item accuracy and 
response time may improve such a mixture model approach and help to flag aberrant response 
behaviors more accurately. 

Another mixture model approach was proposed by Wang and Xu (2015) and later extended 
by Wang et al. (2018) for the purpose of distinguishing between aberrant and normal response 
behaviors. While a traditional mixture model assumes that each examinee exclusively belongs 
to one latent group, the Wang and Xu model allowed for an examinee to switch response 
behaviors multiple times in a test. Consequently, the group membership for examinees is eval-
uated for each item rather than for the entire test. This feature enables one to reduce the effect 
of aberrant responses on the estimation of parameters, resulting in more precise estimates. 
However, it does not provide comprehensive understanding of the response behavior for each 
examinee based on the entire test and therefore cannot be used to detect preknowledge at the 
level of the examinee. 

The rest of this chapter will describe a new mixture model that focuses on the detection of 
examinees with item preknowledge. We begin by describing the model and we then provide an 
example of use of the model with operational examination data. 

Mixture Rasch-Lognormal Response Time Model 

Lee (2018) proposed a mixture model that incorporates item responses and response times in a 
single model by extending the H-IRTRT model into a mixture model for the detection of item 
preknowledge. Among IRT models and response time models that can be plugged into the 
H-IRTRT, Lee used the Rasch model because the most pronounced effect of preknowledge on 
the item responses themselves is expected to be related to item difficulty. For response times, 
Lee adopted the Ln-RT model. This mixture Rasch-Lognormal response time model will be 
referred to as the MixRL model throughout this chapter. 

Level 1 Models 

As introduced by Rost (1990), the mixture extension of the Rasch model (MRM) describes the 
probability of an examinee getting an item correct conditional on the examinee’s ability and 
latent class membership. When the MRM is employed in the MixRL model, the item param-
eters for compromised items are different across latent groups, while those for uncompromised 
items are identical, as defined in equations (12.1) and (12.2). A constraint of this sort is neces-
sary to solve the problem of scale indeterminacy existing in MRM. However, it does not mean 
that the MixRL model requires knowledge of the correct compromise status for every item. To 
apply the MixRL model, a set of items that is strongly believed to be uncompromised needs to 
be specified and fixed to be identical across latent groups. Although the percentage of uncom-
promised items required for effective use of the MixRL model has not been thoroughly studied, 
simulation studies by Lee (2018) showed that the model performed well when 20% of items 
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were fixed as uncompromised. All remaining items are freely estimated by the MixRL model. 
This enables the user to minimize the risk of the misspecification of item compromise status 
while solving the problem of scale indeterminacy, because item parameter estimates for truly 
uncompromised items in the remaining items would be similar between groups, indicating no 
evidence of item compromise. 

An item response for the MRM follows a Bernoulli distribution, 

Uij ˜ f ( |uij ° j , big  , )g j (12.1) 

with success parameter 

exp  ˝ − b exp  ˝ − b( j  ig ) ( j i )( ij 1 ,b g, = I + 1− I , (12.2)P U  = ˝ j ig  j ) ( )c ( c )1+ exp  ˝ − big ) 1+ exp  ˝ − i )( j ( j b 

where Ic = 1 for compromised items and Ic = 0 for uncompromised items, big  is the item diffi-
culty parameter for compromised item i in latent group g, bi is the item difficulty parameter for 
uncompromised item i, and ̃ j is the ability parameter for examinee j. 

Analogous to the MRM, a mixture extension of the Ln-RT model for the detection of exami-
nees with item preknowledge was developed. Again, the time intensity parameters (i.e., item-
specific response time parameters) differ only for compromised items across the latent group. 

ˆig 1f t( ij ig  , , g j ) = exp �ˆ (lntij − ˇ  − ˙( j ) �
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Ic˙ ˆj , ˇig  tij 2� {−
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(12.3) 
ˆi 1 2 

+ exp  − �ˆ lnt − ˇ − ˙ � (1 − I ),
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where tij is the observed response time for examinee j on item i, ̃ ig  is the time intensity parame-
ter for item i in latent group g, ̃  j  is the speed parameter for examinee j, and ̃ ig is the reciprocal 
of the standard deviation of the distribution of response time on item i in latent group g. 

We assume conditional independence between item responses and response times follow-
ing van der Linden and Glas (2010), so that the joint mixture model is given by 

f u( ij , tij b ˙ ˆ ˇig ) (u ˝ jg  ,big  , j ) (g f  tij ˙ ˆ ˇ ˝ jg , ,ig jg , ig , , g j = f ij  jg , ig , ig , g j ) 
(12.4)

where ˜  are the mixing proportions that sum to one (i.e., ˜G
g = ° = 1).g 1 g 

Level 2 Models 

To account for the relationship between the two person parameters from the MRM and the 
mixture Ln-RT model (i.e., jg ( jg jg )˜ = ˛ ˝, ) within each latent group, the two person parameters 
are assumed to follow a bivariate normal distribution 
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with mean vector µ pg = µ( ˛g , µ˝g ), and covariance matrix 

˝ 2 ˇ˛�g ˛�g �g˜= ˆ � . (12.6)
ˆ ˛ ˛2 � 

pg � �g g  �g˙ ˘ 

The joint distribution of speed and accuracy item parameters for each of the two groups (i.e., 
= ( ,˛ )) also are assumed to follow a bivariate normal distribution˜ ig big ig 

˛ ig ˝ MVN (µ Ig ,ˆ Ig ) (12.7) 

with mean vector µ = µ( ,µ ), and covariance matrixIg bg ˛g 

˝ 2 ˇ˛b ˛b �g g g˜= ˆ � . (12.8) 
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Potential of the MixRL for the Detection of Item Preknowledge 

Throughout a series of simulation studies, Lee (2018) showed that the MixRL model was con-
sistently successful in differentiating examinees with preknowledge from examinees without 
preknowledge under conditions including different proportions of compromised items and 
different proportions of examinees with preknowledge. In the comparison with other mixture 
models (i.e., mixture Rasch model, mixture Ln-RT model, and Meyer’s model), the MixRL 
model outperformed all other mixture models for the detection of preknowledge in most simu-
lated conditions. These results imply that the MixRL model is a promising approach for the 
detection of item preknowledge. However, given that real data are more complex than the 
simulated data in Lee’s study, evaluation of the performance of the MixRL model in more real-
istic conditions is appropriate. 

Use of MixRL with Operational Examination Data 

Methods 

We evaluated the performance of the MixRL model for detecting examinees with item pre-
knowledge by fitting the model to the common credentialing dataset used throughout the 
Handbook of Quantitative Methods for Detecting Cheating on Tests (Cizek & Wollack, 2017). 
The dataset came from a computer-based linear credentialing exam and included 170 opera-
tional test items. This study used a subset of examinees from the original data set, comprising 
393 examinees trained outside the United States. The study dataset included 21 examinees and 
61 test items that were identified as being involved in some type of fraudulent testing behavior; 
however, it is unclear whether all flagged examinees had preknowledge and whether all flagged 
items were compromised. Additionally, there may be compromised items as well as examinees 
with preknowledge that were not previously identified by the program. 

This study was designed to assess the performance of the MixRL model by manipulating 
two conditions: the proportion of examinees with item preknowledge and the proportion of 
compromised items. To examine different proportions of examinees with preknowledge, we 
created conditions in which 10%, 15%, and 20% of examinees had item preknowledge. The 21 
flagged examinees were paired with differing numbers of randomly selected not flagged exami-
nees (i.e., 189, 119, and 84). In these conditions, the number of test items was fixed to 170. 
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In an analogous manner, three proportions of compromised items (25%, 50%, and 75%) 
were manipulated for purposes of examining the effects of varying amounts of item com-
promise. Because the relative difficulty of the compromised and uncompromised items may 
impact the performance of the model, two separate approaches to sampling flagged items were 
used. For the first sample (Item set A), we produced a distribution similar to the distribution 
for the full sample of flagged items and sampled 24 items. The second item selection method 
focused on maximizing the discrepancy between flagged and not flagged examinees in terms 
of the proportion of correct responses and observed response times. This enabled us to use the 
evidence of item preknowledge existing in the dataset as much as possible. We identified 24 
flagged items that showed a large discrepancy (Item set B). 

Because the MixRL model requires the user to identify a set of uncompromised items to be 
identical between the two groups, we examined three different realistic ways to define what is 
meant by an uncompromised item within the mixture model: (1) all items not flagged by the 
credentialing exam program, (2) all items being administered for the first time, and (3) all items 
which were both first-time items and not flagged. Each condition was repeated 20 times. For 
each replication, a different set of not flagged examinees was selected randomly. 

The MixRL model was estimated by Markov Chain Monte Carlo (MCMC) estimation using 
OpenBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2014). Parameter estimates were obtained 
as posterior means from 8,000 post burn-in iterations after burning-in the first 7,000 iterations. 

The detection of examinees with item preknowledge was assessed using four criteria: false 
positive rate, true positive rate, precision, and classification accuracy. For purposes of this 
study, the testing program’s classifications of the compromise status of items and people were 
treated as true values. Therefore, the false positive rate was calculated as the proportion of 
examinees not flagged by the testing company who were identified by the MixRL model as 
belonging to the preknowledge group. The true positive rate was obtained as the proportion of 
examinees flagged by the testing company who were correctly classified in the preknowledge 
group. The precision was the proportion of examinees classified as having preknowledge that 
also were flagged by the testing company. The classification accuracy was the proportion of 
examinees classified in the same way by the testing company and the MixRL model. 

Results 

Table 12.1 shows the results of the detection of item preknowledge when the proportion of item 
preknowledge was manipulated. The detection of examinees with preknowledge was strongest 

Table 12.1 The detection of item preknowledge under different proportions of preknowledge examinees 

False Positive True Positive Classification 
Type of 
Uncompromised 

Proportion of 
Preknowledge 

Number of 
Examinees 

Rate Rate Precision Accuracy 

Items Examinees in Total Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Not flagged items 10% 210 0.068 (0.032) 0.460 (0.203) 0.392 (0.148) 0.885 (0.016) 
(n = 109) 15% 140 0.008 (0.021) 0.048 (0.147) 0.281 (0.329) 0.851 (0.007) 

20% 105 0.001 (0.004) 0.000 (0.000) 0.000 (0.000) 0.799 (0.003) 
First-time items 10% 210 0.052 (0.084) 0.186 (0.276) 0.174 (0.199) 0.872 (0.053) 
(n = 37) 15% 140 0.022 (0.034) 0.114 (0.213) 0.318 (0.345) 0.848 (0.013) 

20% 105 0.056 (0.100) 0.205 (0.267) 0.275 (0.330) 0.796 (0.078) 
Not flagged 10% 210 0.084 (0.113) 0.324 (0.288) 0.239 (0.217) 0.857 (0.094) 
first-time items 15% 140 0.087 (0.073) 0.431 (0.269) 0.422 (0.214) 0.840 (0.041) 
(n = 25) 20% 105 0.081 (0.095) 0.345 (0.278) 0.409 (0.286) 0.804 (0.077) 
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when relatively few examinees were compromised, a finding that aligns with the simulation 
study results by Lee (2018) in which she showed that the true positive rates increased as the 
proportion of examinees with item preknowledge decreased. It also appeared that the method 
used for specifying uncompromised items within the MixRL model was an important variable 
in terms of the ability of the model to correctly classify candidates. 

When all 109 not flagged items were specified within the model to be uncompromised (and 
therefore not allowed to vary across classes), approximately half of the examinees with pre-
knowledge were classified correctly when the dataset included only 10% of examinees with 
preknowledge. However, the true positive rates decreased precipitously as the proportion of 
examinees with preknowledge increased. In fact, when 20% of the examinees had preknowl-
edge, none were classified as having preknowledge. 

The other three criteria (i.e., false positive rates, classification accuracy, and precision) also 
showed the same pattern. When item preknowledge was investigated by freeing only those 
items that were strongly believed to be compromised and constraining all other items to be the 
same across classes, the false positive rate was adversely affected. 

When the investigation was performed by constraining only those items most strongly believed 
to be uncompromised (and allowing all other items to be separately estimated for each class), the 
detection of item preknowledge showed a slightly different pattern but did not show marked 
improvement. When equality constraints were placed on all first-time use items, true positive 
rates were around 0.2, regardless of the proportion of examinees with preknowledge. However, 
false positive rates also were considerably higher, hovering around 0.05. In the condition with 
constraints imposed only for those items with the strongest evidence of being secure (not flagged 
first-time items), detection rates were noticeably higher (between 0.324 and 0.431) but it was 
at the expense of even higher false positive rates. Given that the datasets included far more not 
flagged examinees than flagged examinees, the tradeoff of more true positives in exchange for 
more false positives did not appear worthwhile, as it resulted in this condition having the lowest 
classification accuracy for the highest level (20%) of proportion of examinees with preknowledge. 

If the examinees with item preknowledge are correctly distinguished from normal exam-
inees by the MixRL model, the item parameter estimates associated with the compromised 
items for the preknowledge group are expected to be lower than those for the normal group. 
Table 12.2 displays the comparison of item parameter estimates on average between the two 
groups for the items freely estimated by the MixRL model. Again, when the uncompromised 
items were defined as first-time items or not flagged first-time items, the other items included 

Table 12.2 The comparison of item parameter estimates between normal and preknowledge groups 

Item Difficulty Time Intensity 

Type of 
Uncompromised 

Proportion of 
Preknowledge 

Normal Preknowledge Normal Preknowledge 

Items Examinees Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Not flagged 10% −0.654 (0.201) −1.388 (0.324) 3.851 (0.254) 3.715 (0.085) 
items 15% −0.686 (0.227) −0.954 (0.684) 2.957 (0.427) 3.515 (0.243) 

20% −0.469 (0.328) −0.297 (0.017) 2.866 (0.300) 3.293 (0.192) 
First-time 10% −0.648 (0.051) −0.517 (0.425) 4.062 (0.041) 4.002 (0.073) 
items 15% −0.657 (0.176) −0.742 (0.465) 4.010 (0.204) 3.909 (0.265) 

20% −0.654 (0.138) −0.709 (0.452) 3.747 (0.524) 3.676 (0.549) 
Not flagged 10% −0.642 (0.110) −0.790 (0.506) 3.961 (0.256) 3.901 (0.219) 
first-time 15% −0.647 (0.110) −1.139 (0.275) 3.965 (0.225) 3.872 (0.179) 
items 20% −0.596 (0.198) −0.987 (0.562) 3.857 (0.381) 3.857 (0.275) 
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Table 12.3 The detection of item preknowledge under different proportions of compromised items 

False Positive True Positive Classification 
Type of 
Compromised 

Proportion of 
Compromised 

Number 
of Items 

Rate Rate Precision Accuracy 

Items Items in Total Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Item set A 25% 96 0.073 (0.095) 0.140 (0.236) 0.050 (0.059) 0.885 (0.077) 
50% 48 0.011 (0.017) 0.012 (0.043) 0.019 (0.055) 0.937 (0.014) 
75% 32 0.004 (0.004) 0.000 (0.000) 0.000 (0.000) 0.943 (0.004) 

Item set B 25% 96 0.083 (0.076) 0.324 (0.316) 0.117 (0.103) 0.886 (0.057) 
50% 48 0.053 (0.051) 0.295 (0.300) 0.174 (0.116) 0.912 (0.033) 
75% 32 0.109 (0.020) 0.569 (0.066) 0.230 (0.029) 0.874 (0.018) 

in the estimation were not necessarily compromised; a subset of uncompromised items must 
be included in the other items. 

Table 12.3 shows the results of the detection of examinees with item preknowledge when the 
proportion of compromised items was manipulated. As expected, for Item set A, the MixRL 
model did not perform well in identifying examinees with preknowledge. However, with stronger 
evidence of preknowledge on the compromised items (Item set B), the performance of the model 
was considerably improved. In particular, when the majority of test items were compromised (i.e., 
75%), more than 55% of the flagged examinees were classified into the preknowledge group. This 
result aligned with results from the simulation study Lee (2018) conducted. However, it should be 
noticed that the true positive rates increased at the cost of higher false positive rates, which was a 
known challenge for the application of mixture models in highly unequal sample sizes. 

Concluding Comments and Practical Implications 

In this chapter, we highlighted the usefulness of response times for understanding test tak-
ing behaviors, especially item preknowledge. The real-data-based simulation studies using the 
MixRL model demonstrated that the mixture model approach may be viable for the detection of 
item preknowledge when the data contain perceivable evidence of item preknowledge. Although 
not all examinees with preknowledge were detected by the model, given the fact that other stud-
ies using the same credentialing data have shown that more than half of the flagged examinees 
were not detected by any of the approaches at all (Wollack & Cizek, 2016), it is reasonable to 
state that the performance of the MixRL model for the detection of item preknowledge was com-
parable to other approaches. In addition, considering that a study using the H-IRTRT model 
(Boughton et al., 2017) flagged 95 candidates as having considerably shorter response times than 
expected, while only 6 were the candidates flagged by the testing program, the use of a mixture 
model approach may provide a better result for detecting examinees with item preknowledge. 

At the same time, it is important to keep in mind that this is a real dataset, and in much the 
same way that the testing company may have failed to flag compromised items because the 
amount of evidence was not sufficiently high, it is likely that there are examinees who really 
did have preknowledge but who were not flagged by the company. This is made all the more 
likely when one considers that the evidence standard for examinees is likely much higher than 
the corresponding standard for items, given the serious consequences associated with misclas-
sifying examinees. 

These results suggest that in practice the determination of compromised items plays a sig-
nificant role in the detection of examinees with preknowledge, and practitioners should decide 
the compromise status of items carefully through rigorous evaluations. This is also true in the 
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application of the MixRL model, because our results show that the detection of examinees with 
preknowledge was affected by the set of items defined as uncompromised. Unfortunately, in 
practice it may not be straightforward for practitioners to determine which items are uncom-
promised. One approach, as implemented in this study, is to classify items based on how many 
times each item has been administered because newly administered items may be less likely 
to be compromised. Another feasible way is to perform a preliminary data analysis to iden-
tify items showing problematic performance. For example, the comparison of item responses 
and response times between various groups may provide evidence about potentially problem-
atic items. As mentioned above, because the MixRL model does not require having an exact 
item compromise status for every item, we would suggest that practitioners take a conservative 
approach to selecting uncompromised items. 

Practitioners who are considering applying the MixRL model should note that it is a model-
based approach and therefore that if the model does not fit the data well, the results may be 
significantly impacted. To avoid this problem, model-data fit should be assessed before using 
the MixRL model. Unfortunately, there currently is limited research on this issue. 

Once the MixRL model is applied, practitioners will still need to decide whether or not every 
examinee who shows features of item preknowledge (i.e., high probability of correct answers 
and short response times) should be assumed to have had preknowledge. As mentioned earlier, 
the classification of examinees is affected not only by patterns of item responses and response 
times but also by other factors such as the successful distinction between compromised and 
uncompromised items. Like other classification approaches, the risk of false positives always 
exists. Therefore, the final decision about whether or not individual examinees actually had 
item preknowledge should be informed by further investigations for each individual examinee. 
For these investigations, we suggest that multiple sources of evidence be collected using both 
observational and statistical approaches. As discussed in other studies (i.e., Boughton et al., 
2017; Qian et al., 2016) based on data from real testing settings, item preknowledge is not the 
only reason for aberrant responses; other types of behavior such as low motivation or speeded-
ness may also contribute to this finding. In determining if an examinee’s test score should be 
considered valid, it is always beneficial to triangulate sources of evidence. 

It is undeniable that response times can be an easily obtainable and valuable resource used 
to investigate testing behaviors such as item preknowledge. In recent years, there have been 
many studies attempting to utilize response times to detect candidates’ aberrant responses. 
However, because there is not a single gold standard approach that is applicable for all scenar-
ios, future studies should be performed to improve existing methods and to develop new ones. 
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