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Preface

Causal thinking is an everyday activity. We all are confronted with questions
of causation, whether to figure out why the car is making a funny noise or
why a toddler is running a fever. Our fascination with investigating causes is
reflected in the enduring popularity of detective stories and in the frequency
of investigative reports in the news.

Because causal inference is commonplace,* a book on ecological causal
assessment may seem unnecessary. However, causes are not always easy
to determine. Ecosystems are complex; the factors we can influence interact
with natural factors, random processes, and initial conditions to produce the
effects that are observed. Taking corrective action to remedy an environmen-
tal problem before knowing its cause could target the wrong thing, deplet-
ing scarce resources and missing an opportunity to improve environmental
quality.

Formal processes for causal assessment, as described in this book, are
particularly helpful when the situation is complex or contentious. A well-
articulated process guides the analysis of available data and optimizes fur-
ther collection efforts. A transparent process helps others replicate results
and is more likely to convince skeptics that the true cause has been iden-
tified. A consistent process helps meet legal and regulatory standards for
reasonableness and ensures that scientific information contributes to these
decisions. Perhaps most importantly, formal methods help to eliminate
biases that arise because of the all-too-human tendency to make and defend
causal judgments too readily. As aptly articulated by the physicist Richard
Feynman, “The first rule of science is not to fool yourself—and you are the
easiest person to fool.”*

We began this project with a practical purpose—to share useful methods
and strategies for identifying causes of undesirable biological effects in spe-
cific places. Causal assessment is a challenging, often humbling, but endlessly
fascinating endeavor. It begins with the intrigue of a good mystery—why
did this effect happen? Success requires the persistence to figure things out
and solid strategies for using the information that you have and getting more
of the right kind of information that you need. We feel fortunate to have
been involved with adapting existing methods and testing new approaches.
It has led us to renewed study of our intellectual heritage of science and phi-
losophy, the strengths and foibles of human cognition, and the underlying

* Even infants are capable of recognizing causal processes (e.g., Leslie, A. M. and S. Keeble.
1987. Do six-month-old infants perceive causality? Cognition 25:265-288).

* Feynman, R. 2001. Cargo cult science: Some remarks on science, pseudoscience, and learning
how not to fool yourself. In The Pleasure of Finding Things Out: The Best Short Works of Richard
Feynman, edited by J. Robbins. Cambridge, MA: Perseus.
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assumptions of different sampling designs and analytical methods. It has
also allowed us to provide scientific assessments and advice on some of the
more complex ecological problems of our times.

We have drawn on our personal experiences and those of our colleagues to
provide examples and to describe approaches for assessing causes of unde-
sirable biological effects in ecological systems. Some of these effects have
captured the public’s attention and concern: collapsing fisheries and bee col-
onies; bleaching coral reefs; endangered species; dwindling stream life; and
kills of fish, birds, and bats. Behind these reports are scientists who monitor
our ecological systems and carefully document when something is amiss. In
the past 20 years, biological monitoring has become an essential part of the
environmental management tool kit. Causal assessment is the next essential
tool. When we wonder why a condition has worsened, causal assessment
finds the explanation.

We believe that this book provides sound advice for the near term. We hope
that it will lead the way to future improvements in methods and applicable
scientific knowledge. We also hope that our study of causal assessment in
the context of environmental management advances the larger field of causal
assessment and provides insights into how we all can improve our causal
reasoning.
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Part 1

Introduction and
Philosophical Foundation

Part 1 provides an introduction to causation and a solid foundation for
performing a causal assessment. Chapter 1 introduces the causal assess-
ment process using an example of low biological diversity in a stream and
describes how scientific data and expertise are used to assess causation.
Chapters 2 and 3 describe how the process for performing causal assess-
ment is derived from the work of prior philosophers and scientists. Chapter
4 explains the characteristics of causation and introduces some commonly
used types of evidence. Chapter 5 concludes Part 1 by discussing common
errors and biases and ways of minimizing them.






1

Introduction

Susan B. Norton, Susan M. Cormier, and Glenn W. Suter II

What are these boxes? Each chapter begins with a text box that describes
its contents and highlights.

This chapter provides an overview of the book and a brief example

of a causal assessment. It describes the book’s purpose: to show how
scientific data and expertise can be used to reach credible, defensible
conclusions about the causes of undesirable biological effects in eco-
logical systems.

CONTENTS
1.1 What is an Ecological Causal Assessment?...........c.c.ccoooceeiiiiinieiniccnnna. 4
1.2 Strategies for Ecological Causal Assessment..............cccocoeueieiiirininininnnnan. 6
1.2.1 Part 1: Introduction and Fundamentals ..........cccccooveevevirieeeeecnnenn, 7
1.2.2  Part 2: Conducting Causal Assessments..........cccccooevruiieiiirnnnnnn. 8
1.2.2.1 Part 2A: Formulate the Problem.........c..ccccoevvieeiienieennennee. 8
1.2.2.2 Part 2B: Derive EVIidence .......c.cccceevveeeieceeeceecceeeeeeneens 10
1.2.2.3 Part 2C: Form ConclusSions ........c.cccceeeveeveeeeeeereeeeeeneenns 10

1.3

1.2.2.4 After the Causal Assessment: Using the Findings....... 11
1.2.2.5 A Brief Example Case: Causal Assessment in

the Willimantic River, CT .....cc.ccooovveeieieeeeeeeeeeeeeeeveee 11
1.2.3  Part 3: Case StUAIOS.....c.ucevvieeieeeeeeeeeee ettt 13
SUIMIMATY ...ttt 13

It was a mystery. Chris Bellucci, a biologist with the State of Connecticut,

had

sampled the insects and other aquatic macroinvertebrates in the

Willimantic River below the outfall from a publicly owned treatment
works. He concluded that the macroinvertebrate assemblage did not meet
the State’s biological quality standard. This was not the mystery. The puz-
zle that confronted Bellucci was that macroinvertebrate samples taken
upstream and above the influence of the treatment works were similarly
degraded. Clearly, the treatment works was not the only reason that the
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macroinvertebrate assemblage did not meet the standard. But if effluent
from the treatment works was not causing the upstream degradation, then
who or what was the cause?

We have written this book to help investigate and solve environmental
problems. In particular, the book is for scientists and engineers who are
interested in finding the causes of undesirable ecological conditions, such
as a fish kill, a decline in a population or assemblage, or increased incidence
of disease or deformity. We describe an approach for assessing the causes of
undesirable effects that includes developing a list of candidate causes of the
observed effects, deriving evidence for or against each alternative, and iden-
tifying the best explanation by considering all of the evidence. We describe
the philosophical and historical underpinnings of the approach and strate-
gies for preventing common biases and blind spots. We hope the information
and methods will provide you, our readers, with the tools and confidence
needed to unravel tough environmental problems and help build the knowl-
edge base for effective management solutions.

Causal assessments are not always easy to do, but their results are
empowering. When one moves from identifying that a problem exists to
understanding the causes of the problem, the stage is set for action. Even
when one probable cause does not clearly emerge, a causal assessment can
help narrow the field of possibilities, identify critical data needs, and pro-
vide the necessary impetus to collect the needed data that will reveal the
cause. In the Willimantic River, chemicals from a broken sewer pipe in a
tributary were eventually found to be the cause of the degraded assem-
blage. The State moved quickly to reroute the discharge. Over the next
two years, they continued to monitor the macroinvertebrates. The stream
assemblage recovered, verifying that the action was effective and the dis-
charge was the cause.

1.1 What is an Ecological Causal Assessment?

Assessments can be broadly defined as technical support for decision-
making.* Ecological causal assessments provide support for manage-
ment decisions intended to solve environmental problems that adversely
affect ecological systems and the biota that inhabit them. In this book,
causal assessments are specific to a particular situation, system, or place.
For example, was a particular fish kill caused by low dissolved oxygen
levels from an algal bloom? Another kind of causal assessment evaluates

* This definition extends the definition of risk assessment in Suter (2007) to all types of
assessments.
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Is there a problem? | Assess biological condition |

What is the cause?

Assess cause
Assess options

What is the best
course of action?

Did the action work?

Assess outcomes

Desired condition
restored

Knowledge of ecological causal processes

What did we learn?

FIGURE 1.1

Causal assessment (shown in bold) is only one step in a series of activities needed to solve envi-
ronmental problems. (Adapted from Norton, S. B, P. J. Boon, S. Gerould et al. 2004. In Ecological
Assessment of Aquatic Resources: Linking Science to Decision-Making, Pensacola, FL: SETAC Press;
Cormier, S. M., and G. W. Suter II. 2008. Environ Manage 42 (4):543-556.)

whether a factor is even capable of causing a specific effect. These types
of assessments are prompted by questions such as “are algal blooms capa-
ble of causing fish kills?” and work out the scientific details describing
how high algal biomass provides organic matter for bacterial decomposi-
tion, with its associated respiration and depletion of oxygen. Many of the
approaches and specific methods we discuss in this book are useful in
evaluating questions of general capability. But we will emphasize how to
use this knowledge to investigate particular cases and solve problems at
specific locations.

Causal assessments are usually undertaken as one in a series of activi-
ties used to identify and remedy environmental problems. Although many
sequences and combinations are possible, one way that assessment activi-
ties can be linked together is through the following sequence of questions:
“Is there an undesirable biological condition?,” “What caused it?,” “What
is the best course of action?,” and “Did the action work?” (see Figure 1.1).
Each question is addressed using a specific type of assessment (e.g., of con-
dition, cause, options, and outcomes). The sequence draws on and contrib-
utes to the knowledge foundation of ecological causal processes (depicted
by the large gray box in Figure 1.1). Thus, the assessment sequence as a
whole provides valuable information that can be used to improve future
causal assessments, management actions, and our understanding of how
ecosystems work.
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1.2 Strategies for Ecological Causal Assessment

This book would not be needed if one method could always clinch a case
and prove causation. Randomized, controlled experiments have long been
held up as the most reliable method for determining cause.* Unfortunately,
randomized, controlled experiments are not usually an option to investi-
gate the types of problems addressed by this book. For example, we cannot
randomly assign wastewater treatment plants to different streams—the
treatment plants are already in place. Other factors that co-occur with the
treatment plant effluent (e.g., stream flow) will not be randomly distributed
upstream and downstream from the outfall. Additionally, we are investi-
gating biological effects that have already occurred, so any opportunity to
prospectively apply stressors in a randomized fashion has passed.

We need another way. Instead of proving and disproving causes one by
one, our approach determines which of a set of alternative causes is best
supported by all of the available evidence. The overall objective is to pro-
duce a coherent explanation of why some causes are likely and others are
implausible.

This strategy is aligned with the way scientific research progresses, that
is, not from a single experiment or fact. And as in all science, the explana-
tion is only the best supported explanation based on the evidence available
at the time. Even incremental knowledge can be useful for our ultimate goal
of improving the environment. For example, reducing the list of candidate
causes can focus further investigations on the remaining candidates or pro-
vide enough information to guide action.

The book is divided into three major parts: “Introduction and
Fundamentals,” “Conducting Causal Assessments,” and “Case Studies.”
An overview of each of these sections follows. Readers interested in the
philosophical and practical underpinnings of our approach should start
with Part 1. Readers who are currently beginning a causal investigation
may prefer to begin with Chapter 6 (our approach), one of the case studies
in Part 3, and then focus on Part 2, which describes detailed methods and
approaches for implementing the overall strategy. We do not review basic
ecological, toxicological, and statistical principles and methods. Rather, our
intent is to show how these methods and principles are used to investigate
causes. We provide references to additional resources including those on
the CADDIS website (U.S. EPA, 2012a) (Box 1.1) for readers interested in
particular topics.

* In a randomized, controlled experiment, a stressor is randomly assigned and applied to a
different experimental unit. The objective is to minimize the chance that other variables
will influence the response. Randomization ensures that although other factors may intro-
duce error into the results, they will not bias them. It enables scientists to conclude that the
observed effects were caused by the stressor being manipulated.



Introduction 7

BOX 1.1 CADDIS

The Causal Analysis/Diagnosis Decision Information System (CADDIS,
available at www.epa.gov/caddis) was developed by the U.S. EPA to
help scientists and engineers conduct causal assessments in aquatic
systems. As of this writing, CADDIS contains a guide to the U.S. EPA’s
Stressor Identification process (originally documented in U.S. EPA,
2000a), information on commonly encountered stressors in aquatic
systems, case examples, data analysis advice and tools, and literature
databases. The method described in this book is a generalization of the
more prescriptive method in CADDIS.

1.2.1 Part 1: Introduction and Fundamentals

Our approach builds on definitions and concepts about causation developed
by the philosophers, scientists, and cognitive psychologists who have pre-
ceded us. The first part of the book reviews these foundations.

Chapters 2 and 3 begin by reviewing the ways that scientists and philos-
ophers have thought about causes and their identification. In short, causes
bring about their effects. They make things happen. In most ecological assess-
ments, causes can be thought of as an addition of something harmful that was
not there before (e.g., ethanol in a stream) or a removal of a required resource
(e.g., gravel for spawning). Causes can be described as an event (e.g.., what
happened?), a thing (e.g.,, what did it?), or a process (e.g., how did it transpire?).
Different ways of describing causes can be used to develop clearly defined
alternatives that are considered and eventually compared.

Causal relationships exhibit several basic characteristics (see Chapter
4) useful for suggesting ways that a cause-and-effect relationship can be
observed and documented. We expect that (1) causes precede their effect in
time, (2) there is a process or mechanism by which the cause and the biota
can interact, (3) there is the opportunity for this interaction to occur, (4) the
interaction is sufficient to produce the effect, (5) the interaction alters biota
in specific ways, and (6) the causal event takes place within a larger web of
causal events.

Chapter 4 also introduces types of evidence. Evidence can be thought of as
associations and predictions that demonstrate (or alternatively refute) that
a result expected of a causal relationship is obtained in the case. The data
used to develop evidence can come from many different sources discussed
further in Part 2.

Causal assessments are conducted by people. Along with the expertise,
skills, and insights we all bring to an investigation, we may bring cognitive
tendencies that can lead an investigation astray. Chapter 5 reviews com-
mon biases and blind spots and discusses strategies that can be used to
prevent errors.
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1.2.2 Part 2: Conducting Causal Assessments

Our approach is described in Chapter 6 (see Figure 1.2). The process provides
the structure for Part 2 and has three major steps: (1) formulate the problem,
(2) derive evidence, and (3) form conclusions. The product of the assessment
identifies the cause or causes best supported by the evidence and those that
lack support.

1.2.2.1 Part 2A: Formulate the Problem

Causal assessments are typically prompted by the observation of an unde-
sirable effect. The effect could be diseased or dead organisms, such as coral
bleaching or plants that fail to grow; a decline in a population such as a sport
fish or endangered species; or a change in an assemblage of biota, such as

Undesirable effect

Ecological causal assessment

Formulate the problem
—Define the case
—List candidate causes

|

Derive evidence
—Acquire relevant data
—Analyze data to evaluate whether results
expected of a causal relationship are obtained

l

Form conclusions
—Weigh and compare evidence
—Communicate the findings

Cause(s)
—best supported by the evidence
—not supported by the evidence

FIGURE 1.2

The causal assessment process, shown within the bold box, is typically prompted by an obser-
vation of an undesirable effect. The product identifies the cause or causes that are best sup-
ported by the evidence as well as those that are not.
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the macroinvertebrates and fish that are frequently used to monitor stream
conditions (see Figure 1.3).

Typically, the concerns that prompt a causal investigation must be further
defined to support the assessment process. Formulating the problem to be
investigated by defining its frame and focus greatly influences which causes
will be considered and how data will be analyzed. The first part of prob-
lem formulation, discussed in Chapter 7, is the operational definition of the
subject of the causal assessment (i.e,, the case). The case definition describes
the undesirable effects and the geographic and temporal dimensions of the
investigation. It identifies places and times where undesirable effects have
occurred and also identifies places or times that can be used for comparisons
where effects either have not occurred or have occurred in a different way.
The second major part of problem formulation is the development of the list of

(b)

FIGURE 1.3

Example of stream biological monitoring samples from a high quality stream (a) and a stream
receiving water from a stormwater drain and parking lot (b). The sample in (a) has many more
organisms from sensitive taxonomic groups, such as mayflies, stoneflies, and caddisflies. The
sample in (b) has many more organisms from tolerant taxonomic groups such as midges,
scuds, and snails. Results like these can be used by biologists to judge the quality of water.
In addition, these results can provide important clues to the causes affecting the biota liv-
ing in the stream. (Courtesy of Thomas J. Danielson, Maine Department of Environmental
Protection.)
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candidate causes that will be investigated. Chapter 8 discusses strategies for
developing the list, options for managing multiple causes, and the use of con-
ceptual model diagrams to visualize hypotheses and organize information.

1.2.2.2 Part 2B: Derive Evidence

The core of a causal assessment is the evidence that can be used to argue for
or against a candidate cause. Evidence is derived by analyzing data, which
can come from many different sources, including observations at the site,
regional monitoring studies, environmental manipulations, and laboratory
experiments. Chapters 9-18 review different sources of information and the
methods used to develop evidence. Each chapter points out the strengths
and limitations of different approaches and provides referrals to more in-
depth material.

Our strategy relies on multiple pieces of evidence. Together, they can mitigate
the limitations of any one piece. For example, one piece of evidence may show
that predawn levels of dissolved oxygen are lower at a biologically degraded
site than at a nearby site that is not degraded. This evidence is uncertain
because of potential errors in the oxygen measurements, natural variability,
and lack of knowledge, for example, the likely co-occurrence of other factors
that may co-occur with and possibly disguise the effects of the dissolved oxy-
gen. Another piece of evidence may show that test organisms in the laboratory
cannot survive the dissolved oxygen concentrations that were observed in the
tield. This evidence is uncertain because the test organisms may be different
from those at the site and the test conditions will never completely match the
tield conditions. Although the two pieces of evidence indicate that low oxygen
is the cause, together they are stronger than each piece and begin to build the
argument that oxygen depletion caused the effects.

1.2.2.3 Part 2C: Form Conclusions

After the available evidence for and against each candidate cause is devel-
oped, the evidence for each one is weighed and compared across the alterna-
tives (see Chapter 19). Optimally the available evidence strongly supports a
candidate cause and discredits all other candidates. A more common out-
come is the identification of all of the candidate causes that may be playing
a role in producing the effect, either alone or in combination. Causes that
lack support are winnowed from the list. Another outcome is the generation
of new or refined alternative causes based on the first iteration of analyses.
Even when one cause is not definitively identified, results can be useful by
reducing the list of candidate causes that need further consideration and by
pointing to fruitful directions for further data collection.

An explicit system for weighing evidence helps ensure that each cause
is treated fairly and that all evidence is considered. In addition, an explicit
system makes the basis for conclusions transparent and enables review.
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However, an equally important part of the process is presenting the findings
to others (see Chapter 20). Narrative explanations, tables, and diagrams that
summarize the evidence communicate the conclusions of the causal assess-
ment to decision-makers and stakeholders.

1.2.2.4 After the Causal Assessment: Using the Findings

The last chapter of Part 2 discusses what comes after causes are identified. As
discussed above, a causal assessment is only one activity in a series of assess-
ments typically undertaken to solve environmental problems. In some cases,
the most effective management action will be obvious after the probable cause
has been identified. In many cases, however, the investigation must identify
sources and apportion responsibility among them. This task can be just as dif-
ficult as identifying the cause in the first place (e.g., quantifying the sources
of fine sediment in a large watershed or deciding where to begin remediation
at a large hazardous waste site). Identifying and implementing management
options can also be a complex process that requires stakeholder involvement
and additional analyses (e.g., economic comparisons, engineering feasibility).
Chapter 21 discusses how the products of causal assessment can inform the
activities that follow, for example, by helping define the goals and targets for
management action and setting expectations for recovery.

1.2.2.5 A Brief Example Case: Causal Assessment in the Willimantic River, CT

The overall process is summarized with a synopsis of the Willimantic River
investigation adapted from Bellucci et al. (2010).

1.2.2.5.1 The Undesirable Ecological Effect

The causal assessment in the Willimantic River was prompted by macro-
invertebrate monitoring results used by the Connecticut Department of
Environmental Protection to evaluate water quality. The monitoring results
indicated that the biota did not meet state standards for healthy macroinver-
tebrate assemblages.

1.2.2.5.2 The Causal Assessment Process

1.2.2.5.2.1 Formulate the Problem The investigators used the macroinverte-
brate monitoring results to home in on the decline in a sensitive group of
insects that spend most of their lives in streams: the EPT taxa (Box 1.2). The
investigators defined the spatial extent of the effects by mapping where the
macroinvertebrate assemblage did not meet standards. They listed other sites
for comparison within the watershed where standards were met. They listed
the following six candidate causes: (1) toxic substances, (2) low dissolved oxy-
gen, (3) altered habitat, (4) elevated temperature, (5) high flows, and (6) altered
food resources. They developed conceptual model diagrams that hypothe-
sized linkages between sources, stressors, and the observed effects.
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BOX1.2 BIOLOGICAL MONITORING
IN STREAMS AND EPT TAXA

Biological monitoring programs use observations of biota as indica-
tors of pollution and habitat quality. Scientists have developed differ-
ent indicators for different environmental settings, for example, the
extent of eel grass beds in coastal systems and floristic composition
in terrestrial systems. Many water quality programs that monitor
streams and rivers sample algae, fish, and invertebrates. The biologi-
cal assemblages that are monitored have the advantage of reflect-
ing exposure to many types of human-induced changes. They also
directly represent biological resources that are valued and protected
under laws like the U.S. Clean Water Act. Among other ecological
services, organisms in these assemblages filter water, decompose
organic matter, and form the base of aquatic-dependent food webs,
feeding birds, bats, and fish.

The insects and other macroinvertebrates that live on the bottom of
streams and rivers have been widely used as indicators (see Figure 1.3).
Although all of the organisms are potentially useful, many monitoring
programs have tracked the occurrences of three orders of insects: may-
flies (E, for Ephemeroptera), stoneflies (P for Plecoptera), and caddis-
flies (T for Trichoptera). EPT taxa as a group respond to many different
types of pollution and habitat change. Their responsiveness is valued
by programs that document biological condition.

Changes in EPT taxa were used in the Willimantic River case study
and are used in many of the other examples described throughout
this book. However, the use of composite metrics like EPT taxa abun-
dances makes it more difficult to distinguish the relative contribu-
tions of different stressors. For this reason, we expect that future
biological and causal assessments will evolve toward disaggregating
EPT metrics to evaluate whether individual genera or species show
distinctive responses.

1.2.2.5.2.2 Derive Evidence In the first iteration of the Willimantic River
investigation, the scientists were able to develop several pieces of evi-
dence. Levels of the different candidate causes were compared between
the degraded sites and less-degraded comparison sites to establish whether
causes occurred at the location where biota were affected. The levels of dif-
ferent candidate causes were associated with the level of effects to evaluate
whether the direction of influence was consistent with expectation. Levels
of different stressors were compared with results from laboratory tests and
other field studies to evaluate whether the stressors reached levels sufficient
to have produced effects in other situations.



Introduction 13

1.2.2.5.2.3 Form Conclusions Investigators compared the evidence across
the candidate causes and concluded that depleted oxygen, increased ammo-
nia, and forceful flows were unlikely causes. Although the first iteration of
assessment did not confidently identify a likely cause, the evidence pointed
investigators to a reach of the stream where the effects seemed to begin.
There, while resampling the stream, Bellucci and his team found the dis-
charge emanating from a raceway into which a broken pipe was releasing
waste from a textile mill.

1.2.2.5.3 After the Causal Assessment

The State moved quickly to reroute the discharge. Three years after rerouting
thellicit discharge in the tributary to the Willimantic River, the impaired site
reached acceptable biological condition as defined by the State’s Department
of Environmental Protection. These findings have given confidence to the
state agency to apply causal assessment to other rivers and demonstrate that
scientific information can be presented in a way that results in management
action that improves the environment.

1.2.3 Part 3: Case Studies

Case examples of causal assessments are used throughout the book to illus-
trate the use of specific methods and approaches (see Table 1.1). The last sec-
tion of the book provides four examples in greater depth. Three case studies
(Long Creek, Clear Fork, and the kit fox) are described in detail to show how
the overall approach is implemented to develop evidence and reach conclu-
sions. The application of experimental approaches is highlighted in the case
study from the Athabasca River in Canada. Our case studies and examples
are admittedly biased toward our work and interest in streams and rivers.
However, the principles can be adapted for other systems and places.

A necessary caveat is that all of these case studies are imperfect, reflecting
the reality of performing causal assessments under deadlines and with the
data that are available or obtainable—the best explanation with the available
evidence. However, each of them improved the understanding of how human
activities have affected the biota in these ecosystems. Many of them revealed
the influence of unexpected factors and suggested directions for management
action. We hope they will inspire further work to improve methods, to apply
the ideas in new ways, to identify causes in additional ecological systems, and
ultimately, to resolve environmental problems.

1.3 Summary

This book describes a strategy and methods for identifying the causes of
undesirable biological effects. The strategy identifies the best supported
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cause or causes by weighing evidence for and against each candidate cause
among a set of alternatives.

Our aim with this book is to show how scientific data and expertise can
produce credible, defensible conclusions about causation. A thoroughly
implemented causal assessment can direct resources and data collection
toward the most important questions, increase confidence in management
actions, and help communicate the rationale for those actions to the public.

Any strategy only supplements substantive knowledge. The subject areas
of environmental science, biology, ecology, toxicology, and statistics pro-
vide the foundation for hypothesizing how effects could be caused and for
judiciously interpreting results from sampling programs, toxicity tests, and
other studies. By observing events through a causal lens, we can improve
our understanding of how the world’s natural systems operate, how they
are degraded by human actions, and how they can be better protected and
restored.
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What Is a Cause?

Glenn W. Suter 11

This chapter reviews how concepts of causality have been defined
throughout history and how they have influenced the approaches and
methods described in this book.

CONTENTS

2.1 Causes as AGENtS........cccouveuiiiiiiiiiiinc s 18
2.2 Causes are Necessary and Sufficient ..o, 18
2.3 Causes as Natural LaWS.....cvcoviieieiieeeieeceeeeeeeeee ettt 24
2.4 Causes as Regular Associations ............ccccoeueieimiiniiiicciiiiccc, 25
2.5 Causes aS EVENES ......ooooiiiiiiiiieie e 26
2.6 Causes as Whatever has the Necessary Characteristics ............c.......... 26
2.7 Causes as Manipulations............ccoceueioiiiiiiiiccccc 27
2.8 Causes as Probability Raisers ..........ccocooereiiioiiiiiiiiicccc, 28
2.9 Causes as Process CONNECHIONS .....ccueevveeeiierienieeiiieeieeiieesveesieeseeeesveenanees 29
2.10 Causes as Counterfactuals..........cceeceiiieviiiieiiieieiececeeeeeeeee e 29
2.11 Causal PIUTaliSIm...c..iccuiieieeeree ettt eeaeeeaee s 30
2,12 SUIMINATY ..oivivinieiiiniiiiiiciciet ettt bbbttt 31

Everyone, it seems, has an opinion about the best way to assess causes.
Colleagues may throw around unfamiliar terms such as counterfactual or
mention philosophers like David Hume. This chapter shows that causation is
a surprisingly diverse concept that can be legitimately addressed in various
ways. If you are already familiar with some of the controversies concerning
causation, this chapter will show you how our understanding of the issues
has led us to our methodology. This conceptual history may help you to
think more deeply about causation and form your own opinions.

This book presents a historical overview of causation in two parts. This
chapter reviews concepts primarily from philosophy concerning questions
like “What do we mean that something caused something else?” (metaphysi-
cal questions) and “In what sense can we say that causes exist?” (ontological

17
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questions). The historical review is continued in Chapter 3, with concepts
primarily from practitioners and encompasses questions like “How do we
know something is a cause?” (epistemological questions). These causal con-
cepts are presented in the order in which they appeared in the literature
and their chief advocates and important critics are cited. Readers with a
purely practical interest can skip to the methodological Chapter 6. And those
intrigued by where they fit in the lineage as causal assessors can get an intro-
duction to the major contributors in Tables 2.1 and 2.2 and more information
in CADDIS.

It is important and surprisingly difficult to nail down what is meant by cau-
sation. The major causal concepts are presented in this section and defined in
Table 2.3. You are likely to find all of these concepts to be relevant to some use
of the word “cause” in your scientific endeavors or your daily life.

2.1 Causes as Agents

Prior to the development of materialistic natural philosophy by the ancient
Greeks, people believed that things are caused by conscious agents (gods,
humans, spirits, animals, etc.) (Mithen, 1998). Hence, causal explanation was
a matter of assigning responsibility (Frankfort, 1946). Cognitive scientists
refer to this tendency, which is still with us, as agency detection. Although
Aristotle, Plato, and other Greek philosophers addressed causation more
formally, they were still primarily concerned with metaphysical questions.
In particular, they were concerned with not only the agent that induced the
effect (the efficient cause), but also the purpose (teleos) which is the final
cause (Mittelstrass, 2007). Agent causation is still an important concept
(only things can affect other things), but the purposeful, teleological version
is now the domain of psychology, theology, and criminal law (which seeks
evidence of a motive as well as evidence of means and opportunity).

2.2 Causes are Necessary and Sufficient

Galileo Galilei provided the first modern and scientific concept of causation.
He wrote in the Dialogues Concerning Two New Sciences (1638), “That and no
other is to be called cause, at the presence of which the effect always follows,
and at whose removal the effect disappears.” He was arguing that a cause
is necessary and sufficient—never E without C, and always E when C. This is
a physicist’s concept of causality and applies to the sort of simple systems,
such as weights applied to levers, that Galileo investigated. For example, an
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TABLE 2.1

An Abbreviated Time Line of the Philosophy and Science of Causality

When Who What

>500 BCE Pre-ancient Believed that causation was a matter of identifying the

philosophers agent responsible (person, god, spirit, etc.)

427-347 BCE Plato Wrote that things are as they are because they
participate in a form, but the forms are eternal and
uncaused. Plato relied on reason to explain why
things come into being and pass away

384-322 BCE Aristotle Classified causes as material (the statue is of marble),

300 BCE-1500
CE

1564-1642 CE

1561-1626 CE

1642-1727

1632-1704

1711-1776

1724-1804

1749-1827

1792-1881

Roman and
Medieval
philosophers

Galileo Galilei

Francis Bacon

Isaac Newton

John Locke

David Hume

Immanuel Kant

Pierre-Simon
Laplace

John Herschel

formal (to resemble an athlete), efficient (it was carved

by a sculptor), and final (to earn a fee). Together, they

explain what caused something to be the way it is
Provided commentaries on Plato and Aristotle

Defined the first scientific theory of causation. Included
necessary and sufficient conditions and
manipulationist causation

Described a scientific theory based on inference from
positive and negative instances and, particularly, from
elimination by failed predictions

Believed that causes must be verae causae, known to
exist in nature (i.e., based on evidence independent of
the phenomena being explained)

Founded empiricism and the empirical epistemology
of causation (causation is something we perceive
rather than an ideal or entity); followed by Berkeley
and Hume

Stated that logic and evidence cannot prove causation.
We accept causation based on observed patterns of
association and the assumption that the future will be
like the past

To bridge the gap between rationalism and empiricism,
Kant posited that human perception is filtered
through innate categories of ideas. Hence, “Every
event is caused” is a synthetic a priori truth that we
apply to perceptions

Deterministic causality: if we knew the state of the
universe at a moment and had sufficient knowledge
of natural laws and sufficient computational
capability, we could predict all future states

Proposed five characteristics of causal relations: (1)
Invariable antecedent of the cause and consequence of
the effect, (2) invariant negation of the effect with the
absence of the cause, (3) increase or diminution of the
effect with the increased or diminished intensity of
the cause, (4) proportionality of the effect to its cause,
and (5) reversal of the effect with that of the cause

continued
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TABLE 2.1 (continued)
An Abbreviated Time Line of the Philosophy and Science of Causality

Ecological Causal Assessment

When

Who

What

1806-1873

1843-1910

1857-1936

1872-1970

1890-1962

1894-1981

1889-1988

1897-1991

1902-1994

John Stewart
Mill

Robert Koch

Karl Pearson
Bertrand Russell

Ronald Fisher

Jerzy Neyman

Sewall Wright

Austin Bradford
Hill

Karl Popper

The first to argue that only by manipulation
(experiments) can causation be differentiated reliably
from association. Two methods for identifying causes:
Method of agreement—what is present in all cases of
the effect? Method of difference—what distinguishes
cases of the effect from other cases?

Developed Koch’s postulates, a set of criteria for
determining the pathogen causing a disease. (1) The
microorganism must be shown to be consistently
present in diseased hosts. (2) The microorganism must
be isolated from the diseased host and grown in pure
culture. (3) Microorganisms from pure culture must
produce the disease in the host. (4) Microorganisms
must be isolated from the experimentally infected
host, grown in culture, and compared with the
microorganisms in the original culture. (The fourth
step is often considered optional.)

Probabilistic causation—all knowledge of causation is
captured by correlation

Argued that physical laws make the concept of
causation unnecessary

A falsificationist who provided a method for
probabilistically rejecting a null hypothesis in
experiments. He allowed acceptance of a causal
hypothesis by assuming that if the null hypothesis is
rejected, and there is only one causal alternative it can
then be accepted. He never accepted the causal link
between smoking and lung cancer

Formalized Peirce’s concept of confidence and
confidence intervals and, with Egon Pearson,
developed hypothesis testing by contrasting null and
alternative hypotheses

Published the first causal network model and
developed path analysis to quantify it

Presented nine “considerations” for causation. He stated
that they answer the question: “What aspects of this
association should we especially consider before
deciding that the most likely interpretation of it is
causation?” His considerations are still commonly used
and are called Hill’s criteria. They are an expansion of
the criteria developed by the U.S. Surgeon General’s
Advisory Committee on Smoking and Health

Strong falsificationist—one can only tentatively accept
the causal hypothesis that has withstood the strongest
tests
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When

Who

What

1891-1953

1905-1997

1965

1970

1973

1973

1974

1977

1979

1986

2000

Hans
Reichenbach

Carl Hempel

J. L. Mackie

Patrick Suppes

David Lewis

Mervyn Susser

Donald Rubin

Fredrick
Mosteller and
John Tukey

J. D. Hackney
and W. S. Linn

Kenneth
Rothman

Judea Pearl

Developed the common cause principle—a correlation
between events E, and E, indicates that E, is a cause of
E,, or that E, is a cause of E;, or that E, and E, have a
common cause. The principle has been abbreviated as
“no correlation without causation”

Formalized the covering law concept of causal
explanation—a phenomenon requiring an explanation
is explained by premises consisting of at least one
scientific law and suitable facts concerning initial
conditions

Developed a formal theory of multiple causation—C is
a cause of E if and only if: (1) C and E are both actual,
(2) C occurs before E, and (3) C is an INUS condition,
where INUS conditions are Insufficient but Necessary
parts of Unnecessary but Sufficient set of conditions

Formalized the probability raising theory of causality
in which C is identified as a prima facie cause if: (1) C
precedes E, (2) Cis real [i.e., P(C) > 0], and (3) Cis
correlated with E or raises the probability of E [i.e.,
P(E|C) > P(E)]. In addition, the relationship must be
nonspurious. The theory holds for well-designed
experiments

Formalized and promoted the counterfactual theory of
causation (had C not occurred, E would not have
occurred)

Modified and clarified Hill’s criteria and added a
scoring system

Developed the potential outcomes theory of causality for
observational studies in which the effect is defined as the
difference between results for two or more treatments of
a unit, only one of which is observed. Various statistical
techniques are used to estimate those differences, based
on the observed outcomes and covariates

In their classic text on regression analysis, recognized
that regression models do not demonstrate causation.
They suggested that the following ideas are needed to
support causation: (1) consistency, (2) responsiveness,
and (3) mechanism

Adapted Koch’s postulates to diseases caused by
chemicals

Argued that epidemiology cannot identify causes by
statistics or criteria. Sufficiency of evidence should be
identified by expert panels or by decision-makers

Popularized causal analysis based on directed acyclic
graphs. “Y is a cause of Z if we can change Z by
manipulating Y” in a graphical network model

continued
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TABLE 2.1 (continued)
An Abbreviated Time Line of the Philosophy and Science of Causality

When Who What

2003 Nancy Advocated causal pluralism—no theory of causation
Cartwright accounts for all uses of the concept

2004 A.M. Armstrong  Espoused singularist causation—we can identify

causes in cases but not in general
2005 P. S. Guzelian Created criteria for specific causation: (1) General
causation, (2) dose-response, (3) temporality, (4)
alternative cause (no confounders), and (5) coherence
2007 Phillip Wolff Based on psychological experiments, Wolff argues that
people infer causation from apparent physical
interaction, not regular association

2007 Frederica Russo Pointed out that only two of Hill’s criteria are actually
and Jon used in most epidemiological studies: (1) Consistency
Williams of association and (2) plausible mechanism

Source: Suter, G. W., II. 2012. A Chronological History of Causation for Environmental Scientists.
http:/ /www.epa.gov/caddis/si_history.html (accessed February 1, 2014).
Note: The order is based on the dates of an author’s major contribution. More contributions
and greater details can be found in the CADDIS causal history.

electric current is necessary to illuminate a light bulb and every time that
current passes through the tungsten filament, it is sufficient to light it.

Necessity and sufficiency have been largely set aside as a definition of cau-
sation because most effects can be caused by many things and because suffi-
ciency is context-specific. Mill (1843) recognized that problem and argued that
a necessary and sufficient cause is ideal but often unattainable. Mackie (1965,
1974) recognized that the problem came from the fact that many effects have
multiple causes (plural causality) and each cause may have multiple compo-
nents (complex causes). To describe this situation, he developed the concept
of INUS (Insufficient but Necessary parts of Unnecessary but Sufficient) set of
conditions. (A simpler acronym used in legal argument is NESS, a Necessary
Element of a Sufficient Set.) For example, stream invertebrates are killed by
hydrocarbons in storm water (an insufficient condition) that are activated by
UV light (the sufficient set). The set would not kill without the hydrocarbons,
so they are a necessary part. However, this set is unnecessary to kill stream
invertebrates because other sets of conditions also can kill them.

Mackie recognized that we will not specify all members of the sufficient
set; some must be treated as background. He called those unspecified condi-
tions the “causal field.” The INUS formulation is intuitively appealing and
heuristically useful but can, like other versions of the necessary and sufficient
definition of causation, lead to logical failures in some cases (Cartwright, 2007;
Pearl, 2009).

How does this relate to ecological causal assessments? The idea
that causes are sufficient and that some causes are necessary is helpful
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TABLE 2.2
Applied Ecologists and Causation
When Who What
1979  Walter Westman  Pioneered the application of path analysis and multivariate
statistics to complex ecological causation involving pollutants
1987  James Woodman  Adapted Koch'’s postulates to effects of air pollution on forests
and Ellis Cowling
1990  Peter Chapman Developed the sediment quality triad, a combined condition and
causal assessment based on three standard types of evidence, to
determine whether contaminants are causing adverse biological
effects
1991  Robert Peters Argued against causal analysis in ecology and in favor of
predictive empirical modeling
1991  Glenn Fox Advocated the use of Susser’s causal criteria in ecology
1993 Glenn Suter Adapted Koch’s postulates to pollution effects, in general, and
applied qualitative scoring to types of ecological evidence when
Koch'’s postulates could not be met. Applied the approach to
contaminated sites
2000 U.S.EPA Developed the Stressor Identification Guidance to determine the
(S. M. Cormier, causes of specific biological effects in aquatic ecosystems. It
S.B. Norton, and  includes three inferential methods: elimination, diagnosis, and
G. W. Suter) strength of evidence. The strength of evidence method was
inspired by Susser but highly modified. It has been further
modified and expanded in the CADDIS technical support
system
2002  Michael Newman Argued that “belief in a causal hypothesis can be determined by
simple or iterative application of Bayes’ theorem”
2002  Valery Forbes and  Proposed seven causal criteria for ecosystems applied as a
Peter Calow sequence of yes/no questions
2004  Wayne Landis Advocated his relative risk model (subjective ranking of links in a
network model) for ecological causal analysis to replace Hill’s
criteria and Chapman'’s triad
2005  Dick de Zwart Demonstrated a screening causal analysis using multivariate
and Leo linear statistical models for a river basin to diagnose the causes
Posthuma of individual taxon abundances at specific sites with habitat
variables and toxicity as the possible causes
2008 IPCC Concluded that climate is the cause of an effect if: (1) the trend is
consistent with that expected if temperature were the cause, (2)
the change spatially co-occurred with increases in temperature,
and (3) alternative causes are eliminated
2010  Susan Cormier Described how the Hill/U.S. Surgeon General considerations are
a mixture of causal characteristics, sources of information,
quality of the information, and inference. She developed a
system of separate characteristics, sources, and qualities
2012 Richard Norris Described a method for synthesizing the results of multiple studies

and colleagues

to evaluate the degree of support for questions of cause and effect.
Individual study results are weighted based on study design and
replication. Results are combined using a system derived from
Hill’s and the U.S. Surgeon General ‘s considerations
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TABLE 2.3

Concepts Related to Causation

Concept Definition

Agent Causes are things that act upon other things

Necessity and A cause of the effect is whatever is necessary (i.e., the effect

sufficiency never occurs without the cause) and sufficient (i.e., the effect

always occurs when the cause occurs)

Covering law Effects occur as a result of natural laws

Regular association =~ Causes occur before and in association with their effects

Events Causes are events that induce other events

Characteristics Whatever, in a particular set of circumstances, displays the
characteristics of causation is the cause

Manipulation A cause is something that, if manipulated, will change the effect

Probability raising The cause is whatever increases the probability of an effect

Process connection A cause is a process that induces the effect

Counterfactuals Had cause C not occurred, effect E would not have occurred,

therefore, C must be a cause of E

Pluralism Causes are different things depending on the nature of the
relationship and evidence

when weighing evidence that is equally compelling for several causes. It
reminds us that some causes must act jointly in order to be sufficient to
cause of the effect.

2.3 Causes as Natural Laws

Newton extended Galileo’s causal concepts by providing the basis for the
covering law theory of causation. That is, the natural laws that he developed
seemed to reliably encompass natural causal phenomena. If an observation
such as a falling object is covered by Newton’s law of gravitation, then grav-
ity is the cause. However, he did not see his laws as causes. In the Principia
(1687), he argued that causes must be verae causae, known to exist in nature
(i.e, based on evidence independent of the phenomena being explained). His
advice against posing hypotheses (Hypotheses non fingo) had inordinate influ-
ence, leading physical scientists to largely abandon causes in favor of math-
ematically formulated laws.

Newton’s contemporary, Gottfried Leibnitz, argued against Newton’s theory
of gravitation which was all mathematical law and no physical mechanism.
Leibnitz stated “The fundamental principle of reasoning is nothing without
cause” (Gleick, 2003). However, physical scientists and philosophers of science
are generally content with covering laws. Mill (1843) considered natural laws to
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be the highest category of causal explanation. Bertrand Russell argued, based
on the nature of physical laws, that there was no need for causality in science
or philosophy. He wrote in Mysticism and Logic (1912) that “The law of causality
... like much that passes muster among philosophers, is a relic of a bygone age,
surviving like the monarchy, only because it is erroneously supposed to do no
harm.” Hempel (1965) formalized the idea that causation is simply the action
of a natural law in relevant circumstances, that is, we infer causal explanations
from one or more laws and one or more factual circumstances. This is the cov-
ering law or deductive-nomological model of causation.

How does this relate to ecological causal assessments? We believe that
events in nature do follow predictable laws and therefore natural laws are
useful causal constructs. However, laws are seldom available to causally
explain events in the environment—except in trivial cases (e.g., the polluted
water flowed between points A and B because of gravitation [the law] and
the slope between the points [the fact]). However, natural laws are used in
the development of mechanistic environmental models which are used in
conjunction with site information to form evidence.

2.4 Causes as Regular Associations

The empirical philosophers of the British enlightenment believed that knowl-
edge comes from experience. Beginning with John Locke and epitomized by
David Hume, they developed the associationist theory of causation. They
argued that people believe a relationship to be causal based on constant
conjunction and lively or vivid impression. Hume’s terminology is not con-
sistent, but he expressed causal criteria as: contiguity, priority, and constant
conjunction. Hence the definition “an object, followed by another, and where
all the objects similar to the first are followed by objects similar to the sec-
ond” from A Treatice of Human Nature (1739). In that way, Hume replaced the
concept of necessity in causation with regularity. Furthermore, he made the
argument that the cause of a unique event cannot be determined, because
there can be no consistent conjunction. Hence, singular causal events must
be instances of a general causal relationship.

How does this relate to ecological causal assessments? The cause and
effect must be associated, and regular association is evidence. In fact,
most of the quantitative analyses performed in causal assessments involve
the application of statistics to quantify the regularity of associations.
Sometimes regular association can be demonstrated in a case. For example,
every time an orchard is sprayed with insecticide, a fish kill has occurred
in the stream that flows through it. However, the particular association in a
case often does not involve repeated instances. In such cases, an association
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in the case may be shown to be an instance of regular associations in simi-
lar situations.

2.5 Causes as Events

Another view is that causation is the result of an association between events,
rather than between an agent and an affected entity. In modern philosophy,
Hume’s event causation has largely replaced agent causation. The philoso-
pher of science, Bunge (1979) wrote that “the causal relation is a relation
among events.” For example, the striking of a window by a brick (causal
event) caused the breaking of the window (effect event).

How does this relate to ecological causal assessments? Often, events such
as oil spills or treatment failures are considered the causes of environmental
effects. Using a perspective of events as causation can be useful for devel-
oping causal pathways (a series or network of cause—effect relationships
leading to the effect of interest) and depicting them in a conceptual model.
This perspective can also be useful in resolving the problem once the cause
is discovered because the detail in describing events suggests options for
reducing or eliminating them. If the series of events is divided into numer-
ous mechanistic steps, event causation becomes a discrete version of process
causation (see Section 2.9).

2.6 Causes as Whatever has the Necessary Characteristics

One practical concept for recognizing a causal relationship is that it is
whatever, in a particular set of circumstances, displays the characteristics
of causation (i.e., the attributes that distinguish a causal relationship). John
Herschel, in A Preliminary Discourse on the Study of Natural Philosophy (1830),
defined five “characteristics” of causal relations:

1. Invariable antecedent of the cause and consequence of the effect,
unless prevented by some counteracting cause.

2. Invariate negation of the effect with the absence of the cause, unless
some other cause be capable of producing the same effect.

3. Increase or diminution of the effect with the increased or dimin-
ished intensity of the cause.

4. Proportionality of the effect to its cause in all cases of direct unim-
peded action.

5. Reversal of the effect with that of the cause.
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Herschel believed that these characteristics were necessary attributes of
a true cause but did not prove causation because of the possibility of con-
founding or interfering agents* “That any circumstance in which all the
facts without exception agree, may be the cause in question, or, if not, at least
a collateral effect of the same cause ....” Various other lists of causal charac-
teristics have been developed since Hershel. Lists of criteria for judging that
a relationship is causal, such as Koch’s postulates for identifying pathogens
responsible for diseases and Hill’s considerations for identifying causes in
epidemiology (Hill, 1965), are useful guides to causal inference, although
they do not define characteristics of causation. However, lists of character-
istics of causation may also be used as guides for inferring causation (Russo
and Williamson, 2007; Cormier et al., 2010).

How does this relate to ecological causal assessments? We believe that
evaluation of the evidence in terms of a set of considerations, characteristics,
or criteria is generally the best method for organizing and weighing multiple
pieces of evidence (see Chapter 3).

2.7 Causes as Manipulations

Another perspective is that a cause is something that, if manipulated,
will change the effect. Further, in cases of a network of multiple factors
that jointly affect E, a manipulationist says that the cause is the thing that
is manipulated. Symbolically, we distinguish interventional probabilities
P(E|do C) from the simple conditional probability P(E|C) (Pearl, 2009).
John Stuart Mill described how evidence is combined in logical argu-
ments and is the founder of the manipulationist theory of causation since
he was the first philosopher of science to clearly argue the priority of
experiments over uncontrolled observations: “... we have not yet proved
that antecedent to be the cause until we have reversed the process and
produced the effect by means of that antecedent artificially, and if, when
we do, the effect follows, the induction is complete ....” from A System of
Logic, Ratiocinative and Inductive (1843).

Fisher (1937) made experimentation a more reliable means of identifying
causal relationships by introducing the random assignment of treatments
to replicate units, to minimize confounding. However, when we extrapo-
late from the experimental results to the uncontrolled real world, we run
into the same problem of inferring from instances identified by Mill. That
is, we have no reliable basis for assuming that the causal relationship seen

* A confounding variable is an extraneous variable that is correlated with both the cause and
the effect. An interfering agent blocks the effects of an otherwise sufficient cause.
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in an experiment will hold in a real-world case. In fact, the uncertainty is
greater because experimental systems are usually simplifications of the
real world. In addition, because of the complexity of ecological systems, the
manipulations themselves may be confounded. For example, some experi-
ments to determine whether biological diversity causes stability have actu-
ally revealed effects of fertility levels, nonrandom species selection, or other
“hidden treatments” (Huston, 1997).

Contemporary philosophers have avoided the charge that manipulationist
theories are circular by treating manipulation as a sign or feature of cau-
sation rather than a definition and by allowing natural manipulations and
even hypothetical manipulations such as interventions in models (Pearl,
2009; Woodward, 2003).

How does this relate to ecological causal assessments? Our goal is
to identify causes that may be manipulated to restore the environment,
so our causes are at least potentially the types of causes recognized by
manipulationists. Further, manipulations (both experiments and uncon-
trolled interventions) can provide particularly good evidence of causation.
However, we do not require evidence from manipulations to identify the
most likely cause.

2.8 Causes as Probability Raisers

A cause can also be viewed as anything that raises the probability of an
effect. Although some prior philosophers recognized the importance of
chance, Karl Pearson presented the first probabilistic theory of causation in
The Grammar of Science (1911). Pearson took Galton’s concept of “co-relation,”
developed it as a quantitative tool, and made causation, at most, a subset of
it. For Pearson, everything people can know about causation is contained
in contingency tables. “Once the reader realizes the nature of such a table,
he will have grasped the essence of the concept of association between
cause and effect.” By this definition, causation is probabilistic consistency of
association, and a cause is anything that raises the probability of an effect.
Clearly, this definition is unreliable due to confounding and symmetry (the
causal relationship is one-way, but correlations are symmetrical, so they do
not indicate which of a pair of variables is the cause and which the effect).
However, correlation is the most common basis for causal inference in envi-
ronmental sciences.

How does this relate to ecological causal assessments? Anyone doing
causal assessments needs to understand the maxim, “correlation is not
causation,” while simultaneously recognizing the value of correlation as a
fundamental tool for exploring data and generating evidence of causation.
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2.9 Causes as Process Connections

Ironically, although Russell famously opposed the idea of causality, he
attempted to develop a scientifically defensible theory of causation (Russell,
1948). He defined causation as a series of events constituting a “causal line”
or process. However, he did not distinguish between causal processes and
non-causal processes (Reichenbach, 1956; Salmon, 1984).

The modern process theory of causation was developed by Salmon (1984,
1994, 1998) and Dowe (2000). This view of causation involves an exchange of
invariant or conserved quantities such as charge, mass, energy, and momen-
tum. However, causation in many fields of science are not easily portrayed
as exchanges of conserved quantities (Woodward, 2003). Numerous philos-
ophers have published variants and presumed improvements on Salmon’s
and Dowe’s process theory. Some psychologists and psycholinguists have
adopted a version of the physical process theory of causation and argue
based on experiments that people inherently assume that a process connec-
tion (their terms are force dynamics or the dynamics model) is involved in
causal relationships (Pinker, 2008; Wolf, 2007).

How does this relate to ecological causal assessments? All in all, this is
a very mechanistic way of thinking about causation and is satisfying when
enough data and knowledge exist to describe the processes. For the most
part, in environmental and epidemiological investigations, there are not
enough data and the data typically relate to states, not processes. However,
it is helpful to develop conceptual models of processes that could cause the
effect, including processes that generate, move, and transform the causal
agent and those that determine the susceptibility of affected organisms. This
proves to be a useful tool in considering how evidence might be generated
and how the overall case can be presented. Furthermore, some of the cut-
ting edge research for analytical methods is inspired by this desire to richly
describe at least several steps in a causal sequence and that sequence could
be described as a process sequence.

2.10 Causes as Counterfactuals

Counterfactual causation consists of the argument that had C not occurred, E
would not have occurred; therefore, C must be a cause of E. Although Hume
and Mill described counterfactual arguments, the concept did not catch
on until formalized by Lewis (1973). For example, if the daphnids had not
been exposed to high concentrations of copper, the daphnids would have
lived. It is popular with philosophers because it seems to have fewer logical
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problems than regular association as an account of causation (Collins et al.,
2004). However, there are conceptual objections as well as practical ones.

One problem with Lewis’s original alternative worlds approach is that it
requires hypothesizing possible worlds in which C did not occur and dem-
onstrating that in every one E did not occur. Clearly, defining an appropri-
ate set of possible worlds presents difficulties because, in general, a world
without C would differ in other ways that are necessary to bring about the
absence of C, which would have other consequences. Hence, Lewis devel-
oped the concept of similarity of worlds and of the nearest possible world.
Also, counterfactual accounts of causation can result in paradoxes involving
preemption (an intervention that blocks a cause), overdetermination (more
than one sufficient cause acting in a case), and loss of transitivity (a relation is
transitive if whenever A is related to B and B is related to C, then A is related
to C) (Cartwright, 2007). An example of overdetermination follows. If two
chemicals are spilled into a stream resulting in lethal concentrations of each,
neither one is the counterfactual cause of the subsequent fish kill, because
even if one was absent, the other would still have killed the fish. The coun-
terfactual argument is not true; if one chemical was absent, the other would
have killed the fish.

How does this relate to ecological causal assessments? This concept is
seldom useful for determining a cause, but might be useful for setting up
an experiment or thinking about multiple causes. Counterfactuals are the
inspiration for controlling confounding by techniques such as propensity
score analysis and trimming a data set.

2.11 Causal Pluralism

Since the late 1980s, many philosophers, led by Nancy Cartwright (2003),
came to believe that no attempts to reduce causation to a particular defini-
tion (counterfactual, probability raising, etc.) could succeed. Therefore, they
proposed causal pluralism which has been reviewed and shown to have
two distinct meanings (Campaner and Galavotti, 2007, Hitchcock, 2007). (1)
The idea of plural causes presented in this chapter is that there are mul-
tiple types of causes and of causation (ontological pluralism). That is, cau-
sation is a cluster of distinct types of relationships that happen to share a
common name. (2) An epistemological view, more relevant to Chapter 3,
is that causation can be approached from multiple, potentially legitimate
and useful perspectives given different questions, bodies of evidence, and
contexts (conceptual or epistemic pluralism). That is, we cannot provide a
satisfactory definition of causality that is useful in all instances of causation,
but we can identify a practical concept of causality for any instance. Russo
and Williamson (2007) argue that epistemic pluralism applies to the health
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sciences and also subsumes ontological pluralism: “The epistemic theory
of causality can account for this multifaceted epistemology, since it deems
the relationship between various types of evidence and the ensuing causal
claims to be constitutive of causality itself. Causality just is the result of this
epistemology.”

How does this relate to ecological causal assessments? Causal pluralism
does not provide a way to define a cause or a causal relationship. But, it does
justify choosing the approach that works best because it recognizes some
utility in all of the concepts of causation.

2.12 Summary

None of the concepts of causation adequately describes all of the relation-
ships that people think of as causal, and philosophers who have devoted
their careers to causation cannot agree on a definition. Philosophers may
enjoy debating the fundamental nature of causation, but what is a practical
minded person to do?

We suggest a pragmatic approach that aggregates concepts into a useful
view of causation for environmental scientists. Although we draw on all of
these philosophical views, we are not simply causal pluralists. Rather, we
have a composite view of causation that is useful for environmental prob-
lem solving. Causality depends on a relationship between events involving
a process connection between a causal agent and an affected entity. The con-
nection is a physical interaction that can be characterized by a mechanism
acting at a lower level of organization. A description of a causal relationship
is the best explanation that accounts for the evidence. Therefore, when we
gather and weigh evidence, our goal is to arrive at the best explanation and
then decide whether the evidence is strong enough to establish that causal
relationship and predict that our actions will be beneficial.
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How Have Causes Been Identified?

Glenn W. Suter II and Susan M. Cormier

Many methods for identifying causes have been defined and used
by philosophers and scientists. This chapter describes these differ-
ent methods and how they have contributed to the approach recom-
mended in this book: identifying the causes that are best supported by
the evidence.
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No individual analytical technique or inferential method can be used to
reliably identify causes in all cases. For this reason, the approach described
in this book combines many different methods into an overall approach that
identifies the cause or causes that are best supported by the evidence.

This chapter describes the many ways people have identified causes in
specific cases, from enumerating associations, to conducting experiments,
to comparing model fits. Each method has strengths and limitations, which
are better understood by reviewing their origins. Each of the methods
has informed our overall approach by suggesting different ways that evi-
dence of a causal relationship can be derived, synthesized, and compared.
Our approach employs many methods so that many types of evidence can
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be derived for many different types of causes in many different settings.
Evidence is synthesized using qualitative weights so that all relevant types
of evidence can be included. The candidate causes are compared with respect
to the full body of evidence so that the cause or causes that are best sup-
ported can be identified.

3.1 Identification and Enumeration of Associations

According to Hume (1748), association is the fundamental evidence from
which people infer causation. Association in space and time is a requirement
of causation because the affected entity must be exposed to the causal agent.
Hence, the cause must at least have co-occurred with the biological effect. If
the biological effect recurs, the association should occur in each case (unless
there are multiple causes of the effect). Further, if the same cause occurs in
other cases, then the same effect should occur.

This logic of causal inference from regular associations was formalized by
Mill (1843). His method of agreement stated that effects always occur with
their causes. His method of difference states that where the effect does not
occur the cause also does not occur. This applies to individual cases (specific
causation) as well as to general causes. For example, if the concentration of
copper in a stream is elevated at locations with few mayfly taxa, that associa-
tion is evidence that copper is a cause of that effect (method of agreement).
That copper is not elevated at unaffected upstream sites is also evidence that
copper is a cause in the stream (method of difference).

An association is derived from a set of measurements and their spatial
relationship to the effect. Associations can be quantified by counting the
numbers of co-occurrences in a single case over space or time. For example,
copper concentration is elevated at the affected location every year, while the
mayflies continue to be depauperate. More powerfully, independent cases
may be enumerated. For example, in 24 cases in which a salmon spawning
river is dammed, the associated population declines and that regular associ-
ation is evidence of causation. That regular association constitutes a general
model that can be applied to infer that the association of a salmon decline
with damming of a particular river was causal and not just coincidental.

It is tempting to infer causation from only a single vivid association (e.g.,
the impaired reach begins below a wastewater outfall or dead birds are found
on a golf course the day after a pesticide application). We all know that asso-
ciation does not prove causation because coincidences happen. However, in
many cases, interpretation of that single vivid association as causal would be
correct, even if not absolutely defensible.

How is this related to ecological causal assessment? Association is essen-
tial and fundamental evidence. Documenting the occurrence of an association
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between a candidate cause and an effect may simply involve co-occurrence in
the single instance of an effect or the enumeration of instances in which the
two are associated. The strength of the association is judged by the number of
instances or the magnitude of the difference in the level of a candidate cause
between affected and unaffected sites. Lack of association can refute a cause.
However, association is weak, positive evidence, particularly in specific cases,
because of the possibility that other potential causes are also associated with
the effect.

3.2 Probabilistic Associations

Causal associations in complex systems are not invariant, so most causal
assessments involve statistical analysis of the relative frequency of spatial
and temporal associations between a candidate cause and its putative effect.
That is, the strength of a causal relationship is expressed by the probability
that the cause and effect are associated. The simplest and most generally
useful expression of these associations is the contingency table (see Table 3.1).
These frequencies may be converted into probabilities, but frequencies con-
vey the actual basis for the evidence (the number of occurrences of each type
of association) and most people find probabilities to be less easily interpreted
(Gigerenzer and Hoffrage, 1995; see Chapter 12).

In this hypothetical example, a contingency table is formed from 100 site
observations using channelization as the candidate cause and the effect at
the study site, <3 species, as the contingent effect. This table serves as a gen-
eral model* of the probability of the effect with and without channelization.
The resulting evidence is that the probability is 0.90 of there being <3 species
for any channelized location including the channelized study site. Therefore,
this evidence strongly supports channelization as the cause of <3 species at
a specific channelized site.

TABLE 3.1

A Contingency Table for the Association between Channelization of Streams and
Degraded Biological Condition, Defined as Three or Fewer Fish Species

>3 Species <3 Species Total Probability of <3 species
Channelized 5 45 50 0.90
Natural channel 30 20 50 0.40
Total 35 65 100

* The term “general model” does not imply that the model is applicable outside its data set
parameters, but rather that it describes the capability of a cause to produce an effect (i.e.,
general causation) rather than an instance of specific causation.
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Many candidate causes, such as pollutant concentrations, are not categori-
cal as in the channelized and natural channel categories of Table 3.1. For
these, the degree of association is generally analyzed by some form of cor-
relation or regression analysis. Correlation is the basic statistical measure of
the degree of association of variables. However, regression lends itself more
readily to prediction and verification than does correlation. For example, a
certain proportion of genera may be predicted to be affected using the expo-
sure level at the specific site based on a regression model. That predicted
effect may or may not be consistent with the effect of interest.

Alternatively, Bayes’ theorem could be used to calculate the conditional
probability of degraded condition (i.e, <3 species) given channelization.
Note that the probabilities in Table 3.1 are already conditional on channeliza-
tion by the design of the study. However, Bayes’ theorem provides the condi-
tional probability of the association even in undesigned data. The Bayesian
approach is particularly appropriate when there is good prior information
such as from previous studies of the effects of channelization on fish species
richness. Then the new data update the prior information rather than stand-
ing alone.

Many epidemiologists and others who use empirical inferential approaches
for causal analysis limit themselves to calculating probabilistic associations.
Some ecologists have disparaged the weighing of multiple lines of evidence
and advocated Bayesian probabilities or multivariate generalized linear
models as, in themselves, adequate and appropriate expressions of causation
(de Zwart et al., 2009; Newman et al., 2007). However, correlation is still not
causation. Further, restricting the analysis of causation to quantification of
the consistency of association, as useful as it is, leaves out many important
types of evidence.

How is this related to ecological causal assessment? Analysis of probabi-
listic associations enables assessors to evaluate the strength of associations
and estimate the degree of confounding. Often there are insufficient data to
form probabilistic associations using only data from the case, and a wider
geographic area is needed to derive a general model.

3.3 Experimentation

Since Mill (and particularly since Fisher), experimental science has been
considered the most reliable means of identifying causal relationships.
Through random assignment of replicated systems to alternative treat-
ments, confounding can be eliminated and variance among treatments can
be differentiated from variance among systems. However, extrapolation
from experimental results to the uncontrolled real world introduces prob-
lems. No reliable basis exists for assuming that the causal relationship we
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see in an experiment will hold in a real-world case. Applying experimental
results involves extrapolating from the simplified experimental conditions
to conditions of the real world. Omitted conditions may affect the outcome.
In addition, because of the complexity of ecological systems, the manipula-
tions themselves may alter more than just the cause being investigated (see
Section 2.7).

Replicated and randomized experiments cannot be performed on the
affected system itself, but it is possible to manipulate the system and observe
the results. Most commonly, manipulations not only consist of attempted reme-
diation or restoration actions, but they may also include “natural experiments”
such as a temporary shutdown of an industry or quasi-experiments such
as artificially shading a stream reach or introducing caged fish. Although
confounding and random effects are possible in these unreplicated and
unrandomized manipulations, the evidence from manipulations is likely to
be stronger than from mere observations.

Experimental approaches that investigate mechanisms of action in a con-
trolled laboratory setting are also important sources of information for
causal assessments. Laboratory studies of media from the impaired site
can be used in experiments to determine their toxicity and mode of action.
Symptoms or a disease can be identified to provide evidence of an interac-
tion with a pathogen.

How is this related to ecological causal assessment? Laboratory experi-
ments are a common source of evidence. For example, we infer from a tox-
icity test the concentration required to kill 50% of the test organisms (the
median lethal concentration, LCs). Based on this, we infer that concentra-
tions at a specific site greater than LCy, were high enough to have caused a
fish kill. Field experiments are less common but can potentially fill the gap
between unrealistic laboratory tests and uncontrolled field observations.

3.4 Statistical Hypothesis Testing

Statistical hypothesis tests are a quantitative technique developed for experi-
mental data to determine whether a hypothesis can be rejected. Some exam-
ples are t-tests and analysis of variance. Most commonly, a hypothesis of no
effect is tested by determining whether data, as extreme as those obtained in
an experiment or more extreme, would occur with a prescribed low probabil-
ity given that the null hypothesis is true (the agent does not cause the effect).
Statistical hypothesis testing was developed by Fisher (1937) to test causal
hypotheses, such as does fertilizing with sulfur increase alfalfa production,
by asking whether the noncausal hypothesis is credible given experimental
results. Neyman and Pearson (1933) improved on Fisher’s approach by testing
both the noncausal and causal models, but their approach is seldom used.
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Fisher’s probabilistic rejection of hypotheses became even more popular
as Popper’s rejectionist theory of science caught on in the scientific commu-
nity* Statistical hypothesis testing came to be taught in biostatistics courses
as the standard form of data analysis. As a result, Fisher’s tests have been
applied indiscriminately to test causal hypotheses in inappropriate data sets,
including those from environmental monitoring programs.

Fundamentally, statistical hypothesis testing does not prove a cause or
indicate the strength of evidence for a cause. The results are expressed as the
probability of the data given the absence of a cause rather than the probability of
the cause given the data. Numerous critiques of statistical hypothesis testing
have demonstrated its failings (Anderson et al., 2000; Bailar, 2005; Germano,
1999; Johnson, 1999; Laskowski, 1995; Richter and Laster, 2004; Roosenburg,
2000; Stewart-Oaten, 1995; Suter, 1996; Taper and Lele, 2004). However, many
scientists have chosen to ignore or are unaware of these failings. Many are
lured with the false comfort of statistical significance. As a consequence, the
misuse of statistical hypothesis testing persists.

In field studies, statistical hypothesis tests can be misleading for several
reasons. Assumptions of tests usually are not met, as treatments are not rep-
licated or randomly applied (e.g., sewage outfalls are not randomly placed on
different streams). Very large sample sizes can find statistical significance in
a small, biologically meaningless difference. Small sample sizes or high sam-
pling error may cause a biologically relevant difference to not be statistically
significant. An illustrative example is provided in Box 3.1.

How is this related to ecological causal assessment? Statistical hypoth-
esis testing is applicable only to experimental studies in which independent
replicate systems are randomly assigned to treatments (e.g., toxicity tests).
However, even in those cases, statistical hypothesis test results do not pro-
vide the needed exposure-response model. Many cause—effect relationships
are unimodal, that is, there is an optimum rather than a monotonic relation-
ship. Hypothesis testing identifies a statistically significant level without elu-
cidating the full range of increasing and decreasing responses. Even at tested
levels, statistical hypothesis tests do not indicate the nature or magnitude of
effects, only that an effect is or is not “statistically significant.”

Observational data, such as those from natural experiments and environ-
mental monitoring studies, are inappropriate for statistical hypothesis test-
ing because treatments are seldom replicated and are not randomly located.
Replicate samples from the same location are pseudoreplicates and cannot
be used to evaluate the effect of the treatment (i.e., the candidate cause).
Pseudoexperimental designs such as Before-After Control-Impact (BACI)

* Karl Popper argued that scientific hypotheses can be rejected but not accepted.

* One of the conceptual flaws in this practice was pointed out by Hurlbert (1984), who invented
the term “pseudoreplication” to describe the practice of treating multiple samples from a
system as if they were from replicate systems. Pseudoreplicates test whether the sampling
locations are statistically different, not whether the effects of treatments are different.
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BOX 3.1 EXAMPLE OF BEING MISLED BY
STATISTICAL HYPOTHESIS TESTING

Consider the application of hypothesis testing to specific causation in
two different streams, River A and River B (the names have been with-
held but the data are real). Two sites are measured on each stream, one
above and the other below a point source (see table below). At both
downstream locations, the fish are reduced in number and diversity
relative to the upstream location. Data collected from the point sources
have high biological oxygen demand, so one candidate cause is low
dissolved oxygen (DO) at the downstream locations. Which scenario
presents a stronger case for DO causing adverse effects? What can be
inferred from each scenario?

River A, Scenario 1 River B, Scenario 2
® DO measured upstream and ® DO measured upstream and
downstream over 9 months downstream over 3 months
e Upstream = 9.3 mg/L e Upstream =7.9 mg/L
* Downstream = 8.4 mg/L ® Downstream = 4.2 mg/L
e Difference significant at p < 0.05 ¢ Difference not significant at p < 0.05

In Scenario 1: The only thing that can be said is that DO at the down-
stream site is lower than that at the upstream site. Any good fishery
biologist would tell you that the difference between 9.3 and 8.4 mg/L is
just not enough to explain the phenomenon, statistically significant or
not. Hypothesis tests alone never show biological relevance.

In Scenario 2: There is no significant difference between 79 and
42 mg/L in this data set, so classical hypothesis tests tell us nothing
about causation. In this data set, DO concentrations are more variable
at River B than at River A, so a standard #-test shows no statistical dif-
ference. However, if the average DO at the downstream sites is 4.2, the
DO had to be even lower than 4.2 mg/L at times. Our fishery biolo-
gist would toss out the statistics and point to the data. From general
knowledge, the downstream DO levels are sufficient to cause biological
effects. The statistical test is misleading.

designs can reduce—but not eliminate—the likelihood that the study will
be confounded (Stewart-Oaten, 1996).

Finally, testing the null hypothesis tells you little to nothing about the
strength or likelihood that an association is causal, because all environ-
mental variables considered in a causal assessment have some effect that
would be “significant” if enough samples were taken. We are interested in
determining the relationship between the cause and effect (e.g., estimating
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a concentration-response relationship from test data), not in determining
whether the data set is sufficient to reject the hypothesis that the cause had
no effect. Therefore, when deriving evidence, we find that descriptive statis-
tics and statistical models are more useful than hypothesis tests.

3.5 Networked Associations

Network models represent causation graphically, with nodes representing
entities or states connected by arrows that represent the direction of causal
influence. In system analysis, nodes represent state variables and arrows rep-
resent models of individual causal processes or probabilities of the implied
processes. The advantages of network models are that, unlike conventional
equations, they convey directionality and make explicit the structure of
interactions in multivariate causal relationships. Statistical methods for ana-
lyzing causal networks include path analysis, structural equation models,
and Bayesian belief networks. A network can also be modeled mechanis-
tically through mathematical simulation (e.g., systems of differential equa-
tions, also known as systems analysis (Bartell, 2007). Causal diagram theory
provides a formal logic for analyzing network diagrams that can be used to
analyze complex causal relationships, distinguish possible causes from non-
causal associations, and identify potential confounders (Pearl, 2009; Spirtes
et al,, 2000; Greenland et al., 1999).

Quantitative analysis of causal networks began with Wright (1920, 1921),
who developed path analysis (basically, a combination of directed graphs
and regression analysis) to analyze the effects of genes and environment
on phenotypes. It was first applied broadly by economists and social sci-
entists, where data sets are often large and include quantification of mul-
tiple causal factors. However, the most important technical developments
and the most influential texts on causal networks come from the field of
artificial intelligence (Pearl, 2009; Spirtes et al., 2000). The quantitative
implementation of these networks is performed using Bayesian analysis
[Fenton and Neil (2013) provide an accessible introduction]. Statistical
analysis in applied ecology has more often been performed by an exten-
sion of path analysis called structural equation modeling (see Shipley,
2000 for a clear presentation with biological examples). Network modeling
has seldom been applied to the assessment of specific biological effects,
because of inadequate volumes of data relative to the complexity of the
causal networks.

How is this related to ecological causal assessment? Conceptual models
that diagram ecosystem processes (see Chapter 8) provide the foundation
for the construction and implementation of formal directed acyclic graphs.
Such networks can be quantified to create exposure response models for
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whole systems using Bayesian belief networks or structural equation mod-
els. The diagrams can also help one to identify confounding variables and
direct analyses to minimize the effects of confounding (see Chapter 13).

3.6 Diagnosis

Diagnosis is the identification of a cause by recognizing characteristic signs
and symptoms. The diagnosis of a disease based on characteristic signs is
as old as the practice of medicine. The first fully natural theory of disease
and diagnosis comes from the Hippocratic treatises. The current practice of
medicine is based on an approach, developed by William Osler in the late
nineteenth century, in which a diagnosis is based on an algorithmic analysis
of symptoms and the generation of signs through testing. Archibald Garrod
extended diagnosis to include individual biochemical and genetic differ-
ences. In the last few decades, a theory of diagnosis has been developed
within the field of artificial intelligence that is used in diagnostic expert sys-
tems (Reiter, 1987). In addition, new diagnostic symptoms are being devel-
oped based on genomics, metabolomics, and proteomics.

Diagnostic protocols for plants and nonhuman animals are available in
the plant pathology, veterinary, wildlife, and fishery literatures. For example,
Beyer et al. (1998a) developed reliable diagnostic criteria for lead poisoning
in waterfowl as part of a study of the causes of waterfowl kills in the Coeur
d’Alene basin (see Chapter 17).

How is this related to ecological causal assessment? Diagnostic sets of
symptoms have been developed for many plant and animal pathologies. As
the body of evidence grows, the breadth and reliability of diagnostic symp-
toms is improving for population and community-level effects (see Chapter
17). At present, diagnosis is seldom possible, but assessments of specific cau-
sation can be strengthened by using symptoms in conjunction with other
types of evidence.

3.7 Analogy of the Cause

The idea of formal inference from similarities traces back to the ancient
Greeks as analogia, a relationship between any two things or concepts.
Analogy is an inference from the nonspecific principle that things that have
a similar structure have a similar function. In modern times, inferences by
analogy are used to infer attributes or modes of action of a candidate cause
by relating it to a better characterized cause.
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Analogy can be symbolically written as follows:

F is similar to E
E has attribute A
Therefore

F has attribute A

For example, because the molecular conformation of estrogens confers a
feminizing capability, similarly shaped molecules should have feminizing
effects. Therefore, we infer that a particular molecule that has an analogous
shape will cause feminization.

Analogy appears as one of Hill’s (1965) criteria for causation in epidemi-
ology. However, it has been sharply criticized. “Whatever insight might
be derived from analogy is handicapped by the inventive imagination of
scientists who can find analogies everywhere. At best, analogy provides
a source of more elaborate hypotheses about the association under study;
absence of analogies only reflects lack of imagination or lack of evidence”
(Rothman and Greenland, 1998). Assessors must be careful to give appro-
priate weight to inferences from analogies, because it is based on similarity
not actuality.

How is this related to ecological causal assessment? Because the term
analogy is used in so many ways in the vernacular, we have restricted its
use to one type of evidence: inference of expected symptoms or effects based
on modes of action from molecular structure or DNA sequences. However,
other analogies may be appropriate in particular cases.

3.8 Case-Based Inference and Artificial Intelligence

Case-based reasoning is a formalized logic within the field of artificial intel-
ligence. Like diagnosis, it is based on similarities of effects rather than anal-
ogy between similar causes. However, it includes all measured effects in a
case and not just a simple standard set of signs and symptoms. Case-based
reasoning follows the general process (Harrison, 1997):

Retrieve the most similar case(s) by comparing the new case to the
library of past cases;

Use the retrieved cases to try to solve the current problem;

Revise and adapt the proposed solution if necessary; and

Retain the final solution in the library of cases.

This case-based technique relies heavily on updating information and
models between steps 2 and 3. Examples include diagnostic systems that
retrieve past medical cases with similar signs, symptoms, progression,
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patient characteristics, and other available data concerning cases. The tech-
nique also includes assessment systems that determine the values of variables
by searching for similar implementations of a model. Case-based systems
are very appealing for ecological epidemiology. For example, one might infer
that if Stream A resembles all other streams found to be impaired by high
temperatures, then Stream A is impaired by high temperatures.

How is this related to ecological causal assessment? To date, case-based
reasoning systems for environmental problems do not exist partly because
few formal and documented causal assessments have been made. Until a
body of knowledge is developed and is accessible, this type of inference is
not available as a formal tool for ecological causal assessment. However,
in informal causal assessments, it is common for experienced field bio-
logists to infer causation by similarity to prior cases, so the technique seems
promising.

3.9 Comparison of Causal Models

Selection of the cause—effect relationship (empirical or mechanistic model)
that best explains the data has been advocated by some authors as a means
of choosing the best causal explanation (Josephson and Josephson, 1996;
Taper and Lele, 2004). The Bayesian version has been called strongest pos-
sible inference (Newman and Clements, 2008). When applied to mechanistic
models, the approach has been termed model-based inference (Anderson,
2008; Hillborn and Mangel, 1997). This approach develops models for each
of the candidate causal relationships and compares them using sums of
squares (simple goodness-of-fit statistics), likelihood ratios (conventional
statistics), Bayesian probabilities (if you have good prior information or use
subjective judgments), or Akaike’s information criterion (the information
theoretic approach). To be reliable, these methods require large data sets
that include the appropriate metrics for all of the models to be compared.
Model comparison can be done in cases such as models of harvesting and
climate as causes of the decline in a fishery, because long time series of
harvest and climate data are available. If data sets are not all reasonably
large and of consistent quality, the comparisons may tell you more about the
quirks of the data than about the explanatory power of the models or the
causal hypotheses that they represent. Therefore, these methods are more
often useful as contributors to a qualitative weighing of evidence than con-
clusive in themselves.

How is this related to ecological causal assessment? Quantitative abduc-
tive inference is the use of statistics to estimate the degree to which mod-
els associating each candidate cause and effect (including causal networks)
are consistent with the data and use of that single piece of evidence as the
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decision criterion. This method is still subject to the objection that “correla-
tion (or any other measure of association) is not causation.” It is best thought
of as a means of comparing models of candidate causal relationships, given
a data set that is applicable to all of them. In practice, this approach is rarely
feasible, because, except in simple cases, no one data set is complete enough
to develop comparable models for all candidate causes.

3.10 Weighing Evidence

When multiple types and lines of evidence are available, causal inference
requires weighting the individual pieces of evidence, combining them into
an overall weight for each candidate cause and determining which alterna-
tive provides the best explanation (see Chapter 19). Weighing multiple pieces
of evidence is a pragmatic method and an important tool of inference. C.S.
Peirce, a founder of pragmatism, argued that any single line of reasoning,
like a chain, is likely to fail due to a weak link, so science should be like a
cable spun from multiple strands (Berstein, 2010). William James, pragma-
tism’s other founder, introduced the term “pluralism” to the English lan-
guage to describe the application of multiple methods to analysis of a case
(Menand, 2001).

The weighing of evidence is particularly important for evaluating which
candidate cause is best supported by a diverse body of evidence (Box 3.2).
In many cases, it is not clear what causal explanation best accounts for the
evidence. A cause may appear to explain the evidence because it is true
or because of coincidence, technical errors, or some unknown factor. How
applicable is that laboratory test to the field? Is the association in that field
study representative of a general causal relationship? Are the results con-
sistent with a more general theory and with theory in related fields as well
as with the evidence (i.e., is it consilient—Whewell, 1858; Wilson, 1998)? Is

BOX 3.2 WEIGHTING AND WEIGHING

These terms can be confusing because weight is used as a noun and as
a verb and it sounds like the verb to weigh. We refer to the process of
scoring the importance of a piece or category of evidence as weighting.
Evidence with higher weight exerts more influence on the final con-
clusion. After multiple pieces of evidence supporting or weakening a
candidate cause have been weighted, the body of evidence is evaluated
as a whole based on the constituent weights. The result of that weigh-
ing process is the weight of evidence. Our approach for weighting and
weighing is described in Chapter 19.
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there a mechanism that explains the results? Is it confirmed by independent
investigations and is that confirmation insensitive to conditions that should
be extraneous? This is where the various conceptual tools of science must be
deployed to go beyond an individual experiment or observational project.
These issues are discussed in detail in Chapter 19.

Weighting and weighing bodies of evidence are often performed implicitly
using professional judgment (Weed, 2005) but is best done in some explicit
and systematic fashion (Linkov et al, 2009). Weights may be numerical
(Menzie et al.,, 1996) or symbolic (usually some number of + 0, or — sym-
bols depending on how strongly a line of evidence supports or discredits
a candidate cause) (Fox, 1991; Susser, 1986). The pieces of evidence may be
organized into types of evidence or causal characteristics for weighting and
comparison (see Chapters 4 and 19). The weights assigned to evidence may
be combined arithmetically, by ad hoc judgment or by judgment guided by
standard considerations and logic (Suter et al., 2000).

How is this related to ecological causal assessment? Weighing evidence
is a way of evaluating and synthesizing the evidence to arrive at the best
available explanation for the cause of an environmental effect. There is no
standard for defining enough evidential weight, but scientists can identify
the weightiest of a set of alternative causal explanations (see Chapter 19).

3.11 Causal Criteria

Causes can be identified by determining whether the evidence meets certain
criteria. For example, Koch’s postulates (aka the Henle-Koch postulates) are
a set of three or four criteria (depending on the version) that together consti-
tute a standard of proof for infectious agents as causes of disease (see Table
2.1 and Box 3.3).

The Surgeon General’s Committee and Austin Bradford Hill developed
criteria to demonstrate that the body of evidence supported cigarettes as a
cause of lung cancer (Hill, 1965; U.S. DHEW, 1964). Susser (1986) extended
Hill’s criteria and added a scoring system. Many other authors, particularly
epidemiologists, have developed lists of criteria, but Hill’s are the most often
cited. Criteria have been adopted and adapted by ecologists for ecoepidemi-
ology (Fox, 1991; Suter, 1990, 1998; U.S. EPA, 1998, 2000a—e). Hill considered
his “criteria” to be only viewpoints for considering whether epidemiological
associations are causal. Some have argued against the use of criteria as too
subjective (Rothman et al., 2008), while others have argued for mandatory
criteria (Guzelian et al., 2005). Criteria for assessing causation may be the
demonstration of characteristics that are believed to define a causal relation-
ship (see Chapter 4), but more often they are simply types or qualities of
evidence (Cormier et al., 2010).
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BOX 3.3 KOCH’S POSTULATES

Koch’s postulates area research plan to acquire scientific evidence required
to perform a series of inferences that establish the cause of a disease.
Koch'’s postulates were applied to the investigation of coral reef declines
in the Florida Keys (Sutherland et al., 2010, 2011). Koch’s postulates were
satisfied: (1) characteristic lesions were identified, (2) the pathogenic bac-
teria were isolated from the field, and (3) the lesions were recreated under
laboratory and field conditions. Koch’s postulates have been adapted to
causes other than pathogens, but they work best with a single clear cause
(Woodman and Cowling, 1987; Yerushalmy and Palmer, 1959).

How is this related to ecological causal assessment? Clear inferential
arguments are necessary for determining the best explanation for instances
of specific causation. Hill’s criteria are still conventional among human
health assessors, but they have not been used to the same extent among
ecological assessors. More fundamentally, Hill’s criteria are a mixture of a
few characteristics of causation (e.g., temporality), qualities of evidence (e.g.,
strength), and sources of information (e.g., experiment) (Cormier et al., 2010).
However, criteria are useful as aids for maintaining consistency within the
process of weighing evidence. Therefore, we have attempted to provide more
complete and consistent sets of characteristics of causal relationships, types
of evidence derived from different sources of information, and qualities of
evidence for use in weighting the evidence (Chapters 4 and 19).

3.12 Our Conceptual Approach

Our approach to causal assessment draws on many of the methods dis-
cussed in this chapter and organizes them with other concepts into a flexible
but powerful method that is the subject of Part 2. After defining the problem
and listing candidate causes, the inferential methods described in this chap-
ter are used to derive evidence, rather than to directly determine the cause.
Each piece of evidence is weighted and the body of evidence for each candi-
date cause is weighed. The evidence is then compared across the candidate
causes to determine which alternative is best supported. This approach uses
all relevant evidence, shows which candidate cause is best supported by the
evidence, and indicates how much is known about causation in the case. To
facilitate the process, fundamental characteristics of causal processes (build-
ing on the concepts described in Chapters 2 and 3) are used to guide the
derivation and organization of evidence.
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Characteristics and Evidence of Causation

Susan M. Cormier, Glenn W. Suter II, and Susan B. Norton

This chapter has three sections. The first section provides a working
description of a causal relationship in environmental applications. The
second section describes the components and characteristics of causal
relationships. The third section introduces common ways of deriving
evidence of the causal characteristics.
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Causality is the principle that everything that happens has a cause. The cogni-
tive capacity of humans for making causal connections is documented in infants
(e.g., Michotte, 1946, Leslie and Keeble, 1987) and like other emergent prop-
erties of the brain is inherited and subject to evolutionary processes* (Lorenz,
1965, 2009; Campbell, 1982; Freeman, 2000; Ruse, 1989; Scarfe, 2012). People’s

* Evolutionary epistemology refers to natural selection of cognitive mechanisms, such as the abil-
ity to form causal connections, and analogously, the evolution of scientific theories that survive
selection by the scientific enterprise. Epigenetics is the causal mechanism by which genes bring
about phenotypes, including the expression of cognitive abilities to form causal connections.
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recognition of causality is reinforced and informed by repeated observations of
specific instances of causation, the act of something causing an effect.

This chapter provides a convention for articulating expectations about
causal relationships by providing explicit terminology for the elements and
characteristics of causal relationships. Causal characteristics are used to
suggest ways to develop and interpret evidence. They also provide a useful
framework for organizing evidence for easier comparison and for recogniz-
ing pieces of evidence that are particularly compelling (see Chapters 19 and
20). Relating the evidence back to causal characteristics provides a useful
way to sum up the conclusions of an assessment.

4.1 A Working Description of Causation

In this book, we define causation as a relationship between events involving
a process connection between a causal agent (i.e., a stressor) and an affected
entity (e.g., an organism).

Different aspects of causation—as an agent, event, or process—tend to be
emphasized when causes are described. Agent causation is the simplest and
uses nouns and adjectives to describe causes and effects. Dissolved copper
caused many dead fish. The cause and effect are indicated by bold italics.
Event causation links a preceding event with a subsequent event and empha-
sizes action rather than things. Exposing the fish to copper ions resulted
in killing the fish. Process causation emphasizes mechanisms and modes
of action, that is, one process leads to another ultimately resulting in the
effect. In this book, mechanism is defined as a process that brings about the
mode of action. The mode of action is the way that the mechanism ultimately
affects the entity. For example, binding of copper ions to the gills disrupts
ionic regulation resulting in low blood sodium and chloride concentrations,
which affects blood viscosity (mechanism) which in turn causes cardiac
arrest (mode of action) in the fish (Grosell et al., 2002).

In a causal relationship, both the agent and the entity are changed (see
Figure 4.1). For example, when a parasitic lamprey adheres to a lake trout,
the interaction (see arrows in Figure 4.1) of attaching and ingesting blood
by the lamprey provides nutrients and energy to the lamprey, while the

Susceptible entity Effect
FIGURE 4.1
In a causal relationship, two entities interact in such a way that they are both changed. The

interaction between the two entities that changes them is shown by the arrows. For practical
reasons, one changed entity is treated as the cause and the other as the effect.
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fitness of the trout is reduced. Even when both the lamprey and the trout
are perceptibly changing, it is usually the change in the lake trout that is of
greater interest or concern. For the purposes of this book, we call the trout
before it is changed the Susceptible Entity and after it is changed, the Affected
Entity or Effect. The cause (lamprey) is the thing we want to control so that
future adverse events do not occur. We call the entity we want to control (the
lamprey) a Potential Cause before the effect occurs. This implies that it has the
potential to do harm, not that it has. It is called the Cause after the effect has
occurred. In the diagram, the curved arrows depict the interaction between
potential cause and the susceptible entity. After the interaction happens and
the susceptible entity is affected, the cause and the effect are so named.

How does this relate to ecological causal assessments? Having common
conventions and terminology makes it easier to describe expectations and to
develop and evaluate evidence of specific causal relationships. We chose to
dissect a causal relationship into its components and characteristics of cau-
sation. These characteristics can be used to define expectations of a causal
relationship, which in turn are evaluated using evidence.

4.2 Characteristics of a Causal Relationship

We suggest six characteristics that we have found useful for assessing causes.
They are co-occurrence, sufficiency, time order, interaction, alteration, and
antecedence* (see Table 4.1).

These characteristics reflect systems for identifying causes developed by
others, although the terminology varies. Most notably, they appeared in the
1964 report on smoking provided to the U.S. Surgeon General (U.S. DHEW,
1964), popularized by the transcription of an address by Sir Bradford Hill to
the British Academy of Science (Hill, 1965). Hill listed nine considerations
that are a mixture of types of evidence, sources of information, and types
of inference, but we have simplified the list by focusing on the fundamen-
tal characteristics of a causal relationship and capturing the qualities of evi-
dence when weighing the evidence (Cormier et al., 2010).

How does this relate to ecological causal assessments? The characteris-
tics are used to articulate expectations of what would be observed if a causal
relationship had occurred. Then, evidence is used to determine whether the
expected results are obtained and to evaluate whether a relationship exhibits
the characteristics of causation.

For example, large numbers of dead and dying bumble bees were reported
to the Xerces Society in a commercial area south of Portland, Oregon, on June
18, 2013 (Figure 4.2). One might posit high or low temperatures, pesticides,

* Antecedence was called preceding causation in previous publications.
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TABLE 4.1

Ecological Causal Assessment

Descriptions of Characteristics of Causal Relationships

Causal
Characteristic

Description

What Evidence of
a Characteristic Shows

Co-occurrence

Sulfficiency

Time order

Interaction

Alteration

Antecedence

The cause co-occurs with the
susceptible entity in space and
time

The intensity, frequency, and
duration of the cause are
adequate, and the entity is
sufficiently susceptible to produce
the type and magnitude of the
effect

The cause precedes the effect

The cause interacts with the entity
in a way that can induce the effect

The entity is altered by interacting
with the cause

The causal relationship is a result of
a larger web of antecedent
cause-and-effect relationships

The presence of both the cause and
the effect and the potential for
exposure

Enough of the cause and a
sufficiently susceptible entity that
can result in the level of the
observed effect

Change in the entity after interaction
with the cause and not before

Signs of initiation of the change by
the causal agent such as contact or
uptake

Changes in the entity attributable to
or at least appropriate to the cause

Earlier events that led to the
particular causal event

Source: Adapted from Cormier, S. M., G. W. Suter II, and S. B. Norton. 2010. Hum Ecol Risk
Assess 16 (1):53-73.

FIGURE 4.2

Image of the high density of dead bumble bees on the pavement of a store parking lot in
Wilsonville, Oregon. Between 25,000 and 50,000 bumble bees and 300 wild colonies were esti-
mated to be killed. (From Rich Hatfield, Conservation Biologist, The Xerces Society, used with

permission.)
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chemical fumes, or other candidate causes, but for illustration purposes we
have focused on one, a pesticide, which was the actual cause of the bumble
bees’ deaths.

If a pesticide were the cause of a massive number of bumble bee deaths,
one might expect to find that a pesticide had been applied to flowering trees
in the area (antecedence) and that bumble bee deaths occurred after contact
with the flowers and not before (time order). Furthermore, one would expect
that dead bumble bees would occur where the pesticide was sprayed and
not where it was not sprayed (co-occurrence) and applied at levels known
to cause death in insects (sufficiency). In fact, evidence of these characteris-
tics was established and the pesticide was identified as a neonicotinoid with
an exposure route through sap and nectar that causes paralysis and death of
insects. As would be expected, the affected bees showed signs of impaired
neurological function by falling from the trees and then dying on the pave-
ment below (alteration). Binding of the pesticide to acetylcholine receptors
was not measured in the bees but would be expected to occur (interaction).
In this specific case, no one disputes that the systemic pesticide was the cause
of the effect based on the strong evidence for most of the characteristics of a
causal relationship. In presenting the findings, the characteristics did not need
to be called out, just the evidence (Case, 2013; Black, 2013), but we might sur-
mise that a general understanding of the characteristics of causation guided
what evidence was collected and what was reported by several news groups.

To more fully explore each causal characteristic, the rest of this chapter
uses a familiar experimental construct, a toxicity test (see Figure 4.3). A
toxicity test is a controlled laboratory experiment in which organisms are

oy
Susceptible entity

FIGURE 4.3

To illustrate the characteristics of causal relationships, we use a situation that is familiar to
many biologists: a toxicity test. Although this book is dedicated to environmental assessments,
the simplicity of the toxicity test is a useful illustration. The potential cause is dissolved copper
ions depicted as dots. The susceptible entities are young fish in a beaker of water. The cause is
copper ions. The effect or affected entity is dead fish floating at the surface.
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exposed to a potentially toxic chemical. If the organisms are susceptible and
the chemical is toxic at the tested level of exposure, the organisms die or
exhibit sublethal effects such as reduced egg production or growth. A toxic-
ity test allows a scientist to witness a causal event as it happens and poten-
tially observe evidence of each causal characteristic. The second part of this
book (especially Chapters 9-18) extends these concepts to a broad variety of
sources of information and types of evidence.

4.2.1 Co-Occurrence

Because a potential cause and susceptible entity must have interacted to result
in an effect, they must have co-occurred in space and time (Hume, 1748). In
the laboratory toxicity test, copper that has been dissolved and added to the
beaker co-occurs with the test fish (see Figure 4.4). During and after the death
of the fish, the expectation is that copper ions in the water could be detected.

How does this relate to ecological causal assessments? When a stressor
has caused the effect, we expect that the stressor will be present where and
when the effect occurred and will not be present where and when the effect
did not occur. The concept of co-occurrence does not require physical contact
and may refer to co-occurrence with the absence of something. For exam-
ple, absence of food, rather than the presence of food, is a cause of death in
humans and other animals.

In most cases, measurements are available after the effect occurred, so
stressor measurements reflect the presence of a causal agent rather than the
potential cause. In the field, the copper measured in the water sample is not
the specific copper ions that killed the fish, but we infer that it is representa-
tive of the conditions just prior to the effect. Most measurements are approxi-
mations of what we wish we could measure.

.
Susceptible entity Effect

FIGURE 4.4

Co-occurrence: The cause and susceptible entity are collocated in space and time. The gray
area in the diagram indicates parts of a causal relationship which usually provide the mea-
surements used to develop evidence of co-occurrence. For example, fish are dead in the beaker
(effect) and copper is present (dots).
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Susceptlble entity Effect

FIGURE 4.5

Sufficiency: The intensity, frequency, and duration of the cause are adequate to produce the
magnitude of the effect, given the susceptibility of the entity. In the first beaker, at very low cop-
per (dots) concentration, all fish appear healthy (gray fish). As copper concentration increases,
fish begin to die (white fish) until all are dead at the highest concentration in the last beaker.

The expectation of co-occurrence is frequently extended to predict that
stressor levels will be greater at locations where the effect occurred than
at locations where it did not occur. This is because many causal agents
(e.g., dissolved ions) occur naturally and many are necessary for living
things. Naturally occurring chemicals are always present at least at very
low levels.

Also, time lags and movements of organisms are important consider-
ations when evaluating co-occurrence. One well-known example is the
decline of birds of prey after the introduction of DDT. Bioaccumulation
occurred over time in prey and then in adult birds, and populations
declined later when reproduction failed and young did not replace their
parents. Effects may be manifested at later times or at distant places from
the original co-occurrence.

4.2.2 Sufficiency

Sufficiency indicates that the magnitude or duration of exposure was
enough for the effect to occur. In laboratory toxicity tests, sufficiency is illus-
trated by a series of tests with increasing concentrations of a chemical (see
Figure 4.5).

As a cause interacts with a susceptible entity more frequently, for longer
amounts of time, or at greater concentrations or intensities, the magnitude
or severity of the effect increases.* For example, dissolved copper at 54 pg/L

* Some causal relationships have stressor-response patterns that are not monotonic. For
example, unimodal responses may increase and then decrease as stressor levels increase.
The response of the mayfly genus Isonychia to salinity exhibits this type of pattern: as salin-
ity increases, the capture probability of the mayfly genus Isonychia increases occurrence to a
maximum then decreases and then no longer occurs (see Figure 12.5).



54 Ecological Causal Assessment

for 10 days is sufficient to kill salmon fry, but exposure at that concentration
for a day is not (given conditions in Hansen et al., 2002). As the heights of
dams increase, passage of fish becomes more difficult and then impossible.
Less and less cover for kit foxes results in more and more predation (see
Chapter 25).

How does this relate to ecological causal assessments? When a cause has
produced an effect, we expect that the levels of the cause will be consistent
with those known to be capable of producing the observed type and severity
of the effect. The relationship between levels of the cause and the effect can
be observed directly in experiments that use a dilution series or in field situ-
ations where the cause is diluted by natural processes (e.g., pollutant concen-
trations in a stream diluted below the confluence with a cleaner tributary).
Alternatively, the expected levels of the cause that are capable of producing
the effect can be derived using models developed from the results of labora-
tory experiments or field observational studies.

4.2.3 Time Order

Causes come before effects even when writing the phrase, “cause and effect.”
The characteristic of time order concerns the proper sequence of events. In
the laboratory, the proper sequence of events is established when the investi-
gator documents that fish die only after addition of copper to the beaker (see
Figure 4.6).

At the spatial and temporal scales of human experience, time does not
reverse and effects do not cause their own causes (Salmon, 1984; Dowe, 1991).
This asymmetrical nature of our experience with time is termed direction-
ality (Eddington, 1928). Because of directionality, causal relationships have
the characteristic of time order. For example, dead fish do not come back to

FIGURE 4.6

Time order: The cause precedes the effect. Gray ovals indicate the parts of a causal relationship
which usually provide the measurements used to establish the temporal sequence of events.
The left beaker contains a small amount of dissolved copper and the fish appear healthy. After
more copper is added, the fish die.
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life and copper released from them does not return to a jar on the laboratory
shelf.

How does this relate to ecological causal assessments? When a cause has
produced an effect, we expect that observations of the cause will be coinci-
dent with or precede observations of the effect. Developing evidence for time
order requires knowledge about the agent and the susceptible entity before
and after the event occurs. If conditions have not been observed before and
after the event, then an association showing time order cannot be made.
However, when available, information about time order is strong evidence,
as in the case of the bumble bee deaths.

4.2.4 Interaction

The characteristic of interaction delves deeper beneath the concept of co-
occurrence, to the mechanistic processes that initiate the effect. Observations
from laboratory experiments can provide evidence of the actual interaction
as biochemical markers or chemical accumulation in a target organ (see
Figure 4.7). For example, Grosell and Wood (2002) measured copper binding
to brachial ionic channels and changes in sodium and chloride concentra-
tions in fish blood (Grosell et al., 2002). In field investigations that begin after
an effect has appeared, investigators often have to settle for traces of an inter-
action that persists such as partially metabolized chemicals (Cormier et al.,
2002; Norton et al., 2002a).

The concept of interaction is more than one entity touching the other, or
even a mechanism that involves contact. Salmon (1984) described causal
interactions as the “transmission or interruption of an invariant or con-
served quantity (e.g., charge, mass, energy, and momentum) in an exchange
between two causal events.” Other authors (e.g., Wolf, 2007) have extended

Potential cause Cause ]

( )

[ Susceptible entity }¥/[ Effect ]

FIGURE 4.7

Interaction: The potential cause and the susceptible entity influence each other in a way that
induces the effect. The gray oval indicates the part of a causal relationship which usually provides
the measurements used to evaluate results based on expected interactions between the cause and
the entity. In the copper toxicity test example, copper ions (black dots) are bound to the gill surface.
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the physical concept of interaction to causal interactions such as information
transfer (e.g., nucleic acid codes in viral infection), sensing of environmental
conditions, or communication. For example, although abrasion of fish gills
by suspended sediment is a physical interaction, suspended sediment in a
stream which interferes with light penetration and sighting of prey is also a
physical interaction.

How does this relate to ecological causal assessments? When a cause
has produced the effect, then we expect to observe evidence of exposures
and initiation of changes that are part of the process that leads to the effect
of interest. As with alteration, the mechanism or mode of action of a can-
didate cause must be known in order to develop expectations concerning
interaction. This knowledge comes from previous work in the laboratory,
mesocosm, or field settings. Typical types of evidence that demonstrate that
exposure has occurred include pathogens or body burdens of a chemical,
molecular binding to receptors such as DNA, or tissue damage.

4.2.5 Alteration

Another characteristic of a causal relationship is that the susceptible entity
is changed by the interaction with the cause. Causes change susceptible
entities in different ways. Herein lies a means of generating expectations
and evidence. When the expected kind of alteration does not occur or does
not match the cause, that candidate cause is less likely or rejected. A jagged
wound on a manatee is not caused by pesticide toxicity. It is caused by a
sharp object like a propeller. During a laboratory toxicity test, specific effects
might include fish gasping at the surface or displaying hemorrhagic gills (see
Figure 4.8).

How does this relate to ecological causal assessments? When a cause
has produced the effect, then we expect that specific manifestations of that
effect will be consistent with those known to be produced by the cause. The
knowledge of the expected signs and symptoms are typically developed
based on laboratory experiments or field observational studies. For some
causes, lists of known signs and symptoms have been compiled by experts
(see Chapter 17). In this book, evidence of alteration shows changes in the
organism that leads to the effect (e.g., paralysis in the bumble bee in Section
4.2). In comparison, evidence of interaction shows that exposure occurred
and may or may not be in the effect pathway, such as bioaccumulation in
nontarget tissues like fat.

4.2.6 Antecedence

Causes are caused by other causes (Pearl, 2009). That is, each causal rela-
tionship is a result of a larger web of preceding cause—effect relationships.
Identifying sources and pathways to exposure is a way of putting the
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[ Potential cause ]

-

[ Susceptible entity

'

FIGURE 4.8

Alteration: The entity changes by interacting with the cause. Gray ovals indicate the parts of
a causal relationship which usually provide the measurements used to develop evidence to
evaluate whether expected specific effects are observed. Strong evidence of alteration is pro-
vided when a single cause is known to be associated with multiple specific effects, illustrated
here by lack of melanin and opaque eyes, which are different from the set of effects caused by
other candidate causes, such as bleeding gills.

potential cause and susceptible entity at the scene, so to speak. Such evi-
dence increases confidence that the causal event actually occurred (e.g., that
it was not a result of a measurement error or hoax) (Bunge, 1979).

There are typically multiple antecedent processes leading up to a causal
interaction. In addition to leading to a proximate cause, antecedents also lead
to an entity becoming more susceptible or likely to be exposed. For exam-
ple, organisms subjected to freezing temperatures may be more susceptible
to the effects of metals (Holmstrup et al,, 2010). Reduced prey abundance
increases time that kit foxes must hunt and are vulnerable to predation (see
Chapter 25). Flowers in bloom attract bees.

In the laboratory experiment example, newly hatched fish, which are more
susceptible to environmental contaminants than adult fish, were reared for
the experiment, copper solutions were created, and then both were added to
the beaker (see Figure 4.9). These steps preceded exposure of the fish to the
copper.

Because aphids leave residues on parked cars, the store manager hired a
contractor to eradicate the aphids. The contractor sprayed linden trees in
bloom and foraging bees were attracted to the blooms. These steps preceded
the bees drinking the neonicotinoid-laced nectar.

Relationships that precede the causal relationship of interest are causal in
their own right and possess the characteristics of causation. Therefore, evi-
dence of the causal events that produced the proximate cause can be based
on any of the characteristics of co-occurrence, sufficiency, interaction, altera-
tion, or time order. For example, if depleted oxygen is the cause of a fish kill,
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FIGURE 4.9

Antecedence: The specific causal relationship occurs as a result of a larger web of cause-and-
effect relationships. Gray ovals indicate parts of a causal relationship which usually provide
the measurements used to develop evidence of a causal progression. For example, copper
release and then dissolution in water is an antecedent causal event. The copper solution is
then in contact with the fish. Events also lead to an entity being susceptible to exposure where
the interaction can occur, shown here as the selection of young fish. Evidence of antecedence
usually demonstrates a causal progression of events leading to the potential cause and the
susceptible life stage being in a situation where the interaction can occur.

evidence could demonstrate how the oxygen became depleted. Perhaps there
were insufficient riffles to aerate the water. Perhaps an effluent containing
organic matter occurred at the affected site and was decayed by bacteria and
fungi depleting oxygen. Note that the lack of riffles or the organic matter did
not harm the fish, but they led to the cause that did.

How does this relate to ecological causal assessments? When a cause
has produced the effect, we expect to observe evidence of the causal events
that led up to either the occurrence of the cause or increased susceptibil-
ity of the entity. Evidence of a more complete causal pathway strengthens
the overall case. In some cases, measurements of the proximate cause are
not available and evidence of an antecedent may be used as a surrogate
for the cause such as organic matter as a surrogate for depleted oxygen in
water. When there are appropriate models, the concentration and time of
exposure can be estimated for a moving cause or migrating entity. In some
cases, antecedents may trace all the way back to the source of the cause
or illustrate a connection to a factor that made the entity more susceptible
or the cause more toxic. Antecedents that lead to the presence of a cause,
for example, emissions from a source, are of particular interest because
steps in these pathways are frequently the subject of management action.
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4.3 Characteristics and Evidence

The previous sections described several characteristics of causal relation-
ships and how that construct can be used to hypothesize the kinds of results
that are expected to be observed when a cause has produced an effect. This
section provides a brief overview of how data from field studies, experi-
ments, and models are used to derive evidence. Later chapters develop these
ideas much more fully.

Evidence is information used to evaluate whether results expected of a
causal relationship have been observed. If Cause X produced Undesirable
Effect Y, we would expect to observe Z. The information used to judge
whether Z in fact is observed is a piece of evidence. For example, because
causes precede effects, when the effluent from a wastewater treatment plant
is the cause of an undesirable effect, it is expected that the effect began after
the effluent was first released and did not occur beforehand. Actual evidence
of when the plant went into operation relative to the observation of the effect
should confirm these expectations. When evidence does not match expecta-
tions, then these pieces of evidence weaken, or even refute, the effluent as
the cause.

As in all scientific enterprises, it is better to establish in advance what kind
of evidence would support a candidate causal relationship and what would
not. When an effect is anticipated, data can be deliberately collected to develop
evidence of any aspect of a causal relationship. This is not possible when the
effect is not anticipated. Nevertheless, even if an investigation begins after
the causal event and even after the collection of data, results that would sup-
port or weaken a candidate cause can be stated before deriving any evidence.
Stating expectations is possible because general causation has been described
for many environmental causes at least in terms of the type and direction
of expected effects (e.g., U.S. EPA, 2012b). Assessors can first describe what
is expected based on this more general knowledge, then use the site data to
generate evidence, and evaluate whether that evidence is consistent or incon-
sistent with the expectation. Using this formal process reduces the chance that
information will be molded into a false but interesting narrative.

4.3.1 Opportunities to Develop Evidence

Ecological causal assessments typically begin with at least one piece of
information: the observation of the undesirable effect at the site under inves-
tigation (i.e., the affected site). Evidence is developed when that initial obser-
vation (i.e., the effect) is combined with additional data from the case or
compared with causal associations developed outside of the particular case.
Typical approaches include calculating the magnitude of an association at a
site relative to locations without the effect, or comparing case observations



60 Ecological Causal Assessment

with predictions of a model. Some evidence may be qualitative or descrip-
tive in nature, for example, documenting the species of infected coral and
symptoms such as the shape of lesions. How evidence is generated (e.g., a
photograph, a multivariate analysis, an experiment) depends on the cause,
effects, and causal characteristic that one is trying to evaluate, as well as, the
source, kind, amount, and availability of data.

Organizing what is known about the case is a useful way to start to develop
evidence. Common types of evidence can be derived using only data from
the case. Then evidence can be made using data from the case related to
more general associations. To do this, established associations about causal
relationships are compared with data from the particular case. For example,
when a set of symptoms is associated with a pathogen, those known symp-
toms should appear in the affected organisms in the particular situation if
the effects are a result of that pathogen and not when they are the result of
something else.

4.3.2 Types of Evidence

In ecological causal assessments, evidence is derived using qualitative and
quantitative associations between measurements of effect and exposure.
Measurements of effects include presence, absence, abundance, survival,
and symptoms. Measurements of exposure include environmental con-
centrations and physical habitat attributes; biomarkers, body burdens, and
physiologically relevant information. Sources of information include field
observational studies, laboratory experiments, field tests, and models. The
evidence is derived using statistical and logic-based analyses. The expec-
tations prompted by different causal characteristics and the array of data
result in a wide variety of possible ways of deriving evidence. For this rea-
son, the types of evidence described in CADDIS are provided as a handy
menu of options (see Table 4.2) (Suter et al., 2010a). These types of evidence
reflect some of the more common ways evidence is developed, but not the
only ways.

The types of evidence in Table 4.2 are organized by causal characteristic(s).
It is not necessary to categorize evidence by characteristic or type; however,
the two categories provide useful functions. The types of evidence empha-
size the approaches used, for example, field observations versus laboratory
experiments. The assessor may begin by going through the list of types
and asking whether data are available for each type and whether a type
is appropriate for the case. The characteristics emphasize the fundamental
attributes of a causal relationship. The assessor may go through the list ask-
ing what evidence can be generated that illustrates each of the characteris-
tics. Both types and characteristics serve as reminders of the many different
ways evidence can be derived. It is not necessary to develop all these types
of evidence to infer the best causal explanation for an effect.
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Characteristics and Evidence of Causation
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4.4 Summary

This chapter presents six fundamental characteristics of a causal relationship:

¢ The cause co-occurs with the unaffected entity in space and time
(co-occurrence);

e The intensity, frequency, and duration of the cause are adequate for
the susceptible entity to exhibit the type and magnitude of effect
(sufficiency);

* The cause precedes the effect (time order);
* The entity is changed by the interactions with the cause (alteration);

¢ The cause interacts with the entity in a way that can induce the effect
(interaction); and

e The causes and their effects are results of a web of causation
(antecedence).

The characteristics of causation provide a conceptual basis for setting
expectations and planning the collection of data to demonstrate whether or
not any candidate causes produced the effect. These expectations are evalu-
ated using evidence. Using causal characteristics as a framework for develop-
ing expectations and evidence also benefits the end of the causal assessment
process by providing a logical structure for explaining the basis for causal
conclusions.

Awareness of the logic involved in a causal assessment empowers an asses-
sor to develop a complete set of relevant and interpretable evidence. Being
able to clearly define the logic increases the credibility of both the evidence
and the assessor. When a case is novel and routine approaches are lacking,
the characteristics can help the deft assessor to move beyond past standard
practices and adapt to the new challenge.

The evidence descriptions in this chapter provide many examples of
results that would support expectations. However, evidence that weakens
the case for a candidate cause can play a pivotal role in constraining the pos-
sible explanations and thereby a greater influence on the overall conclusions
(Weed, 1988).

The process of deriving and interpreting evidence is a scientific endeavor
that relies on technical skills and knowledge. Hence, it is a process con-
ducted that is influenced by errors and biases introduced by the way many
people view and process information. Strategies for minimizing these errors
are described in the next chapter.
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Sections 5.1 and 5.2 provide an overview of the challenge. Section 5.1 dis-
cusses the human tendency to form initial judgments quickly based on our
prior perceptions, rules of thumb, and information readily at hand. Once a
judgment is formed, our tendency is to stick with it, filtering out any new
information that may undermine initial conclusions. We form narratives to
justify our conclusions that make us overconfident in judging accuracy.

Situations that prompt ecological causal assessments also have attributes
that can exacerbate cognitive errors (see Section 5.2). Multiple sources and
stressors are frequently encountered, many of which covary in time and
space. In addition, an observed effect can be produced by different causes.
For these reasons, the first or most obvious cause of an effect may not be the
actual cause. Data sets are frequently small, preventing the use of statisti-
cal techniques to disentangle relationships. The costs and time required to
implement management actions frequently prevent systematic experimen-
tation and comparison of the results of different actions to better under-
stand causes.

Section 5.3 describes how the overall approach and specific strategies
described in this book help minimize errors and biases. Although the strate-
gies take time and effort, the payoff comes by maintaining trust and confi-
dence both within the investigative team and between the technical staff,
managers, and the wider community.

5.1 Cognitive Tendencies that Contribute to
Errors in Causal Assessments

Human cognitive tendencies evolved, in part, to efficiently process sensory
input and make quick decisions. Quick processing does not always result in
biases or errors. However, the quick processing can amplify biases in ways
that can lead to high confidence in an erroneous conclusion. High confi-
dence in a mistaken cause can result if a coherent story, is constructed from
evidence that was selected either subconsciously or deliberately because it
supported a mistaken first impression. Understanding how this sequence
can transpire is addressed in the following sections by discussing first how
initial judgments can be formed in error (see Section 5.1.1), followed by the
development and selection of evidence (see Section 5.1.2), and ending with
the formation of conclusions (see Section 5.1.3).

5.1.1 Mistaken First Impressions

Malcolm Gladwell’s book Blink (2007) describes how quickly we can form
opinions. But long before this book, Leo Tolstoy (2007) was well aware of the
issue:
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Man's mind cannot grasp the causes of events in their completeness, but the
desire to find those causes is implanted in man'’s soul. And without considering
the multiplicity and complexity of the conditions any one of which taken sepa-
rately may seem to be the cause, he snatches at the first approximation to a cause
that seems to him intelligible and says: “This is the cause!”

Jumping to conclusions is not a problem in itself. However, it is counter-
productive when the wrong first impression delays or prevents understand-
ing of causal processes. It is a part of human nature to form initial judgments
without considering all of the information available. Initial perceptions are
frequently overly influenced by evidence that is easily retrieved, worrisome,
or dramatic, even when it is based on only a few samples (Nisbett and Ross,
1980). Too often, people neglect the overall rate of occurrence of a cause
or forget that alternative causes can produce the same effect. Conclusions
formed in these ways can start an investigation off in a biased direction (see
Table 5.1).

TABLE 5.1

Ways that the Cognitive Tendency to Quickly Form Opinions Can Result in Biases
and Errors

Description Example
Anchoring: A dependency of belief on A survey of citizens in the Chesapeake Bay
initial perceptions or estimates watershed found that many of the

respondents thought that stressors responsible
for ecological effects in the past are still the
predominant causes of degradation

(Blankenship, 1994).
Easy representation: Explanations that An effect is more likely to be attributed to a
are easy to envision are favored cause that is discrete and observable (e.g., a

point source discharge), than one that is
diffuse and not readily apparent (e.g.,
atmospheric deposition of nitrogen). This may
have contributed to public opinions,
indicating that local industrial point sources
are the sources of degradation of the
Chesapeake Bay, rather than nutrient inputs
from agricultural, residential areas, and
atmospheric deposition (Blankenship, 1994).

Ignoring base rates: Evidence of a cause The EPT taxa richness decreases with increasing
is considered without factoring in the copper contamination. However, an observed
overall probability of the cause’s decline in EPT richness should not lead
occurrence immediately to the conclusion that copper was

the cause, because other causes such as
siltation are more common.

Source: Descriptions summarized from Nisbett, R. and L. Ross. 1980. Human Inference: Strategies
and Shortcomings of Social Judgement. Eaglewood Cliffs, NJ: Prentice-Hall; Dawes, R. M.
2001. Everyday Irrationality. Boulder, CO: Westview Press.
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5.1.2 Filtering Evidence

Seeking out many different types of evidence is an effective way of reach-
ing the right conclusion. Filtering evidence becomes problematic when one
hypothesis is favored, evidence that runs counter to the hypothesis is ignored,
or alternative explanations are neglected (see Table 5.2). Initial hypotheses
greatly influence the search for evidence. After an opinion regarding a
hypothesis is formed, investigators tend to collect information that supports
their opinion, ignoring evidence to the contrary. Experts are apparently par-
ticularly adept at garnering evidence that supports their favored hypothesis
(Shermer, 2002). At the extreme, intently focusing on one question can lead
to observers completely missing events that are irrelevant to a hypothesis
(Mack and Rock, 1998). Even when evidence accumulates to the contrary, a
very human tendency is to continue to disregard it, holding on to an initial
opinion. In the words of Nassim N. Taleb: “We treat ideas like possessions,
and it will be hard for us to part with them” (Taleb, 2010).

TABLE 5.2

Cognitive Tendencies that Lead to Filtering Information

Description

Example

Hypothesis dependence?: The hypothesis
dictates the types of evidence that will be
accumulated to enhance or reduce belief

Inattentional blindness: Intently focusing
on one event detracts from observing the
occurrence of another

Confirmation bias: The results of tests or
observations that support a preferred
theory or hypothesis are favored

Hypothesis tenacity®: Belief in the validity
of a theory (i.e., causal explanation)
despite accumulation of evidence to the
contrary

When investigators believe that biological effects
observed in urban streams are due to flow
extremes, they will tend to collect hydrologic
data and not data for alternative causes such as
road salt.

Previous studies focused on the effects of
polycyclic aromatic hydrocarbons (PAHs) in the
Little Scioto River missed the contribution of
stream channelization to degraded fish
assemblages (Norton et al., 2002a; Cormier
et al., 2002).

Investigators tend to eliminate outliers because
they must be wrong, or because they double-
check them and find a reason to eliminate them.
Data that fit the model are not scrutinized to the
same degree.

Investigators who believed that the decline of
peregrine falcons was due to shooting and
collection by falconers dismissed evidence of
effects of dichlorodiphenyltrichloroethane (DDT).

Source: Descriptions summarized from Kahneman, D. 2011. Thinking, Fast and Slow. New
York: Farrar, Straus and Giroux; Dawes, R. M. 2001. Everyday Irrationality. Boulder,
CO: Westview Press; Mack, A. and I. Rock. 1998. Inattentional Blindness. Cambridge,

MA: MIT Press.

2 Hypothesis dependency and tenacity are often referred to as theory dependency and tenacity
in the literature. We use the word hypothesis here because most causal investigations evaluate
specific hypotheses rather than overarching theories.
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TABLE 5.3

Cognitive Tendencies that Lead to Unwarranted Confidence

Description Example

Narrative fallacy: A set of facts that form a Reports of an oil spill occurring just before a
cohesive explanation leads to greater fish kill lead to the conclusion that the kill
confidence despite the quality or abundance was caused by the spill.
of information

What you see is all there is (WYSIATI): Causal assessments often address only the
Conclusions are confidently formed based candidate causes that have been measured
on the information that is available rather or counted and included in available data
than on the information that is needed sets.

Overconfidence: Subjective estimates of Investigators who have extensively studied a
confidence exceed objective estimates of particular cause (e.g., acid rain, toxic
accuracy contamination) are more likely to be

confident in attributing an effect to that
cause.

Source: Descriptions summarized from Kahneman, D. 2011. Thinking, Fast and Slow. New York:
Farrar, Straus and Giroux; Piattelli-Palmarini, M. 1994. Inevitable Illusions: How Mistakes
of Reason Rule our Minds. Translated by M. Piattelli-Palmarini. Edited by K. Botsford.
New York: Wiley. Dawes, R. M. 2001. Everyday Irrationality. Boulder, CO: Westview
Press.

5.1.3 Overconfidence

Several cognitive tendencies can prevent an accurate assessment of the con-
fidence in conclusions (see Table 5.3). Conclusions are frequently confidently
made based on available information, even when that information is an
imperfect fit to the question being posed (Kahneman, 2011). When the avail-
able information forms a cohesive story, confidence is increased further,
even when there is little information or when it is of questionable quality.
Most of us consistently overrate our accuracy in making estimates and con-
clusions. All of these errors can lead to a confident but incorrect conclusion.

5.2 Attributes of Ecological Causal Assessments that
Contribute to Cognitive Errors

Ecological causal assessments are rarely conducted when the cause is obvi-
ous and the solution clear. Rather, ecological causal assessments are fre-
quently conducted in situations where the effects of multiple, covarying
stressors are difficult to discriminate. Conclusions may need to be reached
based on sparse data. Furthermore, the time and cost of deploying manage-
ment actions prevent rapid feedback that could be used to evaluate whether
initial conclusions were correct.
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5.2.1 Covarying Stressors and Plural Causes

Human activities frequently generate many candidate causes. For example,
agricultural soil tillage can be associated with increased insecticides, fine
sediments, and nutrients in nearby water bodies. All of these stressors would
be expected to covary in time and space.

Distinguishing covarying stressors from causal relationships is important
because management actions targeting a false cause will not result in envi-
ronmental improvement. In some cases, remediating one candidate cause
may fortuitously remediate the true cause (e.g., dredging sediments for one
contaminant may remove others as well). However, in other cases, it may
divert time and resources away from the true cause (e.g., building retention
ponds to intercept storm flows in urban areas may not improve aquatic inver-
tebrate taxa richness when increased temperature is the cause of declines).

Covariation can lead to mistaken causal attribution by influencing observed
associations between variables (see Table 54). The analysis of associations is a
cornerstone of causal inference methods. When stressors covary, an association
with an effect may be observed even when a factor is not a cause. For example,
both reduced base flows and increased stream temperature are expected to
occur in urban areas because of reduced contribution to surface flows from
groundwater. Effects on stream assemblages would be associated with tem-
perature even when low base flows were the actual cause (see Figure 5.1a).

The situation is more complicated when each of the stressors that covary
can cause the biological response (called plural causes, see Chapter 2). The

TABLE 5.4

Challenges from Plural Causes and Covarying Variables

Description Example

Plural causes: Different causes can produce The richness of EPT taxa typically decreases
the same effects. Observing an effect that is with increasing metal contamination
typically associated with a particular However, EPT richness also declines with
stressor does not necessarily mean that the other stresses, such as pesticides, nutrient
stressor is the cause enrichment, salinity, and habitat.

degradation. Concluding that an observed
decline in EPT richness was caused by metal
contamination would be premature until
other stressors that can cause EPT richness
declines are also evaluated.

Covarying variables: An association between A biological response of macroinvertebrates

a candidate cause and an effect may be may be associated with increased algal
misinterpreted because of the influence of production in a set of streams, but the
another factor that covaries with the cause relationship disappears when corrected for

stream size.

Source: Descriptions summarized from Dawes, R. M. 2001. Everyday Irrationality. Boulder, CO:
Westview Press; Glymour, C. 2001. The Mind’s Arrows: Bayes Net and Graphical Causal
Models in Psychology. Cambridge, MA: MIT Press.
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(a) Increased surface runoff
from impervious surfaces

|

Low base flows

v

Increased stream Decreased
temperature EPT taxa richness
(b) Increased surface runoff

from impervious surfaces

|

Low base flows

/

Increased stream
temperature

Decreased
EPT taxa richness

FIGURE 5.1

(@) Temperature will be correlated with EPT taxa richness when it increases with low base
flows (the true cause in this hypothetical case). (b) The association between increased low base
flows and decreased EPT taxa richness will be overestimated when increased temperature also
contributes to decreased richness.

association between the biological response and each factor taken individu-
ally will be overestimated, because the estimate will include the influence
of the covarying variable. In the example, both low base flows and high tem-
peratures decrease EPT richness, so the association between low base flow
and EPT richness will be overestimated (see Figure 5.1b). Natural gradients
such as stream size, connectivity, and elevation can also covary with candi-
date causes. When the natural gradient also produces the effect of interest,
the effect may be mistakenly attributed to the candidate cause.

5.2.2 Small Sample Sizes

Sample sizes for site-specific causal assessments are frequently small.
Although the small sample size is not a problem in itself, a common cogni-
tive tendency is to assume a small sample size is more representative than
it really is. For example, temperate estimates made using a few samples will
greatly underestimate the magnitude of temperature spikes. Estimating
extreme values with small samples is even riskier for variables that tend to
have skewed distributions, like many chemical concentrations.
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5.2.3 Testing Alternative Management Actions is Frequently Infeasible

In everyday life, feedback mechanisms can be used to fine-tune intuitions and
rules of thumb that guide the identification of causes. This approach is particu-
larly useful when the situation is repeated frequently and the consequences
of errors are small, such as in diagnosing and treating common illnesses like
colds. When a causal assessment is conducted to guide a management action,
the results of those actions could be fed back to inform similar situations.

Active adaptive management is one approach that was developed to pro-
vide feedback on management strategies. Active adaptive management proj-
ects systematically test alternative actions that would be expected to produce
different responses in the degraded system (Holling, 1978; Walters, 1986).
Results are monitored and used to adjust or change the management strategy.
Many of the component activities recommended for adaptive management
projects are recommended for causal assessment. These include develop-
ing alternative hypotheses, analyzing evidence prior to taking action, and
involving stakeholders. However, date, few projects have fully implemented
active adaptive management (Westgate et al., 2013). Cited reasons include
the reluctance to implement bold remedies, some of which may be inef-
fective, and the difficulty and costs of replicating actions and monitoring
results, especially at large spatial scales (Walters, 1997; Westgate et al., 2013).
The difficulties in iteratively feeding back and honing management actions
over time emphasizes the need to accurately identify the correct cause before
management action is taken.

5.3 How Does This Relate to Ecological Causal Assessment?
Strategies for Minimizing Errors

Awareness of our cognitive tendencies can go a long way toward minimiz-
ing errors and biases. One of the advantages of using a structured method
for causal assessment, as described in this book, is that it can deliberately
incorporate strategies to minimize errors and biases. This section introduces
strategies that take advantage of our cognitive strengths while minimizing
our limitations. By understanding how different techniques minimize errors,
we can better implement them, augment them, and use them to improve the
broader community of practice.

Identify and evaluate alternative candidate causes. Dawes (2001) has suggested
that incomplete specification of the possible contributors to a problem is
the primary reason for cognitive errors. Identification of a suite of candi-
date causes for evaluation guards against the tendency to selectively seek
out information (see Chapter 8). For example, Winger et al. (2005) compared
two causal assessments of a degraded stream community. One used the



Human Cognition and Causal Assessment 73

sediment quality triad approach and the other used the rapid bioassessment
procedure. The two assessments gave different answers. The sediment qual-
ity triad approach examined only sediment contamination and identified it
as the cause. The rapid bioassessment protocol examined only habitat distur-
bance and identified it as the cause. An assessment that addresses all candi-
date causes allows for a wider range of possibilities, and therefore, a greater
opportunity to evaluate whether one cause is dominant or several are inter-
acting to produce the effect. Even when a causal assessment must focus on
only one candidate cause (e.g., for regulatory or legal purposes), considering
other possible causes can help to prevent an erroneous conclusion.

Derive many different pieces and kinds of evidence. Errors associated with
WYSIATI (what you see is all there is) can be combated by collecting addi-
tional data on candidate causes and by deriving many different pieces and
kinds of evidence. Although any individual causal assessment will use only
some types of evidence, familiarity with different ways evidence can be
developed can suggest different options and directions for innovating new
approaches.

This book discusses many different ways of developing evidence. Chapter
4 provides an overview of evidence from the perspective of causal character-
istics. The types of evidence listed in Table 4.2 can provide a handy reference
of options that have been used in past causal assessments. Chapters 9-18
provide many examples of evidence developed from case-specific observa-
tions, observational studies from other places, field tests, laboratory, and
mesocosm experiments. Symptoms and simulation models that use data
from many different sources are also discussed.

Conceptual models of causal relationships (see Chapter 8) document how
human activities lead to different stressors and also stimulate ideas for gen-
erating evidence. Conceptual models articulate expected links in the causal
webs of events and show where data can be used to provide evidence rele-
vant to candidate cause. They are particularly useful for linking causes with
effects that are distant in time and space, or when complex chains of events
are involved. For example, unionid mussels may have low reproductive
rates because their host fish species have been extirpated due to intermit-
tent low dissolved oxygen caused by decomposing algae that have bloomed
because of increased nutrient inputs. Evidence that establishes the presence
or absences of any of these links could be developed.

Seek opportunities to isolate the effects of different causes. Frequently, the goal
of site-specific causal assessments is to sort out the influences of multiple
covarying stressors. Causal inference is easier when candidate causes vary
independently or when only one cause changes at a time (Cheng, 1997).

There are many strategies for isolating the effects of different causes.
Defining the problem narrowly in terms of space, time, and specificity of
effect is discussed in Chapter 7. Investigators can seek to identify situa-
tions where the presence of each candidate cause is the only factor that var-
ies between a comparison site and the site or unit under investigation (see
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Chapter 10). Statistical approaches and data set trimming can be used to
isolate the effects of a particular cause (see Chapter 13). Experiments (see
Chapters 14-16) provide an opportunity to manipulate the factors that vary
and to include a closely matched control.

In most causal assessments, it will not be feasible to completely isolate the
effects of individual stressors. Conducting the analysis as a comparison of
candidate causes provides an additional means for identifying when more
than one cause is present and capable of contributing to the observed effects.

Use systems for organizing and tabulating results. Evaluating many pieces
of information relating to a suite of candidate causes can quickly become
a daunting effort. As the number of alternatives grows, so does the need
for information (Churchland et al., 2008). However, human minds can only
retain and process about seven pieces of information at a time (Miller, 1956).
Breaking up information into pieces or chunks is an effective way to man-
age this complexity. Isolating each analysis helps prevent cognitive over-
loading and our tendencies to revert to information that is easily obtained.

The following chapters describe several strategies for organizing informa-
tion evaluated during a causal analysis to support the fair evaluation of each
piece of evidence. At the beginning of an assessment, the development of a
conceptual model can provide an overarching structure for organizing the
information relevant to each candidate cause and the data relevant to each
(see Chapter 9). Data are analyzed and evidence is derived for each available
information source (see Chapters 9-18). As each different piece of evidence is
developed, results are recorded and placed aside. Evidence can be organized
according to the causal characteristic it supports, the source of data, or a
combination of the two (see Chapter 4).

An interesting and useful consequence of breaking up the analysis and
evaluating each piece of information independently is that it can delay the
synthesis of a final conclusion, thereby reducing biases associated with
hypothesis dependency. In an experiment studying visual cognition, sub-
jects who were prevented from forming early conclusions more accurately
identified a picture’s subject (Bruner and Potter, 1964). Isolating the analy-
sis of each piece of evidence can prevent the conclusion reached from one
analysis from influencing another, helping investigators fairly evaluate the
evidence for each cause.

Evaluate and compare alternatives before developing the story. A high degree of
confidence that a causal conclusion is correct is produced by using many dif-
ferent pieces of high-quality evidence that together provide the best expla-
nation of the available observations. It can be useful to think of confidence
and accuracy as the result of two different processes. Accuracy in causal con-
clusions is provided by synthesizing many different pieces of high-quality
evidence. Confidence in conclusions is increased when the evidence forms a
cohesive story. A cohesive story can be so compelling that it prevents a fair
look at alternative explanations. The strategy recommended in this book is
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to weight and compare the evidence developed for all candidate causes (see
Chapter 19) before assembling the evidence into a narrative (see Chapter 20).

Involve other people. No one thinks exactly the same way or shares exactly
the same opinion. Involving other people with different viewpoints can
increase the chance that an error will be detected. The scientific review pro-
cess asks peers and experts to provide objective insights and detect unin-
tended biases, faulty inferences, and overlooked issues. Because ecological
causal assessments draw on so many scientific disciplines, outside perspec-
tives can provide insights for a deeper knowledge of the patterns that have
been recognized and point out patterns that were not detected. Without
these colleagues, you must provide your own counterpoint and this is hard
to do. Argument with a critic who also shares the same objectives or wants
to solve the same problems can be an effective way to reveal unsupported
assumptions and other weaknesses.

Displaying evidence and the logic behind conclusions reduces problems
associated with hypothesis tenacity and over confidence. It makes it easier
for investigators and their reviewers to see when a candidate cause is being
fairly vetted. Displaying evidence makes data gaps obvious, decreasing the
influence of hypothesis dependence on the collection of additional data.

The involvement of interested and affected parties (i.e., stakeholders) in
causal assessment can vary from informal conversations to required con-
sultations, depending on the decision context. Although describing strate-
gies for effective engagement is beyond the scope of this book, we recognize
that involving stakeholders in causal assessments has many benefits. In the
early phases of the assessment, stakeholders may be able to suggest candi-
date causes and may know of sources of data. At the end of the process, dis-
cussing the findings of the assessment with the wider community increases
understanding of the basis for action and is respectful to those affected by
the decisions of the assessment. Involving stakeholders can increase the level
of trust in conclusions. In turn, these stakeholders can provide the continuity
of attention needed to see a management action through to fruition.

5.4 Summary

Recognizing the ways that human cognitive tendencies in typical causal
assessment situations can lead to erroneous conclusions is the first step
toward minimizing their effects. In short, the occurrence of covarying causes
can lead to mistaken first impressions. The impressions can quickly become
opinions that limit the range of evidence that is developed, producing expla-
nations that appear to be cohesive but omit important pieces of evidence.
The difficulty of iteratively conducting management experiments prevents
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feedback that could be used to adjust actions and improve the accuracy of
causal conclusions.

Most causal assessments are conducted under circumstances that allow at
least some deliberation. This provides the opportunity to follow a structured
process and implement strategies for preventing mistakes. Overcoming
biases and errors associated with our cognitive processes requires the dis-
cipline to prevent leaps to judgment, strategies to ensure that our minds are
open to alternative explanations, and the diligence to ensure that all alterna-
tives receive fair treatment and consideration.



Part 2

Conducting Causal
Assessments

With the foundation laid in Part 1, Chapter 6 starts Part 2 with an overview of
the process for ecological causal assessment. It is followed by chapters describ-
ing how to formulate the problem, how to derive evidence, and how to form
conclusions. Part 2 concludes with chapters that discuss communicating the
findings and using them to guide actions to address the identified cause.

Part 2 is divided into three subparts, corresponding to the three main steps
of the Ecological Causal Assessment process.

Part 2A Formulating the Problem (see Chapters 7 and 8)

Part 2B Deriving Evidence

* Near-site data (see Chapters 9 and 10)
® Regional data (see Chapters 11-13)
¢ Experimental systems (see Chapters 14-16)

e Symptoms and simulation models (see Chapters 17 and 18)

Part 2C Forming Conclusions and Using the Findings (see Chapters 19-21)
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Our Approach for Identifying Causes

Susan M. Cormier, Susan B. Norton, and Glenn W. Suter II

This chapter provides an overview of our approach to ecological
causal assessment: list candidate causes, derive evidence for each, and
identify which is best supported by the evidence. The approach is

illustrated with a case of a fish kill in the Kentucky River.

CONTENTS

6.1

6.2 Derive EVIdence ..o
6.3 Form Conclusions: Weigh Evidence and Communicate Results..........
6.4 After the Causal Assessment: Using the Findings .........c.cccocoooenennn.
6.5 SUMMATY ...ooviiiiieieiiiicie e

Formulate the Problem: Define the Case and List

CanNdIidate CaAUSES .....c.eveeieeieeeeie ettt eaee e

As we discussed in Chapter 5, figuring out a true cause is tricky because
all of us tend to see causal relationships everywhere. People form opinions
quickly and will give preference to information that supports initial opin-
ions. Avoiding these pitfalls requires an investigative sense of what will
work and awareness of where people are apt to go astray. A clearly described
process charts the course.

The process is implemented in three main steps (within the bold box in
Figure 6.1):

1. Formulate the problem. This includes defining the case that will be
investigated and developing the list of candidate causes.

2. Derive evidence. Evidence is generated, using as many sources of data
and methods as possible. The characteristics of a causal relationship
introduced in Chapter 4 guide the search for data and information
useful for generating evidence. A list of typical types of evidence
serves as a reminder to be creative and inclusive when developing
evidence.

79



80 Ecological Causal Assessment

Undesirable effect

Ecological causal assessment

Formulate the problem
—Define the case
—List candidate causes

l

Derive evidence
—Acquire relevant data
—Analyze data to evaluate whether results
expected of a causal relationship are obtained

l

Form conclusions
—Weigh and compare evidence
—Communicate the findings

Cause(s)
—best supported by the evidence
—not supported by the evidence

FIGURE 6.1

Steps and activities in the ecological causal assessment process (within the bold box). An unde-
sirable effect prompts the assessment; the product is a description of the cause or causes that
are best supported by the evidence as well as those that are not.

3. Form conclusions. The explanation that is best supported by the
evidence is identified by weighing the evidence for each cause
and comparing the body of evidence among the candidate causes.
Conclusions are communicated using summary narratives, figures,
or tables, supported by the documentation of the evidence.

The output of our approach is the identification of the cause or causes best
supported by the evidence. Causes that are not supported by the evidence
are also identified. The objective is to provide conclusions that will be used to
inform management decisions and lead to actions that improve the environ-
ment. There are also ancillary benefits of those actions to improve or attempt
to resolve the problem. Information about the assessment and subsequent
actions provide important feedback to improve the assessment, the process
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of causal assessment, and our understanding of the causal processes that
produce undesirable ecological effects.

As discussed in Chapter 5, our approach incorporates strategies to mini-
mize errors and biases including considering a set of candidate causes,
deriving many different kinds of evidence, using systems for breaking up
complex assessments, and seeking other perspectives. Chapters 9-18 high-
light additional strategies for taking advantage of the strengths and mini-
mizing the limitations of different sources and types of evidence.

An overview of the approach was briefly described in Chapter 1 using the
Willimantic River case study. For this chapter, we developed an additional
example based on a massive fish kill that occurred after a warehouse fire
and bourbon spill into the Kentucky River. Although the spilling of bourbon
was very apparent, the explanation for the fish kill was not. The fish kill did
not occur directly adjacent to where the bourbon flowed into the river and
did not occur until 2.5 days after the spill. Several alternative causes seemed
plausible. Nevertheless, it is a fairly straightforward example, and our intent
is to expeditiously illustrate the process.

6.1 Formulate the Problem: Define the Case
and List Candidate Causes

Problem formulation identifies the subject and scope of the assessment by
defining: (1) the effects of concern, (2) the spatial and temporal extent of the
problem, and (3) the candidate causes that will be explored. Even when the
issue being addressed by the causal assessment seems obvious, it is worth
taking a step back to carefully articulate the problem being investigated and
the candidate causes under consideration.

The process of formulating the problem provides several excellent oppor-
tunities for minimizing biases and preventing mistakes. It is often tempt-
ing to delve immediately into analyzing data. Data analysis becomes more
focused by taking the time to step back and carefully describe the effect
and the spatial and temporal extent is before identifying a set of candidate
causes. The all-too-human tendencies to jump to a conclusion and cling to a
favorite hypothesis.

More details on problem formulation are provided in Chapters 7 and 8.

In the example case, the effect was a massive fish kill 22 km downstream
from the site of a 20-million-liter bourbon spill into the Kentucky River.
Candidate causes of the kill included ethanol narcosis, toxicity from other
unknown chemicals, and asphyxiation in deoxygenated water. A concep-
tual model depicts the causal pathways from hypothesized sources, through
mechanisms and modes of action, to the effect: a fish kill (see Figure 6.2).
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Unknown Bourbon spill
( source j

Ethanol
Bacterial
respiration
Deoxygenated | —
Unknown agent water /)
I Deoxygenated water

< Unknown toxicity > < Narcosis > < Asphyxiation > ~ causing fish kill

(candidate cause)

Bourbon spill causing low
— dissolved oxygen
(causal pathway)

FIGURE 6.2

A conceptual model diagram depicting the relationships between the bourbon spill or an
unknown source (octagons), candidate causes (rectangles), ecological and physiological pro-
cesses (hexagons), and effect (oval). The brackets distinguish the causal pathway (upper) from
the proximate causal relationship (lower) for low dissolved oxygen. (Adapted from Cormier,
S. M., G. W. Suter I, and S. B. Norton. 2010. Hum Ecol Risk Assess 16 (1):53-73)

6.2 Derive Evidence

Evidence provides the substance of any explanation. Sleuthing out all the
evidence is the challenging, detailed work of a causal assessment.

Evidence is more than data. It is information that is relevant to evaluat-
ing whether an apparent relationship is causal. In Chapter 4, we introduced
approaches for seeking evidence and keeping it organized so that it is easy to
recognize gaps in the overall arguments for each candidate cause and even-
tually to enable consideration of the whole body of evidence.

Evidence shows that results expected from a hypothesized causal rela-
tionship are (or are not) obtained. The characteristics of a causal relation-
ship—co-occurrence, sufficiency, time order, interaction, alteration, and
antecedence—provide a framework for articulating the results that would be
expected if a causal relationship were occurring (see Chapter 4; Cormier et al.
2010). They provide a logical structure for evaluating whether a candidate
cause exhibits the characteristics of a causal relationship.

Although there are six causal characteristics, there are many ways to
develop evidence. Evidence can be produced using observations taken in
and near the locations under investigation, or combining information from
the site with information from other field studies, laboratory and field
manipulations, and models. The inferential approaches and sources of data
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provide many different possible combinations for producing evidence. Some
commonly encountered combinations are reflected in the types of evidence
developed as part of U.S. EPA’'s CADDIS project (see Table 4.2; U.S. EPA,
2012a; Suter et al., 2002). These types of evidence serve as a handy list of
some, but not all of the possibilities.

The Kentucky River fish kill provides examples of the variety of evidence
that can be derived and how to compare it among candidate causes. For
example, fish did not die at the maximum ethanol concentrations and did
not exhibit the symptoms of ethanol poisoning; therefore, ethanol toxicity is
an unlikely cause. In contrast, dissolved oxygen was 0-1 mg/L during and
in the vicinity of the fish kill, providing evidence that deoxygenated water
co-occurred with the kill. Dissolved oxygen levels less than 1 mg/L do not
support most species of fish in Kentucky streams, and several species die in
laboratory tests at levels below 5 mg/L (U.S. EPA, 1986a), demonstrating that
the oxygen levels were sufficiently low and mortality would be expected.
Additional evidence is summarized in Table 6.1.

6.3 Form Conclusions: Weigh Evidence and
Communicate Results

The objective of a causal assessment is to produce a coherent explanation
of why some causes are likely and others are implausible. This is done is by
demonstrating that some explanations for the cause of the effects are sup-
ported by the body of evidence and others are not.

In our approach, we advocate that each piece of evidence be scored,
with plusses indicating support for the candidate cause, minuses indicat-
ing that the argument for the candidate cause is weakened, and zeroes for
ambiguous evidence. Evidence is given additional weight when it is con-
sidered especially strong or reliable. The body of evidence is weighed for
each cause and compared among the alternatives. The summary is recorded.
For complicated assessments with many stressors and pieces of evidence,
we recommend tracking the evidence in tables. This bookkeeping strategy
helps prevent information overload. It also provides a way to check that
causes were treated fairly and for summarizing the overall body of evi-
dence for each cause. More details of the theory and methods are described
in Chapter 19.

Even though a causal relationship possesses all the causal characteristics,
it is not likely nor necessary to have evidence for every characteristic or
possible type of evidence (see Box 6.1). It may be enough to provide high-
quality evidence that levels of the cause were sufficient and that the specific
effects observed were consistent with those expected from the causal agent
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BOX 6.1 CAUSAL CHARACTERISTICS AND
THE FELLING OF A TREE

If a tree falls in the forest and no one is there, it did make a sound. If
you later see it intact but uprooted on the forest floor, it did not fall by
means of a chainsaw. Why is it that we are so sure? We know how the
effect of uprooting is different from the effects of sawing wood. We
do not need evidence for every causal characteristic of wind felling a
tree. But variety and abundance of evidence increase our confidence,
especially if it is consistent. Would you not be more convinced if it were
known that the day before documentation of the downed tree there
had been sustained winds in excess of 70 miles per hour in the area?
The more relevant, good-quality evidence there is, the greater the con-
fidence that the real cause was identified, because it could have been a
bulldozer and not the wind at all.

or to provide results from a well-conducted field study that combines time
order with spatial co-occurrence. Ultimately, many pieces of evidence, con-
sistently pointing to one cause, strengthen the case.

The final conclusions explain why some causes are implausible and others
are so plausible that there is a willingness to change what is being done and
make or recommend a decision (see Chapter 20).

In the Kentucky River fish kill example (see Table 6.1), the evidence consis-
tently supported the candidate causes of deoxygenated water: fish died after
coming into contact with the deoxygenated water; similar levels of oxygen
depletion have been associated with lethality in laboratory and other studies;
and fish exhibited symptoms of asphyxiation. The other alternatives lacked
support. Ethanol was refuted because fish did not die when the ethanol
concentrations were at their maximum. In addition, fish did not die within
the expected time of onset of narcosis, and symptoms of narcosis were not
observed. There were no reports of other toxicant spills.

6.4 After the Causal Assessment: Using the Findings

The immediate goal of our causal assessment approach is to provide use-
ful and defensible causal explanations to decision-makers, to improve
the practice of causal assessment, and to increase our understanding of
the environment. Our ultimate goal is to improve the environment. A
causal assessment that leads to a management decision that improves the
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environment provides evidence that our understanding of the causal pro-
cesses, while never perfect, are correct enough to guide effective manage-
ment actions. For example, dramatic recovery of fish and macroinvertebrates
was observed after removing a dam that reduced oxygen in an impounded
section of the Cuyahoga River (Tuckerman and Zawiski, 2007, Cormier and
Suter, 2008).

In the Kentucky River fish kill example, attempts were made to aerate the
water even while the fish mortality was continuing. On May 18, 2000, U.S.
EPA contractors and the U.S. Coast Guard began aerating the affected area
from six barges equipped with large compressors and trailing submerged
perforated piping. Dissolved oxygen increased to 0.8 mg/L, which was inad-
equate to prevent fish kills as the plume moved downstream. In the end,
only dilution with the Ohio River was sufficient to “treat” the 20-million-liter
volume of the spill.

Even when management action is not successful, a causal assessment can
help explain why. The clear evidence in the Kentucky River case allowed the
Kentucky Department of Natural Resources to collect damages. In the years
that have passed, many species have recolonized from nearby tributaries and
the Ohio River. Nationally, the frequency of large ethanol spills associated
with fire has increased owing to shipping of denatured ethanol for automo-
bile fuel. Other states have drawn from the experience of the Kentucky River
to develop guidance for dealing with ethanol spills. New recommendations
include containing the ethanol as a key immediate site response, aerating
contaminated water before dissolved oxygen gets low, and controlled burn-
ing of the contained ethanol (MDEDP, 2011).

6.5 Summary

The objective of our approach to ecological causal assessment is to identify
the cause(s) of undesirable ecological effects that is best supported by the evi-
dence. It is implemented in three steps: (1) formulate the problem by defining
the case and listing candidate causes, (2) derive evidence by analyzing data,
and (3) form conclusions and communicate results. The goal is to provide
a sound basis for management actions, which in turn provide a means to
evaluate the assessment’s conclusions.

Evidence is the foundation of any good causal assessment. However, only
repeated experience hones someone’s ability to figure out causes. A single
fabulous experiment, statistical analysis, or mathematical model may pro-
vide evidence, but it will not form the conclusion or drive the decision. It is
human beings weighing a body of evidence that leads to a credible explana-
tion that is likely to change behavior or policy.
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Evidence is never as complete as we would like. Our philosophy is prag-
matic: decisions should be based on the best explanation available when a
decision needs to be made. Completing the steps of causal assessment can
strengthen the scientific basis for decisions made to improve biological con-
ditions. Evaluating and sharing the results of actions can help improve the
entire community of practice.



Part 2A

Formulating the Problem

An ecological causal assessment is done for a reason: there is a problem and
someone wants it to be rectified. The process of formulating the problem,
described in Chapters 7 and 8, ensures that the data collection and analysis
will support the goals of the assessment. Chapter 7 describes how to define
the case being assessed in a way that is clear and directed toward informing
an environmental management decision. Chapter 8 describes strategies for
developing the list of candidate causes and managing multiple causes.

Undesirable effect
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Defining the Case

Susan B. Norton and Glenn W. Suter 11

The process of formulating the problem defines an assessment’s focus
and frame. It identifies the effects that will be investigated, the spatial
and temporal scope of the assessment, and the candidate causes that
will be considered.
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This chapter begins the discussion of the processes and activities involved
with conducting a causal assessment. As described in Chapter 6, the assess-
ment process consists of three major parts: (1) formulating the problem, (2)
deriving evidence, and (3) forming conclusions.

Here and in the next chapter, we suggest strategies for formulating prob-
lems in causal assessments. We begin by describing how the broad and
sometimes vague concerns that initiate a causal assessment can be sharpened
to define the specifics of the case. The case definition identifies the specific
changes or effects that are most striking and a first approximation of when
and where they are occurring. A series of comparison sites are also identified
that represent places where the effect is not occurring or is occurring in a
different way. In Chapter 8, we describe strategies for developing the list of
candidate causes that will be investigated before we move on to the chapters
on deriving evidence and forming conclusions.
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7.1 Formulating the Problem: An Overview

Problem formulation is the process by which the concerns that initiate an
assessment are defined in a way that can be evaluated.* Problem formula-
tion simplifies the world by defining an assessment’s focus and frame. The
focus of a causal assessment is defined by the effects that will be investi-
gated. The frame describes the spatial and temporal extents of the assess-
ment and the candidate causes that will be considered. As an investigation
proceeds, its focus and frame may evolve with knowledge gained from pre-
liminary results, or different options may be explored to extract new or dif-
ferent insights.

Problem formulation is one of the steps that is most influenced by an
investigator’s judgment, and it can have a large impact on conclusions. In
the field of decision analysis, the way options are presented has been shown
to heavily influence decisions and actions, especially in complex situations
(Tversky and Kahneman, 1981; Thaler and Sunstein, 2009; Kahneman, 2011).
In other words, the way an assessment problem is stated can influence the
assessment’s conclusions by directing which evidence should be pursued
and presented. For example, an investigation into the causes of population
declines of kit foxes initially defined the frame with a large spatial expanse
and temporal extent. That assessment concluded that annual precipitation
patterns were responsible for variance in abundance (Cypher et al.,, 2000).
However, when the frame of the assessment was narrowed to examine the
specific location and years of the severe decline, the assessment pointed to a
different cause entirely: increased predation from coyotes (see Chapter 25).

Causal assessments are often conducted to support particular decisions.
Decisions have their own focus and constraints that may not coincide with
the optimal frame for the assessment. For example, the decision may be
limited to actions relevant to only one source or type of cause, such as pesti-
cides or toxic chemicals. Alternatively, a watershed partnership group may
be deciding which recommendations to make to improve all of the water
bodies within a catchment.

We recommend defining the case in a way that helps distinguish and iso-
late different causal processes. Identifying individual causal processes can
lead to specific management actions that may be more feasible to imple-
ment than eliminating the source or human activity that initiated the chain
of events. Urbanization may be identified as a cause, but it is unrealistic to
replace a city with forest. However, when a causal assessment establishes
that most of the biological degradation stems from inadequate groundwater

* Readers familiar with ecological risk assessment will recognize the term “problem formula-
tion.” Although the purpose of problem formulation is the same in causal and risk assess-
ment, the components and sequence of activities differ.
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inflow, the specific problem becomes tractable and can be mitigated by
increasing recharge blocked by impervious surfaces.

7.2 Initiating the Process

Causal assessments of specific cases are initiated because undesirable bio-
logical conditions have been observed. Some examples include

¢ Kills of fish, invertebrates, plants, domestic animals, or wildlife

e Anomalies in any life form, such as tumors, lesions, parasites, or
disease

¢ Changes in community structure, such as loss of species or shifts in
species abundances (e.g., increased algal blooms, loss of mussel spe-
cies, increases in tolerant species)

® Responses of indicators designed to monitor biological condition,
such as the Index of Biotic Integrity (IBI) or the ratio of observed-to-
expected taxa occurrences

¢ Changes in organism behavior

e Changes in population structure, such as population age or size
distribution

¢ Changes in ecosystem function, such as nutrient cycles, respiration,
or photosynthetic rates

e Changes in the area or pattern of different ecosystems, such as
shrinking wetlands or increased sandbar habitats

Causal assessments can be a part of a set of investigations initiated for
reasons other than an undesirable effect, such as concern over a source or
a stressor. For example, the Northern River Basins Study (see Chapter 24)
was initiated in part by concerns over pulp and paper mill discharges. In
these cases, an assessment that characterizes the effects that are occurring is
needed to provide the focus for the causal assessment.

The concerns that initiate a causal assessment may also reflect the decision
context within which the assessment is being conducted. For example, in the
United States, the nonattainment of a Water Quality Standard (WQS) due to
an undesirable biological effect can lead to the listing of a stream reach as
impaired under Section 303(d) of the Clean Water Act. States are then required
to develop a plan for its improvement, either by developing a watershed
management plan or a total maximum daily load for a pollutant of concern.
Without an identified cause, such plans cannot be developed. An analogous
process is being developed under the European Water Framework Directive.
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No matter how they are prompted, causal assessments begin with at least
some data that provided the basis for the initial concerns. The data could
be biological survey measurements or anecdotal observations of kills. More
than likely the data were collected for another purpose, for example, devel-
oping estimates of biological condition at the regional or national scale. One
challenge in the early stages of a causal assessment is to use available data
even though they are an imperfect match for the investigation’s needs.

The following sections discuss defining the undesirable effects of concern
(see Section 7.3) and the spatial and temporal extents of the assessment (see
Section 74). These two topics are often explored simultaneously when an
undesirable effect is recognized and a causal assessment is begun.

7.3 Defining the Undesirable Effect

The objective of this step is to define the undesirable effects to be investi-
gated. Implicit in the concept of an undesirable effect is that some biologi-
cal attribute has changed from a more desirable to a less desirable state. In
some cases, the fact that an undesirable effect is occurring must be veri-
fied, and in most cases the effect must be more specifically described. In
addition, defining the effect may require clearly articulating the desired
condition. The desired condition may be obvious, such as fish with no
spinal deformities or liver tumors. Other cases may require quantifying
background frequencies of effects. For example, because the background
frequency of intersex in smallmouth bass (Micropterus dolomieu) was not
known, additional research was required to establish that the observed
frequency of fish intersex in the Potomac River was indeed a cause for con-
cern (Blazer et al., 2007; Hinck et al., 2009). In still other cases, the desired
biological condition is similar to what is observed at high-quality reference
sites (Bailey et al., 2004; Stoddard et al., 2006).

The undesirable effect that prompted the investigation would seem to
provide an obvious starting point for a causal assessment’s focus. However,
undesirable effects that initiate an assessment are often too general in detail
than is optimal for causal assessment. They may be couched in general terms
like poor fish health or poor biological integrity or declining biodiversity.
For example, causal assessments may be initiated by an observed decline
in a multimetric index used by states or other government groups to evalu-
ate biological condition. Multimetric indexes combine indicators that them-
selves are summaries of individual measurements such as taxa counts or
abundance data. Frequently used metrics in stream invertebrate condition
assessments include overall taxa richness, abundances of particular taxa,
frequency of deformities, relative abundances of trophic groups, or nominal
sensitivity of species. Multiple metrics are used because each presumably
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responds to different changes produced by stressors. As a whole, the index
is intended to improve the ability to detect changes produced by many dif-
ferent types of causes. However, because the goal of causal assessment is to
identify the different causal processes that are operating, it is usually most
beneficial to focus on the biological measurements that are changing the
most (see Box 7.1).

Defining the effects more specifically can help separate the signal of the
causal relationship from the noise of other sources of variation. Associations
between stressors and specific effects should be stronger than those between
stressors and indexes that aggregate many different responses. A specifically
defined effect also makes it easier to relate field observations to experimental
results that typically measure specific responses.

In other cases, a causal assessment may have been prompted by a very
conspicuous effect, such as the observation of deformities or deaths. In these
cases, the challenge is to characterize more fully the spectrum of effects that
may be occurring. For example, the investigation of recurring fish kills may
begin by gathering information on the sexes, life stages, and species affected,
the timing and frequency of the kill, and the symptoms of the dead and
dying fish. The causal assessment may encompass all of the aspects of the
kill or may focus on a particular aspect of the effect, like its timing, fre-
quency, or a particular symptom.

BOX 71 MULTIMETRIC INDEXES AND CAUSAL ASSESSMENT

Multimetric indexes are designed to respond to many different stress-
ors (Davis and Simon, 1995). However, a low index value observed in a
particular case is often driven by large changes in just one or a few of
the constituent metrics. Identification of those metrics as the effect to
be analyzed increases the likelihood of identifying a single dominant
cause. For example, in the Long Creek case (see Chapter 22), three of
the 30 invertebrate metrics in Maine’s index were responsible for most
of the index deviations relative to the comparison site. In the case of the
Willimantic River, the adverse effect was originally defined in terms
of an overall low index score, but the causal assessment used just one
metric, reduced EPT taxa richness, as it was responsible for most of the
decline in the index. The analysis might have been even clearer if data
were available for individual families, genera, or species, because some
caddisflies (Trichoptera) are more tolerant to metals, which were high
in the unpermitted effluent that was eventually identified as the prob-
able cause. A subsequent perusal of the data showed that 97% of the
samples were made up of cheumatopsychid caddisflies, which prefer
fine particular matter and have been shown to tolerate high metal con-
centrations in other studies (e.g., Pollard and Yuan, 2006).
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7.4 Defining the Spatial and Temporal Extents
of the Assessment

7.4.1 Identifying Where Effects Occur

When defining effects, we also recommend defining the location and the
spatial and temporal extents of the assessment as narrowly and precisely
as feasible. A natural place to start is the spatial and temporal extents of the
observed effects. However, the full spatial and temporal extents may not be
known in the early stages of an assessment. Perhaps the effect was observed
at a site measured during a probabilistic monitoring survey or noted anec-
dotally. Initial estimates of extent typically must be refined as the assessment
proceeds.

It may seem advantageous to broaden the geographical or temporal
dimensions of an assessment because sources and human activities often
occur over a larger area than an individual site. However, even if environ-
mental factors and sources operate at coarser scales, they may impact indi-
vidual sites to different degrees (see Box 7.2). A broader geographical or
temporal scope will increase the number of observations that can be ana-
lyzed. However, a broader scope also increases the likelihood of encoun-
tering different causal processes resulting from different sources, human
activities, or natural factors. In general, narrow geographic and temporal
scopes benefit causal assessments by isolating and restricting contributing
factors.

There are four strategies for dividing a geographic area into smaller units
for analysis.

Subdivide by source. Subdividing by source may make sense if different
sources are affecting different parts of the system. For example, a river sys-
tem can be partitioned by segments between outfalls or between tributary
confluences. The Northern Rivers case (see Chapter 24) focused on stream
reaches below several different outfalls from municipal waste treatment
plants and pulp and paper mills.

Subdivide by pattern of effects. In a causal assessment of the Little Scioto
River, Ohio, the study reach was divided into three subreaches based on the
observation that the biological effects qualitatively changed in different sub-
reaches (Norton et al,, 2002a). Effects in the first subreach were eventually
attributed to stream channelization, effects in the second to channelization
plus PAHs from a creosote site, and effects in the third to channelization,
metals, and nutrients (Cormier et al., 2002).

Subdivide based on environmental characteristics. During the investigation
of acid precipitation in the Adirondacks, lakes receiving similar amounts
of acid precipitation had very different responses. Some became acidified,
while others did not. Explaining the differences became a major prong of the
investigation. Differences in response were eventually traced to differences



Defining the Case 97

BOX 7.2 CAUSAL ASSESSMENT AND WATERSHEDS

It has become a truism that watersheds are the proper spatial unit
for aquatic ecosystem management, but watersheds are not always
the appropriate unit for causal assessment in aquatic ecosystems.
Watersheds are often appropriate units for organizing collaborative
management programs involving stakeholders, government agen-
cies, and the public. In addition, watersheds are appropriate analytical
scales if the issue of concern is the export of nutrients, sediment, or
other pollutants to a downstream resource such as the Chesapeake Bay
or Gulf of Mexico.

However, if one is concerned with effects within the watershed, the
appropriate unit for analysis of adverse biological effects and their
causes is typically the individual tributary or reach. This is because
of the importance of local sources, such as tilled fields, cattle access
areas, storm drains, mine drainage and waste dumps, and local dif-
ferences in slope, substrate, or other geological features. Even if all
important sources and geological features are uniform across the
watershed, small-scale analyses are important because of the differen-
tial sensitivities of biotic communities and ecosystem processes at dif-
ferent locations within a stream and across streams of different sizes.
If a watershed-scale cause is operating, it is relatively easy to combine
the results of multiple reach-scale or tributary-scale causal analyses
or to extrapolate the local-scale results to the rest of the watershed.
However, if a causal analysis is performed at the whole-watershed
scale, important local causes cannot be identified after the fact and
will be missed.

in watershed characteristics, such as soil depth and the pathways by which
shallow groundwater and surface runoff reached the lakes (Jenkins et al.,
2007).

Subdivide based on natural history attributes. Some species may have exten-
sive ranges and encounter different causes at different points. For example,
anadromous salmon encounter one set of causal processes in their spawning
stream and a different set during their time at sea.

If larger scale processes are expected to contribute to the effect it may be
worthwhile to expand the geographic or temporal scope. Beware of two
pitfalls when using a broader geographical definition of the case, such as
a watershed. First, it may be tempting to attribute all effects to one cause,
especially if the effects seem to be similar. Ecological causal assessments
frequently suffer from overdetermination, that is, more than one cause can
produce a given effect. Second, because multiple causal processes are likely
operating within a broader spatial scale, it may be tempting to conclude that
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multiple stressors are interacting to cause all events within that area. Instead,
we recommend considering the alternative that different stressors may be
the dominant factors at different locations.

In some circumstances, it will not be possible to define the spatial extent
of the causal assessment in a way that isolates different causes. For example,
multiple outfalls and nonpoint sources may influence the same reach of a
river. Experimental approaches (see Chapters 15 and 16) may be needed to
reach conclusions about cause in these cases. It may also be possible to iso-
late events in time, for example, the kit fox case study focused on the part of
the temporal record that coincided with greatest declines (see Chapter 25).
Another example comes from the study of acidification in Adirondack lakes.
Although the investigation initially examined effects throughout the year, it
eventually became clear that the processes going on in the spring were suf-
ficiently distinct that they represented a potentially different set of causal
processes. By focusing more narrowly on spring conditions, the investigators
identified that nitrates were playing a more important role than sulfates at
that time of year (Jenkins et al., 2007).

7.4.2 ldentifying Where Effects Do Not Occur

The discussion above has focused on defining where effects occur. Equally
important for causal assessment is to identify locations where the effects
do not occur or occur in a different way. Conditions at these locations
substitute for the conditions of actual interest, that is, the conditions
that would have been observed at the site of interest if the effect had not
occurred. These conditions cannot be observed—measurements can only
reflect what actually happened. Conditions at locations where the effect
does not occur are practical surrogates for those that would have been
observed in the unexposed, unmeasured (i.e.,, counterfactual) no-effect
scenario.

Contrasting conditions where effects do and do not occur is one of the
fundamental ways that evidence is developed for evaluating cause. This
strategy, discussed further in Chapter 10, dates back to Mill's Method of
Differences (Mill, 1843; Lipton, 2004, see Section 3.1). Confidence that a dif-
ference in response was caused by a candidate cause is increased when other
environmental conditions in the two situations are similar. Evidence that a
candidate cause differs between a situation where the effect occurs and an
otherwise similar situation where it does not occur supports the argument
that the stressor caused the effect. When only one candidate cause differs
between the two situations, then it is the cause.

The first response to the question of where effects are not occurring is
typically “reference sites.” Identifying reference sites has become a standard
part of monitoring surveys. Unfortunately, contrasting conditions at a site
where an effect occurs with those at the highest quality regional reference
sites rarely points to only one factor, because many attributes and stressors
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typically differ. For this reason, another strategy is to identify locations
where effects are observed but to a lesser degree or in a different way. We
call these “comparison sites” to differentiate them from high-quality refer-
ence sites. The most useful comparison sites share as much causal history
and as many natural factors as possible with the sites under investigation.
For example, comparison sites in causal assessments involving streams ide-
ally would be located within the same watershed or even adjacent to the site
under investigation, share the same soils and climate, and be located in a
similarly sized stream. In the investigation of the effects of acid rain in the
Adirondacks, lakes adjacent to each other responded very differently to acid-
ification despite receiving the same amount of acid rain, allowing research-
ers to focus on other characteristics that differed (Jenkins et al., 2007). In
the Little Floyd River case study (Haake et al., 2010b), a less affected stream
reach at the confluence of a tributary was key for identifying not only the
causes but also pointing to mitigation measures that would improve the rest
of the river.

Demarcating where or when effects began sometimes leads to the cause.
For example, the timing of a decline of unionid mussels coincided with the
invasion of zebra mussels (Martel et al., 2001). Similarly, identifying where
the effects begin occurring may lead to a point source that can be remedi-
ated. This process is a familiar strategy for investigating spills. For example,
pesticide concentrations were followed upstream to the location of a pesti-
cide spill responsible for a fish kill (U.S. EPA, 2013a). In the Willimantic case
study, the investigators began by contrasting water quality at the site under
investigation with several higher quality sites within the watershed. They
used this information to target additional sampling to demarcate where
effects began. Doing so enabled them to identify the point source discharge
just upstream of where a large decline in the EPT taxa richness was observed
(Bellucci et al., 2010).

7.5 Summary

Defining the case is one of the major parts of formulating a causal assess-
ment problem.
The case description identifies:

* The effects that will be investigated and their spatial and tem-
poral extents. We recommend defining both the effects and their
extent as specifically as possible. In general, narrow scopes benefit
causal assessments by isolating and restricting contributing fac-
tors, allowing specific causal relationships to be defined and better
understood.
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* A series of comparison sites (e.g., regional reference sites or local
comparison sites) where the effect is not occurring or is occurring in
a different way. Comparison sites are most useful when they share
most of the causal history and natural environmental factors with
the locations under investigation. Time can also be used to define a
situation where effects did not occur, although this strategy is less
common.
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This chapter describes the process of developing the list of candidate
causes. Strategies are described for refining the list and dealing with
multiple causes. The construction and effective design of conceptual
models are discussed not only for the purpose of describing and orga-
nizing candidate causes, but also to guide the derivation of evidence

and communication of results.
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The second major part of problem formulation for causal assessment identi-
ties the group of the candidate causes that will be considered. Deliberately
defining a set of alternatives for evaluation is a simple step, yet it is one of
the most powerful strategies for countering hypothesis tenacity, the common
cognitive error in which the first or most memorable explanation for an effect
is favored and evidence of alternatives is ignored.

Identifying which causes will be investigated requires balancing the objec-
tives of efficiently managing resources for the assessment while ensuring
that the most important candidate causes are considered. Including more
candidates increases the chances that the assessment will evaluate the real
cause as well as causes of interest to different audiences. However, each can-
didate cause requires resources for data collection and analysis. It is impor-
tant for assessors to carefully consider available information for all relevant
alternatives and document the process of considering and selecting the can-
didate causes that will be evaluated.

This chapter is organized by the process of developing the list of candidate
causes. A preliminary list is generated (see Section 8.1) and is explored and
organized further using conceptual models (see Section 8.2). The final list is
honed by splitting some causes, combining others, and deferring still others
(see Section 8.3). An example of a final list used in the Long Creek case study
is shown in Box 8.1.

8.1 Initiating the List of Candidate Causes

Causes may be described as agents, processes, or events (see Chapter 2), but
typically the list is begun with agents. Candidate causes are agents that the
investigators have some reason to believe could have produced the effect
being studied. Candidate causes are commonly referred to as stressors, even

BOX 8.1 CANDIDATE CAUSES OF THE DECLINE
IN MACROINVERTEBRATE ASSEMBLAGES IN
LONG CREEK, MAINE, USA (SEE CHAPTER 22)

Decreased dissolved oxygen

Altered flow regime

Decreased large woody debris

Increased fine sediment

Increased in-stream organic matter production
Increased temperature

Increased toxic substances
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though the term, which has a negative connotation, is an imperfect fit for
agents that are required for life (e.g., dissolved oxygen).

We recommend that the description of a candidate cause focus on the
proximate cause, that is, the agent that actually contacts or co-occurs with
the susceptible entity, producing the observed effect. Minimizing the steps
between the candidate cause and the earliest change in the entity increases
the chance of making a definitive link between cause and effect. As dis-
cussed below, the description of a candidate cause can include additional
information to distinguish among alternatives, for example, by specifying a
source or providing details on the form of the agent or the process by which
an event could result in exposure.

The first major choice in developing the list of candidate causes is whether
to limit the investigation to only one candidate cause or to consider all alter-
natives. This choice is often strongly influenced by the decision context. For
example, an assessment may evaluate whether toxic substances in the efflu-
ent from a wastewater treatment plant are responsible for observed down-
stream declines of macroinvertebrate diversity. Constraining the causal
assessment greatly simplifies data collection and analysis. One need gener-
ate data only for one candidate cause, and if the evidence indicates that this
cause is unlikely or highly likely, the investigation may end.

Limiting the investigation to only one candidate cause may lead to miss-
ing additional or even the most influential causes. For example, establishing
that the wastewater treatment plant effluent is not toxic ignores other ways
an effluent might change downstream biota, for example, by altering tem-
perature or increasing nutrients. In addition, concluding that a cause is not
responsible for effects is more convincing when the likely cause is identified.
For example, an initial causal assessment of kit fox declines on the Elk Hills
Naval Petroleum Reserve addressed only contaminants from oil production
and concluded that they were not responsible (Suter et al.,, 1992). That con-
clusion was made more convincing in a subsequent causal assessment that
addressed many candidate causes and identified coyote predation as the pre-
dominant cause (see Chapter 25).

The process of developing the list of candidate causes provides an oppor-
tunity to ponder which ecological and physiological mechanisms might be
operating to produce the effect. Evidence for a candidate cause may seem
adequate until other causes are considered that may have stronger evidence.
Assessment of other candidate causes may also reveal weaknesses in the
evidence for the cause of concern that would not otherwise be apparent.

Reasons for including a candidate cause on the list typically draw upon
a combination of experiences from other locations, subject area knowledge
from the literature, observations available from the site, local history, and
stakeholder concerns. Strategies include the following:

® Review common causes of the observed effect in your state or region. Do
not forget the usual suspects. Common causes may be identified by
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asking local experts or analyzing regional data. For example, low
dissolved oxygen levels and diseases are listed as common causes
of fish kills in Virginia ponds (Helfrich and Smith, 2009). Analyses
of regional associations may suggest stressors or sources that should
be considered. In the mid-Atlantic region of the United States, a high
likelihood of a poor macroinvertebrate index score was associated
with poor quality sediment, acid deposition, and mine drainage
(van Sickle et al., 2006). The scientific literature can be queried to
identify causes that have been associated with the effect in other
circumstances. Published lists of causes of some effects are available
(e.g., Table 8.1) and can be used to prompt ideas.

o Consider which organisms are affected and their natural histories. Different
organisms respond to different stressors in different ways. When
the observed effect is a decline of an individual species, its life cycle
and habitat requirements suggests candidate causes. For example, an
investigation of the decline of a unionid mussel population would
need to consider effects on the specific fish that host their larval life
stage (Bogan, 1993).

o Visit the site. Visits to the affected and comparison sites are essential
sources of insights and clues. Observations of existing sources sug-
gest candidate causes. The occurrence of some causes can be directly
observed, for example, fine sediments embedding cobble habitat in a
stream. Some causes produce distinctive and observable symptoms,
such as whirling disease in trout and distinctive lesions in corals
(see Chapter 17). The CADDIS website has lists of observations that
indicate that a stressor might be present (U.S. EPA, 2012b).

o Think about uncommon or unique aspects of the observed effect or situation.
Observations that are unusual for a particular area may suggest a
new or previously undocumented stressor or source. For example,
a new and conspicuous increase in nonnative zebra mussels was
investigated as the cause of native mussel declines in the Rideau
River in Canada (Martel et al., 2001).

* Consider unknown sources or stressors. Including a placeholder for an
unknown source or stressor can serve as a reminder throughout the
investigation that the true cause may not have been on any of the
initial lists, like the contaminant mixture from the broken industrial
effluent pipe discovered during the Willimantic River case study
(see Chapter 1).

e Consider legacy sources or stressors. Causal assessments may also
need to consider influences of past land uses, in addition to cur-
rent activities. For example, fine sediments in streams have been
linked to historic logging practices (Harding et al., 1998), and land-
use prior to urban development can be an important predictor of
stream community response to urbanization (Brown et al., 2009).



Listing Candidate Causes 105

TABLE 8.1

Candidate Causes That Can Potentially Affect Freshwater Biota, Including Algae,
Macroinvertebrates, and Fish

DO regime
Hydrologic regime (includes flow or depth conditions, timing, duration, frequency,
connectivity, etc.)

Nutrient regime

Organic-matter regime

pH regime

Salinity regime

Bed sediment load changes, including siltation
Suspended solids or turbidity

Water temperature regime

Habitat destruction

Habitat fragmentation (e.g., barriers to movement, exclusion from habitat)
Physical crushing and trampling

Toxic substances

Herbicides and fungicides

Halogens and halides (e.g., chloride, trihalomethanes)
Fish-killing agents (e.g., rotenone)

Insecticides

Lampricides

Metals

Molluscicides

Organic solvents (e.g., benzene, phenol)

Other hydrocarbons (e.g., dioxins, PCBs)

Endocrine disrupting chemicals

Mixed, cumulative effect

Interspecies competition

Complications due to small populations (e.g., inbreeding, stochastic fluctuation, etc.)
Genetic alteration (e.g., hybridization)

Overharvesting or legal, intentional collecting or killing
Parasitism

Predation

Poaching, vandalism, harassment, or indiscriminate killing
Unintentional capture or killing

Vertebrate animal damage control

Radiation exposure increase (e.g., increased UV radiation)

Source: Adapted from Richter, B. D. et al., 1997. Conserv Biol 11 (5):1081-1093.

e Engage the broader community. Processes for involving stakeholders
in assessments vary greatly depending on the decision and assess-
ment context and may range from informal conversations to consul-
tations required by law. The involvement of the broader community
can benefit the initial phases of the assessment. Those familiar with
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the area know local history and current and legacy sources. Subject
area experts can describe influential environmental and ecological
processes. Managers and interested parties can provide insights into
factors they think should be investigated.

8.2 Developing Conceptual Models

The initial process of developing the list of candidate cause typically gener-
ates a wide variety of factors that might contribute to an effect, including
agents (e.g., stressors such as fine sediments, metals, ammonia), sources (e.g.,
agricultural fields, mining sites), or human activities (e.g., urban develop-
ment). Conceptual models help organize these factors into a framework for
analysis and communication.

Although we recommend developing conceptual models during the prob-
lem formulation phase of a causal assessment, conceptual models have many
benefits throughout the assessment. At the outset, they clarify thinking and
provide a structure for communicating current understanding. They can be
used to refine the list by identifying which causes might be evaluated sepa-
rately, be operating jointly to produce effects, or be evaluated as a step in a
causal pathway rather than a proximate cause (see Section 8.3). They can
be used to identify where data collection or analysis efforts might be used
to help distinguish among causes. They provide a structure for quantita-
tive analysis of associations and model development. Finally, they provide a
visual aid for presenting the assessment’s conclusions (see Chapter 20). For
example, in the kit fox case study (see Chapter 25), the initial conceptual
model diagram was pared down and reorganized to present the final causal
explanation.

8.2.1 Using Diagrams to Explore and Present Conceptual Models

Although conceptual models can be described in text or pictorial format,
their development typically begins with a diagram. Conceptual model dia-
grams (also called graphical organizers, concept maps, or node-link displays)
organize information and relationships between concepts. They have many
uses relevant to causal assessments, including eliciting expert knowledge,
communicating relevant scientific concepts to interested parties, and sup-
porting the development of quantitative models (Bostrom et al., 1992; Suter,
1999; Tergan, 2005; Dennison et al., 2007; Allan et al., 2012).

Diagrams that use a box-and-arrow format are well suited for depicting
cause—effect relationships (e.g., Hyerle, 2000; Figures 8.1 and 8.2). In these
diagrams, each set of two shapes and a connecting line represents a cause—
effect linkage hypothesized to be occurring in the system. The shapes
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Activity

Modifying
factor
v
Additional step in
causal pathway
Interacting | Proximate
factor - cause

I

Mechanism
or mode
of action

FIGURE 8.1
A template for conceptual model diagrams with different shapes used for different elements,
for example, source in an octagon and effect in an oval.

represent natural or anthropogenic variables that have been or could be
measured in the environment, either directly or indirectly by using sur-
rogate indicators. The lines reflect causal processes. In the most straight-
forward cases, a line implies a direct causal influence of one variable on
another. In other cases, lines may reflect associations expected from indirect
(i.e., mediated through other variables) or unknown causal mechanisms.

Conceptual models for many candidate causes associated with the decline
of fish and macroinvertebrate assemblage are available on the CADDIS web-
site (U.S. EPA, 2012b). These models (including low dissolved oxygen, metals,
nutrients, ammonia, sediments, pesticides, dissolved minerals, altered flow,
toxic chemicals, physical habitat, and high temperature) provide a starting
point for case-specific diagrams.

When creating case-specific diagrams, the typical starting point is the
effect, which appears at the bottom of the diagram template shown in Figure
8.1. Sources or activities, at the top, are identified next. Most conceptual mod-
els trace the pathways from land uses or human activities to identify pos-
sible targets for management intervention. In the Long Creek conceptual
model diagram, land-use activities and other sources such as urbanization,
industries, impervious surfaces, and in-stream impoundments were traced
to proximate causes. Assessments conducted under other frameworks may
extend the scope to include economic and social drivers (e.g., DPSIR, Figure
8.3; Box 8.2; NAS, 2011).
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<——( Responses

I
/S

The DPSIR framework. (Adapted from Kristensen, P. 2004. The DPSIR Framework. Paper read at
Comprehensive/Detailed Assessment of the Vulnerability of Water Resources to Environmental
Change in Africa Using River Basin Approach, September 27-29, 2004, Nairobi, Kenya.)

The diagram should identify the proximate causes, that is, the stressors
that contact or co-occur with the biota. Focusing analyses on the relation-
ship between proximate causes and effects can improve the associations
developed as evidence. For example, regional studies of the effects of acid
deposition on wood thrush occurrence showed little relationship with soil
pH or calcium content as causal variables, but a strong association with the
abundance of calcium-rich invertebrate prey, the apparent proximate cause
(Hames et al., 2006).

BOX 8.2 THE DPSIR FRAMEWORK

The DPSIR framework (Smeets and Weterings, 1999; Kristensen, 2004)
(see Figure 8.3), used frequently by members of the European Union, was
developed to organize environmental indicators in a sequence of events:

® Driving forces, that include economic policies, societal needs,
and wants lead to

e Pressures, that include emissions and waste products from
sources, lead to

e Physical, chemical, and biological States that produce

¢ Impacts on ecosystems and human health, lead to

* Management and political Responses that can be directed
toward any step of the sequence.

Although the naming conventions are different, the concepts reflected
by the terms driving forces, pressures, states, and impacts are analogous
to the terms activities, sources, proximate causes, and effects shown in
Figure 8.1.
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More details of the steps in the causal pathway show antecedents of
the proximate cause; for instance, increased nutrients lead to increased
algal biomass, resulting in low dissolved oxygen after the algae die which
negatively affects invertebrates. In practice, measurements of the proxi-
mate cause (e.g., dissolved oxygen) may not be available, and a measure-
ment earlier in the causal pathway (e.g., nutrients) might be used instead
as a substitute. Using measurements of an antecedent of several proxi-
mate causes may be the best option until more knowledge is obtained.
Using nutrients as an example again, effects on invertebrates are produced
through pathways other than algae including increasing bacteria levels or
decomposition rates (Lemly, 2000; Yuan, 2010a,b). Fecal coliform was used
as an indicator of organic enrichment in the Clear Fork case (see Chapter
23). Intermediate steps in the causal pathway may also provide the best
target for management action, for example, reducing nutrient inputs rather
than increasing dissolved oxygen levels by installing aerators.

Interacting or modifying factors are environmental attributes or stressors
that can alter the proximate cause, the susceptible entity, or the relation-
ship between two steps in the diagram. Identifying variables that are better
treated as an interacting or modifying factor rather than a proximate cause
shortens the list of candidate causes (discussed further in Section 8.3.2).

Defining the biological effect as several more specific changes can sug-
gests ways of distinguishing among candidate causes. For example, one of
the effects in the Long Creek conceptual model diagram is a decline in EPT
taxa. But which taxa declined? Some are sensitive to deposited sediment
and some require sandy bottoms. Identifying specific changes can suggest
mechanisms and modes of action (see Box 8.3) that have led to the effect and
ways to distinguish among alternatives. For example, it may be useful to
understand whether fine sediments bury salmon eggs or abrade the gills of
adult fish, even though both mechanisms can lead to population declines.

8.2.2 Strategies for Creating Effective Diagrams for Causal Assessments

Diagrams are useful for visualizing conceptual models because they
increase the amount of material that can be mentally processed at one time.
Relationships between boxes are easier for readers to perceive and use than
text descriptions of the same information (Okebukola, 1990; Robinson and
Kiewra, 1995). Diagrams accomplish these feats of efficiency by communicat-
ing information through both their individual elements and the way those
elements are arranged in space. Searching for relevant information is easier
because related concepts are given similar shapes or colors and are grouped
closely together. Lines linking boxes provide cues that guide readers to the
next piece of relevant information (e.g., the next step in a proposed causal
pathway) (Larkin and Simon, 1987).

Conceptual diagrams have been shown to increase knowledge retention
and transfer to problem-solving activities across a broad range of educational
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BOX 8.3 MODE AND MECHANISM OF ACTION

The terms mode of action and mechanism of action are similar and
often confused or used interchangeably in the literature. In toxicology,
mechanism of action is used to describe changes at the molecular level
and mode of action is the functional or anatomical change that pro-
duces the effect of interest. For the purpose of this book, we extended
these definitions for application to ecological effects that may be above
the organism level of biological organization (e.g., population declines
and degraded species assemblages). We use mechanism of action when
describing the processes by which effects are produced, especially at
a finer level of detail or with more specificity (e.g., at a lower level of
biological organization). We use mode of action when emphasizing
the functional outcomes of those mechanistic processes. For example,
acute lethality is an organism-level mode of action that has the same
implications at the population level no matter what mechanism brings
it about. As an illustration, acute lethality to kit foxes occurs by pre-
dation, road kills, and other mechanisms, but they all have the same
influence on the outcome of the population model because of their
common mode of action (see Chapter 25).

Causal analyses often benefit by grouping stressors by common
mechanisms or modes of action. Mechanism of action is frequently
used to categorize the ways toxic chemicals produce their effects, for
example, cholinesterase inhibition, narcosis, and reactive oxygen gen-
eration (Russom et al., 1997, Escher and Hermens, 2002; de Zwart and
Posthuma, 2005; McCarty and Borgert, 2006; Suter, 2007). Modes of
action can be used to combine causes that share the same functional
outcome, as in the kit fox population model described above. Candidate
causes can be grouped by mode of action even when the details of the
underlying mechanisms are not known.

levels and applications (reviews by O’'Donnell et al., 2002; Vekiri, 2002; Mayer
and Moreno, 2003; Nesbit and Adesope, 2006). They are particularly effec-
tive for communicating information to audiences that have less prior subject
area knowledge, like the general public (O’Donnell et al., 2002; Mayer and
Moreno, 2003).

There is no doubt that diagrams created for causal assessments can get
complicated. The feeling of being overwhelmed by the scale and complex-
ity of an image, called cognitive overload or map shock (Blankenship and
Dansereau, 2000; Mayer and Moreno, 2003), is sufficiently common that dif-
ferent strategies for combating it have been investigated. Many of these stem
from the principles of similarity, continuity, and proximity used in graphic
design (see Table 8.2).
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8.3 Refining the List

After generating the initial list of candidate causes and organizing it using
conceptual models, the list is revisited and refined to produce the final list of
candidate causes that will be evaluated further. The objective is to refine the
list in a way that supports the analysis of evidence to explain the effect and
also anticipates alternative management actions. Three strategies for refin-
ing are: (1) splitting broadly defined candidate causes when they encompass
multiple modes or mechanisms of action (see Section 8.3.1; Box 8.3); (2) com-
bining candidate causes when they share a common mechanism of action or
source (see Section 8.3.2); and (3) identifying candidate causes that may be
deferred, thereby winnowing the list down to what Woodward (2003) calls
the “serious possibilities” (see Section 8.3.3).

8.3.1 Splitting Candidate Causes

The initial list of candidate causes may have included some that are broad
categories. Sometimes there are reasons that groups of agents are best ana-
lyzed in combined fashion (see Section 8.3.2). However, most of the time both
the purposes of analysis and management are better served by disaggregat-
ing them by causal pathway and mechanism of action.

8.3.1.1 Disaggregate by Causal Pathway

Broad categories like land use can be disaggregated by using the conceptual
modeling approach described above to identify the different sources and
stressors and effects that they produce. For example, agricultural land use
and suburban development are commonly described as causes of undesirable
effects. Such broadly defined causes cannot be analyzed with any precision
or remediated. However, management actions can reduce inputs of sediment,
nutrients, pesticides, or other agents commonly associated with those land
uses if they are determined to be causal.

8.3.1.2 Disaggregate by Considering Mechanisms

Multimetric indices for habitat combine measurements for individual
proximate causes such as suspended sediment, substrate texture, woody
debris, flow velocity, and channel depth. Disaggregating indices like habi-
tat indices into their constituent metrics can help focus analyses on the
variables that are most mechanistically related to the effect. For example,
decreased pool depth is often an important variable explaining alteration
of fish assemblages, because deeper pools can accommodate more and
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larger fish, but substrate embeddedness is more important for explain-
ing degradation of macroinvertebrate assemblages, because it reflects the
loss of interstitial habitat and because invertebrates require little water for
immersion.

Sometimes agents are combined without knowledge of how to analyze
them in combination. For example, low dissolved oxygen and altered food
sources were combined in the Bogue Homo case study, because most of the
evidence (nutrient concentrations and chemical oxygen demand) was rele-
vant to both, and it seemed reasonable to the authors that those agents could
have combined effects on the macroinvertebrate assemblage (Hicks et al.,
2010). However, no mechanism for combined action was identified and it was
not possible to combine those variables in a way that allowed the develop-
ment of an exposure-response model. In the end, the evidence pointed to
low dissolved oxygen and little could be said about food resources. Hence,
combining candidate causes without a way to test or model their combined
effects is likely to be inconclusive.

8.3.1.3 Disaggregate by Considering Management Actions

Some candidate causes have a source in common. For example, “flashy
flow” is actually two proximate causes: greater high flows and lesser low
flows. Although these causes are produced by the same source (impervi-
ous surfaces) they may require different remedial actions. For example,
stormwater storage structures can reduce peak flows without enhancing
low flows.

8.3.2 Combining Candidate Causes

The same principles of considering causal pathways, mechanisms of action,
and management approaches can be used to combine candidate causes.
Combining causes can reduce the number of candidate causes to be assessed
and compared but it must be done in a way that is consistent with the require-
ments of the assessment and the management decision.

The information available prior to analysis may be inadequate for decid-
ing whether candidate causes should be combined. For example, causes
should not be combined unless there is a reason to believe that they occur
together. The same approaches discussed below may also be used after evi-
dence has been derived and each individual cause evaluated. The decision
as to whether to combine agents at this stage or later must be made in each
case, depending on how much is known about pathways and mechanisms
by which effects are produced, and whether the management actions might
address individual causes together or separately. In general, we recom-
mend keeping causes separate unless there is a clear rationale for combin-
ing them.
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8.3.2.1 Combine Proximate Causes with Antecedents into a Single
Candidate Cause

Sometimes candidate causes on the initial list are not proximate causes but
instead are part of the causal pathway leading to a proximate cause. For
example, phosphorus, organic matter, and DO may all be proposed as candi-
date causes, but in reality they are often part of one causal pathway, leading
to low DO as the proximate cause. Hence, they may be listed as low DO due
to decomposition of added organic matter or low DO due to phosphorus
increasing algal production, respiration, and decay.

Similarly, natural features of a region, such as climate or soil pH, are best
included as contributors to the effects produced by a proximate cause. For
example, naturally acidic soil pH may influence bioavailability and exposure
of biota to metals. Metals would be treated as a candidate cause and low
soil pH as a factor contributing to the effects of the metals. It is important
to retain naturally occurring candidate causes when they are exacerbated
by human activities, that is, they are not present at background levels. For
example, phosphorus concentrations and pH are naturally high in many riv-
ers, but fertilizer application can increase phosphorus (and nitrogen) levels
leading to increased photosynthesis and large swings in pH over the day.

8.3.2.2 Combine Causes Produced by the Same Source

In some cases, multiple agents stemming from the same source are best
listed as a single cause. For example, individual constituents of an effluent
can each be listed as a candidate cause, but it may be more appropriate to list
the effluent as a single candidate cause, perform whole effluent toxicity tests,
model or measure dilution and transport of the effluent, and analyze the
evidence that the effluent is the most probable cause (see Chapter 15). This
strategy works well when the exposure and effects of the constituents are
measured together as in an effluent toxicity test, thereby avoiding the need to
generate an exposure-response model from measurements of the constitu-
ents and tests of their individual effects. The candidate cause is the effluent
and the expression of exposure is the proportional dilution of the effluent.
Similarly, the mixture of toxic chemicals in ambient water, sediment, or soil
may be treated as a candidate cause and characterized by toxicity testing. For
example, soil toxicity, defined by a seedling growth test, may be listed as a
candidate cause and compared to soil compaction and infertility as alterna-
tive causes of low plant production.

In other situations, an important goal of the assessment is to distinguish
or quantify the relative contributions of different constituents of an effluent.
For example, an objective of the Athabasca River case study (see Chapter 24)
was to clarify the different roles of effluent constituents. In addition, not all
causes with a common source can be effectively analyzed in combination.
For example, stormwater flow from impervious surfaces is a source of many
agents, including toxic chemicals; high flows that remove organisms, damage
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physical habitat, and remove woody debris; elevated temperatures; and low
flows between events. These different agents have different modes of action
and types of effects and may be addressed by different management actions.

8.3.2.3 Combine Causes by Mechanism of Action

The effects of causes that share a mode or mechanism and have combined
exposures should be treated as a single cause when they co-occur. When
modes or mechanisms are known, models can be an effective way to com-
bine causes.

Most of the methods for modeling multiple stressors were developed for
analyzing the risks from multiple chemicals. Exposure additivity models
(i.e., concentration addition or dose addition) are used for chemicals with
the same mechanisms of action such as organophosphate pesticides causing
cholinesterase inhibition or neutral hydrocarbons causing baseline narcosis.
This may be done by converting individual concentrations into a common
toxicity-normalized concentration (e.g., toxic unit (TU)) and then combining
them into a measure of combined exposure such as the sum of toxic units
(XTU). For example, individually measured PAHs have been combined by
adding their toxicity-normalized concentrations to estimate their combined
toxic effects (Di Toro and McGrath, 2000). Alternatively, the exposure levels
for a set of chemicals may be normalized to that of a single chemical with
well-characterized toxicity using toxicity equivalency factors (van den Berg
et.al., 1998). For nonspecific toxicity (e.g., baseline narcosis) one may assume
equal potency on a molar basis (Escher and Hermens, 2002).

Nonchemical causes with the same mechanism of action may be similarly
combined. For example, rocks and large woody debris may be combined as
hard substrates. For this approach, the exposure to the combined candidate
cause is most frequently expressed as the summed amount of the similarly
acting agents (e.g., total fines, total habitat structure, total suspended solids).
However, not all factors that appear to be the same have the same mechanism
of action. For example, deposited sand, silt, and clay are often combined as
“fines.” Combining these three sediment size categories may be appropriate
for gravel-spawning fish, but benthic invertebrates may perceive sand as a
different substrate from silt and clay. Similarly, suspended mineral particles
(sediment) may be combined with suspended algae and organic particles
when the mechanism of action is reduced light for submerged aquatic veg-
etation or inhibition of visual predation, but not if it is gill abrasion or inter-
ference with filter feeding.

8.3.2.4 Identify Causes that may Induce the Effect Jointly

Sets of agents that cause a common effect through independent mechanisms
should not, in general, be combined into a single candidate cause. Still it is
worth identifying causes that might be working jointly at an early stage so
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that analyses might be designed to evaluate that possibility. At a later stage
in the assessment, responses could be combined when their effect is a com-
ponent of a modeled, higher-level effect. An example is combining causes
of lethality to kit foxes in a demographic model (see Chapter 25). The total
effect expected from multiple agents acting independently is generally esti-
mated by summing the responses expected from each individual cause (i.e.,
response addition).

8.3.2.5 Identify Causes that May Induce the Effect Interactively

Some causes interact with each other to induce effects (i.e., are complex
causes) (see Table 8.3). For example, low dissolved oxygen levels and low
flow velocities interact to produce asphyxiation of some aquatic insects that
rely on the flow of water to transport oxygen to their gill surfaces. If a model
is available to quantify the interaction, then the combination can be ana-
lyzed as a candidate cause. Interactive models for some pairs of chemicals
in laboratory tests can be found in the literature (e.g., atrazine and organo-
phosphate insecticides; Belden and Lydy, 2000). Unfortunately, most interac-
tions are simply identified in experimental results and no general model of
the interaction is generated. Pairs of chemicals can usually be adequately
represented by summing the responses expected from each (i.e., using con-
centration or response addition models; U.S. EPA, 2000b). However, a chemi-
cal and a natural environmental factor such as temperature or pH are likely
to be interactive, requiring a more complex model (Laskowski et al., 2010).

Even when agents are appropriately combined into a single candidate
cause, it is important to consider whether any of the agents can cause an
effect independently. For example, elevated temperature inevitably contrib-
utes to the effects of low dissolved oxygen by reducing oxygen solubility and
increasing oxygen consumption by biota, but elevated temperature may also
be sufficient to cause effects even when dissolved oxygen is high.

8.3.3 Deferring Candidate Causes

At this point, the list of candidate causes should include only alternatives
that someone has argued are worth evaluating further. For this reason,
eliminating causes prior to analysis would fail to address a legitimate can-
didate cause. When the list of candidate causes is long, it may be tempting
to shorten the list to those that are considered most likely. However, in most
cases, data must be available and analyzed to defend eliminating a cause
from consideration, and so assessing it may require no more effort than jus-
tifying its elimination from the list. By including them in the assessment,
these candidate causes can be compared to others, making the assessment
more complete and transparent and decreasing the likelihood of overlooking
a true cause or of alienating a stakeholder.



Listing Candidate Causes 119

TABLE 8.3

Some Complex Causes that Produce Freshwater Biological Effects

Multiple Agents Nature of the Combined Effect

Ammonia Ammonia decreases the oxygen-carrying capacity of fish blood (Smart,
and DO 1978).

Ammonia pH is the primary determinate of the proportion of un-ionized ammonia
and pH (NH;—the more toxic form) versus ammonium (NH,*) and affects the

Ammonia and
temperature

DO and flow

DO and metals

DO and various
chemicals

DO and
temperature

Freezing and
metals

Metals and pH

Metals and
temperature

Divalent metals
and calcium or
magnesium

Pathogens and
temperature

Pathogens and
various
chemicals

Pesticides and
pesticides

Temperature
and pesticides

toxicity of both forms. U.S. Water Quality Criteria are adjusted for pH
(U.S. EPA, 2013b).

Increasing temperature increases the proportion of NH;. Invertebrates are
more sensitive to NH; at higher temperatures, but fish toxicity is not
significantly or consistently influenced by temperature. Invertebrate data
are adjusted for temperature in U.S. Water Quality Criteria (U.S. EPA,
2013b).

Because most aquatic invertebrates do not actively ventilate their
respiratory surfaces, they withstand lower dissolved oxygen levels if
flow rates are high (Jaag and Ambiihl, 1964).

Low dissolved oxygen increases the toxicity of metals in most studies
(Holmstrup et al., 2010).

Low dissolved oxygen increases the toxicity of most chemicals in most
studies (Holmstrup et al., 2010).

Increasing temperature decreases the solubility of oxygen while also
increasing respiration in many organisms, thus depleting oxygen and
increasing demand in air and water (Materna, 2001).

Freezing temperatures increase the toxicity of metals, apparently due to
membrane damage (Holmstrup et al., 2010).

Increasing acidity increases the proportion of metals in the form of free ions,
the most toxic aqueous form. It also influences the binding capacity of
organic matter and competes for biotic ligands (discussed in Chapter 18).

In general, the toxicity of metals increases with increasing temperature,
but the effect is variable (Heugens et al., 2001; Gordon, 2005; Holmstrup
etal., 2010).

The toxicity of other divalent metals (e.g., Ag, Al, Cd, Co, Cu, Ni, and Zn)
is decreased by calcium and magnesium (Paquin et al., 2002).

Fish diseases are more common and more severe at higher temperatures
(Materna, 2001).

In most studies, the virulence of pathogens or parasites was increased by
chemicals, but results were mixed, and in some cases the pathogens and
parasites became less virulent (Holmstrup et al., 2010).

Pesticide mixtures are typically a little less than concentration additive,
and in US agricultural settings, one will dominate the toxicity of a
sample and only two or three will significantly contribute (Belden et al.,
2007a,b).

Increased temperature typically increases the toxicity of pesticides
(Holmstrup et al., 2010). An exception is the class of pyrethroid
pesticides, which show increased toxicity as temperatures decrease

(Harwood et al., 2009).
continued



120 Ecological Causal Assessment

TABLE 8.3 (continued)

Some Complex Causes that Produce Freshwater Biological Effects

Multiple Agents Nature of the Combined Effect
pH and The combined effects of high pH (>9) and elevated temperature are
temperature independently additive in fish, but low pH and temperature have more
than additive effects (Materna, 2001).
Temperature In general, toxic chemicals decrease the critical thermal maximum
and various (Heugens et al., 2001; Gordon, 2005).
chemicals

Note: Entries are ordered alphabetically by the first word of the entry.

It might be argued that a candidate cause could be omitted if there is no
plausible mode of action linking it to the effect being investigated. For exam-
ple, overharvesting could be omitted from a causal assessment of liver cancer
in fish. Even in such cases, caution is warranted because it could be that the
mechanism of action just has not been demonstrated. Even more problem-
atic is excluding a cause based on comparing site concentrations with effect
benchmarks, such as water quality criteria. Criteria and other effect bench-
marks are intended to protect most species most of the time, but they may
not be applicable to a particular effect, species, or site, and sampling may
miss periods of high concentrations.

If prioritization is needed to manage a long list of candidate causes, we
recommend deferring the least plausible candidates for later analysis. These
second-tier candidate causes may be revisited if the results of the causal
analysis are weak or ambiguous and an iteration of the process is needed.
Documenting the rationale for deferral increases transparency and helps
ensure that the deferred candidates are not forgotten. Furthermore, it may
be appropriate to defer the consideration of candidate causes that are at an
inappropriate spatial or temporal scale for the current decision. For example,
a causal analysis of a localized problem may defer consideration of region-
wide increases in temperature. The presence of regionally or globally dis-
tributed causes should not prevent the identification of local causes that can
be remedied.

Some have suggested narrowing the list to candidate causes that have
potential management options (Gentile et al., 1999). This is efficient in terms
of supporting the decision-makers, but it runs the risk of eliminating an
important cause and exaggerating the importance of minor but readily
remediated contributors to undesirable conditions. It also precludes the
possibility that creative options might be found for remediating causes that
are not part of the a priori set of options.

Finally, if a candidate cause lacks data or when available data are untrust-
worthy, analysis may best be deferred until data are obtained.

The existence of a list of deferred items does not mean that the causal
assessment is incomplete. Ideally, analysis of deferred candidate causes will
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not be needed, because a probable cause is identified, remediated, and the
biological condition improved. But if an additional assessment iteration is
needed, the deferred list is ready for use.

8.4 Summary

Together with the case description (see Chapter 7), the list of candidate causes
defines the problem that will be investigated. Developing the list requires a
balance between inclusiveness and restraint. If the true cause is not on the
list for consideration, the assessment will either be inconclusive or identify
a false or less influential cause. On the other hand, some restraint is needed
because each candidate cause requires resources for evaluation. Striking an
effective balance requires professional judgment and often diplomacy.

Conceptual models capture the alternative causes and provide a useful
framework for the analysis and communication tasks. The models also depict
knowledge of causal pathways, a benefit because management actions are
often targeted at the sources or human activities that produced the stressors.

With the definition of the case and a list of candidate causes completed,
the assessment process proceeds to analyzing data to develop evidence, the
subject of the next chapters.






Part 2B

Deriving Evidence

Evidence is information used to evaluate whether an apparent relationship
is causal. It is derived from the analysis of data using summary statistics,
quantitative models, or logical arguments.

Undesirable effect

Ecological causal assessment

Formulate the problem

L

Derive evidence

L

Form conclusions

Cause(s)
—Best supported by the evidence
—Not supported by the evidence
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The chapters about deriving evidence are organized based on the source
of information:

* Near-site data (see Chapters 9 and 10)
® Regional data (see Chapters 11-13)
* Experimental systems (see Chapters 14-16)

e Symptoms and simulation models (see Chapters 17 and 18)
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Case-Specific Observations: Assembling
and Exploring Data

Susan B. Norton and Michael G. McManus

The chapter describes the acquisition and exploration of data from the
affected site and nearby comparison sites. Organizing data by candi-
date cause and placing them in spatial and temporal context are steps
that later support the analysis of associations.

CONTENTS

9.1 Identifying and Acquiring Relevant Information and Data................ 126
9.1.1 Sources of Information...........cccccceiiiiiiiiiiiiii, 126
9.1.2 Assessing Relevance and Quality ..........ccooooeiriiiin 127

9.2 Organizing Data using Conceptual Model Diagrams......................... 128

9.3 Exploring the Data Using Maps and Timelines...............cccooeveieirnnne.. 130

9.4 Pairing Observations in Time and Space .........c.ccccococeieiiiiccininiccnnnnn, 133

9.5 SUMMATY ..ottt 135

This chapter is the first of several that discuss data and analyses that are
used to derive evidence of causation. Data from the case are the most directly
relevant to the causal assessment and provide the best chance of isolating
or even directly observing the causal processes that have led to the effect.
Although larger data sets support more robust estimates of variability and
sophisticated statistical analyses, most large data sets come with a price.
They broaden the geographic scope and with it the probability that the data
will reflect the influence of many different causal processes which may or
may not be relevant to the case. Furthermore, evidence derived using those
data sets must be related to case-specific observations. Focusing first on
information from the case begins the process of understanding what data
are available for deriving evidence directly from the case or in conjunction
with models and knowledge from other similar situations.

125
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9.1 Identifying and Acquiring Relevant Information and Data

Because case-specific observations of a biological effect are what prompted
the investigation, at least some observations are likely to be available or
readily obtainable even in the early stages of an assessment. Chapter 14
describes designs and methods useful for planning studies specifically for
causal assessment. Identifying and acquiring available case-specific data
and documenting their relevance and quality are not trivial tasks. However,
the source and quality documentation systems begun early in the analytical
process provide the foundation of a credible assessment.

9.1.1 Sources of Information

Online sources of information, such as Google Earth and Google Maps, pro-
vide some of the first pieces of information available to assessors. Spatially
referenced data (i.e.,, data layers) such as surficial geology, stream networks,
and watershed boundaries are used to place site data into geographic context.
In the United States, stream network information and watershed boundaries
are available from the National Hydrography Dataset (FGDC, 2014). Other
potentially useful data layers include land use and land cover information
and boundaries for ecoregions, which are areas that are similar in vegetation,
climate, soils, and geological substrate (U.S. EPA, 2014a). A growing number
of databases make information on the location of hazardous wastes sites and
toxic releases available to the public (e.g., U.S.EPA’s Envirofacts database; U.S.
EPA, 2014b). Soil, water, and other data layers can be accessed from a com-
pilation of over 200 resources for spatial data and analysis from U.S. EPA’s
Geospatial Toolbox (Hellyer et al., 2011).

Site visits provide an on-the-ground reality check that cannot be dupli-
cated by remote data sources. Some observations may have been made dur-
ing the problem formulation process (see Chapters 7 and 8). These can be
reviewed or supplemented with additional visits as analytical tasks begin.
Documenting observations in site notes, annotated maps, and photographs
are useful memory aids, and in some circumstances can be used directly to
develop evidence (see Chapter 10).

Additional data potentially relevant to the assessment come from a vari-
ety of sources. Data sources can be identified by contacting local government
agencies and universities. Businesses, industries, and community monitoring
groups may also have data they are able to share. For example, in the United
States, much information on water quality is collected by states. Every state
collects basic water quality parameters (e.g., DO, pH, conductivity) through
tield meters or spot samples, and many also collect samples of algae, mac-
roinvertebrates, fish, and bacteria and document habitat information. Tissue
and sediments may have been collected for contaminant analysis. Many US
states also perform toxicity testing or have requirements in permits for others
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to perform toxicity tests and submit reports. Regional water boards or sewer
districts may have water quality data, county health departments may have
bacterial data, county (or regional) soil and water conservation districts likely
have water quality data, and water utilities with surface intakes have water
quality data. Outside the United States, many countries have similar pro-
grams to collect and store environmental information, especially if the area is
suspected to have chemical contamination or poor biological condition.

9.1.2 Assessing Relevance and Quality

Most government agencies and private entities require a plan and systems
for documenting data sources and the data’s relevance and quality for scien-
tific studies. Even if not required, such systems are good practice for causal
assessments. Relevance and quality are two of the factors used to weigh evi-
dence when forming final conclusions. Being able to provide the origins of
the information used to form conclusions increases the assessment’s cred-
ibility when results are communicated. Data may be available in a variety of
forms, including hand-written records, spreadsheets, relational databases,
and maps. In addition to the data themselves, descriptors associated with
the data (i.e., metadata) such as sampling and measurement methods, loca-
tion, times, and quality assurance codes should be compiled. Tables useful
for tracking data include ones that document the origin of each data set and
the variables that it includes, and ones that list the measurements that are
relevant to each candidate cause (see Box 9.1). Each data set should be trace-
able back to documents or other records that describe sampling designs,
methods, and quality assurance procedures that are later described and ref-
erenced in the assessment report.

Outside of site visits, assessors are often faced with limited opportunity to
collect new data, especially in early stages of the assessment. For this reason,

BOX 9.1 MEASURED VARIABLES RELEVANT TO
EVALUATING DECREASED DISSOLVED OXYGEN
IN THE LONG CREEK CASE STUDY (EXCERPT
FROM TABLE 5 IN ZIEGLER ET AL., 2007A)

¢ Canopy shade

e Chlorophyll a

* Water chemistry, 2000 and 2001 storm flows: total phosphorous,
ortho-phosphorous, total Kjeldahl nitrogen, nitrate, and nitrite.

e Water chemistry, 2000 base flows: total phosphorous, ortho-
phosphorous, total Kjeldahl nitrogen, nitrate, and nitrite water
quality, dissolved oxygen.
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much, if not all, of the information available is likely to have been collected
for purposes other than causal assessment. Understanding the reason the
data were collected can help determine their relevance to and utility for the
causal assessment. Status and trend studies may have measured many dif-
ferent parameters, but at a limited number of locations and times. Monitoring
programs conducted to meet regulatory requirements (e.g., permits) may
repeatedly sample relevant locations over time, but measure few parame-
ters. Targeted studies may focus on one proximate cause or set of causes by
controlling for others. For example, a study of the effects of water chemistry
may deliberately avoid sites with poor habitat. Even a well-designed study
designed to evaluate causation may have investigated one, but not all of the
candidate causes.

In addition to relevance, the quality of data determines whether it is
appropriate for the purpose of the assessment. The level of quality and
documentation needed will depend on the type of causal assessment being
conducted. Investigators conducting causal assessments for legal actions
will need to carefully document sampling, processing and handling proce-
dures (e.g., chain of custody). On the other hand, preliminary causal assess-
ments, for example, those used to identify the types of measurements and
locations for additional sampling, have lower requirements for data quality
and documentation. For example, the available data for the Groundhouse
River, MN, was used in a preliminary causal assessment which identified
excess deposited sediment as the dominant cause (U.S. EPA and MPCA,
2004). These results were used by Minnesota Pollution Control Agency
(MPCA) to guide the collection of more data in 2005, which were subse-
quently used to confirm the initial assessment and identify some other less
influential causes (MPCA, 2009). Additional quality issues are discussed in
Chapter 11 in the context of analyzing larger regional data sets.

9.2 Organizing Data Using Conceptual Model Diagrams

The conceptual model diagrams described in Chapter 8 provide frameworks
for identifying and organizing potentially useful data. The search usually
begins with identifying data relevant to quantifying the biological effect
and proximate causes (the dark oval and rectangle, respectively, shown in
Figure 9.1). However, data relevant to any of the shapes is potentially useful,
for example, data on activities or sources such as pesticide application rates
or locations of hazardous waste sites.

Measures of the effect characterize the biological responses of primary inter-
est (the dark oval at the bottom of Figure 9.1). The data sets that are used to
identify the effects of concern may also include more detailed information
on specific responses. If responses are very specific, they may be diagnostic
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FIGURE 9.1
A conceptual model diagram (also described in Chapter 8) provides a useful structure for
identifying and organizing information relevant to a causal assessment.

of the cause or they may eliminate a candidate cause that cannot induce that
effect (see Chapter 17).

Measures of proximate causes in the environment include stressor measure-
ments, such as degree of siltation, dissolved oxygen concentrations, or chem-
ical concentrations. These are used to establish whether stressors occur at
elevated levels when compared to local comparison sites, regional reference
sites, or some other standard. In some cases, the candidate cause is the lack
of a required resource, such as nesting habitat. In cases of the absence of a
resource, measurements establish that the resource is indeed missing at the
place or time it would have been required by the affected organisms.

Measures of sources are useful for quantifying antecedents to candidate
causes, for evaluating whether sites differ in the sources that are present,
and, after the causal analysis, for identifying actions that can be taken to
improve conditions. Source measurements can be difficult to use directly in
a site-specific causal assessment because sources often are spatially extensive
(e.g., impervious surfaces in an urban area), distribute stressors over large
areas (e.g., sulfur oxides from coal-fired power plants), or may contribute
multiple stressors (e.g., pesticides, sediments and nutrients from agricultural
tields). However, understanding the location and dispersion characteristics
of sources can focus sampling efforts and sometimes can be used to elimi-
nate candidate causes. For example, in a Middle Eastern study, an air pollu-
tion plume exhibited a continuous concentration gradient through an area of
damaged orchards. The smooth spatial gradient provided evidence that the
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air emission source was an unlikely source of stressors because the degree
of decline in the orchards was spatially random rather than decreasing with
distance from the source (Wickwire and Menzie, 2010).

When measurements of the proximate causes are not available, infor-
mation on the location and attributes of possible sources are sometimes
used as surrogates. For example, source information can be useful for
intermittent stressors (e.g., impervious surfaces as a surrogate for high
flow events) or stressors that degrade quickly (e.g., agriculture fields and
application rates as a surrogate for pesticide exposures). Fate and trans-
port models use source data to estimate exposure levels at the affected
site. Information on sources that produce many proximate causes cannot
be used to distinguish among them. For example, increases in impervious
surface area have been linked to proximate causes in streams including
increased flow extremes, temperature spikes, increased toxic substances,
increased salinity, and decreased dissolved oxygen (e.g., Paul and Meyer,
2001; CWP, 2003; Walsh et al., 2005). Estimates of impervious surface alone
would not help distinguish among these stressors.

Measures representing intermediate steps in a causal pathway provide oppor-
tunities to evaluate whether a complex causal pathway is complete. For
example, one pathway by which excess nutrients affect stream biota is by
stimulating periphyton growth, which reduces dissolved oxygen through
respiration and decay. To evaluate this pathway, data on dissolved oxygen
concentrations may be supplemented with data on those steps in the causal
pathway such as nutrient concentrations and periphyton biomass.

Interacting or modifying factors are environmental attributes or stressors
that can alter the proximate cause, the susceptibility of biota, or the relation-
ship between the two. For example, low pH increases the toxicity of metals
(Holmstrup et al., 2010). Lower atmospheric pressure at higher elevations
reduces the solubility of oxygen in water (Hem, 1985).

Finally, evidence of relevant mechanisms or modes of action may be used to
verify that a biologically relevant interaction with the proximate cause has
occurred. Measurements might include biomarkers of exposure, tissue resi-
dues, or abundances of organisms representing different functional feeding
groups (e.g., increase in filter-feeding insects).

9.3 Exploring the Data Using Maps and Timelines

Maps and timelines are essential tools for placing sampling events into spatial
and temporal context. Exploring the data in time and space reveals patterns
that should be considered when evaluating the association between stressors
and responses (the subject of Chapters 10 and 12). Maps and timelines help
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join data sets that come from different sources. They also are used to identify
ways of grouping and comparing sampling events to minimize the influ-
ence of natural factors. For example, samples taken within a stream reach
constrained by a geological fault would not be comparable to those in an
unconstrained reach. Alternatively, it may be advantageous to identify the
locations of samples that straddle an influential tributary.

Maps in schematic form (see Figure 9.2) are simplified to emphasize fea-
tures thought to be important. Plotting sampling locations on aerial images
gives a more realistic bird’s-eye view (e.g., Figure 9.3; see also Figure 22.1
from the Long Creek case study and Figure 23.2 from the Clear Fork case
study). Using GIS can be a valuable way to assemble, organize, and visu-
alize the data for the case (see Box 9.2). Online base maps of topography
and hydrography can be combined with sampling locations obtained from
local sources. However, additional effort is typically required to obtain spa-
tial coordinates of sampling locations. For environmental assessments, per-
mits issued by government agencies are often available as geospatial data
and have been used to investigate cumulative impacts (Lindberg et al., 2011).
While National Land Cover Data are available in the United States, users are
cautioned that such data are not designed for local applications, such as at
the county level (Homer et al., 2007).

A timeline of sampling events is another strategy for organizing and
exploring data and placing them in context of natural and anthropo-
genic gradients. Temperature and precipitation records provide insights
into temporal trends and episodic events like storm flows. Stream flow
is often an important variable for aquatic assessments. For example,
placing the sample timing in context of the hydrograph (see Figure 9.4)
helped determine which sampling events to use to characterize exposure
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FIGURE 9.2

Schematic map of a portion of the Salina River, California, showing sampling points (in boxes),
major tributaries, and potential sources. The Salinas River flows from east to west, and so the
direction of stream flow is depicted from right to left (Adapted from Hagerthey, S. E. et al.
2013. In Causal Assessment Evaluation and Guidance for California, edited by K. Schiff, D. Gillette,
A. Rehn, and M. Paul. Long Beach, CA: Southern California Coastal Water Research Project.)
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w¢, Little Scioto River Case Study near Marion, Ohio
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FIGURE 9.3

A map of the Little Scioto River (irregular blue lines), showing monitoring locations (blue cir-
cles), facilities (yellow circles), watershed boundaries (heavy black lines), and roads (straight
lines). The Little Scioto River runs north to south with the town of Marion, OH, to the east.

of macroinvertebrates to nitrogen in the Salinas River, CA, USA. In the
United States, the Geological Survey website StreamStats provides stream-
flow statistics (U.S. Geological Survey, 2014a,b). Although small streams are
frequently ungauged, flow data from nearby gauges can be interpolated
to estimate stream flow at the site using Version 2 of NHDPlus (Horizons
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BOX9.2 GIS AND CAUSAL ASSESSMENT

GIS is a technology designed to acquire, store, manage, analyze, and
visualize georeferenced data (Goodchild et al., 1993). Software and data
sets for use in GIS are rapidly evolving. Current examples of GIS soft-
ware include commercial products, such as ESRI® ArcGIS, as well as
open-source software, such as QGIS and various packages in R (Bivand,
2014). These examples are typically run on a desktop computer. Services
for using a GIS online are available including the Geospatial Platform
from the partner agencies of the Federal Geographic Data Committee
in the United States (FGDC, 2014).

A GIS provides a platform for combining data from many different
sources into an integrated map (Waller and Gotway, 2004). Data sets
in a GIS format support spatial queries, overlays of different data sets,
and calculation of measures of proximity between monitoring sites and
potential sources of stressors. More details on performing such spa-
tial queries using GIS tools, functions, and operations, can be found
in de Smith et al. (2013). Further advice for applying statistical descrip-
tive techniques and models to spatially-referenced data is provided in
Waller and Gotway (2004) and Bivand et al. (2008).

Systems Corporation, 2012). For stressors with daily and seasonal cycles
(e.g., dissolved oxygen and temperature), timelines may need to be devel-
oped on several temporal scales. Diurnal cycles in aquatic concentrations
of stressors such as metals (Nimick et al., 2003) and nutrients (Scholefield
et al.,, 2005) may also be present.

9.4 Pairing Observations in Time and Space

The analyses of associations discussed in Chapters 10 and 12 require that
the two variables of interest (e.g., stressor measurements representing the
proximate cause and response measurements representing the effect) are
paired in time and space. For example, at each location, sediment samples
should be taken at the same time and place as the sample of the fish or
benthic assemblage. In addition, the time periods must be consistent across
all locations used in the analyses. For example, temperature and biota mea-
surements taken in spring at the affected site typically should not be paired
with temperature and biological samples taken in summer from the com-
parison site, because the seasonal shifts may obscure human influences.
When the data come from different sources, sampling locations and times
may not exactly coincide, and observations are paired based on professional
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Biological sampling (i.e., the B-IBI) in the Salina River occurs after scouring flows in spring but
before nitrogen concentrations substantially increase in the dry season. Nitrogen concentra-
tions measured in the time period between scouring flows and biological sampling were con-
sidered to be most relevant to the assessment. Sampling points 309DAV, 309SAC, and 309GRN
are shown in Figure 9.2. (Adapted from Hagerthey, S. E. et al. 2013. In Causal Assessment
Evaluation and Guidance for California, edited by K. Schiff, D. Gillette, A. Rehn, and M. Paul.
Long Beach, CA: Southern California Coastal Water Research Project.)

judgment. A starting point is to pair the sampling events that are the clos-
est to each other in time and space. The temporal stability of measurements
should be considered when pairing observations. For example, in the absence
of other disturbances, the measurements of large woody debris are fairly
constant whereas total suspended solids vary greatly over time and under
different flow conditions. Similarly, land cover data taken from national land
cover databases need not be matched as closely in time to stressor or biologi-
cal data as, for example, noise levels at a site.

When pairing stressor and response measurements, we recommend
considering how and when the most biologically relevant exposure occurs
and to consider alternative ways to pair data other than by the exact time
and place. For example, “grab samples” of instantaneous stream tempera-
ture collected at the same time as a biological sample may be less relevant
than the seasonal average or maximum stream temperature. Dissolved
oxygen is best measured when it reaches its diurnal extremes to deter-
mine whether critical concentrations occur. The potential for time lags
between exposure and effects also should be considered. For example,
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when a stressor, such as a diversion of water flow, prevents salmon from
reaching the sea on their outmigration, the effect (i.e., destruction of the
salmon run) will not be observed until that year class returns to spawn
years later. For terrestrial systems, spatial variability in both stressor
levels and habitat usage are often considered when estimating biologi-
cally relevant exposures. When in doubt, analyses can evaluate multiple
pairing options, for example, by examining average concentrations along
with frequencies of extreme values or by analyzing different time lags.
The investigators of the kit fox case study (see Chapter 25) analyzed the
relationship between kit fox and prey abundances in the same year and
in the previous year, because of the importance of the vixen’s nutritional
state to reproductive success.

9.5 Summary

Identifying, assembling, and organizing observations from the case are the
first steps toward analyzing data for causal assessment. Good systems for
documenting the origin, relevance, and quality of data early in the assess-
ment will reap benefits throughout the process, particularly when conclu-
sions are formed and communicated. Conceptual model diagrams help
identify data relevant to evaluating different candidate causes as well as
important gaps in information. Maps and timelines help place sampling
events in the context of spatial and temporal patterns and trends.

Case-specific observations provide the most relevant evidence to the inves-
tigation. However, the following issues should be considered before proceed-
ing to analysis.

* Data often come from different sources, may have been collected
at different dates and times, and were likely collected for purposes
other than supporting the causal assessment. Understanding the
reason the data were collected helps determine their strengths and
limitations for using them in the causal assessment.

* Data must be paired in time and space in order to support the analy-
sis of associations. Maps and timelines help organize and identify
data collected at similar times and places. Subject area knowledge
may suggest alternative pairing approaches that are more biologi-
cally relevant.

¢ Exploring the data using both maps and timelines suggests over-
all patterns and correlations between environmental variables
that must be considered when analyzing the data for associations
between stressors and responses, which is the subject of the next
chapter.
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Case-Specific Observations: Deriving
Evidence

Susan B. Norton, David Farrar, and Michael Griffith

This chapter discusses approaches to use, analyze, and interpret obser-
vations from the site where the effect has been observed and nearby
comparison site(s) where the effect has not been observed or has been
observed in a different way. Evidence from these observations is often
the first to be derived in a causal assessment.
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Case-specific observations are often the first data to become available for
analysis in a causal assessment. Evidence derived from case-specific obser-
vations is valued because it is indisputably relevant to the specific causal
event of interest. Most frequently, case-specific observations are used to pro-
vide evidence that a proximate cause co-occurred or covaried with the effect.
They are also used to link sources or human activities to the occurrence of
a proximate cause. Less frequently, they are used to associate the effect with
measurements reflecting exposure or a mechanism (e.g., biomarkers). When
time-series data are available, they also provide evidence that exposure to
the cause preceded the effect in time.

A thorough analysis of case-specific observations also provides the foun-
dation for combining these data with data or information from other sources,
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discussed in later chapters. For example, Chapters 12 and 13 discuss combin-
ing case observations with additional data from larger regional data sets.
Evidence also can be derived by comparing case observations to the results
of laboratory test results, discussed in Chapter 15.

This chapter begins by discussing sensory evidence from the case, such
as might be documented during site visits (see Section 10.1). Although quali-
tative in nature, this evidence can be just as useful and compelling as that
derived using quantitative methods. The remainder of the chapter (see
Section 10.2) describes the types of analyses that can be applied to quantita-
tive measurements potentially available at the early stages of an assessment.
As described in Chapter 9, these data were likely collected for purposes
other than causal assessment. Chapter 14 describes designs and methods
useful for planning studies specifically for causal assessment.

10.1 Observing the Presence of Sources, Proximate
Causes, and the Steps In-between

Site observations most often are used to document steps in the pathway from
human activities to the proximate cause. For example, the location of a large
parking lot and stormwater outfall just upstream of the affected site can be
documented as a potential source of proximate causes such as salt and oil. The
smell of untreated sewage is unmistakable, indicating the presence of a source
of organic carbon and bacteria. Bank erosion upstream of the affected site can
provide a source of fine sediments. Observations also can be used as evidence
that a causal pathway is incomplete. For example, in the Willimantic River case
study, the presence of abundant riffles to aerate the water weakened the argu-
ment for low dissolved oxygen.

For some candidate causes, site observations can provide visible evidence
that proximate causes have co-occurred with organisms. For example, pre-
cipitates of “yellow boy” were observed coating the stream bed in Stonecoal
Branch (see Chapter 23) providing supporting evidence that acid mine
drainage caused the declines in macroinvertebrate assemblage condition. In
Buffalo Creek, a tributary to Clear Fork, the observation of heavy deposits of
coal fines during monthly reconnaissance visits was considered to be more
reliable evidence than sedimentation measurements taken on the day of bio-
logical sampling (Gerritsen et al., 2010). Exposure of organisms at the affected
sites can also be directly observed. Iron and manganese precipitates have
been observed directly on caddisflies in streams below mountaintop mines
and valley fills (Pond, 2004). Bacteria have been observed coating mayflies in
waters with high nutrients (Lemly, 2000).

Although direct observations make for vivid evidence, as with all
sources of evidence, the observations still must be evaluated for quality
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and relevance to the effect being investigated. For example, it is better to
document that a particular source or exposure observed at an affected
site does not occur at the comparison site, rather than assuming that it is
absent. In addition, the timing or location of an observation may be irrel-
evant to the effect being investigated. For example, a new housing devel-
opment adjacent to a stream may have started construction after the time
period of interest.

Typically, only a subset of the variables of interest (if any) in a causal
assessment can be directly observed and evaluated in terms of presence and
absence. The analysis of variables that are always present in some amounts
is discussed in the next section.

10.2 Analyzing Associations between Variables

The next two sections describe analytical techniques that can be used to
evaluate the strength of association between two variables. The analysis of
associations is a useful approach for deriving evidence because many proxi-
mate causes are always present in some amount. For example, water bodies
have at least some dissolved oxygen. The approaches described in this sec-
tion extend the concept of “co-occurrence” to the tendency for changes in the
level of a stressor to be associated with changes in biological quality.* Section
10.2.1 describes methods that can be used to quantify differences between
two locations or times. Section 10.2.2 discusses the methods used for quan-
tifying covariation when paired measurements are available from multiple
locations or times.

For simplicity, the discussion will focus on associations between measure-
ments of the proximate cause and the effect. However, the analytical tech-
niques can be applied to any two shapes in the conceptual model diagram
described in Chapter 9. In particular, it is good practice to explore the degree
of association between different proximate causes. These results are used
when interpreting associations between each proximate cause and the effect,
discussed in Section 10.2.3.

The analysis of associations described below emphasize visualization tech-
niques such as dot plots and scatter plots, and simple statistics that describe
differences in magnitude and degree of association. The use of confidence
intervals is discussed, with the caveat that they will be imperfect reflec-
tions of variation. Applying conventional statistical methods to site obser-
vations can be problematic. Many statistical approaches are based on the

* A “greater” level of a stressor may correspond to a lower absolute concentration. For example,
lower concentrations of dissolved oxygen in water would be considered a greater degree of
degradation—a greater stressor level—for aerobic organisms like fish.
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assumption that data are normally distributed, which is rarely the case with
environmental data. Environmental data often have a lower bound of zero
and a higher frequency of extreme upper values than a normal distribution.
Outliers may indicate extreme events that may be more important in terms
of biotic response than the central tendency (e.g., mean or median values)
of the data. In addition, many statistical methods assume that observations
are independent of each other. Environmental data are frequently autocor-
related, that is, observations taken closely together in space and time may
tend to be more similar than those taken farther apart. Finally, sample sizes
are frequently small (e.g., fewer than 10 samples), precluding the use of many
modeling approaches. A larger array of statistical methods can be used with
larger data sets and are discussed in Chapters 12 and 13.

10.2.1 Quantifying Differences

The first approach for analyzing data from the case contrasts conditions
between locations where the effect is and is not observed. Although differ-
ences are typically evaluated in space, they can also be evaluated over time.
For example, in the kit fox case study (see Chapter 25), coyote predation was
compared between two time periods to associate changes in predation with
declines in the kit fox population.

As discussed in Chapter 7, the more similar the environmental conditions
are at the affected and comparison sites (or times), exclusive of the candidate
cause being evaluated, the more confident the conclusion that the difference
in the response was caused by that stressor and not something else. Picture,
for example, a case on a stream reach with historical data from before the
onset of effects. If ammonia concentrations were the only factor that changed
between the times when effects were not observed and then observed, then
there is strong evidence that ammonia played a role in the onset of the
effects. This simplified example is powerful for two reasons. First, because
the location is the same, we have some confidence that many attributes of the
environment (e.g., stream size, elevation) are also the same between the two
observations. Second, only one candidate cause changed.

Unfortunately, historical data that used the same measurement and sam-
pling procedures are rarely available. Instead, data from the affected site
are compared with data from sites where the effect has not been observed.
Data from reference sites (i.e., high-quality sites minimally exposed to
stressors) may be available as part of status and trends studies (e.g., Bailey
et al,, 2004 and Box 11.1). However, reference sites will likely differ from the
affected sites in many ways, including natural differences. Local comparison
sites differ in fewer ways.

Differences can be visualized using maps or timelines. For example, a
river-mile diagram of the Athabasca River (see Chapter 24) showed conspic-
uous increases in chlorophyll 4 near municipal waste and pulp and paper
mill outfalls.
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The magnitude of the difference is used to evaluate whether stressor levels
are greater where effects are observed. Differences can be quantified using
many different approaches. Calculations that evaluate the degree to which
an observation is considered to be unusual or surprising are useful when few
samples from the affected site are available (see Section 10.2.1.1). When more
data are available, the magnitude of the difference between the affected and
comparison sites can be estimated (see Section 10.2.1.2).

10.2.1.1 Improbability of an Observation

Calculating the degree to which a stressor observation is unexpected or
unusual is one way of quantifying the difference between the affected site
and a comparison site. Some simple calculations can be used even when very
few measurements are available (see Table 10.1).*

One approach sets expectations by quantifying the degree to which a
small data set is capable of identifying high values as improbable. The prob-
ability of observing a high value relative to a set of observations from a
comparison site is placed in context by noting that the comparison site obser-
vations define a range of possibilities. That is, N random observations from
the comparison site divide the range of possible values into N + 1 segments.
Therefore, the probability that a subsequent observation is higher than the
highest comparison site value is 1/(N + 1). In the example described in Figure
10.1, the probability of observing any observation greater than the highest
value (15.7) is 1/(5 + 1), or 17%. The value of 17% reflects the limited ability to
identify a high value as very unusual from small data sets.

If more samples from the comparison sites are available, prediction limits
can be used to quantify the degree to which affected site observations would
be considered unusual (see Table 10.1). Prediction intervals require the selec-
tion of a level of confidence (such as 95% or 90%). For example, observations
outside a prediction interval calculated using a confidence level of 95% would
be expected to occur only 5% of the time (see Figure 10.2). Multiple prediction
intervals can be calculated to evaluate different probabilities of occurrence.

10.2.1.2 Magnitude of Difference

If multiple stressor measurements are available from both the affected and
comparison sites, then the magnitude of difference can be evaluated. The
magnitude of difference (also called the measure of effect) estimates the
degree of change in a response variable associated with a specific change in
the stressor variable.

The magnitude of difference can be visualized using quantile-quantile
(Q-Q) plots, mean-difference (M-D) plots, or dot plots (see Figure 10.3)

* Although a sample size of less than 10 is used to define very small sample sizes in this chap-
ter, there are no rules for the number of observations required for these calculations.
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TABLE 10.1

Some Statistics That Estimate the Degree That an Observation is Unexpected

Statistic Formula Notes

Very few (<10) observations from comparison locations, 1 from affected location

Probability of 1 PE is the probability that any new
exceeding maximum PE = 1 value from the same population as
(or minimum) value the n data points would be more
(PE) extreme than the most extreme

value observed in n observations

More than 10 observations from comparison locations, 1 from affected location

Nonparametric Pl:x < X The prediction interval side (i.e.,
. .. . [ )]
one-sided prediction upper or lower) must be selected a
bounds or priori based on biological

knowledge. Xy}, ..., X|,; are sample
values ranked from smallest to
largest, e.g., X[;; is the smallest
observed value, and so on (“order
statistics”)

Parametric one-sided B The equations used for data that are
prediction bounds Pli: x < X — g, n-1)+5+ } 1+ (7) or can be transformed to a normal
n distribution. The prediction

PL;: x> X[(]_a):(n-#l)]

interval side must be selected a
priori based on biological

or

Pl x > X + tg,upy+5- |1+ 1 knowledge
n

Equations adapted from Helsel and Hirsch (1992).

o is the level of confidence.

n is the number of observations.

to,n1y is the value from the Student’s t statistical table corresponding to confidence level o and
n —1 observations.

s is the standard deviation.
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FIGURE 10.1

Example of comparing a single affected site observation of total phosphorus (triangle) with five
samples collected at comparison sites (dots). The triangle is outside the range of phosphorus
levels that occurs at comparison sites. However, based on this small sample, the probability of
observing any value above the maximum is 17%.
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FIGURE 10.2
The observation (line) would be considered to be unusual, because it is above the 95th predic-
tion interval based on comparison site concentrations (the dot).
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FIGURE 10.3

Plots for visualizing differences in variable values between two locations. (a) Q-Q plot, (b)
mean-difference (M-D) plot, and (c) dot plot. The three plots show different ways of showing
that DO concentrations are lower at the affected site than at the comparison site. In the Q-Q
plot, all affected sites are below the 1:1 line; in the M-D plot, affected sites are displaced from
the 0 comparison line; in the dot plot, affected and comparison sites are clearly separated.
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(Cleveland, 1993). Q-Q plots and M-D plots are easiest to generate when
there are the same number of observations for the affected site and the com-
parison site* Each point in a Q-Q plot corresponds to rank-ordered values
of each data set (see Figure 10.3a). Locations with similar concentrations pro-
duce plots with points clustered around the one-to-one reference line (i.e.,
the diagonal line in Figure 10.3a). Locations that consistently differ produce
plots with points offset above or below the reference line. Each point in
an M-D plot (see Figure 10.3b) plots the difference between pairs of points
against the value at one of the sites or the mean value. Data can be paired
either by rank order or by collection date. Locations that consistently differ
produce plots with points offset from the horizontal reference line. Dot plots
(see Figure 10.3c) present categorical data with respect to the categories (i.e.,
comparison or affected site) and the variable of concern (DO).

The question of how much the value of a variable differs between two loca-
tions often begins by comparing differences on average over space or time
(see Table 10.2). The difference between mean values is most useful when
data are symmetrically distributed. However, there may be insufficient data
to tell how variables are distributed. If a distributional assumption is unwar-
ranted or premature, nonparametric approaches can be used to quantify the
magnitude of average difference. For example, the Hodges-Lehman estima-
tor is the median of all possible pairwise differences between two sets of
values (Helsel and Hirsch, 1992).

A limitation of using the magnitude of difference for causal assessment
is that different stressors may have different measurement units, making it
difficult to compare differences across stressors. Standardizing differences
provides unitless (i.e., dimensionless) estimates. One common approach,
percentage change, divides an unadjusted difference by the comparison
site’s mean value (see Tables 22.8 and 22.9). Standardized differences can
also be calculated by dividing the unadjusted difference by the standard
deviation developed either from values obtained from the comparison site
alone (Glass’s A) or by pooling values from the comparison and affected site
(Hedges’ g) (Hedges and Olkin, 1985). Standardizing differences comes with
the cost that, because the original units are lost, it is more difficult to relate
differences to biological processes.

If observations of the stressor and effect are paired, for example, by date or
time of day, comparing differences in a pairwise fashion can increase preci-
sion if the pairing minimizes known natural contributors to variation. For
example, differences in temperature between two streams are more easily
seen by pairing observations by date and time than by comparing observa-
tions that have been averaged over a year.

Uncertainty in the magnitude of a difference can be captured at least
partially by calculating confidence intervals. A confidence interval reflects

* When the number of observations is unequal, Q—Q plots can be constructed based on inter-
polated quantiles.
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TABLE 10.2

Some Statistics That Estimate the Magnitude of Difference between Sites

Statistic Formula Notes

Multiple measurements from two locations (x and y). Measurements are not paired (e.g., by
date).

Nonparametric:

Hodges-Lehmann A = median[x; - y)]
(H-L) estimator? For all combinationsof i=1,2, ..., n

andj=1,2,...,m

The H-L estimator is the
median of all possible
pairwise differences between
each x (from a sample of size
n) and y value (from a sample
of size m). There will be n x m
possible difference

Parametric: mean The mean difference is the

difference (unpaired)? b=x-y difference (D) between the
means of observations from
location 1 (x) and location 2 (y)
Relative difference: y-x PC is the unitless difference
percent change (PC) PC = W expressed relative to the mean
value observed at the
comparison site (x)
Relative difference: R y-x A is the unitless difference

Glass’s delta (A)® expressed relative to the
standard deviation (s)
observed at the comparison

site (x)

Multiple measurements from two locations (x and y). Measurements are paired (e.g., by date)
Nonparametric: median Dis the median difference (D)

difference (paired)? between multiple paired
observations

D = median[x; — yil
Forl=1,2,...,n

Parametric: mean 5 D s the mean difference (D)
: . D = mean [x; - ;] . .
difference (paired)? ForI=12 Y between multiple paired
T observations.

2 Equations adapted from Helsel and Hirsch (1992), which also includes equations and exam-
ples for confidence intervals.
b Equations adapted from Glass (1976).

uncertainty associated with use of limited, variable data to estimate the true
value of a parameter like a median. Confidence intervals reflect the value that
a mean or median estimate would likely take if the same sampling program
was repeated numerous times. The uncertainty quantified by a confidence
interval is only one source of uncertainty in an estimate. Other sources such
as biased measurement methods, unmeasured confounders, or uncertainties
in conceptualization may also be important.

Nonparametric confidence interval approaches are available, in addition
to the more familiar parametric approaches (Snedecor and Cochran, 1989;
Helsel and Hirsch, 1992; Hahn and Meeker, 1991). Confidence intervals can
also be calculated for standardized estimates of differences, for example, the
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percentage difference between means or a ratio of response probabilities.
These calculations tend to be more involved.

All of these confidence interval calculations are based on the assump-
tion that observations are (drawn randomly from the target population) for
example, all samples of benthic organisms in a stream reach during a given
year. The calculations also are based on the assumption that each value for
each sample is independent of values for another sample. This assumption
may be violated if samples are correlated in space or time (i.e., they are auto-
correlated) or if the effect of interest is contagious, for example, the incidence
of a communicable disease. Confidence intervals can still be calculated if the
randomness and independence assumptions do not hold. However, they will
reflect sampling and measurement variation only and thus may not fully
represent the uncertainties that apply in a given situation.

Confidence interval calculations are closely related to statistical hypoth-
esis tests. However, statistical hypothesis tests are a poor fit for analyzing
observational data for site-specific causal assessments. Statistical hypothesis
tests were designed for analyzing data from randomized experiments (dis-
cussed further in Chapters 15 and 16), where the study is designed to answer
a specific question, with adequate power to detect important differences.
Ideally, treatments (e.g., exposure to a chemical) are randomly assigned to
experimental units (e.g., animals) that are isolated, so that one unit cannot
influence the treatment or response of others. The random assignment of
treatments will tend to neutralize the influence of any confounding factors,
so that a significant difference can be confidently attributed to the effect of
the treatment. In observational studies, exposures to stressors are not ran-
domly assigned. For example, the amount of runoff from agricultural fields
is not randomly assigned to different streams. For this reason, a significant
difference in response cannot be confidently interpreted as an effect of a
candidate cause.

In addition, for the types of processes investigated in causal assessment,
there is no reason that the usual null hypothesis of zero difference is a reason-
able expectation. For example, two locations would not be expected to have
identical mean values for most variables. Statistical significance depends not
only on the magnitude of biological effect, but also on the amount and vari-
ability of the data (see also Box 3.2). With enough data, a result might be
“statistically significant” when the magnitude of effect (e.g., percent differ-
ence in means) is not large enough to be biologically important. Conversely,
a biologically important effect might not be found statistically significant, if
assessed based on a small data set. Alternative approaches explicitly formu-
late the null hypothesis in terms of meaningful differences selected by the
investigator based on biological significance or on the distribution of values
at the comparison site (e.g., Kilgour et al., 1998). The small sample sizes usu-
ally available at this point in the analysis will limit the ability to detect dif-
ferences, no matter how they are specified.
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The size of a confidence interval constructed using observational data is
also highly dependent on sample size, the degree of autocorrelation, and the
influence of confounding variables. Small sample sizes will result in large
confidence intervals. A high degree of positive autocorrelation (e.g., obser-
vations closer together in space are more similar than those farther apart)
makes confidence intervals artificially narrow. For these reasons, the degree
to which confidence intervals overlap does not have a direct causal interpre-
tation; it is just another piece of information that places the magnitude of
difference in perspective. An analyst can avoid boiling the analysis down to
one often inscrutable number (e.g., a p-value) while simultaneously provid-
ing more information useful for judging how much stressor values differ.
We recommend reporting both the magnitude of difference and confidence
intervals, thus providing the information necessary to evaluate each aspect
of the results.

10.2.2 Quantifying Covariation

Covariation is the degree to which two variables move together, either both
increasing in tandem or in opposite directions (i.e,, one increasing as the
other decreases). It is most useful for quantifying the association between
effects and stressors that influence all of the sites in the analysis, but to dif-
ferent degrees.

The attributes of the association of greatest interest are the direction and
the strength of the covariation, that is, the degree to which the level of the
stressor variable accounts for the level of the response variable. A strong
association, in a direction that is consistent with biological theory, increases
confidence (1) that the observed pattern was produced by a direct or indirect
causal relationship, (2) that the association is strong enough to be observed
over measurement error and natural variation, and (3) that the association
(which may have been hypothesized from other studies) is being manifested
in the system under investigation.

Scatter plots are a familiar means of visualizing how two continuous vari-
ables covary (see Figure 10.4). If one of the variables is expressed as a categor-
ical variable (e.g., the presence or absence of an organism or a habitat feature
like large woody debris), dot plots can be used with the categorical variable
as the classification variable (analogous to site designations in Figure 10.3c).
Using different symbols for the observations from the affected site and com-
parison sites provides a qualitative check that the overall pattern of covaria-
tion is relevant to the case.

Correlations (see Table 10.3) provide a dimensionless expression of covaria-
tion. Results range from —1 to 1 with values of +1 indicating a perfect positive
relationship (i.e., both variables increase or decrease in tandem), values of -1
indicating a perfect negative relationship (i.e., the two variables increase or
decrease in opposite directions), and 0 indicating no association.
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Example scatter plots. The affected site is the solid triangle; the comparison site is the solid
square. Additional nearby observations are shown as open circles. In the Long Creek case
study (see Chapter 22), these plots provided evidence that salts (measured as conductivity)
were associated with EPT richness, but weakened the case for nitrate plus nitrite.

Contingency tables are also used to quantify the degree of covariation (see
Figure 10.5). Contingency tables enumerate observations in different catego-
ries and so require that continuous variables of both the stressor and response
be classified (e.g., above or below a benchmark value). Using the values of
the stressor and response measurements from the affected site as the bench-
marks for the classification makes it easier to relate the results to the case.

There are many ways to calculate statistics based on contingency tables
(e.g., see review by Fielding and Bell, 1997). Table 10.3 includes calculations
for relative odds ratios and relative risk, which are frequently used by human
health epidemiologists. Odds ratios and relative risk calculations are unit-
less, which facilitates comparison across stressors, but can make mechanistic
interpretations more difficult.

As with the calculations used to quantify differences discussed in Section
10.2, confidence intervals are preferable to statistical significance testing.
Confidence interval calculations for correlations are more involved than
those for the magnitude of effect, but fortunately are included as part of most
standard statistical packages. Because of the small number of samples that
are usually available, exact methods are preferred (e.g., Agresti, 2002).

The statistical calculations shown in Table 10.3 express the strength of
the association in relative terms, making it easier to compare results across
stressors. However, most calculations assume a linear (e.g., Pearson’s correla-
tion) or monotonic relationship (e.g.,, Spearman’s correlation, Kendall’s Tau).
Some stressor-response relationships would be expected to show a different
form. For example, algal productivity increases as phosphorus concentra-
tions increase, but then decreases at higher concentrations. Correlations and
reliability statistics can still be useful when observations are from parts of
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TABLE 10.3

149

Some Statistics That Estimate the Degree of Covariation for Multiple Sites with Both

Stressor (x) and Response (1) Measurements

Statistic Formula

Notes

Stressor (x) and response (y) are continuous variables

Parametric 1 L B B
correlation: r= Z[Xi - x] * (yi - y]
Pearson’s r n—1&d\ s, Sy

Pearson’s r estimates the
linear dependence of ¥ on
x and is dimensionless. If
squared (i.e., 7%), it
estimates the amount of
variation in y that is
explained by x

Stressor (x) and response (y) are ordinal (i.e., rank ordered) variables

Nonparametric n
correlation: zle(Rxf * Ry;) =+ ((n+1)/2)
Spearman’s p p= n(n® —1)/12
where
R = the observation rank ignoring
group

Stressor (x) and response (y) are categorical variables

Nonparametric S
correlation: - W
Kendall’s Tau (1) where S=P - M

and

P =the number of y; <y, for all i <j
M = the number of y, >y, for i <j
Foralli=1,...,(n—1)and
j=3G+1),..,n
For pairs ordered by x value
Relative risk (RR)

RR =8

c/h

Relative odds a.d
ratio (ROR) ROR e

Spearman’s p estimates the
monotonic dependence of
yonx. It can be
computed using the
equation for Pearson’s r
on the ranks of
observations (Snedecor
and Cochran, 1989)

Kendall’s T estimates the
monotonic dependence of
y on x. T can also be
calculated for continuous
variables, but will yield
lower (absolute) values
than Spearman’s p for the
same data

RR is the ratio of frequency
of effects observed at
exposed sites, over
frequency of effects at
unexposed sites

ROR is the ratio of the
odds of observing
responses at exposed sites
over unexposed sites

Correlation equations adapted from Helsel and Hirsch (1992). RR and ROR adapted from

Rothman et al. (2008).

A confidence interval for both Pearson’s r and Spearman’s p can be based on the z

transformation approach (Sokal and Rohlff, 1995).

n is the number of observations; s is the standard deviation; a, b, ¢, d, g, and h are defined in

Figure 10.5.
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Undesirable effect
Effect Effect not
° observed observed | Totals
é Exposed a b g=(a+b)
é Not exposed c d h=(c+d)
R Totals | e = (a + c) f=(b+d) |n=(a+b+c+d)

FIGURE 10.5
A contingency table. Variables in the cells are used to calculate odds ratios and relative risk,
among other statistics.

the relationship that only increase or decrease. They should not be used if a
unimodal relationship is anticipated based on subject area knowledge or the
pattern observed in a scatter plot.

10.2.3 Interpreting Associations

The results obtained from analyzing case-specific observations are typi-
cally the first to be scrutinized. As additional evidence is accumulated, the
interpretation will likely evolve. At first, results are taken at face value. A
finding of no association provides evidence that the two variables are not
causally related. Conversely, a strong association in the expected direction
is evidence that the two are more likely to be causally related. Confidence
in face-value interpretations is increased when the variables and their asso-
ciation are clearly linked to the conceptual diagram created at the begin-
ning of the process. If subject-matter knowledge indicates which variables
are capable of producing others, that knowledge can and should be used to
interpret results.

Associations have greater weight if they are large in magnitude and based
on high-quality data (see Chapter 19). Overall, however, these results usually
provide weak positive evidence, because stressors frequently covary, result-
ing in many associations. For this reason, it is good practice to explore the
degree of covariation between stressors. Conducting the analyses for all can-
didate causes is another way to make it clear that multiple stressors occur
jointly with the effect. For this reason, the causal analysis rarely ends here.
Instead, the results are brought forward and combined with other evidence
(e.g., from regional studies or experiments).

It could be that the difference or association may not have been produced
by a direct causal relationship between the two variables. Instead, the
causal relationships may be more complex. For example, increased runoff
from impervious surfaces increases peak flows and decreases base flows of
receiving streams. Both peak and base-flow data will likely be correlated
with macroinvertebrate richness (see Figure 10.6), even when only decreased
base flow is the true cause.

The pattern of associations can give insights into the underlying causal
structure that might have produced it and provides the basis for structural
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Surface runoff from
impervious surfaces

N

| | Base flows | | T High flows |

L EPT taxa richness
FIGURE 10.6

Decreased base flows and increased high flows will be correlated if they are both produced
from surface runoff from impervious surfaces, complicating the analysis of the cause of
decreased EPT taxa richness.

equation and path analysis (Shipley, 2000). These analytical approaches can
require more observations than are usually available from a case, but the
concepts can be applied when interpreting results from smaller data sets.
There are only a few reasons, besides direct and indirect causation, that two
variables may be associated.

* Noncausal associations between two variables can occur when
they are produced by the same antecedent (e.g., a human activity or
source). In the example shown in Figure 10.6, decreased base flows
and increased peak flows will be correlated because they are both
produced by increased surface flow from impervious surfaces.

* Noncausal associations can be produced if both variables have
a temporal or spatial trend. For example, Amelanchier shrubs (aka
shadbush) bloom when the shad run in New England rivers. Or,
a correlation could result from mixing data from two regions that
have different average values for both variables.

e Noncausal associations may be produced as an artifact of the sam-
pling process. If two variables cause a third (either independently
or jointly), they will be correlated in samples selected on the basis
of the third variable (aka “collider” bias) (Greenland et al., 1999). For
example, if declines in stream stonefly abundances are caused by
a combination of temperature and siltation, the subsample of sites
with low stonefly abundances will show a correlation between tem-
perature and siltation, even when these two variables are indepen-
dent across the entire population of sites.

* Anassociation may reflect an indirect causal relationship. For exam-
ple, nutrients may cause changes in macroinvertebrate abundances
by first altering the algal community. If this pattern is true, nutrients
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will be correlated with both algal and macroinvertebrate endpoints.
However, the correlation between nutrients and macroinvertebrate
abundances should disappear when the effects of the algal com-
munity are held constant. Computationally, this is accomplished
either by calculating a partial correlation coefficient (Shipley, 2000;
Legendre and Legendre, 2012; Sokal and Rohlf, 1995) or by stratify-
ing on different values of the algal community variable.

Because many sources produce multiple stressors, causal investigators
often encounter patterns of results that suggest confounding. A confound-
ing pattern occurs when a third variable, for example, another stressor or
a natural spatial or temporal gradient, is correlated both with the stressor
and the response. The pattern raises a warning flag because the influ-
ence of the third variable can bias estimates of the strength of association
between the first two. Strategies for minimizing or statistically adjust-
ing for confounding require larger amounts of data and are discussed in
Chapter 13.

In some investigations, there may be a reason to suspect that an association
or difference should have been detected, but was not. Some issues that can
be mitigated with additional sampling effort or with a different sampling or
measurement strategy include the following:

® The stressor variable or response variable has a high degree of mea-
surement error.

* The measurement methods were not sensitive enough to distinguish
differences.

® The stressor or response variable are highly variable in time or space
(e.g., stressors associated with episodic storm flows).

* The stressor and response variables are not paired appropriately in
time or space.

¢ Different sites are impacted by different stressors which obscures
the association.

In rare cases, associations or differences may not be detected because of
the influence of other causal processes. Another cause may be influencing
the effect in the opposite direction so that the association is not observed.
For example, turbid water can shade algae to the extent that they do not
respond to increases in nutrients. A stressor may be so common or severe
that it obscures the effects of another. In both of these cases, we hope that
our process will lead to the identification of a first, most conspicuous group
of stressors for management action. Additional associations may become
apparent only after the management actions that reduce the first group of
stressors have taken place.
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FIGURE 10.7

An unmeasured cause (high temperature in this example) could be the true reason that EPT
taxa declined.

Finally, there is always a chance that an unmeasured variable is the domi-
nant cause (see Figure 10.7). Although the issue of unmeasured causes
should be kept in mind throughout the causal assessment, in our experience,
it is particularly relevant when, at the end of an assessment iteration, none
of the stressors or their combinations emerges as a good explanation for the
observed effects. Revisiting sources and human activities to ask what addi-
tional stressors may be occurring is one way to identify additional causal
hypotheses for follow-on monitoring efforts and investigation in a subse-
quent iteration.

10.3 Summary

Case-specific observations frequently provide the data to derive the first
pieces of evidence in a causal investigation. Direct qualitative observations
provide useful evidence of presence and absence of sources, proximate
causes, and the steps in between the two. For stressors that always occur
but in different amounts, associations between stressor and effect measure-
ments can be evaluated using visualization methods and calculations such
as standardized differences, correlations, and statistics based on contin-
gency tables.

Simple associations between two variables should be approached cau-
tiously. Many effects can be caused by many different agents and environ-
mental factors and those agents and factors often co-occur or covary. An
association between two variables could be produced by a direct causal rela-
tionship, by a variable that is part of the causal chain of events (e.g., a source
or human activity), or by a confounding factor. Weak relationships can be
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found because the stressor is not a cause, measurement error is high, or dif-
ferent sites are affected by different stressors.

For this reason, associations from case-specific observations are most
informative when analyses are conducted for many candidate causes, inter-
preted in the context of conceptual models, and used with additional sources
of information and approaches for developing evidence. By providing evi-
dence that causes do or do not co-occur with effects, these associations form
the foundation of understanding the causal processes leading to the effect
under investigation. An investment in a thorough analysis of case-specific
observations provides the basis for comparing these observations to results
from experiments and regional field observational studies, discussed in the
following chapters.
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Regional Observational Studies:
Assembling and Exploring Data

Jeroen Gerritsen, Lester L. Yuan, Patricia Shaw-Allen, and David Farrar

This chapter expands the discussion of data acquisition and explor-
atory data analysis to observational studies beyond the specific study
site. These initial activities are important for identifying the strengths
and limitations of the data for deriving evidence (discussed in the
next chapter).
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In Chapters 11 through 13, we describe how larger regional data sets can be
used with case-specific observations (see Chapters 9 and 10) to develop evi-
dence for site-specific causal assessments. In this chapter, we review types
of observational studies that are conducted at places other than the sites
under investigation. We describe some of the considerations and potential
pitfalls in assembling and exploring these data. In Chapter 12, we describe
some methods we have found useful for deriving and interpreting evidence.
Chapter 13 describes approaches for identifying and mitigating the influence
of confounding variables.

Many of the same considerations relevant to organizing and analyzing
data from the case (see Chapter 9) apply to the analysis of broader-scale
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observational studies, especially selecting biologically relevant measure-
ments and statistics and pairing observations in time and space.

11.1 Studies and Data Sets

The topic of this chapter is the assembly of observational data in prepara-
tion for deriving evidence. By regional observational data, we mean measure-
ments that are not associated with a direct manipulation of environmental
conditions (e.g., measurements collected during monitoring) and that may or
may not have been collected from a probability-based survey (e.g., Cochran,
1965)* Observational data also include measurements collected by sensors
on satellites or aircraft. Observational studies include published reports and
scientific papers describing insights derived from observational data as well
as uninterpreted observational data collected in databases. Information from
published articles and reports are subject to the same scrutiny as applied to
analyzing new data.

Although the larger number of observations in regional data sets is an
opportunity to conduct different and potentially more informative statistical
analyses, an upfront warning on analysis of observational studies is in order:

In our experience, data preparation (assembly, cleanup, and quality con-
trol) is the single most time consuming part of using outside observa-
tional data. If the data are not already “yours,” it may consume half of
your resources for analysis.

Much of the data used to generate evidence comes from routine monitoring
programs conducted by government agencies at all levels. At the local level,
drinking water utilities often monitor water quality at their intakes, and dis-
chargers are often required to report the constituents in their effluents and
to monitor some sites downstream from the effluent. In the United States
and in many other countries, national agencies monitor weather and climate,
hydrology, water quality, air quality, aquatic biology, forest condition, wildlife
populations, fisheries, coastal zones, and more. There are also some long-term
academic studies in single places, such as the red deer study in the United
Kingdom (e.g, McLoughlin et al,, 2008) and the U.S. Long-Term Ecological
Research (LTER) program (e.g., Hobbie et al., 2003). Some websites provide lists
of potential data sets (e.g., Hellyer et al., 2011).

* Strictly speaking, data from randomized surveys are not considered “observational” by stat-
isticians, but many state-monitoring databases include mixtures of designed surveys and
nondesigned observational data. We categorize both under the term “observational data” in
this chapter.
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The objectives and design of a monitoring program determine its rele-
vance to the case-specific investigation. Its technical foundation determines
its quality. Both relevance and quality influence the weight that is appropri-
ate to assign to the evidence when integrated with other evidence to form
conclusions (see Chapter 19).

11.1.1 Assessing Relevance

At the most basic level, the data must contain information about both candi-
date causes and the biological effects. It is usually not possible to obtain data
for every candidate cause, but observational studies that are relevant to even
a subset of causes are still useful to obtain and analyze. The following steps
can help identify relevant observational data:

¢ Look for data that, alone or in combination with other sources, link
two or more variables shown in the conceptual model diagram (see
discussions in Section 9.2). The variables may be relevant to sources,
intermediate steps, proximate causes, or the effect.

¢ Determine whether and where the information exists; obtain
metadata to examine methods and the time period that data were
collected. Document data gaps. There may be unknown or unmea-
sured intermediate stressors or factors; these do not disqualify the
data, but the greater the complexity and the greater the number of
unknown or unmeasured factors, the more difficult the analysis and
more ambiguous the results.

® Determine whether there are observations where the stressor and
response measurements can be considered to coincide spatially and
temporally. For example, it is usually not appropriate to pair stress-
ors that were measured during 1990-2000, with responses measured
only after 2005. This does not mean that all observations must be
taken at the same time and location; for some measurements, annual
averages or periodic observations are acceptable. We will discuss
more specifics on pairing observations in time and space below (see
also Section 94).

¢ Consider combining data sets from multiple agencies and from mul-
tiple studies within agencies to obtain the desired stressor informa-
tion. As an example, the U.S. Geological Survey (USGS) measures
streamflow from many stream gauges throughout the United States.
Examining effects of stressors such as flow and flow alteration may
require USGS streamflow data in addition to another agency’s bio-
logical monitoring data.

® Ascertain whether the locations and ecosystem types of the obser-
vational studies are relevant to the case. For example, observational
studies from mountain streams of West Virginia, United States,
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are clearly relevant to similar streams and similar organisms from
mountain streams of the nearby states of Maryland, Pennsylvania,
Virginia, and Kentucky (U.S. EPA, 2011a), but they may or may not
be relevant to a region with different geology and topography, such
as the coastal plains of Florida, Georgia, and South Carolina.

e Determine whether the stressor gradient in the data set is relevant
to the case. Stressor-response models require measurements of an
effect (e.g., biomass, abundance, or overt anomalies) in conjunction
with varying levels of the stressor. The ideal is to have response data
observed at stressor levels ranging from very low to high values.
This means the stressor levels in the wider, observational data should
bracket the values found at the affected site. The least stressed sites
of the region (reference sites; see Section 11.1.4) provide the low end
of the relationship, but reference sites are not necessary to develop a
stressor-response model.

11.1.2 Assessing Database Consistency and Quality

Monitoring programs vary widely in methodology, design, and scientific
rigor (e.g., Yoder and Barbour, 2009). We recommend obtaining data from
the original source if possible (agencies that collected the data), rather than
from data warehouses (e.g., U.S. EPA STORET/WQX). Also, obtain whole files
rather than querying through the warehouse’s interface, because important
options may not exist in interfaces. Some older data warehouses (e.g., U.S.
EPA STORET legacy) lack consistent quality assurance (QA), and may lack
metadata. For example, study objectives and sampling design may be miss-
ing or very difficult to find in the data warehouse, rendering usability of the
data questionable at best. In another example, discharger-submitted data
in the National Pollutant Discharge Elimination System (NPDES) database
may in some cases consist of permit limits rather than actual observations.

Evaluating the quality of biological assemblage data presents some unique
challenges. The data typically consist of taxonomic names of species (or
higher taxa) and estimates of abundance, such as counts of the number of
individuals, biomass, or percent cover. Considerations for evaluating the
quality of a biological assemblage database are described below:

Consistency in sampling methods—Sampling methods should be consistent
or made consistent in the initial data analysis, especially for taxonomic infor-
mation (taxa and counts). Relatively minor differences in sampling effort and
level of taxonomic identification among monitoring programs can be recon-
ciled by using the “least common denominators.” That is, subsample data to
approximate equal sampling effort (i.e., randomly subsampling large inten-
sive samples to the level of effort of the study with a smaller effort) and aggre-
gate taxonomic information to the lowest (finest) common identification (i.e.,
aggregating species data to genus, or genus to family, as necessary, to attain
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a consistent level of identification in all the data). Major differences in objec-
tives and sampling design typically cannot be reconciled, and affected data
sets should be kept separate in analysis. It is especially important to examine
methods when data from multiple sources are to be pooled. Elements of sam-
pling methodology that should be checked include the following:

¢ Biological response information—The biological response data can
range from composition and abundance from one or more biological
assemblages, to rate measurements (e.g., photosynthesis, respiration,
other gas exchange), to individual measurements on target species
or groups (e.g., frequency of diseases or anomalies, stress proteins).

e Sampling frequency—Many aquatic biomonitoring programs sam-
ple only during fixed seasonal index periods (e.g., July—October),
which is a compromise to try to maximize information while con-
trolling costs, logistics, and safety. Index periods are selected based
on known ecology to reduce natural variability, optimize gear
efficiency, and maximize the information about the assemblage
(Barbour et al., 1999), or to sample at times when stresses are likely to
be highest, such as initial stream loadings after dry spells or during
base flow when pollutants are least diluted. Large organisms (e.g.,
standing vegetation, corals, fish, macroinvertebrates) are rarely sam-
pled more than annually to characterize a single site. Periphyton,
phytoplankton, chlorophyll a, and water chemistry are more likely
to be sampled several times a year to characterize a water body
because the short-term variability of these measures is very high
(e.g., Knowlton and Jones, 2006; Barbour and Gerritsen, 2006).

® Sample collection and processing—Reported field methods should
be consistent and well documented. Ideally, the objective of the sam-
pling methods is to obtain consistent samples that are representa-
tive of the target biological assemblage or target response and the
relevant environmental attributes.

e Taxonomic resolution and consistency—The “lowest practical” iden-
tification, to genus or species when possible, is favored because it
yields more detail, especially when considering traits of the species
(e.g., Lenat and Resh, 2001). Nevertheless, useful information can be
derived from less resolved taxonomic identifications such as fami-
lies (e.g., Gerritsen et al., 2000a). Birds, mammals, corals, plants, and
fish are typically identified to species, whereas macroinvertebrates
are most often identified to genus. In analysis, mixing levels of iden-
tification creates ambiguity (e.g., identifications to family only in a
genus-level data set are ambiguous, because the genus is unidenti-
fied and unknown). Cuffney et al. (2007) examined consequences of
different handling methods for ambiguous taxa. They determined
that methods that preserve the largest numbers of taxa in resolving
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ambiguities were most effective for retaining useful information.
Again, the taxonomic resolution rules must be applied consistently
across all sites and dates, so the data are comparable. Developing
and applying these rules for “operational taxonomic units” are time-
consuming but is generally necessary for analysis of the taxonomic
data (see, e.g.,, Cao and Hawkins, 2005).

General QA screening—Every data set is likely to have at least some internal
errors that can be hunted down and fixed such as multiple spellings, capital-
ization and punctuations of class variables, variation in units and surprising
or suspicious consistencies (e.g., abundances are multiples of 3, or repeated
patterns of numbers). Software may efficiently detect errors such as false
categories due to capitalization or spelling differences. Notifying database
owners of found problems is good stewardship.

Many recent research and monitoring data sets have an associated, for-
mal sampling and analysis plan or quality assurance plan. Data sets with
such plans are generally preferred, and the plans should be reviewed to help
assess applicability to the questions being addressed. Nevertheless, a quality
assurance plan does not guarantee good quality or relevant data, nor does
absence of a plan indicate poor quality. In either case, one needs to assess the
sampling design and methods for quality and applicability. Rejection of data
for minor misdemeanors can lead to decisional paralysis.

11.1.3 Pairing Observations in Time and Space

Examination of associations between stressor and responses requires ade-
quate co-location of stressor and response measurements in time and space.
This does not mean that all observations must be collected at the same time
and place, but that they are representative of the same time and place. For exam-
ple, most assemblage information (species composition and abundance) is
considered to represent a generation time or more of the assemblage, from
several weeks to multiple years. Similarly, integrative estimates of stressors
can be developed from single-point-in-time measures. A data set of paired
stressor and response observations may need to be “built up” from separate
observational studies. In the past, many U.S. state water quality monitoring
programs were split into separate biological and chemical programs, with
separate sampling designs, locations, and schedules. These uncoordinated
programs produced a great deal of unusable data, having numerous loca-
tions with chemical water quality data but no biological information, and
vice versa.

It may be possible to salvage at least parts of disconnected databases,
as well as pairing sites by mapping the sampling stations. We have used
the NHDPlus (Horizons Systems Corporation, 2012) as the basis for map-
ping and pairing biological with chemical and hydrologic stations. Some
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considerations for assembling a data set from multiple sources, with NHD
and flow data as examples include the following:

* Associate each sampling station with an NHD reach. Some moni-
toring programs have already done this, but in many cases it will
be necessary to use the position information [latitude-longitude,
Universal Transverse Mercator (UTM) grid] as well as the station
description. Determine an acceptable distance between the sta-
tion location and the stream reach beyond which the data point is
rejected as a mismatch.

¢ Identify biological and water quality stations, and gauging stations
on the same NHD reach. Examine these reaches for permitted dis-
charges, as well as nonpoint sources, between the sampling locations.
This may require accessing discharge (e.g., NPDES) databases, as well
as inspection of aerial images (e.g., Google Earth). If there are no inter-
vening potential sources, the NHD reach can be considered to be the
“sampling location,” and all samples on the reach refer to that location.

® Determine a time period for characterizing more frequent observa-
tions (chemistry, flow, chlorophyll) to associate with the less frequent
observations (fish, benthic macroinvertebrate composition). The
time period should be biologically meaningful. Depending on the
situation, measures of central tendency, or maximum or minimum
values, of chemical, flow, and chlorophyll measurements for either
1 year or one growing season prior to each biological sampling event
could be considered a single observation space.

In addition to assisting in database development, mapping sampling sites
is also useful for identifying potential sources and spatial relationships.

11.1.4 Reference Sites and Conditions

Reference sites are often defined and identified in monitoring programs con-
ducted by government entities such as states, tribes, and provinces (see Box
11.1). The inclusion of reference sites in a data set has the advantage of ensur-
ing that the best (i.e,, least disturbed) sites in a region have been sought and
included. Such sites would not have been deliberately included in a probabil-
ity sample or sampling for enforcement. Hence, reference-site data allows for
development of a more complete stressor gradient for generating quantitative
stressor-response relationships and identifying confounders (see Chapters
12 and 13). However, reference sites are not always relevant comparison sites
to determine co-occurrence. For example, some candidate causes may not
have been considered when defining the reference or their levels may be too
high to provide a no-exposure or even a low-exposure condition. In such
cases, comparison sites must be identified ad hoc.
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BOX11.1 REFERENCE CONDITION

We summarize briefly two considerations in using regional reference
condition and reference sites, but for further analysis and development,
we refer the reader to the rather extensive literature on bioassessment
and biocriteria (e.g.,, Barbour et al., 1999; Bailey et al., 2004; Stoddard et
al,, 2006). In general, analysts in causal assessment will use reference
sites when they are available, but causal assessment does not define or
develop reference condition.

Developing Reference Condition

Ideally, regional reference sites are “minimally disturbed”—nearly
pristine with minimal or no detectable biological effects of human
activity (Bailey et al., 2004; Stoddard et al., 2006). Realistically, “mini-
mally disturbed” is seldom achieved, and the selection of reference
criteria is often a mixture of data analysis and professional judgment.
Reference systems represent the least disturbed conditions typical
for a region and minimally disturbed when possible. Geologically or
morphologically atypical sites should be excluded from consideration,
because the goal is to define the average and typical regional condition
in the absence of human disturbance (Stoddard et al., 2006). The devel-
opment of reference site selection criteria is a consensus process and
draws upon the experience and knowledge of local professionals, many
of whom have sampled biological communities across large regions.
Land use/land cover data, extent of point-source inputs, habitat sur-
veys, presence of impoundments, human population density, and road
density are often used in identifying regional reference sites (Stoddard
et al., 2006).

Natural Classification of Biological Data

Many natural regional and habitat characteristics (such as stream size,
slope, dominant natural substrate, etc.) also affect the species composi-
tion of undisturbed water bodies. Accordingly, a critical step in using
data from reference sites is to account for natural sources of variabil-
ity in biological indicators through discrete classifications or continu-
ous models (e.g., Barbour et al., 1999; Hawkins et al., 2000). Failure to
properly account for natural variability can lead to confounding of
responses by natural factors. In most cases, biological monitoring pro-
grams of widely distributed resources have either identified natural
classes (e.g., biota in streams, forests, grasslands) or developed appro-
priate models.
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BOX11.1 (continued) REFERENCE CONDITION

Accounting for natural variability in reference sites requires examina-
tion of biological gradients or assemblage types and associating these
biological gradients with natural variables. Potential analyses include
nonmetric, multidimensional scaling (NMS), indicator species analysis,
correlations, cluster analysis, metric distribution plots, and regression
analysis (e.g., Jongman et al., 1987; Wright, 2000; Hawkins et al., 2000).

11.2 Exploratory Data Analysis

Rather than going straight to quantitative analysis, becoming familiar with
the data is important for identifying strengths, limitations, ways to improve
subsequent analyses, and potential pitfalls. For example, correlations among
stressors may limit our ability to infer causes (e.g., Zuur et al., 2010). We
become familiar with the data and its quirks through exploratory analyses,
which range from very simple descriptive statistics and graphics, to more
complex multivariate analyses.

The most important exploratory activity is becoming familiar with the
data sets by examining them with tables and graphs, which can include
scatter plots, correlation matrices, and box plots. Correlation matrices show
stressors that covary and may confound causal assessment. Scatter plots,
especially, show the extent of relationships between pairs of variables. Some
of these topics were introduced in Chapter 8, where, we discuss additional
considerations for analysis of observational data.

Maps are a graphical way to explore and present data that complement
scatter plots and correlation coefficients. Scatter plots and correlation coeffi-
cients are nongeographic summaries of the variables, whereas maps display
the spatial patterns of the variables. Data sets that have the same correla-
tion coefficient and scatter plot pattern may exhibit different spatial trends
(see examples in Monmonier, 1993). Concordance among graphs, correlation
coefficients, and maps may suggest an important underlying factor to con-
sider for a causal analysis.

11.2.1 Autocorrelation and Independence

Statistical models and tests typically include an assumption that data
observations are independent, but observations close together in space and
time may not be independent. Consider a measurement of bottom-water
dissolved oxygen (DO) at 4:00 am in a lake. Would the DO at 5:00 am be
expected to differ? Lake-bottom-water DO goes through predictable fluc-
tuations determined by photosynthesis, respiration, water stratification, and
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wind-driven circulation, and unless a very unusual event has occurred, DO
measurements 1 hour apart will be very similar. Such measurements are not
independent and are termed autocorrelated in time. Similarly, water chem-
istry measurements separated by several hundred meters on a stream reach
are spatially autocorrelated, if no intervening tributaries or discharges are
present. Land forms and geologic formations extend spatial autocorrelation
over longer distances, for example, the expectation is that most streams in a
mountainous area will have relatively steep slopes.

The simplest way to deal with autocorrelation is to define sample units (e.g.,
individual lakes, stream reaches, land areas) in such a way that autocorrela-
tion is minimized, for example, individual lakes are considered independent
sample units for most studies, as are stream reaches that are neither tributar-
ies nor their receiving streams. Multiple measures within a lake or stream
reach are not independent and usually a single estimate of central tendency
(mean, median) should be used as the observation representing that unit.

Autocorrelated observations can be used to develop seasonal or annual
estimates of the variable for a relevant sample unit, for example, seasonal
averages of nutrients and chlorophyll concentrations for a lake basin (e.g,
Knowlton and Jones, 2000). The single seasonal estimates are then indepen-
dent of similar observations from other places (lakes) or years, and do not arti-
ficially inflate sample size. There may be situations where autocorrelation of
biotic measures may have been caused by stressors (e.g., responses to multiple
wastewater discharges to a stream); in such cases, the apparent autocorrela-
tion is part of the response and is not likely to be inherent to the biotic mea-
surements. These observations can be retained as individual observations.

Widespread spatial autocorrelations, such as those from mountains or
geologic formations, may be less of a concern because slope, elevation, and
alkalinity are often the primary classification variables for both terrestrial
and aquatic systems (e.g., Hawkins et al., 2000). If the biota is sensitive to
these factors, a classification prior to examining stressor-response associa-
tions and poststratifying the analysis according to the classification will take
into account the natural variables (see example in Section 11.2.2).

Spatial or temporal autocorrelation can be examined with an autocorrelo-
gram. This requires data that are evenly spaced in space or time, either set
distances or set intervals (lags). Autocorrelation coefficients are calculated
forlags (1,2,3, ..., N — 1) and plotted by lag. For methods, see a textbook that
covers time-series analysis (e.g., Chatfield, 2004; Legendre and Legendre,
2012). In practice, few environmental monitoring data sets are sampled at
consistent spatial or time intervals, so decisions on independence of observa-
tions most often will require professional judgment.

11.2.2 Ordination Methods

A limitation of scatter plots and correlations (discussed in Section 10.2.2) is
that they apply only to relationships between two variables. When several



Regional Observational Studies 165

different variables interact, multivariate approaches for exploring data may
provide greater insights.

Ordination methods help to identify variables that structure and differen-
tiate habitats and systems from each other. By identifying natural attributes
that influence biological community structure and composition, ordina-
tion results suggest classifications that reduce variability, making human-
induced changes in biota more apparent. Ordination results also identify
potential confounders by identifying natural attributes and stressor vari-
ables that covary with each other.

Ordination refers to a group of commonly used statistical techniques that
reduce the complexity of many variables (e.g., the abundance of 200 species
from 50 sites) into a smaller number of synthetic variables, such that the
sites and species are arranged (“ordered”) on the new variables. Ordination
reduces the complexity of data so that it can be depicted graphically, and
relationships among objects can be examined. Samples (sites) that are similar
to each other display close together on the ordination graph. Data are typi-
cally depicted and expressed as relationships in two or three dimensions.

Three families of ordination procedures that have been used success-
fully with ecological data include principal components analysis (PCA) and
related methods; correspondence analysis (CA) and related methods; and
NMS, a distribution-free method. Computationally, all ordination methods
use a distance or a similarity matrix among sites or among variables and
calculate eigenvalues of the distance matrix to define the principal axes,
or use a numerical approximation technique (NMS). There are numerous
distance and similarity coefficients (Legendre and Legendre, 2012). For a
more complete explanation of these methods, see any text that covers ordi-
nation (e.g., Jongman et al., 1987; Ludwig and Reynolds, 1988; Legendre and
Legendre, 2012).

PCA is particularly useful for examining environmental variables and
metrics that vary monotonically with one another. It is often used to iden-
tify which physical and chemical attributes are strongly associated with each
other. PCA can also suggest potential grouping or classification of the sites.
A simple PCA of measured water quality variables of Florida lakes was used to
confirm a classification of lake types (see Figures 11.1 and 11.2; Gerritsen et al.,
2000b). Eight water quality variables (pH, alkalinity, conductivity, chlorophyll-
a, total nitrogen, total phosphorus, platinum-cobalt color, Secchi transparency)
aligned on two major axes corresponding to (1) alkalinity/pH and (2) color/
Secchi transparency. Lakes were classified into two groups on each axis: acidic
lakes and alkaline lakes, and clear lakes and colored lakes, yielding four lake
classes. The statewide PCA confirmed an earlier classification from a smaller
set of lakes (Shannon and Brezonik, 1972). In a subsequent correspondence
analysis of littoral benthic invertebrate species composition, species composi-
tion was primarily associated with water color (see Figure 11.2).

PCA is not effective for use with species composition data, because spe-
cies are often distributed unimodally along environmental gradients. Also,
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FIGURE 11.1

Principal components ordination of water quality in 570 Florida lakes. Dots and arrows show
the projection of each variable onto the first two principal components, which explained 78%
of the variation of the data set. Conductivity, alkalinity, and pH are close together and par-
allel to the first axis and Color and Secchi transparency each point in opposite directions
(increased water color results in reduced transparency) along the second axis. (Data from
Florida Lakewatch; Gerritsen, J. et al. 2000b. Development of Lake Condition Indexes (LCI) for
Florida. Tallahassee: Florida Department of Environmental Protection.)

species-by-site matrices often have large numbers of empty cells, represent-
ing sites where a given species was not found. Absence falsely contributes
to similarity in PCA because the analysis uses correlation as the measure of
similarity. For species composition data, we recommend NMS or correspon-
dence analysis.

11.3 Summary

Observational data from outside a particular case provide important support
for causal assessments. Although substantial effort is required to develop
data sets, it is worthwhile because, once assembled and organized, the data
can be used for many investigations.

The process of obtaining data, determining quality, filtering, and reduc-
tion, is time- and resource-intensive. Database construction cost is typically



Regional Observational Studies 167

o A
v
2 4 Color class
A ° O Clear (PCU <=20)
A Colored (PCU > 20)
M 4
A A
A A
o
“r o o
% A A o o
“A iA Ao® o o®
a © 00 o o© o
A A A A A 0N OOO o
f6) I ) O U O -
A AAA A A QOAOO@ Axis 1
A .4 ,0 Jo @)
AO
A AA ) o
& ao O
o A ‘{6 © Q
ah , A p A
o
& oA
A A A O
A

FIGURE 11.2

Ordination (detrended correspondence analysis) of littoral benthic macroinvertebrate assem-
blages of Florida lakes, showing color classes identified from water quality PCA (open circles;
closed triangles). The plot shows that invertebrate species composition differs among lakes
according to water color, supporting the use of color as a classification variable. (Modified from
Gerritsen, J. et al. 2000b. Development of Lake Condition Indexes (LCI) for Florida. Tallahassee:
Florida Department of Environmental Protection.)

grossly underestimated in scoping a causal assessment. People wrongly
assume that “because data have been collected” in a relevant region that

* The data will be easy to obtain from the original sources;

The data will effortlessly fall into a relational database with working
queries;

The data are relevant to the questions at hand;

The data contain all relevant parameters measured everywhere; and

The data are error-free.

The reality is that obtaining the data, developing a database for the proj-
ect, and identifying and correcting errors are enormously tedious and
time-consuming, and further, after the database is complete, the relevant
sample size is substantially smaller than originally estimated. We caution
planners of causal assessments to be realistic, in order to allocate at least
50% of data analysis resources for obtaining and assembling data and QA.
This still represents a significant cost savings compared to sampling in the
tield.
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Initial data analyses that explore autocorrelation of observations and
covariation among variables help improve subsequent analyses by identi-
tying promising classification variables to reduce natural variability and
potential confounding factors that may obscure the stressor-response rela-
tionship of interest.

Once the data sets are assembled and their potential for analysis has been
explored, it is time to reap the benefits and use them to develop associations
that can be related to the specific case being investigated. The next chapter
begins that process.



12

Regional Observational Studies:
Deriving Evidence
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This chapter reviews several approaches for deriving evidence from
regional observational studies. Observational studies have the advan-
tage of reflecting realistic exposure conditions, but analyses may be
hampered by high natural variability and the influence of confound-
ing factors.
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Regional observational studies provide larger data sets to support the devel-
opment of empirical models or distributions. Evidence relevant to a specific
investigation is derived by comparing observations from the case with the
results from the larger studies.

In this chapter, we share experiences analyzing observational studies for
causal assessments and point the reader to resources with methods, for-
mulas, and software that have been employed successfully by us and oth-
ers. Libraries of books have been written on statistical methods. We do not
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provide detailed instructions on statistics because our goal is to show that
there are a variety of ways to develop evidence and to interpret it. Our exam-
ples here are all drawn from aquatic causal assessments, but many of the
same techniques and considerations apply to terrestrial assessments.

This chapter focuses on the use of observational studies to provide evi-
dence that the proximate cause and the biological effect co-occur or that the
level of exposure to the stressor is sufficient to induce the effect. However,
the same approaches can be applied to evaluate causal events that lead up
to the proximate cause. For example, observational studies have been used
to evaluate whether nutrient enrichment has caused periphyton growth in
streams, thus increasing diurnal variability in DO (higher highs and lower
lows). In this example, low DO is a proximate cause of the degraded benthic
invertebrate community (e.g., Miltner, 2010).

12.1 Comparing Stressor Levels and Comparing Effects

One of the simplest ways to generate evidence from observational data is to
compare stressor levels at the biologically affected sites of the case to stressor
levels at comparison sites that are unimpaired or less degraded. For example,
comparisons of levels of a stressor between the site and regional reference
sites define whether the levels of stressors at the site under investigation
differ from those at sites with high biological quality. Data showing that a
stressor co-occurs with the effect at levels outside the range associated with
high-quality biological conditions is evidence that supports that candidate
cause. Data showing that levels of the stressor at the affected site are within
the range associated with high-quality biological conditions weakens the
case for that candidate cause (see Chapter 23, Clear Fork case study). This
approach is most applicable to investigations prompted by effects observed
as part of a biological monitoring or assessment program. It uses the defini-
tion and description of the reference condition defined as part of that pro-
gram, typically conducted by a state, province, or other government entity
(see Box 11.1). For the most part, regional reference sites and regional refer-
ence conditions have already been developed by the state or other agencies
prior to assessing biological condition in the case itself. Because reference
sites are identified for purposes other than causal assessment, the criteria for
their selection should be reviewed before using them.

Comparisons of stressor levels to those at reference sites can be complemented
by comparing stressor levels to groups of sites where similar effects have been
observed. Data showing that, at the affected site, a stressor occurs at levels at or
above the range associated with similar effects provides evidence that supports
a candidate cause. Data showing that the stressor was below the ranges associ-
ated with similar effects weakens the case for that candidate cause.
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We describe two broad approaches for performing these comparisons:
simple categorical comparisons and models to account for natural gradients
that may be seen with continuous data. Simple comparisons include graphi-
cal comparisons of stressor levels or responses; contingency tables to deter-
mine association; and use of contingency tables to estimate relative risk,
which calculates the risk of observing effects based on given stressor levels.
Natural gradients that may confound the simple comparisons could include
temperature, habitat or catchment area, slope, elevation, and others, and can
be modeled with regression models.

12.1.1 Graphical Comparison

Stressor levels associated with biologic effects in the case can be compared
with site groups categorized by different stressor levels or different effect
levels. Categorical comparisons can be made graphically (e.g., using box
plots) or in tabular form (e.g., using a contingency table of frequencies of
observations in different categories).

As an example, consider data on mayflies in streams and the potential effect
of dissolved aluminum on mayfly abundance (see Figure 12.1). The data are

West Virginia Ecoregion 69
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FIGURE 12.1

Box plot showing the percent of mayflies in benthic invertebrate samples from streams in
the Central Appalachians of West Virginia (Ecoregion 69) with three categories of dissolved
aluminum (Al): reference sites (Al often not measured), Al <0.2mg/L, and Al >1.0 mg/L.
(Data from West Virginia DEP, also used in Gerritsen, J. et al. 2010. Inferring Causes of Biological
Impairment in the Clear Fork Watershed, West Virginia. Cincinnati, OH: U.S. Environmental
Protection Agency, Office of Research and Development, National Center for Environmental
Assessment. EPA/600/R-08/146.)
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Box plots of dissolved aluminum concentrations in sites with and without mayflies, in neutral
or alkaline pH (left), and in acidic conditions (right) in the Central Appalachian Ecoregion
(69) of West Virginia. Mayflies are rarely present at sites with dissolved aluminum >0.5 mg/L
and pH < 6.5. Dissolved aluminum >0.5 mg/L almost always occurs only in sites with low pH.
(Data from West Virginia DEP, also used in Gerritsen, J. et al. 2010. Inferring Causes of Biological
Impairment in the Clear Fork Watershed, West Virginia. Cincinnati, OH: U.S. Environmental
Protection Agency, Office of Research and Development, National Center for Environmental
Assessment. EPA /600/R-08/146.)

from the Central Appalachian Ecoregion of West Virginia (Ecoregion 69; see
Woods et al., 1999), one of the principal coal mining regions in the eastern
United States. Aluminum is presented here as a fairly simple case, because
dissolved aluminum at low pH is known to be toxic to aquatic organisms.
Dissolved aluminum precipitates at neutral or high pH, so that toxic dis-
solved aluminum only occurs under acidic conditions.

Site categories can also be constructed to compare aluminum concentra-
tions at sites with and without mayflies (see Figure 12.2). Note that most sites
with mayflies have dissolved aluminum less than 0.5 mg/L. If aluminum at
the site is higher than 0.5 mg/L, this evidence would support the argument
that aluminum caused the absence of mayflies. If the concentration is lower
than 0.5 mg/L, this evidence would weaken the case for aluminum.

12.1.2 Categorical Data: Contingency Tables and Relative Risk

The examples above examine either a categorical stressor (aluminum high
or low; see Figure 12.1) or categorical response (mayflies present or absent;
see Figure 12.2). These same data can also be analyzed in contingency
tables to estimate the probability of the relationships, but more appropri-
ately for causal analysis, to estimate relative risk of finding an adverse
effect given certain conditions. Relative risk is frequently cited in public
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health news, for example, the risks of behaviors or condition (e.g., smok-
ing, drinking, obesity) contributing to health outcomes (e.g., cancer, heart
disease, diabetes).

Contingency tables are easiest to relate to the case being investigated if
at least one category for the table spans the range of exposure conditions
at the affected site. For example, if the affected site has a pH of 5.5 and
dissolved Al of 0.75 mg/L, the category thresholds for Table 12.1 would be
appropriate.

The familiar chi-square statistic calculated from contingency tables tells
us that the results of the contingency table are extremely unlikely to be due
to chance, that is, a strong relationship exists between dissolved aluminum
concentration and absence of mayflies. We cannot analyze the effect of dis-
solved aluminum at pH greater than 6.5, because dissolved aluminum does
not occur at those pH values.

TABLE 12.1

Frequency of Mayfly Occurrence in Benthic Samples of Ecoregion 69 in West
Virginia, for Two Conditions of Dissolved Aluminum

Low Al High Al
Mayflies (<0.5 mg/L) (=0.5 mg/L) Row Totals Chi-Square

A. All sites, Ecoregion 69

Present 397 10 407
(83.2%) (2.1%) (83.3%)

Absent 31 39 70
(6.5%) (8.2%) (14.7%)

Column totals 428 49 477 183.8
(89.7%) (10.3%) p =0.0000

B. Ecoregion 69, pH > 6.5?

Present 345 1 346
Absent 22 1 23
Column totals 367 2 369

C. Ecoregion 69, pH < 6.5

Present 52 9 61
(48.1%) (8.3%) (56.5%)

Absent 9 38 47
(8.3%) (35.2%) (43.5%)

Column totals 61 47 108 47.18
(56.5%) (43.5%) p =0.0000

Note: A. All Sites; B. Sites with pH > 6.5 (Corresponds to Left-Hand Side of Figure 12.2); C. Sites
with pH < 6.5 (Corresponds to Right-Hand Side of Figure 12.2.)
2 Chi-square value and percentages are not shown because there were too few high aluminum
observations.
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The chi-square told us that we could be confident that there was an asso-
ciation between dissolved aluminum and absence of mayflies, but it told us
nothing about the magnitude of the association, only that it is “more likely
than expected by chance.” Relative risk gives us magnitude.

Relative risk (RR) (see equation in Table 10.3) is defined as the probability
of an adverse event (say, lung cancer) given exposure (smoking), divided by
the probability of the adverse event, given nonexposure. For the aluminum
example, RR would be calculated as the probability that mayflies are absent,
given that aluminum >0.5 mg/L, divided by the probability of mayflies are
absent, given that aluminum <0.5 mg/L (U.S. EPA, 2006a; Lachin, 2000).

The estimated relative risk of mayfly absence given high dissolved alu-
minum is: RR = (39/49)/(31/428) = 10.98. Thus, a stream with dissolved alu-
minum 20.5mg/L is 11 times as likely to lack mayflies as a stream with
dissolved aluminum <0.5 mg/L based on this data set. Aluminum at con-
centrations higher than 0.5 mg/L at the site would support the argument
that aluminum accounts for the absence of mayflies.

Of course, all other things are not equal, and in this case, we also know
that high dissolved aluminum only occurs under acidic conditions. Because
acidity may also adversely affect mayflies, acidity is a confounding factor for
the effects of aluminum. What if acidic sites are examined, where pH <6.5?
Is the relative risk of high aluminum still greater? Table 12.1C shows may-
fly presence under acidic conditions, with high and low dissolved alumi-
num. The relative risk is now RR = (38/47)/(9/61) = 548. A stream with high
dissolved aluminum is 5.5 times as likely to lack mayflies, compared to the
low aluminum condition, in acidic streams. This is less than the RR of 11
in all streams and indicates that (1) at least some of the risk may be due to
acidic conditions and (2) high dissolved aluminum still has RR greater than
5 under acidic conditions.

Table 12.2 shows a contingency table for the association with pH alone, when
high aluminum sites are removed (it is the two left columns of Table 12.1B and

TABLE 12.2

Frequency of mayfly occurrence in benthic samples of Ecoregion 69 in West Virginia,
for two conditions of pH

Ecoregion 69. Al <0.5 mg/L

Mayflies pH>6.5 pH<6.5 Row Totals Chi-Square
Present 345 52 397
(80.6%) (12.2%) (92.8%)
Absent 22 © 31
(5.1%) (2.1%) (7.2%)
Column totals 367 61 428 5.97
(85.7%) (14.3%) p=0.0145

Note: Dissolved aluminum (Al) <0.5 mg/L throughout. Data as in Table 12.1.
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C). Chi-square has a probability of 0.0145, showing there is also an association
between low pH and mayfly extirpation not likely to be due to chance. It is
clearly less strong than the association with aluminum, but how much less?
The relative risk is now (9/61)/(22/367) =2.46. A tentative conclusion from
these tables is that the risk of mayfly loss from dissolved aluminum at low
pH is nearly twice the risk of mayfly loss from low pH alone. The conclusion
is tentative because we used the same data set (cut and excluded in different
ways) for all the relative risk estimates, so the data were not independent.
How is this useful for causal assessment? Evidence is derived by plac-
ing site data in the context of the contingency tables, for example, the ones
described above that quantify the relationships between acidity, aluminum
concentration, and mayfly occurrence. Suppose an affected site lacks may-
flies. If the stream is acidic and has high dissolved aluminum, then there is
strong evidence that acidity and aluminum are the cause. Aluminum pres-
ent at relatively low concentrations would weaken the argument for alumi-
num toxicity. Low aluminum and circum-neutral pH would weaken the
argument for either acidity or aluminum causing the lack of mayflies.

12.1.3 Regression Models of Natural Variability

The comparison of stressor levels at the affected site to sites that lack effects
can be refined for stressors along natural gradients. For example, tempera-
tures naturally decrease with increasing elevation. Natural gradients can be
modeled using reference sites (i.e., sites where effects are not observed), but
minimally stressed reference sites are not necessary—only sites with low
levels of the candidate stressors to form the less stressed end of the gra-
dient. The stressor values at the affected sites then can be compared with
unstressed or low-stress expectations.

Regression analysis methods are one way to describe how stressor values
change along natural gradients. Linear regression tools are available in most
spreadsheets and statistical programs. Regression analysis develops a quan-
titative relationship between one or more explanatory (also called indepen-
dent) variables and a response (also called the dependent) variable. In this
application, the explanatory variable is the natural gradient, the dependent
variable is the stressor, and the data include samples from only unaffected
(e.g., reference) locations.

Typically, the estimated regression line with confidence or prediction
intervals is superimposed over the plotted data (see Figure 12.3). Confidence
intervals provide an estimate of the range of possible values for the estimated
mean response for any given values of explanatory variables. Prediction
intervals provide an estimate of the range of possible values of the response
of an individual sample and are usually the most appropriate interval to use
when placing individual site observations into context. Selection of a predic-
tion interval, say 90 or 95%, depends on one’s confidence in the data and
what they represent, the purpose of the regression in the causal analysis,
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FIGURE 12.3

Stream temperature (°C) vs. elevation (m) in Oregon, USA. Solid black lines are the 95% predic-
tion intervals. The exposure levels outside the boundaries of the lines would support tempera-
ture as a candidate cause of biological degradation. (Data collected by Oregon Department
of Environmental Quality and used in U.S. EPA. 2006b. Estimation and Application of
Macroinvertebrate Tolerance Values. Washington, D.C U.S. Environmental Protection Agency
Office of Research and Development. EPA/600/P-04/116F.)

and one’s willingness to accept error. For example, high confidence that the
data reflect “minimally stressed” reference sites (Stoddard et al., 2006) would
suggest a 95% prediction interval or higher.

How is this information useful for causal assessment? Stressor levels
that fall outside the prediction interval would be considered to be beyond
the range observed at reference sites. That is, the site is no longer similar
to reference for the particular stressor. This would support the case for the
candidate cause. For example, in Figure 12.3, observing a stream at 1000 m
elevation, with a degraded biological community, and having temperature of
20°C would support the argument that temperature was the cause, because
temperatures were higher than those expected at that elevation. The more
stressor levels depart from the unstressed condition, the stronger the evi-
dence for that stressor.

Regression analysis can be used to fit relationships between any variables
with little consideration of the underlying assumptions. However, when the
estimated relationships are used to predict likely values of y at new values
of the explanatory variables, or when the estimated relationships are inter-
preted with respect to whether they accurately represent the underlying
physical or biological relationships, the theoretical assumptions must be
considered more carefully. More specifically, one must assess whether the
assumed functional form (straight line in Figure 12.3) is sufficiently repre-
sentative of the actual relationship, whether the sampling variability in y is
distributed as assumed, whether the magnitude of the sampling variability
in y changes across the range of predictions, whether the samples used to fit
the model are independent, and whether errors in the measured values of
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the explanatory variables are small enough to be ignored. The assumptions,
and how to examine them, are discussed in almost any statistics or regres-
sion textbook, as well as on the CADDIS website (Suter et al. 2010Db).

12.2 Developing and Using Stressor—-Response Models

A powerful use of external data is for building empirical models of biologi-
cal responses to stressors, often with ranges of stressor values beyond those
found in the case itself. Comparing the levels of stressor and responses
observed at the case to models with continuous variables developed from
data observed elsewhere can provide convincing evidence that a candidate
cause both occurs at the site and is sufficient to produce effects.

A typical stressor-response model quantifies a change in a biological vari-
able with changing (increasing or decreasing) exposure to a single stressor
or a set of stressors that consistently and strongly covary. The biological vari-
able is usually some attribute of an organism, population, or assemblage.
Examples of response variables include abundance, biomass or occurrence
of a sensitive species or taxa groups, occurrence of anomalies, or levels of
biomarkers in sampled individuals.

The use of field observational data to estimate stressor-response rela-
tionships has strengths because many pollutants and effects do not lend
themselves to laboratory testing. Migration, spawning, predation, and other
behaviors are seldom included; tests of large species are logistically pro-
hibitive. Endangered species are protected from routine testing. Complex
exposure pathways and bioaccumulative chemicals are not readily tested.
Susceptible species and sensitive life stages may be difficult to maintain and
test in the laboratory. Effects that involve interactions among species are not
included. Long-term effects due to short-term exposure (e.g., reproductive
effects resulting from exposure during a critical stage of development) are
rarely measured. In addition, the relative sensitivity of most species is not
known a priori, and it is impractical to test even a substantial fraction of
the species inhabiting an ecosystem. Also, some exposures are impractical
to replicate, such as highly variable concentrations and interactions within
mixtures and with the environment.

Limitations of using field observational studies include natural variability,
which may reduce the ability to detect the signal, and the potential influence
of confounding factors. In this section, we discuss building regression models
in circumstances where confounders are assumed to be negligible, unimport-
ant, or mitigated. Then we discuss quantile regression, where it is recognized
that confounders are present, but assumptions are made about responses that
allow the confounders to be ignored. Finally, we discuss the development of
species-sensitivity models to obtain estimates of thresholds of stressors that
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may be important for environmental management. The identification and
mitigation of confounding variables are discussed in Chapter 13. Several ana-
lytical approaches can help reduce the confounding effects of multiple, asso-
ciated stressors. However, it is generally not possible to completely eliminate
confounding stressors through analysis of observational data.

12.2.1 Models of Stressor—Response Relationships

Regression models are frequently used to quantify the relationship between
stressors and biological responses, for example, macroinvertebrate species
richness as a function of fine sediments. The application of regression tech-
niques for stressor-response modeling is similar in concept to estimating
how a stressor varies along natural gradients discussed in Section 12.1.3. If
a scatter plot looks like it can have a line drawn though it, then regression
can define the line. An ideal stressor-response model possesses a clearly
defined functional relationship, for example, a straight line (see Figure 12.4),
unimodal (see Figure 12.5), or S-shaped (see Figure 12.7, Ephemerella).

How is this information useful for causal assessment? Observations from
the affected site that are consistent with expectations quantified by a stressor—
response model for a candidate cause would support that cause. For example,
Figure 12.4 shows a regression model of the number of EPT taxa as a function
of conductivity. (Note that this data set was trimmed to minimize the effects
of confounding factors, a technique described in the next chapter.) In the Clear
Fork example (see Chapter 23), the explanatory variable is the stressor under
investigation (conductivity), the response variable is the biological metric
(number of EPT taxa), and data include observations from sites with high and
low conductivities. Site values within the prediction intervals are considered
to be consistent with the relationship predicted by the model and support
the candidate cause. The samples from Clear Fork, indicated by diamonds in
Figure 124, fall within the prediction intervals of the model, providing one
piece of evidence that conductivity caused the decline in EPT taxa, that is,
the biological response observed at Clear Fork is consistent with expectations
described by the regression model. In contrast, two sites highlighted in the
ellipse in Figure 124 have much lower numbers of EPT taxa than expected
based on the relationship. For the two highlighted sites, the argument for con-
ductivity is greatly weakened by indicating that conductivity alone is insuf-
ficient to account for the low numbers of EPT taxa at those sites.

After developing a regression model, most programs provide statistics
that describe the characteristics of the estimated fit to the data. These statis-
tics are useful for judging the quality of the model and the strength of the
relationship. They include estimated values for the coefficients, the standard
errors and p-values for those coefficients, and a measure of the degree the
model accounted for observed variability (R?). Discussion of these statis-
tics and optimal regression methods is beyond the scope of our discussion.
Several existing resources provide complete explanations for these different
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EPT taxa richness and conductivity in Central Appalachia. Named sites are from the case:
Clear Fork and three tributaries. Reference sites and “Other” sites are from outside the case.
“Other” sites were selected to remove the influence of some common confounding stressors:
acid mine drainage (sites with pH < 6 removed), degraded habitat (sites with habitat score
<128 removed), and untreated domestic wastewater (sites with fecal coliform >400 colonies
removed). Regression (solid line) and intervals were based on the data subset with confound-
ing stressors removed. Inner dashed lines are 95% confidence interval for the regression; outer
dashed lines are the 95% prediction interval. Clear Fork sites (the case) were excluded from the
regression analysis, but are plotted to show how they fit on the EPT-conductivity relationship.
This evidence shows that the number of EPT genera declines as conductivity increases. Note
the two sites in the ellipse. These sites are biologically impaired and well beyond the 95% pre-
diction interval. Conductivity acting alone is highly unlikely to be a cause of the adverse effects
at these sites. (See also Chapter 23, Figures 12.1 and 12.2, and Tables 12.1 and 12.2). (Adapted
from Gerritsen, J. et al. 2010. Inferring Causes of Biological Impairment in the Clear Fork Watershed,
West Virginia. Cincinnati, OH: U.S. Environmental Protection Agency, Office of Research and
Development, National Center for Environmental Assessment. EPA /600/R-08/146.)

statistics (e.g, Draper and Smith, 1998; Harrell, 2001; Kutner et al,, 2004;
McDonald, 2008).

Other types of regression models can also be used to estimate stressor—
response relationships. For example, nonparametric approaches were used
to model the probability of capture of a caddisfly genus (Calineuria) as a func-
tion of temperature (see Figure 12.5). This regression model would support
the argument that a site with temperatures greater than about 20°C would
be sufficient to reduce the probability of observing this caddisfly in a sam-
ple. Observations of temperatures around 15°C would weaken the argu-
ment for temperature reducing the probability of observing the caddisfly.
Taxon-stressor relationships have also been used to identify stressor levels
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FIGURE 12.5

Capture probability of the caddisfly Calineuria plotted versus stream temperature. Each open
circle shows the capture probability estimate from approximately 20 samples with an aver-
age temperature as plotted. Line shows a nonparametric regression fit to the data. (Data
from U.S. Environmental Protection Agency (U.S. EPA). 2006b. Estimation and Application of
Macroinvertebrate Tolerance Values. Washington, DC: U.S. Environmental Protection Agency,
Office of Research and Development. EPA/600/P-04/116F.)

that correspond to a very low capture probability (e.g., extirpation concentra-
tions (XCys5)) (U.S. EPA, 2011a). They have also been used to infer the level of
stressors, which may be useful when biologically relevant stressor measure-
ments are difficult to obtain (see Box 12.1).

12.2.2 Quantile Regression

Biological responses to candidate stressors frequently show a wedge-
shaped plot, as in Figure 12.6. The stressors in Figure 12.6, percentage of
sand and fines, and total nitrogen, co-occur with many other stressors in
the stream. If the only stressor in the data set were sandy sediment, then

BOX 12.1 TAXON-STRESSOR RELATIONSHIPS AND MODELS

If the observational data set is large and includes occurrence and abun-
dance of individual taxa as well as stressor measurements, it may be
possible to build taxon-stressor relationship models with some of the
same techniques outlined in this section. These models can be used
to infer the stressor concentration from the taxa abundances, if the
stressors have not been measured in the case data, or to show that the
stressor is producing expected biological changes (for more informa-
tion, see Yuan, 2010a,b).
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Quantile regressions depicting the 90th quantile for relationships between EPT richness with
percentage of sand/fines (left plot) and log total nitrogen (right plot). The filled squares repre-
sent data from a hypothetical affected site. (Data are from the Western United States Stoddard,
J., D. Peck, A. Olsen et al. 2005. Western Streams and Rivers Statistical Summary. Washington, DC:
U.S. Environmental Protection Agency, Environmental Monitoring and Assessment Program
(EMAP).)

other stressors (e.g., total N, organic enrichment) would not affect the may-
fly richness, and it would be expected that a relationship would look more
linear, similar to Figures 12.3 or 12.4. Quantile regression models such a
relationship, typically near the top of a wedge, to represent the “best” bio-
logical condition in the assumed absence of other stressors. More precisely,
quantile regression uses a specified conditional quantile of a dependent
(response) variable and one or more independent (explanatory) variables
(Cade and Noon, 2003). Modeling the 50th quantile of a response variable
produces the median line under which 50% of the observed responses are
located, and modeling the 90th quantile produces a line under which 90%
of the observed responses are located (see Figure 12.6). Quantile regres-
sions can have more than one explanatory variable, but we limit the fol-
lowing discussion to the univariate case. As with mean regression, the
relationship is often assumed to be a straight line.

Quantile regression using an upper quantile (e.g., 75th, 90th) makes the
assumption that the stressor being modeled is the only one of importance in
the upper quantile. That is, the stressor of interest is limiting the biota, and
other stressors are much weaker in their effect. Under this assumption, there
is no explicit modeling of the confounding variables, and indeed, no need to
measure them or even know what they are.

Tools for quantile regression are available in the statistical software pack-
ages R and in newer versions of SAS/Stat. Blossom, the U.S. Geological
Survey’s freestanding statistical package, also fits quantile regressions (U.S.
GS, 2008).

How is this information useful for causal assessment? Interpretation
of the results of quantile regressions in causal analysis is based on the
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proximity of observations from the affected site to the upper boundary of
the distribution of sampled values, as estimated from a quantile regression
fit. These interpretations are qualitative and comparative. In the example
shown in Figure 12.6, data from the impaired site (filled squares) are plotted
on scatter plots comparing regional EPT richness with two candidate stress-
ors (increased percent sand/fines and increased total nitrogen). Because the
plots show the impaired site closer to the upper boundary of the percent-
age of sand/fines compared to the total nitrogen relationship, that evidence
indicates that the percentage of sand/fines exerts a stronger influence on
the observed EPT richness at the site in question. This analysis would sup-
port the argument that percentage of sand/fines was contributing to the
observed effect and weaken the argument for total nitrogen.

If data from the impaired site are located far above the upper boundary
determined from regional data, it may be an indication that the comparison
to the regional data is not valid. This situation can arise for a variety reasons.
For example, field sampling methods applied at the impaired site may differ
significantly from those applied to collect the regional data. In general, large
outliers should be inspected carefully to determine whether they can be rea-
sonably compared to regional data.

Althoughnonlinear quantile regression analyses are available, a simplifying
assumption is that the relationships being modeled are linear with respect to
the explanatory variables. In Figures 12.6, the relationship between response
variables and explanatory variables is assumed to be linear. Many biotic met-
rics are generally considered to change linearly in relation to stressor gra-
dients, but ecological knowledge of the underlying processes may help one
select alternate functional forms. For example, the probability of observing an
individual taxon often follows a unimodal function (see Figure 12.5).

12.2.3 Classification and Regression Trees

Research in artificial intelligence and machine learning has yielded new,
empirical and distribution-free methods to develop stressor-response asso-
ciations. A technique called Classification and Regression Tree (CART)
analysis consists of successive bifurcations of the data, where each branch is
accounted for by a single explanatory variable (classification if the explana-
tory variable is categorical; regression if it is continuous). At each step, the
split or threshold of the explanatory variable is selected to maximize the
homogeneity of each of the two resultant groups. Regression trees are an
alternative to multiple regression methods, in that multiple explanatory vari-
ables are used to predict or explain a single response variable (e.g., De’ath
and Fabricius, 2000; Prasad et al. 2006a,b). CART analysis builds a model that
is a set of successive, binary decision rules that define homogeneous groups
of the response variable. As with any modeling technique with multiple
explanatory variables, it may be necessary to reduce the number of explana-
tory variables to prevent overfitting of the models. Regression trees typically
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also need to be “pruned” to avoid overfitting, but newer methods based on
fitting an ensemble of regression trees (e.g., Random Forests) have improved
the robustness of the method.

12.2.4 Species Sensitivity Distributions (SSD), Tolerance Values,
and Related Uses of Field Data

Species sensitivity distributions aggregate effect levels for multiple species
into a model that estimates the fraction of species that would be affected by
a given stressor level (Posthuma et al., 2002). Conventionally, SSDs have been
developed from laboratory toxicity test data (discussed further in Chapter
15), but the approach has also been adapted to use with effect endpoints
from field observations (Cormier et al., 2008; Cormier and Suter, 2013a,b).
SSDs rank affected taxa from lowest to highest and plot the ranks against the
explanatory variable. The resulting curve is typically displayed as a cumula-
tive distribution function (see Figure 12.7). Confidence bounds can be gener-
ated using bootstrapping techniques (Cormier et al., 2013a).

How is this information useful for causal assessment? To generate evi-
dence for a candidate cause, the SSD is used to estimate the expected reduc-
tion in taxa richness associated with the exposure level observed at the study
site. The expected reduction in taxa richness is then compared to the actual
reduction observed at the study site. The exposure at an impaired site is
judged sufficient to cause the effect if the estimated reduction in taxa rich-
ness is similar to the observed reduction.

In a case study of Pigeon Roost Creek, Tennessee, USA, an SSD was
used to assess whether increased salts measured as specific conductivity
was the cause of a reduced number of EPT taxa (Coffey et al., 2014). An
SSD (similar to Figure 12.7) of EPT taxa was constructed using extirpa-
tion effect thresholds of each genus obtained from U.S. EPA (see Appendix
D; U.S. EPA, 2011a). The SSD model was used to predict the proportion
of EPT taxa expected to be absent at maximum conductivity levels. That
prediction was then compared with the observed reduction of EPT taxa
relative to the comparison site. At Pigeon Roost Creek, the EPT taxa were
reduced between 69 and 92% of the taxa at the comparison site. However,
the observed salt concentration was predicted to reduce EPT taxa by only
40%. Therefore, dissolved salts were concluded to be insufficient alone to
account for the reduction in EPT taxa richness observed in affected reaches
of Pigeon Roost Creek.

Other approaches have been developed that are conceptually similar to
the SSD approach, in that they use responses of individual taxa to stressors,
developed from a large field data set. Tolerance values of taxa have been
used to infer environmental conditions where the environmental conditions
have not been measured, as in paleolimnology of lake beds using diatom
frustules. The taxon tolerance values (more properly, taxon optima) are
derived from weighted averaging models (e.g., ter Braak and Juggins, 1993;
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FIGURE 12.7

Example of an SSD depicting the proportion of genera extirpated with increasing salinity mea-
sured as specific conductivity in Ecoregion 69. On the left, each point on the SSD plot repre-
sents a concentration (XC,s) at which a particular genus is captured infrequently, for one of the
163 genera arranged from the most to the least sensitive. Four genera, Ephemerella, Stenonema,
Isonychia, and Cheumatopsyche are highlighted on the left and their capture probability distri-
butions are shown on the right. The dashed vertical lines indicate the position of XC,; values.
(Adapted from U.S. Environmental Protection Agency (U.S. EPA). 2011a. A Field-Based Aquatic
Life Benchmark for Conductivity in Central Appalachian Streams. Cincinnati, OH: Office of Research
and Development, National Center for Environmental Assessment. EPA/600/R-10/023F.)

Ponader et al., 2007). These methods have been extended to macroinverte-
brate tolerance values (e.g., Carlisle et al., 2007). More recently, Baker and
King (2010) described an approach that identifies community thresholds for
stressors based on individual species responses, analyzed through multivar-
iate change-point analysis. This methodology would seem to be suited for
the same objectives as the SSD approach, but we have not yet seen it applied
to developing a threshold for a causal analysis.
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12.3 Summary

Regional observational studies can provide supporting evidence that a
stressor may have caused an observed effect. Evidence is derived by compar-
ing observations from the case with results from models or data distributions
built using large data sets. For example, stressor levels that are associated
with effects at other locations may be compared to the case under investiga-
tion. Observational studies represent effects from realistic exposure regimes
and interspecies interactions, characteristics which make them particularly
useful for causal assessment. Approaches that have been successful to sup-
port causal analyses include simple box plots, contingency tables, relative risk
estimates, and development of more sophisticated stressor-response mod-
els from the observational data. Limitations include high natural variability,
which may make significant associations difficult to detect, and possible influ-
ence from confounding factors (discussed further in Chapter 13). Although
regional models of stressor-response relationships require substantial effort
to develop, once built they can be used for many investigations.
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Regional Observational Studies:
Addressing Confounding

David Farrar, Laurie C. Alexander, Lester L. Yuan, and Jeroen Gerritsen

Observational studies have the advantage of realistic exposure condi-
tions. However, estimating the effect of an individual stressor in the
presence of covarying stressors and natural gradients is challenging
because the observed effect can be the result of one or more confound-
ing variables. This chapter discusses methods for identifying con-
founding variables and mitigating their influence on models used to
develop evidence from observational data sets.
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Stressors rarely occur alone. Many human activities are sources of multi-
ple stressors, and multiple sources are likely to occur in any given area. For
example, sewage effluent containing endocrine-disrupting compounds may
also contain nutrients, metals, ammonia, or organic matter. Any one of these
covarying stressors can affect stream organisms; hence, they are said to con-
found our ability to estimate the true effect of a particular cause.

187
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Confounding, in the most general terms, is an intuitively simple idea: multi-
ple co-occurring stressors and influencing factors may interfere with the ability
to quantify the contribution of a specific cause to an observed biological effect.
Confounding can occur when multiple stressors are released simultaneously, as
in the example of sewage discharge with a mixture of toxic constituents. It may
be appropriate to treat the effluent as a single complex cause (see Chapter 8), but
if it is necessary to identify a single constituent as a cause, then the other constit-
uents are likely to be confounders* Confounding can also result when features
of a local landscape, such as placement of roads or impoundments, influence
the levels of multiple stressors. Natural gradients of temperature, elevation, soil
moisture, or other factors can also confound stressor-response relationships
that vary on a spatial scale similar to that of the gradient. Confounders are
not necessarily stressors or contributing causes. For example, if logging in the
riparian zone of a stream has caused biological effects by increasing tempera-
ture, the increased woody debris in the stream could be a confounder (it would
be correlated with both temperature and the effect and would bias the estimate
of temperature effects) even though it provides beneficial habitat structure.

Specific problems caused by confounding in stressor-response models were
introduced in Chapter 5 (see Figure 5.1). For example, a simple regression rela-
tionship between any single water quality variable and a biological response
variable will attribute the combined influences of all correlated stressor vari-
ables on the biological effect to the single stressor. If all of the stressor variables
influence the biological response in the same direction (e.g., both low base
flows and increased stream temperature decrease EPT richness), the relation-
ship between the stressor being modeled (low base flows) and the response
variable (EPT richness) will be overestimated. Identifying and accounting for
confounding variables improve the accuracy of the stressor-response model
and the reliability of any evidence developed from it (see Chapter 19).

This chapter describes strategies for identifying and accounting for con-
founding variables in the analysis of observational data. Section 13.1 defines
confounding and introduces the general methodological strategy of “sta-
tistical control.” Section 13.2 discusses three strategies for identifying con-
founding variables that may require statistical control. Finally, Section 13.3
describes statistical methods to control or mitigate the influence of identified
confounders in data analysis.

13.1 Concepts of Confounding and Statistical Control

The concepts described in this chapter approach confounding as a form
of bias, that is, a systematic tendency for estimates (e.g., of the slope of a

* However, if constituents of an effluent interact (e.g., low pH and metals in acid mine drain-
age), and the interaction is accounted for they should not be treated as confounders.
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stressor-response relationship) to be over- or under-estimated (Rothman
et al., 2008). A confounder is conventionally defined as a variable that is cor-
related (or, more generally, associated) with a stressor of interest and has a
causal effect on the response of interest.* In a variant of this definition, the
confounder is said to be only associated (e.g., correlated) with the response,
as in the woody debris example above (see also Pearl, 2009; Section 11.6.4).

In observational data analyses, the term “statistical control” is used to
describe techniques for evaluating the effect of a stressor or other causal vari-
ablein a data setin which other causal factors are statistically held at relatively
constant levels (Sokal and Rohlf, 1995; Shipley, 2000). Statistical control meth-
ods are analogous to experimental control methods. In a controlled experi-
ment, the experimenter varies the treatment and attempts to hold constant
the other factors that could affect the response variable. With observational
data, statistical methods are used to control the influence of such variables
after the fact. That is, to evaluate the effects of changing a stressor of inter-
est, other causal factors are analytically held constant to reduce error in the
estimate of stressor effect. For example, to accurately quantify the effects of
reduced oxygen concentration on aquatic insects, an analysis that quantifies
responses in data subsets with similar values for stream temperature, a con-
founding factor in this example, would reduce or eliminate the confounding
effects of temperature. Confounding variables that are included in an analy-
sis for the purpose of statistical control are referred to as control variables.
By correcting for bias due to the confounding variable temperature, the esti-
mate of the effect of reduced oxygen on insects in this analysis is said to be
“controlled” or “adjusted” for temperature.

With observational data, some form of statistical control is likely to be
needed. Note, though, that the terminology of “control” in observational
data analysis is not intended to equate the resulting information with that
from actual experimental control. Our use of this terminology is only
intended to suggest a conceptual basis for methods widely applied to obser-
vational data.

13.2 Strategies for Identifying Variables for Statistical Control

How does the data analyst identify a set of variables for statistical control
of confounding in a regional observational study? In a data analysis, as in
other steps of a causal assessment, decisions about inclusion of variables are
based largely on the investigator’s knowledge about the ecological processes
and causal pathways relating stressors to biological responses of interest

* This definition suffices for a three-variable system (stressor, response, confounder) and is
helpful generally, but may not be appropriate for more complex systems.
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in that region. Statistical or computational methods, including automated
variable selection (e.g., stepwise regression), may aid the selection process
but are not a substitute for subject area knowledge about relevant causal
relationships.

We discuss three general strategies, which are not mutually exclusive, for
selecting control variables:

1. The first strategy evaluates variables one by one. Two variations of
this strategy are discussed:

a. Identify variables that plausibly have causal effects on the bio-
logical response of interest.

b. Identify variables that plausibly have causal effects on the
response and are also correlated with the stressor of interest.*

2. The second strategy explores all variables simultaneously using a
diagram of causal relationships (see Figure 13.1 and Box 13.1). This
strategy applies graphical theory to handle relatively complicated
causal networks. The set of control variables is identified from a
directed acyclic graph (DAG) depiction of plausible causal pathways
among all variables, using formal procedures such as those dis-
cussed by Shipley (2000).

3. The third strategy is to use an automated scheme such as stepwise
regression to select control variables for inclusion as additional
explanatory variables in a multiple regression (alongside the stressor
of interest).

A qualification for all these methods is that one should not select control
variables that are likely to be affected directly or indirectly by the stressor
of interest (Cochran and Cox, 1957; Pearl, 2009). For example, one should not
statistically control for chlorophyll concentration to examine effects of nutri-
ents on direct measurements of plant growth or biomass because chloro-
phyll production is a component of plant growth. A possible consequence of
violating this requirement is the inadvertent control and elimination of the
influence of the stressor of interest—in this example, eliminating the effect
of nutrients.

Finally, different audiences for the assessment may have preconceptions
about what variables are likely to be confounders. Assessors may need to
adjust for such variables or explain why adjustments were not made.

* If a variable is correlated with both stressor and response variables, but we do not know
how to interpret the correlations, adjustments based on that variable should be approached
with caution. For example, as discussed later in this section, if the covariate is caused by the
stressor or the response variable, adjusting for it may inadvertently eliminate the effect of the
stressor of interest.
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FIGURE 13.1

DAG analysis for effect of dissolved oxygen on EPT richness. This DAG can be used to identify
control variables for estimating the effects of DO (the stressor of interest) on EPT richness (the
response). The relationships depicted in the DAG represent the plausible causal relationships
identified by the analyst. Estimating the effect of DO on EPT in this system is complicated by
the presence of numerous confounders and covarying proximate causes. Even in this rela-
tively simple example, the combined effect this network of relationships could have in biasing
estimates of the causal effect of DO is difficult to intuit, and a computerized analysis can be
helpful (see Box 13.1). The DAG approach works by enumerating all pathways that potentially
result in confounding bias. The program output is shown in inset box below the figure: for an
unbiased estimate of the effect of DO on EPT, it suffices to simultaneously control algal density
and temperature. Abbreviations: Temp, temperature; ISA, impervious surface area; TDS, total
dissolved solids.

BOX13.1 DIRECTED ACYCLIC GRAPHS

In the example depicted in Figure 13.1, the direct causal effect is repre-
sented by the arrow from the stressor of interest (DO) to the response
of interest (the number of taxa that are EPT). If the directions of the
arrows are ignored, DO and EPT are linked by additional pathways
(e.g., EPT <~ Temp — DO). Of the latter pathways, a subset has the
potential for confounding, namely those that include no pattern such
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BOX 13.1 (continued) DIRECTED ACYCLIC GRAPHS

as Light — Temp < ISA where arrows meet head-to-head on some “col-
lider” variable, in this case, Temp. The need to evaluate a large number
of potentially confounding pathways is the basis for considering a com-
putational approach. DAG analysis of this causal model will identify a
set of control variables that, when added to the analysis, will “block”
all confounding pathways, so that the only pathway unblocked is the
path of interest, here DO — EPT. Including these control variables in an
analysis will provide an “adjusted” (unbiased) estimate of the effect of
stressor of interest (DO) on the response (EPT).

We evaluated the DAG shown in Figure 13.1 with the open-source,
online program DAGitty (Textor et al., 2011), Version 2.0. Using default
settings, the results indicate that for an unbiased estimate of the effect
of DO on EPT, it suffices to simultaneously control algal density and
temperature. Examples of pathways that could cause confounding
without covariate adjustment are all pathways connecting ISA to DO
(the stressor of interest) and EPT (the response). The first of these passes
through Temp and is blocked by controlling Temp, assuming that ISA
effects on DO are mediated by Temp.

Note that, compared to strategy 1, the DAG approach does not nec-
essarily indicate control of all covariates with a direct effect on the
response. Including additional variables that have a direct effect,
such as TDS or Pesticides, may improve precision in evaluation of
causal effects and possibly reduce bias. Approaches 1 and 3 can be
combined by starting with an adjustment set generated automatically
(e.g., by DAGitty), adding additional variables, if any, that have direct
effects on the response (principally to increase precision), then using
DAGitty to check that the union of the two variable sets is not associ-
ated with bias.

One limitation of the DAG approach is that all confounding path-
ways are treated as equivalent, whereas in practice there is usu-
ally evidence of stronger causal effects for some relationships than
others. It may be easier to reason about the relative importance of
particular pathways by pursuing strategy la or 1b, which focus on
smaller sets of variables. The confounding pathways of least concern
are arguably those with numerous links of which some have doubt-
ful importance.

For a more complete description, see Glymour and Greenland (2008),
Greenland et al. (1999), Morgan and Winship (2007), Pearl (2009, Section
11.1.2), and Shipley (2000).
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13.2.1 Strategy #1: Evaluate Variables One by One

The approach to selecting individual variables to control depends on one’s
definition of a confounder. Strategy 1la is motivated by the concept that con-
founding results from multiple causes (see Section 10.2.3). In this strategy,
we base decisions only on the plausibility of causal effects on the response
and ignore correlations of variables with the stressor. Because strategy la
ignores correlation with the stressor of interest which is required in the con-
ventional definition of a confounder (see Section 13.1), including uncorre-
lated variables may not further reduce bias in the estimate of effect. On the
other hand, including such variables can increase precision of the estimate of
effect by accounting for other sources of variation in the response variable.
While this chapter is concerned primarily with controlling bias, both forms
of error could be important in selecting variables for implementing a method
of statistical control *

Strategy 1b, on the other hand, is a direct application of the definition of
a confounder as a correlated variable that causes bias (whether or not it is a
direct cause). In this strategy, variables are evaluated individually as with 1a,
but now identification of those that should be controlled is based on relation-
ship to the stressor as well as the response. Contingency table methods that
address relatively extreme stressor values have been used as an alternative to
correlation within a weight-of-evidence approach (Suter and Cormier, 2013a).
Both approaches require consideration of an appropriate criterion or cutoff
value for the strength of the variable—stressor association. Use of the statisti-
cal significance of the relationship of each variable to the stressor of interest
is a common practice. It has sometimes been suggested that statistical tests
may be used in this context with o greater than the conventional 5% (e.g.,
Cochran, 1965; Shipley, 2000). However, the use of statistical tests for variable
selection to reduce confounding has been rejected by some statisticians (e.g.,
Stuart, 2010). Alternatively, a cutoff value may be helpful for identification
of associations of concern. For example, in the context of a general weight of
evidence approach, Suter and Cormier (2013a) used a Spearman correlation
of 0.25 for separating “moderate” from “weak” correlations. The implications
of different cut-off criteria have not been studied extensively, and deserve
further attention.

13.2.2 Strategy #2: Identify Control Variables from a Diagram of Causal
Relationships

Simple measures of association, such as standard correlation statistics, are
themselves subject to possible confounding. Just as a correlation between a

* As a rule, controlling more variables may reduce bias but controlling too many may lead
to imprecision, particularly via multicollinearity (see Section 14.2.3). For a more complete
discussion of bias and precision in the context of multiple regression, see Myers (1990) and
Draper and Smith (1998).
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stressor X and response Y is seen to be possibly misleading when consider-
ing a system with an additional, confounding variable Z, the X-Z or Z-Y cor-
relations may be misleading when more than three variables are involved.
This requires using an approach that can take into account a complex net-
work of plausible causal relationships.

The approach in strategy #2 starts with an organization of information
about causal relationships into a diagram of nodes and arrows, where each
arrow points from a causal variable to a variable that it affects. Such a dia-
gram is a DAG (e.g., Figure 13.1 and Box 13.1).* DAGs can be used to iden-
tify sets of confounding variables that can be controlled to ideally eliminate
bias in estimates of a stressor-response relationship! In Box 13.1, we give
an example of an analysis of the DAG displayed in Figure 13.1. Software
programs (e.g., DAGitty; Textor et al,, 2011) are available to automatically
consider all possible selections of variables and identify one or more sets,
called “deconfounding sets” or “adjustment sets,” that suffice to eliminate
confounding when used as the control variables in an appropriate statisti-
cal control method. DAG software can also be used to evaluate whether a
given set of control variables—selected by the analyst for other purposes, for
example—will be sufficient to eliminate bias due to confounding. The DAG
software does not perform statistical data analysis itself: Once a set of control
variables has been identified, the data set may be analyzed using one of the
statistical control procedures discussed in Section 13.3.

Strategy #2 can be viewed as essentially an extension of strategy 1b, involv-
ing the use of more comprehensive networks of causal relationships to pro-
vide accurate treatment of more cases (e.g., by inclusion of unmeasured
variables such as Flashiness in Figure 13.1). The approach has been featured
in some recent epidemiological literature (Rothman et al., 2008). Shipley
(2000) provides an introduction to DAGs for biological applications.

13.2.3 Strategy #3: Automated Variable Selection Techniques

The third strategy is to identify statistical control variables using an auto-
mated scheme such as stepwise regression. Stepwise variable selection
procedures are a common approach for selecting independent variables in
regression (despite skepticism long expressed in various disciplines, e.g.,
Greenland, 2008; Harrell, 2001; James and McCulloch, 1990; Whittingham
et al., 2006). Because the approach does not consider correlation with the

* The diagram is said to be directional because directional (i.e., causal) relationships are indi-
cated for some pairs of variables. It is acyclic because it has no loops: no variable has a direct
or indirect effect on itself.

t The word choice of eliminating bias follows the technical literature and refers to theoretical
results. The actual benefits of the approach would depend, as usual, on how well the underly-
ing theory describes reality. In particular, the effectiveness of a statistical control strategy is
contingent on the appropriate, accurate, and precise measurement of the control variables. In
the real world, we use such strategies circumspectly, hoping to minimize bias.
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stressor X as a criterion for selection, the approach is akin to strategy #la,
identifying variables based on their causal effect on the response variable Y.

There are several limitations of using automated methods to select con-
trol variables. The most commonly used automated methods use sequences
of statistical hypothesis tests for individual variables, and therefore inherit
any objections associated with hypothesis tests (see Section 3.4). There is no
generally accepted principle that when evaluating the effect of a variable
X, additional variables taken into account should be statistically significant
(Harrell, 2001).

Automated variable selection methods do not guarantee the most appro-
priate choice of explanatory variables. Multicollinearity (or simply collin-
earity) is a problem where alternative choices of the independent variables
provide similar or identical quality of fit (e.g., similar R?) as a result of limited
sample size or correlations of explanatory variables. For example, when two
variables are closely correlated, then a similar fit will be obtained using one
or the other. Basing results on a single selection of independent variables
when other selections are just as well supported can introduce arbitrariness
and instability into analysis results. When using an automated approach to
identify variables, we recommend using more than one approach and consid-
ering the sensitivity of results. Backwards variable selection (step-down pro-
cedures), which start with all variables in the model and eliminate variables
one at a time, are preferred by some authors over forward methods, which
add variables one at a time (Harrell, 2001; Greenland, 2008).* Discussions of
multicollinearity diagnostics and remedies, with an emphasis on application
in ecological data analysis, include Graham (2003), Legendre and Legendre
(2012), and Zuur et al. (2010).f

13.2.4 Does Controlling the Confounders Affect Essential Conclusions?

The sections above presented multiple possibilities for identifying variables
that may bias or reduce precision of a stressor-response model. Whichever
strategy is used, we recommend evaluating whether the effect of statistical
control (e.g., including the identified set of variables in a regression model to
control for confounding) is large enough to be of practical importance. If not,
a simplified model focused on the nonadjusted results may be preferable, at
least in concise presentations of the essential findings of an assessment. So
long as the set of control variables is valid (e.g., they are not variables affected
by the stressor of interest), the degree of bias can be evaluated by comparing

* Note that in using a stepwise variable selection approach, the model can be required to
include the stressor at each step, for example, using SAS proc REG with an “include” option
in the model statement (SAS Inst., Inc., 2008), or comparable options in other statistics pack-
ages. (Requesting SAS proc stepwise currently will actually invoke proc reg.)

t The most popular multicollinearity diagnostic in practice, described in each of these sources,
is the variance inflation factor.
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TABLE 13.1
An Output Table for Two Linear Regression Models

Parameter Estimate (Slope) Standard Error
Univariate Model
Intercept 3.65 0.055
Conductivity -0.93 0.024
Multivariate Model
Intercept 3.39 0.11
Conductivity -0.92 0.029
Habitat score 0.0014 0.0005
Temperature 0.0068 0.0026
Fecal coliform 0.037 0.012

Note: The first is the simple model predicting Ephemeroptera taxa richness from con-
ductivity. The second is a multiple regression model with the additional vari-
ables habitat score, temperature, and fecal coliform count.

a regression model that includes confounding variables in the set of explan-
atory variables, with a regression model that includes only the stressor of
interest. For example, Table 13.1 shows the parameter estimates for a model
predicting Ephemeroptera (mayfly) taxa richness in streams based on conduc-
tivity, compared with the parameter estimates from a model that includes
not only conductivity, but also the confounding factors habitat score, temper-
ature, and coliform count. Including the confounding factors in the model
did not substantially change the parameter estimate for conductivity, which
suggests loss of about one taxon per unit increase in conductivity based on
either calculation.

It may sometimes happen that any subset of explanatory variables, or
some subset of models clearly superior to others on ecological and statistical
grounds, results in practically the same conclusion. The results of multiple
alternative models can be presented, along with indexes of model quality,
allowing a determination of whether important results depend on the model,
rather than basing findings on a single model (Burnham and Anderson,
2002; Lukacs et al., 2007). Communicating these quality assurance efforts
increases confidence in the causal assessment’s findings.

13.3 Strategies for Mitigating the Influence of Confounding
Factors

In the preceding sections, we described the concept of statistical control and
provided some ideas on how to identify variables needing action in order
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to avoid bias or imprecision. This section describes approaches for execut-
ing analyses of stressor-response relationships with confounding variables
taken into account. One possible approach (discussed in Section 13.2.3) is
multiple regression implemented by including the selected control variables
as additional explanatory variables (in addition to the stressor of interest).*
Other strategies described below include data restriction and stratification
based on the stressor of interest (including propensity score stratification)
and bundling of highly correlated stressors.

13.3.1 Restriction

A simple statistical control approach is to analyze a restricted’ data set,
obtained by restricting the range of values for confounding variables to back-
ground conditions. This approach removes observations with confounder
values extreme enough to pose a significant chance of reduced ecological
quality. This strategy was used to develop the regression model to estimate
the number of EPT taxa predicted by conductivity levels for samples from
the ecoregion of the Central Appalachians (see Figure 12.4 and Table 12.1).
Sites with pH < 6 were removed to minimize the effects of both acid mine
drainage and acidic deposition; sites with habitat scores <128 were removed
to minimize the effects of poor habitat, and sites with fecal counts >400 were
removed to minimize the effects of untreated domestic wastewater. This
reduced the sample size by half (N = 515), improved the confidence interval,
and increased the intercept (EPT taxa at low conductivity) by approximately
two genera.

13.3.2 Stratification on a Single Variable

In the previous section, we discussed statistical control by analysis of a
restricted data set, with data points corresponding to extreme values for
potential confounding variables removed. A related statistical control strat-
egy is to divide the data into subsets corresponding to limited ranges of a
single confounding variable. An example of using stratification to control for
the confounding effect of acidity in a relative risk calculation was discussed
in Chapter 12. U.S. EPA (2012a) illustrates stratification using scatter plots
(see Figure 13.2 and Table 13.2) to evaluate the effect of total nitrogen (TN) on

* Much of the useful literature on applying regression methods in a causal context is found
under the topic of “analysis of covariance”. Cochran (1957a,b) is still an important source.
Also see Huitima (2011) and Snedecor and Cochran (1989). ANCOVA with strata for a covari-
ate is essentially multiple regression with dummy variables used to encode a categorical
variable (confounder stratum).

t In this section, “restriction” is the removal of data points based on values of potentially con-
founding variables, a statistical control strategy. In a causal analysis context, other sorts of
restrictions could be helpful. For example, a causal analysis can be restricted to those taxa
most likely to be affected by a particular candidate cause (see Section 14.4).
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FIGURE 13.2

Example of the use of stratification in regression to control for confounding. The panels in
this figure correspond to different strata based on SED values (see Table 13.2). For clarity, only
Stratum 1 (0-7%), Stratum 4 (28—46%), and Stratum 6 (76—100%) are shown. Solid lines indicate
linear regression fit within each stratum. Dashed lines show linear regression fit using full
data set. Note that the regression line using the entire data set is steeper than the lines within
the SED strata. This plot shows that decreasing taxon richness is still apparent in each stra-
tum (data subset), even though (see Table 13.2) within-stratum correlation of TN with the con-
founder SED is low. (Adapted from U.S. Environmental Protection Agency (U.S. EPA). 2012a.
CADDIS: The Causal Analysis/Diagnosis Decision Information System. Office of Research and
Development, National Center for Environmental Assessment. http://www.epa.gov/caddis/
index.html (accessed February 1, 2014).)

macroinvertebrate richness. This analysis stratifies the data set on the per-
centage of sands and fines (SED), resulting in the six subsets (six strata) indi-
cated in Table 13.2. The selection of SED as a confounder requiring statistical
control is supported by its correlation with TN (r = 0.65) and the plausibility
of its causal effect on taxon richness. As shown in Table 13.2, within-stratum
correlations of SED with TN are lower than the overall correlation. Such an
effect is expected simply from the fact that the range of SED is lower within
strata than in the overall data set. Thus, the potential confounding effects of
SED are lowered by conducting analyses within strata because SED and TN
are “less confounded” within strata than overall.

TABLE 13.2

Percent Substrate Sand/Fines (SED) in Different
Strata

Stratum SED (%) r
1 0-7 0.03
2 8-14 0.12
3 15-28 0.08
4 29-46 0.25
5 47-76 0.09
6 77-100 0.15

Note: Column labeled as r shows the correlation coef-
ficient between total nitrogen and SED within
each stratum.
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Figure 13.2 illustrates the results of regression analysis within each stratum
to estimate the TN-total richness relationship. In this example, the slope of
the relationship between TN and total richness is similar across strata (solid
lines), but noticeably less steep than the slope estimated using the full data
set (dashed line). Within each stratum, the strength of correlation between
SED and TN is greatly reduced (see Table 13.2), and thus, the potential con-
founding effects of SED on the estimate effect of TN on total richness is also
reduced (U.S. EPA, 2012a).

A stratified analysis might be used in a causal assessment by identifying
the stratum most relevant to the site under investigation and using the model
from that stratum to develop the evidence. (Results from other strata might
be more or less supportive.) There may be no statistical advantage to stratify-
ing a data set on a continuous confounder. Graphical analysis based on strat-
ification provides transparency and increases confidence that the observed
effect of stressors is consistent with expectations based on mechanistic
understanding. This approach can be used to characterize interactions, for
example, when the slope on TN was seen to depend upon SED. Stratification
on a single confounder is also a convenient way of introducing a technique
for handling multiple confounders, described in the next section.

13.3.3 Advanced Stratification: Use of Propensity Scores

Stratification on a propensity score (Rosenbaum and Rubin, 1983) is a pop-
ular approach in some disciplines for handling multiple confounders. The
propensity score is a single variable estimated for each observational unit
(e.g., a site), which combines all the potential confounders into a single value.
For continuous variables, it represents the predicted value of the stressor of
interest based on the values of the site’s baseline covariates. Because the pro-
pensity score represents the effects of many different covariates as one com-
posite variable, it can be used to stratify a data set in the same way as a single
variable (see Section 13.3.2). While initially used in epidemiology and social
sciences (e.g., Smith, 1997; Joffe and Rosenbaum, 1999; Dehijia and Whahba,
2002), propensity scores have been recently applied to ecological data (Yuan,
2010a,b).

A propensity score is said to be a “balancing score,” a combination of the
confounding variables such that when the propensity score is held relatively
constant, the stressor of interest is approximately independent of the con-
founding variables. Stratifying on the balancing score variable results in
strata in which the stressor is approximately independent of confounding
variables that make up the balancing score, so that stratum-specific analyses
are not biased by the effects of those confounders. Propensity score anal-
ysis has sometimes been viewed as the observational data approach most
comparable to the use of randomization in controlled experiments (Austin,
2011; Rubin, 2007). One drawback of the method is that it requires large
sample sizes. In addition, as with all methods considered in this chapter,
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confounding can remain after statistical control methods have been applied,
owing to variables not measured or recognized as important.

13.3.4 Bundling of Correlated Stressors

Variables may be so tightly correlated that their effects can only be sepa-
rated using carefully designed experiments. However, the collective effects
of stressors that co-occur can sometimes be evaluated meaningfully by com-
bining or “bundling” blocks of correlated stressors (Harrell, 2001; Van Sickle,
2013). To be as effective as possible for eliminating confounding bias, such
blocks should have an ecological interpretation, and the variables included
should account for important ecological determinants of the response. As
an example, U.S. EPA concluded that excess dissolved ions cause biologi-
cal degradation in naturally dilute Appalachian streams, but the dominant
anions contributing to conductivity (sulfate and bicarbonate in this case) are
not physiologically independent (U.S. EPA, 2011a). Measured conductivity
combines the effects of all ions and was the single best predictor of biological
condition.

Similarly, multiple toxic metals are often discharged from single sources,
especially in mining districts, because the metal ores co-occur in geologic
formations, and mining and refining operations liberate multiple metals into
effluents. A simple approach for examining biological effects of multiple,
correlated metals is to use a sum of the estimated toxicity of all toxic metals
with a similar mode of action (Clements et al., 2000).

13.4 Summary

The effect of a stressor on a biological response may be underestimated or
overestimated if other environmental variables or stressors that also affect
the biological response are ignored. In many cases, a simple relationship
observed between a measure of biological condition and a single stressor
reflects the effects of additional stressors. The additional stressors con-
found estimates of the relationship between the response and the stressor
of interest. Potential confounding variables include all stressors as well as
natural variables that may affect a biological measure directly or indirectly.
Examples include multiple stressors in water bodies from runoff and from
municipal sewage discharges; habitat, elevated temperature, and domestic
sewage confounding the effects of leached salts from mining spoil; and sedi-
ment confounding the effects of excess nutrients.

Potential confounding variables can be identified from a well-constructed
conceptual model diagram. Evaluation of correlations can provide some
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indication of which additional variables besides the stressor of interest
should be taken into account when characterizing a stressor-response rela-
tionship. A more comprehensive framework involves the concept of “con-
founding pathways” in a directed acyclic diagram of causal relationships
which can be “blocked” by controlling for an appropriate selection of statisti-
cal control variables.

Several methods are used to reduce the influence of confounding variables
on stressor-response models. The influence of some strong confounders can
be separated from a stressor of interest by stratifying the data according to
strength or concentration of the confounder, or by propensity score analysis
for multiple confounders. A summary or combined variable can be substi-
tuted for tightly correlated variables, for example, using conductivity as a
combined substitute for all ions. Different types of statistical control can be
combined in a single data analysis. For example, an ecological data set might
exclude observations with a high level of urbanization (a restriction), and the
data selected might then be analyzed using multiple regression with con-
founding variables included as additional explanatory variables along with
the stressor of interest. Whichever strategy is used, the effect of confounding
variables included in the model should be large enough to be of practical
importance to the stressor-response analysis. Finally, the web of relation-
ships may be too complicated to characterize using statistical analyses alone.
In these cases, carefully designed field studies and laboratory experiments,
described in the next chapters, may be required.

The present chapter emphasizes a statistical approach using statistical
control methods. However, the objective of the assessment is to determine
causes of observed adverse effects using the evidence that is available.
Various strategies may be used to eliminate confounding as an alternative
explanation of observed effects, by attributing effects to one causal factor
rather than another, possibly correlated factor. Many of the simple strategies
for minimizing the effects of confounding factors described in Chapter 10
can also be used for larger observational data analyses. For example, a bio-
logical response variable may be restricted to taxa sensitive to a smaller set
of stressors (a different sort of “restriction” than that covered in Section 13.3),
given information on relative taxon sensitivities to different stressors (e.g.,
abundance of baetid mayflies vs. abundance of all mayflies). Conducting the
same analyses across many candidate causes can help make confounding
more apparent when the analyses are unable to differentiate among them. In
general, confidence in causal findings is increased by determining that spe-
cific types of adverse effects are observed when and where they are antici-
pated based on the action of specific stressors.
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Assessment-Specific Field Study Designs
and Methods
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This chapter describes the use of field study designs and in situ meth-
ods for causal assessment. These approaches help clarify the influence
of a cause by reducing variability and the influence of confounding
factors.

CONTENTS
14.1 Study Design Considerations..........cccccooooimeieiiiiiiininiiiicccce 204
14.1.1 Sampling Designs.........cccooveueieiiiiicieiiiicicecee 204
14.1.1.1 Control/Impact and Before/After Designs ................. 205
14.1.1.2 Gradient DeSigns...........ccccorueueiniiirieiiiiicicieecce e 206
14.1.2 Response and Stressor Measurements ............c.cccooceueieiennunnnn. 206
14.2 In Situ Methods for Aquatic Systems............cccooeoiiiiiiiiiinicicce 207
14.2.1 Caging Techniques ...........cccoeveiiiiiiiiiiiicec, 207
14.2.2 Colonization SUbStrates ..............ccoeeviieirieieiiiiceecce, 209
14.3 Whole Ecosystem Studies............oooereioiiiiiiiiiiiicccc 210
144 SUMMATY ..ottt 211

Most causal assessments are performed with available data (see Chapters
9-13), but it is sometimes possible to collect assessment-specific data. For
such cases, this chapter describes sampling designs (see Section 14.1) and
field tests performed with in situ methods (see Section 14.2) (i.e., “in place”
experiments conducted in the field; Liber et al., 2007). Field tests allow con-
trol of the nature, magnitude, and duration of exposure; control of what is
exposed under realistic environmental conditions; and replication of units so
that variance can be estimated. Although such tests may be costly, they have
advantages over field observational data. Readily available observational
data often have been collected for purposes other than causal assessment,
such as for monitoring environmental status and trends. Determining the
cause of ecological effects through these studies alone is often problematic
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