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1. Introduction

Multilevel data structures, where data are typically clustered in nested levels, are common
in many fields. An emblematic example consists of students, that are grouped in classes and
schools (individual cross-sectional data) or children growth evaluated at several time points
(repeated measures). Multilevel data require specific models referred to as multilevel, random
effects or mixed (Snijders and Bosker, 2012).

Model specification is a challenging task in mixed models. Typically, a linear model is as-
sumed, although non-linearities and interaction effects are undeniably of interest. A worthwhile
approach exploits regression trees and the CART algorithm (Breiman et al., 1984) to capture
non-linearities and high-order interaction effects. In particular, regression trees are a statistical
learning algorithm that shapes the regression function as piece-wise constant over a recursively
found partition of the covariate space. The graphical display of the recursive partition provides
an easy interpretation of this predictive algorithm. The procedure, however, assumes statistical
units to be independent, which is not the case of clustered data.

Regression trees have been extended to clustered data by Hajjem et al. (2011), who pro-
posed to model fixed effects with a decision tree while accounting for random effects via a
linear mixed model in a separate, subsequent, step. In particular, they first apply the CART al-
gorithm as if data were not clustered to estimate the fixed effects. It is shown that random effect
regression trees are less sensitive to parametric assumptions and provide improved predictive
power compared to linear models with random effects and regression trees without random ef-
fects. The literature has thereon grown with variants and extensions. Among others, see Sela
(2012); Hajjem et al. (2014); Miller et al. (2017).

In this work, we propose a further variation of the mixed effects regression tree, where the
fixed and the random part parameters are estimated jointly, using a backfitting algorithm. To
ease the interpretation, our proposal incorporates a linear component additively to the regression
trees. Consequently, the general trend of dependence is captured by the linear component, while
the tree part captures interactions and non-linearities.

The proposed algorithm is then applied to data collected by the national institute for the
evaluation of the educational system and training (INVALSI: Istituto Nazionale per la VALu-
tazione del Sistema educativo di Istruzione e di formazione) in Italy. The study aims to com-
pare schools’ educational effectiveness impartially by measuring students’ progress over their
careers. We focus on test scores in Mathematics, given some characteristics of the school and
the pupil. The proposed model is able to take into account the student clustering in schools and
to capture interesting interactions between student-level covariates and school-level covariates.

The rest of the paper is organised as follows. Section 2 illustrates the model proposed,
together with the backfitting algorithm. Section 3 describes the application of the proposal to
INVALSI data. A brief section of final remarks concludes the paper.
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2. A tree embedded linear mixed model

We propose a random effect model, called Tree Embedded Linear Mixed (TELM) model,
able to treat both non-linear and interaction effects and cluster mean dependencies. Motivated
by the application of interest, we consider in particular a two-level random effect model. Hence,
we will denote as level 1 units the statistical units (e.g. students) and level 2 units the groups
(e.g. schools).

The model is a piecewise-linear regression function, consisting of the sum of a tree com-
ponent and a mixed effect linear component. The proposal is the mixed effect version of the
semi-linear regression trees (Vannucci, 2019). It can be ideally divided into three parts: a fixed
effect linear part, a fixed effect non-linear part based on a tree and a random effect part. The
resulting model can be formulated as

Yij = β0 +Xijβ + Zjγ + T (Xij,Zj) + Uj + εij (1)

where Yij is the response variable for level 1 unit i belonging to level 2 unit j, β0 is the (fixed-
effect) regression intercept, Xij is the vector of the level 1 covariates, β the associated fixed
effect coefficients, Zj is the vector of the level 2 covariates, γ the associated fixed effect coeffi-
cients. Here, T (Xij,Zj) is the tree based component depending on some or all the level 1 and
the level 2 explanatory variables. Finally, Uj ∼ N(0, σ2

u) is the random intercept for level 2 unit
j and εij ∼ N(0, σ2

ε ) are the regression errors.
The model is additive in its components where the tree-component acts as a region-specific

categorical variable. This can be seen in the following alternative specification

Yij = β0 +Xijβ + Zjγ +
M∑

m=1

µmI{(Xij,Zj) ∈ Rm}+ Uj + εij, (2)

where R1, . . . , RM is the partition of the predictor space corresponding to the tree-component.
When the unknown regression function can be assumed to be quasi-linear (Wermuth and Cox,
1998), the number of leaf nodes M can be kept small to avoid overfitting.

To account for the contextual effects of level 1 predictors, we add the cluster mean W j =
(1/nj)

∑nj

i=1 Wij to the set of level 2 predictors Zj (Snijders and Bosker, 2012).
An iterative, backfitting-like procedure obtains model fitting. First, the tree is initialised

at the mean of the response variable and the partial residuals Y ∗ are computed by subtracting
to Y the tree prediction. Secondly, a linear random intercept effect model is fitted on Y ∗ and
explanatory variables at the individual and group level. The corresponding partial residuals Y ∗∗

are obtained by subtracting to Y model predictions. These partial residuals Y ∗∗ are employed
in the next step to fit a new tree, using the CART algorithm (Breiman et al., 1984) with a short
depth. We iterate alternating the two fitting steps until convergence is reached. At the end of
the procedure, model (2) is fitted by a linear random effect model using the partition associated
with the tree selected at convergence. The leaf node parameters µm are estimated jointly with
the other model parameters β0, β, γ, σ2

u, σ2
ε .

The main difference of our procedure with respect to previous proposals (Hajjem et al.,
2011; Sela, 2012), is the inclusion of the linear component Xijβ + Zjγ in the random effect
model (2). In the presence of quasi-linear relationships, this inclusion allows us to avoid over-
fitting and helps interpretation. Moreover, since the µm are jointly estimated in the final step,
standard hypothesis tests and confidence intervals can be used for model selection and evalua-
tion, together with the mean squared error computed on a test data set for prediction accuracy
evaluation.
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3. Application: Invalsi tests in Italian schools

We apply the TELM model outlined in the previous section to data on students’ achievement
collected by INVALSI. The Institute yearly carries out standardised tests to assess students’
achievement in mathematics and reading and evaluate the overall quality of the educational
offering of schools and vocational training institutes. See Arpino et al. (2019) for a discussion
on this set of data.

As an illustration, we are here focusing on data on students who participated in the Maths
tests at 5th and 8th grades. Specifically, the dataset is obtained by linking data on students
who attended the 5th grade in 2013-2014 with data on students who attended the 8th grade in
2016-2017. The number of students who participated on both occasions of the Maths test is
409 528. They are grouped into 5 773 schools. We aim to predict the Maths test score, while
understanding which of the included variables may be associate to the final score. Table 1 lists
the considered explanatory variables. As shown in the table, we include both student level and
school-level covariates, denoted in (1) as Xij and Zj respectively. Among the school level
variables, we consider, in addition, the average of 5th grade Maths test and the average of the
Socio-economic status index for each school. We are denoting these variables CM MATH5 and
CM SES.

Table 1: Student and school level variables (INVALSI data years 2014 and 2017).
Student level variables (level one)

MATH8 (Response) Test score at the 8th grade (0-100)
MATH5 Test score at the 5th grade (0-100)

SES Socio-economic status
FEMALE 1 = Yes, 0 = No

ENROLLED School enrolment (1 = Regualrly enrolled, 2 = Enrolled
one year in advance, 3 = Enrolled one year later)

IMM Citizenship (0 =Italian, 1 = 1st generation immigrant,
2 = 2nd generation immigrant)

School level variables (level two)
AREA Geographical area (0 = NE, 5 categories)
TOWN Provincial capital
CLSIZE Average num of students per class
SCSIZE Number of classes in the school
PUBLIC Type of school (0 = Private, 1 = Public)

The proposed model takes into account both linear and non-linear effects and can detect the
presence of both within level and cross-level interaction effects. In particular, the tree com-
ponent T (Xij,Zj) in (1) is modelling non-linearities and interactions at once via a piece-wise
linear function. Estimates for model parameters are reported in Table 2, while the tree compo-
nent is also illustrated in Figure 1. The two terminal nodes without label in the plot have been
automatically set in the reference category.

Individual and school level covariates not selected by the algorithm in the tree component
have the usual interpretation. For example, controlling for the model covariates, females have,
on average, around 1.5 points less than males in the score of math at the 8th grade.

Besides the usual interpretation of the coefficients of the linear components, it seems here
interesting to focus on the covariates selected in the tree component of the model, namely the
math score at grade 5 (MATH5) and the geographical area of the school (AREA). In particular,
the tree component algorithm splits the values of MATH5 into three intervals: below 33 (2%
of the observations), between 33 and 72 (55%) and above 72 (43%). Moreover, the algorithm
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Table 2: TELM model fitted on INVALSI data: parameter estimates, standard errors and t-test.
Estimate Std. Error t value

Student level
(Intercept) 31.0733 0.9518 32.6462
MATH5 0.6263 0.0027 232.3463
SES 2.5246 0.0270 93.5909
FEMALE -1.5021 0.0467 -32.1616
ENROLLED 2 1.8029 0.2053 8.7802
ENROLLED 3 -3.5558 0.2027 -17.5432
IMM 1 -1.1107 0.1779 -6.2434
IMM 2 -1.4869 0.1127 -13.1934

School level
CM MATH5 -0.2765 0.0131 -21.1820
CM SES 1.2876 0.2260 5.6971
AREA 2 (NW) 0.4675 0.2574 1.8160
AREA 3 (Centre) -1.9239 0.2562 -7.5080
AREA 4 (South) 8.1865 0.3559 22.9993
AREA 5 (Islands) 8.5293 0.3612 23.6133
CLSIZE 0.1629 0.0088 18.6063
SCSIZE 0.0613 0.0394 1.5562
PUBLIC -2.1495 0.3773 -5.6971
TOWN 0.0275 0.1981 0.1388

Tree nodes
N1: 33 ≤ MATH5< 73 & AREA= 4, 5 -7.1138 0.2465 -28.8633
N2: MATH5 ≥ 73 & AREA= 4, 5 -11.9902 0.2806 -42.7304
N3: MATH5 ≥ 73 & AREA= 1, 2, 3 4.4819 0.0903 49.6540
N4: MATH5 < 33 & AREA= 1, 2, 3 1.9711 0.2691 7.3250

Residual variances
School level (Intercept) 35.75
Student level 218.35
Number of students: 409528 Number of schools: 5773

splits the schools into two groups depending on AREA: schools placed in North or Center Italy,
and schools placed in South Italy and Islands. Thus, the algorithm suggests the presence of
an interaction effect between these two variables, with the effect of AREA depending on the
interval of MATH5 and vice versa. For example, for a pupil living in a region of NW of Italy,
the expected difference with respect to a pupil with same characteristics living in the NE of Italy
(baseline) is 2.4386 if MATH5< 33, it decreases to 0.4675 if 33 <MATH5< 73, and it rises up
to 4.9494 if MATH5 ≥ 73.

Note that the ordinary mixed effect regression model, whose parameter estimates are re-
ported in Table 3, is nested with the TELM model. The Likelihood Ratio test comparing these
two models obtains a test statistic equal to 10168, with 4 degrees of freedom, in favour of
the TELM model. The variation between the estimates in the two models is due to the inclu-
sion of the tree component, that relaxes the assumption of linearity and includes interaction
effects. An interesting variation concerns the AREA coefficients estimates. Ignoring the AREA
and MATH5 interaction, and the MATH5 non-linearity, completely reverse the main effect of
AREA for South and Islands.
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yes noMath5 >= 33

Math5 < 73

Area = 1,2,3 Area = 4,5
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Split 1
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Split 4
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Split 3
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Figure 1: Graphical representation of the tree component of TELM model in Table 2 (nodes
with a label correspond to a parameter in the model; the proportions of level 1 observations at
each node are: left white node 0.35, N1 0.20, N2 0.17, N3 0.26, N4 0.01, right blue node 0.01)

Table 3: Random intercept model fitted on INVALSI data: parameter estimates, standard errors
and t-test.

Estimate Std. Error t value

Student level
(Intercept) 36.2031 0.9438 38.3569
MATH5 0.6328 0.0015 412.2164
SES 2.5509 0.0273 93.3900
FEMALE -1.6821 0.0473 -35.5926
ENROLLED 2 1.5694 0.2079 7.5486
ENROLLED 3 -3.5092 0.2052 -17.1025
IMM 1 -1.5243 0.1801 -8.4648
IMM 2 -1.8652 0.1140 -16.3553

School level
CM MATH5 -0.3240 0.0131 -24.8104
CM SES 1.2809 0.2262 5.6620
AREA 2 (NW) 0.4945 0.2575 1.9203
AREA 3 (centre) -1.9364 0.2564 -7.5529
AREA 4 (south) -2.7964 0.2611 -10.7116
AREA 5 (islands) -2.3695 0.2694 -8.7939
CLSIZE 0.1486 0.0089 16.7787
SCSIZE 0.0572 0.0394 1.4505
PUBLIC -2.1165 0.3779 -5.6012
TOWN 0.1113 0.1982 0.5613

Residual variances
School level (Intercept) 35.58
Student level 223.91
Number of students: 409528 Number of schools: 5773
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4. Conclusions

Tree Embedded Linear Mixed (TELM) models extend random effect models by including
both a linear component and tree component in the regression function. The proposal increases
the flexibility and the predictive ability of ordinary random effects models by handling simulta-
neously linear and non-linear associations and interactions.

A TELM model has the following characteristics: (1) it can handle clusters with different
numbers of observations (unbalanced clusters); (2) it allows the inclusion of level 1 and level
2 covariates in the splitting process; (3) it allows observation-level covariates to have random
effects. Besides, our proposal extends random effect regression trees in two directions: (i)
incorporating a linear component in the final random effect model, and (ii) allowing to take into
account contextual effects of level 1 covariates.

The application on INVALSI data is an illustrative example of TELM models that shows
how the inclusion of a tree component helps highlight cross-level interactions.
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