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1 Introduction 

 
The aim of this paper is to present a novel method as an adjunct to a 

human/expert for assembling unknown images from their fragments. Reassembling an 
image from its partial and eroded or decayed constituent fragments is of great 
importance in variety of fields, such as forensics, failure analysis, anthropology, 
archaeology and art reconstruction. It is a common task, indeed, in archaeological 
research and artefact preservation. Reassembly from archaeological fragments is a 
much more involved problem in comparison to other fields due to the following 
reasons. The number of randomly mixed fragments is normally huge, the fragments are 
mostly corrupted, irregular, and frequently with uncertain and eroded boundaries. In 
archaeology the process of assembling may not be required to produce a complete 
solution. Indeed, it may be required to produce a series of possible options and even 
partial solutions which the archaeologist would appraise subject to a range of 
archaeological and often unquantifiable constraints. We propose such a method for 
archaeological images. 

This paper is organized as follows. Prior work related with our proposed method is 
shared in Section 2, while detailed explanation of the proposed method is presented in 
Section 3. Finally, this paper ends with the conclusion part in the Section 4. 

 
2 Related Work 

 
The fact that reassembly of an unknown image manually from its irregular and 

very often eroded fragments is very time-consuming task, motivates researchers to 
design automated systems [1], [2], [3], [4]. The algorithms produced are usually built 
upon several subsystems which generate reliable or accurate scores between fragments. 
Although, these algorithms show great success in specific cases, they have, so far, 
limited success in reassembling incomplete images with vast numbers of eroded pieces 
automatically. 

For 2D matching the algorithms proposed so far can be divided into two categories: 
a) colour based methods, and b) geometry based approaches. Colour based methods use 
the colour information present in the fragments and mainly at the boundaries [4], [5], 
[6], [7]. These algorithms are mostly efficient, but they fail when only the mean of the 
colour intensities belonging to a fragment is taken, or only when the boundary of the 
pair of fragments is considered. Geometry based approaches assemble the fragments by 
matching the boundary curves of the fragment pairs [8], [7], [9], [10]. The geometry 
based approaches can accurately match the adjacent pairs if there is no corrupted or 
eroded geometry at the broken parts of the fragments. Since the fragments of interest in 
our case have exposed to the natural elements, perhaps for thousands of years, it is 
inevitable that the edges of the pieces are eroded/corrupted, and their geometry is 
thereby destroyed. Moreover, the geometry based approaches are relatively slow as 
compared to other methods and they can fail in their search to lock at a local minimum 
of the objective function. 

The latest research published focussed on initially finding matches between the 
fragments by checking the patterns at the boundaries of adjacent fragments. This 
pattern alignment is enhanced by several methods which can be listed briefly as 
follows, a) by using the colour information [11], b) by describing fractured edges using 
the new 'ribbon’ idea [12], c) by normal maps [13]. These methods have great success 
when the features of the fragment pairs are significantly different. We construct an 
integrated approach with the above-mentioned methods, in which mostly the boundary 
correlations between the potential pairs dominate the matches. Matching scores are 
derived and the scores between the potential pairs are adjusted with each of the several 
algorithmic iterations in a graph based approach. 
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3 Proposed Method 
 
Our proposed method is not meant to replace the experts’ (in our case the 

archaeologist’s) skills and knowledge but rather to be an aid and an additional tool. 
This aspect is incorporated in the structure of the algorithm. In our approach we support 
the most likely match with periodicity check, line continuity and inner layer correlation 
all of these terms are explained in this paper below. At the end, the most meaningful 
match is selected as decided by the expert/archaeologist. The method is explained in the 
following subsections which cover formulation of the problem, border and boundary 
extraction, score assignment, decision unit and score rearrangement. 

 
Formulation of the Problem 
 

Given the set of fragments G = Gi of the image (I), we wish to find the most 
likely match between fragments. In the composition of the image I each fragment is 
identified by its pixel boundary vector Bi, i = 1...N, where N is the total number of 
available fragments. The image (I), has more fragments than N, such that some of the 
fragments are lost, however, only N number of fragments are accessible.  Because of 
the possibly of imprecise, eroded or corrupted boundaries we also check the inner 
layers. A layer is a sequence of pixel values once or several times removed off the 
boundary of a given fragment. Hence, each fragment is defined by its boundary matrix 
for each layer, Bij, where j is the layer number 1…ly, and ly is the maximum layer 
number. To locate the maximum correlation exactly in the whole boundary matrix of 
the fragment we also detect the corners (C) of a fragment and divide the boundary 
vector into borders (sub-boundaries) Fk, where k = 1...C, Fk �Bij� Gi �I, as shown in 
the Figure 1.  

Another reason for dividing the boundary matrix into borders is the fact that each 
boundary matrix is huge compared to the likely correct matched pairs. This result in 
vast and unrelated parts of the boundary matrix. These unrelated parts decrease the 
correlation between correctly matched pairs and give misleading results subsequently. 
To avoid these problems, we prefer to check the relatively small but reasonable portions 
of the boundary vector/matrix borders as explained in the following subsection.  

 
Border and Boundary Extraction 

 
As already mentioned, each fragment is defined by its boundary and related 

borders for the layer of interest. To extract the boundary of the image we transform the 
image into binary (for instance the fragment is all white and the background is black), 
by knowing that the photographic image of each fragment is acquired at a constant 
colour background. The structuring element disk with the distance from its origin (r) 
proportional to the intended layer number is used for morphological erosion operation. 
We simply take the difference of the binary images after two consecutive erosion 
operations, with r set equal to the desired layer number, ly and ly -1. Then we obtain the 
raw boundary vector, without corner indicators. 

Figure 1: Border Extraction and Boundary Gathering as a Vector Processes Block Diagram 
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Commonly used and well-known functions for corner detection work well if the 

fragment is close to rectangular in shape with corners at approximately right angles. 
However, when we have a fragment with other form as in Figure 2a these methods fail 
and produce false corner alarms, such as in Figure 2b. This is essentially due the fact 
that we are working in the discrete domain where there are no continuous lines. As a 
result, when we zoom in the one portion of the fragment as in Figure 2b. Hence for the 
corner detection purposes we designed our own specific algorithm.  

 

Figure 2: a. Fragment Sample with the desired corners b. Closed portion of the 
fragment and the corners detected with the current algorithms 

 
We obtain a slope plot by using the boundary coordinates as in Figure 3. Corners 

are checked both from periodicity of the slope vector in Figure 3 within the boundary 
vector, and maximum-minimum slopes in a local area of corner.  

In digital world, a line can be defined by its slope period shorter than its size, 
meaning that each line has a periodic behaviour that determines its starting point to end 
point slope. The line cannot follow same the same slope at each consecutive point as it 
can be seen at Figure 2(b), however it follows a period throughout the line. The 
proposed corner detection algorithm is designed based on this claim. If we assume that 
a boundary vector is taken, and its slope between two cascaded points are calculated, 
this brings a slope vector (s) of that boundary as it can be seen at Figure 3. Initially, 
enough data points (m1) depending on the least border size that is investigating, are 
taken from the boundary slope vector. After that, period of this data array (s(1)…s(m1)) 
is calculated, the calculated period of this line is less than its size (m1). Later on, the 
data is accumulated from “s” vector one at a time, and period of the accumulated data 
array (s(1)…s(m1), s(m1+1), s(m1+2)…s(m2)) is calculated. Moreover, if the 
calculated period is still less than the size of the array (m2), then this indicates that 
“s(m2)”, belongs to the line. On the other hand, if the period is equal to the size of the 
array (m2) than this indicates that the line might be following another direction, starting 
from m2. This doubt about m2, that whether it is a corner point, or not, is overcome by 
accumulating the rest of the s vector size at a time, and its corresponding period, as it is 
done until m2 point. Furthermore, if they are equal in every time, then this indicates that 
slope vector is aperiodic after m2, and it is unique. After m2 is marked as a corner, the 
algorithm is iteratively computed for the s’ vector, which corresponds to [s(m1+1), 
s(m1+2)….s(end)]. 

Within the local area next maximum-minimum and the previous maximum-
minimum slope values are checked and the detected corner is verified. This approach is 
also supported by the local standard deviation calculations of the differences at 
boundary's x values and y values. Peaks in the sliding standard deviation vector over the 
slope vector indicate a possible corner. These two checks, supports the proposed corner 
detection algorithm for the worst cases that it might fail. 

Corner extraction results for an ideal fragment is shown in Figure 4(a), and corners 
for a fragment with curves can be found at Figure 4(b). We put an indicator (NaN in our 
case) for the detected corners in the boundary vector. Hence, we obtain a single vector 
to represent each Gi. 
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Score Assignment 
 

We used a dynamic graph based approach to track the relations between 
fragment pairs, and their corresponding borders. We basically use a cross correlation 
metric to determine the weights in the dynamic score graph. 

Cross correlation calculated from the equation 1, where cy1y2 is the sample 
covariance function calculated from 2 and sy1, sy2 are corresponding sample standard 
deviations of the time series y1t and y2t at lags k = 0, ±1, ±2, … calculated from 
equation 3. µy1 and µy2 are the sample means of the time series. 

𝑟𝑟!!!! 𝑘𝑘 =
𝑐𝑐!!!! 𝑘𝑘
𝑠𝑠!!𝑠𝑠!!

    𝑘𝑘 =  0,±1,±2, . .    (1) 

 

𝑐𝑐!!!! =  
!
!

(𝑦𝑦!! − µ!!)(𝑦𝑦!!,!!! − µ!!)!!!
!!!  𝑖𝑖𝑖𝑖 𝑘𝑘 = 0, 1, 2…

!
!

(𝑦𝑦!! − µ!!)(𝑦𝑦!!,!!! − µ!!)!!!
!!!  𝑖𝑖𝑖𝑖 𝑘𝑘 = 0,−1,− 2…

   (2) 

 

𝑠𝑠!" =  𝑐𝑐!!!!(0), 𝑐𝑐!!!! 0 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑦𝑦!       (3) 

 

 
Figure 3: Slope Plot of the Consecutive Points at the Boundary of a Fragment 

 
Initially, the scores are calculated over the first layer. Elimination with a 

predetermined threshold is performed and most likely solutions are gathered. With this 
knowledge of the most possible matches, we supervise the inner layer correlations. 
However, the correlations at the inner layers are relatively small as it can be seen at the 
Figure 5. As a result, the threshold that eliminates the wrong matches and indicates 
frame borders of the image, (at the frame borders of the overall image I, we do not 
expect any match) is decreased. The whole idea is represented in the Figure 6. 

 
 

                                                                                      
   (a)                                                                                       (b) 

Figure 4: Corner detection for the non-ideally shaped fragment and for the ideally shaped fragment 
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Figure 5: Layer by Layer Score Vector Plot 

 

 
 

Figure 6: Block Diagram of the Proposed Method 
Interpolation 

 
At the inner layers the size of the corresponding border vector is smaller (fewer 

samples). This reduction in the length of the inner layers (pixel changes in the layer 1 to 
layer 3 cross correlation calculation) results in changes of the maximum correlation 
location within the two corresponding borders. To overcome this problem, the smaller 
border vector is linearly extrapolated |layer1 - layer2| times. Here, layer1 is the layer 
number of the first border and layer2 is the layer number of the second border. 

 
Calculation of the Cross Correlation in 3D 

 
Cross correlation is calculated between each fragment pairs at the desired layer 

(j). Especially, in each fragment pair (a1 and a2), all Fks of the related Ba1j and Ba2j. 
However, since RGB colour space intensities are used throughout the work presented, 
three dimensional vectors are obtained for the boundary vectors. The cross correlations 
between the corresponding channels of the border vectors are calculated. (red channel 
of a1 - red channel of a2) Then, each cross-correlation vector for red, green and blue for 
the related pair at the predetermined layer are multiplied and to yield a score vector. 
Since, the orientations of the fragments are unknown, the cross correlations should be 

30



 
 

controlled in two directions. First, the cross correlation is calculated in the same manner 
as the borders located in the boundary vector, and then one of them is reversed and then 
the cross-correlation calculation is performed again.  

 
Storage of the Data 

 
Five-dimensional arrays are used to store the scores, and for the graph theory 

applications, implication tables are constructed. The 3D illustration of the array is 
shared in Figure 7. In the score array, 2nd dimension is used to construct the implication 
table. In the 3rd dimension, the cross-correlation multiplication in R-G-B channels 
vector (score vectors) are stored. The 4th dimension is used to store the score vectors 
layer by layer. To be more specific, if ly is the last layer that is going to be used, then 
4th dimension simply constructs the score vectors for the following combinations: 11, 
12, 13… 1ly; 21, 22,...,2ly;ly1,ly2,...lyly. As mentioned earlier, the score vector is 
calculated first with the same locations of the borders vectors as they are in their 
boundary vectors and secondly, with one of the border vector is flipped. Hence, another 
5th dimension is created for the same implication table, scores vector and layers in 
which one of the border vector is reversed. 

 
Figure 7: 3D Score Array Illustration 

Periodicity of the Lines 
 

The periodicity of lines detection is also used as a metric which strengthens the 
score between two fragments. This signals that there is a tight correlation between the 
boundaries of two fragments. The detection is accomplished by checking the scores 
vector (product of cross correlations in R-G-B channels). When there are symmetrical 
peaks around the maximum point, as in Figure 8(a), it can be deduced that precise shifts 
(amount of the period) of the vectors results in again high correlation, which can be 
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seen at the Figure 8(b). Then, after periodicity detection, the score between the related 
fragments is increased exponentially. 

 
Decision Unit and Score Rearrangement 
 

The score assignment initially starts automatically. First, the orientation of the 
vectors of interest are decided by checking the maximum values of the scores vector 
calculates between the 1st layers of the fragments. The correct orientation (whether the 
vector is reversed in the boundary vector, or not) although the fragments are not 
matched at all, yields higher acme among the score vector than the uncorrected 
orientation of the two border vectors. Subsequently, we also encode the correct 
orientation of the vectors to the scores array. 

The designed algorithm iteratively goes over the layers up to the predetermined 
ly (maximum number of layers to be used) as it is illustrated in the Figure 8 for the 
most likely matches. The peak value of the score matrix in each layer is checked by 
the threshold and the shape of the score matrix is also considered as a decision metric. 
Mostly for the correct matches, the score vector shows an impulsive behaviour around 
the principally correlated locations of the border vectors. Moreover, at the inner layers 
of the score vector, it is expected that the impulsive behaviour will continue with a 
lower peak, but with the almost same principal location as it can be seen at Figure 5. 
However, for the wrong matches this impulsive behaviour is not observed.  

The algorithm presents the most likely matches to the expert/archaeologist after 
the steps shown in Figure 6, starting from the furthest correlated fragments. 
Knowledge of the context, such as the archaeological excavation environment, 
historical cognisance and human intelligence here take place and decide whether the 
proposed match is correct or not. With this decision the scores are re-adapted and if 
the given match by the algorithm is rejected the corresponding score becomes NaN, 
and not used again. 

 
 

 
(a) 

 
                                                                                                     (b) 

Figure 8: Plot of the score vector (a) and the periodic lines that we detected by our algorithm(b) 
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4 Conclusion and Future Work 
 
In this paper we presented a novel interactive image reconstruction algorithm. 

Our method consists mainly 3 parts. First, we extract the boundary vector and the 
corners of the fragments. Secondly, we construct a graph based on the correlation 
between the inner boundaries of the fragments. Afterwards, the expert/archaeologist is 
introduced to contribute to the process and to control the proposed algorithmic matches. 
Our results from initial trials show that the correct matches are determined. 

Although our study is only a small step, we believe that this model will insert 
another insight, and will be useful for the construction of future image reassembly 
algorithms. In the future, the 3D space orientation of the fragments can be added as a 
metric for the matches of fractured pairs. Moreover, this method can be applied to the 
complex data-sets with imprecise boundaries and locally corrupted 3D fragments. 
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