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Via Treppo 18 Viale Morgagni, 59
I 33100 Udine (Italy) I 50134 Florence (Italy)

c© 2004 Firenze University Press
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Preface

This volume collects the proceedings of the 19th International Workshop
on Statistical Modelling, held in Florence, Italy, 4 to 8 July, 2004.

The International Workshop on Statistical Modelling has been held in Eu-
rope and the USA for the past twenty years. The workshop arose out of two
GLIM conferences in the U.K. in London (1982) and Lancaster (1985), and
focused on various aspects of statistical modelling in an informal environ-
ment, specifically aimed at applied statistics, but also including theoretical
developments and computational methods. The spirit of the workshop has
always concentrated on papers that are motivated by real life data and make
novel contributions to the subject. Statistical modelling is an important cor-
nerstone in many scientific disciplines, and the workshop has consistently
provided a rich environment for cross-fertilization of ideas from different
statistical disciplines. The workshop has brought together scientists from
different nationalities with different backgrounds and experience, and has
thus always promoted contributions from students early in their careers
and allowed time for discussion and interchange between junior and senior
scientists. The inaugural workshop in this series took place in Innsbruck in
1986, and since then the workshop has grown substantially, and now regu-
larly attracts over 150 participants. There has been a strong effort made to
bring each new meeting to a different European country: Perugia (1987),
Vienna (1988), Trento (1989), Toulouse (1990), Utrecht (1991), Munich
(1992), Leuven (1993), Exeter (1994), Innsbruck (1995), Orvieto (1996),
Biel/Bienne (1997) - to the USA - New Orleans (1998) - and back to Eu-
rope - Graz (1999), Bilbao (2000), Odense (2001), Chania (2002), Leuven
(2003), Florence (2004). The year 2005 will take the workshop to Australia.

The Florence workshop consists in 48 oral presentations and 47 posters;
four invited lectures complete the lay-out. The oral contributions are ar-
ranged in eight sessions: Statistical Modelling in Genomics and Genetics
will offer a broad perspective on this new field of applied research, with
Geoff MacLachlan, Avner Bar-Hen, Ernst Wit, Ib M. Skovgaard, among
others from the Italian group recently funded by the Ministry of Education
and Research. Semi-parametric Regression Models presents important new
research ideas with Paul Eilers, Vicente Núñez-Antón, Marc Saez, and in-
teresting student presentations from the groups of Göran Kauermann and
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Peter Diggle. However the main focus of the workshop is on Generalized
Linear Mixed Models. Papers on this topic will also be presented in several
other sessions: Correlated Data Modelling, Missing Data, Measurements
Error and Survival Analysis. A great deal of important results relevant on
statistical modelling will be discussed, by the group of Emmanuel Lesaf-
fre, and of Geert Molenberghs, by Peter van der Heijden, Regina Tüchler,
George Streftaris, Brent Coull and many others I cannot quote here. Finally
two specialized sessions on Spatial Data Modelling (with Renato Assunção
presenting new research ideas) and Time Series and Econometrics (with
interesting student presentations) will complete the workshop. Many Ital-
ian researchers will attend the workshop and the list is so good and long
that it prevents me from quoting someone in particular.

We had a very difficult task in selecting oral presentations from the over
one hundred submissions. Therefore many good papers were reported in
the Poster Session. The reader and the attender is recommended to pay
careful attention to this not secondary part of the workshop.

I wish to conclude mentioning the four invited speakers. First we were able
to organize a special event under the sponsorship of the Nutrigenomics Or-
ganization (NuGO), a European VI Framework funded research network.
Terry Speed will speak on “Statistical analysis of replicated microarray
time series data”, which is on the focus of many study designs in Func-
tional Genomics nowadays. Terry Speed is an outstanding personality and
contributed to systematize and clarify the statistical issues in the analy-
sis of gene expression data. Generalized Linear Mixed Models and their
link to Latent variables modelling will be stressed by the second invited
speaker, Anders Skrondal, jointly with Sophia Rabe-Hesketh. Advances
in computational issues and a very general theoretical frame will be in-
troduced, which makes their contribution one of the most stimulating for
applied statisticians. Stuart Coles will discuss on “A censored point pro-
cess model for extreme volcanic eruptions” and his lecture will highlight
the subtleties and potentiality of statistical modelling where theory and
sensibility to subject-specific issues create the special flavour and appeal of
applied statistics. Roberto Colombi will speak on “Marginal models: recent
developments and applications to categorical time series analysis”. This is
a classical topic in correlated data modelling consistent with the tradition
of our workshop. Roberto Colombi’s paper offers a review and new method-
ological insights in such area, still one of the most popular among applied
statisticians.

The Editors of this volume would like to thank all members of the Scientific
Committee and other referees who worked hard in assessing the papers
submitted. The local organisers of the workshop listed below also deserve
our gratitude. We are very thankful to the authors who have considerably
simplified the task of preparing this volume by submitting their papers in
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LATEX and by keeping strictly to the tight timescale.

A special thank finally to Cristina Dolfi and Marie-Hélène Piette for their
valuable contribution to the scientific and organising secretariat, and to
the webmaster Nicola Nostro. The workshop owes its final shape and its
success mostly to their intelligence and application.

Florence, May 28, 2004

Annibale Biggeri

Scientific Programme Committee: Adelchi Azzalini (Padova), Avner
Bar-Hen (Marseille), Adrian Bowman (Glasgow), Antonio Forcina (Peru-
gia), Arnoldo Frigessi (Oslo), Dominique Guguan (Cachan), Leonhard Held
(Munich), Brunero Liseo (Roma), Giovanni M. Marchetti (Firenze), Kenan
M. Matawie (Sydney), Vicente Núñez-Antón (Bilbao), Gianpaolo Scalia
Tomba (Roma), Gilg Seeber (Innsbruck), Terry Speed (Berkeley), Gordon
Smyth (Victoria), Bill Venables (Cleveland)

Local Organising Committee: Annibale Biggeri (Firenze), Monica Chio-
gna (Padova), Mauro Gasparini (Torino), Corrado Lagazio (Udine), Marco
Marchi (Firenze)
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Komárek, A., Lesaffre, E. 214

This misclassification SIMEX
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A Censored Point Process Model for
Extreme Volcanic Eruptions

Stuart Coles1

1 Dipartimento di Scienze Statistiche, Via C. Battisti 214/243, 35121 Padova,
Italia.

Abstract: The magnitude of a volcanic eruption is an essential component of
risk assessment in volcano-sensitive regions. Extreme value models are a natural
candidate for modelling such phenomena, and a point process representation for
extreme value behaviour provides a convenient inferential framework. However,
direct application to databases of volcanic events is complicated by an under-
recording of historical events. This is complicated further by the fact that small
events appear to have a greater tendency to go unreported relative to large events.
In this article we suggest modifying the standard point process model for extremes
with a parametric component that models the under-reporting mechanism.

Keywords: Extreme values, Point processes, Volcanoes.

1 Introduction

Let me come clean: I originally prepared a version of this article for presen-
tation at a workshop on Statistics in Volcanology, held at Bristol University.
Volcanological models are traditionally deterministic, and statistics in this
field is generally used to mop-up noise when real-life observations turn out
to be different from model predictions. I wanted to give a presentation that
emphasised the benefits of developing models that incorporated a stochas-
tic element. My idea was really just to invent a problem, based on some
volcanological data that I was able to track down on the web, and to de-
velop a hypothetical model that would serve as a metaphor for the possible
integration of scientific knowledge into a statistical model. The particular
model is partly motivated by representations for extreme value behaviour,
and partly by an understanding of volcanic processes. However, some parts
of the model are rather arbitrary and open to improvement. As it turned
out, the volcanolgists at the workshop were enthused by the analysis itself.
It remains to be seen if they also take on board the wider methodological
issues I was trying to propose. This article summarises the ideas.
Volcanology is an essential science, partly for a geological understanding
of the earth’s composition, but more crucially to enable a calculation of
hazard risk in regions prone to volcanic activity. In such regions, various
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criteria need to be taken into account in civil protection schemes: the mor-
phology that determines direction of lava flow, the likelihood of a future
eruption, and the plausible values of an eruption magnitude. More gener-
ally, since volcanic eruptions are potentially the most explosive naturally
occurring processes on Earth, there is genuine scientific interest in quanti-
fying a worst-case scenario for future events (Mason et al., 2004). Though
these questions are undoubtedly difficult to address statistically, their na-
ture suggests that extreme value theory might provide a more plausible
class of models to work with than would other areas of statistics.
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FIGURE 1. Historical catalogue of volcanic eruptions with magnitudes exceeding
x = 3.7.

There are different definitions of the magnitude of a volcanic eruption, but
one commonly used version is in terms of the mass of magma generated;
specifically X = logm− 7, where m is the mass of magma released during
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the eruption in kg. Volcanologists have a variety of means to approximate
the value of X, even for volcanic events that are centuries old, though
clearly the reliability of such measurements decreases with age. A plot of
the available data is shown in Fig. 1. These data derive from a database
that purports to include all known volcanic eruptions in the last 2 millennia,
having a magnitude greater than x = 3.7 (Simkin and Siebert, 1994). A few
additional events with unspecified magnitude have been dropped from both
the figure and our subsequent analyses, though in principle such censored
information could also be exploited.
One feature is strikingly evident from the Fig. 1: the rate of activity in
the last 500 years or so is very much greater than in the previous 1500
years. But this is at odds with known volcanology, which suggests the rate
of activity has been more or less constant over the period. There is also
some suggestion in the figure that the rate of weaker volcanic events has
changed more drastically than that of larger ones. Of course, a more realistic
explanation for this phenomenon is that volcanic activity has remained
constant over the period, but that historical events are harder to identify
than recent ones, particularly if they are weak in magnitude. Consequently,
the data in Fig. 1 are the result of two processes: the volcanic activity
itself, followed by the recording process. Ignoring the measurement aspect
of the problem could lead to potential bias in the assessment of the volcanic
aspect.

2 Extreme values via point processes

There are different characterizations of the extremal properties of stochastic
processes. One particularly convenient representation – both for theoretical
treatment and modelling – is in terms of point processes. The theory for
this approach is due to Pickands (1971), while Smith (1989) was the first
to propose inference explicitly in this framework. In simple terms, suppose
that X1, . . . , Xn is a sequence of independent random variables with com-
mon distribution function F , and our interest is in modelling the tail of F .
We define the point process Pn = {(i/(n + 1),Xi) : i = 1, . . . , n}. Under
detailed limiting arguments that hold under very general conditions on F ,
it is reasonable to model the process Pn over the region Au = [0, 1]×[u,∞),
for a sufficiently large threshold u, as a non homogeneous Poisson process
with intensity density function in the family

λ(t, x) =
1
σ

[
1 + ξ

(x− µ)
σ

]−1/ξ−1

+

, (1)

where σ > 0 and a+ = max(a, 0). This is consistent, for example, with
classical representations for extremes based on block maxima or threshold
exceedances; see Coles (2001, ch.7) for a general discussion of these connec-
tions. Inference amounts to estimation of the parameters (µ, σ, ξ) on the
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basis of the observed data in the region Au, {(t1, x1), . . . , (tm, xm)} say.
The Poisson assumption immediately provides a likelihood function

L(µ, σ, ξ; (t1, x1) . . . , (tn, xn)) = ny exp
{
−
∫
Au

λ(t, x)dtdx
} n∏
i=1

λ(ti, xi),

(2)
where the inclusion of the proportionality constant ny, defined as the num-
ber of years of observation, scales the parameterization of the model. The
likelihood function (2) can then be used as the basis of either a classical or
a Bayesian inference.
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FIGURE 2. Recent volcanic eruptions with magnitudes exceeding x = 3.7.

For the volcano magnitude data, the assumed under-reporting of historical
events implies that the assumption of time homogeneity is invalid. To illus-
trate the point process methodology though, we can restrict attention to
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a more recent section of the data, which seems approximately stationary.
Fig. 2 shows the events over the last 300 years or so.
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FIGURE 3. Return level plot of volcano magnitudes. Dashed curves show limits
of 95% pointwise confidence intervals; points show empirical estimates.

There are a range of diagnostics to assist with threshold choice. A partic-
ularly simple diagnostic, the mean residual life plot (Davison and Smith,
1990), supports a threshold of u = 4 for these data. Based on this choice, the
maximum likelihood estimates are obtained as (µ̂, σ̂, ξ̂) = (2.45, 1.66,−0.330)
with standard errors (0.284, 0.297, 0.061) respectively. One important as-
pect of this result is the strong evidence for a negative value of ξ, implying a
finite upper bound on volcanic eruption magnitudes. Other aspects are per-
haps more easily interpreted after a transformation of results: the threshold
exceedance rate (per year as a consequence of the scaling factor in (2)) is
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given by

η =
1
σ

[
1 + ξ

(u− µ)
σ

]−1/ξ−1

+

, (3)

and the conditional excess distribution by

P (X > x | X > u) = [1 + ξ (x− u)/σ̃)]−1/ξ
+ , (4)

where σ̃ = σ + ξ(u − µ). Combining (3) and (4), it follows that the level
x > u is expected to be exceeded once every rp(x) years, where

r(x) = η−1 [1 + ξ (x− u)/σ̃)]1/ξ+ . (5)

In common terminology, r(x) is the return period associated with level
x. Substitution of maximum likelihood estimates leads to an estimate of
η̂ = 0.28 for η, and the return level plot (x against r(x) on a logarithmic
scale, as is common for such graphs) shown in Fig. 3.

3 A censored point process model

The point process set-up provides a convenient way to extend the analysis
to allow for the under-recording of historical events as observed in Fig. 1.
We assume that an event that occurred at time t and having magnitude x is
actually recorded in the data catalogue with probability p(t, x). Hence, the
Poisson assumptions of the observed process are unchanged, except that
the intensity function is modified to

λM (t, x) = p(t, x)λ(t, x). (6)

This is the metaphor referred to in the opening paragraph. Without exter-
nal knowledge, the data alone would be insufficient to formulate this model.
However, knowing that the volcanic process has remained largely homoge-
neous in time, and understanding that under-reporting of historical events
is a likely phenomenon that is plausibly more pronounced for weaker events,
leads to the modified intensity model (6). This is the metaphor: p(·, ·) is
formulated from scientific knowledge of the process; λ(·, ·) is determined
from statistical considerations.
There are different ways forward at this point. In this article we take the
approach of adopting a parametric family for p(·, ·) that conforms to our be-
liefs about the under-recording mechanism. Specifically, we choose a family
for which:

1. p(1, x) = 1 for each x, corresponding to an assumption that any
volcano with magnitude above the threshold level would be recorded
at the present time;
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2. p(t, x) is a non-decreasing function of t for each fixed x. Thus, an
eruption of any magnitude x is more likely to have been recorded if
it occurred recently rather than in the distant past;

3. p(t, x) is a non-decreasing function of x for each fixed t. This means
that at any point in time, events of a larger magnitude were less likely
to be missed than those of smaller magnitude.

This still leaves many possibilities. For this article we have adopted

p(t, x) =
(
1− v

xw

)
+

v

xw
tb, (7)

where the parameters (v, w, b) satisfy b ≥ 0, w ≥ 0 and v < uw. Each of
the parameters in the model has its own interpretation: v determines the
extent to which events are historically censored (v = 0 would imply no
historical censoring); w determines the extent to which under-reporting is
different at different levels (w = 0 would imply a constant under-reporting
at all levels); b determines the rate of change in under-reporting at different
time-points (b = 1 would imply a linear change, for example). The overall
result is a 6-parameter model, 3 of whose parameters correspond to the
extreme value properties of the genuine process of volcanic eruption that
has only been partially observed, and three of which correspond to the
recording mechanism.

TABLE 1. Maximum likelihood estimates and standard errors of censored point
process model applied to volcano catalogue.

µ σ ξ v w b

Estimate 3.289 1.124 −0.239 1.691 0.413 6.971
Standard Error 0.183 0.158 0.047 0.552 0.219 1.25

Maximum likelihood estimates and their standard errors for this model are
given in Table 1. Each of v, w and b is significantly different from 0, v
and b overwhelmingly so. The results for v and w are especially important,
since they confirm the existence of an historical under-reporting (v 
= 0),
and that the extent of this is greater for events of low magnitude (w 
= 0).
These conclusions are supported further by a comparison of the maximized
log-likelihoods in Table 2.

TABLE 2. Maximized log-likelihood values for different point process sub-models.

Unconstrained v = 0 w = 0
log-lik −820.96 −890.81 −823.39
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FIGURE 4. Censoring function p(t, x) for each of x = 4 and x = 7.

The estimated function p(x, t) is plotted in Fig. 4 for two different values
of the magnitude x. These suggest a near-constant recording probability
at each threshold for the first 1500 years or so, followed by a rapid rise in
the rate. This accords with what one might expect: a sharp rise due to the
expansion in sociological, scientific and technical facilities that have taken
place over the last 500 years. The estimated recording probabilities at the
respective magnitudes x = 4 and x = 7 in the year 0 are around 5% and
25%, emphasising the strength of the estimated under-reporting effect.
The parameterization of our model implies that the parameters (µ, σ, ξ)
correspond to the current process of volcanic activity, which is assumed
to be recorded perfectly. The corresponding return level curve is plotted
in Fig. 5, together with the estimate that would be obtained for the same
period of data but ignoring the under-recording mechanism. Though they
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FIGURE 5. Return level curve of volcanic eruption magnitudes. Solid line cor-
responds to censored point process model, with limits of pointwise 95% con-
fidence intervals shown as dashed curves. Broken-dashed curve corresponds to
mis-specified homogeneous Poisson process model.

are significantly different, the differences are not so great in absolute terms,
suggesting that the dependence of the censoring term p(t, x) on x is not
so severe as to induce much bias if it is ignored in the model estimation.
However, this conclusion may be driven in part by the particular choice of
parametric model adopted.
One important calculation that can be made on the basis of the fitted model
is an estimate of the maximum magnitude achievable in a volcanic eruption.
Within the Poisson process model this limit is Xmax = µ− σ/ξ. Based on
the fitted model the maximum likelihood estimate is X̂max = 7.99 with a
95% confidence interval of [7.1, 8.88] obtained via the delta method. Given
that the value of 7.1 has already been exceeded, there are certainly better
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ways to obtain such an interval. Moreover, given the necessity to formulate
questions of volcanic activity within a risk assessment framework, it would
be arguably better to do the entire inference in a Bayesian setting. This is
one aspect of Claudia Furlan’s contribution to these same proceedings.

4 Conclusions

The Poisson process representation for extremes seems a natural framework
for modelling the extremes of processes that are subject to some secondary
perturbation, in this case, the historical under-recording of events of low
magnitude. The model enables all of the available data to be exploited,
but avoids the bias that would occur if the under-reporting of weak events
were ignored. Our results point to a volcanic activity rate – in the sense
of exceeding a level of 3.7 – of roughly once every two years. The maxi-
mum feasible eruption size is estimated at around Xmax = 8, or Xmax = 9
after taking sampling effects into account. These results are broadly con-
sistent with the volcanological literature (Mason et al., 2004, for example)
based both on other statistical analyses, and a geological calculation of the
physical limits to volcanic magnitude.
There remain other issues to explore. The choice of parametric model for
p(·, ·) is essentially arbitrary, and there are probably better ways to han-
dle this aspect. Indeed, given the risk assessment nature of the problem,
it may be much better to formulate the whole problem within a Bayesian
framework and adopt alternative approaches to the specification of p(·, ·).
This issue is considered in Claudia Furlan’s contribution to these proceed-
ings, together with the various advantages that accrue from a Bayesian
approach to the same problem. Other issues that we have not yet looked at
include the possibility of modelling individual or groups of volcanoes sepa-
rately, rather than assuming, as here, that they all have identical stochastic
properties, and the possibility of time-dependence in the eruption process,
which would violate the Poisson assumptions that we have made here.
In summary, although there are undoubtedly better ways of building the
intensity model in (6), the general approach of integrating process knowl-
edge within a statistical model – albeit in a naive way – appears to have
produced useful results. Hopefully, this also is a metaphor for the further
integration of contemporary statistical thinking into volcanological science.
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Marginal Models: recent developments and
applications to categorical time series
analysis.
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Abstract: Recently general definitions of marginal interactions and marginal
models have been introduced by Bergsma, Rudas (2002), Colombi, Forcina (2001)
and by Bartolucci, Colombi, Forcina (2004) that considerably improved the flex-
ibility and interpretability of standard hierarchical log-linear models by allow-
ing interactions to be contrasts of four types of Logits defined within different
marginal distributions. This paper reviews these recent contributions and shows
their relevance in the context of categorical time series analysis.

Keywords: marginal models, categorical time series, non-normal state space
models

1 Introduction

In section two of this paper we review the definition of generalized marginal
interactions introduced by Bartolucci, Colombi, Forcina (2004) and we
show how these interactions are used to build a class of models which gener-
alizes the Hierarchical Marginal Models previously introduced by Bergsma,
Rudas (2002). In section three of this paper the proposed marginal models
are used to specify a class of dynamic models for multi-categorical time
series and in section four some examples are given. The aim of the work
is to show that marginal parameterizations can be easily adapted to the
context of categorical time series modelling.

2 Marginal interaction parameters and marginal
models

Consider the joint probability function of q response variables A1, . . . , Aq,
with Aj taking values xj in {1, 2, . . . , aj}. The set of response variables
that defines a given marginal distribution will be denoted by the set M
of indices of the corresponding variables and Q = {1, . . . , q} will refer to
the joint distribution. The vector of the

∏q
1 aj joint probabilities will be

denoted by π.
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2.1 Generalized Marginal Interactions

We now introduce the Bartolucci, Colombi, Forcina (2004) definition of
interaction parameters which includes the four well known types of logits:
local (l), global (g), continuation (c) and reverse continuation (r) and the
sixteen types of log-odds ratios discussed by Douglas et al. (1990). Note
that it makes sense to use logits of type local both with ordinal and non-
ordinal variables but that logits of type global and continuation can be used
only with ordinal variables.
For any category xj < aj , define the event B(xj , 0) to be equal to {xj} if
the logit is of type local or continuation and to {1, . . . , xj} for global or
reverse continuation logits; similarly, the event B(xj , 1) is equal to {xj+1}
if the logit is of type local or reverse continuation and to {xj + 1, . . . , aj}
for global or continuation logits. Finally define the marginal probabilities:

pM(xM;hM) = p(Aj ∈ B(xj , hj), ∀j ∈ M),

where xM is a row vector of categories xj , j ∈ M, and hM is a row vector
whose elements, hj , j ∈ M, are equal to zero or to one. These marginal
probabilities are probabilities of a table where the variables Aj ,∀j ∈ M,
have been dichotomized according to the categories: B(xj , 0), B(xj , 1). The
marginal generalized interactions are log-linear contrasts of the previous
probabilities and are so defined:

ηH;M(xH | xM\H;hM\H) =
∑
K⊆H

(−1)|H\K| log pM(xM;hM\H,0H\K,1K).

(1)
Note that any interaction is defined by the interaction set H of the variables
involved, by the marginal distributionM where it is defined and by the logit
type assigned to each variable of M. According to this definition the kind
of dichotomy implied by the type of logit adopted for each variable should
carry over when defining higher order interactions within the same marginal
distribution. As an example consider the bivariate case, q = 2, where the
continuation logit type is assigned to each variable and the marginals of
interest are: M1 = {1}, M2 = {2} and M3 = {1, 2}. Let πij , πi· and π·j
denote the joint and marginal probabilities, then

η{1};{1}(i) = ln
p(A1 ∈ B(i, 1))
p(A1 ∈ B(i, 0)) = ln

∑a1
n=i+1 πn·
πi·

,

η{2};{2}(j) = ln
p(A2 ∈ B(j, 1))
p(A2 ∈ B(j, 0) = ln

∑a2
n=j+1 π·n
π·j

,

and

η{1,2};{1,2}(ij) =
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= ln p(A1∈B(i,1),A2∈B(j,1))

p(A1∈B(i,0),A2∈B(j,1))
− ln p(A1∈B(i,1),A2∈B(j,0))

p(A1∈B(i,0),A2∈B(j,0)
=

= ln
∑a2

m=j+1

∑a1
n=i+1

πnm∑a2
m=j+1

πim
− ln

∑a1
n=i+1

πnj

πij
,

are continuation log-odds ratios.

2.2 Complete and Hierarchical Families of Interaction Sets

We now examine the problem of allocating the interaction sets among the
marginals within which they may be defined.
Denote by Fm the family of interaction sets defined within the marginal
distribution Mm. Let also P(J ) be the family of all non empty subsets of
J and Pm be a short-hand notation for P(Mm).
Given a non-decreasing sequence of marginals M1, . . . ,Ms, a family of
interactions sets is called complete and hierarchical if (i) any interaction
set is defined in one marginal distribution Mm, (ii) F1 = P1 and Fm =
Pm\⋃h<m Fh.
The previous definition implies that Ms = Q, that Mm ∈ Fm, for every
m, that every family Fm is a non-empty ascending class of subsets of Mm

and that every interaction is defined within only one marginal distribution.
In the following, for every interaction set I ∈ Mm of a complete hierarchical
family of interactions sets, we will consider only the interactions:

ηI;Mm
(xI) = ηI;Mm

(xI | 1Mm\I ;0Mm\I)

where the conditioning variables of Mm \ I are fixed to their first cate-
gory. When all the conditioning variables in Mm \ I have assigned logits
of type local Bartolucci, Colombi, Forcina (2004) showed that the inter-
actions ηI;Mm

(xI | xMm\I ;hMm\I) are linear functions of the interactions
ηH;Mm

(xH), H ⊇ I, so that at least in this case there is no restriction in
limiting the attention to these parameters.

2.3 Complete and Hierarchical Marginal Parametrizations

The interactions ηI;Mm
(xI) associated to a complete hierarchical family

of interactions may be arranged into the vector η which may be explicitly
written in matrix form as

η = C log(Mπ), (2)

where the rows of C are contrasts and M is a matrix of zeros and ones
which sums the probabilities of appropriate cells to obtain the necessary
marginal probabilities of the type described by (2.1). A detailed descrip-
tion of these matrices is given by Colombi, Forcina (2001). Bartolucci,
Colombi, Forcina (2004) showed that (2) is invertible. The result extends
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the Bergsma, Rudas (2002) important contribution on marginal models
and earlier works of Lang, Agresti (1994), Glonek, McCullagh (1995) and
Glonek (1996). Parameters defined by a function of the joint probabilities
of the type (2) have a long history starting from the seminal works of Griz-
zle et al. (1969) and of Forthofer, Koch (1973) and here we stress the fact
that the representation of the link function (2) is important, in the context
of maximum likelihood estimation, both from the theoretical point of view
and from the computational point of view. The importance of the repre-
sentation will carry over also to the context of categorical time series as it
will be shown in the next section.
A parameterization of the joint probabilities in term of the generalized
marginal interactions ηI;Mm

(xI) defined as above will be called complete
hierarchical marginal parameterization.
The advantages of a marginal parameterization with respect to the log-
linear one come from the flexibility in the choice of the interactions and from
the interpretability of the parameters. Marginal parametrizations allow a
direct and straightforward parameterization of the marginal probabilities
of interest and in the framework of a marginal parameterization it is easier
to state that a given marginal distribution is stochastically larger than an-
other or that the strength of the dependence between two variables increase
with a third variable or that two variables are marginally independent or
positively associated. In fact these hypotheses can be defined by linear
inequality and equality constraints on generalized marginal interactions
as shown in Dardanoni, Forcina (1998), Bartolucci, Forcina, Dardanoni
(2001), Colombi, Forcina (2001) and Bartolucci, Colombi, Forcina (2004).
Moreover complete hierarchical marginal parameterizations are very useful
in parametrizing block recursive models as shown by Bartolucci, Colombi,
Forcina (2004).
As an example consider the seemeengly unrelated logit regressions repre-
sented by the dashed edges graph of figure 5.3(a) of Cox, Wermuth (1996);
under this model the variables A3 and A4 are explanatory for the vari-
ables A1 and A2, A2 is independent from A3 given A4 and A1 is indepen-
dent from A4 given A3. The model can be parametrized choosing the com-
plete hierarchical parameterization defined by the marginals M1 = {3, 4},
M2 = {1, 3, 4}, M3 = {2, 3, 4}, M4 = {1, 2, 3, 4}, and the constraints:

η{2,3};{2,3,4}(i{2,3}) = 0, η{2,3,4};{2,3,4}(i{2,3,4}) = 0,

η{1,4};{1,3,4}(i{1,4}) = 0, η{1,3,4};{1,3,4}(i{1,3,4}) = 0.

If the four categorical variables are ordinal it is sensible to choose logits of
type global for A3 and A4 within M1 and for A1 and A2 within M2, M3

and M4. As explained in Bartolucci, Colombi, Forcina (2004), who gave a
general description of block recursive models of this type, it is convenient
to use logits of type local for the explanatory variables A3 and A4 within
M2, M3 and M4.
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Furthermore together with the previous equality constraints the following
inequality constraints:

η{2,4};{2,3,4}(i{2,4}) ≥ 0, η{1,3};{1,3,4}(i{1,3}) ≥ 0,

state that the distributions of A2 conditioned by the explanatory variables
are stochastically increasing with the categories of A4 and that the condi-
tional distributions of A1 are stochastically increasing with the categories
of A3. The problem of testing linear inequality constraints on marginal
parameters has been discussed by Dardanoni, Forcina (1998), Colombi,
Forcina (2001) and by Bartolucci, Colombi, Forcina (2004).

3 Multinomial State Space Models

In this section marginal models are used to introduce a class of dynamic
models for multicategorical time series. For a survey of the state of art
on categorical time series analysis see Fahrmeir, Tutz (1994), MacDonald,
Zucchini (1997), Davis, Wang (1999) and Kedem, Fokianos (2002). Let
πt be the vector of the joint probabilities of the categories of q categorical
variables given the information set Ft−1 available at time t. We parametrize
the joint probabilities πt by inverting at time t the link function:

ηt = C lnMπt, (3)

where the vector of marginal parameters is a linear function of time vary-
ing regressors: ηt = Xtβt and where βt changes according to a standard
normal transition model:

βt = Fβt−1 + Hεt. (4)

Here εt are independent multinormal random variables with null expected
value and unknown diagonal variance matrix Q. For a discussion of state
space models for categorical data and count data see Kedem, Fokianos
(2002), Durbin, Koopmann (1997) and Fahrmeir, Tutz (1996). Special cases
of the previous general model (for example Xt = I, H = I and F = I)
are easily obtained and the advantage of defining the transition model in
function of the marginal parameters rather than the log-linear ones come
from the fact that the normal transition model applied to log-linear param-
eters is often difficult to interpret. On the contrary the transition model
applied to marginal interactions and in first place to marginal Logits is
very easy to interpret and a more natural and direct modelling strategy.
Moreover in the context of categorical time series many important non-
Granger causality type hypotheses, which state that a set of categorical
variables doesn’t depend on the past of another set of variables, given F t,
are equivalent to linear hypotheses on marginal interactions and this fact
enhances the importance of marginal models in this context. Finally in the
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context of marginal models it is easier to distinguish between hypotheses
of simultaneous independence between categorical variables and hypotheses
of independence of a categorical variable from the past of the others. These
advantages of marginal modelling have been firstly pinpointed by Giordano
(2003) in the context of models for the joint transition probabilities of mul-
tivariate Markov Chains and the problem of testing Granger non-causality
under Markov assumptions was firstly considered by Bouissou et al (1986).
The important topic of modelling multivariate Markov Chain was started
by the works of Fahrmeir, Kaufmann (1987) and Kaufmann (1987) and
generalized to a less stringent assumption than the one of Markovianity by
Fokianos, Kedem (1998). Hidden Markov models (MacDonald, Zucchini,
1997) can also be considered in this context by substituting the normal
transition model (4) with the following one:

βt = Stδ1 + (1− St)δ2

where the binary variable St indicates the state at time t of a two state
markov Chain.
In this last case the maximum likelihood estimates are easily computed
(MacDonald, Zucchini 1997, Krolzig 1997) and in the case of a normal
transition model maximum likelihood estimation of the unknown parame-
ters of the multivariate normal distribution of εt can be performed by the
Montecarlo likelihood method of Durbin, Koopman (1997, 2001) or by the
Montecarlo EM algorithm of Chan, Ledolter (1995). Less computationally
demanding methods are the EM-type algorithm of Fahrmeir, Wagenpfeil
(1997) and the method based on the maximization of an approximation
of the log-likelihood of Durbin, Koopman (1997, 2001). Note that in the
case of marginal models all the previous methods are more computation-
ally demanding, than in the cases previously considered, because at every
iteration the relation ηt = C lnMπt must be inverted for every t.
The asymptotic properties of the M.L. estimator of the unknown parame-
ters in the case of a latent Markov Chain with time homogeneous transition
probabilities follow from the results of Bickel, Ritov, Ryden (1998) on Hid-
den Markov Models. The asymptotic normality of the M.L. estimators for
non-normal state-space model is discussed in Jensen, Petersen (1999).

3.1 Bivariate Markov Driven Marginal Models

Often multi-categorical time series exhibit two different regimes. The start-
ing time and the length of the spells in the regimes are random. To model
the different behavior of the time series under the two regimes the param-
eters of a Marginal Model can be let to depend on the state of an unob-
servable Markov Chain which models the transitions between the regimes.
A latent variable problem arises because the regime is not an observable
variable. More precisely the model must consist of two parts:
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I) a Marginal Model which specifies the joint probabilities of the categories
of the variables at time t given the categories of the variables at the previous
lag times t− 1, t− 2, ..., t− lag, given the values (at time t− 1) of a vector
of regressors xt−1 and given the regime St at time t (St = 1 or St = 0 in
the case of two regimes).
II) a two states Markov Chain that models the history of the unobservable
regimes St.
According to this model the observed multi-categorical time series is not
Markovian, however conditionally on the series {St} of the regimes it is a
Markov Chain of order lag.
Here we examine the case of a bivariate categorical time series {A1,t, A2,t}.
The joint probability function of A1,t and A2,t conditionally on the past can
be specified by a log-linear model. Let Zt be the vector of predetermined
variables at time t and of the unobservable regime St. Then, the log-linear
model:

lnπij,t = λt + λA1
i,t + λA2

j,t + λA1A2
ij,t ,

i = 1, 2, ..., a1, j = 1, 2, ..., a2,

could be introduced by allowing the interaction parameters lambda to de-
pend on the vector Zt of predetermined variables. This approach doesn’t
allow a direct parameterization of the marginal probabilities πi.,t, π.j,t. For
this reason we prefer to parametrize the marginal probabilities directly with
univariate logit Models. For example the Continuation logit Parameteriza-
tion (Colombi, Forcina 1999) for the marginal probabilities is given by the
following formulae:

πi.,t =
exp {−η1,t(i)}∏i

m=1 [1 + exp {−η1,t(m)}] , i = 1, 2, ..., a1 − 1,

π.j,t =
exp {−η2,t(j)}∏j

m=1 [1 + exp {−η2,t(m)}] , j = 1, 2, ..., a2 − 1.

Here we have slightly simplified the notation of interactions given in section
two by omitting curly brackets and the indication of the marginal within
which the interaction is defined. The Continuation Logits η1,t(i) and η2,t(j)
depend on the vector of predetermined variables Zt according to linear
predictors of the type commonly used in the context of logit regression (see
section 4 for an example). Note that the Continuation logit of a categorical
variable may depend also on the past of the other categorical variable. The
joint probabilities πij,t are specified by the marginal continuation logits
and by the logarithms of the Continuation Odds Ratios (Colombi, Forcina
1999):

η12,t(ij) = ln
πij,t ·

∑a1
m=i+1

∑a2
n=j+1 πmn,t∑a1

m=i+1 πmj,t ·
∑a2
n=j+1 πin,t

,

i = 1, 2, ...., a1 − 1, j = 1, 2, ...., a2 − 1.
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The following hypotheses on the Continuation Odds Ratios are relevant:

η12,t(ij) = η12(ij),
η12,t(ij) = η12(ij) + ρSt.

Both are hypotheses of constant association in the sense that the Contin-
uation Odds Ratios do not depend on the past of A1 and A2 and on a
vector of regressors xt−1. In the first case, the Odds Ratios are also regime
independent, whereas in the second case the Continuation Odds Ratios de-
pend on the latent regime but the effect of the regime is the same for all i
and j (i = 1, 2, ..., a1 − 1; j = 1, 2, ..., a2 − 1). A more parsimonious model
is given by the following hypotheses of Uniform Constant association:

η12,t(ij) = η12,

η12,t(ij) = η12 + ρSt.

Finally the transition probabilities of the Hidden Markov Chain p00t =
p(St+1 = 0|St = 0) and p11t = p(St+1 = 1|St = 1) can assumed to be
function of a vector of regressors xt−1 according to the logit Models:

ln
piit

1− piit
= α0i + α′

1ixt−1, i = 0, 1. (5)

The case of a time homogeneous transition matrix is obtained by putting
α1i = 0, i = 0, 1.
Given the marginal continuation logits and the Continuation Odds Ratios
the joint probabilities πij,t can be computed with the iterative algorithm
introduced by Colombi, Forcina (1999) and described in Colombi, Zanarotti
(2002).
Let ϑ′=

[
α00,α10, α01,α11,θ

′] be the vector of the parameters to be esti-
mated where θ is the vector of the parameters of the bivariate marginal
model. Given the parameters, the BLHK filter and smoother (Krolzig, 1997)
can be used to marginalize with respect the unobservable Markov Chain
and to compute the log-likelihood at every iteration of the Fisher Scoring
algorithm.

3.2 State Space Trend Models for categorical data

Marginal State Space Models for categorical data can be specified in many
ways thanks to the flexibility of the definition of ηt and of the transition
model: ηt = Xtβt, βt = Fβt−1+Hεt. A first important and useful case
is given by the (k−1)- polynomial stochastic trend where some components
ηi,t change according to the transition model:

βi,t = Fβi,t−1 + εt ηi,t = β1,it
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and F is a k · k upper triangular matrix of ones. A second important
example is the case of k order random walk where some components ηi,t of
ηt change according to the transition model:

βi,t = Fβi,t−1 + hεi,t

ηi,t = β1,it.

here h is the first column of a k · k identity matrix and F is a k · k identity
matrix with the first row replaced by the row vector c, the i− th element

of which is ci = (−1)i−1

(
k
i

)
. These models are useful to model local-

trends for logits defined within different marginals. For example in the
Bivariate Case introduced in the previous section a local level model (k=1)
can be applied to the two marginal continuation logits:

η1,t(i) = η1,t−1(i) + ε1,t,

η2,t(i) = η2,t−1(i) + ε2,t.

4 Ground O3 and CO data analysis

The Hidden Markov models described in section 3.1 are used to analyze
daily levels of ground O3 (variable A1t) and CO concentration (variable
A2t) both with three categories (low (1), normal(2) and high(3)). Data
are taken by San Giorgio (Bergamo-Italy) measurement unit from 1997 to
1999. In this application the covariates that affect the continuation Logits
are: temperature and solar radiation.
The general effects of the linear predictors are assumed to change according
to the hidden regime and the other parameters (additive effects, interac-
tions, regression coefficients) are regime independent. More precisely the
most general linear predictor used for the η1,t(i), i = 1, 2, ..., a1 − 1 is:

η1,t(i) =
(
µ

(0)
j + δjSt

)
+

+

(
lag∑
l=1

2∑
m=1

θA1
mlI{A1,t−l=m} +

lag∑
l=1

2∑
m=1

θA2
mlI{A2,t−l=m}

)
+

+

(
lag∑
l=2

2∑
m=1

δA1
ml

t−1∏
k=t−l

I{A1,k=m} +
lag∑
l=2

2∑
m=1

δA2
ml

t−1∏
k=t−l

I{A2,k=m}

)
+

+β1x1t + β2x2t.

A similar predictor is used for the η2,t(j), j = 1, 2, ..., a2 − 1. In the first
column of Table 1 it is given the number LAG of past pollutant levels that
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TABLE 1. Switching Bivariate Marginal Models (O3 and CO )

lag link association log-lik. n. par.
1 add. η12,t(ij) = 0 -919.08 18
2 add. η12,t(ij) = 0 -894.08 26
3 add. η12,t(ij) = 0 -873.49 34
4 add. η12,t(ij) = 0 -858.88 42
4 add.+int. η12,t(ij) = 0 -846.27 78
4 add.+int. η12,t(ij) = η12 -846.26 79
4 add.+int. η12,t(ij) = η12(ij) -845.22 82
4 add.+int.+reg. η12,t(ij) = η12(ij) -842.52 86

TABLE 2. One step forecasts-O3
predicted→
observed↓ low normal high. tot.

low 704 61 0 765
normal 86 189 3 278
high. 0 12 5 17
tot. 790 262 8 1060

TABLE 3. One step forecasts-CO
predicted→
observed↓ low normal high tot.

low 152 102 0 254
normal 56 709 5 770
high 0 23 13 36
tot. 208 834 18 1060

affects the current one. In the second column the linear predictor used is
described (add. means that the effect of the LAG previous levels is additive
and add.+int. means that interactions between time adjacent past levels
of the same pollutant are also allowed and add.+int.+reg. is the general
case where also the effects of the covariates temperature and solar radiation
are introduced). In the third column the type of association between CO
and O3, given the past levels and the hidden regime, is described. In the
fourth column the value of the log-likelihood is reported and in the last
column the number of parameters is given. For all the models considered
the transition probabilities of the Hidden Markov Chain are time invariant.
In the last two tables the one-step predicted levels are crossed with the
actual ones, using the model in the last row of Table 1.
In Table 4 the results obtained by using some State Space Trend Models
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TABLE 4. Bivariate State Space Models (O3 and CO)

model number of states log-lik.
M1 8 -117.558
M2 5 -118.444
M3 12 -115.358
M4 9 -116.771

introduced in section 3.2 are reported. In this case only the first 100 obser-
vations were used, covariates effects were not included and local logits and
local odds-ratios were used instead of the continuation ones. In the case of
the first model M1 the four local logits and the four local odds-ratios that
parametrize the joint distribution at time t changes according to a random
walk. In model M2 the four odds ratios are assumed to be equal and the
five parameters still changes according to a random walk. According to
model M3 the four odds ratios changes according to a random walk and
the four logits changes according to a local level local trend model (local
polynomial of order one). In modelM4 the transition equation for the logits
is as in model M3 and the four odds-ratios are equal and change according
to a random walk. Initial states have been treated as unknown parameters
so that the number of parameters to be estimated is twice the number of
states. The method based on the maximization of the approximate log-
likelihood of Durbin, Koopman (2001) were used but after convergence
the log-likelihood was computed with the importance-sampling method of
Durbin, Koopman (2001).
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1 Introduction

Instead of linking the expectation of each observation with a single linear
predictor as in generalized linear models, it is often useful to link it with a
composite function of several linear predictors. Moreover, each likelihood
contribution can sometimes be exploded into a product of terms.
We explore how these tools can be used to extend ‘Generalized Linear
Latent And Mixed Models’ or GLLAMMs (Rabe-Hesketh, Skrondal and
Pickles, 2004a; Skrondal and Rabe-Hesketh, 2004). Applications consid-
ered include discrete time frailty models, item response models for ordinal
items, unfolding models for attitudes, small area estimation with census in-
formation, measurement models combining discrete and continuous latent
variables, ability testing with guessing, sensitivity analysis of the assump-
tion of normal random effects, and zero-inflated Poisson models.

2 Generalized Linear Models

Let yi be the response and xi explanatory variables for unit i, and define
the conditional expectation of the response given the covariates as µi, i.e.
µi ≡ E[yi|xi]. Generalized linear models can be specified as

µi = g−1(νi),

where g−1(·) is an inverse link function, νi = x′
iβ is a linear predictor and

β are fixed effects. The specification is completed by choosing a condi-
tional distribution for the responses yi given the conditional expectations
µi, f(yi|µi), from the exponential family.
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3 Exploded likelihoods and composite links

3.1 Exploded likelihoods

Generalized linear models can be extended to handle multivariate responses
yit, t=1, . . . , T , for each unit. The responses may be of mixed types com-
bining different links and families, for instance a Poisson distributed count
and a logistically distributed dichotomous response. Dependence can be
modelled by including latent variables (random effects and/or factors) in
the linear predictors; see Section 4. Given the corresponding vectors of
conditional means µi (which depend on the latent variables), the joint con-
ditional distribution of the vector of responses yi is

Pr(yi|µi) =
T∏
t=1

ft(yit|µit). (1)

We now distinguish between two types of artificial multivariate responses
where the response is univariate but individual likelihood contributions are
nevertheless ‘exploded’ into product terms:

Phantom responses A univariate response yi can in some cases be rep-
resented by S phantom responses yit entering the likelihood (1) as if they
were truly multivariate responses.
Phantom responses can be used for the Luce-Plackett model for rankings
where the likelihood contribution of a ranking is the product of successive
multinomial logit choice probabilities among remaining alternatives (e.g.
Skrondal and Rabe-Hesketh, 2003). Another example is survival analysis
based on data exploded into risk sets, for instance the Cox proportional
hazard model implemented via Poisson regression and the complementary
log-log model for discrete time hazards (e.g. Skrondal and Rabe-Hesketh,
2004, Ch.2).

Mutually exclusive responses A univariate response yi can sometimes
be represented by one of S mutually exclusive responses yit having distri-
butions ft(yit|µit) from generalized linear models. For the case of T =2 the
likelihood can be written as

Pr(yi|µi) = f1(yi1|µi1)1−δif2(yi2|µi2)δi ,

where the indicator δi picks out the appropriate component.
A simple example is a log-normal survival model with right-censoring. Let
x′
iβ be the linear predictor, yi1 the log survival time if the event is observed
for i (δi = 0) and yi2 the censoring time if the event is censored (δi =
1). The likelihood contribution then becomes either a normal distribution
with identity link and linear predictor x′

iβ, f1(yi1|µi1)=φ(yi1;µi, σ2), or a
Bernoulli distribution with a (scaled) probit link and linear predictor x′

iβ,

f2(yi2|µi2) = Φ(x
′
iβ−yi2
σ ). Here, Φ(·) is the cumulative standard normal

distribution and −yi2 is treated as an offset.
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3.2 Composite links

Thompson and Baker (1981) suggested linking the expectation µi with a
composite function of several linear predictors instead of a function of a
single linear predictor as in generalized linear models.

Simple composite links In this case the expectation µi is a weighted
sum of inverse links with known weights wir,

µi =
∑
r

wir g
−1
r (νir),

where νir is the rth linear predictor for unit i and g−1
r (·) an inverse link

function.
A simple example of composite links are cumulative models for categorical
responses with S ordered response categories s = 1, . . . , S, which can be
expressed as

Pr(yi>s|xi) = g−1(νi−κs), s = 1, . . . , S − 1

where κs are threshold parameters and the inverse link function is a cumu-
lative distribution function such as the standard normal, logistic or extreme
value distributions. The response probabilities can be written as a compos-
ite link,

Pr(yi=s|xi) = g−1(νi,s−1)−g−1(νis), νis = νi−κs, s = 1, . . . , S, (2)

where κ0 =−∞ and κS =∞ so that g−1(νi0) = 1 and g−1(νiS) = 0. An
advantage of the composite link formulation is that left and right-censoring,
or even interval censoring of an ordinal response are easily accommodated.
This is particularly useful for discrete time survival data.

Bilinear composite links A first extension is to consider unknown linear
functions of inverse links, replacing the known constants wir with products
of the constants and unknown parameters αr, giving

µi =
∑
r

αrwir g
−1
r (νir).

A second extension is to let the expectation be some (not necessarily linear)
function h{·} of the above sum,

µi = h{
∑
r

αrwir g
−1
r (νir)}.

General composite links In this case general functions fir[g−1
r (νir)]

replace wir g−1
r (νir) in the above expressions.
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4 Generalized Linear Latent and Mixed Models

4.1 Generalized Linear Mixed Models (GLMMs)

A crucial assumption of generalized linear models is that the responses of
different units i are independent given the covariates xi. This assumption is
often unrealistic since data are frequently of a multilevel nature with units
i nested in clusters j, for instance repeated measurements (units) nested in
subjects (clusters) or subjects (units) nested in families (clusters). There
will often be unobserved heterogeneity at the cluster level inducing depen-
dence among the units, even after conditioning on covariates. In generalized
linear mixed models (e.g. Breslow and Clayton, 1993) unobserved hetero-
geneity is modeled by including random effects η(2)

mj in the linear predictor,

g(µij) = νij = x′
ijβ︸︷︷︸

Fixed part

+
M∑
m=1

η
(2)
mjz

(2)
mij

︸ ︷︷ ︸
Random part

. (3)

Here, µij ≡ E[yij |xij , z(2)
ij ,η

(2)
j ] where η

(2)
j = (η(2)

1j , · · · , η(2)
M,j)

′ are random

effects varying at level 2 and z(2)
ij corresponding covariates. Specifically,

η
(2)
mj is a random effect of covariate z(2)

mij for cluster j, a random intercept

if z(2)
mij=1. It is typically assumed that the random effects are multivariate

normal.

4.2 Extending GLMMs to GLLAMMs

Multilevel factor structures The basic idea of factor or IRT models
is that one or more unobserved variables, latent traits or factors ‘explain’
the dependence between different observed measurements for a subject, in
the sense that the measurements are conditionally independent given the
factor(s).
A simple example of a unidimensional factor model is the two-parameter
logistic item response model often used in ability testing. Examinees j
answer test items i, i = 1, . . . , I, giving responses yij equal to 1 if the
answer is correct and 0 otherwise. The probability of a correct response is
modelled as a function of the examinee’s latent ability ηj ,

Pr(yij = 1|ηj) = exp(νij)
1 + exp(νij)

, νij = βi + λiηj . (4)

The latent ability ηj is assumed to have a normal distribution, λi are factor
loadings or discrimination parameters (with λ1=1) signifying how well the
items discriminate between examinees with different abilities, and -βi/λi
are item ‘difficulties’.
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We can specify models of this form by extending the two-level generalized
linear mixed model in (3) to allow each random effect to be multiplied not
just by a single variable but by a linear combination of variables. To obtain
the two-parameter logistic item response model, we stack the dichotomous
responses yij into a single response vector and define dummy variables

dpi =
{
1 if p= i
0 otherwise

The linear predictor of the item response model can then be written as

νij =
∑
p

dpiβp + ηj
∑
p

dpiλp = βi + ηjλi.

The linear predictor for a three-level multidimensional factor model can be
expressed as

νijk = x′
ijkβ︸ ︷︷ ︸

Fixed part

+
M2∑
m2=1

η
(2)
m2jk

λ(2)′
m2

z(2)
m2ijk

︸ ︷︷ ︸
Level-2 random part

+
M3∑
m3=1

η
(3)
m3k

λ(3)′
m3

z(3)
m3ijk

︸ ︷︷ ︸
Level-3 random part

,

where z(2)
m2ijk

and z(3)
m3ijk

are vectors of dummy variables with correspond-
ing vectors of factor loadings, λ(2)

m and λ(3)
m . See Rabe-Hesketh, Skrondal

and Pickles (2004a) for an application of a multilevel factor model with
dichotomous responses.

Discrete latent variables The response model can be further generalized
by allowing the latent variables ηj to have discrete distributions. This is
useful if the level 2 units are believed to fall into a number of groups or
‘latent classes’ within which the latent variables do not vary.
If the number of latent classes, or masses, is chosen to maximize the like-
lihood the nonparametric maximum likelihood estimator (NPMLE) can
be achieved (e.g. Rabe-Hesketh, Pickles and Skrondal, 2003), relaxing the
assumption of multivariate normal latent variables.

Multilevel structural equations Continuous latent variables (random
coefficients and/or factors) can be regressed on covariates (see Section 6)
and other latent variables at the same or higher levels, generalizing con-
ventional structural models to a multilevel setting. If the latent variables
are discrete, the masses, component weights or latent class probabilities
can depend on covariates via multinomial logit models. See Skrondal and
Rabe-Hesketh (2004, Ch.4).
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5 Composite links and exploded likelihoods in
GLLAMMs

An outline is given of some extensions of GLLAMMs arising from plugging
in linear predictors with latent variables from GLLAMMs into composite
links and exploded likelihoods.

Discrete time frailty models If we let the linear predictor in (2) be
νij = x′

ijβ + ηj and use a logit link we can obtain a proportional odds
model with frailty (see Skrondal and Rabe-Hesketh, 2004, Ch.12).

Item response models for ordinal items Letting the linear predictor
in (2) be νij = βi + λiηj as in the two parameter IRT model (4) and the
thresholds be item-specific, we obtain Samejima’s graded response model
for ordinal items (see Skrondal and Rabe-Hesketh, 2004, Ch.10).

Unfolding or ideal point models In standard item response models the
probability of a positive response for an item is a monotonic function of the
latent trait ηj . This assumption may be violated for attitude items where
respondents are asked to rate their agreement as ‘disagree’ or ‘agree’, or
more generally in terms of s=1, . . . , S ordered categories.
For instance, as sentiments favouring capital punishment increase from neg-
ative infinity, the probability of agreeing with the statement ‘capital pun-
ishment seems wrong but is sometimes necessary’ initially increases from
0, reaches a maximum when the latent trait is in the ‘ambiguous’ zone (at
the ‘ideal point’) and then declines as the latent trait goes to infinity.
It has been argued (e.g. Roberts and Laughlin, 1996) that a respondent may
give a particular rating of an attitude item for two reasons. Considering
‘disagree’, he can ‘disagree from below’ because his latent trait is below
the position of the item or ‘disagree from above’ because it exceeds the
position. These two possibilities can be expressed in terms of ‘subjective
ratings’ zij ; such that zij=s if the respondent ‘disagrees from below’ and
zij=2S+1−s if he ‘disagrees from above’.
Since the zij are not observed, the probabilities of the observed rating yij ,
given the latent trait ηj , can be written as the sum of the probabilities of
the two disjunct ‘subjective ratings’ corresponding to the observed rating.
We propose using a cumulative model (2) for the subjective ratings

Pr(yij=s|ηj) = Pr(zij=s|ηj) + Pr(zij=2S+1−s|ηj) = (5)[
g−1(νij−κs−1)−g−1(νij−κs)

]
+
[
g−1(νij−κ2S−s)−g−1(νij−κ2S−s+1)

]
,

where νij = βi+λiηj as in (4). For identification, the thresholds must be
constrained as for instance κs=−κ2S−s, s=1, . . . , S, and κS=0.
Importantly, embedding the models in the GLLAMM framework produce
a wide range of novel unfolding models. The latent trait can for instance
be regressed on same or higher level latent variables and/or regressed on
covariates as demonstrated in Section 6.



A. Skrondal et al. 33

Small area estimation Rindskopf (1992) emphasizes that composite link
functions are useful for modelling count data where some observed counts
represent sums of counts for different groups of units, due to different kinds
of missing or partially observed categorical variables. These ideas have been
used by Tranmer et al. (2004) in random effects modeling and empirical
Bayes prediction of area specific odds-ratios, for instance for the association
between ethnicity and unemployment. They make use of one-way marginal
tables from the census ‘tabular output’, e.g. unemployment rate and ethnic
composition, in addition to borrowing strength from other areas as usual
in empirical Bayes prediction.
Models combining discrete and continuous latent variables Latent
class models can be specified by modeling the ‘complete’ data (including
latent class membership) using log linear models. Since latent class mem-
bership is unknown, we must sum over the latent classes to obtain expected
counts for the observed response patterns. For a two-class model with three
dichotomous observed responses yi, i = 1, . . . , 3, a log-linear model with
conditionally independent responses given latent class membership can be
written as

logµy1y2y3c = νy1y2y3c = β0 + cα0 +
∑
i

yiβi +
∑
i

yicαi,

where c = 0, 1 is the latent class indicator, µy1y2y3c is the expected count for
response pattern y1, y2, y3 and latent class c, and βp and αp, p = 0, . . . , 3
are parameters. The expected values µy1y2y3 of the observed counts are
modeled as the sum of the class-specific expected counts,

µy1y2y3 = exp(νy1y2y30) + exp(νy1y2y31).

Qu, Tan and Kutner (1996) include continuous random effects ηj within a
latent class model to relax conditional independence among the responses
given latent class membership. To incorporate subject-specific random ef-
fects in the model, we expand the data to obtain counts (0 or 1) for each
response and latent class pattern for each subject j. The model can then
be written as

logµy1y2y3cj = νy1y2y3cj = β0 + cα0 +
∑
i

yiβi +
∑
i

yicαi

+ ηj(
∑
i

yi(1− c)λi0 +
∑
i

yicλi1),

where ηj can be interpreted as subject j’s propensity to have a ‘1’ (e.g.
score positively on a diagnostic test, have a symptom, be diagnosed by a
rater), with item-specific effects λi0 for those who are healthy and λi1 for
those who have the disease. Since the total count for each person j is fixed
at 1, we can estimate the multinomial logit version of this model

Pr(y1y2y3c|j) = exp(νy1y2y3cj)∑
y1y2y3c

exp(νy1y2y3cj)
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Again, we do not know c, so the likelihood contribution for subject j be-
comes

Pr(y1y2y3|j) = exp(νy1y2y30j) + exp(νy1y2y31j)∑
y1y2y3c

exp(νy1y2y3cj)
.

This is a composite link model if each multinomial logit term is viewed as
an inverse link. Note that this set-up makes it easy to relax conditional
independence among pairs of items by including interaction effects of the
form β12y1y2 in the linear predictors.

Item response models accommodating guessing If it is possible to
guess the right answer of an ‘item’ in ability testing, as when multiple
choice questions are used, the two-parameter logistic item response model
in (4) is sometimes replaced by the three-parameter model

Pr(yij=1|ηj) = ci + (1−ci) exp(νij)
1+exp(νij)

.

The ci are often called ‘guessing parameters’ and can be interpreted as the
probability of a correct answer on item i for an examinee with ability minus
infinity.
If we fix the guessing parameters to some common constant w, the response
model can be expressed as a generalized linear model with a composite link

Pr(yij=1|ηj) = wg−1
1 (1) + (1−w)g−1

2 (νij),

where g1 is the identity link and g2 is the logit link. If we let α1 = w be
a free parameter, we have a simple example of a bilinear composite link
model.
The above kind of model (without latent variables) is said to have ‘natural
responsiveness’ or ‘nonzero background’ in quantal response bioassay.

Log-normal random effects If the random effects distribution is skewed,
we may want to specify a linear mixed model with log-normal random
effects

µij = x′
ijβ + exp(η1j) + exp(η2j)zij ,

which can be accomplished using the composite link

µij = x′
ijβ + exp(η1j) + exp(η2j + log(zij)).

This is also a useful way of conducting a sensitivity analysis of the conven-
tional normality assumption for the random effects. Using the GLLAMM
formulation, we can also have log-normal common factors.
If we use a bilinear composite link, we can include log-normal random
effects in generalized linear mixed (and item response) models as well,

µij = h[x′
ijβ + exp(η1j) + exp(η2j + log(zij))].
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Zero-inflated Poisson (ZIP) models The likelihood of ZIP models
can be expressed using a combination of composite links and exploded
likelihoods.
The ZIP model is a finite mixture model for counts where the population is
assumed to consist of two components, a component c=0 where the count
can only be zero and a component c = 1 where the count has a Poisson
distribution. The probability of belonging to the zero-count component is
modelled as

πi0 =
exp(z′iγ)

1 + exp(z′iγ)
(6)

and the Poisson distribution for the other component is

Pr(yi=k|xi, ci=1) = exp(−µi)µki /k!, µi = exp(x′
iβ). (7)

The probability of a non-zero count becomes

Pr(yi=k > 0|zi,xi) = Pr(yi=k > 0, ci=1) = (1− πi0) exp(−µi)µki /k!
=

(
1

1 + exp(z′iγ)

)[
exp(−µi)µki /k!

]

and the probability of a zero count

Pr(yi=0|zi,xi) = Pr(yi=0, ci=0|zi,xi) + Pr(yi=0, ci=1|zi,xi)
= πi0 + (1− πi0) exp(−µi)
=

(
1

1 + exp(z′iγ)

)
[exp(z′iγ) + exp(− exp(x′

iβ))] .

For a non-zero count, the probability is the product of the probability of
0 in a logistic regression model with linear predictor z′iγ and the Poisson
probability of a count k with a log link and linear predictor x′

iβ. There-
fore, for non-zero counts, we obtain the correct likelihood by creating two
responses, 0 and k and specifying a mixed response (logistic and Poisson)
model.
For a zero count, we again create a 0 response, modelled as a logistic re-
gression, for the first term. For the second term, we specify a composite
link,

[exp(z′iγ) + exp(− exp(x′
iβ))] = g−1

1 (z′iγ) + g−1
2 (x′

iβ),

where g1 is the log link and g2 the log-log link. If we create a 1 response
and specify a Bernoulli distribution with this composite link, we obtain the
required term.
This set-up also makes it fairly straightforward to include random effects
in ZIP models to capture dependence induced by clustered data. For in-
stance, in modeling the number of alcoholic drinks consumed by respon-
dents nested in regions, we could include region-specific random effects in
both (6) and (7) to model variations in the prevalence of non-drinking
and in the amount consumed among drinkers, with possible correlations
between these random effects.
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6 Unfolding attitudes to female work participation

In the 1988 and 2002 General Social Surveys respondents in the USA were
presented with the following attitude statements regarding female work
participation:

[famhapp] A woman and her family will all be happier if she goes to work

[twoincs] Both the husband and wife should contribute to the family income

[warmrel]: A working mother can establish just as warm and secure a relation-
ship with her children as a woman who does not work

[jobindep] Having a job is the best way for a woman to be an independent person

[housewrk] Being a housewife is just as fulfilling as working for pay

[homekid] A job is alright, but what most women really want is a home and
children

[famsuff] All in all, family life suffers when the woman has a full-time job

[kidsuff] A pre-school child is likely to suffer if his or her mother works

[hubbywrk] A husband’s job is to earn money; a wife’s job is to look after the
home

The respondents rated each statement as either ‘disagree completely’ (1),
‘disagree’ (2), ‘agree somewhat’ (3), ‘agree’ (4), or ‘agree completely’ (5).
In 2002, the ‘disagree completely’ and ‘disagree’ response options were col-
lapsed into a single ‘disagree’ option.
We use the unfolding model proposed in Section 5, with g as scaled probit
links with item-specific scale parameters σi (estimated on the log-scale),

g−1(νijs) = Φ−1

(
βi + λiηj − κs

σi

)
.

In 2002, the composite link for ‘disagree’ is the sum of the composite links
for ‘disagree’ and ‘disagree completely’.
To investigate if sentiments in favour of female work participation ηj (loosely
referred to as ‘feminism’) have changed from 1988 to 2002, we specify the
structural model

ηj = γ1wj + ζj , ζj ∼ N(0, ψ),
where wj is a dummy variable for year being [2002].
Maximum likelihood estimates based on data from 1462 respondents are
given in Table 1 where the items have been ordered from the most positive
to the most negative according to their estimated scale values β̂i. Since
the magnitude of γ̂1 is negligible, mean ‘feminism’ does not appear to have
changed.



A. Skrondal et al. 37

TABLE 1. Estimates for scaled probit unfolding model

Item parameters
βi λi lnσi

Item i Est SE Est SE Est SE

[famhapp] -2.32 0.08 0.30 0.04 -0.24 0.05
[twoincs] -1.60 0.07 0.29 0.05 -0.06 0.05
[warmrel] -0.99 0.07 1 – 0 –
[jobindep] -0.27 0.14 1.15 0.15 0.64 0.05
[housewrk] 1.29 0.08 0.54 0.08 0.22 0.06
[homekid] 2.11 0.07 0.76 0.06 -0.06 0.04
[famsuff] 2.19 0.08 1.43 0.09 -0.29 0.05
[kidsuff] 2.24 0.08 1.49 0.09 -0.46 0.06
[hubbywrk] 2.42 0.09 1.14 0.09 -0.11 0.05

Thresholds −κs=κ2S−s

s (categories) Est SE

1 (‘disagree completely’/‘disagree’) 3.43 0.11
2 (‘disagree’/‘agree somewhat’) 2.36 0.08
3 (‘agree somewhat’/‘agree’) 1.67 0.06
4 (‘agree/‘agree completely’) 0.72 0.03

Latent trait regression
Est SE

[2002] γ1 -0.04 0.04
Variance ψ 0.62 0.08

Following Roberts and Laughlin (1996) we assess model fit graphically.
First, we estimate the position or ‘dominance’ ν̃ij of respondent j relative
to item i (how much more ‘feminist’ the respondent is than the item)
by plugging in the empirical Bayes prediction η̃j of the latent trait and
the parameter estimates into the linear predictor. Substituting this into
the unfolding model, we obtain the expected response category for each
person-item pair. Grouping the ν̃ij into approximately homogeneous groups
of size 30 for each item and plotting the corresponding average observed
and expected frequencies versus the average ν̃ij for each item gives Figure
1. Our unfolding model appears to fit quite well.
Although the expected response takes the form of a single-peaked function
consistent with an unfolding process when all items are considered together,
none of the individual items exhibit single-peaked behaviour with the pos-
sible exception of [jobindep]. Using conventional item response models that
assume monotonicity might therefore be appropriate if either (1) reversing
the coding of the appropriate items can be based on a priori information
or (2) the model accommodates negative factor loadings.
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FIGURE 1. Mean expected and observed responses as a function of ‘dominance’
ν̃ij of person j over item i

7 Conclusions

Although simple to implement, composite links and exploded likelihoods
have been demonstrated to be remarkably powerful tools for specifying
novel GLLAMMs. Indeed, we do not purport to exhaust potential applica-
tions in this paper.
A further useful extension would be to generalize the traditional composite
links suggested by Thompson and Baker (1981) to accommodate products
of inverse links. A simple variant is of the form

µi =
∑
r

αr
∏
t

g−1
rt (νirt).

A composite link with products can be used for additive relative risk mod-
els with random effects. The risk or rate parameter µij in the Poisson
distribution is specified as

µij = exp(β0 + ηj)[1 + x′
ijβ],

where xij does not include a 1 and β correspondingly not a constant. Note
that the baseline risk when xij=0 becomes exp(β0+ηj) > 0. It follows that
the ‘relative risk’ RRij , the risk when the covariate vector is xij relative to
the baseline risk, is

RRij = 1 + x′
ijβ,

an additive function of the covariates.



A. Skrondal et al. 39

Maximum likelihood estimation and of GLLAMMs and empirical Bayes
prediction using adaptive quadrature (e.g. Rabe-Hesketh, Skrondal and
Pickles, 2004b) are implemented in the gllamm software running in Stata.
See http://www.gllamm.org for further information.
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Abstract: We describe a one-sample multivariate empirical Bayes statistic (the
MB statistic) to select differentially expressed genes from replicated microarray
time course experiments. We do this by testing the null hypothesis that the
expectation of a k-vector of a gene’s expression levels is a multiple of 1k, the vector
of k 1s. The importance of moderation in this context is explained. Together with
the MB statistic we have the one-sample T̃ 2 statistic, a variant of the one-sample
Hotelling T 2. Both the MB statistic and T̃ 2 can be used to rank genes in the order
of evidence of nonconstancy, incorporating the correlation structure among time
point samples and the replication. In a simulation study we show that the MB
statistic and T̃ 2 statistic achieve the smallest number of false positives and false
negatives, and perform slightly better than the one-sample moderated Hotelling
T 2 statistic. Several special and limiting cases of the MB statistic are derived,
and two-sample versions described. Finally, we illustrate the use of these statistics
in two microarray time course studies.
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Model Selection for Regression Analyses with
Missing Data
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Abstract: The Akaiki Information Criterion, AIC, is one of the leading selec-
tion methods for regression models. In case of partially missing covariates with
missingness probability depending on the response, regression estimates based
on the so-called complete cases are known to be biased. In this contribution it
is shown that model selection using AIC-values based on the complete cases can
lead to the choice of wrong or less optimal models. In analogy with the weighted
Horvitz-Thompson estimator, we propose a weighted version of AIC. It is shown
that this weighted AIC criterion improves model choices.

Keywords: Akaiki Information Criterion; Missing Data; Model Selection; Wei-
ghted Likelihood

1 Introduction

Let (x1, z1, y1), ..., (xn, zn, yn) be a sample where y denotes a response vari-
able and x and z covariate variables. Here we focus on the case that, for a
fixed value of x and z, the response y is normally distributed with variance
σ2. Suppose we want to select an optimal model from a set of K candi-
date models for the mean function µ(x, z) = E(y|x, z). A well-established
method is selecting the model k which minimizes the AIC criterion (Akaike
1973, Linhart and Zucchini 1986, Burnham and Anderson 1998, Hurvich
and Tsai 1989):

AIC = −2 log(likelihood of model k) + 2× (# parameters of model k),
(1)

where the likelihood is evaluated at the corresponding ML-estimator. For
a normal error structure, this simplifies to (ignoring some constant terms,
not depending on k):

AIC = n log σ̂2
k + 2pk, (2)

where σ̂2
k is the ML variance estimator based on model k and pk is the

number of regression coefficients in model k.
In a missing data context, covariate x or response y may be missing. We
assume z is always observed. Let δi = 1 if the ith observation is completely
observed and δi = 0 otherwise. Furthermore, let the selection probabilities
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πi = P (δi = 1|yi, xi, zi) reflect the missing at random (MAR) missingness
mechanism (Rubin 1976). So, πi = P (δi = 1|yi, zi) in the missing covariate
case and πi = P (δi = 1|xi, zi) in case the response y is subject to missing-
ness. For missing covariate data, Flanders and Greenland (1991) and Zhao
and Lipsitz (1992) suggested a weighted estimator in the spirit of Horvitz
and Thompson (1952), based on the weighted likelihood or weighted least
squares criterion for the complete cases (CC) with weights equal to 1/π̂i,
where π̂i is an appropriate estimator for the selection probabilities πi. Wang
et al. (1997) proposed to use a nonparametric kernel smoother to estimate
the selection probabilities while fitting the regression curve with a paramet-
ric model and Wang et al. (1998) proposed a weighted local linear estimator
for µ(x) while using local linear estimates for π(yi).
Model selection for incomplete data has not received much attention in
the literature. Cavanaugh and Shumway (1998) derived and investigated a
variant of AIC motivated by the same principle as the ‘predictive divergence
of incomplete observations’. Hens, Aerts and Molenberghs (2004) proposed
modifications of several model selection criteria using weighting likelihood
ideas and compared it to “model selection after imputation” methods. A
similar weighted Akaiki information criterion in the context of robust model
selection and robust regression models has been proposed by Agostinelli
(2002).

2 Modified AIC criterion

We focus on the weighted AIC criterion applied to normal response data
as described in the previous section. Weighting in (2) each complete case
contribution to the loglikelihood with weight 1/π̂i leads to the criterion

AICW = (
n∑

i=1

δi/π̂i) log σ̂2
W,k + 2pk (3)

where σ̂2
W,k is the ML variance estimator based on the weighted (normal)

likelihood.

3 Unknown weights

In some settings (e.g. a two-stage design), the selection probabilities are
known and do not have to be estimated. In many missing data problems,
however, the unknown weights πi, which can be considered as nuisance
parameters, have to be estimated. This estimator has to be consistent,
otherwise it will adversely affect the model selection procedure. So if we
estimate πi with a parametric model, we are faced with an additional model
selection problem. Hens, Aerts and Molenberghs (2004) suggest the use
of a nonparametric estimator, e.g. a kernel smoother as used in Wang et



M. Aerts et al. 45

al. (1998). In the next section we illustrate the applicability of the method
in a small simulation study.

4 Simulation Study and Discussion

Observations for a continuous explanatory variable X are generated from
a uniform distribution on the interval [0, 10], Z observations are generated
from a Bernoulli distribution with probability 0.50. Conditionally upon X,
Y observations are generated from a normal distribution with mean µ(x) =
−3+3x+5x2 and variance σ2 = exp(5).X observations are then turned into
‘missing’ with conditional probability π(x) = [1+exp{1−0.009(y−300)}]−1.
We generated 1000 different samples {Yi, i = 1, . . . , n} with a fixed design
{xi, zi, i = 1 . . . , n} of sample size n = 100. For each sample, 8 different
regression models were fit, i.e. all submodels of Y = β0 + β1X + β2X

2 +
β3Z + β4XZ.

Model 1 X Z X,X2 X,Z X,X2, X, Z, X,X2,
Method Z XZ Z,XZ
ALL 0 125 0 647 30 128 13 57
CC 0 340 0 432 71 75 38 44
TW 0 197 0 366 74 116 69 178
EW 0 269 0 422 73 97 52 87
E2 0 220 0 396 78 103 66 137

TABLE 1. Simulation study with 8 candidate models: number of AIC selected
models

Method Correct Incorrect
ALL 832 168
CC 551 449
TW 660 340
EW 606 394
EW2 636 364

TABLE 2. Simulation study with correctly and incorrectly classified models: num-
ber of AIC selected models

Table 1 shows, for each candidate model, the number of times it is has
been selected as best model by the AIC criterion (2) or (3), for 5 different
methods: ALL stands for an unweighted analysis based on all data (as if
no data were missing); CC for an unweighted analysis on the complete
cases only (excluding the observations with a missing X-value); TW for a
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weighted analysis with true known missingness probabilities π(x); EW for
a weighted analysis with kernel estimated probabilities π(x) using a fixed
bandwidth and finally, EW2 for a weighted analysis with kernel estimated
probabilities using a cross-validation data-driven choice of the smoothing
parameter.
A comparison of the first two rows shows the effect of ignoring the miss-
ingness by using an unweighted AIC criterion on the complete cases. The
weighted criterion (3) improves the selection of correct models, as shown
in the last three rows of Table 1 and Table 2. In Table 2, all more complex
models containing the true model as a submodel are collapsed in a category
“correct model”.
The last two lines illustrates the importance of using a data-driven smooth-
ing parameter, when estimating the missingness probabilities π(x).
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Abstract: We consider a multivariate random effects model for clustered bi-
nary data that is useful when interest focuses on the association structure among
clustered observations. Based on a vector of gamma random effects and a comple-
mentary log-log link function, the model yields a likelihood that has closed-form,
making a frequentist approach to model fitting straightforward. We consider the
interpretation and identifiability of the model parameters, and use the proposed
model to analyze binary time series data from an arthritis clinical trial.

Keywords: complementary log-log link; binary time series; generalized linear
mixed model; multivariate gamma.

1 Introduction

Use of generalized linear mixed models (GLMM; Breslow and Clayton 1993)
has become a popular approach to modeling correlated discrete data. The
models account for correlation among clustered observations by including
random effects in the linear predictor component of the model. Although
GLMM model fitting is typically complex, standard random intercept and
random intercept and slope models can now be routinely implemented in
such commercial software packages as SAS, Stata, and Splus/R.
While in many applications the nature of dependence between clustered
responses is a nuisance, in some scientific settings interest focuses primar-
ily on the association structure among clustered observations. Examples
include studies focusing on serially correlated observations (e.g. Fitzmau-
rice and Lipsitz 1995) and familial aggregation of disease (Betensky and
Whittemore 1996). A disadvantage of standard GLMMs in these instances
is their inability to handle complex dependence structures among clustered
responses. Several authors have proposed adding additional random effects
to flexibly model more complicated association structures (e.g. Diggle et
al. 2002, Section 11.4.2). These additional random effects, however, add a
layer of complexity to model fitting.
We consider a multivariate random effects model for clustered binary data
that is useful when interest focuses on the association structure among
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clustered observations. The model represents a multivariate random ef-
fects extension of a model proposed by Conaway (1990). Based on a vector
of gamma random effects and a complementary log-log link function, the
proposed model yields a marginal likelihood that has closed-form, making
computationally intensive numerical integration or Monte Carlo sampling
unnecessary. As a result, model fitting via maximum likelihood is computa-
tionally simple. In addition, as we discuss further in Section 3, a closed-form
likelihood allows the user to check model identifiability relatively easily.

2 Model

Let the vector Z = (Z1, . . . , Zp)
T be multivariate gamma as defined by

Henderson and Shimakura (2003); that is, for suitable choice of matrix
C = ((cij)), Z has Laplace transform

L = E
{
exp

(−uTZ
)}

= |I + ζCdiag(u)|−1/ζ
, (1)

for all ζ > 0. Marginally, Zj ∼ Gamma(1/ζ, 1/ζ), j = 1, . . . , p, with
correlation matrix describing the association among gamma variables equal
to R with elements rjk = c2jk. We denote this multivariate distribution
Z ∼MG(ζ,C).
Now, let Yij denote binary response j, j = 1, . . . , ni, in cluster i, i =
1, . . . , N . Let θij = log (Zij) be a random effect corresponding to Yij , and
consider the GLMM

ln {−ln [E (Yij |Zi)]} = θij + xT
ijβ, (2)

where Zi
iid∼ MG(ζ,C) and β is a k × 1 vector of fixed effects. In this

framework, ζ is an overdispersion parameter, the interpretation of which
we address in detail in Section 3. Interest typically focuses on both the
fixed effects β and the matrix C, often parameterized as a known function
of a smaller number of variance components ρ.
In order to derive the joint probability P (Yi1 = y1, Yi2 = y2, . . . , Yini

=
yni

), we use the method of Conaway (1990) of first computing marginal
probabilities in the 2ni table that cross-classifies the binary responses in a
given cluster, and subsequently transforming these marginal probabilities
back to the joint probabilities of interest. Suppressing the i notation, let T
be a subset of the indices {1, 2, . . . , n}, and define

π∗
T =

∫ ∏
j∈T

P (Yj = 1|Z)f(Z)dZ. (3)

Under model (2), these probabilities have closed form:

π∗
T =

∫
exp


−

∑
j∈T

Zijexp
(
xT
ijβ
)

 f(Z)dZ
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= |I + ζCdiag(u)|−1/ζ
,

where the jth element of u equals exp(xT
j β) if j ∈ T and 0 otherwise.

Thus, only changes in the elements of u are necessary to reflect differences
among specific π∗

T . If π∗ is the collection of all such marginal probabil-
ities π∗

T , then the vector of probabilities defining the joint distribution
of Y = (Y1, . . . , Yn) is a known linear transformation of π∗, yielding a
marginal likelihood having closed-form. We maximize the corresponding log
likelihood with respect to (β,ρ, ζ) using the optimization function optim
in the R software package, and base inference on the inverse Hessian matrix
evaluated at the maximum likelihood estimates.

3 Parameter Identifiability

We now discuss the identifiability and interpretation of the parameters
ζ and ρ in the complementary log-log – multivariate gamma model. For
concreteness, we focus on the first order-autoregressive correlation struc-
ture cik = ρ|ti−tk|, although similar reasoning applies for other correlation
structures such as the compound symmetric structure cik = ρ.
To understand the model parameters, it is instructive to consider special
cases of the model with parameters held fixed at specific values. When
ρ = 0, the individual gamma random effects, and hence the binary re-
sponses, are independent. In this case, the data are unclustered, and the
overdispersion parameter ζ is unidentifiable in the presence of a mean model
for πij . In contrast, the special case of the model with ρ = 1.0 corresponds
to the simple random intercept model proposed by Conaway (1990). In this
case, ζ represents the variance component for the random intercepts in the
model, and is clearly identifiable. Thus, identifiability of the model param-
eters depends on the strength of the association among clustered responses,
with the model being weakly identifiable for a wide range of ρ values within
the two extremes. Simulations confirm these likelihood properties, and sug-
gest that all model parameters are estimable when ρ is greater than ap-
proximately 0.90. The above identifiability considerations are not unique
to the complementary log-log model considered here, but apply to other
multivariate random effects models as well.
To address cases of weak identifiability in a frequentist approach to fit-
ting model (2), we propose first fitting the model fixing the overdispersion
parameter ζ to be 1.0. Simulations suggest that this approach results in
well-identified parameters in this multivariate gamma setting. If the esti-
mated correlation ρ under this constraint is not large, the overdispersion
parameter ζ is likely not identifiable from the data. In cases in which there
is strong association among outcomes, we propose then fitting the uncon-
strained model and estimating ζ. The closed-form likelihood enables the
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user to check model identifiability relatively easily by inspecting likelihood
contours and the information matrix of the resulting parameter estimates.
See Coull, Houseman, and Betensky (2004) for further details.

4 Example: Binary Time Series Data

We apply the proposed model to binary time series data from an arthritis
clinical trial. For each of N = 51 subjects, the data consist of at most five
unequally spaced binary self-assessment measurements of arthritis, with
this outcome equaling 0 if “poor” and 1 if “good”. Patients were randomized
to one of two drug treatments, placebo or auranofin. Patients had self-
assessments taken at week 0 and week 1 prior to randomization, and at
weeks 5, 9, and 13 post-randomization. Interest focuses on the effect of
drug treatment, while controlling for gender, age at week 0, and time (in
weeks). Of the 51 subjects, 14 (27%) have some missing responses.
We analyze the data with the main effects model

ln {−ln [E (Yij |Zi)]} = θij +β0 +β1Agei+β2Timeij +β3Drugij +Genderi,
(4)

assuming the exponential correlation structure cjk = ρ|tj−tk| for the mul-
tivariate gamma random effects. In view of the identifiability considera-
tions outlined in Section 3, we run a preliminary analysis constraining the
overdispersion parameter to be ζ = 1.0. The estimated serial correlation
parameter in this case is ρ̂ = 1.0, indicating that the association is strong
in this setting.
The unconstrained fit yields ζ̂ = 3.29, which is far from 1.0. In addition,
a comparison the maximum likelihoods suggests that the unconstrained
model fits significantly better than the constrained model, although a con-
dition number of 1.29 ×104 for the Hessian matrix suggests that the likeli-
hood is somewhat flat in the (β0, ζ) direction. The estimate ρ̂ = 0.978 again
suggests strong correlation among adjacent outcomes. Because the model
contains a continuous covariate, goodness-of-fit measures for contingency
tables do not directly apply to this model. However, a goodness-of-fit test
applied to the one way table classifying subjects according to their number
of “good” self-assessments suggests that the model fits well (p = 0.82). We
re-fit the model after dropping non-significant terms Age, Time, and Gen-
der. Under this simpler model, the estimated drug effect corresponds to a
log odds ratio of 1.98, which, as expected, is larger than the GEE estimate
of 1.45 obtained by Fitzmaurice and Lipsitz (1995).

5 Discussion

In this article we have proposed a new multivariate random effects model
for clustered binary observations. The model provides flexibility in model-
ing the association structure among observations, and maximum likelihood
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inference is computationally straightforward. In the clinical trial example
considered in the previous section, the model provides a likelihood-based
approach to analyzing serially correlated binary responses.
As noted in Section 3, such multivariate random effects models for binary
responses can be over-parameterized for some data configurations. We have
proposed a careful inspection of the likelihood surface, via both likelihood
plots and calculation of the condition number of the Hessian matrix evalu-
ated at the MLE’s. We view the ability to conduct such inspections using
the proposed model one of its advantages over existing formulations for
which closed-form expressions for the marginal likelihood do not exist.

Acknowledgments: This work was supported by NIH grants CA075971
(BAC and RAB), CA114255 (RAB), and ES05947 (EAH).
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Abstract: Space-time interaction occurs in a point process when there are space-
time clusters not explained by neither the purely spatial nor the purely temporal
clustering. Knox, and others after him, have proposed tests to determine if there
is space-time interaction as a general phenomena in a data set. These methods
have been widely used in epidemiology, ecology and other fields. Sometimes it is
also of interest to know the specific location of space-time interaction clusters. In
this paper, we propose a new statistical method for the detection and inference of
local space-time interaction clusters. It is based on scanning the three-dimensional
space with a score test statistic under the null hypothesis that the point process is
an inhomogeneous Poisson point process with space and time separable first order
intensity. The method is illustrated using crime statistics from Belo Horizonte,
Brazil, with the goal of finding space-time clusters of robberies and homicides
not explained by purely spatial and purely temporal patterns.

Keywords: spatial statistics; point process; point pattern; scan statistic; score
test; crime statistics.

Introduction

Crime varies substantially on space and time and separate analysis of these
dimensions are often carried out. Less common is the simultaneous analysis
of both dimensions aiming at, for example, finding evidence for the presence
of any space-time clusters not explained by the baseline geographical and
temporal variation. These are denoted as space-time interaction clusters.
Knox (1964) proposed a test for space-time interaction that has been incor-
porated into various spatial statistical software and which is widely used
in epidemiology, ecology and criminology. Mantel (1967), among other au-
thors, proposed other space-time interaction tests. As with Knox test, these
all have in common that they are general tests evaluating whether there
is space-time interaction throughout the data, without pinpointing the lo-
cation of specific clusters. That is very useful if we for example want to
determine whether a particular disease may be infective of not, or if one
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is interested in the general patterns of crime in order to understand soci-
ological and behavioral aspects of criminal behavior. They are less useful
for a police department wanting to know where and when to allocate their
resources most effectively, or a public health official wanting to know the
time and location of a disease outbreak, both of which requires knowledge
of the space and time parameters of specific clusters.
Therefore, it is useful to differentiate two different types of alternatives
to the null hypothesis of no space-time interaction. One of them focus on
space-time clustering occurring throughout the map, either due to many
small clusters of slightly larger than average incidence rate or many weakly
interacting clusters of events. The other focus on situations where one or a
few localized space-time clusters will have a substantially higher incidence
rate, or where there is strong interaction between a subset of the events.
For this second type of alternative, it is of interest to detect the location
and time of specific clusters.
In this paper, we are interested in the first type of alternatives to lack of
space-time clustering. We present our new space-time cluster detection test
for space-time point processes in the next section. It uses a scan statistic
approach and it does not requires risk population information or critical
thresholds on space and time. Furthermore, our proposal is able to identify
the specific space-time regions leading to rejection of the null hypothesis.
We apply the methodology to three crime data sets. We conclude in Section
5 with a discussion on the potential value and limitations of our results for
applications.

1 The new space-time test

In this section, we describe briefly the new test. Assume that we observe
random point events generated by a Poisson point process in a space-time
region A = A × [0, τ ], where A is a bi-dimensional polygon. Given the
observed events, the log-likelihood is equal to

l =
n∑
i=1

log λ (xi, yi, ti)−
∫
A
λ(x, y, t)dxdydt

The null hypothesis of no space-time interaction implies that the intensity
function is equal to

H0 : λ(x, y, t) = λS(x, y)λT (t)

Let C = CS×CT be a fixed and arbitrary space-time cylinder with CS being
a convex region in A and CT a time interval. Consider a local alternative
HC,ε to H0 given by

HC,ε : λ(x, y, t) = λS(x, y)λT (t) (1 + εIC(x, y, t))
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where ε > 0 and IC is the indicator function that (x, y, t) ∈ C. For this
hypothesis pair, the score test statistic is given by

∂l

∂ε
|ε=0 = N(C)−

∫
CS

λS(x, y)dxdy ×
∫
CT

λT (t)dt (1)

which can be estimated by

N(C)− N (CS × [0, T ])N (A× CT )
N (A× [0, T ])

(2)

Since N(C) is a Poisson random variable, we propose to use

UC =
N(C)−N (CS × [0, T ])N (A× CT ) /N(A× [0, T ])√

N (CS × [0, T ])N (A× CT ) /N(A× [0, T ])
(3)

as a test statistic.
Usually we have no prior knowledge of space-time clusters location and then
the test developed can not be applied since we have no cluster candidate
C to use. Hence, our proposed test is based on the scan statistic

U = sup
C

{UC} (4)

which searches over all possible cylinders C (Kulldorff, 1997). In practice,
the scanning in (4) is undertaken over a smaller class of cylinders for several
reasons explained elsewhere.
The sampling distribution of U defined in (4) is intractable. As a conse-
quence, its null hypothesis distribution is obtained by a Monte Carlo pro-
cedure conditionally on the realizations of the process spatial and temporal
components. Under the null hypothesis, the sampling distribution of U is
the distribution induced by random permutation of the times ti, i = 1, ..., n
keeping fixed the spatial locations (xi, yi), i = 1, ..., n. The observed value
u1 of U is ranked amongst values u2, ..., uB generated by recomputing
the U statistic after B1 independent random permutations of the times
ti, i = 1, ..., n. If u1 ranks k-th largest, the one-sided exact attained signif-
icance level is k/m. This Monte Carlo method is computer intensive and
naive algorithms should not be used for large data sets.

2 Application

For illustration, we use the crime incidence data from a large Brazilian city,
Belo Horizonte, during 1995-2001 collected by the Políıcia Militar de Minas
Gerais based on their police records of crime events. Each crime event was
georeferenced by the coordinates of its occurrence place (em meters) and
occurrence day. Four different data sets are used, investigating the space-
time distribution of homicides as well as robberies of bakeries, drug stores
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FIGURE 1. Maps of Belo Horizonte with four types of crime. The upper row
shows the 765 drugstore robberies (left) and the 2216 bakery robberies (right).
The bottom row shows the 582 lottery house robberies (left) and the homicides
(right). The first three range from 1998 to 2000 while homicides data range from
1998 to 2001.

and lottery houses. Figure 1 shows the maps of all events for each one of
the crimes.
Table 1 presents the results for the Knox test. It also shows results for our
scan our scan procedure with a minimum of 5 events in each cylinder. We
found C∗

1 as a significant (at 0.05 level) space-time cluster in all four crimes,
with bakery robberies presenting also C∗

2 as a significant cluster (see Table
1). The number of events in the most significant cluster was 5, 7, 6, and 5
events for bakery, drugstore, lottery robberies, and homicide, respectively.
The second significant cluster of bakery robberies had 5 events. Although
the homicide space-time cluster presented borderline significance, we can
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TABLE 1. Table with the p-values of Knox and scan tests. The results are sep-
arated according to either the thresholds used in the test (Knox) or the first
(C∗

1 ) and second (C∗
2 ) most significant cylinders (scan test). The null hypothesis

distribution was determined by 999 Monte Carlo permutations of the observed
times ti.

Crime 2 km, 20 days 3 km, 30 days C∗
1 C∗

2

Bakery robbery 0.01 0.01 0.030 0.032
Drugstore robbery 0.01 0.01 0.012 0.154
Lottery robbery 0.05 0.22 0.028 0.220

Homicide 0.10 0.11 0.048 0.344

see that the scan test identified clusters in homicide and lottery robberies,
whereas Knox test did not. This suggests that our method could be more
sensitive to the presence of localized clusters than Knox test.
Concerning time, the shortest bursts of spatially localized violence was
that associated with the two clusters of bakery robberies. They first and
second clusters C∗

1 and C∗
2 lasted 8 and 17 days starting on February, 28

2000 and March 29, 2000 respectively. Drugstore and lottery robberies had
longer clusters lasting 68 and 81 days starting on April 03, 1997 and May
23, 1995, respectively. The homicide cluster was detected on February 03,
2000, lasting 58 days.
The significant clusters of bakery robberies showed extreme patterns. Clus-
ter C∗

1 lasted only 8 days and, although occurring in different parts of the
city, the second cluster started only 3 weeks after the first one had disap-
peared. This lasted only 17 days and contained five events related with 3
different stores, one of them being robbed three times during this period
and five times during the total study period. The time lags between the
five successive events in this second space-time cluster were 5, 2, 6, and 4
days.
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Abstract: The standard approach in the analysis of short-term effects of air
pollution on health is based on Generalized Additive Models (GAM), where sea-
sonality and possibly other unobserved confounders are non-parametrically mod-
eled. The aim of this paper is to compare, by a simulation study, performances
of semi-parametric (GAM with penalized regression spline) and parametric ap-
proach (GAM with parametric regression spline) in term of estimation of air
pollutant effect. We found that using semi-parametric approach can bring to bi-
ased estimates, unless a certain amount of undersmoothing is introduced. On
the contrary negligible bias was found under the parametric approach, which
appeared also robust to model misspecification.

Keywords: Generalized Additive Model; Generalized Linear Model; Smooth-
ing Spline; Regression Spline; Penalized Regression Spline; Epidemiological Time
Series

1 Introduction

Currently GAMs have became a standard in the analysis of short-term
effects of air pollution on health. In such models non-parametric func-
tions of time (either cubic smoothing splines or locally weighted regres-
sion smoothers) are used to control for those unobserved confounders that
could have a systematic temporal behavior. Recently critical points in us-
ing commercial statistical software which implements backfitting algorithm
for fitting GAM were stressed (Dominici et al., 2002; Ramsay et al., 2003),
encouraging use of alternative modeling strategies. They are based on sim-
pler and more standard estimation methods, such as the fully parametric
approach based on specification of Generalized Additive Models with re-
gression splines (GAM+RS), or require much less computation for standard
error estimation, such as the semi-parametric approach based on specifi-
cation of GAMs with penalized regression splines (GAM+PRS). The ob-
jective of the paper is to compare, by means of a simulation study, the
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performances of GAM+RS and GAM+PRS in estimating the parametric
term which models the air pollutant effect in epidemiological time series
regression.,

2 Methods

First we created pseudo data using the daily number of hospital admis-
sions for respiratory diseases and the mean daily concentration of NO2

from Barcelona (1995-1999). Adapting on real hospital admissions data a
GAM with a penalized regression spline for time trend with df0 degrees
of freedom, we created a pseudo curve for seasonality, f0(t). A pseudo air
pollution time series Xt was builded from the real NO2 data, such that
predefined amount of concurvity in data was obtained.
Then we generated 3000 outcome time series (Yt) sampling from the fol-
lowing model:

Yt ∼ Po(µ0t)

log(µ0t) = α0 + f0(t) + β0Xt,

where β0 denotes the ”true” effect of air pollutant in term of log rate
ratio. We analyzed each simulated data set using three different models: a
GAM with a penalized regression spline for time trend with df0 degrees of
freedom, a GAM with a cubic regression spline with df0 degrees of freedom
and a GAM with a penalized regression spline whose degrees of freedom
were selected by GCV. The first two models correspond to the situation in
which the number of degrees of freedom to be assigned to the spline (df0)
is known. The following different scenarios were considered:

1. β0 = 0.0006, concurvity = 0.45, df0 = 3, 4, 5, 7, 9 per year

2. β0 = 0.0006, df0 = 5 per year, concurvity = 0, 0.45, 0.7, 0.9

3. df0 = 5 per year, concurvity = 0.45,β0 = 0.0001, 0.0006, 0.006

Finally, in order to assess robustness of parametric and semi-parametric
approach to misspecification of degrees of freedom for the spline, we fitted
on each simulated data set models with df = 3, 4, . . . , 15 degrees of freedom
per year (this analysis was performed under the reference scenario: β0 =
0.0006, df0 = 5 per year, concurvity = 0.45).
All the analyses were performed using the mgcv library implemented for R
software by Wood (2000).

3 Results

When the number of degrees of freedom used for fitting data was correctly
specified (Tab.1), the estimator of β in the semi-parametric model resulted
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strongly biased for high amounts of smoothing. Similar results were ob-
tained increasing concurvity amount in pseudo data (Tab. 2) and reducing
the size of the air pollutant effect (Tab. 3). On the contrary, under the
parametric approach negligible bias and good coverage of confidence inter-
vals were found. Performances of GAM+PRS with smoothing parameter
selected by GCV were comparable to the performances of the correctly
specified GAM+RS.

TABLE 1. Results of simulation analysis varying the number of degrees of freedom
in generating pseudo seasonality curve (β=0.0006; concurvity=0.45; df0=3,5,9
per year).

df0 % Relative Bias Variance MSE Real Coverage

of Estimate (108) of 95 % CI

GAM with natural cubic spline

3 2.66 6.99 7.0 95.1
5 0.93 4.88 4.88 95.63
9 4.11 3.25 3.31 94.93

GAM with penalized regression spline

3 155.57 6.63 93.7 5.86
5 15.53 4.68 5.56 93.43
9 5.01 3.19 3.28 94.8

GAM with penalized regression spline + GCV

3 16.57 7.07 8.0 93.5
5 4.06 4.82 4.88 95.53
9 3.11 3.25 3.28 94.83

In the more realistic situation in which the actual number of degrees of
freedom is unknown, the parametric approach appeared robust to mistakes
in specifying the number of knots for the spline. On the contrary, the semi-
parametric approach produced biased estimates of air pollutant effect and
bad confidence intervals if a small number of degrees of freedom was used
to model seasonality (Fig. 1).

4 Discussion

Even if the number of degrees of freedom is correctly specified, the semi-
parametric approach can bring to strongly biased estimates and inappro-
priate confidence intervals for the parametric coefficient β. On the contrary,
the estimator of air pollutant effect under the parametric model is negligibly
biased (except that for unrealistically high concurvity) and the coverage of
the 95% confidence intervals for β is always close to the real one. GAM+RS
retains good property also under misspecification of the number of degrees
of freedom for the regression spline, as shown by the robustness analysis.
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TABLE 2. Results of simulation analysis varying concurvity amount in data
(β=0.0006; concurvity=0.45,0.7,0.9; df0=5 per year).

Concurvity % Relative Bias Variance MSE Real Coverage

of Estimate (108) of 95 % CI

GAM with natural cubic spline

0.45 0.93 4.88 4.89 95.63
0.7 -4.24 18.16 18.22 95.60
0.9 35.66 87.23 91.80 94.43

GAM with penalized regression spline

0.45 15.53 4.68 5.55 93.43
0.7 81.76 16.59 40.66 81.07
0.9 292.82 57.13 365.80 45.00

GAM with penalized regression spline + GCV

0.45 4.06 4.82 4.88 95.53
0.7 20.77 17.81 19.36 94.47
0.9 80.01 80.15 103.19 93.00

TABLE 3. Results of simulation analysis varying the air pollutant coefficient
(β=0.0001,0.0006,0.006; concurvity=0.45; df0=5 per year).

β % Relative Bias Variance MSE Real Coverage

of Estimate (108) of 95 % CI

GAM with natural cubic spline

0.0001 -5.51 5.07 5.08 95.47
0.0006 0.93 4.88 4.88 95.63
0.006 0.11 6.40 6.41 94.37
GAM with penalized regression spline

0.0001 85.29 4.89 5.63 92.87
0.0006 15.53 4.68 5.55 93.43
0.006 1.12 6.31 6.76 92.90
GAM with penalized regression spline + GCV

0.0001 14.04 5.04 5.06 95.17
0.0006 4.060 4.822 4.88 95.53
0.006 0.29 6.37 6.39 94.03

The semi-parametric approach works better for small values of the smooth-
ing parameter used for generating pseudo seasonality curve. This outcome
could indicate a certain tendency of semi-parametric approach to be more
appropriate in presence of evident seasonality in data and/or reflect the
beneficial effect of undersmoothing on the inference of the parametric com-
ponent (Rice, 1986). This beneficial effect is emphasized by the improved
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FIGURE 1. Distribution of the estimated effect of air pollution by number of
degrees of freedom used for the smooth under GAM+RS (left) and GAM+PRS
(right).

performance of GAM+PRS if combined with GCV, which is well-known to
bring to undersmoothing.
In summary we can advance the following conclusions. Modeling seasonality
by penalized regression splines or, plausibly, by other non-parametric func-
tions, can provide biased estimates of air pollutant effect and misleading
confidence intervals and should be avoided every time parametric alterna-
tives are possible. The parametric approach is not affected by the same
drawbacks as GAM+PRS and it is recommended. However, in presence
of strong concurvity in data or very small effect size, sensitivity analysis
changing number of knots is advisable.
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1 Introduction

Microarrays are part of a new class of biotechnologies that allow the moni-
toring of the expression level of thousands of genes simultaneously. Among
the applications of microarrays, an important task is the identification of
differentially expressed genes, i.e genes whose expressions is associated with
the status of patients (treatment/control for example).
Multiple testing procedure is a classical problem for many high-dimensional
data sets. The breakthrough of technology for image analysis or genomic
have give a new interest for these questions. In this article we focus on
differentially expressed genes but the proposed results are applicable for all
multiple comparisons procedure.
The biological question of identification of differentially expressed genes
can be restated as two-sample hypothesis testing procedure: does the gene
is differentially expressed between the two situations. However, when thou-
sands of genes in a microarray data set are evaluated simultaneously by
fold changes and significance tests approach, multiple testing problems im-
mediately arise and lead to many false positive genes. In this “one-by-one
gene” the probability of detecting false positives rises sharply.
Basically, the various procedures proposed in the literature aim to test the
null hypothesis

H0(i) = {gene i is not differentially expressed}.
These hypothesis is tested with two-sample tests. Corrections for hetero-
geneous variances, non-normality, non-independence of the tests were pro-
posed (see S. Dudoit et al., 2003 or Ge et al., 2003 for recent review).
Several solutions have been derived in the statistical literature to control
the global type I error rate (see for example Holm, 1979 or, more recently,
the false discovery rate (FDR, see Benjamini and Hochberg, 1995 or Tusher
et al., 2001).
FDR is defined as the fraction of false rejections among those hpotheses
rejected. In the seminal paper (Benjamini and Hochberg, 1995) Benjamini
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and Hochberg provided a distribtion free method for choosing a p value
that guarantees that the FDR is less than a target level α. The same paper
demonstrated that the B procedure is often more powerful than traditional
methods that control familywise error (as Bonferroni method for example).
Moreover, FDR is often of greater scientific relevance than the overall type
I error rate. This work has been extended in various way. Benjamini and
Yekutieli (2001) extendded the BH method to a class of dependent tests.
Abaramovich, Benjamini, Donoho and johnstone (2000) established a con-
nection between FDR and minimax point estimation. Efron, Tibshirani and
Storey (2001) and Storey (2004) connected the FDR with bayesian quan-
tities. Genovese and Wasserman (2001) showed that, asyptotically, the BH
method corresponds to a fixed threshold method that rejects all p-values
less than a given threshold and obtained some optimality results. In par-
ticular they proved that BH procedure is conservative. Since the aim of
BH procedure is to control FDR, only a majorant can be found and the
procedure is conservative. An alternative approach is to estimate the FDR
and Storey (2002) and Storey, Taylor and Sigmund (2003) propose a family
of point estimate, which is proved less conservative than BH procedure.
It is important to note that for both procedures, the idea is to derive results
about the expected value of the proportion of false rejected hypothesis. It
is an interesting result but not very useful for a particular experiment. In
this talk we present results about the distribution, f(.) of the proportion of
false rejected hypothesis. Moments of f(.) are easily derived. The expected
value of f(.) will be compared with classical procedure. From the second
order moment we obtain confidence interval for the number of false rejected
hypothesis.
Even if the procedure is stepwise, BH procedure and Storey procedure are
based on distributional result for each step. In this presentation we obtain
the joint distribution of all step and we obtain the conditional distribution
of f(.) at a given step conditionally on all previous step of the procedure.
Simulations and example will be presented. In particular we compare our
procedure to BH and Storey procedure for various cases.
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Abstract: Parameter estimation in Generalized Linear Models with crossed ran-
dom effects is made difficult by the high-dimensional integrals required to obtain
the full distribution of the response. We propose inference based on the pair-
wise likelihood, which only requires the computation of bivariate distributions.
The estimators based on the pairwise likelihood are generally consistent, and
the efficiency loss with respect to maximum likelihood estimation is usually not
substantial. The method is applied to the famous salamander mating data.
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1 Introduction

Generalized Linear Mixed Models (GLMMs) are widely used to accomo-
date overdispersion and correlation in data. These models are generated
by adding random effects to the linear predictor of the corresponding Gen-
eralized Linear Model. A recent survey is given in McCulloch and Searle
(2001).
For several years, computational aspects have represented a major obsta-
cle in inference about GLMMs, in particular for the case of crossed ran-
dom effects. Several methods have been proposed to overcome the numer-
ical difficulties posed by high-dimensional integration. The popular PQL-
type methods (McCulloch and Searle, 2001, §8.6) do not provide gener-
ally consistent estimation. Simulation-based algorithms for frequentist and
Bayesian inference have been developed (e.g. Booth and Hobert, 1999, Mc-
Culloch and Searle, 2001, §10). However, they are quite computer inten-
sive, so do not seem ready for daily use by practitioners, who often need to
quickly estimate and analyze several different models at the model-building
stage. This is particularly relevant with large sets of data.
In this work, we consider a composite likelihood approach based on marginal
events (see Cox and Reid, 2003). Estimators based on suitable composite
likelihood are generally consistent, and the efficiency loss with respect to
maximum likelihood estimation is usually not substantial. The compos-
ite likelihood based on pairs of observations is denoted pairwise likelihood
(Nott and Rydén, 1999). It has been successfully exploited by Renard et
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al. (2004) for analyzing nested binary data through a GLMM with probit
link. Here, we extend this approach to crossed random effects and general
link functions for discrete data.

2 Pairwise likelihood inference

Let yij , i = 1, . . . , n, j = 1, . . . ,m be a set of observed discrete data. Given
a set of covariates {xij}i,j , we assume a GLMM with conditional mean

g{E(Yij |ui, vj)} = xT
ij β + ui + vj , i = 1, . . . , n, j = 1, . . . ,m, (1)

where g(·) is a suitable link function, while ui ∼ N(0, σ2
u) and vj ∼ N(0, σ2

v)
are two sets of i.i.d Gaussian (crossed) random effects.
The likelihood function requires to compute an n×m intractable integral

L(θ; y) =
∫

Rn×m

n∏
i=1

m∏
j=1

p(yij |ui, vj ;β)φ(ui;σ2
u)φ(vj ;σ2

v)dvjdui , (2)

where θ = (β, σu, σv) and φ(·;σ2) represents the density function of a
N(0, σ2) random variable. The computation of the above integral is chal-
lenging, since its dimension increases with the number of levels of the ran-
dom factors. For this reason, we propose to use the pairwise likelihood,
which is given by the product of the bivariate probabilities for all the pos-
sible pairs sharing at least one common random term

L2(θ; y) =
n∏

i=1

m∏
j<j′

p(yij , yij′ ; θ)
n∏

i<i′

m∏
j=1

p(yij , yi′j ; θ) . (3)

Each of the n
(
m
2

)
+ m

(
n
2

)
terms involved in L2(θ; y) consists in a three-

dimensional integral of the form

p(yij , yij′ ; θ) = (4)∫
R3
p(yij |ui, vj ;β) p(yij′ |ui, vj′ ;β)φ(ui;σu)φ(vj ;σv)φ(vj′ ;σv)duidvjdvj′ .

The computational effort required by the pairwise likelihood is much lower
if compared to the “full” likelihood (2). In order to efficiently approximate
the low-dimensional integrals forming L2(θ; y), one can consider some stan-
dard deterministic quadrature rules, like Gauss-Hermite or the adaptive
quadrature; see Evans and Swartz (2000). Morever, in the case of binary
data and logit link (as for the Salamander mating data discussed in the
next section), such integrals can also be approximated with high accuracy
by normal scale mixtures; see Monahan and Stefanski (1992) and Drum
and McCullagh (1993). Hereafter, we summarize the algorithm for obtain-
ing the pairwise log-likelihood for θ.
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Algorithm for computing the pairwise likelihood

1. Consider the random effect ui, i = 1, . . . , n.

(a) Find all the pairs of observations sharing the random effect ui.

(b) For each pair {(i, j), (i, j′)}, j < j′ = 1, . . . ,m, evaluate the
probability p(yij , yij′ ; θ).

(c) Let Su(θ;Y ) =
∑n

i

∑m
j<j′ log pi,jj′(θ).

2. With similar steps as at point 1, obtain the quantity Sv(θ;Y ) for the
random effects vj , j = 1, . . . ,m.

3. The log-pairwise likelihood is �2(θ;Y ) = Su(θ;Y ) + Sv(θ;Y ).

From estimating equations theory, it follows that the Maximum Pairwise
Likelihood Estimator (MPL) is consistent and asymptotically normally dis-
tributed. Denoting by ∇ the gradient operator, the variance matrix of the
asymptotic distribution is given by Var(θ) = H(θ)−1 J(θ)H(θ)−1, where
H(θ) = E{−∇2 logL2(θ;Y )} and J(θ) = Var{∇ logL2(θ;Y )}. See Cox and
Reid (2003) and reference therein for more details.

3 Example: salamander mating data

The salamander mating dataset has been already analysed by several au-
thors, we refer to McCullagh and Nelder (1989, §14.5) for details on the
experiment. The data consist in a collection of binary outcomes on the mat-
ing success between males and females from two populations of salaman-
ders. A plausible model for this famous data is a GLMs with Bernoullian
conditional density and two crossed effects, accounting for the male the
female effect. The four fixed effects (α1, α2, α3, α4) included in the model
are determined by the salamanders’ gender and population; see Lin and
Breslow (1996).
Following the same authors, we analyse the pooled dataset, treating all
the three experiments done as they were obtained from different animals.
In Table 1 we compare our MPL estimates with alternative methods, as
reported by Lin and Breslow (1996) and Booth and Hobert (1999).
We found that the maximum pairwise likelihood estimates are close to
those obtained with the other methods, with the exception of PQL, known
to work poorly with binary data.
In order to compare the different methods, we also conducted a small sim-
ulation study following Lin and Breslow (1996) and Jiang (1998). We con-
sider the same sample size of the pooled data. The mean values of the pa-
rameter estimates (with simulation standard errors in brackets) over 1, 000
replications are reported in Table 2. Here, MSM refers to the Method of
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TABLE 1. Parameter estimates for the salamander mating data.

Estimate α0 α1 α2 α3 σ2
f σ2

m

Full Likelihood 1.03 −2.98 −0.71 3.65 1.40 1.25
Bayes/Gibbs 1.03 −3.01 −0.69 3.74 1.50 1.36

PQL 0.79 −2.29 −0.54 2.82 0.72 0.63
REML (D & M) 1.06 −3.05 −0.72 3.77 1.67 1.50

Pairwise Likelihood 1.07 −3.09 −0.73 3.81 1.69 1.58

TABLE 2. Results of a simulation study, 1,000 replications.

Parameter α0 α1 α2 α3 σ2
f σ2

m

True value 1.06 −3.05 −0.72 3.77 0.50 0.50
MSM (Jiang) 1.07 −3.13 −0.73 3.87 0.58 0.59

(0.32) (0.53) (0.39) (0.72) (0.42) (0.43)
PQL 0.94 −2.73 −0.64 3.38 0.33 0.32

(0.27) (0.40) (0.34) (0.49) (0.22) (0.22)
REML (D & M) 1.09 −3.14 −0.74 3.88 0.55 0.54

(0.32) (0.49) (0.39) (0.60) (0.38) (0.37)
Pairwise Likelihood 1.05 −3.07 −0.71 3.78 0.46 0.46

(0.39) (0.57) (0.45) (0.62) (0.35) (0.37)

Simulated Moments of Jiang (1998), and REML to the method of Drum
and McCullagh (1993).
In this simulation study, we find a satisfactory performance for the MPL
estimator, which seems slightly superior to the other methods under com-
parison.

4 Ongoing Research

We think that the pairwise likelihood is a promising method for inference
in crossed random effect models. The advantages of this procedure are
simplicity and computational efficiency. It follows that suitable bootstrap
methods can be applied for improving inference; more details are given in
Bellio and Varin (2003).
Ongoing research includes the development of model selection and model
checking procedures based on the composite likelihood. Another interesting
point to investigate is the application to large-scale problems.

Acknowledgments: This work was partially supported by MIUR, Italy,
COFIN 2001/2003.
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Abstract: We apply a model-based clustering approach to classify tumour tissues
on the basis of microarray gene expression. The association between the clusters
so formed and patient survival (recurrence) times is examined. The approach is
illustrated using the lung cancer data set of Wigle et al. (2002). We show that the
prognosis clustering is a powerful predictor of the outcome of disease, in addition
to the stage of disease at presentation.

Keywords: Mixture models; EMMIX-GENE algorithm; Microarrays; Survival
analysis; Cox proportional hazards.

1 Introduction

In clinical medicine, accurately determining the stage of disease is crucial in
the management of cancer patients. Stage is defined using a combination of
clinical parameters (tumour size, lymph node involvement and the presence
of metastases). However, patients with the same stage of a particular can-
cer can have very different treatment responses and also clinical outcome.
There is much interest in determining whether microarrays can be used
as better indicators for outcome. Here we demonstrate how model-based
clustering in conjunction with survival analysis can be used to assess the
prognostic information in microarray data. We report in detail our results
for the lung cancer data set of Wigle et al. (2002). This data set formed
part of the CAMDA’03 challenge, and a fuller description of the methods
is given in Ben-Tovim Jones et al. (2004), and also their application to the
three other CAMDA’03 lung cancer data sets.

2 Cluster Analysis

Wigle et al. (2002) used cDNA microarrays to measure the gene expressions
for 39 tumour samples from patients diagnosed with various types of lung
cancer. We downloaded the data at http://www.camda.duke.edu/camda03,
and used the set of 2880 genes as in Wigle et al. (2002). For each patient, the
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clinical outcome was given as the time between surgery and the recurrence.
We label 1 to 24 the patients for which there has been a recurrence of the
cancer, while those labelled 25-39 had no recurrence before the end of the
study (their times to recurrence are censored). We input the data into the
EMMIX-GENE algorithm of McLachlan et al. (2002). In the first screening
step, 766 genes remained and these were then clustered into 20 groups. The
means of these 20 groups (the metagenes) were used to cluster the tissues in
the final step of EMMIX-GENE. Given the very small number of tumours
(39) available here relative to the number of genes or indeed metagenes,
some constraints had to be imposed on the component-covariance matrices
in fitting a normal mixture model to cluster these tumours. We considered
fitting to all 20 metagenes (a) mixtures of normals with equal component-
covariance matrices; (b) mixtures of normals with (unrestricted) diagonal
component-covariance matrices; and (c) mixtures of factor analyzers with
equal component-covariance matrices for q = 6 factors. All three models
led to two clusters, represented as

C1 = {15, 30− 32, 34, 35, 37, 39} and C2 = {1− 14, 16− 29, 33, 36, 38}.
Cluster C1 corresponds to the good-prognosis group with 7 patients who are
recurrence-free plus 1 patient who had experienced relapse of the tumour.
This patient, however, was still alive at the end of the follow-up period.
Cluster C2 corresponds to the poor-prognosis group as it contains 23 of the
24 patients with recurrence, plus 8 patients with censored recurrence times.
To further show that the first cluster C1 corresponds to a recurrence-free
group, we considered the long-term survival model

S(t) = π1 + π2S2(t), (1)

where t is the time to recurrence, S2(t) is the conditional survival function
for time to recurrence given recurrence will occur, and π2 = 1 − π1 is
the probability of a recurrence. Under (1), a proportion π1 of the patients
will not have a recurrence; that is, their recurrence time is at infinity. The
survival function S2(t) is taken to have the Weibull form,

S2(t) = λtα−1 exp(−λtα). (2)

The exact recurrence and survival times of two patients in C2 were un-
known and so they were excluded from all the survival analyses, leaving
37 patients with 15 of these censored. In Figure 1, we plot the fitted
Weibull-based long-term survival model Ŝ(t) along with the Kaplan-Meier
estimate. This shows excellent agreement between the nonparametric esti-
mate as given by the Kaplan-Meier estimate and the parametric estimate
Ŝ(t). In particular, from the asymptote of the curves, the probability π1

of a patient being recurrence-free is approximately 0.2. Thus on average,
one would expect to have approximately 8 recurrence-free patients in a set
of 39. Here the cluster C1, which is conjectured as corresponding to the
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FIGURE 1. Fitted LTS model versus Kaplan-Meier.
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recurrence-free group, has indeed 8 members in it. Interestingly, 5 of the
censored patients clustered into C2 were also put together in a cluster cor-
responding to early recurrence in the hierarchical clustering of Wigle et al.
(2002). This long-term survival model (1) can be used also to estimate the
posterior probability that a patient with a censored recurrence time will be
recurrence-free. Unfortunately, unless the censored time is very long, these
estimated posterior probabilities are equal, being around 0.5. Patient (P81
AC) who has a censored time of 1,161 days has a high posterior probability
of being recurrent-free so her membership of cluster C1 would appear to
be atypical. To further investigate the validity of our clustering of the 39
tumours, we considered a plot of the first two principal components (PCs)
of the tumours obtained by a singular-value decomposition based on (a) the
20 metagenes and (b) all the genes, as given in Figures 2 and 3, respectively.
In each of these two figures, we have imposed the allocation boundary that
will give the clustering that we have obtained above. In each case, it can
be seen that this boundary represents a reasonable partition of the data
into two clusters in the space of the first two PCs.

3 Survival Analysis

For the 37 patients with survival data available, we clustered 29 as poor
prognosis (C2) and 8 as good prognosis (C1). We use the Kaplan-Meier esti-
mate to provide an estimate of the overall probability of being recurrence-
free following surgery. Given that there is only one recurrence in C1, it
should have a significantly better Kaplan-Meier estimate than C2, and this
is confirmed in Table 1. These two Kaplan-Meier estimates are plotted in
Figure 4. The Kaplan-Meier curves were compared with the use of the
log-rank test.

TABLE 1. Non-parametric Survival Analysis

Cluster No. of Patients (Censored) Mean Time to Recurrence
(± SE)

C1 8 (7) 1388 ± 155.7
C2 29 (8) 665 ± 85.9

We also fitted the proportional hazards model of Cox (1972), using co-
variates to represent the clinical data and a zero-one indicator variable to
membership of cluster C1 or not. The fit for the final form of this model is
given in Table 2. The significance of estimated hazard ratios were tested us-
ing the Wald test. All calculations in the survival analysis were performed
with the S Plus statistical package. It can be seen that membership of clus-
ter C1 (the poor-prognosis cluster) was the only significant factor affecting
the event of being recurrence-free (P = 0.06).
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FIGURE 4. Kaplan-Meier curves of recurrence-free for the two clusters.

TABLE 2. Multivariate Cox Hazards Analysis of the Risk of Recurrence

Variable Hazard Ratio (95%CI) P -Value
Poor (vs. good prognosis cluster) 6.8 (0.9-51.8) 0.06
Stages 2 or 3 (vs. Stage 1) 1.1 (0.4-2.7) 0.88

4 Conclusions

We were able to use a model-based clustering approach to to identify pa-
tient clusters with clinical outcomes of recurrence versus non-recurrence
of tumour. The gene-expression data provided prognostic information, be-
yond the clinical indicator of stage. A limiting factor in the analyses was
the small numbers of tumours available. Further, the high proportion of
censored observations limited the comparison of survival rates.
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continuous variables
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Abstract: Many rank tests are available for the testing of unconditional inde-
pendence, for example tests based on Kendall’s tau or Spearman’s rho, but for
conditional independence this is unfortunately not the case. This paper introduces
a general method based on estimation of the conditional distribution functions of
response variables given control which allows arbitrary rank tests of unconditional
independence to be applied to the testing of conditional independence.
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1 Introduction

For a given triple of random variables (X,Y,Z) we consider the problem of
testing the hypothesis of conditional independence of Y and Z controlling
for X based on n independent and identically distributed (iid) data points
(X1, Y1, Z1), . . . , (Xn, Yn, Zn). Following Dawid (1979), this hypothesis is
denoted as

Y⊥⊥Z|X
Even though a wide array of tests is available for the testing of independence
between two random variables (see, for example, Kendall and Gibbons,
1990, Nelsen, 1998 [Chapter 6] or Schweitzer and Wolff, 1981), the choices
are much more limited for the testing of conditional independence.
In particular, for continuous variables and without strong distributional
assumptions, there appears to be only one choice, namely the test based on
the partial correlation coefficient; with marginal regressions Y = g(X)+ ε1
and Z = h(X) + ε2, it is defined as

ρ23|1 =
cov(ε1, ε2)√
var(ε1)var(ε2)

(1)

Evaluation of the test requires the estimation of the regression curves, which
has to be done non- or semi-parametrically unless a specific parametric form
is known to hold a priori.
Another test statistic for conditional independence, based on Kendall’s tau
was proposed by Goodman (1959) and further discussed by Goodman and



W.P. Bergsma 77

Grunfeld (1961). However, the distributional assumptions underlying this
test appear somewhat complex (Gripenberg, 1992).
In this paper we propose a new method to obtain more general tests of con-
ditional independence than those based on (1). The theoretical background
is given in Section 2. A practical procedure, based on a simple kernel esti-
mation method, is given in Section 3. The estimation problem is (distantly)
related to median regression.

2 The partial copula

For the conditional distribution functions of Y and Z we write

F2|1(y|x) = Pr(Y ≤ y|X = x)
F3|1(z|x) = Pr(Z ≤ z|X = x)

A basic property of U = F2|1(Y |X) and V = F3|1(Z|X) is given in the
following lemma.

Lemma 1 Suppose, for all x, F2|1(y|x) is continuous in y and F3|1(z|x)
is continuous in z. Then U and V have uniform marginal distributions.

The importance of the introduction of U and V lies in the following theo-
rem.

Theorem 1 Suppose, for all x, F2|1(y|x) is continuous in y and F3|1(z|x)
is continuous in z. Then Y⊥⊥Z|X implies U⊥⊥V .

The proof is given below. Theorem 1 implies that a test of unconditional
independence of U and V is a test of conditional independence of Y and Z
given X. A test of independence of U and V can be done by any standard
procedure.
For continuous random variables Y and Z with marginal distribution func-
tions F2 and F3, the copula of their joint distribution is defined as the joint
distribution of F2(Y ) and F3(Z). The copula is said to contain the grade
(or rank) association between Y and Z (for an overview, see Nelsen, 1998).
For example, Kendall’s tau and Spearman’s rho are functions of the copula.
The following definition gives an extension of the copula concept.

Definition 1 The joint distribution of U and V is called the partial copula
of the distribution of Y and Z given X.

Hence, the partial copula is an appropriate basis for studying conditional
dependence.
It should be noted that since U⊥⊥V does not imply Y⊥⊥Z|X, a test of
the hypothesis U⊥⊥V cannot have power against all alternatives of the
hypothesis Y⊥⊥Z|X. In particular, this is so for alternatives with inter-
action, that is, where the association between Y and Z depends on the
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value of X. We should expect most power against alternatives with a con-
stant conditional copula, i.e., alternatives for which the joint distribution
of (F2|1(Y |x), F3|1(Z|x)) does not depend on x.
Proof of Lemma 1: By continuity of F2|1(y|x) in y, and with F1 the
marginal distribution function of X,

Pr(U ≤ u) = Pr(F2|1(Y |X) ≤ u) =
∫

Pr(F2|1(Y |x) ≤ u)dF1(x)

=
∫
udF1(x) = u

i.e., the marginal distribution of U is uniform. The uniformity of the dis-
tribution of V is shown analogously.
Proof of Theorem 1: By Lemma 1, U and V are uniformly distributed.
Hence if Y⊥⊥Z|X the joint distribution function of U and V simplifies as
follows:

Pr(U ≤ u, V ≤ v) = Pr(F2|1(Y |X) ≤ u, F3|1(Z|X) ≤ v)

=
∫

Pr(F2|1(Y |x) ≤ u, F3|1(Z|X) ≤ v)dF1(x)

=
∫

Pr(F2|1(Y |x) ≤ u) Pr(F3|1(Z|X) ≤ v)dF1(x)

=
∫
uvdF1(x) = uv = Pr(U ≤ u) Pr(V ≤ v)

This completes the proof.

3 Kernel estimation of the conditional distributions

In general, a rank test for independence between Y and Z is a function
of the copula and is based on the rank transformations F2(Y ) and F3(Z),
where F2 and F3 are the marginal distribution functions of Y and Z, re-
spectively. A broad class of rank test of unconditional independence can
be written as a U-statistic of degree r, in particular, for an appropriate
function φ, in the form

T =
(
n
r

)−1∑
φ[(F2(Yi1), F3(Zi1)) . . . , (F2(Yir

), F3(Zir
))] (2)

where the summation is over all subsets {i1, . . . , ir} of {1, . . . , n}. For ex-
ample, Spearman’s rho is written as

ρS =
(
n
2

)−1∑
i�=j

(F2(Yi)− F2(Yj))(F3(Zi)− F3(Zj))
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and Kendall’s tau can be written as

τ =
(
n
2

)−1∑
i�=j

sign(F2(Yi)− F2(Yj))(F3(Zi)− F3(Zj))

Another important example is Hoeffding’s coefficient of independence (see
Manoukian, 1986). The unknown distribution functions are replaced by the
empirical distribution functions.
Using the results of the previous section, a rank test of conditional inde-
pendence has the form (2) with F2(Yi) replaced by F2|1(Yi|Xi) and F3(Zi)
replaced by F3|1(Zi|Xi). However, the latter cannot be estimated by the
empirical distribution functions, since (assuming continuity of X) for each
Xi there is, with probability 1, only one observed pair (Yi, Zi). Instead, we
propose the following kernel estimator:

F̂2|1(y|x) =
∑n

i=1K[(F̂1(x)− F̂1(Xi))/h]I(Yi < y)∑n
i=1K[(F̂1(x)− F̂1(Xi))/h]

where h > 0 is the bandwidth, usually dependent on n, K is the kernel
function, which can be a density symmetric around zero, I is the indicator
function and

F̂1(x) = n−1
n∑

i=1

I(Xi < x)

is the empirical distribution function of X. A suitable choice for K is often
the standard normal distribution.
Note that the above problem is related to median regression; there, for all
x a solution y is required of the equation

F2|1(y|x) = 1
2

Also note that the test based on T1 is quite different from the test based on
Kendall’s partial tau (Kendall, 1942), which is not necessarily zero under
conditional independence (Korn, 1984)
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Abstract: We are using Bayesian hierarchical models to estimate gene-specific
variance in calibration experiments, where two samples from the same population
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ments are incorporated as prior knowledge in comparative ones. This procedure
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aim of collecting some prior information about new experiments to be performed.
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1 Introduction

Microarray studies permit to quantify expression levels on a global scale by
measuring transcript abundance of thousands of genes simultaneously. The
description, classification and study of the relationships between genes are
the new tasks made possible by innovative research tools. A difficulty when
analyzing expression measures obtained by cDNA arrays is how to model
the variance function for the whole set of genes. In such contexts, it is usu-
ally unrealistic to assume a common variance and would be better to con-
sider different measure of variability for each gene. To this aim, Tseng et al.
(2001) introduced a calibration experiment, in which the probes hybridized
on the two channels come from the same population (self-self experiment).
From such an experiment, it is possible to estimate the gene-specific vari-
ance, to be incorporated in comparative experiments on the same tissue,
cellular line or species. We present a Bayesian hierarchical model to use the
information on gene-specific variability from a calibration experiment to be
incorporated as prior knowledge in comparative experiments. We apply the
methodology to a real example and compare our results to those obtained
with Tseng’s approach.

2 Materials and methods

Mononuclear cells were obtained from peripheral blood of 10 healthy sub-
jects by density gradient centrifugation on Ficoll-Hypaque. Cells from each
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subjects were incubated in RPMI 1640 at 37 C in a humidified atmosphere
with 5% CO2 for 3 hours in presence or absence of lipopolysaccharide (LPS,
10 mg/ml). Total RNA was extracted and equal amount of total RNA, from
stimulated or unstimulated cells, from different subjects was pooled. Total
RNAs were retro-transcribed with amino-allyl-dUTP, hydrolyzed, purified
and labelled with NHS-Cyanine dyes (Cy3 and Cy5). Then, the two probes
were purified, mixed and hybridized on the arrays. After incubation, arrays
were scanned by the 4000B scanner (Axon). Image analysis was performed
by GenePix 4.1 software. 5 arrays were printed. For calibration purposes 3
self-self arrays were performed using probes from cells incubated in absence
of LPS. 2 arrays were fabricated for the comparison experiments, using
dye-swap. All the 5 arrays were subjected to quality controls following the
criteria suggested by Simon et al. (2003), to eliminate low-intensity genes.
We did not expect to find any differentially expressed gene in calibration
arrays.
The first stage in the analysis was to estimate gene-specific variance from
the calibration experiments. To this purpose we specified a linear ANOVA
model (Kerr et al. 2000, Lewin et al. 2003) where the unnormalized log
gene expression intensity for each array

ygs ∼ N
(
µgs, σ

2
g

)
(1)

were modelled as Gaussian for gene g and channel s = 1, 2.
Moreover, specific terms in the linear predictor

µgs = αag + δs + νg (2)

were introduced to mimic the normalization procedure, where αag was the
gene-specific array effect and δs was the dye-effect; νg was the normalized
gene effect.
The gene-specific variance was assumed to follow the Lognormal distribu-
tion σ2

g ∼ logN(m, s2) where m ∼ N(0, 10000) and 1/s2 ∼ G(0.001, 0.001)
were noninformative hyperpriors, while νg ∼ N(a, b2), a was non infor-
mative Gaussian and 1/b2 was a non informative Gamma. Finally, all the
other normalization parameters were modelled as non informative Gaussian
distributions. We compared the performance of this model with that of a
model specifying a common variance σ2 for all genes. To compare models
we used Deviance Information Criterion (Spiegelhalter et al. 2002).
In the second stage of the analysis we built up a hierarchical Bayesian
model for the comparative experiment, incorporating posterior densities of
m e s2 from the calibration experiment. For this model we had informative
hyperpriors and we included a treatment effect τg in the linear predictor:

µgs = αag + τg + δs + νg. (3)

Summaries from the posterior densities of τg can be used to identify differ-
entially expressed genes.
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We analyzed our data also using the Tseng’s Bayesian hierarchical model.
To perform the analysis we used WinBugs (see Spiegelhalter et al. 2003)
and R (see http://cran.r-project.org).

3 Results

The analysis was performed on 2887 genes, which have not presented miss-
ing values in any of the 5 arrays and that passed quality controls. From
the calibration experiment, we found gene specific variances ranging from
0.015 to 0.03 (figure 1 reports the distribution of the posterior gene-specific
variances). The comparison to the common variance model was performed
by Deviance Information Criterion (DIC) and showed a better behavior of
the gene-specific variance model.
The analysis of the comparative experiment resulted in a list of 37 differ-
entially expressed genes. The comparison to Tseng’s model brought out
some differences in terms of altered genes. In particular, the number of
differentially expressed genes with the two methods is shown in table 1: 26
genes emerge as significative under both approaches. Literature confirmed
an alteration in gene expression profile after LPS stimulation on peripheral
blood mononuclear cells for 11 out of the 26 genes. As concerned the genes
emerged as differentially expressed only using our Bayesian hierarchical
model, data from the literature are available confirming the upregulation
after LPS stimulation for 5 genes.
The differences are related to the genes with a low, positive or negative rel-
ative expression. Actually these genes are the most influenced by changing
assumptions on gene variances.
Also for the comparative experiments, we have found a better behavior for
our model with respect to the Tseng’s one. In particular, the DIC statistics
is 34560 for our model and reaches 35010 for the other.

4 Discussion

The observed differences in number of differentially expressed genes among
the approaches are related to different variance modelling. Both Tseng’s
model and our Bayesian hierarchical model, consider a gene specific vari-
ance and seem to carry out sensitive estimates. However, the difference
between our model and Tseng’s one are related to the initial assumptions:
for our model the likelihood formulated on the single channel intensity,
while in the other model the likelihood is based on the normalized log ra-
tio. The gene variance is also modelled differently: Tseng et al. consider the
gene specific variance and the average variance from the calibration arrays
as observed quantities; they compute a weighted average between these two
components and incorporate it as data to estimate the prior distribution of
the variance to be used as information for the comparative experiment. The
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prior distribution of the variance is a transformed chi-squared. On the other
side our Bayesian hierarchical model starts from the calibration experiment,
computes a posterior distribution of variance parameters and incorporates
that in the model for the comparative experiment as prior knowledge. Be-
sides, our prior distribution of variance is lognormal. Finally our model is
very general and easily allows us to perform sensitivity analysis, to change
prior distributions or likelihood. Eventually, our approach seems useful to
be followed when considering a sequence of experiments (e.g. time course
experiments): it permits to update estimate of the variances and to take
under control sources of variations that can be introduced between different
experiments. In order to better evaluate the strength of the two different
approaches, further information are needed about the genes emerged only
in one model. Real time PCR experiments on these genes are in progress
to confirm the results.
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TABLE 1. Number of differentially expressed genes (Comparison of two different
approaches)

Tseng et al. Hierarchical Bayesian
Tseng et al. 41

Hierarchical Bayesian 26 37
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1 Introduction

The aim of ecological studies is to describe the relationship between geo-
graphical variation of disease risk and concomitant variation in the level of
exposure to a particular factor: for example, an environmental agent or a
life-style related characteristic. In our analysis we use education as a proxy
of socioeconomic factors.
Both disease rates and covariates could exhibit a strong spatial autocorrela-
tion. If ignoring this aspect might produce incorrect inferences (see Clayton
et al., 1993), care must be taken in modelling spatially structured overdis-
persion since the random term could absorb part of the association and
bias the estimate of the effect of the exposure (see Wakefield, 2003).
In this work we give an example of how different prior assumptions on the
clustering term of a hierarchical bayesian model with a time dependent
covariate could affect the results of the ecological analysis.

2 Data

Lung cancer death certificates are considered for males resident in 287
municipalities of the Tuscany Region (Italy) from 1971 to 1999. Mortality
data are aggregated in six calendar periods (1971-74, 1975-79,. . ., 1995-99).
We use internal indirect standardization to calculate the expected number
of cases.
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For the aim of our analysis we have considered the proportion of population
with primary school degree in the years 1951, 1961, 1971, 1981 and 1991
as the exposure variable. Since mortality and education are recorded in
different time points we need to estimate a value of the education score for
years 1956, 1966, 1976, 1986, 1996 and for each municipality.

3 Space-time models with time-dependent covariates

We propose a generalization of the model of Knorr-Held (2000) in which we
replace the space-time interaction with a time-dependent covariate, consid-
ered at different lags, to take into account for the latency between exposure
and disease onset (for details see Dreassi et al. (2003)).
The model assumes that the number of observed cases in the i-th area
(i = 1, . . . , 287) and j-th period (j = 1971-74, 1975-79, 1980-84, 1985-89,
1990-94, 1995-99) Oi,j follows a Poisson distribution with mean Ei,jθi,j ,
where Ei,j indicates the expected number of cases under indirect standard-
ization and θi,j the relative risk. A random effects model is assumed for
the logarithm of the relative risk

log(θi,j) = ui + vi + pj + βj x′i,j−l λj . (1)

The parameters βj define the relationship between mortality in the j-th
period and education observed 0, 5, 10, 15 years before: we are taking into
account that the process of carcinogenesis involves a latency time (e.g. a
time equal to l), hence mortality on time j would result in association with
a covariate observed at time j − l (l = 0, 5, 10, 15).
The prior on each coefficient βj is a flat Normal distribution.
The heterogeneity term ui represents an unstructured spatial variability
component modelled as Normal (µu, δu) where δu is the precision param-
eter and is assumed to follow a flat Gamma distribution. The term pj
represents the effect of the j-th period which is assumed to follow a first
order random walk with independent normal increments (see Knorr-Held,
2000 for further details). The vector xi,j−l = (xi,j , xi,j−5, xi,j−10, xi,j−15)
contains the education scores for the i-th area observed at the four consid-
ered lags. Terms λj ∼ multinomial(πj , 1) and πj = (πj0, πj5, πj10, πj15)′ ∼
Dirichlet(1, 1, 1, 1) represent respectively weights and probabilities for each
lag and for each period whose estimation is one of the purpose of the anal-
ysis.

3.1 Prior distribution of the clustering component

Assume we have a set of area-specific spatially correlated Gaussian random
effects vi for i = 1, . . . , N (the v term is called clustering term). Suppose
their joint distribution may be expressed as v ∼ MVN(µ, δvΣ) where MVN
stays for Multivariate Normal distribution, µ is the mean vector, δv > 0
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controls the overall variability of the vi and Σ is an N×N positive definite
matrix.
Let define the between area covariance matrix as δvΣ = δv(I − ρW)−1M
where I is the identity matrix, W is a weight matrix with elements Wik

reflecting spatial association between areas i and k,M is a diagonal matrix
with elements Mii proportional to the conditional variance of vi|vk and ρ
controls overall strength of spatial dependence.
Different specifications are possible for Σ. In particular, we may assume
a parametric form for the elements of the matrix. In this case a common
assumption is Σik = exp[−(φdik)ν ]) where dik is distance between the
centroids of areas i and k, φ > 0 controls the rate of decline of correlation
with distance and ν ∈ (0, 2] controls the amount of spatial smoothing
(see Journel et al. (1978)). We have fitted the ordinary exponential model
(ν = 1) with a Uniform prior distribution for φ.
Otherwise, following the conditional formulation, we do not need to specify
the elements of the covariance matrix Σ but work just on W, M and
ρ. Besag et al. (1991) propose an Intrinsic CAR model (ICAR) for vi in
which Σ is not positive definite. This model corresponds to choose Wik =
1/ni if i ∼ k (i ∼ k indicates that the i-th and k-th areas are adjacent)
and 0 otherwise, Mii = 1/ni and ρ = 1 and leads to a Normal (v̄i, δvni)
conditional distribution for vi|vk, where v̄i =

∑
k∼i

vk
ni
is the mean of the

terms of the adjacent areas and ni is their number.
Alternative choices of W and M lead to a full-rank covariance matrix.
Here we follow the assumption of Stern et al. (1999) defining Mii = 1/Ei,
Wik = (Ek/Ei)1/2; in this case we have also to specify a prior distribution
for ρ, which we assume to be uniformly distributed in (ρmin, ρmax). Ei is
the expected number of cases in the i-th area for the entire study period.
To make comparisons between models we have made use of the Expected
Predictive Deviance (EPD) (see Laud et al. (1995)).

4 Results

In Figure 1 we report the education score in 1951 (1961, 1971, 1981 and
1991 exhibit the same spatial structure) and the disease risks estimated
with the standard model of Besag et al. (1991) without considering the
covariate effect and collapsing the data over the entire period 1971-99.
Exposure and mortality show similar spatial patterns, with a higher level
of risk in areas with a higher level of education: we then expect a positive
association between the education score and disease risks.
Surprisingly, when we specify the ICAR prior (ρ = 1) the estimates of
β parameters are negative (see Table 1). When we fit this model assum-
ing different values of ρ (0 < ρ < 1) positive estimates of the regression
parameters are obtained for ρ ≤ 0.94.
The parameter estimates assume positive values also when the described
parametric formulation and the CAR proper model are specified. These
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< −0.56
−0.56 − −0.31
−0.31 − −0.03
−0.03 − 0.22
0.22 − 0.63
< 0.63

< 0.70
0.70 − 0.90
0.90 − 1.00
1.00 − 1.10
1.10 − 1.30
< 1.30

(a) (b)

FIGURE 1. Spatial distribution of the education score in 1951 (a) and estimated
relative risks 1971-1999 (b).

TABLE 1. β coefficients under different prior assumptions on the spatial random
term vi and their EPD values.

Period ICAR ICAR CAR proper Parametric Heterogeneity
(ρ = 1) (ρ = 0.94) model model

1971-74 -0.174 0.187 0.184 0.194 0.194
(-0.221,-0.134) (0.134,0.241) (0.129,0.241) (0.140,0.2531) (0.141,0.251)

1975-79 -0.149 0.138 0.133 0.147 0.149
(-0.189,-0.113) (0.095,0.184) (0.089,0.179) (0.103,0.196) (0.102,0.198)

1980-84 -0.084 0.106 0.102 0.126 0.127
(-0.115,-0.052) (0.067,0.147) (0.065,0.140) (0.084,0.172) (0.084,0.174)

1985-89 -0.067 0.051 0.050 0.073 0.073
(-0.108,-0.026) (0.009,0.051) (0.015,0.093) (0.039,0.115) (0.039,0.112)

1990-94 -0.084 0.035 0.035 0.059 0.060
(-0.131,-0.035) (-0.003,0.073) (-0.006,0.069) (0.026,0.093) (0.027,0.093)

1995-99 -0.042 0.071 0.072 0.092 0.093
(-0.096,0.015) (0.039,0.106) (0.042,0.103) (0.060,0.124) (0.061,0.127)

EPD 2132.135 2115.199 2155.294 2120.796 2117.341

last estimates are also very similar to those obtained when model (1) is
modified not including the vi term (heterogeneity model).
The marginal posterior distributions for the parameters of interest are ap-
proximated by Monte Carlo Markov Chain methods.
Bayesian model selection using EPD (Table 1) confirms, in part, what we
could expect looking at the β’s estimates. In fact, despite of the different
prior assumptions, the heterogeneity, the ICAR with ρ = 0.94 and the
parametric models exhibit not only the same values of the regression coef-
ficients but also very similar deviance statistics suggesting no need for the
clustering term.

5 Conclusion and discussion

The effect of the spatial dependence may be investigated through the sen-
sitivity of the regression coefficients (and relative standard errors) to differ-
ent specifications of the prior distribution of the clustering term. Moreover,
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the outcomes of a model without the spatially structured component could
be used to see if the form of the spatial structure significantly affects the
analysis (Wakefield, 2003).
Our results suggest that when covariates and clustering terms show a strong
correlation the standard ICAR assumption could be misleading with regard
to the strength of association.
On the other hand, the little differences in the results between the het-
erogeneity model versus the parametric and the CAR proper assumptions
could suggest either (i) that the last two specifications for the clustering
term result into too strong limits to the “borrow strength” between areas or
(ii) that the covariate adequately explains the spatial structure of risk, and
there is no need of the clustering term. The EPD values seem to confirm
this last hypothesis.
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Abstract: The relationship between four putative sources of environmental pol-
lution (incinerator, shipyard, iron foundry and city center) and lung cancer risk
for men in Trieste (Italy), is investigated using a Bayesian framework by a case-
control study. In the analysis information on smoking habits and exposure to
occupational carcinogens are taken into account to adjust for known risk factor
as potential confounders. The models are based on distances between subject
place of residence and the different sources of environmental pollution, as a proxi
for exposure. Models enable estimation of the risk gradient and directional effects
separately for each putative source.
We found that risk of lung cancer is highly related to the city center and in-
cinerator sources. However, as the models appeared to be sensitive to modelling
choices, any point analysis should be provided with careful sensibility analysis.
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1 Introduction

In the last years there has been increased interest in modelling disease risk
in relation to a point source using a Bayesian framework; see, for example,
Wakefield and Morris (2001), Lawson et al. (2003) and Congdon (2003).
We use a hierarchical Bayesian model for a case-control study. The models
are based on distances between subject (case or control) place of residence
and the different sources of environmental pollution, as a proxi for exposure.
We present analysis of the spatial pattern of risk of lung cancer for males
in Trieste (Italy) with regard to four source, shipyard, iron foundry, incin-
erator and the city center, while adjusting for known risk factors.
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FIGURE 1. Locations of cases (left), controls (right) and putative sources of
environmental pollution: city center (ce), shipyard (sh), iron foundry (if ) and
incinerator (in). Lung cancer males, Trieste (Italy), 1979-1986

2 Data

Data consists in 755 case of lung cancer for males observed from 1979 to
1986 and 755 controls identified through the local autopsy registry (for
further details on the study design see Barbone et al., 1994 and Biggeri et
al., 1996). We have considered the distance from subject’s last residence
to putative source of environmental pollution: city center (ce), incinerator
(in), iron foundry (if ) and shipyard (sh). Cases, controls and sources of
environmental pollution locations are showed in Figure 1.
Covariates, considered in the study as possible confounders, are: smoking
habits (nonsmoker, 1-19, 20-39, more than 40 cigarettes per day), exposure
to occupational carcinogens (none, possible, likely).

3 The model

A logistic regression model can be defined in terms of odds of having the
disease being resident at distance ds from the source s (s = ce, in, if, sh).
For subject i (i = 1, . . . , 1510) we specify the following logistic model:
Yi ∼ Binomial(pi, 1),

oddsi = α0

∏
j

exp(zjγj)

[
1 +

∑
s

f(ds i)

]
(1)

where α0 is a constant term, zj are potential confounders, as smoking habits
and exposure to occupational carcinogens, and γj the log odds ratio for the
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j-th risk factor zj .
The distance function proposed by Diggle (1990) is the function used in
this work

f(ds i) = αs exp(−βsds i) (2)

ds represents the distance (in meters) from the source of environmental
pollution, αs the excess relative risk at the source location and βs the
exponential decrease of the excess relative risk for longer distance. We have
used this distance because it could be extended to include more than one
source of environmental pollution simultaneously in the model.
As the distances from the four putative sources are correlated, we chose to
consider the city center as part of the model (because the most important
source from a statistical point of view) and then assess the significance of
the inclusion of each other source in turn.
To allow for directional effects, we define the following distance function
for a given source:

f(ds i; θs i) = αs exp [−βsds i + βs sin sin(θs i) + βs cos cos(θs i)] (3)

where θs i is the angle between the i-th case or control and source s loca-
tions.
Prior distributions Normal(0,10000) are defined for α0, γj , βs sin and βs cos.
Prior for the coefficients relating to the source are αs ∼ Gamma(2, 1) and
βs ∼ Uniform(0, 1).
We have made use of WinBUGS software (see Spiegelhalter et al., 2000)
in order to perform the MCMC analysis. For each model we have run two
independent chains; checks for achieved convergence of the algorithm was
performed following Gelman and Rubin (1992). We discard the first 100,000
iterations (burn-in) and to store for estimation 5,000 samples.

4 Results and discussion

Coefficient estimates and credibility intervals obtained from the model with
only potential confounders are reported in Table 1. Coefficients estimates
for the models considering one source of environmental pollution at time
are reported in Table 2, for models with two source results are reported in
Table 3, for model with directional effect results are reported in Table 4.
Generally speaking results are consistent with previous analysis (Barbone
et al., 1994 and Biggeri et al., 1996). All models appeared to be sensitive
to modelling choices these suggest that any point analysis should be pro-
vided with careful sensibility analysis. Table 5 describes results for different
choices of prior distributions for model considering distance from city center
and incinerator sources: (a) Congdon (2003)’s priors αce ∼ Gamma(1, 1)
and αin ∼ Gamma(1, 1), (b) non informative priors αce ∼ Gamma(0.2, 0.1)
and αin ∼ Gamma(0.2, 0.1), (c) priors based on maximum likelihood esti-
mates αce ∼ Gamma(2, 1) and αin ∼ Gamma(7, 1).
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TABLE 1. Estimates of coefficients for potential confounders (odds ratio)

Confounder Estimates(CI 95%)
Smoking nonsmoker ref.

1-19 cigarettes/day 7.393 (4.459,12.580)
20-39 cigarettes/day 13.571 (8.156,22.750)
≥ 40 cigarettes/day 22.316 (12.850,38.650)

Occupational exposure no ref.
possible 1.284 (1.003,1.643)
probable 2.217 (1.634,2.932)

TABLE 2. Estimates of coefficients for the distance from each source of environ-
mental pollution

Source αs (CI 95%) βs (CI 95%)
City center (ce) 2.560 (0.519,6.194) 0.531 (0.059,0.959)
Shipyard (sh) 1.696 (0.350,4.489) 0.128 (0.008,0.899)
Iron foundry (if) 2.044 (0.412,5.481) 0.282 (0.016,0.926)
Incinerator (in) 2.233 ( 0.504,5.287) 0.262 (0.009,0.897)

TABLE 3. Estimates of coefficients for the distance from city center and other
sources

sh if in
αce 2.626 (0.423,6.321) 2.561 (0.570,5.893) 2.371 (0.600,5.763)
βce 0.555 (0.036,0.964) 0.457 (0.015,0.941) 0.369 (0.014,0.908)
αs 1.402 (0.302,3.642) 2.210 (0.437,5.492) 2.549 (0.579,5.968)
βs 0.197 (0.009,0.939) 0.263 (0.023,0.918) 0.236 (0.033,0.816)

TABLE 4. Estimates of coefficients for the distance from city center and inciner-
ator sources considering directional effects for incinerator

Coefficient Estimate (CI 95%)
αce 2.424 (0.563,5.925)
βce 0.409 (0.021,0.920)
αin 2.140 (0.414,5.630)
βin 0.292 (0.032,0.877)
βin sin -0.525 (-2.135,1.041)
βin cos 0.083 (-1.219,1.748)
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TABLE 5. Estimates of coefficients for the distance from city center and inciner-
ator sources for several choices of prior distributions. (a) Congdon (2003)’s priors
(b) non informative priors (c) priors based on maximum likelihood estimates

Coefficient Priors
(a) (b) (c)

Estimate (CI 95%) Estimate (CI 95%) Estimate (CI 95%)

αce 1.781 (0.223,4.966) 4.275 (0.017,14.96) 2.275 (0.627,5.686)
βce 0.374 (0.019,0.917) 0.506 (0.019,0.962) 0.306 (0.014,0.892)
αin 1.790 (0.192,4.632) 3.677 (0.001,14.19) 6.645 (2.753,12.18)
βin 0.235 (0.023,0.872) 0.300 (0.028,0.906) 0.335 (0.123,0.856)

Acknowledgments: We are grateful to Fabio Barbone for having kindly
made available the data.
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Abstract: We define a new test statistic that accommodates missing pheno-
typic data in family-based association tests (FBATs). The missing phenotypes
are imputed using the conditional mean model (Lange et al. (2003)). When the
outcome data are missing at random, FBAT-IMP demonstrates higher power, in
both simulations and an Alzheimer study, than the standard quantitative FBAT.

Keywords: Family-Based Association Tests, MCAR, MAR, conditional mean
model, Alzheimer disease, time-to-onset

1 Introduction

Family-based association studies of disease outcomes and genetic markers
use samples of diseased subjects along with their parents or other family
members. Family-based association tests (FBATs) are constructed using
the genetic data of the family members to calculate the distribution of
the test statistic under the null hypothesis, conditioning on phenotypes
and parental genotypes (Rabinowitz and Laird 2000). In studies of diseases
with late onset, e.g. Alzheimer disease, the parental genotypes are usually
not available and additional siblings must be genotyped to construct the
marker distribution. For many late-onset diseases, a typical study design is
to ascertain large sib-ships in which at least one sibling is affected. In study-
ing these late onset diseases, genes may be modelled as quantitative trait
loci (QTL) for age of onset (Daw et al. 2000). A primary issue in studying
gene association with these diseases is how to best utilize the information
from offspring that are unaffected. In the standard FBAT statistic, the af-
fected siblings contribute their phenotypic and genetic information to the
test statistic, while the unaffected siblings are only used for the computa-
tion of the marker distribution under the null-hypothesis. The challenge is
constructing an FBAT statistic such that information from offspring unaf-
fected at the time of analysis may also contribute to the statistic.
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In this paper, we propose a new test statistic for family-based studies that
imputes the missing phenotypic data based on the conditional mean ap-
proach (Lange et al. 2003). The imputation is performed under two assumed
patterns of missingness, missing completely at random (MCAR) and miss-
ing at random (MAR). It can be shown analytically that when the pheno-
typic data are missing completely at random, no additional power can be
obtained by imputing the missing phenotype. However, when the data are
missing at random, additional power is achieved by imputation (Murphy
et al. 2004a). The magnitude of the power increase is assessed by simula-
tion studies. An application to time-to-onset data from an Alzheimer study
shows the practical relevance of our method. Such studies frequently en-
counter missing at random data, since a genetic variant may delay/accelerate
disease onset, thus creating different patterns of missingness.

2 The Data Set: Alzheimer study, Blacker et al.(1998)

The data set is from the NIMH Genetics Initiative Alzheimer Disease sam-
ple (Blacker et al. 1998) and has been previously analyzed in Lange et
al. (2004). We will re-analyze 2 alleles at the APOE locus. The data set
contains 143 nuclear families with 2-10 siblings (Blacker et al. 1998). The
parental genotypes are unknown. Within each family, the first sibling al-
ways has Alzheimer’s disease. Its genotype and time-to-onset are recorded.
The additional siblings are either affected or unaffected with either the
time-to-onset or the censoring time given. The genotypes of the additional
offspring are known.

3 Methods

Although we will analyze data on multiple siblings without parental geno-
types, for simplicity, we will derive the methodology using trios, i.e., one
offspring per family and the parental genotypes are known. Our method-
ology extends readily to scenarios in which the parental genotypes are not
known, using the approach by Rabinowitz and Laird (2000).
In the study, n independent trios are sampled and a bi-allelic marker locus
with alleles A and B is genotyped. We denote the number of transmitted
A alleles in the offspring of the ith family by xi. The parental genotypes in
the ith family are pi1 and pi2. For each offspring, a quantitative trait, e.g.
time-to-onset, is recorded and denoted by yi. The conditional mean model
(Lange et al. 2003) for the ith offspring, is then given by E(Yi|pi1, pi2) = a·
E(Xi|pi1, pi2), where a denotes the true additive genetic effect size. For
simplicity, we assume here that the offset is 0. The conditional mean model
has the advantage that the additive genetic effect size can be estimated
using all observed phenotypic data and the parental genotypes without
biasing the significance level of any subsequently computed family-based
association test (Lange et al. 2003). Next, the conditional mean model is
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extended to accommodate missing data. If data is not observed (e.g., onset
is censored), we set yi to missing, i.e., yi = NA, and denote this observation
by yi,mis. Denoting the estimate for the genetic effect size by â, the missing
phenotypic data can be imputed by ŷi,mis = â· E(Xi|pi1, pi2). We then
define the FBAT statistic for observed and imputed data. Using matrix

notation, let Ypar=
(
Ŷt

mis,Y
t
obs

)t

. The vector Ypar has been partitioned

into observed and missing outcomes, where Ŷmis denotes the sub-vector
of missing phenotypes that have been imputed using the conditional mean
model. The vector of marker alleles, X, and its expected value conditioned
upon parental genotypes E(X|P1P2) are partitioned in the same manner.
Lastly, let Ȳobs denote the phenotypic mean among the observed outcomes.
Thus, the test statistic FBAT-IMP is given by:

S = Tt [Xpar − E(Xpar|P1,P2)] and D = TtV ar(Xpar)T, (1)

with T=
(
Ypar−Ȳobs

)
. Under the hypothesis of no linkage and no asso-

ciation, FBAT-IMP = S2/D ∼ χ1 (Murphy et al. 2004a).
The standard quantitative FBAT-statistic (here FBAT-OB) (Laird et al.
(2000)) is identical to equation 1 above, except that Xpar and Ypar are
replaced by Xobs and Yobs, respectively. Only the sub-vectors of X and Y
corresponding to observed phenotype data are used in calculating the test
statistic. Under H0, FBAT-OB = S2/D ∼ χ1 (Lange et al. 2003).
The following theorems for the power of FBAT-IMP and FBAT-OB were
derived by Murphy et al. (2004a):
Theorem 1: Under the assumptions of Hardy-Weinberg and the missing-
ness of the time-to-onset data completely at random, the power of FBAT-
OB and FBAT-IMP are identical.
Theorem 2: Under the assumption that a > 0 and P(x = 2|Y is missing)>
P(x = 1|Y is missing)> P(x = 0|Y is missing), the power of FBAT-IMP is
greater than the power of FBAT-OB.
The result of Theorem 2 is of practical importance for time-to-onset data.
Candidate genes may delay/accelerate disease onset, creating a monotone
missingness pattern for time-to-onset as required by Theorem 2. In such
situations, using FBAT-IMP can be advantageous to using only the families
with observed time to onset data, i.e., using FBAT-OB.

4.1 Results: Simulation study

We assessed the magnitude of the power difference between FBAT-IMP
and FBAT-OB by simulation studies. The genetic data was generated us-
ing Binomial distributions and Mendelian transmissions. The phenotypic
data was simulation by a Normal distribution, using an additive mode of
inheritance, i.e., Y ∼ N(ax, 1), where a is the additive effect for phenotype
and x is the observed number of alleles at the marker locus. To simulate the
’observed’ data set, none of the outcomes were removed if zero alleles were
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present at the marker locus, 30% were randomly deleted if one allele was
missing,and 60% were deleted at random if two protective were present.
For a variety of scenarios, Table 1 displays the estimated power levels.
At every allele frequency and heritability level, FBAT-IMP demonstrated
greater power than FBAT-OB. Among the higher allele frequencies (10,
20, and 40%), the power of the FBAT-OB levels off, as the increase in
allele frequency is offset by the increased missingness, while the power of
FBAT-IMP continues to improve. The relative change in power estimates
ranges from 15%-40%, with the greatest differences observed at the lowest
heritability levels and highest allele frequencies.

4.2 Results: Data analysis

The results of the analysis of the Alzheimer data set (Blacker et al. 1998) are
shown in Table 2. Time-to-onset was assumed to be the quantitative trait of
interest. Both FBAT-OB and FBAT-IMP detected an association between
the marker alleles and time-of-onset of Alzheimer disease. However, in both
alleles, FBAT-IMP provided a more significant result. Additionally, to esti-
mate the power of the FBAT-OB and FBAT-IMP statistics calculated for
these data, a simulation using the missingness patterns and allele frequen-
cies observed in the alzheimer data set was performed. The frequency of
APOE allele 4 was 43%, and the percent missing for 0,1, and 2 alleles was
19, 26, and 28%, respectively. The APOE allele 3 comprised 53% of the
observed alleles, with 30, 25, and 16% missing for 0,1, and 2 alleles, respec-
tively. As shown in Table 2, the estimated power universally increases. The
increase is modest in the APOE 3 allele, but the power gains seen in the
APOE 4 allele are comparable with the simulation study. Despite a finer
missingness gradient, the FBAT-IMP still outperforms FBAT-OB.

5 Discussion

In this paper, we presented a new test for family-based association tests
when missing data are present. When data are missing at random, FBAT-
IMP demonstrates an increase in power over the quantitative FBAT ap-
proach, which is particularly useful in complex diseases where the missing-
ness pattern of the phenotype data may be attributable to genetic effects.
The power gains are most pronounced at higher allele frequencies and lower
heritability levels. We also showed that the power gains are still consider-
able even when the missingness percentages are more similar across covari-
ate levels. Further testing of the this methodology will involve its extension
to multivariate data (Murphy et al. 2004b) As the number of phenotypes
increases, missing data issues are far more frequently encountered (i.e.,
more difficult to ascertain phenotypes), but the missingness pattern is less
likely due to genetic reasons.

Acknowledgments: We thank Dr. Nan Laird for her valuable comments
on this manuscript. This research was supported by N.I.H. grant MH17119.
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TABLE 1. Simulation Study-Estimated Power Levels for 1000 trios, α = .05

Allele heritability=0.01 heritability=0.025
frequency FBAT-OB FBAT-IMP FBAT-OB FBAT-IMP
0.01 0.34 0.45 0.61 0.75
0.05 0.38 0.50 0.74 0.87
0.10 0.39 0.55 0.75 0.90
0.20 0.39 0.57 0.76 0.92
0.40 0.39 0.63 0.76 0.95

TABLE 2. Association between time-to-onset and APOE-alleles (h = heritability)

Allele Test Statistic FBAT p-value â Power (h=0.01)
3 FBAT-OB 16.26 5.52e-05 0.46

FBAT-IMP 19.90 8.18e-06 3.04 yrs 0.49
4 FBAT-OB 24.17 8.84e-07 0.36

FBAT-IMP 26.84 2.21e-07 -3.08 yrs 0.60
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Abstract: We show that for a linear mixed effects model where the question
of interest concerns cluster-specific inference the commonly-used definition for
AIC is not appropriate. We propose a new definition for this context, which we
call the conditional Akaike information criterion (cAIC). The cAIC is obtained
from first principles, and we show that the penalty for the random effects is re-
lated to the effective number of parameters ρ proposed by Hodges and Sargent
(2001); ρ reflects a level of complexity between a fixed-effects model with no
cluster effects, and a corresponding model with fixed cluster-specific effects. We
provide finite-sample results for known random effects variances, and an asymp-
totic approximation for a special case with unknown random effects variances. We
compare the conditional AIC with the marginal AIC (in current standard use),
and we argue that the latter is only appropriate when the inference is focused on
the marginal, population-level parameters. A pharmacokinetics data application
is used to illuminate the distinction between the two inference settings, and the
usefulness of the conditional AIC.

Keywords: Akaike information; AIC; effective degrees of freedom; linear mixed
models

1 Introduction

Model assessment and comparison are essential aspects of statistical infer-
ence. The AIC is, together with the likelihood ratio test, one of the main
instruments for model selection. When the model under consideration con-
tains random effects, the definition of the AIC is not straightforward. What
likelihood should be used? Should the random effects be counted as param-
eters or not? In this paper we argue that the answer to these questions de-
pends on the focus of the research question. We distinguish population, or
marginal inference, and cluster-specific, or conditional inference. Accord-
ingly, we show that the AIC will be different in the two cases. The formula
is the usual one: AIC = −2 log likelihood+ 2K, where K is the “degrees of
freedom” correction, or the number of parameters in the model. However,
for the marginal model, the likelihood is the marginal likelihood, and K
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is the number of fixed parameters (fixed mean parameters and variance
components), whereas for the conditional model, the likelihood is the con-
ditional likelihood (with the random effects at their estimated values), and
K is based on the number of effective mean parameters, ρ. Asymptoti-
cally, for known variance of the random effects, K = ρ+1, where 1 stands
for the unknown error variance σ2. Spiegelhalter et al. (2002), make an
implicit distinction between conditional and marginal inference using the
idea of focus of inference for hierarchical models. For hierarchical models,
their DIC criterion, based on Bayesian arguments, is also closely related to
our conditional AIC.

2 Conditional and marginal linear mixed models

The AIC (Akaike 1973, deLeeuw 1992) is based on the Kullback-Leibler
distance I(f, g) = Ef log f(y) − Ef log g(y) between the true density f of
the distribution generating the data y, and the approximating model for
fitting the data, g(·|θ), θ ∈ Θ. This leads to the Akaike information,

AI = −2Ef(y)Ef(y∗) log g(y∗|θ̂(y)), (1)

which incorporates the model prediction ability of the model g (y∗ and y

are independent and with same distribution f). When θ̂(y) is the maxi-
mum likelihood estimator (MLE) and the approximating class of models G
is “close” to f , an asymptotic approximation of AI is the Akaike informa-
tion criterion, AIC = −2 log g(y|θ̂(y)) + 2K; K = df , the number of free
parameters in the model G (Akaike 1973, Burnham and Andersen 2002).
A second-order approximation AICc yields K = N(N −df − 1)−1df, where
N is the total sample size (Hurvitch and Tsai, 1989).
Consider a data vector y consisting of observations from m clusters, mod-
eled by the Laird-Ware model (Laird and Ware, 1982) yi = Xiβ + Zibi +
εi, bi

iid∼ N(0, G) where i = 1, . . . ,m is the cluster index, yi is the vector of
ni responses for cluster i, β is the p-vector of fixed effects, bi is the q-vector
of random effects for cluster i, Xi and Zi are the ni ×p and ni × q matrices
of covariates for the fixed and random effects respectively, and εi is the
error vector. The total number of observations is N =

∑m
i=1 ni. The errors

are independent and normally distributed εi ∼ N(0, σ2Ini
), independent

of the b′is. The variance matrix G is q × q and positive semi-definite. In a
more condensed notation we write y = Xβ + Zb + ε, b

iid∼ N(0, G0).
Let θ be the vector of parameters in the model, including β, σ2, and the
parameters in the variance matrix G. Conditional on bi, the likelihood of
the model is g(y|b, β, σ2), and the marginal likelihood is g(y | θ) = ∫ g(y |
b, β, σ2)p(b | G) db, where p(b|G) =

∏m
i=1 p(bi | G) is the distribution of the

random effects.
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In the Laird-Ware mixed model inference can be made on two levels:
(i) population, or marginal inference, and (ii) cluster-specific, or condi-
tional inference. At the population level, the interest lies exclusively in
the fixed effects (e.g. the population-averaged treatment effect in a clin-
ical trial) and the marginal mean E(yi) = Xiβ, whereas the random ef-
fects are viewed simply as a way of modeling within-cluster correlation,
and therefore are part of the error term γi = Zibi + εi. The appropriate
AIC here is the usual one, is the one which we call the marginal AIC:
mAIC = −2 log g(y|β̂, Ĝ, σ̂2) + 2K, where the likelihood is the marginal
likelihood, K is the number of parameters in β, G and σ2. In contrast,
at the cluster level the cluster-specific parameters bi are of interest them-
selves, to a great extent they act as parameters, and they are part of the
conditional mean E(yi|bi) = Xiβ + Zibi. In this case we recommend the
cAIC.

3 Conditional AIC for linear mixed effects models

In analogy with (1), we define the conditional Akaike information as

cAI = −2Ef(y,u)Ef(y∗|u) log g(y∗|θ̂(y), b̂(y)) (2)

where the notation is as in (1). For simplicity, assume that the true dis-
tribution of y, f(·|u), and g(·|θ, b) follow the same Laird-Ware model. In
addition, u are the true random effects (the realized values which gener-
ated the data y), and b are the random effects in the model; y∗, y iid∼ f(·|u).
Given θ, b, the suitable Kullback-Leibler distance between f(y|u) and the
model g(y|θ, b), properly standardized, is −2Ef(y|u) log g(y|θ, b). The rele-
vant distribution is the conditional. When θ, b are estimated from the data,
this measure becomes −2Ef(y∗|u) log g(y∗|θ̂(y), b̂(y)). The measure is eval-
uated over all possible observed data (y, u), which gives (2). Note that the
distribution is conditional for the inner expectation, joint for the outer.
In analogy with the AIC, cAIC is the estimator of the cAI, and is given
by the following two results. We assume that the true distribution f(·|u)
of the observed data y is given by the Laird-Ware model.

Theorem 1: σ2, G known. If the variance parameters σ2 and G are known,
an unbiased estimator of the conditional Akaike information is

cAIC = −2 log g(y|β̂(y), b̂(y)) + 2ρ. (3)

Here β̂ is the MLE, and b̂ is the empirical Bayes estimator of b.

Theorem 2: σ2 unknown. Assume that σ2 is unknown, but σ−2G is
known. An unbiased estimator of the conditional Akaike Information is

cAIC = −2 log g(y|β̂(y), b̂(y)) + 2K
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where

K =
N(N − p− 1)

(N − p)(N − p− 2)
(ρ + 1) +

N(p + 1)
(N − p)(N − p− 2)

(4)

The properties of K are summarized in the following result:

Proposition:
(i) An alternative formula for K is

K =
N

N − p− 2

[
(ρ + 1)− ρ− p

N − p

]

(ii)
N(N − p− 1)

(N − p)(N − p− 2)
(ρ + 1) ≤ K ≤ N

N − p− 2
(ρ + 1)

(iii) As N → ∞, K/(ρ + 1) → 1.

Point (iii) states that for large sample sizes K ≈ (ρ + 1), i.e., counting
the degrees of freedom ρ for the mean term and 1 for σ2. The difference
between K and ρ + 1 is the small sample bias correction (similar to the
difference between AICc and AIC. These cAIC measures are unbiased for
finite samples, not only asymptotically.

4 Application to a Pharmacokinetics Dataset

We analyzed as a case study a pharmacokinetics dataset, the cadralazine
data (Lunn, Wakefield et al, 1999). The dataset consists of plasma drug
concentrations from 10 cardiac failure patients who were given a single
intravenous dose of 30 mg of cadralazine, an anti-hypertensive drug. Each
subject has the plasma drug concentration (mg/L) measured at 2,4,6,8,10,
and 24 hours, for a total of 6 observations per subject. The data for a
given subject are well described by a pharmacokinetic one-compartment
model Concentration = dose

Vd
× exp(−k · t), where Concentration is the drug

concentration at time t, dose is the original dose of the drug (30 mg), Vd

is the volume of distribution, and k is the elimination rate constant; Vd

and k are the unknown parameters. This corresponds to the linear model
log(Concentration)− log(dose) = − log(Vd)− k · t + error, written as yij =
β0i + β1i · tj + εij , where i = 1, . . . , 10 stands for the subject, and j =
1, . . . , 6 is the measurement index for subject i. The data for each patient
are well described by a straight line, but the slopes and intercepts of the
ten regression lines differ from subject to subject. A main interest of the
analysis is in determining the distribution log-volume, −β1i and elimination
rate constants, −β2i of the 10 subjects in the study, and their population-
level averages. We compare the following two models: 1. Subject-specific



F. Vaida et al. 105

linear regression, β0i, β1i are different, unconstrained parameters for i =
1, . . . ,m. 2. Random intercept and slope, i.e. β0i = β0 + b0i, β1i = β1 +
b1i, (b1i, b2i)

iid∼ N(0, G).
The estimators for the linear regression slopes and intercepts are similar
for the two models (not included). Based on the parameter estimates and
the residuals plot (not included), both models give a very similar fit. We
expected the two models to have comparable AIC values. We obtained
and AIC of 12.6 for the random effects model, and of −47.1 for the linear
regression model. This large difference is not supported by the similar model
fit, and by the presumed parsimony advantage of the mixed effects model.
In contrast, the asymptotic conditional AIC using K = ρ + 1 is −44.5,
making the models comparable. The finite sample correction gives even
more interesting results for this small-sample dataset: AICc = −22.8, and
cAIC using (4) is −42.3.
In the appropriate comparison using cAIC, the random effects model is
clearly superior.
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Abstract: Randomized response (RR) is a well known method for measuring
sensitive behavior. Yet it is not often applied. Two possible reasons for this are
(i) its lower efficiency and the resulting need for larger sample sizes, making
applications of RR expensive, (ii) the notion that in many applications the RR
design may not be followed by every respondent (’cheating’).
This paper addresses the efficiency problem by proposing item response theory
(IRT) models for the analysis of multivariate RR data. In these models a person
parameter is estimated based on multiple measures of a sensitive behavior under
study which yields a more efficient and powerful analysis of individual differences
than available from univariate RR data. Cheating in a RR study is approached
by introducing additional mixture components in the IRT models with one com-
ponent consisting of respondents who answer truthfully and other components
consisting of respondents who do not provide truthful responses to all or a subset
of the items.
The resulting IRT model is applied to data from a Dutch survey conducted under
receivers of disablement insurance benefit (DIB) who are interviewed about their
compliance behavior to rules that are a prerequisite for receiving DIB.

Keywords: randomized response; item response theory; cheating; sensitive be-
havior; efficiency.

1 Introduction

In many RR studies, respondents are asked multiple questions about one or
more domains. For example, in the 2002 surveys conducted in the Nether-
lands on social security regulation infringements of the Occupational Dis-
ability Insurance Act, the Unemployment Insurance Act and the National
Social Security Assistance Act, each social security recipient was asked
about nine randomized–response questions about their compliance with
these regulations. The following four questions focussed on health–related
issues: (1) Have you been told by your physician about a reduction in your
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disability symptoms without reporting this improvement to your social
welfare agency? (2) On you last spot–check by the social welfare agency,
did you pretend to be in poorer health than you actually were? (3) Have
you noticed personally any recovery from you disability complaints with-
out reporting it to the social welfare agency? (4) Have you felt for some
time now to be substantially stronger and healthier and able to work more
hours, without reporting any improvement to the social welfare agency?
Clearly, these questions are ordered according to their degree of intentional
violations of the regulations. A person who does not report the outcome
of a medical investigation may also avoid reporting any personally noticed
improvements of their health status. In contrast, persons who notice per-
sonal improvements may or may not mis-report their health status. Item–
response models (van der Linden et al., 1997) are well–suited for studying
how individuals differ in their compliance behavior by ordering respondents
on a latent continuum that represents their level of compliance.
Although there is much empirical support to indicate that RR methods
increase the number of honest responses, there is no guarantee that all
respondents provide truthful answers (see van der Heijden et al, 2000).
Some respondents might violate the rules set out by the RR procedure.
Here the Forced Choice response format is used: respondents are asked to
throw two dice, to answer ”yes” when the outcome is 2, 3 or 4, to answer
”no” when the outcome is 11 or 12, and to answer truthfully when the
outcome is between 5 and 10. A typical rule violation is to answer ”no”
whatever the outcome of the dice (compare van den Hout et al., 2004; Clark
et al., 1998).
To accommodate such response behavior, an extension of the item response
approach is presented which allows explicitly for a response bias in the sense
that it can capture a possible tendency of respondents towards giving a
”No” response regardless of the outcome of the randomizing device. These
respondents are captured by a latent class that can be identified by an
extreme use of ”No” responses.

2 RR Models for Multiple Items

We distinguish three classes of RR models for multiple items. The first class
assumes that respondents are homogenous in their compliance behavior
and have a fixed probability of answering each item. This is the classical
RR model and it is used as a benchmark for the models proposed next.
The second model class relaxes the homogeneity assumption and allows
for individual variability in compliance for the various behaviors under
study. The third class of models considers the possibility that a subset
of respondents may not follow the randomization instructions and answer
”No” regardless of the outcome of the randomization device.
When all respondents have the same probability of endorsing an item, it
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is convenient to express the probability of answering affirmatively by the
logistic function with

Pr(xij = 1) = Pr(γj) =
1

1 + exp(γj)

Under random sampling of the respondents, the likelihood function of the
homogeneous–response model can then be written as

L =
n∏
i=1

J∏
j=1

[
1
6

+ .75 Pr(γj)]xij [1 − (
1
6

+ .75 Pr(γj))]1−xij . (1)

where 1
6 is the probability of a forced ”yes” and .75 is the probability of

a truthful answer. Clearly, the assumption that all respondents have an
equal probability of answering an item is too strong in most applications
although it is the standard assumption for single-item RR studies.
The second class of models assumes that associations among the responses
to multiple items are caused by a person–specific compliance parameter.
Because typically the number of items is small in a RR study, we adopt the
Rasch (1980) model to measure individual differences in compliance behav-
ior. Under this model, the probability that item j is answered affirmatively
by person i can be written as

Pr(xij = 1) = Pr(γj , θi) =
1

1 + exp(θi − γj)
,

where γj is called the item location parameter. Typically, the person pa-
rameter θi is specified to vary according to a normal distribution.
Under the Forced Choice response format, the item-response model needs
to be modified to account for the randomization effect. In this case the
likelihood function can be written as:

L =
n∏
i=1

∫ J∏
j=1

[
1
6

+ .75 Pr(γj , θi)]xij ×

[1 − (
1
6

+ .75 Pr(γj , θi))]1−xijf(θ;µ, σ)dθ, (2)

where f(θ;µ, σ) is the normal density with parameters µ and σ. Note that
the mean µ of the population distribution cannot be estimated indepen-
dently of the item locations. In the reported application, we therefore set
µ = 0. It is worthwhile stressing that the normal distribution assumption
may not always be appropriate in RR studies and that other distributional
forms should be considered to capture more closely the non–compliance
variability in the population of interest.
The third class of models allows for the possibility that not all respondents
comply with the randomization response format and provide a ”No” re-
sponse regardless of the question asked. Combined with the item–response
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model given by (2), the likelihood function is specified as:

L =
n∏
i=1

(π
∫ J∏

j=1

{[ 1
6

+ .75 Pr(γj , θi)]xij [1 − (
1
6

+ .75 Pr(γj , θi))]1−xij}

× f(θ;µ, σ)dθ + (1 − π)
J∏
j=1

{Pr(“No”)xij [1 − Pr(“No”)]1−xij}), (3)

where π denotes the probability of a randomly sampled person to answer
the questions according to the FC mechanism. In the reported application,
we specify that participants who answer “No” regardless of the question
asked, give this response with probability 1. It is straightforward to relax
this assumption and to estimate the probability of a “No”– response from
the data. The crucial assumption of (3) is that members of the “No”-group
do not provide any information about the items’ location and discrimina-
tion parameters.

3 Data Analysis

The aim of the study and the RR design have been described above. We
note that 44% of all respondents respondents provide “No” responses to all
four items.
The homogeneous model required the estimation of four item location pa-
rameters and yielded a goodness-of-fit statistic of G2 = 123.8 with 11 d.f..
Clearly, the assumption of no individual differences does not agree with the
data. This result is supported by the fit improvement obtained from Model
(2). With one additional parameter, the variance of the normal distribution
σ2, Model (2) provides a major fit improvement (G2 = 23.4 with 10 d.f.).
However, despite the better fit, this model does not describe the data sat-
isfactorily. The main reason for the misfit is that the outcome of consistent
“No”–responses to the four items is greatly underestimated by (2). Model
(3) can address this problem by allowing for the possibility that some re-
spondents select the “No”–response for reasons that are unrelated to the
compliance parameter θ. The resulting fit improvement provides support
for this specification (G2 = 14.3 with 9 d.f.).
Table 1 contains the corresponding parameter estimates of the three mod-
els. We note that the standard errors of Model (1) are too small since this
model does not reflect the dependencies among the four responses. In con-
trast, Model (2) overestimates strongly the degree of heterogeneity in the
data since it tries to fit the large percentage of “No”–responses to the four
items. Model (3) yields a much reduced but still substantial estimate of
the population standard deviation (σ̂ = 2.07). About 196 or 12% of the re-
spondents are classified as consistent “No”–sayers. For the remaining 88%
of the respondents, the items are ordered but far away from the mean of
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the population distribution. Clearly, a positive response to any of the four
items is low at the mean of the population distribution.

TABLE 1. Parameter Estimates (and Standard Errors) of RR–Models for Mul-
tiple Items

Parameter Model (1) Model (2) Model (3)
γ̂1 3.77 (.56) 9.10 (2.74) 4.56 (.88)
γ̂2 3.07 (.30) 8.44 (2.73) 3.99 (.80)
γ̂3 2.58 (.20) 7.61 (2.72) 3.42 (.67)
γ̂4 1.94 (.13) 5.83 (2.01) 2.63 (.53)
σ̂ – 4.72 (1.61) 2.15 (.47)

ln( π̂
1−π̂ ) – – 2.07 (.34)

By taking into account that about 12% of the respondents give a “No”-
response without providing information about their actual compliance be-
havior, Model (3) renders more accurate estimates about the compliance
rate in the population. Under Model (1) the percentage of non-compliant
respondents for the four items are 2.2%, 4.5%, 7.0%, and 12.5% respec-
tively. In contrast, under Model (3) the corresponding estimates are 5.2%,
7.7%, 11.0%, and 17.0%. These differences are substantial and demonstrate
the value of the proposed models for the analysis of RR data.
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1 Introduction

The methodological developments presented are implemented in a new
Stata command named xtci, and an expanded version of the present article
is published on the Stata Journal (Bottai and Orsini, 2004).
The random-effects linear model has been widely applied to different areas
of data analysis (among many others, Breslow and Calyton 1993, Diggle et
al 1994, McCulloch and Searle 2001). In its simplest form, it can be written
as

yit = xT
itβ + ui + eit, ui ∼ N(0, σ2

u), eit ∼ N(0, σ2
e) (1)

where yit is the tth observation taken on some random variable Y for the
ith unit, with i = 1, . . . ,m , t = 1, . . . , Ti; xit is a covariate vector and β
is a parameter vector of fixed effects; ui is a unit-specific normal random
effect with zero mean and variance σ2

u that is assumed to be non-negative,
and eit is the normal residual error with variance σ2

e that is assumed to be
strictly positive. Also, ui and eit are assumed to be independent. Units can
refer to individuals on whom repeated observations are taken, or to families
whose members are sampled, or to otherwise-defined groups within which
observations may be correlated.
In such models it is often of interest to make inference not only about
the fixed and random effects but also about the variance components. In
particular, testing homogeneity across units is equivalent to testing the null
hypothesis

H0 : σ2
u = 0. (2)
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In general, testing whether a variance parameter is zero implies testing a
parameter value on the boundary of the parameter space, the variance being
non-negative. Several authors suggest the use of the large-sample likelihood
ratio test that adjusts for the boundary condition. In fact, under this non
regular scenario, the asymptotic distribution of the usual likelihood ratio
test statistic follows a distribution that is a 50:50 mixture of a χ2

(1) and the
constant zero (Self and Liang 1987). Several statistical packages provide
the upper-tail probability of the appropriate asymptotic distribution of the
likelihood ratio test statistic.
However, such method cannot be used to construct confidence intervals for
the variance of the random effect, σ2

u. Besides, confidence intervals for the
random-effect variance that are based on a Wald-type test, too often used,
can be shown to be asymptotically wrong. To the best of our knowledge,
no published work has provided methods for constructing likelihood-based
confidence regions for the variance component that are asymptotically cor-
rect.
It can be shown that inference about the variance component σ2

u can be
accommodated within the non-regular problems of singular information.
Such connection had been noted several years ago (Chesher 1984, Lee and
Chesher 1986) but only recently a general theory was developed for the
singular information case (Rotnitzky et al 2000). Using the results derived
for the singular information problem (Bottai 2003), a method is developed
and implemented in the Stata command xtci that is based on the inver-
sion of a score-type test, which provides asymptotically-correct confidence
intervals. Also, when testing the hypothesis of homogeneity across units
(2), the proposed method is shown to have better small-sample properties
than the one based on the likelihood ratio test statistic.
The remaining sections are organized as follows: Section 2 shows the ob-
served rejection proportions of the confidence intervals generated by xtci
on simulated data, section 3 presents a real data example and section 4
presents some final remarks.

2 Simulated data

The command xtci was applied to simulated data. Three-thousand sam-
ples were pseudo-randomly generated for model (1) under a grid of values
for the random-effect standard deviation σu = 0, 0.01, . . . , 0.09, 0.10, 10,
and for different numbers of units or groups m = 10, 100, 1000. The resid-
ual error standard deviation σe was set constant to the value one for all
the simulation. Two covariates were pseudo-randomly generated from a
Uniform(−1, 1) and a Uniform(0, 2) distribution respectively, with β =
(1, 2)T . The observed rejection proportions over the simulated samples of
the 95% confidence intervals provided by the command xtci are shown in
table 1. For the samples generated under the value σu = 0, the observed
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rejection proportions of the likelihood ratio test adjusted for boundary con-
dition at the 0.05-level is also reported.

TABLE 1. Observed rejection proportions of the proposed score-type test and of
the likelihood ratio test adjusted for boundary condition among 3000 simulated
samples generated under different values of σu and number of units or groups for
the random-effects linear model (1). (Simulation error ±0.78%.)

σu m=10 m=100 m=1000
xtci

0.00 5.20 5.23 4.63
0.01 5.17 5.43 5.37
0.02 5.03 5.23 4.93
0.03 5.33 5.60 4.57
0.04 5.30 5.07 5.63
0.05 4.73 5.63 5.00
0.06 5.77 5.17 4.93
0.07 5.30 5.63 5.30
0.08 5.27 5.40 4.53
0.09 5.47 5.43 5.30
0.10 4.80 5.20 4.07
10.0 4.57 5.03 4.90
xtreg

0.00 2.43 4.13 4.27

Regardless of the number of units or groups, m, the observed rejection
proportion is close to its nominal level of 5% uniformly across the values
of the standard deviation σu. Although based on a large-sample test, the
command xtci shows acceptable behavior in small samples as well.
The adjusted likelihood ratio test provided by the command xtreg was ap-
plied only to the sampled simulated under the value σu = 0. In the present
simulation, when the number of units or groups m = 10, its observed re-
jection proportion is 2.43%, well below its nominal level of 5%. In other
extensive simulation experiments not reported here, we observed that the
rejection proportion becomes satisfactorily close to the nominal level only
when the number of units or groups is no smaller than a thousand.
The observed rejection proportion of the confidence regions obtained by
inverting the Wald-type test, as provided by the command xtreg, is wrong
in small as well as large samples. Depending on the values of σu and m, its
rejection probability can be as high as 15% or as low as 0.5%. Besides, its
confidence intervals may happen to include negative values, which are out
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TABLE 2. Maximum likelihood estimates and 95% confidence intervals for the
linear random-effects model.

Parameter Estimate 95% Conf. Int.
Intercept 2.132 1.654 2.609
Sex (F vs. M) -0.736 -0.978 -0.493
15–29 yrs 0.924 0.386 1.462
30–44 yrs 1.225 0.706 1.744
45–59 yrs 0.830 0.323 1.336
60–74 yrs 0.596 0.003 1.189
75+ yrs -1.142 -2.447 0.163
σe 1.167 1.034 1.300
σu 0.432 0.216 0.681

of the feasible space of the variance parameter.

3 Example: Individual daily moving behavior

A survey on daily moving behaviors of the people residing on the territory
of the Municipality of Pisa was carried out in October 2002. Data about
the trips made in the preceding 24 hours were recorded on 401 individuals
from 272 families. The present analysis is aimed at modelling the logarithm
of the total distance covered by each individual in one day as a function
of sex and age grouped in classes (0-14, 15-29, 30-44, 45-59, 60-74, 75+
years). To account for the potential dependence of the observations within
families, random effects are introduced into a linear regression model as
follows,

logdistanceit = β0 + ui + β1sexit +
6∑

k=2

βkageclasskit + eit

with the notation described for model (1), where the variable logdistance
is the logarithm of the total distance covered, the variable sex is 1 for fe-
male and 0 for male, ageclass2 to ageclass6 are indicator variables, one
for each age class with the youngest class omitted. Maximum likelihood
estimates are shown in table 2 where the confidence interval for σu is esti-
mated by the proposed procedure and the remaining ones are obtained by
inverting Wald tests.
Testing homogeneity across families is equivalent to testing the hypothesis
(2). The proposed score-type test, which provides asymptotically correct p-
values and confidence intervals, suggests to reject the null hypothesis, with
a p-value approximately equal to 0.008. Instead, the likelihood ratio test



M. Bottai et al. 115

p-value divided by two, as we are testing parameters on the boundary (Self
and Liang 1987), is 0.082, which is above the usual 0.05 rejection cut-off
value. As expected, the proposed procedure has greater power. Although
routinely applied, Wald-type tests are asymptotically wrong when testing
variance parameters that are close to zero.

4 Final remarks

The command xtci was implemented from the results presented by Bottai
(2003), and it is the only solution for those seeking to construct confidence
intervals for the variance component of a random-effects linear regression
model. The procedure described by Bottai (2003) can be extended to non-
Gaussian random effects model as well as to many other classes of models,
such as generalized linear mixed models and frailty models, whose estima-
tion is based on the likelihood function.
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Abstract: Survival data often contain spatial information, such as the residence.
In many cases the impact of such spatial effects on hazard rates is of considerable
interest. We propose flexible continuous–time geoadditive models, extending the
classical Cox model by augmenting the common linear predictor with a spatial
component and nonparametric terms for nonlinear effects of time and continuous
covariates. Markov random fields and penalized splines are used as basic building
blocks. Inference is fully Bayesian. We apply our approach to data from a case
study that aims to estimate the effect of area of residence and further covariates
on waiting times to coronary artery bypass graft (CABG).
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1 Introduction

Nonparametric Bayesian survival models have become quite popular in
recent years, and some previous work deals with related, special cases of our
approach. Ibrahim et al. (2001) provide a very good overview. In this paper
modelling and inference is developed from a Bayesian perspective, using
information from the full likelihood rather than from a partial likelihood,
in combination with priors for parameters and functions. Estimation of
unknown functions of time and continuous covariates is based on Bayesian
penalized spline (P–spline) regression (Lang and Brezger, 2004). Basically,
time is treated in the same way as a continuous covariate, but the degree
and amount of smoothness may be different. The spatial component is
modelled by Gaussian Markov random field priors.

2 Models, likelihood, and priors

Consider survival data in usual form, i.e., it is assumed that each individual
i in the study has a lifetime Ti and a censoring time Ci that are indepen-
dent random variables. The observed lifetime is then ti=min(Ti, Ci), and
δi denotes the censoring indicator. The data are given by

(ti, δi; vi), i = 1, . . . , n
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where vi is the vector of covariates.
In Cox’s proportional model the hazard rate for individual i is assumed as

λi(t) = λ0(t) exp(γ1vi1 + . . .+ γrvir) = λ0(t) exp(v′iγ). (1)

The baseline hazard rate is unspecified, and, through the exponential link
function, the covariates v = (v1, . . . , vr) act multiplicatively on the hazard
rate. In a number of applications there is a need for extending this ba-
sic model with respect to several aspects. We propose novel nonparamet-
ric Bayesian survival models that can deal with these issues in a flexible
and unified framework. Reparametrizing the baseline hazard rate through
exp{f0(t)}, f0(t) = log{λ0(t)}, partitioning the vector of covariates into
groups x, z, and v and adding a spatial index s, we extend model (1) to

λi(t) = exp(f0(t) +
p∑
j=1

fj(t)zij +
p+q∑
j=p+1

fj(xi,j−p) + fspat(si) + v′iγ). (2)

Here fj(t) are time–varying effects of covariates zj , fj(x) is the nonlinear
effect of a continuous covariate x, fspat(s) is the structured effect of the
spatial index s, with si = s if unit i is from area s, s = 1, . . . , S, and γ is
the vector of usual linear fixed effects.
Under the usual assumption about noninformative censoring, the likelihood
is given by

L =
n∏
i=1

λi(t)δi · exp
(
−
∫ ti

0

λi(u)du
)

=
n∏
i=1

λi(t)δi · Si(t). (3)

The Bayesian model formulation is completed by assumptions about priors
for parameters and functions. We assume diffuse priors for fixed effect pa-
rameters γ. For unknown functions fj , we assume Bayesian P–spline priors
(Lang and Brezger 2004). The idea of P–spline regression is to approximate
a function as a linear combination of B–spline basis functions Bm, i.e.

fj(x) =
Mj∑
m=1

βjmBm(x).

The basis functions Bm are B–splines of degree l defined over a grid of
equally spaced knots. The number of knots is rather high, to maintain flex-
ibility, but smoothness of the function is encouraged by difference penalties
for neighboring coefficients in the sequence βj1, . . . , βjMj

. The Bayesian
analogue are random walk smoothness priors. The amount of penalization
is controlled by the variance τ2

j , which acts as a smoothness parameter.
Considering small area data with sparse data for at least some of the areas,
fixed area–specific effects would not lead to reliable estimations. Therefore
we fit a structured spatial effect by assuming Markov random field priors.
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This technique borrows strength from neighboring areas, i.e. we assume
that neighboring areas (i.e. areas that share a common boundary) are more
similar than arbitrary areas and therefore the spatial effect varies smoothly.
We assume that the effect of an area s is normally distributed

fspat(s) := βspats ∼ N(
1
Ns

∑
j∈δs

βspatj ,
τ2
s

Ns
),

where Ns is the number of neighbors of area s, and j ∈ δs denotes that
area j is a neighbor of area s. The amount of smoothness is controlled by a
smoothing parameter τ2

s that is estimated jointly with the parameters βs.
Variances τ2

j as well as τ2
s follow weakly informative inverse Gamma priors.

The Bayesian model specification is completed by assuming that all pri-
ors for parameters are conditionally independent, and that all priors are
mutually independent.

3 Markov Chain Monte Carlo inference

Full Bayesian inference is based on the entire posterior distribution of all
parameters given the data, which is proportional to the product of the
likelihood and the prior distributions of all parameters.
The likelihood is given by inserting (2) into (3), but integration over all
terms depending on survival time t is required, i.e. terms of the form

Ii =
∫ ti

0

exp(f0(u) +
p∑
j=1

fj(u)zij)du.

Apart from B–splines of degree zero, i.e. random walk models, and linear B–
splines, these integrals are not available in closed form. The first case leads
to the piecewise exponential model, where the likelihood is proportional to
a Poisson–likelihood with an offset term. For linear B–splines, the integrals
can still be solved, but the computational effort is quite high. Therefore we
use numerical integration in form of the trapezoidal rule for linear B–splines
as well as for the commonly used cubic B–splines.
Full Bayesian inference via MCMC simulation is based on updating full
conditionals of single parameters or blocks of parameters.
For updating the parameter vectors corresponding to the time–independent
functions fj(x), as well as spatial effects βs and fixed effects γ, we use a
modified version of an MH–algorithm based on iteratively weighted least
squares (IWLS) proposals, see Hennerfeind et al. (2003).
For the parameters corresponding to the functions depending on time t,
the IWLS–MH algorithm requires considerably more computational effort.
Therefore, we adopt a computationally faster MH–algorithm based on con-
ditional prior proposals, although IWLS–MH has better mixing properties.
The full conditionals for the variance parameters are inverse gamma and
updating can be done by simple Gibbs steps.
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FIGURE 1. a) (log–)baseline effects on time to CABG: posterior mean estimates
for 1 diseased vessel (dv1), 2 diseased vessels (dv2) and 3 diseased vessels (dv3)
b)Posterior mean estimates of the effect of age and 80% and 95% credible intervals

4 Application: Waiting times to CABG

We illustrate our methods by an application to data from a study in London
and Essex that aims to analyze the effects of area of residence and further
covariates on waiting times to coronary artery bypass graft (CABG). The
data comprise observations for 3015 patients with definite coronary artery
disease. Covariates are, among others, sex, age (in years), numbers of dis-
eased vessels (1, 2, 3), and residence (one of 488 electoral wards). The data
were previously analyzed by Crook et al. (2003) who classified waiting times
in months and applied discrete–time survival methodology. They analyzed
and compared a hierarchy of models. Here we apply continuous–time geoad-
ditive survival models, with waiting times given in days as in the original
data set, and predictors based on model 12 in Crook et al. (2003), which
corresponds to a nonproportional continuous–time model with hazard rate

λ(t) = exp(f0(t)+fage(age)+fs(ward)+γ1sex+f1(t)dv2+f2(t)dv3), (4)

where f0(t) is the log–baseline rate, fage(age) is the nonlinear effect of
age and fs(ward) is the structured spatial effect modelled through a MRF
prior. The remaining covariates are dummy–coded: sex=1 for female, and
sex=0 for male, dv2=1 if the number of diseased vessels=2, dv2=0 else,
and dv3=1 if the number of diseased vessels=3, dv3=0 else.
For the (log–) baseline as well as for f1(t), f2(t) (the time–varying effects
of dv2 and dv3) and fage we assumed a cubic P–spline prior with 20 knots.
Model (4) can be interpreted as a model with three separate baseline effects
f0(t), f0(t)+f1(t), f0(t)+f2(t) for patients with one, two or three diseased
vessels, respectively. The corresponding estimated curves are displayed in
Figure 1a. All baseline effects show an initially high, but strongly decreasing
chance of CABG immediately after diagnosis, followed by a slow increase
between 150-450 days. Later, the chance of being operated decreases, but
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FIGURE 2. Posterior mean estimates of the structured spatial effect

the baseline effect of patients with three diseased vessels decreases more
rapidly and crosses the two other curves, which indicates that the propor-
tional hazards assumption is violated. The effect of age (Figure 1b) is almost
constant between 40 and 80 years and does not have significant influence.
The effect of sex is nonsignificant as well. The map in Figure 2 gives an
impression of the spatially varying chance of CABG with light (dark) areas
indicating an increased (decreased) effect. Areas with increased chances are
Chelmsford and Malden in North Essex, while in some areas in North Essex
and North East London patients have to wait longer for surgery.

5 Conclusions

Spatial extensions for analyzing survival data will be of increasing relevance
because spatial small–area information is often available. We have devel-
oped a flexible class of nonparametric geoadditive survival models within
a unified Bayesian framework. Extensions as to more general event history
models and censoring mechanisms could be considered in future research.
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Abstract: It is an essential element of market research that customer prefer-
ences are considered and the heterogeneity of these preferences is recognized. By
segmenting the market into homogeneous clusters the preferences of customers
is addressed. Latent class methodology for conjoint analysis, proposed by Green
(2000), is one of the several conjoint segmentation procedures that overcome the
limitations of aggregate analysis and prior segmentation. This approach proposes
the proportional odds model as a proper statistical model for ordinal categori-
cal data in which the item attributes are included in the linear predictor. The
likelihood is maximized through the EM algorithm. This paper considers two ex-
tensions of this methodology that incorporate individual characteristics into the
models.
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1 A General Model

Individuals are presented with several items representing different products
and are asked to rate each item on an ordinal scale. The observation ynj is
a rating response to the jth item elicited by the nth respondent. Consider
the Proportional Odds Model as in Green (2000)

P (yjn = r|α, β) = F
(
αr + x′

jβ
)− F

(
αr−1 + x′

jβ
)

In the first approach this is extended to include individual characteristics
together with item attributes in the same linear predictor.

P (ynj = r|α, β) = F (αr + ηnj)− F (αr−1 + ηnj)

β is a vector of regression parameters and α is a vector of cut-point pa-
rameters. The linear predictor ηnj = η (xj , zn) includes item attribute
covariates, xj , individual covariates, zn and interaction terms. In market
research ηnj is referred to as the worth or utility. The choice of F (.) consid-
ered is the extreme value distribution leading to the complementary log-log
link. The proportional odds model assumes that all respondents act in a
similar way in their choice behaviour and that it treats all respondents as
homogeneous. One of the criteria for effective market segmentation is to
identify differences between distinct groups of customers in the market and
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the ability to classify each customer into a segment. For the segmentation
procedure a latent class model with K segments is considered.

P (ynj = r|α, β, π) =
K∑

k=1

πk.P (ynj = r|α, βk)

where πk is the proportion of respondents in the kth segment and the
parameters within the segments are estimated at the same time that the
segments are uncovered.
In the second approach only the item attributes are included in the pro-
portional odds model as in (Green,2000). The individual characteristics
are now included in a mixture model through a classifying function πnk.
The choice of parameterization for πnk corresponds to a multinomial logit
probability model.

πnk =
exp (z′nγk)∑K

k=1 exp (z′nγk)

The mixed model blends this multinomial logit model containing individ-
ual covariates with the proportional odds model containing item attribute
covariates.

P (ynj = r|α, β, γ, π) =
K∑

k=1

πnk.P (ynj = r|α, βk)

2 Implementation

In this work we concentrate on the more general second approach. The
model is fitted using the EM algorithm and is implemented as a set of GLIM
macros. The responses are converted to zero/one indicators that allow the
use of the Poisson Likelihood in the model fit. The proportional odds model
being a non-linear model can be accommodated using the OWN model
facilities. The EM algorithm for fitting latent class models is equivalent to
iterative fitting of a weighted GLM with posterior probabilities recalculated
at each iteration. For the mixture model the EM algorithm is extended to
include a step that refits the multinomial logit model.

3 Application

To illustrate the methodology a conjoint study of approximately 200 cus-
tomers was conducted to investigate consumer car preferences. Five factors
were identified as being key determinant attributes in the car market. The
car attributes were brand, price and the number of doors and the individ-
ual characteristics were gender and age. The study compared 4 different
price values, 4 brands and whether the car had 3 or 5 doors. We utilized a
full profile method of collecting respondent evaluations. The design chosen
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had two blocks of 16 cards each. The respondents were handed a set of 16
cards to compare with random assignment to block. The rating responses
had seven categories where 1 corresponds to “worst” and 7 to “best”.
The GLIM model formula for the utility model proposed by Green (2000)
relates the utility of a product to its item attributes only.

(D +B ∗ P 〈2〉) .S

D is the number of doors attribute, B is the car brand, S is the segment
and P 〈2〉 is a quadratic function of price. This relationship allows a dual
role for price; the negative price deterrent effect and a positive effect due
to perceived quality. Models with four segments were used as they gave
reasonable results in terms of choice behaviour. The deviance for this
Proportional Odds Model was 9613. The relationship between worth and
price was examined for each brand and segment through price profiles which
characterise different customer behaviours. These include the strongly price
sensitive customer who uses the price as a monetary constraint in choosing
the item; those that use price as a signal of product quality and those with
strong brand preferences.
In our first approach we included individual characteristics in the utility
model to allow for individual differences in assessing the value of item
characteristics.

(D ∗ (A+G) +B ∗ P 〈2〉) .S
A and G are the respondents’ age and gender. The deviance of this Pro-
portional Odds Model was 9549. Although this model gave a significant
reduction in deviance over the previous model it is very difficult to inter-
pret. For example the parameter estimates show that the added worth
of five-door cars increases more rapidly with age in segment 1 than other
segments. Thus segment 1 will have more people who are either young
and undervalue five-door cars or old and overvalue five-door cars. Such
segments do not have a straightforward market interpretation and are not
easy to target.
In our second approach we try to balance two competing goals; one is to
obtain a model complex enough to provide a good fit and the other is to
obtain a model that is simple to interpret. The Proportional Odds Model
is as in Green (2000) and the multinomial logit model has model formula
A+G. The deviance of this mixture model is 9560 which is comparable to
the model presented in our first approach.
The Mixture model price profiles in figure 1 show the expected worth of
each brand in the four fitted segments. Segment 1 represents consumers
who have a moderate brand preference and are not strongly influenced by
price. Respondents in segment 2 exhibit a strong reliance on price as a
signal of quality but who hardly discriminate between the brands. People
in segment 3 are differentiating between the brands and are price sensitive.
Respondents in segment 4 have a strong brand preference and applying an
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FIGURE 1.

FIGURE 2.

“ideal price” as a signal that buying at very low prices could result in too
low quality but see no bargain in buying at high prices.
Figure 2 shows the fitted model for segment membership probability as a
function of age and gender. Segment 3 which is a cautious cost driven but
brand selective group consists of a younger age group. Segments 1 and 2
consists of more females than males whereas segment 4 consists of more
males than females for all ages. A marketer can more easily identify and
target such segments.

4 Predicting preferences

Comparing the deviances of the two models is inadequate because the mod-
els are not nested. Standard diagnostic tools to check for outliers, influential
data points and other model misspecifications cannot be used because the
proportional odds model is a non linear and a non standard GLM. So a
further task was included in the study in which each person was presented
with four cards and choose the item that he/she preferred most. The
purpose of this task was to observe how well our models predict peoples’
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choice behaviour. For the extreme value distribution it is possible to derive
the probability of preference from the predicted worth Ŵj The expected
frequencies can hence be estimated by using the following result

P
(
preference for jth item

)
=

exp
(
Ŵj

)

exp
(
Ŵ1

)
+ ...+ exp

(
Ŵ4

)

Expected Frequency
Seg1 Seg2 Seg3 Seg4

S 24.8 7.66 7.41 23.5
P 6.80 2.15 31.9 12.3
O 3.29 1.22 11.0 4.36
F 14.1 22.0 11.7 1.84

Observed Frequency
Seg1 Seg2 Seg3 Seg4

S 16 4 7 20
P 13 8 19 11
O 9 5 9 8
F 11 16 27 3

The ”observed” frequencies are defined by assigning individuals to segments
with highest posterior probability and counting their first preferences. The
expected frequencies are the totals of the predicted preference probabilities.
Visual comparison of the observed and expected frequencies shows that
the model is picking up the main features of individual preferences. It is
eliciting that higher proportions of respondents in segments 1 and 4 prefer
Subaru whereas a higher proportion of respondents in segment 2 like Fiat
most. There is evidence that segment 3 is not a consistent predictor of
individual preferences.

Expected Frequency
Young Old Total

S 25.19 38.16 63.35
P 32.16 21.02 53.18
O 11.63 8.24 19.87
F 24.02 25.59 49.61

Observed Frequency
Young Old Total

S 18 29 47
P 32 19 51
O 15 16 31
F 28 29 57

The final two tables were produced to compare the number of preferred
choices for different age groups using the Mixture Model. The model is
correctly drawing out a higher proportion of old people rather than young
ones who prefer Subaru and a higher proportion of young people rather
than old ones who prefer Peugeot. It is rightly not eliciting any age bias
for the other two brands. The Latent Class Model used in our first approach
did similarly well. However the Mixture Model is effective in prediction of
choice behaviour and leads to a segmentation model that has a clear and
simple interpretation.
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Abstract: To model the hypothesis of positive association between two cate-
gorical variables A and B a set of symmetric odds ratios defined on the joint
probability function is usually subject to linear inequality constraints. In this
paper two sets of asymmetric odds ratios defined respectively on the conditional
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subject to linear inequality constraints.
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1 Introduction

Let A and B be two ordered qualitative variables with r and c categories.
Sometimes both the dependence of A from B and the dependence of B
from A are of interest. For example, job satisfaction depends on insomnia
and viceversa; the comfort of a waiting-room influences the perception of
time of patients waiting for a medical examination and viceversa.
When both the dependence of A from B and the dependence of B from A
are of interest we propose to constrain the (r− 1)(c− 1) local-continuation
odds ratios defined on the row conditional distributions of A given B and
the (r − 1)(c − 1) continuation-local odds ratios defined on the column
conditional distributions of B given A. We prefer this approach to the usual
one that constrains a set of (r − 1)(c − 1) symmetric odds ratios, (o.r.),
defined on the joint probabilities like the local (or global or continuation)
odds ratios. If πij are the joint probabilities, the logarithms of the local-
continuation odds ratios are defined on adjacent rows as follows:

ϕij = ln
π

ij
·∑c

m=j+1 πi+1m

π
i+1j

·∑c
m=j+1 πim

, i = 1, 2, ..., r − 1, j = 1, 2, ..., c− 1

and the logarithms of the continuation-local o.r. ψij are analogously defined
on adjacent columns of the contingency table. Alternatively the local-global
and the global-local o.r., which are similarly defined, can be used (for a
survey of the various type of odds ratios see Douglas et al. (1990)).
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2 Models and main results

A context that makes worthwhile imposing constraints on two types of
odds ratios simultaneously is the case in which we want to test that both
sets of conditional distributions are stochastically ordered. For example
the hypothesis ϕij ≥ 0 and ψij ≥ 0 of double monotone dependence is
equivalent to the hypothesis of uniform stochastic order of the row condi-
tional distributions and of the column conditional distributions. A similar
hypothesis of simple stochastic order is specified when the logarithms of
the local-global and the global-local o.r. are assumed to be non-negative.
For square tables the hypothesis of double monotone dependence will also
be considered under the symmetry equality constraints: ϕji = ψij . Un-
der this model the factors that multiply the continuation logits of the j -
th row conditional distribution to obtain the corresponding logits in the
next row are the same to the ones that give the continuation logits of
the j -th column conditional distribution from the logits in the previous
column. We are interested in testing the symmetry and double monotone
dependence hypothesis against the symmetry alternative. First of all we
show that only a subset of the 2(r − 1)(c − 1) inequalities ϕij ≥ 0 and
ψij ≥ 0 is sufficient to express the condition of double monotone de-
pendence. In fact note that the (r − 1) local continuation o.r. ϕi(c−1)

are o.r. of the local type and that ϕi(c−1) ≥ 0, i = 1, 2, ..., (r − 1) im-
plies that the conditional distribution of the c-th column is stochastically
greater than the conditional distribution of the previous column accord-
ing to the likelihood ratio ordering. Since the likelihood ratio stochastic
ordering implies the uniform ordering, it follows that ϕi(c−1) ≥ 0 im-
plies ψi(c−1) ≥ 0, for i = 1, 2, ..., (r − 1). Analogously we can state that
ψ(r−1)j ≥ 0 implies ϕ(r−1)j ≥ 0 for j = 1, 2, ..., (c− 1). We should also note
that ϕ(r−1)(c−1) = ψ(r−1)(c−1). Therefore, in order to specify the double
monotone dependence hypothesis, the following (r−1)(c−1)+(r−2)(c−2)
inequalities are sufficient:

ϕij ≥ 0, ψij ≥ 0, i = 1, 2, ...(r − 2), j = 1, 2, ...(c− 2),
ϕi(c−1) ≥ 0, i = 1, 2, ...(r − 1), ψ(r−1)j ≥ 0, j = 1, 2, ..., (c− 2).

It is straightforward to verify, by means of counter examples, that the
number of inequalities can not be further reduced.
It can be shown that for a r × c contingency table with r and c such that
[(r ≥ 5) ∩ (c ≥ 5)] ∪ [(r = 4) ∩ (c ≥ 7)] ∪ [(r ≥ 7) ∩ (c = 4)] the number of
inequalities needed to impose the double monotone dependence hypothesis
is greater than the number of parameters (rc− 1).
The double monotone dependence hypothesis can be imposed in square
tables, when r = c, jointly with the symmetry hypothesis ϕji = ψij . In this
case the number of inequalities specifying the double monotone dependence
hypothesis can be further reduced. In fact ϕi(r−1) ≥ 0, i = 1, 2, ..., (r − 1)
implies not only ψi(r−1) ≥ 0, i = 1, 2, ..., (r − 1), as in the general case
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but also, for the symmetry hypothesis, ψ(r−1)j ≥ 0, j = 1, 2, ..., (r − 1).
Furthermore, for the symmetry hypothesis, ϕij ≥ 0, i = 1, 2, ...(r − 2); j =
1, 2, ...(r − 2) implies that ψij ≥ 0, i = 1, 2, ...(r − 2); j = 1, 2, ...(r − 2).
As a result the double monotone dependence and symmetry hypothesis is
specified by the following (r − 1) + (r − 2)2 inequalities:
ϕij ≥ 0, i = 1, ..., (r − 2), j = 1, ..., (r − 2);ϕi(r−1) ≥ 0, i = 1, ..., (r − 1).
It is worthwhile to note that these inequalities involve just a subset of the
local-continuation o.r. so that they can be interpreted as linear constraints
on the parameters of the parameterization of the joint probabilities based
on the marginal distributions and the (r− 1)(c− 1) local-continuation o.r.
(see Colombi-Forcina (1999) for a discussion on this parameterization).
Let θ be the vector of the parameters of the saturated log-linear model of
the joint probabilities πij . Moreover, let the symmetry equality constraints
and the double monotone dependence inequality constraints be denoted
by h(θ) = 0, g(θ) ≥ 0 (for the details on how these constraints
can be written see Colombi-Forcina (2001)) and let G, H be the jacobian
matrices of g(θ), h(θ) at the point θ0 ∈ Θ0, which represents the unknown
parameters vector under the hypothesis that all the inequality constraints
are satisfied as equalities. Note that the previous constraints are non-linear
in the parameters of the saturated log-linear model.
In the case of the hypothesis of double monotone dependence without
symmetry, the number of inequality constraints is generally greater than
(rc− 1), the dimension of the vector θ of the log-linear parameters. In this
caseG has not full row rank, thus it is necessary to verify the Mangasarian-
Fromovitz condition.
The Mangasarian-Fromovitz constraints qualification condition is satisfied
at the point θ0 if C = {d : Gd > 0, Hd = 0} is non empty. The just men-
tioned condition, easy to verify in our context, is relevant in Nonlinear Pro-
gramming to establish necessary optimality criteria (Bazaraa et al. (1972),
Mangasarian (1994)) and here, in the context of ordered restricted infer-
ence, is useful to obtain a reasonable asymptotic theory for the maximum
likelihood estimators subject to inequality non linear constraints (Andrews
(1999), Shapiro (1987)).

3 Examples

The proposed models will be illustrated through a data set concerning pa-
tients’ satisfaction on various aspects of a medical service. In particular
our data refer to a survey carried out in a national health service (NHS)
trust of a northern italian city. These data have been collected by a tele-
phone interview on about 2000 patients, concerning personal information
and patients’ satisfaction respect to waiting time, privacy protection and
information received from doctors. In addition reservation of a specialist



M. Cazzaro et al. 129

examination, helpfulness of the staff, comforts of waiting-rooms, approach-
ability of facilities, availability of suitable local transport have been anal-
ysed. For example the dependence of the perception of the waiting-time
from the comfort of the waiting-room and viceversa may be studied con-
ditionally on explanatory variables such as age and education. In fact the
models proposed in this work are used to analyse the data of Table 1, where
medical service’s users are asked to evaluate their satisfaction (unsatisfied
(U), satisfied (S), really satisfied (RS)) regarding the waiting-room’s com-
fort (COMFORT ) and the perception of the waiting-time (TIME ) before
a specialist examination is carried out. Moreover, patients are classified
according to their age (AGE : ≤ 24, 25 − 54, ≥ 55) and level of education
(EDUCATION : primary (1), secondary (2), high (3)). The presence of co-
variates implies that the considered hypotheses can be expressed with the
previous established number of constraints for each subtable identified by
the levels of the covariates.

TABLE 1. The NHS data.

EDUCATION 1 2 3
COMFORT U S RS U S RS U S RS

AGE TIME
U 6 6 1 10 2 4 4 3 2

≤ 24 S 5 2 1 2 3 1 0 2 0
RS 2 2 11 3 3 9 3 1 4
U 37 11 13 48 20 13 31 12 3

25− 54 S 20 17 9 23 24 17 12 8 5
RS 11 18 49 25 22 66 7 14 38
U 19 20 14 21 10 16 12 7 5

≥ 55 S 15 20 23 17 17 10 8 6 8
RS 17 28 83 11 24 78 8 9 27

We test the double monotone dependence hypothesis between COMFORT
and TIME with or without the symmetry hypothesis in each sub-table
identified by the levels of the covariates, considering also the marginal con-
tinuation logits of COMFORT and TIME as additive function of the effects
of the covariates AGE and EDUCATION.
We report the likelihood ratio test statistic and the asymptotic simulated
p-value (see Colombi-Forcina (2001) for the Monte Carlo method used to
simulate the p-values) for the following models:
1: double monotone dependence, DMD, model, G2 = 8.83, p-value=0.9966;
2: DMD and symmetry model, G2 = 2.43, p-value=0.9974;
3: DMD and covariate additive effect model, G2 = 8.96, p-value=0.9964;
4: DMD, symmetry and covariate additive effect model, G2 = 1.82, p-
value=0.9996. All the tested models show an excellent fit.
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4 Conclusions

In summary the original topics and results of this work are:
1) it is shown that only a subset of the inequalities on the local-continuation
and continuation-local odds ratios is necessary to model the hypothesis of
double monotone dependence;
2) the double monotone dependence inequalities are non-linear in the log-
linear parameters and generally their number is greater than the num-
ber (rc − 1) of the parameters of the saturated log-linear model; however
these inequalities satisfy the Mangasarian-Fromovitz condition so that the
asymptotic distribution of the likelihood ratio statistics for testing the dou-
ble monotone dependence hypothesis is easily obtained;
3) a data set concerning patients’ satisfaction on a medical service is anal-
ysed in order to illustrate the usefulness of the new approach.
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Abstract: This talk is motivated by data from a longitudinal trial comparing
the progress of patients randomised between two treatment groups, one with and
one without surgical intervention, in which the time of the surgical intervention
varies between patients. Our aim is to obtain non-parametric estimators of the
longitudinal mean response in the non-surgical arm, and the surgical intervention
effect.
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1 Introduction

This work is motivated by data from a longitudinal trial on Lung Em-
physema. It compares the progress of patients randomised between two
treatment groups, one with and one without surgical intervention. Surgical
intervention time is subject-specific. The response variable is forced expi-
ratory volume in one second (FEV1). Our aim is to obtain non-parametric
estimators of the longitudinal mean response in the non-surgical arm, and
the surgical intervention effect.

2 The Model

Standard methods of exploratory data analysis are not well suited to this
specific data set, because of the patient-specific surgical intervention times.
We propose a method for exploratory data analysis using non-parametric
spline-smoothing.
Suppose subject i provides a sequence of responses yij at times tij , and the
time of surgical intervention, if any, is si. Write

yij = µi(tij) + εij (1)

where the errors εij are correlated within subjects.
We assume that,

µi(tij) =
{
µ0(tij) : tij < si

µ0(tij) + δ(tij − si) : tij ≥ si.
(2)
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In (2), the function µ0(·) is interpreted as the mean response under the
standard treatment, i.e. without surgical intervention, whilst the function
δ(·) is the mean longitudinal effect of surgical intervention, as a function of
time since surgery. Our aim is to obtain smooth, non-parametric estimates
of µ0(·) and δ(·).

3 Estimation and Inference

Our roughness penalty estimation method is penalized sum of squares cri-
terion, with a term for each of the functions to be estimated. The criterion
is then defined for any two twice-differentiable functions, with assumed
smoothing parameters λ1, λ2 > 0, as

S(µ0, δ) =
m∑

i=1

ni∑
j=1

{yij − µi(tij , si)}2 +

+λ1

∫
µ′′2

0 (x)dx+ λ2

∫
δ′′2(x)dx (3)

Where µi(tij) is given by (2). We prove that the functions µ̂0(·) and δ̂(·),
which minimise (3), are natural cubic smoothing splines. For given values
of λ1 and λ2 we then obtain the estimates µ̂0(·) and δ̂(·) by a back-fitting
algorithm (Hastie, 1990).
To choose the values of λ1 and λ2 we use a cross-validation criterion de-
fined as in Rice (1991), which allows for the correlation between repeated
measurements on the same subject by deleting all measurements on one
subject at a time, rather than one measurement at a time.
To obtain interval estimates of µ0(·) and δ(·), we use a Monte Carlo method
as follows. Using the estimates µ̂0(·) and δ̂(·) we construct residuals, rij =
yij − µ̂i(tij). We then compute the empirical variogram of the rij (Diggle,
2002) and use non-linear ordinary least squares to fit a parametric er-
ror model including terms for a random subject-specific intercept, serially
correlated random variation over time within each subject, and measure-
ment error. Finally, we simulate 300 data-sets from the resulting model,
re-estimate the functions µ0(·) and δ(·) from the simulated data-sets and
compute pointwise quantiles of the re-estimates at each time-point.

4 Results

We illustrate our methodology in the Lung Emphysema data set. Figure 1
shows the estimate functions µ̂(.) and δ̂(.) together with their envelop in-
tervals obtained using the new methodology.



I. Sousa et al. 133

*

*
*

*

*

*

* *
*

*

*

*

*

*

**
**

*

*

*
*

*

*

*
*

*

*

**

*

*

*

*

*

*

*

* *
* * ** *

* *
*

*
**

*

*

*
*

*

*
*

* *

*

* *
*

*

*

*
* * *

*

*

* * *

*
*

*
* *

*

*
*

*

*

*

*
*

*
*

*
*

* *

*

* *
*

*

*

*

*
*

**

* *
*

*

*

* * * *
*

* *
*

*
*

* *

*

*

*

*
* *

* *

*

*
* *

*

*
* * *

*
*

*

*

*

*
*

*

* *
*

* *
* *

*

*
*

* *

*

*

*

*

*
*

*
*

*

* *

*
*

*

*
** *

**
* *

*
* *

*

*
*

*

*

*
*

*

* *
**

* * *

* * * *

*
*
* *

* *

*

*
*

*
* *

*

* * *
*

* *
* * *

* * *

*

* * **

Time since randomisation (/months) Time since surgery (/months)

F
E
V

1

F
E
V

1
−

µ̂
0

00 1010 2020 3030 4040 5050 6060

0
.6

0
.8

1
.2

1
.4

1
.6

-0
.5

0
.0

0
.5

1
.0

1
.0

1
.5

FIGURE 1. µ̂0 and δ̂ with respective envelop intervals
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Abstract: The objective of this paper is to explore the potential of the transfer
function methodology for exploratory analysis of data in multi-site epidemio-
logical time series studies. The ideas are illustrated by analysing data on the
relationship between daily non accidental deaths and air pollution in the 20 US
largest cities.
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1 Introduction

Time series studies are specially suitable in epidemiology for evaluating
short-term effects on human health of time-varying exposures to air pol-
lution. The methodology most frequently adopted relies on regression, i.e.
disease or death occurrences are related to the suspected risk factors by re-
gressing counts aggregated over geographical units on aggregated covariate
summaries. Standard regression methods used initially have been nowa-
days almost fully replaced by semi-parametric approaches, such as semi-
parametric generalized additive models (Hastie and Tibshirani, 1990).
Recent multi-site studies (Dominici et al., 2000; Biggeri et al., 2001; Atkin-
son et al., 2001) have shown that combination of data from disparate
sources provides additional statistical power to the analysis, that it is not
available in single site analyses. Clearly, construction of a model to be used
in the meta-analysis becomes rapidly more complicated as the number of
cities increases.
In this work, we wish to investigate the potential of transfer function analy-
sis in providing an affordable computational framework to allow exploratory
analysis of the relations among the time series used in the models. In fact,
when dealing with many sources of data, an exploratory analysis on which
to base model construction becomes rapidly unaffordable. Our idea is to
use indications coming from a data-driven model selection to highlight the
common features across sites. We illustrate these ideas by analysing data
on the relationship between daily non accidental deaths and air pollution
in the 20 largest US cities.
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2 Moving to transfer function models

Let C(t) be the dependent variable, like, for example, the daily number of
deaths. The independent variables are of three types: covariates represent-
ing temporal patterns, meteorological variables, and air pollution concen-
trations. Standard techniques for building the models are based Poisson re-
gression. The common model construction strategy develops in three steps:
(1) adjusting for temporal confounding; (2) adjusting for meteorological
confounding; (3) inserting pollutant(s).
When C(t) is high, often the response is transformed to bring the models
back to regression settings. Let Y (t) indicate the transformed response.
The final model, with a single pollutant Z(t), takes the following form:

Y (t) = T (t) + M(t) + βZ(t) + n(t)

where T (t) and M(t) are suitable functions representing temporal trends
and the effects of meteorology and n(t) is a noise term.
To show how transfer function models can be used as modelling strategy
in this context, let us consider first the problem of adjusting for temporal
confounding. At this stage, the model to be built is of type

Y (t) = T (t) + n(t).

Usually, T (t) is modelled nonparametrically. A discrete time analog of
one such model with a continuous-time cubic spline can be written as an
ARIMA(0,2,1) process observed with error:

Y (t) = T (t) + λη(t), (1 −B)2T (t) = (1 + θB)ξ(t),

where (η(t), ξ(t)) ∼ (0, σ2) and B is the lag operator, i.e. BY (t) = Y (t−1).
It can be shown (Hyndmann et al., 2004) that this is equivalent to an
ARIMA(0,2,2) model with some restriction on the parameters. In modelling
temporal confounding, the problem is to capture lagged effects. This is done
by using (often linear) functions of past values, like, for example, distributed
lag models.
It is easy to see that all the components which enter the final model can
be assembled in a structure of type:

Y (t) =
I∑

i=1

ωi(B)
δi(B)

Xi(t) +
θ(B)

(1 −B)d(1 −Bs)D
e(t), (1)

where {Xi(t)}, i = 1, . . . , I, are the covariates of interest, {e(t)}, is a zero-
mean stationary process independent of the covariates, ωi(B) = ωi0−ωi1−
. . .−ωiri

, δi(B) = 1−δi1−. . .−δisi
, θi(B) = 1−θi1−. . .−θiq, are polynomials

in the lag operator B, with degrees ri, ui, q respectively. Setting 1 defines a
transfer function (TF) model. In equation (1), the roots of the polynomials
δi(z), i = 1, . . . , I, are supposed to be outside of the unit circle.
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3 Identification of TF models by an iterative
stepwise algorithm

An appropriate model can be selected by searching within the space of
models defined by equation (1), after having selected the covariates and
the degrees of the polynomials. The vector α of unknown coefficients of (1)
can be estimated using a prediction error method, by minimizing

s(α) =

∑T
t=t̃+1 e(t;α)2

T̃
. (2)

As well known, the estimate α̂ cannot be computed analytically. To solve
this nonlinear least-squares problem we use a Gauss-Newton type algorithm

α̂n+1 = α̂n − λn

[
T∑

t=1

J(t; α̂n)J(t; α̂n)T
]−1 T∑

t=1

J(t; α̂n)e(t; α̂n),

where 0 < λn ≤ 1 and J(t; α̂n) is the Jacobian vector ∂Ŷ (t;α)/∂α. Note
that α̂n+1 is the least square solution of J(t; α̂n)T α̂n−λne(t; α̂n) = J(t; α̂n)T

α, t = 1, . . . , T .
This remark allows us to couple the estimation process with the selection of
the lag structure. More precisely, we propose this identification procedure:
(1) choose a starting value α̂0; (2) solve the least square problem and get
α∗

n+1; (3) apply a backward stepwise selection procedure to α∗
n+1 according

to a selection criterion such as BIC = log s(α̂) +m log T̃

T̃
, and obtain α̂n+1;

(4) set n = n+ 1 and return to 2 until a converge criterion is met.

4 Modelling in practice

The data that we consider come from the National Morbidity, Mortality
and Air Pollution Study (NMMAPS, Dominici et al., 2000), to which we
refer for further details about sources of the data. Data are available at the
URL http://ihapss.biostat.jhsph.edu/data/. In our analysis, we will
explore the association between daily changes in the concentration of car-
bon monoxide (CO) and daily number of deaths in the 20 US largest cities,
for which NMMAPS reports positive significant effects of CO at the usual
lags (0,1,2). In our example {X1(t)}, {X2(t)}, {X3(t)}, are the pollutant,
temperature and dew point time series, respectively. As the mean num-
ber of counts is sufficiently high, we can safely consider the transformation
Y (t) =

√
C(t) and move to linear models. This allows us to connect to the

transfer function methodology.
To offer our model section procedure a great deal of flexibility, we chose
the following model setting:

Y (t) =
3∑

i=1

ωi(B)Xi(t) +
θ(B)

(1 −B)(1−B7)
e(t),
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where ri = 3, i = 1, . . . , 3 and q = 7. This formulation allows to take into
account short term seasonal patterns and long term trends. Moreover, it
allows to incorporate lagged values of the inputs. Based on evidence from
the literature, we considered that the first three lags were sufficient to catch
delayed effects of the covariates. Note that, despite the relative simplicity of
this model formulation, cardinality of the model space is around 2.1× 106.
At the end of the model selection, in 8 cities found the search strategy a
significant effect of CO. In all the 20 cities, the selection procedure adopted
first order differences for the input and the output series.

5 Results

To perform the meta-analysis task, we adopted the strategy of fitting the
same common model to all the cities and to combine evidence resulting
from the model fitting. Based on the output from the automated model
selection procedure, we decided to fit the following common model:

Y (t) = ω11X1(t− 1) + ω23X2(t− 3) + ω32X3(t− 2) +
1− θB

1 −B
e(t).

The common model allowed to detect a significant effect in 11 cities. In the
meta-analysis, the estimates for CO for each city were combined using fixed
and random effects models (Normand, 1999). As expected, the confidence
intervals were wider under the random effects model, and narrower under
the fixed effects model. Nevertheless, differences in point estimates were
negligible. City-specific and pooled estimates for the random effects model
are represented graphically in Figure 1. A geographical gradient in value
for the effect is visible, with Seattle and Minneapolis distinguishing from
the remaining cities. Estimates are significant in Southern California and in
the Southwest, become not significant moving to the Southeast, and return
significant moving to the Northeast and industrial Midwest. This agrees
with the effects found for PM10 from NMMAPS.

Acknowledgments: This work was supported by MIUR (Italy) grant
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tion, monitoring and evaluation”.
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Abstract: Data on multidimensional arrays are wide-spread and modelling can
easily present storage and computational difficulties, even with modern com-
puters. We present a class of regression models and a computational procedure
designed specifically for such data. These models possess some remarkable stor-
age and computational properties which lead to savings of orders of magnitude
in both storage and speed over conventional methods. We call this methodology
array regression. We illustrate our procedure with the analysis of a large set of
count data on deaths from respiratory disease indexed by age of death, year of
death and month of death.

Keywords: Arrays; GLM; Kronecker product; P -splines; Smoothing.

1 Array regression: what is it?

In this paper we analyse a set of count data indexed by age of death (1
to 105), year of death (1959 to 1998) and month of death (1 to 12). The
50400 data points are arranged in a 3-dimensional array whose sides have
length 105, 40 and 12. Suppose we summarize the data by a coarser array
whose sides have size 10, 5 and 3, say; the summary array will have 150
cells with entries obtained by some kind of local averaging. The idea is to
use this array as parameters in a regression model. The estimation of the
regression coefficients could be done using the usual regression approach
of “flattening” both the data array and the coefficient array. However this
approach fails to make use of the structure of the data and leads directly to
the “curse of dimensionality”. In array regression we avoid computation of
the full “flattened” regression matrix and instead reduce the fitting of the
model to a sequence of operations whose storage and computational load
is determined by the lengths of the sides of both the data and coefficient
arrays.
One important setting for these ideas is multidimensional smoothing which
we consider in the penalized generalized linear model (PGLM) framework.
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Eilers and Marx (1996) use penalized B-splines to smooth 1-dimensional
data and their algorithm

(B′W̃δB + P )θ̂ = B′W̃δBθ̃ + B′(y − µ̃) (1)

is a generalization of the standard scoring algorithm for a GLM. We note
that B is a banded matrix with B1 = 1 and B ≥ 0, so B-splines pro-
vide a suitable basis for local averaging. The ingredients of a PGLM are
thus: the vectors of observations y, means µ, offsets o (if any), and re-
gression coefficients θ, the diagonal matrix of weights, Wδ, the regression
matrix, B, and the penalty matrix, P . We can represent this schematically
as {y,µ,o,Wδ,B,P ,θ}. The computational demands in (1) are of two
kinds: linear functions Bθ (the linear predictor) and B′(y −µ), and inner
products B′WδB. In contrast the scheme in array regression for data in
a d-dimensional array has the form {Y ,M ,O,W ,B1,B2, . . . ,Bd,P ,Θ}
where Y , M , O, W and Θ are d-dimensional arrays, B1, B2 . . .Bd is a
set of 1-dimensional B-spline bases defined on each variable in turn, and P
is the penalty matrix. The d-dimensional basis B is the Kronecker prod-
uct of the 1-dimensional bases. The computational demands are again to
compute the linear functions and inner products in (1) but these demands
are met with a new set of tools.

2 Array regression: how to perform it

Currie, Durban and Eilers (2003) used a PGLM to smooth a 2-dimensional
mortality table indexed by year of death and age of death. They argued
that an appropriate regression matrix was By⊗Ba where By and Ba were
regression matrices of B-splines on the marginal variables year and age. We
generalize this and suppose that the data are arranged in a d-dimensional
array Y , n1 × . . .× nd, and use

B = Bd ⊗ . . .⊗ B1 (2)

as regression matrix; here ⊗ is the Kronecker product and Bi is ni×ci, i =
1, . . . , d. (This representation assumes that the array is stored with the first
dimension varying fastest, the second dimension varying next and so on,
as in Splus, for example.) The regression matrix B inherits the properties
B1 = 1 and B ≥ 0 so provides a suitable basis for local averaging in
d-dimensions; the regression coefficients θ are regarded as a c1 × . . . × cd
dimensional array Θ. However, B can quickly become very large and the
standard approach of flattening the data and proceeding with the usual
regression algorithm is either very slow or simply not available. We develop
a new algorithm which takes advantage of the structure of both the data
and the regression model. We make four definitions.
Definition 1: The row tensor of a matrix X with c columns is defined as

G(X) = (X ⊗ 1′) ∗ (1′ ⊗ X) (3)
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where 1 is a vector of 1’s of length c and ∗ denotes element by element
multiplication.
Definition 2: The H-transform of the d-dimensional array A of size c1 ×
c2 . . .× cd by the matrix X of size r × c1 is denoted H(X,A) and defined
as follows: let A∗ be the c1 × c2c3 . . . cd matrix obtained by flattening di-
mensions 2 to d of A; form the matrix product XA∗ of size r× c2c3 . . . cd;
then H(X,A) is the d-dimensional array of size r × c2 . . . × cd obtained
from XA∗ by reinstating dimensions 2 to d of A.
Definition 3: We define the rotation of the d-dimensional array A of size
c1×c2 . . .×cd to be the d-dimensional array R(A) of size c2×c3 . . .×cd×c1
obtained by permuting the indices of A.
Definition 4: We define the rotated H-transform of the array A by the
matrix X by ρ(X,A) = R(H(X,A)).
The tools for the computation of the linear functions Ba and B′(y − µ),
and the inner product B′WδB can now be stated:
Linear function: The elements of Bθ (and similarly for B′(y − µ)) are
given by the d-dimensional array

ρ(Bd, . . . , ρ(B2, ρ(B1,Θ)) . . .). (4)

Inner product: The elements of the inner product B′WδB are given by the
d-dimensional array

ρ(G(Bd)′, . . . , ρ(G(B2)′, ρ(G(B1)′,W )) . . .). (5)

The vectors Bθ and B′(y − µ)), and the matrix B′WδB are obtained by
rearrangement and re-dimensioning of (4) and (5); we omit details of this in
the present paper. The important feature of (4) and (5) is that they avoid
storage of the full regression matrix B and require far fewer multiplications.
It remains to define the penalty matrix P . The expression in 3-dimensions
indicates the general formula. We penalize each dimension in turn, i.e., we
place penalties on the rows, columns, etc of the array. We find

P = λ1Ic3 ⊗Ic2 ⊗D′
1D1 +λ2Ic3 ⊗D′

2D2⊗Ic1 +λ3D
′
3D3⊗Ic2 ⊗Ic1 (6)

where D1, D2 and D3 are difference matrices.

3 Array regression: an example

We illustrate our method with some data on the number of deaths from
respiratory disease. The data array Y = Y [i, j, k] is indexed by age of
death, i = 1, . . . , 105, year of death, j = 1, . . . , 40 (1959 to 1998) and
month of death, k = 1, . . . , 12. Thus Y has 50400 points arranged in a
105× 40× 12 array. We assume that the number of deaths Y [i, j, k] can be
modelled by a PGLM with Poisson error and log link; the log of the number
of days in a month is used as an offset. The regression matrix is defined
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FIGURE 1. Observed and smoothed numbers of log(deaths/day) by age, year
and month. Regression coefficients Θ̂[i, j, k] are plotted ◦ against knot position.
Top panel: January, 1959, Θ̂[i, 2, 2], i = 1, . . . , 15; middle panel: age 53, January,
Θ̂[8, j, 2], j = 1, . . . , 10; bottom panel: age 53, 1959, Θ̂[8, 2, k], k = 1, . . . , 7.

via the marginal regression matrices of B-splines for age, year and month.
We choose knots as follows: at 1 and 105 with 11 internal knots for age,
at 1 and 40 with 6 internal knots for year, and at 1 and 12 with 3 internal
knots for month. With cubic B-splines this gives B1, 105×15, B2, 40×10
and B3, 12 × 7. The regression matrix has 1050 parameters arranged in a
15× 10× 7 array. This is a large regression problem: the regression matrix
B alone has over 5 × 107 elements. The parameters are estimated using
second order penalties and the Bayesian Information Criterion (BIC). The
fitted model has effective degrees of freedom of 305.
Figure 1 gives some idea of how the numbers of deaths vary with age, year
and month. The plots also show how the coefficient array Θ approximates
the data array Y (on the scale of the linear predictor). A smoothed value
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at age i, year j and month k is a weighted average of elements in the
coefficient array where the weights are given by the Kronecker product of
rows of the marginal regression matrices, B3[k, ] ⊗ B2[j, ] ⊗ B1[i, ]. The
non-zero weights apply to a sub-array of coefficients (generally 4 × 4 × 4
with cubic B-splines) in the vicinity of Y [i, j, k].
We conclude with some remarks on the performance of our approach. The
most demanding component of (1) is the calculation of B′WδB; this re-
quires the multiplication of two large matrices. Absolute timings are ma-
chine dependent so the ratio of the speeds of the two methods is of greater
interest. Table 1 shows that the larger the coefficient array the greater
the gain with array regression over standard regression. For a 9 × 9 × 9
coefficient array we were unable to store the full regression matrix B.

TABLE 1. Times (seconds) to calculate B′WδB

Array npar Standard Array Ratio
size regression regression

6 × 6 × 6 216 20 1 20:1
7 × 7 × 7 343 200 2 100:1
8 × 8 × 8 512 2000 4 500:1
9 × 9 × 9 729 − 20 −

4 Array regression: conclusions

Array regression is a fast, low storage method designed for smoothing mul-
tidimensional arrays. The method uses penalized regression to smooth data
using a local averaging algorithm. The important feature of our method is
that the local averaging is performed sequentially, dimension by dimension,
thus avoiding the full impact of the “curse of dimensionality”.

Acknowledgments: We are indebted to Professor Jim Howie of Heriot-
Watt University who suggested the use of the H-transform and to Roland
Rau of the Max Planck Institute of Demography who provided the data.
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cal continuous distributions, such as normal, Student-t, Pearson VII, exponential
power and logistic, among others. A score-type test for one-sided alternatives is
applied and an illustrative example for which a Student-t distribution is assumed
for the responses and random effects is presented. The results are compared with
the ones from the normal mixed model.
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1 Introduction

The importance of linear mixed models for analyzing repeated measures
data with continuous normal responses is undeniable. A general hierarchical
structure proposed by Laird and Ware (1982) assumes that

yi = Xiβ + Zibi + εi, i = 1, . . . , n, (1)

where yi is an mi-dimensional random vector of observed responses from
the ith cluster, Xi is an mi× p matrix which contains values of p explana-
tory variables, β is the fixed parameter vector, Zi is anmi×q design matrix
of random effects bi and εi is anmi-dimensional vector of within-cluster er-
rors. It is usual to assume bi ∼ Nq(0,D) and εi ∼ Nmi

(0, σ2Imi
). However,

due to lack of robustness of normal models against extreme observations, a
general class of elliptical models can be preferred to overcome this problem.
The elliptical class includes all symmetrical continuous distributions, such
as normal, Student-t, Pearson VII, exponential power and logistic, among
others, and their properties are described in Fang, Kotz and Ng, (1990). To
deal with extreme observations, for example, instead of assuming normality
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for bi and εi we can assume that (bTi , ε
T
i )
T follows a Student-t distribu-

tion of mean zero and dispersion matrix Vi = diag{D, σ2Imi
}, namely,

(bTi , ε
T
i )
T ∼ El(0,Vi). It means that bi and εi are uncorrelated but not

necessarily independent (unless for the normal case). Thus, we can express
[

yi
bi

]
∼ El

{(
Xiβ
0

)
;
[
σ2Imi

+ ZiDZTi ZiD
DZTi D

]}
, i = 1, . . . , n. (2)

2 Marginal Elliptical Model

Similar to normal mixed models, inferences in elliptical mixed models may
be based on the marginal distribution of yi, which takes the form

yi ∼ El(Xiβ;ZiDZTi + σ2Imi
). (3)

The density function of yi is given by

f(yi) = |Σi|−1/2
g(ui), i = 1, . . . , n, (4)

where ui = (yi − µi)
T Σ−1

i (yi − µi) with Σi = ZiDZTi + σ2Imi
, g(.) :

IR → [0,∞] so that
∫∞
0
umi/2−1g(u)du < ∞ called density generator (see,

for example, Fang, Kotz and Ng, 1990), µi = Xiβ and Σi is propor-
tional to the variance-covariance matrix of yi. For simplicity we will as-
sume D = diag{τ1, . . . , τq} so that the parameters to be estimated are
θ = (βT , σ2, τT )T , where τ = (τ1, . . . , τq)T .

3 Parameter Estimation

A joint iterative process for estimating the fixed parameters and variance
components is given by

β(r+1) =

[
n∑
i=1

v
(r)
i XT

i Σ−(r)
i Xi

]−1 [ n∑
i=1

v
(r)
i XT

i Σ−(r)
i yi

]
(5)

and
γ(r+1) = argmaxγ{l(β(r+1),γ(r))}, (6)

for r = 0, 1, 2, . . ., where γ = (σ2, τT )T , vi = −2 g
′(ui)
g(ui)

and l(β,γ) de-
notes the log-likelihood function. As in the normal case we can consider
the posterior distribution of bi given the observed data yi to estimate the
unit-specific parameters bi’s, which is also an elliptical distribution (see, for
example, Fang, Kotz and Ng, 1990). Thus, by assuming that Σi is known,
the empirical Bayes estimate is given by

b̂i = E
[
bi|Yi = yi, β̂,γ

]
= DZTi Σ−1

i (yi − Xiβ̂). (7)



146 Assessment of Variance Components in Elliptical Linear Mixed Models

The variance-covariance matrix of b̂ = (b̂1
T
, . . . , b̂q

T
)T takes the form

Var(b̂) = ∆ZTΣ−1Var(y − Xβ̂)Σ−1Z∆, (8)

where ∆ = D ⊗ Imi
, Z = diag(Z1, . . . ,Zn), Σ = diag(Σ1, . . . ,Σn), y =

(yT1 , . . . ,y
T
n )
T and X = (XT

1 , . . . ,X
T
n )
T . The calculation of Var(y−Xβ̂) in-

volves the quantities vi′s and becomes more complicated than in the normal
case. For vi fixed, we have Var(y−Xβ̂) = Σ∗Q∗Var(y)Q∗Σ∗ where Σ∗ =
diag(v1Σ1, . . . , vnΣn), Q∗ =

[
Σ∗−1 − Σ∗−1X

(
XTΣ∗−1X

)−1
XTΣ∗−1

]
and

Var(y) = αΣ with α > 0 being a constant that may be obtained from the
derivative of the characteristic function (see, for example, Fang, Kotz and
Ng, 1990). For the Student-t distribution with ν degrees of freedom, for
instance, Var(y) = ν

ν−2Σ. In practice, Σi is not known, and it is usual to
replace it by its maximum likelihood estimate, as well as vi.

4 Assessing Variance Components

Since in the marginal model (3) the parameters (τ1, . . . , τq) are not required
to be positive we can perform, for instance, a likelihood ratio test to assess
H0 : τ = 0 against H2 : τ 
= 0. However, because the main interest is
in one-sided alternatives and due to the simplicity of score tests, we will
apply the score-type test proposed by Silvapulle and Silvapulle (1995) to
assess H0 : τ = 0 against H1 : τ > 0, with at least one strict inequality
in H1. This score-type test has been recently applied for assessing one-
sided alternatives for dispersion parameters. For example, Paula and Artes
(2000) use the score-type test to assess overdispersion in logistic regression
models for grouped data, while Verbeke and Molenberghs (2003) discuss
the application of the test in the assessment of variance components in
normal mixed models. Consider the decomposition of the score function S =
(STλ ,S

T
τ )
T and the Fisher information matrix K = (Kλλ,Kλτ ,Kτλ,Kττ )

to conform with θ = (λT , τT )T , where λ = (βT , σ2)T . The score-type test
is given by

TS = Z̃TK−1
ττ Z̃ − inf [a≥0]{(Z̃ − a)TK−1

ττ (Z̃ − a)}, (9)

where Z̃ = [S̃τ − K̃τσ2K̃−1
σ2σ2 S̃σ2 ], with all the quantities evaluated at the

null estimate θ̃ = (β̃
T
, σ̃2,0T )T . Under suitable regularity conditions and

for large n, one has that TS
H0∼ ∑q

�=0 ω(�;∆)χ2
� , where χ

2
0 denotes the de-

generate distribution at the origin, ∆ = Var(τ̂ ) and ω(�;∆)’s are known as
level probabilities and are expressed as functions of correlation coefficients
associated with the q × q matrix ∆ (see, for instance, Shapiro, 1985).
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FIGURE 1. Individual adjusted profiles for the Student-t model.

5 Application

By way of illustration, we will consider the orthodontic data set presented
by Potthoff and Roy (1964), where the response variable is the distance (in
millimeters) between the pituitary and the pterygomaxillary fissure, which
was measured at 8, 10, 12, and 14-years-olds in two groups, boys and girls.
We fitted several models in order to apply the statistic TS in different situa-
tions: first, by assuming a multivariate normal distribution, and second, by
assuming a multivariate Student-t distribution with 6 degrees-of-freedom
for the boys’ group, as suggested by Pinheiro et al. (2001), and with 30
degrees-of-freedom for the girls’ group. The independence model was tested
against (i) the one with random intercept, (ii) the random slope model, and
(iii) the model that includes these two random effects. For all these three
situations, the null hypothesis was rejected. For the normal models, the
values of TS were, respectively, 61.8, 58.5 and 46.5 while for the Student-t
models, they are equal to, respectively, 62.5, 61.0 and 50.9. One more sit-
uation was considered in which random slope effect was tested under the
presence of random intercept effect, and the results for the TS statistic
were 0.60 under the normal distribution and 1.86 under the Student-t dis-
tribution. Therefore, the conclusion for the normal and Student-t models
was that the final model should include only the random intercept. presents
the parameter estimates and their approximate standard errors, which, un-
der the t-model, are smaller than under the normal model. As pointed out
by Pinheiro et al. (2001), two boys were identified as outliers under the
normal model. The influence of dropping these observations on the param-
eter estimates was evaluated. Variations on the parameter estimates were
in general smaller under the Student-t model, confirming the robustness
of this model against extreme points, even though the inferential results
remain unchanged. The influence of dropping the outlying observations on
TS was also evaluated, and the results showed that variations on TS were
also smaller under the Student-t model. describes the individual adjusted
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TABLE 1. Parameter estimates for the random intercept models.

Normal Student-t
Group Parameter Estimate (st.-error) Estimate (st.-error)
Boys Intercept 16.34 (0.96) 16.93 (0.84)

Slope 0.78 (0.08) 0.72 (0.06)
Girls Intercept 17.37 (1.16) 17.43 (0.95)

Slope 0.48 (0.09) 0.47 (0.07)
σ2 1.87 (0.29) 1.04 (0.20)
τ 3.03 (0.96) 2.85 (0.94)

profiles for the Student-t model with random intercept.
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Viale G.B. Morgagni, 59 - 50134 Firenze, Italy – gallog@ds.unifi.it

Abstract: In this paper we apply an autoregressive conditional duration model
discussed in De Luca and Gallo (2004) to a long series of observations from the
transactions on the IBM stock in April 2001. We show that the restriction im-
posed by a simple exponential distribution for the innovation term is too binding
and that a mixture–based approach delivers a better fit and a wider array of
interpretation of the results.
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1 Introduction

Movements of asset prices in financial markets are the focus of quantitative
analysis in order to recognize patterns in their functioning. The goal is to
study the behavior of markets, to analyze the features of exchanges, to
provide explanations and possible guidelines to the evolutions in the future.
Among the objects of analysis so called financial durations, i.e. the time
distance between events of interest (a single trade, the accumulation of a
certain amount of traded volume, the movement of an asset price above or
below a certain threshold), have recently gained increasing attention among
practitioners and academicians alike. This interest was made possible by
the recording and diffusion of ultra-high frequency data (Dacorogna et al.,
2001), that is data that collects all transactions about a trade as it occurs
(including the time at which this occurred, the volume exchanged and the
price at which the asset was sold or bought) and the development of a
new branch of econometrics, Engle (2000). Not all price movements are
relevant: as a matter of fact since assets are usually quoted at two prices,
a bid (i.e. the highest price somebody is willing to pay to buy the asset)
and an ask price (i.e. the lowest price somebody is willing to receive to
sell the asset), the observed series of traded prices reflect the fact that
market makers are at times counterparts to a buy trade, at others to a
sell trade. It becomes therefore of interest to analyze the duration between
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FIGURE 1. IBM stock. Durations between price movements above $ 0.0625.

meaningful movements of prices (either up– or downward) above a certain
threshold. Furthermore since the observed series that ensues is irregularly
spaced, new models are required to represent these data satisfactorily. The
class of Autoregressive Conditional Durations (ACD) models put forth by
Engle and Russell (1998) aims at reproducing the stylized facts of duration
clustering the same way as the famed GARCH models (Bollerslev et al.,
1994) aim at modelling financial volatility clustering.
We will start by presenting two models both based on exponential innova-
tions estimated on data related to a few days of transactions for the IBM
stock (12399 observations selected in correspondence to price movements
above 1/16th of a US dollar in module and after adjusting for errors in the
data, cf. the pattern of the data in Figure 1). The first model is the ACD
with exponential errors and the estimated results point out that some of
the features of the model do not fit well the characteristics of the data,
namely the variance of the estimation residuals is far from the theoreti-
cal one. The second model is a modification of the ACD and it is called
Mixture–based ACD (MACD) discussed in detail in De Luca and Gallo
(2004). The empirical results show that the MACD is capable of a better
fit better, especially in capturing a higher variance in the data.

2 The Models

Let Xi be the duration between two movements in price beyond a certain
threshold occurred at times ti−1 and ti. Apart from some intra–daily sea-
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sonal component (cf. Engle and Russell, 1998, among others, characterized
by market microstructure problems, such as different speed of activity at
opening, lunch and closing times or following some news release) which can
be removed (for details cf. De Luca and Gallo, 2004) producing a “clean”
duration xi which can be modelled as a Multiplicative Error Model (MEM,
Engle, 2002; Engle and Gallo, 2004):

xi = Ψiεi (1)

Ψi = ω +
q∑

j=1

αjxi−j +
p∑

j=1

βjΨi−j , (2)

εi ∼ iid exponential(1). (3)

The specific model is called an ACD(p, q) with exponential errors with
suitable conditions on the parameters in order to ensure stationarity and
a strictly positive conditional expected duration.
Rather than modifying the structure of the conditional expected duration
Ψi as in other contributions in the literature (cf. the references in De Luca
and Gallo, 2004), one can intervene on the nature of the innovation term.
Beside the Weibull distribution, a promising process for εi is one in which
there is a mixture of two exponential distributions with a weight 0 < p < 1
attributed to one and the complement 1− p to the other:

f (εi; Ii−1) = pf1 (εi; θ1, Ii−1) + (1− p)f2 (εi; θ2, Ii−1) . (4)

The parameters θ1 and θ2 characterize the pdf’s of either distribution.
While we still need the expectation of the mixture–based innovation term
to be unit (and accordingly we impose appropriate constraints), the two
exponentially distributed components have instantaneous rate of transac-
tion different from one another. The important feature of this specification
is that the variance of the innovation is greater than one, departing in a
substantial manner from the simple exponential case. The weight p can
be conveniently interpreted in reference to the price formation mechanism
and the presence of different types of traders in the market. The term Ψi

retains the interpretation of modelling the expected conditional duration
in an autoregressive manner to capture persistence.

3 The Data and the Results

As mentioned before, for reasons of space we concentrated on a single blue
chip stock, IBM: the chosen period spans from Apr. 1, 2001 to Apr.17,
2001. The transaction data was extracted from the Trades and Quotes
database of the NYSE. After seasonally adjusting the data for time–of–
the–day effects with a cubic spline with nodes set every hour, the 12399
observations were used to estimate the unknown parameters by QML. The
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TABLE 1. QML Estimates of ACD models.

Parameter ACD(1,1) ACD(1,2) MACD(1,1) MACD(1,2)

ω 0.1620 0.1569 0.2486 0.2369
(0.0231) (0.0222) (0.0400) (0.0345)

α 0.1130 0.1306 0.1337 0.1501
(0.0097) (0.0101) (0.0139) (0.0135)

β1 0.7261 0.3437 0.6187 0.3027
(0.0308) (0.0464) (0.0501) (0.0562)

β2 - 0.3699 - 0.3085
(-) (0.0479) (-) (0.0560)

p1 0.6458 0.6456
(0.0160) (0.0161)

λ1 0.4729 0.4745
(0.0135) (0.0136)

Diagnostics

Q(15) 36.572 25.825 37.7407 24.250
p-value 0.00146 0.0400 0.0010 0.0610

Mean 1.000 1.000 1.000 1.000
p-value 0.9911 0.9868 0.9879 0.990

Variance 2.074 2.060 2.101 2.081
p-value 0.000 0.0000 0.2450 0.3213

log-likelihood -12032.48 -12009.38 -11190.18 -11177.47

Theoretical Var 1 1 2.013 2.006

results are presented in Table 1 for the simple exponential and the mixture–
based exponential cases and for the specification (1,1) and (1,2). Below the
parameter estimates we report the standard errors.
Some comments are in order: first of all the diagnostics on the autocorre-
lation of estimated residuals as shown by the Ljung Box statistic is still
a problem. The second feature of the results is that the theoretical vari-
ance equals one in the standard case, whereas the estimated variance of
the residuals is always above the value of 2. A better fit is had by the
mixture based model where next to the significance of all parameters we
notice the important result of the variance of the residuals being close to
the theoretical value implied by the model (computed from the estimated
parameter values). The log-likelihood values also signify a much better fit
of our proposal relative to the base case.

4 Conclusions

In this paper we have shown the empirical superiority of a mixture–based
approach to modelling financial durations between price changes above a
certain threshold. Coupled with removal of intradaily systematic patterns
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of trading, such a strategy allows one to concentrate on modelling the time
elapsed between meaningful market movements. For reasons of space, many
issues remain undiscussed such as the sensitivity of the modelling effort to
the size of the threshold and to the type of seasonal adjustment procedure.
As discussed in De Luca and Gallo (2004), the mixture–based approach
needs to be extended in the direction of allowing the weights of the mixture
to be variable, possibly as a function of variables in the information set.
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Abstract: Nowadays, electronic products tend to be economically outdated be-
fore their technical end-of-life has been reached. The ability to analyze and predict
the (remaining) technical life of a product would make it possible either to re-use
sub-assemblies in the manufacture process of new products, or to design prod-
ucts for which the technical and economical life match. This requires models to
predict and monitor performance degradation profiles. In this paper we report
on designed experiments to obtain such models. We show how wavelet analysis
can be used to extract features from electrical signals. These features are ana-
lyzed using the Analysis of Variance in order to establish relations between these
features and performance degradation.

Keywords: Signature analysis; Wavelet analysis; Peak extraction; Analysis of
variance.

1 Introduction

The context of this project is the current trend to assemble complex prod-
ucts from modules supplied by other companies. Signature Analysis is a
technique that allows to measure the parameters, which are significant for
the lifespan of complex products like copier machines. By means of SA the
prediction of the lifetime is not ’failure-driven’ but ’performance-driven’.
In other words, Signature Analysis is not based on the measurements of
undesirable or irregular functionality, but it predicts the lifespan on basis
of the actual technical performance of a complex compound product of the
system.
In this paper we show the results of the experiment performed in the sub-
module Main tray of the finisher module (Figarella, 2003). Specifically, we
only consider the stapler motor, which is one of the three parts of the Main
tray involved in the experiment. The stapler motor stitches three staples
in each piece of paper.
During the experiment five electrical signals, corresponding to current con-
sumption of the stapler motor, are measured as responses per run in the
experiment. The classical multivariate analysis cannot be performed with
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signals as response variables because a signal is a function of a continu-
ous variable instead of a value. Therefore, the maximum amplitude of the
first peak of the current signal, is taken as a feature or characteristic see
Figure 1. Afterwards, Analysis of Variance is performed using this value.
Extracting the features manually, i.e., without any mathematical method,
is time consuming and not very accurate. Since the nature of the informa-
tion contained in the signals is local we have chosen wavelet analysis over
time series to obtain reliable features.
The experiment on the main tray is a replicated 27−3 fractional screening
experiment, where the seven factors obtained from a so-called Failure Mode
Effect Analysis vary systematically. The objective of the experiment is to
identify the influence of these factors on the features or characteristics
extracted from the current signals. The results of this experiment will be
input for further tests to obtain precise functional relationships. The final
result is a monitoring scheme with limits for dominant parameters.

2 Wavelet Approach for analysis of stapler motor
data

We have chosen wavelet analysis (Burrus, 1998 and Walnut, 2002) because
it enables the analysis of localized areas of a larger signal. We assume
that the behaviour of the replicated signals within a run is in general the
same because they are generated by the same setting. By means of wavelet
analysis we first simplify the description of a signal in terms of a small
number of wavelet coefficients, and afterwards we use them as features to
perform the Analysis of Variance.
We are interested in finding the maximum amplitude of the first peak of
the current signal of the stapler motor (see Figure 1). This peak measures
the current consumption during the action spring load ; at this point the
stapler anvil goes down against the paper.
We start the exploratory analysis with a pre-processing step in order to get
rid of part of the noise, through spectral analysis of the signal, and then we
apply the wavelet theory to obtain the features. Since the signal was over-
sampled we decided to downsample the signal, and in this way we reduce
computational time by removing part of the high frequency component of
the signal. We have carried out three wavelet-based approaches to obtain
the features. The first one was the so-called level-dependent thresholding
(Jansen, 2001). However, we do not present the results of this approach
in this paper because it did not work properly because the noise seems to
be non-gaussian. In the following we present the results of the other two
approaches used after downsampling the signals.
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FIGURE 1. Current signal of the stapler motor and spring load peak

2.1 Approach 1: Rough denoising - Extracting the features
using A6

Rough denoising consists of decomposing the signal at several levels, re-
moving all high-frequency components at each level, and then reconstruct
the signal. Afterwards, we obtain a smooth signal and we extract the max-
imum of the first peak. At the 6th approximation level, A6, almost no
noise is present and it still keeps the main features of the signal visualiz-
ing the strength of the wavelet analysis, see Figure 2. At scales finer than
level 6, there is little contribution to the signal. Therefore, the features are
extracted from approximation level A6.
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TABLE 1. Summary of the ANOVA results for the spring load peak

Factors and interactions Manual extraction Approach 1 Approach 2
Supply voltage 24 Vdc 0.00 0.00 0.00
Number of sheets 0.28 0.00 0.00
Feed roll load 0.40 0.82 0.79
PWBA modification 0.00 0.00 0.00
PWBA temperature 0.08 0.69 0.76
Belt tension 0.01 0.65 0.60
Supply voltage 5 Vdc 0.85 0.26 0.20
Supply 24 Vdc:number of sheets 0.08 0.02 0.00
Supply 24 Vdc:feed roll load 0.47 0.73 0.41
Supply 24 Vdc:PWBA modification 0.19 0.31 0.43
Supply 24 Vdc:PWBA temperature 0.41 0.38 0.38
Number of sheets:feed roll load 0.15 0.07 0.08
Number of sheets:PWBA modification 0.79 0.10 0.96
Feed roll load:PWBA modification 0.02 0.32 0.32

Residual standard error 9.86 6.10 5.69

2.2 Approach 2: Extracting the features using the average of
approximation coefficients

In this approach we work directly on the wavelet coefficients without recon-
struction. While we increase the level of decomposition, the length of the
coefficient vector is halved. For example, the length of the approximation
coefficients at level 4 is slightly more than 1/24 the length of the downsam-
pled signal. Therefore, at level 8 we have represented the complete signal
by only few coefficients, approximately 95 coefficients.
After extracting the wavelet coefficients in each level, we calculate the max-
imum of the first peak of the coefficients at levels 4 up to 8. Then we cal-
culate the weighted average of the maximum of the wavelet coefficients of
each level. The weights are given by 2−j/2 for levels j = 4, . . . , 8, so the
maximum of the different levels are at the same scale.

2.3 Results

Table 1 is a summary of the ANOVA for the first peak using the features
extracted manually, the first and the second wavelet approach. The table
contains the factors and interactions with their respective P-values (for
simplicity F values are omitted). We see that few factors affect the maxi-
mum amplitude of the first peak. This is favourable for translating this peak
back to internal degradation parameters of the machine, which is subject of
future research. Taking the average of the maximum of the wavelet coeffi-
cients of the 5 levels we obtain the same significant factors and interactions
as with the first approach. Furthermore the residual standard error is 42
times smaller than the residual standard error obtained with the manually
extracted features.
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3 Conclusions

We used several wavelet-based approaches but only two of them gave satis-
factory features from the signals. The first approach is based on the recon-
structed approximation at level 6 because it contains much less noise than
the original signal, and it still keeps the main characteristics of the signal.
In the second approach we use directly the wavelet coefficients at 5 levels
and we average them.
For the first peak of the stapler motor, averaging the maxima of the wavelet
coefficients appears to be the best approach since the residual standard er-
ror is the smallest, and because it considers the information from several
levels of decomposition assuring stability of the feature. Besides the re-
duction of the residual standard deviation and the number of outliers, the
computation time during the wavelet analysis is negligible. Therefore, our
method can be used for on-line extraction of signal features.
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The Shifted Warped Normal Model for
Mortality

Paul H. C. Eilers1
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Abstract: Age distributions of deaths due to specific diseases show strong
skewness to the left. Using P-splines, an transformation of age is computed in
such a way that the distributions become normal, but shifted over time on the
transformed scale. The model is illustrated with data on deaths from respiratory
diseases in the USA.

Keywords: Functional data analysis; Life table; P-splines.

1 Introduction

Human mortality shows complicated and interesting patterns. More and
more data become easily available through the Internet, offering fascinating
possibilities for data analysis and statistical modelling. Here I report on
experiments with mortality data — more precisely, counts of deaths — from
the United States. In each year from 1959 to 1998, the number of people
dying from respiratory diseases are given in one-year intervals, separately
for men and women.
The frequency distributions are skew with a long left tail. The right tail
tends to become shorter over the years and the position of the peak shifts
to the right. A normal distribution is certainly out of the question. But can
we find a transformation of the age axis such that the distribution becomes
essentially normal? The answer will be shown to be affirmative. On the
transformed (“warped”) scale the changes from year to year correspond to
a shift, a change in the mean of the distribution. The optimal transform of
the age axis is estimated with P-splines.

2 The shifted warped normal model

Figure 1 gives an impression of the number of deaths due to respiratory
diseases, separately for men and women. Totals per year, summed over
ages from 21 to 120 are presented, as well as age distributions for selected
years.. The overall level has increased strongly over the years, especially
for women. The age at which the peak occurs has shifted to the right,
especially for men, while the right tail has become shorter.
It would be attractive to have a transformed age scale, such that the dis-
tributions would have the shape of the normal distribution. The changes
between the years would then correspond to shifts in their means. If we let
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FIGURE 1. Deaths in the USA due to respiratory diseases, for women (top)
and men (bottom). The crosses in the right panels indicate for which years the
distributions are presented in the left panels.

yij indicate the value of the scaled distribution (i.e. divided by its maxi-
mum) at age ai in year tj , then the proposed model is:

µij = E(yij) = f(g(ai)− βj), with f(u) = exp(−u2/2). (1)

The unknown curve g(a) is modelled in a semi-parametric way as a sum of
B-splines in a:

g(a) =
K∑

k=1

Bk(a)αk. (2)

In the spirit of P-splines, the number of basis function, K, is relatively high
(about 10) and a roughness constraint on the coefficient vector α is used
to tune smoothness (Eilers and Marx, 1996). The following penalized sum
of squares goal is minimized:

S =
∑

i

∑
j

(yij − µij)2 + λ
∑

k

(∆2αk)2. (3)
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FIGURE 2. The fit of the model (lines) to the data (dots) for men. The left
panels show distributions for the years that correspond to the crosses in the uper
right panel.

It is clear that µ depends on α in a highly non-linear way, because they
appear in the argument of the function f . Using a first-order Taylor ex-
pansion it can be linearized and proper starting values are easily found. To
start the transformation estimate, g̃(a) = (a − 75)/15 was used, and the
starting value for βj was minus weighted (by the age distribution) average
of g̃ for year j. The value of λ did not have much influence on the estimated
transform; λ = 0.1 was used to get the results presented here. The algo-
rithm was implemented in Matlab and found to be stable and fast. Fitting
takes a few seconds on an average PC.
Figure 2 shows the results of fitting the model to the data for men. Appar-
ently a good fit is obtained and the estimated transformation shows strong
curvature, rising steeper with increasing age. On the other hand, the graph
of β̂ vs. time is almost linear. Note that this is not forced by the model, it
is a property of the data.
Figure 3 shows results for women. As indicated by the small trend in the
shifts (β), they have shown little progress compared to men. The peak of
their age distributions have hardly shifted over the years.
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FIGURE 3. The fit of the model (lines) to the data (dots) for women. The left
panels show distributions for the years that correspond to the crosses in the upper
right panel.

3 Discussion

The shifted warped normal (SWaN) model appears to work well and easy
to estimate. Still, on the technical front there is a lot to be improved. The
least squares criterion, applied to the scaled distributions, is not optimal.
By introducing an offset for each year, the model can be reformulated as
a penalized GLM with a Poisson response and an unusual link function:
the normal curve. The scoring algorithm can be applied for fitting it. A
program for this algorithm has just been finished and seems to work well.
Another question to be addressed is density correction with |g(a)|, because
we transform the variable, age a on which the age distribution of deaths is
computed. Intervals of equal width on the age scale generally have different
widths on the g scale. This has been neglected in the present model.
It will be interesting to apply the model to more diseases and to more
countries, or to different states within a country, to see which patterns are
stable and which vary.
The data are also available as monthly counts and so seasonal effects can be
studied. Experiments indicate that there is a strong seasonal pattern in β.
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There is also a seasonal pattern in the height of the distributions over age.
This way, only two parameters for each month (one for height, the other
for shift) give a quite precise summary of seasonal changes in a distribution
over 90 age classes.
The almost linear pattern in β̂ suggests that the model lends itself well
to extrapolation. This needs further research, e.g. using part of the data,
say up to 1990, to “predict” the years that follow and check this with
cross-validation.
This model has strong similarities to Functional Data Analysis (Ramsay
and Silverman, 1997). They also align curves by scaling of the independent
axis. But here an additive model for age and time is used in the argument
of a pre-specified function (the normal curve).
Preliminary experiments have shown that the model also works for overall
mortality, even over long periods (a century or more), if the age range
is limited to 70 and over. Experiments are going on to compare different
countries. The website www.mortality.org is a very rich source of high-
quality data.
A remarkable outcome is that the standard deviations of the distributions,
over transformed age, are constant over time. Of course, this is specified by
the model, but there are no indications that a richer model is needed for a
good fit to the data.

Acknowledgement. I thank Roland Rau (Max Planck Institute for De-
mography, Rostock, Germany) for providing the data.
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Structured additive regression for
multicategorical space-time data: A mixed
model approach

Thomas Kneib1 and Ludwig Fahrmeir1
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Abstract: In many practical situations, simple regression models suffer from
the fact that the dependence of responses on covariates can not be sufficiently
described by a purely parametric predictor. For example effects of continuous
covariates may be nonlinear or complex interactions between covariates may be
present. A specific problem of space-time data is that observations are in general
spatially and/or temporally correlated. We propose a general class of structured
additive regression models (STAR) for multicategorical responses, allowing for
a flexible semiparametric predictor. This class includes models for multinomial
responses with unordered categories as well as models for ordinal responses. We
present our approach from a Bayesian perspective, allowing to treat all functions
and effects within a unified general framework by assigning appropriate priors
with different forms and degrees of smoothness. Inference is performed on the
basis of a multicategorical linear mixed model representation. Variance compo-
nents, corresponding to inverse smoothing parameters, are then estimated by
using restricted maximum likelihood.

Keywords: Multicategorical space-time data; generalized linear mixed models;
semiparametric regression; P-splines; restricted maximum likelihood.

1 Structured additive regression

Space-time regression data usually consist of a number of repeated ob-
servations on a response variable and a set of covariates, e.g. continuous
covariates, categorical covariates, time scales, location indices or cluster in-
dices. Different types of models have been introduced to analyze such data,
depending on the type of the covariates and the distribution of the response.
In many situations a purely parametric regression model is unable to de-
scribe the dependence of responses on covariates sufficiently. For example
effects of continuous covariates may be non-linear or complex interactions
between covariates might be present. A specific problem of space-time data
is that observations may be spatially and/or temporally correlated. Within
a parametric modelling framework, it is virtually impossible to include
these aspects.
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In recent years, models for space-time data and univariate responses have
gained considerable attention (e.g. Kammann and Wand, 2003 or Fahrmeir,
Kneib and Lang, 2004). However, the literature dealing with models for
multicategorical space-time data is rather limited (compare Fahrmeir and
Lang, 2001, for a notable exception based on Markov Chain Monte Carlo
techniques and latent utilities). We propose a general class of structured
additive regression models (STAR) for multicategorical responses, allowing
for a flexible semiparametric predictor. This class includes models for multi-
nomial responses with unordered categories as well as models for ordinal
responses.
For ordinal responses we assume a cumulative regression model, i.e. the
probability for observation yit, i = 1, . . . , n, t = 1, . . . , T to be in category
r or less is assumed to be

P (yit ≤ r) = F (θr − ηit), (1)

where F denotes a cumulative distribution function, e.g. the logistic or
the standard normal distribution function, and θ1 < . . . < θq are or-
dered thresholds. Nominal responses can be analyzed using multinomial
logit models but we will focus on the ordinal case here (compare Kneib
and Fahrmeir, 2004, for a more detailed description of both cases). For a
space-time main effects model the semiparametric predictor ηit in (1) can
be defined by

ηit = f1(xit1) + . . .+ fl(xitl) + ftime(t) + fspat(si) + u′itγ, (2)

where, ftime and fspat represent possibly nonlinear effects of time and
space, f1, . . . , fl are unknown smooth functions of the continuous covariates
x1, . . . , xl, and u′γ corresponds to the usual parametric linear part of the
predictor. This model can be extended in various ways, e.g. to include inter-
actions or individual-specific effects, compare Kneib and Fahrmeir (2004)
and the example below. Note, that the observations yit are marginally cor-
related, especially over time and space, but are assumed to be independent
conditional on the effects in (2).
As an example, we analyze data from a forest health survey, where for
several years the damage state of a population of trees is measured in three
ordered categories. In addition to the continuous covariate age of the tree
A and a vector of further (mostly categorical) covariates u, the location s
of each tree is available on a lattice map. Due to the space-time structure
of the data, we have to take temporal as well as spatial correlations into
account. This can be achieved using a semiparametric predictor of the form

ηit = fA(Ait) + ftime(t) + ftime,A(t, Ait) + fspat(si) + u′itγ. (3)

Here, the model in (2) is extended to include an interaction surface ftime,A

between calendar time and the age of the tree. Figure 1 shows estimates
for the functions fA, ftime and fspat.
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FIGURE 1. Estimated main effects of the age of the tree and calendar time
together with pointwise 95% credible intervals and estimated spatial effect.

2 Prior assumptions

The Bayesian model formulation is completed by specifying appropriate
priors for the different effects or, more specifically, for the corresponding
vectors of function evaluations f . In our approach we are always able to
express these vectors as the product of a design matrix X and a vector of
regression parameters β, i.e. we have

f = Xβ. (4)

Now we can formulate a prior for f based on a prior for the vector of
regression coefficients β. It turns out, that this prior also has a general
form, which is given by

p(β|τ2) ∝ exp
(
− 1
2τ2

β′Kβ
)
, (5)

where K is a penalty matrix. The penalty matrix K and the design matrix
X determine the general characteristics of the function, e.g. whether the
function is continuous or whether it is differentiable. The variance param-
eter τ2 corresponds to the inverse smoothing parameter in a frequentist
approach and controls the trade-off between flexibility and smoothness.
Let us now briefly describe some possibilities to model the effects in (2)
and (3):
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• fj(xj) functions of continuous covariates: P-splines (Eilers and Marx,
1996, Lang and Brezger, 2004).

– Approximate fj by a B-spline with a large number of knots.

– Define a random walk prior for the B-spline coefficients β.

– The design matrix X contains evaluations of the basis functions
at the observed values of xj .

– The penalty matrix is given by K = D′D with first or second
order difference matrix D.

• fj(xj1 , xj2) interaction surface: Two-dimensional P-splines (Lang and
Brezger, 2004).

– Use tensor products of one-dimensional B-splines as basis func-
tions.

– Define a two-dimensional random walk prior for β.

• fspat(s) spatial function of exact locations s: Stationary Gaussian ran-
dom fields (Kammann and Wand, 2003, Kneib and Fahrmeir, 2004).

– GRFs are surface smoothers based on special basis functions.

– The penalty matrix K is defined by the correlation function of
the GRF.

• fspat(s) spatial function of connected geographical regions s: Markov
random fields.

– Define appropriate neighborhoods for the regions s.

– Assume that the expected value of fspat(s) is the (weighted)
average of the function evaluations of adjacent regions.

– The penalty matrix K has the form of an adjacency matrix.

3 Mixed model inference

Inference for STAR models can be performed on the basis of a multicate-
gorical linear mixed model representation. Model components described by
(4) and (5) can always be reexpressed in terms of a parameter vector with
flat prior and a second parameter vector with i.i.d. Gaussian prior. This
allows to rewrite STAR models as variance components models. The vari-
ance components, corresponding to inverse smoothing parameters, can then
be estimated using mixed model methodology, especially restricted max-
imum likelihood, also termed marginal likelihood in the literature. Given
estimates of the variance parameters, regression coefficients are estimated
by a modified Fisher-scoring procedure. Since variance components are
treated as unknown constants, our approach can be viewed as empirical
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Bayes/posterior mode estimation and is closely related to penalized likeli-
hood estimation in a frequentist setting. Numerically efficient algorithms,
developed in Fahrmeir, Kneib and Lang (2004), allow the computation of
the estimates even for fairly large data sets.

4 Conclusions

The presented approach has several advantages:

• It allows to deal with a very broad class of regression models, that
even extends the presented models (2) and (3). For example we can
directly incorporate random effects, varying coefficient terms and flex-
ible seasonal components in our model.

• All model components are treated in a unified way conceptually, al-
lowing compact presentation and easier implementation.

• Real data applications and simulation studies have provided evidence
that the approach works considerably well in many situations com-
pared with the fully Bayesian procedure of Fahrmeir and Lang (2001).

• Software for fitting the presented models is available in the public do-
main software package BayesX. Therefore the methodology can easily
be used in other areas of research, e.g. the analysis of unemployment
durations in microeconomics or in consumer choice models.
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Abstract: In this paper we propose a way of analyzing data from a plaid square
design using multilevel mixed models. In the case of normal outcomes, this can
be seen as a generalization to ANOVA analysis, where covariates can be included
and extensions to unbalanced designs can be considered. Furthermore, based on
the analysis on mixed models, the analysis of non–normal data can be considered,
although fitting these models using existing software might prove a real challenge.

1 Introduction

Plaid designs are not very common, but they seem very convenient in
some contexts. They were briefly considered by Yates(1937) for field ex-
periments, where additionally to the usual latin square structure, entire
rows and/or columns were subject to the same treatment. They also ap-
pear in some medical experiments. Hence, there is a need for understanding
and exploring the possible ways of analyzing data arising from such designs.
They appear to be very useful when the nature of the experiment makes
it reasonable to have treatments arranged in a systematic way. Cochran &
Cox(1957) (§7.32) discuss strip-plot or criss-cross designs, which are spe-
cial cases of the plaid design. They point out that although plaid designs
sacrifice precision in the main effects, this is compensated by a higher pre-
cision in the interactions. Therefore, if interactions are of central interest,
these designs appear to be more accurate than either randomized blocks or
simple split-plot designs.

2 Model for normally distributed responses

2.1 The FACS Data

In this work we consider data from the experiment reported in Solomon
et.al.(1997), where the Facial Action Coding System (FACS) was used as
means of identifying the expression of pain by facial movement. A train-
ing program based on it was developed to train physicians to evaluate
the amount of pain experienced by patients. These data relate to 74 oc-
cupational and physical therapy students (the raters) who were randomly
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Subjects
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Level 1 Level 2 Level b
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Level a | n
|

r replicates of this layout

TABLE 1. Replicated Plaid Design

assigned to training and no training groups (37 raters in each group). For
each rater the data include their ratings on a descriptor scale of pain, of the
pain experienced by eight patients who were observed on videotape as they
underwent a standardized procedure to assess motion of a painful shoulder
joint. Both active motions, performed by the patient without assistance,
and passive motions, in which a therapist guided the patient’s limb through
its range of motion, were observed for each patient. These patients were a
selected group from a previous study based on FACS, and consisted of four
expressive and four unexpressive patients.

2.2 Design

These data were discussed by Farewell and Herzberg(2003), where an anal-
ysis of variance for plaid designs was given and where outcomes of inter-
est were assumed to be normally distributed. The structure of a standard
replicated plaid design, without a split plot component, is given in Table
1. In the physician-patients data, columns are associated with patients,
divided into two levels (expressive and unexpressive), and the rows are as-
sociated with medical practitioners, also divided into two levels (trained
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and untrained). More specifically, following the notation of Table 1, we
have a=b=2, n = 37, m = 4 and since we have only one replication, r = 1.
A mixed model for this layout can be written as

yijkl(i)m(j) =µ+ αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk

+ εl(i)k + ε
′
m(j)k + ε

′′
l(i)j + ε

′′′
m(j)i + ε

′′′′
l(i)m(j)k, (1)

where i indexes the levels of Factor A, j indexes the levels of Factor B, k
indexes replicates, l(i) indexes Raters within A and m(j) indexes Subjects
within B. The five error terms in the model are all normally distributed
with mean zero and respective variances σ2

P :AR, σ
2
S:BR, σ

2
PB:AR, σ

2
SA:BR,

and σ2
PS:ABR. This is a multilevel model, where at the lowest level (level

1) we have the observation, while at level 2 we have a cross–classification
between raters and patients, which are nested within the training and the
expressive groups respectively. Rasbash & Goldstein(1994) discuss mixed
hierarchical models with cross–classified random structures. They demon-
strate that a two–level additive variance component model with crossing at
level 2 can be expressed as a model with a single level 2 unit nested within
a single level 3 unit. This model can then be considered as a model with
two levels, where the covariance matrix of the random terms takes a block
diagonal form.

2.3 Results

We fit the model

yijl(i)m(j)v =µ+ αi + βj + ρv + (αβ)ij + (αρ)iv + (βρ)jv + (αβρ)ijv

+ εl(i) + ε
′
m(j) + ε

′′
l(i)m(j), (2)

which is slightly different than (1), using PROC MIXED in SAS, which
handles mixed models with normally distributed outcomes. Since k = 1
there is no replication effect, while the split plot design of the data is rep-
resented by an additional fixed effect ρ, where v indexes the two possible
outcomes (active and passive). In our attempt to reproduce the analysis
presented by Farewell and Herzberg(2003) as closely as we can, we omitted
two of the random terms that were included in model (1). These terms are
pooled with ε

′′
l(i)m(j), giving a single random term with 510 df. In this way,

PROC MIXED produces F–tests for the fixed effects using the appropriate
error terms, as seen in Table 2. For example, to test the effect of expres-
siveness (second line in Table 2) the correct error term would be the one
produced by the ’patients within expressiveness’ random term ε

′
m(j) with 6

df. In Table 2, DF1 presents the df on the numerator and DF2 the df on the
denominator of the F–test. Additionally, the residual variance is estimated
to be σ2

e = 5.66. The three way interaction, which is of interest, is tested
against the residual error term with 588 df and appears to be significant.
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Effect DF1 DF2 F Value Pr > F

GROUP 1 72 11.38 0.0012
EXPRESS 1 6 7.36 0.0350
GROUP*EXPRESS 1 510 5.13 0.0239
MOVEMENT 1 588 1336.03 < .0001
GROUP*MOVEMENT 1 588 7.71 0.0057
EXPRESS*MOVEMENT 1 588 764.35 < .0001
GROUP*EXPRESS*MOVEMENT 1 588 6.37 0.0118
GROUP=Training group for raters

TABLE 2. SAS output for the tests of the fixed effects

This way of modelling, not only reproduces the results obtained by Farewell
and Herzberg (2003), but it can also be seen to allow extensions. Based
on the mixed model, unbalanced explanatory variables and/or covariate
structures can be easily incorporated. This is particularly useful in medical
examples, where explanatory variables on the patient level are of varied
types. We fitted an extended version of the FACS data, where one rater in
the trained group and two patients in the unexpressive group where added
to create an unbalanced data set.

3 Ordinal response model

In section 2, we considered the analysis of this mixed model with normally
distributed responses using standard software for hierarchical models. The
implementation of this model facilitates its generalization to generalized
linear mixed models. This means, for example, that satisfactory analysis
of ordinal response data, given appropriate choice of distribution for the
error terms, could be considered. Brown & Prescott(1999) discuss mixed
models for categorical data (ch. 4), pointing out the limitations in fitting
these models using existing software.
The form of the model will be exactly as in (1), where the random terms
can still be considered to be normally distributed. Currently, there are some
widely used software that can handle non–normally distributed responses
(commands PROC NLMIXED in SAS and nlme in S-Plus/R as well as
MLWin, the GLLAMM package in Stata and MIXOR). The complicated
structure imposed by the plaid design is not easily accommodated, however,
since most of the above commands and packages do not allow for multilevel
structures.

4 Conclusions

Plaid designs arise naturally in certain contexts, and hence there is a need
to explore more about what they can offer to researchers. The absence of a
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standard methodology for analyzing non–normal response data, the com-
plicated structure of the designs and the lack of comprehensive (and easy
to use) software to deal with them, are possibly some of the reasons why
these designs are not more widely used. We propose the use of generalized
linear mixed models to analyze data from plaid square designs. We have
focused on the software available to fit such models, and discuss the limi-
tations. Therefore, this work can be seen as a first step to solving some of
the above problems.
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Abstract: We focus on multilevel random effects models for ordered response
such as occur in educational achievement research. In model development changes
in parameter values are difficult to compare because of implicit rescaling of pa-
rameters in the linear predictor. We combine a heuristic method to handle this
with proposals for instrumental variable estimation when regressors are endoge-
nous. Simulated and real educational data are used to evaluate these proposals.

Keywords: Ordinal; Multilevel; Endogeneity; Conditional Mean Scoring

1 Introduction

We model here ordered responses with multilevel random effects of the type
F 1
(
γ
(s)
ij

)
= θs − {(Xβ)ij + u0j} such as appear in educational progress

(Fielding (1999)). Here γ(s)ij is the cumulative probability that student i in
school j obtains grade s. F 1will be the probit link though other forms
may be noted. X is a matrix of regressors, u0j is the random effect of
the school and the θs (s = 1, 2, ..., k-1 where there are k categories)
are thought of as cut-points of an underlying latent variable scale (with
θ1 < θ2 < . . . < θk−1). We use macros for PQL2 estimation in MLwiN
discussed by Fielding (2002). We desire to build models by extending the
introduction of effects starting from a null model with no regressors. Each
development of the model rescales parameters so that the latent variable
level 1 variance is fixed at unity for the probit. This makes a comparison of
all parameters in different extensions difficult (Snijders and Bosker, 1999).
To facilitate these comparisons Fielding (2003) has used Conditional Mean
Scoring (CMS) of categories for the null model to approximately identify
scaling factors which can be applied to results. Here we additionally con-
sider a situation with endogenous regressors may be related to the random
part of the model, as might happen in educational settings (Spencer &
Fielding, 2002). Instrumental variable (IV) methods to deal with the in-
consistency of standard estimation in such situations have been fairly suc-
cessful (Spencer and Fielding, 2002). The basics of IV estimation are well
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TABLE 1. Mean and standard errors of parameter estimates from fifty simulated
datasets

Method 1 Method 2 Method 3 Method 4
Values used CMS not used CMS used CMS not used CMS used

Coefficient in simulations IV not used IV not used IV used IV used
Cut-point 1 -2.150 -2.477(0.224) -2.142(0.177) -1.095(0.120) -2.124(0.174)
Cut-point 2 -1.672 -1.920(0.222) -1.660(0.175) -0.858(0.112) -1.663(0.169)
Cut-point 3 -1.194 -1.376(0.216) -1.189(0.175) -0.620(0.107) -1.201(0.173)
Cut-point 4 -0.717 -0.831(0.207) -0.717(0.173) -0.380(0.105) -0.733(0.184)
Cut-point 5 -0.239 -0.284(0.208) -0.245(0.179) -0.135(0.103) -0.258(0.194)
Cut-point 6 0.239 0.268(0.201) 0.233(0.177) 0.113(0.098) 0.224(0.192)
Cut-point 7 0.717 0.824(0.197) 0.714(0.176) 0.363(0.091) 0.706(0.181)
Cut-point 8 1.194 1.378(0.202) 1.376(1.264) 0.611(0.095) 1.188(0.183)
Cut-point 9 1.672 1.949(0.199) 2.050(2.595) 0.863(0.098) 1.679(0.179)
Cut-point 10 2.150 2.503(0.190) 2.167(0.171) 1.104(0.099) 2.146(0.174)

Centred prior test 0.800 1.409(0.056) 1.219(0.043) 0.409(0.036) 0.795(0.053)
School variance 1.000 0.796(0.190) 0.598(0.149) 0.348(0.071) 1.359(0.452)

known. In the practice used in this paper, the instrument set is identical to
the original regressors, X, apart from where the endogenous variable has
been replaced with an instrument. In specially written macros we combine
the IV and CMS methods to provide consistent estimation and also enable
model comparisons.

2 CMS and IV Estimation with Simulated Data

Fifty datasets were simulated, each consisting of 36 groups of pupils, each
group (or school) containing a number of pupils varying between 11 and
33. Random N(0, 1) components for unmeasured heterogeneity were gen-
erated for schools (lvsi) and pupils (lvpij) and summed to form a latent
variable (lvij). We generated Xij = Cons + (lvij/2) + N(0, 1) error as a
prior test score. In operation Xij was centred to give Cij used below. Then
to form an instrument for X and correlated with it but independent of the
latent variable, the variable Iij = X -(lvij/2) was created. A ’current test
score’ was then formed by yij = βCij + lvsi + lvpij + eij , with eij a further
generated N(0, 1) error. This model (appropriately) includes random com-
ponents also used in forming Cij , to make the latter endogenous. The “test
score” is then divided into 11 ’observed’ categories by the evenly spaced
’cut points’ in Table 1. Models were fitted for each data set using a probit
link adaptation of MULTICAT macros of MlwiN. This probit version is
obtainable by e-mail from the authors.

Table 1 gives parameter values ( and standard errors) for combinations of
useage of CMS and IV. For neither used it is not surprising to find non
recovery of parameter values. Method 2 re-scales but poor recovery may be
due to ignoring endogeneity. Method 3 is beset by the original problems of
scaling. However, the method using both CMS and IV estimation performs
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quite successfully though school variance is over-estimated. A common ob-
jection to IV methods is their imprecision. However, it should be noted
that standard errors here are quite respectable.
It may be noted that application of the CMS method here differs and
improves on that of Fielding (2003) for this situation. The rescaling is done
iteratively within the second model. So that the results of using methods
2 and 4 can be compared with the parameter values used to create the
simulated data, the known parameter values for the null model have been
used rather than estimates.

3 Estimation with Data from Birmingham Schools

The data arise from 4421 children aged around 7 years in 114 schools
in Birmingham, UK. GENDER is a male dummy, FSM is a dummy for
school meal eligibility. Ethnic background first language overlap and may
confound so compound categories were formed giving rise to 14 dummies
(AMCLANG1-14). CTRDAGE was age in months centred on 84. Two
school context variables were used: the % of pupils with FSM=1 (PCTFSM)
and average % of baseline assessments that were graded above 2 (AVPCT-
BASEGT2). Baseline assessments of ability carried out by teachers at the
beginning of the school year in four areas of mathematics (number, algebra,
shape and space, handling data) and three areas of language and literacy
(speaking and listening, reading, writing) with pupils being given a grade
of (in descending order) 3, 2, 1, 0 in each of the seven areas . Towards
the end of the school year, the pupils took the Key Stage 1 Mathematics
Standard Assessment Task. Pupils were given grades from this of (in de-
scending order) 3, 2a, 2b, 2c, 1, 0. We use this variable, having six ordered
categories, as the response variable in the modelling. Fielding (1999) gives
fuller details.
An initial null model (model A) gave the basis for scale factor adjustment.
Following the example and reasons of Fielding (1999), the four models de-
tailed in Table 2 were fitted. For these models how were the instruments
for endogenous baseline tests formed? From experimentation, it is apparent
some available variables are not related to the response. These are whether
or not a pupil attended at least one full term of nursery school and 10 of the
14 AMCLANG variables. Instruments could be formed as predictions from
fixed part of a multilevel model of baseline assessment variables using these
11 variables are regressors. However, a complication arises here since there
are seven endogenous baselines. The efficiency of IV estimation is affected
by the canonical correlations between the set of endogenous variables and
the set of instrumental variables. Loose correlations of each baseline with
its instrument means that canonical correlations and thus efficiency of esti-
mates will be low. To overcome this, we used the first principal component
of the seven baselines (59.9% of variation) was used as a regressor in the
model and a parallel instrument formed for it.
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TABLE 2. Parameter estimates and standard errors with use of CMS and IV
estimation

Coefficient Model B Model C Model D Model E
Cut-point 1 -2.013(0.051) -2.225(0.061) -2.144(0.067) -2.306(0.089)
Cut-point 2 -0.848(0.051) -1.102(0.052) -0.998(0.067) -1.218(0.089)
Cut-point 3 -0.202(0.051) -0.473(0.050) -0.361(0.067) -0.616(0.089)
Cut-point 4 0.331(0.051) 0.044(0.050) 0.164(0.067) -0.120(0.089)
Cut-point 5 1.056(0.051) 0.742(0.051) 0.880(0.067) 0.556(0.089)

1st PC for baseline tests 0.247(0.058) 0.229(0.056) 0.185(0.050)
GENDER 0.007(0.030) -0.085(0.024) -0.070(0.021)
FSM 0.309(0.033) 0.291(0.047) 0.193(0.021)

CTRDAGE -0.061(0.004) -0.033(0.008) -0.036(0.007)
AMCLANG2 0.053(0.062) 0.138(0.070) 0.103(0.058)
AMCLANG11 -0.629(0.336) -0.707(0.142) -0.639(0.118)
AMCLANG12 -0.765(0.436) -1.201(0.208) -1.143(0.171)
PCTFSM 0.006(0.002)

AVPCTBASEGT2 0.030(0.018)
School variance 0.236(0.037) 0.176(0.027) 0.201(0.031) 0.141(0.023)

Results from fitting these models are shown in table 2. AMCLANG2 cor-
responds to an Afro-Caribbean ethnic background with first language En-
glish; AMCLANG11 corresponds to a Chinese ethnic background with first
language not English; AMCLANG12 corresponds to a Vietnamese ethnic
background with first language not English. All are relative to a White
ethnic background with first language English.

It should be noted importantly that, as with the results of the simulations,
the standard errors of the estimates obtained are respectable for all mod-
els including B, D and E where IV estimation takes place. Unlike many
other published applications, in estimation we have also accounted for the
possible endogeneity of baseline variables.

4 Discussion

The simulation analysis indicates that both CMS and IV estimation are
necessary for model comparisons can both be applied successfully. They
have also been successfully applied to the dataset. In further investiga-
tion , not reported here we have also not used IV and the estimated ef-
fects are very different. The MLwiN macro files used are available online:
www.herts.ac.uk/business/staff public/nhspencer public/research.
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processes
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Abstract: Extreme value theory is the branch of statistics inferring extreme
events in random processes. Bayesian estimation in this field offers many ad-
vantages. We use techniques from extreme value theory to estimate by Bayesian
methods the probability distribution of extreme volcanic eruptions that are sub-
ject to a historical recording bias.

Keywords: Extreme values; Bayesian techniques; censored data; volcano erup-
tions.

1 Introduction

Elsewhere in these proceedings, Coles (2004) discusses a censored point
process model to describe extreme volcanic eruptions, with inference based
on maximum likelihood. Moreover there are limitations in this approach to
inference and Bayesian techniques offer an alternative that is often prefer-
able. There are number of reasons why a Bayesian analysis of extreme value
data might be desirable. First, owing to scarcity of data, there is the facility
to include information through a prior distribution. Second, the output of
a Bayesian analysis – the posterior distribution – provides a more complete
inference than the corresponding maximum likelihood analysis. In particu-
lar, since the objective of an extreme value analysis is usually an estimate of
the probability of future events reaching extreme levels, expression through
predictive distribution is natural. Third, Markov chain Monte Carlo tech-
niques allow to estimated more complex parameter structure and also when
the parameter dimension in unknown. In the volcano setting, we will be
able to work with more flexible model structures.

2 Historical catalogue of volcanic eruptions

The data represented in Figure 1 have been recorded in a historical cata-
logue over the past two millennia.
The magnitude is defined byM = log(m)− 7, where m is the erupted mass
in Kg. The structure of these data suggests an extreme value analysis
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FIGURE 1. Volcanic eruptions exceeding 3.7 M.

(Coles, 2001), but the process does not seem stationary. Indeed, looking
at points below 5M, the rate of volcanic activity seems much greater in
recent years, while above 6M the rate seems more or less uniform through-
out. This suggests that, for relatively small events, there was a difficulty in
recording volcanic events especially further back in time. In Coles (2004),
the events (ti, xi), with ti being time re-scaled to [0, 1] and xi denoting
the magnitude, were modeled with a Poisson process over a threshold with
intensity:

λM (t, x) = p(t, x)λ(t, x) (1)

where

λ(t, x) =
1
σ

[
1 + ξ

(x− µ)
σ

]−1/ξ−1

+

(2)

with σ > 0 and a+=max(a,0), and with a constrained parametric model
for p(t, x). Component (2) is based on standard extreme values arguments
whereas (1) summarizes our belief about the recording mechanism. In this
article, guided by Figure 1, we consider, as an alternative, a changepoint
specification for p(t, x).

2.1 A Changepoint Model

Looking again at Figure 1, the process looks stationary, at least to the
eye, over the last 500 years. An alternative formulation for p(t, x) might
therefore be in terms of a changepoint model.
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TABLE 1. Posterior expected values of µ, σ, ξ, a, b and mode of the posterior
distribution of k.

µ̂ σ̂ ξ̂ â b̂ k (mode)
2.52 1.42 -0.25 -3.24 0.38 1587

FIGURE 2. Posterior distribution of k, referred to model (3).

Specifically, if λM (t, x) = p(t, x)λ(t, x) is the density of the Point Process
model, a viable censoring function is:

p(t, x) =

{
exp(a+bx)

1+exp(a+bx) t ≤ k

1 t > k,
(3)

for some k ∈ [0, 2000] (scaled back to years). Provided b > 0, this ensures
that p(t, x) ↑ 1 as x ↑ ∞.
To estimate the parameters θ = (µ, σ, ξ, a, b, k) we have used Markov Chain
Monte Carlo techniques, with a Metropolis-Hastings algorithm (Gilks et
al., 1996). See Table 1 for a summary of the posterior expected values of
µ, σ, ξ, a, b and the mode of the posterior distribution of k, and to Figure 2
for a graphical representation of the posterior distribution of k. The esti-
mates of µ, σ, ξ are broadly consistent with those of Coles (2004), while the
estimate of k seems in accord with the visual impression of Figure 1.
Though Figure 1 suggests the presence of just one changepoint, we also
tried to estimate a model with an arbitrary number of changepoints (gen-
eralizing (3)), introducing a parameter space with unknown dimension.
Let Nk be the number of changepoints and K = (k1, . . . , kNk

) the vector
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of changepoints; also set k0 = 0 and k∞ = 2000. Then, we define:

p(t, x) =

{
exp(ai+bix)

1+exp(ai+bix)
(ki, ki+1) i = 0, . . . , Nk − 1

1 (kNk
,K∞).

(4)

The technique used is Reversible Jump Markov Chain Monte Carlo (Green,
1995). Despite the extra flexibility, the inference points very strongly to the
presence of a single changepoint only.

2.2 Predictive distribution

Prediction is also handled better within a Bayesian setting. If z denotes
a future volcanic eruption having probability distribution function G(z|θ)
and f(θ|x) is the posterior distribution of θ on the basis of observed volcano
eruptions x, then:

Pr{Z ≤ z|x} =
∫

Θ

G(z|θ)f(θ|x)dθ (5)

is the predictive distribution of z given x. Compared with other approaches
to prediction, the predictive distribution has the advantage that it reflects
uncertainty in the model –the f(θ|x) term – and uncertainty due to the
variability in future observations – the G(z|θ) term. Whilst the predictive
distribution may seem intractable, it is easily approximated if the poste-
rior distribution has itself been estimated by simulation, using for example
MCMC. After deletion of the values generated in the settling-in period, the
procedure leads to a sample θ1, . . . , θs that may be regarded as observations
from the stationary distribution f(θ|x) and

Pr{Z > z|x} ≈ 1
s

s∑
i=1

(1−G(z|θi)) = 1
s

s∑
i=1

[1 + ξ(z − u)/σ̃]−1/ξ
+ (6)

Based on the changepoint model, a graphical representation of the esti-
mated predictive distribution of volcanic magnitude conditional on an ex-
ceedance of 4M, is shown in Figure 3.

3 Conclusions

Reformulating the basic censored point process model of Coles (2004)
within a Bayesian framework leads to several advantages. Here we have
considered two: the specification of a changepoint model for the censoring
mechanism and the calculation of the predictive distribution of extreme vol-
canic magnitudes. Both aspects give a preferential interpretation relative
to a classic inference.
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FIGURE 3. Predictive conditional distribution of p = P (Z > z|x > 4) versus z,
on standard extreme value scale.
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Abstract: We analyse data from two foot-and-mouth disease experiments for
which previous studies have indicated lower levels of virus in the blood of sheep
infected in the later stages of the epidemic. By using a non-Markovian stochastic
compartmental model in a Bayesian approach, coupled with Markov chain Monte
Carlo techniques, we are able to relax earlier assumptions regarding possible
pathways of infection, and to use the data to reconstruct the infectious network.
Thus, the complex interactions among level of viraemia, individual infectiousness
and temporal position in the epidemic process can be investigated.

1 Introduction

We investigate the transmission dynamics of a certain type of foot-and-
mouth disease (FMD) virus under experimental conditions, using an SEIR
(Susceptible-Exposed-Infectious-Removed) non-Markovian compartmental
model for partially observed epidemic processes. Previous analyses of exper-
imental data from FMD outbreaks in non-homogeneously mixing popula-
tions of sheep have suggested a decline of viraemic level in animals infected
in the later stages of the epidemic. However, these studies do not take into
account possible variation in the length of the chain of virus transmission
for each animal, which is implicit in the non-observed transmission process.
We employ powerful Markov chain Monte Carlo (MCMC) methods (e.g.
Tierney, 1994) for statistical inference, to address epidemiological issues
under a Bayesian framework that accounts for all available information
and associated uncertainty in a coherent approach. Such methodology is
being increasingly employed for inference in stochastic compartmental epi-
demic models (Gibson and Renshaw, 1998; O’Neill and Roberts, 1999). The
analysis provides estimation of epidemiological parameters, and also allows
the investigation of more complex characteristics of the virus transmission
process, relying on stochastic realisations of the unobserved network of
infectious contacts.
Data were collected during two experiments (Hughes et al., 2002), in which
32 sheep were randomly allocated to four groups (G1 to G4), and the first
group animals were inoculated with the same FMD virus dose. The virus
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was then passed to animals of the remaining groups, through a process
designed so that throughout the duration of the experiment each group
spent 24 hours mixing with a given group of ‘donor’ animals, followed by
24 hours in the presence of a given ‘recipient’ group. Viraemic diagnosis
was based on daily blood samples. The data used in this paper consist of
individual records of the day of onset and cessation of viraemia and the
peak viraemic levels.
Our analysis aims at addressing three main issues: the quantification of ba-
sic disease transmission characteristics, such as the contact rate and the du-
ration of latent periods; the study of the relation between level of viraemia
and infectiousness; and the investigation of a hypothesis that infectiousness
declines along the chain of virus transmission.

2 Model and methodology

We represent the spread of the epidemic through an SEIR model (Bailey,
1975) and following the work in Streftaris and Gibson (2004a) we employ
the two-parameter Weibull(ν, λ) distribution to describe sojourn times in
various compartments. We use n to denote the number of viraemic animals
in the population. The observation period of the epidemic is represented in
our model by the time interval [0, T ], defining its start as the inoculation
time and its end as the time of the last recorded event (last recovery). The
design of the experiments mimics a non-homogeneous population mixing
pattern, according to which the groups mix in pairs on alternate days.
If θ = (α, β, γ1, δ1, γ2, δ2, ν, λ)T denotes the vector of model parameters,
the likelihood of the complete data (assuming perfect observation of the
epidemic) can be written as

L(θ; e, s, r) =
∏
j∈E

[
β

n∑
l=1

{vαl il(Gj , ej)}
]
× exp

{
−
∫ T

0

βC(t)dt

}

×
∏
j∈I1

f1(sj − ej ; γ1, δ1)×
∏

j∈I2,3,4

f2(sj − ej ; γ2, δ2)×
∏
j∈R

f3(rj − sj ; ν, λ),

with β denoting the rate of infection per possible susceptible-infectious
contact weighed by the associated infectivity; ej , sj , rj denote respectively
the time of exposure, start of infectious period and recovery of animal j,
and e, s, r are the corresponding vectors; Gj is the group to which animal
j belongs; f1(·), f2(·) denote the Weibull densities for the latent periods of
animals in G1 and G2-G4 respectively, and f3(·) is the Weibull density of
the infectious period. We consider the peak viraemic level of each infec-
tious sheep as a potential factor affecting the infective challenge exerted
on each susceptible animal. The possible influence is modelled as the sum
of a power function of the individual viraemic levels vl, l = 1, . . . , n, allow-
ing the power level, denoted by α, to be estimated as a model parameter.
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The function il(k, t) provides an indicator factor such that for l = 1, . . . , n,
il(k, t) = 1 if at time t animal l is infectious and mixing only with group k,
or zero otherwise. Also, E , I1, I2,3,4,R denote the sets of exposed (G2-G4),
infectious (G1, G2-G4) and recovered animals at the end of the experi-
ment, while βC(t) represents the total infective force on the susceptible
population at time t, given the mixing pattern and the infectious state of
the population at that time (see Streftaris and Gibson, 2004b).
The available information in the likelihood is only partial, as the expo-
sure times for naturally infected animals, el, l ∈ E , are not known, and
the recorded times of infectiousness onset (sl) and recovery (rl) correspond
to sampling carried out every 24 hours, and are therefore not exact. For
reliable inferences the hidden aspects of the epidemic process must be ac-
counted for and any associated uncertainty should be appropriately ad-
dressed.

2.1 Bayesian investigation of hidden infection process

We follow a Bayesian approach, under which the unobserved events in the
transmission process of the disease are represented as nuisance parameters.
Assuming independent gamma prior distributions for all model parameters,
the joint posterior density p(θ|e, s, r) ∝ L(θ; e, s, r)π(θ), is investigated and
inferences on model parameters are extracted from the respective marginal
densities. The joint posterior density is given in an analytically intractable
form, and therefore inference will rely on computationally intensive estima-
tion methods. We use a MCMC algorithm that comprises a combination
of Gibbs sampling, independence Metropolis–Hastings and random-walk
Metropolis steps, in a manner similar to that described in Streftaris and
Gibson (2004a).
To investigate the effect of the length of the infection chain to the detected
level of viraemia we first consider stochastic reconstructions of the network
of infectious contacts, within our MCMC scheme. Possible infectious path-
ways can be determined via the posterior distribution of the unobserved
times of exposure to the disease, by linking each viral exposure to an avail-
able infectious individual, using a probability weighted by the individual’s
infectiousness. Thus, the length of the infection chain for each animal is
determined, providing a partition of the population to infection generation
categories. We assess the possible effect on the exhibited viraemia using
ANOVA to test a null hypothesis of no differences in viraemic levels along
the increasing length of the infection chain, obtaining an associated p-value
for the null hypothesis. The whole posterior distribution of these p-values
can then be obtained based on data from the MCMC output (cf. Meng,
1994).
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3 Results

Posterior estimates of the parameters quantifying the spread of the FMD
in the two studied experiments are obtained. Characteristics of interest
are: the transmission (or contact) parameter β; the duration of the latent
(incubation) period of the disease; and the parameter α used to assess a
possible relation between blood viral load and infectiousness of individ-
ual sheep. The corresponding posterior densities are shown in Figure 1.
The mean latent period appears to be shorter than usually reported in the
literature (especially for G2-G4 animals), reflecting the highly intensive
infection process in the experiments. The posterior densities of all model
parameters are consistent with the assumption of the same underlying epi-
demic process in the two experimental occasions. Under the assumption
of a non-informative Ga(1, 0.001) prior distribution for parameter α, its
posterior distribution indicates that the information in the data supports
non-zero values of the parameter. Our analysis therefore suggests that indi-
vidual blood viral load affects the infective challenge exerted on susceptible
animals in both experiments. The results also reveal a possible decline in
viraemia in one of the two experimental outbreaks, as the corresponding
posterior distribution favours small p-values (Streftaris and Gibson, 2004b).
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FIGURE 1. Posterior densities of the characteristics of the transmission of FMD
virus in sheep under experimental conditions. (a) β; (b) Mean latent period G1;
(c) Mean latent period G2-G4; (d) α. The solid and dashed lines correspond to
Experiment 1 and Experiment 2 respectively.
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4 Discussion

The power of the modelling and methodology used in this paper to address
the question of possible relations among level of viraemia, infectiousness
and length of infection chain, was assessed through a simulation study.
Epidemic data were generated under various scenarios assuming appropri-
ate combinations of the effect of viraemia on infectiousness (α = 0 or 1),
and decreasing or unchanged levels of viraemia. In all cases our analysis
was able to correctly identify the presence (or not) of both effects.
Assessment of the fit of the model with the use of Bayesian latent residu-
als, has suggested a possible under-dispersion of the unobserved times of
infectious contacts. An assumption of gamma distributed tolerance levels
to the disease may then be incorporated in the model. This issue, together
with others related to alternative distributions for sojourn times, leads
to a question of model choice for partially observed epidemics, which we
are currently addressing using simulation studies and Bayes factors related
methodology.
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Abstract: The aim of this paper is to propose a unit level linear mixed model
and an area level linear mixed model where both, the variance components and
the coefficients of the model are estimated using weights. The models performance
is illustrated by estimating the total area occupied by olive trees in a region called
Comarca IV, located in Navarra, Spain. Small area linear mixed models have
been used for similar purposes using regular quadrats (also called segments) as
sampling units, and assuming that these are fully included in the study domain.
However when this does not happen, the sampling units are very different in size,
leading to an extra variability within areas. Then, the inclusion of weights in the
model is recommended.

Keywords: Borrow information; Linear mixed models; Variance components.

1 Introduction

There is an increasing demand in local and central Governments in knowing
precise estimates in domains where the size of the samples is small or even
zero. These domains are called small areas. Traditionally, the sample sizes
are chosen to provide reliable estimates for large geographical regions or
aggregates of small areas. However, the statistical methods used for large
domains can rarely be applied to small ones. Then, the problem of small
area estimation is twofold. First, the fundamental question of producing
reliable estimates of characteristics of interest and second, the assessment
of the estimation error. When the sample in a given area is very small, a
solution to the estimation problem is to borrow strength from related areas
by means of auxiliary information. Different model-based methods to ac-
complish small area issues have been proposed in the literature (for a good
review see Rao, 2003). Battese, Harter and Fuller (1988), popularized the
use of linear mixed models in agricultural small area problems. They gave
a prediction of the mean hectares of soybeans and corn per segment in 12
counties of Iowa with 36 segments, using as auxiliary information the clas-
sified corn and soybean hectares provided by satellite images. The authors
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consider a simple random sampling plan and segments of 250 hectares en-
tirely included in the study domain. A common approach to account for
other sampling plans by using sampling weights has been done by Prasad
and Rao (1999) and You and Rao (2002) who develop design-consistent
small area estimation models. In these models the variance components
are estimated from a unit-level model but the authors do not incorporate
weights into the estimation process. Then, more difficulties arise to validate
the model.
The aim of this paper is to propose a unit level linear mixed model and
an area level linear mixed model where both, the variance components
and the coefficients of the model are estimated using weights. The models
performance is illustrated by estimating the total area of olive trees in a
region called Comarca IV, located in the central part of Navarra, Spain. The
olive oil industry is becoming very important and there is a general interest
in determining the land area occupied by this crop in different regions
mainly for two reasons: to control the olive-oil production, and to distribute
European financial help. Traditionally, small area linear mixed models have
been used for similar purposes based on the common definition of regular
quadrats (also called segments) as sampling units, and assuming that these
are fully included in the study domain. However, one important feature of
this sample is that the square segments are very small, only of 4 hectares,
and often, not completely included in the very irregular study domain. The
size of sampled segments was limited by the precision of satellite images
and could not be reduced. Figure 1 shows the big irregularity of the many
spots that constitute the study domain and how the majority of sampled
segments are scarcely included there.

2 Weighted Linear Mixed Models

Battese, Harter and Fuller (1988), explained the reported hectares of soy-
beans or corn in the sample segments within counties as a function of the
satellite data for those sample segments, such that the reported hectares are
positively correlated within given counties but uncorrelated from different
counties. The model is given by

yij = β0 + β1xij1 + β2xij2 + uij , i = 1, . . . , t, j = 1, . . . , ni, (1)

where in the ith county (i = 1, . . . , t), yij is the number of hectares of soy-
bean (or corn) in the jth segment, ni is the number of sampled segments,
xij1 and xij2 are the jth classified hectares of soybeans and corn respec-
tively, and β0, β1 and β2 are unknown parameters. The random error uij

associated with the reported area yij is expressed by

uij = vi + eij , vi ∼ N(0, σ2
v), and eij ∼ N(0, σ2

e), (2)
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FIGURE 1. Study domain and sampled crops in 4 ha. segments.

where vi is the ith county effect and eij is the random error associated
with the jth sample segment within the ith county. The random effects vi

are assumed to be independent of the random errors eij (j = 1, . . . , ni; i =
1, . . . , t). These authors do not include weights in the estimation process.
To account for heteroscedasticity within small areas, we propose the use
of weights to estimate both, variance components and fixed effects. The
proposed model is a weighted unit level linear mixed model, where the
auxiliary information is available for every sampled unit and for the whole
area. It is given by

yij = x′
ijβ + vi + εij , vi ∼ N(0, σ2

v), εij ∼ N(0, σ2
e/wij), (3)

where in the ith county (i = 1, . . . , t), yij is the number of hectares of crop
in the jth segment, ni is the number of sampled segments, x′

ij is the jth
classified hectares of crop and wij are the weights. The predictor of the
ith-mean is given by

˜̄yiw = x̄′
i(p)β̃w + γiw(ȳiw − x̄′

iwβ̃w), i = 1, . . . , t, (4)

and it is estimated by

ˆ̄yiw = x̄′
i(p)β̂w + γ̂iw(ȳiw − x̄′

iwβ̂w), i = 1, . . . , t, (5)
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where ȳiw =
∑ni

j=1 wijyij/wi., x̄iw =
∑ni

j=1 wijxij/wi., β̃ is the weighted
least squares estimator of β assuming that the variance components σ2

e and
σ2

v are known and β̂w = β̃w(σ̂2
e , σ̂

2
v) is the estimate of β̃ after estimating the

variance components. γ̂iw is the plug-in estimator of γiw = σ2
v/(σ

2
v+σ

2
e/wi.)

and x̄i(p) is the population mean of the auxiliary variable. The predictor
in Equation (4) depends on the variance components σ2 = (σ2

v , σ
2
e), but

in practice, they are unknown. A common way of estimating the variance
components is by using the fitting of constants or moments method (Searle,
Casella and McCullogh, 1992), that yields unbiased estimators without de-
pending on normality assumptions. The estimators have closed expressions
and are easy to compute. This method is used by You and Rao (2002), but
they do not include weights into the estimation procedure. In this paper
we modify this technique by including weights into the variance component
estimation process. The mean squared error of the prediction is also re-
estimated following the approximation proposed by Prasad and Rao (1990).
The models validation is also presented.

3 Conclusions

When the variability within small areas is very different and heteroscedas-
ticity is present, the use of weights is specially recommended. In the par-
ticular application considered here, we show how the heteroscedasticity is
better corrected in models including weights into the variance component
estimation process, both in unit level models and in area level models. We
illustrate the results with the estimation of total land area occupied by
olive trees in a particular region of Navarra, Spain. The data consists of 49
segments of 4 hectares drawn by simple random sampling in 8 non-irrigated
areas. We estimate the total number of hectares and their corresponding
mean squared prediction error in each small area using the models that
we propose in this paper. A comparison is done with other models already
proposed in the literature.
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Abstract: The aim of the paper is to specify and fit a multilevel model for a
polytomous response in presence of potential selection bias. The work is motivated
by the analysis of the way of acquisition of the skills of university graduates. In
order to taking into account the features of the data, a suitable multivariate
multilevel model for polytomous responses with a non-ignorable missing data
mechanism is developed and fitted by means of maximum likelihood with adaptive
Gaussian quadrature. In the application the multilevel structure has a crucial role,
while selection bias results negligible.
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1 Introduction

Selection bias may arise when the selection mechanism depends on unob-
served variables correlated with the error terms of the statistical model of
interest. A classical way to correct the selection bias (Heckman, 1979) is
to add an equation which explicitly models the selection mechanism. Ap-
plications of this approach in the multilevel framework are still rare (e.g.
Borgoni and Billari, 2002) and, as far as we know, none of them concerns
the polytomous case.
The paper was motivated by the analysis of data gathered from a telephone
survey conducted, about two years after the degree, on the 2000’s graduates
of the University of Florence. Particularly, interest is in the analysis of some
skills which may be requested for the current job. The analysis of such data
raises several methodological issues: (a) the response is composed by a set of
categorical variables, with potential selection bias due to the design of the
questionnaire: for each skill a first question asks if the graduate currently
uses it, while, in case of an affirmative response, a second question asks
where the skill was acquired, so for all the graduates that do not use the
skill the second question is missing, causing a potential selection bias; (b)
for each skill, the second question has a polytomous response, aggregated
to three categories: the skill was acquired during the degree programme, at
workplace or otherwise; (c) the data have a hierarchical structure (items
within graduates and graduates within degree programmes), so that the
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observations are correlated. The questionnaire includes eight skills, and for
each skill two questions are asked. In the present work each skill is analyzed
separately.

2 The model

In the case of a polytomous response with M categories (alternatives), the
model with selection has M equations, one for the dichotomous selection
indicator (e.g. current use of the skill) and (M − 1) for the polytomous re-
sponse of interest (e.g. way of acquisition of the skill), where the probability
of the reference alternative (m = 1) is obtained by difference. Indexing the
cluster (e.g. degree programme) by j = 1, 2, · · · , J and the subject of the
j-th cluster (e.g. graduate) by i = 1, 2, · · · , nj , and assuming a logit link
for both sets of equations, the model is:

P (Y Sij = 1 | xSij , ξ
S
j , δ

S
ij) =

exp{αS + βS ′xSij + ξSj + δSij}
1 + exp{αS + βS ′xSij + ξSj + δSij}

(1)

P (Y Pij = m | xPij , ξ
P
j , δ

P
ij) =

exp{ηP (m)
ij }

1 +
∑M
l=2 exp{ηP (l)

ij }
(m = 2, · · · , M)

where the variable Y Pij is observed if and only if Y Sij = 1. Moreover ξPj =

(ξP (2)
j , . . . , ξ

P (M)
j )′ and δPij = (δP (2)

ij , . . . , δ
P (M)
ij )′. The linear predictor of

the m-th alternative is ηP (m)
ij = αP (m) + βP (m) ′xPij + ξ

P (m)
j + δ

P (m)
ij . The

superscript S denotes the variables and parameters of the selection equa-
tion, while the superscript P denotes the variables and parameters of the
principal (polytomous) equations; in particular P (m) refers to the m-th al-
ternative. The S and P sets of equations may have distinct covariates, xSij
and xPij , though there are no alternative specific covariates in the present
specification of the polytomous model; moreover each equation has dif-
ferent parameters: αS and βS for the selection equation, and αP (m) and
βP (m) (m = 2, · · · ,M) for the principal equations, where the superscript
P (m) indicates that the parameters vary with the alternative. The ξjs
and δijs are random variables representing unobserved heterogeneity at
cluster and subject level, respectively, with the following distributional as-
sumptions: errors at different levels are independent; the random vector
(ξSj , ξ

P (2)
j , · · · , ξP (M)

j )′ has a multivariate normal distribution, with mean 0

and covariance matrix Σξ; while the random vector (δSij , δ
P (2)
ij , · · · , δP (M)

ij )′

has a multivariate normal distribution, with mean 0 and covariance matrix
Σδ.
If at least one of the correlations between the pairs (ξSj , ξ

P (m)
j ) or (δSij , δ

P (m)
ij )

is not null, the selection mechanism is not ignorable, so unbiased estima-
tion requires to fit both sets of equations simultaneously. It is worth to note
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that in the multilevel case the selection mechanism can operate at differ-
ent levels: (a) subject level : correlations between the pairs (δSij , δ

P (m)
ij ); (b)

cluster level : correlations between the pairs (ξSj , ξ
P (m)
j ). The signs of the

correlations may be different at the two levels, giving rise to complex selec-
tion mechanisms. Moreover, ignoring the multilevel structure amounts to
mix different aspects of the selection mechanism and might lead to wrong
conclusions.
Note also that, whatever the selection mechanism, the random terms in the
linear predictors of the multinomial logit model allow to relax the restrictive
IIA (Independence of Irrelevant Alternatives) assumption (Skrondal and
Rabe-Hesketh, 2003).
The parameters of the cluster level covariance matrix Σξ are all identi-
fied, while for the parameters of subject level covariance matrix Σδ the
identification issue is more complex: the variance of δSij is obviously not

identified, while the variances and covariances relative to the δP (m)
ij , are in

principle identified, but prone to empirical underidentification, unless some
alternative specific covariate is included in the model (Skrondal and Rabe-
Hesketh, 2003). Indeed, in the application Σδ is found to be empirically
not identified, so the δijs are omitted.

3 Application

In the application the data set includes 2540 employed graduates and 56
degree programmes. The response of interest is the way of acquisition of
the given skill: at university (reference category), at workplace or otherwise.
The covariates used are the following. Demographic: gender, age at degree;
university career : average mark of examinations (centered with respect to
the mean of the degree programme), graduated with honors, duration in-
dex (ratio of time to graduate to legal duration); job characteristics: inde-
pendent work, managerial post, public sector, temporary position, degree
required for the job; degree programme characteristics: short degree.
Estimation is carried out by means of the gllamm procedure of Stata (Rabe-
Hesketh et al., 2001), which performs maximum likelihood estimation with
adaptive Gaussian quadrature; the model selection is based on the likeli-
hood ratio test.
For each of the eight skills included in the questionnaire, the polytomous
model without selection is fitted. The skill with the highest estimated de-
gree programme variance component is Professional and technical abili-
ties, which is also the most interesting one for the University management.
Therefore the joint model with selection is fitted only for this skill. Except
for two students (about 0.1%), the non response to the acquisition question
is always due to a negative response to the previous question on skill’s use,
so the source of bias resides only in the conditional nature of the acquisition
question.
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TABLE 1. Estimated probabilities from the acquisition model

Kind of graduate P(Y Pij = m |xPij , ξP (2)
j , ξ

P (3)
j )

and degree programme University Workplace Otherwise
baseline 0.475 0.427 0.098

honors 0.575 0.347 0.078
self-employed work 0.534 0.354 0.113
managerial post 0.530 0.363 0.107
public sector 0.554 0.333 0.113
degree not required 0.284 0.556 0.159
short degree 0.573 0.379 0.049

high degree programme 0.269 0.529 0.201
low degree programme 0.681 0.280 0.039

The two cluster-level estimated correlations among the S and P sets of
equations are jointly not significant (LRT=5.52, df=2, p-value=0.0633).
This test may have a low power, however ignoring the selection mechanism
causes only minor changes in the parameter estimates of the multinomial
model. Therefore the analysis proceeds with the acquisition model alone,
assuming an ignorable selection mechanism.
The cluster-level random parameters take the following values: V ar(ξP (2)

j ) =

0.153, V ar(ξP (3)
j ) = 0.413, Corr(ξP (2)

j , ξ
P (3)
j ) = 0.848. Therefore, given the

observed covariates, there is still much unexplained variability due to the
degree programmes. Moreover the positive sign of the correlation implies
that the second and third alternatives are jointly opposed to the first one.
Table 1 reports the estimated probabilities for some combinations of the
covariates: the baseline graduate is defined by setting all the covariates and
random terms to zero; the row labelled low (high) degree programme cor-
responds to a graduate with all the covariates set to zero and each random
term equal to minus (plus) twice the corresponding estimated standard
error.
As for the covariates, the probability of acquisition during the degree pro-
gramme is higher for graduates with honor and graduates with a short
degree, while this probability significantly decreases if the degree is not
required for the job. The job characteristics have little effect on the third
alternative, while they substantially modify the probability of acquisition
at the workplace.

4 Concluding remarks

In the application the hierarchical structure has a crucial role, while se-
lection bias results negligible. However the outlined methodology can be
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effectively used in situations where selection bias is an issue.
Currently we are carrying out some simulations to fully understand the
implications of selection mechanisms that act in a hierarchical framework
and to assess the power of the likelihood ratio test performed to evaluate
the presence of selection.
Alternatively, selection bias can be treated following a sensitivity approach
(Copas and Li, 1997), without relying on a single estimate for the parame-
ters governing the selection mechanism. Bellio and Gori (2003) present an
application of this approach in a multilevel setting.
The estimation algorithm based on adaptive numerical quadrature, used in
the application, is accurate and flexible, but it requires long computational
times, which increase rapidly with the model complexity. Many alterna-
tive estimation methods are possible, e.g. Bayesian MCMC and Maximum
Simulated Likelihood (Train, 2003).
The analysis described in the paper is implicity conditional on the employ-
ment status of the graduates at the interview, so the results have to be
referred only to the employed graduates. In order to evaluate the degree
programmes with respects to the skills they give to all the graduates, it is
necessary to take into account also the possible selection bias induced by
the employment status.
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Abstract: In clustered designs often multiple outcome variables are collected
for each individual. Some of the dependent variables may be measured at the
individual level while others (for example cluster size) may be measured at the
cluster level. It is both important and challenging to model all variables jointly
taking into account the correlation between the variables. In this paper we con-
sider a data example with a binary and continuous individual-level outcomes and
an ordinal cluster-level variable, define a multivariate random effects model and
obtain maximum likelihood estimates using standard software. We also compare
bias in dose effect estimates when misspecifying the correlation structure of the
random effects and when ignoring cluster size using a simulation study.

Keywords: maximum likelihood; multivariate response; random effects; repeated
measures; Gaussian quadrature

1 Introduction

Joint modelling of multiple discrete and continuous outcomes presents chal-
lenges to investigators because of the need to model correlation between
the outcomes within individual. The situation becomes even more complex
when clustering is present and when both cluster-level and individual-level
variables are present.
This paper is motivated by a developmental toxicity application (Price,
Kimmel, Tyl and Marr, 1985). This was a study of the teratogenic effects
of ethylene glycol conducted by the National Toxicology Program. During
organogenesis pregnant mice were exposed to ethylene glycol at one of
four different dose levels: 0, 0.75, 1.5 and 3 mg/kg. Fetal weight and a
binary malformation indicator for each fetus within litter, and litter size
were recorded. It was of interest to estimate the dose effect on adverse
outcomes (malformation, low fetal weight). Descriptive statistics for the
developmental toxicity data are available in Table 1.
A number of authors jointly analyzed the malformation and fetal weight
outcomes. However only in the latest published Bayesian analysis (Dun-
son, Chen and Harry, 2003) and in the latest maximum-likelihood analysis
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TABLE 1. Descriptive statistics for the developmental toxicity example.

Dose (g/kg) Dams Fetal Weight (g) Malformation
Mean SD Number Percent

0 25 0.972 0.098 1 0.34
0.75 24 0.877 0.104 26 9.42
1.50 22 0.764 0.107 89 38.86
3.00 23 0.704 0.124 126 57.08

(Gueorguieva, 2004) was litter size modelled as an additional dependent
variable. As demonstrated by DCH ignoring litter size could lead to biased
inferences although the extent of the bias might not be very large. In this
paper we consider a model with separate litter level random effect for each
outcome and a correlated probit formulation for litter size, and discuss
how to obtain maximum likelihood estimates using the gllamm function in
STATA or PROC NLMIXED in SAS. We also use a simulation study to
compare bias in dose effect estimates when assuming a shared litter ran-
dom effect instead of correlated random effects for the outcome variables
and when ignoring litter size.

2 Model definition

Let yij1 denote the weight of the jth fetus in litter i (i = 1, ...I, j = 1, ...ni)
and let yij2 = 1 if the jth fetus in the ith litter is malformed and yij2 = 0
otherwise. As usual we assume that there is a latent normal variable y∗ij2
underlying yij2 such that yij2 = I(y∗ij2 > 0). Also, let si denote the size of
litter i. Then the model we consider is defined as follows:

yij1 = µ1 + α1xi + λ1ξi1 + γ1ηij + εij1

y∗ij2 = µ2 + α2xi + λ2ξi2 + γ2ηij + εij2

Pr(si ≤ k|xi, ξi3) = Φ(δk − βxi − λ3ξi3),

where ξ = (ξi1, ξi2, ξi3)T ∼ N(0,Σ) is a vector of litter-specific random
effects independent of the fetus-specific random effect ηij and of the errors
εij1 ∼ N(0, σ2

e1) and εij2 ∼ N(0, σ2
e2). For identifiability, the diagonal ele-

ments of Σ are assumed to be equal to 1, λ3 = 1, and γ2 = σe2 =
√
0.5. The

latter restriction means that the variance of the latent continuous variable
underlying the malformation response is assumed to be one. The dose of
ethylene glycol is denoted by xi. The third equation above corresponds to
a cumulative probit model for litter size with k = 1, ...T − 1 where T is the
maximum litter size (16 in the data example). We require δ1 < δ2 < ...δT−1.
Note that correlations between fetal weight and litter size (ρ(yij1, si)), and
between malformation and litter size (ρ(y∗ij2, si)) arise from the correlated
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random effects ξi1, ξi2 and ξi3. Correlations between malformation and
fetal weight measured on the same fetus within litter (ρ(yij1, y∗ij2)) arise
because of the random litter effects and of the common litter effect ηij ,
while correlations between malformation measured on one fetus within a
litter and weight of another fetus within a litter (ρ(yij1, y∗ij′2)) are due
only to the correlated random effects. This model is more general than the
model Dunson et al. considered for this particular data example since they
assumed a common litter effect for all outcomes ξi thus imposing a restric-
tive structure on the correlations. Both Dunson et al. and Gueorguieva used
a continuation ratio formulation for cluster size to avoid having to place
restrictions on the thresholds. However in the correlated probit model the
thresholds can be reparametrized to avoid computational problems and the
cumulative-probit formulation has the advantage of easier computation of
correlations between litter size and fetal weight, and between litter size and
malformation.

3 Maximum Likelihood Estimation

The model as defined above is a special case of the Generalized Linear La-
tent and Mixed Models (GLLAMM: Rabe-Hesketh, Skrondal and Pickles,
2001) and can be fitted using the gllamm function in Stata. Alternatively,
the three-level model above can be rewritten as a two-level model by com-
bining the fetus-level random effect γij and the error εij1 for fetal weight,
and by combining γij and εij2 for malformation, thus creating a bivariate
random error vector. The relationship between two-level and three-level for-
mulations of models have been discussed by Grilli and Rampichini (2003)
for ordinal data. The two-level formulation then allows the technique pro-
posed by Gueorguieva (2004) to be used to fit this model in SAS using the
general likelihood option in SAS PROC NLMIXED. Both gllamm in Stata
and PROC NLMIXED in SAS obtain maximum-likelihood estimates using
adaptive Gaussian quadrature.

4 Results

We compared the results from fitting the proposed model (Model 3) to the
results from maximum likelihood estimation of the model with one shared
random effect (Model 2: ξi1, ξi2 and ξi3 perfectly correlated) and to the re-
sults of the model considered previously by Gueorguieva and Agresti (2001)
(Model 1: si dropped as a dependent variable). Dose of ethylene glycol was
significantly associated both with decrease in fetal weight and with increase
in the probability for malformation. The estimates of the parameters cor-
responding to the fetal weight variable were essentially the same regardless
of which model was used. More pronounced differences were observed for
the estimates corresponding to the malformation variable with estimates
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TABLE 2. Maximum likelihood estimates for the parameters in the developmental
toxicity example.

Model 1 Model 2 Model 3
Parameter MLE(SE) MLE(SE) MLE(SE)
Weight

Intercept (µ1) 0.944(0.015) 0.944(0.015) 0.945(0.015)
Dose (α1) -0.087(0.009) -0.087(0.009) -0.087(0.009)

Factor loading (λ1) 0.088(0.007) 0.088(0.007) 0.089(0.007)
Error SD (σε1) 0.095(0.002) 0.095(0.002) 0.094(0.002)
Malformation
Intercept (µ2) -2.331(0.201) -2.085(0.146) -2.307(0.198)
Dose (α2) 0.917(0.103) 0.804(0.076) 0.915(0.102)

Factor loading (λ2) -0.788(0.007) -0.561(0.075) -0.779(0.098)
Litter size
Dose (β) – -0.286(0.100) -0.384(0.136)

Factor loading (λ3) – -0.277(0.119) 1.00(0.00)

based on the model with the simpler random effects structure being signif-
icantly smaller. These results are consistent with results obtained using a
continuation ratio formulation for litter size. To investigate the extent of
the bias due to misspecifying the random effects structure and the bias due
to ignoring cluster size we performed a small simulation study.

5 Simulation study

We simulated 500 data sets according to the most general model (Model
3) and we set parameters to be equal to the MLEs from Model 3 in the
data example. We fitted all three models defined above to each data set.
Table 3 contains bias and average SE estimates for the regression parame-
ters according to the three models considered in the simulation study. Our
results confirm the observation that in this particular application the bias
in dose effect estimates for the binary response is significantly larger when
considering an overly simplified correlation structure than when omitting
litter size as a dependent variable.

6 Discussion

This paper demonstrates how to obtain maximum-likelihood estimates in
a repeated measures example with individual-level binary and continuous
variables and cluster size as another dependent variable. A correlated-
probit model formulation for cluster size is both computationally and inter-
pretationally convenient. It is easy to extend the suggested model to other
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TABLE 3. Bias and average standard error for the parameters in the simulation
study.

Model 1 Model 2 Model 3
Parameter Bias(MSE) Bias(MSE) Bias(MSE)
Continuous

µ1 -0.0004(0.016) -0.005(0.016) 0.0002(0.016)
α1 -0.0004(0.009) 0.003(0.009) -0.001(0.009)
λ1 -0.002(0.008) -0.003(0.007) -0.002(0.008)

Binary
µ2 -0.025(0.199) 0.307(0.112) -0.019(0.199)
α2 -0.007(0.099) -0.067(0.056) 0.005(0.099)
λ2 0.016(0.106) 0.345(0.055) 0.016(0.105)

mixtures of binary, ordinal and continuous dependent variables either at
individual or at cluster level. Our simulation study underline the impor-
tance of careful selection of the random effects structure for inferences on
the regression parameters.
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Abstract: Wadley’s problem relates to dose-response experiments in which the
number of individuals surviving a given dose is recorded but the number originally
present in the system is unknown. The situation can be modelled by assuming
that the number of individuals initially present is Poisson and that the number
of individuals surviving, given the number originally present, is binomial. It then
follows that the number of individuals surviving is Poisson with parameter pro-
portional to the probability of survival. In the present study an approach to the
modelling of overdispersion in Wadley’s problem based on the assumption that
the probability of survival is beta distributed is introduced and follows closely the
development of the beta-binomial paradigm. The resultant beta-Poisson distribu-
tion is reviewed and estimation of the model parameters within the dose-response
context is illustrated by means of data drawn from a study on anti-malarial drugs.

Keywords: Wadley’s problem; Overdispersion; Beta-Poisson distribution; Max-
imum Likelihood; Malaria data.

1 Introduction

Wadley (1949) first considered modelling dose-mortality data for which the
number of organisms initially exposed to a treatment is unknown and must
therefore be estimated from a control sample. This phenomenon frequently
emerges in dose-response experiments and is aptly termed Wadley’s prob-
lem. Wadley (1949) assumed that the number of organisms treated follows
a Poisson distribution, while Anscombe (1949) introduced the notion of us-
ing the negative binomial distribution rather than the Poisson as a means
of accommodating overdispersion. More recently Baker, Pierce and Pierce
(1980) and Smith and Morgan (1989) developed GLIM and GENSTAT
macros for use in analyzing overdispersed Wadley-type data and their work
was consolidated in the paper by Morgan and Smith (1992). In the present
study a new approach to accommodating overdispersion in Wadley’s prob-
lem based on the beta-Poisson distribution is introduced and is illustrated
by means of data taken from an antimalarial drug study.
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TABLE 1. Data for malaria parasites exposed to the antimalarial drug Halo-
fantrine.

Drug conc. PARASITAEMIA
(µ/l) Count 1 Count 2 Count 3 Mean
0 4957 5065 5010 5011
1 5193 4897 4816 4969
2 4590 4516 4223 4443
4 3615 3356 3102 3357
8 914 816 657 796
16 49 12 12 18
32 23 30 19 24
64 33 88 62 61

2 Malaria data

Blood samples infected with Plasmodium Falciparum were taken from a
Gambian malaria sufferer between July 1984 and February 1987. The sam-
ples were treated with varying concentrations of the antimalarial drug,
Halofantrine, and the number of parasites surviving was recorded. Three
batches were exposed to each dose of the drug and the results are summa-
rized in Table 1. The data were collected by researchers from the Medical
Research Council in Durban, South Africa, involved in the Malaria Na-
tional Program and are extracted from the Masters thesis of Gouws (1995,
p.98).

3 Preliminaries

Let ycj , j = 1, . . . , nc, denote an observation from a control group in which
the drug is not administered and suppose that the number of parasites
in such a group follows a Poisson distribution with parameter τ . Let yij
refer to the number of surviving parasites at a non-zero concentration di
of the drug, i = 1, . . . , D and j = 1, . . . , ni. For each dose di, the log-dose
is given by xi = log di and the associated probability of death of a parasite
is denoted by pi, i = 1, . . . , D. Wadley (1949) showed that if the number of
organisms treated at log-dose xi is assumed to follow a Poisson distribution
with parameter τ then the number of organisms surviving will also follow
a Poisson with the parameter τ(1 − pi), i = 1, . . . , D. Furthermore the
probability of death can be modelled using the logit function ln

(
pi

1−pi

)
=

α + βxi where α and β are unknown parameters, so that the expected
number of parasites surviving for a log-dose xi is

τ

1 + eα+βxi
, i = 1, . . . , D.

The overall formulation is therefore that of a generalized nonlinear model.
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This model was fitted to the malaria data in Table 1 using the method of
maximum likelihood and the resultant parameter estimates were obtained
as τ̂ = 5011.22, α̂ = −4.523 and β̂ = 6.748. The deviance as compared
with the maximal model, where Yij ∼ Poisson(λij), i = 1, . . . , D and j =
1, . . . , ni, was found to be 1544.784. This value is highly significant based on
a χ2 distribution with 21 degrees of freedom and indicates that the model
provides a poor fit to the data. An examination of the residuals further
showed that the apparent lack of fit is due to the presence of overdispersion
in the data. In order to accommodate such overdispersion, Anscombe (1949)
mirrored Wadley’s findings for the Poisson model with results based on the
negative binomial distribution. Anscombe’s model, with the probability of
death described by a logit function, was therefore fitted to the malaria data
using maximum likelihood. The resultant deviance was however found to be
very highly significant and the residual plots again indicated the presence
of overdispersion. It should be noted that replication and batch effects
in the blood samples could well contribute to the observed overdispersion
in the data. Gouws (1995) examined this issue particularly carefully and
concluded that, on the basis of the experimental procedures followed, the
prescence of such effects could not be justified.

4 Beta-Poisson model

Suppose that a random variable Y follows a Poisson distribution with pa-
rameter τ(1−p) and that the parameter p in turn follows a beta distribution
with parameters a and b where a > 0 and b > 0. Then Y is said to follow
a beta-Poisson distribution with probability density function given by

P (Y = y) =
τe−τ

y!
Γ(a+ b)Γ(b+ y)
Γ(a+ b+ y)Γ(b) 1F1(a, a+ b+ y; τ)

where 1F1( ) represents the confluent hypergeometric or Kummer function.
This distribution is a variant of the Poisson-beta distribution introduced
by Bhattacharya and Holla (1965) and described, with further details and
references, in Johnson, Kotz and Kemp (1992). The beta-Poisson distribu-
tion can be used within the context of Wadley’s problem by following the
classical approach to the beta-binomial model described in Morgan (1992,
Section 6.3). Specifically, at log-dose xi, with probability of death pi follow-
ing a beta distribution with parameters ai and bi, a logit function can be

used to model the expected value of pi as πi =
ai

ai + bi
=

eα+βxi

1 + eα+βxi
and an

additional shape parameter θ =
1

ai + bi
can be introduced for i = 1, . . . , D.

Then the log-likelihood for the model-data setting is given by
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l =
nc∑
j=1

ln
{
e−τ τycj

ycj !

}
+

D∑
i=1

ni∑
j=1

ln

{ ∞∑
s=0

e−τ τyij

yij !
Γ(ai + bi)Γ(bi + yij)Γ(ai + s)
Γ(ai + s+ bi + yij)Γ(ai)Γ(bi)

τs

s!

}

where ai =
πi
θ
and bi =

1− πi
θ

and the Kummer function is expressed as
an infinite sum. Maximum likelihood estimates of the parameters were ob-
tained for the malaria data by maximizing an approximation to the function
l obtained by appropriately truncating the infinite sum and were given by
τ̂ = 5035.73, θ̂ = 0.012, α̂ = −4.047 and β̂ = 6.779. The deviance as com-
pared with the maximal model described earlier was found to be 114.378
with a P-value very close to zero and is thus highly significant. The beta-
Poisson model does not therefore provide an entirely satisfactory fit to the
malaria data. However this observed deviance does indicate that the beta-
Poisson model is a vast improvement on the Poisson and negative binomial
models described in Section 3 in that it reduces the deviance of the former
model by 1430.406 at the expense of just 1 degree of freedom and of the
latter by 1373.742 with no change in the degrees of freedom.

5 Conclusions

A new approach to modelling overdispersion in Wadley’s problem which
is based on the beta-Poisson distribution is introduced. The method is
broadly appealing and builds on the framework of the well-known beta-
binomial model. There is much scope for further work. Thus it is of some
interest to describe fully the properties of the beta-Poisson distribution and
of the associated maximum likelihood estimates. In a broader context it is
possible to extend some of the ideas for accommodating overdispersion in
binomial models to Wadley’s problem setting, as for example the approach
based on random coefficients described in Aitkin (1996) and the models
discussed in Lindsey and Altham (1998).

Acknowledgments: The authors were generously supported by funding
from the University of KwaZulu-Natal and the National Research Founda-
tion, South Africa. The authors would like to thank the Malaria Unit of
the MRC for making the data available to them.

References

Aitkin M. (1996). A general maximum likelihood analysis of overdispersion
in generalized linear models. Statistics and Computing, 6, 251-262.



208 Overdispersion in Wadley’s Problem

Anscombe F.J. (1949). The statistical analysis of insect counts based on
the negative binomial distribution. Biometrics, 5, 165-173.

Baker R.J., Pierce C.B., and Pierce J.M. (1980) Wadley’s problem with con-
trols. GLIM Newsletter, 2, 29-30.

Bhattacharya S.K., and Holla M.S. (1965). On a discrete distribution with
special reference to the theory of accident proneness. Journal of the
American Statistical Association, 60, 1060-1066.

Gouws E. (1985). Drug Resistance in Malaria Research : the Statistical
Approach. M.Sc. thesis, University of Natal, South Africa.

Johnson N.L., Kotz S., and Kemp A.W. (1992). Univariate Discrete Dis-
tributions. 2nd Edition. New York: Wiley.

Lindsey J.K., and Altham P.M.E. (1998). Analysis of the human sex ratio
by using overdispersion models. Applied Statistics, 47, 149-157.

Morgan B.J.T., and Smith D.M. (1992). OnWadley’s problem with overdis-
persion. Applied Statistics, 41, 349-354.

Smith D.M., and Morgan B.J.T. (1990). Extended models for Wadley’s prob-
lem. GLIM Newsletter, 18, 21-35.

Wadley F.M. (1949). Dosage-mortality correlation with number treated es-
timated from a parallel sample. Annals of Applied Biology, 36, 196-
202.



Model Selection for P -spline smoothing using
Akaike Information Criteria

Carrie Wager1, Florin Vaida1 and Göran Kauermann2
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Abstract: Penalized regression splines can be conveniently fit using software
and theory borrowed from linear mixed effects models. This has led to a boom
in the practical application of complex models having multiple and/or hierar-
chical smooth terms. We consider selecting the composition of smooth terms in
additive models by using two alternative formulations of the Akaike Information
Criterion (AIC) that are based on the marginal versus conditional likelihood. The
marginal likelihood provides the conventional inference for linear mixed effects
models, whereas a conditional perspective is traditionally used for choosing the
optimal smoothing parameter. Through simulation we find that in moderately
large samples, both the conditional and marginal formulations of AIC perform
extremely well at detecting the function which generated the data. The marginal
AIC does better for simple functions and in small samples, whereas the condi-
tional AIC does better at detecting a true function which has a complex hierar-
chical formulation. We provide examples of two real applications which motivate
this collaborative work: the first compares a penalized spline to the standard
parametric nonlinear pharmacokinetics model to assess the adequacy of its fit,
and the second involves selecting the level at which spatial intensity should be
modeled in a hierarchical ANOVA model of neuronal activation patterns in phar-
macological brain imaging.

Keywords: Penalized Spline; Model Selection; Conditional versus Marginal In-
ference; Variance Component Selection.

1 Introduction

Assume that we have data arising from a simple smoothing model:

yi = f(xi) + εi, i = 1, . . . , n, (1)

where yi is the response for the ith subject, xi is a measured scalar co-
variate, f(xi) is a smooth function of xi, and ε1, . . . , εn are error terms
with mean zero and variance σ2. Using the mixed-model formulation of
penalized spline smoothing, f can be modeled using a linear combination



210 Model Selection for P -splines using AIC

of covariates and parameters:

f(x) = β0 + β1x+ β2x
2 +

K∑
k=1

zk(x)uk, (2)

where (β0, β1, β2)T is a vector of fixed effects, z1(x), . . . , zK(x) are smooth
basis terms that model the curvature in f(x), and u1, . . . , uK ∼ N (0, λσ2)
are independent random effects where the parameter λ = var(uk)/σ2 con-
trols the amount of smoothing.
Because they have a dimension K of the smoothing basis which is typically
much smaller than the number of obervations n, penalized regression splines
can be viewed as ‘low rank’ approximations to smoothing splines (Wahba
1990). Such models were made popular by Eilers & Marx (1996) who coined
the term ‘P -spline’ when they introduced penalties to the popular B-spline
techniques used in regression. From a different angle, Hastie (1996) de-
veloped ‘pseudosplines’ which reduced the rank of traditional smoothing
splines by truncating an eigendecomposition of the smoothing basis. Our
concept of P -splines encompasses all of these variations: regardless of the
form of the smoothing basis {zk(x)}, we fit model (2) for (1) using the
machinery of a linear mixed effects model (Ruppert et. al. 2003).
Recent applied work draws on the convenience of the linear mixed effects
model framework to extend P -splines to additive models with interaction
between design factors and the smooth terms (Brumback & Rice 1998,
Coull et. al, 2001, Kammann & Wand 2003, Wager et. al. 2004). In these
cases, model (2) for (1) may have multiple and/or hierarchically-nested
smooth terms, such as in the model

yi� = f1(xi�) + f1�(xi�) + f2(wi�) + . . .+ εi� (3)

where x and w are distinct covariates and we denote � = 1, . . . , L as
group levels of a design factor where f� is a smooth level-specific devia-
tion from the mean curve f . In (3), the main functions f1 and f2 have
distinct smoothing parameters λ1 and λ2, whereas the set of group-specific
functions f11, . . . , f1L typically share a common smoothing parameter λ11

over all groups.

2 Model selection

Given several competing models comprised of different subsets of smooth
terms, our goal is to choose a model which provides the best predictive
accuracy for future data arising from the true distribution. Perhaps f1(x)
is highly correlated with f2(w) in (3), and we need to choose one function
that provides a better model. Additionally, we may consider models which
smooth at different levels of a design hierarchy, where model (3) is com-
pared with both a common-curve model (1), and a model that replaces f1�
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in (3) with a constant factor α�. These types of model comparisons are a
bit more complex than simple covariate selection because the competing
models differ in both the composition of the regression parameters (β, α, u)
which affect the conditional mean of the response, as well as the compo-
sition of the smoothing parameters (λ1, λ11, λ2) which affect its marginal
variance.

3 Akaike information criteria

The goal of Akaike’s (1973) information criterion is to minimize the the
expected ‘distance’ between the true density function and the best model
for a given set of data. This happens to be equivalent to maximizing the
predictive likelihood T = EyEy�(�(θ̂(y)|y	)) where y	 is a new observation
from the true distribution of y. While this does criterion does not funda-
mentally require that the true distribution of y necessarily be in the class
of models for which the log-likelihood �(θ|y) is being maximized, typically
it is assumed that the truth is in the class of models being fit in order to
facilitate estimation. A general formula this criterion is:

AIC = −2�(θ̂|y) + 2 · bias (4)

where the bias term results from using the expected maximized likelihood
Ey(�(θ̂|y)) to estimate the maximized predictive likelihood T . For a P -
spline smoothing model which is fit using linear mixed model machinery,
the criterion (5) can be formulated using either the conditional likelihood,
where the parameters u are considered to be known:

c�(β, σ2|y, u)) = −n
2

log(2πσ2) − ||y −Xβ + Zu||2
2σ2

or the marginal likelihood which averages over the distribution of the u’s:

m�(β, σ2|y) = logEu(exp(c�(β, σ2|y, u)).

This leads to the two alternative formulations of AIC:

mAIC = −2 log(m�(β̂, σ̂2|y) + 2p

cAIC = −2 log(c�(β̂, σ̂2|y, û) + 2ρ(θ)

where, heuristically, the bias term p in the mAIC turns out to be the
number of unknown parameters in the marginal likelihood, and the bias
term ρ(θ) in the cAIC is the ‘effective’ number of unknown parameters in
the conditional likelihood, and can be easily computed by taking the trace
of the smoothing matrix.
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4 Simulations

To compare the overall properties of mAIC versus cAIC for model selection,
we consider two modelling scenarios: The first scenario compares models
that have correlated smoothing terms, which we generate based on true
data yi ∼ N (f1(xi), σ2) where xi is highly correlated with another covari-
ate, wi. We then fit the competing models

MA : yi = f1(xi) + εi

MB : yi = f2(wi) + εi

and repeat this simulation for several levels of correlation between x and
w, a range of small to large sample sizes, a range of residual errors, and
several true nonlinear mean curves that have varying complexity.
The second scenario considers hierarchically-nested smooth terms, where
we generate three alternative true models for the data:

MC : yi� = f(xi�) + εi� (common curve)
MD : yi� = α� + f(xi�) + εi� (subject-specific intercepts)
ME : yi� = f(xi�) + f�(xi�) + εi� (subject-specific curves).

We repeat this simulation for permutations of wide and narrow distances
between the group-specific curves, a range of residual errors, and true non-
linear mean curves having varying complexity. In each iteration, we fit each
of the three models corresponding to MA, MB, and MC to each of these
three truths.
Overall, we find that in moderately large samples, both the conditional
and marginal formulations of AIC perform equally well at detecting the
function which generated the data. The smoothing parameter chosen by
mAIC (equivalent to marginal maximum likelihood) tends to result in a
smoother fit than the smoothing parameter chosen by cAIC, lending further
support to theoretical results previously reported in Kauermann (2004).
The mAIC performs better than cAIC for simple functions and in small
samples, whereas the cAIC does better at detecting a true function which
has a complex hierarchical form.

5 Examples

We provide examples based on two real-data applications which motivate
this collaborative work. The first example, motivated by Vaida & Blanchard
(2004) compares a penalized spline to the standard nonlinear parametric
pharmacokinetics model to assess the adequacy of its fit. The second exam-
ple, motivated by Wager et. al. (2004) involves selecting the level at which
spatial intensity should be modeled in a hierarchical ANOVA of replicated
patterns of neuronal activation in brain imaging.
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1 Introduction

In the survival analysis, the accelerated failure time model (AFT) is a
worthwhile alternative to the Cox’s relative risks (RR) model. It was further
suggested by Keiding et al. (1997) that including a random effect in the
AFT model for clustered data would be an interesting alternative to the
frailty RR model.
The AFT model with a random effect specifies that the effect of a vector of
fixed covariates xil together with a random effect bi act additively on the
logarithm of the time to event Til of the lth observational unit in the ith
cluster as

log(Til) = Yil = bi + βTxil + εil, i = 1, . . . , N, l = 1, . . . , ni, (1)

where εil is the error term with a density f(e) and β is a vector of re-
gression parameters. Unlike the area of uncensored data where the normal
distribution is the most used error distribution, non- or semi-parametric
procedures are generally preferred in the survival analysis.
Richardson and Green (1997) suggested to represent a non-standard den-
sity as a mixture of normals with the number of mixture components as
well as all mixture parameters (weights, means and variances) being treated
as unknown quantities in a Bayesian manner. We adapted their method to
represent a density of the error term in the regression model with cen-
sored observations (AFT model). Thus, our model is, in fact, completely
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parametric. However, due to the well known fact that under mild condi-
tions, a continuous density can be approximated as precisely as desired by
a normal mixture, in practice, we do not make any distributional assump-
tions regarding the error term. The advantage of our approach (at least in
some situations) compared to completely non-parametric techniques is the
fact that it produces an estimate of the error density which can be easily
understood and compared (via plots) to standard parametric densities.

2 Bayesian model and Inference

To put several types of censoring (right, left and interval) into one frame-
work we will assume that the observed log-event time of the (i, l)th unit is
given by a pair (yLil , y

U
il ), −∞ ≤ yLil ≤ yUil ≤ ∞. For an uncensored obser-

vation, yLil = yUil , for a right censored observation, yUil = ∞ and for a left
censored observation, yLil = −∞. Further, let yil denote (in the case of cen-
soring unknown) value of the log-event time of the (i, l)th unit in the data
set.
The density f(e) of the error term εil in the model (1) is specified as
f(e) =

∑k
j=1 wjϕ(e|µj , σ2

j ), with ϕ(·|µj , σ2
j ) being a density of a normal dis-

tribution with mean µj and variance σ2
j . Note that the number of mixture

components, k, is unknown as well as mixture weights w = (w1, . . . , wk)T ,
means µ = (µ1, . . . , µk)T and variances σ2 = (σ2

1 , . . . , σ
2
k)
T . To describe

the model, we will, latently, assume that each conditional (given β, xil and
bi) residual eil = yil − bi − βTxil is distributed according to one mixture
component. Let ril be an index of this component. Since the density f(e) is
not necessarily of zero mean we do not allow an inclusion of the intercept
term in the covariate vector xil.
The Bayesian model we use has a clear hierarchical structure and it is
best described by a direct acyclic graph (DAG) where the squared boxes
represent observed quantities or fixed hyperparameters and circles the un-
knowns. The DAG for our model is shown on Figure 1. Finally, we point out
that although the censoring appears in the model there is no need to model
it explicitly provided the censoring is independent. In that case, only its
observed realization is needed to get a posterior distribution of quantities
of interest.
We use the following prior assumptions determining the model given by
DAG on Figure 1. Poisson distribution with mean λ truncated at kmax is
assumed for number of mixture components k. Symmetric k-dimensional
Dirichlet distribution with all ‘prior sample sizes’ equal to a hyperparameter
δ is adopted for mixture weights w. It is further assumed that mixture
means µj and variances σ2

j are all drawn independently, with normal N(ξ, κ)
priors for µj ’s and inverse-gamma IG(ζ, η) priors for σ2

j ’s. Since the whole
model is invariant to permutations of the labels j = 1, . . . , k, we restrict
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FIGURE 1. DAG for the Bayesian AFT model.

the joint prior distribution of a vector µ to the set {µ : µ1 < · · · < µk} for
identifiability.
In the mixture context, it is not possible to be fully non-informative and to
obtain proper posterior distributions. However, weak priors for the mixture
parameters in our regression setting can be obtained in the following way.
First, we fit an AFT model with a normal error distribution, e.g., using
standard maximum-likelihood techniques. The hyperparameter ξ is then set
to an estimated intercept value. The hyperparameter κ is set to a multiple
of R2 where R denotes an estimated scale from the maximum-likelihood
fit. Since the knowledge of R does not imply much about the size of each
single σ2

j , an additional level of hierarchy by allowing η to follow a gamma
distribution G(g, h) with ζ > 1 > g and h being a small multiple of 1/R2

was suggested by Richardson and Green (1997) to express the belief that
the σ2

j ’s are similar, without being informative about their absolute size.
From the definition of latent allocation variables ril, their prior distribution
is given by P (ril = j | k,w) = wj .
The prior assumptions for the regression part of the model used in this
paper are rather standard in the area of a hierarchical modelling. All com-
ponents of the vector β = (β1, . . . , βp)T are a priori independent, each with
normal distribution N(νm, ψm). The matrix Ψβ from the DAG is thus a
diagonal matrix with ψ1, . . . , ψm on the diagonal. The random effects bi
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are assumed a priori to be i.i.d. across clusters, with normal distribution
N(0, σ2

b ). The variance σ2
b of random effects has a priori an inverse-gamma

distribution IG(τ, ω) where τ and ω are fixed hyperparameters, typically
chosen such that the ratio τ/ω2 is high.
The list of conditional distributions from the DAG continues by an explicit
specification of a distribution of (unobserved) log-event times yil given µ,
σ2, ril, β, xil and bi. This is a product of independent normal distribu-
tions with mean µril

+ βTxil + bi and variance σ2
ril

for (i, l)th observa-
tion. Finally, the conditional joint density of limits of observed intervals
(yLil , y

U
il ) given censoring and latent true data is given by the expression

p(yLil , y
U
il | yil, censoring) ∝ I[yLil < yil ≤ yUil ] · p(yLil , yUil | censoring). Note

that p(yLil , y
U
il | censoring) does not have to be specified explicitely to draw

an inference based on posterior distribution, i.e. on the distribution

p
(
{yil}, w, µ, σ2, {ril}, k, η, β, {bi}, σ2

b

∣∣∣
{(yLil , yUil )}, censoring, {xil}, ξ, κ, ζ, g, h, λ, kmax, δ, ν,Σβ , τ, ω

)
.

The inference in a Bayesian modelling is based on the quantities derived
from above posterior distribution (posterior means, quantiles etc.). To get
the posterior quantities of an interest, a Markov chain Monte Carlo tech-
nique is exploited here. The details of the sampling algorithm related to
the update of the mixture parameters can be found in Richardson and
Green (1997). The remaining quantities related to the regression model are
sampled using a Gibbs move.
The sampling algorithm as well as some tools for computing the posterior
quantities were implemented as a set of R functions with time consum-
ing parts being performed by a C++ compiled code. These routines are
available upon request from the first author.

3 Illustration: CGD Data

We illustrate our approach on the analysis of the data set from a placebo-
controlled randomized trial of gamma inferon in patients with chronic gran-
ulotomous disease (CGD). The data set can be found in Appendix D.2 of
Fleming and Harrington (1991). There were 128 patients randomized to
either gamma inferon (n = 63) or placebo (n = 65). The data for each
patient gives the time from study entry to initial and any recurrent serious
infections. There is a minimum of one record per patient, with a total of
203 records. The data set has been analysed by various authors, includ-
ing Vaida and Xu (2000) who used the relative risks model with a normal
random effect for a patient on log–hazard scale.
We fitted the AFT model (1) with time from entry or previous infection
to the next infection as a response, random effect term for a patient and
covariates significant from an oridinary Cox regression as reported by Vaida
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TABLE 1. Estimates from the CGD data.

Parameter Poster. mean 95% cred. int.

treatment (yes) 1.275 (0.486, 2.167)
inherit (autosomal recessive) −0.912 (−1.806,−0.047)
age (years) 0.046 (0.006, 0.090)
corticosteroids (yes) −2.617 (−5.260,−0.246)
prophylactic antibiotics (yes) 1.072 (0.071, 2.174)
gender (female) 1.406 (0.120, 2.823)
hosp1 (US – other) 0.367 (−0.532, 1.319)
hosp2 (Europe – Amsterdam) 1.547 (0.135, 3.114)
hosp3 (Europe – other) 1.145 (−0.077, 2.486)

Mean of the error density 3.963 (2.382, 5.624)
Scale of the error density 2.007 (1.291, 3.745)

σb 0.626 (0.043, 1.355)

and Xu (2000). Vague priors were used for all parameters. Posterior means
and 95% posterior credibility intervals for regression parameters, mean and
scale of the error distribution and a standard deviation of the random effect
are found in Table 1.
The results we obtained consent qualitatively with the results of the Cox
model with the random effects of Vaida and Xu (2000). Further, as well as
these authors we observe that the random effects of patients with different
numbers of total infections are quite different suggesting that patients with
more infections are different from patients with less infections and that this
difference cannot be explained by covariates included in the model.
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Abstract: We propose a general method for handling misclassification in the
context of regression models. The simex procedure form the theory of models
with continuous measurement error is applied to misclassification. The basic idea
is to fit a model for the relationship between the amount of misclassification and
the estimators of the parameters of interest by simulation. In the second step
this model is used for extrapolating back to the case of no misclassification. We
describe the procedure and given an example from a study on dental health in
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1 Introduction

In general regression problems covariates and responses are often measured
with random error. In the case of discrete variables the measurement error
is referred as misclassification. While measurement error models have re-
ceived much attention in the literature there are only few recent papers on
misclassification.
We develop a new general approach for handling misclassification in discrete
covariates or responses in regression models. The simulation and extrapo-
lation (SIMEX) method (Cook and Stefansiki (1995)), which was originally
designed for handling additive covariate measurement error, is transfered
to the case of misclassification. The statistical model for characterizing mis-
classification is given by the transition matrix Π from true to the observed
variable. We exploit the relationship between the size of misclassification
and bias in estimating the parameters of interest. Assuming that Π is known
or can be estimated from validation data we simulate data with higher mis-
classification and extrapolate back to the case of no misclassification.

2 The procedure

We refer to a general regression problem with response Y and with a dis-
crete regressor X and further correctly specified regressors Z, where β is
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the parameter of interest. We denote the possibly misspecified variable by
X∗ for the corresponding correctly measured (gold standard) variable X.
Usually misclassification error is characterized by the misclassification ma-
trix Π, which is defined by its components

πij = P (X∗ = i|X = j).

Π is k × k matrix , where k is number of possible outcomes for X. If
misclassification error is ignored, the corresponding estimator of β is called
the naive estimator β̂na. The probability limit of the naive estimator is
denoted by β∗. The existence of β∗ and its determination can be done by
the theory of misspecified models, see e. g. White (1982) . It depends on
the model and on the misclassification matrix, i.e. β∗ = β∗(Π). We assume
β∗(Idk×k) = β, i. e. that the estimator is consistent if no misclassification
is present. We define the function

λ −→ β∗(Πλ) (1)
Πλ := EΛλE−1

where Λ is the diagonal matrix of eigenvalues and E is the matrix of the
relating eigenvectors. The reason for analyzing (1) is that it is possible to
simulate data with higher misclassification: If X∗ has misclassification Π in
relation to X and the Vector X∗∗ is related to X∗ by the misclassification
matrix Πλ then X∗∗ is related to X by the misclassification matrix Πλ+1.
This is true if the two misclassification mechanisms are independent. One
example is the logistic regression model with a binary misclassified covari-
ate. It turns out, that function (1) can be well approximated by a log linear
or a quadratic parametric function, i.e.

λ −→ β∗(Πλ) ≈ G(λ,Γ) (2)

The misclassification SIMEX procedure is as follows. Given data (Yi,X∗
i , Zi)

n
i=1

we denote the naive estimator by β̂na[(Yi,X∗
i , Zi)

n
i=1].

1. Simulation step
For a fixed grid of positive values λ1 . . . λm we simulate B new pseudo data
sets by

X∗
b,i(λk) :=MC[Πλk ](X

∗
i ), i = 1, . . . , n; b = 1, . . . B; k = 1, . . . ,m. (3)

where MC[M ](X∗i) denotes the simulation of a variable out of X∗
i with

misclassification matrixM . Then we define λ0 = 0, β̂(λ0) = β̂na [(Yi,Xi, Zi)ni=1]
and

β̂(λk) := B−1
B∑
b=1

β̂na
[
(Yi,X∗

b,i(λk), Zi)
n
i=1

]
, k = 1, . . .m. (4)

The mean in (4) can be replaced by the median, if there are problems with
stability.
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2. Extrapolation step
Note that β(λk) is an average over naive estimators corresponding to data
with misclassification matrix Π1+λk . So a parametric model G(λ,Γ) is fitted
by least squares to [λk + 1, β̂(λk)]mk=0, yielding an estimator Γ̂. Then the
MC-SIMEX estimator is then given by

β̂SIMEX := G(0, Γ̂). (5)

If β is a parameter vector, the SIMEX estimator can be applied to every
component of β separately like the original SIMEX. The application of the
SIMEX for a misclassified variable Y is defined in the same way. In the
simulation we have to simulate pseudo data Y ∗

i,b(λk).
The estimator β̂SIMEX is consistent if the extrapolation function is cor-
rectly specified, i. e. β∗(Πλ) = G(λ,Γ). for some parameter vector Γ. Usu-
ally this is not the case, but if G(λ,Γ). is a good approximation of β∗(Πλ)
then approximate consistence will hold. To find suitable candidate for the
function G(λ,Γ) we present the relationship between β∗ and the misclassi-
fication parameter λ for some special cases. An example is given in Figure
1 for the case of logistic regression with one misclassified covariate.
The procedure can be generalized for misclassified responses and even for
more than one misclassified regressor.

3 Application to the Caries study

The Signal-Tandmobiel study is a 6 year longitudinal oral health study in-
volving 4468 children conducted in Flanders (Belgium). Data were collected
on oral hygiene, gingival condition, dental trauma, prevalence and extent of
enamel developmental defects, fluorosis, tooth decay, presence of restora-
tions, missing teeth, stage of tooth eruption and orthodontic treatment
need, all using established criteria. The children were examined annually
for a period of six years (1996-2001). Our response of interest is the dmf,
a binary variable equal to 1 if the tooth is decayed (d), missing due to
caries (m) and filled (f) teeth, and 0 otherwise. The data were done by
different examiners. In a calibration exercise it turned out that there was
considerable misclassification in the data. The effect and correction for mis-
classification has been done for this study at one time point, see Mwalili et
al.(2004).
We present a longitudinal analysis using GEE for four teeth, that is the first
molars. Our main regressor variables are x- & y-coordinates of the schools
of the children accounting for a possible spatial effect, age and gender. We
also have tooth dummies and their possible interaction terms in our model.
This model was fitted using GEE (PROC GENMOD of SAS) with MC-
SIMEX correction for misclassification using log linear and quadratic ex-
trapolation. The correction was done in two ways: (1) using a pooled mis-
classification matrix for all examiners and (2) using a misclassification ma-
trix for each examiners.
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Logistic regression with misclassified X
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FIGURE 1. Limit of the naive estimator in the logistic Model Y = β0 + β1X
with binary misclassified X. Here, β1 = 1 and β0 = −2.π00 = π11 = 0.8 (solid
line) π00 = 0.9, π11 = 0.7 (dashed line), π00 = 0.7, π11 = 0.9 (dotted line).

The corrected parameter estimates were all larger than the naive estimates.
Thereby adjusting for the attenuation effect due to misclassification of the
dmf -score. The adjustment using different misclassification matrix for each
examiner gives relatively less point estimates than the adjustment with a
single fixed misclassification matrix for all examiners.
We discuss the variance estimation and taking into account that the mis-
classification matrix is only estimated with rather low precision. Further-
more we present a simulation study which gives good results for the MC-
SIMEX procedure in particular for the log linear extrapolation function.
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Abstract: Record linkage refers to the use of an algorithmic technique to match
records from different data sets that correspond to the same statistical unit, but
lack unique personal identification code. In general, the mergin of two (or more)
data-bases can be important for two reasons. Firstly, per sé, i.e. to obtain a larger
and richer data-file. Secondly to perform subsequent statistical analyses, based
on information which is not simultaneously present in both files. In this paper
we will propose a Bayesian approach particularly suitable in the latter case
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1 Introduction

The need of record linkage (RL) techniques is steadily increasing in var-
ious chapters of statistics. For example, in official statistics record link-
age is a preliminary step when the size of a population is estimated via
capture-recapture techniques, especially when the target population is elu-
sive (non regular immigrants in European Community are an example) and
differences in identification variables in the two occasions are frequent. The
creation of integrated data bases obtained by the merging of existing one
is also important in epidemiology where RL is commonly used in cohort
studies to ascertain the study outcome and, as such, its accuracy in clas-
sifying the outcome can be described using the standard epidemiological
terms of sensitivity and positive predictive value. In general, the mergin
of two (or more) data-bases can be important both per sé, i.e. to obtain
a larger and richer data-file and to perform subsequent statistical analy-
ses, based on information which is not simultaneously present in both files.
To give an example of the latter, suppose we have two computer files A
and B whose records relate respectively to units of partially overlapping
populations PA and PB. The two files consist of several fields, or vari-
ables, either quantitative or qualitative. The objective of record linkage is
to find all the pairs of units (a,b), a ∈ A and b ∈ B, such that a and b
refer actually to the same unit. Suppose that the observed variables in A
are (Z,W1,W2, · · · ,Wk) while in B we observe (W1,W2, · · · ,Wk,X). Then
we might be interested in studying a linear regression analysis between Z
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and X, restricted to those couple of records which we declare as matches.
The intrinsic difficulties present in such a simple problem are discussed in
Scheuren and Winkler (1993) and Lahiri and Larsen (2004).
In a more general framework, suppose that file A contains the variables
(Z,WA ) = (Z1, Z2, · · ·Zh,W1,W2, · · · ,Wk) observed on νA units, while B
contains the variables (WB ,X) = (W1,W2, · · · ,Wk,X1,X2,Xp); our goal
is to use the key variables (W1,W2, · · · ,Wk) to detect the true links be-
tween XA and XB and to perform a statistical analysis involving vectors
Z and X restricted to those records which have been defined matches. To
perform this task, we present a fully Bayesian approach which is particu-
larly suitable to accomplish the above desideratum. Under our approach
all the uncertainty about the matching process is retained in the subsquent
inferential steps. Our approach can be considered an improvement and a
generalization of the Bayesian model described in Fortini et al.. We will
present the general theory underlying the model and illustrate its perfor-
mance with a linear regression model.

2 Bayesian Record Linkage

2.1 The usual statistical model for record linkage

We first examine the classical approach to the record linkage problem,
see Jaro (1989), Larsen and Rubin (2001). Consider two data files A and
B, with respectively νA and νB units. Let us call A and B the two sets
(lists) of observed units, a = 1, ..., νA, b = 1, ..., νB . We assume that at
least some units are present in both lists. The set of all ordered pairs
A × B = {(a, b) : a ∈ A, b ∈ B} can be splitted into M = {(a, b) ∈
A× B : a = b} the set of matches, and U = {(a, b) ∈ A× B : a �= b} the
set of non-matches. In order to decide whether a pair (a, b) is in M or U ,
we may compare variables observed in both the files (e.g. surname, name,
sex, address, etc. for individuals). Let us assume we have k key variables,
k ≥ 1, whose observations in the two data lists are denoted by: wa =
(wa,1, wa,2, ..., wa,k), a ∈ A, and wb = (wb,1, wb,2, ..., wb,k), b ∈
B. In general, the comparison yab of the key variables between two units
a ∈ A and b ∈ B will be a function of wa and wb. One commonly assumed
comparison function is a vector of k elements, yab = (y1

ab, ..., y
k
ab) with

yhab = 1 if wa,h = wb,h and 0 otherwise for h = 1, . . . , k In this case
the comparison vector yab can assume 2k different values which we will
indicate with yi where i = 1, . . . , 2k. In order to decide whether a pair
(a, b) with comparison vector yab should be linked or not, Fellegi and Sunter
suggest to consider the sampling distribution of the comparison vectors in
M, say m(y), and the corresponding distribution in U , u(y). The decision
rule for the pair (a, b) is based on the likelihood ratio t(yab) =

m(yab)
u(yab)

.
Fellegi and Sunter (1969) discuss several frequentist optimality properties
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of such decision rule. Given that neither m(y) nor u(y) are known, most
of the literature on record linkage concentrates on how to estimate them.
The usual assumptions are that both the status of a pair (let’s say cab,
where cab = 1 when a pair (a, b) is a true match and 0 otherwise) and the
comparison vector Y are random variables. Also, a general latent structure
is assumed via the configuration matrix c = {cab, a ∈ A, b ∈ B}, so that the
values cab, (a, b) ∈ A×B, are assumed to be i.i.d. Bernoulli r.v. such that
for all a, b, P (cab = 1) = p ; the comparison vectors Yab, (a, b) ∈ A × B,
are assumed to be i.i.d. replications of the r.v. Y whose distribution has
the the mixture structure P (Y = y) = pm(y) + (1 − p)u(y); finally the
random vectors (cab, Yab), (a, b) ∈ A×B, are i.i.d. with distribution given
by P (c = c, Y = y) =

(
pm(y)

)c ((1− p)u(y)
)1−c

, with c = 0, 1.

2.2 The Bayesian model

The Bayesian model comprises the prior distribution on the unknown pa-
rameters and the conditional distribution of the observed data given the
unknown parameters. The observed data are given by the vector y =
(y11, . . . , yνa,νb

) while the unknown parameters are the matrix c, the vec-
tor m = (m1 . . . ,m2k) where mi = P (Yab = yi|cab = 1) and the vector
u = (u1 . . . , u2k) where ui = P (Yab = yi|cab = 0). The conditional distri-
bution of the observed vector y given c,m, u is

f(y|c,m, u) =
νA∏
a=1

νB∏
b=1


 2k∏
i=1

m
d(yab,yi)
i



cab

 2k∏
i=1

u
d(yab,yi)
i




1−cab

where d(yab, yi) = 1 if yab = yi and 0 otherwise. In what follows, we will
assume that m and u are a priori independent on c. We take a Dirichlet
distribution as a prior distribution both for m and for u. In particular
u ∼ D(α1, . . . , α2k) and u ∼ D(β1, . . . , β2k) where logαi = (

∑k
i=1 y

k
i −

φ) log θ and log βi = (φ−
∑k
i=1 y

k
i ) log θ. Fortini et al. show how to calibrate

the hyperparameters θ and φ. To complete the model we need to give
a prior distribution to the matrix c. Let c be a matrix such that where
cab ∈ {0, 1}, ∑νA

a=1 cab ≤ 1
∑νB

b=1 cab ≤ 1. Let t =
∑
ab cab be number of

matches, let Tm = min {νA, νB} be the maximum number of matches and
let Tq = max {νA, νB}. The prior distribution on c is built in two stages.
In the first stage we assume that t, the number of matches, has binomial
distribution with paramters ξ and Tm In the second stage we assume a
uniform distribution on the space of all possible matrices with t matches.
Notice that the hyperparameter ξ represents the probability that a generic
unit in the smaller file belongs to the bigger file. We can consider ξ either
known or unknown. In the latter case a Beta prior can be used. Moreover
we observe that E(cab) = p where p = ξ/Tq. Then p represents the proba-
bility that a generic couple (a, b) is a match. The Bayesian model proposed
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in this paper is too complex to be amenable to analytical calculations.
Hence, we shall use MCMC methods, and in particular a Gibbs sample
algorithm. In fact we are able to produce random variates from each of the
full conditionals of the model.

3 A general approach for dependent data

In this section we discuss the problem of the statistical modelling for multi-
variate observations obtained by RL techniques. Considering the posterior
distribution for the matrix c produced by the Bayesian procedure described
above we obtain a point estimate for c that can be used for the subse-
quent inference. However, in this case we do not take account of record
linkage uncertainty and we risk to overestimate the precision of the es-
timates. To overcome this problem we propose the following model. Let
D = (y, z, x) = (y11 . . . , yνAνB

, z1, . . . , zνA
, x1, . . . , xνB

) be the available
data where yab is the comparison vector for the units a and b, za is the
value of the variable Z observed on unit a of the file A and xb is the value
of the variable X observed on unit b of the file B. We indicate with

p(y, z, x|c,m, u, θ) = p(y|c,m, u, θ)p(x, z|c, y,m, u, θ) (1)

the general statistical model for suck kind of data. The quantities c,m, u
are the record linkage parameters while θ represents the parameter vector
of the joint distribution (X,Z). It is reasonable to assume that given the
matrix c, the comparisons y do not depend on θ. Moreover we can assume
that, given the matrix c, the law of (X,Z) depends neither on the observed
comparison vectors y nor on the parameters of the comparison vectors m
and u. In this way we write the model (1) as

p(y|c,m, u)p(x, z|c, θ). (2)

where the first term is the usual likelihood for the RL model while the sec-
ond term depends on the dependence structure between x and z. Conduct-
ing inference for θ by the model (2) we take account of the RL uncertainty
and at the same time we improve the RL procedure by the information
provided by the statistical relationship between the variables z and x.

3.1 Regression analysis

We now face the problem of the regression analysis with linked data. Sup-
pose we have two variables Z,X where the marginal density of Z is fZ(z)
and Z given X = x is normal distributed with density φ(z;xβ, σz|x). For
the moment we assume that β, fZ(z) and σz|x are known. On file A we
observe the variable Z while in file B we observe the variable X. The like-
lihood ratio

R =
P (za, xb|(a, b) ∈ M)
P (za, xb|(a, b) ∈ U) =

P (za|xb, (a, b) ∈ M)
P (za|xb, (a, b) ∈ U) =

φ(za;xbβ, σz|x)
fZ(za)
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will provide useful information for the matching process. In fact given a
unit a ∈ A we expect higher values of R when the record b produces a
value of xbβ simalar to za (which is the case when the pair (a, b) is actually
a match) and small values for R otherwise. Let z be the vector (z1, . . . , zνA

)
and let x be the vector (x1, . . . , xνA

). In such a situation we will assume

p(z|c, x) =
νA∏
a=1

νB∏
b=1

φ(za;β xb, σz|x)cab

νA∏
a=1

fZ(za)
1−
∑νB

l=1
cal .

Moreover assuming, as in the general framework, that the comparison vec-
tors y and z are independent given the matrix c and that y is independent
on x given c we have p(y, z|c, x,m, u) = p(y|c,m, u)p(z|c, x). We may show
by simulation that, the use of the information given by the linear rela-
tionship between Z and X with the model p(y, z|c, x,m, u), improves the
matching process. Finally we observe that when β is unknown we can easily
produce posterior estimates. It is enough to modify the Gibbs algorithm
adding a simulation step from the conditional posterior distribution for β.
In fact given the matrix c the conditional posterior distribution for β is
obtained considering the pairs (a, b) such that cab = 1 as true matches.
In this way, estimating β with the marginal posterior mean, we will auto-
matically take account of the matching process uncertainty and this can
be worthwile when the regression step is the primary goal of the analysis.
In this context we compare our approach with the frequentist proposals of
Lahiri and Larsen (2004).
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Abstract

Conventionally, in longitudinal studies, the mean structure has been thought
to be more important than the covariance structure between the repeated
measures on the same individual. Often, it has been argued that, with re-
spect to the mean, the covariance was merely a ‘nuisance parameter’ and,
consequently, was not of ‘scientific interest’. Today, however, one can see
that from a formal statistical standpoint, the inferential problem is entirely
symmetric in both parameters. In recent years there has been a steady
stream of new results and we pause to review some key advances in the ex-
panding field of covariance modelling, In particular, developments since the
seminal work by Pourahmadi (1999, 2000) are traced. While the main focus
is on longitudinal data with continuous responses, emerging approaches to
joint mean-covariance modelling in the GEE, and GLMM arenas are also
considered briefly.

Keywords Cholesky Decomposition, Covariance Modelling, Joint Model
Space, Longitudinal Studies, GEE, GLMMs.

1 Introduction

The conventional approach to modelling longitudinal data places consid-
erable emphasis on estimation of the mean structure and less on the co-
variance structure, between repeated measurements on the same subject.
Often, the covariance structure is thought to be a of secondary scientific
interest and is selected from a limited menu of structures, e.g., compound-
symmetry, AR(1), AR(2) or a saturated model.
However, from a formal statistical standpoint the inferential problem is
entirely symmetric in both parameters µ and Σ. We note that it was (Rao,
1965), who first showed that the mean is covariance invariant, only when the
covariance matrix belongs to a special class of covariance structures - Rao’s
Simple Structure. When Σ is outwith this class one may anticipate that a
suboptimal choice of Σ may influence µ and vice versa. If so, one approach
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is to search the joint model space, {M x C}, in order to determine the
optimal estimators (µ̂, Σ̂). The concept of the joint model space is central
to what follows.
Determining the structure of Σ, from the data, rather than from a pre-
specified menu, may at first seem daunting, whence the idea of searching
the entire model space, {C}, for Σ, may seem prohibitive. The final demand,
that one conduct a simultaneous search of the Cartesian product {M x
C} may seem impossible. However, these apparently difficult tasks can be
accomplished easily for a particular, but very general, class of covariance
structures, {C∗}, defined below.

2 Covariance Modelling

2.1 Rationale

It is well known that in the linear model, applied to longitudinal studies,
the maximum likelihood estimates of the regression coefficients, take the
Weighted Least Squares (WLS) form:

β̂Σ = (X ′Σ−1X)−1X ′Σ−1Y (1)

where the dependence of β on Σ has been emphasized. In practice this
dependence is often ignored. The usual approach is to adopt a two-stage
model selection strategy, fixing the structure of Σ first and then finding
the maximum likelihood estimates of β̂ and Σ̂ in simultaneous estimation.
This, may be joint estimation, but it is not joint (mean-covariance) model
selection, because a search of the joint mean-covariance space, {M x C},
has not been conducted.
Perhaps such a search is not necessary. One might conjecture that β̂ is Σ
invariant. However, this is hardly compelling in view of the form of (1),
in which Σ−1 clearly acts as a weight matrix. Thus, if Σ is not the truth,
one should expect the magnitude of the fixed effects to be distorted by an
amount which is a function of the dis-similarity between Σ and the true
variance-covariance matrix.
A natural first question is to enquire whether there is any situation in which
β̂ is Σ invariant? One obvious case arises when Σ ≡ I, i.e., when the errors
are i.i.d.. More importantly, Rao (1965) showed that β̂ is Σ invariant when

Σ = XΓX ′ +QΘQ′ (2)

where Γ of order (p × p) and Θ of order ((p −m) × (p −m)) are positive
definite and Q is a (p× (p−m)) matrix orthogonal to X, i.e., Q′X = 0. In
this formulation there are exactly m repeated measurements over time.
This result shows that β̂ is not Σ invariant, in general, but only when Σ
lies in Rao’s Simple Covariance Structure (SCS) defined by (2). The next
natural question is which of the commonly occurring covariance structures
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utilized in longitudinal modelling lies in SCS? The answer to this question
is largely open, although it may be shown that compound symmetry (CS)
is contained in SCS, but that for example AR(1) is not (Pan & Fan, 2002).

The foregoing has highlighted the impact of covariance mis-specification
on β̂, mainly, because this issue is not widely understood. However, such
mis-specification may also impact on the standard error of β̂. Thus, the
next question is how then can current practice be improved?

2.2 Joint Regression Model

In the context of a longitudinal study with a Gaussian response, the solution
is based on a modified Cholesky decomposition of the usual marginal co-
variance matrix Σ(t, θ), where t represents time and θ is a low-dimensional
vector of parameters describing dependence on time. The decomposition
leads to a reparametrization, Σ(t, ς, φ), in which the new parameters have
an obvious statistical interpretation in terms of the natural logarithms of
the innovation variances, ς, and generalized autoregressive coefficients, φ,
Pourahmadi (1999, 2000). These unconstrained parameters are modelled,
parsimoniously, as different polynomial functions of time

µij = x′ijβ φijk = z′ijkγ ςij = h′ijλ (3)

where a polynomial representation for the mean structure has been included
in order to fit a joint mean covariance model. Here, β, γ and λ are the
three regression parameters of primary scientific interest while z and h are
particular polynomials in lag and time, respectively.

2.3 Covariance Classes

The covariance class {C∗} defined by the last two polynomial regressions
in (3) is capable of representing a wide variety of stationary and non-
stationary covariance structures and provides a relatively smooth method
of transition from structure to structure, compared with relatively limited
menu selection methods. An additional point to consider is that in {C∗}
the transformed covariance parameters now have an interpretation which
is relatively unfamiliar to bio-statisticians, but which is used routinely in
time series and Kalman filtering applications (MacKenzie & Reeves, 2002).
Of course, {C∗}, is not the only type of regression-based covariance class
which may be defined at (3). Smoother, non-parametric, regression models
may be preferred to enrich the class and these are being developed.

2.4 Optimal Mean-Covariance Modelling

The optimal joint-mean covariance model may be found by a direct search
of {M x C∗}. This amounts to determining the degrees, (p, q, d), of the
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three polynomial functions in (3) which minimize some suitable model se-
lection criterion such as AIC or BIC, over the joint model space. When
the longitudinal data are balanced with m repeated measurements, {M x
C∗} is a m-cube. Pan & MacKenzie (2003) show how to search {M x C∗}
efficiently using a profile BIC-based algorithm. The optimum degree triple
(p∗c , q

∗
c , d

∗
c) is found as

p∗c = argmin
p

{BIC(p, s, s)} q∗c = argmin
q

{BIC(s, q, s)} (4)

d∗c = argmin
d

{BIC(s, s, d)}

where s stands for saturated degree. The profile BIC algorithm linearizes
the search.

2.5 Modelling Heterogeneity

An important application of these regression methods occurs in longitu-
dinal randomized controlled trials. Conventionally, it is assumed that the
intervention will influence the evolution of the mean, but it is presumed
that it will not influence the covariance structure. This asymmetrical ap-
proach to modelling the mean and covariance pervades much statistical
practice. With hindsight, this is simply one model choice and in many cases
it may be untenable. Equations (3), however, now render it a testable model
choice, by enabling one to include the treatment indicator and treatment
by time interactions in the last two equations of the model. MacKenzie &
Pan (2001) illustrated the method of analysis using Kenward’s (1987) cattle
data, demonstrating inter alia that intervention had altered the covariance
structure, an effect which was missed in the original analysis. The above
procedure models the covariance structure in terms of fixed effects which
may be different in the mean and covariance structures.

2.6 Modelling Conditional Covariance

For the linear mixed model, Laird & Ware (1982) showed that the marginal
covariance matrix may be decomposed as

Σ = ΣB(t; θB) + ΣW (t; θW ) (5)

where ΣB(t; θB) represents the between subject covariance while ΣW (t; θW )
represents the within subject covariance and θB and θW are low dimen-
sional vectors describing their respective dependencies on time. In some
parametrizations ΣB(t; θB) may not depend on time, but may depend on
stationary covariates, as in the previous section. Classically, here, there are
two covariance menus to be recursed. However, the regression modelling
approach can, most obviously, be applied to ΣW (t; θW ), given an agreed
structure for ΣB(t; θB). Pan & MacKenzie (2001) used the E-M algorithm
to obtain a data driven estimate of ΣW (t; θW ).
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2.7 GEEs & GLMMs

The modelling strategy outlined above assumes a Gaussian response. How-
ever, Ye and Pan (2003) exploit the GEE framework to propose three es-
timating equations for joint mean-covariance models involving continuous
responses (not necessarily Gaussian). They also studied hypothesis tests for
parameters involved in the mean, the autoregressive coefficients and the in-
novation variances, using score-type tests. Moreover, they have investigated
the asymptotic properties of the parameter estimates obtained.
In further work, Pan et al (2004) have extended their procedures to mod-
elling covariance structures in the GLMM framework. The approach differs
from that outlined above as the modelling is conducted in the latent, rather
than in the observation, space.

3 Discussion

Covariance regression modelling is now a substantive area of statistical
modelling. As a field, it has been developing steadily and an increasing
range of versatile techniques, including Bayesian methods (Daniels and
Pourahmadi, 2002), have become available in the last five years. It is too
soon, of course, to claim that of all the outstanding problems have been
solved. This is simply not true, but considerable progress has been made
and more is expected in the years ahead.
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Abstract: We propose a very flexible and general semiparametric model that
allows for time-varying coefficients and/or covariate-varying (including groups-
varying or subjects-varying) coefficients in a longitudinal data setting. Tests for
model specification are proposed and, thus, this proposal allows to discriminate
between the different sources of variation for the regression coefficients. The model
is applied to several longitudinal data examples and, in addition, its performance
is studied when compared to other more restricted proposals.
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1 Introduction and General Model.

The analysis of longitudinal data, where experimental units (normally al-
located to different treatments or groups) are measured over a period of
time, has been studied extensively. In particular, it is interesting to sep-
arate what is common to the whole population from what is specific to
each treatment or group, and also from what is specific to each individual.
These notions have been previously analyzed in a parametric setting by
Diggle et al. (1994), among others. Núñez-Antón and Zimmerman (2000)
and Zimmerman and Núñez-Antón (2001) have analyzed these notions for
several data sets and proposed a joint mean and covariance analysis for
modelling these structures. Thus, it is of interest for researchers to be able
to separate the different effects and the way they can depend on the co-
variates. For example, for the cattle data (see Kenward, 1987), a designed
experiment in which cows receiving two treatments for intestinal parasites
were weighted over time, or for the dogs data (See, Grizzle and Allen, 1969)
a designed experiment in which measurements of coronary sinus potassium
concentration after occlusion on four groups of dogs were taken over time,
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researchers were interested in separating the common, group (i.e. type of
treatment) and individual effects believed to be present in these data sets.
In addition, it may also be of interest to study the possible dependence of
any of these effects on time and the different features in the within subjects
covariance structure. These two ideas and the steps to carry them out can,
of course, provide a clear picture of the main properties of the dependency
between the response variable and time and/or covariates for these data
sets. Profile plots for both data sets, and additional data sets we have con-
sidered, indicate that it is quite hard to reckon a precise parametric form
to use for the model in these data sets.
Many parametric models could be used to estimate the separate effects in
the balanced data case (see for example, Potthoff and Roy, 1964; among
others). However, when the data are unbalanced (if the model is linear
see, for example, Longford, 1993), and when the models are not necessarily
assumed to be linear, it is possible to fit each curve individually and to work
on the parameter set afterward (Caussinus and Ferré, 1992) to investigate
the relations and differences between the subjects. In order to estimate
common and specific effects Laird and Ware (1982), in the linear case,
and Lindstrom and Bates (1990), in the nonlinear one, used mixed effects
models in which the common part is the fixed effect while the specific ones
are the random effects of the model. Then, maximum likelihood estimators
are obtained from the EM algorithm. This requires a clear knowledge of
what is common and what is specific because in practical situations it is
very important to decide which parametric model to assume.
Another added difficulty is the parametric specification for the within-
subjects covariance structure. Most of the different proposed approaches
allowed for unbalanced data and were applied to completely specified lin-
ear models. In addition, they were also able to investigate the effect of
the groups, but could not separate (i.e. distinguish) the three components
present in these data sets and the possible dependence they may have on
time. Therefore, a model for this data set must be able to include: (i) a
common component, representing the fact that individuals come from the
same population, (ii) a group component, since there are different treat-
ments, (iii) an individual component, and (iv) a possible time-dependence
for each of these different components.
Nonparametric approaches have been developed in order to avoid the dif-
ficulty of specifying a parametric model, by estimating the relationship
between the response variable and time over a large class of smooth func-
tions (see. e.g., Gasser et al., 1984). The main drawback of these models is
that nonparametric regression estimates may behave quite poorly for small
sample sizes and, unfortunately, this is quite often the case in practice. In
order to partially solve this problem, and for the case where independence
among measurements is assumed, a two-stage approach was developed by
Boularan et al. (1994) to study the dependence between height and age.
They used an additive model and were interested in estimating the com-
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mon component and the group component (boys and girls). This two-stage
approach would have the advantage that the mean part can be estimated
very precisely by using the data on all m individuals, and it does allow in-
dividuals to be measured at different times. Even though this model allows
for unbalanced data, it does not include all the components present in our
data sets, and it does not take into account the within-subject covariance
structure.
Therefore, there is a need to propose a model able to deal with unbalanced
data and that allows us to estimate the three components present in the
data and its possible dependence on time; it should also allow us to have
general within subject covariance structures, and should be able to deal
with the few observations usually available per subject. Along these lines,
we consider a general linear varying coefficients model of the form:

Yij = XT
ij βij + εij , (1)

where Yij represents the response at time tij for subject i (i = 1, . . . ,m)
at the j-th time (j = 1, . . . , ni), Xij denotes the p× 1 vector of covariates
for the i-th individual, that could include group dependence or time, βij

is the p × 1 vector of fixed and unknown parameters, that may depend
on time and/or specific covariates, and εi = (εi1, . . . , εi,ni

)T is assumed
to have zero mean and a full rank covariance matrix Ωi. The coefficients
βij = fij(tij ,Zij) are determined by an unknown function fij(·) that can
depend on time (i.e., through tij), and on individuals and/or on groups (i.e.,
through Zij , where Zij usually includes a subset of the covariates included
in Xij that are not time-dependent). The model proposed in (1) represents
a very flexible and general specification for most models in the sense that it
allows for the estimation of the different effects and, in addition, allows the
coefficients to vary with time and/or the covariates included in the model.
Moreover, the flexibility of the proposed nonparametric estimation method
allows the estimation of the coefficients without the need to specify the
function fij(·), and the only requirement it has is the assumption of some
degree of smoothness. The coefficients in (1) are not required to vary with
the same covariates and, thus, we could consider models where a specific
set of coefficients varies only with time (βij = fij(tij)), whereas another
set varies with given covariates included in Zij . In fact, this model could
very well study situations in which one wishes to assess at the same time
the effect of a treatment over time and the effect of the treatment itself.
Thus, the proposed model can be written as:

Yij =
(
X(1)

ij

)T

β
(1)
ij (tij) +

(
X(2)

ij

)T

β
(2)
ij (Zij) + εij , (2)

where, under some restrictions, X(1)
ij represents the p1 × 1 vector contain-

ing the subset of non-time dependent covariates that go with the time
dependent p1 × 1 vector of coefficients β

(1)
ij (tij), and X(2)

ij represents the
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p2×1, (p1+p2 = p) vector containing the subset of covariates that go with
the group or individual dependent p2 × 1 vector of coefficients β

(2)
ij (Zij).

Special cases of model (2) include:

• If β
(2)
ij (Zij) = 0, no individual, group or other covariates effects are

considered and, thus, the resulting model corresponds to the time-
varying coefficient model proposed by Hoover et al. (1998).

• If there is no time effect; that is, if β
(2)
ij (tij) = 0, we obtain a more

general model than the one in Núñez-Antón et al. (1999) or Zeger
and Diggle (1994).

In particular, the specification of model (1) allows for the possibility to
test for the existence of each one of the components in (2) and, thus, the
possibility of considering the general model (i.e., model (1)) or any of its
special cases (i.e., model (2) or any of its two particular cases).

2 Data set and results

The proposed models were applied to the two data sets mentioned in Sec-
tion 1, and the general conclusions indicate that:

• For the cattle data (see Kenward, 1987), there is a strong group differ-
ence and, thus, a group effect that changes over time. In addition, it is
of interest to include an individual effect that may or may not change
over time. Thus, the proposed model has to be the more general one
(i.e., model (1)). These conclusions somehow agree with the ones pre-
viously obtained in the more restrictive models used by Zimmerman
and Núñez-Antón (2001) and Kenward (1987).

• For the dogs data (see Grizzle and Allen, 1969), there is strong group
difference that does not substantially changes over time. It is clear
that group 1 (i.e., the control group) is significantly different from the
rest. In addition, it is of interest to include an individual effect that
may or may not change over time. Thus, the proposed model has to
be the one that allows for separation between effects (i.e., model (2)).

In summary, the models proposed in Section 1, when applied to several
examples in the context of longitudinal data, have shown to be very useful
additions to the existing models and, given that they generalize earlier
models, they represent a valuable way of testing for submodels, such as the
ones described above or in the literature.
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1 Generalized linear mixed models

Suppose yi (i = 1, 2..., n) are the responses. Let xi and zi be (p × 1) and
(q× 1) covariate vectors associated with fixed effects β (p× 1) and random
effects b (q × 1), respectively. Given the random effects b, the responses yi
are independent with means and variances:

E(yi|b) = µi and var(yi|b) = φa−1
i ν(µi) (1)

respectively, where φ is a scalar parameter, ai is a prior weight and ν(.) is a
variance function. The responses yi can be modelled using generalized linear
mixed models (GLMM), in which there is a monotone and differentiable
link function g(.) such that g(µi) = ηi = x′iβ + z

′
ib, i.e., g(.) links the

conditional expectation µi to the linear predictor ηi. In matrix form, the
GLMM can be written into

g(µ) = η = Xβ + Zb (2)

where µ, g(µ) and η are vectors having components µi, g(µi) and ηi (i =
1, 2..., n), respectively, while the design matrices X and Z have rows x′i and
z′i, respectively.
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The random effects b are usually assumed to have some distribution F with
mean zero and covariance matrix Σ(θ), i.e., b ∼ F (0,Σ(θ)), where θ is an
(m×1) vector of unknown variance components. The magnitude of θ can be
used to measure the degree of overdispersion and correlation, e.g., arising
in longitudinal studies. The distribution F may assume to be Normal, for
instance, see Breslow and Clayton (1993).
For the GLMM the integrated quasi-likelihood of (β, θ) thus takes the form

L(β, θ) = exp{�(β, θ)} =
∫
exp{

n∑
i=1

�i(β, θ)}dF (b; θ) (3)

where

�i(β, θ) ∝
∫ µi

yi

ai(yi − u)
φν(u)

du (4)

defines the conditional log quasi-likelihood of β given b. Accordingly, the
maximum likelihood estimates (MLE) (β̂, θ̂) that maximize L(β, θ) in (3)
are rather difficult to obtain because L(β, θ) may involve analytically in-
tractable integrals. In the literature Laplace approximation and MCMC
techniques were used to locate the estimates, see, e.g., Breslow and Clay-
ton (1993) and Karim and Zeger (1992).

2 Quasi-Monte Carlo Integration

In this paper we propose to use Quasi-Monte Carlo (QMC) approach to ap-
proximate the integrated quasi-likelihood L(β, θ) in (3). To gain insight into
the QMC integration, let us first look at the classical Monte Carlo (MC)
approximation. Suppose f(·) is an integrable function on the q-dimensional
unit cube Cq = [0, 1)q. Consider the integral

I(f) =
∫

Cq
f(x)dx (5)

In the MC integration a random sample PK = {xk : 1 ≤ k ≤ K} is
drawn from the uniform distribution on Cq and the integral in (5) is then
approximated by

ÎK(f,PK) =
1
K

K∑
k=1

f(xk) (6)

By the strong law of large number the estimate ÎK(f,PK) converges to
I(f) with probability one as K → ∞. Moreover the central limit theorem
guarantees that ÎK(f,PK) is asymptotically normally distributed when the
sample size K is large enough. The convergence rate for the MC integra-
tion has an order O(K−1/2), regardless of the dimension q. However, the
convergence is in probability, implying the MC may behave well on average
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but a particular random sample may lead to a bad approximation. We may
apply multiple draws for random samples and then take the average to be
the final approximation but computation load may increase dramatically.
The QMC approach aims to improve the MC approximation in terms of
convergence rate and computation load. The key idea is to choose integra-
tion nodes that are scattered on Cq uniformly. The reason behind this is
due to the Koksma-Hlawka inequality:

|I(f)− ÎK(f,PK)| ≤ V (f)D(PK) (7)

where V (f) is a bounded total variation of f over Cq in the sense of Hardy
and Krause (Fang and Wang, 1994). D(PK) is a measure of evenness of
spread for the set PK , defined by

D(PK) = sup
x∈Cq

|UK(x)− U(x)| (8)

where U(x) is the uniform distribution on Cq and UK(x) is the empirical
distribution of PK . D(PK) is called discrepancy of the point set PK . The
inequality (7) implies that the absolute error of integration approximation
is bounded by D(PK) since V (f) is a constant as long as f(.) is given.
The points with the smallest discrepancy are thus the best integration
nodes in this sense. It can be shown that the smallest discrepancy has
the order O((logK)q−1/K) (Fang and Wang, 1994). Accordingly, when q
is large the QMC integration has a faster convergence rate than the MC
approximation. Unlike the MC approach, on the other hand, the QMC
integration nodes are deterministic so that multiple draws are not necessary.
Regarding construction of QMC integration nodes, one can refer to Fang
and Wang (1994).
For illustration, in Figure 1 below we give 2D-plots of a MC random sample
with size 100 and a QMC point set with size 55. The discrepancy values
are also given underneath the plots.
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FIGURE 1. A MC random sample with size 100 (Panel (a)) and a QMC point
set with size 55 (Panel (b)) over C2 = [0, 1)2
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Figure 1 clearly shows that the 55 QMC nodes in Panel (b) are much better
than the 100 MC random points in Panel (a) in terms of uniformity.

3 Quasi-Monte Carlo Estimation in GLMM

When applying the QMC approximation to (3), the log quasi-likelihood
can be written by

�(β, θ) = log
( 1
K

K∑
k=1

exp
{ n∑

i=1

�i(β,Σ1/2F−1(bk))
})

(9)

where PK = {bk : k = 1, ...,K} is a QMC set over Cq, F−1(.) is the
inverse of the cdf F and Σ1/2 can be taken as the Cholesky factor of Σ.
Let ck = F−1(bk), ηik = x′iβ + z

′
iΣ

1/2ck and µik = h(ηik) where h(.) is
the inverse function of g(.). The MLE β̂ of β then must satisfy the score
equation:

∂

∂β
[�(β, θ)] =

K∑
k=1

wk

[ n∑
i=1

ai(yi − h(ηik))
φν(µik)g′(µik)

xi

]
= 0 (10)

where g′(.) is the derivative of g(.) and wk has the form

wk =
exp{∑n

i=1 �i(β,Σ
1/2ck)}∑K

k=1 exp{
∑n

i=1 �i(β,Σ1/2ck)}
(11)

Similarly we have the score equation for the variance components θ. We
further give the explicit forms for the second-derivatives of �(β, θ) and then
use Newton-Raphson algorithm to calculate the MLE (β̂, θ̂), which in turn
gives the asymptotic variance-covariance matrix of the MLE (β̂, θ̂).

4 An Example: Salamander Mating Data

The infamous salamander mating experiment involved two population of
salamanders: Rough Butt (RB) and Whiteside (WS). Ten males and ten
females from each population were mated in a crossd design, with six mat-
ings for each animal, resulting in 120 correlated binary observations. The
experiment was repeated three times during the summer and autumn of
1986. For each experiment a logistic-Normal mixed model is used to model
the correlated binary data:

logit{E(yij |bfi , bmj )} = x′ijβ + bfi + bmj (12)

where bfi and b
m
j are random effects from the female and male individu-

als in the pair and are assumed to be independent with bfi ∼ N(0, σ2
f )
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and bmj ∼ N(0, σ2
m) (i, j = 1, ..., 20). The covariate vector xij is set to be

(1,WSf
i ,WS

m
j ,WS

fm
ij ) where WS

f
i is the indicator for WS female (0=RB

and 1=WS), WSm
i for WS male (0=RB and 1=WS) and WSfm

ij means the
interaction.
The log-likelihood for each experiment is a sum of two 20-dimensional inte-
grals which are analytically intractable (Breslow and Clayton, 1993). When
pooling the three experiments data, it involves six 20-dimensional integrals.
Modelling the data becomes extremely challenging. In the literature vari-
ous approaches were considered, e.g., MCMC by Karim and Zeger (1992)
and penalized quasi-likelihood (PQL) by Breslow and Clayton (1993).
We apply the QMC approach to modelling of the pooled data. Since the
integrals are 20-dimensional, we generate QMC integration nodes on the
cube C20 = [0, 1)20, implemented using the first 20 prime numbers (Fang
and Wang, 1994). Table 1 below gives the MLEs of the parameters, where
K is the size of the QMC nodes. For comparison, we also present Karim
and Zeger’s (1992) Gibbs sampling and Breslow and Clayton’s (1993) PQL
estimates below.

Table 1. MLEs of parameters (standard errors in parentheses)

K β0 β1 β2 β3 σf σm �̂max
10,000 0.92(.38) -2.83(.51) -0.58(.41) 3.57(.63) 1.11(.28) 0.98(.20) -207.21
20,000 0.83(.37) -2.80(.52) -0.53(.44) 3.51(.61) 1.06(.23) 1.02(.23) -207.70
30,000 1.28(.41) -2.88(.54) -0.99(.50) 3.64(.63) 1.25(.27) 1.16(.24) -205.67
40,000 1.22(.41) -2.83(.53) -0.99(.49) 3.66(.63) 1.28(.28) 1.21(.26) -206.19
50,000 1.21(.40) -2.81(.53) -1.03(.49) 3.70(.62) 1.25(.24) 1.24(.26) -206.07
60,000 1.17(.39) -2.80(.53) -0.99(.49) 3.67(.63) 1.23(.24) 1.20(.26) -206.41
70,000 1.21(.37) -2.81(.53) -0.96(.47) 3.68(.63) 1.30(.29) 1.22(.26) -206.31
80,000 1.22(.38) -2.86(.54) -1.01(.49) 3.71(.64) 1.30(.29) 1.24(.26) -206.35
90,000 1.21(.38) -2.87(.54) -0.99(.49) 3.69(.64) 1.28(.29) 1.22(.26) -206.66

100,000 1.22(.39) -2.91(.56) -0.98(.49) 3.67(.64) 1.26(.29) 1.23(.27) -206.83

Gibbs 1.03(.43) -3.01(.60) -0.69(.50) 3.74(.68) 1.22 1.17 −
PQL 0.79(.32) -2.29(.43) -0.54(.39) 2.82(.50) 0.85 0.79 −

Table 1 above shows that even for such high-dimensional integrals the QMC
approach can do a good job by choosing an appropriate size of the QMC
nodes. We also discuss hypothesis test for variance components using score
test. Simulation studies to mimic the salamander data are also conducted.
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1 Generalized estimating equations

Consider a longitudinal study protocol. Let yij be the jth of mi mea-
surements on the ith of n subjects. Assume tij are the time at which the
measurement yij are made. Denote the responses of the ith subject by
yi = (yi1, yi2, ..., yimi

)′ and the time points by ti = (ti1, ti2, ..., timi
)′. Sup-

pose E(yi) = µi and V ar(yi) = Σi are the (mi × 1) mean vector and
(mi ×mi) variance-covariance matrix of yi, respectively.
The mean µij is usually related to some covariates of interest, say xij (e.g.,
xij may contain tij), through a link function: g(µij) = x′

ijβ. In longitudinal
studies, we might be only concerned with the estimate of the parameter
vector β (p × 1) regardless of the structures of Σi. Accordingly, certain
“working” covariance structures are used to model Σi and then to solve
the generalized estimating equations (GEE):

S(β) =
n∑

i=1

[∂µ′
i

∂β

]
V

−1/2
i C−1

i (ρ)V −1/2
i (yi − µi) = 0 (1)

(Liang & Zeger, 1986) where Vi = diag(v2
i1, ..., v

2
imi
) with vij = V ar(yij).

The matrix Ci(ρ) that depends on a new scalar parameter ρ mimics the
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within-subject correlation, for instance, it may take compound structure
or AR(1), etc. Under certain regularity conditions, it may be shown that
the GEE estimates are asymptotical Normally distributed and consistent
(Liang & Zeger, 1986).

2 Modelling covariance structures in GEE

Recently there is an increasing concern about the mis-specification of the
“working” covariance structures. When the covariance structures are mis-
specified, the efficiency of the GEE estimates β̂ may be rather poor al-
though it is consistent (Wang, 2003). Accordingly, we want to model the
covariance structures together with estimating β.
Since Σi is positive definite, there exists a unique lower triangular matrix
Ti with 1’s as diagonals and a unique diagonal matrix Di with positive di-
agonals such that TiΣiT

′
i = Di. This modified Cholesky decomposition has

a clear statistical interpretation: the below-diagonals of Ti are the negatives
of the autoregressive coefficients, φijk, in the autoregression model

ŷij = µij +
j−1∑
k=1

φijk(yik − µik) (2)

and the diagonals of Di are the innovation variances σ2
ij = V ar(εij) where

εij = yij − ŷij (1 ≤ j ≤ mi; 1 ≤ i ≤ n).
In a spirit of Pourahmadi (1999), we propose three generalized regression
models to model the mean, autoregressive coefficients and innovation vari-
ances:

g(µij) = x′
ijβ, φijk = z′ijkγ and log σ2

ij = z′ijλ (3)

where the covariates xij , zijk and zij are (p × 1), (q × 1) and (d × 1)
vectors, respectively, and β, γ and λ are the associated parameters. The
link function g(.) is assumed to be monotone and differentiable (McCullagh
& Nelder, 1989).
In order to estimate β, γ and λ in (3), we propose to solve the three
generalized estimating equations as follows:

S1(β) =
n∑

i=1

[∂µ′
i

∂β

]
Σ−1

i (yi − µi)

S2(γ) =
n∑

i=1

[∂r̂′i
∂γ

]
D−1

i (ri − r̂i)

S3(λ) =
n∑

i=1

[∂σ2
i
′

∂λ

]
W−1

i (ε2i − σ2
i )

(4)

where in the second equation ri and r̂i are (mi × 1) vectors with the jth
components rij = yij − µij and r̂ij = E(rij |ri1, ..., ri(j−1)) =

∑j−1
k=1 φijkrik
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(j = 1, ...,mi), respectively. It can be shown that Di = diag(σ2
i1, ..., σ

2
imi
)

are in fact the covariance matrix of ri − r̂i. In the third equation ε2i and σ2
i

are (mi × 1) vectors with the jth components ε2ij and σ2
ij (j = 1, ...,mi),

respectively, where εij = yij − ŷij and ŷij are given in (2). Obviously, we
have the fact E(ε2i ) = σ2

i . In addition, Wi is the covariance matrix of ε2i ,
i.e., Wi = V ar(ε2i ).
When data are Normally distributed, we can showWi = 2diag(σ4

i1, ..., σ
4
imi
)

so that (4) reduces to Pourahmadi’s (1999) score equations in this special
case. In general, however, Wi may not be diagonal and should be esti-
mated together with other parameters. In the spirit of traditional GEE
modelling for the mean, we specify a sandwich “working” structure to Wi,
say Wi = A

1/2
i Ri(ρ)A

1/2
i where Ai = 2diag(σ4

i1, ..., σ
4
imi
) and Ri(ρ) mimics

the correlations between ε2ij and ε2ik (i �= k) in terms of a new parameter ρ.
Typical examples include compound symmetry and AR(1).
We propose an algorithm to iteratively calculate the solutions β̂, γ̂ and
λ̂ to (4), which are termed GEE estimates for β, γ and λ. Under certain
regularity conditions, we showed that β̂, γ̂ and λ̂ are consistent and asymp-
totically Normal. We also consider hypothesis tests regarding β, γ and λ
based on score test principles.

3 Numerical analysis

We analyze Kenward’s cattle data in which 60 animals were assigned ran-
domly to two treatment groups A and B. Half animals received treatment A
and another half received treatment B. The cattles were weighted 11 times
over 133-day period at 0, 14, 28, 42, 56, 70, 84, 98, 112, 126 and 133 in days
and the objective was to study treatment effects on intestinal parasites.
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Figure 1. The sample regressogram and the proposed GEE fitted curves

For illustration we only model the Treatment A data here. Following Pourah-
madi’s (1999) protocol we use a saturated model for the mean and choose
two cubic polynomials of time/lag to model the innovation variances and
autoregressive coefficients. In the modelling we choose the function g(.)
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as identity link and specify the “work” correlation structure for Ri(ρ) as
compound symmetry and AR(1). For both “working” structures we testify
the GEE estimates by choosing different values of ρ, e.g., at ρ = 0.2, 0.5
and 0.8. We find that the parameter ρ, measuring the correlation between
ε2ij and ε2ik, affects very little the estimates of γ and λ. This implies that
the GEE estimates are robust against the possible mis-specification of the
structure of Ri(ρ). This point has been also confirmed from our simulation
studies below. In Figure 1 above we plot the sample autoregressive coeffi-
cients and sample log-innovation variance (dot points) and also display the
GEE fitted curves with Ri(ρ) being AR(1) where ρ = 0.5, which clearly
shows that the proposed GEE approach fits the data well.
In order to measure the efficiency of estimates for fixed effects, we propose
to use a cubic polynomial of time rather than the saturated model to model
the trajectory of mean (Pan & MacKenzie, 2003). Table 1 below gives the
comparison of the proposed approach with the conventional GEE estimates
in terms of relative efficiency of the fixed effects βi (i = 1, ..., 4). The relative
efficiency of βi is defined as the ratio of variance of the conventional GEE
estimate β̂C

i resulted from (1) to that of the covariance modelling GEE
estimate β̂M

i obtained by solving (4), i.e., e(β̂i) = V ar(β̂C
i )/V ar(β̂M

i ). Both
compound symmetry (CS) and AR(1) are used to be “working” covariance
structures and the correlation parameter ρ is set to be the same in the
conventional and the new GEE estimation procedures.

Table 1. Relative efficiency for fixed effects

CS AR(1)
ρ 0.2 0.5 0.8 0.2 0.5 0.8

e(β1) 1.42 1.29 1.11 1.24 1.42 1.47
e(β2) 1.17 1.19 1.23 1.21 1.14 1.14
e(β3) 1.37 1.33 1.32 1.37 1.26 1.26
e(β4) 1.21 1.20 1.17 2.12 2.07 1.78

Table 1 above shows that the efficiency of the conventional GEE estimates
can be improved in terms of covariance modelling strategy. In some cases
the variance of β̂C

i may be twice of variance of β̂M
i .

4 Simulation Study

We conduct a simulation study for Normal and Normal mixture. For Nor-
mal, Table 2 below gives the comparison of the proposed approach to the
conventional GEE estimates in terms of averaged relative efficiency of the
fixed effects βi (i = 1, ..., 4), where we generate 30× 10, 000 random num-
bers from the Normal distribution with the mean vector µi and variance
matrix Σi obtained from the Cattle data. For Normal mixture, we choose
the distribution F = πN(µi + δ,Σi) + (1− π)N(µi,Σi) where mean vector
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µi and variance matrix Σi are the same as above. We generate 30× 10, 000
random numbers from normal mixture with π = 0.5 and δ = µi/5, Table
3 below gives the comparison of averaged relative efficiency between the
proposed approach and the conventional GEE estimates.

Table 2. Averaged relative efficiency for Normal distribution

CS AR(1)
ρ 0.2 0.5 0.8 0.2 0.5 0.8

e(β1) 1.38 1.39 1.39 1.19 1.35 1.41
e(β2) 1.15 1.15 1.16 1.18 1.11 1.12
e(β3) 1.34 1.33 1.34 1.32 1.20 1.21
e(β4) 1.18 1.19 1.18 2.05 2.01 1.72

Table 3. Averaged relative efficiency for Normal mixture distribution

CS AR(1)
ρ 0.2 0.5 0.8 0.2 0.5 0.8

e(β1) 1.15 1.12 1.04 1.09 1.15 1.16
e(β2) 1.10 1.13 1.23 1.06 1.05 1.06
e(β3) 1.40 1.39 1.36 1.34 1.24 1.26
e(β4) 1.34 1.31 1.23 2.67 2.43 2.07

Table 2 and Table 3 above show that covariance modelling strategy im-
proves the efficiency of the conventional GEE estimates. In some cases,
the improvement is very significant, implying that mis-specification of the
”working” covariance structure in GEE may lead to inefficient estimates
of fixed effects. Accordingly, correctly modelling covariance structure plays
an important role in GEE procedure.
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1 Introduction

Consider independent count observations yi with covariate explicative vec-
tors xi , i = 1, ..., n. Poisson regression models assume that yi ∼Poisson(µi),
where µi = µi(xi, β) and β is a k-dimensional vector of unknown parame-
ters.
When overdispersion occurs or repeated measures are done, mixed Poisson
models are frequently used in the form, yi ∼Poisson(µiεi), where εi are iid
positive random variables, such that E(εi) = 1 and var(εi) = σ2. This leads
to the second order variance function var(yi;xi) = µi+σ2µ2

i (Collings and
Margolin, 1985). For instance, it is well known that if the εi’s are assumed to
have a gamma distribution, then yi follows a negative binomial distribution.
If the εi’s follow an inverse gaussian distribution, then the distribution of
yi is known as Poisson-Inverse Gaussian. A good reference about mixed
Poisson models can be found in Lawless (1987).

2 The models

In (Puig and Valero, 2004) the following concept of additivity is introduced:

Definition. Given a parametric model we shall say that it is “partially
closed under addition” if for each random variable X belonging to this
model the sum of any number of independent copies of X also belongs to
this parametric model.

These kind of models can arise naturally in many practical situations. For
instance, many data sets come from counts on independent quadrats or
sub-areas of an experimental region. If we consider that some parametric
model is valid to describe these counts, it is reasonable to hope that the
same model is valid to describe the counts made by grouping two or more
quadrats.
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Our aim is to find all the mixed Poisson models that are partially closed
under addition and have good properties about the estimation of the pop-
ulation mean. The following theorem is a direct consequence of the results
of Puig and Valero (2004) and Puig (2003):

Theorem. Let Y be a mixed Poisson model, Y =Poisson(µε), such that
E(ε) = 1, var(ε) = σ2 and E(ε3) < ∞, with a pgf continuous in µ and
twice differentiable with continuity in σ2. Assume that Y is partially closed
under addition and the MLE of µ is the sample mean. Then its probability
generating function (pgf) can be expressed as,

g(t;µ, σ2, β) = e
1−β
βσ2

[
1−(1− µσ2

1−β (t−1))β
]

(1)

The domain of β is β ≤ 1.
For β = −1 and β = 1/2 we obtain directly the pgf of the Polya-Aeppli
and Poisson-Inverse Gaussian distribution. Calculating the limit when β
tends to −∞ and 0, we get respectively the pgf of the Neyman A and
the Negative Binomial distribution. In general for β < 1 this family is
known as Poisson-Tweedie distribution or Power Variance Mixture model
(Hougaard et al., 1997). The Tweedie densities have not in general a simple
expression. However, when they act as a mixing distribution, the resulting
mixed Poisson distribution has a simple pgf.
In the next section we shall show how we can implement some simple
correlational structures between count data using the Tweedie models.

3 Mixed Poisson with random effects

3.1 Paired count data

Given the paired count data yij i = 1, 2, j = 1, ..., n, we assume that
its distribution is of the form Poisson(µiε∗i ) where ε

∗
1 = λ1ε1 + (1− λ1) ε0,

ε∗2 = λ2ε2+(1− λ2) ε0 , and λi ∈ [0, 1] are two new parameters. The random
variables ε1, ε2 and ε0 are independent members of the Tweedie family, with
expectation equal to 1, variances σ2

1 , σ
2
2 and σ

2
0 , and parameters β1, β2 and

β0 respectively. Notice that ε0 has the same value for the two members
of the same couple. It can be interpreted as the perturbation due to the
random effect ”couple”. Consequently, from (1) and direct calculations, the
joint log-pgf for the paired observations (y1j , y2j) remains,

log(g(t1, t2)) = 1−β1
β1σ2

1

[
1− (1− µ1λ1σ

2
1

1−β1
(t1 − 1))β1

]
+ 1−β2
β2σ2

2

[
1− (1− µ2λ2σ

2
2

1−β2
(t2 − 1))β2

]
+ 1−β0
β0σ2

0

[
1− (1− µ1(1−λ1)(t1−1)+µ2(1−λ2)(t2−1)

1−β0
σ2

0)
β0

]
.

(2)
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From (2) it is immediate to find that,
V ar(yij) = µi + µ2

i

(
λ2
iσ

2
i + (1− λi)

2
σ2

0

)
, and also the covariance

cov (y1j , y2j) = µ1 (1− λ1)µ2 (1− λ2)σ2
0 .

A naive approach to the paired count data problem could suggest to con-
sider only the perturbation due to the ”couple” random effect, that is, to
fix λ1 = λ2 = 0. However, in this situation, the correlation coefficient of the
paired observations is absolutely determined by the dispersion indexes δi of
the marginals, that is, r(y1j , y2j)2 = (δ1 − 1)(δ2 − 1)/(δ1δ2). Consequently
this naive model is not very flexible in practice.

Example 1: In an experiment of Agriculture we count the feasible seeds of
Digitaria sanguinalis according to a minimum tillage (TS) or no tillage at
all (SD) of the soil. We have 72 blocks, and we have counted a sample of TS
and SD for each block. The results of the experiment can be summarized
as follows:
Tillage Mean V ariance disp. index Corr. coeff .
TS 2.778 28.288 10.184 0.364
SD 0.417 1.092 2.620

Notice that, if the naive model previously commented was adequate, a
correlation coefficient about 0.75 can be predicted, from the empirical dis-
persion indexes shown above. However the empirical correlation coefficient
is about 0.36.
In order to analize the data set we are going to use the full model with
the restriction β0 = β1 = β2 = β. The corresponding probabilities can be
computed from (2), and the program made in R that we have performed
gives the maximum likelihood estimators:

log(L) µ̂TS µ̂SD λ̂TS λ̂SD σ̂2
TS σ̂2

SD σ̂2
0 β̂

−202.3 2.778 .417 .802 .464 4.98 � 0 26.54 0.48

¿From here, the estimated variances and dispersion indexes of the marginals
are V̂TS = 35.502, V̂SD = 1.742, δ̂TS = 12.781, δ̂SD = 4.180, and the esti-
mated correlation coefficient is now r̂ = 0.415. Notice that these estimated
values are similar to the empirical values shown above. The estimated value
of β is close to 1/2, that is, the Tweedie model of the ε’s is close to the
Inverse Gaussian distribution.
Likelihood ratio tests can be performed in order to check if the model can
be simplified and to compare the means of the counts of feasible seeds
according the kind of tillage:

H0 df χ2 p value
λTS = λSD σ2

TS = σ2
SD µTS = µSD 3 34.945 < 0.001

λTS = λSD σ2
TS = σ2

SD 2 6.529 0.038
µTS = µSD 1 28.415 < 0.001

Consequently the tillage takes effect on the abundance of feasible seeds. It
is also interesting to test the significance of the ”couple” random effect,
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that is, to consider the null hypothesis H0 : λTS = λSD = 0. The resulting
likelihood ratio test statistic is 20.082 with a p-value p < 0.001. It is im-
portant to remark that, under the null hypothesis, the likelihood ratio test
statistic does not have an asymptotic χ2 distribution as expected, because
λTS = λSD = 0 belongs to the boundary of the domain of parameters (see
Self and Liang, 1987).

3.2 Implementing a random effect

Now we study a simple generalization of the situation presented in the
preceding section. We consider the case yij i = 1, ..., k j = 1, ..., n, where its
distribution follows a Poisson(µiε∗i ) with ε

∗
i = λiεi + (1− λi) ε0, λi ∈ [0, 1].

The random variables εi and ε0 are independent members of the Tweedie
family, with expectation equal to 1, variances σ2

i and σ2
0 , and parameters

βi and β0 respectively. Now ε0 can be understood as the perturbation due
to the random effect of the group or block. Direct calculations give the
log-pgf:

log(g(t1, ..., tk)) =
∑k
i=1

1−βi
βiσ2

i

[
1− (1− µiλiσ

2
i

1−βi (ti − 1))βi
]

+1−β0
β0σ2

0

[
1− (1− σ2

0
1−β0

∑k
i=1 {µi (1− λi) (ti − 1)})β0

]
.

(3)

This model, in the most general situation, has 4k+ 2 parameters. Some of
them, like βi or σ2

i , can be assumed to be equal in order to simplify the
model. The variances have the same expression like in the case of paired
data, and the covariances are cov (yrj , ysj) = µr (1− λr)µs (1− λs)σ2

0 .

Example 2: Here the aim of the experiment is to study the relation be-
tween the abundance of three kind of feasible seeds Polygonum aviculare,
Portulaca oleracea and Diplotaxis erucoides, under a minimum tillage of
the soil. The sample comes from 72 points where the three kind of seeds
have been counted. The results of the experiment can be summarized as
follows:
Seed Mean V ariance disp. index pair Covariance Corr.
Poly 2.236 3.817 1.707 Pol − Por 0.594 0.235
Port 0.639 1.671 2.615 Pol −Dip 0.935 0.234
Dipl 0.861 4.178 4.851 Por −Dip 0.189 0.071

We have fitted the data set considering the model where the β’s are equal.
The maximum of the log-likelihood function is log(L) = −295.805 and the
values of the estimators are as follows:

µ̂Pol µ̂Por µ̂Dip λ̂Pol λ̂Por λ̂Dip σ̂2
Pol σ̂2

Por σ̂2
Dip σ̂2

0 β

2.236 0.639 0.861 0.91 0.88 0.32 0.36 3.66 0.19 8.32 −1.6
Using these values we can also estimate the variances, correlation coeffi-
cients, etc. The results are the following:
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Seed Mean V ariance Disp. index pair Covariance Corr.
Poly 2.236 4.094 1.831 Pol − Por 0.132 0.048
Port 0.639 1.848 2.892 Pol −Dip 1.021 0.261
Dipl 0.861 3.742 4.345 Por −Dip 0.371 0.141

The resemblance with the empirical results is notorious. However the pre-
dicted correlation of Pol−Por is lower than the empirical value. To check
if the random effect is significant we have to consider the null hypothesis
H0 : λPol = λPor = λDip = 0. The resulting likelihood ratio test statistic
is 12.3308 with a p-value p < 0.001. Consequently, the abundance of any
kind of the three studied seeds is correlated with the others.

References

Collins, B.J. and Margolin, B.H. (1985). Testing goodness of fit for the
Poisson assumption when observations are not identically distributed.
J. Amer. Statist. Assoc., 80, 411–418.

Hougaard, P., Ting Lee, M.L. and Whitmore G.A. (1997). Analysis of
Overdispersed Count Data by Mixtures of Poisson Variables and Pois-
son Processes. Biometrics, 53, 1225–1238.

Lawless, J.F. (1987). Negative Binomial and mixed Poisson regression.
Canadian Journal of Statistics, 15, 209–225.

Puig, P. (2003). Characterizing additively closed discrete models by a
property of their MLEs, with an application to generalized Hermite
distributions. J. Amer. Statist. Assoc., 98, 687–692.

Puig, P. and Valero, J. (2004). Count data distributions: some character-
izations with applications. Submitted to J. Amer. Statist. Assoc.

Self, S. G. and Liang, K.Y. (1987). Asymptotic properties of maximum
likelihood estimators and likelihood ratio tests under nonstandard
conditions. J. Amer. Statist. Assoc., 82, no. 398, 605–610.



Improving the Relevance Vector Machine
under Covariate Measurement Error

David Rummel

1 Department für Statistik, Universität München, 80539 München, Germany

Abstract: Covariate measurement error is an identified problem in statistical
analysis applying parametric and nonparametric regression models. We investi-
gate this problem for a very recent and promising smoothing approach coming
from the area of machine learning, the relevance vector machine (RVM), devel-
oped by Tipping (2000). Two standard correction methods for measurement er-
ror, regression calibration (Carroll et al. (1995)) and the so-called SIMEX method
(Carroll et al. (1999)), are discussed and applied to the RVM. Finally, we present
a short simulation study on both methods that indicates improvements of the
RVM regression in terms of bias and mean squared error.

Keywords: Nonparametric regression, automatic relevance determination, co-
variate measurement error, SIMEX, regression calibration.

1 Introduction

Nonparametric regression has been widely established in statistical analysis
and of particular interest are simple models that allow for highly flexible
data approximation. We focus here on nonparametric regression with the
relevance vector machine, as introduced by Tipping (2000). Covariates sur-
veyed under measurement error is a popular problem in the area of medicine
and epidemiology, where e.g. the exposure to a certain radiation or nutri-
tion has to be recorded. Especially in the case of nonparametric regression
this covariate measurement error problem has not received much attention,
yet.
The first section provides insight into the model specification of the RVM,
while the second presents some theoretic background on measurement error
correction. Finally we present the results of a short simulation study on
correcting for error applying the SIMEX method and regression calibration.

2 Nonparametric regression using the RVM

Generally we are given data of the form {(xi, ti)}Ni=1 ∈ RD×R including a
D-dimensional vector of covariates xi = (xi1, . . . , xiD) and a scalar target
ti for each observation i. We note, that covariate measurement error is not
an issue in this section.
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2.1 The RVM model setup

It is assumed for the RVM, that the dependency of the targets on the
covariates can be represented by a sum of basis functions φj(x), individually
weighted by a related parameter wj and an intercept w0. Since the targets
are generally assumed to consist of a structural and a random part, we
have here:

ti =
N∑
j=1

wjφj(xi) + w0 + εi, i = 1, . . . , N, (1)

where the errors are assumed to be i.i.d. normally distributed p(ε) =∏N
i=1 N (εi|0, σ2). By specifying (1) we allow every observation to have

an individual impact on the structural part. To construct a model that is
able to infer automatically which basis are most relevant for the regression,
Tipping (2000) follows an approach of MacKay (1994), termed automatic
relevance determination. The preference for a sparse model with only few
weights being nonzero is encoded by placing a Gaussian prior over every
weight, centered on zero with an individual variance parameter:

p(w|α) =
N∏
j=0

N (wj |0, α−1
j ), w = (w0, w1, . . . , wK)T (2)

To put the RVM into a fully Bayesian framework, Tipping (2000) spec-
ifies Gamma (hyper-) priors for the inverse variance parameters p(α) =∏N
j=0Gamma(αj |a, b) and p(β) = Gamma(β|c, d), setting the corre-

sponding parameters a = b = c = d = 0, which is equivalent to specifying
uniform distributions for α and β on a logarithmic scale.

2.2 Inference

Estimation of the unknown parameters w,α and β in a Bayesian framework
is done via the posterior distribution of these parameters:

p(w,α, β|t) = p(w|t,α, β)p(α, β|t), (3)

with p(w|t,α, β) being Gaussian, see Tipping (2001) for details. Since the
posterior of the hyperparameters α, β can not be stated, Tipping (2001)
suggests to find the modus of p(α, β|t). Since p(α) and p(β) are uni-
form (over a logarithmic scale), we just maximize the marginal likelihood
p(t|α, β). In similar Bayesian models, this maximizing method is referred
to as type-II maximum likelihood method.
Inference on the unknown parameters w,α and β yields a final estimation
for f̂(x) =

∑N
j=1 ŵjφj(xi)+w0, where only very few weights w �= 0 remain

in the model. The data points related to these bases are then called relevant
vectors in deference to that method.
Tipping (2001) compares the performance of the relevance vector machine
to the support vector machine, another popular method in the machine
learning area, and states good results for benchmark data sets.
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FIGURE 1. By inflating the variance for artificially generated error by c × σ2
δ ,

the effect of additional error on the estimation f̂(ξk) can be studied. For c = 0
we use the original data in the analysis. The curve can be extrapolated to the
case of zero measurement error by using quadratic regression.

3 Covariate measurement error

From now on we include covariate measurement error into our considera-
tions. That is, we distinguish between the true (but latent) covariate ξ and
the observable version X under measurement error. Statistical analysis ig-
noring such inherent error is referred to as ’naive analysis’.

3.1 The classical error model

To take measurement error into account for statistical analysis, we need to
construct a model, relating the true covariate to the observable covariate.
Assume that there is a true covariate ξ but our device allows measurement
merely under inclusion of a random error. We model that type of error as:

X = ξ + δ, (δ, ξ) ∼ indep., E(δ) = 0, (4)

which is frequently extended to δ ∼ N (0, σ2
δ ) and ξ ∼ N (µξ, σ2

ξ ).
There are two standard approaches to error correction, which we will dis-
cuss for the RVM successively: Carroll et al. (1999) present one adoption of
the SIMEX approach for nonparametric regression and Carroll et al. (1995)
describe regression calibration.

3.2 Error correction using SIMEX

The effect of covariate measurement error on the estimation function is
studied in a simulation study and afterwards an extrapolation on the error-
free case is performed.
For the classical error model (4), we generate random errors δ∗i ∼ N(0, σ2

δ∗),
add these to the sampled xi’s and perform a standard RVM analysis us-
ing these ’new’ data under additional error. Varying the error variances
σ2
δ∗ ≡ c · σ2

δ allows us to study its effect on the prediction f̂(ξk). Figure 1
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TABLE 1. MSE for naive, SIMEX and regression calibration correction.

σ2
δ naive SIMEX reg. calib.
σ2
δ = 0.25 0.0044 0.0055 0.0038
σ2
δ = 1 0.0106 0.0103 0.0093
σ2
δ = 4 0.0394 0.0256 0.0199
σ2
δ = 9 0.0708 0.0585 0.0288

illustrates the increasing attenuation of f̂(ξk) with increasing variance of
the additional error. Finally we extrapolate on the case of zero measure-
ment error. The error variance σ2

δ needs to be known or estimated, e.g.
from validation or replication data.

3.3 Error correction using regression calibration

Carroll et al. (1995) describe the principle of regression calibration. From
the model structure of the RVM (1) it follows for the case of an error prone
covariate, that the mean of T given X can be written in two ways:

E(T |X) =

{ ∑N
j=1 wj E(φj(ξ)|X) + w0 (a)∑N

j=1 w
∗
jφj(X) + w∗

0 (b)
(5)

We note, that plugging E(φj(ξ)|X) (instead of φj(X)) into the model,
maintains the original weights wj in (a) , whereas usage of the error prone
variable X corresponds to biased weights w∗

j �= wj in (b). Under a para-
metric model for ξ given X, the conditional expectation in (5, a) is easily
calculated. Replacing φj(ξi) by E(φj(ξi)|X) in the optimization algorithm
of the RVM leads to the estimation of the original model parameters w.
We note that the error variance σ2

δ again has to be estimated or known.

3.4 Simulation results

We extended a RVM program code by Michael Tipping, which can be
found at http://research.microsoft.com/mlp/RVM/relevance.htm to both
the SIMEX and regression calibration case.
To check the performance of both methods, we ran 200 simulations with
the following setup: 201 samples were generated from the true function
f(ξ) = sin(ξ)/ξ, ξ ∈ {−10,−9.9, . . . , 10} under Gaussian error with differ-
ent variances. We assumed σ2

δ to be known. Table 1 shows how growing
measurement error variance influences the mean squared errors, averaged
over 200 simulations of naive analysis, SIMEX and regression calibration.
Figure 2 displays the mean prediction functions (i.e. the averaged predic-
tion functions over 200 simulations) of these methods for σ2

δ = 4. Compared
to the true function and the prediction based on error free covariates, there
is notable bias in all methods. However the regression calibration method
outperforms the naive RVM by far.
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FIGURE 2. Comparison of mean prediction based on naive analysis and analy-
sis using the true covariates without measurement error, SIMEX and regression
calibration.

4 Conclusions

We see from our simulation results, how covariate measurement error in-
validates the RVM regression and thus taking the error into account seems
indispensable. The SIMEX and regression calibration methods seem to be
able to recover the latent dependency of the target on the covariate, even
under covariate measurement error.
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turen” is gratefully acknowledged.
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Abstract: The monitoring of the expression profiles of thousands of genes seems
particularly promising for biological classification. DNA microarrays data have
been recently used for the development of classification rules, particularly for
cancer diagnosis. However, microarrays data present major challenges due to the
complex, multiclass nature and the overwhelming number of variables character-
izing gene expression profiles. We propose an approach based on sliced inverse
regression which allows the simultaneous development of classification rules and
the selection of those genes that are most important in terms of classification
accuracy.

Keywords: Dimension reduction; SIR; Classification; Microarrays data.

1 Introduction

Gene expression data from DNA microarrays may be employed to define
classification rules to predict the diagnostic category of a sample on the
basis of its gene expression profile. Classification of microarray data is par-
ticularly problematic due to: (1) the large number of features (genes) from
which to predict classes compared to the relatively small number of obser-
vations (samples); (2) the classification rule should be based only on those
genes which contribute most to classification accuracy.
Suppose we have an expression array X of dimension (n× p) for n samples
and p genes. The biologists view would consider X�, in which each column
represents the gene expression profile for a particular sample. We assume
that gene expression measures are log transformed ratios to a baseline or a
reference condition and they have already been normalized. A categorical
response variable Y with K levels representing biological outcomes, such as
tumors type, is also recorded along with gene expression levels. Several sta-
tistical methods have been used for classification based on gene expression
profiles: discriminant analysis, logistic regression, nearest neighbor classi-
fiers, classification trees and support vector machines (for a comparison of
the above methods see Dudoit et al. (2002)).
In this paper we propose an approach based on sliced inverse regression
(SIR) for class prediction and gene selection from DNA microarrays data.
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We then apply the proposed methodology to a public available dataset on
small round blue cell tumors (SRBCT) of childhood.

2 Applying SIR to gene expression data

Sliced inverse regression is a dimension reduction method introduced by Li
(1991) which seek to find a few directions in the p-dimensional predictors
space such that the regression of Y |X can be fully studied on such dimen-
sion reduction subspace without loosing any relevant information contained
in the data.
SIR assumes that the relationship between a response variable and a set of
predictors can be expressed through the model Y = f(β�

1 X, . . . , β
�
d X, ε),

where ε is a random error term and f() is an unknown function. The direc-
tions (β1, . . . , βd) span the dimension reduction subspace (drs) S(β) and
must be estimated from the data. The dimension of the drs is d, and pro-
vided that the assumed model holds, we can write Y⊥⊥X|β�X, where β
is the p × d matrix with columns βj . Thus, the dependence of Y on X

may be fully studied through β�X, the coordinates of the projection of X
onto the d-dimensional subspace spanned by the columns of β. Li (1991,
Theorem 3.1) showed that, under certain conditions concerning the dis-
tribution of X, the population version of SIR is based on the following
spectral decomposition:

Σ−1
X ΣX|Y = VΛV� (1)

where ΣX denotes the covariance of X and ΣX|Y = Var(E(X|Ỹ )), for Ỹ
which is a sliced version of Y with fixed number of slices. Thus, the spanning
matrix of the drs is given by β = Σ−1/2

X V. The sample version of SIR is
simply obtained by replacing the above matrices with sample estimates.
Applying SIR to gene expression data appears in principle straightforward.
There is no need to slice the response variable since Y is categorical with a
level for each biological class. But, since p� n, ΣX has rank at most n, and
is hence singular and cannot be inverted (on this point see also Chiaromonte
and Martinelli, 2002). However, this very large number of genes can be
drastically reduced because many of them exhibit near constant expression
levels across samples. A similar problem is also encountered in discriminant
analysis, where it is customary to use a preliminary screening of the genes
based on the ratio of between-groups to within-groups sum of squares.
This statistic is clearly related to the decomposition used in computing
discriminant variates, but for SIR a more natural statistic, albeit equivalent
in terms of ordering, would be the ratio of between-groups to total sum of
squares, i.e.

BSSj

TSSj
=

Σ̂X|Y [j,j]

Σ̂X[j,j]

j = 1, . . . , p (2)



L. Scrucca 261

The (n− 1) genes with the largest BSS/TSS values are then selected and
used to fit the SIR model. The latter provides estimates of SIR directions
β̂j , j = 1, . . . , (K − 1), along with the associated eigenvalues λ1 ≥ λ2 ≥
. . . ≥ λK−1.

3 Class prediction and gene selection based on SIR

Expression profiles for the active genes can be projected onto the estimated
drs yielding the SIR variates β̂�

j x (j = 1, . . . ,K−1). A (K−1)-dimensional
plot using Y as marking variable may then be used to visually allocate
each sample point to the closest class. A more formal procedure consists in
classifying each sample to the nearest centroid in the SIR subspace. Suppose
we have a test sample with expression levels x∗, then the discriminant score
for class Y = k is defined as

δk(x∗) = (β̂
�
x∗ − β̂

�
x)�W−1(β̂

�
x∗ − β̂

�
x)− 2 log(πk) (3)

where the first term is the Mahalanobis distance of the test sample x∗ with
respect to the centroid on the SIR subspace, using W as the pooled-within
class covariance matrix (which is diagonal since SIR variates are orthogo-
nal), whereas the second term is a correction, in analogy to Gaussian LDA,
based on the class prior probability, with

∑K
i=1 πi = 1. These are usu-

ally estimated by the sample class proportions in the training data. The
classification rule is then

C(x∗) = arg
k

min δk(x∗) (4)

Discriminant scores can also be used to construct estimates of the class
probabilities, i.e. p̂k(x∗) = exp{−1

2δk(x
∗)}/∑K

j=1 exp{− 1
2δj(x

∗)}
The SIR model estimated using (n − 1) active genes usually provides a
perfect fit to the training data, hence 0 train error rate, but it tends to be
a poorer classifier for future observations. Gene selection aims at identifying
a subset of genes which is able to linearly explain the patterns variation in
the SIR subspace. For a two-class problem the, say, g relevant genes can
be selected as those who maximizes the squared correlation coefficient:

R2
g = R2(Xβ̂, (X[1], . . . , X[g])) (5)

When K > 2 the above statistic can be generalized using the proportion
λ̂j/

∑
j λ̂j to reflect the importance of each estimated SIR variate. An iter-

ative scheme is adopted: at each step only those genes which contribute the
most to the overall patterns are retained and used to re-fit the SIR model.
Using large values of R2

g, say 0.999, one or few genes are removed at each
step. The process is repeated until the final subset contains K − 1 active
genes. The classification accuracy of each gene subset may be assessed on
the basis of its misclassification error on a test set, if available, or on a
cross-validated set. This criterion may guide in choosing the “best” subset
or a set of candidates subsets.
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4 Classification of small round blue cell tumors
(SRBCT) of childhood

We applied the above methodology to the SRBCT data provided by Khan
et al. (2001). Expression measurements were obtained from glass-slide cDNA
microarrays and tumors classified as Burkitt lymphoma (BL), Ewing sar-
coma (EWS), neuroblastoma (NB), and rhabdomyosarcoma (RMS). 63 ob-
servations were used as training samples and 25 as test samples, although
five of the latter were not SRBCTs. Khan et al. (2001) achieved a test error
of 0% using a neural network approach and selected 96 genes for classifica-
tion. Hastie et al. (2002) using shrunken centroids selected 43 genes, still
retaining a 0% error on the test set.
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FIGURE 1. Misclassification errors for genes subsets
applied to the SRBCT data.
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FIGURE 2. Scatterplot of the first two
SIR variates estimated using the subset
of 15 genes for the SRBCT data.

Figure 1 shows the misclassification error rate for subsets of genes of de-
creasing size. As expected the training error appears to be an optimistic
estimate of the misclassification error when compared to the test set and
the CV set. From this plot we may select the subset with, say, g = 15
genes as the “best” subset because it has a 0 error rate on both the cross–
validated and the test set. Figure 2 shows the sample points plotted on
the subspace spanned by the first two SIR directions estimated using the
“best” 15 genes, along with decision boundaries. The different tumor classes
appear clearly separated.
Figure 3 displays the estimated probabilities each sample belonging to a
given tumor class. Samples in the training set show a good separation
between the highest and the next highest probability, whereas in the test
set a couple of samples have less evident separation. However, even in these
cases we end up with a correct classification. This kind of plot turns out to
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be a very useful summary of the accuracy of the classification rule for each
sample.
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FIGURE 3. Estimated class probabilities using the “best” subset for the SRBCT
data.

References

Chiaromonte, F. and Martinelli, J. (2002). Dimension reduction strategies
for analyzing global gene expression data with a response. Mathemat-
ical Biosciences, 176, 123–144.

Cook, R.D. (1998). Regression Graphics: Ideas for Studying Regressions
through Graphics. New York: Wiley.

Dudoit, S., Fridlyand, J. and Speed, T.P. (2002). Comparison of discrimi-
nation methods for the classification of tumors using gene expression
data. Journal of the American Statistical Association, 97, 77–87.

Khan, J. , Wei, J.S., Ringner, M., Saal, L.H., Ladanyi, M., Westermann, F.,
Berthold, F., Schwab, M., Antonescu, C.R., Peterson, C. and Meltzer,
P.S. (2001). Classification and diagnostic prediction of cancers us-
ing gene expression profiling and artificial neural networks. Nature
Medicine, 7, 673–679.

Li, K. C. (1991). Sliced inverse regression for dimension reduction. Journal
of the American Statistical Association, 86, 316–342.

Tibshirani, R., Hastie, T., Narashiman, B. and Chu, G. (2002) Diagnosis
of multiple cancer types by shrunken centroids of gene expression.
PNAS, 99, 6567–6572.



Is the gene between the two markers or not?

Ib M. Skovgaard1

1 Department of Natural Sciences, KVL, Thorvaldsensvej 40, DK-1871 Frederiks-
berg C, Denmark. E-mail: ims@kvl.dk

Abstract: A peculiar phenomenon by which the p-value for a likelihood ratio
test seems to substantially exaggerate the evidence arises naturally in a genetic
context. The goal of the experimenter is to map a certain recessive genetic prop-
erty (mutant plant) on the chromosome. The gene has been located to the vicinity
of two genetic markers, A and B say, and before further (expensive) experimen-
tation it is useful to know whether the gene is between A and B or not. The
experimental basis is the collection of all joint genotypes of A and B for all 91
mutant plants arising from a second generation cross (so-called F2-generation)
of two inbred lines. In statistical terms the example is unusual by leading from
ordinary genetic probability calculations to a null-hypothesis and an alternative
that are not continuously connected. Below is given some background on the
modeling of the data in question.

Keywords: Gene location, markers, separate hypotheses.

1 Introduction

In the search for the location of a particular gene coding for a specific prop-
erty comparison with two nearby marker genes is repeatedly used. Based
on data on the three properties, the two marker types and the property in
question, it is then attempted to estimate the position of the gene relative
to the two markers. For the calculation of the recombination probabilities
one has to distinguish whether the gene in question is between the two
markers or not. This gives rise two a discontinuity in the model and makes
it difficult, for example, to set up a single confidence interval for the loca-
tion. Therefore it is desirable to be able to tell whether the gene is between
the two markers or not. In the latter case it is usually either obvious on
which side of the interval the gene is, or it is so far from the two markers
that it is unimportant.
The property dealt with here is a Mendelian property, diallelic and reces-
sive. This means that the property is governed by a single gene at which
each individul has one of the two alleles, c or C, on each of the two chromo-
somes of the pair. The mutant allele is denoted c and the non-mutant allele
is denoted C; since the property is recessive only the genotype cc leads to
mutant plants, while the genotypes CC and Cc both give normal plants.
The two marker genes are also diallelic but co-dominant, meaning that all



Ib M. Skovgaard 265

genotypes (aa, aA and AA resp. bb, bB and BB) can be distinguished. The
experiment consists of sampling marker genotypes from all mutant individ-
uals from the F2 generation from two parent lines that are homozygotic and
different on all the three genes in question. Thus, the first parental line has
genotype (aa, bb, cc) and the second (AA, BB , CC). Their offspring (the
F1-generation) all have genotype (aA, bB, cC) and our plants are children
of two such plants.
There were 91 mutants (genotype cc) in the F2-generation. These were all
genotyped for the two marker loci resulting in the genotype frequencies
given in the following table.

Marker genotypes bb Bb BB total
aa 40 33 7 80
Aa 6 5 0 11
AA 0 0 0 0
total 46 38 7 91

The fact that the alleles a and b from the mutant parent line is much more
frequent than the alleles A and B strongly suggests that the mutant gene
locus is linked to the two marker loci. Further inspection clearly reveals
that the a-allele is more closely linked with the mutant gene than the b-
allele, suggesting that the mutant gene is closer to the A-marker than to
the B-marker. Thus the order of the genes is either ACB or CAB, and our
task is to estimate the distances and to distinguish the two cases.

2 Genotype probabilities

Since we observe only genotypes cc (the mutants) the observed marker
genotype frequencies should be multinomial with probabilities equal to
the conditional marker genotype probabilities given that the mutant locus
genotype is cc. Consider first the conditional probabilities of the A-marker
genotype. An AA individual implies that a cross-over has taken place for
each of the two F1-gametes, each time recombining AC and ac to Ac. Sim-
ilarly a mutant of genotype Aa implies a single recombination while aa
implies none. Let r denote the recombination probability between the A-
marker locus and the mutant locus. Then the probabilities of the A-marker
genotypes among the mutants are in Hardy-Weinberg proportions,

P(aa|cc) = (1− r)2, P(Aa|cc) = 2r(1− r), P(AA|cc) = r2.

Let X(aa), X(Aa) and X(AA) denote the observed numbers mutants with
the respective genotypes. The estimate of the recombination probability, r,
is then the observed recombination proportion

r̂ =
2X(AA) +X(Aa)

2n
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where n is the total number of mutants. I our example we get the estimate
r̂ = 11/(2 · 91) = 0.06. Similarly we get the estimate ŝ = 0.286 for the
recombination fraction between the B-marker and the mutant locus.
When the mutant gene is between the two markers recombinations on either
side of it are assumed independent and hence the conditional genotypes at
the two markers are independent given the mutant (cc). Thus the nine
marker genotype probabilities are obtained by multiplication of the two
sets of Hardy-Weinberg proportions.
In the other case, when the gene order is CAB we no longer have this
conditional independence. Then for the double heterozygotes (aA, bB) the
recombination pattern cannot be completely inferred because they may
arise either from the two gametes cAB and cab, or from cAb and caB. Let
t denote the recombination probability between the two markers, then for
this case the nine conditional probabilities are given in the following table.

Genotypes bb Bb BB

aa (1− r)2(1− t)2 2(1− r)2t(1− t) (1− r)2t2

Aa 2r(1− r)t(1− t) 2r(1− r)(t2 + (1− t)2) 2r(1− r)t(1− t)
AA r2t2 2r2t(1− t) r2(1− t)2

Whether the mutant gene is inside or outside the marker interval thus
makes no difference for the conditional distributions of the two marker
genotypes separately, but it does have an impact on their joint distribu-
tion, still conditioned on mutants. If we decompose our information in the
mutants distribution of the A-marker genotype and the conditional dis-
tribution of the B-marker genotype given the A-marker genotype we see
that the distinction between the two situations is solely in the latter com-
ponent. Thus, consider the conditional distribution of B-marker genotypes
given the A-marker genotype for mutants when the gene oder is CAB. This
is given in the Table 3.

Genotypes bb Bb BB sum
aa (1− t)2 2t(1− t) t2 1
Aa t(1− t) t2 + (1− t)2 t(1− t) 1
AA t2 2t(1− t) (1− t)2 1

which should be contrasted with the conditional probabilities (1−s)2, 2s(1−
s), s2 for the other case. Thus, when the A-marker genotype is aa the two
situations cannot be distinguished because the two conditional B-marker
genotype distributions are the same except that t plays the role of s. For
the genotypes Aa and AA the two conditional distributions are completely
different, however. Thus it is from these two rows, in comparison with the
first, that we find the information that distinguishes whether the mutant
gene is inside or outside the interval.
In our data example we see that since there are no mutants with genotype
AA, the 11 heterozygotes (Aa) distributed as (6,5,0) on (bb, Bb, BB) are
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crucial. As it turns out their distribution is in perfect accordance with
the mutant gene being between the two markers, but does not fit quite
well with the other situation by which, among other aspects, bb and BB
should be equally likely. The problem is, however, whether the information
is sufficient to exclude this situation with reasonable degree of certainty.

3 Testing one situation against the other

For the purpose of excluding one of the situations we would like to set
up a test for this situation, with the other as alternative, and vice versa.
Using the conditional distribution of the B-marker given the A-marker for
this inference we obtain two mathematically disconnected models, each
parametrized by a single parameter, either t or s from above, each vary-
ing between zero and a half. Actually the two models have a single point
in common, corresponding to t = 0.5 and s = 0.5. This is the situation
when there is no linkage between the mutant gene and any of the mark-
ers, thus contradicting that the mutant gene is between the two markers.
Mathematically this contradiction is removed if we limit s upwards by the
recombination fraction between the two markers. This is unimportant for
our case since our interest is rather at the other end of the distribution
with s or t near zero.
There are (at least) three methods at hand for the present case. One is to
make a goodness-of-fit chi-squared test based on expected numbers under
the two hypotheses. This gives the p-value 0.79 for the hypothesis that the
gene is between the markers, and p = 0.036 for the other hypothesis. But
this is a weak test since it tests against any alternative without taking
advantage of our genetic knowledge.
The second possibility is to use a likelihood ratio test for each of the to hy-
potheses against the other. Using the asymptotic distribution (Cox, 1962)
we get the two p-values 0.66 and 0.0004, this time seemingly giving over-
whelming evidence that the gene is between the two markers.
However the likelihood ratio itself is only 0.028 giving posterior odds around
35 in favor of the gene being between the markers based on equal prior
probabilities. Although the conclusion is in the same direction as with the
other tests, the likelihood ratio and the posterior odds suggest that the
p-value exaggerates the evidence by a factor around 10 in this example.

Acknowledgments: The data and the problem were kindly provided by
Professor Sven Bode Andersen, KVL.
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Abstract: We estimate the random coefficient model by means of Markov Chain
Monte Carlo methods (MCMC) and simultaneously carry out variable selection
and covariance selection during our modeling procedure. Following the statistical
principle of parsimony this method yields a model, which includes only the sig-
nificant variables and covariance elements and therefore allows a more efficient
estimation. It offers a reasonable basis for making decisions in real applications.
We will demonstrate this for marketing data which come from conjoint analysis.
In this application the heterogeneous behaviour of consumers has to be explained
from high-dimensional data.
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1 The Model

The procedure of this paper is based on the following random coefficient
model:

yi = ZiΘzi + Ziβ
G + ZiCz̃i + εi, εi ∼ N(0, σ2

εI), (1)
z̃i ∼ N(0, I), (2)

where I denotes the identity matrix. We have Ti observations yi for each
subject i = 1, . . . , N . Zi are the design matrices of dimension Ti × d. We
include r covariates zi into the model and the d × r-dimensional matrix
Θ is the corresponding parameter matrix. C is a lower triangular squared
matrix and z̃i are standard normally distributed. (1), (2) is equivalent to
the following traditional representation of a random coefficient model:

yi = ZiΘzi + Ziβi + εi, εi ∼ N(0, σ2
εI), (3)

βi = βG + ui, ui ∼ N(0, Q = CC ′). (4)

The lower triangular matrix C is the Cholesky factor of the Cholesky de-
composition of the covariance matrix of the random effects Q.
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Usually we do not have additional prior information about the selection of
variables and the form of the covariance matrix. Therefore on the one hand
it is desirable to start with a very general model involving all covariates and
all effects as random effects. On the other hand the estimation of a large
parameter vector with possibly unnecessarily many elements reduces the
efficiency and the speed of convergence of the MCMC chains. To deal with
both these aspects we formulate our model in a general way and let the
data choose the special structure during the modeling procedure. Therefore
we add indicators δ and γ to our model parameters. These indicators define
which elements of Θ and C are excluded from the estimation:

Θjk = 0, iff δjk = 0,
Θjk �= 0, iff δjk = 1, and

Clm = 0, iff γlm = 0,
Clm �= 0, iff γlm = 1,
for l ≥ m.

(5)

Only those elements of Θ and C which are unequal to zero are included
into the estimation procedure and are denoted Θδ and Cγ , respectively.
Bayesian estimation via MCMC methods amounts to the estimation of the
unknown model parameters Θδ, βG, Cγ , σ2

ε together with the indicators γ
and δ and augmented by the individual effects z̃i.

2 Bayesian Estimation Using MCMC Methods

2.1 MCMC Sampling Steps for the Parsimonious Estimation
of Random Coefficient Models

The following MCMC steps are involved:

(I) Generate from δjk|δ\jk, γ, βG, z̃, σ2
ε , y.

(II) Generate from γlm|γ\lm, δ, βG, z̃, σ2
ε , y.

(III) Generate from Θδ, Cγ |γ, δ, βG, z̃, σ2
ε , y.

(IV) Generate from βG|Θδ, Cγ , σ2
ε , y.

(V) Generate from z̃|βG,Θδ, Cγ , σ2
ε , y.

(VI) Generate from σ2
ε |βG,Θδ, Cγ , z̃, y.

We denote the data y and the individual effects z̃ for all subjects i. δ\jk
is the notation used for the sequence δ excluding δjk and similarly for
γ\lm. Steps (IV), (V) and (VI) are standard MCMC steps described for
example in Frühwirth-Schnatter et al. (2004). In step (I) and (II) the indi-
cators are generated applying the efficient sampling scheme of Smith and
Kohn (2002). In step (III) we generate Θδ and Cγ jointly from a multivari-
ate normal distribution.
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2.2 Comparison to Existing Estimation Procedures

Usually model (1), (2) is estimated for the unrestricted parameter matrices
Θ and C. One common way is to center the random effects according to
the transformation (4) and to assume a prior inverted Wishart distribution
for the covariance matrix Q. For such an algorithm the choice of the prior
parameters has a big influence on the estimates and on the speed of conver-
gence (Natarajan, Kass 2000). Furthermore it includes the strong prior as-
sumption of a full covariance matrix. But a prior determination of non-zero
variances in Q is only reasonable, if we are sure that we really have random
effects. If the decision about the effects being fixed our random is uncertain
such an algorithm may yield an overfitted model, including unnecessarily
many effects as random. Additionally we may also exclude non-significant
covariances even if the corresponding variances are unequal to zero for our
algorithm. Therefore the covariance matrix may be estimated in a more
flexible way than for other methods (e.g. Chen, Dunson (2003)). Similar
arguments are true for the estimation of the parameters Θ. In real applica-
tions we typically have a huge number of variables, but many of them are
likely to be zero. Including all of them is unsatisfactory. An advantage of
our procedure is that it does not involve a prior decision about the form
of the covariance matrix and the selection of the variables. These decisions
are made based on the data during the modeling procedure.

3 Estimation of Heterogeneity in the Mineral Water
Market

The data of our application come from the Austrian mineral water market
and have already been estimated by means of a traditional Gibbs sampler
at the IWSM (Frühwirth, Otter 1999 and Tüchler et al. 2002). The design
matrices Zi consist of the following 15 columns: 7 main effects (constant,
4 brands, price and quadratic price), 4 brand by price and 4 brand by
quadratic price interaction effects. 213 consumers stated their likelihood to
buy 15 different mineral water products on a 20 point rating scale. This
yields a design matrix of dimension 15×15. Additionally we include 7 con-
sumer characteristics zi into the analysis. We have 120 distinct elements
in the covariance matrix Q and also 120 elements in the parameter ma-
trix Θ. The dimensions of the parameters in this application are big and
advantages of parsimonious estimation of Q and Θ are to be expected.
¿From the marketing point of view the following questions are of interest.
Do the consumers behave homogeneously with respect to some of the effects
of Zi? Are there dependencies between those effects for which we found a
heterogeneous behaviour? Do consumer specific attributes really help to
understand the consumer market in the mineral water category?
To answer all these questions we look at posterior estimates of the indica-
tors δ and γ. These may be interpreted as probability of an element of Θ
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TABLE 1. Posterior probability for the elements of the covariance matrix Q to
be significantly different from zero.

1 1 1 1 1 1 1 1 1 .0 .6 0 0 .0 0
- 1 1 1 1 1 1 1 1 .0 .6 1 1 .0 .0
- - 1 1 1 1 1 1 1 .0 .6 1 1 .0 .0
- - - 1 1 1 1 1 1 1 1 .0 .0 .0 .0
- - - - 1 1 1 1 1 .0 1 .0 .0 .0 .0
- - - - - 1 1 1 1 .9 .6 1 1 .0 .0
- - - - - - 1 1 1 .0 1 .2 .2 .0 .0
- - - - - - - 1 1 1 .6 1 .0 .0 1
- - - - - - - - 1 1 .6 .0 .1 .0 .0
- - - - - - - - - 1 .0 .0 .1 .0 .0
- - - - - - - - - - 1 .0 .0 .0 .0
- - - - - - - - - - - 1 1 .0 1
- - - - - - - - - - - - 1 .0 .0
- - - - - - - - - - - - - .0 0
- - - - - - - - - - - - - - 1

and C, respectively to be non-zero. The posterior probability for the ele-
ments of the covariance matrix Q to be non-zero are given in Table 1. Only
the interaction effect of one brand by the quadratic price has a low posterior
probability of 0.04 for being a random effect. Our algorithm estimates this
effect as a fixed effect as we can see from the zeros in the fourteenth column
of Table 1. For all other effects the indicators clearly advocate for treating
them as random. In Table 1 the diagonal elements take values of one for
these effects. The correlation between the different random effects is clearly
present for the 7 main effects (the value of the indicators is one), whereas
this probability is rather close to zero for many of the interaction effects.
Note that for our selection algorithm it is possible to include the variances
of these interaction effects into the model whereas the non-significant co-
variances are ignored. Here the new procedure offers interesting results in
comparison to earlier model selection for these data. In Tüchler et al. (2002)
we chose a model with fixed brand by quadratic price interactions for all
four brands. So another three effects were fixed. Since we estimated the
covariance matrix from an inverted Wishart distribution, the decision be-
tween fixed or random brand by quadratic price interactions involved the
decision about 54 additional elements and the model with fewer parame-
ters was preferred then. For our new procedure we decide for each element
separately and the flexibility of this methods allows to select 13 elements
of the covariance matrix for the brand by quadratic price interactions (see
the last four columns in Table 1).
Looking at the posterior probabilities of the parameters Θ to be non-zero
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we find that the consumer specific variables do not deliver much additional
insight in the behaviour of consumers in the mineral water market. Only
two effects concerning the education and the income have an indicator with
posterior probability of 1 for being unequal to zero. For all others we obtain
a probability between 0 and 0.15. This is in line with marketing theory that
says that consumer specific attributes are unimportant for the explanation
of heterogeneity in such a market of convenience goods.

Acknowledgments: The author thanks Sylvia Frühwirth-Schnatter for
the cooperation on Bayesian estimation of heterogeneity models. Part of
this work was supported by the Austrian Science Foundation (FWF) under
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Tüchler R., Frühwirth-Schnatter S. and Otter, Th. (2002). The Hetero-
geneity Model and its Special Cases - an Illustrative Comparison. In:
Proceedings of the 17th International Workshop on Statistical Mod-
elling, ed. Stasinopoulos, M., and Touloumi, G., Chania, Greece, pp.
637-644.



Hierarchical Bayesian Modelling of Spatial
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Abstract: M. Tuberculosis is a bacterium with a ring-shaped genome. Microar-
ray experiments make it possible to monitor the gene expressions of each of the
3924 genes over time. Given that the genes are so tightly packed on the genome,
it is expected that neighbouring genes influence each other. We define a Hid-
den Markov Model (HMM) to relate the observed expression levels to hidden
states “Up”, “Down” and “Same” for a time-series gene expression dataset with
four time points. A Potts model is identified to describe the interactions between
neighbouring states. A typical problem in these types of model is the estimation
of the parameters of the hidden states because of the intractability of the nor-
malizing constant. Recent work by Pettitt et al. (2003) provides a clue to avoid
using a pseudolikehood approximation.

Keywords: microarray; hidden Markov model; gene interaction; normalizing
constant.

1 Introduction

Microarray technology has made the simultaneous measurement of gene
transcription a routine activity. Whereas gene transcription is only one
stage in the complex genomic process of living organisms, it gives a fasci-
nating insight in one aspect of this activity across the whole genome.
Gene regulation is a complex biological process which involves gene-gene
and gene-protein interactions. Some of the interactions may be on a local
scale. A particular strand of Mycobacterium Tuberculosis has a genome with
4,411,529 base pairs, on which 3,924 genes are rather tightly packed. If dur-
ing the process of transcription, the RNA polymerase enzyme, by chance,
skips the inhibitor and the neighbouring genes are in the same direction,
then it might be the case that neighbouring genes tend to be co-expressed.
Figure 1 shows this co-expression hypothesis. A similar hypothesis was put
forward in Oliver et al. (2002). In this paper we describe a model to analyze
the hypothesis for positive local interactions between genes.

2 Time-course gene-expression experiment

Prof. Phil Butcher and his Bacterial Microarray Group (Bµgs) at St. George’s
Hospital in London are interested in studying the effects of stressed growth
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Gene Gene

RNA PolymeraseRegion
Control

FIGURE 1. As genes are closely packed in a M. Tuberculosis genome, it is not
unlikely that the RNA polymerase enzyme skips the inhibitor and also expresses
the subsequent gene.

on the expression levels of all 3924 genes in M. tuberculosis. In one ex-
periment, five cultures of M. tuberculosis were grown with only a limited
growth medium. The cultures in the first two flasks were grown until day
6 and then harvested. The other three cultures were grown and harvested
at day 14, 20 and 30, respectively. From each harvest four batches of RNA
were extracted and hybridized to four microarrays with a genomic DNA
reference sample.
Although it is possible to model the quantitative expression data in a con-
tinuous fashion, there are two reasons why it is more satisfactory to model
the data in a discrete way:

1. There is biological evidence that the biological relevance of differential
expression is unrelated to its associated fold-change (Johnson et al.
2003). A small fold-change can have the same effect as a large fold-
change.

2. As a consequence of the noisy nature of gene expression data with
many outliers, modelling discrete interactions are more robust.

For this reason, we define the hidden states—“down” (−1), “same” (0)
and “up” (+1)—and define the spatial interactions between these states.
Conditionally on the hidden states, we define the likelihood of the data.

3 Interaction Model

Each microarray contains 4,624 spots, among which 3,924 are M. Tuber-
culosis genes. For each of the genes, the position on the M. Tuberculosis
genome is known. Like many bacteria, the genome of M. Tuberculosis is
circular. This means that the last gene, Rv3924, is right next to the first,
Rv0001. The expression of the genes is observed over four time-points, i.e.,
across three transitions. The underlying structure of the data, therefore,
can be described as a 3, 924× 3 cylinder s, as shown in Figure 2.
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FIGURE 2. The hidden parameter s defines a Markov Random Field on a lattice
that wraps around.

3.1 Hidden Potts model for gene interactions

The hidden states sij ∈ {−1, 0,+1} form a discrete lattice, on which we
define spatial and temporal interactions. Potts models have typically been
used for these kinds of purposes. Our model is in spirit close to such Potts
models, except that it explicitly takes into account the ordered nature of
the states,

p(sij |s−ij θm) ∝ exp (θt
∑
m∼i

2− |smj − sij |
2

+ θg
∑
n∼j

2− |sin − sij |
2

+θ−11{sij=−1} + θ01{sij=0}), (1)

where m ∼ j and n ∼ i refer to neighbouring cells in the vertical and
horizontal direction, respectively, keeping in mind the cylindrical nature of
the lattice. The parameters θt and θg describe the interactions in the time
and spatial, i.e. genome, components. Positive values of these parameters
make it more likely that the same state persists across time and across
the genome, whereas negative values of θt and θg increase the likelihood of
opposite states.

3.2 Likelihood of the data

The idea is to define the likelihood of the data conditional on the hidden
states. Rather than considering the full 3924 × 16 data matrix, we only
consider a summary thereof, which, although not sufficient, is, in some
approximate sense, “close” to such. For evaluating mean changes across
two populations, the t-statistic is most powerful, if the underlying data
are normally distributed. For this reason, we define for each gene g three
t-statistics across time,

dgi =
x̄g,i+1,. − x̄gi.
sp(i,i+1)

, i = 1, 2, 3, (2)
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where the expression values xgij are considered on the log-scale, which
can be assumed approximately normal (Wit and McClure 2004). Condi-
tional on the hidden states, the vector (dg1, dg2, dg3)t has a multivariate
t-distribution with a known covariance structure. The non-centrality pa-
rameters are assumed to be fixed, µ−1 < 0, µ0 ≡ 0, µ+1 > 0, and depend
on whether a hidden state is −1, 0 or +1 respectively.

4 Model estimation via MCMC

By putting priors on all the model parameters, the model is a typical
Bayesian hierarchical model and most of the parameters can be updated
rather standardly via Gibbs or Metropolis-Hasting procedures. The pa-
rameters of the hidden interaction model θ are an exception, because the
likelihood p(θ|s, d, µ) is only defined up to a normalizing constant that it-
self depends on θ. Usually, this is remedied by using the pseudo-likelihood,
but recent work by Pettitt et al. (2003) make it possible to calculate the
normalizing constant exactly.
Theorem. Let s = (s1, s2, . . . , sn) a cylindrical lattice with n columns, and
let q(s|θ) =∏n

i=1 hθ(si, si+1) the unnormalized density on s, where hθ is a
homogeneous transfer function, then the normalizing constant of q(.|θ) is
given by

Trace (Qn) , (3)

where Q is a N ×N matrix, defined via Qkl = hθ(s1 = ak, s2 = ak), where
A = {a1, a2, . . . , aN} the set of all values a column of s can assume.

In our case, the transfer function hθ is given by

hθ(si, si+1) = exp( θt

2∑
j=1

2− |sij − si,j+1|
2

+
3∑
j=1

[
2− |sij − si+1,j |

2
θg

+1{sij=−1} θ−1 + 1{sij=0} θ0]). (4)

In each MCMC sweep this quantity has to be calculated. The 27× 27 ma-
trix Q has only positive entries, is therefore irreducible and by the Perron-
Frobenius theorem can be partitioned Q = H−1DH, whereby D is a di-
agonal matrix. The normalizing constant is therefore easily calculated as
Trace[D3924] =

∑27
i=1D

3924
ii . The computational effort is thus exactly the

same as for pseudo-likelihood.

5 Results

The sampler was initialized by reasonable values for each of the parame-
ters. Figure 3 seems to suggest that the sampler burned in and converged
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FIGURE 3. MCMC run of the parameter estimates for θ.

relatively quickly. This was confirmed by choosing different starting points
for each of the parameters and redoing the sampler (results not shown).
The posterior mean of θg is 1.12, which suggests a positive relationship be-
tween neighbouring genes. This confirms the hypothesis that control mech-
anisms of a simple organism such as a M. Tuberculosis bacterium have a
local component, which leads to co-expression of neighbouring genes.
The parameter θt is also positive, suggesting that gene expression changes
tend to persist in time. Moreover, the abundance parameter for state 0 is
quite a bit larger than the abundance parameters for states −1 and +1,
i.e., most of the genes don’t change expression level most of the time.

Acknowledgments: Special thanks to the Dipartimento di Scienze Statis-
tiche “Paolo Fortunati” in Bologna for its hospitality in 2004.
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Zygmunt Kaczmarek1, Elżbieta Adamska1 and Teresa
Cegielska-Taras2

1 Institute of Plant Genetics, Polish Academy of Sciences 60-479 Poznań, ul.
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Abstract: Utilizing the multivariate analysis of variance approach it is shown
how doubled haploids lines of oilseed rape can be selected with respect to the
content of favorable fatty acids. Investigation the way of the genetic improvement
and selection forms characterized both a higher oleic acid and the ratio of linolenic
and linoleic acid (1:2).

Keywords: MANOVA model, multivariate linear hypotheses, Hotteling-Lawley
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1 Introduction

Winter rapeseed (Brassica napus L.) become a major oilseed crop in Eu-
rope when quality varieties, low in erucic acid and glucosinolate content
were developed and introduced into commercial production. Quality im-
provement in both the oil and meal portion of the seed were key factor in
the success of rapeseed as a new, high quality and edible oil.
Fatty acid composition of the zero erucic acid commercial Brassica napus L.
crop is typical for this species and similar to what observed in the past over
many years. Rapeseed oil has high concentration of oleic acid (about 60%),
and contains moderate levels of linoleic acid (about 20%) and linolenic acid
(about 10%). This fatty acid composition of a vegetable oil is considered
ideal by many nutritionists for human nutrition, and superior to that of
many other plants oils. Rapeseed oil also has the lowest saturated fatty
acid of any vegetable oil of about 7% of total fatty acids, whereby palmitic
acid (C16:0) with about 4% and stearic acid (C18:0) with about 2% of
the total fatty acids, are the major saturated fatty acids in rapeseed oil.
But reduced levels of the polyunsaturated fatty acids, such as linolenic acid
(C18:3), and increased levels of the monounsaturated oleic acid (C8:1) are
associated with higher oxidative stability.
During last two decades tremendous progress has been made in the in vitro
production of haploid plants. Rapeseed is species where doubled haploids
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(DH) are produced with high efficiency and the system is widely applied
in breeding.
For improving the breeding efficiency, the selection of oilseed rape genotype
according to the desirable fashion e.g. regarded as nutritionally favorable of
fatty acids composition the study was taken. The primary objective of this
study was to investigate the way of the genetic improvement and selection
forms characterized both a higher oleic acid and the ratio of linolenic and
linoleic acid (1:2).

2 Description of the data

Two doubled haploid (DH) lines of winter oilseed rape, DH-0120 (P1) and
DH-C1041 (P2) were crossed to produce a hybrid generation, F1. The F1
gametes were sampled to develop doubled haploid population using the
isolated microspore culture method (Cegielska-Taras et al. 1997).
In this paper the analysis of results of experiment with 32 doubled haploids,
2 parental forms P1 and P2 and oilseed rape standard variety Kana, con-
ducted at one place in 2000, is presented. The content of following acids
was observed and analysed: palmitic acid (C16:0), stearic acid (C18:0),
oleic acid (C18:1), linoleic acid (C18:2) and linolenic acid (C18:3). The
data analysed here form a part of a much larger research project concern-
ing the breeding and selection of oilseed rape genotypes. Therefore, only
some results of the basic analysis will be shown. But before that, the model
adopted for the analysis is to be specified.

3 Mathematical model of observations

The data coming from the experiments with rapeseed genotypes are mul-
tivariate, because they originate from measurements taken on a set of mu-
tually interrelated characteristics. A method which takes into account the
interrelation between various acids is the multivariate analysis of variance
(MANOVA).
Let Y = [y1,y2, ...,yn]′ be the matrix of n observations of p quantitative
traits such that E(Y) = XΞ, where X is the n×q design matrix of rank r ≤
q, and Ξ = [ξ1, ξ2, ..., ξp] is the q×p matrix of unknown parameters. Vectors
y1,y2, ...,yn are p-dimensional observations, each having an independent
normal distribution with the same unknown nonsingular covariance matrix
Ξ, i.e. each yi (i = 1, 2, ..., n) is distributed independently according to
N [E(yi),Σ]. Then the p-variate MANOVA model may be written in form

Y = XΞ + E, (1)

where E = [e1, e2, ..., en]′ is the matrix of errors with ei ∼ N(0,Σ) for all
i.
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4 Tests of hypotheses

In the analysis of multivariate experimental data, the interest may be in
testing some hypotheses of the type

Ho : CΞM = 0, (2)

where the g × q matrix C is of rank g and the p × u matrix M is of rank
u. The rows of C represent a set of contrasts between the q rows of Ξ and
the columns of M represent some combinations of the columns of Ξ which
correspond to the observed variables. The necessary and sufficient condition
for Ho to be testable is the equation C(X′X)−X′X = C, where (X′X)−

is a generalized inverse of the matrix X′X. Thus, the hypothesis Ho may
be tested with any of the following test statistics (cf. Morrison 1976): the
Wilks likelihood ratio Λ, the Hotelling-Lawley trace T 2

o , the Pillai trace V
or the Roy maximum characteristic root cmax. Any of above tests involves
the computation of the two matrices: the sum of squares of products matrix
for error

SE = M′Y′(In−X(X′X)−X′)YM, (3)

and the matrix for hypothesis

SH = M′YX(X′X)−C′[C(X′X)−C′]−1C(X′X)−X′YM. (4)

To test the hypothesis Ho it will be convenient to use the Hotelling-Lawley
trace statistic defined as

T 2
o = (n− r)trace (S−1

E SH) (Lejeune, Caliński, 2000). (5)

The critical values at the significance level α, equal T 2
o,α,u,g,n−r, were given

by Seber (1984). However a suitable F -test approximation defined by Mc
Keon (1974) is available and will be used in this paper.
If Ho is rejected, one may be interested in testing hypotheses implied by
Ho, particularly

Hi,0 : c′iΞM = 0′, H0,j : CΞmj= 0, and Hi,j : c′iΞmj =0, (6)

when matrices C and M are replaced by row c′i and column mj correspon-
dently for all i and j (i = 1, 2, ..., g; j = 1, 2, ..., u).
The appropriate Hotelling-Lawley statistics for testing these hypotheses
are known (Lejeune, Caliński, 2000).

5 Analysis of the data

As mentioned in Section 2 the data come from the experiment in which
35 genotypes of winter rapeseed were compared with respect to five fatty
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TABLE 1. Estimates and results of testing the contrasts with cv. Kana for the
selected DH lines

Contrast DH line DH line Estimate of contrast in the fatty acid F -value for
– cv.Kana Nr. C16:0+C18:0 C18:1 C18:2 – 2×C18:3 multivariate test

H5–30 2 -0.27 2.97∗ -0.17 2.87

H5–43 3 -0.40 1.97 -0.03 0.97

H5–109 9 -0.17 1.13 -3.73 3.75

H5–129 11 -0.23 3.37∗∗ 0.40 3.33

H5–255 18 -0.47 1.43 0.20 0.80

F0.05 2.74
∗,∗∗ – denotes statistical significance at the level of 0.05 and 0.01 respectively

acids. The experiment was conducted in a completely randomized block
design with r = 3 replications. The experimental data from the n = 105
plots are multivariate as the observations were taken on p = 5 variables
(fatty acids). The experiment was analysed under the usual model for a
block design, which in the multivariate case can be written in accordance
with (1). The data were analysed with respect to two aspects: the proper
selection of DH lines and estimation of transgression effects of doubled
haploids, for oleic acid.
In order to select the best lines in terms of requirements described in intro-
duction, it was suggested – using the basic results of MANOVA performed
for the five analysed acids – to test the contrasts of the individual DH
lines with the standard, taking into consideration three ”combinations of
variables” being the functions of the analysed acids. These variables were
defined to meet the assumed requirements of the line evaluation.
Thus, the first variable concerns the total saturated acids (C16:0 + C18:0),
the second – the content of oleic acid (C18:1), the third – the difference
between linoleic acid and the doubled content of linolenic acid (C18:2 –
2 x C18:3). Cultivar Kama turned out to be suitable as a standard as it
exhibited an almost exactly 2:1 ratio of the linoleic (21.20%) to linolenic
acid (10.57%) contents at the oleic acid content 61.37%. In this purpose
the appropriate hypotheses given in (2) and (6) were tested taking as a
columns of matrix M three vectors: m1 = [1 1 0 0 0]′, m2 = [0 0 1 0 0]′

and m3 = [0 0 0 1 −2]′ and as a c′i the vectors of coefficients equal to 1 for
ith line, −1 for cv. Kana and zero for the rest lines.
The results of testing above mentioned hypotheses allowed to reject the
general hypothesis H0 of no differences between DH lines with regard to
three new variables (F = 3.94 > F0.01 = 1.48). It was shown that five
doubled haploid lines had a higher content of oleic acid than cv. Kana and
almost exactly 2:1 ratio of linoleic to linolenic acids. However, only for two
lines H5-30 and H5-129 the difference in the oleic acid content was positive
and significant (at α = 0.01 and α = 0.01 respectively). The results of
evaluated five selected DH lines are given in Table 1.
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An additional comparison of the individual DH lines with the mean of
parental forms makes it possible to assess the transgression effects of these
lines in terms of the oleic acid content. The results of evaluation of these
effects indicate the occurence of transgression in seven DH lines.
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Abstract: The statistical model for the experiments repeated with the same set
of genotypes at several locations over a period of years is presented. The model
has been defined for the statistical analysis of experiments with the same set of
genotypes conducted in the completely standarized block design. The method-
ology of analysis the data from such a series of experiments was applied to the
study of gene effects on the basis of doubled haploids population and F2 and
F3 hybrid generations. Practical application of this approach was shown on an
example concerning the interaction of gene effects with environments for coarse
extract yield of barley.
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1 Introduction

Information on genetic determination of quantitative traits may be ob-
tained by estimation of genetic parameters,connected with gene effects, on
the basis of phenotypic observations. Such estimation may be made on
the basis of early generation (Mather, Jinks, 1982), or on a population of
doubled haploids (DH) lines derived from F1 hybrids of two homozygous
parents (Surma et al., 1997). In both cases estimators of the parameters
are some functions of mean of the studied generation. Phenotypic values of
traits are conditioned by both genetic and environmental factors. The prob-
lem is more complicated when genotype-environment interaction occurs;
it may greatly influence the differences between the studied generations,
and consequently estimates of the genetic parameters. Therefore, to obtain
credible information on inheritance of metrical traits, the GE interaction
should be taken into account in the genetic analysis. Especially important
is information concerning stability of phenotypic gene effects. Methods of
statistical analysis of a series of genetic experiments given by Caliński et
al. (1997) permit to evaluate the interaction with environments for each
genotype. Estimation of stability is based on GE interaction effect related
to each genotype measured be the value of the relevant F -statistic. Simi-
larly, phenotypic gene effect can be recognize as a stable when F -statistic
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value for its interaction with environments is at less than critical value.

2 Description of the data

Thirty doubled haploid lines of barley, derived from F1 hybrids of the malt-
ing cultivar Grit and the non-malting cultivar Havila were used in the study
(Kaczmarek et al., 2002). Parental cultivars have been selected to achieve a
great diversity among the progeny (DH lines) in relation to malting quality
characters. Doubled haploid lines, the parental genotypes, F2 and F3 Grit
× Havila hybrids and the standard cultivar Rudzik were studied in three
locations (Cerekwica, Kruszwica, 6Lagiewniki) over two years. Each year in
each locality experiments were carried out with the same genotypes in the
randomized complete block design with three replications. Among various
malt characters have been measured in these experiments, genetic param-
eters for coarse extract yield were be estimated and tested with regard to
their stability.

3 Specification of the model and statistical analysis

The statistical model for the experiments repeated with the same set of
genotypes at several locations over a period of years was described by
Caliński et al. (1997). The analysis involves the use of ANOVA andMANOVA
techniques for testing various hypotheses, in particular the hypotheses on
genotype main effects and on the interactions of genotypes with locations
and years (environments).
Assume that I genotypes are compared in a series of N experiments carried
out at J locations over a period of K years. Each of the N experiments is
carried out in a randomized complete block design with the same number,
L, of blocks. Then the model for the average value of observed trait can be
written for the vector of genotypes, yjk, in the form

yjk = µ+ αL(j)− αT (k) + aE(j, k) + ejk, (1)

where yjk= [y1jk,y2jk, ...,yIjk]′ is the vector of observations of genotypes
in location j and year k, (j = 1, 2, ..., J ; k = 1, 2, ...,K), µ = [µ1, µ2, ..., µI ]′

is the vector of the fixed average values of genotype i (= 1, 2, ..., I) over
all locations and years, αL(j)= [αL

1 (j), α
L
2 (j), ..., α

L
I (j)]

′, αT (k)= [αT
1 (k),

αT
2 (k), ..., α

T
I (k)]

′ are the vectors of the fixed location and year effects re-
spectively, aE(j, k) = [aE

1 (j, k), a
E
2 (j, k), ..., a

E
I (j, k)]

′ is the vector of ran-
dom effects aE

i (j, k) being the deviation of the capacity of genotype i under
the environment of the site of the experiment at location j in year k, and
ejk = [e1jk, e2jk, ..., eIjk]′ is the random vector of average errors from the
experiments.
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Assuming normality for the independently distribution random vector (1)
one can write

yjk ∼ NI(µ+ αL(j) + αT (k),Σy), (2)

with the description matrix

Σy = Σm + (σ2
e/L)II , (3)

where Σm = [σii′(j, k)] = [σii′ ], (i, i′ = 1, 2, ..., I), for any j and k denotes
the dispersion matrix. No restrictions are imposed on the structure of this
matrix, but is assumed that is common for all the environments. As the
error, the usual assumptions is made. For the estimation purposes no other
assumption are needed.
Now, using the centring matrix G = II − I−11I1′

I it is convenient to trans-
form (1) into the model

Zjk= Gyjk= αG + αGL(j) + αGT (k) + aGE(j, k) + fjk, (4)

where the vector αG = Gµ is composed of the genotype main effects,
αGL(j) = GαL(j) of the genotype interactions with location j, αGT (k) =
GαT (k) of the genotype interactions with year k, aGE(j, k) = GaE(j, k) of
the genotype interactions with the environment of the site of the experiment
at location j in year k, and fjk = Gejk is composed of the genotype error
deviations from the average experimental error.
The model (4) allows to estimate the vector of genotype main effects αG

as well the vector of genotype contrasts c′pα
G if cp is any vector such that

c′p1I = 0.
In addition to that the following hypotheses can be tested:
– the hypotheses concerning particular contrasts between genotypes,Hc′pG :
c′pα

G = 0, with the Hotelling T 2, statistic and
– the hypotheses of no interactions between the contrast of genotypes and
environment Hc′pGE : var{c′pαGE(j, k) = 0 for all j and k, with F -statistic.

4 Genetic analysis

The model of observations for series of experiments presented above can be
applied to the study of genes effects on the basis of doubled haploid lines
and F2 and F3 hybrid generations. Interested parameters in this context are
additive gene effects [d], dominance effects [h], homozygous × homozygous
interaction effects [i] and heterozygous × heterozygous interaction effects
[l]. These parameters can be defined in terms of some linear combinations
(contrasts) among the genotype effects (Adamski, 1993). Their estimators
in a vector notation are as follows:

[d̂] = c′[d]α̂
G, [ĥ] = c′[h]α̂

G, [̂ı] = c′[i]α̂
G, [l̂] = c′[l]α̂

G,
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TABLE 1. Estimates of gene effects for coarse extract yield in particular envi-
ronments

Gene Environment
effect Year 1 Year 2

K L C K L C
Additive [d] 3.97 2.01 3.40 2.95 6.33 2.50
Dominance [h] -7.29 0.44 10.69 11.67 3.61 9.91
Epistasis:

Homo×homo [i] -0.30 -0.89 -0.42 0.05 3.28 0.01
Hetero×hetero [l] 11.35 -1.70 -14.07 -15.38 -5.08 -21.38

where α̂G = [α̂(DHm), α̂(DHmax), α̂(DHmin), α̂(F2), α̂(F3)] is a vector of
the generation main effects of studied traits and c[d], c[h], c[i], c[l] are
the vectors of the correspond coefficients between generations such that
c′[d]1 = c′[h]1 = c′[i]1 = c′[l]1 = 0.
For the data from the experiments with DH lines and F2, F3 hybrids the
coefficients of contrasts concerning genetic parameters can be written as

c′[d] = [ 0 0.5 −0.5 0 0]′,
c′[h] = [ −6 0 0 −2 8]′,
c′[i] = [ −1 0.5 −0.5 0 0]′,
c′[l] = [ 8 0 0 8 −16]′.

5 Analysis of the data

Statistical calculation of the data described in Section 2 were made by the
computer program SERGEN (Caliński et al., 1998). Observed traits was
of normal distribution. Estimates of genetic parameters for coarse extract
yield were found for each of the six environments (Table 1). Mean estimates
of gene effects over environments and results of testing of their significance
are presented in Table 2.

Analysis of coarse extract yield indicates that additive effects estimated
over environments were significant. Mean estimates of the other gene ef-
fects were not significant. Interaction of additive effects and homozygous ×
homozygous epistasis effects with environments was very high, whereas the
dominance effects and heterozygous × heterozygous epistasis effects were
stable.
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TABLE 2. Mean estimates of gene effects for coarse extract yield and results of
testing the hypotheses concerning their interaction with environments

Gene effect Estimate F -statistic value for
gene effect interaction

Additive [d] 3.53 31.69 20.48
Dominance [h] 4.84 2.56 2.20
Epistasis:

Homo × homo [i] 0.29 0.22 6.59
Hetero × hetero [l] -7.71 2.58 1.57

Critical values:
F0.05 6.61 2.24
F0.01 16.26 3.06
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split-plot × split-block designs for three factor experiments. In the modelling we
take into account a structure of an experimental material and a four-step random-
ization schema. We adopt the approach typical to multistratum experiments with
orthogonal block structure with respect to the analysis of the obtained random-
ization model with seven strata. A brief discussion connected with the method
of the construction of the design is given.

Keywords: Mixed model, Split-plot × Split-block design, Stratum efficiency

1 Introduction

The purpose of this paper is to present a method of designing three factor
experiments and modelling data obtained from them. We are interested in
one of so called mixed designs combined of a split-plot design and a split-
block design (e.g. Gomez and Gomez, 1984). Another mixed design of a
split-block-plot type was presented in the paper by Mejza I. and Ambroży
(2003). That design was an extension of a split-block design in which each
intersection plot was divided into subplots to accommodate a third factor.
So the third factor was in a split-plot design in a relation to row and column
treatments (i.e. combinations of levels of the two first factors).
In this paper we present another arrangement of units in the three factor
designs. In field experiments certain treatments such as types of cultivation,
application of irrigation water etc., may be necessary to be arranged in
strips (rows or columns) across each block. Then it is convenient to arrange
the plots of the design in the following way: the columns (or the rows) of
the split-block design are split into smaller strips to accommodate the third
factor. So, the third factor will be in the split-plot design in a relation
to the column (or row) treatments. The new design obtained this way
will be called the split-plot × split-block (shortly SPSB) design. We will
consider incomplete (in particular complete) SPSB designs (i.e. when a
number of the levels of at least one factor is larger or equal than the number
of appropriate for them strips within each block).
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2 Assumptions and notations

Let us consider a three-factor experiment of a SPSB type in which the
first factor, say A, has s levels A1, A2, ..., As, the second factor, say B,
has t levels B1, B2, ..., Bt and the third factor, say C, has w levels C1,
C2, ...,Cw. Thus the number v = stw denotes the number of all treatment
combinations in the experiment. The experimental material is assumed
to be divided into b blocks each of a row-column structure with k1 rows
(k1 ≤ s) and k2 columns of the first order, shortly, columns I (k2 ≤ t).
So within each block there are k1k2 intersection plots of the first order
called whole plots. Then each column I has to be split into k3 columns
of the second order, shortly, columns II (k3 ≤ w). So there are k1k2k3

intersection plots of the second order called small plots within each block.
Here the rows correspond to the levels of the factor A (row treatments), the
columns I correspond to the levels of the factor B (column I treatments),
and the columns II are to accommodate the levels of the factor C (column
II treatments). The order of the arrangement of the factors in the designs
considered is very important from the statistical point of view. This affects
the precision of contrasts estimation concerning main effects and interaction
effects of the factors.

3 Linear model and its analysis

We consider a randomization model of observations, in which a form and
properties are strictly connected with the performed randomization pro-
cesses in the experiment. The randomization scheme used here consists of
four randomization steps performed independently, i.e. by randomly per-
muting blocks within total experimental material, by randomly permuting
rows within the blocks, by randomly permuting columns I within blocks
and by randomly permuting columns II within the column I in each block.
Three of the randomization processes proceed as in a split-block design
and refer to the blocks, the rows and the columns I. The fourth step, re-
lating to the columns II, is performed as in a split-plot design. It is worth
noticing that one can start the randomization scheme conversely, i.e. first
performing three randomizations as in the split-plot design (the blocks, the
columns I and the column II) and then the fourth step as in the split-block
design (the rows). The ordering of these processes does not matter for the
form of the obtained by this way model of observations. Then, assuming
the usual unit-treatment additivity and uncorrelation of the technical er-
rors, with zero expectation and a constant variance σ2

e , the model can be
written as

y = ∆
′
τ+

6∑
f=1

D
′
fξf + e (1)
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where y is a dimensional vector of lexicographically ordered observations,
∆′ (n × v) is a known design matrix for v treatment combinations, n =
bk1k2k3, D

′
1 (n × b), D

′
2 (n × bk1), D

′
3 (n × bk2), D

′
4 (n × bk2k3), D

′
5

(n×bk1k2), D
′
6 (n×n) are design matrices for blocks, rows (within blocks),

columns I (within blocks), column II (within columns I), whole plots (within
blocks) and subplots (within whole plots) respectively, τ (v×1) is the vector
of fixed treatment combination effects, ξ1 (b ×1), ξ2 (bk1 ×1), ξ3 (bk2 ×1),
ξ4 (bk2k3 ×1), ξ5 (bk1k2 ×1), ξ6 (bk1k2k3 ×1), e (n×1) are random effect
vectors of blocks, rows, columns I, columns II, whole plots, subplots and
technical errors, respectively.
Let σ2

f (f = 1, 2, ..., 6) denote, respectively, the variances of the effects of
the blocks, the rows, the columns I, the columns II, the whole plots, the
subplots. Then under our assumptions we can write the first two moments
of distributions of the random variables ξf (f = 1, 2, ..., 6), i.e. E(ξf )= 0,
Cov(ξf , ξf ′ )= Vf , for all f = f

′
and Cov(ξf , ξf ′ )= 0, for all f �= f

′
. Thus

the considered dispersion structure of the linear model has the form

Cov (y) =
6∑

f =1

D
′
f Vf Df + σ2In (2)

It is easy to show (cf. Ambroży and Mejza I., 2003) that the disper-

sion matrix (2) can be written as Cov(y)=
6∑

f=0

γfPf , where γ0 = σ2
e ,

γ1 = k1k2k3σ
2
1 + σ2

e , γ2 = k2k3σ
2
2 + σ2

e , γ3 = k1k3σ
2
3 + σ2

e , γ4 = k1σ
2
4 + σ2

e ,
γ5 = k3σ

2
5 +σ

2
e , γ6 = σ2

6 +σ
2
e and {Pf}, f = 0, 1, ..., 6, are a set of pairwise

orthogonal matrices summing to the identity matrix. The range space of
Pf is termed the f -th stratum with Pf being orthogonal projection onto
this stratum. It follows that the considered design has an orthogonal block
structure (cf. Nelder, 1965, Houtman and Speed, 1983). So the model can
be analysed using the methods developed for multistratum experiments. In
this case, we have zero stratum (0) generated by the vector of ones, inter-
block stratum (1), inter-row (within the block) stratum (2), inter-column I
(within the block) stratum (3), inter-column II stratum (4) (within the col-
umn I), inter-whole plot (within the block) stratum (5), and inter-subplot
(within the whole plot) stratum (6). The statistical analysis of such model
is connected with the algebraic properties of stratum information matri-
ces for the treatment combinations in the incomplete SPSB designs Af ,
f = 0, 1, ..., 6 (cf. Ambroży and Mejza I, 2003). The obtained designs will
be characterized with respect to (shortly w.r.t.) the general balance prop-
erty and stratum efficiency factors of the design for a set of orthogonal
contrasts between the treatment combination effects. These efficiency fac-
tors are eigenvalues of the information matrices Af , f = 1, 2, , 6 w.r.t. rδ,
where r is the vector of replications of the treatment combinations and
rδ =diag(r1, r2,..., rv). The contrasts are connected with the comparisons
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among the main effects of the considered factors and the interaction effects
between them.

4 Construction method of SPSB type designs

We will introduce abbreviations to describe the properties such as effi-
ciency and balance of the design. Let Mf{q, α} denote the property that q
contrasts among the treatments of factor M (or interaction contrasts) are
estimated with the efficiency α in the f -th stratum. In other words, we say
that the design is Mf{q, α} - balanced or Mf{q, 1} - orthogonal.
Let NA(s× b), NB(t× b) and NC(w × b) be incidence matrices of subde-
signs for the row treatments, the column I treatments and the column II
with respect to the blocks, respectively. In the present paper the construc-
tion method for three factor experiments is based on Kronecker product
of matrices denoted by ⊗. Then we have N1 = NA ⊗ NB ⊗ NC , where
N1 is the treatment combinations vs. blocks incidence matrix of the SPSB
design. Let
CA = rδA − k−1

1 NAN′
A with nonzero eigenvalues µ1, µ2, ..., µs−1 w.r.t. rδA,

CB = rδB − k−1
2 NBN′

B with nonzero eigenvalues ξ1, ξ2, ..., ξt−1 w.r.t. rδB ,
CC = rδC − k−1

3 NCN′
C with nonzero eigenvalues ψ1, ψ2,..., ψw−1 w.r.t. rδC

be the information matrices for the treatments of the factors A, B and C,
respectively, in the subdesigns.
Following algebraic properties of the information matrices of the SPSB
design and the subdesigns we have:

Corollary. The incomplete SPSB design based on Kronecker product of
matrices is:
A1{1, 1− µh} - balanced and A2{1, µh} - balanced, h = 1, 2, ..., s− 1,
B1{1, 1− ξm} - balanced and B3{1, ξm} - balanced, m = 1, 2, ..., t− 1,
C1{1, 1− ψg}- balanced and C4{1, ψg} - balanced, g = 1, 2, ..., w − 1,
(A×B)1{1, (1− µh)(1− ξm)} - balanced, (A×B)2{1, µh(1− ξm)} -
balanced, (A×B)3{1, (1 − µh)ξm} - balanced and (A×B)5{1, µhξm} -
balanced, h = 1, 2, ..., s− 1, m = 1, 2, ..., t− 1,
(A× C)1{1, (1− µh) (1− ψg)} - balanced, (A× C)2{1, µh (1− ψg)} -
balanced, (A× C)4{1, (1− µh)ψg} - balanced and (A× C)6{1, µhψg} -
balanced, h = 1, 2, ..., s− 1, g = 1, 2, ..., w − 1,
(B × C)1{1, (1− ξm) (1− ψg)} - balanced, (B × C)3{1, ξm (1− ψg)} -
balanced, (B × C)4{1, ψg} - balanced, m = 1, 2, ..., t−1, g = 1, 2, ..., w−1,
(A×B × C)1{1, (1 − µh)(1 − ξm) (1− ψg)} - balanced, (A×B × C)2{1,
µh(1− ξm) (1− ψg)} - balanced, (A×B × C)3{1, (1− µh)ξm (1− ψg)} -
balanced, (A×B × C)4{1, (1− µh)ψg} - balanced, (A×B × C)5{1,
µhξm (1− ψg)} - balanced, (A×B × C)6{1, µhψg} - balanced,
h = 1, 2, ..., s− 1, m = 1, 2, ..., t− 1, g = 1, 2, ..., w − 1.

We can notice that all contrasts connected with main effects of the factors
are estimable at most in two strata only (the inter-block stratum and the
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appropriate stratum for each factor). The interaction contrasts (between
the combination effects of two factors) can be estimable at most in four
different strata and others (between the combination effects of three factors)
at most in all strata. In any case the number of efficiency balanced classes
for the same type of the contrasts will suffer reduction, when at least one
of the subdesigns will be efficiency balanced (or orthogonal) block designs
(cf. Caliński and Kageyama, 1996).
As an example, let us consider a 2 × 3 × 4 - factorial experiment in order
to determine an effect of irrigation, nitrogen fertilization and chemical pro-
tection on winter wheat disease infestation. An experimental material was
limited, hence the experiment was carried out in incomplete SPSB design
according to the incidence matrix N1 = 12 ⊗ 13 ⊗ NC , where NC is the
incidence matrix of BIB design with blocks (1, 2) (3, 4) (1, 3) (2, 4) (1, 4)
(2, 3). The eigenvalues of the matrix CC are equal to ψ1 = ψ2 = ψ3 = 2/3
w.r.t. rδC = 3I4. Finally, the parameters of the SPSB design were: v = 24,
k1 = s = 2, k2 = t = 3, k3 = 2, w = 4, b = 6 and the efficiency of the SPSB
design w.r.t. the comparisons among the main effects and the interaction
effects was following:
A2{1, 1} - orthogonal, B3{2, 1} - orthogonal,
C1{3, 1/3}- balanced and C4{3, 2/3} - balanced,
(A×B)5{2, 1} - orthogonal,
(A× C)2{3, 1/3} - balanced, (A× C)6{3, 2/3} - balanced,
(B × C)3{6, 1/3} - balanced and (B × C)4{6, 2/3} - balanced,
(A×B × C)5{6, 1/3} - balanced, (A×B × C)6{6, 2/3} - balanced.
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1 Background

During the last decade of neuroscience, diffusion magnetic resonance imag-
ing (DTI) has become a powerful tool for the quantification of ultrastruc-
tural tissue properties which is of prime interest for monitoring major dis-
eases such as acute ischaemia and multiple sclerosis. A second important
benefit is to non–invasively determine fiber tracts which may be of impact
for neurosurgical planning. Thus allowing the identification of anatomical
connections between different brain regions, DTI supplements the visual-
ization of functional brain areas by functional magnetic resonance imaging.
The biophysical basis of DTI is the random diffusion of water molecules
which depends on the surrounding tissue structure and can mathemati-
cally be conceptualized by a 3d Brownian process with location dependent
diffusion matrix D(xt) at xt :

dxt = D
1
2 (xt)dwt, (1)

where t ≥ 0 is ”time” after starting from a seed point x0, and wt is
a 3d standard Wiener process. As cerebral white matter is highly orga-
nized in the ultrastructural level, random motion of particles preferentially
follows the direction of densely packed fiber bundles. This phenomenon
(’anisotropy’) is captured in the so–called tensor model, i. e. the symmetric
positive definite (3 × 3)–diffusion matrix D(xt). Diagonalization provides
eigenvectors which correspond to the principal orthogonal diffusion direc-
tions, whereas the respective eigenvalues reflect the diffusion strength along
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FIGURE 1. Geometrical interpretation of the diffusion tensor.

each axis (Fig. 1). Exploiting this information, the tensor model allows to
identify neuronal fibers (see Basser et al. 2002 for a review).

2 Data Basis

Concerning the available datasets, diffusion weighted images are recorded in
six non-collinear directions on a 1.5 T human scanner with a resulting image
matrix of 128× 128× 24 at a resolution of 18.75× 1.875× 4 mm3. For each
voxel v, the six free tensor parameters d(v) = (Dxx,Dxy,Dxz,Dyy,Dyz,
Dzz) are estimated from the logarithmized Stejskal-Tanner equation:

ln

(
Si(v)
S0(v)

)
= −z′id(v) + ε, i = 1, . . . ,K, (2)

where Si denotes the signal intensities of the (at least) K = 6 diffusion
gradient weighted images and S0 refers to the unweighted reference image;
zi comprises all relevant parameters of the acquisition scheme.
A more reliable estimate of the tensor is gained by collecting repeated mea-
surements (presently three repeats) or considerably enhancing the overall
number of encoding directions (Jones et al. 2004). The resulting spatial
tensor field represents the data basis for a tracking algorithm. In addition,
diverse rotation invariant scalars are derived from the tensor which mainly
serve diagnosis and inference of disease stages.

3 Tracking using state space models

While most current line propagation algorithms work deterministically
(Mori et al. 2002), Gössl et al. (2002) embedded a discretized version of
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FIGURE 2. Pyramidal tract with superimposed starting regions (white blobs).
These fiber bundles represent a major pathway between the motor cortex and
spinal cord. A representative slice of the mean diffusivity map has been added
for orientation with the light parts belonging to the lateral ventricles.

the Brownian process (Eq. (1))

xt = xt−1 + εt, εt ∼ N(0,D(xt−1)) (3)

as transition equation for the latent curve xt in a linear state space model
with noised observations:

yt = xt + ηt, ηt ∼ N(0, σ2I). (4)

In contrast to a conventional linear state space model, yt, t = 1, . . . , T have
to be generated from the diffusion tensor data acquired as in Section 2. The
noisy (pseudo–) observations yt of xt can be sequentially obtained from

yt = x̂t−1 + evt−1 , t = 1, 2, . . . (5)

with x̂t−1 estimated current state of curve and evt−1 principal eigenvector
of the tensor D(x̂t−1). A step size parameter and a constraint for avoiding
too wiggly and unplausible, highly curved fibers are additionally intro-
duced. Therefore, recursive application of the Kalman filter and smoother
provides fairly smooth estimates of trajectories (Fig. 2).

4 Problems

DTI is prone to numerous detrimental sources of artefacts which may im-
pair data reliability and validity (Basser et al. 2002, Mori et al. 2002). A
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major consequential problem is the uncontrolled prolongation of such arte-
facts into derived parameters causing both random and systematic errors.
In particular, uncertainties in the principal eigenvector may lead to erro-
neous 3d fiber reconstruction. Furthermore, voxels can occur with a more
disc-shaped tensor containing ambiguous geometrical information: among
diverse conditions, it may indicate a voxel of other tissue than white mat-
ter, a voxel contaminated by a second tissue type (partial volume effect)
or a voxel containing crossing fiber bundles.

5 Approaches and Statistical Challenges

In order to improve data quality, data preprocessing focuses on correcting
the measured signal intensities or the derived tensors. Hahn et al. (2004)
recently implemented a sophisticated edge preserving smoothing algorithm
which also proves superior for DTI data in comparison with the more widely
applied Gaussian filter that may result in undesirably blurred data.

Also tackling the problem of data reliability, we generated an objective
quality rating for real raw data using nonparametric bootstrapping and
investigated its sensitivity to a selection of intrinsic and extraneous in-
fluencing factors (Heim et al. 2003). In brief, N = 100 resamples were
obtained for each individual dataset by drawing with replacement from
the corresponding repeated measurements of each applied gradient direc-
tion. The respective N tensor maps provided N maps of scalar measures
of the anisotropy and voxelwise bootstrap estimates of confidence intervals
as well as coefficients of variation of these measures. Appropriate aggre-
gation within areas of interest yielded global measures for quantifying the
statistical uncertainty of scalar measures and its additional dependence on
different tissue types.

While the uncertainty of the principal diffusion direction, i. e. the main
eigenvector of the tensor, has been explored on a single voxel level (Jones
et al. 2003), evaluating the regional and global uncertainty of tracking
results is still to be realized.

So far, the preferably denoised tensor is independently estimated based on
the linear regression model (Eq. (2)) for each voxel v. A more complex ten-
sor estimation could take into account spatial correlation and information
from neighboring voxels. For this purpose, the location dependent tensor
elements d(v) in Eq. (2) are treated as space-varying regression coefficients,
each of which can be nonparametrically approximated by a linear combi-
nation of basis functions Bj(v), e. g. tensor product splines or radial basis
functions:

Dl(v) =
∑

βjBj,l(v), l = xx, xy, . . . , zz (6)

Spatial smoothing can be introduced by appropriate spatial penalties for
the coefficients βj of neighboring voxels.
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This 3d surface smoothing of the tensor elements yields an effective refine-
ment of the underlying data grid since it allows to estimate the diffusion
tensor at each arbitrary position. Hence, a more reliable and precise track-
ing is enabled, especially when ambiguity is caused by partial volume effects
due to the coarse spatial resolution compared with the size of uniform fiber
tracts.

Concerning the issue of fiber crossing, the possibly available information
of the associated fiber ending has been not exploited so far. We plan to
incorporate the end point information into the existing algorithm within
the framework of a Brownian bridge to further improve the tracking results.

Acknowledgments: We gratefully acknowledge financial support from
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Abstract: In the analysis of short term effect of air pollution on health, meth-
ods able to control for nonlinear confounding effect of temporal trend are re-
quired. We analyze the association between PM10 daily concentrations and Mor-
tality/Hospital Admissions in the Italian Meta-analysis of Short-term effects of
Air pollutants (MISA), using alternative modeling techniques: Generalized Ad-
ditive Models with penalized regression spline fitted by the direct method in
R software (GAM-R) and Generalized Linear Models with natural cubic spline
(GLM+NS). We find that the two approaches provide similar results. If we are
interested in overall estimates and a random effects meta-analysis model is spec-
ified, a certain robustness of results to change number of degrees of freedom for
the spline is to be expected.

Keywords: Generalized Additive Model; penalized regression spline; cubic re-
gression spline; epidemiological time series.

1 Introduction

In the analysis of short term effect of air pollution on health, the char-
acteristics of epidemiological time series data require statistical methods
able to control for nonlinear confounding effect of temporal trend. In the
literature, most of the studies used flexible semi-parametric approaches,
specifying Generalized Additive Models (GAMs) with smoothing splines or
locally weighted regressions in moving ranges of the data. Recently major
concern was raised about numerical accuracy of the estimates of pollutant
effect obtained from this kind of models using commercial statistical soft-
ware which implements backfitting algorithm, namely Splus. Two impor-
tant critical points were addressed: the gam function of Splus provides an
approximation of the variance-covariance matrix which takes into account
only the linear component of the smooth function, bringing to underesti-
mated standard error for the air pollution effect (Ramsay et al., 2003); this
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function uses too bland convergence criteria for the estimation algorithm,
producing biased point estimates, whenever the magnitude of the effect to
be estimated is small and convergence of backfitting is slow due to relevant
amount of concurvity in data (Dominici et al., 2002).
The present paper analyzes data of the Italian Meta-analysis of Short-term
Effects of Air Pollution (MISA), using alternative modeling approaches:
GLM with natural cubic spline for seasonality (GLM+NS) and GAM with
penalized regression spline fitted by the gam function of R software (Wood,
2000) (GAM-R). Both these approaches estimate the variance-covariance
matrix correctly and are less sensitive to the definition of convergence cri-
teria.

2 Methods

The MISA study investigated the short term effect of air pollution on mor-
tality and hospital admissions in height Italian cities. The analysis was
age-adjusted. We controlled for time-related confounding including in the
model spline terms, whit pre-defined number of degrees of freedom. Two
linear terms constrained to joint in 21 C for temperature and linear and
quadratic terms for relative humidity were defined. We controlled for day of
the week, holidays and influenza epidemics by appropriate dummy variables
(Biggeri et al., 2001).
We produced air pollution effect estimates both under the parametric ap-
proach based on GLM+NS and under the semi-parametric approach based
on GAM-R. Once the number and position of knots has been defined (knots
were placed evenly throughout the covariate values), maximum likelihood
estimates of the coefficients of GLM+NS were obtained using standard
IRLS algorithms. Effect estimates under GAM-R were obtained using the
gam function of R, which maximizes the penalized likelihood by a direct
method which avoids the iterative process nested in the backfitting algo-
rithm. We fit also GAM with smoothing cubic splines by the gam function
of Splus with default (< 10−3) and stringent (< 10−14) convergence crite-
ria (GAM-S), despite this approach is affected by the previously described
drawbacks.
The combined meta-analytic estimates were calculated using fixed and ran-
dom effects models. A sensitivity analysis to change degrees of freedom for
the splines in GLM+NS and in GAM-R was conducted. Finally, the impact
of non parametric modeling of temperature on pollutant effect estimates
was evaluated. In particular we compared the model proposed in MISA
with a model where a penalized regression spline for temperature with 7
degrees of freedom was introduced.
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FIGURE 1. MISA 1995-1999. Comparison of city-specific and meta-analytic (in
square bold) results for PM10 under different modeling approaches (effect esti-
mates on the left and related standard error estimates on the right).

3 Results

The GLM+NS coefficients estimates resulted generally lower and the esti-
mated standard errors resulted greater, proportionally to their magnitude,
than those obtained from GAM-S with default convergence criteria (not re-
ported). Using more stringent convergence criteria, GAM-S provided point
estimates very close to those obtained from GAM-R. This is an expected re-
sults, when a large number of knots (here 150) is defined for the penalized
regression splines. However even if appropriate convergence criteria were
defined, performance of GAM-S in terms of estimated precisions did not
improve (Fig.1). Results from GAM-R with GLM+NS appeared similar,
even if point estimates from GLM+NS resulted usually lower than those
obtained from GAM-R.
Addressing attention to meta-analysis results, we can notice that GAM-
S with default convergence criteria bringed to overestimated effects and
mistakenly small confidence intervals. The overall estimates under GAM-
R resulted always slightly higher than under GLM+NS (Table 1 reports
results for total mortality).
Overall meta-analytic estimates appeared robust to increasing the number
of degrees of freedom for the seasonality splines, both under GAM-R and
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TABLE 1. MISA 1995-1999. Combined meta-analytic estimates of percentage
increase in total mortality (95% CI) associated to a PM10 increase of 10 µg/m3

by fixed and random effects models.

Method fixed random

GAM-S default 1.12 1.24
0.82;1.42 0.63;1.86

GAM-S stringent 0.92 1.06
0.62;1.22 0.46;1.66

GAM-R 0.90 1.04
0.55;1.25 0.41;1.67

GLM+NS 0.85 0.98
0.52;1.18 0.35;1.61

GLM+NS (Figure 2 reports results for total mortality). On the contrary,
as the number of degrees of freedom decreased, higher point overall esti-
mates were obtained. This behavior was more evident for GAM-R and if
fixed effects meta-analysis was used. Due to the precision of city-specific
estimates usually decreased as the number of degrees of freedom increased
(not reported), the coefficient of variation calculated under the fixed effects
model uniformly increased, the confidence interval for the PM10 effect ob-
tained using 3 degrees of freedom resulting the narrowest. Combining the
city-specific results by random effects meta-analysis, a different behavior
was observed. The estimated variance decreased then increased, with mini-
mum around 5 degrees of freedom per year (our choice in MISA). When few
degrees of freedom for the spline were used, the lower within city variance
estimates were balanced by a larger among cities variability.
Results appeared robust to changing the modeling strategies for tempera-
ture both in terms of point estimates and precision (not reported).

4 Discussion

In the context of epidemiological time series, using GAM-S can bring to bad
city-specific inference and should be avoided. GLM+NS and GAM-R give
close results both in city-specific analysis and in meta-analysis. The small
observed discrepancy between point estimation under the two approaches
can be explained looking at the asymptotic properties of the two methods
(Rice, 1986).
When the the random effect meta-analysis model is used, overall point
estimates did not appear much sensitive to changing number of degrees
of freedom for the spline both under GAM-R and GLM+NS, however a
trade-off between overall effect and variance is observed.
The strategy adopted to adjust for the confounding effect of temperature
did not appear a major problem.
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Random Effects Meta-analysis
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FIGURE 2. MISA 1995-1999. Meta-analysis results for the effect of PM10 on
total mortality under GLM+NS and GAM-R, varying the number of degrees of
freedom for the seasonality spline.
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Abstract: We introduce a multivariate version of the latent Markov model for
the investigation of criminal trajectories whose transition matrix may be suit-
ably constrained in order to formulate hypotheses of interest on the criminal
behaviour. For the maximum likelihood estimation of the model and its con-
strained versions we outline an EM-type algorithm. We also illustrate a simple
procedure based on the likelihood ratio for choosing the number of states and
testing restrictions on the transition matrix.
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1 Introduction

An important issue in criminology is the analysis of criminal trajectories
of a fixed birth cohort followed up for a long period. Among the statis-
tical models that have been used for this kind of analysis (see Francis et
al., 2004, and the references therein), the latent Markov model (Wiggins,
1973) seems particularly interesting (Bijleveld and Mooijaart, 2003). The
basic assumption of this model is that the offending pattern of a subject
within a certain age strip depends only on a discrete latent variable rep-
resenting his/her tendency to commit crimes, which follows a first-order
homogeneous Markov process. In its current form, however, the model may
be applied only in the univariate case, i.e. when the offending pattern of a
subject is represented through a single discrete variable. This may be rather
restrictive when several offence categories are considered and we wish to
take into account that a subject may commit crimes belonging to different
categories within the same age strip.
In this paper we show how a latent Markov approach may be also followed
to analyse criminal trajectories when offending patterns are represented
through a set of binary variables, one for any offence category. As in the la-
tent class model (Lazarsfeld and Henry, 1968), frequently applied to classify
subjects according to their criminal behaviour (McCutcheon and Thomas,
1995; Francis et al. 2004), we assume local independence, i.e. for any age
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strip the response variables are conditional independent given the latent
variable. The resulting model will be illustrated in the following Section
where we also show how, by restricting appropriately the transition matrix
of the Markov chain, it is possible to express hypotheses of interest on the
criminal behaviour. Maximum likelihood estimation of this model is dealt
with in Section 3 where it is also briefly outlined how we can use the like-
lihood ratio to choose the number of states of the Markov chain and test
hypotheses expressed through restrictions on the transition matrix.
To illustrate our approach we will analyse the criminal trajectories of a
cohort of 11,402 offenders born in England and Wales in 1953. Offences are
combined into 10 major categories, while criminal careers are aggregated
into fixed five-year age periods of the offender’s criminal history. The data,
drawn from the England and Wales Offenders Index, are publicly available.

2 Multivariate Latent Markov Model

Let Xtj , t = 1, . . . , T, j = 1, . . . , J , be a binary variable equal to 1 if
a subject is convicted for offence of category j within age strip t and to
0 otherwise; let also Xt be the column vector with elements Xtj , j =
1, . . . , J . We assume that, for t = 1, . . . , T , there exists a discrete latent
variable Ct such that, given this variable, the elements of Xt are conditional
independent. This implies that

φ(x|t) = p(Xt = x|Ct = c) =
J∏

j=1

λ
xj

cj (1− λcj)1−xj ,

where λcj = p(Xtj = 1|Ct = c) that, by assumption, is independent of
t. We also assume that Ct follows a first-order homogenous Markov chain
with transition probability matrix Π, whose elements are πc1c2 = p(Ct =
c2|Ct−1 = c1), and initial probabilities πc = P (C1 = c) collected in the vec-
tor π and that X1, . . . ,XT are conditional independent given C1, . . . , CT .
So, we have that

p(X1 = x1, . . . ,XT = xT ) =∑
c1

φ(x1|c1)πc1

∑
c2

φ(x2|c2)πc1c2 · · ·
∑
cT

φ(xT |cT )πcT−1cT
;

in the following, this probability will be denoted by q(x1, . . . ,xT ).
In order to incorporate in the model hypotheses of interest on the crimi-
nal behaviour, we can appropriately restrict the transition matrix Π. For
instance, when the states may be ordered according to the tendency to
commit crimes, the hypothesis that offenders begin their careers by com-
mitting trivial offences and escalate to more serious crimes later in life may
be expressed through the constraint that Π is upper triangular. Instead,
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the hypothesis that the tendency to commit crimes remain the same for all
the life may be formulated by letting Π equal to a k-dimensional identity
matrix. Fitting the multivariate latent Markov model under this constraint
is equivalent to fitting a latent class model that ignores the longitudinal
structure of the data.

3 Likelihood inference

Let xit be the observed value of the vector Xt for the i-th subject in a
cohort of n subjects. The log-likelihood of the model is then

l(θ) =
n∑
i

log q(xi1, . . . ,xiT ),

where θ is a short-hand notation of all the parameters. For the maximiza-
tion of l(θ) we can apply the EM algorithm (Dempster et al., 1977). To
describe this algorithm it is convenient to introduce the log-likelihood of
the complete data, i.e. the log-likelihood that we could compute if we knew
the value of latent variables C1, . . . , CT for all the subjects in the cohort.
This function may be expressed as

l∗(θ) =
∑

c

v·1c log πc +
∑
c1

∑
c2

uc1c2 log πc1c2 +

∑
i

∑
t

∑
c

vitc

∑
j

{xitj log λcj + (1− xitj) log(1− λcj)},

where vitc is a dummy variable, referred to the i-th subject, which is equal
to 1 if Ct = c and to 0 otherwise, v·tc =

∑
i vitc and uc1c2 is the number of

transitions from the c1-th to the c2-th state.
The EM algorithm alternates the following steps until convergence:

E step. It consists in computing the conditional expected value of the
complete log-likelihood, l̃∗(θ), given the observed data and the current
value of the parameters. This is equivalent to compute the conditional
expected value of the variables vitc’s and uc1c2 ’s. These expected values,
denoted in the following by ṽitc and ũc1c2 , may be obtained through well-
known recursions in the hidden Markov models literature (MacDonald and
Zucchini, 1997, Sec. 2.2).

M-step It consists in updating the parameter estimates by maximizing
l̃∗(θ). When the model is unconstrained, this may be simply performed as
follows:

λcj =
∑

i

∑
t

ṽitcxitj

/∑
i

∑
t

ṽitc, c = 1, . . . , k, j = 1, . . . , J,
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πc = ṽ·1c

/∑
d

ṽ·1d, c = 1, . . . , k,

πc1c2 = ũc1c2

/∑
d

ũc1d, c1, c2 = 1, . . . , k.

Possible restrictions on Π affects only the way in which the elements of
this matrix are updated.

To choose the number of latent classes we can rely on a simple procedure
based on the likelihood ratio between the model with k states and that
with k+1 states, rk = −2(l̂k − l̂k+1), for increasing values of k. According
to this procedure, the optimal number of states, k̂, is the smallest k such
that the p-value for rk is greater than a certain threshold, say 0.05. To com-
pute a p-value for rk we can use a parametric bootstrap procedure based
on a suitable number of samples generated from the estimated model with
k states. Once the number of states has been chosen, the likelihood ratio
may be still used to test hypotheses expressed through restrictions on the
transition matrix. In this case we have to compare a model with k̂ states re-
stricted according to the hypothesis of interest with the unrestricted model
with the same number of states.

References

Bijleveld, C. J. H., and Mooijaart, A. (2003). Latent Markov Modelling of
Recidivism Data. Statistica Neerlandica, 57, 3, 305-320.

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likeli-
hood from incomplete data via the EM algorithm (with discussion).
J. R. Statist. Soc. series B, 39, 1-38.

Francis, B., Soothill, K. and Fligelstone, R. (2004). Identifying Patterns and
Pathways of Offending Behaviour: A New Approach to Typologies of
Crime. European Journal of Criminology, 1, 47-87.

Lazarsfeld, P. F. and Henry, N. W (1968). Latent Structure Analysis. Boston:
Houghton Mifflin.

McCutcheon, A. L. and Thomas, G. (1995). Patterns of drug use among
white institutionalized delinquents in Georgia. Evidence from a latent
class analysis. Journal of Drug Education, 25, 61-71.

MacDonald I. and Zucchini W. (1997). Hidden Markov and Other Models
for Discrete-valued Time Series. London: Chapman & Hall.

Wiggins, L. M. (1973). Panel Analysis: Latent Probability Models for At-
titudes and Behavior Processes. Amsterdam: Elsevier.



Application of the modified profile likelihood
in stratified models

Ruggero Bellio1 and Nicola Sartori2

1 Dept. of Statistics, University of Udine, Italy. ruggero.bellio@dss.uniud.it
2 Dept. of Statistics, University Ca’ Foscari of Venice, Italy. sartori@unive.it

Abstract: In stratified models the modified profile likelihood leads to accurate
inference for the parameters of interest, which are common to all strata, eliminat-
ing the effect of stratum-specific nuisance parameters. The computation of the
modified profile likelihood is simple and leads to substantial improvement over
standard likelihood methods, based on the profile likelihood. Here, we propose
an application to a negative binomial loglinear model and we compare the results
with the case in which the nuisance parameters are modeled as random effects.
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1 Introduction

We consider inference in models for independent stratified random variables
Yij , i = 1, . . . , k, j = 1, . . . , ni, such that

Yij ∼ p(yij ;ψ, λi, xij) , (1)

where xij are explanatory variables. We assume that ψ is the parameter of
interest, while λ = (λ1, . . . , λk) is considered as a nuisance parameter.
In parametric models with parameter θ = (ψ, λ), standard likelihood infer-
ence for the parameter ψ is typically based on the profile likelihood, which
is the likelihood with the nuisance parameter replaced by its constrained
maximum likelihood estimate for fixed ψ. It is well known since Neyman
and Scott (1948) that the profile likelihood may lead to very inaccurate in-
ference in stratified models. In particular, this is likely to happen when the
number of strata k, which is also the dimension of the nuisance parameter,
is large relative to the size of the strata.
In some cases, the solution to this problem is given by means of some infer-
ential separation in the likelihood, as with the conditional likelihood. The
conditional likelihood removes the stratum-specific parameters λ1, . . . , λk,
by conditioning on suitable sufficient statistics. As a result, the maximum
likelihood estimator and the likelihood-based statistics based on the condi-
tional likelihood have the usual asymptotic properties, as opposed to those
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based on the profile likelihood (Andersen, 1970). The problem is that the
existence of a conditional likelihood is not guaranteed in a generic model.
Here the aim is to propose the use of modified profile likelihood (Barndorff-
Nielsen, 1983) as an extension of the conditional likelihood approach in
stratified models. There are two major motivations for this. First, when
a conditional likelihood is available, the modified profile likelihood is an
accurate approximation for it. Second, the modified profile likelihood is a
general tool for inference, as the profile likelihood. The theoretical justifi-
cation for the use of the modified profile likelihood, in place of the profile
likelihood, in the presence of many stratum nuisance parameters is given
in Sartori (2003). The main point is that, when the number of strata is
large compared to the strata sample sizes, the modified profile likelihood
has better asymptotic properties than the profile.
Bellio and Sartori (2003) applied the modified profile likelihood in general-
ized linear models for binary data. Here, after a brief review in Section 2,
we consider an application to negative binomial data. A comparison with
the random effects model is also considered.

2 The modified profile likelihood

Consider a parametric statistical model with parameter θ = (ψ, λ) and
with loglikelihood �(ψ, λ) satisfying some regularity conditions (Severini,
2000, Chapter 3). The profile loglikelihood is �P(ψ) = �(ψ, λ̂ψ), where λ̂ψ
is the maximum likelihood estimate of λ when ψ is treated as fixed.
The modified profile loglikelihood (Barndorff-Nielsen, 1983) has the form

�M(ψ) = �P(ψ) +M(ψ) , (2)

where the functionM(ψ) is such that �M(ψ) approximates both conditional
and marginal loglikelihoods, when they either exist (Barndorff-Nielsen and
Cox, 1994, Section 8.2). Remarkably, the modified profile likelihood is quite
effective even when neither a conditional nor a marginal likelihood exists.
Its main drawback is that the modification M(ψ) is very difficult to com-
pute outside linear exponential families or transformation models. How-
ever, recent results in the field of likelihood asymptotics have widened its
applicability, and various approximations are now available (Severini, 2000,
Chapter 9). In the case of generalized linear models, the version proposed
by Severini (1998) is particularly convenient and has modification of the
form

M(ψ) =
1
2
log |jλλ(ψ, λ̂ψ)| − log |Iλλ(ψ̂, λ̂;ψ, λ̂ψ)| , (3)

where (ψ̂, λ̂) is the maximum likelihood estimate of the parameters, jλλ is
the λλ-block of the observed information, and Iλλ is given by
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Iλλ(ψ̂, λ̂;ψ, λ̂ψ) = covψ0,λ0 {�λ(ψ0, λ0), �λ(ψ1, λ1)}
∣∣
(ψ0=ψ̂,λ0=λ̂,ψ1=ψ,λ1=λ̂ψ)

,

(4)
where �λ(ψ, λ) = ∂�(ψ, λ)/∂λ denotes the λ-part of the score function.
In the standard asymptotic setting, where the dimension of λ is fixed,
likelihood-based inferences based on profile, modified profile and condi-
tional likelihoods are valid to first-order, with no formal improvement for
conditional or modified profile likelihoods. Hence, although modified profile
likelihood empirically lead to more accurate results, there seems to be no
need for such an improvement over the standard method, unless the di-
mension of the nuisance parameter is large compared to the sample size. A
notable instance when this may happen is represented by stratified models,
which are considered in the following.
In model (1), the loglikelihood can be written as

�(ψ, λ) =
k∑
i=1

�i(ψ, λi) , (5)

where �i(ψ, λi) =
∑ni
j=1 log p(yij ;ψ, λi, xij) is the contribution to the log-

likelihood of the i-th stratum.
We note that the presence of stratum-specific nuisance parameters and
the independence among strata imply the additivity of the profile log-
likelihood. For the same reasons, both jλλ(ψ, λ̂ψ) and Iλλ(ψ̂, λ̂;ψ, λ̂ψ) are
block-diagonal matrices. Hence, also �M(ψ) is additive, because (3) may be
written in the form M(ψ) =

∑k
i=1Mi(ψ), where

Mi(ψ) =
1
2
log |jλiλi(ψ, λ̂iψ)| − log |Iλiλi(ψ̂, λ̂i;ψ, λ̂iψ)| . (6)

The sample size is
∑k
i=1 ni and the dimension of the nuisance parameter is

k. In what follows, we assume that the strata are asymptotically balanced,
in the sense that each ni may be written as ni = Ki n, with A ≤ Ki ≤ B
and where A and B are positive finite numbers. When k grows, both sample
size and the dimension of the nuisance parameter grow. This is the typical
case in which the profile likelihood may fail and the use of conditional or
modified profile likelihoods can greatly improve inference. Sartori (2003)
studies a two-index asymptotic setting in which both k and n increase to
infinity and shows that modified profile likelihood has better asymptotic
properties than the profile. In particular, the bias of ψ̂ is of order O(n−1),
while the bias of ψ̂M, the estimator obtained from �M(ψ), is of orderO(n−2).
However, results about bias do not give the full picture because they do not
take into account the order of standard errors, which depend also on k. On
the contrary, sufficient conditions for the usual χ2 asymptotic distribution
of Wald, score and likelihood ratio statistics involve both k and n. The
condition is k = o(n) for the profile likelihood, while is k = o(n3) for
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the modified profile likelihood. Hence, unless the strata sample sizes are
larger than the number of strata, which is an uncommon practical situation,
we cannot expect standard likelihood methods to be reliable. Instead, the
modified profile likelihood guarantees accurate inference even in cases with
k much larger than n.

3 Negative binomial loglinear model for count data

The Poisson loglinear model is a classical model for count data, but often
overdispersion is present. A common choice to handle it is to resort to the
negative binomial model; a gentle introduction is given in Venables and
Ripley (2002, §7.4). It is well known that there is not a unique way for
specifying the negative binomial loglinear model (see Lindsey, 1999). Here,
we assume that the marginal distribution of the response Yij has mean and
variance

E(Yij) = µij = exp(λi + xTij β) , V (Yij) = µij +
µ2
ij

α
. (7)

The parameter α determines the amount of overdispersion, while the inter-
cepts λi deal with the stratified structure.
As an example of application, we consider the Epileptic seizures data of
Thall and Vail (1990), which are also included in the R library MASS (Ven-
ables and Ripley, 2002). The data come from a longitudinal study on epilep-
tics. A group of 59 patients were observed for a baseline period of 8 weeks
and then randomized to a treatment for four successive two-week treatment
periods; the response was the number of observed seizures. Venables and
Ripley (2002, §10.4) report two possible ways of analysing the dataset, and
in both cases the Poisson fit indicates the presence of substantial overdis-
persion. Here we focus on the case which uses a loglinear model with several
predictors, including log-baseline counts, treatment status and the indicator
of the fourth visit (V4). The total sample size is given by 59×4 observations.
Note that all predictors but V4 are time invariant, thus they are confounded
with subjects and their effects can not be estimated in models with subject-
specific fixed intercepts. However, the modified profile likelihood allows to
study the evolution of the response over time and the amount of overdis-
persion, removing any unobservable individual heterogeneity. For the sake
of comparison, we also present the maximum likelihood estimates obtained
from a random intercepts model, assuming a Gaussian distribution for λi.
Table 1 reports the results.
We note very similar estimates of the coefficient of V4 with all methods but,
more importantly, a quite different indication about the degree of overdis-
persion from the profile likelihood and the modified profile likelihood. It
is somehow reassuring that the estimate of α from the Gaussian random
effects model is close to that from the modified profile likelihood.
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TABLE 1. Epileptic seizures, parameter estimates with different methods.

Method Estimates (s.e.)
V4 Index (α)

Profile Likelihood −0.12 (0.08) 13.84 (3.53)
Modified Profile Likelihood −0.11 (0.09) 7.46 (0.94)
Gaussian Random Effects −0.12 (0.09) 7.40 (0.95)
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Analysis of Breast Cancer Survival Data with
missing information on stage of disease and
cause of death
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Abstract: Aim of this paper is to study whether social class is related to breast
cancer survival, in a cohort of 4709 breast cancer patients diagnosed in Sweden in
1993 and followed until the end of 2001, while adjusting for possible demographics
and tumor related confounders. The data are provided by the Swedish Cancer
Registry and are matched to the death registry by using the unique Swedish
Personal Registration Number.
The statistical problem is that the most recent cases have not reported in the reg-
istry, as far as it concerns with the underlying cause of death, and standard cause
specific survival analysis will turn to exclude those patients, then affecting our
ability to detect any statistical difference in the effect of our covariate of interest.
Furthermore, a related problem is that for some cases some important covariates
(tumor stage) are missing, due the fact that the regional cancer registries have
not provided the requested information.
In this application simple missing data imputations have been incorporated into a
standard survival data analysis problem, based on the estimation of the Kaplan-
Meier estimator and Cox proportional hazards regression model.
As the type of failure is truncated by time, imputing the cause of death will
increase the follow-up time, therefore allowing to best study the survival distri-
bution. Moreover, when also a confounder is missing completely at random, it is
possible to detect the effect of the main exposure variable with more accuracy.

Keywords: Survival Analysis; Missing Data ; Imputation; Social Class

1 Introduction

Epidemiological findings indicate that breast cancer survival is related to
socioeconomic factors. Women of lower socioeconomic status have generally
been found to have poorer survival.
Epidemiological findings indicate that both breast cancer incidence and sur-
vival are related to socioeconomic factors. Women of lower socioeconomic
status are at lower risk of developing breast cancer (Faggiano et al.) but
tend to have poorer survival compared to socioeconomically more favored
women (V̊agerö & Persson).
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A common problem in analysis of survival data is the presence of competing
risk. When the cause of death is known, it is possible to study the effect
of covariates on cause-specific hazards by treating the deaths from other
causes as censored observations in a Cox regression model (Cox & Oakes).
As the follow-up increase, the time available for quality checking of the
death certificates decreases and therefore the statistician has to face the
dilemma whether to censor the data at an earlier period of time, where
complete information on the endpoint is fully available, or to try using all
the data by imputing the missing value of cause of death (Andersen et al).
Furthermore, even if complete information on social-economic status is
present, it is possible that for the same reason some possible covariate,
such as tumor stage, might be missing for a particular reporting center.
Therefore, we propose a simple strategy to incorporate the two compo-
nents of missing data in the analysis, under the simplifying assumption
that missingness is completely at random, in the standard survival analysis
procedures.

2 Material and Methods

This underlying study is based on a linkage between the following Swedish
population-based registers: the Cancer Register, five Regional Cancer Reg-
isters, the 1970, 1980, 1985 and 1990 Census databases, the Fertility Reg-
ister, Emigration Register, and Cause of Death Register. Record linkages
were made possible by using the individually unique National Registration
Number (NRN) assigned to each resident in Sweden at the time of birth
or residency. These are high quality registries: In 1993, 99% of the breast
cancer cases were morphologically or cytologically verified and the overall
reporting to the Cancer Register was estimated to be about 98% of all diag-
nosed cases (National Board of Health and Welfare). A validation study of
breast cancer reporting from one Swedish hospital showed that only 1% of
all diagnosed cases were missing in the register during the period 1971-1991
A total of 4645 women were diagnosed with invasive breast cancer as first
diagnosis from January 1 to December 31 in Sweden in 1993. Of these, 1646
(35%) women have died as of December 31, 2001, the end of the follow-up
period. However, 298 women died after December 31, 1998, the date after
which the cause of death was unknown. The total number of women with
ascertained cause of death was 1348, and 772 of these deaths (57.3%) were
due to breast cancer.
Standard survival analyzes are performed: the survival distribution is esti-
mated by Kaplan-Meier technique, and log-rank test is used to assess the
influence of the main exposure variable. We also run proportional hazard
regression model to study how the estimates change according the different
scenario of missing data for the covariates.
Imputation of missing cause of death was done in two steps: first we a
logistic regression model, in which for a woman with known cause of death
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FIGURE 1. Partial Follow-up.

we model the logit of the probability of dying of breast cancer, given the
covariate patterns (marital status, age, region of diagnosis). The second
step, for a woman with missing cause of death is to generate a binary
random variable with mean given my the fitted probability.

3 Results

In figure Figure 1 we show the failure distributions when we end the follow
on the first date (December 31, 1998); the log-rank test shows that the two
survival distributions are statistically different with a p-value = 0.01. We
also observe that more than 80% of women diagnosed with cancer are still
alive after 6 years of follow-up.
In figure Figure 2 I show the same distribution after multiple imputation
of cause of deaths has been performed and median values of the estimated
failure distributions have been calculated. Not surprisingly the log-rank
test shows an even higher statistical difference, (P-value =0.002). It is also
important to notice that apparently the hazard of dying of breast cancer
for high social class women seems to level off after 8 years from diagnosis,
whereas the hazard for low social class women seems being constant.
In the second stage of our missing data problem, I considered the effect of
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FIGURE 2. Complete Follow-up.

TABLE 1. Social-Economic Effect adjusted by tumor stage: Hazard Ratio, 95%
Confidence Intervals (CI), P-values .

Model 1: Model2:
Stage Available Data Stage Imputed Data

hazard ratio 0.81 0.75
95% CI 0.65- 1.01 0.62-0.90
P-value 0.06 0.02

tumor stage, as a possible confounder for the relationship between social
status and time to death of breast cancer. Tumor stage was missing for
one of the regional cancer registries in Sweden and as many as 1200 women
would not be considered in the final model.
In Table 2 we report the results from fitting two different models: model (1)
is considering only patients with available tumor data, model (2) is taking
into account the missing component of the covariate, according to the the
simple missing data indicator method (Greenland and Finkle).
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4 Conclusions

Preliminary results show that it is possible to incorporate missing data
into a standard survival data analysis. Multiple imputation of the fail-
ure indicator might increase the ability of detecting significant differences
between survival distributions, as we increase the follow-up time. I have
also compared the observed results with the Kaplan-Meier estimator when
considering any type of death as the the endpoint of the study and some
conclusions can be drawn. As far it concerns with the imputation of the tu-
mor stage, although the method might produce some severe biased results
in some cases, in this situation it is reasonable to assume it might affect
our results, as both missing data can be easily completely at random and
and only affecting the confounder of interest.
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Abstract: We focus on a split-plot analysis for microarray experiments to ac-
count for the rich hierarchical structure typical of this measurement process. The
real operative levels in the experimentation are here addressed. In particular, the
levels of gene factor are reduced performing a selection based on variability of
the intensity. Further issues here considered are the distinction between random
and fixed effects and the consideration of the diameter as spot’s covariate.

Keywords: Split-plot design, microarray experiments, spot effect, robust design.

1 Introdution: split-plot designs and microarrays

The aim of this work is to investigate the applicability of split-plot designs
in a simple experimental setup. More precisely, it is well known in literature
the role of the split-plot design as a plan for robust product experimen-
tation (Box and Jones, 1992). In fact, the specific structure (framework)
of a split-plot can be easily arranged in order to take care of the external
variability and, also, of the hierarchy among factors according to operative
levels, in particular, whole and sub-plot. External variability is a concept
connected to the definition of environmental variables or, also, noise factors,
even though measurable and controllable. In microarray experiments, the
concept of external variability can be assigned to the array and print-tip
(pin) factors. Therefore, the set of factors of interest, also called internal
factors of the process, are the variables directly influencing the intensity
measure and the gene expression.
Operative levels are fundamental characteristic of a split-plot design (Lo-
gothetis and Wynn, 1990). With microarrays, we suppose three operative
levels: a ”slide” level, a primary level in which we consider the array factor,
the pin factor and the correspondent interaction; a secondary level, with
the factor of interest as gene, dye, variety and the related crossproducts;
a third level, which we could call ”spot” level, by which we attempt to
measure the effect due to the physical features of spots.
Regarding these issues, we must consider the following problems. First of
all, we build a split-plot design for data just collected, so we perform a
split-plot analysis, only considering the related model applied to our data.



R. Berni et al. 321

Secondly, this split-plot analysis must take care of crossproducts between
factors belonging to different operative levels. For example, the interaction
between the array and the gene factors. In this work, this aspect must be
evaluated also considering the nature of the variables involved. At each
operative level, experimental factors could be random or fixed factors.
In general, in microarray experiments, array pin and gene are considered
as random factors. In our application, we consider array as fixed factor, pin
as random factor, the spot covariates as random factors. Furthermore, the
gene factor is evaluated as a fixed factor at an initial step of the analysis but,
in order to reduce the number of levels (type of genes), we make a selection
of genes based on a measure of variability for the fluorescence intensity.
Consequently, by the use of this transformed gene factor, we suppose that
genes are similar, or homogeneous, as regards the fluorescence variability.
This assumption has to be weakened in future work.
Another feature is about the spot covariates. In general, it is well known the
difficulty to evaluate the ”spot” effect, just because the measures related
to the spot are affected by the background noise. Consequently, auxiliary
spot’s indices, such as uniformity, circularity and diameter, are crude esti-
mates. Nevertheless we apply a spot analysis by considering two possible
approaches: the average of each spot variable calculated within the pin fac-
tor, here confounded with the sub-array factor; otherwise by considering
the three replicated spots for the same gene.

2 The suggested model

The model here proposed could be considered a general model for split-plot
analysis in the microarray field. Here two arrays were considered, arranged
in a dye-swap scheme. The layout of the experiment is made by two target
samples of maize ear tissues: a wild type genotype and a mutant genotype.
There are 8 grids (subarrays) in a 4 by 2 lattice, and each grid is a square of
45 by 45 spots. Detailed explanations about the array manufacturing can
be found at the URL address http://www.zmdb.iastate.edu/ on internet,
array batch number 605.03.
The model has the following general expression:

yijkl = µ+rl+Ej+ηjl+Di+(DE)ij+ψijl+Sk+(ES)jk+(DS)ik+eijkl (1)

where, for simplicity, the letters E,D, S stay for the three operative levels
of the split-plot; Environmental, Design and Spot level. For each of these
levels we have a set of variables; yijkl is the response for the lth replicate of
the ith level of factor D, the jth level of factor E and the kth level of factor
S; the rl term is the random effect of the lth replicate with rl ∼ N(0, σ2

r). In
the E set we consider: array, pin and the interaction array∗pin; in theD set
we put: gene, colour, channel, and the interactions gene ∗ channel, array ∗
colour, gene ∗ colour; in the set S are considered the variables of the spot:



322 A split-plot analysis for microarray experiments

circularity, uniformity and diameter, and, eventually, their interaction with
the array factor. We don’t consider the crossproducts among the gene factor
and the spot measures. We must point out that the terms of the model (1):
ηjl, ψijl, and eijkl, represent the independent error components, supposed
Normally distributed with null expected value and proper variance. In the
next section a first empirical example is applied; the two proposed models
are simpler than (1): regarding the level of the split-plot design and the
number of factors involved; in addition, we consider three replicates for the
same gene and we evaluate only one spot covariate: the diameter.
Our approach builds on usual anova models (Churchill et al., 2000) but it is
devoted to an improved exploitation of information about the measurement
process, both in external and internal noise factors. The suggested class of
models differs from Wolfingers’ (Wolfinger et al., 2001) two-step procedure
in which one-at-a-time gene analysis is performed.
As regards the case study, two models are proposed following a two-levels
split-plot design in which the array factor, considered as a fixed factor,
is arranged as whole-plot variable; the print-tip factor (here called PIN
factor) is considered as a whole-plot classification factor at random effects
nested within the array factor, while gene and channel are assigned to
subplots. The gene factor is considered as a fixed factor,the channel, (here
confounded with colour), is a fixed factor. The levels of the gene factor are
reduced by genes selection: the procedure selects 96 genes which show large
fluorescence differences between dyes (6351 observations).
Furthermore, two error components are defined: the first is related to the
array and PIN factors, while the second is a pooled error formed by the
residual terms of higher order of the subplots and the interactions between
the terms of the subplots and the classification effects.
Considering the formula(1) in section 2, for the first model, we put in the
E-set the array and PIN factors, in the D-set we insert the gene and
channel factors and two interactions: array ∗ channel and gene ∗ channel.
The second model the diameter as spot covariate. This variable is con-
sidered as a continuos factor at random effects nested within the array
factor.
For the first model, tables (1) and (2) show the results for random and
fixed effects. The convergence criteria are met at the second iteration, using
REML as estimation method.
The fixed effects are significant, but the interaction gene ∗ channel; (table
(2)). The tests are computed using the Type III SS, to take into account
of the unbalanced design.
The second model including the diameter of the spot is also satisfactory.
Regarding diameter as a continous factor at random effects. The conver-
gence criteria are met at ninth iteration and diameter is highly significant
within each array. Tables (3)and (4) show the results for the random and
fixed effects.
The results for the fixed effects (table (4)) are similar to the results obtained
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TABLE 1. Solution for Random Effects - I model
Effect block PIN Est std Err t-test p-value
PIN 1 1 0.1174 0.09187 1.28 0.2012
PIN 1 2 -0.2805 0.09169 -3.06 0.0022
PIN 1 3 0.1803 0.09183 1.96 0.0496
PIN 1 4 -0.01718 0.09161 -0.19 0.8512
PIN 2 1 -0.06318 0.09189 -0.69 0.4918
PIN 2 2 -0.09721 0.09179 -1.06 0.2896
PIN 2 3 -0.04036 0.09188 -0.44 0.6605
PIN 2 4 0.2007 0.09159 2.19 0.0284

TABLE 2. Results for fixed effects of interest- test F (df) and p-values - I model

Effect df Mean Square F-value p-value
Array 1 19.89 0.88 0.4169
I error 3 22.54 - -
Channel 1 9.72 14.88 0.0001

Array*Channel 1 58.14 89.04 < .0001
gene 95 238.36 365.04 < .0001

gene*Channel 95 0.08 0.12 n.s.
II error 6151 0.65297 - -

TABLE 3. Solution for Random Effects - II model
Effect block PIN Est std Err t-test p-value
PIN 1 1 0.1186 0.06551 1.81 0.0702
PIN 1 2 -0.1760 0.06538 -2.69 0.0071
PIN 1 3 0.1289 0.06548 1.97 0.0491
PIN 1 4 -0.07155 0.06525 -1.10 0.2729

Diameter 1 - -0.05375 0.00192 -28.01 < .0001
PIN 2 1 -0.01518 0.06555 -0.23 0.8169
PIN 2 2 -0.03625 0.06544 -0.55 0.5797
PIN 2 3 -0.06145 0.06522 -0.94 0.3483
PIN 2 4 0.1129 0.06526 1.73 0.0837

Diameter 2 - -0.05838 0.00186 -31.46 < .0001

by the first model.
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TABLE 4. Results for fixed effects of interest- test F (df) and p-values - II model

Effect df Mean Square F-value p-value
Array 1 3.18 0.20 0.6843
I error 3 15.823 - -
Channel 1 13.04 23.57 < .0001

Array*Channel 2 82.60 149.26 < .0001
gene 95 39.27 70.96 < .0001

gene*Channel 95 0.14 0.26 n.s.
II error 6150 0.5534 - -

3 Concluding remarks

It is relevant to note that this is a first attempt to analyze this kind of
data using a split-plot model.Therefore,these are preliminary results to be
revised towards the consideration of a third level of the split-plot. In fact,
given the relevance of the assignment of factors to the level of the split-plot
design, we point out that this aspect must be notably improved.
The possibility of heterogeneous variances among genes should also be ad-
dressed as the key issue in further work.
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Abstract: The Tower of London data have one serious problem. The problem is
the high proportion of stayers, because parametric estimation of random effects
tends to underestimate the number who are stayers. In this paper, we will use
alternative estimation procedures like the parametric mixing distribution with
mover-stayer model and the non-parametric mixing distribution methods. In this
paper we try to answer how well these alternative procedures compare with each
other?

Keywords: Random effects; Endpoints; NPML; Mover-stayer; Tower of London.

1 Introduction and Motivation

Being able to plan efficiently is important in many of the complex be-
haviours of life such as organising work schedules, making travel plans or
even preparing meals (Shallice, 1982). In order to study shortcomings in
executive planning, Shallice (1982) developed the Tower of London (TOL)
task. Since the publication of Shallice’s research, the TOL task has been
used extensively as a test of planning ability in both adult and young
child populations. Despite the value of the TOL in the assessment of ex-
ecutive planning, a review of the existing tower systems suggested that
several changes are needed to adapt them for use with young children. In
this paper, we use the datasets and the TOL tasks format are provided
by Shimmon & Lewis (2003). These experimental datasets are concerned
with binary repeated measures on the TOL task applied to young children
(testing their planning ability to solve problems) at three different times.
The TOL experiment consists of a series of tasks which, in this study, were
carried out repeatedly over time. In this series of tasks, the subjects pro-
vide us with a sequence of binary responses, where 1 indicates success and
0 means failure, in any particular task.
At time 1, 115 children were recruited from pre-school playgroups in rural
areas around Lancaster. The same children were then tested six months
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later in a second wave of data collection. The final wave of testing took
place 12 months after phase 1. Many of the 30 children who discontinued
participation at time 2 and time 3 did so due either to the failure of their
parents to return permission slips allowing further participation or to the
departure of those particular children from the area of study (Lancaster).
Since the missing cases or the drop-outs are ignorable, we exclude the data
for all the missing cases from our analyses and analyse only the complete
sequences in the data set.
In reviewing the literature, we have found that, besides yielding the se-
quences of binary response variables, the experiments also involve a number
of factors. Children’s ability to inhibit salient aspects of the environment
has some effect. The Stroop day/night task is designed specifically for young
children by way of testing their ability to inhibit salient aspects of the envi-
ronment. Children must inhibit their natural inclination to respond ”day”
when presented with the sun and ”night” to the moon by saying the oppo-
site of what they see (night to the sun and day to the moon). Children who
get high scores on the Stroop day/night tasks tend also to success in the
TOL tasks. Language ability also plays an important role in performing
the TOL tasks. The British Picture Vocabulary (BPV) test was used to
test children’s verbal language ability in monthly units. In order to achieve
success with TOL tasks, children have to understand the verbal language
command or instructions. The last kind of factor or explanatory variable is
the child’s early stage of mind development. The false-belief task was used
to discover how the theory of mind works. In these experiments, four kinds
of false-belief task are used. All four false-belief tasks are the unexpected
contents task, the unexpected transfer with the Sally-Anne task, the vi-
sual ambiguity task and the appearance reality task. Each false-belief task
scores 1 or 0. Scores are added together to get the final score for false-belief.
The main motive for analyzing these data is the presence of stayers. The
mover-stayer model assumes that each subject is either a ”mover” or a
”stayer”, and that stayers do not move (zero or very low probability of
change).

2 Random Effects Models

The random effects model is a particular example of a mixed model that
is widely used for the analysis of longitudinal data. Let subject i be ob-
served at time t, then the effects of covariate xit on the outcome yit can be
represented in the logistic regression model; log{ P (yit=1)

1−P (yit=1)} = β′xit + εi,
where yit = 1 for a successful outcome, 0 otherwise. The random effects are
assumed to be normally distributed with zero mean and variance σ2

ε . The
above random effects model can be estimated using parametric estimation.
See, for example, Fahrmeir & Tutz (2001).
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3 Parametric Mixing Distribution (PMD) with
Mover-Stayer Model (MSM)

The mover-stayer model (MSM) can be incorporated into the parametric
estimation of a random effects model. A degree of flexibility (to include the
MSM) can be achieved if we represent the proportions of stayers as end
points; the likelihood will then be obtained as follows:

Li(β, σ, ψ0, ψ1) =
ψ0

1 + ψ0 + ψ1
[
Ti∏
t=1

(1−yit)]+ ψ1

1 + ψ0 + ψ1
[
Ti∏
t=1

yit]+
Li(β, σ)

1 + ψ0 + ψ1

(1)
where ψ0 and ψ1 are unknown but can be estimated at the end-points as
parameters, and Li is the sequence likelihood. The estimated proportion of
stayers in state zero is given by p0 = ψ0

1+ψ0+ψ1
and the estimated proportion

of stayers in state one is given by p1 = ψ1
1+ψ0+ψ1

. For a more detailed
discussion of the MSM, please refer to Barry et al. (1989).

4 Nonparametric Mixing Distribution (NPMD)

The Generalised Linear Latent and Mixed Model (GLLAMM) program in
STATA for mixture distributions, written by Rabe-Hesketh et al. (2002),
has an option of using nonparametric maximum likelihood (NPML) for
parameter estimation. In order to avoid the specification of a parametric
form for the mixing distribution, a nonparametric approach, based on a
finite mixture, is considered.
The NPML estimate of G(Zi;β), when it exists, is known to be a discrete
distribution on a finite number, K, of mass-points, with masses πk at loca-
tions zk, k = 1, ..., k. Thus the profile likelihood in β, maximized over G(.),
is the K-component finite mixture log likelihood

� =
n∑
i=1

log(
K∑
k=1

πkf(yi|zk, β)) (2)

where K, zk and πk are functions of β. In order to maximize this profile
likelihood, we can reformulate the problem as the maximization of the joint
likelihood

�(β,K, π1, ..., πk−1, z1, ..., zk) =
n∑
i=1

log(
K∑
k=1

πkf(yi|zk, β)) (3)

over β and all the parameters of the mixture distribution. The number of
components K is unknown, so the log likelihood too has to be maximized.
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It is clear that because of the mass-points in NPML being freely locatable,
it is possible to take into account the parameters for the endpoints at ±∞.
The number of locations (mass-points) is increased until the likelihood is
maximised.

5 Results and Conclusions

Table 1: Regression estimates and standard errors (in parentheses) for the
PMD, PMD + MSM and NPMD methods respectively used on the TOL
data.

Parameter PMD PMD + NPMD
MSM

Quadrature points/
Mass-points 20 20 3

-2loglikelihood:
Null model 987.145 987.145 987.145

-2loglikelihood:
Parsimonious model 661.590 650.894 650.988

AIC 671.590 662.894 662.988
β0 -6.954 -6.199 -8.211

(0.815) (0.835) (0.898)
β1(Language Ability) 0.067 0.065 0.072

(0.014) (0.013) (0.014)
β2 (False Belief Task) 0.366 0.375 0.359

(0.110) (0.102) (0.100)
β3 (Stroop Day/Night Task) 0.088 0.086 0.072

(0.033) (0.030) (0.027)
Scale Parameter 2.129 1.234 -

(ω) (0.278) (0.251) -
Mass-point 1/ - 0.291 Fixed
End-point 1 - (0.101) -
Proportion - 0.227 0.235

Mass-point 2/ - Fixed 2.896
End-point 2 - - (0.579)
Proportion - - 0.397

Variance Component 4.509 1.523 11.964
(1.181) (0.249) -
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The Akaike Information Criteria (AIC) indices of parametric mixing distri-
bution with mover-stayer model (PMD + MSM) and nonparametric mix-
ing distribution(NPMD) in table 1 show us that the PMD + MSM and
NPMD estimate similar models. In the PMD + MSM, the stayers (either
all failures or all successes) are captured by endpoint estimation, whereas
in the NPMD method, the stayers are estimated by the method of free
finite mixture (mass-points). The results also indicate that the parametric
approach underestimates the magnitude of the mover-stayer problem. It is
clear that the tail behaviour of the normal distribution is inconsistent with
”stayers”(Barry et al., 1989).
The -2loglikelihood and AIC show that the PMD + MSM and the NPMD
model are better in terms of estimation compared to the PMD model. The
PMD + MSM and NPMD models take into account the high proportion
of stayers.
The PMD +MSM and NPMD approaches cope equally well (deviances and
AIC). However, the NPMD approach seems more efficient in terms of the
number of mass-points required to specify the mixing distribution (3 mass-
points of NPMD compared to 20 quadrature points for PMD + MSM).
Moreover the NPMD approach is computationally much less intensive than
the parametric approach.
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1 Introduction

In our earlier work, we have extended the Weibull proportional hazards
(PH) regression survival model to a Gamma frailty model by means of
a multiplicative random effect acting on the hazard function (Hougaard
1984). However, not all survival data are PH and it is therefore useful to
explore alternative models which are non-PH. This is relevant as, increas-
ingly, random effect models are being used to analyze multivariate survival
data (Ha 2001).

A flexible non-PH model is the Canonical Time-Dependent Logistic (CTDL)
described by MacKenzie (1996) and later by MacKenzie(1997). We have al-
ready generalized this model by including a multiplicative Gamma frailty
term in the hazard function. The resulting frailty model was obtained in
closed form and we compared its properties with the Weibull frailty model,
noting the connection with a general class of frailty models described by
Aalen (1988). The performance of the four models, Weibull and CTDL with
and without frailty, was investigated using data from the N. Ireland lung
cancer study and it was shown that the CTDL-Gamma model provided the
best fit. In addition, non-parametric frailty models are developed to check
whether Gamma distribution is appropriate for the random effect. We now
extend the models to the multivariate case and special consideration is
given to the correlated frailty scenario.
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2 Univariate Survival Models

A non-PH model, the CTDL regression model (MacKenzie 1996), is defined
by the hazard function

λ(t|x) = λp(t|x), (1)

where λ > 0 is a scalar, p(t|x) = exp(tα + x′β)/{1 + exp(tα + x′β)} is a
linear logistic function in time, α is a scalar measuring the effect of time, β
is a p × 1 vector of regression parameters associated with fixed covariates
x′ = (x1, . . . , xp) and θ′ =(λ, α, β).
When developing the CTDL-gamma mixture model, we assumed that the
random component has a multiplicative effect on the hazard, such that
λ(t;x, u) = uλ(t;x). U follows a Gamma distribution with E(U) = 1 and
V (U) = σ2. We then used the marginalization approach to obtain the pdf
for the resulting marginal frailty distribution:

ff (t|x) =
λpi{

1− λσ2

α loge(giqi)
}1+ 1

σ2
(2)

where,

pi = exp(tiα+ x′iβ)/{1 + exp(tiα+ x′iβ)}
qi = 1/{1 + exp(tiα+ x′iβ)} (3)
gi = 1 + exp(x′iβ)

and where, for notational convenience, we have suppressed the dependence
on time and the covariates on the LHS of (3).

Similarly for Weibull-gamma model, we found that:

ff (t|x) =
λρρex

′
βtρ−1

{
1 + σ2(λt)ρex

′β
}1+ 1

σ2
(4)

3 Non-Parametric Frailty

The estimated effect of covariates may be influenced (to a varying degree in
different sets of data) by the choice of the distributional form of the frailty
density. In order to minimize the impact of frailty distribution assumption,
we fit a non-parametric (NP) frailty component based on a finite mixture.
We use the EM algorithm for implementation. We are interested in estimat-
ing the NP frailty component simultaneously with the mixing proportions.
These estimated values will typically suggest the mixture from which the
data were generated and hence will provide a useful check on any paramet-
ric assumptions made.
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The resulting CTDL and Weibull log-likelihoods are, respectively:

�ctdl(π, θ) =
c∑
j=1

n∑
i=1

{
zij logeπj + zij [δiloge(ujpi) +

ujλ

α
loge(qigi)]

}
(5)

where, πj is the jth component of the mixture, c is the dimension of the
mixture, uj = ec

ijγ is the non-parametric frailty component, θ is the vector
of parameters to be estimated, pi, qi, gi are as before, and

�w(π, θ) =
c∑
j=1

n∑
i=1

{
zij logeπj + zij [δiloge(λρρt

ρ−1
i ex

′
iβuj)− (λti)ρex

′
iβuj ]

}
(6)

An algorithm was written in S-Plus (V4.5) to maximize (5) and (6).

4 Multivariate Survival Data

We turn now to the idea of generalizing the parametric frailty models intro-
duced earlier to correlated survival data. In particular, we seek analytical
results using the marginal approach, in order to determine whether the
univariate results generalize to the multivariate context.

Suppose we have f(ti|ui, θ) and g(ui|σ2) where ti = (ti1, ti2, · · · , timi ) is the
vector of survival times on the ith subject. mi is the number of measure-
ments on the ith subject, whence tij , i = 1, · · · , n; j = 1, · · · ,mi, become
our data. The joint likelihood of t and u is then:

L(θ, σ2) =
n∏
i=1

f(ti|ui, θ)g(ui|σ2) (7)

However, under the h-likelihood assumption that the survival times within
a subject are independent given the random effect we have

f(ti|ui, θ) =
mi∏
j=1

f(tij |ui, θ) (8)

whence, after marginalizing over u and assuming non-informative censoring,
(7) becomes:

L(θ, σ2) =
n∏
i=1

∫ ∞

0

g(ui|σ2)
mi∏
j=1

[λ(tij |ui, θ)]δiS(tij |ui, θ)dui (9)
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4.1 Bivariate Models

Let us consider the bivariate case with mi = 2 so that there are two sur-
vival times measured on each subject. After some algebra, we obtain our
two models:

Bivariate Weibull-Gamma model:

ff (ti1, ti2 | θ) = (1 + σ2)(λρρex
′
β)2λ2(ti1ti2)ρ−1

(1 + σ2λρ[tρi1 + tρi2]ex
′β)2+

1
σ2

(10)

and Bivariate CTDL-Gamma model:

ff (ti1, ti2 | θ) =
(1 + σ2)λ2pi1pi2{

1− λσ2

α loge(g2
i qi1qi2)

}2+ 1
σ2

(11)

Therefore, contrary to some claims that have been made previously, we
have been able to use the marginalization approach to obtain the bivari-
ate CTDL-Gamma model. We should note that models (10) and (11) are
proportional to their corresponding univariate forms, and can easily be
extended to higher dimensional data.

4.2 Correlated Gamma frailty

In the previous section, we assumed shared frailty when dealing with bivari-
ate survival data. However, this assumption may not always be plausible,
and hence we should perhaps prefer each of the two survival times mea-
sured on an individual to have its own frailty component associated with it.
A case that is of particular interest occurs when the two frailty components
follow Gamma distributions which are correlated. A substantial amount of
research has been done in this field, mainly by Yashin, e.g. Yashin (1995),
especially when dealing with twin data, but the thrust of this work is wholly
in relation to PH models. No attention has been given to the case where a
non-PH hazard is assumed.

Let the two frailties be constructed as U1 = Y0+Y1 and U2 = Y0+Y2, where
Yi are independent Gamma random variables with parameters (ki, θi),
i = 0, 1, 2. Let us further suppose that V [U1] = σ2

1 , V [U2] = σ2
2 and

corr[U1, U2] = ρu. We force U1 and U2 to be Gamma distributed by as-
suming θ0 = θ1 = θ2. We also retain the earlier assumption of conditional
independence of survival times.

For the CTDL model, we have, after some algebra:

S(t1, t2) =
∫ ∞

0

∫ ∞

0

∫ ∞

0

(giqi1)
λ
α (y0+y1)(giqi2)

λ
α (y0+y2)g(y0)g(y1)g(y2)dy0dy1dy2 (12)
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= [1 + θΛ(t1)]−k1 [1 + θΛ(t2)]−k2 [1 + θΛ(t1) + θΛ(t2)]−k0 (13)

where g(yi) are probability density functions of the random variables Yi, i =
0, 1, 2, respectively. A similar form is obtained for the Weibull distribution.
A simulation study was performed and the results will appear elsewhere.

5 Final Remarks

In this paper we have extended the non-PH based Gamma frailty and its
standard PH-based Gamma frailty competitor to bivariate case. The mod-
els we obtained when the frailties are correlated are of a more general form
than those commonly used, since we do not assume identical distribution
of Yi, i = 0, 1, 2.
Our development of multivariate parametric versions of the non-PH frailty
model to deal with correlated survival data and our investigation of corre-
lated frailties opens up further interesting avenues of research. The devel-
opment of this class of models and various non-parametric, finite mixture,
competitors is also being pursued.
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Abstract: We present the use of linear hierarchical models to assess the repeata-
bility and agreement of two or more measurement devices. The idea is illustrated
by means of two sets of data. The first considers eight different protocols for the
recording of distortion product otoacoustic emissions in Sprague-Dawley rats.
The second data set was obtained from the calibration of two types of extremely
low frequency magnetic field dosimeters.
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1 Background and motivation

At least two concerns must be raised whenever several devices and/or differ-
ent equipments are used in one and the same study to measure the quanti-
ties of interest. The first question regards the reliability of the instruments,
that is, whether the reported values reflect the target value being measured.
The second point which should be addressed is whether the measurement
devices agree, that is, whether they provide under the same experimental
conditions measures that may be treated alike. The precision of a mea-
surement device is usually reported in terms of the repeatability standard
deviation, while the common measure of agreement in method comparison
studies is the intra-class correlation coefficient. In this paper we consider
estimates of both obtained under experimental laboratory conditions.
In its original formulation, the model used to represent the calibration data
is a one-way random effects model. This formulation rests upon an exper-
imental setup where repeated measures of the same item are taken with



336 Assessing Repeatability and Agreement by Hierarchical Modeling

the different methods. Nowadays, laboratories specialized in reliability and
method comparison studies tend to adopt more complex calibration pro-
cedures. The aim of this paper is to show how linear hierarchical models
(Goldstein, 1995) represent a natural extension of the classical approach
which allows the experimenter to cope with more elaborate experimental
setups. We will illustrated this by means of two data sets provided by two
studies who respectively focus on the effects of microwave electro-magnetic
fields on hearing and try to assess whether extremely low frequency mag-
netic fields represent a risk factor for childhood leukemia.

2 Reliability study1

2.1 The DPOAE recording data

The DPOAE recording data set contains the distortion product otoacous-
tic emission (DPOAE) levels recorded from 10 male Sprague-Dawley rats
following eight different protocols. Each protocol considers five different fre-
quencies of the stimulating pure tones at which the DPOAEs are measured.
The objectives of the study were two-fold: first, to assess the repeatability
of the eight protocols used, and, second, to infer the frequency at which the
maximum response level is achieved. The animals were tested three times
and on both ears separately.

2.2 Model and results

As suggested by the exploratory analysis of the data, a quadratic rela-
tionship between DPOAE level, yP

ijkm, and tested frequency, xijkm, was
assumed. Random coefficients were introduced to account for individual
differences in the mean response level among animals and between the
tested ears. Individual models were fitted to the data available for each
of the eight recording conditions. The software used is the R (Ihaka and
Gentleman, 1996) library nlme developed by Pinheiro and Bates (2000).
The final model validated by the data is

yP

ijkm = (αP + aP

jk) + (βP + bP
j )xijkm + γP x2

ijkm + σ
P
εP

ijkm.

Here, the indexes P , i and m identify respectively a particular protocol,
the tested frequency and the recording session, bP

j is a centered Gaussian
random coefficient associated with rat j, and aP

jk represents a centered
Gaussian random effect that accounts for the difference between the two
ears of the jth animal. The repeatability standard deviation associated with

1
This work was carried out in the framework of the European 5th Framework Project

GUARD, “Potential adverse effects of GSM cellular phones on hearing” (coordinator:
Dr. P. Ravazzani).
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TABLE 1. DPOAE recording data — restricted maximum likelihood estimates
of the repeatability standard deviations of the eight protocols used.

protocol P1 P2 P3 P4 P5 P6 P7 P8

σ̂
P

6.76 5.96 7.19 6.00 5.93 5.70 6.61 7.65

a particular recording condition identifies with the standard deviation σ
P

of the error term in the corresponding model. Table 1 lists the restricted
maximum likelihood estimates σ̂P

obtained for the eight protocols. The
frequency at which the maximum DPOAE response is reached, xP

max =
−(βP + bP

j )/(2γP ), varies among individual rats, but not with respect to
the two ears. On the other hand, a similar calculation shows that the right
ear generally produces a higher DPOAE than the left ear.

3 Method comparison study2

3.1 The EMDEXTM calibration data

The EMDEXTM calibration data consist of the periodical calibrations of
40 EMDEX IITM and EMDEX LiteTM magnetic field dosimeters used in
the SETIL study. The objectives of the analysis were two-fold: to assess the
reliability of the two meter types and to evaluate whether the measurements
provided agree. The experimental setup considers six different magnetic flux
densities. Three measurements are taken at each nominal value, where, in
turn, one of the three sensing coils incorporated into the meter is pointed
in the direction of the magnetic field vector. At each occasion, the true
magnetic flux density is calculated. Of the 40 instruments considered in
our analysis, 21 were calibrated four times and 19 five times.

3.2 Model and results

The preliminary analysis of the data indicated that the absolute measure-
ment error dijkm, defined as the difference between the measured field
strength and the generated magnetic flux density, grows linearly with the
true density xijkm of the target field. We hence used a straight line re-
gression to summarize the mean behaviour of the EMDEXTM meters. The
dependence on the remaining design variables was accounted for by al-
lowing the intercept and slope to vary among instrument type and coil
orientation. The SAS procedure PROC MIXED (SAS Institute, 2001) was
used to fit the model. The final model validated by the data is

dijkm = (αi + aijk) + (β + bij + bijk)xijkm + σiεijkm,

2
This work was carried out in the framework of the SETIL project, “Multicentric epidemi-

ological study on risk factors for childhood leukemia, non-Hodgkin’s lymphoma and neurob-
lastoma” (coordinator: Dr. C. Magnani).
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TABLE 2. EMDEXTM calibration data — Predicted relative errors and 95%
prediction intervals cross-classified by instrument type and coil orientation.

coil 1 coil 2 coil 3

EMDEX IITM 4.5% [4.1,4.9] 4.4% [4.0,4.8] 4.6% [4.2,4.9]

EMDEX LiteTM 2.5% [1.9,3.0] 5.1% [4.5,5.6] −0.7% [−1.3,−0.3]

where bij and (aijk, bijk) are centered Gaussian random effects, and where
the error variance, σ2

i , i = 1, 2, only depends on the factor instrument type,
but not on the orientation of the sensing coils. The remaining indexes, j, k
and m, respectively represent the coil orientation, the serial number of the
instruments, and the calibration session. The interpretation of the fitted
model is straightforward. The fixed effects estimates α̂1 = −0.015 (95%
CI: [−0.017,−0.013]) and α̂2 ≡ 0 represent the systematic error compo-
nents associated with the two meter types EMDEX IITM and EMDEX
LiteTM. The estimated overall relative measurement error for both dosime-
ters amounts to β̂ = 4.5% (95% CI: [4.1%, 4.9%]). The individual relative
error for the two instrument types depends on the orientation of the sensing
coils. Table 2 summarizes the predicted relative measurement errors and
the corresponding 95% prediction intervals cross-classified by instrument
type and coil orientation.
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which includes intra-daily information. The explanatory power of this model will
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1 Introduction

One of the issues raised by the advent of Ultra-High Frequency Data in the
field of Financial Econometrics is how high frequency information can be
exploited in the modelling of lower frequency price dynamics, in particular
daily volatility.
One of the most well known stylized fact about high frequency data is
the “U” (or “reverse J”) pattern that can be observed throughout the day
in volumes, absolute returns and number of transactions per interval. The
economic rationale for this fact could be that the market participants spend
the morning in discounting the information accumulated at night and then
the afternoon in trying to anticipate the news that will be released after
market closure.
It is thus tempting to specify a intra-daily GARCH structure that makes
use of this information and takes into account the different impact on the
volatility dynamics of the morning and the afternoon returns.

2 An intra-daily GARCH framework

Let us start introducing our model by splitting the daily close-to-close
return rt into the morning (and overnight) rm

t and the afternoon ra
t return:

rt = rm
t + ra

t . (1)
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Let us assume, for simplicity’s sake, that the returns have no autocorrela-
tion structure. We will focus our attention on the daily conditional variance
ht, for which we will assume a simple Gaussian GARCH (1,1) structure:

ht = ω + αr2t−1 + βht−1, (2)

from which follows that the conditional distribution of rt is Gaussian with
zero mean and variance ht. If we plug (1) in (2) to express the conditional
variance in terms of the intra-daily contributions, we get

ht = ω + α
(
rm2
t−1 + 2rm

t−1r
a
t−1 + ra2

t−1

)
+ βht−1. (3)

Note that the above formulation is just an alternative way to write the stan-
dard GARCH (1,1) model and makes no use of the intra-daily information.
Instead, the GARCH specification

ht = ω + α1r
m2
t−1 + α12r

m
t−1r

a
t−1 + α2r

a2
t−1 + βht−1 (4)

corresponding to (3) if we enforce the constraints
{
α1 = α2 = α
α12 = 2α (5)

exploits the intra-daily information by allowing for a different effect on the
conditional variance of both the morning and afternoon squared returns and
their covariance. In order to assess the usefulness of such a specification,
one has to verify whether the null hypothesis on the constraints (5) can
be rejected. Since the models are nested, we can accomplish that with a
simple LR test.

3 Empirical findings

In this section, we will concentrate on the estimation of the models (2) and
(4) for a set of four blue chips of the NYSE and we will show how the
intra-daily information can successfully improve the performance of the
model.
The sample period we will consider is January 1994 – December 1997 (1009
daily observations) and the stocks we will focus on are Dupont (DD), Gen-
eral Electric (GE), Johnson & Johnson (JNJ) and J.P. Morgan (JPM).
The daily close-to-close returns have then been split, according to (1), in
night–morning returns (from 4pm to 12:30am of the following dat, rm

t ) and
afternoon returns (from 12:30am till 4pm, ra

t ), thus yielding a series of 2018
alternated returns.
As far as number of transactions per interval is concerned, the stylized fact
we mentioned in the introduction is confirmed by the data in our sample.
Figure 1 shows the average number of transactions classified by half hour
interval of the day from the opening to the closing of the NYSE.



341

DD GE JNJ JPM

FIGURE 1. Average number of trades classified by half-hour interval of the day
from the opening to the closing of the NYSE

First of all, we have applied a standard GARCH (1,1) model to the series
of the daily returns. Results are displayed in Table 3.

TABLE 1. Daily GARCH (1,1) estimates

DD GE JNJ JPM
µ 0.1206 0.1050 0.1071 0.0511

(2.8190) (2.5563) (2.4467) (1.2956)

ω 0.5783 0.1305 0.1344 0.0433
(4.4399) (3.0377) (2.6533) (2.1757)

α 0.1986 0.0806 0.0658 0.0495
(5.2387) (4.4549) (4.6778) (4.1205)

β 0.5583 0.8520 0.8705 0.9285
(7.2355) (25.923) (27.539) (46.919)

Log-L -1824.915 -1724.936 -1782.788 -1711.035

As we anticipated, daily returns were then split and the model of equation
(4) was applied to the double-length series; results are presented in Table
3.
If we consider the cross-correlation coefficient α12, we observe that in this
case, albeit having a positive sign, it is not close to what we should expect
according to the constraints (5), that is α12 = 2α. The fact that the coef-
ficient is positive indicates that if we observe two returns of different signs
in the morning and the afternoon of the previous day, we should expect a
negative impact on volatility. We could argue that two returns of different
signs (provided they are of small magnitude) are symptomatic of market in
as state of equilibrium, so that operators tend not to modify their positions.
The GARCH coefficients β̂ are of the same order of magnitude as their daily
counterparts. However, it could be argued that the intra-daily β should
be smaller than its daily counterpart because, given that an intra-daily
specification exploits a larger amount of information, there should remain
less unexplained patterns to be captured by the β coefficient. We have thus
performed an asymptotic z-test on the difference of the two parameters,
with the null hypothesis βD = βID against the alternative βD > βID.
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TABLE 2. Infradaily GARCH estimates

DD GE JNJ JPM
µ 0.0580 0.0564 0.0689 0.0401

(2.9318) (2.8977) (3.2236) (2.5542)

ω 0.2813 0.0770 0.1259 0.0506
(6.9310) (4.1725) (4.2392) (25.3379)

α1 0.0885 0.0953 0.0504 0.0713
(4.9236) (6.2946) (4.5133) (13.4495)

α2 0.1848 0.0527 0.0756 -0.0649
(6.3342) (3.5675) (4.6778) (-20.106)

α12 0.1347 0.0341 0.0519 0.0285
(4.0351) (1.6929) (2.5394) (8.2063)

β 0.4993 0.7674 0.7629 0.8919
(8.7724) (21.921) (20.902) (192.683)

Log-L -1053.796 -836.1532 -1030.566 -1042.176
LR 413.628 427.311 352.107 95.513
AICID 1.0514 0.8355 1.0283 1.0399
AICD 1.2546 1.0454 1.2010 1.0853
βD = βID -21.529 -65.289 -83.707 -57.947

Indeed results, reported in the last row of Table 3, indicate that the null
hypothesis is always rejected.
Finally, we have performed a LR test to verify whether the constraints
(5) can be assumed to be consistent with the data, thus leading to the
conclusion that the intra-daily The outcome of the test clearly indicates
the superior explanatory capability of our model. This is confirmed by the
comparison of the AIC’s which is reported in the table.
A simple extension of the News Impact Curves (NIC) (Engle and Ng, 1993)
can be exploited as an appealing device to visualize the impact of the morn-
ing and afternoon returns on the daily volatility. The NIC curve shows the
impact on volatility as a function of the daily return, in a given ARCH-like
model framework. Analogously, given our intra-daily GARCH specifica-
tion, we will construct a News Impact Surface (NIS) which will be used
to visualize the joint impact of the intra-daily returns on volatility. The
News Impact Surface (NIS) in our GARCH framework is expressed by the
following expression:

NIS = α0 + α1r
m2 + α2r

a2 + α12r
mra,

where α0 = ω + βσ2.
The pictures shown in Figure 2 are 3D plots of the NIS function, given the
model estimates of our sample of tickers in Table 3.
An easy and interesting way to interpret these graphs is to analyze theirs
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FIGURE 2. News Impact Surfaces

sections. For a given level of the morning or afternoon return, the corre-
sponding profile of the NIS can be considered as a NIC. First of all, the
presence of the cross-correlation coefficient makes the NIC’s asymmetric;
the fact that it is always positive implies a higher impact on volatility when
the two returns have the same sign. The steepness of the NIS only depends
on the magnitudes of α1 and α2, whereas its concavity depends on their
signs. The plots display different patterns of steepness and concavity.

4 Conclusions

We have introduced a new intra-daily GARCH specifications that allows for
a different impact on volatility of the morning and afternoon returns. This
model is consistent with the stylized facts of intra-daily pattern of market
activity, which tend to decrease during the morning and increase in the
afternoon. The empirical application we have presented points out that the
proposed model performs well and appropriately exploits the intra-daily
information.
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1 Introduction

Microarrays are emerging as a powerful and cost-effective experiments for
large scale analysis of gene expression. These experiments are typically done
in a case-control study framework where thousands of genes are simulta-
neously compared in order to discover which are differentially expressed.
The statistical approach to data analysis is typically based on Multiple Hy-
pothesis Testing (MHT), because we have to account for the multiplicity
arising when testing m null hypotheses H0

i ={gene i is not differentially
expressed} for i = 1, . . . ,m, and m is of order of thousands. In microarray
data analysis, MHT is mainly concerned in controlling the False Discovery
Rate (FDR) which is the rate of false rejections (discoveries) among all
rejections (see Storey 2003 and Benjamini and Hochberg 1995 for a review
and bibliography on FDR). The main problem with MHT is to construct
a rejection region Γα for a single test i and to calculate the type I error
α corresponding to Γ. For a chosen test statistic Ti we have to calculate
PrF0(t)

(
T ∈ Γα|H0

i

)
where F0 (t) represents the sampling distribution of

Ti under the null hypothesis (in the sequel null distribution). It is usual
to consider as test statistics the set of m ordered p-values with F0 (p) the
Uniform (0, 1) distribution. The rejection region for each test takes the
form of Γpi

.= (0, pi) with pi = PrF0(p)
(
P ≤ pi|H0

i

)
which leads to the

frequentist interpretation of the p-values (frequentist p-values). Unfortu-
nately this interpretation does not generally hold in particular when H0

i is
a composite hypothesis (or model) and no ancillary statistics are available
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for the involved nuisance parameters. In this case F0 (p) depends on the
way we eliminate the nuisance parameters (see Bayarri and Berger, 2000).
On this purpose we investigate the use of the Bayes Factor (BF ) Bi as
test statistic Ti, where Bi = m1 (xi,yi) /m0 (xi,yi) is the ratio of the
marginal distributions mj (xi,yi) under the hypothesis Hj

i for j = 0, 1
for independent single gene expression measurements xi =

(
xi1, . . . , x

i
n

)
,

yi =
(
yi1, . . . , y

i
n

)
. As the use of p-values does not require the indication

of the alternative hypothesis (or model) H1
i , we will compare BF s and p-

values in those cases where the model classes for mj (xi,yi) are known. For
this reason we recommend the use of BF after the model checking phase.
We argue that a good reason to use BF instead of the p-values is that
under H1

i , Bi → ∞ as n→ ∞ while pi is still random distributed in (0, 1).
In gene expression data analysis difficulties of elicitation on model parame-
ters make the use of non-informative priors unavoidable. This leads to well
known problems in determining the BF because the adopted prior distribu-
tions are often improper. These difficulties are dealt with the intrinsic BF,
the fractional BF and their modifications such as the intrinsic procedures.
For a review and bibliography on BF s with improper priors see Moreno,
Bertolino and Racugno, (1998-1999) and references therein. We consider
the set of random rejection regions Γαi

.= (bi,∞) where bi is an observed
Bi and we approximate αi = PrF0(b)

(
Bi > bi|H0

i

)
using a Monte Carlo

sum by simulating Bi under H0
i . In this way the FDR can be estimated

on the set of ordered αi which can be viewed as the analogues to p-values,
but calculated on the null distribution of BF s. The null distribution of BF
has not been considered as orthodox in the Bayesian paradigm, because
it supposes the use of BF s which have never been observed. However, the
way some authors proposed to summarize the evidence arising from BF
are an attempt to calibrate the BF with respect to categories which do not
formally arise from experimental data (see for instance Kass and Raftery
(1995) and references therein). In this case our categories are the αis which
have a meaning for those procedures that estimate or control the FDR.
Section 2 contains the BF s we use for Normal and Gamma models. Section
3 presents a simulation study to show the potential of the procedure and
an application to a data set from a controlled experiment. Conclusions and
further remarks are contained in Section 4.

2 Bayes Factors for Normal and Gamma models.

The problem is usually to test the equality of unknown means of gene
expressions in the case Xi and in the control Yi. As we assume the same
statistical model on each gene so we will suppress the subscript i unless
necessary. We consider here, as an exemplification, the Normal and the
Gamma model which are often assumed in microarray data analysis. The
Normal model is assumed after Normalization Process of the data (see
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Dudoit et al. 2001 for bibliography), while the Gamma model is assumed
to analyze the outcome from cDNA experiments because it easily allows to
control the common variation coefficients of gene expression measurements
Xi and Yi (Newton et al. 2002).
The Normal model. We restate the hypothesis testing in terms of model
selection by comparing M0 : f0 (x,y|θ0) = N

(
µ, σ2

X

)
N
(
µ, σ2

Y

)
, πN0 (θ0) =

c0 (σXσY )−1 versus M1 : f1 (x,y|θ1) = N
(
µX , σ

2
X

)
N
(
µY , σ

2
Y

)
, πN1 (θ1) =

c1 (σXσY )−1, where θ0 = (µ, σX , σY ), θ1 = (µX , µY , σX , σY ) and πN0 , πN1
denote the assumed reference priors of θ0 and θ1 respectively, with c0 and
c1 arbitrary constants. Testing the equality of the means in two Normal
populations is a time honored problem in statistics, in particular as it is
well known when σX = σY the test corresponds to the t-test, otherwise the
Behrens-Fisher problem arises. If the samples are paired (as in cDNA ex-
periments) and σ2

X = σ2
Y the hypothesis testing can be viewed as the test on

the mean of differences di = (xi − yi). This test is often used to check the
zero mean of Mi coordinates in a MA-plot after data Normalization (Du-
doit et al., 2001). In this particular case the test becomesH0 : d ∼ N (0, σ2

d

)
against H1 : d ∼ N (µ, σ2

d

)
using the opportune reference priors. For the

test of di we compare the p-values arising from t -test against the limiting
intrinsic BF , BLim, the fractional BF , BF and the Schwarz approxima-
tion, BS . The derivation of BLim, BF and BS is contained in Moreno,
Bertolino, Racugno (1998). For simplicity in the Behrens-Fisher problem
we compare the t-test with Welch correction, pWelch only against the BF
obtained with the Schwarz approximation, BBF (S) whose expression is con-
tained in Moreno, Bertolino and Racugno (1999). We will mainly consider
the test of di and the Behrens-Fisher problem.
The Gamma model. The model selection is between M0 : f0 (x,y|θ0) =
Gamma (a, θ)Gamma (a, θ), πN0 (θ0) = c0θ−1ϑ (a) and M1 : f1 (x,y|θ1) =
Gamma (a, θX)Gamma (a, θY ), πN1 (θ1) = c1 (θXθY )−1

ϑ (a), where ϑ (a) =√
ψ(1) (a) − a−1 and ψ(1) (a) is the trigamma function. πN0 (θ0) is the refer-

ence prior and πN1 (θ1) has been assigned without changing the prior for a
according to Kass and Wasserman, (1996). In this case the BF is not avail-
able in closed form and we will approximate it via Markov Chain Monte
Carlo. This solution leads to time consuming simulations and therefore we
will consider only fractional BF , BFΓ = BN10 (x,y)Bb01 (x,y) with b = 3/n
where

BN10 (x,y) =

∫
�+

pa

Γ(a)2n [Γ (na)]2 (sxsy)−na ϑ (a) da∫
�+

pa

Γ(a)2n Γ (2na) s−2naϑ (a) da
(1)

Bb01 (x,y) =

∫
�+ Γ (6a) p3a/nΓ (a)−6 (s)−6a

ϑ (a) da∫
�+ [Γ (3a)]2 p3a/nΓ (a)−6 (sxsy)−3a

ϑ (a) da
(2)

with p =
∏n
i=1 xiyi, sx =

∑n
i=1 xi, sy =

∑n
i=1 yi and s = sx + sy. Let ϕ (a)

represents the kernel of the distributions in a appearing in the integrals
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(1) and (2), we approximate each distribution with a Metropolis-Hasting
algorithm using as proposal a Gamma distribution with median equal to
a = maxa∈R+ ϕ (a) and variance equal to [ϕ′′ (a)]−2. We compare BFΓ with
the p-value obtained by using the test statistic t (xi,yi) = xi/yi whose null
distribution is a Multiple Scale Beta of the II kind with shape parameter
a replaced by its maximum likelihood estimator â. We call this the plug-in
p-value, pplug, which approximates conservatively the type I error (Bayarri
and Berger, 2000).

3 Simulation study and application

We numerically investigate the behavior of mentioned BF s and p-values
by simulating J balanced microarray experiments with n replications. We
consider experiments of m genes where m′ ≤ m have different means with
respect to the others genesm−m′ genes. For each simulated experiment we
order all genes according to the pi and αi adjusted using the Benjamini and
Hochberg procedure (1995), the q-values (Storey, 2003) and the Bonferroni
correction, which control different error measurements in MHT. We finally
collect the rank assigned to the m′ genes and look at the distribution of
ranks across J = 100 simulations. The more the ranks are concentrated
around 1 the more we are likely to detect the m′ genes as differentially
expressed. When testing the means of di with m′ = 5, m = 1000 we obtain
that the p-value from classical t-test and BF s BLim, BF , BS lead to the
same results with a sample size n ≤ 20, but the distributions of the ranks
for BF s are more concentrated around 1 for larger sample sizes. For the
comparison of BF versus pWelch with σX = KσY ,K = 2 we find that the
ranks assigned using BF are much more concentrated around 1 for n ≥ 4.
We argue that this is due to the fact that in the Behrens-Fisher problem
the null distribution of BF is more robust to K than the p-value with the
Welch correction. This argument applies in particular to the comparison
of BFΓ versus pplug for the Gamma model where BFΓ leads to smaller ranks
than pplug with n ≥ 4.
We consider the application of the mentioned BF s to the eset12 data
set available at www.biocondutor.org. Data come from 24 HGU95a Affy
chips (n = 12 replications) each containing 12626 genes with, 16 genes
spiked at different concentrations in two populations under comparison.
For the Gamma model we consider subsets of n ≥ 4 replications and we
obtain that only BFΓ allows to detect the 16 genes as differentially expressed
at FDR < 0.05. This does not happen neither with the pplug nor with the
other BF s for the Normal model even using all data.

4 Conclusions

The main problem in using BF is the computational effort because of the
need to compute a BF for each gene under test. This problem becomes



348 Control of the FDR with Bayes Factors in Microarray data analysis

important in particular when BF s are not available in closed form such
as the case for the Gamma model. Nonetheless we conclude that BF are
useful test statistics in MHT for controlling the FDR especially when the
considered models, such as the Gamma, do not allow to use other ancillary
test statistics more than the BF . In fact differences in the performance
between p-values and BF are evident at small sample sizes for the Gamma
model and in the Beherens-Fisher problem, while when testing the means
of di differences between BF and p-values are not so evident unless a
very large sample size is used. In this latter case the simulations results
are in favor of BF . These results are relevant in microarray data analysis
because the sample size is usually small, due to the prohibitive costs for
each replication, and when we cannot assume normality.
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1 Background

Type II Diabetes Mellitus (T2DM) is one of the most common endocrine
diseases in all populations. Consequently, the knowledge of the factors in-
fluencing the incidence of T2DM-related complications is very important.

2 Population

An observational study including a cohort of 1,810 T2DM patients attend-
ing the Diabetic Unit (DU) at the Spedali Civili in Brescia, from January
1990 to October 1997.

3 Methods

T2DM is a systemic pathology, so that it is not possible to analyse the
prognostic factors related to Incipient Diabetic Nephropathy (IDN) with-
out taking into account the associated complications. A survival model for
competing risks permits to overcome this problem. Recently there has been
an increasing use of the Cox model adapted for the presence of competing
risk, while less attention has been given to parametric models for competing
risks, particularly in the area of T2DM studies. For this purpose we have
adapted the Lunn-McNeils approach for the analysis of competing risk in
the Cox model to the parametric survival regression models, using differ-
ent distributions suggested by JK Lindsey. The models we propose have to
take into account that the time of onset of IDN is heavily interval censored,
as the assessment of IDN is based on blood samples. Therefore the exact
time of onset is unknown. For this reason we compared the results from a
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parametric regression for interval-censored data, with those obtained using
the mid-point of the interval or those obtained using the right extreme of
the interval of censoring. Parametric models seem to smooth naturally the
data using adjacent “information” and are less influenced from interval-
censoring.
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Abstract: Three regression models were fitted to a set of psychiatric contacts:
two parametric (based on the negative binomial distribution and on the gener-
alised Waring distribution (GWR)) and one semiparametric (based on the cumu-
lative mean function of the number of contacts). They were all able to account for
the large amount of overdispersion and gave similar estimates of the regression
coefficients and of their SEs. However, the GWR model could give additional
information to the clinician owing to the possibility to quantificate the proneness
and the liability of different sets of patients in contacting psychiatric services.
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1 Introduction

Psychiatric data collected in a psychiatric case register consist of a series
of contacts made by subjects within the psychiatric agencies of a selected
geographic area. When these data are analysed, one of the most striking
features is represented by a large amount of overdispersion. In particular,
the distribution of the number of psychiatric contacts shows often a large
number of zeroes and a very long right tail. In a previous study Canal
& Micciolo (1999) found that the generalised Waring distribution fits well
the observed frequencies. Moreover, the variance of this distribution can be
divided in three components, named liability, proneness and random. In ac-
cident theory, differences in exposure to external risk of accident from per-
son to person are known as differences in accident liability as distinguished
from constitutional or internal differences which are known as differences
in proneness. In a psychiatric context, liability and proneness could be con-
sidered as due to exogenous and to endogenous factors. Effects of proneness
and liability are confounded when the negative binomial is employed. In
this study a regression model based on the generalised Waring distribution
will be presented and the results obtained on a data set of psychiatric con-
tacts coming from the South-Verona Psychiatric Case Register (Tansella,
1991) will be compared with those found employing the negative binomial
regression (Lawless, 1987; Long, 1997) and a semiparametric regression
based on the Mean Function (Lawless & Nadeau, 1995).
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2 Regression models

The probability function of the generalised Waring distribution is:

p(y) =
Γ(ρ+ a)Γ(ρ+ k)
Γ(ρ)Γ(ρ+ a+ k)

× a[y]k[y]

(ρ+ a+ k)[y]
× 1
y!
, (1)

where the parameters ρ, a, k must be all greater than zero. Since the
expected value is ak

ρ−1 and the variance is
ak(ρ+k−1)(ρ+a−1)

(ρ−1)2(ρ−2) , ρ must also
be greater than 2. The Pochhammer symbol a[y] is defined as a[y] = a(a+
1) · · · (a+ y− 1) . Let xi be a (p+1) vector of p covariates plus a constant
for the intercept term associated with the individual i and assume that

E[Yi|xi] =
ak

exp(−b′xi)
(2)

where b is a (p + 1) vector of regression parameters and Yi are mutually
independent random variables following a generalised Waring distribution
with parameters a, k, ρi = 1 + exp(−b′xi). If there is only one dummy
covariate, then ρi = 1 + exp(b0 + b1xi) and

E[Yi|xi=1]
E[Yi|xi=0] = exp(b1).

Two other regression models were fitted to the same data set. The first was
the negative binomial regression (Lawless, 1987; Long, 1997):

Pr[Y = yi|xi] =
Γ(s+ yi)

Γ(s)Γ(yi + 1)

(
s

s+mi

)s(
mi

s+mi

)mi

, (3)

where E[Yi|xi] = mi = (expb′xi) and s is a shape parameter (the recipro-
cal of s is sometimes referred to as the overdispersion parameter).
The second, which takes into account also the precise event times, was a
semiparametric model (Lawless & Nadeau, 1995) based on the Cumulative
Mean Function of the number of events N(t) occurring over the interval
[0, t] : M(t) = E[Ni(t)]. This method, which focus on mean functions
for processes of recurrent events and do not involve a full probabilistic
specification of the processes, is rather widely applicable. The estimator
M̂(t) is given by

M̂(t) =
t∑

u=0

m̂(u) (4)

where m̂(u) is the mean number of events observed at time u calculated di-
viding the total number of events n(u) observed at time u by the number of
subjects δ(u) who are still under observation at time u : m̂(u) = n(u)/δ(u).
A regression model can be set up including the effect of a covariate vec-
tor xi in a multiplicative way: mi(t) = m0(t) × exp(b′xi); m0(t) ≥ 0 is a
baseline mean function. In this case b is a vector of p regression coefficients
which does not include an intercept term. The estimating equations for b
together with a robust estimate of its variance can be found in Lawless &
Nadeau (1995).
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3 Patients and methods

Patients who entered the South-Verona Psychiatric Case Register in the
period 1 January 1979 to 31 December 1991 were included in the study.
All subjects were followed for 13 weeks. For each patient the total number of
contacts in the 91 days of follow-up as well as the day at which each contact
was observed were known. The following covariates were also available:
gender, occupational status, diagnosis, referral source of the first contact,
type of the first contact.
The three regression models described above were fitted to these data. Pa-
rameter estimates for the negative binomial regression (NBR) were found
employing the procedure NBREG in STATA 7.0 (Stata Corp., 2001). Es-
timating equations for the regression model based on the mean function
(MFR) were solved using Mathematica 4.1 (Wolfram, 1999). Parameter es-
timates for the generalised Waring regression (GWR) model were obtained
by maximum likelihood; for computational purposes, the parameter restric-
tions a > 0, k > 0 were incorporated re-parameterising the log-likelihood
function so that these constraints were eliminated: the parameters a and
k in (1) were replaced by exp(a0) and exp(k0) respectively. To find the
maximum of the observed log-likelihood the algorithm proposed by Mora-
bito and Marubini (1976) was employed; their strategy, which resorts to a
combination of the steepest descent and the Newton-Raphson method, is
suitable for both speed of convergence and numerical accuracy.

4 Results

A total number of 3454 subjects were included in this study, with a total
number of 6913 contacts. Table 1 shows the parameter estimates of the
regression coefficients obtained using the three regression models together
with the corresponding standard errors. Conclusions in terms of significance
tests were quite similar. A significantly higher number of contacts was found
for unemployed subjects, for patients with an unplanned first contact and
for those with a self-referral (or referred by relatives). As far as diagnosis
is concerned, higher contacts were found for schizophrenic patients.
The component of variance of the GWR attributable to liability ranged
from 5.2% (for other diagnosis) to 8.6% (for self-referred subjects) and to
proneness from 68.5% (for other diagnosis) to 90.4% (for patients with a di-
agnosis of schizophrenia); affective disorders, organic psychoses, alcoholism
and personality disordersshowed a proneness between 80% and 90%.

5 Conclusions

The estimates of the regression coefficients obtained using three different
approaches were substantially similar. Since for both the GWR and the
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TABLE 1. Estimates of the regression coefficients for the generalised Waring re-
gression (GWR), the negative binomial regression (NBR) and the mean function
regression (MFR).

ESTIMATES STANDARD ERRORS
VARIABLES GWR NBR MFR GWR NBR MFR

Gender
Females vs Males -0.104 -0.090 -0.090 0.063 0.057 0.063

Occupational status
Unempl. vs Empl. 0.811 0.758 0.758 0.134 0.109 0.110

Other vs Empl. 0.090 0.106 0.106 0.063 0.059 0.065
Diagnosis

Affective Dis. vs Schiz. -0.977 -0.892 -0.892 0.142 0.111 0.101
Organic Psych. vs Schiz. -0.816 -0.699 -0.699 0.217 0.186 0.206
Alc. / pers. dis. vs Schiz. -0.872 -0.745 -0.745 0.153 0.121 0.124

Neurotic Dis. vs Schiz. -1.316 -1.210 -1.210 0.142 0.111 0.105
Other Dis. vs Schiz. -1.459 -1.348 -1.348 0.146 0.115 0.111

Referral source
GPs vs Self-referral -0.240 -0.265 -0.265 0.102 0.091 0.085

Others vs Self-referral -0.556 -0.510 -0.510 0.068 0.060 0.068
First contact

Unplanned vs Planned 0.710 0.683 0.683 0.070 0.062 0.066

NBR the precise event times were not considered, it appears that, to assess
the covariate effects, the total number of contacts during the study period
contains much of the information about b. Also standard errors were quite
similar for the three models. Unlike those obtained for the GWR and for the
NBR, the variance estimates for the MFR were robust moment-based and
valid quite generally (Lawless & Nadeau, 1995). The key assumption, that
is that the end of observation times be independent of the event process,
is likely fulfilled in our study, since it was fixed in advance for all subjects.
Since (i) the follow-up times were all equals (so that the same number of
subjects was at risk at each time), (ii) only dummy variables were used
as covariates and (iii) only ”univariate” analyses were performed, an ex-
act solution was obtained for the estimating equations of the regression
coefficients of the MFR model; for a categorical variable with k levels,
coded with k− 1 dummies, the estimate of the j-th regression coefficient is
ln [n0Nj/ (njN0)], where nj is the number of subjects in the category j+1
and Nj is the overall number of contacts of the subjects in the category
j + 1 (the deponent 0 indicates the reference category).
It is worth noting that the estimates for the MFR model and those obtained
from the NBREG procedure for the NBR were the same, at least within
the numerical accuracy of the STATA output. So it appears that a semi-
parametric model and a parametric model gave the same estimates as far
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as the regression coefficients are concerned; however this is true only if
univariate analyses are performed or, in case of multivariate analyses, if
saturated models are fitted.
As far as results obtained using the GWR are concerned, we think that this
model, despite the similar results, the higher number of parameters to be
estimated and a more heavy computational job, could give additional use-
ful information to the clinician owing to the possibility to divide the total
variance in three components. Since the generalised Waring distribution is
symmetrical in a, k, the proneness and the liability component cannot be
universally identified. However since in our case one of the variance compo-
nent was much larger than the other, we think to be justified in attributing
this component to proneness. In the data set analysed, endogenous factors
appear to be quite important and account for 70% (or more) of the vari-
ability, while the percentage of variance due to exogenous factors is similar
for all the categories of patients (between 6% and 8%). Endogenous factors
appear to be more important for patients with a diagnosis of schizophrenia,
unemployed, self-referred and with an unplanned first contact.
In conclusion, even if for comparison purposes between categories of pa-
tients, any one of the selected regression models can be employed, we think
that the GWR could be quite useful in comparing psychiatric data coming
from different geographic settings covered by a psychiatric case register.
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1 Introduction

Estimating the number of individuals in a population that had cancer in
their childhood is relevant, because prognosis of many childhood cancers is
fairly good, and most young patients become long-term survivors; however,
psycological or physical consequences of the disease may persist for their
entire life, due to the aggressiveness of the treatments and to the increased
risk of subsequent cancers, and they may need extra medical care. Cancer
prevalence is defined as the proportion of people alive on a certain date who
have been previously diagnosed with the disease; for a fixed birth cohort c
it can be formalized as convolution of incidence and survival functions:

Nx(0, x) =
∫ x

0

I(t)S(x− t, t)dt, (1)

whereNx(0, x) is the prevalence at current age x of cases diagnosed between
age 0 and x, I(t) is the incidence hazard at age t, S(x− t, t) is the survival
function at age x of patients who were diagnosed at age t. In a population
covered by cancer registration, where data on diagnosis and life status of all
incident cases are collected, prevalence can be estimated by enumerating
the number of incident cases that are still alive at a fixed date of prevalence,
and correcting for cases lost to follow up. This estimator, called Limited
Duration Prevalence (LDP), is based on a limited observational period L
(from the starting date of registration to the date of prevalence):
N̂x(x−L, x) is the estimate of prevalence of patients of current age x who
were diagnosed in the last L years. To take into account cases diagnosed
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before the beginning of the registry, the Completeness Index, defined as
the fraction of modelled prevalence which is observed, was introduced by
Capocaccia and De Angelis (1997):

Rx(L; ψ̂) =
Nx(x− L, x; ψ̂)

Nx(0, x; ψ̂)
=

∫ x
x−L I(t; ψ̂)S(x− t, t; ψ̂)dt∫ x
0
I(t; ψ̂)S(x− t, t; ψ̂)dt

, (2)

where I and S are parametric functions and ψ̂ is the corresponding vector
of maximum likelihood estimates, obtained by fitting the incidence and
survival models to the registry data. Such index is used as a correction
factor of the LDP and yields the Complete Prevalence (CP) estimate:

N̂x(0, x;L) =
N̂x(x− L, x)

Rx(L; ψ̂)
. (3)

The CP therefore solves the bias due to the underestimation of the LDP,
whenever the latter is observed.

2 The CHILDPREV method

In the case of childhood cancer there is a limited number of observations,
only regarding the more recent years, and the LDP is zero for most of
the adult ages. Therefore the CP cannot be computed by using (3). The
method we propose is based on decomposing the cases diagnosed at age
[0, t0] into the difference between cases diagnosed at age [0, x] and those
diagnosed at age [t0, x], and computing the corresponding prevalence by
using the appropriate completeness index. The Lexis diagram in Figure 1,
where each diagonal line represents the history of a patient through the
age-and-year plane, provides an example. When current age x > t0 + L
(i.e. patients were aged x−L > t0 at the starting date of the observational
period) no cases have been included in the registry; when x ≤ t0 + L
(i.e. patients were aged x − L ≤ t0 at the starting date of the registry)
the observational period [x− L, x] partially overlaps the period of interest
[0, t0] and only a portion of cases are observed and already included in the
registry. Those cases which were not counted are to be estimated.

Case 1: x > t0 + L

The CP at current age x of cases diagnosed between ages 0 and t0 is:

Nx(0, t0) = Nx(0, x)−Nx(t0, x). (4)

0 t0 x-L x

︷ ︸︸ ︷
to be computed

︸ ︷︷ ︸
observed
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FIGURE 1. Lexis diagram; age upper limit t0 = 19; data available from 1/1/1975
to 1/1/1999; prevalence computed on 1/1/1999. Birth cohorts 1975–98 yield com-
plete information; birth cohorts before 1956 no information; birth cohorts 1956–74
contribute only if they became ill at age 19 or less, after 1/1/1975.

HereNx(0, x) is estimated by (3), whileNx(t0, x) is estimated as N̂x(t0, x;L) =
N̂x(x−L,x)
R∗

x(L;ψ̂)
, the ”complete” prevalence restricted to the age interval [t0, x],

and the partial completeness index R∗
x(L; ψ̂) is obtained as the ratio of

two completeness indices R∗
x(L; ψ̂) = Rx(L;ψ̂)

Rx(x−t0;ψ̂)
. Substituting N̂x(0, x;L),

N̂x(t0, x;L) and R∗
x(L; ψ̂) in (4) we obtain

N̂x(0, t0;L) =
N̂x(x− L, x)

Rx(L; ψ̂)

[
1−Rx(x− t0; ψ̂)

]
. (5)

Case 2: x ≤ t0 + L

The period of interest [0, t0] and the observational period [x−L, x] partially
overlap, hence some cases are registered and some need to be estimated.

0 x-L t0 x

︷ ︸︸ ︷
to be computed

︸ ︷︷ ︸
observed
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FIGURE 2. Estimated complete prevalence of Acute Lymphocytic Leukemia di-
agnosed in childhood age via the CHILDPREV method.

The prevalence of interest is

Nx(0, t0) = Nx(0, x− L) +Nx(x− L, t0), (6)

where the first (unobserved) summand is estimated as the difference be-
tween the complete and the observed prevalence, and the second (observed)
summand is a fraction of the observed prevalence. Hence the estimated
prevalence is

N̂x(0, t0;L) =
N̂x(x− L, x)

Rx(L; ψ̂)

[
1−Rx(L; ψ̂)

]
+

t0∑
t=x−L

Nx(t), (7)

where Nx(t) are the observed prevalent cases of current age x who were
diagnosed at age t ∈ (x− L, . . . , t0).

3 An application

The CHILDPREV method has been applied to data collected by 9 US can-
cer registries (SEER9) to estimate the prevalence of adult patients who had
been diagnosed with Acute Lymphocytic Leukemia (ALL) in the age inter-
val [0,19]. Data for the period 1/1/1975 through 1/1/1999 were provided by
the Surveillance, Epidemiology, and End Results (SEER) Program of the
National Cancer Institute. Results are illustrated in Figure 2: the dark part
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of the histogram denotes the estimated cases, the light part the observed
ones. Up until the age of 24 the registries contain complete information on
the patients; between age 25 and 43 cases are observed if they became ill
after 1975, and are estimated if they became ill before 1975; between age
44 and 58 cases are completely estimated; after age 58 there are no cases
at all, since children who became ill before 1960 did not survive (Mauer
and Simone, 1976). With this method we estimate an extra 25% of cases
which were not included in the LDP, but are still alive.

4 Discussion

The CHILDPREV method is based on the Completeness Index, which has
been successfully implemented in the estimation of complete prevalence for
various cancer sites in the US (Mariotto, et al., 2002). It relies on mod-
elling assumptions regarding the past behaviour of the disease. In the case
of ALL we consider a survival model with cure (De Angelis et al., 1999),
and assume that only a portion of patients will die with a relative sur-
vival following a Weibull distribution, while the remaining have the same
mortality rate as the general population; moreover, we assume that the
survival function is zero for all cases diagnosed before 1960, regardless of
their age. For the incidence function, which describes the relationship be-
tween cancer incidence and age, we adopt the model proposed by Merrill
et al. (2000), which assumes a logistic function having as regressor a sixth
degree polynomial function of age. The sensitivity of R to both models has
been extensively studied by Capocaccia and De Angelis (1997).
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Abstract: The paper is studying the estimation problem of individual measure-
ments (weights) of objects using the chemical balance weighing design under the
restriction on the number of times in which each object is weighed. We assume
that the errors are correlated and they have equal variances. We give the lower
bound of variance of each of the estimators and the sufficient and necessary con-
ditions under which this lower bound is attained. The new construction method
for the optimum chemical balance weighing design is given. We use the incidence
matrices of the balanced incomplete block designs and the ternary balanced block
designs to construct the design matrix of the optimum chemical balance weighing
designs.

Keywords: balanced incomplete block design; chemical balance weighing design;
ternary balanced block design.

1 Introduction

The results of n weighing operations aimed at determining the individual
weights of p objects with a balance corrected for bias will fit into the linear
model

y = Xw + e,

where y is an n × 1 random column vector of the observed weights, the
design matrix X belongs to the class of n × p matrices of elements equal
to −1, 0 or 1 and in which maximum number of elements equal to −1 and
1 in each column is equal to m, i.e. X ∈ Φn×p,m(−1, 0, 1), w is an p × 1
column vector representing unknown weights of objects and e is an n × 1
random column vector of errors such that E(e) = 0n and E(ee′) = σ2G,
where 0n is an n× 1 column vector of zeros,

G = g
[
(1 − ρ)In + ρ1n1

′
n

]
, g > 0,

−1
n− 1

< ρ < 1. (1)
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Now, if X′G−1X is nonsingular, the least squares estimator of w is given
by

ŵ = (X′G−1X)−1X′G−1y

and the variance - covariance matrix of ŵ is of the form

Var(ŵ) = σ2(X′G−1X)−1.

In the case G = In, some problems connected with optimum chemical ba-
lance weighing designs have been studied in Hotelling (1944), Raghavarao
(1971), and Banerjee (1975). In the situation when not all objects are in-
cluded in each weighing operation and the errors are correlated with equal
variances, the problem of existing of the optimum chemical balance weigh-
ing design was considered in Ceranka and Graczyk (2003). They have given
the lower bound of variance of each of the estimators and the definition of
the optimal design. In the same paper they have given the necessary and
sufficient conditions under which the chemical balance weighing design with
the design matrix X ∈ Φn×p,m(−1, 0, 1) and with the variance-covariance
matrix of errors σ2G, where G is of the form (1) is optimal. Hence, from
Ceranka and Graczyk (2003) we have
Theorem 1. Let 0 ≤ ρ < 1. Any nonsingular chemical balance weighing
design with the design matrix X ∈ Φn×p,m(−1, 0, 1) and with the variance-
covariance matrix of errors σ2G, where G is given in (1), is optimal if and
only if

X
′
X = mIp and X

′
1n = 0p. (2)

Theorem 2. Let −1
n−1 < ρ < 0. Any nonsingular chemical balance weighing

design with the design matrix X ∈ Φn×p,m(−1, 0, 1) and with the variance-
covariance matrix of errors σ2G, where G is given in (1), is optimal if and
only if

X
′
X = mIp − ρ(m− 2u)2

1 + ρ(n− 1)
(Ip − 1p1

′
p),

u1 = u2 = ... = up = u, (3)

and X
′
1n = zp,

where u = min(u1, u2, ..., up), uj represents the number of elements equal
to −1 in the jth column of the matrix X, zp is p× 1 vector, for which jth
element is equal to (m− 2u) or −(m− 2u), j = 1, 2, ..., p.
But, in Ceranka and Graczyk (2003) were some methods of construction of
the design matrix X ∈ Φn×p,m(−1, 0, 1) not given. Because of this reason
in present paper we give the method of construction of the design matrix
X ∈ Φn×p,m(−1, 0, 1). It is based on the incidence matrices of the balanced
incomplete block designs and the ternary balanced block designs.
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2 Construction of the design matrix

Let X ∈ Φn×p,m(−1, 0, 1) be the design matrix of the chemical balance
weighing design given in the form

X =
[

2N
′
1 − 1b11

′
v

N
′
2 − 1b21v′

]
, (4)

where N1 is the incidence matrix of the balanced incomplete block de-
sign with the parameters v, b1, r1, k1, λ1 (see Raghavarao (1971)) and
N2 is the incidence matrix of the ternary balanced block design with the
parameters v, b2, r2, k2, λ2, ρ12, ρ22 (see Billington (1984)).
Lemma 1. The chemical balance weighing design with the matrix X ∈
Φn×p,m(−1, 0, 1) given in the form (4) is nonsingular if and only if

2k1 �= k2 or 2k1 = k2 �= v.

The optimality conditions given in Ceranka and Graczyk (2003) are de-
pended on the parameter ρ which is connected with the matrix G. This
implies that the methods of construction of the design matrix X ∈
Φn×p,m(−1, 0, 1) are depended on ρ, either. Hence we have
Theorem 3. Let 0 ≤ ρ < 1. Any nonsingular chemical balance weighing
design with the matrix X ∈ Φn×p,m(−1, 0, 1) given by (4) and with the
variance - covariance matrix of errors σ2G, where G is of the form (1), is
optimal for estimation unknown measurements of objects if and only if

b1 − 4(r1 − λ1) + b2 + λ2 − 2r2 = 0. (5)

and
b1 − 2r1 + b2 − r2 = 0. (6)

Proof. For the design matrix X ∈ Φn×p,m(−1, 0, 1) in the form (4) we have

X
′
X = [4(r1 − λ1) + r2 + 2ρ22 − λ2]Iv + η1v1

′
v, (7)

where η = b1 − 4(r1 −λ1)+ b2 +λ2 − 2r2. Then for 0 ≤ ρ < 1 from (7) and
(2) it derivers that the conditions (5) and (6) are true.
Theorem 4. Let −1

n−1 < ρ < 0. Any nonsingular chemical balance weighing
design with the matrix X ∈ Φn×p,m(−1, 0, 1) given by (4) and with the
variance - covariance matrix of errors σ2G, where G is of the form (1), is
optimal if and only if

ρ =
η

(2r1 − b1 + r2 − b2)2 − η(b1 + b2 − 1)
(8)

and
η < 0. (9)
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Proof. From the theorem (2) it derivers that the chemical balance weighing
design X ∈ Φn×p,m(−1, 0, 1) in the form (4) with the variance-covariance
matrix of errors σ2G, where G is of the form (1), is optimal if and only if
the conditions (3) are true. From the last one of them it follows that zp is
equal to (m− 2u) or −(m− 2u), where m− 2u = 2r1 − b1 + r2 − b2. Now
from the first condition of (3) and from (7) we have η = ρ(2r1−b1+r2−b2)2

1+ρ(b1+b2−1) ,

which complete the proof.

3 The Examples

3.1 Example 1

Let us consider the estimation problem of p = 16 objects using n =
48 measurement operations. We assume that each object is weighed at
least m = 24 times. The variance - covariance matrix of errors σ2G is
given by the matrix G of the form (1) with 0 ≤ ρ < 1. For estima-
tion of unknown measurements of objects we use the optimum chemical
balance weghing design with the design matrix X ∈ Φ48×16,24(−1, 0, 1)
given by the formula (4). To construct the design matrix we use the in-
cidence matrix of the balanced incomplete block design with the param-
eters v = 16, b1 = 16, r1 = 10, k1 = 10, λ1 = 6 given through blocks
(4,5,6,7,8,9,10,11,14,15), (3,4,5,7,8,11,12,13,14, 16), (2,4,5,9,10,11,12,13,15,
16), (2,3,6,8,9,10,11,12,13,16), (2,3,5,6,7,9,12,14, 15,16), (2,3,4,6,8,10,13,14,
15,16), (1,7,8,9,10,12,13,14,15,16), (1,3,5,6,7,10,11, 13,15,16), (1,3,4,6,8,9,
11,12,15,16), (1,3,4,5,6,9,10,12,13,14), (1,2,5,6,7,8,9, 11,13,14), (1,2,4,6,7,10,
11,12,14,16), (1,2,4,5,6,7,8,12,13,15), (1,2,3,5,8,10, 11,12,14,15), (1,2,3,4,7,9,
11,13,14,15), (1,2,3,4,5,7,8,9,10,16) and the incidence matrix of the ternary
balanced block design with the parameters v = 16, b2 = 32, r2 = 28, k2 =

14, λ2 = 24, ρ12 = 24, ρ22 = 2 N2 = [A
... A], where A = 1161

′
16 + [I4 ⊗

(2I4 − 141
′
4)], where ⊗ denotes the Kronecker product of the matrices.

Thus, the design matrix X ∈ Φ48×16,24(−1, 0, 1) is optimal and permits
for estimation of unknown measurements of objects with minimal variance
equal to V ar(ŵj) = σ2g(1−ρ)

24 for each 0 ≤ ρ < 1 and g > 0, j = 1, 2, .., 16.

3.2 Example 2

For −1
n−1 < ρ < 0 we consider the estimation problem of p = 5 objects using

n = 15 measurement operations. We assume that each object is weighed
at least m = 14 times. The variance - covariance matrix of errors σ2G is
given by the matrix G of the form (1) with ρ = − 3

46 . For estimation of
unknown measurements of objects we use the optimum chemical balance
weghing design with the design matrix X ∈ Φ15×5,14(−1, 0, 1) given by
the formula (4). To construct the design matrix X ∈ Φ15×5,14(−1, 0, 1)
of the optimum chemical balance weighing design in the form (4) we use
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the incidence matrix N1 of the balanced incomplete block design with the
parameters v = 5, b1 = 10, r1 = 4, k1 = 2, λ1 = 1 and the incidence
matrix N2 of the ternary balanced block design with the parameters v =
5, b2 = 5, r2 = 5, k2 = 5, λ2 = 4, ρ12 = 1, ρ22 = 2, where

N1 =




1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1


 , N2 =




1 2 2 0 0
2 1 0 2 0
2 0 1 0 2
0 2 0 1 2
0 0 2 2 1


 .

We can show that the optimality condition (3) is given by X
′
X =17 I5

-3151
′
5. Thus, the design matrix X ∈ Φ15×5,14(−1, 0, 1) is optimal and

permits for estimation of unknown measurements of objects with minimal
variance equal to V ar(ŵj) = 49σ2g

46·17 for each g > 0, j = 1, 2, 3, 4, 5.
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1 Introduction

Nowadays, the statistical analysis of extreme values is of great concern in
several fields as, for instance, hydrology, geology and finance. For predicting
“what appears to be unpredictable”, many researchers have switched their
attention to develop some methods able to model common features shown
by rare events. Many techniques are currently available for addressing such
an issue, and they are collectively called models for extreme values.
In this paper we suppose to deal with data of so called block maxima, like,
for instance, the maxima of a monthly return of some asset price. The class
of generalised extreme value (GEV) distributions is suited to model block
maxima, and has distribution function

G(x) = exp

{
−
[
1 + ξ

(
x− µ

σ

)]−1/ξ

+

}
, for {x : 1 + ξ(x− µ) > 0} (1)

where {x}+ = max(0, x), σ > 0 and µ, σ, ξ are location, scale and shape
parameters respectively; for details see Coles (2001). From expression (1),
Fréchet and Weibull distributions arise for ξ > 0 and ξ < 0 respectively.
The subset of the GEV family with ξ = 0, which is formally the limit ξ → 0
of expression (1), leads to Gumbel distribution with representation

G(x) = exp

{
− exp

(
x− µ

σ

)}
, for −∞ < x <∞. (2)



F. Laurini et al. 367

Through the inference on the shape parameter ξ it is possible to select
alternative models for block maxima. Suppose that M1 is the GEV model
with parameters ξ, σ and µ, while M0 is the Gumbel model, i.e. the GEV
model with the constraint ξ = 0. Defining with LM1(ξ, σ, µ) and LM0(σ, µ)
the likelihood of models (1) and (2), we analyse the likelihood ratio (LR)

Λ =
supLM0(σ, µ)

supLM1(ξ, σ, µ)
.

The statistic −2 log(Λ) is distributed as a chi-square χ2
1 with 1 degree of

freedom. Such statistic is often adopted for model selection purposes.
Assuming independence of block maxima, the likelihood for GEV models
can be easily derived (see Coles, 2001) and, though there are not analytical
solutions, maximum likelihood (ML) estimates can be obtained by standard
numerical optimization algorithms. The likelihood function for models M1

and M0 is far to be elliptical, and by profiling the likelihood it is achieved
a good level of accuracy.
Although extremes cannot be called outliers, the fit of a GEV distribu-
tion to data (i.e. the estimate of ξ̂, σ̂ and µ̂) is sensitive to model mis-
specification and impact of influential observations.

2 Forward algorithm for GEV models

To study the sensitivity of parameter estimates to model mis-specification,
we simulate data from a GEV density and we adopt the forward analysis
technique of Atkinson & Riani (2000). The forward algorithm explores the
agreement of data with a specified null model. By an exhaustive search, the
null model is initially fitted on an outlier-robust subsample. Proceeding
the search, only units closer to the specified null model join the initial
subsample. Thus, observations are added to the initial subset according to
their agreement to the specified null model. Such an agreement is monitored
through diagnostics during the forward search.
Atkinson & Riani (2000) give a forward algorithm for linear models. The
inclusion of observations to the initial subset is based on the ordered model
residuals. Our context is slightly different, and we need to update the for-
ward algorithm as follows:
Initial subset. For a N -size sample we fit a GEV model to all the

(
N
k

)
subsamples of size k. The fitting is carried through ML, and we found
numerical problems for k ≤ 4. Denote with f̂sj (x) the likelihood contribu-
tion given by the s-th unit (with s = 1, . . . , N) when the j-th subsample
is considered, with j = 1, . . . ,

(
N
k

)
. Thus, f̂sj (x) is the estimated density

for the s-th observation which arise when ξ̂, σ̂ and µ̂ are estimated using
the j-th subsample. Suppose to order the contribution to the likelihood
function of each observation, i.e. consider the ordered estimated densities
f̂

(1)
j (x) ≤ . . . ≤ f̂

(s)
j (x) ≤ . . . ≤ f̂

(N)
j (x). For any subset j = 1, . . . ,

(
N
k

)
we
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FIGURE 1. GEV densities. Gray line is the density of the model we generate
from. Black dashed line is the density estimated by using data in S�. Black solid
line is the density estimated using data at step 23 of the forward search.

sort such densities f̂ (s)
j (x). Denoting with “med” the sample median, we

select the subsample S� of size k which satisfies

f̂
(med)
S� (x) = min

j

(
f̂

(med)
j (x)

)
.

S� should not be affected by the presence of influential observations.
Adding units. From step k to k + 1 the unit joining S� is such that its
contribution to the likelihood to the fitted model is higher. At step k + 1
a new model is fitted and new estimates ξ̂, σ̂ and µ̂ are obtained using the
updated subsample of size k+ 1. This procedure is repeated until all units
join the initial subset.
Monitoring statistics. During the forward search we monitor the be-
haviour of: i) LR test; ii) ξ̂, σ̂ and µ̂; iii) changes in the density of the null
GEV model for any unit.

3 Example on simulated GEV data

We simulate 25 observations from a GEV distribution with parameters
ξ = 1, µ = 0 and σ = 1, and the density is sketched in Figure 1 (gray line).
We select S� by analysing all the

(
25
5

)
= 53130 subsamples. The estimated

density based on data in subsample S� is the dashed black line in Figure 1.
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FIGURE 2. Behaviour of LR test −2 log(Λ) during the forward search. Black
dashed line is the 95-th quantile of a chi-square χ2

1 with 1 degree of freedom.

In both cases the support of the distribution is bounded, with constraint
induced by equation (1).
At each step of the forward search we monitor in Figure 2 the LR test
−2 log(Λ). When the value of such a test is smaller than a specified high
quantile of a χ2

1 distribution we should consider the model M0, as the
inclusion of an extra parameter in the model (ξ, in our example) would
not give enough contribution to the overall likelihood of model M1. For
example, by inspecting Figure 2 at step 23, we would not accept the GEV
model from which we truly generated the data. The density of the fitted
model using the subsample at step 23 is the solid black line in Figure 1.
Finally, we also monitor the behaviour of ML estimate of ξ in Figure 3. At
step 23 of the forward search we have ξ̂ ≈ 0.21. At this step of the forward
search we could not reject the hypothesis of dealing with the model M0,
i.e. a Gumbel distribution with unbounded support.

4 Discussion

In this paper we provide an algorithm for the forward analysis of extreme
value distributions, that provides new insights on the structure of GEV
modeling. The main contribution consisted in updating the algorithm pre-
viously available for linear models. Decision are often made when the whole
set of observations is available and, in practice, we showed that such deci-
sion can be highly sensitive to the presence of few influential observations.
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FIGURE 3. Behaviour of ML estimate of ξ during the forward search.

Future research could be oriented to study the behaviour of confidence
intervals for diagnostic monitoring, updated at each step of the forward
search.
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Abstract: In building probabilistic models for survival times it is not always
realistic to believe that all relevant risk factors or covariates are measured and
included. Unmeasured or omitted risk factors often generate a between case vari-
ation usually referred to as frailty (in the biomedical literature), extra variation
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literature). In order to properly interpret results of mutivariate survival analysis,
one has to consider the fact that due to these frailties the individual risks may
differ in unknown ways.
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1 Introduction

In frailty competing risk models, the observed changes in population haz-
ard rates over time are a mixed result of two stochastic process: first, the
actual changes in the individual hazards (i.e. observed risk factors), and,
second, unobserved heterogeneity which causes the high-risk individual to
have a shorter survival time. To understand the individual-level process, it
is necessary to separate out these two effects. Moreover, the observed, pop-
ulation averaged, survival curves and hazard rates are difficult to interpret
and potentially misleading.
These issues have been discussed by a number of authors, including, Lan-
caster and Nickell (1980), Stallard and Vaupel (1981), Heckman and Singer
(1984, 1985), Vaupel and Yashin (1985), Hougaard (1984, 1986a, b), Aalen
(1988, 1992) and Vaupel (1990). For illustration we consider the multi-
plicative frailty effects model which is commonly used in the literature.
Let fT |τ (t;λ|τ) be the conditional density function of response time T at
t with unknown parameter vector λ, given the unobserved frailty τ , such
that λ is related to the conditional hazard by h(t|τ,X) = τg(λ,X), where
X is the observed covariate matrix and τ ∼ P (τ ; θ) with parameter vector
θ. Unconditionally the marginal hazard has to be extracted from uncon-
ditional distribution of the response i.e. fT (t;λ) =

∫
fT |τ (t;λ|τ)P (τ ; θ)dτ.

Many authors choose P (τ ; θ) as the conjugate of fT |τ (t;λ|τ) in order to
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get a tractable form for fT (t;λ). If the marginal distribution is not analyt-
ically tractable, numerical integration or Monte Carlo simulations may be
used. Alternatively the integration may be approximated by analytically
tractable forms. There is no guarantee that the use of conjugate distribu-
tion for unobserved frailty τ is the best choice. One may use the central
limit theorem to justify the use of a normal distribution as the distribution
of the unobserved frailty when there is no prior knowledge about the nature
of the frailty distribution. In a multivariate case the normal distribution
also allows for a general correlation structure between the frailties.

1.1 A competing risk model for breast Cancer Recurrence

We illustrate fT (t;λ) on some breast cancer (BC) data. Diagnosis of re-
current cancer is more devastating or psychologically difficult for a woman
than her initial breast cancer diagnosis, therefore the event of interest is
the first recurrence time of BC patients after initial treatment, with AGE,
STAGE of the disease at first diagnosis and the SURGERY TYPE, HIS-
TOLOGY, and the cohort of initial Surgery as potential covariates. Once
recurrent breast cancer has been detected, physicians will order additional
tests to determine to what extent the cancer has spread. In Local recur-
rence cancerous tumor cells remain in the original site, and over time, grow
back; but a regional recurrence of breast cancer is more serious than
local recurrence because it usually indicates that the cancer has spread
past the breast and into the axillary (underarm) lymph nodes and beyond.
In addition to these two observed recurrence times we also consider the
situations where the recurrence time is not observed because the patient
was free of symptoms at the end date of the study (independent right cen-
soring) and patient left, for some reason, before the end date of the study
(dropped out).
In the former case, it is generally assumed that the censoring mechanism
is independent of the recurrence times. However, this assumption may not
apply to the latter; for instance, patients with severe sickness tend to have
shorter survival time and are more likely to die from other disease due to
general weakness. On the other hand, patients with minor problems after
treatment may have very long or no relapse duration so that they may
decide not to come back. Ignoring this fact and employing the commonly
used estimation procedures underestimates the parameters of interest. We
distinguish the following:

• Those patients who were alive at date last seen, with no disease, no
recurrence (right censored failure time).

• Those who experienced the first local recurrence, LR, (T1) .

• Those who experienced the first regional recurrence, RR, (T2).
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• Those who died from breast cancer (dropped out due to breast cancer)
before the first recurrence, DB, (T3) .

• Those who died from other causes (dropped out with other disease)
before the first recurrence, DO, (T4).

We construct a multivariate frailty model for competing risks of breast can-
cer recurrence, including two recurrence types and the above categories of
dropout (a four dimensional frailty distribution using a Cholesky decompo-
sition method, for more detail see Oskrochi and Davies,1997a, and b), and
illustrate the consequences of ignoring the recurrence type and the dropout
mechanisms.

1.2 Model Specification and Informative dropout

A semi-parametric Cox’s proportional hazard model marginal fit to each
latent failure time support a Weibull model for times to recurrence (T1

and T2), time to death from breast cancer (T3), and time to death from
other causes (T4). Therefore we assume the following hazard models for
Tk, k=1,2,3,4,

hk(t) = αtα−1 exp(β0k) exp(β′
kXk + τk), (1)

where τ = (τ1, τ2 , τ3, τ4) represents the unobserved specific individual ef-
fects and/or unobserved or unmeasured covariates of each response. The
ith likelihood of this multivariate frailty model is now given by

Li =
∫
τ1

∫
τ2

∫
τ3

∫
τ4

4∏
k=1

[
[hk0(t)Ψ(Xk)]

dki

]

S(t|X1,X2,X3,X4)f(τ1, τ2, τ3, τ4)dτ1dτ2dτ3dτ4. (2)

Where Ψ(Xk) = exp(β′
kXk + τk). We separate out the constants for no-

tational convenience. A test of h10(t)Ψ(X1) = h20(t)Ψ(X2), i.e. ignoring
the constants, will be a test of whether we can collapse local and regional
failure types. Some researchers (M. Dos Santos, et. al.) have treated the
dropout due to the breast cancer as a recurrence of the breast cancer, i.e.
they have assumed hk0(t)Ψ(Xk) = h30(t)Ψ(X3), k = 1, 2, which can be
tested by hk0(t)Ψ(Xk) �= h30(t)Ψ(X3), k = 1, 2. Some previous research
(M. Dos Santos, et. al.) has assumed only two post-treatment states, re-
currence, (T1 +T2 +T3 in our term) and right censored failure time ( right
censored failure time and T4in our term). For details of this kind of test in
another context, see Bradley, Crouchley and Oskrochi (2003).
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TABLE 1. Parameter Estimations. S: Sig.- NS: Not Sig.- LS: Less Sig.

Factor Indep. Chole. indep. Chole.
Est. LR Est. LR Est. RR Est. RR

LN(α) -0.165 0.501 -0.160 0.612
CONST -16.569 -20.769 -4.169 -8.435
AGE -0.019 -0.04 -0.034 -0.079
STAGE NS NS S LS
Surgery type S S S NS
Histology S LS S LS
SURIN90 NS NS -0.421 -1.112

Est. DB Est. DB Est. DO Est. DO
LN(α) -0.111 0.354 0.011 -0.019
CONST -6.648 -9.581 -16.095 -16.341
AGE 0.013 0.013 0.089 0.091
STAGE S S 1.323 1.393
Surgery type S S S S
Histology S S NS NS
SURIN90 0.391 0.454 -0.355 -0.307

1.3 The Data

The data used in this study cover more than 3200 women referred to the
Christie Hospital, U.K., by their GPs with breast cancer between 1985 and
1995, and their subsequent monitoring to 2001. This is an observational
data set, hence, no randomization or clinical trial were involved. Note that
recurrence is defined as what is clinically known as recurrence of breast
cancer (i.e. after remission). If individual has left the study before observing
her first recurrence the observation is right censored at the date last seen.

1.4 The Results

The results show that dropout due to breast cancer cannot be treated as
the times to recurrence. The dropout from other causes is marginally infor-
mative about failure times via its random effects, and the failure times can
not be pooled into one failure time when controlling for different treatment
at initial diagnosis.
A deviance difference of 113 for 10 df. was obtained for heterogenous model
over the independent model. The test of h10(t)Ψ(X1) = h20(t)Ψ(X2) is
rejected, with a deviance of 3421.72 for 17 df, i.e. local and regional failure
types are different. The tests of hk0(t)Ψ(Xk) = h30(t)Ψ(X3), k = 1, 2, are
also rejected with deviances of d1 = 212.6 and d2 = 221.7, both with 17
df, i.e. the dropout mechanisms from breast cancer cannot be treated as
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time to recurrence. A test to collapse both type of death is also rejected
with d = 260.22 with 17 df. This implies that we cannot assume that post
treatment behaviour has only the states of recurrence and right censoring.
The variance-covariance matrix of the random effects is:


σ2
1 σ12 σ13 σ14

σ12 σ2
2 σ23 σ24

σ13 σ23 σ2
3 σ34

σ14 σ24 σ34 σ4
4


 =




8.4 −0.50 −0.18 0.01
−0.50 9.59 −1.96 −0.57
−0.18 −1.96 4.82 0.44
0.01 −0.57 0.44 0.07




This shows the frailty (unobserved heterogeneity) of death from breast can-
cer is weakly (negatively) associated with time to local recurrence, but it is
strongly (negatively) associated with, a more serious, regional recurrence.
The frailty of death from other causes is not associated with time to local
recurrence, but it is strongly (negatively) associated with regional recur-
rence, and strongly (positively) associated with death from breast cancer.
The nature of unobserved heterogeneity in this study is likely to be the
patients’ level of frailty. More frail patients are expected to have shorter
survival time to both types of death, hence a positive (σ34). The less frail
patients are expected to have longer recurrence time, hence a negative as-
sociation (σ23 and σ24) .
A further complication is that the test for informative dropout σ13 = σ14 =
σ23 = σ24 = σ34 = 0 has a deviance of 18.2 for 5 df. This test suggests that
dropout is informative. In other words, we cannot perform a joint analysis
of (T1) and (T2) and ignore what is happening to (T3) and (T4).
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symmetrical linear models. This class of models includes all symmetric con-
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1 Heteroscedastic symmetrical linear models

The problem of modelling variances has been discussed by various authors,
particularly in the econometric area. Under normal error, for instance,
Cook and Weisberg (1983) present some graphical methods to detect het-
eroscedasticity. Smyth (1989) describes a method which allows modelling
the dispersion parameter in some generalized linear models. Moving away
from normal error, let εi, i = 1, . . . , n, be independent random variables
with density function of the form

fεi(ε) =
1√
φi

g{ε2/φi}, ε ∈ IR, (1)

where φi > 0 is the scale parameter, g : IR → [0,∞] is such that
∫∞
0

g(u)du
< ∞. We shall denote εi ∼ S(0, φi). The function g(·) is called density
generator (see, for example, Fang, Kotz and Ng, 1990). We consider the
linear regression model

yi = µi +
√

φiεi, (2)

where y = (y1, . . . , yn)T are the observed response values, µi = xTi β, xi =
(xi1, . . . , xip)T has values of p explanatory variables, β = (β1, . . . , βp)T and
εi ∼ S(0, 1). We have, when they exist, that E(Yi) = µi and Var(Yi) =
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ξφi, where ξ > 0 is a constant given by ξ = −2ϕ′(0), while ϕ′(0) =
dϕ(u)/du|u=0 with ϕ(·) being a function such that ς(t) = eitµϕ(t2φ), t ∈ IR,
where ς(t) = E(eity) is the characteristic function. We call the model de-
fined by (1)-(2) heteroscedastic symmetrical linear model.
We assume that the dispersion parameter φi is parameterized as φi = h(τi),
where h(·) is a known one-to-one continuously differentiable function and
τi = zTi γ, where Zi = (zi1, . . . , ziq)T has values of q explanatory variables
and γ = (γ1, . . . , γq)T . The function h(·) is usually called dispersion link
function and it must be a positive-value function. One possible choice for
h(·) is h(τ) = exp(τ). The dispersion covariates zi’s are not necessarily the
same location covariates xi’s. It can be shown that β and γ are globally
orthogonal parameters and the Fisher information matrix K for θ is block-
diagonal, namely K = diag{Kβ ,Kγ}. The Fisher information matrices Kβ

and Kγ for β and γ are given by Kβ = XTW1X and Kγ = ZTW2Z,

where W1 = diag{4dg/φi} and W2 = diag{ (4fg−1)h′
i
2

4φ2
i

}, for i = 1, . . . , n,

where X is a n×p matrix with rows xTi , vi = −2Wg(ui), ui = (yi−µi)2/φi,
Wg(u) = g′(u)

g(u) , g
′(u) = ∂g(u)

∂u , h′
i =

∂h(τi)
∂τi

and Z is a n × q matrix with
rows zTi . An iterative process to get the maximum likelihood estimates of β
and γ may be developed by using, for example, the scoring Fisher method,
which leads to the following system of equations:

XTW(k)
1 Xβ(k+1) = XTW(k)

1 z(k)
β and ZTW(k)

2 Zγ(k+1) = ZTW(k)
2 z(k)

γ ,

where zβ and zγ are n× 1 vectors whose components take the forms

zβi
= µi +

vi
4dg

(yi − µi) and zγi
= τi +

2φi
(4fg − 1)h′

i

(viui − 1),

dg = E{W 2
g (U

2)U2} and fg = E{W 2
g (U

2)U4} with U ∼ S(0, 1). For
example, the Student-t distribution with ν degrees of freedom one has
dg = (ν + 1)/4(ν + 3) and fg = 3(ν + 1)/4(ν + 3).

2 Local influence

The idea behind local influence is concerned with the study of the be-
haviour of some influence measure around the vector of no perturbation
ω0. For example, if the likelihood displacement LD(ω) = 2{L(θ̂)− L(θ̂ω)}
is used, where θ̂ω denotes the maximum likelihood estimate under the per-
turbed model, the suggestion of Cook (1986) is to investigate the normal
curvature of the lifted line LD(ω0 + a�), where a ∈ IR, around a = 0
for an arbitrary direction �, ||�|| = 1. He shows that the normal cur-
vature may be expressed in the general form C�(θ) = 2|�T∆T L̈−1

θθ ∆�|,
where ∆ is a (p + q) × s matrix with elements ∆ij = ∂2L(θ|ω)/∂θi∂ωj ,
i = 1, . . . , p + q and j = 1, . . . , s, with all the quantities evaluated at θ̂.
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Lesaffre and Verbeke (1998) suggest evaluating the normal curvature at the
direction of the ith observation, that consists in evaluating C�(θ) at the
n × 1 vector �i formed by zeros with one at the ith position. Paula et al.
(2003) discuss some diagnostics procedures in homoscedastic symmetrical
nonlinear regression models. Suppose the log-likelihood function for θ ex-
pressed as L(θ|ω) =

∑n
i=1 ωilog{g(ui)/

√
φi}, where 0 ≤ ωj ≤ 1 is a case

weights. Under this perturbation scheme the matrix ∆T takes the form
∆T = [D(g)D(e)X,D(m)Z]T where D(g) = diag{g1, . . . , gn}, gi = vi

φi
,

D(m) = diag{m1, . . . ,mn}, mi =
h′

i

2φi
(viui − 1), D(e) = diag{e1, . . . , en}

and ei = yi − µi.

3 Local influence on predictions

Let q a p × 1 vector explanatory variables values, for which we do not
have necessarily an observed response. Then, the prediction at q is µ̂(q) =∑p
j=1 qj β̂j . Analogously, the point prediction at q based on the perturbed

model becomes µ̂(q, ω) =
∑p
j=1 qj β̂jw, where β̂ω = (β̂1ω, . . . , β̂pω)T denotes

the maximum likelihood estimate from the perturbed model. Thomas and
Cook (1990) have investigated the effect of small perturbations on predic-
tions at some particular point q in continuous generalized linear models.
The objective function f(q,ω) = {µ̂(q)− µ̂(q,ω)}2 was chosen due to sim-
plicity and invariance with respect to scale change. The normal curvature
at the unit direction � takes, in this case, the form C� = |�T f̈�|, where
f̈ = ∂2f/∂ω∂ωT = −2∆T (L̈−1

ββqqT L̈−1
ββ )∆, is evaluated at ω0 and β̂. One

has that �max(q) ∝ ∆T L̈−1
ββq.

Consider an additive perturbation on the ith response, namely yiω = yi +
ωisi, where si may be an estimate of the standardized deviation of yi
and ωi ∈ IR. Then, the matrix ∆ equals XTD(a)D(s), where D(s) =
diag{s1, . . . , sn} and D(a) = diag{a1, . . . , an} ai = 1

φi
{vi − 4W ′

g(ui)ui}..
The vector �max(q) is constructed here by taking q = xi, which corresponds
to the n×1 vector �max(xi) ∝ D(s)D(a)X{XTD(a)X}−1xi. A large value
for �maxi

(xi) indicates that the ith observation should have substantial
local influence on ŷi. Then, the suggestion is to take the index plot of
the n × 1 vector (�max1(x1), . . . , �maxn

(xn))T in order to identify those
observations with high influence on its own fitted value.

4 Residuals

Because we have a symmetrical class of errors it is reasonable to think
on the residual ri = yi − ŷi to perform residual analysis. A standardized
version for ri may be attained by using the expansions up to order n−1 by
Cox and Snell (1968). After some algebraic manipulations, we find that

E(r) = 0 and Var(r) = ξΦ{In − (4dgξ)−1H},
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where H = Φ−1/2X(XTΦ−1X)−1XTΦ−1/2 and Φ = diag{φ1, . . . , φn}, In
is the identity matrix of order n, Therefore, a standardized form for ri is
given by

tri
=

(yi − ŷi)√
φ̂iξ{1− (4dgξ)−1ĥii}

.

Simulation studies omitted here indicate that tri
has mean approximately

zero, variance exceeding one, negligible skewness and some kurtosis.

5 Application

To illustrate an application we shall consider the data set described in
Montgomery et al. (2001, Table 3.2). The interest is on predicting the
amount of time required by the router driver to service of vending ma-
chines in an outlet. The service activity includes stocking the machine with
beverage products and minor maintenance or housekeeping. They fitted a
homoscedastic linear regression model with intercept where the response
variable was the delivery time, y (min), the covariates were the number
of cases of producted stocked (x1) and the distance walked by the route
driver (x2) in a sample of 25 observations. In their diagnostic analysis,
points 9 and 22 appear with large effects on the parameter estimates ( see
Montgomery et al. 2001, pp. 210,213,215,216,217). We propose to fit het-
eroscedastic linear models under error distributions with heavier tails than
the normal ones, namely

yi = β0 + β1xi1 + β1xi2 +
√

φiεi, i = 1, . . . , 25 (3)

with φi = exp{α+ γxi2} and εi ∼ S(0, 1) mutually independent errors.
We tried various error distributions but only two models seem to fit the data
as well as or better than the normal model, the Student-t with 4 degrees of
freedom and the logistic-II models. The generated envelopes for the three
postulated models do not present any unusual features, (see Figure 1).
Figure 1 also presents the index plots of Ci under normal, Student-t and
logistic-II errors. Influential observations appear in Student-t model with
smaller values than normal and logistic-II models.

Acknowledgments: The author received financial support from CNPq,
Brazil.
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FIGURE 1. Envelopes and index plots of Ci under the normal (left), Student-t
with 4 d.f. (middle) and logistic-II (right) fitted on the delivery data.
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Abstract: This study is aimed at evaluating the clinical factors and the manage-
ment strategies, that affecting the hospitalization costs of the postinfarct patient.
We use ordinary least square (OLS) linear regression, binary logistic regression,
Cox proportional hazard model, parametric survival model assuming the Weibull
distribution and the Aalen additive regression model. The mean predicted cost
and the cost for specific clinical profile are compared. The Aalen model provides
the most accurate prediction of mean cost and median cost (compared with the
observed cost) and shows considerable promise for the analysis of the medical
costs.
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1 Introduction

Management of the postinfarct patient has changed in the last decade,
aiming at the most cost-effective strategy; thus the study of the cost of the
myocardial infarction (MI) and the factors affecting such cost are becoming
more and more important for clinicians and policy-makers.
Risk stratification early after MI is an important goal in clinical decision
making, because it allows to identify the high risk patients. In this con-
nection different stratification modalities have been proposed: the simple
clinical data obtained during the acute phase, the most commonly used
exercise testing and more recently the coronary angiography and the stress
echocardiography.
In the field of prognostic stratification it is still unclear what is the better
choice between a invasive or not strategy in terms of cost-efficacy. Further-
more, the analysis of the medical costs presents several difficulties from the
statistical point of view.
The data referring to the costs is characterized by a large mass of observa-
tions at zero cost, an asymmetric distribution, (because of a minority with
high medical costs compared to the rest of the population) and the presence
of dependent censoring (because of correlation between cost at censoring
and cost-to-event) due to the patient deaths in the follow-up. The principal
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methods used to analyze the effect of clinical factors on the medical costs
(ordinary least square OLS, logistic regression) present problems connected
to the inadequacy of the assumptions underlying the models.
According to the data characteristics and particularly to the presence of
censoring, several works in literature (Dudley et al., 1993) have proposed
to use the survival models like the Weibull model and the Cox regression
model, because these models are based on few and/or more realistic as-
sumptions concerning the distribution of the cost variable. Nevertheless
the accrual of costs at different rates leads to dependent (or informative)
censoring within subgroups defined by covariate levels and the proportional
hazards (PH) assumption of these models is not in general satisfied (Etzioni
et al., 1999).
The additive regression model (Aalen, 1989;1993) seems to be appealing,
because it is not parametric (in the sense that functions, not parameters
are fitted) and robust for the non proportional hazard and therefore an
alternative to the Cox regression model.
On the basis of these considerations the purpose of this study is a com-
parison of analytic models for estimating the effect of clinical factors and
management strategies on the costs of postinfarct patients. It is empha-
sized the innovative application of the Aalen additive regression model to
medical costs and the performances of this model in terms of predicted
costs.

2 Methods

2.1 The Data

A follow up of 1 year for medical costs was carried out in 10 General
Hospital, eight in Italy and two in Turkey. Patients were admitted to the
participating centers with a diagnosis of non complicated myocardial infarc-
tion, with beginning of the symptoms less than 24 hours, giving informed
consent. For-hundred eighty-seven patients were enrolled and randomly as-
signed to three different strategies: 1) (132 patients) early use of pharmaco-
logical stress echocardiography under therapy (Day 3-5) and conventional
discharge; 2) (130 patients) maximal symptom limited exercise testing un-
der therapy, discharge in Day 7-9 ; 3) (225 patients) clinical evaluation and
hospital discharge in Day 7-9. Cost of hospitalization was estimated refer-
ring to mean reimbursement for the diagnosis-related groups (DRG). Direct
medical costs (in Euro) were calculated related to initial hospital stay, at
1, 6 months and 1 year follow-up. Total costs per patients were measured
as the sum of initial hospital costs and follow-up hospital and outpatients
costs (Figure 1). The clinical variables considered are age, gender, previous
MI, diabetes, ejection fraction (EF), MI antero/lateral, strategy type.
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FIGURE 1. Cost distribution at 1 year of follw-up; b) Costs by strategies.

2.2 Models

Five different statistical models were applied:

• OLS linear regression
y =

∑
ai xi (1)

where ai are the regression coefficients and xi the independent vari-
ables and y the observed costs.

• binary logistic regression

p(y > c) =
1

(1 + exp(−∑ ai xi))
(2)

where c is a fixed cutpoint (median and the third quartile) and p(y >
c) is the probability to have a cost greater than the median or the
third quartile of the cost distribution.

• Parametric proportional hazard (PH) model assuming Weibull dis-
tribution. The Weibull p.d.f.

f(y) = γδ(yδ)γ−1exp[−(yδ)γ ] (3)

where δ is the scale parameter and γ is the shape parameter can be
extended to a regression model by allowing γ e δ to depend on x,
where x is a vector of covariates. The Weibull model can be written
in the form

h(y|x) = h0(y)expxβ (4)

where h(y|x) is the hazard function of the cost y given the covariates
vector x and h0(y) is the baseline hazard function for the cost.
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TABLE 1. Mean and Median of the predicted values by the models

Obs. data OLS m. Weibull m. Cox m. Aalen m.

Mean 9162.152 9352.731 9938.465 9378 9281
Median 4845 9447.393 9822.701 4967 4556

• The Cox PH model. Considering the general form given in (4) in this
model the regression coefficient is estimated in absence of knowledge
of the baseline hazard function h0(y), that is the model is distribution
free.

• The Aalen additive regression model

λ[y|Z] = α0 +
∑

αk(y) Zk (5)

where λ is the hazard rate of a cost y for an individual with a covariate
vector Zk; the hazard rate is a linear combination of the variables Zk
and αk(y) are regression functions estimated from the data, which
measure the influence of the respective covariates.

3 Results

Seven of the 487 patients died in the follow-up time, thus censoring is
very low, about 1.4%. The normality assumption about the residuals for
the OLS model is not satisfied (Shapiro-Wilk test p < 0.001). The cost
data appears to obtain a good approximation with a Weibull distribution
(scale parameter estimated=0.88), nevertheless the key assumption of pro-
portional hazard of the Cox and Weibull models is not satisfied (Global
ChiSquare: 22.88, p=0.005), particularly for age and strategy.
The considered clinical covariates are not significant except for the previous
MI (yes) (Weibull model p = 0.05), the strategy 1 vs strategy 4 (p = 0.01
the logistic model with median cut-point) and the AMI location (antero-
lateral)(p < 0.01 for all the model except for the Aalen model p = 0.05).
There is accord for all the considered models about this last variable, if we
consider the third quartile (12319 euro) as cut-point of the logistic model.
To compare the quantitative cost predictions of the models we computed
the predicted costs relative to the mean and median (Table 1). The linear re-
gression model OLS predicts enough well the mean cost, but overestimates
the median and the same occurs for the Weibull model. The Cox model and
the Aalen model perform well, particularly this last in the median value.
The logistic regression predict well the proportion of costs greater than
12319 euro (p = 0.26) and 4845 euro (p = 0.51).
Finally, we compared the predicted costs for specific covariates values cor-
responding to different risk profiles from the clinical point of view (Table
2).
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TABLE 2. Mean cost for specific clinical profile
Mean Observed cost OLS model Weibull model Cox model Aalen model
1) Male Age>70 Previous AMI EF<50% strategy 2
5962.8 8269.8 7160.8 7157 6164
2) Female Age< 70 MI antero-lateral EF >50 strategy 4
9984 9516.4 9033 9193 9615

4 Discussion

The OLS model, the Weibull model and the Cox model underestimate
slightly the medical cost for the second profile and overestimate the cost for
the first profile (Table 2). The Aalen model (Aalen, 1989; 1993) is free from
the PH assumption and performs better with respect to the other models,
although there is an overestimation and an underestimation in the same
direction as the others. The logistic model performs well (the extreme values
do not influence the estimations) in predicting the high and low costs, but it
precludes the computation of the mean cost and the choice of the dividing
line (which is determinant in the analysis) is arbitrary. The Aalen additive
regression model and the Cox model give a good estimation of the median
with respect to the Weibull and the OLS models, that are sensitive to the
high cost extreme values (Table 1). The accuracy of the Aalen model is
superior to the accuracy of the other models in this dataset, but computer
simulation studies will be necessary to establish the performance of this
model in different circumstances.
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1 Introduction

Quite often in applications we come across with the problem of comparing
two samples. The parametric theory resolves the question by appealing to
the well known t-test. Accordingly, if {X1, . . . , Xn0} and {Xn0+1, . . . , Xn}
are two independent samples with X̄0 =

∑n0
i=1Xi/n0 and X̄1 =

∑n
i=n0+1Xi/n1

then it is well known that the two sample t-test rejects the hypothesis of
means equality when

X̄0 − X̄1

S
√

1
n0

+ 1
n1

≥ c (1)

where

S2 =

∑n0
i=1

(
Xi − X̄0

)2 +
∑n
i=n0+1

(
Xi − X̄1

)2
n− 2

,

and n1 = n − n0. The critical value c is determined by the t distribution
with n − 2 degrees of freedom. To carry out test (1), both samples are
assumed to be normally distributed with common unknown variance and
unknown means.
Occasionally some (or all) of the needed assumptions fail so that (1) cannot
be applied directly. A case in point is illustrated by Fig. 1(a) which displays
boxplots of rainfall amounts from two groups of clouds. One group has
been seeded with silver nitrate while the other has not. There is a total of
26 observations in each group and the purpose of the experiment was to
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FIGURE 1. (a) Boxplots of the clouds data. (b) Boxplots of the clouds data after
log transformation.

determine whether cloud seeding increases rainfall. The data are available
at http://lib.stat.cmu.edu/DASL/Stories/CloudSeeding.html.
Figure 1(a) shows that both groups follow skewed distributions with large
positive values. Clearly both assumptions of normality and equality of vari-
ances fail and therefore application of the two sample t-test is questionable.
The problem may be bypassed after a logarithmic transformation which
leads to symmetric distributions for both groups of clouds with approxi-
mately equal variances–see Fig. 1(b).
Here we consider a quite different approach to the two samples comparison
problem. The methodology is relatively new and appeals on the so called
density ratio model for semiparametric comparison of two samples. To be
more specific assume that

X1, ...,Xn0 ∼ f0(x)
Xn0+1, ...,Xn ∼ f1(x) = exp (α+ βh(x)) f0(x). (2)

where fi(x), i = 0, 1 are probability densities, h is a known function and
α, β are two unknown parameters.
We refer to (2) as the density ratio model since it specifies a parametric
function of the log likelihood ratio of two densities without assuming any
specific form about them. Hence it is a semiparametric model and it is
easy to see that under the hypothesis β = 0, both of the distributions are
identical. Consequently if β̂ stands for the maximum likelihood estimator
of β (see (5)) then the following test procedure

Z =
β̂√ ̂Var(β̂)

(3)

where ̂Var(β̂) denotes the estimated variance of β̂, rejects the hypothe-
sis β = 0 when | Z |> c�. The critical value c� is determined by the
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standard normal distribution. Recent contributions on semiparametric in-
ference about the density ratio model include Qin and Zhang (1997), and
more recently Fokianos et. all (2001).

2 Box–Cox Transformation for the Density Ratio
Model

Recall (2) and assume that the data are positive, that is all X > 0. As-
sume that h is parameterized according the so called Box–Cox family of
transformations

hλ(x) =




xλ − 1
λ

when λ �= 0

log x when λ = 0.

Thus expression (2) becomes

X1, ...,Xn0 ∼ f0(x)
Xn0+1, ...,Xn ∼ f1(x) = exp (α+ βhλ(x)) f0(x). (4)

It turns out that the Box–Cox family of transformations enlarges the den-
sity ratio model by providing a data driven choice of h(x). In this respect
the data analyst can identify the appropriate h(x) in applications. The
following section discuss inference regarding model (4).

3 Inference

Inference can be carried out along the lines of Qin and Zhang (1997).
Accordingly, it can be shown that inference for model (4) is based on the
following empirical log likelihood

l(α, β, λ) = −
n∑
i=1

log [1 + ρ1 exp (α+ βhλ(xi))] +
n∑

i=n0+1

(α+ βhλ(xi)) ,

(5)
with ρ1 = n1/n0. Expression (5) has been derived after profiling out an in-
finite dimensional parameter, namely the cumulative distribution function
of f0(x), say F0(x). The key concept is that of the empirical likelihood (see
Owen (1988)).
To estimate λ, maximize equation (5) for given λ with respect to α and
β. If we denote by lmax(λ) the maximized log likelihood for a given value
of λ, then a plot of lmax(λ) against λ for a trial series of values will reveal
λ̂–the maximum likelihood estimator of λ. An approximate 100(1 − a)%
confidence interval for λ consists of those values of λ which satisfy the
inequality

lmax(λ̂) − lmax(λ) ≤ 1
2
χ2

1;1−a (6)
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FIGURE 2. Values of the log likelihood for the clouds data when λ varies in
[−2, 2]. The horizontal line indicates a 90% confidence interval for λ.

where χ2
1;1−a is the percentage point of the chi–squared distribution with

one degree of freedom.

3.1 Application

Figure 2 illustrates the above methodology applied to clouds data. In other
words this is a plot of the maximized log likelihood as λ varies in [−2, 2]
with step equal to 0.01. The maximum value is obtained at λ̂ = 0.18. The
horizontal line indicates a 90% confidence interval for λ–according to (6)–
which turns out to be [−0.58, 1.50]. Consequently, values of λ equal to -1/2,
0, 1/2, 1 and 3/2 are not excluded as possibilities by the data. Apparently
the relative small number of observations lead to negligible changes to the
log likelihood for different λ and therefore the obtained confidence interval
is rather large. Hence it is preferable to use values that fall near the viscosity
of the maximum. For the clouds data we choose λ = 0, 1/2. This discussion
confirms from another point of view that log transformation is appropriate
for the data at hand.
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Abstract: In many studies in which the response variable is the time until
the occurrence of an event, the exact time cannot be determined, that is, only
the interval of the occurrence is known. Such data can be analyzed by the tra-
ditional life table method (LTM) when there is no covariate. A more general
approach consists in using a discrete-time regression model, such as proportional
hazard model (DCM) or proportional odds model (DLM). In this paper we com-
pare those three types of analysis (LTM, DCM, DLM) for the two-sample case
through a simulation study. We assess the agreement among them with respect
to the comparison between two groups, as well as the empirical power and the
length of the confidence interval for quantities of interest. We also investigate the
impact of the misspecification of the regression model.
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1 Introduction

In several studies, the main outcome is the time between the beginning of
the observation and the occurrence of an event of interest, usually dichoto-
mous. For instance, important examples in clinical trials are the survival
time and the disease free time (or recurrence time). In this context, the
principal feature of the data is the possibility of censoring. Another impor-
tant aspect of this type of data is whether or not the precise time of the
end-point is known. Frequently, only the interval of occurrence of the event
is known. For instance, patients are often examined periodically at fixed
times but the event of interest may occur in between exams with no possi-
bility to determine the exact occurrence time. Data in this form - known as
interval-censored data, grouped or discrete lifetimes - require appropriate
methods.
There is a vast literature on this topic and the articles by Lindsey & Ryan
(1998) and Sun (1998) provide a good overview and several references. A
variety of ways has been proposed for dealing with interval-censored data,
as discussed in Cox (1972), Holford (1976), Tibshirani & Ciampi (1983),
Finkelstein (1986), Farrington (1996), Huang, (1996), Huang & Rossini



A.L. Siqueira et al. 391

(1997), and Goodall et al. (2004), among others. Obviously, all proposed
methods of analysis have advantages and drawbacks, but a comparative
work assessing the merits of each method is not available.
In the simplest situation in which only time is analyzed, the life table
method can be used. However, frequently some covariates need to be incor-
porated into the analysis. For the regression case, the proportional hazard
model is the most popular model, and when the proportional hazard as-
sumption is not satisfied, the proportional odds model might be appropriate
(see Huang & Rossini, 1997).
The treatment of censoring by the life-table method differs from the one us-
ing regression models. The discrete-time model is more general since it can
incorporate several types of covariates. The life-table method is conceptu-
ally simple and available in several software packages, while the analysis of
the discrete-time model is more complex and requires for instance knowl-
edge of the generalized linear model. Moreover, the conclusions given by
the two approaches may not be the same.
Thus, the comparison among those distinct types of analysis is an impor-
tant issue in practice. Some questions arise: in which conditions would the
life-table method be equivalent to the discrete-time models? Between the
two regression models, which one should be chosen? Those issues have mo-
tivated the simulation study presented in Section 2.
In this paper we consider three types of analyses of interval-censored data:
the life table method and two discrete-time regression models.

1.1 Life table method

The analysis of time until the event can be done by the traditional life
table method (LTM) and the Mantel-Haenszel method can be applied
for comparing the “survival” curves. The details on these methods can be
found for example in Lawless (2003) and they are implemented in several
commercial software packages or can be easily programmed.

1.2 Discrete-time models

In this section we consider two common discrete-time models: the propor-
tional hazard and proportional odds models, referred to as discrete Cox
model (DCM) and discrete logistic model (DLM), as detailed for instance
in Lawless (2003, Chapter 7) and Collett (2003, Chapter 9). The score test
related to these two models is given by Colosimo et al. (2000).
Let us consider the time T partitioned into k intervals (Ii = [ti−1, ti), i =
1, . . . , k), and let us assume that all censoring takes place at the end of the
intervals. Let Ri be the risk set at time ti−1, δij an indicator variable (one
if the event occurred for the jth individual within Ii and zero otherwise),
xj the vector of covariates, and pi(xj) = Pr(Ti ≤ ti|Ti ≥ ti−1, xj), i.e. the
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probability of failure of the jth individual in the interval Ii given that the
failure did not occur before ti−1. The likelihood function is given by

L =
k∏
i=1

∏
j∈Ri

[pi(xj)]δij [1− pi(xj)]1−δij . (1)

The form of pi(xj) for DCM and DLM depends on the covariate effect
(β) and the interval effect (γ) as follows. DCM is expressed as pi(xj)

= 1− [S0(ti)/S0(ti−1)]exp{β′xj} = 1− γ
exp{β′xj}
i , where S0(.) is the baseline

survival function. After a simple algebraic manipulation, and calling γ∗i =
log(− log(γi)), the model DCM becomes

log(− log(1− pi(xj))) = γ∗i + β′xj . (2)

DLM is given by pi(xj) = 1− [1+ γi exp{β′xj}]−1. Taking the logit trans-
formation and calling γ∗i = log(γi), the model DLM can be written as

log(pi(xj)/(1− pi(xj))) = γ∗i + β′xj . (3)

Note that those two models belong to the family of generalized linear mod-
els, and thus they can be fitted using the standard software packages, such
as GLIM, SPlus and SAS, after an appropriate adjustment of entries of data
for interval-censored data. Both have binomial error, and the link functions
are complementary log-log and logit, respectively.

2 A Monte Carlo simulation study

We performed a simulation study for a comparison among the three types
of analysis (LTM , DCM , DLM). In order to compare LTM with the
two models (DCM and DLM), except group, we did not allow additional
covariates, i.e. there was just one dichotomous covariate for models (2)
and (3). We considered six time intervals, two groups, four sample sizes
(n = 60, 100, 200, 500 for balanced designs, i.e. n/2 in each group), and
three censoring proportions (30%, 40%, 50%).
We evaluated the agreement with respect to the comparison between the
two groups. In addition, we assessed the empirical power and the length of
the confidence interval for the probability of failure in each time interval
and the group parameter (β) of models (2) and (3). We also investigated
the impact of misspecification of the regression model (i.e. we generated the
data according to one model and proceeded to the analysis for the other
one). The calculations were done in SPlus with 1000 simulations.
We generated the number of failures according to a binomial distribution
with parameters ni, the number of individuals at risk at the beginning of
the time interval Ii = [ti−1, ti), and pi(xj) = Pr(Ti ≤ ti|Ti ≥ ti−1, xj).
These probabilities were generated according to models (2) and (3) with
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the following parameters: β = 1 and γ∗i = −3.5,−3,−2.5,−2,−1.5,−1,
i.e. an increasing effect of time on the risk of failure. The censoring was
generated using the distribution U(0, 1). Finally, we applied the life table
and the Mantel Haenszel methods, and for models (2) and (3) we tested
H0 : β = 0 and constructed the 95% confidence interval for β.
The main results are:

1. The agreement among the methods is always greater than 90%, re-
gardless of the sample size and the censoring proportions, and it in-
creases as the sample size increases.

2. As expected, as the sample size increases, the empirical power in-
creases, but there is a reduction of power as the censoring proportion
increases. The power is at least 66%, 55% and 40%, respectively for
censoring proportions of 30%, 40% and 50%. For a fixed sample size
and proportion of censoring, the power for the three types of analysis
does not vary significantly.

3. As the sample size decreases and the censoring proportion increases,
all the statistics for the length of the confidence interval for β increase.
Smaller lengths are observed when the DCM is fitted, but the dif-
ference between the two models (DCM,DLM) nearly vanishes for
large samples.

4. The impact of misspecifying the model is more noticeable when the
DCM is the true model, confirming the higher accuracy of this model
with respect to inference for the group parameter (β).

3 Concluding remarks

We have compared three types of analysis for interval-censored data (LTM ,
DCM ,DLM) through a simulation study. An intriguing question is whether
or not the complexity ofDCM andDLM guarantees their superiority com-
pared to LTM . Between the two regression models, the remaining question
is which one should be used.
In the literature, LTM is recommended only for the case of large sample
sizes. However, our results showed that the method works quite well even
for small sample sizes (e.g. n = 60).
By comparing the three types of analysis we observed the effect of sample
size and censoring proportion. Moreover, when comparing groups we con-
cluded that the empirical powers were very similar; there was an excellent
agreement in terms of deciding whether or not to reject the hypothesis of
equal groups. In the comparison between the discrete-time models, there
was an evidence of superiority of theDCM for the estimation of parameters
and also for the wrong choice of the link function.
Finally, additional work is needed to cover other interesting situations, such
as the inclusion of other types of covariates and unbalanced samples.
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1 Introduction

In applying standard Generalized Linear Models (GLMs) it is often found
that the data exhibit greater variability than is predicted by the implicit
mean-variance relation-ship. This phenomenon of overdispersion has been
widely considered in the literature, particularly in relation to the Poisson
distribution. In order to analyze overdisperd data we can broadly catego-
rize the approaches into two groups. (i) Assume some more general form for
the variance function with additional parameters and use quasi-likelihood
approach. (ii) Assume a two-stage model for the response with the model
parameter itself having some distribution. Thall and Vail (1990) have con-
sidered Generalized Estimating Equations (GEE) to model overdispersion
in count data. Crouchley and Davies (1999) have shown that the GEE ap-
proach has limitations which restrict its usefulness. They have illustrated
their theory by reanalyzing data on polyp counts.
In simple cases such as Poisson-Gamma models MLE approach is possible,
although approximation methods often used when mixing distribution is
not conjugate to the response distribution such as Poisson-Normal models.
Aitkin (1999) has introduced an algorithm for Nonparametric Maximum
Likelihood Estimation (NMLE) in GLMs with variance component struc-
ture. Another approach is a fully Bayes approach with the additional struc-
ture of a prior distribution on all the model parameters. Fotouhi (2003) has
shown that this approach performs very well in fitting multi-level models
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especially for two-level models for analyzing longitudinal data. This ap-
proach will be used in this paper.
The principal objective of this paper is to explain the sources of overdis-
persion in longitudinal count data. We will specially show that the way
of introducing the random effects into the linear predictor is essential to
overcome the problem of overdispersion.

2 Data

We report analysis of two well known data sets. The first one is data
on epileptic seizure count arising in a study of progabide as an adjuvant
antiepileptic chemotherapy. The data are from a clinical trial of 59 epilep-
tics reported and analyzed by Thall and Vail (1990). The second data set is
from a 4-year randomized double-blind trial of treatments (58 patients) to
reduce rectal polyps in sufferers of familial polyposis. The data are reported
and analyzed by Crouchley and Davies (1999). The seizure counts exhibit a
high degree of extra-poison variation for total data, placebo and progabide
groups, baseline, and each visit. Moreover the seizure counts exhibit het-
eroscedastic overdispersion across visit and across treatment group. Almost
the same patterns could be found in polyp data.

3 Theory

Assume that, conditional on error term εit, Yit is distributed as Poisson
with mean λit = µitψit where ψit = exp(εit) and µit = exp (ηit) . The sec-
ond term in marginal variance of Yit, V ar(Yit) = µitE(ψit) + µ2

itV ar(ψit),
shows overdispersion. The dependency of this term on time indicates the
heteroscedasticity of overdispersion. To overcome the problem of overdis-
persion we decompose εit into three components, random effects γi, serial
correlation ξt and measurement error, δit (see Diggle et al. (1994). For
epileptic data the linear predictor, including all three error terms γi, ξt,
and δit, may be of the form

λit = exp[β0 + β1(logAge−mean(logAge)) + β2(log(Base/4) −mean(log(Base/4)))

+β3(Trt.−mean(Trt)) + β4(V isit−mean(V isit)) + β5(Trt.× log(Base/4)

−mean(Trt.× log(Base/4))) + γi + ξt + δit]

where V isit is binary indicator for the fourth clinic visit and Trt. is 0 for
placebo and 1 for progabide.
To use Bayesian inference Using Gibbs Sampling (BUGS) we assume spe-
cific parametric priors for γi, ξt, and δit. Let γi ∼ NID (0, σγ), ξt ∼
MND (0, V ), δit ∼ NID (0, σδ). We assume non-informative priors with
extremely small precision for the structural parameters β0, β1, β2, β3, β4,
β5, (βj ∼ N (0, 10000)). We also assume non-informative prior with mean
1 and variance 1000 for the precisions of the error terms, i.e. 1

σγ
∼ Gamma

(0.001, 0.001) and 1
σδ

∼ Gamma (0.001, 0.001). The prior distribution for
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covariance matrix V is assumed to be Wishart with appropriate parame-
ters.
We use three model checking criteria in both application and simulation
study. they are Deviance, Variance Inflation Factor (V IF ), and global
goodness-of-fit tests based on Bayesian probability (p − value). We also
check if the estimated model is consistent to the data.

4 Application and Simulation

We have fitted the proposed models to epileptic and polyp data and have
done some simulations. We report only some of our findings in table 1. We
have used BUGS program and for all models, a burn-in of 3000 iterations
was followed by a further 6000 iterations.
Table 1 shows that for the model with no error term, V IF is 4.454, which
shows the existence of overdispersion. Changing the link function and delet-
ing two outliers does not change the V IF significantly but change the
deviance. According to the global goodness-of-fit tests based on Bayesian
probability (p − value) none of the models are fitted significantly. The
threshold for no error term model is not consistent to the data.
Considering serial correlations among repeated counts within patients by
introducing a multivariate Normal random vector ξ in the linear predictor
does not reduce the V IF and the deviance.
The random effects model γi performs better than the no error term model.
The V IF and deviance reduce substantially to 1.841 and 1221 respectively
but V IF is still significantly larger than 1. The standard error of the in-
dividual specific error, σγ , is estimated 0.538(0.064) which is significantly
different from zero. This shows that the heterogeneity across individuals is
captured.
Table 1 shows that all models having measurement error, δit, are fitted
perfectly well. The standard error of the measurement error is estimated
significantly different from zero in all these models. The V IF and deviance
for these models are minimum comparing to the models having the same
specifications but not including δit. The V IF for these models is close
to 1, showing that overdispersion is completely captured. The Bayesian
p− values for the models containing δit suggest that the observed Pearson
χ2 statistic is consistent with the value expected from a random sample of
59×4 from a Poisson distribution. That is, there is no evidence against the
assumption about the structure of the underlying linear predictor. Our best
fitted models are the measurement error model ,δit, and the model contain-
ing both random effects, γi, and measurement error, δit . The mentioned
three criteria do not distinguish these two models. But the threshold is 54.1
for the first model and 72.6 for the second model. The model containing
both the random effects and measurement error is then more consistent to
the data, since the patient with baseline 67 has been substantially recovered
after receiving treatment.
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Thall and Vail (1990) have fitted several models to the epileptic seizure
data. The model with both individual random effects and independent time
random effects has been introduced as the best model. We have calculated
the threshold for this model and is 60.8. This threshold is not very con-
sistent to the data since two patients with baselines 67 and 76 have been
greatly recovered after receiving treatment. Our model with γi+ξ is equiva-
lent to their best model for which V IF = 1.975 showing that overdispersion
is not completely captured.
Comparing the fitted models, we observe a systematic reduction of the
standard deviation of the parameter estimate with increasing V IF. This
shows that lack of controlling the overdispersion arising from the omit-
ted variables may overstate the significance of explanatory variables. We
have also fitted several models and have investigated the effect of the ini-
tial conditions problem (Fotouhi (1997)) on overdispersion. Even if initial
conditions are treated correctly we still need a proper consideration of the
error terms.
The second application is applying the proposed models to analyze polyp
data reanalyzed by Crouchley and Davies (1999). They have shown that
random effects model is more appropriate than GEE approach for assess-
ing the treatment effects for these data. We have calculated the V IF for
their model and that is 8.35. We have shown that the model including
measurement error, δit performs better in capturing overdispersion with
V IF = 5.29 and produces more consistent thresholds for assessing the
treatment effects. Non of these models could capture the overdispersion
completely. Perhaps the overdispersion is not due to omitted variables.
The overdispersion in epileptic data was due to omitted variables and con-
trolled by proper consideration of the error term. Our simulation study
based on epileptic data shows the same patterns obtained from application
of the same models to epileptic data. V IF , deviance, and p − value for
measurement error model are 1.034, 1398, and 0.490 respectively. While
for random effects model are 9.931, 3367, and 0 respectively. We conclude
that if the data are produced by a process affected by measurement error
then the random effect model is not able to capture the overdispersion.

5 Concluding remarks

We introduced some models with different types of error terms in their
linear predictor to control for omitted variables and consequently to con-
trol for overdispersion in longitudinal count data analysis. We have shown,
through application to epileptic seizure and polyp data and simulation,
that the type of the error term is important to overcome the problem of
overdispersion. We have also shown that the link function and the outliers
are also important factors. As expected, the standard error of estimate
increases as V IF decreases.
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TABLE 1. Parameter estimates and goodness of fit criteria from fitting model 2
with different types of error term. Bold figures shown are standard deviations of
estimates.
Model No ξ γi δit ξ + δit γi + δit γi + ξ γi + ξ

Error +δit
Int. 1.686 2.224 1.620 1.561 1.940 1.567 −3.231 4.948

0.032 0.412 0.082 0.052 0.533 0.074 0.457 0.394
Age 0.889 0.887 0.483 0.578 0.564 0.493 0.451 0.486

0.117 0.116 0.375 0.241 0.240 0.363 0.348 0.372
Base 0.947 0.951 0.882 0.899 0.917 0.914 0.906 0.906

0.044 0.042 0.124 0.081 0.085 0.133 0.112 0.130
Trt. −1.343 −1.330 −0.896 −0.982 −0.947 −0.864 −0.816 −0.879

0.158 0.145 0.351 0.254 0.270 0.430 0.308 0.374
V isit −0.160 1.364 −0.160 −0.093 3.663 −0.103 0.957 −2.203

0.054 1.156 0.055 0.114 1.720 0.087 1.280 0.650
BT 0.563 0.558 0.320 0.377 0.360 0.298 0.280 0.313

0.064 0.058 0.174 0.118 0.132 0.222 0.149 0.189
σγ − − 0.539 − − 0.498 0.520 1.418

− − 0.064 − − 0.070 0.891 0.069
σδ − − − 0.594 0.596 0.360 − 0.364

− − − 0.046 0.435 0.043 − 1.789
V IF 4.454 4.804 1.841 1.077 1.143 1.063 1.975 1.120
Dev. 1641 1641 1221 1037 1035 1038 1222 1035
PV 0 0 0 0.380 0.375 0.416 0 0.424
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Abstract: We introduce Multilevel Logit Models and discuss the estimation pro-
cedures that may be used to fit these models. We apply the proposed procedures
to three-level binary data generated in a simulation study. We compare the proce-
dures by two criteria, Bias and efficiency. We find that the estimates of the fixed
effects and variance components are substantially and significantly biased using
Longford’s Approximation and Goldstein’s Generalized Least Squares approaches
by two software packages VARCL and ML3. These biases could be removed by
using Markov Chain Monte Carlo (MCMC) using Gibbs sampling or Nonpara-
metric Maximum Likelihood (NPML) approach. The Gaussian Quadrature (GQ)
approach, even with small number of mass points results in consistent estimates
but computationally problematic.

1 Introduction

In multilevel data, the observations within the same group are more likely to
be correlated than the observations from different groups. The correlations
from all levels should be taken into account and ignoring any one of them
may lead to inconsistent estimates and misleading inferences. A well known
method of representing this common variation is by adding a common
unobserved random effect to the linear predictor for each lower level unit
in the same upper level unit. If the distribution of this random effects is
conjugate to the distribution of the responses, then maximum likelihood is
straightforward. Otherwise the likelihood function does not have a closed
form and we need an approach to deal with the integration problem. Some
approaches to solve the integrals are:(a) The likelihood can be integrated
numerically using Gaussian Quadrature (GQ) points. (b) The log likelihood
function can be approximated by a second order Taylor series expansion.
(c) A fully Bayesian approach can be used with the additional structure
of a prior distribution on all the model parameters. The Markov Chain
Monte Carlo (MCMC) methods can be used to obtain marginal posterior
distributions of the parameters.
In these three approaches we assume a specific parametric form of the
mixing distribution of the unobserved random effects. Davies (1987) has
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shown that the parameter estimation is sensible to the choice of the mix-
ing distribution. This problem can be solved by Nonparametric Maximum
Likelihood (NPML) estimation on mixing distribution on a finite number
of mass points. This approach is used by Aitkin (1999) for fitting two-level
data.
Very little work has been done on using and comparing the four mentioned
approaches, GQ, Taylor series, MCMC, and NPML in analyzing multi level
data. The purpose of this paper is to model a multilevel binary data in a
general form and explain, apply and compare the above approaches through
simulation study. Our analysis focuses on bias and efficiency of estimates
produced by the mentioned approaches. However the results will compare
some software in fitting multilevel models.

2 Model and Estimation Approaches

Following Goldstein (1991) a multilevel logit model is of the form,

logit(µ) = η = Xβ + Zu

where µi = Pr(Yi = 1|β,Ω,X,Z); for i = 1, ..., N and η is a conditional
linear predictor. We assume that the random effects from different units
are mutually independent with mean 0 and V ar(ui) = Ωi. We then have
V ar(u) = Ω and Ω =diagL[Igi

⊗ Ωi].
To compare approaches we consider a three level logit model with one
random effect at each of the second and third levels. If we consider one
explanatory variable at each level then the above model reduces to

L(β,Ω) =
L∏

i=1

+∞∫
−∞


 ni∏

j=1

+∞∫
−∞

(
nij∏
k=1

µijk

)
g1(uij)duij


× g2(ui)dui

µijk =
exp [(β1xijk + β2xij + β3xi + ui + uij) yijk]
1 + exp [β1xijk + β2xij + β3xi + ui + uij ]

where xijk, xij , and xi are the explanatory variables in levels one, two, and
three respectively. uij and ui are the random effects with means zero and
standard errors σ1, σ2 and density g1, g2 related to second and third levels
respectively. yijk is the response for the kth individual in the jth unit of
level two and ith unit of level one. β1, β2, β3 are the fixed effects of xijk, xij ,
and xi. Here we need to calculate one dimensional integral.
Longford (1988) has proposed an approximation to this likelihood function.
The approximation relies on a second order Taylor expansion of the loga-
rithm of the conditional likelihood about u = 0 . Longford (1988) has im-
plemented this estimation strategy in the software package VARCL. This
method provides the basis for a Fisher scoring procedure which can be
applied alternately to β and Ω. Although, Longford’s approximation has
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solved the problem of high dimensionality of the integrals for some models
but care should be taken in applying this approximation. Since the true
likelihood function is not maximized and the remainder of the Taylor ex-
pansion is not controlled the parameter estimate may by biased. Even if all
the necessary conditions needed to write the Taylor series of the likelihood
function are attained we need to control the remainder of the estimation of
the likelihood function by its finite Taylor series. The same problem appears
when we use the method proposed by Goldstein (1991) used in ML3. We
will compare these two approaches with the three well known approaches
MCMC, NPML, and GQ explained in introduction.

3 Simulation Study

In empirical study, unlike simulation study, since the true value of the pa-
rameters are not known we can never be certain if the results of empirical
work are accurate and so we may have misleading comparisons of underly-
ing approaches. For comparisons of estimation procedures we followed the
simulation’s structure proposed by Rodriguez and Goldman (1995). They
have simulated data sets using the same hierarchial structure as one of the
Guatemalan data sets analyzed by Pebley and Goldman (1992).
Consider 20 units in each level of the three-level model introduced in section
2. Suppose that xijk, xij , and xi are dummy variables in fully balanced
design, so the covariates are independent and each of the eight combinations
of values occur equally often. the fixed effects β1, β2, β3 are set to be one.
The random effects uij and ui are generated from independent normal
distributions with means zero and variances 1.0 and 0.16. Tables 1 reports
values of the estimated fixed effects and the estimated standard errors of
the random effects averaged over the 100 simulations when the variance of
random effects is 1.
The results from Rodriguez and Goldman (1995), reported in table 1, show
large significant biases for all parameters. When they used VARCL soft-
ware, except the fixed effect at third level, all the other estimates are signif-
icantly biased. Their performance in ML3 results in substantial significant
biases especially for the standard error of the random effect at second level
which are 89.7 and 72.2 percent using linear and quadratic approxima-
tions respectively. They have not reported the standard deviations of the
estimates to check if the biases are statistically significant.
To implement the GQ approach we have used the subroutine BCONF from
Fortran Power Station 4.0 software to maximize the likelihood function.
Table 1 shows that none of the biases are statistically significant. We found
that this approach behave poorly in estimating the standard error of the
third level and is computationally problematic.
To apply the NPML approach we have used the subroutine LCONF from
Fortran Power Station 4.0 software to maximize the likelihood function.
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Table 1 shows that the results from the performance of the NPML approach
with 3 mass points are better than the results from the GQ approach in
estimating the standard errors of the random effects. Non of the biases
from this approach are significant.
To apply the MCMC approach using Gibbs sampling we have used BUGS
software. It is assumed that the prior distributions of ui and uij to be
normal with means 0 and standard errors σ1 and σ2 respectively. β1, β2, β3

have non-informative normal prior with mean 0 and standard error 1000, σ1

and σ2 have non-informative gamma prior with mean 1 and variance 1000.
In order to get over the influence of the initial values we have performed
500 iterations of the Gibbs sampler and then have updated another 1000
iterations to estimate the parameters. Table 1 shows that this approach
performs excellent with at most 2.8% bias for the fixed effect at the second
level. The standard deviation of estimates are small and none of the biases
are statistically significant. Table 1 shows that the MCMC approach results
in very small MSE.
Further investigations showed that when the variances of the random effects
are small, i.e. σ2

1 = σ2
2 = 0.16, non of the estimates are significantly biased.

Using GQ or NPML results in large absolute biases for the standard er-
rors of the random effects but are not statistically significant. VARCL and
BUGS perform almost the same but with less biases using BUGS.

4 Conclusions

In this paper we reviewed the procedures that may be applied to fit multi-
level logit models and compared these approaches through simulation study.
We showed that the substantial significant biases coming from VARCL
and ML3 can be vanished by applying the MCMC method using Gibbs
sampling. The efficiency of the MCMC approach is considerably high and
recommended if we assume a parametric distributions for the random ef-
fects. If there is not such prior information, the NPML approach is recom-
mended. Our simulation study shows that this approach performs better
than VARCL and ML3.
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TABLE 1. Simulation results for large error variance. The figures in the paren-
theses are the standard deviations of estimates. Bold figures are MSE of the
estimates. ∗ Significantly biased estimates

Approach β1 = 1 β2 = 1 β3 = 1 σ1 = 1 σ2 = 1
0.756∗ 0.775∗ 0.906 0.801∗ 0.749∗

VARCL (0.062) (0.089) (0.378) (0.044) (0.115)
0.063 0.059 0.152 0.042 0.076
1.149 1.017 1.035 0.957 1.994

GQ (0.408) (0.378) (0.674) (0.425) (1.073)
0.189 0.143 0.456 0.182 2.139
1.003 0.972 0.756 1.350 1.243

NPML (0.063) (0.155) (0.467) (0.244) (0.315)
0.004 0.025 0.278 0.182 0.158
0.992 0.972 1.010 1.000 0.997

MCMC (0.115) (0.118) (0.350) (0.062) (0.199)
0.013 0.015 0.123 0.009 0.040

ML3-Linear 0.738 0.74 0.771 0.103 0.732
ML3-Quadratic 0.854 0.860 0.910 0.278 0.764

Goldstein, H. 1991. Nonlinear Multilevel Models with an Application to
Discrete Response Data. Biometrika, 78, 1, 45-51.

Longford, N. T. (1988). VARCL: Software for Variance Component Anal-
ysis of Data With Hierarchically Nested Random Effects (Maximum
Likelihood). Princeton, N. J., Educational Testing Service.

Pebley, A. R. and Goldman, N. (1992). Family, Community, Ethnic Iden-
tity and the use of Formal Health Care Services in Guatemala. OPR
Working Paper 92-102. Office of Population Research, Princeton.

Rodriguez, G. and Goldman, N. (1995). An Assessment of Estimation Pro-
cedures for Multilevel Models with Binary Responses. Journal of the
Royal Statistical Society, Series A 158, part 1, 73-89.
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Abstract: Overdispersion may have a considerable influence on smoothing re-
sults if the extra variability is not accounted for in the model. We propose a
two-stage strategy for the estimation of the overdispersion and smoothing para-
meters in a negative binomial varying-coefficient model.
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1 Introduction

Death does not strike uniformly over the year. On the Northern hemisphere
deaths typically peak in winter whereas mortality is lowest late in summer
(July-September). These seasonal fluctuations are a persistent phenomenon
in most populations and they follow a sinusoidal shape rather closely. Cli-
matic conditions — mainly temperature — shape the seasonal variation
in risks of death, however, social factors modulate seasonal mortality pat-
terns as well. Mortality patterns have changed considerably over the last
decades, the most striking development being the dramatic and unprece-
dented progress against mortality at advanced ages. Whether seasonal fluc-
tuations have undergone similar changes and whether some age-groups or
causes of death benefitted more from general improvements in living con-
ditions and medical progress than others is not yet fully known.

2 Data

The data set used in this study was derived from the “Multiple Cause of
Death” public use files published by the US Center for Disease Control and
Prevention (CDC) for the years 1959–1998. The data consist of more than
77 Mio. individual deaths records. Each record contains information on the
sex of the individual, month and year of death, age at death, and cause of
death. The emphasis here is on adult and especially old-age mortality and
therefore only deaths that occurred at ages 50 and higher were included.
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FIGURE 1. Smoothing results when overdispersion is ignored. Data (left) were
simulated from a Negative Binomial distribution but the model was fitted under
a Poisson assumption. Additive trend (middle) and amplitude function of the
seasonal component (right) are both undersmoothed. (True values in gray, fitted
values in black.)

The purpose of the study was to find out whether and how seasonal vari-
ation in mortality had changed over the observation period for different
age-groups and different causes of death.

3 Modelling Changing Seasonal Variation

The overall trend in the number of deaths is determined by changes in age-
group sizes and changing mortality risks over time and should be modelled
flexibly. Additionally we want to obtain a flexible and data-driven estimate
for potential changes in seasonal mortality fluctuations.

3.1 Model and P -Spline Smoothing

We denote the monthly numbers of deaths (for a specific cause of death
and age-category) by Yt, t = 1, . . . , T = 480 (=̂Jan ’59, . . . ,Dec ’98). We
start by assuming that the Yt are independently Poisson distributed with
a log-link and the mean µt specified as

lnµt = α0 + f0(t) +
L∑

l=1

{
f sin

l (t) sin(
2π l
12

t) + f cos
l (t) cos(

2π l
12

t)
}
. (1)

Both the additive trend term f0(t) and the amplitude modulating func-
tions f sin

l (t) and f cos
l (t) are assumed to be smoothly varying functions over

time t. The most simple seasonal model would only fit one sine-cosine term
(L = 1), by adding more components more complex cyclic patterns could be
captured. Model (1) is a varying-coefficient model (Hastie and Tibshirani,
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1993) which, as demonstrated by Eilers and Marx (2002), can be conve-
niently fit using P -splines. Each smooth model component is expanded
using a moderately large B-Spline basis and smoothness is controlled by
penalizing the spline-coefficients by a difference penalty (Eilers and Marx,
1996). The optimal amount of smoothing can be determined by minimizing
an information criterion, like AIC, over a grid of values for the smoothing
parameter λ. For large models with several functions to be smoothed Eilers
and Marx (2002) suggest a multi-dimensional grid-search to determine the
optimal combination of smoothing parameters.

3.2 The Impact of Overdispersion

Clearly there is unobserved heterogeneity in these data. The month index is
only a proxy for the actually prevailing weather conditions, and individuals,
even for narrow age categories, have different susceptibility to death. Both
features are well known sources of overdispersion (Cameron and Trivedi,
1998; Barron, 1992). The effect of overdispersion on smoothing methods
can be considerable and is depicted in Figure 1. Extra variation that is
not allowed for by the Poisson model is distributed over the smooth model
components leading to serious undersmoothing of the target functions. This
phenomenon corresponds to the similar effect that arises when correlated
data are smoothed under independence assumptions.

3.3 Smoothing Parameter Selection

A simple and common extension for overdispersed count data is the Neg-
ative Binomial (NB) distribution (Lawless, 1987), arising from a Gamma-
Poisson mixture. For a fixed value of the variance τ2 of the mixing Γ-
distribution (with mean 1), the NB is an exponential family and we thus still
operate in the GLM framework. Therefore, for a given amount of overdis-
persion τ2, we may determine the values of the smoothing parameters as
in the Poisson case. An optimal procedure though has to determine which
portion of the variation in the data can be attributed to overdispersion
and which is due to the structural components in the model. To resolve
this question we propose the following two-stage strategy.

• Fix a grid of values for the overdispersion parameter, i.e. the variance
of the Γ-distribution:

τ2
1 , . . . , τ

2
M .

• For each of these (fixed) values τ2
m (m = 1, . . . ,M) minimize the AIC

to obtain the optimal smoothing parameters (λm
1 , . . . , λ

m
C ), where C

is the number of components to be smoothed in (1).
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FIGURE 2. Results from a simulation study applying the two-stage smoothing
strategy. Each row shows the true (dashed) and estimated (solid) trend function
(left), the Pearson residuals and their variance (middle), the seasonal component
(estimate and true amplitude; right) for a fixed value of overdispersion τ2. The
true value in this case was τ2 = 1/50.

• For these smoothing parameters calculate the Pearson residuals ac-
cording to the NB model currently under consideration (i.e. the fixed
value τ2

m)

pt =
yt − µ̂t√

ω̂t

ω̂t = µ̂t + τ2
mµ̂

2
t

• Choose as the final model the combination (τ2
m∗ ;λm∗

1 , . . . , λm∗
C ) for

which the variance of the Pearson residuals is ≈ 1.

4 Results

Figure 2 shows results obtained by this procedure from a larger simula-
tion study, demonstrating the interplay between overdispersion and opti-
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FIGURE 3. Deaths due to cirrhosis, men, ages 50-59 (left), ages 60-69 (middle).
Right: Modifying functions of seasonal amplitudes. Dashed: ages 50-59, solid:
ages 60-69.

mal smoothing. In Figure 3 the estimated functions for male deaths due to
cirrhosis in two different age groups (50–59 and 60–69) are compared.
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Abstract: The small-sample behavior of power-divergence goodness-of-fit statis-
tics with composite hypotheses is evaluated in multinomial models of up to five
cells and up to three parameters. These models were based on a class of cog-
nitive models called multinomial processing tree (MPT) models, that are char-
acterized for being simple and substantively motivated statistical models than
can be applied to categorical data. They are used as data-analysis tools for
measuring underlying or latent cognitive capacities and as simple models for
representing and testing competing psychological theories. The performance of
these tests was assessed by comparing asymptotic sizes with exact sizes obtained
by enumeration. This paper addresses all combinations of power-divergence es-
timates of indices ν = {−1/2, 0, 1/3, 1/2, 2/3, 1, 3/2} and statistics of indices
λ = {−1/2, 0, 1/3, 1/2, 2/3, 1, 3/2}. Exact conditions are given under which the
asymptotic approximation is sufficiently accurate, by the criterion that the aver-
age exact size is no larger than ±10% of the asymptotic test size.

Keywords: One-way multinomial; Goodness-of-fit; Power divergence statistic;
MPT models; Parameter estimation; Composite hypothesis; Exact test size.

1 Introduction and Method

Let O = (O1, O2, . . . , Ok) with k > 1,
∑k
i=1Oi = n and Oi ≥ 0 (for all

1 ≤ i ≤ k) be the empirical distribution of n observations into k classes,
and let π = (π1, π2, . . . , πk) ∈ (0, 1)k, with

∑k
i=1 πi = 1 be a discrete

distribution describing the probability of an observation’s falling into each
class. Then,

P (O; π) = n!
k∏
i=1

πOi
i

Oi!
(1)

is the probability of O under π. Many goodness-of-fit problems involve
parametric models in which π is merely assumed to belong in a set Π0
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of distributions whose elements are functionally dependent on some pa-
rameter vector θ = (θ1, . . . , θs) ∈ R

s with s ≥ 1. In other words, the
model states that π ∈ Π0 with Π0 = {π ∈ (0, 1)k : π = f(θ)}, where
f(θ) = (f1(θ), . . . , fk(θ)) ∈ (0, 1)k and

∑k
i=1 fi(θ) = 1. Testing the fit of

the model Π0 to the data O, i.e., testing the null hypothesis H0 : π ∈ Π0,
requires estimating θ. Provided and efficient method is used to determine
π̂ = f(θ̂) ∈ Π0 that is most consistent with O, the power divergence
statistic

2Iλ(O : ê) =
2

λ(λ+ 1)

k∑
i=1

Oi

{(
Oi
êi

)λ
− 1

}
(2)

with λ ∈ R, êi = nπ̂i = nfi(θ̂), and s < k−1 is asymptotically distributed
as a χ2 r.v. on k − s− 1 degrees of freedom (Cressie and Read, 1984).
This asymptotic result may not provide an accurate approximation in the
typical small-sample case and, there are reasons to believe that it will fail to
do so: in the case of simple null hypotheses (i.e., with a completely specified
π), an analogous asymptotic result often yields inaccurate test sizes when at
least one expectation is small (Garćıa-Pérez and Núñez-Antón, 2001), and
some expectations are likely to be small with composite hypotheses. The
accuracy of the asymptotic approximation in one-way multinomials with
composite hypotheses has never been studied extensively (Larntz, 1978;
Riefer and Batchelder, 1991; and Garćıa-Pérez, 1994). This paper evaluates
systematically the small-sample accuracy of the asymptotic approximation
for a broad set of conditions involving a range of one-way multinomial
models with up to three parameters (i.e., 1 ≤ s ≤ 3) and up to five cells
(i.e., 3 ≤ k ≤ 5), as a function of the power-divergence index λ.
These models were based on a class of cognitive models called multinomial
processing tree (MPT) models (Riefer and Batchelder, 1988; or Batchelder
and Riefer, 1999), that are characterized for being simple and substan-
tively motivated statistical models than can be applied to categorical data.
These models are used as data-analysis tools for measuring underlying
or latent cognitive capacities and as simple models for representing and
testing competing psychological theories. Based on the motivation of the
MPT models, we have included in the study one-parameter models with
k = 3, 4, 5 cells, a two-parameter model with k = 4 cells, and a three
parameter model with k = 5 cells. In all cases the parameter space is
Ω = (0, 1)s. The one-parameter models for each k arise from the expansion
of [θ+(1−θ)]m, 1 ≤ m ≤ k−1 and, then, the various πi are polynomials in
θ ranging from first degree up to (k− 1)-th degree (see Figure 1). We con-
sider sample sizes n = 5k, 10k, 20k, 40k. The study covers power-divergence
statistics of indices λ = −1/2, 0, 1/3, 1/2, 2/3, 1, and 3/2; in each case, pa-
rameter estimates were obtained by minimizing power-divergence measures
of indices ν = −1/2, 0, 1/3, 1/2, 2/3, 1, and 3/2 also. We included all cases
of matched statistics and estimate indices (λ = ν, as advocated by Read
and Cressie, 1988) and all combinations of mismatched indices (λ �= ν, as
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shown to behave better on occasions by Garćıa-Pérez, 1994).
The exact distribution function was obtained using the procedure described
in Garćıa-Pérez and Núñez-Antón (2004). Multinomial probabilities P (X;π̂)
were obtained with the algorithm in Garćıa-Pérez (1999); parameter esti-
mates θ̂ were obtained analytically whenever possible, and otherwise, nu-
merically using a bisection algorithm (for one-parameter models) or adap-
tive grid search (for multi-parameter models). The exact distribution func-
tion of the power-divergence statistic of index λ with power-divergence es-
timates of index ν was compared to the chi-squared distribution function to
which the exact distribution converges asymptotically. Several discrepancy
indices were evaluated in the near and far right tails, i.e., in the regions
Rnear = (x0.90, x0.95] and Rfar = (x0.95, x0.99], where x1−α is the value such
that P (χ2

d ≤ x1−α) = 1−α and d are the degrees of freedom of the χ2 dis-
tribution. The results were plotted as a function of the parameter estimate
θ̂ with which the composite hypothesis was set up.

2 Main Results and Conclusions

We have studied the accuracy of the approximation for each condition:
model × sample size × statistic index λ × parameter estimation index
ν × discrepancy criterion. All the results reported here involve average
relative errors (AREs). We have analyzed the dependence of the approx-
imation as a function of the estimated parameter θ̂, of the indices λ and
ν in the matched (λ = ν) and unmatched (λ �= ν) cases, of the sample
size, as well as the analysis of the range of θ for which the asymptotic
approximation is accurate. Finally, we have also studied the magnitude of
the minimum admissible value for the expected frequency that guarantees
an accurate approximation. Our analysis of the small-sample behavior of
power-divergence goodness-of-fit statistics with composite hypotheses for
a number of MPT models indicated that, despite small variations across
models, the asymptotic chi-squared approximation to the exact distribu-
tion of the statistic is reasonably accurate (by the criterion that ARE≤ 0.1)
provided:

• Parameters are estimated using maximum-likelihood (ν = 0).

• The power-divergence statistic of index λ = 1/2 is used for assessing
significance in the near right tail, or that of index λ = 1/3 is used for
assessing significance in the far right tail.

• The smallest expectation implied by the composite hypothesis ex-
ceeds five.

Acknowledgments: This work was partially supported by Universidad
del Páıs Vasco, under research grant UPV-00038.321-13631/2001.
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FIGURE 1. Probability distributions as a function of θ in the one parame-
ter-models. Each line pertains to the multinomial cell indicated by the overlaid
numeral. Each panel shows a different MPT model. Each column shows all mod-
els involving the same number k of cells, with values given at the top. Each row
shows models in which cell probabilities are polynomials in θ with the same de-
gree, from first (top row) down to quartic (fourth row). The fifth row shows k-cell
models involving polynomials of (k − 1)-th degree in which the lower boundary
of the parameter space renders equiprobability.
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Abstract: This paper develops a latent variable model to investigate the rela-
tionship between creativity and social compromise. The theoretical model is then
applied to the sophomore population in two large universities, which are located
in two major urban centers in Greece. The maximum likelihood estimates of the
model are serious indications that young students’ creativity may be stifled by a
repressive family culture.
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1 Introduction

‘Creativity’ is not a ‘a flash of inspiration out of the blue’ but it relates a
concept to a particular body of knowledge, which is as “vital as the novel
idea and really creative people spend years and years acquiring and refining
their knowledge base - be it music, mathematics, arts, sculpture or design”
(Interview for Innovation Exchange, 1999; http://iexchange.London.edu).
This is reflected in the now widely accepted definition of innovation equal-
ing creativity plus successful implementation. Creativity cannot be ordered
(http://www.eng.uwaterloo.ca/ akay/creative.html notes by Anne K. Gay;
http://www.synecticsworld.com/helpdesk/fill-me-in.htm; Jonne Cesevani,
2003, Big Ideas - Putting the Zest into Creativity and Innovation at Work.
London, K. Page). It relies heavily on intrinsic motivation (Amabile et al.,
1996) and can be stimulated and supported through training and educa-
tion. Because creativity is an essential building block for innovation, ed-
ucational systems are committed to encourage its development. However,
there are societal characteristics, even in western societies, which tend to
stifle creative initiatives especially in young generations. This paper does
not aim at developing any new theory of creativity but it seeks to exam-
ine the extent to which social compromise in Greece’s society affects the
creative way of thinking of university students in business, economics and
social sciences. The aim of the paper is achieved by developing a latent
variable model, which involves the conceptual variables of creativity, social
compromise and socio-economic situation. The empirical application of the
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model uses the databank DATED (see Databank on Education, 2001 and
2002), which contains 300 variables on motivation, learning skills, psycho-
logical and socio-economic factors, score achievements and self-assessment
of sophomores in two large Greek universities of business, economics and
social sciences. The data is mainly based on two scientific statistical surveys
of a control group of 100 students. The ultimate purpose of the surveys is
to build a program of learning skill acquisition within the framework of the
European Educational Reform, 2002-2006.

2 The Modeling Approach

Latent Variable Modeling (LVM) has been used in social sciences and eco-
nomics to resolve successfully the problem of statistical and econometric
analysis of phenomena, which cannot be accurately expressed in a quanti-
tative dimension only (Georganta, 2003). The LVM approach has been de-
veloped mainly by Joreskog and Sorbom (1984), Hayduk (1987) and Bollen
(1989), and further discussed and extended by these and other scientists
and researchers. LVM uses the analysis of variance-covariance to study the
complex path structure of direct and indirect interdependencies of observed
factors and their influence on the latent phenomena under investigation.
LVM is based on the following three-fold postulation:

1. Formulation of the hypothesis to be investigated as a causal structure
among a set of latent variables.

2. Detection of a set of observed factor-variables, which can be used
as proxies of the latent variables. Such observed variables are called
indicator variables.

3. Specification of the latent variables as functional combinations of the
indicator- variables and measurement errors in a causal chain of ob-
served and non-observed variables.

The general form of a latent variable model includes the following three
matrix equations:

η = Bη + Γξ + ζ structural equation model (1)

y = Λyη + ε measurement model for y (2)

x = Λxξ + δ measurement model for x (3)

where η and ξ are random vectors of latent dependent and independent
variables, respectively, B and Γ are coefficient matrices, and ζ is a random
vector of disturbance terms. The elements of B represent direct causal
effects of η-variables on other η-variables and the elements of Γ represent
direct causal effects of ξ-variables on η-variables. The vectors η and ξ are
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not observed but instead vectors y and x are observed, such that the two
measurement models represented by equations (2) and (3) hold. Λy and Λx

are coefficient matrices, and ε and δ are vectors of errors of measurement
in y and x, respectively.
The observed vectors y and x contain indicator variables for the unobserved
or latent variables η and ξ, respectively. The latent variables correspond to
theoretical constructs or variables measured correctly. For this reason, they
may be called “true” variables. The structural equation model represented
by equation (1) specifies the causal relationship between the “true” or latent
variables η and ξ. The measurement models represented by equations (2)
and (3) specify how the latent variables, or hypothetical constructs η and
ξ, are measured in terms of the observed variables y and x, respectively. It
is emphasized that ζ in equation (1) is a vector of classical disturbances,
including all random discrepancies that emerge between the actual values
of η and the values that would be obtained by the corresponding exact or,
in the case of no disturbances, stable functional relationship. Such random
discrepancies may be due to omitted variables from the model, or to some
“intrinsic” randomness in elements of vector η which cannot be explained
anyway, or to any other non-systematic influence on vector η which cannot
be captured by the right-hand part of equation (1) no matter how elaborate
it is. What ζ does not include is measurement errors, which are instead cast
into the vectors ε and δ in equations (2) and (3). For the LV model (1)-(3)
the following classical assumptions are made:

(a) The error terms ζ, ε and δ have zero mean values. ζ is uncorrelated
with the vectors ξ and η. ε and δ are uncorrelated with the corre-
sponding vectors η and ξ, respectively.

(b) The matrix B has zeroes in the diagonal, and

(c) The matrix (I −B) is non-singular.

Assumptions (a) ensure that equations (1)-(3) are well specified including
all the important determinants of the dependent variables. Regarding as-
sumption (b), the elements of matrix B are assumed not to depend on
themselves. Assumption (c) is required for estimation purposes, i.e. the
inverse of matrix (I −B) or (I −B)−1 must exist.

3 The Empirical Model

Following the LVM methodology, as well as Georganta and Hewitt (2004),
the following empirical model (4)-(6) is constructed:

[
η1
η2

]
=
[

0 0
β 0

] [
η1
η2

]
+
[
γ1

γ2

]
[ξ] +

[
ζ1
ζ2

]
(4)
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TABLE 1. The notation used

Notation Description
η1 Creativity (conceptual variable)
η2 Social compromise (conceptual variable)
ξ Socio-economic situation (conceptual variable)
y1 Index 1 of creativity (constructed by the authors)
y2 Index 1 of social compromise (constructed by the authors)
y3 Index 2 of creativity (constructed by the authors)
y4 Index 2 of social compromise (constructed by the authors)
x1 Parents education (Index constructed by the authors)
x2 Parents profession (Index constructed by the authors)



y1
y2
y3
y4


 =




1 0
λ1 0
0 1
0 λ2



[
η1
η2

]
+



ε1
ε2
ε3
ε4


 (5)

[
x1

x2

]
=
[

1
λ3

]
[ξ] +

[
δ1
δ2

]
(6)

The notation used is reported in Table 1.

4 The Estimates

The model (4)-(6) is overidentified. It has 21 moments and 16 free parame-
ters to be estimated. These are the six coefficients, β, γ and λ, the variances
of the error terms and the variance-covariance matrix of the exogenous in-
dicator variables. The model is estimated by using the software LISREL
(www.ssicentral.com/lisrel/mainlis.htm). The maximum likelihood estima-
tes of the model are presented in Table 2.

5 Conclusions

The results in Table 1 show a negative, but statistically significant rela-
tionship between creativity and social compromise, implying that Greece’s
young and educated generations may be suffering a serious stifling of their
creativity because of a prevailing repressive attitude within Greek families.
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TABLE 2. Maximum likelihood estimates of models (4)-(6)

Parameter Estimate T-value
β -0.617 -3.93
γ1 0.211 0.54
γ2 0.550 2.95
λ1 1.023 2.79
λ2 0.971 10.32
λ3 5.163 3.49
χ2 6.33,

degrees of freedom=5
R2 0.8865
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Abstract: We discuss the problem of robust hypothesis testing about a scalar
parameter of interest in the presence of a nuisance parameter. It is well-known
that standard likelihood procedures are not robust with respect to model mis-
specification or the presence of outliers, which can badly affect hypothesis testing
and model selection.Therefore, we discuss a quasi-profile loglikelihood with the
standard distributional limit behaviour which, at the same time, assures robust-
ness under small departures from the assumed model. This function is based on
a profile estimating function, obtained by modifying a generalised profile score.
A numerical study and an application about inference on the shape parameter of
a gamma model, in the context of modelling personal-income distributions, are
also considered.

Keywords: B-robustness; Generalised score function; Likelihood ratio statistic;
Profile estimating equation; Pseudo-likelihood.

1 Introduction

Consider a sample y = (y1, . . . , yn) of n independent observations with
distribution function F (y; θ), depending on an unknown parameter θ ∈ Θ ⊆
IRp, p > 1. Suppose that θ is partitioned as θ = (τ, λ), where τ is a scalar
parameter of interest and λ a (p− 1)−dimensional nuisance parameter. A
common aim in many studies, such as model selection in nested models,
is to check the null hypothesis H0 : τ = τ0 on the parameter of interest.
Classical test statistics for this problem are tipically based on a pseudo-
likelihood function, i.e. a function of y and τ , having properties similar
to those of a likelihood function when there is no nuisance parameter.
The most commonly used pseudo-loglikelihood is the profile loglikelihood
�p(τ) = �(τ, λ̂τ ), where �(θ) = �(τ, λ) denotes the usual loglikelihood for
θ and λ̂τ is the maximum likelihood estimate (MLE) of λ for fixed τ .
Standard likelihood procedures for testing H0 are then based on the profile
likelihood ratio test (LRT)

Wp(τ0) = 2 {�p(τ̂) − �p(τ0)} , (1)
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where τ̂ is the MLE of τ . It is well-known that classical inference based
on (1) is not robust with respect to model deviations or influential obser-
vations. While robust literature offers many solutions for inference on the
whole parameter θ (see e.g. Hampel et al, 1986), the situation with a nui-
sance parameter has been somewhat neglected. An exception is given by
Heritier and Ronchetti (1994), but their robust version of the LRT does
not present the standard asymptotic χ2 distribution. In view of this, hy-
pothesis testing about τ is often based on Wald-type test statistics. The
aim of this contribution is to discuss a robust quasi-likelihood ratio statis-
tic (QLRT) to be used for testing hypothesis about τ , when λ is unknown.
The QLRT has a standard χ2

1 asymptotic distribution and, at the same
time, assures robustness under small departures from the assumed model.
Since the QLRT discussed in this paper is based on a profile robust esti-
mating function, obtained by modifying a generalised profile score, it can
be applied in very general situations ofpractical interest.

2 Background theory

The aim of this section is to derive a robust version of the LRT to be used
in hypothesis testing problems, such as model selection in nested models.
For example, the interest may lie on the shape parameter when modelling
the error distribution of a regression-scale and shape model. Consider a
bounded estimating function for θ of the form Ψθ = (Ψτ (y; θ),Ψλ(y; θ)).
Let θ̃ be the solution of the unbiased estimating equation Ψθ = 0 and let λ̃τ
be the estimate for λ derived from Ψλ = 0, when τ is considered as known.
An estimator τ̃ for τ with bounded influence function can be obtained
as the root of the estimating equation Ψτ (τ, λ̃τ ) = 0. Such an estimator
is called B-robust. A quasi-profile loglikelihood function corresponding to
Ψτ (τ, λ̃τ ) is (Adimari and Ventura, 2002)

�qp(τ) =
∫ τ

w(t, λ̃t)Ψτ (t, λ̃t) dt . (2)

The scale adjustment w(τ, λ) can be obtained analitically in very simple
special cases, but in general we must resort to Monte Carlo simulation
(McCullagh and Tibshirani, 1990). In practice, in hypothesis testing prob-
lems, it is necessary to obtain a QLRT based on (2) with the classical χ2

1

asymptotic distribution. In view of this, the QLRT

Wqp(τ0) = 2{�qp(τ̃) − �qp(τ0)} (3)

may be used as an ordinary LRT for testing H0 : τ = τ0, assuring at the
same time robustness under small departures from the specified model. A
critical region for testing H0 can be constructed as {y : Wqp(τ0) ≥ χ2

1;1−α},
where χ2

1;1−α is the (1−α)−quantile of the χ2
1 distribution. The main hitch
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in using (3) is that, in many problems of practical interest, it can be dif-
ficult to find the estimating equations Ψτ and Ψλ. This is the case, for
example, when a shape parameter is of interest. However, this problem can
be overcome by a recent approach based on a truncation argument applied
to a generalised profile score function (Greco and Ventura, 2004). A gen-
eralised profile log-likelihood function �̃p(τ) = �(τ, λ̃τ ) can be obtained by
replacing the MLE λ̂τ with another consistent estimate λ̃τ for the nuisance
parameter (Severini, 1998). Then a bounded profile estimating function for
the interest parameter can be constructed in a standard way by defining an
appropriate weighting function w(·, b), which assignes weights in [0, 1] to
each component of the generalised profile score (∂/∂τ)�̃p(τ) = �τ (τ, λ̃τ ; yi).
The costant b > 0 is related to the upper bound imposed on the influence
function of τ̃ . The resulting estimating function assumes the form

Ψτ (τ, λ̃τ) =
n∑
i=1

wi(b)�τ (τ, λ̃τ ; yi) . (4)

3 Numerical study

Assume that the underlying distribution of the data is a gamma model
with unknown parameters, and the shape parameter τ is of interest. To
eliminate the scale nuisance parameter λ, we use a MAD-type estimator
λ̃τ , which is Fisher consistent at the gamma model for τ considered as
known. The first two plots in Figure 1 show the behaviour of the LRT and
of the QLRT under the true model (simulated sample of size n = 200) and
under a small contamination (replacement of the five larger observations by
even larger values). The LRT shifts remarkably, whereas it does not occur
for the QLRT. Note that the 0.95-level confidence interval for τ based
on the LRT under the contaminated sample does not include the true
value of the parameter. The stability of the QLRT can also be assessed by
means of an empirical sensitivity analysis. We use a simulated sample of
size n = 100 from a gamma distribution. The 100th value in the sample
is perturbed and allowed to take arbitrarily large values. At each time
LRT and QLRT for testing H0 : τ = τ0, where τ0 is the true parameter
value, are recomputed. Last plot in Figure 1 displays the behaviour of
the p-value associated to both the LRT and the QLRT. It is evident that
the LRT appears sensitive to outlying observations, whereas the p-value
associated to the QLRT is more stable. A simulation experiment (based
on 3000 Monte Carlo trials) has also been performed in order to evaluate
the empirical coverages of the nominal1 − α confidence intervals for the
shape parameter obtained by QLRT. The results are given in Table 1 and
they indicate that the QLRT performs well both under the true model and
under the contaminated model.
For an application to real data,consider the empirical distribution of house-
hold incomes in 1979 in UK. We decide to fit a gamma distribution to the
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FIGURE 1. LRT (left) and QLRT (middle) for the shape parameter (the hor-
izontal dotted line gives the 0.95 confidence interval); Sensitivity curves (right)
of the p-value for LRT and QLRT (the horizontal line corresponds to the 0.05
significance level).

TABLE 1. Empirical coverage probabilities of the confidence intervals for the
shape parameter obtained from the QLRT.

1 − α

distribution .990 .950 .900
Gamma (2,1) .991 .956 .909
Gamma (2,1) 3% cont. by Gamma (2, 5) .989 .947 .893

data (see Victoria-Feser and Ronchetti, 1994). We desire inference on the
shape parameter not to be influenced by extreme observations in the tails.
Therefore, the weighting function used to bound the generalised profile
score functionis choosen so that more importance is given to the most fre-
quent observations, located in the centre of the distribution. In Figure 2
it can benoted that the 0.95-level confidence interval includes the value
estimated in Victoria-Feser and Ronchetti(1994). Finally, the plot in Fig-
ure 3 gives the histogram of the empirical distribution and the estimated
Gamma distribution by our proposal (solid line), the OBRE (dashed line)
and MLE (dotted line). The estimated curve according to the MLE tends
to be influenced by extreme observations in the tails whereas the distribu-
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FIGURE 2. QLRT for the shape parameter of the distribution of the household
income data (the horizontal dashed line gives the 0.95 confidence interval).
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FIGURE 3. Histogram of household income data and estimated Gamma distri-
bution by RGMLE (solid line), the OBRE (dashed line) and the MLE (dotted
line).

tions estimated by RGMLE and OBRE catch the inequality structure of
the majority of the data.
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Abstract: The aim of this work is to explore various statistical techniques to
identify genes which contribute to some change in phenotype level. Experiments
are carried out with the aid of microarray technology which allows the simultane-
ous screening of several thousand of candidate genes. We outline the microarray
methodology and how it is applied to the fish stress experiment. To identify
which genes display differential expression an ANOVA model is applied to ac-
count for some of the systematic variability, such as array or dye effects, these
effects being fitted as fixed or random. We also apply multiple testing procedures
to address the problems that arise as a result of testing thousands of hypotheses
simultaneously.
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1 Introduction and Background

The aim of this work is to explore various statistical techniques to identify
genes which contribute to some change in phenotype level. This analy-
sis supports an ongoing research project investigating the effects of stress
on fish. Samples of different tissues are taken over time from fish kept
under controlled conditions. Experiments are carried out using microar-
ray technology to allow the simultaneous screening of several thousands of
candidate genes.
A microarray consists of thousands of probes of cDNA, a single stranded
copy of genetic material of a known identifiable gene, spotted in an ordered
fashion of subgrids on a slide. Hybridization involves the single stranded
cRNA of a prepared target solution, pipetted onto the slide, binding with
its matching single stranded cDNA in the probes to form the double helix
DNA molecule. A spot on the slide now gives a measure of the presence and
abundance of the genetic material in the target solution. A target solution is
made by mixing equal solutions of DNA material from two sources, referred
to as the treatment and control, which are labelled with fluorescent dyes,
cyan 3 (green) and cyan 5 (red), to differentiate between them.
After hybridization, the microarray is scanned by a laser, using two fre-
quencies to pick up the signal intensity of each of the two fluorescent dyes,
producing tiff images. The aim at this point is to compare the intensities
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between fluorescent signals at each spot (probe) to assess the level of dif-
ferential expression, of each gene, in the respective tissue samples which
constitute the target solution.

2 Outline of the Fish Stress Experiment

Samples of fish, kept under stressful conditions, were taken at times 2, 6,
24 and 168 hours, tissue material was taken from the brain, pituitary and
the liver, separate analyses are carried out for each tissue type. In this
experiment we employ a reference design with a dye-swap. For example,
at each time-point, the sample from brain tissue is prepared and labelled
with red dye. The reference solution is prepared by pooling the samples
from all time-points into one sample and labelling with green dye. The first
microarray, for the first time-point, is then formed using a sample from
that individual time-point (red) and some of the reference solution (green).
The procedure is repeated for all time-points producing four microarrays.
For the dye-swap part, each slide is repeated with the same tissue samples
but with the dyes reversed. This results in eight slides for each tissue type.
See Table 1.

TABLE 1. Experiment design for Brain samples of fish stess data.

Cyan 5 - Red Cyan 3 - Green
array 1 Time 2 hrs pooled reference
array 2 Time 6 hrs pooled reference
array 3 Time 24 hrs pooled reference
array 4 Time 168 hrs pooled reference
array 5 pooled reference Time 2 hrs
array 6 pooled reference Time 6 hrs
array 7 pooled reference Time 24 hrs
array 8 pooled reference Time 168 hrs

3 Array processing - from pixel images to numerical
frequencies

The next stage, addressing and segmentation, is an important and difficult
phase in analyzing the array. This involves identification of the pixels of
the image file which contribute to a spot area against those pixels assigned
to background. There are various packages which do this and many differ-
ent methods, including fixed-circle, histogram method and seeded region
growing, (SRG), which is provided within an R-platform package SPOT.
The output is now in the form of numerical frequency data with two values
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for each dye for each spot, a foreground value which is the mean of the fre-
quencies of pixels assigned as spot area and a background value, the mean
of the frequencies of pixels assigned as background to that spot.
The data presented at this level is often problematic, mainly due to the
large number of genes, the small amount of independent samples and the
variability arising at each stage of the process. Examples of this experimen-
tal variation include, manual segmentation methods, which may be subject
to the experimenter’s judgement. Scratches or dirt on the slide distorting
the fluorescent signal of affected spots. Uneven washing of the slide, re-
sulting in high background intensities or spatial heterogeneity across the
slide. In addition, it is also a known property of the dyes that one natu-
rally gives a higher signal when scanned by the laser. A process known as
normalization attempts to reduce non-biological variations in expression,
ensuring representation of values on a comparative scale. Possible normal-
ization corrections include background correction, centering methods and
scale adjustments. Centering methods are applied, globally between slides,
to centre the distribution of logged intensities for each array to zero. Scale
methods then adjust for variations in the spread of the logged intensities.
These methods can also be applied within a slide, to correct for dye or spa-
tial dependencies or in cases where dye bias depends on intensity strength.

4 Model fitting and testing for differential expression

An ANOVA model is used to identify which genes are displaying differential
expression accounting for some of the systematic effects, otherwise amended
for at the normalization stage, such as array or dye effects. For example,
for the fish-stress data, to account for array, dye, variety and time effects,
Timetg, we fit the gene-specific model

log2(yijkgt) = Gg +AGig +DGjg + V Gkg + Timetg + εijkgt (1)

In this model Gg is an overall mean for logged frequencies, {y...g.}, for gene
g, AGig are gene-specific array effects for arrays i, DGjg are gene-specific
dye effects for dyes j = 1, 2, and V Gkg are gene-specific variety effects for
varieties k = 1, 2. It is this term that is of interest as the resulting values
estimate the gene expressions for treatment and control (or reference in
this case) and so can estimate the magnitude of differential expression
V G1g −V G2g for a gene g. In order to estimate these parameters we apply
the following constraints

Gg =
8∑

i=1

AGig =
2∑

j=1

DGjg =
2∑

k=1

V Gkg =
4∑

t=1

Timetg. (2)

Note that arrays are nested within time so we interpret the term AGig as
array effects within time.
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We also extend the model by fitting AGig as a random effect. Using prior es-
timates for the random effect and error variances obtained by fitting the full
fixed model and solving Henderson’s equations, we obtain the BLUE and
BLUP estimates of the fixed and array effects respectively. These estimates
are then updated by iterative procedures to maximize the log likelihood or
the restricted log likelihood functions.
To test for differential expression the analysis also produces three forms
of F-statistic. These each have a different allowance for knowledge drawn
from testing all genes simultaneously, that is, they use different weighted
combinations of the gene-specific variance and global variance estimates.
Fitting a full fixed effects model, the distributions of these F-statistics are
estimated by random permutations of the labels Treatments and Controls
for the frequency data. While fitting the random effects model these dis-
tributions are assumed to be known distributions. A volcano plot displays
the p-values of all three statistics simultaneously for all genes.

5 Multiple testing problems

To allow for multiple significance testing we use two procedures, Westfall
and Young step-down permutation procedure and another technique known
as Significance Analysis of Microarrays (SAM). Both of these procedures
are implemented in the R system as part of the Bioconductor package.
These methods address the problems that arise as a result of testing thou-
sands of hypotheses simultaneously and attempt to apply some control of
the number of Type I errors that may occur. In particular, SAM adjusts the
individual t-statistics for differential expression of each gene using informa-
tion obtained globally across all genes, shrinking the test statistic for genes
where the estimated standard deviation is close to zero. Under the null
hypothesis of no differential expression, the distribution of the t-statistic
is calculated, for each gene, by permutations of sample labels. Significance
cut-offs are calculated while controlling the positive false discovery rate,
pFDR. This is a measure of the number of genes falsely called significant
as a proportion of the total number of genes called significant.

6 Remarks

An interesting aspect of the model is its potential to offer insight into
the expression patterns of genes over time, not only to classify genes by
similarities in expression patterns, but also to model these patterns as
specified functions.
The aspects outlined above are the preliminary investigations of ongoing
research. Full results and conclusions from comparisons between methods
will be presented.
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Although the results relate to the fish stress data set, we are also look-
ing at data from another interesting application of microarrays. The aim
here is to investigate gene expression levels in reproductive tissues dur-
ing pregnancy and labour, as part of a study of disorders associated with
pregnancy, such as premature labour and pre-eclampsia. Data in this exper-
iment comes from two groups of patients, pregnant labouring and pregnant
non-labouring women. Endometrial tissue samples were extracted, from
individuals in the pregnant-labouring, treatment group, during emergency
caesarean section where labour had started naturally. Similarly, for indi-
viduals in the pregnant non-labouring, control group, endometrial tissue
samples were taken during a scheduled caesarean section where the labour
process had not started. This is an ongoing experiment and very limited
data are currently available.

Acknowledgments: Special Thanks to the National Diagnostics Centre,
Galway who supplied the data and the National Centre for Biomedical
Engineering Science, Galway, who are supplying the pregnancy-labour data.
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Abstract: In this work we propose a heterogeneous linear mixed model for mul-
tivariate longitudinal data using a latent process in order to describe the evolution
of cognitive functions in a cohort of initially non-demented elderly people.
The latent process, which represents the unobserved global cognitive level, is
defined by random effects whose distribution is a mixture of Gaussians. The
unobserved global cognitive level is assessed using a battery of psychometric
tests, each test representing a distinct measure of the global cognitive level.
The joint modelling proposed in this work allows us to exploit information con-
tained in several psychometric tests in order to estimate distinct profiles of the
global cognitive evolution. The mixture of distributions also allows us to classify
the subjects according to these profiles and to characterize their evolution.
The growth mixture model using the Mini Mental State Examination and the
Isaacs Set Test highlights two distinct courses of the global cognitive level. The
first profile has a slight decline and the second a sharp decline until the last
visit. This model gives a very clear classification and the subjects classified in the
second class have a higher risk of dementia, death or disablement.

Keywords: mixture model; random effects; joint modelling; classification; de-
mentia

1 Introduction

Cognitive ageing is a continuous process which has to be studied with
longitudinal methods in order to take into account the variability of the
evolutions between the subjects. To achieve this, mixed models (Laird and
Ware, 1982) have been widely used. However besides this variability, there
exists an extra heterogeneity in the population due in particular to the pres-
ence of people with pathological and normal cognitive ageing. To take into
account this heterogeneity, mixed models with a mixture of distributions
for the random effects can be used (Verbeke and Lesaffre, 1996; Muthén
and Shedden, 1999). This kind of model enables us not only to estimate
distinct curves in the population but also to classify subjects from those
curves.
In epidemiological studies, cognitive ageing is assessed using psychometric
tests. These tests are different measures of the global cognitive level, which
itself is not observed.
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The aim of this work is to propose a heteregeneous linear mixed model for
multivariate longitudinal data using a latent process in order to describe
distinct profiles of evolution for the global cognitive level. The model is
applied to data from a cohort of initially non-demented elderly subjects
by using repeated measurements of several psychometric tests. The latent
process is defined by random effects whose distribution is a mixture of
Gaussians and the different psychometric tests are linear transformations
of the latent process, measured with error.

2 Model

Let Λi(t) be the latent process which represents the unobserved trajectory
of global cognition for the subject i, i = 1, ..., N and t is the time. The
growth mixture model or heterogeneous mixed model is defined as :

Λi(t) = u0i + u1it+ u2it
2 +Xi(t)β (1)

Xi(t) is the p-vector of covariates associated with the vector of fixed effects
β. The distribution of the vector ui = (u0i, u1i, u2i)t of random effects is a
mixture of G multivariate Gaussians with means (µg)g=1,...,G and a specific
covariance matrix ωgD, where (ωg)g=1,...,G are scalars. Thus

ui ∼
G∑

g=1

πgN(µg, ωgD) (2)

with ω1 = 1 so the matrix D is the covariance matrix for the first compo-
nent. D is unstructured except that the variance of the random intercept
for the first component is constrained to 1. The vector (µ0g)g=1,...,G satis-
fies the condition

∑G
g=1 µ0g = 0. Each component g of the mixture has a

probability πg with 0 ≤ πg ≤ 1, ∀g = 1, ..., G and
∑G

g=1 πg = 1.
Let Y k

i = (Y k
i1, ..., Y

k
ink

i

) be the response vector of the nk
i measurements of

the subject i for test k, k = 1, ...,K. Then, we assume

Y k
ij = Jk + LkΛi(tkij) + ek

ij (3)

where Jk is an intercept and Lk a scale parameter for test k ; tki =
(tki1, ..., t

k
ink

i

) is the nk
i -vector of measurement times for test k. The errors

ek
ij are assumed to be independently normally distributed with mean zero
and variance σ2

k.

3 Estimation

The estimation of the model is performed with a fixed number of com-
ponents G. The parameters are estimated using the maximum likelihood
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method. The observed log-likelihood, which has a closed form since the
marginal distribution of Y k

i is a mixture of multivariate Gaussians, is max-
imized directly using an improved Marquardt algorithm developed in For-
tran90. A Marquardt algorithm is a Newton-Raphson like algorithm in
which the Hessian is inflated if necessary to make it positive definite when
updating the parameters. We added a linesearch for the step to ensure that
the likelihood increased at each iteration.
A logistic transformation of (πg)g=1,...,G−1 ensures that the probabilities
are between 0 and 1 and the Cholesky transformation of D ensures the
positivity of the covariance matrix.
Posterior individual probabilities π̂ig are computed using Bayes Theorem
from the data and the estimated parameters (see Verbeke and Lesaffre,
1996). Then, the subjects are classified into profiles according to the largest
posterior probability.

4 Application

The objective of the application is to describe the distinct profiles of evolu-
tion of the global cognitive level in a cohort of non demented elderly people.
The classification of subjects given by the mixture model is also compared
with the dementia diagnosis at the end of the follow-up, to assess if this
method can be a predictive tool of dementia diagnosis.
Data come from the French prospective cohort study PAQUID initiated in
1988 to study normal and pathological ageing (see Letenneur et al, 1994).
Subjects were interviewed at beaseline and were seen again 1 (T1), 3 (T3),
5 (T5), 8 (T8) and 10 (T10) years later. Two psychometric tests are con-
sidered : the Mini Mental State Examination (MMSE), which evaluates
the global cognitive performance, and the Isaacs Set Test (IST), which is a
test of verbal fluency. The subjects included in this study have a negative
dementia diagnosis at the visit T5 and have a diagnosis of dementia at the
visit T8. They also have at least one measurement at each test during the
follow-up of 7 years (between T1 and T8). This leads to a sample of 1382
subjects having between 1 and 4 measures per test. The time is defined as
the negative time between the measurement and the last visit T8.
The model contains a linear function of time, an effect of educational level,
occupation and age (older or younger than 80 years old at the the last visit)
and an age-time interaction.
The growth mixture model with two components of mixture was fitted and
the Bayesian Information Criterion (BIC) was substantially better than for
the homogeneous mixed model (∆BIC = 52.8). Two distinct courses of the
global cognitive function were clearly distinguished, with class probabilities
of 0.96 and 0.04. Figure 1 represents the estimated mean curves for the two
profiles for each psychometric test. The cognitive tests for the first profile
slightly decrease until the last visit, whereas for the second profile, the
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FIGURE 1. Posterior-probability-weighted sample means (dashed line) and esti-
mated mean curves (plain line) of the two components (class 1 and class 2) for
MMSE (left) and IST (right).

TABLE 1. Classification table for the growth mixture model with two compo-
nents.

mean probability to belong to:
class 1 class 2

subjects in class 1 0.987 0.013
subjects in class 2 0.074 0.926

cognitive tests which are lower 7 years before sharply decrease until the
last visit.
An assessment of the classification was performed using some of the meth-
ods described in Muthén et al, 2002. For subjects classified in class 1 and
class 2, Table 1 presents the averages of the posterior probabilities to be-
long to each class. It reveals very high diagonal values which indicates a
good classification quality. Then, the entropy measure defined in (4) is also
very high (E2 = 0.94) which indicates a clear discrimination.

EG = 1−
∑

i

∑
g −π̂igln(π̂ig)
nln(G)

(4)

The estimated mean curves compared with the posterior-probability- weight-
ed sample mean at each visit (see figure 1) shows that the model fit well
the data.
Among the 1,382 subjects, 130 (10.4%) were classified in the second com-
ponent with the sharp decline. Assuming that this component represents
the pathological decline to dementia, we compared the classification with
the positive dementia diagnosis at the end of the follow-up to assess if the
model was a predictive tool of dementia. The results are in Table 2. The
sensitivity of the classification is quite good (65%), the specificity is high
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TABLE 2. Relationship between the classification stemmed from the growth mix-
ture model and the dementia diagnosis at the end of the follow-up.

dementia diagnosis
classification positive negative total
class 1 23 1229 1252
class 2 43 87 130
total 66 1316 1382

(98%) but the predictive positive value is poor (33%).

5 Conclusion

In this paper, using a growth mixture model and the information contained
in two psychometric tests, we described the different profiles of the unob-
served global cognitive level in a cohort of initially non-demented people.
Two distinct profiles were distinguished : first, a slight decline until the last
measurement and secondly, a sharp decline until the last measurement. The
discrimination, as assessed by various approaches, was very good.
The second profile could be interpreted as a pathological decline to de-
mentia. But the comparison of the classification with the diagnosis at the
last visit shows that it does not highlight directly the subjects who have a
positive dementia diagnosis at the end of the follow-up, but a more general
pathological cognitive ageing : those people have a higher risk of demen-
tia in the three years after the end of the follow-up, have a higher risk of
disablement and have a higher risk of death.
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Abstract: We propose Bayesian inference for bivariate Poisson models that gen-
eralizes the existing approaches in two important directions. Firstly we propose
exact inference contrary to the MCMC approaches existing in the literature and
secondly we use a prior distribution that allows for dependencies among the pa-
rameters of interest. Our prior is in fact a mixture of priors and the resulting
posterior generalizes the idea of conjugacy in the sense that it is again a mixture
of the same family but with more components. Computational details and a real
data illustration are provided. Extensions of our approach to certain other models
is discussed.

Keywords: multivariate gamma distribution; count data;

1 Introduction

The random variables X,Y follow jointly a bivariate Poisson distribution
if their joint probability function is given by

P (X = x, Y = y) = e−(θ1+θ2+θ3)
θx1
x!

θy2
y!

min(x,y)∑
k=0

(
x
k

)(
y
k

)
k!
(

θ3
θ1θ2

)k
.

where θi > 0, x, y = 0, 1, . . ., denoted as BP (θ1, θ2, θ3). If θ3 = 0 then the
two variables are independent. For a comprehensive treatment of the bi-
variate Poisson distribution and its multivariate extensions the reader can
refer to Kocherlakota and Kocherlakota (1992). Inference for the bivariate
Poisson model is not an easy task. The sum appearing in the probability
function, the likelihood function is very complicated and in fact it involves
n summations, where n is the sample size. To avoid this difficulty, a data
augmentation scheme based on the trivariate reduction derivations of the
distributions has been considered, for both ML (Karlis, 2003) through an
EM algoritm and Bayesian inference (Tsionas, 1999) through an MCMC
approach. While MCMC offers some advantages, it can have bad mixing
properties, since if the correlation is not large the chain can be trapped,
and in this case a large number of iteration may be needed to ensure con-
vergence. The aim of the present paper is to provide relatively easy exact
Bayesian inference for the bivariate Poisson model with θ3 > 0.
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2 Likelihood

We will rewrite the likelihood using recursive relationships for deriving
the coefficients of the polynomial involved. Namely we prove the following
Lemma.
Lemma: Define v(n)

r = 1
(xn−r)!(yn−r)!r! . Given a random sample of size n

the likelihood can be written in the form

Ln(θ,X) = exp (−n(θ1 + θ2 + θ3)) θ1Σxiθ2
Σyi

S∑
k=0

w
(n)
k

(
θ3
θ1θ2

)k
,

where S =
∑n
i=1min(xi, yi) and w(n)

k are coefficients that can be obtained
recursively using

w
(n)
k =

min{k,s∗n}∑
r=max{0,k−s∗n}

v(n)
r w

(n−1)
k−r

where si = min{xi, yi}, Sk =
k∑
i=1

si, s∗n = min{sn, Sn−1} and w
(1)
k = v

(1)
k

3 Bayesian Modelling

Assume the likelihood of (X,Y )|(θ1, θ2, θ3) given in (2). Then, assume that
the joint prior for θi’s i = 1, 2, 3 has joint density

π(θ1, θ2, θ3) =
r∑
j=0

wj

(
θα1−j−1
1 exp{−θ1β1}

)(
θα2−j−1
2 exp{−θ2β2}

)

×
(
θα3+j−1
3 exp{−θ3β3}

)
,

where α1 > r, α2 > r, α3 > 0, βi > 0, i = 1, 2, 3, pj ≥ 0, j = 0, . . . , r,∑r
j=0 pj = 1 and

wj = pj
βα1−j

1 βα2−j
2 βα3−j

3

Γ(α1 − j)Γ(α2 − j)Γ(α3 + j)
for j = 0, 1, . . . , r.

Clearly r determines the number of components in the prior. Then, the
posterior distribution will have the form

p(θ1, θ2, θ3|(x, y)) =
s+r∑
k=0

ρkG(α1+x−k, β1+1)G(α2+y−k, β2+1)G(α3+k, β3+1)

where

ρ∗k =


 min{k,s∗}∑

l=max{0,k−s∗}
vlwk−l


Γ(α1+x−k)Γ(α2+y−k)Γ(α3+k)

(
(β1 + 1)(β2 + 1)

β3 + 1

)k
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and ρk = ρ∗k∑s+r

l=0
ρ∗

l

, for k = 0, 1, . . . , s+ r, s∗ = min(r, s).

It is interesting to point out that the prior is a finite mixture of condition-
ally independent Gamma densities. The joint prior can be correlated since
the mixing operation introduces covariance between the θ’s. Assuming a
degenerate mixing distribution (i.e. r = 0) we obtain that the parameters
are independent. The form of the prior can provide a flexible multivari-
ate family of gamma distributions with certain desirable properties for real
application, like multimodality, variety of shapes, positive and negative
correlation etc. Details can be found in a forthcoming article. It is also in-
teresting that the posterior density is again a finite mixture of conditionally
independent Gamma densities, though now the number of components has
changed. The moments of the posterior density can be easily derived via
conditioning arguments. The proposed distribution generalizes the idea of
non-central gamma densities to more dimensions.
Computationally, one can proceed recursively, by updating the posterior
adding one data point at time. This is totally equivalent to using the like-
lihood defined in section 2 via recursion. An interesting result is that the
number of components in the posterior depends on the data and precisely
equals

∑
min{xi, yi} + r + 1, where r + 1 is the number of components of

the prior.

4 Application

The data refer to the demand for Health Care in Australia, taken by
Cameron and Trivedi (1998). We will use two variables, namely the num-
ber of consultations with a doctor or a specialist and the total number of
prescribed and non-prescribed medications used in past 2 days (n = 5190).
It is interesting that the data are correlated, the Pearson correlation co-
efficient being equal to 0.27 indicating moderate correlation. A bivariate
Poisson model is plausible due to the correlation. We applied the exact
Bayesian approach discussed in previous section. As priors we used two
different sets of independent gamma priors Gamma(ai, bi) for each param-
eter θj , j = 1, 2, 3, with hyperparameters ai = bi = 1, 10 respectively, for
i = 1, 2. The second set of hyperparameters is more informative in the sense
that the prior variance is small.
According to the findings of the previous section,the posterior distribution
is a finite mixture with 1076 components for both priors. For the priors,

one can easily verify that
5190∑
i=1

min(xi, yi) = 1075. The marginal posteriors

are respectively (ai = bi = 1, 10):

f(θ1) =
1075∑
k=0

π(k)Gamma(a1 + 1566 − k, b1 + 5190)
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TABLE 1. Posterior summaries for the health data using two different priors

a1 = a2 = a3 = b1 = b2 = b3 = 1
mean variance 5 % per. 95% per.

k 649.29 619.15 602 693
θ1 0.1767 5.7033 10−5 0.1645 0.1893
θ2 1.0931 2.3356 10−4 1.0682 1.11845
θ3 0.12527 4.7109 10−5 0.11411 0.13671

a1 = a2 = a3 = b1 = b2 = b3 = 10
k 651.82 603.067 603 692
θ1 0.1772 5.6483 10−5 0.1655 0.1902
θ2 1.0925 2.3240 10−4 1.06765 1.117755
θ3 0.1272 4.6778 10−5 0.1162 0.1387

f(θ2) =
1075∑
k=0

π(k)Gamma(a2 + 6323 − k, b2 + 5190)

f(θ3) =
1075∑
k=0

π(k)Gamma(a3 + k, b3 + 5190)

Summary statistics of the posterior densities can be read in Table 1. There
are only slight differences between the two different priors, mainly because
of the large sample size. Plots of the marginal posteriors can be seen in
Figure 1 for both sets of hyperparameters. The posteriors differ slightly
mainly because the second set of hyperparameters was very informative.
The upper left plot shows the probability function of k shifted by 400 to
the left.

5 Discussion

The idea described in the present paper is mainly that of using mixtures
of conditionally independent conjugate densities for exact Bayesian infer-
ence for the bivariate Poisson model. To this extend the idea of mixture
of conjugate priors of Dalal and Hall (1983) is generalized. However, the
ideas discussed in the present paper can be extended beyond this model
towards certain directions as for example other models with a sum in their
likelihood, such as mixture models.
Our procedure is exact and does not rely on MCMC. Computationally is
quite easy using the recursions discussed in the paper. Of course MCMC
offers the ability to estimate certain other measures of interest but for the
specific model it may be trapped and become very slow. We would like
also to mention that our approach differs from others in the fact that we
start from the full bivariate model with θ3 > 0 instead of starting from
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FIGURE 1. Posterior densities for the parameters and the weighting function.The
density in the upper left figure is in fact πk, the mixing distribution of the resulting
gamma mixture

the independent Poisson model (θ3 = 0) and modelling the correlation of
the two variables through a common mixing distribution as is usually done
(e.g. Chib and Winkellman, 2001).
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Abstract: This paper compares various classification techniques applied to data
from the field of NIR spectroscopy. It is shown that techniques like MARS and
SVM perform better than SIMCA (currently the most popular technique) on 2
sets of simulated data and one set of real data from the wine industry.
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1 Introduction

Near infrared (NIR) spectroscopy instruments are used as a non-destructive
method for predicting various characteristics of foodstuffs. The data sets
used for calibrating these instruments consist of absorption values at dif-
ferent wavelengths (predictor variables) and one or more corresponding
measured characteristics (target variables). The target variable can be ei-
ther a continuous (regression) or categorical (classification) variable. In this
paper we focus on the classification problem.

The problem that arises with the data is that of multicollinearity. In chemo-
metrics the method of Simple Modelling of Class Analogy (SIMCA) has be-
come the standard for calibrating NIR instruments on classification prob-
lems. Comparative studies have been done in the past to compare various
techniques with one another in the NIR classification role. Techniques that
were compared were SIMCA, linear discriminant analysis, neural networks,
and K-nearest neighbours.

In recent times other techniques have been cited as good classification
techniques. These include support vector machines (SVM), boosting and
additive trees, and multivariate adaptive regression splines (MARS). In
this study, SIMCA is compared with the above mentioned techniques in
terms of classification ability. The techniques included in the study were
SIMCA, MARS, SVM, multiple additive regression trees (MART), classi-
fication trees (CART) and neural networks.
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FIGURE 1. Example of simulated data (left panel) and wine data (right panel)

2 Data sets used for comparison

For comparison purpose, simulated data was used to compare the tech-
niques. Figure 1 (left panel) shows an example of one of the simulated
cases. A binary classification problem was simulated. Differences in ab-
sorption were simulated in 2 different areas of the wave band. The first
was at around wave number 17 where a sharp peak in the absorption was
simulated. The second was around wave number 161 where a more gradual
peak was simulated. One data set with real data was also included in the
study. This data set contained wine samples, some which were wood ma-
tured, and others which were not wood matured. The right panel in figure
1 shows an example of one of the wine samples. The data set consisted of
54 wood matured samples and 28 non wood matured samples.

3 Method of comparison

The data was randomly divided into a training- and test set (80/20% for
simulated data, 50/50% for wine data). Calibration models were derived
for each of the techniques from the training set and applied to the test set.
The proportions correctly classified for each of the 2 classes (p1 and p2)
were calculated from the test set. It is important for a good classification
technique to have high values for p1 and p2. For that purpose an adapted
accuracy measure was used which places a penalty on differences between
p1 and p2. It is defined as: Adapted accuracy = (p1 + p2)/2 − abs(p1 − p2).

The above process was repeated n times resulting in n values for p1 and p2.
Bootstrap averages and confidence intervals were then calculated on the n
repetitions for comparison purposes.
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4 Modelling techniques included in the study

The following techniques were included in the comparative study:

SIMCA: SIMCA uses principal component analysis (PCA) as basis for
its classification model. Different PCA models are fitted for each of the 2
subsets defined by the two classes. A new case is classified by calculating a
distance measure of the new case to each of the PCA models. The case is
then classified as belonging to the class with the minimum distance.

MARS: MARS is an extension of piecewise linear regression. In piecewise
linear regression, more than one regression line is fitted to the data to ac-
count for non-linear relationships. The position where one regression line
stops and the next line starts, is called a knot position. In the traditional
piecewise regression setting, the knot positions must be chosen beforehand.
MARS on the other hand, derives the knot positions from the data. MARS
can also handle more than one predictor variable as well as combinations of
categorical and continuous predictors. In the binary classification setting,
the 2 classes of the dependent variable is coded as 0 and 1. A threshold
value can then be selected to classify a new case. In this study a threshold
value of 0.5 was always used.

CART: CART follows a strategy of repeated binary splits of the data
based on optimally selected predictor variables and split values for each
variable. When the data is split into 2 sections, the split is made such
that the proportion of cases belonging to class 1 is maximised in one sec-
tion, and vice versa for the other section. The splitting is repeated until
some stopping criteria is satisfied, and in this process a binary tree is built
based on the data. This tree is then subsequently used to classify new cases.

MART: MART uses the principle of boosting where the purpose is to
sequentially apply a classifier to repeatedly modified versions of the data.
This sequence then forms a committee of classifiers where the predictions
of all of them are combined in a weighted majority vote for the final clas-
sification. The modifications to the data are done by assigning weights to
each data points in such a way that points that were classified incorrectly
by the previous classifier in the sequence, have their weights increased, and
points that were classified correctly have their weights decreased. Specifi-
cally, in MART, regression trees are sequentially applied to the residuals
of the previous tree (called gradient boosting trees) to build the model.
Although this method in principle applies to the regression case, it was
extended to handle classification problems as well.

Neural networks: Neural networks attempts to emulate the human brain
through a network of weights and transfer functions. The network consist
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FIGURE 2. Results for the 2 simulated data sets. The left panel shows results
for case where absorptions differed at wave number 17, and the right panel for
wave number 161.

of an input layer of nodes, one for each predictor, a hidden layer and an
output layer of 2 nodes, one for each of the 2 classes. Each of the nodes
consists of weights and transfer functions. The network is trained using
feed-forward back propagation by repeatedly feeding training cases through
the network. Based on the error in classification, the weights are updated
backwards through the network. This process is repeated until the weights
are sufficiently stable.

SVM: In the classification setting SVM attempts to find hyperplanes in
the input space that best separates classes of the target variable. The hy-
perplane will be chosen such that the distance of the nearest points for the
different classes to the hyperplane is a maximum.

5 Results and conclusion

Optimal tuning constants were found for all the techniques before they were
compared with one another. Figure 2 shows the results for the 2 simulated
data sets discussed is section 2. It can be seen that MARS performed well
in both cases with support vector machines performing well on the second
data set (right panel of figure 2). Note that SIMCA, which is currently the
preferred method, did not perform as well. Figure 3 shows the results for
the wine data set. MARS again performed well (based on the adapted ac-
curacy) with SVM also giving good results. SIMCA performed worse than
all the other techniques.
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FIGURE 3. Results for the wine data set.

The techniques included in this study in general performed better than
SIMCA (which is the current standard for NIR calibration). MARS overall
gave the best results for all the data sets, with SVM also giving good results.
Based on comments in the literature, much was expected of the boosting
method MART, but it was generally outperformed by MARS and SVM.
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Abstract: Kernel Fisher discriminant analysis (KFDA) is a recent nonlinear
extension of discriminant analysis. We apply KFDA to a South African coronary
heart disease risk factor data set. A new measure of variable importance in KFDA
is introduced, and successfully used to rank the risk factors in order of importance.
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1 Introduction

Since the introduction of support vector machines during the early 1990s,
kernel based methods have become popular tools for classification and re-
gression in the machine learning community. This trend is also evident in
statistics, especially since kernel methods frequently outperform traditional
statistical procedures (cf. Hastie et al., 2001). Examples of popular kernel
methods are kernel principal component analysis, kernel logistic regres-
sion, and kernel Fisher discriminant analysis (KFDA). These methods are
characterised by transformation of the input data to a high dimensional
feature space, followed by application of the technique in question to the
transformed data. Provided application of the technique requires only cal-
culating inner products between pairs of input vectors, the so-called kernel
trick obviates explicit calculations in the feature space. The focus in this
paper is on KFDA, an extension of linear discriminant analysis. KFDA was
introduced by Mika et al. (1999), and it has since been found to perform
very well compared to traditional statistical classification procedures. Al-
though the KFDA algorithm usually classifies quite accurately, it does not
provide a natural way of determining the relative importance of the input
variables. In this paper we therefore apply the concept of alignment to a
practical two group classification problem to rank the input variables in
terms of their ability to separate the two groups. This suggests a natural
procedure for dimension reduction, and we see that for our problem the ac-
curacy of KFDA classification is indeed slightly improved if the full set of
input variables is replaced by a subset selected from the alignment values.
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In Section 2 we provide a very brief overview of KFDA. Section 3 contains
a discussion of the concept of alignment, and we argue that alignment can
be used to define a measure of variable importance. We describe the data
analysis and results in Section 4.

2 Kernel Fisher discriminant analysis

Consider the following generic two-group classification problem. We ob-
serve a binary response variable Y ∈ {−1,+1}, together with classifica-
tion or input variables X1,X2, · · · ,Xp. These variables are observed for
N = N1 +N2 sample cases, with the first N1 cases coming from population
1 and the remaining N2 cases from population 2. The resulting training
data set is therefore {(�xi, yi) , i = 1, 2, · · · , N}. Here, �xi is a p-component
vector representing the values of X1,X2, · · · ,Xp for case i in the sample.
Our purpose is to use the training data to determine a rule that can be
used to assign a new case with observed values of the predictor variables in
a vector �x to one of the two classes. The KFDA classification rule is given
by sign

{
b+

∑N
i=1 αiK(�xi, �x)

}
. Here, b and α1, α2, · · · , αN are quantities

determined by applying the KFDA algorithm to the training data, while
K(�xi, �x) is a kernel function evaluated at (�xi, �x). Two examples of pop-
ular kernel functions are the polynomial kernel, K( �x1, �x2) =< �x1, �x2 >

d,
where d is an integer, usually 2 or 3, and the Gaussian kernel, K( �x1, �x2) =
exp(−γ‖ �x1 − �x2‖2), where γ is a so-called kernel hyperparameter. We re-
strict attention to the Gaussian kernel in the remainder of the paper. For
a more detailed discussion of KFDA, see for example Mika et al. (1999).

3 Alignment as a measure of variable importance

An important property of support vector machines is that the input vectors
�xi appear in the algorithm only as arguments of the kernel function, i.e. we
encounter these vectors only in the form K(�xi, �xj), i, j = 1, 2, · · · , N . Eval-
uating K(�xi, �xj) for i, j = 1, 2, · · · , N , we are able to construct the so-called
Gram matrix with ij-th entry K(�xi, �xj). When a support vector machine
is applied to a two-group classification problem, the Gram matrix contains
all the information provided by the input vectors �xi. Since K(�xi, �xj) can
be interpreted as a measure of the similarity between �xi and �xj , Cristianini
et al. (2002) argue that an ideal Gram matrix would be of the form �y�y′,
where �y is the N -component response vector with -1 in the first N1 po-
sitions and +1 in the remaining N2 positions. They define the concept of
(empirical) alignment between a given Gram matrix G = [K(�xi, �xj)] and
the ideal Gram matrix �y�y′ by

A(G, �y�y′) =
< G, �y�y′ >F√

< G,G′ >F< �y�y′, �y�y′ >F

, (1)
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where < R,S >F = trace(RS) is the Frobenius inner product between the
symmetric matrices R and S. These authors investigate the properties of
the alignment, the most important for our purpose being that a large value
of the alignment is desirable, since this will typically lead to the kernel
method generalizing well, i.e. classifying new cases accurately.
Alignment can now be used to define a quantity that reflects the importance
of an input variable in KFDA as follows. Consider the Gaussian kernel,
and let Kr(�xi, �xj) = exp[−γ(xir − xjr)2] with corresponding Gram matrix
Gr, r = 1, 2, · · · , p. These are the Gram matrices obtained by evaluating the
kernel function on a single coordinate of the input vectors at a time. The
importance of variable Xj can now be judged in terms of the alignment of
Gj with the ideal Gram matrix �y�y′, i.e. by calculating A(Gj , �y�y

′). A large
value of A(Gj , �y�y

′) would imply that Xj is an important input variable in
the sense that it contributes significantly to separating the two populations
under consideration.
Several points deserving further attention have to be made regarding this
proposal to use A(Gj , �y�y

′) as a measure of individual variable importance.
(i) The quantity A(Gj , �y�y

′) depends on the values of the kernel hyper-
paramters. For the Gaussian kernel there is only a single hyperparameter,
viz. γ. A decision has to be made regarding the value of γ to use when
calculating A(Gj , �y�y

′). We found empirical evidence in simulation experi-
ments in favour of using a fixed value of γ, for example γ = 1. (ii) What
about other more well known measures than A(Gj , �y�y

′) to describe the
importance of the input variables, for example correlation coefficients? In
this regard it should be borne in mind that by using a kernel function one
is able to exploit highly nonlinear relationships between the input variables
and the binary response. It seems that a measure such as A(Gj , �y�y

′) is able
to capture such nonlinear relationships, something which will be difficult
if instead we calculate correlation coefficients. (iii) A further question that
arises is whether the measure of variable importance can be used for ef-
fective dimensionality reduction. This would of course have the advantage
that only a subset of the original input variables need to be used in fur-
ther analyses and it may even lead to better classification performance of
the resulting rule. The crucial issue in this regard is how to decide on the
number of input variables to retain. This question is similar to the problem
of deciding on the number of principal components or factors to use when
performing a principal component or factor analysis. One strategy could
be to use a scree plot of the ranked alignment values, and this possibility
is explored in Section 4.

4 Analysis of the data set, and results

The data that were analyzed were collected as part of a study on risk
factors in coronary heart disease that was conducted in South Africa. We
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TABLE 1. Input variables ranked according to alignment values

X2 X5 X3 X9 X8 X7 X1 X4 X6

0.154 0.113 0.107 0.062 0.056 0.056 0.046 0.044 0.042

consider p = 9 input variables and a binary response variable measured for
each of 462 individuals. For the response variable, y = +1 indicates that
the particular individual suffers from coronary heart disease, while y = −1
implies a control case. There were 160 diseased individuals and 302 control
cases. The input variables, X1,X2, · · · ,X9, were: systolic blood pressure,
cumulative tobacco use, low density lipoprotein cholesterol, adiposity, fam-
ily history of heart disease, an index of type-A behaviour, obesity, current
alcohol consumption, and age.
We started our analysis by calculating A(Gj , �y�y

′), using γ = 1, for each of
the input variables. This gave the values in Table 1, where we have ranked
the variables according to alignment.
From Table 1 we see that the three most important input variables are
cumulative tobacco use, family history of heart disease, and low density
lipoprotein cholesterol. The decrease in alignment to the next variable,
age, seems quite large, and we conjecture that the first three input variables
may be sufficient to separate the two groups if a Gaussian kernel is used.
Similar results were obtained for other constant values of γ. It is interesting
to note thatX2,X5,X3 andX9 are selected by a stepwise logistic regression
procedure (see Hastie et al., 2001).
In an attempt to decide on the number of variables to retain, a scree plot
of the ranked alignments was constructed (see Figure 1). It is clear that a
levelling off in alignment occurs from X9 onwards. This suggests using only
the variables X2,X5 and X3 in the KFDA rule.
To evaluate the classification performance of the KFDA rule based on dif-
ferent sets of variables, we repeated the following procedure 100 times. We
randomly divided the 160 data cases pertaining to the diseased individuals
into a training set of 96 cases and a test set of 64 cases. A similar division
of the 302 control data cases into sets of respective sizes 181 and 121 was
done. We then performed 9 KFD analyses: using only X2, using X2 and
X5, using X2,X5 and X3 (the model suggested by the scree plot), up to
an analysis based on all 9 input variables. In each case the KFDA algo-
rithm was applied to the combined training data cases, and thereafter used
to classify the test set cases. Table 2 summarizes the average test errors
that were obtained in this way. The lowest test error was for KFDA based
on the three input variables identified as most important by the proposed
alignment measure, and suggested by the scree plot. This provides an indi-
cation that using alignment to identify important variables and to reduce
dimensionality, may indeed have some merit.
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FIGURE 1. Scree plot of ranked alignment values

TABLE 2. Test errors for KFDA: successively adding more input variables

X2 + X5 + X3 + X9 + X8 + X7 + X1 + X4 + X6

0.318 0.314 0.301 0.313 0.323 0.327 0.327 0.329 0.317
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Abstract: The aim of this contribution is to investigate on how to improve the
extraction of physical information from the signals coming from a liquid Argon
(LAr) time projection chamber (TCP), a particle detector technique character-
ized by good tracking and energy measurement capabilities. We present here the
results obtained from the analysis of test pulse data, i.e. the electronic impulses
that, on purpose of calibration and testing, stimulate the electronics simulating
a known charge value as if it was released by a particle within the LAr. Start-
ing from the analysis of those calibration data, we focused on getting a better
modelling of the electronic noise, which results far from a white noise process.
As a subsequent step, we identified a more suitable theoretical analytical func-
tion to perform the nonlinear least-squares fit of the signal, used to recover the
parameters which are relevant for the physical analysis.

Keywords: Autocorrelation, Integrated models, Least-squares fit, Nonlinear re-
gression.

1 Introduction

The ICARUS project (Rubbia, 1977; ICARUS collaboration, 2001) is based
on a large mass LAr TPC aimed to search for rare events, such as neutrino
interactions or proton decay. The construction of the detector and the com-
plete readout system of the LAr TPC are described for example in Amerio
et al. (2003). Such a readout is based on the collection of the ionization elec-
trons which are released when a charged particle travels through the LAr.
The resulting signals on each channel are digitized and stored as waveforms
which carry both spatial (time coordinate) and charge (area) information
about the collected electrons. Reconstruction of a given particle event re-
quires the measure of this charge on every different channel along the track
path (depending on the particle energy and on the type of interaction the
total number of channel outputs to be considered can go from few channels
to many thousand) according to the specific channel characteristics (ampli-
fication factor, signal shaping time constants). Moreover the output signal
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FIGURE 1. Signals on two particular channels of the Lar TPC. The peak indicates
the charge released by a particle in the LAr.

shape is directly related to the ionization charge space distribution, which
mainly depends on the track angle with respect to the readout plane. Such
a variability of the signal, together with the non-negligible though unavoid-
able level of noise from the electronics, is a limiting factor on the choice of
the analysis methods, as it seriously affects the possibility of using basic
deconvolution techniques, and weakens the effectiveness of other considered
statistical approaches, such as wavelet analysis (Polchlopek et al., 2002) or
neural network approach (ICARUS collaboration, 1995). For illustration
purposes, Figure 1 presents two typical signals for two particular readout
channels, showing both the electonic noise baseline, which depends to the
specific channel characteristics, and the peak corresponding to a collected
charge signal, which is the physical quantity of interest to be modeled.
Since one event is charaterized by all the signals resulting on each channel
in one particular time interval (one event can involve even 2000 channels),
to study the LAr TPC signal we focused on a simple procedure which can
be applied automatically to each channel. So, on a first issue, the ICARUS
analysis procedures simplified the extraction of the physical quantities from
observed data, assuming a nearly white noise process for the electronic noise
and performing a least-squares fit of the peak signal, i.e. the ionization
charge, using a well-specified theoretical analytical function of the form
f(t;β), where t denotes time and β an unknown vector of parameters.
In this paper we present a short analysis of the essential features of a statis-
tical approach to model LAr TCP signal. First of all, we adjust the model
for the electronic noise using standard procedures of time series analysis.
Accordingly, we propose a new theoretical analytical function to model the
signal where the charge collection occurs, ponting out that f(t;β) can limit
the goodness of the fit of the peak. Although the proposed procedure may
seems computationally intensive and time consuming, it is encompassed by
the potential of modern statistical environments such as R.
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2 Modelling the electronic noise

The data set used to study our models were recorded during the calibra-
tion test of the detector in the first technical run described in Amerio et
al. (2003). Those are the first available data coming from the detector in
its final working condition, so they allowed us to focus on the actual elec-
tronic noise behaviour. In particular, Figure 2 (a) gives an example of the
electronic noise {εt} recorded by a specific channel. Given the tolerances in
the electronics components and the differences in circuit and wiring layout,
each readout channel actually shows a specific behavior and carries a pos-
sibly different noise figure. When designing the signal analysis procedure
this has to be taken into account, avoiding as much as possible a direct
dependency of the procedure on specific channel characteristics.
By looking to the correlogram (ACF) and to the partial ACF in Figure 2
(b) and (c), respectively, we note that these plots do certainly not agree
with a white noise process. In particular, they indicate the presence of
a trend, around which certain seasonal variations are apparent. The sea-
sonal pattern is in this context very complex since it is the sum of several
causes: mains power (very long period), feeders (short period), surrounding
electric appliance interferences, LAr motion in the detector and mechanic
vibrations. Also the classical Ljung-Box test statistic (see Wei, 1990, sec.
7.5) for examining the null hypothesis of independence in the time series
indicates evidence against the null hypothesis. Inference based on {εt} gen-
erally makes ordinary least-squares estimation of β inefficient and standard
errors of the estimates can be severely biased.
In practice, all the series {εt} observed in all the channels are non-stationary.
In order to fit a stationary model, it is necessary to remove non-stationary
sources of variation. Several methods of prefiltering the signals have been
explored. For example, we investigated seasonal autoregressive integrated
moving average models, but it turned out very difficult to adopt the same
model on more of 1000 series involved in one single event. In view of this,
we focused for a simpler method, which can be automatically implemented
in all the channels.
One simple possibility is to difference the series and such a model is called
an integrated model. In all the channels considered, it turned out that if
we replace the electronic noise εt simply by ∇εt = εt − εt−1 = ε∗t , then
ε∗t performs as a white noise process. The use of ε∗t instead of εt has two
consequences. From a theoretical point of view, the hypotheses necessary
for a nonlinear least-squares fit of the event of interest are respected. From a
practical point of view, handling the differenced series makes computational
methods faster and reduces the number of signal samples around the peak
to be stored, whilst insuring a good reconstruction of the charge signal.
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FIGURE 2. (a) A digitised electronic signal on a channel of the Lar TPC; (b)
The ACF of the electronic signal; (c) The PACF of the electronic signal.

3 Fitting the charge signal

The aim of this section is to model the response of the detector readout to
a collected charge. Indeed, the fit of the peak is the first step on the data
analysis, since by integrating the fits we obtain a measure of the charge
released by a particle in the LAr. We assume a model of the form

yt = b(t, β) + ε∗t ,

where yt denote the differentiated signal, b(·) denotes a deterministic com-
ponent of the series, and ε∗t is the error term. Function b(t, β) is a nonlinear
function of the time t and a vector of parameters β when the error is addi-
tive. Two different deterministic functions have been considered: the first
one is simply given by f(t;β) − f(t − 1;β), and the second one is a new
proposal.
As in linear regression, parameter estimates are taken to be the values of
β, which minimize the residual sum of squares S(β) =

∑n
i=1 (yt − b(t, β))2.

Nonlinear regression requires calculation by iterative computer programs,
which require initial estimates. Model goodness-of-fit may be examined
using residuals (see Davison, 2003, chap. 10).
In our analysis, we found several improvements by using the new analytical
function b(t, β), with respect to the previous analysis procedure based on
f(t;β). Effectiveness of the new method has been verified through the eval-
uation of the electronics parameters (gain, linearity) which are needed to
calibrate the charge response of every channel, showing the gained robust-
ness of the fit against signal baseline fluctuations. A further qualification of
the fitting procedure, which is underway, requires to apply the new charge
estimation to a set of real particle tracks (such as illustrated in Figure 3), in
order to explore the fit goodness over a full sample of the different possible
signal shapes.

4 Final remarks

In this contribution we discuss how to improve the extraction of physical
information from the signals coming from a liquid LAr TCP. In particular,
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FIGURE 3. Fit based on b(t, β) applied to a minimum ionizing particle signal.

we discuss a simple statistical proposal which is based on the use of dif-
ferenced data, which presents the advantage to be applied automatically
to each channel involved in one event. As a different charge estimation
method we also considered a neural network based algorithm, but this ap-
proach didn’t succeed mainly since it is not possible to build a statistical
estimator whose value is intended as a meaningful guess for the unknown
value of a parameter, or define a confidence level as in the normal best-
fit procedures, and because it shows a strong dependency on the quality
of the training example set, which in our case is quite difficult to qualify
given the huge variability of the detector signal behavior. Another explored
technique tried to exploit wavelet transforms to remove the noise from the
signal. But although this technique resulted quite effective in reaching high
data compression ratio, the charge estimation didn’t perform better than
the fitting procedures producing broader area distributions.
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Abstract: Many randomized studies suffer from noncompliance and missing
data. We present an extended framework for the analysis of data from such
experiments. We use an instrumental variables approach to link intention-to-treat
effects to treatment effects and we adopt a Bayesian approach for inference and
sensitivity analysis. This framework is illustrated in the context of a randomized
trial of breast self-examination.
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1 Introduction

In this paper we investigate the effect of the receipt of a treatment in the
context of a randomized trial which suffers from noncompliance and miss-
ing outcomes. Specifically, we consider the consequences of two exclusion
restrictions on the effect of assignment: an econometric exclusion restric-
tion that disallows, for a specific subpopulation, direct links between as-
signment and outcome other than through the effect of assignment on the
treatment received, and a response exclusion restriction, which requires
that subjects who always comply with their assignment (whether it is to
the new or control treatment) are not affected in their response behavior by
their assignment (Mealli et al., 2004). Our Bayesian approach allows for the
comparison of results based on different combinations of these assumptions,
thereby assessing sensitivity to their violations.
We apply these methods to a randomized trial on Breast-Self-Examination
(BSE), which was affected by the two sources of bias mentioned above.

2 The randomized trial on breast self-examination

In this paper, we consider a randomized trial of Brest self-examination. In
this study, two BSE teaching methods were compared, a ‘standard’ treat-
ment of receiving mailed information only, and an ‘enhanced’ treatment of



456 Assessing the effect of a teaching program on BSE

additional attendance in a self-exam course. The study was conducted over
a 3-year period (1988-1990) at the Oncologic Center of the Faenza Health
District in Italy (see previous analysis by Ferro et al., 1996 and Mealli et
al., 2004). In order to address the noncompliance and missing data prob-
lems let us introduce some notation. For each individual i (i = 1, . . . , N)
who partecipates in the study, let Zobs

i represent their treatment assign-
ment with Zobs

i = 1 for new and 0 for standard treatment. In addition, let
Di(z) be an indicator for the treatment received, given assignment z, and
letDobs

i = D(Zobs
i ) be the actual treatment received, whereDobs

i (0) = 0, as
women assigned to the standard treatment had non access to the training
course. Similarly, define Yi(z) as the potential outcome, given assignment
to treatment level z, and let Y obs

i = Y (Zobs
i ) be the actual outcome ob-

served. Lastly, let Ri(z) represent the potential response indicator (1 if
a subject responds to the post-test questionnaire, 0 for non-responders),
given treatment z, and let Robs

i = R(Zobs
i ) represent the actual response

indicator. In addition, a vector of pre-treatment variable, Xobs
i is observed

per subject. In our application, we consider only two covariates: Xobs
i1 , a

binary indicator for previous BSE practice and Xobs
i2 , a binary indicator of

good knowledge of breast pathophysiology.
The randomization of assignment guarantees that the pretreatment vari-
ables being closely balanced in the two subsample defined by assignment.
The randomization does not, however, imply that the pretreatment vari-
able are balanced in the subsamples defined by the actual treatment status.
This imbalance suggests that we cannot simply compare outcomes by treat-
ment status to obtain credible estimates of the effect of the new teaching
program.

3 Modeling compliance and response behavior

In this section we focus on defining the causal effect of interest, the effect of
the new, enhanced training class on BSE practice. Throughout this analysis
we will make the Stable Unit Treatment Value Assumption (SUTVA) that
there is interference between neither units nor different versions of the
treatment.
Let Ui represent the treatment woman i would receive if assigned to the
active treatment (Ui = Di(1)). If Ui = 1, the woman i is a ‘complier’; in
contrast, if Ui = 0, the subject i is a ‘never-taker’. For this experimental
setting, this compliance status Ui can be viewed as a covariate which is
observed only for women with Zobs

i = 1; by randomization, however, it is
guaranteed to have the same distribution in both treatment arm. Let U
and Nu be, respectively, the N component vector with ith element Ui and
the number of units of type u, u = 0, 1. In addition, let Y be the N × 2
matrix of potential outcomes with ith row equal to (Yi(0), Yi(1)). Using
this notation, the ITT =

∑N
i=1[Yi(1)−Yi(0)]/N effect of assignment on the
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outcome can be defined as the weighted average

ITT =
N1

N
ITT1 +

N0

N
ITT0 (1)

where, for u ∈ {0, 1}, ITTu =
∑

i:Ui=u[Yi(1)−Yi(0)]/Nu is the average ITT
effect of Z on Y for each of the two sub-populations defined by compliance
behavior, and Nu/N is the weight assigned to ITTu.
Random assignment of the treatment implies that Pr(Zi|Di(0),Di(1), Yi(0),
Yi(1),Xobs

i ) = Pr(Zi). As conditioning on pretreatment variables assign-
ment remains ignorable (Rubin, 1978), in general, we only require:

Assumption 1 (Ignorability of treatment assignment)

Pr(Zi|Di(0),Di(1), Yi(0), Yi(1),Xobs
i ) = Pr(Zi|Xobs

i ). (2)

Concerning the response behavior, we assume that potential outcomes are
independent of the missing indicator given observed covariates conditional
on the compliance status and the assignment levels, that is:

Assumption 2 (Latent Ignorability)

Ri⊥Yi|Zi,X
obs
i , Ui. (3)

We also consider, but do not necessarily impose, two additional assump-
tions; two exclusion restrictions on the effect of assignment.

Assumption 3 (Outcome exclusion restriction for never-takers)

Yi(Zi)⊥Zi|Xobs
i , Ui = 0. (4)

This assumption implies that Pr(Yi(1)|Xobs
i , Ui = 0) = Pr(Yi(0)|Xobs

i , Ui =
0), so that within subpopulation of never-takers with the same values of
cavariates, the distributions of the two potential outcomes Yi(0) and Yi(1)
are the same.
When the outcomes are not observed for all units, since the compliance
status is partially missing, latent ignorability is not sufficient to identify
the ITT effect for compliers. To address this complication, Mealli et al.
(2004) propose the following assumption:

Assumption 4 (Response exclusion restriction for compliers)

Ri(Zi)⊥Zi|Xobs
i , Ui = 1. (5)

This assumption implies that compliers have the same response behavior
irrespective of the treatment arm they are assigned to.
We regard the two assumption 4 and 3 as possibly controversial, and we
will investigate their consequences in some detail.
In order to relax fully one or both exclusion restrictions, we impose a para-
metric form of the likelihood function and using a relatively diffuse but
proper prior distribution.
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4 Parametric models

We model the conditional distribution of the compliance status U given the
pretreatment variables X and the conditional distributions of the potential
response indicator R and the potential outcome Y , given X and U . As all
the variables of interest are dichotomous, we assume that their distribution
have a logistic regression form:

πU
i = Pr

(
Ui = 1

∣∣Xi = x;α
)
=

exp(α0 + α′
1x)

1 + exp(α0 + α′
1x)

(6)

πR
iuz = Pr

(
Ri = 1

∣∣Ui = u,Zi = z,Xi = x;βuz

)
=

exp(βuz0 + β′
uz1x)

1 + exp(βuz0 + β′
uz1x)

(7)

fizu(1) = Pr
(
Yi = 1

∣∣Ui = u,Zi = z,Xi = x; γuz

)
=

exp(γuz0 + γ′uz1x)
1 + exp(γuz0 + γ′uz1x)

(8)

The full parameter vector, denoted by θ, has 27 elements. In the application
in this paper, we impose prior equality of some slope coefficients: βu11 =
βu01, βu12 = βu12, γu11 = γu01 γu12 = γu02, for u = 0, 1, reducing the
number of parameters to 19.
For inference, we consider the Markov chain algorithm, a variant of the
Metropolis-Hastings algorithm (Metropolis et al. 1953; Hastings, 1970),
which uses the Data Augmentation method of Tanner and Wong (1987).
As in Hirano et al. (2000), we use a relatively diffuse proper prior distribu-
tion with a simple conjugate form:

p(θ) ∝
N∏

i=1

×
∏

u,z,r

((
πU

i

)u(1− πU
i

)(1−u)(
πR

iuzfiuz(Yi)
)r(1− πR

iuz

)(1−r)
)2.5/N

(9)

5 Results and conclusions

In Table 1, summary statistics of the posterior distribution of the estimands
of interest are presented under the four combinations of the two exclusion
restrictions.
We find plausible to impose the response the exclusion restriction for com-
pliers and relax the outcome exclusion restriction for never-takers. There-
fore, we focus on the third block of columns in Table 1. The marginal distri-
butions of the subpopulation ITT effects suggest that the effects for compli-
ers and never-takers are very different. Examining their joint distribution
in Figure 1, we see that the effects are somewhat negatively correlated.
Specifically, we find a quite strong negative ITT effect for never-takers and
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TABLE 1. Summary statistics: posterior distributions

Resp. Excl. Res. Compliers Yes NO Yes NO
Excl. Res. Never-takers Yes Yes NO NO

Estimand Mean sd Mean sd Mean sd Mean sd
ITTc -0.040(0.050)-0.008(0.054) 0.058(0.117) 0.075(0.118)
ITTn 0 0 0 0-0.179(0.228)-0.141(0.245)
ITT -0.022(0.028)-0.004(0.030)-0.047(0.048)-0.020(0.067)

Pr(Ri(1) = 1|Ui = 1) 0.796(0.030) 0.790(0.031) 0.793(0.031) 0.789(0.031)
Pr(Ri(0) = 1|Ui = 1) 0.796(0.030) 0.890(0.100) 0.793(0.031) 0.814(0.170)
Pr(Ri(1) = 1|Ui = 0) 0.419(0.041) 0.418(0.042) 0.416(0.042) 0.417(0.041)
Pr(Ri(0) = 1|Ui = 0) 0.541(0.072) 0.431(0.138) 0.543(0.074) 0.518(0.219)

a small and not much significant positive ITT effect on BSE practice for
compliers. Concerning the response behavior, this model gives a plausible
figures for the response probabilities: per assigned treatment level, never-
takers have lower response rates than compliers. In addition, never-takers
have a lower response rate if assigned to the new treatment arm than if
assigned to the standard treatment.
Our analysis does not provide evidence that the overall ITT effect arises
entirely or even largely from the effect of the training course on BSE tech-
niques.
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FIGURE 1. Simulation scatterplot of the joint posterior distribution of ITTc and
ITTn in the model with only response exclusion restriction for compliers.
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1 Introduction

Let us consider a two-factor experiment in which the first factor A occurs
at s levels (treatments) A1, A2, ..., As, while the second factor B occurs at
t levels (treatments) B1, B2, ..., Bt. Moreover, let us assume that the exper-
imental material is homogeneous. Then the completely randomized design
is appropriate for that structure. It means that all st treatment combi-
nations (AiBj) we can randomly arrange on the experimental units. The
usual inference from this kind of experiments is well known and descried
in many monographs.
Let us assume that the k-th replication of the observation yijk concerning
the (i, j)-th treatment combinations (AiBj) is modelled as follows:

yijk = γij + eijk, i = 1, 2, ..., s, j = 1, 2, ..., t, k = 1, 2, ..., n, (1)

where γij denotes the expected value of the trait observed on the (i, j)-
th treatment combinations (AiBj), n denotes the number of the (AiBj)
replications and finally, eijk denotes the error. It will be assumed that
eijk ∼ N(0, σ2) for all i, j, k. The efects of the (i, j)-th treatment combi-
nations (AiBj) can be expressed as:

γij = γ.. + (γi· − γ··) + (γ·j − γ··) + (γij − γi· − γ·j + γ··), (2)
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where γ·· denotes the general mean, αi = (γi· − γ··) - the effect of the i-th
level effect of factor A, βj = (γ·j − γ··) - the j-th level effect of factor B,
ωij = γij−γi·−γ·j+γ·· the interaction effect of the i-th level effect of factor
A with the j-th level effect of factor B. We use the classical dot notation
for means.

Now let us define the general hypotheses that to be veryfied by the two-
factor experiment. The hypotheses can be expressed as:

H0α: αi = 0, for all i, i=1,2,...,s,
H0β : βj = 0, for all j, j=1,2,..., t,
H0αβ : ωij = 0, for all i,j, i=1,2,...,s, j=1,2,..., t.

The above hypotheses can be veryfied by using standard analysis of variance
technique.

2 Variance free model

Let us assume that on each experimental unit we observe two continuous
traits (random variables) say (X, Y) and let their joint distribution be
normal. Moreover, let us take n observations on each treatment combina-
tion (AiBj), (xij1, yij1), ..., (xijn, yijn). The inference concerning treatment
(factor) effects can be based on these traits independently. But this is cor-
rect only when the traits are uncorrelated (independently distributed under
normality). However, many times the traits are correlated and then it is
necessary to take this fact into account in inference from the experiment
considered. Hence, in this paper we propose a way to infer on treatment
effects taking into account possible correlation between traits. The analysis
proposed is based on the correlation coefficients. Another approach could
be based, for instance, on MANOVA techniques.

Let ρij , i=1,2,..., s, j=1,2,...,t be the correlation coefficient for the (i,j)
treatment combination (AiBj) and let rij be its estimator. Then using the
transformation (cf. Kendal and Stuart, 1958, Mexia, 1990)

zij = 0.5
√
n− 3 ln((1 + rij)/(1 − rij)) (3)

we obtain zij ∼ N(µij , 1) where µij = 0.5
√
n− 3 ln((1 + ρij)/(1− ρij)) +

(ρij
√
n− 3)/(2(n− 1)), i = 1, 2, ..., s, j = 1, 2, ..., t.

We use this transformation when the number of treatment combination
is quite large. Then (ρij

√
n− 3)/(2(n − 1)) is proportionally small with

respect to the first part of µij . Hence, in further considerations we will
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assume that zij ∼ N(µ̃ij , 1), with µ̃ij = 0.5
√
n− 3 ln((1+ρij)/(1−ρij)) =

c lnφij , where c = 0.5
√
n− 3, φij = (1 + ρij)/(1 − ρij).,

Finally, expressing µ̃ij in the same way as γij in (2) we obtain the model

µ̃ij = µ̃+ α̃i + β̃j + ω̃ij , (4)

where µ̃ is the general mean, α̃i, β̃j are the effects of factor A and B levels,
while the ω̃ij are the interaction effects.
Then we can express zij as

zij = µ̃+ α̃i + β̃j + ω̃ij + ẽij , (5)

where ẽij ∼ N(0, 1).
Model (5) is called variance free model for two factor experiment carried
out in completely randomized design.

To find the estimators of the treatment effect contrasts and interaction
effect contrasts in model (5) we can use analysis of variance technique
for two-factor experiment without replications. Let us note that all three
hypotheses mentioned earlier are testable (variance is known).
A problem worth noticing is connected with the meaning of the hypotheses
considered in the model (2) in relation to variance free model (5).
The hypothesis: H0α : α̃i = 0, for all i, is equivalent to

H0α : Πtj′=1φij′ = cα, for all i , where cα = (Πsl=1Π
t
v=1φlv)

1/s.

Similarly, H0β : β̃j = 0, for all j is equivalent to

H0β : Πsi′=1φi′j = cβ for all j, cβ = (Πsl=1Π
t
v=1φlv)

1/t.

Finally, let us consider the H0αβ : ω̃ij = 0, for all i and j.
This hypothesis is equivalent to H0αβ : φij = ci,j , for all i and j

ci,j = (Πtv=1φiv)
1/t(Πsl=1φlj)

1/s/(Πsl=1Π
t
v=1φlv)

1/st (6)

Let us note that hypothesis (6) is an multiplicative version of the very well
known Fisher condition for two classifications to be orthogonal.

3 Discussion

This kind of experiments is often performed in agricultural and biological
research. Especially it is useful when we observe two correlated traits and
one of them is easy to observe (measure) while to observe (measure) the
second trait it is necessary to cut the plant or kill the animal. Hence, it is
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recommended to identify two correlated traits, especially at the beginning
of a research. Then by using parallel variance free aproach and usual anal-
ysis of variance aproach for two traits independently, we can compare the
inference in both cases. Finally, the variance free aproach can be used to
adjust the further inference based only on the trait that is easy to observe.
The variance free model for two factor experiments was adapted to genetical
experiments connected with breeding program. This kind of experiment is
commonly performed by geneticists who are interested in selecting lines
and strains of plants or animals for further breeding. The structure of the
model used is similar to that of the two-way layout with interaction as
considered here. In the first kind of such experiment, called line x tester,
two sets of inbred lines are chosen and crosses among these lines are made.
The first set of lines includes s chosen inbred lines, usually of unknown
genetical value in the breeding program. The second set of lines includes
t known and valuable lines called testers. Then, the line x tester system,
involves crossing the s lines in the first group with each of the t testers.
The variance free approach to line x tester experiments is given in Mejza
and Mexia (2002a).
In the second kind of such experiment, called diallel cross experiment, a set
of s inbred lines is chosen and all possible crosses among these lines are made
(s=t). It means that we can get sxs treatment combinations (crosses). The
selecting process is based on the inference concerning main effects (called
general combinig ability), interaction effects (called specific combining abil-
ity) and on additional effects called reciprocal effect.
The analysis of diallel cross experiment by variance free model approach is
given by Mexia and Mejza (2002b).
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1 Introduction

Our main goal is to obtain quantitative estimates for Tuberculosis (TB) in
Europe.
To achieve this we applied logit model to the data for TB incidence. This
data was organized per countries and covered the time span from 1995 to
2000. This data is available in Surveillance of Tuberculosis in Europe - Euro
TB.
The Algorithm presented here allow us to obtain the estimates to our pa-
rameters α and β, when we just know the incidence of a disease for pairs
(i, j) .

2 Model and Algorithm

Let us assume that

yi,j = logitpi,j = ln
pi,j

1 − pi,j
= α+ β (fi + gj) (1)

with i = 1, . . . ,m and j = 1, . . . , n.
Being pi,j the probability of an individual be infected with TB. And where
fi , i = 1, . . . ,m and gj , j = 1, . . . , n are two any unknown factors.
In our specific case we considered:
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• f =exposure=country in study;

• g =susceptibility=year in study.

Let us put xi,j = fi + gj ; i = 1, . . . ,m ; j = 1, . . . , n assuming as initial
values for xi,j the following ones

xi,j (ı) = yi,• + y•,j − y•,• i = 1, . . . ,m ; j = 1, . . . , n (2)

where yi,• = 1
n

n∑
j=1

yi,j , y•,j = 1
m

m∑
i=1

yi,j and y•,• = 1
m∗n

m∑
i=1

n∑
j=1

yi,j .

Being vi,j = V ar (yi,j) ≈ 1
Ni,j×pi,j

; i = 1, . . . ,m ; j = 1, . . . , n, where Ni,j
represents the population in country i and in year j. Not to overload the
notation let us put qi,j = 1

vi,j
; i = 1, . . . ,m ; j = 1, . . . , n.

So we may write that

S (ı) =
m∑
i=1

n∑
j=1

qi,j (yi,j − α− β xi,j (ı))2 = (3)

=
m∑
i=1

n∑
j=1

qi,j (yi,j − α− β (fi (ı) + gj (ı)))2. (4)

To lighten the notation let us put S (ı) = S and xi,j (ı) = xi,j .

2.1 Zigzag Algorithm

We now describe the several steps of the algorithm applied.

Step 1 In the first step we minimize S in order to the parameters (α, β),
using the initials values of xi,j . From this minimization we obtained
the following estimates:

α̌ (ı) = α̌ = y◦ − β̌x◦ and β̌ (ı) = β̌ = sx,y

sx,x
(5)

where

y◦ =

m∑
i=1

n∑
j=1

qi,j yi,j

q+ ; x◦ =

m∑
i=1

n∑
j=1

qi,j xi,j

q+

(6)

with q+ =
m∑
i=1

n∑
j=1

qi,j

and

sx,x =
m∑
i=1

n∑
j=1

qi,j (xi,j − x◦)
2

(7)
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sx,y =
m∑
i=1

n∑
j=1

qi,j (xi,j − x◦) (yi,j − y◦) . (8)

Step 2 In this step we minimize

S =
m∑
i=1

n∑
j=1

qi,j
(
yi,j − α̌− β̌ (fi + gj)

)2
(9)

in order to the vectors fm and gn. We will obtain the following sys-
tem: [

D1 Q

Qt D2

] [
fm

gn

]
= V m+n (10)

where Q = [qi,j ] ;

D1 = D


 n∑
j=1

q1,j , . . . ,

n∑
j=1

qm,j


 (11)

D2 = D

(
m∑
i=1

qi,1 , . . . ,
m∑
i=1

qi,n

)
(12)

and the components of V m+n are:

• Vi = 1
β̌

n∑
j=1

qi,j (yi,j − α̌) ; i = 1, . . . ,m

• Vm+j = 1
β̌

m∑
i=1

qi,j (yi,j − α̌) ; j = 1, . . . , n.

Solving this system we will obtain the new values of f and g : f̌i (ı),
i = 1, . . . ,m, and ǧj (ı), j = 1, . . . , n, and consequently x̌i,j (ı) =
f̌i (ı) + ǧj (ı).

Step 3 In the third step we calculate

S̃ (ı) = S̃ =
m∑
i=1

n∑
j=1

qi,j
(
yi,j − α̌ (ı) − β̌ (ı)

(
f̌i (ı) + ǧj (ı)

))2
(13)

where α̌ (ı), β̌ (ı), f̌i (ı), i = 1, . . . ,m, and ǧj (ı), j = 1, . . . , n, are the
adjusted values obtained in cycle ı.

Step 4 In this last step we carry out the standardization in order to keep
unchanged the minimum and the maximum of xi,j .

The values obtained from this standardization will be used in the next cycle
if the value of S̃ (ı) will not have stabilized.
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3 Results and Conclusions

We analyzed the incidence of TB in fifty one European countries (m = 51)
covering six years (n = 6), from 1995 to 2000.
After applying our algorithm we obtained the following results:

• The estimates for α and β :



α̌ = −0.607712

β̌ = 0.918492
. (14)

• In Figure 1 we present the values for the factors matching exposure
f .

FIGURE 1. Exposure Factors.

and the susceptibility factors, g are presented in Figure 2.
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FIGURE 2. Susceptibility Factors.

• And finally {
Š = 3.64533E − 25
R2 ≈ 0.9

(15)

These results show a very good adjustment and clearly separate Europe in
the following three regions:

• Eastern Europe (f ≥ 1.5) ;

• Balkan Peninsula (0.5 ≤ f < 1.5) ;

• Western Europe (f < 0.5) .

With a few exceptions like Portugal.
Moreover a slow but steady decrease of TB incidence is shown across the
six years studied.
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1 Introdution

A study will be a matrix triplet constituted by a matrix X of objects x
variables, and two diagonal matrices Dn and Dp containing the weights of
objects and variables. Escoufier (1973) showed how to obtain geometrical
representation of series of k studies when the variables or the objects were
the same. In the first case the series will be of first type and, in the second,
of the second type. We now extend the concept of common structure of a
series of studies given by Lavit (1988).
An application to economic integration of European Union (EU) is pre-
sented. The European Community (EC) institutional arrangement was
transformed by the Maastricht Treaty originating the European Union. Our
results point towards the significance of this institutional transformation.

2 Common Structure

The studies in a series of first type, will be (Xi,Dpi
,Dn), i = 1, · · · , k,

whereXi is the data matrix, whileDpi
andDn are the variables and objects

weights matrices. To derive the corresponding geometrical representation
Escoufier (1973) obtained the matrix S = (Sij) with

Sij = Tr(AiAj
t), i = 1, · · · ,k, j = 1, · · · ,k (1)
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where
Ai = XiDpi

Xi
tDn, i = 1, · · · ,k. (2)

The procedure for series of second type is the same once matrices Ai,
i = 1, · · · , k, are replaced by the Bi = Xt

iDni
XiDp, i = 1, · · · ,k.

With (θi, γ
k
i ), i = 1, · · · ,k, the pairs of eigenvalues and corresponding

eigenvectors for matrix S, the l-th study was represented by the point
whose coordinates βl1, · · · , βlk where the l-th components of vectors θiγ

k
i ,

i = 1, · · · , k, l = 1, · · · , k. Lavit (1988) proposed that a series whose points
lie along the first axis had a common structure. It is easily seen that, then

τ1 =
θ21

k∑
j=1

θ2j

≈ 1. (3)

Inference for such series of studies is presented in Oliveira and Mexia (1998,
1999a, 2004).

We now extend this notation claiming that if τs =

s∑
j=1

θ2j

k∑
j=1

θ2j

≈ 1 the series

has a s-degree structure. The case s = 2 is quite interesting since then we
have a clear two dimensional image of the set of studies and, find if the
studies group themselves into a meaningful pattern.

3 An application to European Economic Integration

We are going to apply our approach to economic integration of EU from
1980 to 2000 since we have not yet enough data to consider the impact of
Euro.
For each year we have a study. The objects will be the countries in the EU
while the variables will be: Gross Domestic Product, Imports, Exports, Un-
employment, Consumption Private, Consumption Public, Industry, Total
debit, Total Population and Active Population.
Since the number of countries increased from 10 in 1980 to 15 in 2000 we
have a series of second type.
The first two eigenvalues of matrix S were 389.548 and 74.035. Since τ2 =
4184 we assumed the existence of a common structure with degree s = 2.
In Figure 1 we presente the projections of the points representing the stud-
ies in the plane defined by the two first axis.
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FIGURE 1. Geometrical representation of the studies.

It is a very interesting to point out the clear separation of the years corre-
sponding to EC (80-91) from those corresponding to EU (92-2000). More-
over the points lye along an axis. This led us to center their coordinates
and apply principal components. The eigenvalues were 20147.8 and 660.3
so that almost all the information will be carried by the first principal
component

Y = 0.5999(X1 + 84.2381) − 0.8000(X2 + 5.2857). (4)

In Figure 2 we show how the values of that component evolve with time.
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FIGURE 2. Evolution of the first principal components.
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Despite the linear regression

Y = −50.3430 + 4.5766t (5)

having an acceptable value for R2 (0.8005) we must consider that this is
due to a linear behavior in the first phase (EC) followed by a second phase
(EU) with higher values of Y which seem to oscillate. Thus again we have
a separation of the process in two phases:

• from 1980 to 1991 when we had EC;

• from 1992 to 2000 when EU was instituted.

As stated above it may be interesting to see, in some years time, if the
EURO led to a new phase in the integration.
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Abstract: In this paper we propose mixture models for dependent data in time
series framework using a Bayesian approach. In particular we build a hidden
Markov model with stationary distribution a finite mixtures of α-stable distri-
butions to model time series volatility. Mixtures of α-stable distributions are a
very general models that allow for skewness and heavy tails which have as spe-
cial case the Normal mixtures models. The main problem related with α-stable
distributions is the non existence of a close formula for the density function, in
order to overcome these difficulies we adopt Markov chain Monte Carlo methods
to generate sample for the posterior distribution of the parameters.
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1 Introduction

Stable distributions are a rich class of four parameters probability distribu-
tions that allow skewness and heavy tails. The non existence of moments of
order less than α with α ∈ (0, 2] and the lack of closed formulas for densities
and distribution functions for all but few α−stable distributions (Gaussian,
Cauchy and Lévy) has been a major drawback to the use of these distribu-
tions. Fortunately recently many computer programs have been proposed
to handle these distributions and, as a consequence, α−stables have been
introduced in many different fields as physics, economics, finance and tele-
comunications. Here we will consider a step forward of modelling time series
volatility by constructing a hidden Markov model with stationary distri-
bution a finite mixtures of α−stable components. Finite mixtures of dis-
tributions have provided a mathematical-based approach to the statistical
modelling of a wide variety of phenomena. As any continous distributions
can be approximated arbitrarily well by a finite mixture of normal densities
with common variance, mixture models provide a convenient semiparamet-
ric framework in which to model unknow distributional shapes in particular
when attention is focused on tails and skenwess. Mixtures of α−stable dis-
tributions are a more general model since they have as special case, the
mixtures of normal distributions which are the most widley studied finite
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mixtures; see for example Richardson and Green (1997). Our aim is to ex-
ploit stable mixture models for dependent data in time series framework
using a Bayesian approach. In order to overcome the difficulties related with
the class of α−stable distributions we will adopt Markov chain Monte Carlo
(MCMC) methods to generate samples from the full posterior distribution
and estimate the parameters following Buckle (1995).

2 Mixture of α−stables

A random variable X is said to have a four-parameter stable distribution
Sα(β, γ, δ) if his characteristic function has the form

E(eiϑX) =
{

exp
{−γα|ϑ|α(1 − iβ(signϑ) tan πα

2 ) + iδϑ
}

se α �= 1,
exp

{−γ|ϑ|(1 + iβ 2
π (signϑ) ln |ϑ|) + iδϑ

}
se α = 1, (1)

see Samorodnitsky and Taqqu (1994). The stability parameter α lies in
the range (0, 2], and measures the degree of peakedness of the pdf and
the heaviness of its tails. When α = 2 the stable distributions reduces to
a Normal distribution. The skewness parameter β ∈ [−1, 1] measures the
departure of the distribution from symmetry, while δ ∈ (−∞,∞) is the
location parameter and γ ∈ (0,∞) is the scale one. The density function
of a finite mixture of α−stable distributions would take the form

f (x|Ψ) =
k∑
i=1

πif (x|ϑi) (2)

where the mixing weights are such that 0 ≤ πi ≤ 1 and
∑k
i=1 πi = 1;

ϑ = (α, β, γ, δ), Ψ = (π1, · · · , πk, ϑ1, · · · , ϑk) and f (x|ϑ) is the generic den-
sity function of a stable distribution. Some idea of the range of shapes
and features provided by mixtures of those distributions are shown in Fig-
ure 1(A-D).
Even though mixture models appear to be a simple extension of classical
models, they result in complex computational problems when implement-
ing standard estimation principles; in fact due to the assumption that the n
observations originate indipendently from the distribution with density (2),
the moltiplicative structure of the likelihood function leads to kn terms. The
standard solution to this problem is to use indipendent categorial variables
Z taking the values 1, . . . , k with probabilities π1, . . . , πk defined above,
and supposing that the conditional density of X given Z = i is f (x|ϑi).The
practical exploitation of the mixture representation from a Bayesian point
of view requires the use of Markov chain Monte Carlo simulation, in partic-
ular the use of the Metropolis-Hastings within Gibbs Sampler alghorithm
will enable us to produce samples from the joint posterior density of the
parameters of the mixtures.
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In fact, the main problem related within the class of α− stable distributions,
i.e. the non existence of a closed formula for the density function, can be
overcome introducing an auxiliary variable y such that the stable density
is obtained integrating out y from the bivariate density

f (x, y|ϑ) =
α

|α− 1| exp

{
−
∣∣∣∣ s

τα,β (y)

∣∣∣∣
α/(α−1)

}∣∣∣∣ s

τα,β (y)

∣∣∣∣
α/(α−1) 1

|s| (3)

where (x, y) ∈ (−∞, 0)×(−1/2, lα,β)∪(0,∞)×(lα,β , 1/2) τα,β = sin(παy+ηα,β)
cos(πy)[

cos(πy)
cos(π(α−1)y+ηα,β)

]
, ηα,β = β min (α, 2 − α)π/2, lα,β = −ηα,β/α and s =

x−δ
γ . See Buckle (1995)and Casarin (2004) for details.

3 Hidden Markov model with mixture α−stable
stationary distribution

We shall explore the extent to which mixture of α−stable distributions can
handle temporally correlated data; specifically, we consider hidden Markov
model which have been extensively used to model weakly dependent het-
erogeneous phenomena, see for example Rydèn et al. (1998) and Robert et.
al (2000). The hidden Markov models extension removes the independence
assumption of the mixture models, by considering successive observations
from (2) to be correlated through the component k from which they origi-
nate. More formally, it is possible to associate to the observations x1, · · · , xn
the allocation variables Z1, · · · , Zn having a Markovian structure. Specifi-
cally our model will take the form of

k∑
i=1

πiSαi(βi, γi, 0) (4)

where the πi are the components of the stationary vector of the transition
matrix of the hidden states {Z1, Z2, . . . , Zt, . . .} where Zt is the allocation
for the t-th observation, A = (aij), such that P (Zt+1 = j|Zt = i) = aij .
Our goal is to model time series which present different regimes of volatility
taking advantage of the heterogeneity of the mixture structure. At the same
time we can model different frequencies of regime switching by estimating
the transition matrix A. To have an idea of the behaviour of the model in
Figure 1(E-F) we have considered mixture of a standard normal distribu-
tion and a stable distribution S1.5(0, 1/

√
2, 0) with transition probabilities

P (Zt = 1|Zt−1 = 0) = 0.1 P (Zt = 1|Zt−1 = 1) = 0.9 in the top panel and
P (Zt = 1|Zt−1 = 0) = 0.9 P (Zt = 1|Zt−1 = 1) = 0.1 in the bottom panel.
For the Bayesian inference of the model it is required to derive the form
of the full posterior distribution as well as all the complete conditional
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FIGURE 1. A,B,C,D: examples of mixture of α-stable densities.
A:0.5S1.9(0, 1, 0) + 0.5S0.7(0, 1, 10); B: 0.5S1.1(0, 1, 0) + 0.5S1.7(0, 1, 2.1); C:
0.5S0.7(−0.8, 1, 0) + 0.5S0.7(0.3, 1, 6); D: 0.5S0.7(0, 0.7, 0) + 0.5S0.7(0, 2, 6).
E,F: two realizations from a hidden Markov model with mixture α−stable
stationary distribution; standard normal realizations=◦; S1.5(0, 1/

√
2, 0)

realizations=•. E: P (Zt = 1|Zt−1 = 0) = 0.1 and P (Zt = 1|Zt−1 = 1) = 0.9; F:
P (Zt = 1|Zt−1 = 0) = 0.9 and P (Zt = 1|Zt−1 = 1) = 0.1.

distributions for the parameters that enable the implementation of the
Gibbs Sampler algorithm; the detailed description of one step of our Monte
Carlo Markov Chain procedure is as follow:

1. update transition probability matrix A: we assume prior independence
between the rows of A and a prior distribution for the i-th row ai to
be a Dirichlet distribution D(η, · · · , η). According to that, the con-
ditional distribution of ai is D(η + ni,1, · · · , η + ni,k) where ni,j =
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∑n−1
t=1 I {zt = i, zt+1 = j} is the number of jumps from component i

to component j;

2. update the parameter ϑi = (αi, βi, γi, δi) : i = 1, . . . k generate ϑli
from its complete conditional distribution π(ϑli|ϑ−l

i x,y, A, z); details
on conditional distributions of the specific parameters are shown in
Buckle(1995).

3. update the auxiliar variable yt: generate yt from

π(yt|ϑ, x,A, z) ∝ exp

{
1 −

∣∣∣∣ st
tα,β(yt)

∣∣∣∣
α/(α−1)

}∣∣∣∣ st
tα,β(yt)

∣∣∣∣
α/(α−1)

(5)

4. update the allocations Z: Z1, Z2, · · · , Zn are resampled one at a time
from t = 1 to t = n with conditional probability given by

π
(
Zt = i|ϑ,x,y, z−tA) =

azt−1,if(xt, yt|ϑi)ai,zt+1∑k
j=1 azt−1,jf(xt, yt|ϑi)aj,zt+1

(6)

when 1 < t < n, for t = 1 the first factor of the numerator is replaced
by the stationary probability πi and for t = n the last factor of the
numerator is replaced by 1; here f(·, ·|ϑ) is the joint density (3).

To show how the proposed model can handle volatility we will consider the
daily price returns of Abbey National shares already discussed in Buckle
(1995).
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1 Introduction and Data

Random effects models are a very useful framework to monitor disease pro-
gression in medical studies with repeated measurement design, where sev-
eral measurements over time are available for each subject. They allow to
obtain subject specific estimates of both individual and averaged trajecto-
ries, while accounting for heterogeneity, autocorrelation and possible effects
of explanatory variables. Although very popular in practice, conventional
linear models are not always appropriate, since sometimes the trajectories
to be estimated are not linear over the observational follow-up time. This
is particulary true in AIDS studies where the decline of some biomark-
ers’ values is not constant but changes at some unknown time-point. This
implies that the trend pattern is not simply linear but piecewise linear,
exhibiting time-points, the so-called break-points, where it changes rather
abruptly: for instance, Lange et al. (1992) and Kiuchi et al. (1995) and
references therein, discusse the decline of the number of CD4 T-cell trough
such piece-wise modelling in a bayesian perspective.
Difficulties in estimating and testing for such nonstandard models are well-
known and are discussed, for instance, in Hall et al. (2003). They also warn
about impossibility to fit in a likelihood framework and, as the aforemen-
tioned references, perform a fully bayesian analysis to deal with hetero-
geneity in the changepoints.
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Here I propose an approximated method to deal with segmented mixed
models in a likelihood-based perspective, generalizing the approach pro-
posed for simple regression models (Muggeo, 2003). To illustrate, I analyse
the number of CD4 cell number for n = 63 seropositive drug-addicted
subjects with 9 measurements each, followed 1989 to 1997 by the Unit of
Infection Diseases at University of Catania (Sicilia, Italy). Following Lange
et al. (1992) I model the response as square root of the CD4 cell numbers,
since such transformation is expected to normalize data.

2 Methodology

Let yit the tth measurement for subject i = 1, 2, . . . , n; the one-breakpoint
segmented mixed model is yit = β0i+β1iti+β2i(ti −ψi)++ εit where a+ =
a×I(a > 0) and I(·) is the indicator function. hence for the generic subject
i, β1i and β1i + β2i mean respectively the left and right slopes before and
after the changepoint ψi and εit is the usual error term with variance σ2.
Assuming only heterogeneity (i.e. no dependence on explanatory variables)
in each parameter describing the ith track, the equation becomes

yit = (β0 + b0i) + (β1 + b1i)ti + (β2 + b2i)(ti − [ψ + pi])+ + εit (1)

Here the beta-parameters (β0, β1, β2, ψ) are the fixed effects sometimes
said ‘population- averaged’ (or simply ‘population’ parameters) and the
random effects b, are understood to be able to account for heterogeneity
between subjects with respect to corresponding fixed parameters. There-
fore for instance, b1i describes how the evolution of the ith subject (before
the changepoint) differ from the average β1, pi measures how much the
ith changepoint deviates from ψ and so on. Typically it is assumed that
the random effects are multivariate zero-mean Normal distribution with
variance-covariance matrix D, say, b ∼ N (0,D) and independent of the
noise ε.
Muggeo (2003) shows that the segmented (nonlinear) model has an in-
trinsically linear form, so generalizing such re-parameterization to a mixed
framework leads to linear model:

yit = (β0 + b0i) + (β1 + b1i)ti + (β2 + b2i)Uit + (γ + gi)Vit + εit (2)

where Uit = (ti−ψ̂(0)
i )+ and Vit = −I(ti > ψ̂

(0)
i ) are two variables evaluated

at current estimate of breakpoint

ψ̂
(0)
i = ψ̂

(−1)
i + γ̂i/β̂i (3)

Here ψ̂(−1)
i is the estimate at the previous step and γ̂i and β̂i are individual

(i.e. fixed + random) estimates from model (2). The algorithm starts by
putting an initial guess ψ̂i = ψ∗ for every i and goes on by fitting iteratively



V. Muggeo 481

model (2) up to convergence that is usually assured if a breakpoint exists.
At the final iteration, estimates of the population parameters and predic-
tions for the random effects in the (2) are provided. Fixed and random
effects concerning the parameter γ will be not usually noteworthy since
such parameter just measures the gap between the two fitted lines (the
left and the right slope) at the final estimate of the changepoint. On the
other hand, as regard to changepoints, the algorithm also returns the indi-
vidual estimates ψ̂i by means of formula (3). These can be used to obtain
näıve estimates of the quantities of interest, namely: fixed-effect estimate,
ψ̂ =

∑
ψ̂i/n; zero-mean ‘predictions’ by the ‘residuals’ p̂i = ψ̂i − ψ̂ and

relevant standard deviation, σ̂(p) = (
∑
p̂2

i /n)
0.5.

Of course, when no heterogeneity is assumed in the changepoint, a single
fixed estimate can be obtained just by using the fixed estimates of γ and
β2 in the (3).

3 Analysis and Results

Figure 1 left side shows the observed values of the CD4-T cell number
(square root) against time for the n = 63 aforementioned subjects. Decline
in the biomarker’s values is rather evident, but the rate does not seem
constant as it slows down at approximatively 3 and even 6 years. Based on
such empirical evidence a segmented mixed model with two changepoints
is fitted; This is

yit = β0i + β1iti + β2i(ti − ψ1i)+ + β3i(ti − ψ2i)+ + εit (4)

Moreover for simplicity the covariance matrix D of the random effects is
assumed diagonal, meaning independent random effects. Estimation is per-
formed throughout restricted maximum likelihood.
Table 1 displays parameter estimates for two models with two breakpoints.
Model I assumes heterogeneity only in two parameters, the intercept (β0)
and the left slope (β1). By contrast, in the Model II random effects for each
parameter, including changepoints, are accommodated. Estimates for the
changepoints (fixed effects and standard deviations) have been obtained
trough the aforementioned ‘näıve’ approach.
Fitted values are plotted in the right side of Figure 1 where some discrep-
ancy between observed and fitted is evident for high values of response
at early times. This however might be also due to a misspecified form of
matrix D and not depending on the segmented formulation. According re-
sults in Table 1, Model II should be preferred meaning that heterogeneity in
changepoints and/or difference-in-slope parameters are necessary, although
a more parsimonious formulation might be reached. For instance, hetero-
geneity in the left slope and in the first breakpoint could be ignored as also
emphasized in the observed profiles.
Finally for comparison a quadratic model has been also fitted but the fit
was worse (AIC=1568.2 on 7 degrees of freedom).
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FIGURE 1. Observed (left side) and fitted (right side) individual profiles of CD4
T-cell number (square root) over time (years) for n = 63 HIV-positive subjects.
The fitted lines come from Model II in Table 1.

TABLE 1. Estimates from two segmented mixed models(see text).

Model I Model II
Parameter Estimate |t| value Estimate |t| value
Fixed Effects

β0 21.52 211 21.52 236
β1 −3.46 45.8 −3.46 51.6
β2 2.05 19.4 2.13 27.8
β3 0.98 9.3 1.22 13.3
ψ¶

1 2.64 – 2.68 –
ψ¶

2 5.38 – 6.83 –
Random Effects (st.dev.)

b0 0.263 – 0.220 –
b1 0.084 – 0.001 –
b2 – – 0.040 –
b3 – – 0.305 –
p¶1 – – 0.002 –
p¶2 – – 3.001 –

σ 0.838 0.752
AIC (df) 1535.6 (9) 1409.2 (13)
¶ näıve estimates
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4 Conclusions

Here it has been illustrated a method that allows to deal with segmented
mixed models in a frequentist context. This is a nontrivial advantage, as
previous papers have dealt with the topic only from a bayesian stand-
point. Focus has been on estimation and in practice the method seems to
work, but several points have to be clarified, including: how calculate stan-
dard errors and/or confidence intervals for the changepoints when relevant
random effects are included; and how hypothesis testing on heterogene-
ity in the changepoints may be carry out. Namely how is it possible to
test whether all subject have the same changepoint? Likelihood ratio tests
comparing the models having the same and different changepoints can be
carried out in a straightforward way, but some simulation experiment (here
not shown) have emphasized that the null distribution is far from a simple
chi-square distribution; in particular such standard tests turn out to be
dramatically anti-conservative. However simulations have also shown that
the changepoint estimator is asymptotically unbiased and provide predic-
tions reasonably close to true values. Therefore, although further research
is needed, the method seems to be a valid frequentist alternative to the
bayesian approach.
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1 Introduction

In recent years there has been a considerable increase in the practice of
collecting customers opinions about different services (private as well as
public ones) in order to measure the quality of those services. In collecting
opinions researchers typically use questionnaires formed by a few questions
or items regarding different aspects of the service and customers compile
these questionnaires. Usually the customer can choose the response to each
item among a set of given categories or scores. For example, answers can
be ordinal categories that vary from very dissatisfied (or very insufficient,
or strongly disagree) to very satisfied (or very good, or strongly agree). The
answers of any customer to each item depend not only on service quality,
but also on personal characteristics and on the measure tool used for gath-
ering information. Even if quality is the same, different customers can give
it different evaluations because of personal characteristics. Responses also
are influenced by the choice of items included in questionnaires, or by their
lexical formulation, or by the response categories. A very powerful model
able to treat this kind of data is the Rasch Model (Rasch, 1960). Introduced
in psychometric field, the Rasch model has had increasing success in other
applied fields both for its flexibility and simplicity, and also because of the
robustness of its measures. As pointed out by many authors (see, for exam-
ple Molenaar and Fisher, 1995; Bond and Fox, 2001; Beltyukova and Fox,
2002; Tesio, 2003), this model represents a very appealing way to obtain
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universal, objective measures in the social sciences. The Rasch model, in
fact, is a latent structure model by means of which it is possible to derive
continuous measures from total scores obtained by a set of subjects on a set
of items. One of the more interesting aspect of the Rasch model is that it is
a falsifiable model, in the sense that it is possible to detect items (or sub-
jects) that are incoherent and have to be deleted from the questionnaire.
The aim of this paper is to study the effects of two different rating scales on
quality measure using the Rasch model. The model considered is the poly-
tomous extension of the original (dichotomous) Rasch model. In particular,
the so-called Rating Scale Models will be used (see, for example, Bond and
Fox, 2001, ch. 6), which is a suitable model when response categories are
rating scale type with the same number of categories for all items of ques-
tionnaire. The basic assumption of the Rasch model is that the response of
any subject to each item depends on two parameters: a person parameter,
reflecting personal subjective characteristics, and an item parameter, that
measures each item quality, i.e. the item position along an interval scale
reflecting its quality level. Suppose that J items have been administered
to I persons and that each item has K ordinate response categories. Let
Xij be response of person i (i = 1, . . . , I) to item j (j = 1, . . . , J). The
Rating Scale Rasch Model (RSRM) assumes that probability that person
i (i = 1, . . . , I) chooses response k (k = 1, . . . ,K) for item j (j = 1, . . . , J)
instead of response k − 1, is:

P (Xij = k|βi, δj , τk) =
exp{βi − δj − τk}

1 + exp{βi − δj − τk} (1)

In RSRM the function that links individual response probability to param-
eters is the logistic transformation. Probabilities depend on three sets of
parameters: person parameters βi (i = 1, . . . , I), item parameters δj (j =
1, . . . , J) and threshold parameters τk (k = 1, . . . ,K−1). The use of Rasch
models in quality evaluation of a service, as already pointed out by oth-
ers authors (for example, Bertoli-Barsotti and Franzoni, 2001), implies the
following meaning for the parameters:

- person parameters (also called person location) measure individual
satisfaction and reflect all personal characteristics that can influence
satisfaction. High values of person parameter means highly satisfied
persons, while low values means the reverse;

- item parameters (also called item location) measure quality related to
each item. High values of item parameter means service aspect with
low quality, while low values means the reverse; so it is possible to
measure and order items from the one showing best quality to the
one showing worst quality;

- threshold parameters measure the difficulty to endorse each response
category over the previous one. In RSRM all items are supposed to
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have the same number of categories (K) and distances between ad-
jacent categories are supposed to be the same for every item. Each
parameter τk represents the cut-off point between category k and
category k + 1.

2 Analysis of quality of university courses using
RSRM: scale impact

The aim of this paper is to measure the quality level of the teaching service
using two different sets of rating scale: a four point scale (with labels 1=not
at all satisfied, 2=dissatisfied, 3=satisfied, 4=very satisfied) and a five point
scale (with labels 1=not at all satisfied, 2=dissatisfied, 3=almost satisfied,
4=satisfied, 5=very satisfied). The analysis is performed using the RSRM
(see section 1). Data considered are responses given for two kinds of ques-
tionnaires (360 for the four point and 441 for the five point scale) randomly
administrated during year 2000 to students of the Faculty of Economics,
University of Udine, Italy. We focus our analysis on the comparison of the
behavior of Item Location Parameters in the two scales (without consider
the same analysis of the Person Location Parameters) because our interest
lies with the calibration of the questionnaire. Data collected, summarized
in Table 1, have been analyzed with RUMM 2010 (RUMM Laboratory Pty
Ltd), a standard software for the Rasch analysis.

TABLE 1. Percentage frequencies of item responses.
Four-point Scale Five-point Scale

Item Item 1 2 3 4 1 2 3 4 5
Code Label
d13 Meets course objectives 4 17 56 23 2 10 29 42 17
d14 Indicates how to prepare the course 5 33 48 14 3 20 37 29 11
d15 Develops the course systematically 3 16 63 18 4 10 30 39 17
d16 Outlines the major points clearly 5 18 57 20 4 10 29 39 18
d17 Links to other subjects 8 43 42 8 5 23 41 27 5
d18 Provides examples and case studies 3 18 58 21 2 9 30 39 20
d19 Explains clearly 13 24 40 23 11 18 24 29 17
d20 Motivates the students 8 36 38 18 6 20 31 31 12
d21 Gives deeper understanding of topics 2 17 59 22 2 9 33 42 15
d22 Is punctual 6 10 44 40 4 5 19 35 37
d23 Is accessible to students 1 8 53 38 1 3 22 45 28
d24 Has a genuine interest in students 2 12 46 40 3 3 19 44 31
d25 Quality of text books and notes 5 21 64 10 4 10 42 38 6
d26 Effectiveness of other materials 5 27 58 11 3 16 38 37 7
d27 Quantity of time for exercises 4 28 59 9 5 16 37 37 5
d28 Utility of exercises, laboratory, etc. 7 17 57 19 4 12 34 38 12
d29 Links between lectures and exercises 4 22 61 13 4 15 37 37 8
d30 Satisfaction level of exercises 6 23 58 14 5 15 35 38 7
d31 Global satisfaction 3 19 62 15 4 12 30 42 12

In Table 2, giving the estimates of the item location parameters (ILP)
ordered from the lowest to the highest, it can be observed that the items
with best quality (with negative location value) and items with lowest
quality (with positive location value) are the same, apart from their order.
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TABLE 2. Estimated item location parameters for the two scales.
Four-point Scale Five-point Scale

IC ILP SE Chi Sq Prob IC ILP SE Chi Sq Prob
d23 -1.21 0.10 3.27 0.95 d24 -1.05 0.07 9.37 0.40
d24 -1.08 0.10 16.39 0.06 d22 -0.99 0.07 13.82 0.13
d22 -0.85 0.10 19.23 0.02 d23 -0.98 0.07 7.09 0.63
d21 -0.34 0.09 7.18 0.62 d18 -0.34 0.07 10.77 0.29
d13 -0.27 0.09 8.14 0.52 d13 -0.25 0.07 7.38 0.60
d18 -0.22 0.09 4.23 0.90 d21 -0.22 0.07 14.91 0.09
d15 -0.21 0.09 12.66 0.18 d16 -0.19 0.07 22.94 0.01
d16 -0.11 0.09 9.42 0.40 d15 -0.15 0.07 12.84 0.17
d31 -0.02 0.09 27.38 0.00 d31 0.00 0.07 26.12 0.00
d28 0.02 0.09 27.48 0.00 d28 0.13 0.07 23.94 0.00
d29 0.17 0.09 9.47 0.40 d25 0.26 0.07 84.47 0.00
d30 0.27 0.09 7.42 0.59 d29 0.33 0.07 6.97 0.64
d25 0.28 0.09 50.45 0.00 d26 0.35 0.07 7.30 0.61
d26 0.42 0.09 9.90 0.36 d30 0.40 0.07 16.06 0.07
d27 0.44 0.09 21.14 0.01 d14 0.44 0.06 5.09 0.83
d19 0.50 0.09 59.73 0.00 d19 0.47 0.06 85.03 0.00
d14 0.55 0.09 14.90 0.09 d27 0.48 0.06 28.17 0.00
d20 0.61 0.09 36.50 0.00 d20 0.49 0.06 28.16 0.00
d17 1.06 0.08 17.65 0.04 d17 0.81 0.06 20.76 0.01

The two central items (d31 e d28) are the same for the two scales. This
means that items’ order is scale dependent.

TABLE 3. Estimated threshold parameters for both scales.
Four-point Scale Five-point Scale

1 to 2 2 to 3 3 to 4 1 to 2 2 to 3 3 to 4 4 to 5
-2.125 -0.463 2.588 -2.224 -1.047 0.629 2.642

In Table 3 the estimated thresholds are reported and one observes that
distances between adjacent thresholds are very different. In the four-point
scale while distance between threshold one and threshold two is 1.66, the
distance between threshold two and threshold three is 3.05. Also in the
five point scale differences are not the same, but change significantly. This
suggests avoiding the use of natural numbers, like 1, 2, . . . , to quantify
categories in quantitative analysis. In the first two columns of Table 4
there is a summary of the models fit including all items.
The results show that the global Chi-square, for both scales, is not statis-
tically significant.
Looking again at Table 2 is possible to investigate which items, having
associated low values of p-value, give the major contribution to the global
Chi-square values. For the four point scale there are five items that don’t
fit, while they are seven for the five point scale.
The RSRM is estimated again, for both scales, after exclusion of those
items from the models. The fitting tests obtained for the resulting models
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TABLE 4. Models fitting for both scales.
All items After deleting some items

Scale Chi-square D. F. Chi-square D.F.
test test

Four-point 362.52 171 145.79 126
Five-point 431.17 171 122.60 90

are reported in the last two columns of Table 4. The Chi-square test is
statistically significant for the four point scale and is insignificant for four
the five point scale.

3 Conclusions

In conclusion, it is possible to hypothesize that results are scale dependent.
A major result is that considering all categories as equidistant is misleading.
From the goodness-of-fit statistics is possible to note that the five point
scale seems to be more problematic than the four point scale.
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1 Introduction and problem

In Austria most fatal snow avalanche accidents are caused by skiers or
snowboarders. For example in winter 2001/02 79 avalanche accidents (17
fatalities) are reported. 16 from 17 fatalities were caused by alpine skiers or
snowboarders. By far the highest number of accidents took place in Tyrol
(2001/02: 47 accidents/ 12 fatalities).
However it is rather difficult to predict the risk (=probability) of avalanche
events on a backcountry ski slope under given conditions. About 10 years
ago the mountain guide Werner Munter (1997) suggested a quantitative
method to estimate the risk of avalanche events. Assumig that variates

• danger levels from the local avalanche information service (1=low to
5=very high)

• incline of the slope (3 classes from flat to steep)

• aspect of the slope (north, south) and

• skiers behaviour

have an influence on the risk, he calculated a quantity which he calls ”re-
maining risk”. As a consequence of this several other strategies were de-
veloped in order to estimate avalanche danger when backcountry skiing
(Plattner, 2001). But as we showed in Pfeifer and Rothart (2002) Munter’s
quantity cannot be seen as probability of avalanche events. Moreover there
is no empirical evidence for his method because he does not take skiing in-
cidents without avalanche accidents into account. At least it is necessary to
include some information on frequencies of skiers on slopes under specific
conditions.
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2 First statistical model

In Rothart and Pfeifer (2003) we proposed a statistical model on the counts
yi of avalanche events in each class of incline and aspect for days i with
avalanche reports from the Tyrolean avalanche information service (Law-
inenwarndienst Tirol).

log(yi) = LWS+ NEIG+ EXPOS+ WOENDE+ TOURV

Beside danger level LWS, incline of slope NEIG and aspect of slope EXPOS we
took the qualitative variates skiing conditions TOURV and day of the week
WOENDE into consideration. There is some evidence that frequencies of skiers
on slope strongly depend on weather and snow conditions and on the days
of the week (weekend, working days). We used accident data and avalanche
forecasts in Tyrol within the seasons 2000-2002 reported by the Tyrolean
avalanche information service (497 days of observation). Because avalanche
accidents are expected to be rather rare this simple Poisson model shows
strong underdispersion (residual df = 2975, residual deviance = 645.43).
In the following we employ 2 models to overcome this misspecification:

3 Models for counts with extra zeros

Zero inflated Poisson models (ZIP) assume observations yi to be from a
mixture of a Bernoulli and Poisson distribution:

P(yi) =

{
1− p+ p exp(−λ) : yi = 0

p exp(−λ)λyi

yi!
: yi > 0

The observations of zero altered Poisson models (ZAP) are assumed to
come from a mixture that is zero with probability one in the first component
and a truncated Poisson in the second component:

P(yi) =

{
1− p : yi = 0

p exp(−λ)λyi

(1−exp(−λ))yi!
: yi > 0

In the first case the response variate can be seen to be dependent on an
unobserved indicator z which is equal to zero if yi is a structural zero
and equal to 1 if yi is from Poisson distribution. One could say that it
is inappropriate to distinguish between structural zeros of the Bernoulli
process and sampling zeros of the Poisson process. The second approach,
however, does not make a difference between two states of zeros.
In order to define the covariates effects on the observations we use the link
functions of the logistic and the loglinear model:

log(λ) = Bβ logit(p) = Gγ
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TABLE 1. shows results (parameter estimates, standard errors and log-likelihood)
for the Poisson, the ZIP(τ) and the ZAP model (The ZIP model in the unrelated
case did not show reliable results):

Poisson ZIP(τ) ZAP
β se β se β se γ se

ICPT -7.025 0.584 -5.426 1.278 -4.734 3.617 -7,228 0.642
LWS 0.937 0.165 0.805 0.242 1.491 1.075 0.912 0.178
NEIG 0.795 0.136 0.678 0.193 0.031 0.619 0.833 0.147
EXPOS -0.541 0.200 -0.464 0.203 -0.188 0.731 -0.578 0.216
WOENDE 0.323 0.199 0.292 0.186 -0.363 0.846 0.401 0.215
TOURV1 -0.314 0.256 -0.248 0.245 -1.765 0.747 -0.123 0.291
TOURV2 -1.090 0.343 -0.928 0.389 -2.431 1.439 -0.937 0.382
τ 0.302 0.363

loglik -417.10 -414.11 -410.55

If the covariate matrices B, G and the parameter vetors β, γ are indepen-
dent, λ and γ are assumed to be unrelated. In order to reduce the number
of parameters it is recommended to define a relationship between λ and γ
as follows:

logit(p) = τBβ

The linear predictor of the logistic part depends on the linear predictor
of the loglinear part Bβ and a real valued shape parameter τ . Technical
details to these models are given in Lambert (1992) and Welsh et al. (1996).

4 Calculation and results

We fitted ZIP and ZAP models for the same parameter vector as in the
Poisson case. Maximum likelihood estimates of the parameters were com-
puted with a quasi-Newton algorithm (implemented in the Splus function
nlminb). In the case of ZAP models we used the Splus function ezp pro-
vided by Heather M. Podlich in the Splus-library extraz45 (www.maths.uq.
edu.au/ hmp/extraz.html).

5 Conclusion

Using models for counts with extra zeros seems to increase the goodness of
fit of the Poisson model. Predicted probabilities are slightly lower than in
the Poisson case. If we pay our attention to predicted probabilities there is
almost no difference between the ZIP(τ) and the ZAP model.
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FIGURE 1. shows predicted probabilities of avalanche counts larger or equal than
1 dependent on danger level LWS, incline of slope NEIG and aspect of slope EXPOS
for the Poisson (x) and the ZIP(τ) model (+). There is almost no difference
between predicted probabilities of the ZIP(τ) and the ZAP model.
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Abstract: In complete, balanced dose-response trials with independent obser-
vations, the dose-ratio between different treatment groups can be estimated and
exact confidence limits can be found by the Fieller method. We have used the
same simple approach on the general parallel line model and found Fieller-type
confidence limits derived from approximate distributions. A simulation study
show that in situations similar to the dose-linearity trial, the approximate dis-
tributions seem to fit reasonably for samples, as small as 5 subjects per group.
Furthermore confidence regions based on the approximate distribution results in
far more sound conclusions than regions obtained by the delta method, relying
on asymptotic results, when the dose-ratio is truly a non-linear function of the
parameter estimates.
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1 Introduction

In pharmacokinetics it is often of interest to compare the dose-concentration
relations of two drugs or of the same drug administered by different admin-
istration routes. As a part of this comparison the relative bio-availability
might be of interest, that is, a comparison of administered doses resulting
in the same measurable concentration of drug in the blood. In Figure 1 indi-
vidual log(dose)-log(concentration) profiles are shown from a dose-linearity
trial, for two different administration routes of insulin A and B. The trial
was a five period cross over trial in 21 type 1 diabetic subjects. Each sub-
ject was randomized to five of seven possible treatments (three insulin
doses administered by A and four insulin doses administered by B). The
individual log(dose)- log(concentration) relations appear to be linear for
both administration routes and further the linear relations seem parallel.
Within a parallel line model, with log-transformed concentration as re-
sponse variable and log-transformed dose as co-variate, the ratio between
doses that result in same measured blood concentrations corresponds to the
horizontal distance between the estimated lines. The estimate is then a non-
linear function of the slope and intercepts, and the confidence limits can
be found by approximate methods e.g. the delta method. For balanced de-
signs with homogeneous variance, exact confidence limits for the estimated
bio-availability has been developed by (Fieller, 1940). Extensions to cross-
over designs can be found in (Finney, 1978). In a multidimensional setting,
where dose ratios resulting in equal response with respect to several proper-
ties are of interest, the exact method of Fieller in a generalized form, can be
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FIGURE 1. Individual log(dose)-log(concentration) relations.

applied, see (Vølund, 1980). The above mentioned clinical trial was meant
to be balanced, but problems occurred in a few number of experiments and
the data available for analysis did not reflect the planned, balanced design.
Pharmacodynamic quantities were also measured during the trial and hence
the procedure at each visit were rather demanding for the subjects and not
all completed the visits as planned. Therefore, it can be discussed whether
it is reasonable simply to disregard an amount of information obtained for
the non-completing subjects in order to achieve balanced data. Further-
more, it should be noted that administration route B seems to result in
more fluctuating and less stable log(dose)-log(concentration) relations than
B, reflecting heterogeneous within subject variances in the groups. Since
the trial was a cross-over study also between-subject variability should be
accounted for within the model. Finally, it is seen that for both admin-
istration routes measurements corresponding to the lowest dose are much
more variable than measurements corresponding to the higher dose levels.
A unbalanced, mixed model with a complex covariance structure should be
fitted to the data and the bio-availability with confidence limits should be
estimated within this model.

2 The parallel line model

The concept of relative bio-availability only makes sense with parallel log(do-
se) - concentration relations between treatment groups, since the defini-
tion as ratio between doses, resulting in the same concentration (response)
then becomes constant. In pharmacokinetics it is reasonable to assume
dose-linearity, since the amount of drug administrated is usually propor-
tional to the amount of drug measured in the blood. Hence, the log(dose)-
log(concentration) relation can be modelled by a parallel line model and
concentrations are often log-normally distributed and normal theory can
be applied. The general parallel line model is an ordinary mixed model,

Y = Xtβ + Ztγ + ε, (1)
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where Y is the vector of measurements, X is the design matrix for the
fixed part, β is the fixed parameter, Z is the design matrix for the random
part, γ is the random effects vector and ε is the vector of random errors.
The random vectors γ and ε are assumed to be mutually independent and
normally distributed with variance matrices Ω and Σ. Now assume that the
contrast between the two treatment groups of interest is given by β0 and
the common slope in log(dose) is given by β1. The relative bio-availability
µ is then given by µ = β0

β1
and estimated by µ̂ = β̂0

β̂1
. The estimator is

a non-linear function of the parameter vector. Within the general mixed
model set-up we follow the approach of Fieller and consider the hypothesis,

H0 : β̂0 − µβ̂1 = 0 (2)
: Ltβ = 0, (3)

with L = (1,−µ)t. After normalization with the standard deviation a t-
statistic for the hypothesis can be calculated, t̂ = Lβ√

LŴLt
. The t̂ is approx-

imately t-distributed with degrees of freedom that needs to be estimated
from the data, see e.g. (Verbeke and Molenberghs 2000). The t-distribution
leads to following equation, determining the acceptance area at significance
level α,

(β̂0 − µβ̂1)2 ≤ t2
d̂f,α

2
LŴLt. (4)

The equality corresponds to a second order equation for the confidence
limits with solutions

µlower, µupper =
β̂0β̂1 − t2

d̂f,α
2
Ŵ01 ± td̂f,α

2

√
A

β̂2
1 − t2

d̂f,α
2
Ŵ11

(5)

where A = β̂2
1Ŵ00 + β̂2

0Ŵ11 − 2β̂0β̂1Ŵ01 + (Ŵ 2
01 − Ŵ00Ŵ11)t2d̂f,α

2
. The con-

fidence limits given by the equation are borders of an acceptance area and
not defined from the distribution of the estimator. The limits are found
as roots in a second order equation and then no real valued solution need
to exist and the estimated relative bio-availability need not to be included
in the confidence interval. Further, the confidence limits are based on ap-
proximate distribution results, but for small samples this approach might
result in more reasonable confidence limits, than the delta method, which is
based on asymptotical normality combined with a crude first order Taylor
expansion.

3 Simulation study

A simulation study was done to investigate the properties of the confidence
limits. The simulations were inspired by the dose-linearity trial described



B.B.Rønn et al. 497

above, with regard to design and covariance structure. The parallel line
model was assumed,

Yij = αtreat(i,j) + βlog(dosei,j) + Vij , (6)

with treatment dependent intercept and common slope and several different
covariance structures,V (Yi), are simulated. The covariance structure cor-
responding to the dose-linearity trial, where the heterogenous variability
between administration groups and between the lowest dose level and the
remaining dose levels are modelled by four measurement error variances,
corresponding to administration route A and lowest dose level, administra-
tion route A and higher dose levels, administration route B and low dose
level and administration route B and higher dose levels. The covariance
matrix looks as follows,

V (Yi) = ω2 · J + σ2
treat(j),low(j) · I, (7)

where J is a n by n matrix of ones, I is the n dimensional identity matrix,
treat(i) denotes the treatment corresponding to visit j and low(j) indicates
whether the dose given at visit j was low or not. Simulations of 1000 samples
of 5 or 15 subjects are made and in order to obtain unbalanced designs
censoring are introduced of 0, 20 or 50% of the measurements. Simpler
structures of the covariance are also simulated, namely independence, a
split-plot model and a split-plot model with treatment dependent within
subject variance,

V (Yi) = σ2 · I, (8)

(Yi) = ω2 · J + σ2 · I, (9)

V (Yi) = ω2 · J + σ2
treat(j) · I. (10)

Simulations are made with a ratio between the effect of treatments of 40%
(αA − αB = 0.4) and with slopes equal to 1 and 1.8 (β = 1or1.8) corre-
sponding to a linear and a non-linear bio-availability respectively. For all
models, the 1000 simulated samples result in Fieller-type confidence limits
and limits found by the delta-method.
Simulations from the model with β = 1.8, that is when the bio-availability
is truly a non-linear function of the parameter estimates, the Fieller-type
estimates seems to contain the true bio-availability in close to 95% of the
samples, whereas the delta-type intervals contain the true parameter too
often. However, for samples of 5 subjects with censoring of 50% of the
measurements, the models with complex covariance structure fails to fit
the data for many simulated samples.
Simulations from the model with β = 1, where the bio-availability is ac-
tually a linear function of the estimated parameters, both the Fieller-type
and the delta-type confidence intervals contain the true parameter in close
to 95% of the samples.
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4 Conclusion

Fiellers exact method for calculating confidence intervals as an acceptance
area, is generalized to an approximate method in the general mixed model
set-up. The simulation study indicates that the method is better than the
conservative delta method in the truly non-linear case, and equally good in
the linear case. However in a number of the simulated samples the Fieller
confidence interval could not be calculated to contain the estimated bio-
availability, but since (Gleser and Hwang, 1987) showed that confidence
intervals for rates of regression coefficients will have length with infinite
expectation, some problems could be expected. Further the Fieller method
is known to be sensitive to small slopes, but in pharmacodynamic studies,
where the relative potency of a drug is of interest and where the dose-
response relation is seldom proportional, the present results indicates that
conclusions based on Fieller-type confidence intervals lead to more reliable
conclusions, than regions obtained by the delta method, relying on asymp-
totic results.
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Abstract: This paper regards an information criterion for model selection pro-
posed by Vidoni (2003). This criterion, based on a predictive density which im-
proves the estimative one, suitably generalizes the Akaike Information Criterion
(Akaike, 1973). The theoretical issues, behind this new criterion, are briefly re-
viewed and an application concerning variable selection under logistic regression
models is presented.
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1 Introduction

Let us consider the sample Y = (Y1, . . . , Yn), with Y1, . . . , Yn independent
random variables, and a parametric statistical model, specified by the fam-
ily of probability density functions {f(y;ω), ω ∈ Ω ⊆ Rd}, with respect
to a common dominating measure, where ω is an unknown d-dimensional
parameter, d ≥ 1. Since there could be several plausible parametric sta-
tistical models for Y , we are interested in defining a convenient procedure
for model selection. In particular, we aim to choose the model which of-
fers the most satisfactory predictive explanation to the observed sample
y = (y1, . . . , yn).
The well-known Akaike Information Criterion (Akaike, 1973), abbreviated
as AIC, is defined as a first-order unbiased estimator for a target quan-
tity related to the expected Kullback-Liebler information between the true
unknown density of a potential future observation and the corresponding
estimative predictive density. More precisely, if the future random vector
Z is an independent copy of Y , the theoretical target quantity is

η̂(g, f) = EY [EZ{log f(Z; ω̂)}]. (1)

Hereafter, the expectations are with respect to the true unknown distribu-
tion. Indeed, g(·) is the true unknown density of Y and Z and f(z; ω̂) is the
estimative or plug-in predictive density for Z, under the assumed paramet-
ric statistical model, based on the maximum likelihood estimator ω̂ = ω̂(Y ).
The AIC selects the model maximizing ΨAIC(Y ; f) = log f(Y ; ω̂)−d, which
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is a first-order unbiased estimator for (1), provided that the model under
consideration is “true” or it is a good approximation to the truth. An ex-
tension of the AIC, not relying on this strong assumption, is the Takeuchi’s
information criterion (TIC) for model selection (Shibata, 1989). A further
generalization of the AIC and the TIC is proposed by Pan (2001) and it is
based on the quasi-likelihood approach.
However, both the AIC and the TIC, and their potential extensions, are
based on the estimative predictive density, which may be a rather inac-
curate estimator for the true density of Z. For this reason, Vidoni (2003)
proposed a new information criterion, based on an improved predictive
density, as reviewed in the next section.

2 Improved information criterion for model selection

We shall assume the repeated index convention, so that summation is in-
tended over indices that appear more than once in a single term. Following
Corcuera and Giummolè (2000), we consider the predictive density f̃(z; ω̂),
which gives the optimal improvement over the estimative one, as estimator
of the true density g(z), in terms of average Kullback-Liebler divergence.
Namely,

f̃(z; ω̂) = f(z; ω̂)
[
1 +

1
2

{

rs(ω̂; z) + 
r(ω̂; z)
s(ω̂; z)− λrst(ω̂)
t(ω̂; z)

}
σrs

]
,

where, 
r(ω̂; z) and 
rs(ω̂; z), r, s = 1, . . . , d, are the first and the second
partial derivatives of log f(z;ω) with respect to the components of ω =
(ω1, . . . , ωd), evaluated at ω = ω̂, and λrst(ω̂) is a suitable coefficient spec-
ified by Corcuera and Giummolè (2000). Furthermore, σrs = νt,ui

rtius +
O(n−2), r, s, t, u = 1, . . . , d, where νr,s = EY {
r(ω∗;Y )
s(ω∗;Y )} and irs

is the (r, s) element of the inverse of the expected information matrix
[irs] = [−νrs], with νrs = EY {
rs(ω∗;Y )}; ω∗ is the pseudo-true parameter
value such that ω̂ = ω∗+op(1) (see, for example, White ( 1994)). Note that
[σrs] is the asymptotic covariance matrix for ω̂, under a model which could
be misspecified. If the model is correctly specified, that is g(y) = f(y;ω0)
for ω0 = ω∗ in Ω, the well-known information identity νr,s = irs holds and
we obtain the usual relation σrs = irs +O(n−2).
The improved information criterion (IIC) is defined as a suitable first-order
unbiased estimator for a new target quantity

η̃(g, f) = EY [EZ{log f̃(Z; ω̂)}], (2)

which is obtained by substituting in (1) the estimative predictive density
f(z; ω̂) with f̃(z; ω̂). Thus, as proved by Vidoni (2003), the IIC criterion
selects the model maximizing
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ΨIIC(Y ; f) = log f(Y ; ω̂)− ν̂t,r ı̂
rt +

1
2
ν̂t,u ı̂

rt ı̂su(ν̂r,s − ı̂rs),

with ν̂r,s and ı̂rs suitable estimators for νr,s and irs, respectively. It easy
to see that the IIC is a modification of the TIC, which corresponds to
ΨTIC(Y ; f) = log f(Y ; ω̂) − ν̂t,r ı̂

rt. Although, when the model is correct,
the IIC and the TIC coincide, and correspond to the AIC, we presume that
the IIC will usually present a more accurate discriminating ability than the
TIC, since it is based on the improved predictive density.
A preliminary analysis on this conjecture (see also Vidoni, 2003), involves
a comparative analysis of the theoretical target quantities (1) and (2) or of
the corresponding first order approximations

η̂(g, f)=EY {log f(Y ;ω∗)} − 1
2
νr,si

rs +O(n−1),

η̃(g, f)=EY {log f(Y ;ω∗)} − 1
2
νr,si

rs +
1
2
νt,ui

rtisu(νr,s − irs) +O(n−1).

We expect that η̃(g, f), which is based on an improved estimator for g(z),
presents an additional penalization, with respect to η̂(g, f), for misspecified
models.

3 Variable selection in logistic regression models

In this section we compare the two theoretical criteria, with respect to
the problem of variable selection under logistic regression models. Let
Y1, . . . , Yn be mutually independent Bernoulli random variables, with true
probability µ0i of being 1. Let us consider the candidate logistic regres-
sion model specified by the mean µi = exp{ωTxi}/[1 + exp{ωTxi}], with
xi = (1, xi2, . . . , xid)T a vector of known covariates and ω = (ω1, . . . , ωd)T

a d-dimensional unknown parameter. In this case,


r(ω;Y ) =
n∑

i=1

(Yi − µi)xir, 
rs(ω;Y ) = −
n∑

i=1

µi(1− µi)xirxis,

for r, s = 1, . . . , d; ω̂ and ω∗ are such that, respectively,

n∑
i=1

(Yi − µ̂i)xir = 0,
n∑

i=1

{EY (Yi)− µ∗
i }xir = 0,

for r = 1, . . . , d. Hereafter, the hat and the asterisk stand for evaluation
at ω = ω̂ and ω = ω∗, respectively. Indeed, straightforward mathematics
leads to EY {log f(Y ;ω∗)} =

∑n
i=1 µ0i log{µ∗

i }+
∑n

i=1(1−µ0i) log{1−µ∗
i },

irs =
∑n

i=1 µ
∗
i (1− µ∗

i )xirxis and νr,s =
∑n

i=1 µ0i(1− µ0i)xirxis. Note that
a sufficient condition assuring ΨIIC(Y ; f) = ΨTIC(Y ; f) = ΨAIC(Y ; f) is
that the model is “true” or it is a suitable generalization of the true one.
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FIGURE 1. Theoretical criteria η̂(g, f) (dashed line) and η̃(g, f) (solid line) for
the 28 alternative logistic regression models with d = 7 parameters.

Let us assume that the true model is a logistic regression with d0 covariates,
chosen in a set of potential covariates, and that all the candidate logistic
regression models have d = d0 covariates, which may differ from those
specifying the true one. In this situation, since all the alternative models
have the same number of unknown parameters, the penalization given by
the AIC is fixed to d0. Thus, model selection using the AIC involves in fact
only the maximized log-likelihood log f(Y ; ω̂). Here, we aim to compare the
discriminating ability associated to the two alternative theoretical target
quantities η̂(g, f) and η̃(g, f).
We shall consider the birthweight data, provided by Hosmer and Lemeshow
(2000). The response variable is the indicator of birth weight less than 2.5
kg, there are 8 explanatory variables and the number of observations is
n = 189. Let us assume that the true logistic regression model has d0 = 7
parameters, namely, the intercept and those ones related to the covariates
named “lwt”, “race”, “smoke”, “ptl”, “ht”, “ui”.
The true parameter values are set equal to maximum likelihood estimates
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obtained by the original data. We define 28 alternative logistic regression
models with d = 7 parameters, with the intercept included. Figure 1 plots
the values of the (approximated) theoretical criteria η̂(g, f) and η̃(g, f),
in ascending order, for the 28 alternative regression models. As expected,
the two criteria select the true model (here the 28th) and η̃(g, f) usually
presents an additional penalization, with respect to η̂(g, f), for the mis-
specified models. Thus, the model selection criterion based on the improved
predictive density has, in this case, a better discriminating ability. Similar
results may be obtained if we consider different true models. An extended
analysis comparing the two alternative criteria is given by Vidoni (2003).
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