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Preface

Why publish a new book on invertebrate stem cells—and particularly one with
a focus on aquatic invertebrates? The answer lies in a rapidly evolving stem cell
discipline, driven by ever-advancing molecular tools and imaging techniques, today
being one of the most dynamic areas in biology and biomedicine. This inevitably
influences the research on invertebrates, with a noteworthy reference to aquatic
organisms. Indeed, aquatic invertebrates represent the greatest majority of animal
biodiversity. They exhibit various biological features that are of vast interest to
stem cell researchers and biologists in general. These include the high regenerative
power displayed by a broad range of taxa, the lack of early germ cell sequestering,
and a widespread presence of asexual reproduction, dormancy, postponed aging
and rejuvenation. All of these phenomena are associated with the action of pools of
adult stem cells throughout the animals’ life cycles (Ballarin et al. 2018).

Current research on aquatic invertebrate stem cells takes advantage from new
experimental approaches and an increasing number of sequenced animal genomes
and transcriptomes available in databases. The accumulated results reveal that
aquatic invertebrate stem cells have unique features not recorded in the vertebrates
and model terrestrial invertebrates, such as their high abundance (up to 40% of the
entire body cells in some taxa) and their often indeterminate capacity for growth.
They further express typical stemness genes, previously considered an attribute of
germ cells, including piwi, vasa, nanos, and more (Rinkevich et al. 2022), and they
are directly involved in the control and modulation of innate immune responses
(Ballarin et al. 2021). Finally, aquatic invertebrate stem cells challenge the concept of
the stem cell niche as defined in vertebrates and ecdysozoans (Martinez et al. 2022).
The following chapters elaborate on several of these aspects.

This book stems from the activities within the COST Action 16203
MARISTEM Stem cells of marine/aquatic invertebrates: from basic research to
innovative applications, which will end on 1 April 2022. It represents one of the
final deliverables of four years of interaction and collects the contributions of a
relevant part of its members. It holds 11 chapters dealing with sponges, cnidarians,
flatworms, echinoderms and tunicates, highlighting the best-studied adult stem
cell lineages among aquatic invertebrates. Four chapters review stem cell dynamics
in regeneration, development, tissue homeostasis, and symbiosis. Another four
chapters discuss profiles of stem cell-specific gene expression and the action of
glycoproteins and fatty acids. Three chapters describe efforts to approach the long-
term goal of establishing invertebrate stem cell cultures.

We thank all the contributors to this volume and Oliva Andereggen and Jelena
Milojevic for their friendly support and for cautiously handling all editorial issues.
Our hope is that this book can stimulate researchers to pay closer attention to
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organisms from aquatic environments, as those—due to their simple Bauplan and
to the high potentialities of their stem cells—will advance our knowledge in basic
biological processes.
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From Primary Cell and Tissue Cultures to
Aquatic Invertebrate Cell Lines: An
Updated Overview

Isabelle Domart-Coulon and Simon Blanchoud

Abstract: The stem cells discipline represents one of the most dynamic areas
in biology and biomedicine. The vast majority of research on stem cells is
being conducted in vertebrate models. Currently, over 98% of all cell lines
are of mammalian origin, which represent only 0.4% of the extant identified
metazoan evolution. In particular, aquatic invertebrates as a whole show the
largest biodiversity and the widest phylogenetic radiation on Earth but have not yet
significantly contributed to cell lines. Yet, with over 500 publications since the 1960s,
the current lack of cell lines does not result from a lack of attempts at cultivating these
cells but rather from fragmented research efforts in highly taxonomically diverse
model species, a paucity in reports of negative results and persistent knowledge
gaps in their in vitro metabolic requirements. To promote the establishment of
aquatic invertebrate cell lines, there is thus a need for comprehensive knowledge
mapping across taxa to identify adequate, possibly cell type-specific, protocols.
Here, we review strategies for preparing an optimal inoculum, for optimizing
culture conditions and for cell lineage authentication to monitor the quality of cell
cultures. Finally, we conclude with our view on promising research perspectives
towards establishing aquatic invertebrate cell lines.

1. Introduction

Currently, the origins of in vitro cell lines are highly biased towards humans.
Around 75% of the total number of established cell lines are from Hominidae origin
(96,862/128,799) and over 97% are of mammalian origin (126,033/128,799) (Bairoch
2018) (Figure 1). However, mammals represent only 0.4% (1.3% when excluding the
Insecta taxon) of the extant identified metazoan evolution (Zhang 2013; Wilson and
Reeder 2011; Chapman 2009) (Figure 1). In addition to the scientific interest relative
to their sheer diversity, non-mammalian cells have multiple potential applications,
including as a source for bio-active molecules or as assays for eco-toxicological
tests (e.g., Ribeiro et al. 2018; Rosner et al. 2021). Yet, with over 500 publications
on aquatic invertebrate cell culture alone (Figure 1), the current limited number of
invertebrate cell lines does not result from a lack of attempts at cultivating these cells
but most likely from inappropriate techniques to cultivate these cells (reviewed in



Rinkevich 2005; Yoshino et al. 2013; Cai and Zhang 2014). As exemplified in insects, a
breakthrough in culturing conditions (Grace 1962) initiated the emergence of a huge
variety of cell lines (Bairoch 2018) (895 cell lines from 104 genera in around 50 years).
There is thus a need for a sustained research effort in non-insect invertebrate cell
culture to identify adequate culturing conditions and promote the establishment of
cell lines. In particular, aquatic invertebrates as a whole show the largest biodiversity
and the widest phylogenetic radiation on Earth but have currently contributed to
only six cell lines (Figure 1).
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Figure 1. Comparison of the diversity between metazoan taxa. Depicted is the
phylogenetic relation between metazoan taxa and their characteristics with respect
to evolutionary radiation, regenerative capacity, lifespan and in vitro cell culture
(see Appendix A Table Al for exact values). Dashed lines represent branchings for
which speciation timings have not yet been determined. Colored taxa highlight
those whose publication timelines are detailed in Figure 2. Regeneration capacity of
the taxa is depicted as follows: + tissue regeneration, ++ appendage regeneration,
+++ whole-body regeneration, ++++ from cell aggregates. Longevity is given
in years from the maximum reported characteristic of the taxon in the AnAge
database (Magalhaes et al. 2007). Phylogenetic tree based on Halanych (2004),
species numbers on Zhang (2013), regeneration potential on Bely and Nyberg (2010),
publications on manually curated online searches (Appendix B Table A2) and cell
line numbers on Bairoch (2018). Source: Graphic by authors.



20

Ascidiacea
Thaliacea |
15} M
- Tentaculata || ||\ ||
B \
E Anth ;
3 nthozoa L ]
.E 10 Hydrozoa | ||
v~
(1]
=
I
=
a
5k

Publication year

Figure 2. Five decades of research on isolation and primary culture of cells from
aquatic invertebrates. The figure shows the number of publications for the phyla
cnidaria (66 in total), ctenophora (1 in total), and tunicata (44 in total). Publications
are grouped by classes of the species used for cell isolation, color-coded as indicated.
Publications were manually curated from online searches, and detailed references
are available in the Appendix B Table A2. Source: Graphic by authors.

Cell lines have been established through two main strategies (Cai and Zhang
2014; Rinkevich 2011): either by the isolation of proliferating and self-renewing cells,
typically from an embryonic (Hansen 1979) or cancerous origin (Scherer 1953), or by
immortalizing proliferating cells, typically through mutagenesis (Earle et al. 1943) or
transfection (Russell et al. 1977). Both strategies thus require, at least transiently, a
proliferating primary cell culture. The long-term culture (up to 22 months) of cells
from various aquatic invertebrate phyla has been achieved by using a variety of
culturing environments (Rinkevich and Rabinowitz 1993; Daugavet and Blinova 2015;
Chen and Wang 1999; Kingsley et al. 1987). However, most of these in vitro primary
cultures show an apparently ubiquitous cellular quiescence within three days that
leads to an absence of proliferation within 1-4 weeks of primary culture (Rinkevich
2011; Cai and Zhang 2014). Yet, transient proliferation events, limited to a subset
of acclimated cells, are persistently recorded across most marine invertebrate taxa
~2—4 weeks after the establishment of primary cultures at high seeding density from
larval or regenerating adult tissue. For instance, DNA synthesis and mitosis have
been observed both in primary cultures of explanted ectodermal tissue monolayers of



regenerating Nematostella vectensis (Rabinowitz et al. 2016), as well as in dissociated
cell culture from regenerating tentacles of Anemonia viridis (Ventura et al. 2018),
and dividing cells have been reported in primary culture of regenerating tissues of
Apostichopus japonicus (Odintsova et al. 2005). The only established mollusc cell line,
Bge, was initiated from the long-term culture of embryonic tissue of the freshwater
snail Biomphalaria glabrata (Hansen 1979). Taken together, these results suggest that
a key to setting efficient primary cultures are to use tissue with high proliferation
capacity, potentially due to the presence of stem-like cells. Conveniently, aquatic
invertebrates display a variety of asexual reproduction, aging and regeneration
phenomena (Figure 1) that indicate high cellular plasticity, cellular proliferation and
a likely involvement of stem-like cells (Bely and Nyberg 2010; Slack 2017; Bodnar
2009; Tomczyk et al. 2015; Rinkevich et al. 2022). However, established guidelines
for the isolation and identification of stem-like cells are currently only available for
very few species (Hayashi et al. 2006; Sun et al. 2007; Hemmrich et al. 2012; Kassmer
et al. 2020). The recent improvements in next-generation sequencing techniques, and
in single cell transcriptomics in particular, are enabling researchers to characterize
stem-like cells in an increasing number of taxa (Hayashi et al. 2010; Siebert et al. 2019;
Rinkevich et al. 2022), a first important step for their isolation and in vitro culture.

There is an ample body of work that provides numerous quantitative assessments
of culturing conditions (e.g., Toullec 1999; Khalesi 2008; Dessai 2012; Maselli et al.
2018), without highlighting one ideal consensus. Given that aquatic invertebrates are
phylogenetically very distant, the development of a ubiquitous culturing environment
appears rather unlikely. Nevertheless, each phylum could benefit from the advances
in primary cell culture made in other phyla. However, a significant fraction of
the relevant research data remains unpublished in conventional peer-reviewed
journals, being only accessible as chapters in master’s or doctoral dissertations,
conference proceedings and specialized books. Consequently, in the last five decades,
the publication of research efforts has been uneven across phyla, and temporally
fragmented, as illustrated for the cnidaria and tunicata phyla (Figure 2).

Here, we review three major drawbacks and limitations of this field of
research and their most promising work-around (Rinkevich 2005; Cai and Zhang
2014; Rinkevich 2011; Yoshino et al. 2013): (1) seeding the cell culture with a
population enriched in proliferating and potentially stem-like cells; (2) devising
marine invertebrate specific in vitro culturing environment, including management of
oxidative stress and cell adhesion requirements; (3) preventing culture contamination
with other cell types and microbes. This review is intended to be accessible both to
the non-experts and newcomers to the field of primary cell culture, while providing
an updated and curated list of references on the primary cell culture of aquatic
invertebrates compiled for the experienced reader.



Given the huge scope of this review (>360,000 species, >60 years of research,
>510 publications), we set out to illustrate previous work on aquatic invertebrate
cell culture with three summarizing tables (Tables 1-3), filled with a selection of
representative publications in each taxon and focusing on stem cell cultures whenever
these have been described. This review is, by nature, not exhaustive and omits, by
necessity, many publications, which thus limits generalizations. We conclude this
review by providing perspectives on how to solve this limitation, mainly through
dramatically extending the present effort in the data mining and metacoding of
published work to build an exhaustive knowledge database on aquatic invertebrate
cell culture. We also highlight abiotic factors that should be further investigated.
We hope that the provided perspectives will help researchers to develop robust and
reproducible approaches for culturing dividing aquatic invertebrate cells, a first step
towards the possible establishment of cell lines.
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2. Isolating Stem-like Cell Types Suitable for In Vitro Culture

Inoculum type is highly diverse, depending on targeted aquatic invertebrate
taxon, tissue and life cycle stage. At the same time, selecting the proper inoculum for
a given in vitro culture is certainly the most important decision towards establishing
a suitable cell culture.

2.1. Selecting Suitable Sources of Cells

Based on the number of publications on primary cultures and the number
of reported cell lines across aquatic invertebrate taxa (Figure 1), most research
has focused on cell culture establishment from mollusks (mostly bivalves, and
comparatively fewer gastropods and cephalopods), followed by porifera (mostly
demosponges), cnidaria (historically hydrozoans and currently anthozoans, Figure 2),
crustacea (pennaeid shrimps, crabs and crayfish), echinoderms and tunicates.
Episodic attempts have also been made for one or two species representatives of
ctenophores (Mnemiopsis), annelids (Lumbricidae; Nereidae), nematodes (Caenorhabditis),
chelicerates (Limulus) and cephalochordates (Amphioxus). These differences in
research efforts illustrate differences in the attractivity of specific taxa for cell culture,
which stem from three complementary considerations, detailed below, that every
researcher has to take into account when selecting the origin of the cells to be cultured
in vitro.

The first pertinent consideration is whether to work on tissue isolated from
established experimental models maintained in controlled aquarium or laboratory
facilities. These animals, in contrast to wild animal sampling, provide both
access to early life stages, as well as increased reproducibility for cell culturing
experiments. Their use also meets the biodiversity protection regulations and
traceability requirements of the Nagoya protocol. More and more clonal lineages of
genotyped animals are becoming available across taxa, and establishing cell cultures
from this traceable material is an additional source of reproducibility that reduces
complexity and facilitates comparisons between intervention protocols. Ultimately,
these biological models will help the optimization of the culturing conditions, for
guidelines specific to a few model species. In this context, two attractive taxa for
fundamental research are cnidaria (e.g., Hydra vulgaris, Hydractinia echinata, Exaiptasia
pallida) and platyhelminthes (e.g., Schmidtea mediterranea) with well-established
strains of animals. Mollusks or crustaceans of commercial importance, and with
a complete life cycle obtained in captivity and traceable across generations, also
represent important taxa to develop stem cell cultures.

A second important consideration when selecting a model species for cell
culturing experiments is the wealth of genomic, transcriptomic and metabolomic
information available for that species. In addition to allowing the identification of
cell-type-specific markers, post-genomic information gained on metabolic pathways
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and cellular adhesion systems can be used to formulate working hypotheses on
taxon-specific in vitro cellular requirements of media components and substrates.
Similarly, knowledge acquired on in vivo tissue homeostasis, dynamics of cell
proliferation, and somatic stem cell niches (Martinez et al. 2022) could help in
selecting a seed tissue of high proliferative potential. In this respect, the continuous
decrease in sequencing costs, as well as in other omics techniques, is allowing more
and more research groups working with marine aquatic invertebrates to characterize
their favorite species, suggesting that omics information will fast become available
for almost all taxa.

The third point to consider is the desired approach for obtaining immortalized
cells. Similar to mammalian cell culture, potential sources for immortalized cell lines
are artificially reprogrammed cells and spontaneously tumor-like tissue. However,
immortalization methodologies are currently limited in aquatic invertebrate cells
by low yields and poor stability, as observed in sponges (Pomponi et al. 2013;
Revilla-I-Domingo et al. 2018), bivalve mollusks (Hetrick et al. 1981; Boulo et al.
1996), and crustaceans (Claydon and Owens 2008; Xu et al. 2018). As suggested
by Odintsova et al. 2011, natural tumor-like tissue, characterized by increased
(hyperplasia) or altered (neoplasia) cell proliferation patterns, is thus a promising
inoculum to initiate primary cultures. However, tumor-like lesions in wild or captive
aquatic invertebrate taxa have low registered frequencies (Peters 2006; Tascedda and
Ottaviani 2014), and there has been repeated unexpected failures at maintaining the
hyperproliferation of successfully isolated cancerous cells in vitro. For instance, in
transmissible soft-shell clam (Mya arenaria) leukemia, cancerous hemocytes rapidly
undergo in vitro apoptosis, triggered by the release of mortalin-based cytoplasmic
sequestration of p53 (Walker et al. 2006). Other attempts at primary culture initiation
from artificially induced tumors of carcinogen-exposed bivalves (Crassostrea virginica)
also failed to maintain persistent in vitro cell division (Hetrick et al. 1981).

Consequently, the use of stem-like cells for seeding in vitro cultures appears
key to setting dividing primary cultures. Marine invertebrates display a wide
variety of intriguing cellular phenomenon, such as asexual reproduction, striking
regenerative capacity, reduced aging and dormant stages, which upon arousal restore
fully functional individuals (Figure 1). These mechanisms indicate high cellular
plasticity, proliferation and a likely involvement of stem-like cells. Although the
potency of these cells remains largely uncharacterized in most species, and the
orthology between these stem-like cells remains to be assessed (Rinkevich et al. 2022),
they represent a promising source of proliferating and self-renewable cell types.
However, the identification, isolation and characterization of aquatic invertebrate
stem cells remains a major, typically species-specific, technical challenge. With few
species having established protocols for the isolation of identified stem-like cells
(Hayashi et al. 2006; Sun et al. 2007, Hemmrich et al. 2012; Kassmer et al. 2020;
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Reyes-Bermudez et al. 2021), their generalization and transfer by taking advantage
of the vast diversity of specific approaches explored in other taxa (Table 1) appear
particularly promising.

2.2. Selecting a Suitable Type of Inoculum

Aquatic invertebrates have indirect development cycles, with widespread
asexual propagation strategies, including colonial budding and the generation
of dormant stages, as well as high regenerative abilities, including whole-body
regeneration. These developmental properties are suggestive of the presence of
proliferative cells, including potential stem-like cells, which are of particular interest
to establish proliferating cell cultures. Hence, they provide the following range of
theoretically ideal inoculum material: embryonic/larval tissue, regenerating tissue,
asexually propagating tissue and dormant stages.

Dissociated tissue from whole embryo/larva consistently yields primary cell
cultures dividing over 2-3 weeks, allowing a few rounds of successive subcultures.
For example, when applied to cnidarian models, whole dissociated Acropora planula
larvae yielded subsets of dividing coral cells that could undergo several successive
subcultures (see Reyes-Bermudez and Miller (2009) for A. millepora, and Kawamura
et al. (2021) for A. tenuis).

Dissociated somatic adult tissue sampled from regenerating tissue has also
been observed to yield dividing cell cultures that could be subcultured for several
weeks. Among other examples, cultures based on regenerating tentacle tips of the sea
anemone Anemonia viridis (Barnay-Verdier et al. 2013) could be subcultured for 2—4
weeks, and primary cultures from regenerating intestinal tissue of the holothurian
Apostichopus japonicus displayed limited but active in vitro proliferation at ~2 weeks
after evisceration (Odintsova et al. 2005).

The dissociation of asexually growing tissue similarly gave rise to cell cultures
with observable proliferative activity for a few weeks. For instance, using fast-growing
branch tip fragments of the Acropora millepora coral (Reyes-Bermudez et al. 2021),
cells could be subcultured for 2—4 weeks, and delayed senescence was reported in
primary cultures from extracted buds of tunicates (Rabinowitz and Rinkevich 2004).

As implied in the “live slow, grow old” adage, cold adapted hibernating
freshwater sponge species from lake Baikal yielded primary cell reaggregate (termed
primmorph) cultures with record (max 8 months) longevity (Chernogor et al.
2011). Sponge gemmules also represent dormant hibernation/aestivation stages
rich in multipotent stem cells (Simpson 1984) that, upon hatching, regenerate a
functional adult. Activated gemmules could thus constitute a promising inoculum
for primary cultures. Similarly, in the colonial tunicate Botrylloides leachii, arousal
from a cold-induced dormancy (Burighel et al. 1976) leads to the restoration of
multiple adults by proliferating piwi*/pl10+ cells, two markers suggestive of stem-like
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properties (Hyams et al. 2017). In both cases, investigating the mechanisms regulating
arousal from dormancy may yield cues to stimulate the tissues established in vitro to
switch from quiescence to active cell cycling.

In conclusion, despite their initial abundance in cells with proliferative
stemness-like properties, the shared in vitro fate of all four above-cited inoculum
categories is terminal cell cycle arrest and the gradual accumulation of senescent,
necrotic cells in primary culture and subsequent subcultures.

2.3. Selecting Suitable Cell Isolation Techniques

Inoculum type is highly diverse, depending on targeted aquatic invertebrate
taxon, tissue and life cycle stage. Although no cell culture has yet been observed to
sustain its proliferative activity for long, short-term functional primary cultures are
routinely established from terminally differentiated cell types of aquatic invertebrates.
Differentiated cells being arrested in Gy can survive in vitro for a limited time
with intact function, and hence are best used within hours to ~3 days of isolation.
Nevertheless, comparing their tissue-isolation protocols offers opportunities to survey
tissue sampling and dissociation methods (Table 1), as well as the cellular interactions
and defense mechanisms that may support their in vitro viability, even for short
periods of time. Emblematic examples of short-term invertebrate primary culture
from quiescent cells include neuron-like cells and circulating hemocytes.

Giant neuronal cells from gastropod mollusks, such as the sensory and motor
neurons from the sea hare Aplysia californica, are used to study growth cone motility
and synapse plasticity (Kaczmarek et al. 1979; Lee et al. 2008; Zhao et al. 2009; Ren
et al. 2019; Suter 2011). Cultured neurons from the pond snail Lymmnea stagnalis are
also routinely used for studies on synapse formation, neuronal aging and memory
(Magoski et al. 1994; Prinz and Fromherz 2000; Walcourt and Winlow 2019). The
in vitro establishment of nerve cells from jellyfish bell tissue (Przysiezniak and Spencer
1989; Schmid 1992) or from the solitary tunicate Ciona intestinalis (Zanetti et al. 2007)
have also been reported. These neuronal cell types are usually micro-dissected from
their ganglion, enzyme digested with protease, immobilized on positively charged
polylysine-coated coverslips and then used for short-term electrophysiology assays,
providing non-conventional in vitro models in neuroscience.

Circulating cells sampled from internal fluids, are another major category of
cultured aquatic invertebrate cells. When seeded at high density (>10° cells/mL),
cultured adherent hemocytes can form partly complete confluent monolayers, with
clusters forming in suspension above the monolayer that may then be detached and
transferred to new culture dishes. Such cultures have been routinely established
since the late 1960s from a wide range of species, including mollusks, crustaceans,
tunicates and echinoderms, typically for in vitro cell/microbe interactions and
immunopathology assays. Such cultures display short-term conserved functionality,
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as shown by phagocytosis or immunomodulatory assays. Proliferation may be
induced by stimulation with bacterial antigens, as shown for the bivalve Mytilus
galloprovincialis (Cao et al. 2003), the tunicate Styela (Raftos and Cooper 1991) and
the earthworm Lombricus (Bilej et al. 1994). These differentiated cell types are drawn
directly from internal cavities, lacunae and sinuses using a syringe. To counter
their spontaneous self-aggregation (clotting) behavior, hemocytes are collected in
syringes half-filled with species-specific anti-clotting saline solution, such as artificial
seawater without calcium or magnesium, artificial seawater with a calcium chelator,
or Na-citrate based “Alsever” saline solutions. Indeed, hemocytes secrete their own
set of taxon-specific lectins (e.g., Matsumoto et al. 2001) and extracellular-matrix
components (ECM) (e.g., a fibronectin-like ECM in bivalve hemocytes (Dyachuk
et al. 2015)) that support rapid adherence, within hours of sampling, to glass or
poly-lysine-coated coverslips.

Aside from the two isolation techniques described above, the quantitative
evaluation of various approaches for cell extraction in different species suggests
that, for the rapid obtention of single-dissociated cells from soft tissues for RNAseq
cell phenotyping, and thus to obtain cells as close as possible to their wild-type
state, mechanical isolation is the most efficient method (Khalesi 2008; Dessai 2012;
Daugavet and Blinova 2015; Maselli et al. 2018). For example, cnidarian larval
tissue or demosponge and calcisponge adult tissue fragments are dissociated within
minutes via shearing in calcium-free seawater and passage through a 40-70 pm
nylon mesh. However, species with tough cuticles (e.g., Lombricidae), important
extracellular matrices (e.g., Styelidae) or abundant surface mucus (e.g., Dugesiidae)
necessitate treatments with specific enzymes to liberate the cells. For instance, in
the stony coral Pocillopora damicornis, chemical treatment with a divalent cation
chelator followed by a mix of glycosidases and collagenase was reported to help
dissolve the mucus and improve the yield of released cells (Downs et al. 2010).
Proteolytic treatments (trypsine, dispase and other protease mixes) are routinely
used to dissociate cells from solid tissues dissected from mollusks and crustaceans.
Interestingly, protease treatment may induce cellular reprogramming, as shown by
the collagenase-induced transdifferentiation of in vitro explanted striated muscle of
jellyfish (Alder and Schmid 1987; Schmid and Alder 1984; Schmid and Reber-Miiller
1995).

2.4. Selecting Suitable Cell-Type Enrichment Strategies

Cells of interest are typically mixed with other cell types after the dissociation
of the inoculum. The enrichment of specific cell types, typically proliferative
or multipotent ones, relies on the prior development of taxon-specific and
custom-designed cell separation methods. For instance, in Stylophora pistillata,
stem cells were not identified in the cell atlas established from both larval and adult
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tissues, following either enzymatic or mechanical dissociation methods (Levy et al.
2021), which severely limits the development of stem cell-enriched primary cultures.

Sorting methods for enriching inoculum suspensions in proliferative or
multipotent cell types are thus required. Initial methods were based on differential
sedimentation on density gradients, including sucrose, Percoll, or mixtures of
Ficoll and polyethylene glycol. To further discriminate between morphologically
similar cell types, and thus target specific cell types, Fluorescence Activated Cell
Sorting (FACS) methods have recently been developed and have become highly
prominent. For instance, FACS has been used to separate vital-stained coral cells
(Rosental et al. 2017), and to isolate cell-type subpopulations for their single-cell
gene expression characterization in hydrozoan (Siebert et al. 2019), as well as in
anthozoan species (Levy et al. 2021; Sebé-Pedros et al. 2018). In these diblastic
animals, which lack a circulatory system, FACS is necessary to enrich dissociated
tissue suspensions in hexacorallian putative immune cells, the amoebocytes recovered
from the inter-epithelial mesogleal layer typical of cnidarian, for short-term functional
phagocytosis characterization (Snyder et al. 2021). In triploblastic animals, FACS
has also been refined to sort tunicate cell subpopulations to study the hematopoietic
system (Rosental et al. 2018). Echinoderm coelomocyte subpopulations have
been further separated by FACS into distinct cell types, such as the red pigment
autofluorescent spherulocytes (Hira et al. 2020).

Consequently, there is a need for stem cell markers suitable for non-invasive
stemness tracing in live cells to enable their enrichment. One promising perspective
comes from the few aquatic invertebrate experimental models that can be genetically
manipulated for which transgenic reporters of stemness properties can be engineered
(e.g., in Hydra (Juliano et al. 2014)). Another direction of interest is the usage
of fluorescent markers conjugated with antibodies specifically labeling stem cells.
However, the identification of such markers remains extremely rare for aquatic
invertebrates, with the recent notable exception of the colonial tunicate Botrylloides
diegensis for which integrin-alpha-6 was shown to specifically label pluripotent cells
(Kassmer et al. 2020). Whether this specific marker can be used in other species of
aquatic invertebrates to label stem cells will be important to assess.

2.5. Selecting Cleansing Techniques to Minimize Contamination

There is a wide consensus across the scientific community that the highest
obstacle to continuous marine/freshwater invertebrate cell culture propagation is
overgrowth by aquatic microbial contaminants (Rinkevich 2005). This problem is
critical in marine invertebrate primary cell cultures for two main reasons. First,
it is because the tissues sampled to initiate the primary cultures come typically
from areas directly or semi-directly exposed to environmental microbes, such
as the thin epithelial structures at the interface with water (e.g., in porifera and
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cnidaria), tissues irrigated by a semi-open circulatory system (e.g., in mollusks,
echinoderms and tunicates) or digestive and other internal tissues hosting their
own microbiota (e.g., gills and hepatopancreas of mollusks). Second, commercial
antibiotics/antimycotics/antiparasitic drugs have been designed against microbes
isolated from terrestrial animals and mostly from humans and are thus largely
ineffective against the mostly underexplored diversity of environmental aquatic
microbes. To control the contamination of cell cultures by these aquatic microbes,
three main strategies can be attempted.

First, microbial load can be reduced before cell isolation. The inoculum can be
sampled from starved animals depurated in oxygenated sterile-filtered seawater to
limit environmental microbial contaminants (e.g., for abalone mantle cell culture
(Suja et al. 2014)). Microdissecting internal tissues that naturally protect from
seawater by epithelial envelopes (e.g., molluscan heart tissue), and thus from
aquatic microbes, would also reduce the initial microbial load of the inoculum.
Collecting cells that possess natural antiseptic defenses, such as innate immune
hemocytes (e.g., from mollusks, crustaceans, tunicates or echinoderms), would also
have a positive impact on reducing the contamination of the culture. Alternative
strategies include using short-term ubiquitous surface sterilization methods on the
surface-exposed tissue, such as dipping for up to 1 hour in 10-70% ethanol (e.g.,
for molluscan abalone mantle, see Suja et al. (2014), and for oyster tissue, see
Stephens and Hetrick (1979)) or a few seconds in KmnQOj (e.g., in sea anemone tissue
(Doumenc personal communication)) and treating the dissected tissue for up to days
in sterile-filtered seawater enriched with a mixture of concentrated large-spectra
commercial antibiotics/antimycotics/antiprotist compounds (e.g., molluscan mantle,
gill or hepatopancreas tissue).

Second, if specific invertebrate cell types need to be recovered from contaminated
primary cultures, the cell-type enrichment strategies established for preparing a
suitable inoculum (see Section 2.4) could be reused. For instance, this approach
successfully retrieved accessory nidamental gland cells pelleted from native bacteria
through a 2% sucrose layer (Figure 3). In addition, the selective rinsing of adherent
invertebrate cell types could help to remove cellular debris, toxins and suspended
microbes.

34



F 147  withouta 12
1.2 k1.0
1.0 L0.8
0.8 Lo

g 06 0‘4

£ 047 [T =

<021 02 £

£ 0.0 . —-0.0 g

= 0dpi  28dpi =

S 2

%
£ 147 Wwith AB ri2 ¢

§ 1.2 1.0 2

o 107 to.s 8

= 0.8 Lo
0.6 '
0.4 Lo.4
0.2 r0-2

L0.0
0dpi  28dpi

Figure 3. Primary co-culture of squid gland cells with native bacteria. (A) Accessory
nidamental gland tissue (white arrows) from Sepiola rondeletti is enzymatically
dissociated by trypsine (0.2% 30 min at 25 °C). (B) Gland cells are enriched via
centrifugation through a sucrose cushion (2% in seawater), and their seeding
density is controlled by Malassez hemocytometer numeration. (C) Glandular cell
types visualized via Fluorescence In Situ Hybridization (EUK, universal eukaryote
probe, fluorescein, green) are covered with surface-associated symbiotic bacteria
(EUB, universal bacterial probe, Cy3, red). (D) Four-week-old primary culture
(without antibiotics) showing high bacterial density around the cultured glandular
cell types, (E) which can be re-enriched via sucrose cushion centrifugation. (F)
Gland cell viability (mitochondrial enzyme activity assessed by MTT reduction
assay, DO 580/630) is higher in the absence than in the presence of antibiotics (AB)
and increases in primary co-culture with native bacteria, along with cell density,
indicating the beneficial effect of native bacteria on the survival of cell cultures.
Times are given as days post-inoculation (dpi). Source: Graphic by authors.

Third, contamination can be controlled during the primary culture itself.
The main strategy for this step to reduce the unwanted mixotrophic growth of
contaminants is to use a nutrient-poor basal medium formula, hence limiting the
provision of carbon and nitrogen sources that typically exceeds the in vitro energy
requirements of the target cells. The culture medium can also be supplemented with
antibiotics/antimycotics/antiprotist drugs and changed frequently until the culture
appears clean. Proliferating cultures should be closely monitored, and the primary
cell cultures containing visible ciliates, bacteria, or clusters of cells with characteristic
chytrid-like rhizoid morphology should be discarded.

However, these methods may rescue a subset of the targeted cell-type populations
from contaminant overgrowth but carry a high cost in terms of time-consumption
and cell yield reduction, for overall limited efficiency.
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3. Defining Optimal Culture Conditions

While obtaining a high-quality inoculum is essential for establishing healthy
cell cultures, the culturing conditions used are equally crucial. Indeed, even highly
proliferative tissue will undergo terminal cell cycle arrest, typically within weeks
after inoculation. Moreover, a breakthrough in the culturing conditions used for the
Bge cell line was at the origin of a large expansion in cell lines.

3.1. Selecting Suitable Culture Media Composition

Media formulation should strive to provide adequate levels of carbon and
nitrogen sources to meet the nutritional needs of each isolated aquatic invertebrate
cell-type population. However, the metabolism of stem cells and their nutrient
requirements are poorly documented across aquatic invertebrate taxa. Consequently,
a large variety of culture media have been tested for their in vitro culture (Table 2).
Based on the hypothesis of the conservation of major metabolic pathways across
animal phyla, a widespread approach is to use commercial basal formulas originally
designed for vertebrate cells, typically MEM, DMEM or Leibovitz L-15, supplemented
with salts to adjust to the targeted osmolarity of the specimen’s original environment
and generally diluted to 10-50% (Maramorosch and Mitsuhashi 1997; Mothersill
et al. 2000). An even simpler option is to provide a minimal medium composed of
seawater with pyruvate as a carbon source, and glutamic acid as a nitrogen source.
This approach has been used with sponge primmorph spontaneously aggregated
from dissociated cells. These media have, however, persistently failed to sustain the
in vitro division of cells of aquatic invertebrates. Another much more complex option
is to entirely custom design the media’s formula based on an extensive biochemical
characterization of internal tissue or fluid composition from the targeted animal
species (e.g., molluscan hemolymph). However, these taxon-specific media have not
yet demonstrated sufficient benefits to justify their development cost.

A more integrated and personalized approach is to adapt the media formulations
to meet the needs of the targeted invertebrate cell subpopulations. To check nutrient
consumption in vitro, individual uptake experiments of targeted organic carbon
(glucose, lipids, etc.) or nitrogen (amino-acid) substrates (see Apte et al. (1996)
for amino-acid transport into sea anemone cells, and Heude-Berthelin et al. (2003)
for glucose uptake and glycogen metabolism in oyster cells) may now be updated
to metabolomics-based global approaches. Indeed, the search for changes in the
metabolite profiles of media sampled at various timepoints in cultured mammalian
CHO-CK1 cell lines has helped identify factors that sustain growth and affect in vitro
behavior (Mohmad-Saberi et al. 2013). A recent breakthrough was reached using
this approach to develop an amino-acid-enriched sponge cell culture medium that
sustains cell division in primary cultures (Conkling et al. 2019). The team used
a genetic algorithm to identify suitable amino acid components to supplement a
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commercial basal formula (M199) for improving the in vitro metabolic activity of
Dysidea avara sponge cells (Munroe et al. 2019).

A striking feature of successful insect culture media that support proliferating
primary cultures and cell lines is the addition of lipid-rich supplements, with a
trophic role and potential protection against oxidative stress. Lipid addition has
been shown to transiently increase metabolic activity (mitochondrial MTT reduction)
in cultured oyster heart cells (Domart-Coulon et al. 1994). The lipid-rich “Grace”
commercial formula was shown in cnidarian primary cultures to increase octocoral
cell numbers (Khalesi 2008), and is used to obtain a subset of dividing cells and a
few rounds of subcultures from cultured sea anemone tentacle (Barnay-Verdier et al.
2013). However, a more global picture of the impact of lipids on culture media for
aquatic invertebrate cells is currently lacking.

Medium renewal strategy should be aimed at striking a balance between a
conditioned medium supply of undefined trophic factors and cytokines and the
removal of senescent cells, debris and toxins from the aging primary cultures.
Manipulating inoculum cell densities is an efficient way to facilitate confluence
and thus maintain cell-to-cell contacts necessary for the secretion of cytokines that,
although currently undefined, are certainly necessary for sustaining cell survival.
Old-time tissue explantation methods that rely on the slow outward migration
of mixed cell types from a dissected tissue fragment adherent to a culture dish
yield the successive outgrowth of distinct morphotypes characterized at minima
by their in vitro shape and behavior. These cells can broadly be classified by the
following three categories: fibroblast-like, epithelial-like and amoeboid-like cell
types (Vago 2012), and can be selected for their ability to survive in vitro on residual
native extra-cellular-matrix components. Insect cell lines have emerged from such
long-term maintained explant cultures of lepidopteran imaginal discs (Echalier 1997).
More recently, the explantation of ectodermal monolayers of regenerating starlet sea
anemone yielded mitotically active, mixed cell types, primary cultures (Rabinowitz
et al. 2016).

In addition, culture medium can be complemented with a number of factors to
promote cell proliferation: C-type lectins have been shown to have cytostatic effects
on the hemocytes of the tunicate Polyandrocarpa misakiensis (Matsumoto et al. 2001);
lectins from another tunicate, Didemnum ternatanum, promote the adhesion of a range
of marine invertebrate cells (Odintsova et al. 1999); insulin and insulin growth factor,
as well as other vertebrate growth factors, were shown to have a positive impact
on the transient proliferation of molluscan bivalve cells (Domart-Coulon et al. 1994;
Giard et al. 1998); and retinoic acid-related molecules are known to be involved in
the dedifferentiation process of multipotent cells as reported for tunicate hemocyte
cultures (Polyandrocarpa misakiensis) (Kawamura and Fujiwara 1995).
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3.2. The Oxidative Stress Problem

Very few and exclusively freshwater taxa among the large diversity of aquatic
invertebrates have given rise to cell lines, including the snail Biomphalaria (Gastropoda).
Salinity is thus a major difference between the primary culture systems that have
given rise to cell lines and the unsuccessful attempts based on aquatic invertebrate
species. One possible cause for this difference is that higher salinity correlates
with lower dissolved oxygen. Consequently, dissolved oxygen levels in the cell
cultures might be an important yet overlooked physico-chemical parameter of culture
conditions. To date, primary cultures of aquatic invertebrate cells are indeed mostly
conducted under standard atmospheric conditions (i.e., ~20% O;), with the cells
covered by a thin layer of culture medium where dissolved oxygen is equilibrated by
diffusion with the surrounding air. Except for a few cases of full-strength Modified
Eagle Medium (or derivatives, osmotically adjusted by salt addition), which requires
a bicarbonate/5% CO; buffer system, the gaseous atmosphere of most cell cultures
is thus composed of air (Table 2). The widely used, amino-acid rich, Leibovitz
L-15-based media do not require a 5% CO, atmosphere. Seawater/freshwater diluted
commercial or custom-made media rely on the addition of Hepes (~20 mM) for pH
buffering at 7.4-7.6, depending on species (Tris-HCl is used for sponge cells grown
at pH ~8.0). Hence, under typical laboratory conditions (air and 15-25 °C), in vitro
aquatic invertebrate cells are exposed to ~20% Oy, which is largely more than in
their natural aquatic environment, and could likely expose them to in vitro oxidative
stress.

To circumvent this potential problem, the first step will be to monitor invertebrate
intracellular oxidative stress, for instance, via a fluorescent general oxidative stress
indicator, such as CM-H,;DCFDA, which has been used on the spheroid tissue of
Fungia coral exposed to short-term acute thermal stress (Gardner et al. 2017). Upon the
confirmation of oxidative stress, the second step could be medium supplementation
with exogenous antioxidants (for example, ascorbic acid (Helman et al. 2008), catalase
enzyme (Domart-Coulon et al. 1994)) or native pigments with high antioxidant
properties (e.g., sea urchin spinochrome (Ageenko et al. 2014) and shrimp astaxanthin
(Lee etal.2021)). Both approaches have reproducibly led to the increased maintenance
of the primary cell cultures. An alternative when establishing cultures of tissues
containing photosynthetic endosymbionts (e.g., Cyanobacteria-containing sponges,
and Symbiodiniaceae-containing sea anemones, corals and octocorals) is to maintain
the cultures in the dark to inhibit the photosynthetic processes that generate oxygen
and thus increase oxidative stress (Table 2).
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3.3. Understanding Adhesion and Cell-to-Cell Contact Requirements of Aquatic Invertebrate
Stem Cells

To optimize the proliferation of culture cells, transferring genomic knowledge
obtained in each aquatic invertebrate taxon on cell-to-cell and cell-to-ECM adhesion
systems will be particularly useful for selecting suitable ECM-coatings of culture
dishes.

Shifting from classical 2D monolayer culture to 3D “spheroid” culture systems
offers opportunities to facilitate the maintenance of cell-to-cell interactions and of
native secretions within the cell cluster. Cells from the earliest branching aquatic
metazoans, such as poriferans and cnidarians, display spontaneous aggregation
properties after tissue dissociation into single cells, sometimes leading to whole-body
regeneration (see Simpson (1984) for sponge, Gierer et al. (1972) for hydra and Vizel
et al. (2011) for coral). This re-aggregation property is being harnessed for spheroid
formation (coral “tissue balls”, sponge primmorphs) and their establishment for
primary culture (Figure 4A-C). Hemocytes drawn from mollusks, crustaceans,
tunicates or echinoderms also self-aggregate into clusters, through sequential
migrations of adherent cells on the culture substrate followed by the putative
secretion of self-recognition lectins (Figure 4D-F). A recent breakthrough using
3D cultures of sponge cells in ultra-low-gel agarose hydrogel microdroplets has
been reported to support cel-ECM interactions and to facilitate the survival of
differentiated Geodia neptuni demosponge cells (Urban-Gedamke et al. 2021).

Similarly, improving the in vitro microenvironment of isolated stem cells could
potentially sustain their proliferation. Adapting the cellular microenvironment to
mimic stem cell niches of a target organism should be pursued in each model taxon,
as such information becomes available. In addition, primary cultures that gave
rise to cell lines (e.g., insect imaginal disc cells) can provide mechanistic insights
into the cellular microenvironment needed to maintain stem cell self-renewal. As
shown in mammalian systems, multidirectional signaling by co-culturing stromal
“feeder” cells with the target cells (e.g., neurons from the gastropod Aplysia californica
(Montgomery et al. 2002); stem-like cells on a monolayer of confluent cephalopod
hemocytes (Figure 4E)) might help to generate a microenvironment suitable for
stem cell maintenance, proliferation and differentiation, typically by providing cell
adhesion molecules, growth factors, hormones and other secreted proteins (see Girard
et al. (2021) for hematopoietic stem cell niche, and Ootani et al. (2009) for intestinal
stem cell niche). Furthermore, supplementing the culture media with specific growth
factors (e.g., Wnt fusion proteins for ISC (Ootani et al. 2009)) can lead to the expansion
of stem cells with sustained proliferation and multilineage differentiation. As in vivo
information on the regulation of aquatic invertebrate stemness becomes available,
transferring such information will be particularly important to design optimized cell
culture media.
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Figure 4. Aggregate vs. dissociated primary tissue and cell culture, on plastic

dish-culture substrates. The figure shows micrographs of individual cells
or multicellular aggregates at the indicated days post-inoculation (dpi). (A)
Scleractinian coral cell types and their Symbiodiniaceae endosymbionts (within coral
gastrodermal host cell, or free-living in the culture medium). (B) Suspended
coral multicellular aggregates spontaneously formed in explant culture of
colonies of Pocillopora damicornis. (C) Spontaneous dissociation into multilayered,
mixed-cell-type culture, containing translucent coral cells and brown-pigmented
microalgal symbionts (Symbiodiniaceae). (D) Cephalopod hemocytes from Nautilus
pompilius aggregate in cell culture when seeded at high seeding density (>10°
cells/mL, 2 dpi). (E) Confluent primary culture 8 dpi, showing networks of adherent
hemocytes and proliferating cell clusters (300-500 um in diameter), which can
be detached and transferred (passaged) to new culture dishes. (F) Subcultured
hemocytes (14 days post transfer from cells detached from clusters in 8 days
post-inoculation-primary culture) remain quiescent and do not grow to confluence.
Source: Graphic by authors.

To further mimic the in vivo microenvironment of the isolated cells, and their
interactions with their environment in particular, new “physiomimetic” approaches
should be developed using, for instance, versatile hydrogels to concentrate cells in
a 3D microenvironment (see Otero et al. (2021) for a review on such experimental
approaches for vertebrate cell systems). The ongoing development of commercial
hydrogels (synthetic or derived from jellyfish, i.e., “Jellagel”) provides new 3D
substrates to test on aquatic invertebrate cells. To determine whether these cells
behave in vitro similarly to in vivo, live-cell or live-tissue observations based on the
micropropagation of tissue in microfluidic devices should be further established
(Januszyk et al. 2015).
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4. Controlling the Purity and Quality of Cultured Cells

Upon isolation from their initial tissue microenvironment for establishment in
culture dishes, aquatic invertebrate cells change morphology and are notoriously
difficult to identify by their in vitro shape and behavior (Rinkevich 2011; 2005;
Cai and Zhang 2014). Moreover, cultured cells are morphologically highly plastic,
changing shape, granularity and sometimes pigmentation with culture age and
substratum composition (i.e., with or without surface coating with positive charges
or ECM compounds). For cell lineage authentication, checking phenotype and
genetic identity is imperative, not only upon culture initiation but also throughout
the primary culture and derived subcultures, at least at the time of use for functional
assays and before/after cryopreservation.

4.1. Proliferation

The monitoring of in vitro cell proliferation is traditionally based on monitoring
cell densities (via subsampling a fraction of the culture followed by cell numeration
on Malassez- or Neubauer-type hemocytometers, or time-lapse image analysis of
microscopy fields of view) and attentive changes in the total protein content or
DNA content extracted from cell pellets or monolayers. These methods overestimate
live cell densities as they integrate dying cells to the viable cells. Another widely
used method relies on the miniaturized high-throughput colorimetric quantification
of mitochondrial oxidative phosphorylation (MTT or XTT reduction assays) by
the cultured cells. First adapted for screening medium nutritional factors and
physico-chemical parameters for molluscan cells (bivalve oyster Crassostrea gigas
(Domart-Coulon et al. 1994)), it has also been adapted to sponge cell mitochondrial
activity evaluation in primary culture (Zhang et al. 2004) and to the monitoring of
coral larval cell density in primary cultures (Kawamura et al. 2021). However, this
type of MTT test detects not only oxidative phosphorylations of the animal cells but
also that of bacterial associates in primary culture (e.g., of cephalopod holobiont)
tissue (Pichon et al. 2007). The fluorescence monitoring of cellular esterase activity
is also a common method to quantify viable cells in cultures. However, their use
for aquatic invertebrate taxa can be limited by the widespread co-occurrence of
autofluorescent cell types with fluorescence spectra overlapping those of the enzyme
substrates.

By quantifying the proportions of cells in each phase of the cell cycle, flow
cytometry allows us to check the proliferative status of the collected tissue sample
before culture establishment, and to monitor cell cycling in the derived primary
cultures and potential sub-cultures. Applied, for example, in the early 2010s to
primary cell cultures from five demosponge species, this flow-cytometry-based
approach revealed rapid changes in the cell cycle distribution of a mixed-cell-type
suspension over time in primary culture (over a short-term 2-10-day timescale)
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(Schippers et al. 2011). The rapid accumulation of cells with low DNA content
together with a drop in the proportion of quiescent (G1/Gy) and cycling cells (S &
G2/M) could be visualized, supported by the parallel detection of activated (caspase3)
apoptosis pathways. This evidence supported the hypothesis of the rapid senescence
of cultured sponge cells, with the accumulation of cellular debris (demonstrated
by widely scattered cell size distribution), despite stable or slowly declining cell
counts, by only minus ~20% over the 10-day culture period. This observation calls
to cautious interpretations of stable or slightly growing cell densities, counted from
image analyses of microscopic fields or enumerated on Malassez-type slides, as
round empty cell bodies cannot be unambiguously discriminated from living cells
based on morphology only, even when using vital stains assays (e.g., neutral red or
trypan-blue). Another point of caution when using this approach is the ploidy of the
studied samples, and in particular, the presence of mixoploid cell populations that
could bias their cell-cycle profile (Ermakov et al. 2012).

4.2. Phenotyping

Autofluorescent markers (e.g., Green Fluorescent Protein-rich intracellular
granules of cnidarian cells,) or chromophore/pigments of specific cell types (e.g.,
red “echinochrome” pigments of echinoderm coelomocytes) can be used to sort cell
types among a mixed cell suspension. However, care should be taken to minimize
irradiance energy during fluorescence microscopy examination as it may damage
the living cells by DNA photodamage or lipid peroxidation, and thus limit their
subsequent in vitro survival. Enzyme activity assays (e.g., phenoloxidase of mollusk
and crustacean immune cells), biochemical phenotyping and phagocytosis assays
have also been used to characterize the in vitro functionality of hemocytes from
molluscan hemolymph, tunicate hemolymph and echinoderm coelomic fluid.

Immunophenotyping requires the prior development and validation of
polyclonal or monoclonal antibodies against epitopes of cell-type-specific proteins
or membrane preparations. Although labor-intensive and time consuming, this
strategy provides the advantage of the unambiguous localization of immuno-positive
phenotypes in initial tissue and in primary tissue or mixed cell culture. For instance,
low abundant small round coral skeletogenic (calicoblast) cell types were labeled with
a polyclonal antibody raised against the biomineral organic matrix (Puverel et al. 2005)
and antibodies were raised against the Botrylloides piwi sequence to label a specific
population of hemocytes (Rinkevich et al. 2010). This antibody-based approach has
been successfully used to trace self-sorting processes during cell-to-cell aggregation
from mixed-cell-type dissociated tissue suspensions (Schmid et al. 1999) and for cell
fusion experiments (Pomponi et al. 2013). This has an interesting yet still overlooked
potential for cell-type enrichment via the antibody panning of immuno-positive cell
types (Auzoux-Bordenave and Domart-Coulon 2010).
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Novel phenotyping methods have recently been developed from cutting-edge
single-cell RNA sequencing methods, which are applied to cultured cells. However,
these techniques currently have the three following drawbacks: (1) the prior definition
of cell-type-specific markers is needed, through the data-mining of single-cell RN Aseq
libraries obtained from dissociated tissue suspensions, which is still available for
a limited number of species of established model organisms (e.g., for the starlet
sea anemone (Sebé-Pedros et al. 2018), for planarians (Hayashi et al. 2010) or for
the scleractinian coral (Levy et al. 2021)); (2) molecular markers should be specific
to metabolic pathways restricted to the targeted invertebrate taxon and exclude
pathways that are also active in potential contaminating protists/microeucaryotes; (3)
assessing the polyclonality (mixture of cell types) versus clonality (single cell line) of
the culture requires the quantification of the percentage of reads obtained for each
claimed phenotypic marker, relative to the total number of reads.

4.3. Genotyping

Despite the proper isolation and cleansing of cells, cultures can easily be
overgrown by undesired cells. An undetermined fraction of these aquatic microbes
survives the tissue aseptization treatments prior to dissociation or explantation and
co-occurs along with metazoan cells in the mixed-cell-type suspensions obtained
from soft tissue dissociation or hemolymph syringe-drawings. This large diversity of
aquatic microbes is hard to monitor as it requires taxa-specific specialist microbiology
knowledge and molecular tools for accurate identification. It is especially difficult
to recognize their morphological traits in a mixed-cell-type primary culture that
combines the morphological and behavioral plasticities of both the microbe and
microbial life stage, and the targeted invertebrate cell types.

To address this problem, genetic markers specific to a species (e.g., Axinella
corrugata demosponge, (Lopez et al. 2002)) or to a genus (e.g., Acropora scleractinian
coral (Shinzato et al. 2014)) have been developed and validated for identifying cells
from the targeted taxon in the initial tissue and over time in primary cultures and
subcultures. Marker development is based on molecular genetics methods, such as
DNA fingerprinting, amplified fragment length polymorphism (AFLP), single-locus
DNA sequence analyses and microsatellites markers designed by next-generation
sequencing population genetics methods.

As microbes tend to proliferate more actively than the cells of primary interest
of the in vitro culture, it is crucial to check the potential microbial nature of long-term
cultured candidate aquatic invertebrate stem cells.

4.4. Microbial Contaminants Authentication

Detecting genetic markers specific to the invertebrate taxa of interest does not
exclude the potential co-occurrence of microbial contaminants. In fact, because
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molecular detections are highly sensitive, the detected invertebrate cells could even
represent a very small fraction of the cell culture. Thus, it is highly recommended to
also systematically use molecular probes for microbial taxa to detect potential culture
contaminants (Table 3).

Culture contamination is a major obstacle to the development of aquatic
invertebrate in vitro models. Indeed, it is widely acknowledged that microbes
persistently take over the cultured aquatic invertebrate cell types (Rinkevich 2005),
putatively as a result of antagonistic interactions (predation and competition for
nutrients) or metabolic plasticity and better adaptation to the in vitro growth
conditions. Culture media are commercially designed for vertebrates (e.g., DMEM,
Leibovitz L-15) or insects (e.g., Grace Insect Medium) and partly diluted in seawater
(or freshwater) or formula custom-prepared to mimic the microenvironment of the
sampled tissue, and they are nutrient-rich. Although they may not adequately
meet the largely unknown growth requirements of the cultured invertebrate cell
types, they provide abundant organic carbon and nitrogen sources that facilitate
the overgrowth of opportunistic resident microbial associates. Indeed, epibiotic
or endobiotic microbiota (especially unicellular microeukaryotes that are hard to
discriminate from animal cells) have repeatedly been shown to take advantage of the
medium-derived nutritional resources to fuel their fast heterotrophic growth; see,
for example, the consumption of mono and disaccharides, glycerol, glutamate and
glycine by the opportunistic unicellular Alveolate Chromera velia (Foster et al. 2014).
Predatory opisthokonts, ubiquitous in aquatic environments, have a highly plastic
morphology, with in vitro growth alternating between a unicellular ‘spindle-shape’
stage and aggregative or clonal (partly fused) multicellular stages, and they are
known to feed on metazoan tissue or derived cells (Tikhonenkov et al. 2020a).

Such eukaryotic microbes, collectively defined as protists, may feed on cellular
debris from senescent or dead host/aquatic invertebrate cells, taking over the initial
host cell population in long-term primary cultures or their successive subcultures.

5. Perspectives

While marine invertebrates as a whole show the largest biodiversity and the
widest phylogenetic radiation on Earth, they have contributed very little to the
in vitro cell lines discipline. The culture of marine invertebrate stem cells and/or their
progenitors could thus create new perspectives for fundamental research as well as
for biomedical applications. To reach this objective, we thus recommend two main
actions.

First, a systematic map of knowledge, built in the form of a database of
publications with metacoded information on taxon population, intervention strategies
(e.g., cell isolation methods, culture media and physico-chemical conditions) and
outcomes (e.g., cell viability, proliferation and differentiation) would be an important
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tool for increasing the visibility of protocols and know-how in the fragmented scientific
community. Furthermore, it would help to incorporate typically unpublished
results, including negative results, a scientific status that is rarely highlighted in
the refereed literature (Grasela et al. 2012). Such database would help to build
a comprehensive knowledge map to identify optimized culturing conditions for
each aquatic invertebrate taxon and cell type, adapted to the expected timescale
of utilization. The multiple usage of primary cell and tissue cultures from aquatic
invertebrates ranges from short-term use (within hours to <7 days for physiology
and cytotoxicity testing) to the long-term (bi-weekly to monthly) selection of
subpopulations of dividing cells for serial sub-culturing attempts. Each type of
inoculum implies distinct culture media and condition strategies to balance cellular
yield, functional stability and proliferation potential. The curated list of 511 relevant
publications compiled in Appendix B Table A2 provides a start to this database,
allowing us to assess by taxon the extent of research efforts to initiate or develop cell
cultures. It should be maintained and completed by the scientific community, for
more exhaustive listing and optimized visibility.

Second, best practices would be to develop and adopt robust cell-type
authentication protocols applicable to insect or vertebrate cell lines and primary
cultures (Lynn 2001; Dominici et al. 2006), and to systematically deposit live or
cryopreserved vouchers of “cell lines” in cell repositories. This could lead to the
identification of more general stem cell markers for aquatic invertebrates, which
would be crucial for obtaining a robust inoculum for in vitro cell cultures. Most
recurrent past claims of successfully established aquatic invertebrate cell lines have
turned out in fine to be cultures overgrown by microeukaryote contaminants, with
examples in each taxon (porifera, colonial cnidarians, crustaceans and others).

Overall, these two actions taken together could help to standardize aquatic
invertebrate cell culture to facilitates comparisons between intervention protocols and
thus help to optimize the standardized protocols. Given that aquatic invertebrates are
phylogenetically very distant, the development of a ubiquitous culturing environment
appears rather unlikely. Nevertheless, each phylum could benefit from the scientific
and technological advances in primary cell culture made in other phyla.

In particular, the assessment of whether the list of three identification criteria,
defined for vertebrate stem cells, are conserved in aquatic invertebrate stem cells,
would be of particular interest. The first criterion is whether the stem cells adhere to
plastic, and more generally if a specific culture method, such as 3D Matrigel, could
lead to decisive improvements (Urban-Gedamke et al. 2021). The second criterion
explores the expression of specific surface markers that would allow the robust
isolation and enrichment of stem cells/progenitors, as has been attempted by using a
single marker in a colonial tunicate (Kassmer et al. 2020). The third criterion aims to
define protocols for assessing stem cells’ potency differentiation potential, typically
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by using predefined induction cocktails combined with markers for differentiated
cell types, both of which require a precise characterization of gene expression profiles
specific to each cell-type for every species of interest (Sebé-Pedrds et al. 2018).

An alternative to identifying suitable stem cells is to immortalize cells of interest
in a reproducible manner. One suggested approach is to manipulate adult stem
cells of aquatic invertebrates similarly to the approach implemented in mammalian
induced pluripotent stem (iPS) cells (Rinkevich 2011). The second route, probably
the most promising and reliable approach, is to control the process of tumorigenesis
in aquatic invertebrates, as already suggested (Odintsova et al. 2011). Research on
this topic is currently very scarce (Gardner 1993; Robert 2010) primarily due to the
facts that tumorigenesis in aquatic invertebrates is not as commonly observed as
in vertebrates (Vogt 2008; Tascedda and Ottaviani 2014), that tumor-like lesions in
aquatic invertebrates possess a low mitotic index (Odintsova et al. 2011) and that
the definitions of tumors and tumor cells in aquatic invertebrates are less familiar
to pathologists (Tascedda and Ottaviani 2014). Yet, the tool of tumorigenesis may
constitute a very important route for future research, and a potential approach is
to use the trait of the vertebrates” cancer cells (Vincent 2012) as a guiding list for
tumors in aquatic invertebrates. A third concept proposes the use of regeneration
processes as the source of tumor development (Oviedo and Beane 2009), which is
particularly interesting given the broad involvement of aquatic invertebrates’ stem
cells in regeneration processes, including whole-body regeneration (Rinkevich et al.
2022). For each one of these three approaches, the development of suitable tools for
the controlled editing of genetic material of cells, typically through viral transfection,
could enable the knockdown of suppressor genes, similar to standard approaches
in mammalian cells (Yang et al. 2007). One such advance is the successful induced
stem cell neoplasia in the marine hydrozoan Hydractinia echinata by the ectopic
expression of a POU domain transcription factor (Millane et al. 2011). However,
even immortalized tumor-like cells will need appropriate culturing conditions to
proliferate properly. Lessons may be drawn from the failure to sustain in vitro the
neoplastic hemocyte proliferation observed in vivo in spontaneously occurring clam
leukemia, with research pointing to a role for the stress protein mortalin in the
induction of apoptosis in cancerous hemocytes (Walker et al. 2013). The RNA-seq
approach may be applied to compare gene expression patterns in cultured cells and
initial tissue, with a focus on essential cell proliferation and cell cycle arrest regulator
genes, in order to develop future strategies for immortalization, as recently explored
for developing shrimp cell lines (Thammasorn et al. 2020).

As a supplementary approach to support the development of cell lines from
aquatic invertebrate stem cells, studies on metabolomes of cultured cells, and
their secretomes in particular, could be considered. Such an approach may
provide important insights into the requirements in media composition that support

46



proliferative activities. Ample information has been gained on this issue in
mammalian cell cultures (Cuperlovié-Culf et al. 2010; Mohmad-Saberi et al. 2013).
Yet, the study of the secretome of aquatic invertebrates has seldomly been undertaken
(Kocot et al. 2016), but data on the metabolome of whole organisms in the context
of marine natural product discoveries are becoming quite common (Reverter et al.
2020). Furthermore, high-precision tool development specific to seawater are now
available (Sogin et al. 2019).

Finally, future research should also address the still largely overlooked abiotic
factors, such as testing hypoxia and pressure stimuli, on primary cultures.

Regarding hypoxia, parallel research in cultured mammalian cell models
has highlighted the better survival and proliferation of stem cells in low oxygen
environments (Zhu et al. 2005; Hung et al. 2012; Ramirez et al. 2011). A shift from
oxidative phosphorylation to aerobic glycolysis, known as the Warburg effect, has
been documented in the context of proliferating cancer cells: the glucose consumed
in high amounts to fuel the growing biomass of cancer cells is fermented to lactate
rather than oxidized, even when there is sufficient oxygen to convert glucose to
CO,, although the process is less efficient in terms of ATP synthesis (reviewed by
DeBerardinis and Chandel 2020). Hyperactive glycolysis involving lactate supports
the tumor energy metabolism of cancer stem cells in mostly hypoxic environments,
and similar pathways might support the metabolism of aquatic invertebrate stem cells.
A similar Warburg effect has indeed been documented in Crassostrea gigas oyster tissue.
First discovered during the response to viral infection with ostreid herpesvirus-1
(Corporeau et al. 2014), it is thought to be a mechanism to adapt the oyster metabolism
to extreme (salinity and oxygen) changes in the intertidal environment (Corporeau
et al. 2019). In agreement with this finding, preliminary data obtained on oyster
heart primary cell cultures showed transient increased proliferation between 2 and
4 weeks post-inoculation in a 2% O, atmosphere (obtained by incubation in a 95%
N>/5% air incubator), compared with 20% O, atmosphere (air) (Domart-Coulon,
unpublished), when medium was supplemented with growth factors, lipids and
antioxidants (Domart-Coulon et al. 1994).

Regarding pressure, research on the primary cultures of vertebrate (Wharton
Jelly’s) mesenchymal stem cells has shown the combined positive effects of pressure
and hypoxia (Park et al. 2020). In response to pressure stimuli, cell proliferation
was increased, and stemness was maintained. Cellular adhesion and confluency
were higher in 5% O, hypoxia with 2.0 PSI pressure conditions relative to standard
5% CO,-95% air conditions, and hypoxia alone yielded a mild increase in stem cell
adhesion and confluency. Thus, we propose the inclusion of these abiotic parameters
in future invertebrate stem cell culture optimization efforts.
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Appendix A
Table A1. All the detailed values used for building Figure 1.

Taxon Species Regeneration Longevity Publications Cell Lines
Hominidae 7 organ 122 16,851 96,862
Mammalia 5480 organ 211 7238 29,171
Vertebrata 56,508 appendage 392 884 1394

Tunicata 2760 WBR - 44 0
Cephalochordata 33 organ - 3 0
Ambulacraria 7111 WBR 200 42 0
Xenacoelomorpha 401 WBR - 1 0

Insecta 1,015,897 appendage 28 351 895
Ecdysozoa 202,423 appendage 100 110 94
Nemertea 1200 WBR - 0 0

Platyhelminthes 20,000 WBR - 16 1
Mollusca 85,000 appendage 507 121 5
Spiralia 26,099 WBR - 14 0
Cnidaria 9795 aggregates 4265 66 0
Placozoa 1 aggregates - 0 0
Ctenophora 166 WBR - 1 0
Porifera 6000 aggregates 15,000 58 0

Appendix B

Table A2. The full curated list of 511 references, sorted per taxa. (This table
was not included in the print version of this book, to view the table please visit
https://www.mdpi.com/books/pdfview/edition/5071).
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Adult Stem Cells Host Intracellular
Symbionts: The Poriferan Archetype

Alexander Ereskovsky, Baruch Rinkevich and Ildiko M. L. Somorjai

Abstract: Unlike vertebrates, adult stem cells (ASC) in a wide range of aquatic
invertebrate phyla are morphologically diverse, exhibiting a wide range of
differentiation states as well as somatic and germline physiognomies. They
may arise de novo by trans-differentiation from somatic cells and above all
represent phenotypes of specialized cells with multifunctionality. One unexpected
phenomenon is the presence of intracellular symbionts in the ASCs of some
invertebrates. Overviewing the literature on intracellular symbionts in sponge
(Porifera) ASCs and in other aquatic invertebrates, we reveal that ASC intracellular
prokaryotic and eukaryotic symbionts are restrictive to a single sponge class, the
Demospongiae. The eukaryotic symbionts in sponges are exclusively unicellular
photosynthetic algae, and are found only in pluripotent stem cells, most frequently
in the archaeocytes; they are documented in five orders of Demospongiae.
Bacteriocyte-like cells have been reported in sponges and three other phyla,
indicative of their independent evolutionary origins. The results of this study
add considerable insight into the establishment and maintenance of intracellular
symbioses in ASCs of aquatic invertebrates, and provide new a understanding of
the diversity of symbiotic associations across the tree of life.

1. Introduction

According to the prevailing dogma in cell biology, adult stem cells (ASC)
in animals are committed lineage-specific cells, with tissue-/organ-restricted fates,
and which are moreover capable of regeneration and repair of tissues and organs
(Clevers and Watt 2018). Ordinarily, ASCs are undifferentiated cells that give rise
to either daughter stem cells, non-self-renewing progenitors, or to lineage-specific
differentiated cells (Clevers and Watt 2018; Raff 2003). Model ASCs (in vertebrates and
insects) typically possess high nucleo-cytoplasmic ratios, are small in size compared
to lineage-differentiated progenies, and are often rare. However, ASCs in many
aquatic invertebrates are not only very common (up to one third of all animal
cells), but are also morphologically highly diverse, and exhibit a wide range of
differentiation states as well as somatic and germline characteristics, just to name
some key biological properties (summarized in Rinkevich et al. 2022). Moreover,
ASCs in aquatic invertebrates may arise de novo by trans-differentiation from somatic
cells (Borisenko et al. 2015; Ferrario et al. 2020) and above all represent phenotypes
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of specialized cells with multifunctionality. Examples include the ecto-/endodermal
epitheliomuscular cells in polyps of Cnidaria (Bosch et al. 2010; Hobmayer et al. 2012)
or the archaeocytes and choanocytes in Porifera (Funayama 2018).

One unexpected and, as yet, little-explored phenomenon is the presence of
intracellular symbionts in the ASCs of some invertebrates (for example, Bright and
Giere 2005; Masuda 1990; Pflugfelder et al. 2009; Saller 1989), and the evidence
that ASCs manipulate symbiont maintenance (Bosch et al. 2010; Dirks et al. 2012;
Kovacevic 2012). Below, we review the literature on ASCs and their symbionts in
sponges (Phylum: Porifera), which represent the best-known model case, as well as
the few examples from other systems. We place this within the context of intracellular
symbionts more generally, concluding with a discussion of how the application of
modern methodologies in sponges to this problem may improve our understanding
of this unusual symbiosis.

2. Symbiosis

2.1. What Is Endosymbiosis?

Symbiosis, an inter-dependent relationship between two species, is an important
factor for ecological diversity and evolutionary novelty (Sitte and Eschbach 1992;
Wernegreen 2012). The most comprehensive definition of symbiosis includes the full
range of interaction modes, from harmful (parasitic) to beneficial (mutualistic). It
applies not only to organisms living anywhere within the host body—such as within
tissues (extracellular) or within cells (intracellular)—but also to cytosymbiosis, the
intimate and long-lasting association of cells belonging to different taxa, and often
considered as the most intricate partnership among living entities (Sitte and Eschbach
1992; Wernegreen 2012). Both parasitic and mutualistic symbiotic interactions can
evolve into a state where there is a stable and permanent association between
symbionts and hosts. In the case of intracellular mutualists, evolutionary processes
may lead to cytosymbiosis through both morphological alterations as well as via
physiological/molecular incorporation of the symbionts into the hosts’ cellular
environments, to the point where endosymbionts are no longer easily recognizable as
foreign intrusions. Following such integrations, endosymbionts enhance the ability
of hosts to succeed in diverse contexts, from unbalanced diets and nitrogen-poor
soils, to hydrothermal vents and oligotrophic aquatic environments (Hinzke et al.
2021; Wernegreen 2012). Key functions performed by mutualistic, intracellular
endosymbionts include harvesting energy from chemicals or light, to converting
nitrogen into a usable form, and synthesizing nutrients that supplement the host’s
diet, to name just a few (Wernegreen 2012).

Cytosymbiotic associations can be organized within a graded series of cumulative
morphological integrations, including the development of arrays of mechanisms
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targeting the interactions between host and symbiont (Bandi et al. 1995; Melo-Clavijo
et al. 2018; Song et al. 2017). They can also be exposed to partner switching and rapid
compensatory evolution (Serensen et al. 2021). In cytosymbiosis, the interrelations
between the partners of each specific symbiosis can be commensalic, parasitic, or
mutualistic; but in every case, cytosymbiotic partnership leads to adaptive interaction
of the partners or even to strict co-evolution (Sitte and Eschbach 1992). Intracellular
symbiotic microorganisms commonly reside in specialized or non-specialized host
cells, but not in ASCs; the property of “stemness” could be regarded as mutually
exclusive to a highly differentiated and specialized cytosymbiotic state. The
appearance of such an association, therefore, should be studied not only from
functional but also from host/symbiont co-evolutionary perspectives, as unicellular
symbionts have been associated with sponges (and their ASCs) since their initial
evolution as multicellular animals (Ereskovsky 2010; Wilkinson 1983).

2.2. Porifera as Model Systems for ASC Cytosymbiosis

2.2.1. Overview of Characteristics of Organization and Cellular Plasticity

Sponges branch off basally in the metazoan phylogenetic tree and comprise four
distinct classes: Demospongiae, Hexactinellida, Calcarea and Homoscleromorpha.
Living sponges are found in all aquatic environments at all depths. A sponge is
traditionally defined as “a sedentary, filter-feeding metazoan”, and has no nerves,
muscles, specialised digestive system or gonads (Borchiellini et al. 2021).

Sponges have two cell layers, the choanoderm and the pinacoderm (Figure 1),
formed by choanocytes and pinacocytes, respectively. Choanocytes are flagellated
collar cells lining the filtering cavities of the aquiferous system, the choanocyte
chambers. Pinacocytes are flattened cells covering the outer parts of the body and
lining the canals of the aquiferous system. The space between the external pinacocyte
layer and the aquiferous system is filled by the mesohyl, a loose layer composed of
collagen fibrils, skeletal elements, and up to ten cell types with different degrees of
motility (Ereskovsky and Lavrov 2021; Harrison and De Vos 1991).

The tissues in sponges are simpler, both structurally and functionally, than in
other Metazoa. In particular, sponge tissues tend to be highly multifunctional when
compared to counterparts in more recent branching animal lineages, permitting
a higher rate of cell migration and thus an almost constant reorganization of
tissues. Moreover, the cells of sponge tissues possess a very high capacity for
transdifferentiation into other cell types (Gaino et al. 1995; Nakanishi et al. 2014).
In addition, sponges possess very high regenerative and reconstitutive abilities,
culminating in the re-building of a functional body from dissociated cells (reviewed
in Ereskovsky et al. 2015, 2020, 2021; Lavrov and Kosevich 2014; Simpson 1984).
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Figure 1. TEM images of principal pluripotent cells in sponges. (A)—archaeocyte of
Halisarca dujardinii (Demospongiae); (B)—choanocytes of Leucosolenia variabilis
(Calcarea); (C)—archaeocyte of the freshwater sponge Lubomirskia baicalensis
(Demospongiae) with intra-cellular algal symbionts; (D,E)—archaeocytes of the
marine sponge Haliclona sp. (Demospongiae) with intra-cellular dinoflagellate
symbionts (showing fibrillar material between algae and archaeocyte (arrowed)
(Modified from Garson et al. 1998). as—algal symbionts, ch—choanocyte,
d—dinoflagellate, f—flagellum, n—nucleus, ph—phagosome. Source: Graphic by
authors.

2.2.2. Sponge ASC Characteristics

As one of the most basal metazoan groups (Redmond and McLysaght 2021;
Simion et al. 2017), sponges hold a key position to address stem cell origins.

Most research on stem cells in sponges has been conducted in demosponges,
and until recently, consisted almost entirely of microscopic studies. However, in the
past few years, molecular studies have provided new insights. According to the
most recent investigations in Porifera, there are not only two (Funayama 2018), but
rather at least four types of pluripotent ASC: the archaeocytes and choanocytes, as
well as pinacocytes and particular amoeboid vacuolar cells (Ereskovsky et al. 2015;
Fierro-Constain et al. 2017; Lavrov et al. 2018).

Three main criteria are generally accepted as defining a stem cell: (1) the
capacity for self-renewal, (2) differentiation (or transdifferentiation) of this cell type
into others, and (3) contribution of this cell to the processes of homeostasis and
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regeneration (Melton 2014). The molecular evidence of their stemness includes
the expression of genes encoding GMP (germline multipotency program) proteins
(piwi, vasa, bruno, pl-10, and all the genes encoding Tudor domains, ddx6, and
mago-nashi); the observation that genes encoding RNA helicase and proteins involved
in mRNA splicing are elevated in the archaeocytes of the freshwater demosponge
Ephydatia fluviatilis (Alié et al. 2015); and expression of the EfPiwiA and EfPiwiB
genes detected in choanocytes (Funayama et al. 2010). GMP genes (piwi, argonaute,
vasa, nanos, pl10, tudor, pumillo, boule) are expressed in the choanocytes of adult
Oscarella lobularis (Homoscleromorpha) (Fierro-Constain et al. 2017). VasaB and
SciPL10B are also strongly expressed in the choanocytes of Sycon ciliatum (Calcarea)
(Leininger et al. 2014).

Choanocytes are specialized epithelial cells responsible for water movement
inside the sponge aquiferous system and food particle capture. These cells are
characterized by apical-basal polarity and the presence of a flagellum surrounded by
the collar of microvilli at the apical pole (Simpson 1984) (Figure 1B).

Archaeocytes are amoeboid cells of the mesohyl devoid of any polarity or
specialized features, and are typical in Demospongiae. These cells manifest
high polymorphism and multifunctionality. Up to now, no generally accepted
characteristics of archaeocytes have been defined. Only general features exist, which
are present in all archaeocyte descriptions: an amoeboid shape, a large nucleolated
nucleus and the absence of specialized inclusions in the cytoplasm (Ereskovsky
and Lavrov 2021; Simpson 1984), (Figure 1A,C). As for the function of demosponge
archaeocytes, their role has been described in: (1) the transport of food particles and
elimination of digestive products (Godefroy et al. 2019; Willenz and Van de Vyver
1984); (2) outgoing particulate organic matter (Maldonado 2016); (3) the burrowing
processes in excavating sponges (Riitzler and Rieger 1973); (4) spicules secretion
(Funayama et al. 2005; Rozenfeld 1980); (5) immunity role (Fernandez-Busquets 2008;
Smith and Hildemann 1986); (6) gametogenesis (Ereskovsky 2010; Simpson 1984);
(7) asexual reproduction (budding, gemmulogenesis, reduction body formation)
(Ereskovsky et al. 2017; Harrison et al. 1975; Simpson 1984); (8) regeneration, somatic
embryogenesis and growth (Buscema et al. 1980; Ereskovsky et al. 2020, 2021; Lavrov
and Kosevich 2014). Thus, this sponge archaeocyte multifunctionality is unusual for
the stem cells of Metazoa.

Notably, there is another unusual feature of archaeocytes in Demospongiae—the
presence of intracellular photosynthetic algal symbionts. Freshwater sponges
(order Spongillida) harbour Chlorophyta from the classes Trebouxiophyceae and
Chlorophyceae (zoochlorella), and Ochrophyta from the class Eustigmatophytacea.
Some marine demosponges (orders Haplosclerida and Clionaida) also harbour
Dinoflagellata Symbiodinium spp (zooxanthella) (Table 1).
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Table 1. Distribution of symbiotic intracellular unicellular algae in demosponge

adult stem cells.

De;\osgonge Adult Sponge Gemmule Buds Algal Species Method References
pecies Cell Type
Order Spongillida
Family Spongillidae
Phylum .
. Archaeocytes, Thesocytes (Masuda 1990; Gilbert
Sp Oflglllu choanocytes of green No Chloerp hyta TEM and Allen 1973;
lacustris (geen) o Trebouxiophyceae, I
(Williamson) gemmules Williamson 1979)
zoochlorellae
Sponeilla Archaeocytes, Trebouxiophyceae, In vivo
lf cil 5"1.5 choanocytes, Thesocytes No Chlorella sp. microscopy (Saller 1989, 1991)

N pinacocytes Germany LM, TEM

Sponeilla Trebouxiophyceae,
11}10 i sgrris ? Thesocytes No Choricystis minor - LM, (Handa et al. 2006)
Japon
Trebouxiophyceae,
Spongill ? ? No Lewiniosphacra MB (Préschold et al. 2010)
acustris symbiontica
USA
Nudospongilla (Brien and
moore; Amoebocytes ? ? Zoochlorella LM Govaert-Mallebranche
1958)
Radiosponeilla Thesocytes Trebouxiophyceae, (Masuda 1990; Handa
sen da}p ( e;qen) Archaeocytes of green No (zoochlorellae) TEM et al. 2006; Okuda
o & gemmules Choricystis minor et al. 2002)
. . Trebouxiophyceae,
Rﬂcde]riii(;l’;ét;;”a Archaeocytes T};?S(;?e];es No (zoochlorellae) TEM (Handa et al. 2006,
(geen) Yy emgmules Choricystis minor Masuda 1985, 1990)
8 8 and Chlorella
Archaeocytes, Archaeocytes,
Radiospongilla amoebocytes, N amoebocytes,  Trebouxiophyceae,
cerebellata choanocytes, : choanocytes, Chlorella LM, TEM (Saller 1990)
pinacocytes pinacocytes
Eunap s ? Thesocytes No Trebogxiog hy.ceae’ LM’ Iy_' oo (Handa et al. 2006)
fragilis Choricystis minor microscopy
Heteromeyenia
slepanowii Archaeocytes No No Zoochlorellae TEM (Masuda 1990)
(geen)
Ephydatia . -

T Trebouxiophyceae, (Wilkinson 1980;
ﬂ?gveuzii;ls Archaeocytes Thesocytes No Chlorella sp LM, TEM Gaino et al. 2003)
Ephydatia

uviatilis Archaeocytes No No No algae LM, TEM Gaino et al. 2003
Y/ &
(brown)
Ephy. datzg Archaeocytes Thesocytes No Chlorella sp. M, Ce.“ (Hall et al. 2021)
muelleri fractioning
. Trebouxiophyceae (Masuda 1990; Gilbert
E:Z ﬁzz’zzﬂ Archaeocytes No No Choricystis, M%’EI\C/IM’ and Allen 1973;
Chlorella sp. Williamson 1979)
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Table 1. Cont.

Demosponge Adult Sponge

Species Cell Type Gemmule Buds Algal Species Method References
Family Lubomirskiidae
Lubomirskia Chlorophyceae LM, TEM, (Chernogor et al.
baicalensis Archaeocytes No No Mychonastes jurisii SEM, MB 2013)
S Trebouxiophyceae ;
Lubomirskia Archaeocytes No No Chlorophyceae TEM (Ereskovsky etal.
baicalensis 2016)
Mychonastes sp.
L.ubmmrskm Archaeocytes No No Treboux@f)phycgqe LM (Kulakova et al. 2014)
incrustans Choricystis parasitica
Lubolml_rskta Archaeocytes No No Trebp uf(lloph_y ceac. LM (Kulakova et al. 2020)
abietina Choricystis krienitzii
Baikalospongia Archaeocytes No No Trebouxiophyceae LM (Kulakova et al. 2014)
bacillifera Choricystis parasitica
Bﬂ,l alosp ongia Archaeocytes No No Trebp ux1.ophvycgae“ LM (Kulakova et al. 2020)
intermedia Choricystis krienitzii
Family Metaniidae
C . Phylum
oroomeyena Archaeocytes No No Ochrophyta TEM (Frost et al. 1997)
everetti .
Eustigmatophytacea
Order Haplosclerida
Dinoflagellata,
Haliclona sp. Archaeocytes No No Symbiodinium LM, TEM (Garson et al. 1998)
microadriaticum
Order Clionaida
L Dinoflagellata
Cliona viridis Archaeocytes ? Archaeocytes Symbiodini LM, TEM (Rosell 1993)
ymbiodinium
Cliona
inconstans, C. Archaeocytes ? ? Zooxantellae LM, TEM (Vacelet 1981)
orientalis
Cliona caribbaea, Dinoflagellata
C . ’ Archaeocytes ? ? Gymnodinium LM, TEM (Raitzler 1990)
. varians ; o
microadriaticum
Lo . Dinoflagellata . .
Cer};{cu_mza Amoeb‘md No No Symbiodinium M (Riitzler and Rieger
cuspidifera cells microadriaticum 1973)
Order Suberitida
Suberites Archaeocytes No No Zooxantella LM (Cheng et al. 1968)
aurantiacus
Order Tetractinellida
Dinoflagellata
Cinachyra Amoeboid Zooxantella (Scalera-Liaci et al.
tarentina cells No No Symbiodinium LM, TEM 1999)

microadriaticum

CM—confocal microscopy; LM—light microscopy; MB—molecular biological data;
no—absence; SEM—scanning electron microscopy; TEM—transmission electron microscopy;
?—no data.

2.2.3. Diversity of Intracellular Algal Symbionts

Intracellular algal symbionts were described for the first time by Brandt (1881,
1882—see Krueger 2016) in mesohylar cells of the freshwater demosponge Spongilla
sp. Subsequently, thanks to progress in light and electron microscopy, intracellular
algal symbionts were found in a number of different sponge species, but exclusively
from the class Demospongiae (Riitzler 1990; Sara and Vacelet 1973; Sara et al. 1998;
Simpson 1984; Vacelet 1981; Wilkinson 1987). These symbionts include different
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species of the phylum Chlorophyta, the classes Trebouxiophyceae (genera Chiorella,
Zoochlorella, Choricystis, Lewiniosphaera), Chlorophyceae (Mychonastes) (Masuda
1985, 1990; Proschold and Darienko 2020; Saller 1990; Simpson 1984; Williamson
1979), dinoflagellates (Zooxanthellae) of the genera Symbiodinium and Gymnodinium
(Annenkova et al. 2011; Garson et al. 1998; Hill 1996; Pang 1973; Rosell and Uriz 1992;
Riitzler 1990; Sara and Liaci 1964; Scalera-Liaci et al. 1999; Vacelet 1981), cryptophytes,
cryptomonads (Wilkinson 1992), diatoms (Cox and Larkum 1983), coccoid red algae
(Lemloh et al. 2009) eustigmatophytes (Frost et al. 1997), and macroscopic algae (Price
et al. 1984; Riitzler 1990) (Table 1).

2.2.4. Distribution of Archaeocytes with/without Symbionts in the Sponge

Archaeocytes are the principal cells acing as hosts (Table 1), and the same
archaeocyte can contain from one to several algal symbionts (Gaino et al. 2003;
Masuda 1990; Saller 1989). In some freshwater sponges, green algal symbionts can
also be found inside choanocytes and pinacocytes (Gilbert and Allen 1973; Saller
1990, 1991). This is also true for some marine demosponges. In Haliclona sp., algal
cells of Symbiodinium microadriaticum are grouped together in clusters of 6 + 10 cells
and enclosed by sponge cells, rather than being randomly distributed throughout
the mesohyl (Garson et al. 1998). In the boring sponges Cliona inconstans and C.
orientalis, the Zooxanthellae are always intracellular and occur in individual vacuoles
of archaeocytes (Figure 1D,E). Each cell contains several algae (Vacelet 1981). In Cliona
caribbaea and C. varians, the symbiotic dinoflagellates Gymnodinium microadriaticum
are intracellular, either fully embedded in a host archaeocyte vacuole or encircled by
host cell filopodia (Riitzler 1990).

The spatial distribution of cells harboring symbionts in the sponge body is
not homogeneous. In Cinachyra tarentina, the majority of the zoochlorellae are
concentrated in the cortical zone of the sponge (Scalera-Liaci et al. 1999). Archaeocytes
of Ephydatia fluviatilis harbour Chlorella concentrated mainly in the uppermost
regions of the sponge body; in the inner parts of the sponge body, cells do not host
zoochlorellae (Gaino et al. 2003).

The intracellular position of algal cells occurs in the host cytoplasm within
vacuoles. At least in more thoroughly studied systems such as protists, the cnidarian
Hydra viridis and the sponge Spongilla lacustris, two types of vacuole are observed
(Reisser and Wiessner 1984). The first, the perialgal vacuole, always harbours only
one algal cell. The wall of this type of vacuole is attached to the vacuolar membrane
of the host. A perialgal vacuole divides simultaneously with the enclosed alga and
apparently protects it from host lytic enzyme action (Reisser and Wiessner 1984). The
chlorellae are able to divide inside the perialgal vacuole of sponge cells in Spongilla
lacustris (Saller 1990). The second, the food vacuole, contains algae in various stages
of digestion and other material (Simpson 1984). This may allow the host cell to absorb
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nutrients from damaged or dying algae, or under particularly adverse conditions in
which the symbiont can no longer be maintained.

2.2.5. Intracellular Symbiosis Is Facultative

Three lines of evidence indicate that intracellular symbiosis of algal and sponge
cells is facultative: (1) geographic, (2) ecological and (3) ontogenetic. The best
geographic evidence comes from Spongilla lacustris. These sponges are able to host
different algae species in their archaeocytes, depending on the geographic region
they inhabit: Chlorella sp. in Germany (Saller 1989), Choricystis minor in Japan (Handa
et al. 2006), Choricystis parasitica and Lewiniosphaera symbiontica in Massachusetts
(USA) (Proschold et al. 2010). (2) Ecological evidence. With respect to ecological
evidence, many populations of the same freshwater sponge species contain green,
brownish, and white individuals as a result of temporal and/or spatial variation in
light availability. Electron microscopy investigation revealed that green sponges
harbour zoochlorellae, which absent in the brownish ones (Gaino et al. 2003). Sponges
that have green colour with zoochlorellae will quickly turn white when shaded (Frost
and Williamson 1980), as zoochlorellae were digested by their host (Williamson 1979).
Other examples are fresh-water sponge species that live in dark habitats, such as
underground caves (Eunapius subterraneus in Croatia (Bilandija et al. 2007); Racekiela
cavernicola in Brasil (Volkmer-Ribeiro et al. 2010)), or at great depths in lakes that
completely lack symbiotic eukaryotic algae (e.g., Baikalospongia abyssalis in Baikal
(Itskovich et al. 2017)).

There is also experimental evidence. For example, Hall et al. (2021) infected
young aposymbiotic sponges of Ephydatia muelleri that had hatched from gemmules
with sponge-derived algae. Evidence of the establishment of intracellular position by
the algae was manifested within 4 h of infection. At the 24-hour time point, many
sponge host archaeocytes harboured multiple or single algae within a single cell.

In adult sponges the algae are transmitted among the sponge cells in a very
particular way. After the donor and the recipient cell getting closer each another,
the vacuole includes Chlorella inside bulges out, surrounded by cell processes of the
recipient cell. The vacuole opens, while the donor cell retracts and the recipient
cell closes around the alga. Finally, the alga is incorporated into the recipient cell
(Masuda 1990; Saller 1991). No release of the algae into the intercellular mesenchyme
was detected. Then, the chlorella cells divide inside the sponge cells.

2.2.6. Horizontal and Vertical Transmission of Intracellular Algal Symbionts

As we showed above, the sponge-algal symbiosis is facultative. Accordingly,
the transmission of algal symbionts occurs horizontally during sexual reproduction.
In any event, not a single study has so far shown the presence of algal symbionts in
sponge larvae. As for asexual reproduction, the situation there is more complicated.
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In sponges there are three types of asexual reproduction: fragmentation, budding
and gemmule formation (Ereskovsky 2010).

During fragmentation, the sponge is divided into two or more parts, each
consisting of all tissue types and the symbionts. In contrast, during the
budding process, the vertical transmission of intracellular symbiotic algae has
been documented for two species: in the fresh-water sponge Radiospongilla cerebellata,
where bud cell archaeocytes, amoebocytes, choanocytes and pinacocytes included
Chlorella sp. (Saller 1990); and in the marine boring sponge Cliona viridis, in which the
archaeocytes of the buds harbour intracellular dinoflagellate symbionts (Rosell 1993).

Gemmules of demosponges are special dormant structures that are capable,
under suitable conditions, of developing asexually into new adult animals (Simpson
1984). Gemmules develop from the pluripotent archaeocytes. Gemmule thesocytes
(resulting from archaeocyte differentiation) of many freshwater sponges include four
or five functional algal endosymbionts per cell (Gilbert and Allen 1973; Masuda 1990;
Okuda et al. 2002; Williamson 1979). The ultrastructure of zoochlorellae inside of
gemmules differs from the ultrastructure of active symbionts in adult, green sponges:
the gemmular symbionts contain loosely packed membranes of the chloroplasts, they
generally lack lipid granules, and they lack chloroplast starch grains (Masuda 1990;
Williamson 1979). This modification in structure could be a result of the relative
inactivity of the symbionts inside gemmules. However, it has been shown that the
symbionts within thesocytes are photosynthetically active, and could pass some of
their photosynthate to the sponge cells (Gilbert and Allen 1973).

Before hatching, symbiotic algae could be phagocyted, and thus the young
sponges that develop from such gemmules would be aposymbiotic (Rasmont 1970),
without signs of symbiotic algal propagation (Simpson 1984; Williamson 1979).
Yet, under dark conditions, brown gemmules do not host symbiotic algae, or only
possess them in very low numbers (Gilbert and Allen 1973; Jorgensen 1947; Simpson
1984). Therefore, the vertical transmission of intracellular algal symbionts during
gemmulogenesis in sponges is facultative.

2.3. Cytosymbiosis in ASCs-Beyond Poriferans

In contrast to the demosponges, cytosymbiosis in ASCs is a rare situation in
other multicellular organisms in general, and in marine invertebrates in particular
(Figure 2). Nevertheless, several well documented cases attest to the importance of
ASCs in coordinating and maintaining intracellular symbiosis. Examples include
the deep-sea vestimentiferan tubeworms (Polychaeta; best known are Lamellibrachia
luymesi and Riftia pachyptila), which live in symbiosis with intracellular bacteria housed
in bacteriocyte host cells (considered to be “tissue-specific unipotent bacteriocyte
stem cells”; (Pflugfelder et al. 2009)), located within a special organ, the trophosome
(Bright and Giere 2005). These stem cells continuously proliferate to produce new

74



bacteriocytes, a process leading to self-renewal of bacteriocyte and to a complex
control of the symbiont population in these host cells. Similarly, the free-living
symbiotic flatworm Paracatenula galateia possesses intracellular, sulphur-oxidizing
bacteria (also called bacteriocytes): as for all other somatic cells in adult worms, the
bacteriocytes originate solely from the pool of aposymbiotic neoblasts, the ASCs of
flatworms (Dirks et al. 2012). In addition, in Hydra, the epithelial stem cells lineages,
but not the interstitial cells, actively shape the microbial intracellular communities
of epithelial cells (Fraune et al. 2009). However, the elimination of nerve cells and
secretory gland cells, two important cell types derived from interstitial cells, had
a significant influence on the structure of symbiotic microbiota. Further, in the
branching coral species Stylophora pistillata, algal containing cells in the endodermal
layer express “stemness” genes such as Nanos and Tudor, as well as Tubulins and
genes involved in the cell cycle (Levy et al. 2021), indicating that these cells may
carry stem cell properties. There is also some preliminary evidence for ASC-related
cytosymbiosis in hibernating colonies of botryllid ascidians (Hyams et al. 2017).
About 15% of the blood cell population in the vasculature of hibernating colonies
was first identified as phagocytes. However, transmission electron microscope
studies revealed specific facultative symbionts—Endozoicomonas bacteria—inside
their phagosomes. This novel case of cytosymbiosis develops de novo and only
during stress conditions, a phenomenon most probably controlled by circulating
ASCs (B.R., unpublished data).

There are additional unique examples of the involvement of ASCs of terrestrial
invertebrates in maintaining or controlling intracellular symbionts. In early
developmental stages of the aphids Acyrthosiphon pisum and Megoura viciae
and in the cockroach Periplaneta americana, studies revealed de novo bacteriocyte
formation from aposymbiotic ASCs, followed in the cockroaches by postembryonic
divisions of the bacteriocytes (Braendle et al. 2003; Chevalier et al. 2011; Lambiase
et al. 1997; Maire et al. 2020; Miura et al. 2003), suggesting that insect and tubeworm
bacteriocytes proliferate (Dirks et al. 2012). The same applies to haemocytes of
the isopod Armadillidium vulgare, which host endosymbiotic Wolbachia cells,
intracellular o-proteobacteria (Chevalier et al. 2011) that are considered parasites in
many insects such as Drosophila, in which they colonize female germline stem cells
(Ote and Yamamoto 2020). However, some strains also appear to confer protection
against RNA viruses in flies and mosquitoes in the laboratory, indicating a mutualism,
although it is still unclear if this antiviral effect exists in the wild (reviewed in (Pimentel
etal.2021)). Intracellular Wolbachia symbionts are not only the cytosymbiotic bacteria
in insect stem cells, as germline cells can also be colonized by other microorganisms,
such as the Gram-positive bacterium Spiroplasma in Drosophila (Hackett et al. 1986),
or the Gram-negative bacterium Arsenophonus, which infects the Sulcia symbiont of
the leathopper Macrosteles laevis (Kobiatka et al. 2016). The aforementioned means
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of ASC control is further illustrated by bacteria from larval bacteriocytes in uninfected
nuclei of putative stem cells, as assessed over the course of metamorphosis (Maire
et al. 2020).
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Figure 2. Distribution of algal, cyanobacterial and bacterial endosymbionts in
metazoan phyla. To the left, a cladogram illustrates phylogenetic relationships
among phyla; branch lengths are not proportional to evolutionary divergence. The
position of sponges (Porifera) is highlighted in red. Coloured boxes indicate
bilaterian lineages belonging to the Ecdysozoa (yellow), Gnathifera (green)
Lophotrochozoa (blue), and Deuterostomia (pink). The positions of Acoelomorpha
and Xenoturbellida are still debated and are indicated by dotted lines. To the right
of each phylum, absence of endosymbionts (red symbols) as well as presence of
algal (green symbols), cyanobacterial (blue symbols) and bacterial (orange symbols)
endosymbionts are shown. Note that for many lineages, examples of both (mixed
circles) intracellular (filled circles) and extracellular (empty circles) symbionts
exist and where endosymbiosis is uncertain, dotted circles are used. Groups in
which bacteriocytes have been reported are indicated by a “B” next to the bacterial
endosymbiont column. An asterisk (*) denotes cases in which ASCs have been
reported in the literature to contain endosymbionts. Sources: Acoelomorpha:
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(Melo-Clavijo et al. 2018; Hikosaka-Katayama et al. 2012; Venn et al. 2008);
Nemertea: (McDermott 2006); Platyhelminthes: (Dirks et al. 2012; Dubilier et al.
2008; Gruber-Vodicka et al. 2011; Melo-Clavijo et al. 2018; Venn et al. 2008); Annelida:
(Dubilier et al. 2008); Ectoprocta: (Karagodina et al. 2018; Saffo 1992; Sharp et al.
2007); Gastrotricha: (Todaro et al. 2017); Mollusca: (Dubilier et al. 2008; Duperron
et al. 2006; Melo-Clavijo et al. 2018; Venn et al. 2008); Chaetognatha: (Thuesen and
Kogure 1989); Rotifera: (Selmi 2001); Arthropoda: (Dubilier et al. 2008; Lindquist
et al. 2005); Tardigrada: (Vecchi et al. 2016); Nematoda: (Dubilier et al. 2008);
Priapulida: (Kroer et al. 2016); Vertebrata: (Baker et al. 2019; Kerney et al. 2011;
Melo-Clavijo et al. 2018); Urochordata: (Melo-Clavijo et al. 2018; Mutalipassi
et al. 2021; Saffo 1992); Echinodermata: (Carrier and Reitzel 2020; Saffo 1992);
Xenoturbellida: (Kjeldsen et al. 2010); Cnidaria: (Melo-Clavijo et al. 2018; Venn
et al. 2008); Porifera: (Riitzler 1990; Saller 1991; Sara et al. 1998; Williamson 1979);
Ctenophora: (Daniels and Breitbart 2012; Hernandez and Ryan 2018); Placozoa:
(Gruber-Vodicka et al. 2019). Please see text for details.

The important interplay between ASCs and their intracellular symbionts has
also been recorded in vertebrates. For instance, the intracellular bacterial pathogen
Mycobacterium leprae has the capacity to alter the developmental reprogramming
of lineage committed host glial cells to progenitor/stem cell-like cells in mammals
(Hess and Rambukkana 2015). In addition, the host-pathogen symbiosis commonly
recorded between bacteria and stem cells of the intestine, where microbial products
can stimulate stem cell survival, trigger regeneration and provide protection against
stress (Nigro et al. 2014), or the ways in which Escherichia coli cells can mobilize
functional hematopoietic stem cells (Burberry et al. 2014), are but two of many
examples of what may be a widespread but poorly understood phenomenon in
animals.

3. Discussion and Future Perspectives

Here, we showed that the intracellular symbionts (either prokaryotic or
eukaryotic) of sponges are found only in representative species of Demospongiae,
one of the four Porifera classes (Demospongiae, Hexactinellida, Homoscleromorpha
and Calcarea; Table 2). Prokaryotic organisms are found in specialized
cells—bacteriocytes—in representatives of different orders of Demospongiae (Table 2).
Bacteriocyte-like cells have been reported in four phyla, indicative of their
independent evolutionary origins (Figure 2). Eukaryotic symbionts are exclusively
unicellular photosynthetic algae in sponges, and are found in pluripotent stem cells,
most frequently in the archaeocytes; they are documented in five orders: Spongillida,
Haplosclerida, Clionaida, Suberitida, and Tetractinellida (Table 1). It is interesting to
note that the representatives of the green algae from the phylum Chlorophyta were
found only in freshwater sponges of the order Spongillida.
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Table 2. Distribution of bacteriocytes harboring intracellular symbiotic bacteria

within Porifera.

Order Species Bacte}'loc.yte Stem-Cell References
Localization
Class Demospongiae
Biemnida Biemna ehrenbergi Mesohyl No (Ilan and Abelson 1995)
Neofibularia irata Mesohyl No (Wilkinson 1978)
Axinellida Cy mbasteﬁlla Mesohyl No (Nguyen et al. 2014)
concentrica
Verongiida Aplysina cavernicola Mesohyl No (Vacelet 1975)
Aplysina aerophoba Mesohyl No (Vacelet 1975)
Aplysina cauliformis Mesohyl No (Gochfeld et al. 2019)
Aplysina fistularis Mesohyl No (Negandbhi et al. 2010)
Haplosclerida Petrosia ficiformis Mesohyl No (Vacelet T;}d%:)onaday
Haliclona tubifera Larva No (Woollacott 1993)
Haliclona cnidata Mesohyl No (Schellenberg et al. 2020)
Haliclona sp. Mesohyl No (Tianero et al. 2019)
Oceanapia sagittaria Mesohyl No (Salomon et al. 2001)
Cribochalina Mesohyl No (Riitzler 1990)
Chondrosida Chondrosia reniformis Mesohyl No (Lévi and Lévi 1976)
. . Co (Ereskovsky
Chondrillida Halisarca dujardinii Mesohyl No unpublished)
Halisarca restingaensis Mesohyl No (Alvizu et al. 2013)
Chondrilla australiensis Mesohyl and No (Usher and Ereskovsky
Larva 2004)
Suberitida Suberites domuncula Mesohyl No (Bohm et al. 2001)
Tetractinellida Thoosa Sgp’ Alectona Mesohyl No (Garrone 1974)
Jaspis stellifera Mesohyl No (Wilkinson 1978)
Tethyida Tethya stolonifera Mesohyl No (Taylor et al. 2021)
. . . (Vacelet and
Poecilosclerida Lycopodina hypogea Mesohyl No Boury-Esnault 1996)
Cladorhiza sp. Mesohyl No (Vacelet et al. 1996)
Crambe crambe Mesohyl No (Maldonado 2007)
Hymedesmia .
methanophila Mesohyl No (Rubin-Blum et al. 2019)
Scopalinida Svenzea zeae Mesf;};laand No (Riitzler et al. 2003)
Scopalina ruetzleri Mesohyl No (Riitzler et al. 2003)
Agelasida Astrosclera willeyana Mesohyl No (Worheide 1998)
Demospongiae Myceliospongia Mesohyl No (Vacelet and Perez 1998)

incertae sedis

araneosa

It is generally accepted that all multicellular organisms actively coordinate

somatic maintenance properties, including growth (in organisms with indeterminate
growth -such as sponges, corals, and the immortal Hydra- throughout the organism’s
life span; (Vogt 2012)); cell proliferation and cell death for tissue homeostasis; and for
phenomena such as regeneration, with ASCs in some of these organisms acting as the
building blocks for all needs (Biteau et al. 2011; Merrell and Stanger 2016; Rinkevich
et al. 2022). The additional cellular homeostasis required for the management
and coordination of intracellular symbiosis clearly presents a scenario in which
non-traditional functions were imposed on ASC performance during evolution. In
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contrast to the sponge examples, most other ASC types do not possess intracellular
symbionts and yet directly or indirectly influence cytosymbiosis in a wide range
of marine and terrestrial taxa (but see Wolbachia infections in isopods that harbour
these intracellular parasites not only inside haemocytes but also within ASCs of the
hematopoietic system, or the Wolbachia that highjack the female germline of insects
(Chevalier et al. 2011; Ote and Yamamoto 2020). Indeed, intracellular symbionts
are rarely associated with ASCs, and to our knowledge—with the exception of
sponges—only in the case of bacterial symbionts (Figure 2).

It is, therefore, of great interest to illuminate the mechanisms driving the
highly coordinated behaviours of ASCs in specific symbioses, such as the unipotent
bacteriocyte stem cells that continuously proliferate to produce new bacteriocytes
in some annelids (Bright and Giere 2005); the maintenance of symbiosis during
the continuous bacteriocyte formation from aposymbiotic neoblasts in adult
paracatenulid flatworms (Dirks et al. 2012); the epithelial stem cells that actively
shape the microbial intracellular communities in Hydra (Fraune et al. 2009); or
the larval bacteriocytes that develop from uninfected putative stem cells in the
rice weevil Sitophilus oryzae (Alvizu et al. 2013). Thus, cytosymbiosis-borne ASC
phenomena are either established (in sponges) or supported (directly and indirectly;
at least in Cnidaria, Platyhelminthes, Annelida, Arthropoda [insects and crustacean
alike], Urochordata and Vertebrata). However, the most prominent examples of
endosymbiotic ASCs come from the sponges.

Many challenges remain in studying symbioses at the mechanistic level. First,
it should be possible to isolate and culture host and symbiont separately; this
is rarely possible. Many symbioses have arisen in inhospitable environments
(e.g., deep sea Bathymodiolus mussels and their sulphide- and methane-oxidizing
bacterial symbionts, (Duperron et al. 2006), which cannot be easily recreated in the
laboratory. Marine algae are particularly difficult to culture, and yet are the basis
for many photosymbiotic associations. In addition, many symbioses are obligate, or
transmitted vertically, making them near impossible to manipulate without killing
host or symbiont, or affecting embryonic survival. It should be possible to generate
aposymbiotic and symbiotic hosts at will to understand the metabolic and genetic
changes directly caused by symbiosis. Such studies on sponges have recently been
initiated (Geraghty et al. 2021; Hall et al. 2021). Finally, from a technical perspective, it
is often difficult to separate host and symbiont genomes in intracellular symbioses. In
particular, RNA sequencing of endosymbiotic host tissues en masse fails to adequately
define transcriptional profiles at the fine resolution necessary to assess changes at the
cellular level.

In spite of these many limitations, metagenomic approaches are now giving
new insight into host-symbiont interactions. For instance, dual RNA-seq combined
with imaging has allowed the time course of endosymbiont-embryonic host cellular
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interactions to be mapped during cereal weevil metamorphosis (Maire et al. 2020).
RNAseq of aposymbiotic and symbiotic bobtail squid tissues as well as Vibrio both
before and after venting from the light organ (Thompson et al. 2017) and hybridization
chain reaction-fluoresencent in situ hybridization of both partners at the onset of
symbiosis maps transcriptional changes in situ (Nikolakakis et al. 2015). A recent
RNASeq analysis, combined with electron and confocal microscopy of fresh-water
demosponge model Ephydatia muelleri, has revealed some of the genetic pathways
involved in intracellular host/photosymbiont interactions, identifying putative
genetic pathways involved with endosymbiosis establishment (Hall et al. 2021).
RNASeq analysis and comparative analyses of the transcriptomes of aposymbiotic
and symbiotic sponges have identified a suite of genes that are regulated at the early
establishment stages of the stable symbiosis between E. muelleri and its native green
algal symbionts (Geraghty et al. 2021). Authors have also begun to differentiate these
genes from those involved in generalized phagocytosis events related to feeding
and/or immunity. Single cell analyses are providing new avenues for understanding
that might be well suited to tackling the ASC/endosymbiont—poriferan mutualism. As
a case in point, recent work on the cnidarian coral Xenia has identified the cell lineage
containing the Symbiodinium algal symbiont as originating as a pre-endosymbiotic
progenitor pool (Hu et al. 2020). Similarly, Levy et al. (2021) simultaneously queried
the transcriptomes of Symbiodinium-containing host cells and their symbionts, and
compared with “free” Symbiodinium and non-symbiotic gastrodermal cells and in the
stony coral Stylophora pistillata. They identified shared lipid metabolism pathways
in algal hosting cells with those of Xenia (Hu et al. 2020) and Exaiptasia pallida
(Hambleton et al. 2019), a symbiotic anemone, suggesting cnidarian-dinoflagellate
photosymbioses may generate very particular constraints on physiologies despite
their independent evolutionary origins. Similar efforts in sponges would thus add
considerable insight into the establishment and maintenance of photosymbioses, and
provide new insight into the diversity of symbiotic associations seen across the tree
of life.
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