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Abstract

The question whether linear programs can be solved in strongly polynomial time is a major

open problem in the field of optimization. One promising candidate for an algorithm that

potentially guarantees to solve any linear program in such time is the simplex algorithm

of George Dantzig. This algorithm can be parameterized by a pivot rule, and providing a

pivot rule guaranteeing a polynomial number of iterations in the worst case would resolve

this open problem.

For all known classical natural pivot rules, superpolynomial lower bounds have been

developed. Starting with the famous Klee-Minty cube, a series of exponential lower bound

constructions have been developed for a majority of pivot rules. There were, however,

two classes of pivot rules whose worst-case behavior remained unclear for a long time –

randomized and memorizing rules.

Only in the 2010s, the works of Fearnley, Friedmann, Hansen and their colleagues

provided superpolynomial bounds for those rules, starting a second series of lower bounds.

The arguably most remarkable of these bounds was Friedmann’s construction for which

Zadeh’s LeastEntered pivot rule requires at least a subexponential number of iterations.

This pivot rule is the main focus of this thesis. Following the work of Friedmann, we

introduce parity games, Markov decision processes and linear programs and investigate

certain subclasses of the first two structures. We discuss connections between these three

frameworks, generalize previous definitions and provide a clean framework for working

with so-called sink games and weakly unichain Markov decision processes.

We then revisit Friedmann’s subexponential lower bound and discuss several of its

technical aspects in full detail and exhibit several flaws in his analysis. The most severe is

that the sequence of steps performed by Friedmann does not consistently obey Zadeh’s

pivot rule. We resolve this issue by providing a more sophisticated sequence of steps,

which is in accordance with the pivot rule, without changing the macroscopic structure of

Friedmann’s construction.

The main contribution of this thesis is the newest member of the second wave of lower

bound examples – the first exponential lower bound for Zadeh’s pivot rule. This closes a

long-standing open problem by ruling out this pivot rule as a candidate for a deterministic,

subexponential pivot rule in several areas of linear optimization and game theory.
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Zusammenfassung

Bis heute ist die Frage, ob lineare Programme in stark polynomieller Zeit gelöst werden

können, eines der größten ungeklärten Probleme der mathematischen Optimierung. Ein

Kandidat für einen Algorithmus, der solch eine Laufzeit garantiert ist der Simplex Algorith-

mus von George Dantzig. Dieser Algorithmus kann durch eine Pivotregel parametrisiert

werden, und eine Pivotregel die eine polynomielle Anzahl von Iteration garantieren würde,

wäre eine mögliche Lösung dieses offenen Problems.

Im Laufe der Zeit wurden für alle klassischen natürlichen Pivotregeln superpolynomielle

untere Schranken entwickelt. Beginnend mit dem berühmten Klee-Minty Würfel gab

es geradezu eine Welle von unteren Schranken, die für eine Vielzahl von Pivotregeln

entwickelt wurden. Es gab jedoch zwei Klassen von Pivotregeln deren schlechtestmögliche

Laufzeit für lange Zeit unklar blieb – randomisierte Regeln und Regeln, die sich frühere

Entscheidungen merken und spätere Entscheidungen von diesen abhängig machen.

Erst mit Beginn der 2010er Jahre haben die Arbeiten von Fearnley, Friedmann, Hansen

und deren Kollegen untere Schranken für diese Regeln geliefert und somit eine zweite

Welle eingeleitet. Die vielleicht bemerkenswerteste Schranke war Friedmanns Konstruk-

tion, für die Zadehs LeastEntered Pivotregel stets eine subexponentielle Anzahl von

Iterationen benötigt.

Diese Pivotregel ist das Hauptthema dieser Arbeit. Friedmanns Ansatz folgend führen

wir Paritätsspiele, Markoventscheidungsprobleme und lineare Programme ein und un-

tersuchen zwei Unterklassen der beiden zuerst genannten Strukturen. Wir diskutieren

verschiedene Zusammenhänge zwischen diesen drei Bereichen, schärfen einige Definitio-

nen und Aussagen und entwickeln ein klares Gerüst für das Arbeiten mit sogenannten

Senkenparitätsspielen und schwach einkettigen Markoventscheidungsproblemen.

Im Anschluss untersuchen wir Friedmanns subexponentielle untere Schranke, diskutie-

ren einige technischen Aspekte dieser Konstruktion im Detail und zeigen drei Makel in

Friedmanns Analyse auf. Der gravierendste ist, dass die durch Friedmann durchgeführte

Folge an Operationen nicht durchgängig Zadehs Pivotregel befolgt. Wir beheben diesen

Makel durch Angabe einer komplexeren Folge von Operationen die Zadehs Pivotregel

befolgt und die makroskopische Struktur von Friedmanns Konstruktion nicht ändert.

Der Hauptbeitrag dieser Arbeit ist ein neues Mitglied der zweiten Welle von unteren

Schranken – die erste exponentielle untere Schranke für Zadeh’s Pivotregel. In Folge

dieses Ergebnisses ist diese Regel nicht länger ein Kandidat für die erste deterministische,

subexponentielle Pivotregel in verschiedenen Bereichen der linearen Optimierung oder

Spieltheorie.
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Notation and general assumptions

Throughout the thesis, we use the following notation and assumptions. Note that some

of the notation introduced here uses terms that are defined in the thesis. This is done

intentionally in order to have one summary for all of the notation that is introduced and

used in this thesis.

Let A ∈ Rm×n, x ∈ Rn and i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.
Let G = (V,E) be a directed graph.

• For n ∈ N, we define [n] := {1, . . . , n}.

• The symmetrical difference of two sets A,B is denoted by A∆B.

• For a countable set S and an index k ≤ |S|, we denote the k-th entry of S by S[k].

• We denote the i-th row of A by Ai,• and the j-th column A by A•,j .

• For a set I ⊆ [n] of column indices with |I| = k, we denote the matrix induced by

the corresponding columns of A by AI . That is, AI := (A•,I[1] . . . A•,I[k]) ∈ Rm×k.

• We analogously define xI := (xI[1], . . . , xI[k]) ∈ Rk for x ∈ Rn.

• We define x ≥ 0 if xi ≥ 0 for all i ∈ [n] and define x > 0, x ≤ 0 and x < 0
analogously. For two vectors x, y ∈ Rn, we write x ≥ y if x− y ≥ 0 and define other

relations analogously.

• The support of x is defined as supp(x) := {i : xi 6= 0}.

• The indicator function is denoted by 1x=y, so 1x=y = 1 if x = y and 1x=y = 0 if

x 6= y.

• The i-th unit vector is denoted by ei (where the dimension should be clear from the

context).

• The n-dimensional vector that has a 1 in every entry is denoted by 1n.

• For a vertex v ∈ V , we denote the set of vertices such that v has an outgoing edge

to them by Γ+(v) := {u ∈ V : (v, u) ∈ E}. The set Γ−(v) := {u ∈ V : (u, v) ∈ E} is

defined analogously.

• The set of all n-digit binary numbers is denoted by Bn, i.e., Bn := {0, . . . , 2n − 1}.

• For b = (bn, . . . , b1) ∈ Bn \ {0}, we denote the least significant set bit of b by ℓ(b),
so ℓ(b) := min{i ∈ [n] : bi 6= 0}. For i ∈ [n], we define ℓi(b) := min{i′ ≥ i : bi′ 6= 0}
analogously.

• If the number b is fixed or clear from the context, we typically write ℓ instead of ℓ(b)
and ν as abbreviation for ℓ(b+ 1).

• For b ∈ Bn and i ∈ [n], we define
∑

(b, i) :=
∑

l<i bl · 2
l−1.

• We use the symbol ∗ as a general wildcard. More precisely, when using the symbol ∗,
this means that any suitable index, vertex, object and so on can be inserted such

that the corresponding statement, definition and so on is valid.
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• The transition from a strategy or policy σb to the strategy σb+1 is abbreviated by

σb → σb+1.

• When not stated otherwise, we assume sets to be ordered.

• For an n-digit binary number, we interpret bit n+ 1 as being equal to 0.

• If we consider a parity game, the term “strategy” always refers to a player 0 strategy.

• When considering boolean expressions, the precedence level of “=” and “ 6=” is higher

than the precedence level of ∧ and ∨. That is, an expression x∧ y = z is interpreted

as x ∧ (y = z).

• For a strategy σ and an edge (v, w), we say that v points to or moves to w if σ(v) = w.

Henceforth, let σ be a strategy for the exponential construction introduced in Chapter 5.

• We define the following function σ (see Table 5.4). We interpret the values of this

functions as boolean values.

Symbol Encoded expression

σ(bi) σ(bi) = gi
σ(si,j) σ(si,j) = hi,j
σ(gi) σ(gi) = Fi,1

σ(di,j,k) σ(di,j,k) = Fi,j

σ(ei,j,k) σ(ei,j,k) = b2

Symbol Encoded expression

σ(si) σ(siσ(gi))

σ(di,j) σ(di,j,0) ∧ σ(di,j,1)
σ(di) σ(di,σ(gi))

σ(egi,j)
∨

k∈{0,1}[¬σ(di,j,k) ∧ ¬σ(ei,j,k)]

σ(ebi,j)
∨

k∈{0,1}[¬σ(di,j,k) ∧ σ(ei,j,k)]

σ(egi) σ(egi,σ(gi))

σ(ebi) σ(ebi,σ(gi))

• The set of incorrect levels for σ is Iσ := {i ∈ [n] : σ(bi) ∧ σ(gi) 6= σ(bi+1)}.

• We define the next relevant bit of σ as

µσ :=

{
min{i > max{i′ ∈ Iσ} : σ(bi) ∧ σ(gi) = σ(bi+1)} ∪ {n}, if Iσ 6= ∅,

min{i ∈ [n+ 1] : σ(bi) = bi+1}, if Iσ = ∅.

• For x ∈ {b, s, g}, we define mσ
x := min({i ∈ [n] : σ(xi)} ∪ {n + 1}) as well as

mσ
x := min({i ∈ [n] : ¬σ(xi)} ∪ {n+ 1}).

• We let Dσ := {(di,j,k, Fi,j) : σ(di,j,k) 6= Fi,j}.

• Let b ∈ Bn and ν := ℓ(b + 1). We typically define m := max{i ∈ [n] : σ(bi) = gi}
and Eσ := {(di,j,k, Fi,j), (ei,j,k, b2) : σ(ei,j,k) = g1} if ν > 1. Analogously, we let

Eσ := {(di,j,k, Fi,j), (ei,j,k, g1) : σ(ei,j,k) = b2} if ν = 1.

• For b ∈ Bn we define m := ⌊(b+ 1)/2⌋ as this quantity describes the maximum

occurrence records that edges have with respect to a canonical strategy σb.

• For b ∈ Bn, i ∈ [n] and j ∈ {0, 1}, we let

ℓb(i, j, k) :=

⌈
lfn(b, i, {(i+ 1, j)}+ 1− k)

2

⌉
+b−1j=0lfn(b, i+1)−1j=1lufn(b, i+1).

• Additional notation regarding binary counting can be found at the beginning of

Chapter 4.

xvi



1. Introduction

In this thesis, we prove that a range of algorithms applicable for several problems of

discrete and combinatorial optimization can require an exponential number of iterations

when using Zadeh’s pivot rule. We consider parity games, Markov decision processes and

linear programs, which are important fields of mathematical optimization and game theory.

For each of these fields, we discuss one of the most important algorithms, namely the

strategy improvement algorithm for parity games, the policy iteration algorithm for Markov

decision processes and the simplex algorithm for linear programs. These algorithms are

closely connected to each other and can all be parameterized by specifying a pivot rule.

We investigate the worst-case running times of these algorithms when they are parame-

terized with Zadeh’s pivot rule and prove that they require exponentially many iterations

in the worst case.

1.1. Parity Games and Markov Decision Processes

Parity games and Markov decision processes can be interpreted as infinite duration

perfect information games played on a directed graph. Parity games are played by two

deterministic players, whereas Markov decision processes are played by one deterministic

and one randomized player.

In a parity game, each vertex of the underlying graph is owned by one of the two players,

called Even and Odd, and each vertex is assigned an integer priority. At the beginning of

a play, a pebble is placed on one of the vertices. Then, the player that owns the current

vertex chooses an adjacent vertex and moves the pebble along the corresponding edge.

This process is then iterated, and the two players construct an infinite walk. The play is

won by Even if the largest priority occurring infinitely often is even, and won by Odd if

that priority is odd. Solving a parity game corresponds to finding winning strategies for

the two players. An example of a parity game is given in Figure 1.1.

4 3

72

Figure 1.1.: Example of a parity game. Blue circular vertices are owned by Even, red rectangular
vertices by Odd. Vertex labels show the priority of the vertex.
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1. Introduction

Parity games arise in many fields of mathematics. They are closely related to other and

more general classes of games [Pur95, Sti95, Jur98], the problem of µ-calculus model

checking [EJ91, EJS93, GTW02] and are also central for several problems regarding

computer-aided verification [AVW03, FLL10]. Parity games are also very interesting from

a complexity theoretical point of view. The natural decision problems corresponding to

parity games belong to NP∩coNP[EJS93] and even UP∩coUP [Jur98], while computing

winning strategies is known to be in CLS [DP11]. Quite recently, a breakthrough result of

Calude et al. showed that parity games can be solved in quasi-polynomial time [CJK+17].

The results and techniques were then extended to prove that quasi-linear space is sufficient

[FJdK+19] and were applied to improve the running time of classical algorithms [Par19].

However, it is a major open question whether they can be solved in polynomial time.

In Markov decision processes, each vertex belongs to either the deterministic or the

randomization player. As in a parity game, a play in a Markov decision process begins

by placing a pebble in the underlying graph. If the pebble is placed on a vertex of the

deterministic player, then the player chooses an edge, moves the pebble along this edge

and collects a reward that depends on the chosen edge. If the pebble is placed on a vertex

of the randomized player, then one of the outgoing edges is chosen at random according to

a given probability distribution and the pebble is moved along the chosen edge. A play is

infinite, and the objective is to maximize a given function of the expected reward collected

by the deterministic player, for example the average reward obtained per movement of

the pebble. An example of a Markov decision process is given in Figure 1.2.
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Figure 1.2.: Example of a Markov decision process. Blue circular vertices are owned by the deter-
ministic player, red rectangular vertices by the randomization player. Labels on edges
denote the reward collected by traversing it resp. the probability of choosing the edge.

Markov decision processes were introduced and studied independently by several

authors [Sha53, Bel57, How60]. They are typically used to model long-term decision

making under uncertainty. One famous example of a problem that is typically modeled in

this fashion is to manage the inventory of a store that sells a single good and orders its

stock on a monthly basis while not knowing exactly howmuch the customers will buy in the

upcoming month [Put05]. They are used in a variety of applications like reinforcement

learning [SB18], finance, communication networks and several more [FS02, BvD17].

Markov decision processes can be formulated as linear programs [Man60, d’E63, Put05]

and can thus be solved in weakly polynomial time [Kha80, Kar84]. Although there are

variants that can be solved in strongly polynomial time [Ye11, PY15], it is unknown

whether this is true for general Markov decision processes.
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1.2. Strategy Improvement

1.2. Strategy Improvement

Strategies, also called policies in the Markov decision process community, are rules used by

the deterministic player(s) to describe how they move the pebble if it is placed on one of

their vertices. The goal of the deterministic player(s) in parity games or Markov decision

processes is to find optimal strategies. Intuitively, a strategy is optimal for a player in a

parity game if using this strategy maximizes the number of plays they win regardless of

the choices of the other player. In a Markov decision process, a strategy is optimal if using

this strategy maximizes the predefined function of the expected collected reward.

In theory, strategies might depend on the history of a play, like the previous movement

of the pebble, or the decisions of the other player. It is a major result in the theory of parity

games and Markov decision processes that such strategies do not need to be considered

for finding optimal strategies. More precisely, it is sufficient to consider memoryless,

deterministic strategies, so strategies that do not depend on the history of the play and

always choose an outgoing edge deterministically [How60, Zie98].

One of the key algorithmic frameworks to find optimal strategies is based on the

following idea. If every strategy is assigned a valuation, this defines a pre-order on the

set of all strategies. Now, if this valuation is defined in such a way that a strategy is

optimal if and only if it maximizes the valuation among all strategies, then the problem

of finding an optimal strategy can be solved by improving strategies with respect to

the valuation until this is no longer possible. If the valuations are defined in such a

way that it is easy to calculate them and to improve a non-optimal strategy, then this

framework yields a viable algorithm for finding optimal strategies. This framework is

called strategy improvement or policy iteration and is a standard technique for both parity

games and Markov decision processes [How60, VJ00], although it can also be applied

for more general classes of games [HK66, Con92]. As there is only a finite number of

strategies, strategy improvement always terminates and guarantees to find an optimal

strategy in finite time. The exact number of iterations of strategy improvement highly

depends on the implementation. In particular, the chosen improvement rule, that is, the

procedure deciding how to change the current strategy, highly influences the behavior of

the algorithm. For both parity games and Markov decision processes, superpolynomial

lower bounds were established for the most important and natural improvement rules

[Fri09, Fea10a, Fri11a, Fri11c, FHZ11b, FHZ11a, AF17, DH19]. It is an open question

whether there is an efficiently computable improvement rule guaranteeing a polynomial

number of iterations in the worst case.

Of course, there are many more algorithms that can be used to calculate optimal strate-

gies. For parity games, there are, for example, the recursive algorithm of Zielonka [Zie98],

the small progress measure algorithm [Jur00] and the subexponential deterministic algo-

rithm of Jurdziński, Paterson and Zwick [JPZ08] and its big-step variant [Sch17]. Rather

recently, Calude et al. provided the first quasipolynomial algorithm [CJK+17] which

is considered a major breakthrough and allowed to improve several other algorithms

[FJdK+19, Par19]. Besides using techniques of linear programming, some of the most

notable and important algorithms used for Markov decision processes are value iteration

and modified policy iteration, and we refer to [Put05] for a discussion of these algorithms.
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1. Introduction

Compared to most of these algorithms, the beauty of strategy improvement lies in its

simplicity and that it can be applied to a variety of problems. In particular, there is a

strong and natural connection between the strategy improvement algorithm and the

famous simplex algorithm used for solving linear programs which we analyze in detail in

Chapter 3.

1.3. Linear Programming and the Simplex Algorithm

The field of linear programming was developed in the 1940’s during World War II, and

its original purpose was to assist with logistics and the planning of military operations.

After the war, linear programming was developed further and further, leading to what is

known today as operations research.

The goal of linear programming is the maximization or minimization of a linear objective

function under linear constraints. One of the first and most important contributions to

this area of optimization is the simplex algorithm of George Dantzig [Dan51, Dan63].

Given a feasible system of linear inequalities and equations and a linear objective function,

this algorithm operates as follows. It calculates a vertex of the polyhedron defined by

the given system of inequalities and equations and checks whether this vertex is optimal

with respect to the objective function. This is done by checking whether the vertex is

locally optimal, which is sufficient as polyhedra are convex sets. If this is the case, then

the algorithm has found an optimal solution and terminates. Otherwise, it calculates an

improving direction which corresponds to an edge of the polyhedron. If this edge does not

end in another vertex but is infinite, then the value of the objective function is unbounded

and the algorithm terminates. If this is not the case, then the algorithm proceeds along

the edge until it reaches the next vertex and iterates. The algorithm thus traverses the

vertices and edges of the polyhedron until it either finds an optimal vertex or confirms

that the value of the objective function is unbounded. A visualization of this algorithm is

given in Figure 1.3.

c

x⋆

Figure 1.3.: An example of a possible execution of the simplex algorithm on a three-dimensional
cube. The vertex x∗ visualizes the optimal solution with respect to the objective
function c. Blue vertices are the vertices visited by the algorithm and the green edges
mark the path the algorithm takes.

Until today, the simplex algorithm is one of the most important algorithms in both

theory and practice. One of its key features is that it is highly flexible, as the algorithm

does not dictate exactly which improving direction to choose in each step. It can thus be

parameterized by a pivot rule that determines which improving direction the algorithm
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1.3. Linear Programming and the Simplex Algorithm

Name Lower Bound Proven via

Dantzig’s rule [Dan51] exponential [KM72] Klee-Minty cube
Shadow vertex rule [GS55, Bor87] exponential [Mur80] Klee-Minty cube
Lexicographic rule [DOW55] exponential [DS15] Klee-Minty cube
LargestIncrease rule[Jer73] exponential [Jer73] Klee-Minty cube
Bland’s rule [Bla77] exponential [AC78] Klee-Minty cube
SteepestEdge rule [FG92] exponential [GS79] Klee-Minty cube

RandomEdge rule subexponential [FHZ11b] Markov decision process
Cunningham’s rule [Cun79] exponential [AF17] Markov decision process
RaisingTheBar [Kal91] subexponential [FHZ11b] Markov decision process
Zadeh’s LeastEntered rule [Zad80] exponential [DFH19] Markov decision process
RandomFacet [Kal92, SW92, Kal97] subexponential [FHZ11b] Markov decision process
Randomized Bland [Mat94] subexponential [Han12] Markov decision process

Table 1.1.: An overview over important pivot rules that were developed for the simplex algorithm.
Bounds of randomized pivot rules hold in expectation. Bold lower bounds are tight in
the sense that there is an asymptotically matching upper bound, provided that cycling
of the algorithm is prevented. The given sources do not necessarily refer to the first
mention of a pivot rule or a lower bound.

should take. In the past 70 years, many pivot rules were invented and investigated, and an

overview over some of the most important pivot rules is given in Table 1.1. For a long time,

there was the hope that the simplex algorithm using Dantzig’s original pivot rule might

be a polynomial algorithm for solving linear programs. However, Klee and Minty showed

in 1972 that the simplex algorithm requires an exponential number of iterations [KM72]

in the worst case. Following their line of work, it was proven that several of the most

important and most natural pivot rules require a superpolynomial number of iterations

in the worst case. An overview over some results for classical and natural pivot rules is

given in Table 1.1. Of course, there are many more pivot rules, and there are variants

of the simplex algorithm that implement similar ideas but might for example consider

points outside of the polyhedron instead of vertices. We refer to [TZ93, Han12, APR14]

for further details.

Most of these first worst-case examples were adjusted versions of the Klee-Minty cube

first used in [KM72]. In fact, several of these constructions were proven to be special cases

of a general class of polyhedra, called deformed products [AZ98]. There were however

still pivot rules whose worst-case running times were not proven to be superpolynomial.

These pivot rules were randomized pivot rules in which the choice of the next improving

direction is not deterministic, and memorizing pivot rules in which this choice depends

on previously chosen directions. While it is known since the 1980s that linear programs

can in general be solved in weakly polynomial time via interior point or ellipsoid methods

[Kha80, Kar84], the search for a polynomial time pivot rule continued as such a pivot rule

would yield the first strongly polynomial algorithm for linear programming.

Moreover, such a pivot rule would have immediate consequences for the famous Hirsch

conjecture. This conjecture was stated byWarren M. Hirsch in 1957 and was first published

by George Dantzig in 1963 [Dan63]. It states that the (combinatorial) diameter of a

polytope in dimension d with n facets is at most n − d. This conjecture was open for
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1. Introduction

over 50 years until it was proven to be incorrect by Francisco Santos [San12]. Nevertheless,

a weaker variant, the so-called polynomial Hirsch conjecture, is still open. This conjecture

claims that there is a polynomial function p : R → R such that the diameter of every

polytope with n facets is bounded from above by p(n). The connection between the

simplex algorithm and this conjecture is very natural and strong: The diameter of a

polytope is a lower bound for the number of pivot steps the simplex algorithm has to

perform on the polytope. Moreover, any pivot rule guaranteeing a finite number of pivot

steps directly implies an upper bound for the diameter of any polytope. In particular, the

simplex algorithm is a potential tool for solving the polynomial Hirsch conjecture.

After the Klee-Minty cube was adjusted successfully for a variety of pivot rules, it took

nearly 40 years until a new technique was introduced that allowed for new lower bound

constructions. In 2011, starting with the work of Friedmann [Fri11b], a new class of worst-

case instances based on the connection between linear programs and Markov decision

process was established. This new class then allowed to prove that all of the remaining

candidates for natural and potentially polynomial pivot rules are in fact superpolynomial.

There was however one pivot rule whose exact complexity status remained unclear –

Zadeh’s pivot rule [Zad80].

1.4. Zadeh’s Pivot Rule

Zadeh’s pivot rule was invented in 1980 by Norman Zadeh [Zad80]. The motivation was

the pathological behavior of most pivot rules when applied to deformed cubes. Zadeh

observed that the examples based on the Klee-Minty cube all behaved as follows: There are

directions that would lead the simplex algorithm quickly to the optimal vertex. By carefully

designing the system, these directions appear to only slightly increase the objective function

value, tricking the simplex algorithm into performing a lot of unnecessary steps. More

precisely, the algorithm typically visits all vertices of a facet before moving to the next

facet, although switching to the other facet was a valid choice. Then, after performing

all of these unnecessary steps, the algorithm performs one good pivot step. This idea

is then iterated, forcing the algorithm to perform an exponential number of steps in

total. Geometrically, a good pivot step corresponds to moving to a new facet of the

polytope, while the unnecessary steps correspond to staying in one facet of the polytope.

An algorithm that behaves like this visits all vertices of the cube and thus requires an

exponential number of operations. A visualization of this behavior is given in Figure 1.4.

Objective

Figure 1.4.: Sketch of the worst-case behavior of the simplex algorithm on a three-dimensional
Klee-Minty cube.
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1.4. Zadeh’s Pivot Rule

Zadeh’s idea to prevent this somewhat unbalanced behavior was to enforce balance

artificially. He thus proposed his famous LeastEntered pivot rule that is specifically

designed to avoid this behavior: Whenever the algorithm performs a pivot step, it chooses

an improving direction that was chosen least often before. This can be achieved by

maintaining an occurrence record that counts for every direction how often it was chosen.

Then, whenever the algorithm has to choose the next direction, a direction minimizing

the occurrence record is chosen. This however might not be sufficient to fully specify the

choices of the algorithm as there might be several eligible directions that can be chosen and

minimize the occurrence record. Zadeh’s pivot rule thus needs an additional tie-breaking

rule that decides which direction to choose in such a case.

As Zadeh’s pivot rule depends on previous iterations, it is a memorizing pivot rule.

Next to Cunningham’s pivot rule [Cun79], it was one of the first and most important

memorizing pivot rules. Although a naive implementation of Zadeh’s pivot rule might

lead to cycling, it is very unlikely to do so [Avi09]. Using standard anti-cycling procedures

like the lexicographic rule for choosing the leaving variable, this can be prevented.

This pivot rule defeated all previously known lower bound examples as it only required

a polynomial number of iterations on those. For over 30 years, it was unclear whether

this pivot rule might guarantee a polynomial worst-case running time and interest in

either a proof confirming this conjecture or a counterexample was exceptionally high. In

particular, the price of 1000$ promised by Zadeh for either of the two results promoted

the interest even further and quickly became a part of the folklore of linear optimization.

This offer was made by Norman Zadeh in a letter to Victor Klee, and the letter itself is

one of the most famous notes of linear optimization. The letter first appeared in Günter

Ziegler’s paper [Zie04] and is included here with his kind permission.

Figure 1.5.: The famous letter promising 1000$ to the first person to prove or disprove that Zadeh’s
pivot rule is polynomial.
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For over 30 years, it was unclear whether this rule might guarantee a polynomial

number of iterations, and hopes were high that this pivot rule might provide a strongly

polynomial algorithm for linear programming. In 2011, Oliver Friedmann was able to

solve this problem by proving that Zadeh’s pivot rule might require a subexponential

number of iterations in the worst case [Fri11c]. Although his original proof contained

some flaws that were corrected later (see Chapter 4 and [DH19]), his result ruled out

Zadeh’s LeastEntered pivot rule as one of the final remaining promising candidates for

a polynomial time pivot rule. There was, however, still a gap as his construction did not

yield an exponential lower bound. Since a polyhedron has at most exponentially many

vertices [McM70, AZ98], any deterministic pivot rule that visits each vertex at most once

requires at most an exponential number of iterations. It was thus unclear what the exact

worst-case behavior of Zadeh’s pivot rule was, and although Friedmann’s result proved that

it is worse than polynomial, Zadeh’s pivot rule remained as the last natural deterministic

pivot rule whose exact worst-case behavior was not established. This is of particular

interest as there is a randomized pivot rule that guarantees a subexponential number of

iterations – the RandomFacet pivot rule [Kal92, SW92, Kal97]. Intuitively, this pivot rule

chooses a facet containing the vertex that is currently considered uniformly at random,

finds the optimal vertex contained in that facet, moves to this vertex, and iterates. This

raises the question whether the use of randomization might in general yield better pivot

rules or if there exists a natural deterministic pivot rule that always terminates after a

subexponential number of iterations. Even after Friedmann’s result, this question was not

answered. Although exponential lower bounds for Zadeh’s pivot rule were developed in

more abstract frameworks like Acyclic Unique Sink Orientations [Tho17], the constructions

was applicable for linear programs. Thus, hopes were high that Zadeh’s pivot rule might

be the first natural pivot rule guaranteeing a subexponential number of iterations.

1.5. Our contribution

The main contribution of this thesis is the proof that the simplex algorithm for linear

programs using Zadeh’s LeastEntered pivot rule requires an exponential number of

iterations in the worst case. Forty years after its invention, this settles the worst-case

complexity for Zadeh’s pivot rule. In particular, it remains unclear whether there is a

deterministic pivot rule that can compete asymptotically with the RandomFacet rule.

This result is not only proven for the simplex algorithm but for the general strategy

improvement algorithm that can be applied to parity games, Markov decision processes

and several other classes of games. We also formalize the relationship between Markov

decision processes and induced linear programs, and make some terms and definitions

originally introduced by Friedmann more precise.

Moreover, we discuss several flaws in the original proof of Friedmann’s subexponential

lower bound [Fri11c]. We show that the description given in [Fri11c] contradicts Zadeh’s

pivot rule, and prove that the proof needs to be significantly changed in order to retain the

subexponential lower bound. We then provide these changes and prove that Friedmann’s

historical result is correct.
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1.6. Outline

In Chapter 2, we introduce the mathematical background. More precisely, we introduce

and discuss parity games, Markov decision processes and linear programs and establish

the notation used in this thesis.

In Chapter 3, we discuss the strategy improvement algorithm for parity games and

Markov decision processes. We generalize the definitions of the terms “sink game” and

“weakly unichain Markov decision process”, and introduce the strategy improvement

algorithm for these frameworks. We furthermore prove under which conditions a lower

bound obtained for the strategy improvement algorithm applied to a Markov decision

process implies the same bound for the simplex algorithm when applied to the induced

linear program in Theorem 3.3.4 and Corollary 3.3.5.

In Chapter 4, we discuss Friedmann’s subexponential lower bound construction. We

discuss the key ideas and point out one major flaw in Issue 4.3.12 and several minor flaws

in Issues 4.3.1, 4.3.3 and 4.3.4. These flaws are then corrected in Section 4.4, allowing

us to retain Friedmann’s historic result (Theorem 4.4.15). The results of this chapter

were previously published at IPCO 2019 [DH19] and an extended version is available

online [DH18].

Using the key ideas introduced in this chapter, we introduce the exponential lower

bound construction in Chapter 5. We discuss the main ideas and explain how the strategy

improvement algorithm behaves when applied to this construction. We give a first informal

idea of the proof of the correctness of our main statements in this chapter, since the formal

proof is quite complicated and involved. The formal proofs are then given in Chapter 6,

proving that Zadeh’s pivot rule requires an exponential number of iterations in the worst

case (Theorem 5.3.20). The results of these chapters are available online in a preliminary

version [DFH19].

Finally, we conclude our findings in Chapter 7.
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2. Preliminaries

In this chapter, we introduce the main mathematical frameworks and objects of this thesis.

We begin by discussing parity games, which are two-player games played on a directed

graph, in Section 2.1. In Section 2.2, we introduce Markov decision processes. These

provide a model for making decisions under uncertainty such that a certain objective

function is maximized. We introduce the computational tasks that are associated with

both frameworks. As especially Markov decision processes and linear programs have a

close connection, we give an introduction into linear programming in Section 2.3. We

furthermore discuss the simplex algorithm for solving linear programs and especially

Zadeh’s LeastEntered pivot rule.

2.1. Parity Games

Parity games are a class of games that are played by two players, called player 0 (or Even)
and player 1 (or Odd), on a directed graph. Every vertex of the graph has a natural number

assigned to it, called priority. Priorities are unique, so no two vertices have the same

priority. In addition, every vertex either belongs to player 0 or to player 1. A play in a

parity game begins by choosing a starting vertex and placing a pebble on this vertex. If

the starting vertex belongs to player p ∈ {0, 1}, then player p chooses an edge adjacent to

the current vertex and moves the pebble to the endpoint of this edge. The pebble is thus

placed on another vertex, and the player who owns this vertex then chooses an adjacent

edge again. This procedure is now iterated ad infinitum, and we identify the play with the

sequence of vertices visited by the pebble. Since the play is infinite, some of the vertices

are visited infinitely often. Among all vertices that are visited infinitely often, consider the

vertex with the highest priority. If its priority is even, then player 0 wins the play. If its

priority is odd, then player 1 wins the play. Thus, the parity of the highest priority seen

infinitely often during a play determines the winner of the play, giving parity games their

name.

This intuitive description is formalized by the following definition.

Definition 2.1.1 (Parity game). A parity game is a tuple G = (V0, V1, E,Ω). We set

V := V0 ∪ V1 and require (V,E) to be a directed graph with |Γ+(v)| ≥ 1 for every v ∈ V.
The function Ω: V → N is the priority function. For p ∈ {0, 1}, the set Vp is the set of

vertices of player p and the set Ep := {(v, w) ∈ E : v ∈ Vp} is the set of edges of player p.
We assume all sets to be finite.

Note that we do not require the priority function Ω to be injective. In fact, this condition

is typically relaxed when considering parity games as there is a weaker condition that
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can be imposed on the priority function that intuitively ensures that it behaves as if it

was injective when injectivity is actually needed. This issue is discussed in more detail in

Chapter 3.

We now formalize the term play and what winning a parity game means formally. Our

notation and presentation is based on the description given in [Fea10b]. For the remainder

of this section, let G = (V0, V1, E,Ω) denote a parity game.

Definition 2.1.2 (Play). Let v0 ∈ V . A play starting at v0 is an infinite sequence π =
v0, v1, . . . of vertices such that (vi, vi+1) ∈ E for all i ≥ 0.

Let π be a play starting in some vertex v. As π is infinite, it has to contain a cycle sinceG
only contains a finite number of vertices. This implies that every vertex contained in π
is either contained exactly once or infinitely often. The play π can thus be partitioned

uniquely into a path component and a cycle component, and these components are used to

define the winner of the play.

Definition 2.1.3 (Components, winning a play). Let π be a play. The set of all vertices

occurring exactly once resp. infinitely often in π is called the path component resp. cycle

component of π and is denoted by P (π) resp. C(π). We also write π = P (π), C(π)∞ as a

representation of π. Player p wins the play π if max{Ω(w) : w ∈ C(π)} mod 2 = p.

Consider a partial play π = v0, . . . , vk and let p ∈ {0, 1} such that vk ∈ Vp. Then,

player p has to choose the next vertex vk+1 such that (vk, vk+1) ∈ E. This decision could

possibly depend on the previously encountered vertices. For example, player p might

choose differently if vertex vk was already encountered previously. It is not immediately

clear if it is beneficial for the player to base their decision on the history of the play or to

even randomize their choices. A central result in the theory of parity games states that

neither of the aforementioned are necessary and that it suffices to consider deterministic,

memoryless strategies for the players (see e.g. [EJ91, Zie98]). Such strategies also induce

a play in the parity game in a natural way.

Definition 2.1.4 (Strategy (PG), induced play). Let p ∈ {0, 1}. A function σp : Vp → V
with (v, σp(v)) ∈ E for all v ∈ Vp is a (deterministic, memoryless) strategy for player p.

Let σ0, σ1 be strategies for player 0, 1, respectively, and v0 ∈ V . The play induced by σ0
and σ1 starting at v0 is the play πv0,σ0,σ1

:= v0, v1, . . . where vi ∈ Vp implies vi+1 = σp(vi)
for all i ≥ 0.

Example 1 (A small parity game). Consider the parity game given in Figure 2.1. It contains 3

player 0 vertices, marked in blue, and two player 1 vertices, marked in red. Edges are colored

accordingly. To further distinguish the two types of vertices, player 0 vertices are circular

while player 1 vertices are rectangular. The label of a vertex shows its priority and is also used

when referring to the vertex. The example also visualizes two strategies σ0, σ1 by marking

the edges of the strategies in bold. The strategies are defined via σ0(6) = 14, σ0(14) = 7 and

σ0(11) = 11 respectively σ1(7) = 6 and σ1(14) = 11. The play π19,σ0,σ1 thus has the path

component 19 and the cycle component 11, so π19,σ0,σ1 = 19, (11)∞.

Strategies can also be used to extend the notion of winning a play to winning a vertex.

We only define the corresponding terms for player 0, the definitions in terms of player 1

are completely analogous.
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6

14

11

7 19

Figure 2.1.: A small parity game with 5 vertices. The blue circular vertices belong to player 0, the
red rectangular vertices belong to player 1. Vertex labels denote priorities.

Definition 2.1.5 (Winning a vertex). Player 0 wins vertex v ∈ V if there is a strategy σ for

player 0 such that player 0 wins the play πv,σ,σ1 for every strategy σ1 for player 1. Player 0
wins the set W ⊆ V if player 0 wins every vertex v ∈ W .

The following theorem shows that restricting the definition of strategies to deterministic

and memoryless strategies is not a real restriction. It states that every vertex is either won

by player 0 or by player 1. In particular, this means that parity games are determined.

Moreover, it shows that winning strategies for the players do not depend on the starting

vertices. This means that if player p wins a set W ⊆ V of vertices, then they can win all

vertices of this set by using the same strategy.

Theorem 2.1.6 (See e.g. [EJ91]). There is a partition W0 ∪W1 of V such that player p
has a single strategy σp in the sense of Definition 2.1.4 winning for Wp. The set Wp is the

winning set of player p.

The problem of solving a parity game is to find the winning sets W0,W1 alongside the

corresponding strategies σ0, σ1. There are several algorithms for solving this problem, and

the complexity status of finding and calculating is also very interesting.

Solving a parity game can be phrased as a decision problem by asking the question

which of the two players has a winning strategy for a given starting vertex. This problem

is one of the few problems contained in NP∩coNP and even UP∩coUP [Jur98] for which

no polynomial time algorithm has been found yet. Most people, however, believe that

solving parity games is possible in polynomial time, and this belief was strengthened

by the breakthrough result of Calude et al. who provided a quasi-polynomial algorithm

for solving parity games [CJK+17]. This algorithm was then improved and investigated

further by other researchers, and the techniques of Calude et al. also allowed to improve

previously developed algorithms [FJdK+19, Par19]. It was however also shown that the

techniques used in the design of this algorithm do not allow for algorithms with strictly

better running time [CDF+19], so new approaches are necessary. For a more general

discussion on algorithms for solving parity games, we refer to [Fea10a, Fri11b].

The problem of actually calculating winning strategies is also interesting from a com-

plexity theoretic point of view. It is known to be in the class PLS containing problems for

which it is possible to verify local optimality of a solution in polynomial time. Moreover, it
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is also contained in the complexity class PPAD that was introduced in [Pap94]. Informally,

this class is defined as the class of problems for which existence of solutions can be proven

by Polynomial Parity Arguments on Directed graphs (hence the abbreviation PPAD). This

complexity class was originally defined by specifying one of its complete problems, the

so-called end-of-the-line problem. The class gained significant attention in the field of

algorithmic game theory when it was proven that the problem of computing a Nash equi-

librium is complete for this class [DGP09]. It was then even proven that the problem is

in the class CLS which is a specific subclass of PPAD∩PLS, capturing problems of local

optimization in which the domain and the functions involved are continuous [DP11].

In this thesis, we focus on the discrete strategy improvement algorithm developed

in [VJ00]. This algorithm can be interpreted as an specification of a general algorithmic

scheme applied to parity games. It is in particular deeply connected to the policy iteration

algorithm for solving Markov decision processes and the simplex algorithm for solving

linear programs. We thus postpone the discussion of this algorithm and the general

algorithmic scheme to Section 3.3 and introduce the next central mathematical framework

of this thesis.

2.2. Markov Decision Processes

Markov decision processes provide a mathematical framework for making decisions under

uncertainty to maximize some accumulated reward. Typically, a Markov decision process

consists of a set of states a system can be in. In each state, a rational decision maker, the

so-called player, has a set of actions available from which they can choose. Depending

on the chosen action, the player receives a reward (or has to pay costs), and the system

transitions into another state. Typically, the player tries to maximize a certain function of

the reward that is accumulated over time when starting in a certain state. This function

might, for example, be the total reward or the average reward per action. If choosing an

action, the new state of the system might be determined completely by the current state

and the chosen action, but it might also be drawn out of an probability distribution which

depends on the chosen action. The tuple consisting of all states, actions, rewards and

transition probabilities (of which some might be deterministic) then constitutes a Markov

decision process.

Markov decision processes were first introduced in the late 1950s and early 60s and it

is hard to determine who was the first to investigate them formally. Among the first and

most influential works on Markov decision processes are [Sha53, Bel57, How60]. They

are typically used to model decision making under uncertainty, and there is a rich theory

on different types of Markov decision processes. We refer here to [Put05] for a modern

and in-depth discussion of Markov decision processes, and for proofs of all statements

given here.

There is, however, another interpretation of Markov decision processes that does not

use the notions of states and actions, and this interpretation is used in this thesis. It is

important to mention that both formulations are interchangeable, and that they are both

used in the literature. We refer to [Han12] for a formalization of how to transfer one
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formulation into the other.

The idea of the alternative formulation used here is to model a Markov decision process

as a bipartite graph. To implement this idea, there is one vertex per state, and the set of all

these vertices is the set of player vertices. Similarly, there is one randomization vertex per

action, and the underlying graph contains an edge from player vertex u to randomization

vertex v if and only if v is an action that can be chosen at u. These edges are assigned

the reward of choosing the corresponding actions. Each randomization vertex then has

edges to all player vertices representing states the system might transition to when this

action is chosen. These edges are assigned the corresponding probabilities. Consequently,

a Markov decision process is a bipartite graph with two types of vertices and two types

of edges. This is formalized in the following definition. Note however that we explicitly

allow edges between player vertices as deterministic actions (i.e., actions that lead to one

state with probability 1) can be modeled without using randomization vertices.

Definition 2.2.1 (Markov decision process). A Markov decision process (or MDP) is a

tuple G = (V0, VR, E0, ER, r, p). The set V0 is the set of player vertices, VR is the set of

randomization vertices, and we set V := V0 ∪ VR. Similarly, E0 ⊆ V0 × V is the set of

player edges, ER ⊆ VR × V0 is the set of randomization edges, and we set E := E0 ∪ ER.

In particular, (V,E) forms a directed graph.

The function r : E0 → R is the reward function, and p : ER → (0, 1] is the probabilistic

transition function fulfilling
∑

v∈Γ+(u) p(u, v) = 1 for all u ∈ VR.

In all of the upcoming definitions and statements, we let G = (V0, VR, E0, ER, r, p) be a

Markov decision process.

As mentioned earlier, Markov decision processes model decision making under uncer-

tainty. The player begins in a specific state and makes sequential decisions that maximize

a function of the accumulated reward. In our framework, this can be interpreted as the

player moving a pebble along the edges of the Markov decision process. At player vertices,

the player can choose which edge they want to take. At randomization vertices, the

player has no control which edge will be chosen as each edge is chosen according to the

corresponding probability distribution.

Depending on the function that is maximized, different strategies for moving the pebble

might be optimal for the player. The player might for example not always choose the same

edge when they visits a player vertex more than once, or their decisions might be based

on the previously encountered vertices. However, for most relevant objective functions, it

is known that strategies maximizing the objective functions do not need to have these

properties. In fact, the best strategies are typically memoryless and deterministic. That is,

they do not depend on previous choices and the player always chooses the same edge

when visiting a vertex more than once. The strategy of the player can thus be described

as a memoryless, deterministic strategy which is defined as follows.

Definition 2.2.2 (Strategy (MDP)). A (deterministic, memoryless) strategy for G is a

function σ : V0 → V such that (v, σ(v)) ∈ E0 for all v ∈ V0.

Strategies in Markov decision processes are also often called policies in the literature.

We deliberately use the same term that we introduced for parity games, since later
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statements will be proven for parity games and Markov decision processes simultaneously,

and overloading notation then streamlines these statements.

Observation 2.2.3. Let σ be a strategy for G. Then, the pair (G, σ) induces a Markov

chain, and this Markov chain is denoted by MC(G, σ).

For this thesis, we assume that the reader is familiar with the basics of Markov chains

as we do not discuss them here and refer to [Put05, Appendix A] instead.

Example 2. Consider the Markov decision process given in Figure 2.2. It contains 3 player

vertices, marked in blue, and two randomization vertices, marked in red. Edges are colored

accordingly. To further distinguish the vertices, player vertices are circular while random-

ization vertices are rectangular. Vertex labels show the names of the corresponding vertex.

Labels on player edges show the reward of these edges, and labels on randomization edges

show the transition probabilities. Note that we do not have rewards on randomization edges,

although Definition 2.2.1 allows for them. The example also visualizes the strategy σ which

is defined via σ(a) = b, σ(b) = c and σ(c) = c by bold edges.

a

b

c

x y

24 3

14

7

0

0.2

0.8

0.5

0.5

Figure 2.2.: A small Markov decision process with 3 player and 2 randomization vertices. The
strategy σ which is defined via σ(a) := b, σ(b) := c and σ(c) := c is visualized by bold
edges.

As discussed previously, the player collects rewards when transitioning between states,

and typically aims to maximize some objective function of the collected rewards. We

consider two of the most important objective functions in this thesis, the expected total

reward criterion and the expected average reward criterion. As the names suggest, the

player aims to either maximize the expected total reward resp. expected average reward

per turn. Although the first objective is not well-defined for general Markov decision

processes, this will not be an issue for the processes discussed in this thesis. In fact, the

total expected reward of all “relevant” strategies will be finite. Moreover, the two criteria

will actually turn out to be equivalent for the Markov decision processes considered in

this thesis.

There are, however, also other objective functions. The most important one of those is

the discounted reward criterion. The intuition between this criterion is that collecting a

reward earlier is more beneficial than collecting the same reward later. Formally, this is

modeled by introducing a discount factor γ ∈ (0, 1), and the i-th reward collected by the

player is discounted by the factor γi. This guarantees that the expected total discounted
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reward is always finite, so this objective function is well-defined for all Markov decision

processes. For this reason and since several algorithms behave particular nicely for the

discounted reward criterion [Ye11], this criterion is widely used. However, most of the

results obtained for the expected total reward criterion also apply to the discounted reward

criterion if the discount factor is sufficiently close to 1.

The choices of the player are modeled by strategies. The computational task associated

with solving a Markov decision process is thus typically the following: Find a strategy

maximizing the given objective function. Such a strategy is called optimal for the respective

objective. Although there are also other computational tasks associated with Markov

decision processes, like finding a strategy maximizing or minimizing the probability for

reaching a certain state [HM18], we only consider the objective of maximizing a given

function of the collected reward.

Of course, there are several ways of finding an optimal strategy. The majority of them

is based on techniques that were originally developed for linear programming, as Markov

decision processes and linear programs are closely related. Algorithms that are designed

specifically for Markov decision processes typically depend on the optimality equations,

which were proposed by Bellman [Bel57]. In principle, they state that the optimality

of a strategy can be characterized and verified by solving a system of equations. More

precisely, given a strategy σ, we can assign values to the vertices representing the expected

collected reward when starting at the vertex and following σ forever. If the strategy is

optimal, then these values are the solution of a specific set of equations. If the strategy is

not optimal, then these values can be used to measure “how far” the current solution is

from an optimal solution. This insight can then be used to improve the current strategy,

yielding an iterative procedure to find an optimal strategy. We now formalize this idea

and base our explanation on [Put05].

We begin by introducing the expected total reward criterion. As mentioned earlier, this

is not well-defined for arbitrary Markov decision processes unless we allow an infinite

total reward. We later define a special class of Markov decision processes guaranteeing

finiteness of the expected total reward.

Definition 2.2.4 (Expected total reward criterion (cf. Theorem 7.1.3. in [Put05])). For a

strategy σ, the values Valσ(u) of the vertices u ∈ V are defined as the unique solution (if

existing) of the system

Valσ(u) =

{
r(u, σ(u)) + Valσ(σ(u)), u ∈ V0∑

v∈Γ+(u) p(u, v)Valσ(v), u ∈ VR

(2.1)

together with the condition that the value of every vertex contained in an irreducible

recurrent class of MC(G, σ) is 0 (making the solution unique). The expected total reward

criterion (ETRC) asks for a strategy σ∗ such that Valσ∗(v) ≥ Valσ(v) for all strategies σ
and v ∈ V . Such a strategy is called optimal for the expected total reward criterion.

Example 3. Consider the Markov decision process discussed in Example 2 alongside the

strategy σ given in that example. Then, Valσ(c) = 0 + Valσ(c). The value of the vertex c is
thus not determined by the Equation (2.1). Since this vertex is an irreducible recurrent class
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of MC(G, σ), its value is set to 0, which is in fact the expected total reward of this vertex.

As σ(b) = c and r(b, c) = 7, this implies Valσ(b) = 7 and, analogously, Valσ(a) = 9. For
the two randomization vertices, we obtain Valσ(x) = 0.5 ·Valσ(c) + 0.5 ·Valσ(a) = 4.5 and

Valσ(y) = 0.8 ·Valσ(c) + 0.2 ·Valσ(b) = 1.4.

We mention here that optimal strategies indeed exist if the values of all vertices are

finite for all strategies [Put05, Chapter 7]. We discuss optimal strategies in more detail in

Chapter 3.

We now consider the expected average reward criterion. As for the ETRC, there is

a set of optimality equations that can be used to define the expected average reward

criterion. We now introduce this system and base our description on the explanation given

in [Fea10b]. To simplify the equations, we assume that the Markov decision process is

bipartite with respect to player and randomization vertices. However, the criterion is also

applicable to arbitrary Markov decision processes when using a more complicated notation

or the “action-state” formulation.

For general Markov decision processes, it is not sufficient to assign a single value to

every vertex representing the collected average reward per turn. The optimality equations

thus consist of two interlaced systems of equations that need to be solved simultaneously.

These are the gain and the bias equations. The gain equation for vertex u ∈ V0 is defined

via

G(u) := max
x∈Γ+(u)

∑

v∈Γ+(x)

p(x, v) ·G(v). (2.2)

The bias equation is based on the gain equation. For u ∈ V0, let Mu denote the set of

vertices in Γ+(u) that achieve the maximum in the gain equation at vertex u, so

Mu :=



x ∈ Γ+(u) : G(u) =

∑

v∈Γ+(x)

p(x, v) ·G(v)



 . (2.3)

Then, the bias equation at vertex u ∈ V0 is defined as

B(u) := max
x∈Mu


r(u, x)−G(u) +

∑

v∈Γ+(x)

p(x, v) ·B(v)


 . (2.4)

It is well-known that a solution to Equations (2.2) and (2.4) yields the expected average

reward as follows [Put05, Theorem 9.1.3].

Theorem 2.2.5. Let G∗, B∗ be solutions to Equations (2.2) and (2.4). Then, for every

u ∈ V0, the gain G∗(u) is the maximal expected average reward obtainable when starting

in u.

It is however unclear how to find solutions to the optimality equations. One approach

is to generalize the equations and introduce the gain and bias of a vertex with respect to

a given strategy. Then, driven by the optimality equations, the strategy can be changed

until a strategy is found such that the gain and bias of this strategy solves the optimality

conditions. This algorithmic scheme is known as strategy improvement and is discussed in

Section 3.3.
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Definition 2.2.6 (Expected average reward criterion). Let G be bipartite, u ∈ V0, and

let σ be a strategy for G. The gain Gσ : V0 → R and the bias Bσ : V0 → R (with respect

to σ) are the solution of the system

Gσ(u) =
∑

v∈Γ+(σ(u))

p(σ(u), v) ·Gσ(v)

Bσ(u) = r(u, σ(u))−Gσ(u) +
∑

v∈Γ+(σ(u))

p(σ(u), v) ·Bσ(v).
(2.5)

The expected average reward criterion (EARC) requires us to find a strategy σ∗ such thatGσ∗

and Bσ∗ fulfill Equations (2.2) and (2.4). Such a strategy is called optimal for the EARC.

The solution of the system (2.5) might however not be unique. Analogously to The-

orem 2.2.5, Gσ(v) is the expected average reward collected when starting in vertex v
and choosing the edge (u, σ(u)) when encountering u ∈ V0. This implies that the gains

are unique. This is not the case for the biases. There are several ways of making the

biases unique, for example by including more equations or restricting the Markov decision

process. We will not discuss this aspect in more detail, as the biases will be unique for the

special class of Markov decision processes considered in this thesis. This class of Markov

decision processes implements the same idea that is used to simplify the treatment of the

parity games. It is thus introduced alongside the corresponding class of parity games in

Section 3.2.

2.3. Linear Programming

Linear programming is a discipline of mathematics that was developed during World

War II to aid in logistics and planning of military operations. Quickly after the end of

the war, companies and industries realized that the techniques and algorithms of linear

programming can be applied to reduce costs and increase profits. As a result, the field

of linear programming and all related aspects of mathematics, like operations research

and integer programming, grew exceptionally fast and became one of the most important

areas in discrete mathematics. Until today, techniques, results and insights of linear

programming are at the core of many algorithms which are used in a variety of software,

making it a very important topic for practical applications. In addition, there are several

theoretical questions that are related to linear programming, with the P-NP-problem being

the most famous of them, emphasizing the importance of linear programming for purely

theoretical research.

In this section, we give a brief introduction to the theory of linear programming. We

focus on the theory necessary to develop Dantzig’s famous simplex algorithm [Dan51]

and omit other aspects like duality, interior point methods or the ellipsoid algorithm. As

the theory of linear programming is a widely discussed topic and content of many books

about optimization, it cannot be attributed to a single publication. This overview is thus

based on many different publications, the main ones being [BT97, Chapters 2-4],[Fri11b,

Chapter 2.2] and [Han12, Chapter 1].
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2.3.1. The Basics of Linear Programming

The main task of linear programming is to answer the following question: Given a linear

objective function and a set of linear constraints, how can a solution maximizing (or

minimizing) the objective function subject to the constraints be calculated? More formally,

given a vector c ∈ Rn and a system

a1,1 · x1 + a1,2 · x2 + . . . + a1,n · xn = b1
a2,1 · x1 + a2,2 · x2 + . . . + a2,n · xn = b2

...
...

...
...

am,1 · x1 + am,2 · x2 + . . . + am,n · xn = bm

(2.6)

of linear equalities, the goal is to find a vector x ∈ Rn maximizing cTx subject to (2.6)

and x ≥ 0. If we define A as the matrix of constraints, this yields the following definition.

Definition 2.3.1 (Linear program). Let m,n ∈ R, c ∈ Rn, b ∈ Rm and A ∈ Rm×n. Then,

the linear program in standard form induced by A, b and c is the optimization problem

max cTx
subject to Ax = b

x ≥ 0
(2.7)

and is denoted by LP(A, b, c). The function cTx is the objective function, the matrix A is

the constraint matrix and the vector b is the right-hand side.

Linear programs can also be defined in a more general way, for example, by also

considering inequalities instead of or in addition to equalities, considering minimization

instead of maximization, or restricting the variable values in a different way. By introducing

artificial variables, it is possible to transform any linear program into the standard form

presented here. One such transformation is performed in Example 4. We do not discuss

this transformation here in general and refer to any book on linear optimization for details.

For the remainder of this section, letm,n ∈ R and consider some fixedmatrixA ∈ Rm×n,

vectors c ∈ Rn, b ∈ Rm and the linear program LP(A, b, c). The task to find a vector x ∈ Rn

maximizing cTx subject to Ax = b, x ≥ 0 requires the analysis of LP(A, b, c) and the

introduction of additional terms and notation.

Definition 2.3.2 (Properties of linear programs). Let LP = LP(A, b, c) be a linear program.

1. A vector x ∈ Rn with Ax = b and x ≥ 0 is feasible for LP or a feasible solution. The

set of all feasible solutions of LP is denoted by PLP := {x ∈ Rn : Ax = b, x ≥ 0}. If
PLP = ∅, then LP is called infeasible, otherwise it is called feasible.

2. A vector x∗ ∈ Rn is optimal for LP if x∗ ∈ argmaxx∈PLP
cTx.

3. LP is unbounded if for every λ ∈ R there exists a x ∈ PLP with cTx ≥ λ. If LP is not

unbounded, it is called bounded.

The following theorem is fundamental. It states that a linear program either admits at

least one optimal solution, can have arbitrary good solutions or does not allow for any

solution at all.
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Theorem 2.3.3. A linear program is either (i) bounded and feasible, (ii) unbounded or (iii)

infeasible and it has exactly one of these properties.

Example 4 (Basic terms of linear programming). Consider the following linear program.

max x2
s.t. x1 − x2 ≥ 0

x1 + x2 ≤ 4
x1, x2 ≥ 0

(2.8)

This linear program is not in standard form. However, in the given form, the set of feasible

solutions of this linear program can be visualized in two dimensions. As each of the four

inequalities (if we interpret the sign restrictions as inequalities) defines a half-space, the set of

feasible solutions is exactly the intersection of these half-spaces.

x11 2 3 4

x2

1

2

Figure 2.3.: Representation of the set of feasible solutions of the linear program discussed in
Example 4.

In this example, every point (x1, x2) contained in the triangle with the three corners

(0, 0), (4, 0) and (2, 2) is a feasible solution. The point (x∗1, x
∗
2) = (2, 0) is the unique optimal

solution. If the inequality x1+x2 ≤ 4 is removed, then the linear program becomes unbounded.

If the inequality x1 − x2 ≥ 5 is added, then the linear program becomes infeasible.

By introducing two artificial slack variables s1 and s2, the linear program can be trans-

formed into standard form:

max x2
s.t. x1 − x2 − s1 = 0

x1 + x2 + s2 = 4
x1, x2 ≥ 0
s1, s2 ≥ 0

(2.9)

In Example 4, the two-dimensional object that is defined by the constraints of LP(A, b, c)
has a very special and distinct geometry. In fact, it is a polytope, and we now introduce

the terms and notation necessary to formally describe the geometry of linear programs.

Intuitively, every constraint of a linear program separates the n-dimensional space into

one “inner” and one “outer” part. The set of feasible solutions of a linear program is then

the intersection of the “inner” parts. Formally, each constraints defines a hyperplane and a

corresponding halfspace, and intersecting finitely many halfspaces yields a polyhedron.
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Definition 2.3.4 (Hyperplane and halfspace). Let a ∈ Rn \ {(0, . . . , 0)} and b ∈ R. Then,
{x ∈ Rn : aTx = b} is the hyperplane defined by a and b. Similarly, {x ∈ Rn : aTx ≤ b} is

the halfspace defined by a and b.

Definition 2.3.5 (Polyhedron and polytope). A polyhedron P ⊆ Rn is the intersection of

finitely many halfspaces in Rn. A polyhedron is called bounded if there exists a constant

M ∈ R such that |xi| ≤ M for every x ∈ P and i ∈ [n]. A bounded polyhedron is called

polytope.

Observation 2.3.6. Let LP(A, b, c) be a linear program. Then, PLP is a polyhedron.

Polyhedra, and consequently also polytopes, have a very special property. Let P ⊆ Rn

be a non-empty polytope and let x, y ∈ P . Then, every z ∈ Rn that lies on the line between

x and y is also contained in P . Formally, this means that for every λ ∈ [0, 1], the point

λx+ (1− λ)y is contained in the polyhedron P , provided x, y ∈ P . This property is called

convexity, and it is a central term in the theory of optimization.

Definition 2.3.7 (Convex set). A set S ⊆ Rn is convex if for every x, y ∈ S and λ ∈ [0, 1],
it holds that λx+ (1− λ)y ∈ S.

As the following lemma suggests, the geometric objects introduced previously are in

fact all convex sets.

Lemma 2.3.8. Halfspaces in Rn are convex sets. The intersection of a finite number of convex

sets is a convex set. In particular, hyperplanes and polyhedra are convex.

Another important concept are vertices of polyhedra. There are several equivalent ways

of defining what exactly vertices are. For optimization, the most intuitive definition is that

every vertex is the unique maximizer of some linear function on P .

Definition 2.3.9 (Vertex). Let P ⊆ Rn be a polyhedron. Then, x ∈ P is a vertex of P if

there exists a c ∈ Rn such that cTx > cT y for all y ∈ P \ {x}.

Now consider LP(A, b, c) and assume that PLP has an optimal solution with respect to c.
The following central theorem highlights the importance of vertices for linear optimization,

as it implies that it is sufficient to focus on vertices of PLP when searching for optimal

solutions.

Theorem 2.3.10 (Cf. Theorem 2.7 in [BT97]). Assume that PLP has at least one vertex and

at least one optimal solution with respect to c. Then, there is a vertex x∗ ∈ PLP optimal for

LP(A, b, c), and such a vertex is then called optimal.

We now develop the theory related to vertices that will then lead to the description

of the simplex algorithm. For simplicity, let P = PLP = {x ∈ Rn : Ax = b, x ≥ 0} and

assume P 6= ∅. Henceforth, we further assume that the rows of A are linearly independent.

Note that this implies n ≤ m as there is at most one solution of the system Ax = b, x ≥ 0
otherwise.

We begin by investigating the connection between vertices and solutions of the system

{Ax = b, x ≥ 0} defining P . By Definition 2.3.9, every vertex can be interpreted as the

22



2.3. Linear Programming

optimum solution of the problem cTx subject to x ∈ P for some suitable c ∈ Rn. The

following theorem gives an equivalent characterization. More precisely, it says that a

solution x of {Ax = b, x ≥ 0} is a vertex of P if and only if the columns corresponding to

non-zero entries are linearly independent.

For the remainder of this thesis, we fix the following notation. The set of the first m
integers is denoted by [m], so [m] := {1, . . . ,m}. For a countable set S and an index

k ≤ |S|, we denote the k-th entry of S by S[k]. Let A ∈ Rm×n and i ∈ [m], j ∈ [n]. We

denote the i-th row by of A by Ai,• and the j-th column of A by A•,j . For a set I ⊆ [n] of
column indices with |I| = k, we denote the matrix induced by the corresponding columns

of A by AI ,so AI := (A•,I[1] . . . A•,I[k]) ∈ Rm×k.

Theorem 2.3.11 (Cf. Theorem 2.4 in [BT97]). Let P be a polyhedron and x ∈ P . Then, x
is a vertex of P if and only if the columns of the matrix Asupp(x) are linear independent.

Under these assumptions, there is a strong connection between vertices of P , feasible

solutions of {Ax = b, x ≥ 0} and linear independent columns of A, or, more precisely,

bases of A.

Definition 2.3.12 (Basis). A basis B ⊆ [n] of a polyhedron P ⊆ Rn is an ordered set

B = (B1, B2, . . . , Bm) of column indices such that the basis matrix AB is non-singular.

Given a basis B, we define the vector x̄B by setting

(x̄B)j =

{
((AB)

−1b)j , j ∈ B

0, otherwise.
(2.10)

This vector is called the basis vector of B. Note that x̄B 6= xB in our notation as xB is the

vector containing the entries of x corresponding to the elements of B. By the definition of

this vector, Ax̄B = b. It is, however, not guaranteed that x̄B ∈ P since it might contain

negative entries. In the case that all of the entries are positive, we call the basis B feasible.

We now define another type of possible solutions of {x ∈ Rn : Ax = b, x ≥ 0} that uses

the notion of bases. It will turn out that these so-called basic solutions are exactly the

vertices of P if they are feasible.

Definition 2.3.13 (Basic (feasible) solution). Let x ∈ {x ∈ Rn : Ax = b}. Then, x is a

basic solution if there is a basis B such that supp(x) ⊆ B. This basis is then called the

corresponding basis. The indices j ∈ B are called basic and the indices j /∈ B are called

non-basic. A basic solution x is called basic feasible solution if x ≥ 0.

It is possible that more than one basis corresponds to a basic solution x. This can happen

if | supp(x)| < m. In this case, the vertex x is called degenerate.

By Theorem 2.3.11, every vertex of P is a basic feasible solution. If a vertex x is a

basic feasible solution for P , then there is at least one basis B such that supp(x) ⊆ B.

It is easy to verify that x = x̄B, i.e., the vertex x is the basis vector for the basis B. In

particular, by the definition of a basis, the matrix AB is non-singular, implying that the

columns are linearly independent. This implies that every basic feasible solution is a

vertex. In particular, by Theorems 2.3.10 and 2.3.11, this yields the following central

characterization of vertices of a linear program.
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Theorem 2.3.14 (Cf. Theorems 2.3 and 2.4 in [BT97]). LetLP (A, b, c) be a linear program
and x ∈ P = PLP. The following statements are equivalent:

1. x is a vertex of P .

2. x is a basic feasible solution for P .

3. x = x̄B for some basis B.

4. There is a z ∈ Rn such that x is the unique optimal solution of max zTx s.t. x ∈ P .

These terms and theorems build the foundation of one of the most important algorithms

in optimization, the simplex algorithm, which is the topic of the next subsection.

2.3.2. The Simplex Algorithm

The simplex algorithm was one of the first algorithms able to solve general linear programs.

It was developed by George Dantzig in 1947 (see e.g. [Dan63]), and several improved and

modern variants are still used to solve linear programs today. It is an iterative procedure

inspired by Theorem 2.3.10. This theorem states that, provided there is at least one

optimal solution, there is a vertex of the polyhedron PLP that is optimal. The algorithm

thus searches for this optimal vertex by using ideas of local search. It begins in a vertex

and checks whether this vertex is optimal. It terminates in that case, and calculates an

improving direction otherwise. This direction typically corresponds to an edge of the

polyhedron PLP. If the algorithm does not terminate, it then walks along this edge until it

reaches another vertex. This procedure is then iterated until either an optimal vertex is

found or until the algorithm verified that it can improve infinitely in a direction. Since a

polyhedron has finitely many vertices, this procedure terminates.

A description of the simplex algorithm is given in Algorithm 1 and an exemplary run is

shown in Figure 2.4. The goal of this section is to develop all the theoretical background

needed for understanding and applying the simplex algorithm in its most basic version.

This description is heavily inspired by [BT97], and we refer to their book for proofs and

further details.

c

Figure 2.4.: Exemplary run of the simplex algorithm.

The simplex algorithm needs to be able to (i) find an initial vertex, (ii) identify improving

directions and corresponding adjacent vertices and (iii) identify optimal solutions. As it

is easier to present how an initial vertex can be found when it is clear how the simplex

algorithm finds adjacent vertices, we postpone (i) for now.

Henceforth, consider a feasible linear program LP(A, b, c), let x be a basic solution andB
be a corresponding basis. The first observation is that the value of the basis variables xB
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Input: Feasible linear program LP(A, b, c)
Output: Optimal vertex x∗ or confirmation that LP(A, b, c) is unbounded
k := 0

Let x(k) be a vertex of PLP

while x(k) is not optimal do

Let d(k) be an improving direction with respect to c at vertex x(k)

if x(k) + λd(k) ∈ PLP for all λ > 0 then

return “unbounded”

else

Choose maximal λ > 0 such that x(k) + λd(k) ∈ PLP

x(k+1) := x(k) + λd(k)

k := k + 1

return x(k)

Algorithm 1: The simplex algorithm

is fully determined by the values of the non-basic variables as Ax = b is equivalent to

ABxB +
∑

j /∈B

A•,jxj = b resp. xB = A−1B b−
∑

j /∈B

A−1B A•,jxj . (2.11)

In particular, Equation (2.11) describes exactly how the values of the basis variables

change if the values of non-basis variables change. This observation is formalized by the

notion of a basic direction.

Definition 2.3.15 (Basic direction). Let LP(A, b, c) be a linear program, B be a basis and

j /∈ B. Then, the j-th basic direction d ∈ Rn is defined via

di :=





1, i /∈ B, i = j,

0, i /∈ B, i 6= j,

[−(AB)
−1A•,j ]i, i ∈ B.

Basic directions are of particular importance sinceA(x+λd) = b for any λ ∈ R. However,
even if the basic solution x is feasible, not all points on the line x+λd are necessarily feasible
for LP(A, b, c). The reason is that large values of λ might cause negative components.

Nevertheless, this property shows that basic directions are reasonable directions for

searching new vertices.

Lemma 2.3.16. Let B be a basis and d be the j-th basic direction for some j /∈ B. Then

A(x+ λd) = b for all λ ∈ R.

For a vertex x of PLP and a corresponding basis B, there might be several basic direc-

tions d such that x+ λd ∈ PLP for small values of λ. The simplex algorithm thus needs to

decide which direction to choose. There are several possible ways of choosing directions,
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and we discuss this point in more detail when discussing pivot rules in Section 2.3.3. To

evaluate the directions and verify which of them are actually improving the objective

function value, the simplex algorithm calculates reduced costs. Intuitively, the reduced cost

of a variable xj indicates by how much the objective function is improved when moving in

the j-th basic direction.

Definition 2.3.17 (Reduced costs). Let B be a basis. The reduced cost of variable j ∈ [n]
with respect to B is defined as c̄Bj := cj − cTB(AB)

−1A•,j . The vector of reduced cost with

respect to B is c̄B = (c̄B1 , . . . , c̄
B
n ).

It is easy to calculate that the reduced cost of a basis variable is equal to 0 and that the

objective function value with respect to any x ∈ PLP can be expressed using c̄B and x̄B.

Lemma 2.3.18. Let B be a basis. Then (c̄B)j = 0 for all j ∈ B. If x satisfies Ax = b, then
cTx = cT x̄B + (c̄B)Tx.

As claimed previously, the reduced costs can be used to evaluate the current basic

feasible solution. This is formalized by the following lemma.

Lemma 2.3.19 (Cf. Theorem 3.1 in [BT97]). Let x be a basic feasible solution for LP(A, b, c)
with corresponding basis B.

1. If c̄B ≤ 0, then x is an optimal solution.

2. If x is an optimal solution and non-degenerate, then c̄ ≤ 0.

This lemma justifies the extension of the notion of optimality to bases as these are

sufficient to describe reduced costs. A basis B is thus called optimal if (i) (AB)
−1b ≥ 0

and (ii) c̄B ≤ 0.

We are now able to describe the behavior of the simplex method in more detail. Let x be

a basic feasible solution with corresponding basis B. As explained earlier and as motivated

by Lemma 2.3.19, it is desirable to move in the j-th basic direction for some j /∈ B with

c̄Bj > 0. If there is no such direction, then the basis B is optimal and the algorithm

terminates. Thus, assume that this is not the case and fix some j /∈ B with c̄Bj > 0. The
algorithm now calculates the maximum λ > 0 such that x+λd ∈ PLP. This can be achieved

by performing the so-called minimum ratio test. This test guarantees (i) that the value

of the j-th variable that enters the basis is positive and (ii) that the values of all other

basis variables remain positive. It can also be used to verify that the linear program is

unbounded.

The minimum ratio test is performed by calculating

λ∗ := min
i:ui>0

xB[i]

ui
, (2.12)

where u := (AB)
−1A•,j . If this minimum does not exist, then any x+λd is feasible for PLP

and the problem is unbounded. Thus, consider the case that this minimum is attained for

some ℓ ∈ [m]. Then, the algorithm replaces the basic variable ℓ by the non-basic variable j
and iterates with the new basis B′ := B \ {ℓ} ∪ {j}.

26



2.3. Linear Programming

Input: Vertex x and corresponding basis B of LP(A, b, c)
Output: Vertex x′ and basis B′ with higher objective function value or confirmation

that LP(A, b, c) is unbounded or confirmation that x is optimal

Calculate reduced costs c̄Bj := cj − cTBuj for all j /∈ B

if c̄Bj ≤ 0 for all j /∈ B then

return x is optimal

Let j ∈ {j /∈ B : c̄Bj > 0} and u := (AB)
−1A•,j

if u ≤ 0 then

return LP(A, b, c) is unbounded

Let λ∗ := mini:ui>0
xB[i]

ui
=

xB[ℓ]

uℓ
for some ℓ ∈ [m]

Let x′ ∈ Rn with x′j := λ∗, x′B[i]
:= xB[i] − λ∗ui and x′i := 0 else

Let B′ := B \ {ℓ} ∪ {j}
return x′, B′

Algorithm 2: An iteration of the simplex algorithm

If every basic feasible solution of LP(A, b, c) is non-degenerate, i.e., if every basic feasible
solution has only one corresponding basis, then this procedure terminates after a finite

number of steps. This is formalized by the following two theorems. The first theorem

shows that a single iteration of the simplex algorithm is correct, while the second shows

that the iterative application of Algorithm 2 is correct.

Theorem 2.3.20 (Cf. Theorem 3.2 in [BT97]). Let x be a non-degenerate basic feasible

solution, j /∈ B with c̄Bj > 0, d the j-th basic direction and λ∗ = max{λ : x+λd ∈ PLP} < ∞.

1. There exists an index ℓ ∈ [m] such that λ∗ = min
i∈B:di<0

−xi

di
=
−xB[ℓ]

dB[ℓ]
.

2. Let B′[i] := B[i] for i 6= ℓ and B′[ℓ] = j. Then, B′ = (B′[1], . . . , B′[m]′) is a basis.

3. x′ := x+ λ∗d is a basic feasible solution with corresponding basis B and cTx′ > cTx.

Theorem 2.3.21. If every basic feasible solution of LP(A, b, c) is non-degenerate, then the

simplex algorithm terminates after a finite number of iterations. It either returns an optimal

solution with corresponding optimal basis or confirms that LP(A, b, c) is unbounded.

We now discuss the simplex algorithm if basic feasible solutions can be degenerate.

In this case, it might happen that λ∗ = 0. Then, the algorithm also calculates another

basis, but the basic feasible solution and the corresponding vertex remains identical. If the

variables for entering and leaving the basis are chosen badly, it might then happen that the

algorithm cycles. This means that it calculates different bases for the same basic feasible

solution without ever finding a new basic feasible solution. There are, however, pivot rules

guaranteeing that the algorithm does not cycle, and Theorems 2.3.20 and 2.3.21 are also

applicable for these pivot rules.
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To conclude our discussion of the simplex algorithm, we next explain how an initial

basic feasible solution is found. Since we will provide our algorithms with initial solutions,

we only briefly discuss this topic here.

The idea presented here is the so-called two-phase simplex algorithm. The first phase

is the calculation of an initial solution, the second phase is the iterative application of

Algorithm 2. This variant of the algorithm uses the capability of the second phase of

finding an optimal solution if it is provided an initial solution. More precisely, the first

phase considers a slightly changed problem with the following two properties:

1. It is trivial to find an initial basic feasible solution.

2. Optimal solutions of the changed problem yield initial solutions of the original

problem.

The initial problem LP(A, b, c) is altered in the following way. First, all rows i ∈ [m] with

bi < 0 are multiplied by −1. This does not change the sets of feasible or optimal solutions,

but enables us to assume b ≥ 0 without loss of generality. Then, the matrix A is extended

by adding the m-dimensional identity matrix Im. We thus set A′ := (A, Im) ∈ Rm×(n+m).

This creates m new variables xn+1, . . . , xn+m. Since the right-hand side b is non-negative,
setting xn+j := bj for j ∈ [m] and B := {n+ 1, . . . , n+m} yields a basic feasible solution

for this problem. Now, to obtain an initial solution for the original problem, phase two of

the simplex algorithm is used in such a way that all the variables xn+1, . . . , xn+m leave the

basis. This can be achieved by using the objective function vector c′ ∈ Rn+m where c′i = 0
for i ∈ [n] and c′i = −1 for i ≥ n+ 1. Thus, an initial basic feasible solution for LP(A, b, c)
can be found by applying the second phase of the simplex algorithm to LP(A′, b, c′) using
the initial basis B = {n+ 1, . . . , n+m}. More precisely, the first phase is able to find a

basic feasible solution if and only if LP(A, b, c) is feasible. and can thus also be used to

detect whether LP(A, b, c) is feasible.

We described the two-phase simplex algorithm using Dantzig’s pivot rule here. Intuitively,

a pivot rule is a routine determining the leaving and entering variable with respect to a

given basis. Different pivot rules as well as the computational complexity are the focus of

the next section, in which also includes a detailed discussion of Zadeh’s pivot rule.

2.3.3. Pivot Rules and the Complexity of Linear Programming

Pivot rules are used in a variety of algorithms. Consider an arbitrary optimization algo-

rithm that works by first calculating an initial solution and then produces a sequence of

intermediate solutions until either finding an optimal solution or confirming that the given

instance is unbounded. Such an algorithm can be interpreted as a local search algorithm

that, given a solution, always looks for an adjacent solution that is in some sense better

than the current solution. However, depending on the algorithm and the optimization

problem, there might be several such solutions, and the algorithm can choose any of these

solutions. A pivot rule is now a subroutine that specifies exactly which adjacent solution

the algorithm should choose.

If interpreted like this, pivot rules can be stated very generally and can be applied for a

range of algorithms. Although there are attempts of formally defining pivot rules, at least

for the simplex algorithm [APR14], there is no general formal definition for what exactly

28



2.3. Linear Programming

is considered a pivot rule. We thus briefly discuss some of the most important pivot rules

in terms of the simplex algorithm. An overview over these pivot rules can be found in

Table 1.1. We also discuss the running time of the simplex algorithm in general and if

these pivot rules are used and conclude this by discussing the complexity of solving linear

programs. For discussions on even more pivot rules and some more “exotic” or general

pivot rules (e.g. pivot rules that allow for intermediate solutions to be infeasible) we refer

to [TZ93, Ter01a, Ter01b, APR14].

The running time of the simplex algorithm highly depends on the chosen pivot rule.

Assume that the algorithm uses a pivot rule that calculates an initial basic feasible solution

as well as an adjacent basic feasible solution to a given solution in strongly polynomial

time. Then, the overall running time of the simplex algorithm is strongly polynomial

if and only if the pivot rule guarantees that only a polynomial number of vertices is

calculated. Since all polynomial algorithms for solving linear programs are only weakly

polynomial [Kha80, Kar84], finding such a pivot rule would immediately answer the still

open question whether linear programming can be done in strongly polynomial time.

This motivates the quest for developing new pivot rules and for developing worst-case

instances for known pivot rules.

An overview over classical and common pivot rules

We now introduce and discuss the most common pivot rules. An overview over these pivot

rules as well as a selection of corresponding literature is given in Table 1.1. We also refer

to [TZ93, Han12] for further details.

1. Dantzig’s pivot rule: Dantzig’s pivot rule chooses a non-basic variable j /∈ B
maximizing the reduced cost. This pivot rule was originally used in Dantzig’s

development of the simplex algorithm [Dan51].

It was proven that the worst-case running time using this pivot rule can be exponential

by Klee andMinty in 1972 [KM72], providing the first super-polynomial lower bound

for the simplex algorithm.

2. The shadow vertex rule: Intuitively, given a basic feasible solution x, this rule first

finds a new cost function c′ and right-hand side b′ such that x is an optimal solution

for LP(A, b′, c′). It then considers the “path” between the two linear programs

LP(A, b, c) and LP(A, b′c′) by considering LP(A, λb + (1 − λb′), λc + (1 − λ)c′) for
increasing λ ∈ [0, 1]. If the reduced cost of some variable becomes positive before

reaching c, then the corresponding variable is chosen as the entering variable. It is

known that the basic feasible solution x is optimal if this does not happen before

reaching c. This rule was first developed in [GS55], and we refer to [Bor87] for a

more clear and modern presentation.

It was shown by Murty in 1980 that this pivot rule has exponential running time in

the worst-case [Mur80].

3. The lexicographic pivot rule: This pivot rule was proposed in [DOW55] and is

rather a specification of Dantzig’s original pivot rule as it decides which variable

should leave the basis. As choosing a leaving variable corresponds to choosing a row
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of the tableau that is typically maintained when actually performing the simplex

algorithm, this pivot rule decides which variable leaves the basis by choosing the

lexicographically smallest row that may be chosen. This pivot rule was developed

to prevent cycling, a phenomenon that might occur when the polyhedron defining

the linear program is degenerate. In this case, it can happen that the simplex

algorithm reaches a vertex that can be represented by several bases and alternates

between those bases without terminating. The lexicographic pivot rule ensures that

this cannot happen and that the algorithm terminates, even if the polyhedron is

degenerate.

We are not aware of an explicit proof regarding the worst-case running time of

this pivot rule. However, as the example used by Disser and Skutella in [DS15] is

non-degenerate, it follows that the lexicographic pivot rule can be exponential in

the worst case.

4. The LargestIncrease pivot rule: It is not clear when exactly this pivot rule was

proposed, and we refer to [Jer73] for a detailed discussion. The LargestIncrease

pivot rule always chooses the entering and leaving variable in such a way that the

objective function value increases by the maximum amount possible.

Adapting the example of Klee and Minty, Jeroslow proved that this pivot rule as well

as a generalization of this pivot rule visits exponentially many vertices in the worst

case [Jer73].

5. Bland’s pivot rule: This pivot rule was developed by Bland in 1977 [Bla77] to

prevent the simplex algorithm from cycling. Among all variables that can enter the

basis, this pivot rule chooses the variable with the smallest index and chooses the

corresponding leaving variable analogously.

Only one year after this pivot rule was proposed, Avis and Chvátal proved that this

pivot rule may require exponentially many iterations in the worst case [AC78].

6. The SteepestEdge pivot rule: This pivot rule always chooses the steepest edge

that is incident to the current vertex of the polyhedron. This corresponds to choosing

the variable j /∈ B maximizing c̄Bj /‖[AB]
−1A•,j‖. It is not clear where this pivot rule

was proposed originally and we refer to [FG92] for a discussion of this rule.

The exponential lower bound for this pivot rule was proven in [GS79].

7. The RandomEdge pivot rule: As the name suggests, this pivot rule is a randomized

pivot rule and it chooses an edge incident to the current vertex uniformly at random.

Again, it is unclear where this pivot rule was proposed first as it is the most natural

use of randomization applicable to the simplex algorithm. As the number of iterations

is not deterministic when using this pivot rule, one investigates the expected number

of iterations.

Although it was hoped that randomized pivot rules maybe have a polynomial worst-

case running time in expectation, Friedmann, Hansen and Zwick proved that the

expected worst-case running time can be subexponential [FHZ11b].

8. Cunningham’s pivot rule: This pivot rule is a memorizing pivot rule as it depends

on previous iterations of the algorithm. Before the algorithm is executed, a cyclic
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order of the variables is fixed. In addition, the pivot rule remembers the last variable

to enter the basis. When a new variable should enter the basis, the pivot rule then

chooses the first variable that is allowed to enter the basis with respect to the fixed

order, starting from the last chosen variable.

Rather recently, Avis and Friedmann proved that the worst-case running time using

this pivot rule is also exponential [AF17].

9. The RaisingTheBar pivot rule: This pivot rule is a generalization of the Ran-

domEdge rule and was introduced in [Kal91]. It can be described as follows. A

parameter M is chosen and starting at the current vertex x, the algorithm takes a

random walk along the vertices x′ of the polyhedron with value at least cTx. That is,
cTx is a “bar”, and the random walk is forced to stay above this bar. After performing

M steps, the process is repeated, so the bar is raised. For M = 1, this behavior is
identical to the RandomEdge pivot rule.

10. Zadeh’s LeastEntered pivot rule: This pivot rule was developed by Zadeh

in 1980 [Zad80] as a pivot rule that behaves well on the worst-case examples

for other pivot rules. It is a memorizing pivot rule as it remembers for each variable

how often it entered the basis. When determining which variable should enter the

basis, this pivot rule always chooses a variable that was chosen least often until now.

Until Friedmann’s breakthrough result in 2011 [Fri11c], the worst-case complexity

of Zadeh’s pivot rule was unclear. The historic subexponential lower bound of

Friedmann is the central topic of Chapter 4. The first exponential lower bound is

the main topic of this thesis and presented in Chapters 5 and 6.

11. The RandomFacet pivot rule: This pivot rule is again a randomized rule, though

it is more involved than the RandomEdge rule. It was independently introduced by

Kalai [Kal92, Kal97] and Sharir and Welzl [SW92] and can be described geometri-

cally as follows. Given a vertex x, pick a random facet containing this vertex. Then,

solve the problem of finding an optimal vertex restricted to this facet first. If it is

possible, move towards this vertex and iterate.

As for the RandomEdge pivot rule, it was proven that this pivot rule requires an

expected subexponential number of iterations in the worst case [FHZ11a]. However,

it was also proven that the RandomFacet rule requires no more than that many

iterations in expectation [MSW96]. It is thus the only pivot rule guaranteeing a

better than exponential number of iterations, at least in expectation.

12. The randomized Bland’s rule: This pivot rule is a natural randomization of Bland’s

pivot rule. It first orders the variables uniformly at random and then uses Bland’s

rule with respect to this ordering.

It can also be interpreted as a variant of the RandomFacet pivot rule, and we refer

to [Mat94] for more details on this.

For all of these pivot rules, the worst case running time is at least subexponential. Inter-

estingly, each of the original worst-case constructions belongs to one of two frameworks.

The constructions used for the first six listed pivot rules are all deformed hypercubes that

are based on the first lower bound construction of Klee and Minty [KM72]. Amenta and
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Ziegler also formalized this observation by introducing deformed products and proving

that all of these lower bound constructions are in fact deformed products [AZ98].

Although deformed products were applied successfully to many different pivot rules,

there were two classes of pivot rules for which they did not provide superpolynomial lower

bounds, namely memorizing and randomized pivot rules. Only in 2011, Friedmann et al.

were able to devise meaningful lower bounds for those pivot rules (see e.g. [Fri11b, Han12]

and the sources mentioned in Table 1.1). Interestingly, all of these lower bounds share

many similarities as they are all obtained by applying the strategy improvement algorithm

to a Markov decision process that models a binary counter. However, until today, there is

no general construction that is comparable to the notion of deformed products generalizing

the lower bound examples based on binary counting Markov decision processes. We discuss

similarities between these lower bound constructions when discussing the subexponential

lower bound of Zadeh’s pivot rule in Chapter 4 and develop a new member of this family

when proving that Zadeh’s pivot rule requires an exponential number of iterations in the

worst case in Chapter 5.

Since it seems to be very challenging to find a pivot rule for the simplex algorithm

guaranteeing a polynomial number of iterations, several authors began investigating

the simplex algorithm from another perspective. Disser and Skutella introduced a new

complexity theoretic notion describing the capability of an optimization algorithm [DS15].

They define an algorithm to be NP-mighty if it can solve any problem in NP. If P6=NP,

then an NP-mighty algorithm cannot be polynomial. They proved that the original version

of the simplex algorithm is NP-mighty. This result can be interpreted as the simplex

algorithm, which was designed to solve a problem solvable in polynomial time, being

“too mighty” for the problem it was originally designed for. Their work thus gave a first

hint explaining why it is hard to find a polynomial pivot rule for the simplex algorithm.

Since then, similar results were obtained, proving that the simplex algorithm is able to

solve hard problems and that several decision problems that are related directly to the

simplex algorithm are hard to decide [FS15]. One such result is, for example, that it is

PSPACE-hard to decide whether the simplex algorithm ever visits a certain basis.
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Strategy improvement, also often referred to as policy iteration, is an algorithmic frame-

work that is applied to a variety of games. Its main idea is that there are players that use

strategies to model their choices. These strategies are pre-ordered in such a way that the

computational task associated with the corresponding game is solved if and only if optimal

strategies for the players have been found. Then, the process of iteratively improving

the players’ strategies until optimal strategies have been found is referred to as strategy

improvement or policy iteration, depending on the underlying game.

In this thesis, we focus on the classical policy iteration algorithm for Markov decision

processes developed by Howard in 1960 [How60] and the discrete strategy improvement

algorithm of Vöge and Jurdziński, developed in 2000 [VJ00]. To simplify our presentation,

we refer to both algorithms as “strategy improvement”.

3.1. A General Framework for Strategy Improvement

In this chapter, we develop a general algorithmic framework for calculating optimal

strategies in Markov decision processes and winning sets in parity games. This framework

can be interpreted as a generalization of the discrete strategy improvement algorithm for

parity games [VJ00], the policy iteration algorithm for Markov decision processes [How60]

and many more. The approach and description given here is mainly based on [Fri11b]

and an earlier version of this introduction can be found in [DFH19].

We begin by describing the framework in terms of parity games. Afterwards, we discuss

in what way this framework is also applicable in the context of Markov decision processes.

Consequently, let G be a parity game. We denote the underlying graph by (V,E) and fix

one of the two players, say player 0.
The key idea is to take the perspective of player 0 and develop a notion of optimality

for this player by assigning a meaningful valuation to every vertex v ∈ V . This valuation

encodes how “profitable” the vertex is for player 0. By defining a suitable pre-order on

these valuations, this enables us to compare vertices by comparing their valuations. In

particular, for a fixed vertex v and a strategy σ, we can compare the valuation of σ(v) and
other vertices w ∈ Γ+(v). If there is a vertex w ∈ Γ+(v) with a strictly better valuation

than σ(v), we can “improve” the strategy σ by re-defining σ(v) := w. Since there are only

finitely many vertices and strategies, this iterative procedure terminates at some point.

The final strategy σ∗ is then “optimal” with respect to the previously defined pre-order.

The key idea is thus to define a pre-order and vertex valuations in such a way that σ∗ is
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a winning strategy in the sense of Theorem 2.1.6 for player 0. Note that the idea and

motivation of such valuations share many similarities with the optimality equations for

Markov decision processes discussed in Section 2.2.

We now formalize this idea. The vertex valuations are given as a totally ordered set (U,�).
For every pair of strategies σ, τ for player 0, 1, we are given a function Valσ,τ : V → U
assigning valuations to vertices. Note that we intentionally use the same notation that

was used when discussing values of vertices in Markov decision processes in Section 2.2.

The next step is to eliminate the dependency on the behavior of player 1. As we take the

perspective of player 0, we thus assume that player 1 is an adversary working against

us. Consequently, as we try to maximize the valuations of the vertices, we assume that

player 1 tries to minimize the valuations of the vertices. This allows us to eliminate

the dependency on player 1 by setting Valσ(v) := min≺Valσ,τ (v) where the minimum is

taken over all player 1 strategies τ . Formally, a player 1 strategy is called counterstrategy

for σ if Valσ,τ (v) � Valσ(v) for all v ∈ V . An arbitrary but fixed counterstrategy for σ is

denoted by τσ. Although it is not obvious, counterstrategies exist and can be computed

efficiently [VJ00]. This ordering can now be extended to a partial ordering of strategies.

For two player 0 strategies σ, σ′, we define σ E σ′ if and only if Valσ(v) � Valσ′(v) for all
v ∈ V . We write σ ⊳ σ′ if σ E σ′ and there exists a vertex v ∈ V with Valσ(v) ≺ Valσ′(v),
and define D,⊲ analogously.

The idea is to find a strategy that is maximal with respect to the partial ordering E. In

particular, given a player 0 strategy σ, we need to be able to find a strategy σ′ with σ ⊳ σ′,
i.e., a strategy that is strictly better with respect to this partial ordering. This can be done

by applying an improving switch. Intuitively, an improving switch is an edge such that

including e in σ improves the strategy with respect to E.

Definition 3.1.1 (Improving switch). LetG be a parity game and letE be a partial ordering

of strategies induced by vertex valuations as described previously. Let e = (u, v) ∈ E0 and

σ(u) 6= v, and define the strategy σe via σe(u) := v and σe(u′) := σ(u′) for u′ ∈ V0 \ {u}.
Then, e is improving or an improving switch for σ if σ ⊳ σe. The set of improving switches

for a strategy σ is denoted by Iσ.

We will typically use σe to denote the strategy that is obtained by applying the improving

switch e in the strategy σ. This now enables us to formulate the strategy improvement

algorithm [VJ00]. It operates as follows. Given an initial strategy σ0, apply improving

switches until a strategy σ∗ with Iσ∗ = ∅ is reached. Such a strategy is called optimal and

the following theorem justifies this name.

Theorem 3.1.2 ([VJ00]). Let G be a parity game and let E denote a partial ordering of

strategies induced by vertex valuations as described previously. Let σ denote a player 0 strategy
for G. Then, Iσ = ∅ if an only if there is no player 0 strategy σ′ with σ ⊳ σ′.

The ideas introduced here can be directly applied to Markov decision processes with the

expected total reward criterion as follows. In the context of Markov decision processes,

the set of vertex valuations is the set of real numbers R together with the natural ordering.

The function assigning valuations is given by the values of the vertices defined by the

system (2.1). The intermediate construction of counterstrategies is not necessary for
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Markov decision processes as there is only one player. In particular, we can also define

σ E σ′ for policies σ, σ′ by setting σ E σ′ if and only if Valσ(v) ≤ Valσ′(v) for all v ∈ V .

We thus define improving switches for the expected total reward criterion analogously to

Definition 3.1.1. Since a strategy σ∗ is optimal with respect to the expected total reward

criterion if and only if Iσ∗ = ∅, this enables us to describe the algorithms of [VJ00] and

[How60] by one algorithmic scheme.

Input: Either parity game or Markov decision process G
Partial ordering E induced by vertex valuations

Output: Strategy σ∗ optimal with respect to E

Let σ be a strategy for G
while Iσ 6= ∅ do

Let e ∈ Iσ
Set σ := σe

return σ

Algorithm 3: The strategy improvement algorithm.

It is not immediate how this scheme can be applied to the expected average reward

criterion. We thus introduce a special subclass of Markov decision processes in the next

section for which optimizing with respect to the expected average reward criterion is

equivalent to optimizing with respect to the expected total reward criterion. Also, it is not

obvious how the vertex valuations for parity games should be defined. Although strategy

improvement is applicable to all parity games, we introduce a subclass of parity games

that shares many similarities with the subclass considered for Markov decision processes.

These valuations will then turn out to have the desired property that a strategy σ is optimal

with respect to the induced partial ordering of strategies if and only if σ is a winning

strategy for player 0.

3.2. Sink Parity Games and the (Weak) Unichain Condition

In this section, we introduce subclasses of parity games and Markov decision processes

that allow us to simplify proofs and statements significantly. Both subclasses are already

known and were investigated in the past. Nevertheless, we give a full introduction here,

stressing in particular their similarities and providing a new perspective on them.

The subclass of parity games is the class of sink games. These were introduced and

studied in [Fri11b]. For Markov decision processes, the subclass we consider is closely

related to the unichain condition. This condition is a well-known and studied property of

Markov decision processes and we refer to [Put05] for an in-depth discussion of them.

The processes considered in this thesis will however not have the traditional unichain

condition. We instead introduce and discuss the so-called weak unichain condition, and

refer to Markov decision processes having the weak unichain condition as weakly unichain.
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Although the weak unichain condition is also already known, it is rarely considered as

there are only few cases where the weak unichain condition is fulfilled although the

traditional unichain condition is not fulfilled.

The design principle of both sink games and weakly unichain Markov decision processes

is very similar. The key idea is that the underlying graph contains a sink, which is a vertex

looping to itself, and that the whole graph “leads” to this sink. That is, independent of

the choices of the player(s), every play resp. every walk reaches the sink. For a Markov

decision process, this guarantees that the values with respect to the expected total reward

criterion are finite as follows. If the reward of the edge building the loop is zero and if

the Markov Chain MC(G, σ) reaches the sink for every strategy σ with probability 1, then
the expected total reward is the expected reward obtained until reaching the sink. Since

the rewards are finite, this guarantees finiteness of the values. In particular, the expected

average reward criterion then reduces to the expected total reward criterion as the gain

of every vertex is equal to zero and the bias corresponds to the expected reward obtained

until reaching the sink. For a parity game, we can use such a sink to ensure that player 1
wins every play by setting the priority of the sink to an odd number. This allows for a

significantly easier definition of vertex valuations as general vertex valuations have to

evaluate the vertices that are visited infinitely often. Our presentation here also gives a

new perspective and generalizes the original definition of sink games as this relies on an

initially chosen strategy. In contrast to this definition, we define sink games independent

of strategies and introduce the new notion of sink strategies instead.

Sink games

We begin with the discussion and introduction of sink games. Our approach differs from

the original approach of [Fri11b, Chapter 4.2] and we define some terms differently.

The reason is that sink games were originally introduced as a subclass of parity games

that simplified the vertex valuations. However, this approach can only be used if vertex

valuations were introduced for general parity games before, as the original definition

given in [Fri11b] uses vertex valuations. As we only consider sink games in this thesis and

never use the general vertex valuations, we present a different approach for defining and

introducing sink games that does not require introducing vertex valuations for general

parity games.

We begin by defining the term sink for parity games and the corresponding term sink

game (cf. the sink existence property in [Fri11b]). Note that [Fri11b] defines the term

“sink game” differently as it depends on a given strategy. As we however want to provide

a definition and framework that clearly distinguishes between games and strategies, we

consider the following definition here.

Definition 3.2.1 (Sink (parity game)). Let G be a parity game. A vertex t ∈ V is called

sink of G if Γ+(t) = {t},Ω(t) = 1 < Ω(v) for all v ∈ V \ {t} and if it is reachable from all

vertices. A parity game that contains a sink is a sink game if player 1 wins every vertex.

This allows us to define the term of a sink strategy. A sink strategy is a player 0 strategy

in a sink game such that player 1 can force the corresponding play to end in the sink.
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6

14

1

7 19

Figure 3.1.: An example of a sink game.

Definition 3.2.2 (Sink strategy). Let G be a sink game and let t denote the sink. Then, a

strategy σ is called sink strategy if there is a player 1 strategy τ such that for every vertex

v ∈ V , it holds that πv,σ,τ = v, v1, v2, . . . , vk, (t)
∞.

Example 5 (Sink game). We consider a slightly altered version of the parity game introduced

in Example 1 where the priority of the top vertex is changed to 1, see Figure 3.1. We in

particular consider the same player 0 and player 1 strategies σ0, σ1. The top vertex of this

parity game is a sink. Player 1 wins the plays starting in the two vertices 19 and 1. When

these two strategies are considered, player 1 does not win the play starting in either of the

vertices 6, 14 or 7. However, player 1 can win any play starting in these vertices by setting

σ1(7) := 1. Consequently, player 1 wins every vertex of this parity game and the game is thus

a sink game. In particular, σ0 is a sink strategy and, in fact, every strategy for player 0 is a

sink strategy in this example.

The next goal is to show the following. If G is a sink game and if σ is a sink strategy,

then applying an improving switch to σ yields another sink strategy. The problem is that

we still did not introduce vertex valuations for sink games and hence, the term “improving

switch” is not yet well-defined. We thus investigate what happens when an arbitrary edge

e = (u, v) ∈ E0 with σ(u) 6= v is switched. As it turns out, there are two possibilities.

Either σe is a sink strategy, or there is a player 1 strategy τ such that the cycle component

of πu,σe,τ contains a vertex with high odd priority. Arguably, the latter case is bad for

player 0 and in particular worse than any play reaching the sink, motivating that such an

edge e should never be applied. We then use this insight to define vertex valuations for

sink games.

Lemma 3.2.3. Let G be a sink game, σ be a sink strategy and e = (u, v) ∈ E0 such

that σ(u) 6= v. If σe is not a sink strategy, then there is a player 1 strategy τ such that

max{Ω(w) : w ∈ C(πu,σe,τ )} mod 2 = 1 and max{Ω(w) : w ∈ C(πu,σe,τ )} > 1.

Proof. Assume that σe is not a sink strategy. Then, there is a vertex u ∈ V such that

for every player 1 strategy τ , the play πu,σe,τ does not reach the sink t, so t /∈ C(πu,σe,τ ).
Now, for the sake of contradiction, assume that player 0 wins πu,σe,τ for every player 1
strategy τ . Then, for every player 1 strategy τ and every induced play πu,σe,τ , it holds
that max{Ω(w) : w ∈ C(πu,σe,τ )} is even. But this implies that player 0 wins vertex u,
contradicting the definition of a sink game, as player 1 wins every vertex in a sink game.
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Consequently, there is at least one player 1 strategy τ ′ such that player 1 wins πu,σe,τ ′ .
Since σe is not a sink strategy, t /∈ C(πu,σe,τ ′). Since player 1 wins πu,σe,τ ′ , this implies

max{Ω(w) : w ∈ C(πu,σe,τ ′)} mod 2 = 1. In addition, the definition of a sink game implies

that max{Ω(w) : w ∈ C(πu,σe,τ ′)} > 1 as the sink has the lowest priority.

Lemma 3.2.3 shows that including an edge e into a sink strategy σ has one of two

effects. Either σe is again a sink strategy or σe is a strategy that is arguably more profitable

for player 1 and, consequently, less profitable for player 0. The following definition of

vertex valuations for sink games implements this insight. Assume that the initial strategy

provided to the strategy improvement algorithm is a sink strategy. Then, any meaningful

definition of vertex valuations should prohibit the application of an improving switch such

that the obtained strategy is worse for player 0. Consequently, such a definition would

imply that applying an improving switch to a sink strategy yields another sink strategy. By

Lemma 3.2.3, this implies that all strategies obtained by applying improving switches are

sink strategies. In order to compare strategies, it thus suffices to be able to define vertex

valuations for comparing paths to the sink of the sink game. It is thus sufficient to define

the valuation of a vertex v under the strategies σ, τ as the path component of πv,σ,τ . In
fact, this is a well-studied choice of vertex valuations and is exactly the same choice used

by [VJ00] and [Fri11b] when applied to sink games. To give a total ordering of the vertex

valuations, it is thus sufficient to give an ordering of all subsets of V .

Let M,N ⊆ V and M 6= N . Intuitively, N is better than M for player 0 if it contains a

vertex with a high even priority not contained in M . Analogously, M is worse than N for

player 0 if it contains a vertex with a high odd priority not contained in N . We thus need

to analyze the symmetrical difference of M and N and thus introduce the following term.

Definition 3.2.4 (Most significant difference). Let G be a sink game and M,N ⊆ V with

M 6= N . The vertex v ∈ M∆N is themost significant difference ofM andN if Ω(v) > Ω(w)
for all w ∈ M∆N,w 6= v and is denoted by ∆(M,N).

We now define an ordering “⊳” on the set of subsets of V . For M,N ⊂ V,M 6= N let

M ⊳N :⇐⇒ [∆(M,N) ∈ N ∧ Ω(∆(M,N)) mod 2 = 0]

∨[∆(M,N) ∈ M ∧ Ω(∆(M,N)) mod 2 = 1].

Note that ⊳ only defines a pre-order on the subsets of V if the priority function is not

injective. Although injectivity of Ω implies that ⊳ is a proper ordering of the subsets

of V , it is sufficient if the most significant difference between any two vertex valuations is

unique. This will be the case in our constructions.

The framework now justifies to define vertex valuations for sink games as follows.

Definition 3.2.5 (Vertex valuations (sink game)). Let G be a sink game and let v ∈ V .

Let σ be a sink strategy and let τ denote a counterstrategy for σ. Then, the valuation of v
with respect to σ and τ is the path component of the play πv,σ,τ .

The following theorem summarizes the most important aspects related to parity and

sink games and vertex valuations and improving switches for these. As mentioned earlier,
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the vertex valuations constructed here are a simplified version of the general concept

and construction of vertex valuations. They are, however, in accordance with the general

construction for parity games and we refer to [Fri11b] for a detailed discussion.

Theorem 3.2.6 ([VJ00]). Let G be a sink game and let σ be a sink strategy.

1. The vertex valuations of a player 0 strategy can be computed in polynomial time.

2. There is a sink strategy σ∗ that is optimal with respect to the ordering ⊳.

3. It holds that Iσ = ∅ if and only if there is no strategy σ′ with σ ⊳ σ′.

4. It holds that Iσ = {(u, v) ∈ E0 : Valσ(σ(u))⊳Valσ(v)} and σ ⊳ σe for all e ∈ Iσ.

Example 6. We again consider the sink game introduced in Example 5. As argued previously,

player 1 can choose his strategy in such a way that every play has cycle component (1)∞. An

example of a player 0 strategy σ together with the corresponding counterstrategy of player 1
is given in Figure 3.2

6

14

1

7 19

Figure 3.2.: A sink game in which player 1 chooses the strategy such that the cycle component of
every play is (1)∞.

The valuation of the vertices is the path leading to the sink. Thus, Valσ(19) = {19}
resp. Valσ(7) = {7} for the vertices of player 1 and Valσ(1) = ∅,Valσ(14) = {14, 7} resp.

Valσ(6) = {6, 14, 7}. In particular, this implies that ∆(Valσ(7),Valσ(1)) = {7}. Since 7 is

odd, this implies {7} ≺ ∅ and thus Valσ(7)⊳Valσ(1). Consequently, the edge (14, 1) is an
improving edge in this example.

This concludes our discussion regarding sink games. We now discuss how the concept

of a sink vertex can be transferred to Markov decision processes.

Markov decision processes and sinks

We now consider Markov decision processes that contain a sink t ∈ V0. This vertex has a

single outgoing edge (t, t) with reward 0. As for sink games, the idea is that every infinite

walk reaches this vertex at some point - regardless the strategy. If this is the case, then

the expected total reward is well defined and equal to the expected reward collected

until reaching t. This reduces the complexity of the vertex valuations by considering a

subclass such that the valuation is equal to the valuation of the path leading to the sink.

In particular, this then implies the expected average reward is equal to 0 for every strategy.
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More precisely, for the expected average reward criterion, the system of gain and bias

equations reduces to a significantly simpler system as only biases need to be considered.

As it turns out, this “reduced” system of biases is equivalent to the system (2.1), and the

two criteria are therefore identical.

We now formalize this intuition. The property that we just described is known as the

unichain condition and Markov decision processes that have this condition are called

unichain. Unichain Markov decision processes are well-studied and understood objects,

and we refer to [Put05] for more details. For our purposes, the unichain condition is

however too strong. As it turns out, it is not necessary that the vertex t is reached by

every strategy, it is only required for certain strategies. More precisely, when applying the

strategy iteration algorithm, it turns out that it suffices if the optimal strategy reaches the

sink with probability 1 and if a suitable initial strategy is chosen. This yields the weak

unichain condition. In all of the following definitions and statements, we let G be a Markov

decision process and use the notation of Definition 2.2.1.

Definition 3.2.7 (Sink (Markov decision process)). A vertex t ∈ V0 is called sink of G if

Γ+(t) = {t}, r(t, t) = 0 and if it is reachable from all vertices.

Definition 3.2.8 (Weak unichain condition). Let σ be a strategy for G. Then, σ is a weak

unichain strategy for G if G has a sink t that is the single irreducible recurrent class of

MC(G, σ). If there is at least one weak unichain strategy for G, then G is weakly unichain.

We now investigate weakly unichain Markov decision processes. We first prove that the

values of the vertices defined in Definition 2.2.4 are finite for weak unichain strategies.

Lemma 3.2.9. Consider the total expected reward criterion. Let σ be a weak unichain

strategy for G. Then, the values of the vertices are finite.

Proof. Since G is weakly unichain, it has a sink t. By definition, t is the single irreducible

recurrent class of MC(G, σ). As we impose the condition that the value of each vertex

contained in such a class is zero, this implies Valσ(t) = 0. In addition, MC(G, σ) reaches t
with probability 1 after finitely many steps. This implies that the value of any vertex is

equal to the expected sum of rewards obtained before reaching t. Since rewards are finite,

this implies that all values are finite.

We investigate the expected average reward criterion next. We prove that the gain

of every vertex is 0 with respect to a weak unichain strategy. We furthermore prove

that setting the bias of the sink t to 0 implies that the optimality criteria introduced in

Definitions 2.2.4 and 2.2.6 are equivalent for weak unichain Markov decision processes.

As we introduced gain and bias only for bipartite Markov decision processes, we again

assume here that G is bipartite. However, by using a more complicated definition of

gains and biases, the following theorem can be generalized for general Markov decision

processes.

Lemma 3.2.10. Let G be bipartite and σ be a weak unichain strategy for G. Let t ∈ V0

be the sink. Then, Gσ(v) = 0 for all v ∈ V0. Furthermore, when setting Bσ(t) = 0 and

Bσ(v) =
∑

w∈Γ+(v) p(v, w)Bσ(w) for all v ∈ VR, then the values Bσ are a solution of the

system defining the total expected reward criterion.
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Proof. By [Put05, Theorem 8.2.6], the gainGσ(u) of a state u ∈ V0 is the expected average

reward obtained by starting in u and following σ. Since σ is a weak unichain strategy

for G, the graph contains a sink t ∈ V0 such that MC(G, σ) reaches t after a finite time.

By construction, the only outgoing edge of this vertex is (t, t) with r(t, t) = 0. But this
implies that the expected average reward obtained for every state u ∈ V0 is equal to 0.

We next show that it is feasible to set Bσ(t) = 0. By Definition 2.2.6 and sinceGσ(t) = 0,

Bσ(t) = r(t, σ(t))−Gσ(t) +Bσ(t) = r(t, t) +Bσ(t) = Bσ(t).

We can hence set Bσ(t) := 0.

We extend the notion of the bias to randomization vertices. For u ∈ VR, we define

Bσ(u) :=
∑

v∈Γ+(u) p(u, v) ·Bσ(v). Then, since Gσ(u) = 0 for all u ∈ V0, the system (2.5)

can be rewritten equivalently as

Bσ(u) =

{
r(u, σ(u)) +Bσ(σ(u)), u ∈ V0∑

v∈Γ+(u) p(u, v) ·Bσ(v), u ∈ VR

.

This is exactly the system (2.1) defining the total expected reward criterion. In addition,

since t is the single irreducible recurrent class of MC(G, σ), the value of any such vertex

is equal to zero.

Corollary 3.2.11. Let σ be a weak unichain strategy for G. Then, σ is optimal for the

expected total reward criterion if and only if it is optimal for the expected average reward

criterion.

These results show that it is sufficient to consider weakly unichain Markov decision

processes with the expected total reward criterion. It remains to discuss what happens

if an improving switch is applied to a strategy that has the weak unichain condition. In

theory, it might happen that applying an improving switch either creates a cycle such that

the reward collected in this cycle is not finite or that another irreducible recurrent class

is created. We address the first issue by simply assuming that the expected total reward

criterion is well-defined for all strategies. A Markov decision process with this property is

called finite, and although it might seem like a very strong condition, it can be verified

rather easily.

Definition 3.2.12 (Finite Markov decision process). G is called finite if the expected total

reward criterion introduced in Definition 2.2.4 is well-defined for all strategies.

To verify whether a Markov decision process is finite, it suffices to provide a strategy

that solves the optimality equations. Such a strategy is known to maximize the expected

total rewards and hence the values of the vertices. It is thus a witness that the values of all

vertices are finite. Although this is not a feasible method to detect finiteness in practice, it

is sufficient for the construction of specific examples for which optimal policies are known.

Observation 3.2.13. G is finite if and only if there is a strategy fulfilling the optimality

equations.
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To conclude this section, we now prove that applying an improving switch to a weak

unichain strategy yields another weak unichain strategy. To avoid confusion, we restate

the definition of an improving switch for finite Markov decision processes. Note however

that this definition is just a reformulation of Definition 3.1.1.

Definition 3.2.14 (Improving Switch (MDP)). LetG be finite and let σ be a strategy forG.

Consider the expected total reward criterion. An edge e = (u, v) ∈ E0 with σ(u) 6= v is

called improving switch, if r(u, v) + Valσ(v) > r(u, σ(u)) + Valσ(σ(u)).

Lemma 3.2.15. Let G be finite and consider the total expected reward criterion. Let σ be a

weak unichain strategy for G. Assume Iσ 6= ∅ and let e ∈ Iσ. Then σe is a weak unichain

strategy for G.

Proof. Let e = (u, v). Since σ is a weak unichain strategy for G, there is a sink t which is

the single irreducible recurrent class of MC(G, σ). Consider the Markov chain MC(G, σe).
Then, t is still an irreducible recurrent class of this Markov chain as σ(t) = σe(t) = t due
to Γ+(t) = {t}. It thus suffices to prove that it is the only such class.

For the sake of a contradiction, assume that there is another irreducible recurrent class

in MC(G, σe). We denote the states of this class by C and observe that t /∈ C since t is
an absorbing state and C is irreducible. Since every state in C is recurrent, every state

in C is encountered infinitely many times. In particular, when the system is in some state

c ∈ C, then it will only visit states contained in C in the future.

Fix some state c ∈ C and consider the Markov chain MC(G, σ) with initial state c.
Since σ is a weak unichain strategy for G, this chain reaches state t with probability 1.
Now, consider MC(G, σe) with initial state c. If the probability of reaching either u or

v is 0 in MC(G, σ) with initial state c, then the same is true for MC(G, σe). But this

directly implies that MC(G, σe) reaches t with probability 1 as MC(G, σ) reaches t with

probability 1, contradicting t /∈ C. We hence need to have either u ∈ C or v ∈ C. We

now show that both statements are true. If u ∈ C, then this also implies v ∈ C due to

σe(u) = v. Assume v ∈ C but u /∈ C. Then, the Markov chain MC(G, σe) never reaches
the sink t as t /∈ C. However, since u /∈ C, the choice of e implies σ(w) = σe(w) for all
w ∈ C. But this implies that the set of states reachable in MC(G, σ) and MC(G, σe) is the
same, contradicting that t is reached with probability 1 in MC(G, σ) when starting in v.
Consequently, u, v ∈ C.

SinceG is finite, the expected total reward is well-defined for all policies, so in particular

for σe. Since C is an irreducible recurrent class, this implies Valσe(w) = 0 for all w ∈ C.

Now consider w ∈ C ∩V0. Then σe(w) ∈ C, so Valσe(w) = r(w, σe(w))+Valσe(σe(w)) = 0.
But then, Valσe(σe(w)) = 0 implies that r(w, σe(w)) = 0. This in particular implies

r(w, σ(w)) = 0 for all w ∈ C ∩ V0, w 6= u and r(u, v) = 0.
Now consider the Markov chain MC(G, σ) and let v be the initial state. Then, since

σ(w) = σe(w) for all w 6= u and since C is an irreducible recurrent class of MC(G, σe), this
implies that MC(G, σ) will only visit states contained in C until reaching state u for the

first time. Since r(w, σ(w)) = 0 for all w ∈ C ∩ V0, w 6= u, this implies Valσ(v) = Valσ(u).
But this is a contradiction as e = (u, v) being improving for σ yields

Valσ(u) = Valσ(v) = r(u, v) + Valσ(v) > r(u, σ(u)) + Valσ(σ(u)) = Valσ(u).

42



3.3. Strategy Improvement and the Simplex Algorithm

Corollary 3.2.16. Let G be finite and let σ be a strategy for G. Let u, v ∈ V0 be two vertices

that are contained in an irreducible recurrence class of MC(G, σ). Then r(u, v) = 0.

This implies that the strategy improvement algorithm only produces weak unichain

strategies if the Markov decision process is finite and the initial strategy is weakly unichain.

Corollary 3.2.17. Let G be finite and let σ be a weak unichain strategy. If the strategy

improvement algorithm uses σ as initial strategy, then every strategy calculated by the

algorithm is weakly unichain. In particular, the optimal strategy is weakly unichain.

Corollary 3.2.18. If G is a finite Markov decision process that admits a weak unichain

strategy, then there is an weakly unichain optimal strategy σ∗ for G.

3.3. Strategy Improvement and the Simplex Algorithm

We now discuss the connection between the strategy improvement algorithm for Markov

decision processes and the simplex algorithm for linear programs. Already in the 1960s,

Markov decision processes were formulated as linear programs and techniques developed

for linear programs were used for solving them [Man60, d’E63]. In particular, all com-

plexity theoretic results applicable to linear programs imply the corresponding statement

for Markov decision processes. Most notably, this connection proves that Markov decision

processes can be solved in weakly polynomial time [Kha80, Kar84]. We provide and

discuss a linear program such that basic feasible solutions of this program are in bijection

with strategies of a given weakly unichain Markov decision process. Although this linear

program is well-known and discussed in the literature, it is typically only considered for

unichain Markov decision processes, i.e., for processes for which every strategy reaches the

sink with probability 1. Also, linear programs are usually described for Markov decision

processes that are defined in the terms of actions and states instead of a graph containing

player and randomization vertices. In this thesis, we discuss this connection for weak

unichain Markov decision processes in the “player-random” setting. The results and the

discussion here are adapted from [Han12, Chapter 2.4], and we refer to [Put05, Han12]

for proofs and further details.

The idea of the linear programming formulation for the expected total reward criterion

is the following. Let G be a finite Markov decision process, let |V0| = n0, |VR| = nR and

assume without loss of generality that G is bipartite. Since we only have rewards on the

player edges, we want to maximize a linear objective function of the type
∑

e∈E0
r(e)x(e),

where x ∈ R|E0|. Intuitively, x(e) should be the expected number of times the edge e
is traversed by a strategy. Note however that this interpretation is not valid for edges

between vertices in an irreducible recurrent class of a strategy since these edges are taken

an infinite number of times. For convenience, the value of the variables of such edges is

set to 1. This does also not interfere with the objective function as the reward between

two such vertices is always 0 by Corollary 3.2.16.

As we only consider Markov decision processes that have a sink t in this thesis, we only

give the linear programming formulation for such Markov decision processes. Further note
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u

Γ+(u)

...

Γ−(u)

...

Γ−(Γ−(u))

...

Figure 3.3.: Visualization of the constraints of the linear program (3.1) for solving finite bipartite
Markov decision processes.

that the given formulation only applies to bipartite Markov decision processes. For non-

bipartite Markov decision processes, a similar but more involved linear program can be

formulated. We also assume for simplicity that the given Markov decision process is finite.

Using the previous given interpretation, the problem of finding an optimal strategy in a

finite bipartite Markov decision process can be solved by the following linear program.

max
∑

e∈E0

r(e)x(e)

subject to
∑

(u,v)∈E0

x(u, v)−
∑

(v′,w)∈E0

(w,u)∈ER

x(v′, w)p(w, u) = 1 ∀u ∈ V0 \ {t}

x(t, t)−
∑

(v′,w)∈E0:v′ 6=t
(w,u)∈ER

x(v′, w)p(w, t) = 1

x(u, v) ≥ 0 ∀(u, v) ∈ E0

(3.1)

The constraints are visualized in Figure 3.3. For a vertex u ∈ V0 \ {t}, the constraint

can be interpreted as a combination of flow conservation and choosing an outgoing edge.

The flow leaving u is described by the first sum, the flow entering u is described by the

second sum. Classical flow conservation would then demand that these two quantities

are the same, hence the right-hand side would be equal to zero. However, in this setting,

every player vertex should also select an outgoing edge. Consequently, the right-hand

side in this linear program is set to 1. A slightly adapted version of this constraint can

also be used to describe the flow on the edge (t, t), although it is also possible to just set

the value of the corresponding variable to 1. Of course, the values of the variables are

bounded from below by 0.

We now show that this linear program can be used to find an optimal strategy if G is

weakly unichain. We begin by describing how a weak unichain strategy for G defines

a basic feasible solution of the linear program (3.1). Hence, let σ be a weak unichain

strategy for G and let t denote the sink of G. Then, the values of the vertices are the
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3.3. Strategy Improvement and the Simplex Algorithm

unique solution of the system

Valσ(t) = 0,

Valσ(u) =

{
r(u, σ(u)) + Valσ(σ(u)), u ∈ V0 \ {t},∑

v∈Γ+(u) p(u, v)Valσ(v), u ∈ VR

.
(3.2)

In this system, the values of the randomization vertices can be calculated if the values of

the player vertices are known. In particular, since G is bipartite, the system can be written

equivalently as a system that only considers player vertices. We thus obtain the system

Valσ(t) = r(t, σ(t)) = 0,

Valσ(u)−
∑

v∈Γ+(σ(u))

p(σ(u), v) ·Valσ(v) = r(u, σ(u)) ∀u ∈ V0 \ {t}. (3.3)

For the remainder of this section, fix an ordering S of V0 and identify vertices with their

position in that ordering. We denote the reduced vector of rewards corresponding to the

edges used in σ with respect to the ordering by rσ := (r(1,σ(1)), . . . , r(n0,σ(n0))) ∈ Rn0 . We

can now analogously define a matrix P σ ∈ Rn0×n0 where row and column i correspond
to vertex i. More precisely, we define the matrix elementwise via

P σ
i,j :=





1, i = j = t,

1− p(i, i), i = j 6= t,

−p(σ(i), j), j ∈ Γ+(σ(i)),

0, else.

Using this notation, the system (3.3) can then be rewritten as P σ · v = rσ. In particular,

since this system has a unique solution as it describes the values of the vertices, the

matrix P σ is non-singular and it holds that v = (P σ)−1rσ. The matrix P σ can thus be

used to calculate the values of the vertices. It can, in addition, also be used to find feasible

solutions of the linear program (3.1) as follows. If the reward of every player edge was

equal to 1, then v = (P σ)−11n0 , where 1n0 denotes the n0-dimensional vector containing 1
in every element. In particular, the values of the vertices are given by the row sums

of (P σ)−1. As it turns out, the column sums have a similar interpretation. Consider the

vector xσ := (1Tn0
(P σ)−1)T ∈ Rn0 of column sums of (P σ)−1. This vector is sometimes

also called the flux vector as it describes the amount of “flow” that is sent along the edges

(u, σ(u)). In particular, this corresponds directly to feasible solutions of the linear program

(3.1), as the variables of this program exactly describe this quantity. This solution x is

called the solution induced by the strategy σ. The flux vector can thus naturally be extended

to a solution of the linear program (3.1) by setting x(u, σ(u)) := xσu and x(u, v) := 0 if

v 6= σ(u). By interpreting the matrix P σ as the sum of the n0-dimensional identity and

a matrix of transition probabilities, it can be shown that the vector x is in fact a feasible

solution if σ is a weak unichain strategy.

Lemma 3.3.1 (cf. Lemma 2.4.8 of [Han12]). Let σ be a weak unichain strategy for a finite

bipartite Markov decision process G. Then, xσ ≥ 1n0 and the induced solution x is a feasible

solution for the linear program (3.1).
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It is thus possible to identify weak unichain strategies with feasible solutions of the linear

program (3.1). There is a similar lemma that indicates that a feasible solution corresponds

to at least one possible choice of a strategy. Given a feasible solution x, there is at least

one edge (u, v) for every u ∈ V0 such that x(u, v) > 0 (see Lemma 2.4.9 in [Han12]). In

particular, it can be shown that feasible solutions obtained via the calculation described

above are indeed basic feasible solutions and that there are no other basic feasible solutions.

Lemma 3.3.2 (cf. Lemma 2.4.10 in [Han12]). Let G be a finite bipartite Markov decision

process. For every weak unichain strategy σ, the induced vector x is a basic feasible solution

of the linear program (3.1) with basis {(u, σ(u)) : u ∈ V0}. Every basic feasible solution is

induced by some weak unichain strategy σ′ for G. In particular, there is a bijection between

basic feasible solutions of the linear program (3.1) and policies of G.

These are not all connections between the Markov decision process and the given linear

program. Most importantly for this work, applying the simplex algorithm to the linear

program (3.1) and applying the strategy improvement algorithm to G is practically the

same. First, it is possible to define reduced costs for Markov decision processes as follows.

Definition 3.3.3 (Reduced costs). Let G be a finite bipartite Markov decision process and

let σ be a weak unichain strategy for G. Then, r(u, v) + Valσ(v)−Valσ(u) is the reduced

cost of the player edge (u, v) ∈ E0.

This definition of reduced costs is the same as the definition of reduced costs in the

sense of Definition 2.3.17 for the linear program (3.1). Furthermore, it is possible to

define the term “improving switch” in terms of Definition 3.3.3. More precisely, a player

edge is an improving switch if and only if its reduced cost is strictly larger than 0. In

addition, given a weak unichain strategy σ, the reduced cost of an edge in the sense of

Definition 3.3.3 is the same as the reduced cost of the corresponding variable with respect

to the basic feasible solution induced by σ. This implies that applying an improving switch

(u, v) ∈ E0 in the Markov decision process corresponds to changing the corresponding

basis by exchanging (u, σ(u)) with (u, v). In particular, each such step is non-degenerate

and we obtain the following result.

Theorem 3.3.4. Let G be a finite bipartite Markov decision process and let σ be a weak

unichain strategy forG. Then, applying the strategy improvement algorithm toG is equivalent

to applying the simplex algorithm to the linear program (3.1) if the same rule for choosing

the entering variable is used and only one improving switch is applied per iteration.

Since a non-bipartite Markov decision process can be transformed into bipartite Markov

decision process by only including a linear number of additional vertices and edges, we

obtain the following result.

Corollary 3.3.5. Let G be a finite Markov decision process and let σ be a weak unichain

strategy for G. Assume that applying the strategy improvement algorithm with initial

strategy σ and a fixed rule of choosing improving switches requires N iterations. Further

assume that the algorithm only performs one improving switch per iteration. Then, there is a

linear program of the same asymptotic size as G such that applying the simplex algorithm

with the corresponding fixed rule of choosing entering variables requires N iterations.
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4. On Friedmann’s Subexponential Lower
Bound for Zadeh’s Pivot Rule

In this chapter we describe and discuss the subexponential lower bound for Zadeh’s

pivot rule for the strategy improvement algorithm applied to parity games and Markov

decision processes and the simplex algorithm for linear programs. This lower bound

was originally proven by Oliver Friedmann in 2011 [Fri11c] and answered the question

whether the simplex algorithm has polynomial running time when using Zadeh’s pivot

rule which was unclear for more than 30 years. The original proof presented in [Fri11c]

however contains several minor and one major flaw. The minor flaws only require small

changes to the specifications of the initial policy and the occurrence records, respectively,

and can be resolved rather easily. The major flaw is more severe, as we prove that the

sequence of improving switches applied in [Fri11c] does not consistently follow Zadeh’s

pivot rule (Issues 4.3.5 and 4.3.7). We furthermore prove that the way improving switches

are applied is a special case of a general class of possible applications of improving

switches, and that no application that is a member of this class follows Zadeh’s pivot

rule (Issue 4.3.12). We resolve this issue by providing a significantly more sophisticated

ordering and associated tie-breaking rule that are in accordance with Zadeh’s pivot rule

(Theorems 4.4.14 and 4.4.15). As our result does not require us to change the structure

of Friedmann’s construction, we are able to retain is original result.

All of the results presented here were previously published in [DH18, DH19]. The

author of this thesis contributed all of the results and proofs of these works.

4.1. Description of the Construction

We begin by describing the idea and conceptual structure of the construction developed.

The key observation that is implemented by the construction is that an n-digit binary
counter enumerates 2n numbers when counting from 0 to 2n − 1. The idea is thus to

design a weakly unichain Markov decision process that implements such a binary counter.

In this Markov decision process, certain strategies can be interpreted as binary numbers.

If the strategy iteration algorithm enumerates the strategies such that each number is

represented at least once, this yields a (sub-)exponential lower bound for the strategy

iteration algorithm and the simplex algorithm if the size of the Markov decision process is

polynomial in n.
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4. On Friedmann’s Subexponential Lower Bound for Zadeh’s Pivot Rule

The general design principle and binary counting

This general idea of constructing lower bounds was used by several authors in the last

years. In particular, it was not only applied for Markov decision processes but also parity

games and other classes of games. Among other, all of the constructions presented in

[Fea10a, Fri11c, FHZ11b, FHZ11a, AF17] implement this idea and even share the same

design principle. Before discussing Friedmann’s subexponential lower bound construction

in detail, we thus briefly discuss this general design principle.

The idea is that every bit of the n-bit counter is represented by a level of the structure,

and these levels are connected with each other. To implement this idea, (most of) the

constructions additionally require a set of global vertices that are not associated with a

single level. One such vertex that is present in all constructions is, for example, a sink

ensuring that the construction is (at least weakly) unichain resp. a sink game if the

construction is a parity game. These global vertices are then also connected to some or all

of the levels. A visualization of this general design principle is shown in Figure 4.1.

SinkLvl. n. . .

Global vertices

Other levels

Lvl. 2Lvl. 1

Figure 4.1.: A general framework for implementing n-bit binary counters.

To mimic a binary counter, the constructions are typically designed in such a way that

there is only a single path leading to the sink. Each level is either traversed or ignored

by the path. A bit of the counter is then interpreted as being equal to 1 if and only if

the corresponding level is traversed. The idea is then to make it in general beneficial to

traverse a level and to ensure that traversing level i is more beneficial than traversing all

levels 1 to i− 1. To prevent levels from being traversed too early, entering a level without

traversing it is very expensive. This is the core idea of all of the previously mentioned

lower bound constructions.

As both the description and the analysis of such constructions require some notation

regarding binary numbers and binary counting, we first introduce these terms here before

investigating Friedmann’s construction in detail. Henceforth, let n ∈ N be fixed. We define

Bn := {0, 1, . . . , 2n − 1} as the set of all numbers that can be represented by using n bits.

A number b ∈ Bn is typically represented as b = (bn, . . . , b1). Here, b1 denotes the least

significant bit of b, so b =
∑

i∈[n] bi2
i−1. For b ∈ Bn \ {0}, we define the least significant

set bit of b by ℓ(b), so ℓ(b) = min{i ∈ [n] : bi 6= 0}. We will typically abbreviate ℓ := ℓ(b)
and ν := ℓ(b+ 1). If we consider the least significant set bit with index at least i, we add

a lower index i, so formally, ℓi(b) := min{i′ ≥ i : bi′ 6= 0}.
By binary counting, we refer to the process of enumerating binary numbers with n

digits in increasing order, beginning with 0. The analysis of the construction requires us

to determine how often specific edges were applied as improving switches. As it turns out
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in the analysis, the following terms (introduced in [Fri11c]) are central for determining

these quantities.

Let b ∈ Bn. Intuitively, we are interested in schemes that we observe when counting

from 0 to b in binary, or, more formally, in the set of numbers that match a scheme with

respect to the following definition.

Definition 4.1.1 (Scheme, match set). A scheme is a set S ⊆ N×{0, 1}. A number b ∈ Bn

matches S if bi = q for all (i, q) ∈ S. We define the match set

M(b, S) := {b′ ∈ {0, . . . , b} : b′i = q ∀(i, q) ∈ S}

as the set of all numbers between 0 and b that match S.

The next definition introduces the flip set with respect to a number b, an index i and a

scheme S. This is a subset of M(b, S) that fixes the first i− 1 bits as 0 and bit i as 1.

Definition 4.1.2 (Flip set, flip number). Let b ∈ Bn, i ∈ [n] and S be a scheme. We define

the flip set corresponding to b, i and S as

F (b, i, S) := M(b, S ∪ {(i, 1)} ∪ {(j, 0); j ∈ {1, . . . , i− 1}}).

The flip number is defined as f(b, i, S) := |F (b, i, S)|. We set F (b, i) := F (b, i, ∅) and
f(b, i) := f(b, i, ∅) for convenience.

Finally, we define the maximal flip number with respect to a number b, an index i
and a scheme S. It is the largest number contained in F (b, i, S) smaller than b or 0 if

F (b, i, S) = ∅.

Definition 4.1.3 (Maximal flip number). Let b ∈ Bn, i ∈ [n] and S be a scheme. The

maximal flip number is g(b, i, S) := max({0} ∪ {b′ : b′ ∈ F (b, i, S)}).

The following lemma summarizes several properties of flip numbers. Its proof is provided

in Appendix A.

Lemma 4.1.4. Let b ∈ Bn and i, j ∈ [n]. Then the following hold:

1. Let S, S′ be schemes and S ⊆ S′. Then M(b, S′) ⊆ M(b, S).

2. Let S, S′ be schemes and S ⊆ S′. Then f(b, i, S′) ≤ f(b, i, S).

3. It holds that f(b, j) = f(b, j, {(i, 0)})+f(b, j, {(i, 1)}) and f(b, j) =
⌊
(b+ 2j−1)/2j

⌋
.

4. Let i ≤ j and S be a scheme. Then f(b, j, S) ≤ f(b, i, S) and thus f(b, j) ≤ f(b, i).

5. Let i < j. Then F (b, j) = F (b, j, {(i, 0)}) and thus f(b, j, {(i, 0)}) = f(b, j).

Friedmann’s construction

In [Fri11c], these ideas are implemented as follows. Friedmann describes how to construct

a weakly unichain Markov decision process implementing an n-bit binary counter such

that applying the strategy improvement algorithm with Zadeh’s pivot rule requires Ω(2n)
iterations. Since the size of the construction is quadratic in n, this yields a subexponential
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lower bound. Using the same arguments we presented in Section 3.3, he then argues

that the same lower bound is valid for the simplex algorithm. He then briefly discusses

how the Markov decision process can be used to construct a sink game such that the

strategy improvement algorithm behaves identical in the Markov decision process and the

sink game. Since the main focus of [Fri11c] is the Markov decision process and since we

discussed the connection to the simplex algorithm in detail previously, we only describe

the construction of the Markov decision process here.

Friedmann constructs a Markov decision process Gn such that there is a strategy σb
for every b ∈ Bn and that applying the strategy improvement algorithm enumerates

the strategies σ0, σ1, . . . , σ2n−1 when using Zadeh’s pivot rule. As described earlier, Gn

implements the idea of connecting n levels, where level i of Gn represents the i-th bit of

the counter. The Markov decision process also contains a source s with Γ−(s) = ∅ and a

sink t as defined in Definition 3.2.7. The idea is that a strategy σb defines a path starting

in s and ending in t such that all levels i with bi = 1 are traversed and all levels with

bi = 0 are “skipped”. This behavior is achieved by making levels i with bi = 1 profitable

for the player while making levels i with bi = 0 expensive.

The main challenge in implementing this idea is Zadeh’s pivot rule. Intuitively, this

pivot rule forces the algorithm to apply improving switches approximately equally often.

However, a classical binary counter does not switch individual bits equally often. For

instance, the least significant bit of a binary counter switches whenever the counter is

incremented, whereas the most significant bit only switches once. Such a counter is thus

highly unbalanced, so the construction needs to implement a counter that works correctly

when bits are switched in a “balanced” fashion.

The key idea to overcome this obstacle is to use not one, but two gadgets per level for

representing bits. These gadgets are called bicycles, and the bicycles of level i are denoted

by A0
i and A1

i . For every strategy σ encountered during the application of the algorithm,

only one of these two gadgets is interpreted as encoding the bit of level i. This allows for

manipulating the other gadget of level i without losing the interpretation of bit i. If the
construction ensures that the two gadgets alternate in representing bit i, this idea yields a

balanced binary counter.

Which of the two bicycles encodes bi depends on the setting of the next bit bi+1. More

precisely, Aj
i with j = bi+1 represents bit i and this bicycle is called active. The other

bicycle is called inactive. A bicycle can be in one of two possible configurations, and these

configurations are used to determine the setting of bit i. These two configurations are

called open and closed, and bit i is interpreted as 1 if and only if the active bicycle of level

i is closed. Using this interpretation when counting from 0 to 2n − 1 then results in the

desired alternating and balanced usage of both bicycles for representing bit i as bit i+ 1
switches every second time bit i switches. A visualization of this idea is given in Figure 4.2.

We now describe the construction in full detail and provide a precise definition of the

Markov decision process Gn. As all levels are constructed identically, it suffices to describe

an arbitrary level i. The vertices are defined via

V0 :=
⋃

i∈[n]

{ki, b
0
i,0, b

1
i,0, b

0
i,1, b

1
i,1, d

0
i , d

1
i , h

0
i , h

1
i , c

0
i , c

1
i } ∪ {kn+1, s, t}, VR :=

⋃

i∈[n]

{A0
i , A

1
i }.

50



4.1. Description of the Construction

Level 1 A0
1 A1

1

Level 2 A0
2 A1

2

Level 3 A0
3 A1

3

Level 4 A0
4 A1

4 1

0

1

1

0

0

1

1 Closed & active
Open & active
Open & inactive

Figure 4.2.: Visualization of the intuitive idea of the binary counter of [Fri11c] for n = 4. The left
picture shows the bicycles and their positioning within the levels. The two pictures on
the right give examples for settings of the cycles representing the numbers 11 and 3,
respectively.

A visualization of level i is given in Figure 4.3. We define the edges, rewards and

probabilities after discussing the design principles of the construction.

As mentioned previously, the goal is that applying the strategy improvement algorithm

enumerates the strategies σ0, σ1, . . . , σ2n−1 representing the corresponding numbers in

binary. The Markov decision process is constructed in such a way that a strategy σb induces
a path starting at the source s and leading to the sink t with probability 1. This path

then traverses all levels i with bi = 1 while “ignoring” all levels i with bi = 0. This is
achieved by making entering a level very expensive and traversing a level very profitable.

It is however only possible to traverse a level if the active bicycle of this level is closed.

Ignoring and including levels into the path is controlled by the entry vertex ki of level i.
Every edge leaving the vertex ki has a reward of (−N)2i+7, where N > 0 is a very

large parameter that is specified later. It is thus very expensive for the player to enter

a level. As discussed before, the entry vertex should direct the path towards the active

bicycle Aj
i , j = bi+1, of level i if bi = 1. If bi = 0, then the entry vertex moves to level ℓ(b).

We now focus on the case bi = 1 and formalize the idea of a bicycle. A bicycle is a gadget

that ensures that the player can collect a large positive reward if the bicycle is closed while

“hiding” this reward if the bicycle is open. To provide this functionality, the bicycle Aj
i

contains one randomization vertex (to which we also refer as Aj
i ) and two player vertices

bji,0, b
j
i,1, called bicycle vertices. A visualization of a single bicycle is given in Figure 4.4.

The two vertices bji,0, b
j
i,1 each constitute a cycle with Aj

i via the edges (bji,∗, A
j
i ), (A

j
i , b

j
i,∗),

giving the gadget its name. The vertex Aj
i also has one additional outgoing edge to a

vertex dji . This vertex is used to connect level i with higher levels and make the level very

profitable if bi = 1 and the sink s without making the level profitable if bi = 0.
We now formalize the terms “open” and “closed”.

Definition 4.1.5 (Configurations of bicycles in [Fri11c]). The bicycle Aj
i is closed for a

strategy σ if σ(bji,0) = σ(bji,1) = Aj
i . The bicycle is open for σ if it is not closed.

We consider the vertex dji next. It is connected to a vertex hji which leads to ki+1

if j = 1 and to ki+2, . . . , kn if j = 0. Every edge leaving this vertex has a reward of

(−N)2i+8. In particular, since N2i+8 −N2i+7 > 0, it is profitable for the player to traverse

the level completely if he can get access to this vertex. As the player should however
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ki

2i+ 7

t k1 . . . knc0i

7
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i

b0i,1

b0i,0
1−ε
2

1−ε
2

d0i

ε

s

h0i

6

2i+ 8

t

t

k1
...
kn

c1i

7
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i

b1i,1

b1i,0
1−ε
2
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ε

s

h1i
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kn

ki+1ki+2 . . . kn

s

t k1 . . . kn

Figure 4.3.: Level i of Gn. Circular vertices are player vertices, rectangular vertices are random-
ization vertices. Vertex labels show the names of the vertex, edge labels show their
probability. A number Ω(v) below or next to a vertex depicts that every edge leaving
this vertex has a reward of (−N)Ω(v). Dotted vertices do (typically) not belong to
level i.
The right part shows the global vertices s and t and how s is connected to the entry
levels of the vertices.

only traverse the level if the active bicycle is closed, the edge (Aj
i , d

j
i ) is assigned a very

small probability ε > 0. The edges (Aj
i , b

j
i,∗) are each assigned the probability (1− ε)/2.

This has the effect that the valuation of dji and thus the very profitable edges of hji has

nearly no impact on the valuation of Aj
i if the bicycle is open. However, if it is closed,

then its valuation is equal to the valuation of dji as the Markov decision process will move

to the state dji with probability 1 after a finite number of steps. Since the rewards that

can be collected in the levels are increasing with the levels, closing a bicycle significantly

improves its valuation and makes it very profitable. This is the reason why the rewards are

defined as powers of a very large number. The idea is that closing a bicycle Aj
i increases

its valuation in such a way that it becomes profitable for all closed bicycles Aj
i′ with i′ < i

to open and try to get access to Aj
i . This is achieved by defining the rewards that can be

collected in level i as powers of a sufficiently large parameter N .

Consequently, the entry vertex of level i needs to have access to both bicycles of level i.
For technical reasons, there are no direct edges (ki, A

∗
i ) but there is an intermediate

vertex cji between ki and Aj
i .

We now provide the exact set of edges alongside their probabilities and rewards. To
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Aj
i

bji,0 bji,1

1−ε
2

1−ε
2

ε

. . .

. . . . . .

Figure 4.4.: A bicycle gadget, consisting of the randomization vertex Aj
i and the two player vertices

bji,0, b
j
i,1. Edge labels show the respective probabilities. We identify a bicycle gadget

with its randomization vertex.

define the probabilities and rewards, we need to define the two parameters ε and N . In

principle, traversing a level that is representing a bit which is equal to 1 yields a reward of

(approximately) N2i+8 −N2i+7. Since setting bit i to 1 implies that all bits i′ < i need to

be switched from 1 to 0, the parameter N needs to be chosen such that traversing level i is
more profitable than traversing all levels i′ < i. This can be achieved by settingN ≥ 7n+1.
To ensure that the bicycles can in fact hide the very profitable edges if a bicycle is open, it

is required that ε ≤ N−(2n+11), and we define ε := N−(2n+11) henceforth. Note that both

of these parameters can be encoded with a polynomial number of bits.

The construction has the property that all edges leaving a fixed vertex v have the same

reward assigned to them, and this reward is some power of N . To define the rewards

of the edges, it is thus sufficient to assign a priority Ω(v) to the vertices and setting

r(v, w) := (−N)Ω(v) for all w ∈ Γ+(v). This enables us to define the set of edges via

the following table where r(v, w) := 0 for all w ∈ Γ+(v) if the vertex v is not assigned a

priority. Table 4.1 thus fully describes the edges, rewards and probabilities, concluding

the description of the Markov decision process Gn.

Vertex v Γ+(v) Probability

Aj
i

dji ε

bji,∗
1−ε
2

Vertex v Γ+(v) Priority

t t −

s t, k1, . . . , kn −

bji,∗ t, Aj
i , k1, . . . , kn −

Vertex v Γ+(v) Ω(v)

kn+1 t 2n+ 9

ki c∗i , t, ka, . . . , kn 2i+ 7

h0i t, ki+2, . . . , kn 2i+ 8

h1i ki+1 2i+ 8

cji Aj
i 7

dji hji , s 6

Table 4.1.: The edges of the subexponential construction [Fri11c] alongside their rewards and
probabilities, see Table 1 therein.

This concludes the formal description of the subexponential lower bound construction

of [Fri11c]. We now discuss the application of the strategy improvement algorithm to

this Markov decision process. As this application depends on the initial strategy, we also

discuss this and two issues related to the initial strategy.
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4.2. Application of the Strategy Improvement Algorithm

In this section, we discuss the application of the strategy improvement algorithm using

Zadeh’s pivot rule and an (implicit) tie-breaking rule to the Markov decision process

defined in Section 4.1. The algorithm is provided an initial strategy σ0 representing the

number 0 and then calculates the strategies σ1, . . . , σ2n−1 representing the respective

numbers. We thus begin by formally defining a strategy σb representing a number b ∈ Bn.

All explanations here are extracted from [Fri11c]. To simplify explanation, we say that

vertex v points to w if σ(v) = w.

Definition 4.2.1 (Representing a number). The strategy σb represents the number b ∈ Bn

if it has the following properties:

1. The bicycle A
bi+1

i is closed if and only if bi = 1.

2. If bi = 1, then σb(ki) = cji where j = bi+1. If bi = 0, then σb(ki) = kℓ(b).

3. The source s points to the level of the least significant set bit, i.e., σb(s) = kℓ(b).

4. All vertices h0i point to the entry vertex of the first level after level i+1 corresponding
to a bit equal to 1, so σb(h

0
i ) = kℓi+2(b). If no such index exists, then σb(h

0
i ) = t.

5. The vertex dji points to hji if and only if bi+1 = j.

This definition also applies to b = 0 by substituting kℓ(b) with t.

It is clear that several strategies can represent the same binary number with respect to

Definition 4.2.1. We will later fix a specific strategy σb for every b ∈ Bn which will be the

interpreted as the “canonical” strategy representing the number b. As the definition of

this specific strategy requires more knowledge regarding the construction, we postpone it

for now. For the moment, it is sufficient to just interpret a strategy σb as some strategy

representing b.

Since the application of the improving switches depends on the initially chosen strategy,

we begin by discussing the initial strategy. In [Fri11c], the initial strategy σ∗ is defined as

follows: “As designated initial strategy σ∗, we use σ∗(dji ) = hji and σ∗(_) = t for all other
player 0 nodes with non-singular out-degree.” This initial strategy is however inconsistent

with two other aspects of [Fri11c]. Since we did not introduce these aspects yet, we do

not discuss these issues here. For the sake of completeness, we already introduce the

alternative initial strategy σ⋆ that avoids these issues. We discuss the issues related to the

original initial strategy later.

Definition 4.2.2 (Alternative initial strategy σ⋆). We define the strategy σ⋆ by setting

σ⋆(d0i ) := h0i and σ⋆(d1i ) := s for all i ∈ [n] and σ⋆(v) := t for all other player vertices v
with non-singular out-degree.

This strategy is visualized in Figure 4.5. As every vertex but the vertices d01, d
1
i directly

point to the vertex t which is obviously a sink, the following statement is immediate.

Lemma 4.2.3. The alternative initial strategy σ⋆ is weakly unichain.
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ki

t k1 . . . knc0i

A0
i

b0i,1

b0i,0

d0is

h0i

t

t

k1
...
kn

c1i

A1
i

b1i,1

b1i,0

d1i s

h1i

t

t

k1
...
kn

ki+1ki+2 . . . kn

Figure 4.5.: A level i of the alternative initial strategy σ⋆ described in Definition 4.2.2. The edges
of the strategy are marked by thick red edges.

It is clear that the strategy σb+1 cannot be reached by applying a single improving

switch to σb. Thus, intermediate strategies need to be introduced for the transition from

σb to σb+1. These intermediate strategies are divided into six phases. The idea is that

only one or two “tasks” are performed within the counter during each phase. Examples

of such tasks are, for example, the opening and closing of bicycles, adjusting the targets

of the vertices dji and so on. This allows for simplifying the majority of the proofs and

arguments as they can be based on phases instead of transitions. We mention here that

our description partly differs from the original description given in [Fri11c, Pages 8,9],

and explain the reason in the following two sections.

Before discussing the phases, it is important to mention how the application of improving

switches is handled in [Fri11c]. Instead of proving that applying improving switches

following Zadeh’s pivot rule proceeds along the phases, the order in which improving

switches is applied is described explicitly and it is later argued that this order of application

is in accordance with Zadeh’s pivot rule. We thus also explain the application of the

improving switches in this fashion as well. Consider the strategy σb representing b ∈ Bn

and let ν := ℓ(b+ 1).

1. In phase 1, the algorithm applies improving switches within the bicycles. Some of

these switches have to be applied as they minimize the occurrence record, while

some are applied trying to keep the occurrence records as balanced as possible. For

every open bicycle, at least on of its bicycle edges is switched during phase 1. Some

inactive bicycles switch both of their edges which can be interpreted as “catching

up” with the other edges. The algorithm also switches both bicycle edges of the

active bicycle in level ν as this bicycle needs to be closed with respect to σb+1.
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4. On Friedmann’s Subexponential Lower Bound for Zadeh’s Pivot Rule

2. In phase 2, the new least significant set bit (b+ 1)ν is made accessible by the rest of

the Markov decision process. Consequently, the target of kν is switched to cjν , where

j := (b+ 1)ν .

3. Phase 3 is responsible for resetting the counter, i.e., opening the bicycles in levels

below ν. The entry vertices of all levels i with (b+ 1)i = 0 are switched to kν . The
same is done for all vertices b∗∗,∗ contained in inactive cycle centers and all vertices

b∗i,∗ with (b+ 1)i = 0. As there is a major flaw in this phase, we discuss it in more

detail in Section 4.3.

4. In phase 4, the vertices h0i are updated for all i < ν. This is necessary as bits 1, to ν
switch when transitioning from b to b+ 1.

5. In phase 5, the target of the source vertex is switched to the entry vertex of the level

corresponding to the new least significant set bit.

6. In phase 6, the targets of the vertices dji is changed such that hji is the target of dji if
and only if (b+ 1)i+1 = j.

These phases and the improving switches that are applicable in each phase are formally

described by three tables in [Fri11c]. In the remainder of this section, we introduce and

briefly discuss these tables.

The tables use an alternative notation for describing strategies in Gn. This notation uses

integers to describe the targets of the vertices with respect to a strategy σ, allowing for a

simpler description of strategies. We also use this notation henceforth and thus define the

function σ as specified by Table 4.2.

σ(v) t ki h∗∗ s A∗∗ cji
σ(v) n+ 1 i 1 0 0 j

In addition σ(Aj
i ) := 1 if Aj

i is closed and σ(Aj
i ) := 0 else

Table 4.2.: The function σ in the subexponential construction.

The first table is Table 4.3 which is a slightly adapted variant of [Fri11c, Table 2]. This

table formally defines when a strategy σ belongs to phase p. More precisely, σ is a phase p
strategy (with respect to a number b) if every vertex is mapped by σ to a choice included

in the respective cell of the table and if the strategy fulfills the side conditions of the phase

(if there are any). Cells that contain more than one choice indicate that strategies of the

respective phase are allowed to match any of the choices. As this table is only used for

formalizing the description and intuition given earlier, we do not explain it in detail.

Since Table 4.3 formalizes the term of a phase p strategy, we can now formally define

the “canonical” strategy σb representing the number b ∈ Bn. This strategy is called initial

phase 1 strategy in [Fri11c] as it is the first phase 1 strategy for b calculated by the strategy

improvement algorithm. For b ∈ Bn, we henceforth denote the initial phase 1 strategy

for b with respect to the following definition by σb.

Definition 4.2.4 (Initial phase 1 strategy). The unique phase 1 strategy σb for b with

σb(b
j
i,0) = σb(b

j
i,1) = Aj

i if and only if bi = 1 and bi+1 = j is called initial phase 1 strategy

for b.
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Phase 1 2 3 4 5 6

σ̄(s) ℓ(b) ℓ(b) ℓ(b) ℓ(b) ℓ(b) ℓ(b′)
σ̄(d0i ) 1− bi+1 1− bi+1 1− bi+1 1− bi+1 1− bi+1 1− bi+1, 1− b′i+1

σ̄(d1i ) bi+1 bi+1 bi+1 bi+1 bi+1 bi+1, b
′
i+1

σ̄(h0
i ) ℓi+2(b) ℓi+2(b) ℓi+2(b) ℓi+2(b), ℓi+2(b

′) ℓi+2(b
′) ℓi+2(b

′)
σ̄(b∗∗,∗) 0, ℓ(b) 0, ℓ(b) 0, ℓ(b), ℓ(b′) 0, ℓ(b′) 0, ℓ(b′) 0, ℓ(b′)

σ̄(A
bi+1

i ) bi ∗ ∗ ∗ ∗ ∗

σ̄(A
b
′

i+1

i ) ∗ b′i b′i b′i b′i b′i

Phase 1-2 3-4 5-6

σ̄(ki)

{
ℓ(b) if bi = 0

−bi+1 if bi = 1





ℓ(b), ℓ(b′) if b′i = 0 ∧ bi = 0

−bi+1, ℓ(b
′) if b′i = 0 ∧ bi = 1

−b′i+1 if b′i = 1

{
ℓ(b′) if b′i = 0

−b′i+1 if b′i = 1

Phase 3 Side Conditions

(a) ∀i : ([b′i = 0 and (∃j, l : σ(bji,l) = ℓ(b′))] implies σ(ki) = ℓ(b′))

(b) ∀i, j : ([b′i = 0, b′j = 0, σ(ki) = ℓ(b′)′ and σ(kj) 6= ℓ(b′)] implies i > j)

Table 4.3.: Definition of the strategy phases in [Fri11c]. We let b′ = b+1. This table is an adapted
version of [Fri11c, Table 2] such that it is in line with our notation.

Table 4.4 (which is an adapted version of [Fri11c, Table 3]) is related to the improving

switches that are applied by the strategy improvement algorithm. It however does not

contain the exact set of improving switches. For a given phase p strategy σ, it contains
a subset Lσ and a superset Uσ of the set of improving switches Iσ. Given two such sets,

it is then sufficient to prove that some switch e ∈ Lσ minimizes the occurrence record

among all edges contained in Uσ. This guarantees that the switch e can be applied next

according to Zadeh’s pivot rule, even if the exact set of improving switches is not known.

It is then in particular not necessary to determine the exact set of improving switches for

every strategy. We already mention here that there is an issue with the set L6
σ defining

the subset for phase 6 strategies. We discuss this issue later in more detail and provide

the original table as it is contained in [Fri11c].

The final table is Table 4.5, an adapted version of [Fri11c, Table 4]. For b ∈ Bn, this table

contains the occurrence records of the edges with respect to the initial phase 1strategy σb
representing b. Here, the occurrence records with respect to a strategy σ are described

by a function φσ : E → N ∪ {0}. More precisely, φσ(e) is the number of times the edge e
was applied as improving switch during the execution of the algorithm until reaching the

strategy σ. For most of the edges, the table gives the exact occurrence record with respect

to σb. For the bicycle edges, the occurrence records are not given exactly. Instead, the

table shows that the occurrence records of two bicycle edges differs by at most one and

shows that the sum of their occurrence records can be described exactly. The entries of

the table use the notation introduced when discussing binary numbers in the beginning of

Section 4.1. There is an issue related to the so-called “complicated conditions” which we

discuss in Section 4.3.
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Ph. p Improving switches subset Lp
σ Improving switches superset Up

σ

1 {(bji,l, A
j
i ) : σ(b

j
i,l) 6= Aj

i} L1
σ

2 {(kν , c
j
ν)} where j = b′ν+1 L1

σ ∪ L2
σ

3

{(ki, kν) : σ(ki) 6= ν ∧ b′i = 0}∪ U4
σ ∪ {(ki, kz) : σ(ki) /∈ {z, ν}, z ≤ ν ∧ b′i = 0}∪

{(bji,l, kν) : σ(b
j
i,l) 6= ν ∧ b′i = 0}∪ {(bji,l, kz) : σ(b

j
i,l) /∈ {z, ν}, z ≤ ν ∧ b′i = 0}∪

{(bji,l, kν) : σ(b
j
i,l) 6= ν ∧ b′i+1 6= j} {(bji,l, kz) : σ(b

j
i,l) /∈ {z, ν}, z ≤ ν ∧ b′i+1 6= j}

4 {(h0
i , kℓi+2(b′)) : σ(h

0
i ) 6= ℓi+2(b

′)} U5
σ ∪ {(h0

i , kl)|l ≤ ℓi+2(b
′)}

5 {(s, kν)}
U6
σ ∪ {(s, ki) : σ(s) 6= i ∧ i < ν}∪

{(dji , x) : σ(d
j
i ) 6= x ∧ i < ν}

6
{(d0i , v) : σ(d

0
i ) 6= v ∧ σ(d0i ) 6= b′i+1}∪

L1
σ ∪ L6

σ

{(d1i , v) : σ(d
1
i ) 6= v ∧ σ(d1i ) = b′i+1)}

Table 4.4.: Sub- and supersets of the improving switches of phase p strategies. We let b′ := b+ 1
and ν := ℓ(b′). This table is an adapted version of [Fri11c, Table 3] such that it is in
line with our notation.

Other than correcting the issues in the next section, we rely on these tables.

4.3. Flaws in the Original Proofs

There are three flaws in the construction of [Fri11c]. Two of these flaws are rather

minor and can be repaired relatively easily. These flaws are related to the initial strategy

(Issues 4.3.1 and 4.3.3) and the description of the occurrence records given in Table 4.5

(Issue 4.3.4). These also do not have a huge impact on the correctness of the results of

[Fri11c]. There is, however, one major flaw that needs to be corrected. This flaw is related

to the application of the improving switches during phase 3. We prove that a general

framework of applying improving switches in phase 3 does not obey Zadeh’s pivot rule

(Issue 4.3.12) and argue that the application described in [Fri11c] is one special case of

this framework.

The initial strategy

We begin by discussing two issues related with the original initial strategy σ∗ described
in [Fri11c]. As a reminder, the initial strategy is described as follows: “As designated initial

strategy σ∗, we use σ∗(dji ) = hji and σ∗(_) = t for all other player 0 nodes with non-singular

out-degree.” This initial strategy is however inconsistent with the sub- and supersets of

improving switches given in Table 4.4 and by [Fri11c, Lemma 4].

Issue 4.3.1 (Initial strategy I). The initial strategy σ∗ for Gn as described in [Fri11c,

Page 10] contradicts Table 4.4 since Iσ∗ 6= {(bji,k, A
j
i ) : σ

∗(bji,k) 6= Aj
i}.
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Edge e (∗, t) (s, kℓ) (h0
∗, kℓ) (ki, kℓ)

φσb(e) 0 f(b, ℓ) f(b, ℓ) f(b, ℓ, {(i, 0)})

Edge e (bji,∗, kℓ)

φσb(e) f(b, ℓ, {(i, 0)}) + f(b, ℓ, {(i, 1), (i+ 1, 1− j)})

Edge e (dji , s) (dji , h
j
i ) (ki, c

j
i )

φσb(e) f(b, i+ 1)− j · bi+1 f(b, i+ 1)− (1− j) · bi+1 f(b, i, {(i+ 1, j)})

Complicated Conditions

|φσb(bji,0, A
j
i )− φσb(bji,1, A

j
i )| ≤ 1

φσb(bji,0, A
j
i ) + φσb(bji,1, A

j
i ) =




g∗ + 1 if bi = 1 and bi+1 = j

g∗ + 1 + 2 · z if bi+1 6= j and z := b− g∗ − 2i−1 < 1
2 (b− 1− g∗)

b otherwise

Table 4.5.: Occurrence records for the initial phase 1 strategy σb for b calculated by the strategy
improvement algorithm. We let ℓ := ℓ(b) and g∗ = g(b, i, {(i+ 1, j)}).

This is proven using the following lemma which is proven in Appendix A.

Lemma 4.3.2. None of the edges (b1i,k, A
1
i ) for i ∈ [n] and k ∈ {0, 1} is an improving switch

with respect to σ∗.

Proof of Issue 4.3.1. By [Fri11c], σ∗ is the initial phase 1 strategy representing 0. In

particular, it is a phase 1 strategy. Thus, according to Table 4.4 and since L1
σ = U1

σ = Iσ
for all phase 1 strategies σ, it holds that Iσ∗ = {(bji,k, A

j
i ) : σ

∗(bji,k) 6= Aj
i}.

Let i ∈ [n], k ∈ {0, 1}. By definition of σ∗, it holds that σ∗(b1i,k) = t and in particular

σ∗(b1i,k) 6= A1
i . Therefore, (b1i,r, A

1
i ) ∈ Iσ⋆ should hold according to Table 4.4. But, by

Lemma 4.3.2, (b1i,k, A
1
i ) is not an improving switch. Therefore, σ∗ contradicts Table 4.4.

This is not the only issue related to the initial strategy. If the strategy improvement

algorithm is applied with σ∗ as initial strategy, then at least one of the tables describing

the strategies calculated by the algorithm is incorrect.

Issue 4.3.3 (Initial strategy II). When the strategy iteration algorithm is started using σ∗

as initial strategy, then either Table 4.4 or Table 4.5 is incorrect for σ1.

Proof. Let σ denote the first phase 6 strategy calculated by the strategy improvement

algorithm, let i ∈ [n] and Val := Valσ. Then, since the initial strategy represents the

number 0, Table 4.3 implies σ(s) = k1 and σ(ki′) = k1 for all i′ ∈ {2, . . . , n}. Since

r(s, k1) = 0, this implies Val(s) = Val(k1) and consequently

Val(σ(d1i )) = Val(h1i ) = N2i+8 +Val(ki+1) = N2i+8 −N2i+9 +Val(k1) < Val(s).
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This implies that (d1i , s) is an improving switch for every i ∈ [n]. Now, the algorithm

can either (i) apply (some or all of) these improving switches or (ii) apply none of these

improving switches now. Consider the case that the algorithm applies all improving

switches (d1∗, s) next (that is, before applying any improving switch that is not of this type).

The application of these switches obeys Zadeh’s pivot rule as it is easy to verify that none

of them was applied earlier when transitioning from σ∗ to σ. By definition, phase 6 ends

after all these switches are applied and the initial phase 1 strategy σ1 for 1 is obtained.

But, according to Table 4.5, it should now hold that φσ1(d1i , s) = f(1, i+ 1) = 0 since the

first bit is the only bit that is not equal to zero. But this is a contradiction to the fact that

the edges (d1i , s) were already switched once. Note that this argument also applies if only

a subset of (d1∗, s) is applied.

Thus consider the case that none of these switches is applied and let σ1 again denote

the initial phase 1 strategy for 1. It is easy to verify that that the edges (d1∗, s) are still

improving switches for σ1. This however contradicts Table 4.4.

As mentioned previously, the alternative initial strategy σ⋆ defined in Definition 4.2.2

avoids both of these issues. We prove this in Section 4.4 and discuss another issue next.

The occurrence record of bicycle edges

We now discuss an issue related to the occurrence records of the bicycle edges as specified

in Table 4.5. Let b ∈ Bn and consider a fixed bicycle Aj
i . We define g := g(b, i, {(i+1, j)}),

z := b−g−2i−1 and φσb(Aj
i ) := φσb(bji,0, A

j
i )+φσb(bji,1, A

j
i ). Using this notation, Table 4.5

states the following regarding the occurrence records of the bicycle edges:

∣∣∣φσb(bji,0, A
j
i )− φσb(bji,1, A

j
i )
∣∣∣ ≤ 1, (4.1)

φσb(Aj
i ) =





g+ 1 if bi = 1 ∧ bi+1 = j,

g+ 1 + 2z if bi+1 6= j ∧ z < 1
2(b− 1− g),

b, else.

(4.2)

We now prove that there is an inconsistency regarding Equation (4.2) as follows. As-

suming that the occurrence records of the bicycle edges are described by Equations (4.1)

and (4.2) and that the other entries of Table 4.5 are correct implies that some edges have

a negative occurrence record. More formally, the following issue arises.

Issue 4.3.4 (Occurrence record of bicycle edges). Let b < 2n−k−1 − 1 for some k ∈ N.
Then, there is at least one edge (bji,∗, A

j
i ) that has a negative occurrence record.

Proof. Let i ∈ {n− k, . . . , n− 1} and j = 1. Since b ≤ 2n−k−1− 1 and i ≥ n− k, it follows

that b < 2i − 1. This in particular implies bi = 0 and bi+1 = 0 6= 1 = j as well as b′i+1 = 0
for all b′ ≤ b. By definition, this implies g = g(b, i, {(i + 1, j)}) = 0. Since b < 2i − 1 is

equivalent to 2i > b+ 1, we obtain

2z = 2(b− 2i−1) = 2b− 2i < 2b− (b+ 1) = b− 1,
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or, equivalently, z < 1
2(b− 1) = 1

2(b− 1− g). Consequently, all conditions for the second

case of Equation (4.2) are fulfilled, implying

φσb(Aj
i ) = g+ 1 + 2z = 2z + 1 = 2(b− 2i−1) + 1 < 2(2n−k−1 − 1− 2i−1) + 1

≤ 2(2n−k−1 − 1− 2n−k−1) + 1 = −1 < 0.

Hence, at least one edges has a negative occurrence record.

We resolve this issue in the next section by providing a system similar to the one

described by Equations (4.1) and (4.2) that avoids this issue.

Before doing so, we discuss the main flaw of [Fri11c], the application of improving

switches during phase 3.

Application of improving switches during phase 3

Fix some b ∈ Bn and let ℓ := ℓ(b), ν := ℓ(b + 1). In Section 4.2, we stated that during

phase 3, improving switches need to be applied for every entry vertex ki belonging to a

level with (b + 1)i = 0. In addition, several bicycles are opened during this phase, for

example, some inactive bicycles. According to the informal description given in [Fri11c,

Pages 9,10], these updates are only performed in those levels with an index smaller than ν.
To be precise the following is stated (where r ∈ {0, 1} is arbitrary and the notation was

adapted to be in line with our paper): “In the third phase, we perform the major part of

the resetting process. By resetting, we mean to unset lower bits again, which corresponds to

reopening the respective bicycles. Also, we want to update all other inactive or active but not

set bicycles again to move to the entry point kν . In other words, we need to update the lower

entry points kz with z < ν to move to kν , and the bicycle nodes bjz,r to move to ki. We apply

these switches by first switching the entry node kz for some z < ν and then the respective

bicycle nodes bjz,r.” We prove that applying improving switches in this way violates Zadeh’s

pivot rule and is inconsistent with the tables used in [Fri11c]. As we do not consider the

occurrence records of bicycle edges, all results therefore hold independently of Issue 4.3.4.

Issue 4.3.5 (Informal description of phase 3). For every b ∈ [2n−2 − 1], the informal

description of phase 3 given in [Fri11c, Pages 9,10] contradicts Tables 4.3 and 4.5. It

additionally violates Zadeh’s pivot rule during the transition from σb to σb+1 for every

b ∈ {3, . . . , 2n−2 − 2}.

Many of the following proofs require us to discuss the application of improving switches

when transitioning from σb to σb+1. We thus abbreviate this transition by σb → σb+1.

Since we need to analyze the values of the vertices in detail we need an additional

lemma. It is an extraction of some estimations contained in the proof of [Fri11c, Lemma 3].

Lemma 4.3.6. Let σ be a strategy calculated by the strategy improvement algorithm dur-

ing σb → σb+1. Denote the reward of each edge emanating from vertex v by〈v〉. Let

Si :=
∑

j≥i:
bj=1

(
〈kj〉+

〈
c0j
〉
+
〈
d0j
〉
+
〈
h0j

〉)
and Ti :=

∑

j≥i:
(b+1)j=1

(
〈kj〉+

〈
c0j
〉
+
〈
d0j
〉
+
〈
h0j

〉)
.

Then Valσ(ki) ∈ [〈ki〉+ S1, Ti].
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Proof of Issue 4.3.5. Let b ∈ [2n−2 − 1] and consider the transition from σb to σb+1. Ac-

cording to Table 4.3, for each phase 1 or phase 2 strategy σ, it should hold that σ(ki) = kℓ
if bi = 0 and σ(ki) = cji , j = bi+1 if bi = 1. But, since b < 2n−2, we have b′n = 0 for

all b′ ≤ b. In particular, n > ℓ(b′) for all of those b′. Since phase 3 is the only phase in

which the target of kn can be changed, the target of kn has thus never been changed.

But for every strategy σ considered so far, σ(kn) = t held due to σ⋆(kn) = σ∗(kn) = t.
Since σb is a phase 1 strategy by definition, this contradicts Table 4.3, even if the alternative

initial strategy described in Definition 4.2.2 is used. These arguments furthermore imply

Valσb
(σb(kn)) = 0 for all b ∈ [2n−2 − 1].

As a consequence, the occurrence records of all edges (kn, ki) for i ∈ [n− 1] are zero.

We now discuss how this violates Table 4.5. Consider some i ∈ N such that b ≥ 2i−1.
Then, by Table 4.5, φσb(kn, ki) = f(b, i, {(n, 0)}). But, due to b′n = 0 for all b′ ≤ b, we

have f(b, i, {(n, 0)}) = f(b, i). Thus, by Lemma 4.1.4 (3) and since b ≥ 2i−1,

f(b, i, {(n, 0)}) = f(b, i) =

⌊
b+ 2i−1

2i

⌋
≥

⌊
2i−1 + 2i−1

2i

⌋
= 1.

This contradicts the occurrence records of all edges (kn, ki) for i ∈ [n− 1] being zero.

It remains to show that applying the improving switches as described before contradicts

the LeastEntered pivot rule. This is achieved by proving that (kn, k1) is improving

during σ2 → σ3. We discuss the case of b ∈ {3, . . . , 2n−2 − 2} afterwards. By Table 4.4,

L5
σ = {(s, kν)} for any phase 5 strategy σ. Since only switches contained in the subsets Lp

σ

are chosen as improving switches, this implies that (s, k1) is chosen in phase 5 of σ2 → σ3.
But, since ℓ(1) = ℓ(3) = 1, this edge has already been chosen in phase 5 of σ0 → σ1.
Therefore, the edge has a non-zero occurrence record throughout σ2 → σ3. Thus, the
result follows once we showed that (kn, k1) is an improving switch, since we already

observed that it has an occurrence record of zero but is not switched.

Consider σb for b = 2. The only set bit in the binary representation of b is b2. As

observed before, σ2(kn) = t, implying Valσ2(σ2(kn)) = 0. In addition, by Lemma 4.3.6,

for every strategy σ calculated during the transition from σ2 to σ3, it holds that

Valσ2(k1) ≥ 〈k1〉+ S1 = (−N)2·1+7 + S1

≥
∑

j∈[n]:bj=1

[
(−N)2j+7 + (−N)2j+8 + (−N)7 + (−N)6

]
−N9

= N12 −N11 −N9 −N7 −N6 > 0.

Thus, (kn, k1) is an improving switch during the whole transition from σ2 to σ3.
Since Valσb

(kn) = 0 for all b ∈ {3, . . . , 2n−2 − 2}, since ℓ(b) 6= n for those b, and since

the values are non-decreasing, (kn, k1) remains improving for all b ∈ {3, . . . , 2n−2 − 2}.
In addition, due to b ≥ 3, both bicycles of level 1 have been closed at least once. This

implies that the edges of these bicycles have an occurrence of at least 1. Also, at least
one of the edges of the inactive bicycle of level 1 is switched when transitioning from σb
to σb+1 for any b ∈ Bn. Because this edge has a non-zero occurrence record whereas the

edge (kn, k1) has an occurrence record of zero and is an improving switch, this shows that

following the informal description contradicts the Least-Entered pivot rule at least once

during the transition from σb to σb+1 for every b ∈ {3, . . . , 2n−1 − 2}.
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There is however another description of the application of improving switches during

phase 3. According to this description, the switches are not only be applied in levels

with a lower index than the least significant set bit but for all levels. Especially, the side

conditions specified in Table 4.3 rely on the fact that these switches are applied for all

levels i with (b + 1)i = 0. According to the proof of [Fri11c, Lemma 5], the switches

need to be applied as follows (where the notation is again adapted): “In order to fulfill all

side conditions for phase 3, we need to perform all switches from higher indices to smaller

indices, and ki to kν before bji,k with (b+ 1)i 6= j or (b+ 1)i = 0 to kν .” However, applying
improving switches in this fashion violates Zadeh’s pivot rule.

Issue 4.3.7 (Alternative description of phase 3). Applying the improving switches as de-

scribed in [Fri11c, Lemma 5] does not obey Zadeh’s LeastEntered pivot rule.

Proving this issue requires a more involved analysis of the subset of improving switches

applied during phase 3 and the occurrence records of these switches. As the proofs to

the following statements are rather technical, we do not include them here. They can

however be found in Appendix A.

Let σ be a fixed phase 3 strategy. We first partition the subset L3
σ of the set of improving

switches for a phase 3 strategy into three sets L3,1
σ , L3,2

σ and L3,3
σ (cf. Table 4.4):

• L3,1
σ := {(ki, kν) : σ(ki) = kℓ′ ∧ (b+ 1)i = 0}

• L3,2
σ := {(bji,k, kν) : σ(b

j
i,k) 6= kℓ′ ∧ (b+ 1)i = 0}

• L3,3
σ := {(bji,k, kν) : σ(b

j
i,k) 6= kℓ′ ∧ (b+ 1)i+1 6= j}

The next lemma shows that the improving switches that are applied during phase 3 are

fully characterized by the strategy σb. This lemma is just a summary and reformulation of

the description of the application of improving switches during phase 3, verified by the

definition of the strategy phases provided by Table 4.3. We thus do not prove it here.

Lemma 4.3.8. Let b ∈ Bn and let σ denote the first phase 3 strategy calculated after σb.
Then, L3

σ = L3
σb
, and L3

σb
is the set of improving switches that should be applied during

phase 3 according to Table 4.3.

The following lemma now shows that applying a single improving switch in phase 3
reduces the size of L3

σ by 1. As a reminder, for a strategy σ and an improving switch e ∈ Iσ,
the strategy σe is the strategy obtained from σ by applying the switch e.

Lemma 4.3.9. Let σ be a phase 3 strategy and let e ∈ L3
σ. Then L3

σe = Lσ \ {e}.

This lemma immediately implies that improving switches stay improving during phase 3
in the following sense.

Corollary 4.3.10. Let σ be a phase 3 strategy and e ∈ Iσ. Let σ
′ be a phase 3 calculated

by the strategy iteration algorithm during the same transition. If e was not applied when

transitioning from σ to σ′, then e ∈ Iσ′ .

The next lemma now relates the occurrence records of edges of the type (k∗, kν).
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Lemma 4.3.11. Let i ∈ {2, . . . , n − 2} and l < i. Then, there is a number b ∈ Bn with

ℓ(b+ 1) = ν = l such that for all j ∈ {i+ 2, . . . , n}, it holds that φσb(ki, kν) < φσb(kj , kν)
and (ki, kν), (kj , kν) ∈ L3

σb
.

These results enable us to prove that the application as described in [Fri11c, Lemma 5]

does not obey Zadeh’s rule.

Proof of Issue 4.3.7. According to [Fri11c, Lemma 5], the improving switches of phase 3

should be applied as follows: “[. . . ] we need to perform all switches from higher indices

to smaller indices, and ki to kν before bji,k with (b+ 1)i+1 6= j or (b+ 1)i = 0 to kν”. This
description is also further formalized in the side conditions of Table 4.3.

Let i ∈ {2, . . . , n − 2}, l < i and j ∈ {i + 2, . . . , n − 2}. By Lemma 4.3.11, there is a

number b ∈ Bn such that l = ν = ℓ(b + 1) and φσb(ki, kν) < φσb(kj , kν). In addition,

(ki, kν), (kj , kν) ∈ L3
σb
. Therefore, by Lemma 4.3.8, (kj , kν) should be applied before

(ki, kν) during σb → σb+1 when following the description of [Fri11c].

Consider the phase 3 strategy σ of this transition in which the switch (kj , kν) should
be applied. Then, since j > i and since we “perform all switches from higher indices to

smaller indices”, the switch (ki, kν) was not applied yet. But, by Corollary 4.3.10, it is

an improving switch for the current strategy σ. This implies φσb(kj , kν) = φσ(kj , kν)
and φσb(ki, kν) = φσ(ki, kν). Consequently, φ

σ(ki, kν) < φσ(kj , kν). Thus, since (ki, kν) is
improving for σ and has a lower occurrence record than (kj , kν) and σ was chosen as the

strategy in which (kj , kν) should be applied, the LeastEntered rule is violated.

The application described in [Fri11c, Lemma 5] can be interpreted as a special case of

a general framework for applying improving switches during phase 3. This framework is

that improving switches are applied “one level after another”. That is, during the transition

from σb to σb+1, a fixed ordering Sℓ(b+1) depending on ℓ(b + 1) of the levels 1 to n is

considered. When level i1 now precedes level i2 within Sℓ(b+1), all improving switches

that correspond to edges (u, v) with u being part of level i1 need to be applied before

any such switch of level i2 is applied. This ordering Sℓ(b+1) only depends on ℓ(b+ 1), so
during transitions σb → σb+1 and σb′ → σb′+1 with ℓ(b+1) = ℓ(b′+1), the same ordering

is used. It is clear that the description described in [Fri11c, Lemma 5] is of this kind.

Our goal is now to prove the following: Let l ∈ [n − 4]. If the improving switches of

phase 3 are applied level by level according to a fixed ordering Sl during all transitions

from σb to σb+1 for which ℓ(b+ 1) = l, then the application violates Zadeh’s pivot rule at

least once. This shows that an entire class of orderings of the improving switches of phase 3
violates the LeastEntered pivot rule, including the ordering used in [Fri11c]. In some

sense, this proves that the ordering used in [Fri11c] needs to be changed fundamentally

and cannot be fixed by slight adaption. We therefore interpret this issue as a major issue

as it might have a significant impact on the results of [Fri11c].

Issue 4.3.12. Consider an arbitrary tie-breaking rule for the LeastEntered pivot rule such

that the improving switches of phase 3 are applied one level after another as described

previously. That is, let the ordering of the levels in the transition from σb to σb+1 only depend

on ℓ(b+ 1) for all b ∈ Bn. Then, the LeastEntered pivot rule is violated.
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Proving this issue requires another lemma similar to Lemma 4.3.11. This level relates

the occurrence records of bicycle edges of level i and (ki+1, kν). It in particular implies

that level i+ 1 has to be applied before level i if improving should be applied one level

after another.

Lemma 4.3.13. Assume that all edges of L3
σb

are applied during phase 3 of the transition

from σb to σb+1 for all b ∈ Bn. Let i ∈ {2, . . . , n − 2} and l < i be fixed. Then, there is a
b ∈ Bn with ℓ(b + 1) = l such that φσb(ki+1, kν) < φσb(b1i,k, kν) for some k ∈ {0, 1} and

(ki+1, kν), (b
1
i,k, kν) ∈ L3

σb
.

Using Lemmas 4.3.11 and 4.3.13 now allows us to prove Issue 4.3.12.

Proof of Issue 4.3.12. To prove that applying improving switches level by level cannot obey

Zadeh’s pivot rule, we show the following statement. For every i ∈ [n], we let Si denote a

fixed ordering of [n]. Suppose that the improving switches of phase 3 are applied level by

level according to the ordering Sℓ(b+1) when transitioning from σb to σb+1 for all b ∈ Bn.

Then, for every l ∈ [n− 4], assuming that applying the improving switches according to Sl

obeys the LeastEntered pivot rule yields a contradiction.

Let l ∈ [n− 4] and consider the ordering Sl = (s1, . . . , sn) of [n]. For k ∈ [n], we denote

the position of k within Sl by k∗. That is, k∗ is the unique number in [n] such that sk∗ = k.

Assume that applying the improving switches level by level according to Sl obeys Zadeh’s

pivot rule. We prove that this yields (l + 1)∗ < (n− 1)∗ as well as (n− 1)∗ < (l + 1)∗.

Let i ∈ {l+1, . . . , n− 2}. Then, by Lemma 4.3.13, there exists at least one b ∈ Bn with

ℓ(b + 1) = ν = l and φσb(ki+1, kν) < φσb(b1i,k, kν) as well as (ki+1, kν), (b
1
i,k, kν) ∈ L3

σb
.

By Lemma 4.3.8, both switches are applied during σb → σb+1. As the application of the

improving switches obeys Zadeh’s pivot rule, this implies (i+1)∗ < i∗. This argument can

be applied for all i ∈ {l+1, . . . , n− 2}, hence (n− 1, n− 2, . . . , l+1) is a (not necessarily

consecutive) subsequence of Sl. In particular, (n− 1)∗ < (l + 1)∗ as l + 1 6= n− 1 if we

choose n sufficiently large.

Now, let i = l + 1 and j ∈ {i + 2, . . . , n}. By Lemma 4.3.11, there is some b ∈ Bn

with ℓ(b + 1) = l such that φσb(ki, kν) < φσb(ki+2, kν). Lemma 4.3.8 implies that these

switches are applied during σb → σb+1. This implies that any level i ∈ {l + 1, . . . , n− 2}
has to precede any level j ∈ {i + 2, . . . , n} within the ordering Sl. Consequently, the

sequence (l + 1, . . . , n− 1, n) is a (not necessarily consecutive) subsequence of Sl. This

in particular implies (l + 1)∗ < (n − 1)∗ since n − 1 ≥ l + 3 as we have l ≤ n − 4 by

assumption. But this contradicts (n− 1)∗ < (l + 1)∗.

Therefore, applying the improving switches level by level according to the ordering Sl

does not obey Zadeh’s LeastEntered pivot rule.

This concludes our discussion of the issues. In the next section, all of these issues are

resolved by (i) analyzing the alternative initial strategy given in Definition 4.2.2, (ii)

giving a more sophisticated description of the occurrence records of the bicycle edges and

(iii) proving that there is some way of applying the improving switches of phase 3 during

phase 3 without violating Zadeh’s pivot rule.
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4.4. Correction of the Flaws

In this section, we resolve each issue that was discussed in Section 4.3. We first prove that

the alternative initial strategy given in 4.2.2 avoids Issues 4.3.1 and 4.3.3 (Theorems 4.4.1

and 4.4.2). We then provide another system for describing the occurrence records of

the bicycle edges and prove that this system correctly specifies the occurrence records

(Theorem 4.4.3). Finally, we prove that it is possible to apply the improving switches of

phase 3 while obeying Zadeh’s pivot rule (Theorem 4.4.14) and that this does not affect

the overall correctness of Friedmann’s original result (Theorem 4.4.15). We begin by

discussing the initial strategy.

The initial strategy

We have proven that there are two issues regarding the initial strategy σ∗. In Issue 4.3.1, we

showed that the set of improving switches Iσ∗ does not conform to the sub- and supersets

of Table 4.4. Furthermore, we proved that the strategy contradicts either Table 4.4 or

Table 4.5 with respect to b = 1. We gave an alternative initial strategy σ⋆ in Definition 4.2.2,

claiming that this strategy does not have the issues the original initial strategy has. This

claim is now proven.

As a remainder, σ⋆ is defined via σ⋆(d0i ) := h0i and σ⋆(d1i ) := s for all i ∈ [n] and
σ⋆(v) := t for all other player vertices v with non-singular out-degree. We now prove

that σ⋆ avoids Issues 4.3.1 and 4.3.3.

Theorem 4.4.1. The set of improving switches for σ⋆ is Iσ⋆ = {(bji,k, A
j
i ) : σ

⋆(bji,k) 6= Aj
i}.

Proof. In comparison with the original initial strategy, the changes can only have an effect

on bicycle edges (b1∗,∗, A
1
∗) and and on edges of the type (d1∗, h

1
∗). It thus suffices to prove

that none of the edges (d1∗, h
1
∗) is an improving switch whereas all edges (b1∗,∗, A

1
∗) are

improving for σ⋆.

Fix some i ∈ [n] and let Val := Valσ⋆ . By the definition of σ⋆, it holds that σ⋆(d1i ) = s
and σ⋆(s) = t, so Val(σ⋆(d1i )) = 0. Thus, (d1i , h

1
i ) /∈ Iσ⋆ follows from

Val(h1i ) = (−N)2i+8 +Val(ki+1) = N2i+8 + (−N)2i+9 +Val(t) = N2i+8 −N2i+9 < 0.

Let k ∈ {0, 1}. Since Val(σ⋆(b1i,k)) = Val(σ⋆(b1i,1−k)) = 0, it suffices to prove Val(A1
i ) > 0.

As σ⋆(d1i ) = s, this follows from Val(A1
i ) = εVal(d11) = ε[N6 + Val(s)] = εN6 > 0.

Consequently, (b1i,k, A
1
i ) is an improving switch for σ⋆.

Theorem 4.4.2. If the strategy iteration algorithm uses σ⋆ as initial strategy, then both

Tables 4.4 and 4.5 are correct for the initial phase 1 strategy σ1 for b = 1.

Proof. Let σ denote the first phase 6 strategy calculated during the transition from σ⋆

to σ1. As no improving switch (d1∗, ∗) is applied when transitioning from σ⋆ to σ, the
definition of σ⋆ implies that σ(d1i ) = s holds for all i ∈ [n]. This in particular implies that

none of the edges (d1i , s) is an improving switch for σ, and none of these edges can be

switched. Thus, once σ1 is reached, the occurrence record of all these edges is 0 which
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is in accordance with Table 4.5. This furthermore implies that none of the edges (d1i , s)
is improving during phase 1 of the transition from σ1 to σ2, resolving the contradiction

regarding Table 4.4.

This concludes our discussion of the corrections of the issues related to the initial

strategy. We now discuss the next issue, the occurrence records of the bicycle edges.

The occurrence records of bicycle edges

As proven in Issue 4.3.4, the description of the bicycle edges given by Table 4.5 is not

entirely accurate. The problem is that the system describing these occurrence records

does not properly distinguish between bicycles that were already closed at least once

during some previous transition and bicycles that have never been closed until now. We

now provide a system of equations properly distinguishes between these types of bicycles

and thus describes the occurrence records of the bicycle edges properly. Let b ∈ Bn be

fixed, let Aj
i be a fixed bicycle and define g := g(b, i, {(i+ 1, j)}), z := b− g− 2i−1 and

φσb(Aj
i ) := φσb(bji,0, A

j
i ) + φσb(bji,1, A

j
i ). We consider the following system:

|φσb(bji,0, A
j
i )−φσb(bji,1, A

j
i )| ≤ 1 (4.3)

φσb(Aj
i ) =





g+ 1, Aj
i is closed and active

b, Aj
i is open and active

b, Aj
i is inactive and b < 2i−1 + j · 2i

g+ 1 + 2z, Aj
i is inactive and b ≥ 2i−1 + j · 2i

(4.4)

Before proving that this system in fact correctly describes the occurrence record of

the bicycle edges, we describe these occurrence records and the conditions given here

informally. Ideally, the occurrence records of bicycle edges in a bicycle Aj
i with respect

to σb should be as follows:

• If the bicycle is closed and active, then φσb(Aj
i ) should correspond to the last time

the bicycle closed. This is the last time a number b′ with ℓ(b′) = i and b′i+1 = j was

calculated, which is exactly given by g.

• If it is open and active, then its occurrence record should be equal to the currently

represented number b.

• If it is inactive, then its occurrence record either has to “catch up” to b since it was

closed for a very long time or it already successfully caught up.

To give more intuition why the system given by Equation (4.4) correctly formalizes this

behavior, we compare this to the system given by Equations (4.1) and (4.2).

Both systems contain an inequality that encodes that the difference of the occurrence

records of the two bicycle edges may differ by at most 1. We thus focus on Equations (4.2)

and (4.4). Consider the second condition of Equation (4.2). This models the case that Aj
i

is inactive and does not have an occurrence record of b. This is handled by the condition

z < 1
2(b − 1 − g) which is equivalent to g + 1 + 2z < b. As shown in Issue 4.3.4, this

condition does not described inactive bicycles properly. This distinction can be included by
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an additional condition regarding the relation between b and 2i−1 + j · 2i. More precisely,

since 2i−1 + j · 2i is the smallest number for which the cycle center Aj
i needs to be closed,

this condition is used to distinguish inactive bicycles as follows. If b ≥ 2i−1 + j · 2i, then
the bicycle has already been active and closed once and might need to catch up as the

occurrence record of the bicycle edges might be very low. If b < 2i+1 + j · 2i−1, then the

bicycle does not not need to catch up because it has not been active yet.

To prove that the system correctly describes the occurrence records, we need to explain

how improving switches within the bicycles are applied according to [Fri11c]. Our de-

scription is a reformulation of the description given in the proof of [Fri11c, Lemma 5]. The

following rules summarize the application of the improving switches within a bicycle Aj
i

during phase 1 of the transition from σb to σb+1 (rules are not stated in the order of their

application):

1. If Aj
i is open and active, one of the two switches of the bicycle Aj

i is switched.

2. Let j := bℓ(b+1)+1. In addition to the first rule, the second edge ofAj
ℓ(b+1) is switched.

3. If Aj
i is inactive and b < 2i−1 + j · 2i, one of the two edges of the bicycle is switched.

4. If Aj
i is inactive, b ≥ 2i−1+ j ·2i and z < 1

2(b−1−g), both edges of Aj
i are switched.

5. If Aj
i is inactive, b ≥ 2i−1 + j · 2i and z ≥ 1

2(b− 1− g), only one edge is switched.

Applying the improving switches according to these 5 rules yields the occurrence records
as described by Equation (4.4).

Theorem 4.4.3. Let b ∈ Bn and Aj
i be a bicycle. If the improving switches within Aj

i are

applied by as described by rules 1 to 5, then Equations (4.3), (4.4) correctly specify the

occurrence records φσb(Aj
i ).

To simplify the proof, we introduce the following notion. Fix some b ∈ Bn and a

bicycle Aj
i . We say that Aj

i is (a bicycle) of type k for σb when it fulfills the k-th condition

of Equation (4.4) for σb. We additionally establish the following abbreviations and state a

lemma that is implicitly contained in the proof of [Fri11c, Lemma 5].

• Similarly to defining g := g(b, i, {(i+ 1, j)}, we let g′ := g(b+ 1, i, {(i+ 1, j)}).

• We define z := b− g− 2i−1 and z′ := b+ 1− g′ − 2i−1 analogously.

• We define ℓ := ℓ(b) and ν := ℓ(b+ 1).

Lemma 4.4.4 ([Fri11c]). For every b ∈ Bn, i ∈ [n] with i 6= ℓ(b+1) and j ∈ {0, 1}, g = g′.

We also make use of the following lemma, formalizing the intuition we gave previously

on the further distinction regarding the occurrence records of the bicycles.

Lemma 4.4.5. Let b ∈ Bn and Aj
i be a bicycle. Then, Aj

i was closed at least once during the

application of the strategy iteration algorithm upto strategy σb if and only if b ≥ 2i−1 + j · 2i.

Proof. The bicycle Aj
i is closed the first time when a number b̃ ≤ b is reached such

that b̃i = 1, b̃i+1 = j and b̃l = 0 is calculated by the strategy number algorithm. As this

number is exactly 2i−1 + j · 2i, the statement follows.
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This enables us to prove Theorem 4.4.3 Whenever we discuss how a bicycle should look

like, we implicitly refer to the invariants introduced in Section 4.2.

Proof of Theorem 4.4.3. Alongside the main statements of the theorem, we also prove

φσb(Aj
i ) ≤ b+ 1 (4.5)

where equality holds if and only if i = ℓ and j = bℓ+1. The reason is that this statement is

needed in some cases and simplifies the proof.

We show the statement of the theorem and Equation (4.5) via induction on b. Let b = 0.
By the definition of both the original and the alternative initial strategy, the target of b∗∗,∗
under the corresponding strategy is t. Therefore, all bicycles are open, regardless which

of the two initial strategies is considered. As b = 0, we have 0 = b < 2i−1 + j · 2i for
all i ∈ [n] and j ∈ {0, 1}. This implies that every bicycle is either of type 2 or of type 3.
Therefore, the occurrence record of every bicycle needs to be equal to b = 0. Since

we consider the initial strategies, no improving switch was applied yet, implying the

statement. Therefore, φσ0(Aj
i ) = 0 for all bicycles Aj

i . Consequently, Equation (4.4) holds.

In particular, Equation (4.3) holds as well. Furthermore, there is no least significant set

bit ℓ by the choice of b. Hence, since φσ0(Aj
i ) = 0 < b + 1 for all Aj

i , and no bicycle is

closed, Equation (4.5) holds as well.

Suppose that the statements holds for all b′ ∈ Bn with b′ ≤ b for some fixed b ∈ Bn.

We show that the two statements also hold for b+1. We distinguish between the induction

hypotheses with respect to Equation (4.4) and Equation (4.5) and always state to which

we refer. We discuss Equation (4.3) at the end of the proof.

Let ∈ [n], j ∈ {0, 1} and fix a bicycle Aj
i . The proof is organized as follows. We

distinguish all “states” the bicycle could be in for σb. We investigate of which type the

bicycle is for σb and if this type changes when transitioning to σb+1. We state how many

improving switches are applied according to the rules and why Equation (4.4) remains

valid for σb+1.

1. A
j
i is open, active and i = ν. Then Aj

i is the active bicycle corresponding to the

least significant set bit of b + 1. By construction, it is open for σb but needs to be

closed for σb+1. The bicycle remains active as bν+1 = (b+ 1)ν+1, so Aj
i is of type 1

for σb+1. As both bicycle edges are switched, we prove φσb(Aj
i ) + 2 = g′ + 1.

By the induction hypothesis (4.4), φσb(Aj
i ) = b since Aj

i is a type 2 bicycle for σb. To
show Equation (4.4), it therefore suffices to show g′ = b+ 1. This however follows

since both g′ and b+ 1 end on the subsequence (bν+1, 1, 0, . . . , 0) of length ν + 1.

In addition, φσb+1(Aj
i ) = (b+ 1) + 1, hence Equation (4.5) remains valid.

2. A
j
i is open and active, but i 6= ν. We prove that Aj

i remains open and active. By

the definition of open and active, bi = 0 and j = bi+1. In addition, ν = ℓ(b + 1)
implies bi′ = 1 for all i′ ∈ [ν − 1]. As all active bicycles in the levels 1 to ν − 1 are

closed for σb and i 6= ν, this implies i > ν. As only the bits b1 to bν are switched,

the bicycle Aj
i remains active. Since the active bicycle of level ν is the only bicycle

that is open for σb but closed for σb+1, A
j
i remains open. Hence, Aj

i is of type 2

for σb+1. As only one improving switch is applied in Aj
i (rule 1), we therefore need
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to show that φσb(Aj
i ) + 1 = b+ 1. By the induction hypothesis (4.4), φσb(Aj

i ) = b,

so φσb(Aj
i ) + 1 = b+ 1. Therefore, Equations (4.4) and (4.5) hold.

3. A
j
i is closed, active and i > ν. We prove that Aj

i is of type 1 for σb+1. By the

definition of closed and active, bi = 1 and bi+1 = j. As only bits in levels below ν
switch, Aj

i remains active and closed since i > ν. Thus, Aj
i is of type 1 for σb+1 and

none of its bicycle edges are switched. We thus need need to show φσb(Aj
i ) = g′+1.

By the induction hypothesis (4.4), φσb(Aj
i ) = g+1, so it suffices to show g+1 = g′+1.

Since i 6= ν, this follows from Lemma 4.4.4. In addition, Equation (4.5) remains valid

since φσb(Aj
i ) ≤ b by the induction hypothesis (4.5). Since φσb+1(Aj

i ) = φσb(Aj
i ) as

argued before, this implies φσb+1(Aj
i ) < b+ 1.

4. A
j
i is closed, active and i < ν. We show that Aj

i is of type 4 for σb+1. Since

i < ν, the bits bi and bi+1 both switch. Thus, (b + 1)i = 0 as i < ν. Hence Aj
i

is open for σb+1. Since Aj
i is active for σb, the choice of i yields bi+1 = j and

(b+1)i+1 6= j. The bicycle is thus inactive for σb+1. Since A
j
i is closed, Lemma 4.4.5

implies b ≥ 2i−1+ j · 2i. Therefore, Aj
i is a bicycle of type 4 for σb+1. As A

j
i is closed,

the bicycle edges are not switched. We thus prove φσb(Aj
i ) = g′ + 1 + 2z′.

By the induction hypothesis (4.4), it follows that φσb(Aj
i ) = g+ 1. It thus suffices to

prove g+ 1 = g′ + 1 + 2z′. Since i 6= ν, Lemma 4.4.4 implies g = g′, so it suffices

to prove z′ = b + 1 − g′ − 2i−1 = 0. As i < ν and Aj
i is closed and active, bi = 1

and j = bi+1 follow. This implies g = (bn, . . . , bi+1, 1, 0, . . . , 0). Therefore, since

i < ν implies b = (bn, . . . , bi+1, 1, 1, . . . , 1), we obtain b− g = 2i−1 − 1. As g = g′ by

Lemma 4.4.4, this yields z′ = b+1− g′ − 2i−1 = 0, so Equation (4.4) remains valid.

As in Case 2, φσb+1(Aj
i ) = φσb(Aj

i ) and since φσb(Aj
i ) ≤ b by the induction hypothe-

sis (4.5), also Equation (4.5) follows.

5. A
j
i is closed, active and i = ν. This cannot happen as both bicycles of level ν are

open with respect to σb since it is the initial phase 1 strategy.

6. A
j
i is closed and inactive. This cannot happen since closed bicycles are always

active for the initial phase 1 strategy σb of a transition.

7. A
j
i is inactive and b < 2i−1 + j · 2i. Then, Aj

i is of type 3, and Aj
i being inactive

implies that Aj
i is open. We consider the possible types of Aj

i for σb+1.

It is impossible that Aj
i is closed for σb+1 as the active bicycle of level ν is the only

bicycle which is open for σb and closed for σb+1, and Aj
i is inactive.

Suppose that Aj
i is of type 3 for σb+1. As only one improving switch is applied

(rule 3), we thus need to prove φσb(Aj
i ) + 1 = b+1. But this follows immediately as

φσb(Aj
i ) = b by the induction hypothesis (4.4).

Suppose that Aj
i is of type 2 for σb+1. We then need to prove φσb(Aj

i ) + 1 = b+ 1,
which follows from the induction hypotheses (4.4).

Suppose that Aj
i is of type 4 for σb+1. Then, since b < 2i−1 + j · 2i, it follows

that b+ 1 = 2i−1 + j · 2i. But, by Lemma 4.4.5, this is only possible if Aj
i is closed
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during the transition from σb to σb+1, contradicting the inactivity of Aj
i for σb.

Therefore, φσb(Aj
i ) + 1 = b+ 1 in all possible cases, and both Equation (4.4) and

Equation (4.5) stay valid.

8. A
j
i is inactive, b ≥ 2i−1 + j · 2i and z < 1

2
(b − 1 − g). Then, Aj

i is a bicycle

of type 4 for σb. We prove that it is also of type 4 for σb+1. It then remains to

prove φσb(Aj
i ) + 2 = g′ + 1 + 2z′, or, since φσb(Aj

i ) = g + 1 + 2z by the induction

hypothesis (4.4), g+ 1 + 2z + 2 = g′ + 1 + 2z′.

First, b+ 1 ≥ 2i−1 + j · 2i follows from b ≥ 2i−1 + j · 2i. Assume that Aj
i was active

for σb+1. Since only bits with an index smaller or equal to ν are switched, only

inactive bicycles in levels 1 to ν − 1 can become active. As a consequence, i < ν.

We next show that b−g = 2i+2i−1−1. First assume i 6= ν−1. Then, since i < ν−1
and b = (bn, . . . , bν+1, 0, 1, . . . , 1), it follows that bi+1 = 1. Hence, by the inactivity

of Aj
i with respect to σb, we obtain j = 0. Therefore,

g = (bn, . . . , bν+1, 0, 1, . . . , 1, 0︸︷︷︸
gi+1

, 1︸︷︷︸
gi

, 0, . . . , 0),

since gi = 1 and gi+1 = j = 0 by definition. Consequently, b− g = 2i + 2i−1 − 1.

Now let i = ν − 1. Then bi+1 = bν = 0 and hence j = 1 as Aj
i is inactive. Therefore,

g =
(
b̃n, . . . , b̃ν+1, 1, 1︸︷︷︸

gi=gν−1

, 0, . . . , 0
)

where (b̃n, . . . , b̃ν+1) = (bn, . . . , bν+1)− 1. This implies g+ 2i + 2i−1 = b+ 1 which

is equivalent to b− g = 2i + 2i−1 − 1.

Using the identities b− g = 2i + 2i−1 − 1 and φσb(Aj
i ) = b+ 1 + 2z which follows

from the induction hypothesis (4.4), we obtain

φσb(Aj
i ) = b+ 2i + 2i−1 − 1− 2i + 1 = b+ 2i−1 > b. (4.6)

Additionally, by assumption, z < 1
2(b− 1− g), which implies

φσb(Aj
i ) = g+ 1 + 2z < g+ 1 + b− 1− g = b. (4.7)

But this is a contradiction to Equation (4.6). Therefore, Aj
i cannot be active for σb+1,

hence it must be inactive for σb+1 and thus be of type 4.

It remains to prove φσb(Aj
i ) + 2 = g+ 1 + 2z + 2 = g′ + 2 + 2z′. As Aj

i is inactive

for σb+1, it follows that i 6= ν and thus, by Lemma 4.4.4, also g = g′. Therefore,

g+ 1 + 2z + 2 = g+ 1 + 2b− 2g− 2i + 2 = g′ + 1 + 2z′,

hence Equation (4.4) still holds.

It remains to show Equation (4.5). By Equation (4.7), we have φσb(Aj
i ) < b, and thus,

by integrality, φσb(Aj
i ) ≤ b− 1. Thus, φσb+1(Aj

i ) = φσb(Aj
i ) + 2 ≤ b− 1 + 2 = b+ 1

follows since both bicycle edges of Aj
i are switched.
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9. A
j
i is inactive, b ≥ 2i−1 + j · 2i and z ≥ 1

2
(b − 1 − g). In this case, we do not

distinguish the type of Aj
i for σb+1 and prove g+ 1 + 2z = b instead. This suffices

as Aj
i cannot become closed and active for σb+1 and, by rule 5, the occurrence record

of Aj
i increases by 1. Therefore, we do not need to specify the type of Aj

i if we prove

that its occurrence record before applying the switch is equal to b.

We prove z = 1
2(b− 1− g). Assume z > 1

2(b− 1− g). Then, since Aj
i is of type 4,

the induction hypothesis (4.4) implies φσb(Aj
i ) = g+ 1 + 2z. Thus

φσb(Aj
i ) = g+ 1 + 2z > g+ 1 + b− 1− g = b,

contradicting the induction hypothesis (4.5) requiring φσb(Aj
i ) ≤ b. Therefore,

equality holds, implying φσb(Aj
i ) = g + 1 + (b − 1 − g) = b. As a single switch is

applied, we obtain φσb(Aj
i ) + 1 = b+ 1 as claimed.

Thus, the occurrence records given in Equation (4.4) and the estimation given in

Equation (4.5) hold. Since the switches can be applied alternatingly within a single bicycle,

Equation (4.3) holds at all times during the application of the improving switches.

The improving switches of phase 3

We now prove that the improving switches of phase 3 can be applied without violating

Zadeh’s pivot rule and that this application can be extended in such a way that the

improving switches can be applied in all phases without violating the pivot rule.

Let σ be a phase 3 strategy. The set L3
σ contains all edges that should be applied as

improving switches since L3
σ ⊆ Iσ by [Fri11c, Lemma 4]. Similarly, U3

σ contains the

edges that might be applied as improving switches since Iσ ⊆ U3
σ . We thus compare and

analyze these sets in detail. This comparison enables us to prove that there is always

a switch contained in L3
σ minimizing the occurrence record. This justifies that “we will

only use switches from Lp
σ” [Fri11c, page 12] for phase p = 3. We then prove our main

statement and main contribution regarding the subexponential lower bound of [Fri11c]:

All improving switches that should be applied during phase 3 according to [Fri11c] can

be applied during phase 3 while obeying Zadeh’s LeastEntered pivot rule.

As discussed in Section 4.1, a transition between two consecutive initial phase 1 strate-

gies is partitioned into 6 phases. In each phase, a different “task” is performed within

the construction, and the task of phase 3 is to reset the Markov decision process. More

precisely, some bicycles are opened and the targets of some of the entry vertices are

adjusted according to the new least significant set bit. In particular, a phase 3 strategy

is always associated with such a transition and we implicitly consider the underlying

transition from σb to σb+1 whenever discussing a phase 3 strategy and use the typical

abbreviations ℓ := ℓ(b) and ν := ℓ(b+ 1).

By Lemma 4.3.8, L3
σb

is the set of all improving switches that should be applied during

phase 3. We begin by providing an upper bound on the occurrence record of these edges.

Lemma 4.4.6. Let σ be a phase 3 strategy. Then maxe∈L3
σ
φσ(e) ≤ f(b, ν).
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We now focus on the set U3
σ . This set contains L

6
σ, hence this set needs to be analyzed as

well. There is, however, a small error in the definition of this set that needs to be corrected.

As we believe that this error is just a typo in [Fri11c], we do not discuss it in detail here.

Issue 4.4.7. For every b ∈ Bn with ℓ(b+ 1) > 1, there is an improving switch that should

be applied during phase 6 of σb → σb+1 but is not contained in L6
σ for any phase 6 strategy σ

of this transition.

Proof. Let b ∈ Bn with ν = ℓ(b + 1) > 1 and consider the vertex d0ν−1. We prove

that (d0ν−1, s) needs to be applied during phase 6 of σb → σb+1 but is not contained

in L6
σ for any phase 6 strategy σ. By analyzing Table 4.3, it is easy to verify that bℓ = 0

implies σb(d
0
ν−1) = h0i . Since bit ℓ switches during σb → σb+1, Table 4.3 implies that

σb+1(d
0
ν−1) = s needs to hold. Therefore, (d0ν−1, s) needs to be an improving switch for

some strategy σ calculated during σb → σb+1.

For the sake of a contradiction, assume that there was a strategy σ in which (d0ν−1, s) is
applied. Since only the subsets of phase 6 strategies can contain this edge, σ is a phase 6
strategy. By [Fri11c, Lemma 4], (d0ν−1, s) ∈ L6

σ for such a strategy σ. Analyzing Table 4.4,

it is easy to verify that (d0ν−1, s) ∈ L6
σ then implies σ(d0ν−1) 6= s and σ(d0ν−1) = s. This is a

contradiction, so there is no strategy σ in which (d0ν−1, s) is applied.

We believe that the set was intended to be defined as follows and use this definition

henceforth.

Theorem 4.4.8 (“Correction” of L6
σ). Let σ be a phase 6 strategy for b ∈ Bn and b′ := b+1.

Then, the subset L6
σ of Iσ should be defined as

L6
σ := {(d0i , v) : σ(d

0
i ) 6= v ∧ σ(d0i ) = b′i+1} ∪ {(d1i , v) : σ(d

1
i ) 6= v ∧ σ(d1i ) 6= b′i+1}.

It is easy to verify that this definition of L6
σ resolves Issue 4.4.7.

We return to the discussion of the set U6
σ and partition this set into 9 subsets as follows:

U3,1
σ := {(ki, kl) : σ(ki) /∈ {kl, kν} ∧ l ≤ ν ∧ (b+ 1)i = 0}

U3,2
σ := {(bji,k, kl) : σ(b

j
i,k) /∈ {kl, kν} ∧ l ≤ ν ∧ (b+ 1)i = 0}

U3,3
σ := {(bji,k, kl) : σ(b

j
i,k) /∈ {kl, kν} ∧ l ≤ ν ∧ (b+ 1)i+1 6= j}

U3,4
σ := {(h0i , kl) : l ≤ min({n+ 1} ∪ {j ≥ i+ 2 : bj = 1})}

U3,5
σ := {(s, ki) : σ(s) 6= ki ∧ i < ν}

U3,6
σ := {(dji , v) : σ(d

j
i ) 6= v ∧ i < ν}

U3,7
σ := {(d0i , v) : σ(d

0
i ) 6= v ∧ σ(d0i ) = (b+ 1)i+1}

U3,8
σ := {(d1i , v) : σ(d

1
i ) 6= v ∧ σ(d1i ) 6= (b+ 1)i+1}

U3,9
σ := {(bji,l, A

j
i ).σ(b

j
i,l) 6= Aj

i}

By Lemma 4.4.6, the occurrence records of the edges that should be applied during

phase 3 are bounded by f(b, ν). We now provide a matching lower bound regarding the

switches that should be applied after phase 3. This bound will also be used to estimate

the occurrence records of all edges contained in U3
σ .
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Lemma 4.4.9. Let σ be a phase 3 strategy. Assume that the strategy iteration algorithm is

started with the initial strategy σ⋆. Then mine∈L4
σ∪L

5
σ∪L

5
σ
φσb(e) ≥ f(b, ν).

This lemma can also be used to prove that none of the edges contained in any of the

sets U3,3
σ , . . . , U3,9

σ is applied during phase 3. The reason is that the occurrence record of

these edges is too large, so the LeastEntered pivot rule will not choose to apply them.

Lemma 4.4.10. Let σ be a phase 3 strategy. Let e1 ∈ L3
σ and e2 ∈ Iσ ∩ (U3,4

σ ∪ · · · ∪ U3,9
σ ).

Then φσ(e1) ≤ φσ(e2).

It remains to analyze U3,1
σ , U3,2

σ and U3,3
σ . These sets do not interfere with the application

of the improving switches for another reason: Applying specific switches of L3
σ prevents

certain subsets of these sets from being applied as they are no longer improving. To prove

this, we introduce subsets of these sets, called slices.

Definition 4.4.11 (Slice). Let σ be a phase 3 strategy, i ∈ [n], j, l ∈ {0, 1}. Then

• S3,1
i,σ := {(ki, kz) : σ(ki) /∈ {kz, kν} ∧ z ≤ ν ∧ (b+ 1)i = 0} is called slice of U3,1

σ ,

• S3,2
i,j,l,σ := {(bji,l, kz) : σ(ki) /∈ {kz, kν} ∧ z ≤ ν ∧ (b+ 1)i = 0} is called slice of U3,2

σ ,

• S3,3
i,j,l,σ := {(bji,l, kz) : σ(ki) /∈ {kz, kν} ∧ z ≤ ν ∧ (b+ 1)i+1 6= j} is called slice of U3,3

σ .

It is easy to see that the set of all slices of a specific set is a partition of that set. We now

formalize the idea that applying specific improving switches prevents whole slices from

being applied later on.

Lemma 4.4.12. Let σ be a phase 3 strategy and let e denote the switch that is applied in σ.
Let σ′ denote an arbitrary phase 3 strategy of σb → σb+1 calculated after the strategy σ.

1. If e = (ki, kν), then Iσ′ ∩ S3,1
i,σ′ = ∅.

2. If e = (bji,l, kν) with σ(bji,l) 6= kν and (b+ 1)i = 0, then Iσ′ ∩ S3,2
i,j,l,σ′ = ∅.

3. If e = (bji,l, kν) with σ(bji,l) 6= kν and (b+ 1)i+1 6= j, then Iσ′ ∩ S3,3
i,j,l,σ′ = ∅.

All of these lemmas now enable us to prove that it is possible to always apply some

improving switch contained in L3
σ without violating Zadeh’s pivot rule.

Lemma 4.4.13. Let σ be a phase 3 strategy. Then L3
σ ∩ argmine′∈Iσ φ

σ(e′) 6= ∅.

This is not yet sufficient for proving that the improving switches of phase 3 can be

applied as it is intended in [Fri11c] as it is not clear why it does not happen that a phase 4
strategy is calculated before all switches of phase 3 are applied. We thus prove that the

improving switches of phase 3 can be applied ensuring that this does not happen.

Theorem 4.4.14. There is an ordering of the improving switches of phase 3 and an associated

tie-breaking rule compatible with the LeastEntered pivot rule such that

1. all improving switches contained in L3
σb

are applied and

2. the LeastEntered pivot rule is obeyed during phase 3.
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Proof. Let σ denote the first phase 3 strategy of σb → σb+1. Then, L3
σ = L3

σb
by

Lemma 4.3.8. By Lemma 4.4.13, there is an edge e1 ∈ L3
σ minimizing the occurrence

record among all improving switches. By Lemma 4.3.9, applying e1 yields a new phase 3
strategy σ′ := σe1 such that L3

σ′ = L3
σ \ {e1}. Now, again by Lemma 4.4.13, there is an

edge e2 ∈ L3
σ′ minimizing the occurrence record Iσ′ among all improving switches.

This argument can be applied until we reach a phase 3 strategy σ̂ such that |L3
σ̂| = 1while

only switches contained in L3
σb

are applied. Then, by construction and by Lemma 4.4.13,

(e1, e2, . . . ) defines an ordering of the edges of L3
σb

and an associated tie-breaking rule

that obeys the LeastEntered pivot rule. When the strategy σ̂ with |L3
σ̂| = 1 is reached,

applying the remaining improving switch results in a phase 4 strategy. Then, all improving

switches contained in L3
σb

were applied and the LeastEntered pivot rule was obeyed.

The ordering that is implicitly given in the proof of Theorem 4.4.14 avoids Issue 4.3.12.

This issue showed that it is not possible to apply the improving switches of phase 3 of

σb → σb “level by level” where the ordering of the levels depends only on ℓ(b+1) without

violating Zadeh’s pivot rule. The ordering given in Theorem 4.4.14 always chooses an

improving switch minimizing the occurrence record among all improving switches. This

choice is made regardless of the level of the switch. Consequently, the application of the

improving switches is not performed “level by level” in an order that only depends on the

least significant set bit.

Theorem 4.4.14 proves that the improving switches of phase 3 can be applied while

obeying Zadeh’s pivot rule. It does however not imply that the transition from σb to σb+1

can be executed as intended in [Fri11c]. More precisely, Theorem 4.4.14 does not imply

that the application of the improving switches in phase 3 is compatible with the application

of the switches during the other phases. Analyzing the remaining phases, it can however

be proven that this transition can in fact be executed as intended.

Theorem 4.4.15. Fix some b ∈ Bn and consider the transition from σb to σb+1. There is an

order in which to apply the improving switches of this transition such that

1. the application obeys Zadeh’s pivot rule and

2. for every p ∈ [5], all switches of phase p are applied before any switch of phase p+ 1.

This theorem proves that the result of [Fri11c] remains correct despite the flaws con-

tained in the original proofs. Proving it however requires to analyze the remaining phases.

We do not analyze these phases in all detail, and refer to [Fri11c] for results and descrip-

tions related to these phases. We however prove that there is always an improving switch

e ∈ Lp
σ that can be applied without violating the LeastEntered pivot rule if σ is a phase p

strategy and use this to prove Theorem 4.4.15.

Lemma 4.4.16. Let p ∈ {1, 2, 4, 5, 6} and let σ be a phase p strategy. Then, there is an

improving switch e ∈ Lp
σ such that φσ(e) ≤ mine′∈Up

σ∩Iσ
φσ(e′).

Proof of Theorem 4.4.15. Consider the initial phase 1 strategy σb for b. By Lemma 4.4.16,

there is an improving switch contained in L1
σb

minimizing the occurrence record among

all improving edges. Thus, this switch can be applied without violating Zadeh’s pivot rule.
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By [Fri11c, Lemma 5], the resulting strategy is either a phase 2 strategy or a phase 1
strategy for b. In the second case, the same argument can be applied iteratively until a

strategy is reached such that applying the next improving switch yields a phase 2 strategy.

After applying a finite number of improving switches we thus obtain a phase 2 strategy σ2.

By Lemma 4.4.16 we can apply the single improving switch of L2
σ2 without violating

Zadeh’s pivot rule. By [Fri11c, Lemma 5], the resulting strategy is a phase 3 strategy. As

proven in Theorem 4.4.14, all improving switches that should be applied during phase 3
can now be applied in some order. This then yields a phase 4 strategy σ4.

By Lemma 4.4.16, there is a switch contained in L4
σ4 minimizing the occurrence record

among all improving edges since Iσ4 ⊆ U4
σ4 by [Fri11c, Lemma 4]. The resulting strategy

is either another phase 4 strategy or a phase 5 strategy. In the first case, the same argument

can be applied iteratively until a phase 5 strategy is reached. Thus, after applying a finite

number of improving switches, we obtain a phase 5 strategy.

By applying Lemma 4.4.16 for p = 5 and p = 6, the same arguments used for phase 4
can now be used for phase 5 and 6, concluding the proof.

Conclusion

In this chapter, we discussed Friedmann’s subexponential lower bound construction for

Zadeh’s pivot rule [Fri11c]. We described the construction in detail and explained its

design concept as well as the application of the strategy improvement algorithm. We

highlighted several issues present in the original analysis and discussed why one of the

issues can be considered a major issue that needs to be resolved. We then clarified and

proposed alterations regarding the application of the strategy iteration algorithm to resolve

all of these issues. More precisely, we proved that the initial strategy needs to be changed

(Issues 4.3.1 and 4.3.3) and provided an alternative initial strategy (Definition 4.2.2

and Theorems 4.4.1 and 4.4.2). Furthermore, we showed that the description of the

occurrence records of the bicycle edges is not entirely accurate (Issue 4.3.4) and corrected

the inaccuracy by giving an alternative description of the occurrence records of the bicycle

edges (Theorem 4.4.3).

Most importantly, we discussed a major issue regarding phase 3 and investigated

the application of the improving switches in this phase. We argued why the informal

description given in [Fri11c] of this phase cannot be correct (Issue 4.3.5). We then proved

that the more formal description does not obey Zadeh’s pivot rule (Issue 4.3.7). More

severely, we proved that the application of the improving switches during phase 3 as

described by [Fri11c] can be interpreted as a realization of a whole framework, and

that applying improving switches according to this framework cannot obey Zadeh’s pivot

rule (Issue 4.3.12). This issue was then resolved by implicitly providing a more involved

ordering and associated tie-breaking rule that overcome this issue (Theorem 4.4.14).

Finally, we showed that this ordering is compatible with the application of the improving

switches during the other phases (Theorem 4.4.15).

Crucially, our changes do not alter the macroscopic structure of the original construction.

Consequently, we are able to recover Friedmann’s subexponential lower bound. However,

we are not able to explicitly give the ordering in which improving switches should be
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applied during phase 3, and the tie-breaking rule remains highly artificial.

In the next chapter, we provide a new construction that implements similar ideas to

obtain a Markov decision process of size O(n) implementing an n-bit binary counter.

This construction thus significantly improves the lower bound discussed in this chapter,

providing the first truly exponential lower bound for the LeastEntered pivot rule for

Markov decision processes, parity games, linear programs and other stochastic games.
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5. An Exponential Lower Bound for Zadeh’s
Pivot Rule

Since Zadeh’s pivot rule was developed in 1980 [Zad80], it remained a promising can-

didate for a potential polynomial time pivot rule for over 30 years. In 2011, Oliver

Friedmann proved that the running time can be subexponential in the worst case, using

the construction we discussed in Chapter 4. Although Zadeh’s pivot rule was no longer a

candidate for a polynomial time pivot rule, it remained the most prominent candidate

for the first deterministic pivot rule with guaranteed subexponential running time. As

the RandomFacet pivot rule has an expected subexponential worst case running time

[MSW96], hopes were high that Zadeh’s pivot rule matches this worst case running time.

In this chapter, we present a construction proving this pivot rule is in fact exponential in

the worst case.

This chapter is organized as follows. We begin by describing a sink game such that

applying the strategy improvement algorithm using Zadeh’s pivot rule requires an expo-

nential number of iterations in Section 5.1. As all of the modern lower bound constructions,

the sink game is based on a binary counter. Then, in Section 5.2, we discuss how this

sink game can be transformed into a weakly unichain Markov decision process. The

idea is that the strategy improvement algorithm using Zadeh’s pivot rule behaves nearly

identical in the Markov decision process. This is however not always the case as there is

no known transformation from sink games to Markov decision processes ensuring that the

algorithms behave the same. Hence, we discuss the main differences between the sink

game and the Markov decision process. Finally, we give the proof of the exponential lower

bound in Section 5.3. Since the Markov decision process is weakly unichain, this then

implies an exponential lower bound for the simplex algorithm using Zadeh’s pivot rule by

Corollary 3.3.5. In particular, it is sufficient to consider the sink game and the Markov

decision process and not necessary to explicitly investigate the linear program induced by

the Markov decision process.

The results of this chapter were partly verified using the PGSolver library [FL17].

Oliver Friedmann provided an implementation of the sink game construction, and applied

the strategy improvement algorithm using this library. We then compared our results

and the behavior of the algorithm manually for small examples representing binary

counters with up to 10 bits, verifying our results for at least the sink game construction

and small examples. Visualizations of full executions of the algorithm for 3 and 4 levels

are available online [Fri19]. A preliminary version of the results presented here were

previously published and are available online [DFH19].
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5.1. The Basic Sink Game Construction

In this section, we describe a sink game Sn = (V0, V1, E,Ω) of size O(n) such that the

strategy improvement algorithm performs at least 2n iterations when using Zadeh’s pivot

rule and a specific tie-breaking rule. The key idea of the sink game is again the implemen-

tation of a binary counter and is very similar to the general design principle introduced in

the beginning of Section 4.1. We thus do not discuss the ideas and the notation related to

binary counting in all detail here and refer to Section 4.1 for a more detailed explanation,

and compare our construction with similar constructions later.

The intuitive idea

The sink game Sn consists of n (nearly identical) levels, each representing one bit of the

counter, and one sink vertex t. The i-th level is shown in Figure 5.1, the full graph S3 in

Figure 5.2.
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si,1
8
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Figure 5.1.: Level i of Sn for i ∈ [n− 2]. Circular vertices are player 0 vertices, rectangular vertices
are player 1 vertices. Labels below vertex names denote their priorities. Dashed vertices
do not (necessarily) belong to level i.

As for the subexponential construction, the main challenge in designing Sn is that a

classical binary counter is highly unbalanced, whereas Zadeh’s pivot rule enforces the

algorithm to use improving switches applied least often during the execution. Again, the

key idea to overcome this obstacle is to have two gadgets per level representing the bit. At

any time, exactly one of these gadgets of level i is interpreted as encoding bit i. In order

to not confuse them with the bicycle gadgets of the subexponential construction, these

gadgets are called cycle centers and the cycle centers of level i are denoted by Fi,0, Fi,1.

Given a number b ∈ Bn, the idea again is that the cycle center Fi,bi+1 encodes bit i, and
we call this cycle center the active cycle center of level i with respect to b. Consequently,

Fi,1−bi+1 is the inactive cycle center of level i. Cycle centers can again be either closed or

open, and the idea is that bit i is equal to 1 if and only if the active cycle center of level i
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Figure 5.2.: The sink game S3. The dashed copies of the vertices g1, b1 and b2 all refer to the
corresponding vertices of levels 1 and 2. The vertex priorities are not shown here.

is closed. In particular, Figure 4.2 still represents the intuitive idea for the exponential

lower bound.

These ideas are the same used by Friedmann in his subexponential construction [Fri11c].

Our construction is designed in such a way that the basic ideas of the subexponential

construction still apply, as they are strong enough to provide a lower bound for Zadeh’s

pivot rule while significantly reducing the size of the construction. Intuitively, the biggest

change in design in the exponential construction is the connection of the levels with each

other. In the subexponential construction, all levels are connected to each other, since

the entry vertices have to get access to the level of the least significant set bit. In the

exponential construction, the levels are only connected to the next two levels and to the

first two levels. It is then sufficient for all levels representing bits that are equal to 0 to have

access to the first level if the represented number is odd and to the second if it is even. More
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5. An Exponential Lower Bound for Zadeh’s Pivot Rule

precisely, when representing a number b, the levels of the subexponential construction

require access to level ℓ(b) while the levels of the exponential construction only require

access to level ℓ(b) mod 2. This significantly reduces the size of the construction, yielding

an improved bound.

However, there are more changes that need to be performed, and the details of the

constructions are fundamentally different. We discuss these differences in more detail at

the end of Section 5.2 after having introduced the Markov decision process.

The full construction

We now describe the construction of the sink game implementing these ideas. Henceforth,

let n ∈ N be fixed and let Sn = (V0, V1, E,Ω) denote the sink game that is to be constructed

here. The vertex sets V0 and V1 of player 0 resp. player 1 are defined via

V0 :={bi, gi : i ∈ [n]} ∪ {di,j,k, ei,j,k, si,j : i ∈ [n− j], j, k ∈ {0, 1}}

∪ {hi,j : i ∈ [n− j], j ∈ {0, 1}} ∪ {t},

V1 :={Fi,j : i ∈ [n− j], j ∈ {0, 1}}.

For convenience of notation, we identify the vertex names bi, gi for i > n with t. The
priorities of the vertices as well as the edges of the construction are given by Table 5.1.

The priorities are not unique, although this is technically required for the definition of the

vertex valuations. It is however sufficient to demand that the most significant difference

as defined in Definition 3.2.4 be unique whenever comparing valuations, which will turn

out to be the case for our construction.

Vertex Successors Priority

t t 1
bi gi, bi+1 3

ei,j,k b2, g1 3
di,j,k Fi,j , ei,j,k 3

Vertex Successors Priority

gi Fi,0(, Fi,1) 2i+ 9
hi,0 bi+2 2i+ 10
hi,1 gi+1 2i+ 10
si,j hi,j , b1 10− 2j
Fi,j di,j,0, di,j,1, si,j 6− 2j

Table 5.1.: Edges and vertex priorities of the sink game Sn.

By construction, every vertex v ∈ V0 has at most two outgoing edges. The construction

implements the general idea of a binary counter, and it can be separated into n different

levels. The first n − 2 levels are structurally identical, and the levels n − 1 and n only

differ slightly from the other levels.

The idea of the construction is that there are player 0 strategies σe and player 1 coun-

terstrategies τσ such that σ and τσ together represent a number b ∈ Bn. Such a pair of

strategies induces a path in Sn. This path starts in b1, ends in t and traverses exactly the

levels i ∈ [n] with bi = 1 while ignoring levels with bi = 0. This path is called the spinal

path with respect to b. The idea is that it is not profitable for player 0 to enter a level,

but very profitable to traverse a level. As player 1 tries to minimize the valuation of the

vertices, they will try to prevent player 0 from traversing levels. However, the sink game is
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5.1. The Basic Sink Game Construction

constructed in such a way that player 0 can always traverse levels representing bits which

are equal to 1 while player 1 is able to prevent this for levels representing bits equal to 0.
Also, traversing a level i > 1 is better than traversing all levels 1, 2, . . . , i− 1. This already
implies that strategies representing higher numbers are better for player 0 than strategies

representing smaller numbers.

Consider some fixed level i ∈ [n]. Then, whether level i is traversed or ignored is

controlled by the entry vertex bi ∈ V0 of level i. More precisely, the entry vertex of level i
is intended to point to the selector vertex gi ∈ V0 if and only if bi = 1. If bi = 0, then bi
instead points to the entry vertex of the next level, i.e., to bi+1. The vertex gi has a high

odd priority, making it in general unprofitable for player 0 to choose the edge (bi, gi).

Assume i ≤ n− 2 for the moment and consider some b ∈ Bn. Attached to the selector

vertex gi are the cycle centers Fi,0, Fi,1 ∈ V1 of level i. As explained previously, these cycle

centers are used for determining whether bit i is equal to 1 and they function similar

to the bicycles in the subexponential construction of [Fri11c]. That is, the cycle centers

alternate in encoding bit i since we interpret the active cycle center Fi,bi+1 as encoding

bit i. Consequently, the inactive cycle center Fi,1−bi+1 does not interfere with the encoding,

enabling us to manipulate the “inactive” part of level i without loosing the encoded

value of bi. Therefore, the selector vertex is used to ensure that the active cycle center is

contained in the spinal path. More precisely, if bi = 1, then gi should select Fi,bi+1 , while

its selection is not specified if bi = 0 for technical reasons. Also, since the cycle center is a

player 1 vertex, it can be used to prevent player 0 from traversing a level and reaching

vertices with high even priorities unless player 1 is forced to grant access.

A cycle center Fi,j can have several different configurations, and we refer to Figure 5.3

for an overview. The configuration of the cycle center Fi,j is defined via its cycle vertices

di,j,0, di,j,1 and the two cycle edges (di,j,0, Fi,j), (di,j,1, Fi,j). Most importantly, a cycle center

can be closed. Intuitively, a cycle center is closed if it either represents a bit being equal

to 1 or if the occurrence record of the cycle edges is too low and has to “catch up”. In all

other cases, it is in one of three possible different states. We introduce the different states

formally after having described the full construction.

The mechanism of closing a cycle center works as follows. If a cycle center is closed,

then player 1 cannot choose one of the cycle edges (Fi,j , di,j,∗). The reason is that this

would close a cycle, contradicting that Sn is a sink game (see Lemma 5.3.3). Thus, by

closing a cycle center, player 0 can force player 1 to grant access to the “higher” and

better vertices of this level. Consequently, Fi,j is connected to one further vertex, called

the upper selection vertex si,j ∈ V0. This vertex has the purpose of connecting the cycle

center Fi,j with the other levels of the graph and granting player 0 access to a vertex with

high even priority. More precisely, it connects the cycle center with the first level via the

edge (si,j , b1), and, depending on whether j = 0 or j = 1, with either level i+ 1 or i+ 2.
The connection to level i+ 1 resp. i+ 2 uses an intermediate vertex hi,j ∈ V0, the edge

(si,j , hi,j) and the edge (hi,0, bi+2) resp. (hi,1, gi+1). The priority of hi,j is large and even

and is chosen in such a way that it compensates for the odd priority of gi. It is thus very
desirable for player 0 to get access to this vertex. As they can enforce this by closing cycle

centers, this implies that closing cycle centers is always desirable from the perspective

of player 0. The upper selection vertex is thus central in granting access to either the
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5. An Exponential Lower Bound for Zadeh’s Pivot Rule

beginning of the spinal path or the next level contained in the spinal path.

We discuss the cycle vertices di,j,k ∈ V0 next. If the cycle center Fi,j is not closed,

then these vertices need to be able to access the spinal path as this will typically be very

profitable for player 0 and is also used for “resetting” the bits of the counter. As accessing

the spinal path via the cycle center Fi,j would close this cycle center by definition, they

need to be able to “escape” the level in another way. This is handled by the escape vertex

ei,j,k ∈ V0 of di,j,k. The escape vertices ei,j,0, ei,j,1 are used to connect the cycle vertices

of Fi,j to the first two levels, thus granting the cycle vertices access to the spinal path.

More precisely, the escape vertices are connected with the entry vertex b2 of level 2 and

the selection vertex g1 of level 1. In principle, the escape vertices will point to g1 if and
only if the currently represented number is odd.

Having introduced all details of the construction, we now formalize the different states

a cycle center can be in. Note that we henceforth typically use the term “strategy” instead

of “player 0 strategy”.

Definition 5.1.1 (States of cycle centers). Let σ be a strategy. The cycle center Fi,j is closed

for σ if σ(di,j,∗) = Fi,j . It is g1-halfopen for σ if σ(di,j,k) = Fi,j , σ(di,j,1−k) = ei,j,1−k and

σ(ei,j,1−k) = g1 for some k ∈ {0, 1}. It is g1-open for σ if σ(di,j,k) = ei,j,k and σ(ei,j,k) = g1
for both k ∈ {0, 1}. The terms b2-halfopen and b2-open are defined analogously. It is mixed

if σ(di,j,∗) = ei,j,∗ and σ(ei,j,k) = g1, σ(ei,j,1−k) = b2 for some k ∈ {0, 1}.

Fi,j

di,j,0

di,j,1

Fi,j

di,j,0

di,j,1

Fi,j

di,j,0

di,j,1

Fi,j

di,j,0

di,j,1

Figure 5.3.: A closed, two halfopen and an open or mixed cycle center, depending on the choices
of the escape vertices. Thick blue edges indicate the corresponding choices of player 0.

This concludes our description of the sink game. We now formalize the idea of a strategy

encoding a binary number by introducing the term canonical strategy. A canonical strategy

is the analogue of the term “initial phase 1 policy” that was used when discussing the

subexponential lower bound in Chapter 4. We consequently use the same symbol. This

definition includes some aspects that are purely technical and are needed for some proofs

and uniqueness and do not have an immediate intuitive explanation.

Definition 5.1.2 (Canonical strategy for Sn). Let b ∈ Bn. A strategy σb for Sn is called

canonical strategy for b if it has the following properties.

1. All escape vertices point to g1 if b1 = 1 and to b2 if b1 = 0.

2. The following hold for all levels i ∈ [n] with bi = 1:

a) Level i needs to be accessible, i.e., σb(bi) = gi.

b) The cycle center Fi,bi+1 is closed while Fi,1−bi+1 is not closed.

c) The selector vertex selects the active cycle center, i.e., σb(gi) = Fi,bi+1 .
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3. The following hold for all levels i ∈ [n] with bi = 0:

a) Level i is not accessible and needs to be “avoided”, i.e., σb(bi) = bi+1.

b) The cycle center Fi,bi+1 is not closed.

c) If the cycle center Fi,1−bi+1 is closed, then σb(gi) = Fi,1−bi+1 .

d) If none of the cycle centers Fi,0, Fi,1 is closed, then σb(gi) = Fi,0.

4. Let bi+1 = 0. Then, σb(si,0) = hi,0 and σb(si,1) = b1.

5. Let bi+1 = 1. Then, σb(si,0) = b1 and σb(si,1) = hi,1.

6. Both cycle centers of level ℓ(b+ 1) are open.

An example of the canonical strategy σ3 representing the number 3 in the sink game S3

is depicted in Figure 5.4.

The main structure that is used for the encoding of binary numbers are the cycle centers.

In particular, every possible configuration of the cycle centers, and thus every strategy,

induces some binary number. Introducing this so-called induced bit state will turn out to

be helpful, as it allows us to identify the currently represented number for non-canonical

strategies.

Definition 5.1.3 (Induced bit state). Let σ be a player 0 strategy for Sn. Then, the induced

bit state βσ = (βσ
n , . . . , β

σ
1 ) is defined as follows: We define βσ

n := 1 if and only if Fn,0 is

closed. For i < n, we define βσ
i = 1 if and only if Fi,βσ

i+1
is closed.

When the strategy is clear from the context or the induced bit state is identical for all

currently considered strategies, we often skip the upper index and just write β instead

of βσ. This definition is in accordance with the interpretation of encoding a number via

canonical strategies. In fact, it is easy to verify that the definition of a canonical strategy

immediately implies βσb = b. Furthermore, this enables us to give a definition of active

and inactive cycle centers independent of a given binary number. Consequently, we call

the cycle center Fi,βσ
i+1

the active cycle center of level i while Fi,1−βσ
i+1

is the inactive cycle

center of level i.
This concludes our definition of the sink game. Before proving that Sn is in fact a

sink game (Lemma 5.3.3) and discussing the application of the strategy improvement

algorithm to it, we discuss how Sn can be transformed into a Markov Decision Process

implementing the same ideas.

5.2. Transforming the Sink Game into aMarkov Decision Process

We now discuss how the sink game Sn constructed in Section 5.1 is altered to obtain

a Markov decision process Mn. The idea is that the strategy improvement algorithm

should behave nearly identical on Mn and Sn when using Zadeh’s pivot rule and similar

tie-breaking. We first discuss the changes performed to the sink game Sn intuitively and

define the Markov decision process Mn formally at the end of this section. Since sink

games are 2-player games but there is only a single player in a Markov decision process,

we need to change the sink game such that only one player remains. This will be achieved
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Figure 5.4.: The sink game S3 together with a canonical strategy representing the number 3 in S3.
The dashed copies of the vertices g1, b1 and b2 all refer to the corresponding vertices
of levels 1 and 2. Blue edges belong to the strategy of player 0, red edges belong to
the counterstrategy of player 1. The dashed edges indicate the spinal path, the dotted
lines separate the levels.
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by replacing player 1 by randomization. This is a common technique used for obtaining

Markov decision processes that behave similarly to given parity games and was used by

several authors before (for example [Fea10a, Fri11c, AF17] among others). Although the

ideas used in their transformations are all quite similar, there is no standard reduction from

parity games to Markov decision processes preserving all properties. Before discussing

how to replace player 1 in our construction, we first discuss how the vertices and other

aspects related to player 0 change.

In the sink game Sn, every vertex is assigned an integer priority. Priorities have the

effect that once a vertex with a very high priority is reached, the priorities of all vertices

with smaller priorities become irrelevant. This is, for example, used to make higher levels

more profitable than lower levels and to make it unprofitable to enter a level without fully

traversing it. Ideally, the Markov decision process should also have this property. This can

be achieved by introducing a sufficiently large natural number N ∈ N and defining the

reward obtained by traversing vertex v as (−N)Ω(v), where Ω(v) denotes the priority of v.
Note that it is easily possible to introduce and interpret the reward obtained by traversing

a vertex v by assigning the same reward to all edges (v, ∗) ∈ E. This has the effect that it

is still profitable to traverse vertices with high priority while it is expensive to traverse

vertices with odd priority. It turns out that it is not required to assign a non-zero reward

to every edge of the graph, and that it is sufficient to choose N as a natural number at

least equal to the number of vertices in Mn with a priority assigned to them. We thus

define N := 7n. We state which vertices are assigned a priority and which edges have a

reward of 0 precisely when formalizing the Markov decision process.

We next discuss how to replace player 1. The only vertices of player 1 are the cycle

centers Fi,j for i ∈ [n], j ∈ {0, 1}. They are designed in such a way that player 1 only

chooses the edge (Fi,j , si,j) if the cycle center Fi,j is closed. Although this behavior cannot

be modeled exactly by randomization, it can be modeled approximately by defining Fi,j

as randomization vertex and assigning suitable probabilities to its edges. Here, suitable

means that the probability of (Fi,j , si,j) is extremely small. This has the effect that the

very profitable vertex hi,j is “hidden”. As mentioned previously, this use of randomization

is very similar to the use in the subexponential construction of Friedmann, but was also

used by several other authors. We thus define ε := N−(2n+11) and set p(Fi,j , si,j) := ε and
p(Fi,j , di,j,∗) := (1− ε)/2.

We now give the formal definition of Mn = (V0, VR, E0, ER, r, p) and refer to Figure 5.5

for a visualization of level i of Mn for i < n. The player vertices V0 and the randomization

vertices VR are defined analogously to the definition of V0 and V1 in Sn via

V0 :={bi, gi : i ∈ [n]} ∪ {di,j,k, ei,j,k, si,j : i ∈ [n− j], j, k ∈ {0, 1}}

∪ {hi,j : i ∈ [n− j], j ∈ {0, 1}} ∪ {t},

VR :={Fi,j : i ∈ [n− j], j ∈ {0, 1}}.

The edges of Mn are defined by Table 5.2. The first table shows player vertices v
and corresponding successors w ∈ δ+(v) with r(v, w) := 0. Consequently, no priority is

assigned to these vertices. The second table analogously shows player vertices v with an

assigned priority Ω(v) and successors w ∈ δ+(v) such that r(v, w) := (−N)Ω(v). The third
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Figure 5.5.: Level i ofMn for i ∈ [n−2]. Circular vertices are player 0 vertices, rectangular vertices
are randomization vertices. Labels on edges denote their probability, labels on vertices
denote their priority (if they have a priority assigned to them). Dashed vertices do not
(necessarily) belong to level i.

table contains the randomization vertices and their successors. The last column of that

table shows the probability of each of the corresponding edges.

Vertex Successors

bi gi, bi+1

ei,j,k b2, g1

di,j,k Fi,j , ei,j,∗

t t

Vertex Successors Priority

si,j hi,j , b1 10− 2j

gi Fi,0(, Fi,1) 2i+ 9

hi,0 bi+2 2i+ 10

hi,1 gi+1 2i+ 10

Vertex Successors Probability

Fi,j si,j ε

Fi,j di,j,∗
1−ε
2

Table 5.2.: Edges and vertex priorities of the Markov decision process Mn.

We now discuss the main differences between the sink game Sn and the Markov decision

process Mn. One of the main differences is the definition of canonical strategies. Consider

a strategy σb representing b, some fixed level i ∈ [n− 2] and two cycle centers Fi,0, Fi,1.

In Sn, both cycle centers have an even priority and the priority of Fi,0 is larger than the

priority of Fi,1. Thus, if none of the cycle centers is closed and both cycle centers escape,

the valuation of Fi,0 is better than the valuation of Fi,1. In this case, this implies that

(gi, Fi,0) is improving if σb(gi) 6= Fi,0. In some sense, this can be interpreted as the sink

game “preferring” Fi,0 over Fi,1. A similar, but not quite identical phenomenon occurs

in Mn. If both cycle centers Fi,0, Fi,1 are in the same “state”, then the valuation of the

upper selection vertices si,0, si,1 determines which cycle center has the better valuation.

More precisely, it can happen that Valσb
(Fi,0)−Valσb

(Fi,1) = ε[Valσb
(si,0)−Valσb

(si,1)].
It turns out that the valuation of si,bi+1 is typically better than the valuation of si,1−bi+1 .

Most importantly, in contrast to Sn, the valuation of si,0 is not typically better than the

valuation of si,1. Hence, Mn “prefers” cycle centers Fi,bi+1 over cycle center Fi,1−bi+1 .

This has some serious consequences for the exact application of the improving switches,
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and implies that Sn and Mn do not behave exactly identically, even if the same pivot

and tie-breaking rule are used. Although we are not yet able to fully explain all of these

differences, we already adjust the definition of a canonical strategy for Mn.

Definition 5.2.1 (Canonical strategy for Mn). Let b ∈ Bn. A strategy σb for the Markov

decision process Mn is called canonical strategy for b if it has the properties given in

Definition 5.1.2 where Property 3.(d) is replaced by the following: If neither of the cycle

centers Fi,0, Fi,1 is closed, then σb(gi) = Fi,bi+1 .

To conclude the description of the counter, we briefly compare our construction to similar

lower bound examples. More precisely, we consider the exponential lower bound for Cun-

ningham’s pivot rule [AF17] and the subexponential lower bounds for the RandomEdge

and the RandomFacet pivot rule [FHZ11b]. The corresponding constructions are shown

in Figure 5.6 alongside a sketch of our construction, each for the parameter n = 3.
The four examples are constructed similarly and implement similar ideas. Most im-

portantly, each of the constructions implements a binary counter on n bits. They all use

the idea of having one level per bit, and each construction contains a gadget that looks

similar to the cycle gadgets that we introduced. Similar to the use of cycle gadgets in our

construction, these gadgets are the main tool used for interpreting certain bits as being

equal to 1 and thus for representing binary numbers through strategies. A further exami-

nation also shows that each construction uses a “barrier vertex” that makes it unprofitable

to enter a level and a “reward vertex” that compensates for entering a level. As for our

construction, the reward vertex can only be reached if the gadgets are in a certain state. In

particular, these constructions can be interpreted as a family of lower bound constructions,

and it might be possible to generalize this framework in a similar way Amenta and Ziegler

generalized the constructions based on the Klee-Minty cube [AZ98].

5.3. Proof of the Lower Bound

In this section, we prove the exponential lower bound for the strategy improvement and

simplex algorithm when using Zadeh’s pivot rule. We however do not provide all details

and formal aspects here, these can be found in Chapter 6. Instead, this chapter presents

the core ideas and arguments, and the next chapter proves that the statements presented

here are correct.

As several of the statements and arguments are applicable for both the sink game Sn

and the Markov decision process Mn we introduce notation that allows us to discuss both

constructions simultaneously. We use the symbol Gn to signify that a statement holds

for both Sn and Mn. All of the following arguments and explanations hold for both Sn

and Mn unless explicitly stated otherwise.

Although there are attempts of unifying notation, algorithms and research in the field

of stochastic optimization which includes Markov decision processes [Pow19], we are

not aware of a unified treatment of parity games and Markov decision processes. As we

pointed out in Chapter 3, there are deep connections between sink games and weakly

unichain Markov decision processes, and we believe that there are classes of sink games

and weakly unichain Markov decision processes that can be treated in a unified manner.
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Figure 5.6.: The lower bound constructions for the exponential lower bound for Cunningham’s
pivot rule [AF17], the RandomEdge and the RandomFacet pivot rule [FHZ11b] and
our construction for 3 levels. All figures but the sketch of the exponential construction
are taken from the given sources.
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We now discuss the following key components of our proof separately:

1. In Section 5.3.1, we provide an initial strategy σ0 that is weakly unichain for Mn

and a sink strategy for Sn. Moreover, we provide the optimal strategy σ∗ and prove

that it is a sink strategy resp. weakly unichain as well. This proves that Sn is a

sink game resp. that Mn is weakly unichain as claimed in Sections 5.1 and 5.2. We

furthermore discuss the concept of occurrence records and revisit Zadeh’s pivot rule.

2. In Section 5.3.2, we discuss and formally state the tie-breaking rule. The tie-breaking

rule is implemented as an ordering of the player edges, and we need to distinguish

between Sn andMn for its definition. This completely describes the exact application

of the improving switches performed by the strategy improvement algorithm in Gn.

It is then the main challenge to prove that this application yields the desired behavior

and, in particular, exponential lower bound which is shown in the following steps.

In addition, we discuss the topic of tie-breaking rules and their importance in general.

3. We then focus on a single transition σb → σb+1 between two consecutive canonical

strategies. Such a transition requires the application of many improving switches,

and many intermediate strategies need to be considered. As with the approaches of

similar lower bounds (e.g. [Fea10a, Fri11c, AF17] and others), this application is

then divided into disjoint phases. We give both intuitive and formal descriptions and

definition of these phases in Section 5.3.3.

4. To prove that the pivot and tie-breaking rules proceed along the previously described

phases, we specify how often edges are applied as improving switches in Section 5.3.4.

This is formalized by the occurrence record, and we provide the occurrence records

of the edges for canonical strategies. We also briefly explain how the provided

occurrence records are related to the previously given description of the application

of the improving switches.

5. Finally, in Section 5.3.5, we combine the previous aspects to prove that applying

improving switches using Zadeh’s pivot rule and our tie-breaking rule yields an

exponential number of iterations. Since the size of Gn is linear in n, this yields an
exponential lower bound with respect to the input size.

5.3.1. The Initial and Optimal Strategies

We begin by providing an initial strategy σ0 for Gn. This strategy is (i) a canonical strategy

for 0 in the sense of Definitions 5.1.2 and 5.2.1, (ii) a sink strategy for Sn and (iii) a weak

unichain strategy for Mn.

Definition 5.3.1 (Initial strategy for the exponential construction). The initial strategy

σ0 : V0 → V is defined as follows:

v bi for i < n t gi di,j,k ei,j,k si,0 si,1 hi,0 hi,1
σ0(v) bi+1 t Fi,0 ei,j,k b2 hi,0 b1 bi+2 gi+1

The following easy observation justifies that we use the symbol σ0 for the initial strategy.

Observation 5.3.2. The initial strategy σ0 is a canonical strategy for 0 in Gn.
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di,0,1 ei,0,1 di,1,1ei,1,1

di,0,0 ei,0,0 di,1,0ei,1,0

hi,0

bi

si,0 si,1 hi,1

Figure 5.7.: Level i of the initial strategy σ0 of the construction for the exponential lower bound
for i ∈ [n − 2]. For simplicity, we do not provide rewards, probabilities or priorities
here. Thick blue edges show the choices made by the strategy.

A visualization of the initial strategy is given in Figure 5.7.

We now prove that Sn is a sink game and that Mn is weakly unichain.

Lemma 5.3.3. The strategy σ0 is a sink strategy for Sn and a weak unichain strategy forMn.

In particular, Sn is a sink game and Mn is a finite weakly unichain Markov decision process.

Proof. We first prove that Sn is a sink game. By Definition 3.2.1, it suffices to prove that

(i) Sn has a sink and (ii) that player 1 wins every vertex in Sn. It is easy to verify that t is
a sink as it has Γ+(t) = {t},Ω(t) = 1 < Ω(v) for all v ∈ V \ {t} and since it is reachable

from all vertices. It remains to prove that player 1 wins every vertex of Sn.

Consider the player 1 strategy τ defined via τ(F∗,∗) := s∗,∗. Let σ denote an arbitrary

player 0 strategy. Player 1 wins every vertex v for which the play πσ,τ,v reaches the sink t.
It thus suffices to investigate plays that do not end in t and prove that player 1 wins these.

Since τ(Fi,j) = si,j for all suitable indices i, j, it is impossible that any play has the cycle

component {Fi,j , di,j,k}. By construction, this implies that cycle components can only be

formed by higher levels escaping to one of the first two levels via some upper selection

vertex s∗,∗ or escape vertex e∗,∗,∗. In particular, any cycle that is not formed by a cycle

center and one of its cycle vertices needs to use an edge (s∗,∗, b1), (e∗,∗,∗, b2) or (e∗,∗,∗, g1).
By the choice of τ , each possible cycle component thus contains a unique edge (si,j , b1).
But this implies that the highest priority occurring infinitely often is the priority of gi
which is odd, so player 1 wins the cycle. Since this argument holds for all cycles, player 1
wins all vertices of all possible cycle components and thus all vertices. Hence, Sn is a sink

game.

Consider the strategy σ0 in Sn. We prove that there is a player 1 strategy τ such that

every play πσ0,τ,v ends in t. Since σ0(bi) = bi+1 for all i ∈ [n − 1] and σ(bn) = t, this
is true for all entry vertices bi. In addition, as all vertices d∗,∗,∗, e∗,∗,∗, s∗,∗ and h∗,0 point
towards some vertex b∗, all of the corresponding plays end in t. Since σ(hi,1) = gi+1 for

i ∈ [n− 1], it suffices to consider the vertices gi. But then, by choosing τ(Fi,j) = di,j,k for
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Figure 5.8.: Level i of the optimal strategy given in the proof of Lemma 5.3.3 for levels i ∈ [n− 2].
For simplicity, we do not provide rewards, probabilities or priorities here. Thick blue
edges show the edges of the strategy.

some k ∈ {0, 1}, player 1 can enforce that the plays starting in these vertices also reach t.
Hence, σ0 is a sink strategy for Sn.

Now consider the Markov decision process Mn. It suffices to prove that every vertex

reaches twith probability 1. By the same arguments used previously, it immediately follows

that every vertex reaches some vertex bi after a finite number of steps with probability 1.
Since σ0(bi) = bi+1 for all i ∈ [n− 1] and σ(bn) = t, this implies that every vertex reaches

the sink t after a finite number of steps. Hence, σ0 is a weak unichain strategy for Mn.

It remains to give an optimal sink strategy for Sn and an optimal weak unichain

strategy for Mn and to prove that Mn is finite. Consider the following strategy σ∗ and
its visualization given in Figure 5.8. Note that we do not need to specify the targets of

vertices hi,j as these have only one outgoing edge.

v bi di,j,k ei,j,k gi for i < n gn si,0 for i < n sn,0 si,1
σ∗(v) gi Fi,j g1 Fi,1 Fn,0 b1 hn,0 hi,1

Consider Sn first. If player 1 selects the counterstrategy τ by setting τ(Fi,j) := si,j for
all suitable indices i, j, then for every vertex v ∈ V , the play πσ∗,τ,v ends in t. The reason is

that every level i (except n) is traversed using the vertices bi, gi, Fi,1, si,1 and hi,1, leading
to the vertex gi+1. Then, level i+ 1 is traversed similarly and the final level is traversed in

such a way that the sink t is reached. As every vertex that is not part of this spinal path

beginning in b1 reaches either a selector or entry vertex after a finite number of steps, this

implies the statement. Thus, σ∗ is a sink strategy. This argument also implies that the

sink t is reached with probability 1 in Mn, implying that σ∗ is a weak unichain strategy

for Mn. In particular, by Lemma 3.2.9, the values of the vertices are finite.

It remains to show that σ∗ is optimal. We do so by proving that Iσ∗ = ∅. Note that

this proves that σ∗ solves the optimality equations for the expected total reward criterion,
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5. An Exponential Lower Bound for Zadeh’s Pivot Rule

implying that Mn is finite. We however refrain from explicitly calculating all vertex

valuations but argue why there are no improving switches with respect to σ∗.

By the definition of improving switches, it suffices to show that no edge (u, v) ∈ E0

with σ∗(u) 6= v is improving. First of all, traversing a level is profitable for the player. This

implies that it is better to enter a level than to skip a level since either outgoing edges

of entry vertices do not yield any reward, or, these vertices have a very low odd priority.

Consequently, no edge (bi, bi+1) for i ∈ [n− 1] or (bn, t) is improving. For the same reason,

no edge (e∗,∗,∗, b2) is improving, since taking this edge would decrease the valuation of

the corresponding escape vertex. Consider some vertex si,0. If σ
∗(si,0) = hi,0 held, then

the reward associated with the edge (hi,0, bi+2) but not the reward of level i+ 1 would

be collected. It is easy to verify that traversing level i+ 1 completely is more beneficial

than taking the edge (si,0, hi,0) and skipping level i+ 1. Consequently, it is better for si,0
to move to b1, implying that no edge (si,0, hi,0) is improving.

Since σ∗(gi) = Fi,1 for all i ∈ [n − 1] and since all cycle centers are closed, any edge

(si,1, b1) would create a cycle. But this would contradict that Gn is a sink game resp.

weakly unichain. Consequently, no edge (si,1, b1) is improving.

Consider some cycle vertex di,j,k. If this vertex escaped level i via its escape vertex ei,j,k,
this again created a cycle. Thus, no edge of (di,j,k, ei,j,k) is improving. Since σ∗(si,0) = b1
for all i ∈ [n− 1], this also implies that none of the edges (gi, Fi,0) is improving.

Consequently, there are no improving switches with respect to σ∗, hence σ∗ is optimal.

As σ∗ is weakly unichain for Mn, the Markov decision process is thus finite.

We now introduce further notation and begin with the term reachable strategy. Intuitively,

a strategy σ′ is reachable from a strategy σ if there is a sequence of improving switches

such that applying the sequence to σ yields σ′. In particular, the notion of reachability

does not depend on the pivot or the tie-breaking rule, and every strategy calculated by

the strategy improvement algorithm is reachable from the initial strategy by definition.

Definition 5.3.4 (Reachable strategy). Let σ be a strategy for Gn. The set of all strategies

that can be obtained from σ by applying an arbitrary sequence of improving switches is

denoted by ρ(σ). A strategy σ′ is reachable from σ if σ′ ∈ ρ(σ).

Reachability is a transitive property and we let σ ∈ ρ(σ) since the empty sequence is

technically a sequence of improving switches.

5.3.2. The Tie-Breaking Rule

Before discussing the tie-breaking rule in detail, we revisit Zadeh’s LeastEntered pivot

rule and introduce related notation. In each step, Zadeh’s pivot rule chooses an improving

switch that was chosen least often until now. It is thus a memorizing pivot rule, and

it needs to keep track of how often an improving switch was applied. Formally, this is

handled by a function φσ : E0 → N which is called the occurrence record of the strategy σ.
We define the occurrence record with respect to the initial strategy by setting φσ0(e) := 0
for all e ∈ E0. Now, let σ ∈ ρ(σ0) and e ∈ Iσ and let φσ denote the occurrence record with

respect to σ. Then, the occurrence record with respect to the strategy σe that is obtained
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by applying e in σ is given by φσe(e′) := φσ(e′) if e′ 6= e and φσe(e) = φσ(e) + 1. Using
this framework, Zadeh’s pivot rule can be phrased as follows: Given a strategy σ ∈ ρ(σ0)
and an associated occurrence record φσ, apply an improving switch e ∈ argmine∈Iσ φ

σ(e)
next.

In general, this pivot rule does not uniquely determine which improving switch is

applied next as there might be more than one switch minimizing the occurrence record.

For example, if there is more than one improving switch for the initial strategy, then

Zadeh’s pivot rule is already ambiguous. The algorithm thus needs an additional rule

deciding which switch to apply in such a case. Such a rule is called tie-breaking rule.

Before introducing the tie-breaking rule that used for our construction, we briefly discuss

the importance of breaking ties when applying Zadeh’s LeastEntered pivot rule.

A general discussion of tie-breaking rules

For an arbitrary pivot rule, a tie-breaking rule decides which switch to apply if there are

multiple candidates, all of which are valid choices with respect to the considered pivot

rule. There are pivot rules for which a tie-breaking rule might not be needed. Consider, for

example, Dantzig’s original pivot rule which chooses a non-basic variable with maximal

reduced cost to enter the current basis. If this variable is unique in every step, then the

pivot rule does not require an additional tie-breaking rule as there is never more than one

eligible candidate for the pivot rule. Another example of a pivot rule that does not require

a tie-breaking rule is Cunningham’s pivot rule in which a cyclic order of the variables is

fixed in the beginning. The pivot rule the chooses the first improving variable with respect

to this order, starting from the last chosen variable.

For Zadeh’s pivot rule, an additional tie-breaking rule is necessary, however. Consider,

for example, the very first iteration of the strategy improvement algorithm using Zadeh’s

pivot rule. If there is more than one improving switch for the initial strategy, then the

algorithm already requires tie-breaking as the occurrence records of all edges is 0 with

respect to the initial strategy. The same also holds for later iterations whenever there are

multiple improving switches minimizing the occurrence records. Consequently, the choice

of a tie-breaking rule is unavoidable when using Zadeh’s pivot rule.

It is of course just natural to then ask for a tie-breaking rule that guarantees a small

number of iterations. From an extreme point of view, one might argue that a worst-case

example for Zadeh’s pivot rule only yields a “valid” lower bound if it applies to all possible

tie-breaking rules. At least in the context of Markov decision processes, asking for such

a lower bound construction is not realistic, however. The reason is that there is always

a way to break ties such that the strategy improvement algorithm using Zadeh’s pivot

rule requires at most n iterations in a Markov decision process with n vertices [Fri11b,

Corollary 4.79]. In particular, it is thus not possible to find a Markov decision process that

provides a lower bound independent of the chosen tie-breaking rule. As formulated by

Oliver Friedmann in his theses, “the question whether Zadeh’s pivoting rule solves MDPs (and

LPs) in polynomial time should therefore be phrased independently of the heuristic of breaking

ties. In other words, we as “lower bound designers” are the ones that choose a particular tie

breaking rule” [Fri11b, page 191].
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It is not clear how a “good” tie-breaking rule looks like. Of course, a tie-breaking rule

that leads to less iterations is more desirable than a tie-breaking rule that results in a lot

of iterations. Another important measurement for the quality of a tie-breaking rule is

how natural it is. If a tie-breaking rule heavily depends on the execution of the algorithm,

specific configurations or similar aspects, it is hard to understand and thus potentially

hard to use. Thus, the question arises if there is a tie-breaking rule that is natural and

results in as few iterations as possible. Candidates for such natural tie-breaking rules

might, for example, be other pivot rules. One could, for example, use the tie-breaking

rule “among all improving switches minimizing the occurrence record, choose the one

with largest reduced cost” and thus combine Zadeh’s and Dantzig’s pivot rules.

The tie-breaking rule that we use in our construction is of a different type, but we

still consider it a natural rule. Our tie-breaking rule is an ordering of the edges, and

the algorithm always chooses the improving switch minimizing the occurrence records

which appears first in this ordering. This rule is arguably natural and easy to implement.

However, our tie-breaking rule depends on the current strategy, so it is not as natural as a

tie-breaking rule that is based on ordering the edges of the instance could be.

The tie-breaking rule used for our construction

In our case, the tie-breaking rule is implemented as an ordering of all edges that depends

on the current strategy. Then, whenever there are multiple improving switches minimizing

the occurrence record, the algorithm chooses the first edge that is an improving switch

with respect to this ordering. Although our ordering depends on the current strategy, a

tie-breaking rule that is implemented by an ordered list of edges is one of the most natural

ways to define such a rule.

For the remainder of this section, let σ be a strategy for Gn. It turns out that it is not

necessary to give a full ordering of E0, significantly simplifying the presentation of the

tie-breaking rule. In fact, it is sufficient to describe a pre-order of E0, and any linear

extension of this pre-order can then be used. As Γ+(t) = {t}, we do not include the edge

(t, t) here. We thus define the following subsets of E0 \ {(t, t)}:

• G := {(g∗, F∗,∗)} is the set of all edges leaving selector vertices.

• E0 := {(ei,j,k, ∗) ∈ E0 : σ(di,j,k) 6= Fi,j} is the set of edges leaving escape vertices

whose cycle vertices do not point towards their cycle center. Similarly, the set of

edges leaving escape vertices whose cycle vertices point towards their cycle center

is defined as E1 := {(ei,j,k, ∗) : σ(di,j,k) = Fi,j}.

• D1 := {(d∗,∗,∗, F∗,∗)} is the set of cycle edges an D0 := {(d∗,∗,∗, e∗,∗,∗)} is the set of

the other edges leaving cycle vertices.

• B0 := {(bi, bi+1) : i ∈ [n−1]}∪{(bn, t)} is the set of all edges between entry vertices.

The set B1 := {(b∗, g∗)} is defined analogously and we let B := B0 ∪ B1.

• S := {(s∗,∗, ∗)} is the set of all edges leaving upper selection vertices.

We next define a pre-order ≺σ based on σ and these sets. However, we need to give a

finer pre-order for E0,E1, S and D1 first.
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Finer pre-order for certain sets

The finer pre-order of certain sets simplifies formal proofs and arguments. Intuitively, it

forces the algorithm to behave in a more controlled fashion as we can then ensure that

certain improving switches are only applied after a certain “setup” was performed. More

precisely, the pre-order on E0 forces the algorithm to (i) favor edges contained in higher

levels, (ii) favor (ei,0,∗, ∗) over (ei,1,∗, ∗) in Sn and (iii) favor (ei,βi+1,∗, ∗) over (ei,1−βi+1,∗, ∗)
in Mn. For Sn, we define (ei,j,x, ∗) ≺σ (ek,l,y, ∗) if (i) i > k or (ii) i = k and j < l. For Mn,

we define (ei,j,x, ∗) ≺σ (ek,l,y, ∗) if (i) i > k or (ii) i = k and j = βi+1.

Similarly, the pre-order on S forces the algorithm to favor edges contained in higher

levels as well. We thus define (si,j , ∗) ≺σ (sk,l, ∗) if i > k.
We next describe the pre-order on E1. Let (ei,j,x, ∗), (ek,l,y, ∗) ∈ E1.

1. The first criterion encodes that switches contained in higher levels are applied first.

We thus define (ei,j,x, ∗) ≺σ (ek,l,y, ∗) if i > k.

2. If i = k, then we consider the states of the cycle centers Fi,j and Fk,l = Fi,1−j . If

exactly one of them is closed, say Fi,j , then the improving switches within this cycle

center are applied first. We thus define (ei,j,x, ∗) ≺σ (ek,l,y, ∗) if (i) i = k, (ii) Fi,j is

closed and (iii) Fi,1−j is not closed.

3. Consider the case where i = k but no cycle center of level i is closed. Let t→ := b2 if

ℓ(β) > 1 and t→ := g1 if ℓ(β) = 1. If there is exactly one t→-halfopen cycle center in

level i, then switches within this cycle center have to be applied first. Formally, we

thus define (ei,j,x, ∗) ≺σ (ek,l,y, ∗) if (i) i = k, (ii) Fi,j is t
→-halfopen and (iii) Fi,1−j

is neither closed nor t→-halfopen.

4. Assume that none of the prior criteria applied. This includes the case where both

cycle centers are in the same state and implies i = k. Then, the order of application

differs for Sn and Mn. In Sn, switches within Fi,0 are applied first. In Mn, switches

within Fi,βi+1
are applied first. We thus define (ei,0,x, ∗) ≺σ (ei,1,y, ∗) if (i) i = k,

(ii) we consider Sn and (iii) none of the previous criteria applied. Analogously, we

define (ei,βi+1,x, ∗) ≺σ (ei,1−βi+1,y, ∗) for Mn.

We next give a pre-order for D1. The main purpose of this pre-order is that the cycle

center Fi,j with i = ℓ(b+1) and j = (b+1)i+1 is the only active cycle center that is closed

when transitioning from σb to σb+1. Let (di,j,x, Fi,j), (dk,l,y, Fk,l) ∈ D1.

1. Improving switches contained in open cycles are applied first. We thus define

(di,j,x, Fi,j) ≺σ (dk,l,y, Fk,l) if σ(dk,l,1−y) = Fk,l but σ(di,j,1−x) 6= Fi,j .

2. The second criterion states that among all halfopen cycle centers, those contained

in levels i with βσ
i = 0 are applied first. If the first criterion does not apply, we thus

define (di,j,x, Fi,j) ≺σ (dk,l,y, Fk,l) if βk > βi.

3. The third criterion states that among all halfopen cycle centers, improving switches

of lower levels are applied first. If none of the first two criteria apply, we thus define

(di,j,x, Fi,j) ≺σ (dk,l,y, Fk,l) if k > i.

4. The fourth criterion states that, within one level, improving switches of the active

cycle center are applied first. If none of the previous criteria apply, we thus define

(di,j,x, Fi,j) ≺σ (dk,l,y, Fk,l) if βk+1 6= l and βi+1 = j.
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5. The last criterion states that, within one cycle center, edges with last index equal

to zero are preferred. That is, if none of the previous criteria apply, we define

(di,j,x, Fi,j) ≺σ (dk,l,y, Fk,l) if x < y. If this criterion does not apply either, the edges

are incomparable.

Definition of the tie-breaking rule

Definition 5.3.5 (Tie-breaking rule). Let σ be a strategy for Gn and φσ : E0 → N be an

occurrence record for σ. We define the pre-order ≺σ on E0 via

Gσ ≺σ D0 ≺σ E1 ≺σ B ≺σ S ≺σ E0 ≺σ D1

where the sets E0,E1, S and D1 are additionally pre-ordered as described before.

We extend the pre-order ≺σ to an arbitrary but fixed total ordering on E0, also denoted

by ≺σ. We define the following tie-breaking rule: Let Imin
σ := argmine∈Iσ φ

σ(e) denote
the set of improving switches minimizing the occurrence record. Apply the first improving

switch contained in Imin
σ with respect to the ordering ≺σ with the following exception: If

φσ(b1, b2) = φσ(s1,1, h1,1) = 0, then apply (s1,1, h1,1) instead of (b1, b2).

We briefly discuss the exception and explain why it is needed. During the execution

of the algorithm, it will typically be the case that the occurrence record of (s1,1, h1,1) is
lower than the occurrence record of (b1, b2). In particular, when both of these edges are

improving, the edge (b1, b2) does not minimize the occurrence record then. Hence, it is

not even a candidate for being applied, and even though (b1, b2) precedes (s1,1, h1,1) in
the tie-breaking rule, (b1, b2) will not be applied. This, however, is not true in the very

beginning, that is, when the occurrence record of both edges is equal to zero. Then, both

minimize the occurrence record, so the tie-breaking rule decides which switch to apply.

As B ≺σ S is required for other applications of improving switches during the execution

of the algorithm, we have to include this exception. To prove that the tie-breaking rule

defined in Definition 5.3.5 is computationally tractable, it remains to prove that it can be

evaluated efficiently.

Lemma 5.3.6. Given a strategy σ ∈ ρ(σ0) and an occurrence record φσ : E0 7→ N, the
tie-breaking rule can be evaluated in polynomial time.

Proof. Let σ ∈ ρ(σ0). Identifying the subsets of E0 can be done by iterating over E0

and checking σ(v) for all v ∈ E0. Therefore, the pre-order of the sets can be calculated

in polynomial time. Since expending the chosen pre-order to a total order is possible

in polynomial time [Szp30], the tie-breaking rule can be computed in polynomial time.

Whenever the tie-breaking rule needs to be considered, the algorithm needs to iterate

over the chosen ordering. Since this can also be done in time polynomial in the input,

the tie-breaking rule can be applied in polynomial time. Also, handling the exception

described in Definition 5.3.5 can be done in polynomial time.
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5.3.3. The Five Phases and the Application of Improving Switches

Our goal is to prove that applying the strategy improvement algorithm toGn using Zadeh’s

pivot and our tie-breaking rule enumerates one canonical strategy σb per b ∈ Bn. This

will be proven in an inductive fashion as follows by proving the following statement: Given

a canonical strategy σb for b ∈ Bn, the algorithm calculates a canonical strategy σb+1

for b+ 1. This process is called transition from σb to σb+1 and is usually abbreviated by

σb → σb+1. To analyze a single transition, we divide it into four to five phases which are

inspired by the macroscopic tasks performed by the algorithm to transform σb into σb+1.

These tasks are, for example, the opening and closing of cycle centers, updating the escape

vertices or adjusting some of the selection vertices.

The exact number of phases depends on whether we consider Sn or Mn and on ℓ(b+1).
Phases 1, 3 and 5 always take place, while phase 2 is only present if ℓ(b+ 1) > 1 since the

targets of several vertices in levels i < ℓ(b+1) are updated in this phase. The same is true

for phase 4, although this phase only exists for Sn. If we consider Mn, then the switches

that are applied during phase 4 in Sn are already applied during phase 3 of Mn and there

is no separate phase 4.

Informal description

We begin by giving an intuitive description and explanation of the individual phases. A

very simplified and schematic sketch of the different phases and their interaction in the

Markov decision process Mn is given in Figure 5.9. Consider the canonical strategy σb for
some b ∈ Bn and let ν := ℓ(b+ 1).

σb σb+1

Balance

Occurrence Records

Close Fν,bν+1

Update

selector vertices

Update

bi for i < ν

Update

upper selection vertices

Open cycle centers

Update bν

Update

escape vertices

Update

upper selection vertices

Balance

occurrence records

Update

escape vertices

Update

selector vertices

Figure 5.9.: Sketch of some of the tasks performed during the different phases by the strategy
improvement algorithm when applied to Mn. Each box marks one task that has to
be performed, and each vertical set of boxes corresponds to one of the phases 1, 2, 3
and 5 (from left to right). Gray boxes and edges represent tasks that are not performed
during all transitions. Red/blue edges represent that the corresponding boxes are
only relevant if b+ 1 is odd/even. The yellow box represents the task that constitutes
phase 4 in Sn but part of phase 3 in Mn.

1. During phase 1, several cycle vertices switch towards their cycle centers. The primary

purpose of this phase is that the strategy σ obtained after the application of the final

switch represents b+ 1. A secondary purpose is to balance the occurrence records

of the cycle edges by applying additional improving switches. This application
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might close inactive cycle centers Fi,1−bi+1 and can thus make edges (gi, Fi,1−bi+1)
improving. As balancing occurrence records might close additional cycle centers,

more edges of the type (g∗, F∗,∗) can become improving and are then applied. The

final improving switch applied during phase 1 closes the cycle center Fν,(b+1)ν+1
.

Depending on the parity of b + 1, either phase 2 (if b + 1 mod 2 = 0) or 3 (if

b+ 1 mod 2 = 1) begins.

2. In phase 2, the upper selection vertices si,j for i ∈ [ν − 1] and j = (b + 1)i+1

change their targets from b1 to hi,j . This is necessary as the induced bit state is

now representing b + 1, so the ν least significant bits changed. Furthermore, the

entry vertices bi of these levels switch towards bi+1 (with the exception of b1). Since
bi = bi+1 for all i 6= 1 if ν = 1, these operations only need to be performed if ν > 1.

3. Phase 3 is partly responsible for applying improving switches involving escape

vertices. Since the parities of b and b + 1 are not the same, all escape vertices

have to change their targets. During phase 3, exactly the escape vertices ei,j,k with

i ∈ [n], j, k ∈ {0, 1} whose cycle vertex di,j,k points to the cycle center Fi,j change

their targets. In addition, exactly these cycle vertices then also change their targets

to ei,j,k unless the cycle center Fi,j is closed and active. This enables the application

of (di,j,k, Fi,j) which is necessary to balance the occurrence records of the cycle

edges.

At the end of this phase either (b1, g1) (if ν = 1) or (b1, b2) (if ν > 1) is applied.
In Mn, the improving switches of phase 4 are also applied during phase 3.

4. During phase 4, the remaining upper selection vertices si,j with i ∈ [ν − 1] and
j = 1− (b+ 1)i+1 are updated by changing their targets to b1. These updates are

necessary to allow the cycle centers and cycle vertices to access the spinal path.

Similarly to phase 2, these switches are only applied if ν > 1.

5. During phase 5, the remaining improving switches involving escape vertices are

applied. Moreover, some of the edges (d∗,∗,∗, F∗,∗) that have a very low occurrence

record are also applied in order to increase their occurrence records. In some sense,

the switches “catch up” to the other edges that have been applied more often. This

application might close some inactive cycle centers F∗,∗ and consequently make the

corresponding edge (g∗, F∗,∗) improving. This switch is then also applied. Phase 5
ends once the set of improving switches only contains edges of the type (d∗,∗,∗, F∗,∗).

Before giving the formal definition of the phases, we want to briefly discuss Oliver

Friedmann’s implementation of our construction. He used the PGSolver library to im-

plement the general sink game Sn for arbitrary values of n. We then applied the strategy

improvement algorithm using Zadeh’s pivot rule and the tie-breaking rule provided in

Definition 5.3.5 to examples with 3 up to 10 levels. To verify our findings, we manually

validated the full sequence of strategies produced by the algorithm for n = 3 and n = 4
and specific subsequences of produced strategies for n ∈ {5, . . . , 10}. In addition, we

encoded some of the formal assumptions that are imposed on the strategies in Chapter 6 to

validate these as well. As the implementation proceeded exactly along the phases we just

described and additionally checks whether the produced strategies fulfill the formal and
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technical assumptions that are required for the rigorous proof, this validates our results for

at least the sink game construction. We also want to mention here that an implementation

of the Markov decision process was not feasible as the probabilities are extremely small,

making a numerically stable implementation extremely challenging.

Formal definition of the phases

To give the formal definition of the phases, we require additional notation for describing

strategies. In particular, we encode the choices of σ by using integers. For this purpose, we

introduce a function σ that will be extended later to describe more complex configurations

of Gn. At this point, we only provide the first layer of complexity by defining σ(v) for all
v ∈ V0 using Table 5.3. In principle, σ is used to abbreviate boolean expressions. These

expressions are either true (i.e., equal to 1) or false (i.e., equal to 0). For example, σ(bi)
denotes the boolean expression σ(bi) = gi, so σ(bi) = 1 if and only if σ(bi) = gi.

Symbol σ(bi) σ(si,j) σ(gi) σ(di,j,k) σ(ei,j,k)

Encoded expression σ(bi) = gi σ(si,j) = hi,j σ(gi) = Fi,1 σ(di,j,k) = Fi,j σ(ei,j,k) = b2

Table 5.3.: Definition of the function σ for the player vertices and a strategy σ in Gn.

For convenience, we define σ(t) := 0. Since every player vertex has an outdegree of

at most two, the value of σ(v) is in bijection to σ(v). We can thus use ¬σ(v) to denote

σ(v) = 0. For convenience of notation, the precedence level of “=” and “ 6=” is higher than

the precedence level of ∧ and ∨. That is, x ∧ y = z is interpreted as x ∧ (y = z).
Using this notation, we now introduce a strategy-based parameter µσ ∈ [n+ 1]. This

parameter is called the next relevant bit of the strategy σ. Before defining this parameter

formally, we briefly explain its importance and how it can be interpreted.

One of the central concepts of Gn is that the two cycle centers of a fixed level alternate

in representing bit i. Consequently, the selector vertex gi of level i needs to select the

correct cycle center. Moreover, bi should point to gi if and only if bit i is equal to 1
(see Definition 5.1.2 resp. 5.2.1). This in particular implies that the selector vertex gi−1
of level i − 1 needs to be in accordance with the entry vertex of level bi if bit i − 1 is

equal to 1. More precisely, it should not happen that σ(bi) = gi, σ(bi+1) = gi+1 and

σ(gi) = Fi,0. However, it cannot be guaranteed that this does not happen for some

intermediate strategies encountered during σb → σb+1. Such a configuration is then an

indicator that some operations have to be performed in the levels i and i + 1. This is

captured by the parameter µσ as it is defined as the lowest level higher than any level that

is set “incorrectly” in that sense. If there are no such levels, then µσ is the lowest level i
with σ(bi) = bi+1. The parameter can thus be interpreted as an indicator encoding where

“work needs to be done next”. Formally, it is defined as follows.

Definition 5.3.7 (Next relevant bit). Let σ ∈ ρ(σ0). The set of incorrect levels is defined as

Iσ := {i ∈ [n] : σ(bi) ∧ σ(gi) 6= σ(bi+1)}. The next relevant bit µσ of the strategy σ is

µσ :=

{
min{i > max{i′ ∈ Iσ} : σ(bi) ∧ σ(gi) = σ(bi+1)} ∪ {n}, if Iσ 6= ∅,

min{i ∈ [n+ 1] : σ(bi) = bi+1}, if Iσ = ∅.
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The next relevant bit now enables us to give a formal definition of the phases. These

phases are described by a set of properties that the strategies of the corresponding phase

have to fulfill. Before we list and explain the properties that are used for defining the

phases, we extend the function σ. The definition given in Table 5.3 allows us to use

the function σ to describe the state of individual vertices. It is however convenient to

also describe more complex configuration by encoding them as boolean expressions. An

example for such a configurations is the setting of the cycle centers. We thus extend the

notation of σ and refer to Table 5.4 for an overview over the complete definition of the

function.

Symbol Encoded expression

σ(bi) σ(bi) = gi
σ(si,j) σ(si,j) = hi,j
σ(gi) σ(gi) = Fi,1

σ(di,j,k) σ(di,j,k) = Fi,j

σ(ei,j,k) σ(ei,j,k) = b2

Symbol Encoded expression

σ(si) σ(siσ(gi))

σ(di,j) σ(di,j,0) ∧ σ(di,j,1)
σ(di) σ(di,σ(gi))

σ(egi,j)
∨

k∈{0,1}[¬σ(di,j,k) ∧ ¬σ(ei,j,k)]

σ(ebi,j)
∨

k∈{0,1}[¬σ(di,j,k) ∧ σ(ei,j,k)]

σ(egi) σ(egi,σ(gi))

σ(ebi) σ(ebi,σ(gi))

Table 5.4.: Extension and full definition of the function σ given in Table 5.3 to describe more
complex configurations. Here, ¬σ(v) is the logical negation of σ(v).

Formally, a strategy belongs to one of the five phases if it has a certain set of properties.

These properties can be partitioned into several categories depending on the vertices or

terms that are involved. The properties might also depend on one or more parameters

like a level or a cycle center.

Consider some fixed strategy σ, b ∈ Bn and let ν := ℓ(b+1) denote the least significant

set bit of b+1. The first three properties are related to the Entry Vertices. Property (EV1)i
states that the entry vertex of level i should point to gi if and only if the the active (with

respect to the induced bit state) cycle center Fi,,βσ
i+1

is closed, so

σ(bi) = σ(di,βσ
i+1

). (EV1)

Similarly, Property (EV2)i states that σ(bi) = gi implies that the selector vertex gi of
level i should point to the corresponding active cycle center, so

σ(bi) =⇒ σ(gi) = βσ
i+1. (EV2)

Property (EV3)i states that σ(bi) = gi implies that the inactive cycle center is not closed,

so

σ(bi) =⇒ ¬σ(di,1−βσ
i+1

). (EV3)

This property is a good example for a property that will be violated during specific

phases as several inactive cycle centers will be closed when the induced bit state increases.
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The next five properties are all related to the ESCape vertices e∗,∗,∗. Property (ESC1)

states that the escape vertices are set “correctly”, that is, as they should be set for a

canonical strategy representing β, so

[βσ
1 = 0 =⇒ σ(e∗,∗,∗) = b2] ∧ [βσ

1 = 1 =⇒ σ(e∗,∗,∗) = g1]. (ESC1)

Property (ESC2) states that all escape vertices point to g1, so

σ(e∗,∗,∗) = g1. (ESC2)

Although this property seems redundant due to Property (ESC1), it is crucial for properly

defining the second phase.

The next three properties are used to describe the access of Fi,j to the vertices g1
and b2 via the escape vertices. More precisely, they state whether Fi,j has access to

only g1 (Property (ESC3)i,j), only b2 (Property (ESC4)i,j) or to both of these vertices

(Property (ESC5)i,j). We mention here that Property (ESC3) is technically not used for

the definition of the phases, but as it will be used within several proofs and fits the other

properties related to the escape vertices, we already provide it here. Formally, these

properties are given via

σ(egi,j) ∧ ¬σ(ebi,j), (ESC3)

σ(ebi,j) ∧ ¬σ(egi,j), (ESC4)

σ(ebi,j) ∧ σ(egi,j). (ESC5)

The next three properties are concerned with the Upper Selection Vertices s∗,∗. Prop-
erty (USV1)i states that both upper selection vertices of level i are set “correctly” with

respect to the induced bit state, while Property (USV3)i states that both of these vertices

are set incorrectly. Property (USV2)i,j simply states σ(si,j) = hi,j and will be used to

identify strategies for which the upper selection vertices of lower levels need to be updated

since the induced bit state changed.

σ(si,βσ
i+1

) = hi,βσ
i+1

∧ σ(si,1−βσ
i+1

) = b1 (USV1)

σ(si,j) = hi,j (USV2)

σ(si,βσ
i+1

) = b1 ∧ σ(si,1−βσ
i+1

) = hi,1−βσ
i+1

(USV3)

The next two properties are related to the Cycle Centers. Property (CC1)i states that at

least one cycle center of level i has to be open or halfopen if i < µσ. Property (CC2) states

that the active cycle center of level ν = ℓ(b+ 1) is closed and that the selector vertex of

level ν chooses the correct cycle center with respect to b+ 1, so

i < µσ =⇒ ¬σ(di,0) ∨ ¬σ(di,1), (CC1)

σ(dν) ∧ σ(gν) = (b+ 1)ν+1 (CC2)
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The following properties are related to the Selector Vertices and are unique for either

the Markov decision process Mn (Property (SVM)) or the sink Game Sn (Property (SVG)).

They are related to the setting of selector vertices if the represented bit is equal to 0.
According to Definition 5.1.2 resp. 5.2.1, the cycle center chosen by gi is fixed in this case

depends on whether we consider Mn or Sn, see condition 3.(d). Properties (SVM) and

(SVG) now state that the selector vertex can only choose the other cycle center Fi,1 resp.

Fi,1−βσ
i+1

if this cycle center is closed, so

σ(gi) = 1− βσ
i+1 =⇒ σ(di,1−βσ

i+1
), (SVM)

σ(gi) = 1 =⇒ σ(di,1). (SVG)

The final two properties are related to the next RELevant bit µσ defined in Defini-

tion 5.3.7. Property (REL1) states that the set of incorrect levels is empty. This in

particular implies that µσ = min{i ∈ [n+ 1] : σ(bi) = bi+1}. Property (REL2) states that

this parameter is equal to the least significant set bit of the bit state induced by σ, so

∄i : σ(bi−1) = gi−1 ∧ σ(bi) 6= σ(gi−1), (REL1)

µσ = ℓ(βσ). (REL2)

Together with the induced bit state, these properties are now used to formally define

the phases. This is done by providing a table where each row corresponds to one of the

properties and each column to one phase. In addition, there are some special conditions

that have to be fulfilled during some phases that cannot be phrased as a simple property.

Definition 5.3.8 (Phase-k-strategy). Let σ be a strategy for Gn and k ∈ [5]. Then, σ is

a phase-k-strategy if it has the properties of the corresponding column of Table 5.5 and

fulfills the corresponding special conditions.

This concludes the formal definition of the phases and the intuitive description regarding

the application of the improving switches. In the next section, we discuss the occurrence

records that emerge when applying improving switches as described here.

5.3.4. The Occurrence Records

The occurrence records are described using the terms related to binary counting introduced

in the beginning of Section 4.1. We introduce two additional terms. For a number b ∈ Bn,

an index i ∈ [n] and some j ∈ {0, 1}, these terms describe the last time bit i was switched

to 1 resp. 0 while bit i+ 1 was equal to j.

Definition 5.3.9 (Last (un-)flip number). Let b ∈ Bn, i ∈ [n] and j ∈ {0, 1}. Then, the
last flip number lfn(b, i, {(i + 1, j)}) is the largest b′ ≤ b with ℓ(b′) = i and b′i+1 = j.
Similarly, the last unflip number lufn(b, i, {(i+ 1, j)}) is the largest b′ ≤ b with b′i′ = 0 for

all i′ ≤ i and b′i+1 = j. If there are no such numbers, then both quantities are defined as 0.
If the setting of bit i+ 1 should not be enforced we use the terms lfn(b, i) and lufn(b, i)
which are defined analogously.
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Property Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

(EV1)i i ∈ [n] i > µσ i > 1 i ∈ [n] i ∈ [n]
(EV2)i i ∈ [n] i ≥ µσ i > 1 i ∈ [n] i ∈ [n]
(EV3)i i ∈ [n] \ {ν} i > µσ i > 1, i 6= µσ i ∈ [n] i ∈ [n]
(USV1)i i ∈ [n] i ≥ µσ i ≥ µσ i ≥ ν i ∈ [n]
(USV2)i,j - (i, 1− βi+1) : i < µσ (i, ∗) : i < µσ (i, βi+1) : i < ν -

(ESC1) True - - - False*

(ESC2) - True - - -

(ESC4)i,j - - - (i, j) ∈ S1 -

(ESC5)i,j - - - (i, j) ∈ S2 -

(REL1) True - - True True

(REL2) - True True False False

(CC1)i i ∈ [n] i ∈ [n] i ∈ [n] i ∈ [n] i ∈ [n]

(CC2) - True† True† True True

(SVM)i/(SVG)i i ∈ [n] i ∈ [n] - - -*

β = b b+ 1 b+ 1 b+ 1 b+ 1

Special Phase 2: ∃i < µσ : (USV3)i ∧ ¬(EV2)i ∧ ¬(EV3)i
Phase 2,3: †A phase-2- resp. phase-3-strategy without Property (CC2) is

called pseudo phase-2- resp. phase-3-strategy.

Phase 4: ∃i < ν(b+ 1): (USV2)i,1−βi+1

Phase 5: *If σ has Property (ESC1) and there is an index i such that σ does

not have Property (SVM)i \(SVG)i, it is defined as a phase-5-strategy

S1 = {(i, 1− βi+1) : i ∈ [ν − 1]} ∪ {(i, 1− βi+1) : i ∈ {ν, . . . ,m− 1} ∧ βi = 0}

∪

{

∅, ∃k ∈ N : b+ 1 = 2k

{(ν, 1− βν+1)}, ∄k ∈ N : b+ 1 = 2k

S2 = {(i, βσ
i+1) : i ∈ [ν − 1]} ∪ {(i, 1− βi+1) : i ∈ {ν + 1, . . . ,m} ∧ βi = 1}

∪{(i, βi+1) : i ∈ {ν, . . . ,m− 1} ∧ βi = 0} ∪ {(i, k) : i > m, k ∈ {0, 1}}

∪

{

{(ν, 1)}, ∃k ∈ N : b+ 1 = 2k

∅, ∄k ∈ N : b+ 1 = 2k

S3 = {(i, 1− βi+1) : i ∈ [u]} ∪ {(i, 1− βi+1) : i ∈ {u+ 1, . . . ,m} ∧ βi = 1}∪
∪{(i, βi+1) : i ∈ {u+ 1, . . . ,m− 1} ∧ βi = 0}
∪{(i, k) : i > m, k ∈ {0, 1}} ∪ {(u, βu+1)}

S4 = {(i, 1− βi+1) : i ∈ {u+ 1, . . . ,m− 1} ∧ βi = 0}

Table 5.5.: Definition of the phases for a strategy σ and a number b ∈ Bn. The entries show for
which indices the strategy has the corresponding property resp. whether the strategy has
the property at all. Expressions of the type “i ∈ [n]” or similar are meant as “∀i ∈ [n]”. A ’-
’ signifies that it is not specified whether σ has the corresponding property. The last row
contains further properties used for the definition of the phases. The lower table contains
all sets used for the definition of the phases and two additional sets S3, S4 that are
necessary for later proofs. We use the abbreviations ν := ℓ(b+1),m := max{i : βi = 1}
and u := min{i : βi = 0}.
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Note that the third argument in these definitions is again a set, although it would be

sufficient to use only the pair (i+ 1, j) as an argument. This is done intentionally in order

to have the same notation used for the previous terms related to binary counting. We do

not explicitly determine the occurrence record of every edge for every strategy. Instead,

we focus on canonical strategies and give a table describing the occurrence records for a

canonical strategy. We then prove the following statement inductively: If the table correctly

describes the occurrence records for σb and Zadeh’s pivot rule with our tie-breaking rule

is applied, then the table correctly describes the occurrence records for σb+1.

Edge e φσb(e) Edge e φσb(e)

(e∗,∗,∗, g1)
⌈
b

2

⌉
(bi, gi) fl(b, i)

(e∗,∗,∗, b2)
⌊
b

2

⌋
(bi, bi+1) fl(b, i)− bi

(si,j , hi,j) fl(b, i+ 1)− (1− j) · bi+1 (di,j,k, ei,j,k) ≤

{
φσb(ei,j,k, g1), b1 = 0

φσb(ei,j,k, b2), b1 = 1

(si,j , b1) fl(b, i+ 1)− j · bi+1 (gi, Fi,j) ≤ min
k∈{0,1}

φσb(di,j,k, Fi,j)

Condition φσb(di,j,k, Fi,j) Tolerance

bi = 1 ∧ bi+1 = j
⌈
lfn(b,i,{(i+1,j)})+1−k

2

⌉
0

bi = 0 ∨ bi+1 6= j min
(⌊

b+1−k
2

⌋
, ℓb(i, j, k) + tb

)
tb ∈





{0}, i = 1 ∨ bi = 1

{0, 1}, i 6= 1 ∧ b1 = 0

{−1, 0, 1}, i 6= 1 ∧ b1 = 1

ℓb(i, j, k) :=
⌈
lfn(b,i,{(i+1,j)}+1−k)

2

⌉
+ b− 1j=0lfn(b, i+ 1)− 1j=1lufn(b, i+ 1)

Table 5.6.: Occurrence records for the canonical strategy σb. For each edge, we either give the
exact occurrence record, an upper bound, or the occurrence record up to a certain
tolerance. A parameter tb fulfilling the assumptions for the case bi = 0 ∨ bi+1 6= j is
called feasible for b.

Let b ∈ Bn and σb be a canonical strategy for b. Table 5.6 gives an overview over the

occurrence records of the edges. For each edge e ∈ E0, the occurrence record φσb(e) is
either given exactly, bounded by the occurrence record of another edge or given exactly

with a certain tolerance. For all edges whose occurrence record is only bounded, it turns

out that it is not necessary to provide an exact occurrence record. Note that we only

use tolerances for the occurrence records of the cycle edges (di,j,k, Fi,j). The reason is

that describing the occurrence records of these edges exactly is complicated, whereas we

are able to state the occurrence record relatively easily if we allow a small error. This

specification will turn out to be sufficiently good.

We now give an intuitive explanation for some of the entries of Table 5.6. In all of the

following, let i ∈ [n], j, k ∈ {0, 1} be arbitrary indices. Consider some edge (bi, gi). This
edge is applied as an improving switch whenever bit i switches from 0 to 1. That is, it is
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applied exactly during transitions σb′ → σb′+1 with b′ ≤ b and ℓ(b′ + 1) = i. Therefore,
by definition, φσb(bi, gi) = fl(b, i). Now consider (bi, bi+1). This edge is only applied as an

improving switch when bit i switches from 1 to 0. This can however only happen if bit i
switched from 0 to 1 previously. That is, applying (bi, bi+1) can only happen when (bi, gi)
was applied before. Also, (bi, gi) can only be applied again after bit i switched back to 0,
i.e., after (bi, bi+1) was applied. Consequently, φσb(bi, bi+1) = φσb(bi, gi)−bi = fl(b, i)−bi.

Next, consider some edge (si,1, hi,1). This edge is applied as an improving switch if and

only if bit i+1 switches from 0 to 1. Hence, φσb(si,j , hi,j) = fl(b, i+1). Consider (si,0, hi,0)
next. This switch is applied whenever bit i + 1 switches from 1 to 0. This requires the

bit to have switched from 0 to 1 before. Therefore, φσb(si,0, hi,0) = φσb(si,1, hi,1)− bi+1.

Further note that the switch (si,j , b1) is applied in the same transitions in which the

switch (si,1−j , hi,1−j) is applied. Hence, φ
σb(si,j , hi,j) = fl(b, i + 1) − (1 − j) · bi+1 and

φσb(si,j , b1) = fl(b, i+ 1)− j · bi+1.

Next consider some edge (ei,j,k, g1). This edge is applied as improving switch whenever

the first bit switches from 0 to 1. Since 0 is even, this happens once for every odd number

smaller than or equal to b, so ⌈b/2⌉ times. Since (ei,j,k, b2) is applied during each transition

in which the switch (ei,j,k, g1) is not applied, we have φ(ei,j,k, g1) = b− ⌈b/2⌉ = ⌊b/2⌋.

Now consider some edge (di,j,k, ei,j,k). This edge will only become improving after

the application of either (ei,j,k, g1) or (ei,j,k, b2), depending on the parity of b and is then

applied immediately. As all edges (e∗,∗,∗, g1) resp. (e∗,∗,∗, b2) have the same occurrence

record, providing the upper bound of φσb(ei,j,k, g1) resp. φ
σb(ei,j,k, b2) is thus sufficient.

By a similar argument, it is sufficient to upper bound the occurrence record of an edge

(gi, Fi,j). Such an edge only becomes improving after closing the cycle center Fi,j and

should then be applied immediately, so the proposed bound is sufficient.

Finally, consider some cycle edge (di,j,k, Fi,j). If bi = 1 ∧ bi+1 = j, then its occurrence

record has not changed since the last time it was closed. Since Fi,j changes its state from

open to closed whenever bit i becomes the least significant bit and bit i+ 1 is equal to j
and cycle edges are typically applied in an alternating fashion, the occurrence record is

approximately lfn(b, i, {(i+1, j)})/2. The additional terms and the rounding operation are

then necessary to give the exact description of the occurrence record. If bi 6= 1 ∨ bi+1 6= j,
then there are several possible cases. In the first case, the occurrence record of (di,j,k, Fi,j)
is sufficiently large in comparison to the occurrence record of other cycle edges. It can be

shown that the occurrence record of these edges that have been applied “sufficiently” often

is around b/2. In the second case, the occurrence record of (di,j,k, Fi,j) is too low and

needs to “catch up”. This is encoded by the term ℓb(i, j, k) which is composed of two parts.

The first part again corresponds to the last time the cycle center Fi,j was closed, and we

refer to our explanation for the case bi = 1 ∧ bi+1 = j here. The second part corresponds

to the additional times the edge was applied as improving switch to catch up. It is thus

equal to the currently represented number b minus the last time the cycle center Fi,j was

opened, which is lfn(b, i+ 1) if j = 0 and lufn(b, i+ 1) if j = 1. However, this description
is not entirely accurate as there are some special cases, making it necessary to include a

tolerance term.

Although proving that Table 5.6 in fact specifies the occurrence records of the edges

correctly for canonical strategies is technically involved, we already state the corresponding
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statement now. Its formal proof is deferred to Chapter 6 containing the technical details

of the construction and all proofs.

Theorem 5.3.10. Let σb be a canonical strategy for b ∈ Bn and assume that the improving

switches are applied as described in Section 5.3.3. Then, Table 5.6 describes the occurrence

records of all edges e ∈ E0 with respect to σb.

5.3.5. Proving the Lower Bound

We now describe how the exponential lower bound for Zadeh’s pivot rule for the strategy

improvement algorithm is proven, implying the same bound for the simplex algorithm

applied to linear programs and similar algorithms. This section does however not contain

all of the formal details. Instead, it presents the core concepts and aspects of the proofs as

well as the most important ideas and arguments that are used to derive the lower bound.

Of course, this approach does not suffice to give a formal proof. Incorporating both the

intuitive ideas and the “core” of our proof as well as the technical details in the same

chapter would make it extremely hard to understand the approach and statements. All of

the necessary formalism is thus introduced, proven and discussed in detail in Chapter 6.

We prove that applying improving switches to Gn using Zadeh’s pivot rule and our

tie-breaking rule requires an exponential number of iterations using an inductive argument.

Assume we are given a canonical strategy σb for b ∈ Bn that has some helpful additional

properties as well as an occurrence record as described by Table 5.6. We prove that the

application of improving switches eventually yields a canonical strategy σb+1 for b + 1
that has the same additional properties and whose occurrence record is also described

by Table 5.6 when interpreted for b + 1. It is then sufficient to prove that the initial

strategy σ0 has these properties already and that φσ0 is described by Table 5.6, then the

exponential lower bound on the number of iterations follows immediately. Since Gn has a

linear number of vertices and edges and the priorities, rewards and probabilities can be

encoded using a polynomial number of bits, this implies an exponential lower bound for

the respective algorithms. We begin explaining the proof by introducing the mentioned

set of properties.

The canonical properties and basic statements

The additional properties of the canonical strategies are called canonical properties. Two

of these are straight-forward. They state that Table 5.6 correctly describes the occurrence

records for σb and that each improving switch was applied at most once per previous

transition σb′ → σb′+1 with b′ < b. The remaining properties are more involved and

introduced in more detail. An overview over these properties can be found in Table 5.7.

Let b ∈ Bn. Consider some cycle center Fi,j with bi = 0 ∨ bi+1 6= j. Then, Fi,j should

not be closed for σb. It can however still happen that σb(di,j,k) = Fi,j for some k ∈ {0, 1}.
Property (OR1) states that this can only happen if the occurrence record of (di,j,k, Fi,j) is
sufficiently low. Formally, for a general strategy σ, the property is defined as

σ(di,j,k) = Fi,j ∧ (bi = 0 ∨ bi+1 6= j) =⇒ φσ(di,j,k, Fi,j) <

⌊
b+ 1

2

⌋
. (OR1)
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Property (OR2) characterizes under which circumstances the parameter tb used for

describing the occurrence records of cycle edges (see Table 5.6) is equal to 1. More

precisely, it states that the parameter is equal to 1 if and only if the cycle vertex points

towards the cycle center. Of course, this statement is only valid if either βσ
i = 0 or βσ

i+1 6= j
since the parameter is only then relevant for describing the occurrence record. Formally,

βσ
i = 0 ∨ βσ

i+1 6= j =⇒ (φσ(di,j,k, Fi,j) = ℓb(i, j, k) + 1 ⇐⇒ σ(di,j,k) = Fi,j). (OR2)

Analogously, Property (OR3) gives a characterization regarding the cases in which the

parameter is equal to −1. This characterization is more involved as it also depends on the

exact value of the occurrence record of a cycle edge. It states that the parameter can only

be −1 without being equal to ⌊(b+ 1− k)/2⌋ if and only if (i) b is odd, (ii) b+ 1 is not a

power of 2, (iii) i = ℓ(b+ 1), (iv) j 6= bi+1 and (v) k = 0. Formally,

φσ(di,j,k, Fi,j) = ℓb(i, j, k)− 1 ∧ φσ(di,j,k, Fi,j) 6=

⌊
b+ 1− k

2

⌋

⇐⇒b mod 2 = 1 ∧ ∄l ∈ N : b+ 1 = 2l ∧ i = ℓ(b+ 1) ∧ j 6= bi+1 ∧ k = 0.

(OR3)

The final property states that the occurrence record of any cycle edge with σ(di,j,k) 6= Fi,j

is relatively high. Formally,

σ(di,j,k) 6= Fi,j =⇒ φσ(di,j,k, Fi,j) ∈

{⌊
b+ 1

2

⌋
− 1,

⌊
b+ 1

2

⌋}
. (OR4)

(OR1)i,j,k σ(di,j,k) = Fi,j ∧ (bi = 0 ∨ bi+1 6= j) =⇒ φσ(di,j,k, Fi,j) <
⌊
b+1
2

⌋

(OR2)i,j,k βσ
i = 0 ∨ βσ

i+1 6= j =⇒ (φσ(di,j,k, Fi,j) = ℓb(i, j, k) + 1 ⇐⇒ σ(di,j,k) = Fi,j)

(OR3)i,j,k
φσ(di,j,k, Fi,j) = ℓb(i, j, k)− 1 ∧ φσ(di,j,k, Fi,j) 6=

⌊
b+1−k

2

⌋

⇐⇒ b mod 2 = 1 ∧ ∄l ∈ N : b+ 1 = 2l ∧ i = ℓ(b+ 1) ∧ j 6= bi+1 ∧ k = 0

(OR4)i,j,k σ(di,j,k) 6= Fi,j =⇒ φσ(di,j,k, Fi,j) ∈
{⌊

b+1
2

⌋
− 1,

⌊
b+1
2

⌋}

Table 5.7.: The additional properties of canonical strategies.

This now allows to define the canonical properties formally.

Definition 5.3.11 (Canonical properties). Let σ ∈ ρ(σ) be a strategy for Gn. Then, σ has

the canonical properties if

1. the occurrence records φσ are described correctly by Table 5.6,

2. σ has Properties (OR1)∗,∗,∗ to (OR4)∗,∗,∗ and

3. every improving switch was applied at most once per previous transition between

canonical strategies.
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We begin our arguments by explicitly determining the set of improving switches for

canonical strategies. We also extend our notation of transitions. Let σ, σ′ ∈ ρ(σ0) denote
two strategies and let σ′ be reached after σ. We denote the sequence of strategies calculated

by the algorithm while transitioning from σ to σ′ by σ → σ′. In addition, the sequence

of actually applied improving switches is denoted by Aσ′
σ . Throughout this section, let

b ∈ Bn be fixed and ν := ℓ(b+ 1). The following statement is proven in Chapter 6.

Lemma 5.3.12. Let σb ∈ ρ(σ0) be a canonical strategy for b ∈ Bn. Then, σb is a phase-1-
strategy for b and Iσb

= {(di,j,k, Fi,j) : σb(di,j,k) 6= Fi,j}.

As our proof is inductive, we need to give a basis for the induction.

Lemma 5.3.13. The initial strategy σ0 is a canonical strategy for b = 0 and has all canonical

properties.

Proof. As no improving switch was applied yet and it is easy to verify that σ0 is a canonical

strategy for 0, it suffices to prove that σ0 has Properties (OR1)∗,∗,∗ to (OR4)∗,∗,∗.

Let i ∈ [n] and j, k ∈ {0, 1}. First, σ0 has Property (OR1)i,j,k as σ0(di,j,k) = ei,j,k.
In addition, 0 = φσ0(di,j,k, Fi,j) < 1 ≤ ℓb(i, j, k) + 1, so σ0 has Property (OR2)i,j,k.

Moreover, φσ0(di,j,k, Fi,j) = 0 = ⌊(1− k)/2⌋ = ⌊(b+ 1− k)/2⌋ , hence the premise of

Property (OR3)i,j,k is incorrect. Thus, σ0 has Property (OR3)i,j,k. Since it is immediate

that σ0 has Property (OR4)i,j,k, the statement follows.

We now discuss how the main statement is proven in more detail. Consider a canonical

strategy σb for b. We prove that applying improving switches according to Zadeh’s pivot rule

and the tie-breaking rule given in Definition 5.3.5 produces a specific phase-k-strategy for b
for every k ∈ [5]. These strategies are the first phase-k-strategies for b that the algorithm

reaches and have several properties that allow us to simplify the proofs. These properties

are summarized in Table 5.8. We furthermore explicitly state the improving switches with

respect to these “initial phase-k-strategies” in Table 5.9. Both tables distinguish whether

the number b+ 1 is even or odd and specify whether certain entries are only valid for Sn

resp. Mn.

Detailed application of the improving switches

We now discuss the application of the improving switches during the individual phases

more formally and link this description to the previously given tables. We illustrate this

procedure by providing sketches of the first phase-k-strategies that are calculated by the

algorithm in the sink game S3 when transitioning from σ3 to σ4. As 4 is an even number,

we have ν > 1 in this example. The canonical strategy σ3 in the sink game S3 shown given

in Figure 5.10.

By Table 5.9, the set of improving switches is given by all cycle edges (di,j,k, Fi,j) with

σb(di,j,k) 6= Fi,j at the beginning of phase 1. During phase 1, all improving switches

e = (di,j,k, Fi,j) ∈ Iσb
with φσb(e) = ⌊(b+ 1)/2⌋ − 1 are applied first as these minimize

the occurrence records, cf. Property (OR4). This might close an inactive cycle center

Fi,1−bi+1 , making the edge (gi, Fi,1−bi+1) improving if bi = 0 and σb(gi) 6= Fi,1−bi+1 . Since
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Phase ν = 1
ν > 1

Sn Mn

1 Canonical strategy for b having the canonical properties

2 -

σ(di,j,k) 6= Fi,j ⇒ φσ(di,j,k, Fi,j) =
⌊

b+1
2

⌋

(gi, Fi,j) ∈ Aσ
σb

⇒ [bi = 0 ∧ bi+1 6= j] ∨ i = ν and Fi,j is closed

Aσ
σb

⊆ D1 ∪G

σ(gν) = Fν,βσ
ν+1

and σ(gi) = Fi,1−βσ
i+1

for all i < ν

i < ν ⇒ σ(di) and Property (USV3)i

3

σ(di,j,k) 6= Fi,j ⇒ φσ(di,j,k, Fi,j) = φσb(di,j,k, Fi,j) =
⌊

b+1
2

⌋

σ(si,∗) = hi,∗, σ(gi) = Fi,1−βσ
i+1

and σ(di) for all i < ν as well as σ(gν) = Fν,bν+1

Aσ3

σb
⊆ D1 ∪G ∪ S ∪ B and (gi, Fi,j) ∈ Aσ

σb
⇒ [bi = 0 ∧ bi+1 6= j] ∨ i = ν and Fi,j is closed

4
-

µσ = min{i : βσ
i = 0}

-

σ(di,j,∗) = Fi,j ⇔ βσ
i = 1 ∧ (b+ 1)i+1 = j

(i, j) ∈ S1 ⇒ σ(ebi,j) ∧ ¬σ(egi,j)

(i, j) ∈ S2 ⇒ σ(ebi,j) ∧ σ(egi,j)

(gi, Fi,j) ∈ Aσ
σb

⇒ [bi = 0 ∧ bi+1 6= j] ∨ i = ν

(gi, Fi,j) ∈ Aσ
σb

⇒ Fi,j is closed

σ(ei,j,k) = b2 ⇒ φσ(di,j,k, Fi,j) = φσb(di,j,k, Fi,j)

σ(ei,j,k) = b2 ⇒ φσ(di,j,k, Fi,j) =
⌊

b+1
2

⌋

5

µσ = min{i : βσ
i+1 = 0}

σ(di,j,k) = Fi,j ⇔ βσ
i = 1 ∧ βσ

i+1 = j

(gi, Fi,j) ∈ Aσ
σb

⇒ [bi = 0 ∧ bi+1 6= j] ∨ i = ν

σ(ei,j,k) = t→ ⇒ φσ(di,j,k, Fi,j) = φσb(di,j,k, Fi,j) =
⌊

b+1
2

⌋

(i, j) ∈ S3 ⇒ σ(egi,j) ∧ σ(ebi,j)
(i, j) ∈ S1 ⇒ σ(ebi,j) ∧ ¬σ(egi,j)

(i, j) ∈ S4 ⇒ σ(egi,j) ∧ ¬σ(ebi,j)
(i, j) ∈ S2 ⇒ σ(ebi,j) ∧ σ(egi,j)

i < ν ⇒ σ(gi) = 1− βσ
i+1

1 Canonical strategy for b+ 1 having the canonical properties

Table 5.8.: Properties of specific phase-k-strategies. To simplify notation, let t→ := g1 if ν = 1 and
t→ := b2 if ν > 1. A ’-’ signifies that the corresponding combination does not occur
during the execution of the algorithm.
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Phase ν = 1
ν > 1

Sn Mn

1 Dσ := {(di,j,k, Fi,j) : σ(di,j,k) 6= Fi,j}

2 - Dσ ∪ {(bν , gν), (sν−1,1, hν−1,1)}

3 Dσ ∪ {(b1, g1)} ∪ {(e∗,∗,∗, g1)} Dσ ∪ {(b1, b2)} ∪ {(e∗,∗,∗, b2)}

4 - Eσ ∪X0 ∪X1 ∪ {(sν−1,0, b1)} ∪ {(si,1, b1) : i ≤ ν − 2} -

5 E
σ ∪

m−1
⋃

i=µσ+1
βσ
i =0

{(di,1−βσ
i+1

,∗, Fi,1−βσ
i+1

)} E
σ ∪

ν−1
⋃

i=1

{di,1−βσ
i+1

,∗, Fi,−1−βσ
i+1

)} ∪X0 ∪X1

1 Dσ

Xk :=















∅, b+ 1 is a power of two,

{(dν,1−βσ
ν ,k, Fν,1−βσ

ν
)} ∪

m−1
⋃

i=ν+1
βi=0

{(di,1−βσ
i+1

,k, Fi,1−βσ
i+1

)}, otherwise.

Table 5.9.: The improving switches at the beginning of the different phases. We define m :=
max{i : σ(bi) = gi} and Eσ := {(di,j,k, Fi,j), (ei,j,k, b2) : σ(ei,j,k) = g1} if ν > 1. Anal-
ogously, we let Eσ := {(di,j,k, Fi,j), (ei,j,k, g1) : σ(ei,j,k) = b2} if ν = 1. We do not
interpret 1 as a power of two.

the occurrence record of this edge is then smaller than the occurrence record of the

corresponding cycle edges by Table 5.6, such a switch is then applied immediately. After

all improving switches e with φσb(e) = ⌊(b+ 1)/2⌋−1 are applied, the algorithm switches

edges e = (di,j,k, Fi,j) with φσb(e) = ⌊(b+ 1)/2⌋ until there are no open cycle centers

anymore. This behavior is enforced by the tie-breaking rule which then ensures that the

cycle center Fν,bν+1 is closed next. As before, this might “unlock” the improving switch

(gν , bν+1). By Table 5.6, this switch minimizes the occurrence record among all improving

switches and is thus applied which concludes phase 1. In any case, phase 2 then begins if

ν > 1, and phase 3 begins if ν = 1.

Lemma 5.3.14. Let σb ∈ ρ(σ0) be a canonical strategy for b ∈ Bn with ℓ(b+ 1) > 1 having

the canonical properties. After applying finitely many improving switches, the strategy im-

provement algorithm produces a phase-2-strategy σ(2) for b as described by the corresponding

rows of Tables 5.8 and 5.9.

A schematic example of the phase-2-strategy σ(2)reached when transitioning from σ3
to σ4 in the sink game S3 is given in Figure 5.11.

We now consider the case ν > 1. Closing the cycle center Fν,bν+1 at the end of phase 1
changes the induced bit state from b to b + 1. This implies that the targets of the

entry vertices contained in levels i ≤ ν and of all upper selection vertices contained

in levels i < ν need to be changed accordingly. This is reflected by the set of improving

switches containing the edges (bν , gν) and (sν−1,1, hν−1,1). Moreover, cycle edges that

were improving for σb but were not applied during phase 1 remain improving, see Table 5.9.
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Figure 5.10.: The canonical strategy σ3 in the sink game S3. Blue edges represent choices of player 0,
red choices represent choices of player 1, and green edges represent improving
switches. For simplification, we omit the labels here and refer to Figure 5.8 instead.

These switches were not applied as they have an occurrence record of ⌊(b+ 1)/2⌋, and this

large occurrence record guarantees that the algorithm will not apply these switches. The

algorithm thus applies the improving switches involving the entry vertices b2 through bν
as well as the improving switches (si,(b+1)i+1

, hi,(b+1)i+1
) next. These switches are applied

until (b1, b2) becomes improving. This switch is however not applied yet, and the algorithm

reaches phase 3. Since none of these switches needs to be applied if ν = 1, the algorithm

directly produces a phase-3-strategy after phase 1 if ν = 1.

Lemma 5.3.15. Let σb ∈ ρ(σ0) be a canonical strategy for b ∈ Bn having the canonical

properties. After applying finitely many improving switches, the strategy improvement

algorithm produces a phase-3-strategy σ(3) for b as described by the corresponding rows of

Tables 5.8 and 5.9.

A schematic example of the phase-3-strategy σ(3) that is reached when transitioning

from σ3 to σ4 in the sink game S3 is given in Figure 5.12. Note that this is an example for

the case ν > 1 as 4 is an even number.

When phase 3 begins, all edges (e∗,∗,∗, g1) resp. (e∗,∗,∗, b2) become improving, depending

on ν. The reason is that closing Fν,bν+1 resp. closing this cycle center and updating the

spinal path in the levels 1 to ν significantly increases the valuation of g1 resp. b2. Since
the improving switches of the form (d∗,∗,∗, F∗,∗) still maximize the occurrence records,

the switches involving the escape vertices are applied next. As all of them have the same

occurrence record, all improving switches (ei,j,k, ∗) with σ(3)(di,j,k) = Fi,j are applied due

to the tie-breaking rule. If the corresponding cycle center is not closed and active, then
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Figure 5.11.: The phase-2-strategy σ(2) calculated when transitioning from σ3 to σ4 in the sink
game S3. Blue edges represent choices of player 0, red choices represent choices of
player 1, and green edges represent improving switches. For simplification, we omit
the labels here and refer to Figure 5.8 instead.

this application unlocks the improving switch (di,j,k, ei,j,k) as this edge allows the cycle

vertex to gain access to the very profitable spinal path.

At this point, there is a major difference between the behavior of Sn and Mn. In Sn, the

application of a switch (di,j,k, ei,j,k) does not change the valuation of its cycle center Fi,j .

The reason is that player 1 controls the cycle center and can then react by choosing

vertex di,j,1−k, yielding the same valuation as before. This is also true if the cycle center

was closed, since player 1 chooses the upper selection vertices in both cases. In Mn, the

application of the switch (di,j,k, ei,j,k) however has an immediate consequence regarding

the valuation of Fi,j . As the valuation of the cycle center is (roughly) the arithmetic mean

of the valuation of its cycle vertices, the increase of the valuations of di,j,k also increases

the valuation of Fi,j . This then makes the cycle center Fi,j profitable since it grants access

to the spinal path. Most importantly, it enables the upper selection vertex si,j to use this

access by switching to b1 as the path starting in b1 then leads to Fi,j . The reason is that

the exact way that improving switches are applied in this phase since the tie-breaking rule

dictates that switches of higher levels are applied prior to switches of lower levels.

In summary, all switches (ei,j,k, ∗) with σ(3)(di,j,k) = Fi,j are applied during phase 3.
If Fi,j is not closed and active, this makes (di,j,k, ei,j,k) improving, and this switch is

applied next. In Mn, this might also make switches (si,j , b1) improving if i < ν and

j = 1− (b+1)i+1, and this switch is then also applied immediately. Phase 3 ends with the

application of (b1, g1) if ν = 1 and (b1, b2) if ν > 1. Depending on whether we considerMn

or Sn and depending on ν, we then either obtain a phase-4-strategy or a phase-5-strategy.
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Figure 5.12.: The phase-3-strategy σ(3) calculated when transitioning from σ3 to σ4 in the sink
game S3. Blue edges represent choices of player 0, red choices represent choices of
player 1, and green edges represent improving switches. For simplification, we omit
the labels here and refer to Figure 5.8 instead.

Lemma 5.3.16. Let σb ∈ ρ(σ0) be a canonical strategy for b ∈ Bn having the canonical

properties. After applying finitely many improving switches, the strategy improvement

algorithm produces a strategy σ with the following properties. If ν > 1, then σ is a phase-4-
strategy for b in Sn and a phase-5-strategy for b in Mn. If ν = 1, then σ is a phase-5-strategy
for b. In any case, σ is described by the corresponding rows of Tables 5.8 and 5.9.

In the sink game S3 that we consider as an example in this section, the algorithm

thus produces a phase-4-strategy when transitioning from σ3 to σ4 which is visualized in

Figure 5.13.

Consider the case that there is a phase 4. This only happens in Sn and if ν > 1.
During this phase, the improving switches (si,j , b1) with i < ν and j = 1 − (b + 1)i+1,

which were already applied during phase 3 in Mn, are applied. The reason that these

switches only become improving now in Sn is that the application of (b1, b2) at the end of

phase 3 significantly increases the valuation of b1 as this vertex then enables accessing the

spinal path. The switches are then applied from higher levels to lower levels, so the final

improving switch applied in this phase is (s1,1−(b+1)2 , b1), resulting in a phase-5-strategy.
Most importantly, the algorithm produces a phase-5-strategy in any case.

Lemma 5.3.17. Let σb ∈ ρ(σ0) be a canonical strategy for b ∈ Bn having the canonical

properties. After applying finitely many improving switches, the strategy improvement

algorithm produces a phase-5-strategy σ(5) for b as described by the corresponding rows of

Tables 5.8 and 5.9.
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Figure 5.13.: The phase-4-strategy σ(4) calculated when transitioning from σ3 to σ4 in the sink
game S3. Blue edges represent choices of player 0, red choices represent choices of
player 1, and green edges represent improving switches. For simplification, we omit
the labels here and refer to Figure 5.8 instead.

A schematic example of the phase-5-strategy σ(5) that is reached when transitioning

from σ3 to σ4 in the sink game S3 is given in Figure 5.14.

We now discuss phase 5. During this phase, the remaining improving switches of the

type (e∗,∗,∗, ∗) are applied. Applying such a switch then forces every cycle center to point

towards the spinal path. But this implies that the valuation of a cycle centerFi,j with

i ∈ [n], j ∈ {0, 1} increases significantly, making the corresponding cycle edges (di,j,∗, Fi,j)
improving again. Several of these cycle edges may now have very low occurrence records

as their cycle center was closed for a large number of iterations, and are thus applied

immediately after being unlocked. Similarly to phase 1, this can then make the edge

(gi, Fi,j) improving, and this edges is then applied immediately if it becomes improving.

After all switches (e∗,∗,∗, ∗) as well as possible switches (d∗,∗,∗, F∗,∗) with low occurrence

records and corresponding switches (g∗, F∗,∗) are applied, this yields a canonical strategy

for b+ 1. Then, phase 1 of the next transition begins.

All of this is formalized by the following two statements. Note that we use the expression

of the “next feasible row” as certain phases may not be present in certain cases. Thus, “the

next row” may not always be accurate.

Lemma 5.3.18. Let σb ∈ ρ(σ0) be a canonical strategy for b ∈ Bn having the canonical

properties. Let σ be a strategy obtained by applying a sequence of improving switches to σb.
Let σ and Iσ have the properties of row k of Table 5.8 and 5.9 for some k ∈ [5]. Then,

applying improving switches according to Zadeh’s pivot rule and the tie-breaking rule of
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Figure 5.14.: The phase-5-strategy σ(5) calculated when transitioning from σ3 to σ4 in the sink
game S3. Blue edges represent choices of player 0, red choices represent choices of
player 1, and green edges represent improving switches. For simplification, we omit
the labels here and refer to Figure 5.8 instead.

Definition 5.3.5 produces a strategy σ′ that is described by the next feasible rows of Tables 5.8

and 5.9.

This lemma then enables us to prove the two main theorems. The first theorem states

that we reach the canonical strategy σb+1 having the canonical properties provided that

we start with a canonical strategy σb also having these properties.

Theorem 5.3.19. Let σb ∈ ρ(σ0) be a canonical strategy for b ∈ Bn having the canonical

properties. After applying finitely many improving switches according to Zadeh’s pivot rule

and the tie-breaking rule of Definition 5.3.5, the strategy improvement algorithm calculates

a strategy σb+1 with the following properties.

1. Iσb+1
= {(di,j,k, Fi,j) : σb+1(di,j,k) 6= Fi,j}.

2. The occurrence records are described by Table 5.6 when interpreted for b+ 1.

3. σb+1 is a canonical strategy for b+ 1 and has Properties (OR1)∗,∗,∗ to (OR4)∗,∗,∗.

4. When transitioning from σb to σb+1, every improving switch is applied at most once.

In particular, σb+1 has the canonical properties.

A schematic example of the canonical strategy σ4 that is reached when transitioning

from σ3 to σ4 in the sink game S3 is given in Figure 5.15.

The final theorem now states the core result of this thesis. It states that applying

a variety of algorithms using Zadeh’s pivot rule can require an exponential number of

iterations in the worst case.
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Figure 5.15.: The canonical strategy σ4 calculated when transitioning from σ3 to σ4 in the sink
game S3. Blue edges represent choices of player 0, red choices represent choices of
player 1, and green edges represent improving switches. For simplification, we omit
the labels here and refer to Figure 5.8 instead.

Theorem 5.3.20. Using Zadeh’s pivot rule and the tie-breaking rule of Definition 5.3.5 when

applying

1. the strategy improvement algorithm of [VJ00] to Sn,

2. the policy iteration algorithm of [How60] to Mn,

3. the simplex algorithm of [Dan51] to the linear program induced by Mn

to the game Gn or the induced linear program requires at least 2n iterations for finding the

optimal strategy resp. solution when using σ0 as initial strategy.

This concludes our informal proof of the exponential lower bound. The following chapter

is now dedicated to give a rigorous formal treatment.
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Lower Bound Construction

This chapter contains all the technical and formal details required for properly proving the

statements of Chapter 5. It is organized in three main parts. In Section 6.1 we characterize

the valuations of the vertices in Sn resp. Mn as these are crucial for determining the

improving switches. In Section 6.2, we then use these characterizations to prove how

specific strategies behave and change when individual improving switches are applied.

Finally, in Section 6.3 we then apply the corresponding statements to prove that the

description we gave in Chapter 5 is correct. As most of the proofs are very technical, they

are deferred to Appendix A.2.

6.1. Vertex Valuations and Well-Behaved Strategies

We begin by developing characterizations of the vertex valuations. This requires us to

analyze the strategies calculated by the strategy improvement algorithm in more detail. As

it will turn out, all strategies that the algorithm produces have a certain set of properties.

The strategies are thus “well-behaved”, and the properties represent the way the algorithm

interacts with the instance. These properties drastically simplify the proofs but it is

tedious to prove that every strategy is well-behaved. We thus prove that (i) the initial

strategy is well-behaved and (ii) whenever the algorithm applies an improving switch

to a well-behaved strategy, the resulting strategy is well-behaved. In particular, these

two statements imply that any strategy calculated by the algorithm is well-behaved. This

concept was not mentioned previously since it is solely used for proving our results and

most of them have no clear intuitive explanation. We explicitly encoded the properties

defining well-behaved properties in the implementation of the sink game provided by

Oliver Friedmann, verifying that the produced strategies are indeed all well-behaved.

The properties are summarized in Table 6.1. We briefly discuss the properties next

and introduce an additional set of parameters and additional notation. The parameters

are abbreviations that denote the first level in which σ(x∗) is either true or false for

x∗ ∈ {b∗, s∗, g∗}. More precisely, we define mσ
x := min({i ∈ [n] : σ(xi)} ∪ {n+ 1}) as well

as mσ
x := min({i ∈ [n] : ¬σ(xi)} ∪ {n+ 1}) where x ∈ {b, s, g}. Furthermore, for a level

i ∈ [n] and a strategy σ for Gn, we refer to the cycle center Fi,σ(gi), that is, the cycle center

chosen by the selector vertex gi, as the chosen cycle center of level i. Note that the chosen

cycle center and the active cycle center of level i do not necessarily coincide.
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Properties of well-behaved strategies

We now introduce the properties that all strategies produced by the algorithm have. The

abbreviations used to refer to the properties are typically related to the vertices that they

are related to, and similar or closely related properties have similar abbreviations. Note

that several of the properties are in fact implications. For these properties, we thus demand

that the full implication is true. In all of the following, let i ∈ [n], j, k ∈ {0, 1} be suitable

indices.

Let σ be a strategy for Gn. Consider a level i ≥ µσ such that σ(bi) = gi. Then, a

well-behaved strategy has σ(si,j) = hi,j where j = σ(gi). Intuitively, this states that in
levels above µσ that represent a bit equal to one, the upper selection vertex is set correctly.

Formally,

i ≥ µσ ∧ σ(bi) = gi =⇒ σ(si,σ(gi)) = hi,σ(gi). (S1)

Let i < µσ. Assume that either σ(b2) = g2 and i > 1 or that the chosen cycle center of

level i is closed. Then, we demand that the upper selection vertex si,σ(gi) points to hi,σ(gi).
Formally,

i < µσ ∧ ((σ(b2) = g2 ∧ i > 1) ∨ σ(di)) =⇒ σ(si). (S2)

Let i < µσ − 1 and σ(bi) = σ(bi+1). Then, we demand that σ(bi+1) = bi+2. Intuitively,

this encodes that entry vertices below level µσ−1 are reset “from top to bottom”. Formally,

i < µσ − 1 ∧ σ(bi) = bi+1 =⇒ σ(bi+1) = bi+2. (B1)

Assume that µσ 6= 1 and that the entry vertex of level µσ − 1 points towards the next

entry vertex. Then, we demand that the entry vertex of level µσ points towards its selector

vertex. Formally,

µσ 6= 1 ∧ σ(bµσ−1) = bµσ =⇒ σ(bµσ) = gµσ . (B2)

Consider a level i such that σ(si,1) = hi,1. Further assume σ(bi+1) = bi+2. Then the

values of σ(gi+1) and σ(bi+2) do not coincide for well-behaved strategies. Formally,

σ(si,1) = hi,1 ∧ σ(bi+1) = bi+2 =⇒ σ(gi+1) 6= σ(bi+2). (B3)

Consider some level i < µσ. For well-behaved strategies, Fi,1 is the chosen cycle center

of level i if and only if i 6= µσ − 1. This encodes the statuses of the selector vertices of

levels below µσ. Formally,

i < µσ =⇒ [σ(gi) = Fi,1 ⇐⇒ i 6= µσ − 1]. (BR1)

We demand that the chosen cycle center of a level i < µσ does not escape towards g1.
Formally,

i < µσ =⇒ ¬σ(egi,σ(gi)). (BR2)

Consider a level i such that σ(bi) = gi. Let either i > 1, µσ = 1 or let σ(b2) = g2 be

equivalent to µσ > 2. In any of these cases, this implies that the cycle center Fi,σ(gi) is

closed for well-behaved strategies. Intuitively, this gives a list of situations in which the
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active cycle center of a level corresponding to a bit that should be equal to 1 is already

closed. Formally,

σ(bi) = gi ∧ (i > 1 ∨ µσ = 1 ∨ (σ(b2) = g2 ⇐⇒ µσ > 2)) =⇒ σ(di). (D1)

Let σ(b2) = g2 and i ∈ {2, . . . , µσ − 1}. Then, we demand that the chosen cycle center

of level i is closed. Formally,

σ(b2) = g2 ∧ (2 ≤ i < µσ) =⇒ σ(di). (D2)

Let µσ = 1,mσ
b ≤ mσ

s ,m
σ
g and Gn = Sn. Then, we demand that the chosen cycle center

of level 1 does not escape towards b2. Formally,

µσ = 1 ∧mσ
b ≤ mσ

s ,m
σ
g ∧Gn = Sn =⇒ ¬σ(eb1). (MNS1)

Let µσ = 1 and consider a level i such that i < mσ
g < mσ

s ,m
σ
b . Further assume that

Gn = Sn implies ¬σ(bmσ
g+1). For a well-behaved strategy, the chosen cycle center of level i

does not escape towards b2. Formally,

µσ = 1 ∧ i < mσ
g < mσ

s ,m
σ
b ∧ [Gn = Sn =⇒ ¬σ(bmσ

g+1)] =⇒ ¬σ(ebi). (MNS2)

Let µσ = 1 as well as i < mσ
s ≤ mσ

g < mσ
b and Gn = Mn. Then, we demand that the

chosen cycle center of level i is closed. Formally,

µσ = 1 ∧ i < mσ
s ≤ mσ

g < mσ
b ∧Gn = Mn =⇒ σ(di). (MNS3)

Assume µσ = 1 as well as mσ
s ≤ mσ

g < mσ
b . Then, we demand that the chosen cycle

center of level mσ
g escapes to b2 but not to g1. Formally,

µσ = 1 ∧mσ
s ≤ mσ

g < mσ
b =⇒ σ(ebmσ

s
) ∧ ¬σ(egmσ

s
). (MNS4)

Assume µσ = 1 as well as i < mσ
s < mσ

b ≤ mσ
g and Gn = Mn. Then, we demand that

the chosen cycle center of level i is closed. Formally,

µσ = 1 ∧ i < mσ
s < mσ

b ≤ mσ
g ∧Gn = Mn =⇒ σ(di). (MNS5)

Assume µσ = 1 as well as mσ
s < mσ

b ≤ mσ
g . Then, we demand that the chosen cycle

center of level mσ
s escapes to b2 but not to g1. Formally,

µσ = 1 ∧mσ
s < mσ

b ≤ mσ
g =⇒ σ(ebmσ

s
) ∧ ¬σ(egmσ

s
). (MNS6)

Consider a cycle center Fi,j escaping only to g1. Let µ
σ = 1. Then, we demand that the

upper selection vertex corresponding to the chosen cycle center of level i escapes to b1.
Formally,

σ(egi,j) ∧ ¬σ(ebi,j) ∧ µσ = 1 =⇒ ¬σ(si,j). (EG1)
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Consider a cycle center Fi,j escaping only to g1. Let µ
σ = 1. Then, we demand that the

chosen cycle center of level 1 is closed. Formally,

σ(egi,j) ∧ ¬σ(ebi,j) ∧ µσ = 1 =⇒ σ(d1). (EG2)

Consider a cycle center Fi,j escaping only to g1. Then, we demand that the upper

selection vertex corresponding to the chosen cycle center of level 1 points towards the

next level. Formally,

σ(egi,j) ∧ ¬σ(ebi,j) =⇒ σ(s1). (EG3)

Consider a cycle center Fi,j escaping only to g1. Let µσ = 1. We demand that this

implies σ(g1) = σ(b2) for well-behaved strategies. Formally,

σ(egi,j) ∧ ¬σ(ebi,j) ∧ µσ = 1 =⇒ σ(g1) = σ(b2). (EG4)

Consider a cycle center Fi,j escaping only to g1. Let µ
σ 6= 1 and assume that the upper

selection vertex of Fi,j escapes towards b1. Then, we demand that σ(bi+1) = j, i.e., the
entry vertex of the next level is set correctly with respect to level i. Formally,

σ(egi,j) ∧ ¬σ(ebi,j) ∧ µσ 6= 1 ∧ σ(si,j) =⇒ σ(bi+1) = j. (EG5)

Consider a cycle center Fi,j escaping only to b2. Let σ(b1) = b2. Then σ(bi+1) 6= j.
Formally,

σ(ebi,j) ∧ ¬σ(egi,j) ∧ σ(b1) = g1 =⇒ σ(bi+1) 6= j. (EB1)

Consider a cycle center Fi,0 escaping only to b2. Let σ(si,0) = hi,0 and σ(b1) = g1. Then,
we demand that µσ = i+ 1. Formally,

σ(ebi,0) ∧ ¬σ(egi,0) ∧ σ(b1) = g1 ∧ σ(si,0) = hi,0 =⇒ µσ = i+ 1. (EB2)

Consider a cycle center Fi,j escaping only to b2. Let σ(si,j) = hi,j , σ(b1) = g1 and

i > 1. We then demand that the entry vertex of level 2 does not grant access to this level.

Formally,

σ(ebi,j) ∧ ¬σ(egi,j) ∧ σ(si,j) = hi,j ∧ i > 1 ∧ σ(b1) = g1 =⇒ σ(b2) = b3. (EB3)

Consider a cycle center Fi,1 escaping only to b2. Let σ(si,1) = hi,1 and σ(b1) = g1. Then,
we demand that µσ > i+ 1. Formally,

σ(ebi,1) ∧ ¬σ(egi,1) ∧ σ(si,1) = hi,1 ∧ σ(b1) = g1 =⇒ µσ > i+ 1. (EB4)

Consider a cycle center Fi,j escaping only to b2. Let σ(b1) = g1. Then, we demand that

the entry vertex of level µσ grants access to this level. Formally,

σ(ebi,j) ∧ ¬σ(egi,j) ∧ σ(b1) = g1 =⇒ σ(bµσ) = gµσ . (EB5)
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Consider a cycle center Fi,j escaping only to b2. Let µ
σ > 2. Then, we demand that the

entry vertex of level 2 does not grant access to this level. Formally,

σ(ebi,j) ∧ ¬σ(egi,j) ∧ µσ > 2 =⇒ σ(b2) = b3. (EB6)

Consider a cycle center Fi,j that can escape towards both g1 and b2. Further assume

that σ(si,j) = hi,j . Then, we demand that σ(bi+1) = j, so the entry vertex of level i+ 1 is

set in accordance with the upper selection vertex of level i. Formally,

σ(ebi,j) ∧ σ(egi,j) ∧ σ(si,j) = hi,j =⇒ σ(bi+1) = j. (EBG1)

Consider a cycle center Fi,j that can escape towards both g1 and b2. Further assume

that σ(g1) = σ(b2). Then, we demand that the upper selection vertex corresponding to

the chosen cycle center of level 1 points towards h1,σ(g1). Formally,

σ(ebi,j) ∧ σ(egi,j) ∧ σ(g1) = σ(b2) =⇒ σ(s1). (EBG2)

Consider a cycle center Fi,j that can escape towards both g1 and b2. Further assume that

σ(g1) = σ(b2). Then the chosen cycle center of level 1 has to be closed for well-behaved

strategies. Formally,

σ(ebi,j) ∧ σ(egi,j) ∧ σ(g1) = σ(b2) =⇒ σ(d1). (EBG3)

Consider a cycle center Fi,j that can escape towards both b2 and g1. Let F1,0 be the

chosen cycle center of level 1 and σ(b2) = g2. Then, we demand that µσ ≤ 2. Formally,

σ(ebi,j) ∧ σ(egi,j) ∧ σ(g1) = F1,0 ∧ σ(b2) = g2 =⇒ µσ ≤ 2. (EBG4)

Consider a cycle center Fi,j that can escape towards both b2 and g1. Further assume

that σ(g1) 6= σ(b2). Then, we demand that µσ 6= 2. Formally,

σ(ebi,j) ∧ σ(egi,j) ∧ σ(g1) ∧ ¬σ(b2) =⇒ µσ 6= 2. (EBG5)

If the cycle center of level n is closed, then σ(bn) = gn or σ(b1) = g1 has to hold for

wee-behaved strategies. Formally,

σ(dn) =⇒ σ(bn) ∨ σ(b1). (DN1)

Let the cycle center of level n is closed or let Fi,1 be the chosen cycle center for all

i ∈ [n−1]. Then, we demand that there is some level i ∈ [n] such that σ(bi) = gi. Formally,

σ(dn) ∨mσ
g = n =⇒ ∃i ∈ [n] : σ(bi). (DN2)

As mentioned previously, the abbreviations of the properties summarized in Table 6.1

are chosen according to configurations of Gn or individual vertices. An explanation of

these names is given in Table 6.2.

Definition 6.1.1 (Well-behaved strategy). A strategy σ for Gn is well-behaved if it has all

properties of Table 6.1.
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Premise Conclusion

(S1) i ≥ µσ ∧ σ(bi) = gi σ(si)

(S2) i < µσ ∧ ((σ(b2) = g2 ∧ i > 1) ∨ σ(di) ∨ σ(b1) = b2) σ(si)

(B1) i < µσ − 1 ∧ σ(bi) = bi+1 σ(bi+1) = bi+2

(B2) µσ 6= 1 ∧ σ(bµσ−1) = bµσ σ(bµσ ) = gµσ

(B3) σ(si,1) = hi,1 ∧ σ(bi+1) = bi+2 σ(gi+1) 6= σ(bi+2)

(BR1) i < µσ σ(gi) = Fi,1 ⇐⇒ i 6= µσ − 1

(BR2) i < µσ ¬σ(egi,σ(gi))

(D1) σ(bi) = gi ∧ (i > 1 ∨ µσ = 1 ∨ (σ(b2) = g2 ⇐⇒ µσ > 2)) σ(di)

(D2) σ(b2) = g2 ∧ (2 ≤ i < µσ) σ(di)

(MNS1) µσ = 1 ∧mσ
b ≤ mσ

s ,m
σ
g ∧Gn = Sn ¬σ(eb1)

(MNS2) µσ = 1 ∧ i < mσ
g < mσ

s ,m
σ
b ∧ [Gn = Sn =⇒ ¬σ(bmσ

g+1)] ¬σ(ebi)

(MNS3) µσ = 1 ∧ i < mσ
s ≤ mσ

g < mσ
b ∧Gn = Mn σ(di)

(MNS4) µσ = 1 ∧mσ
s ≤ mσ

g < mσ
b σ(ebmσ

s
) ∧ ¬σ(egmσ

s
)

(MNS5) µσ = 1 ∧ i < mσ
s < mσ

b ≤ mσ
g ∧Gn = Mn σ(di)

(MNS6) µσ = 1 ∧mσ
s < mσ

b ≤ mσ
g σ(ebmσ

s
) ∧ ¬σ(egmσ

s
)

(EG1) σ(egi,j) ∧ ¬σ(ebi,j) ∧ µσ = 1 ¬σ(si,j)

(EG2) σ(egi,j) ∧ ¬σ(ebi,j) ∧ µσ = 1 σ(d1)

(EG3) σ(egi,j) ∧ ¬σ(ebi,j) σ(s1)

(EG4) σ(egi,j) ∧ ¬σ(ebi,j) ∧ µσ = 1 σ(g1) = σ(b2)

(EG5) σ(egi,j) ∧ ¬σ(ebi,j) ∧ µσ 6= 1 ∧ σ(si,j) σ(bi+1) = j

(EB1) σ(ebi,j) ∧ ¬σ(egi,j) ∧ σ(b1) = g1 σ(bi+1) 6= j

(EB2) σ(ebi,0) ∧ ¬σ(egi,0) ∧ σ(b1) = g1 ∧ σ(si,0) = hi,0 µσ = i+ 1

(EB3) σ(ebi,j) ∧ ¬σ(egi,j) ∧ σ(si,j) = hi,j ∧ i > 1 ∧ σ(b1) = g1 σ(b2) = b3
(EB4) σ(ebi,1) ∧ ¬σ(egi,1) ∧ σ(si,1) = hi,1 ∧ σ(b1) = g1 µσ > i+ 1

(EB5) σ(ebi,j) ∧ ¬σ(egi,j) ∧ σ(b1) = g1 σ(bµσ ) = gµσ

(EB6) σ(ebi,j) ∧ ¬σ(egi,j) ∧ µσ > 2 σ(b2) = b3

(EBG1) σ(ebi,j) ∧ σ(egi,j) ∧ σ(si,j) = hi,j σ(bi+1) = j

(EBG2) σ(ebi,j) ∧ σ(egi,j) ∧ σ(g1) = σ(b2) σ(s1)

(EBG3) σ(ebi,j) ∧ σ(egi,j) ∧ σ(g1) = σ(b2) σ(d1)

(EBG4) σ(ebi,j) ∧ σ(egi,j) ∧ σ(g1) = F1,0 ∧ σ(b2) = g2 µσ ≤ 2

(EBG5) σ(ebi,j) ∧ σ(egi,j) ∧ σ(g1) ∧ σ(b2) = b3 µσ 6= 2

(DN1) σ(dn) σ(bn) = gn ∨ σ(b1) = g1
(DN2) σ(dn) ∨mσ

g = n ∃i ∈ [n] : σ(bi) = gi

Table 6.1.: Properties that all calculated strategies have. A strategy that has all of these properties
is called well-behaved.
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Abbreviation Explanation: Property involves...

(S*) upper Selection vertex

(B*) entry vertices b∗
(BR*) levels Below the next Relevant bit µσ

(D*) cycle vertices d∗,∗,∗
(MNS*) some parameter mσ

(EG*) cycle centers Escaping only to g1
(EB*) cycle centers Escaping only to b2
(EBG*) cycle centers Escaping only b2 and g1
(DN*) the cycle vertices d∗,∗,∗ of level n.

Table 6.2.: Explanation of the abbreviations used for defining the properties of Table 6.1.

Derived properties of well-behaved strategies

We begin by giving results related to the next relevant bit µσ of a strategy σ. We first show

that its definition can be simplified for well-behaved strategies. We recall here that the

set of incorrect levels is defined as Iσ := {i ∈ [n] : σ(bi) ∧ σ(gi) 6= σ(bi+1)}. Note that we

interpret expressions of the form x ∧ x = y as x ∧ (x = y), so the precedence level of “=”

and “6=” is higher than the precedence level of ∧ and ∨. Also, we assume the parameter

n ∈ N to be sufficiently large and in particular larger than 3.

Lemma 6.1.2. Let σ ∈ ρ(σ0) have Properties (B2) and (BR1) and Iσ 6= ∅. Then there is

an index i > max{i′ ∈ Iσ} with σ(bi) and σ(gi) = σ(bi+1). As a consequence, for arbitrary

well-behaved strategies σ ∈ ρ(σ0) it holds that

µσ =

{
min{i > max{i′ ∈ Iσ} : σ(bi) ∧ σ(gi) = σ(bi+1)}, if Iσ 6= ∅,

min{i ∈ [n+ 1] : σ(bi) = bi+1}, if Iσ = ∅.

In particular, µσ = n+ 1 implies Iσ = ∅ for well-behaved strategies σ.

Proof. Let Iσ 6= ∅. By construction and since we interpret t as bn+1, it follows that σ(gn) =
0 = σ(bn+1). This impliesmax{i′ ∈ Iσ} ≤ n−1 and that indices larger than this maximum

exist. For the sake of a contradiction, assume that there was no i > max{i′ ∈ Iσ}with σ(bi)
and σ(gi) = σ(bi+1). Then, µ

σ = n by definition and in particular µσ 6= 1. By the definition
of Iσ this implies σ(bn) = t. Now let max{i′ ∈ Iσ} 6= n− 1. Then, Property (BR1) and

µσ = n imply σ(gn−1) = Fn−1,0. In particular, σ(gn−1) = σ(bn), implying σ(bn−1) = bn
since we assume max{i′ ∈ Iσ} 6= n − 1. Consequently, σ(bµσ) = gµσ by Property (B2)

as µσ 6= 1. But this is a contradiction to σ(bn) = t. Now assume max{i′ ∈ Iσ} = n − 1.
Then, σ(gn−1) 6= σ(bn) = 0 by the definition of Iσ. Thus, σ(gn−1) = Fn−1,1. But, since

n−1 = µσ−1, we also have σ(gn−1) = Fn−1,0 by Property (BR1) which is a contradiction.

Hence there is an index i > max{i′ ∈ Iσ} with σ(bi) ∧ σ(gi) = σ(bi+1).

Whenever discussing µσ for a well-behaved strategy σ, we implicitly use Lemma 6.1.2

without explicitly mentioning it. We now prove that σ(b1) = b2 is equivalent to µσ = 1 for

well-behaved strategies and deduce similar helpful statements related to µσ.
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Lemma 6.1.3. Let σ ∈ ρ(σ0) have Property (B1) and let µσ 6= 1. Then σ(b1) = g1.
Consequently, if σ has Property (B1), then µσ = 1 is equivalent to σ(b1) = b2.

Proof. By the definition of µσ, it holds that µσ = 1 implies σ(b1) = b2. It thus suffices to

prove the first part of the statement, so let µσ 6= 1, implying µσ > 1.
Let Iσ = ∅, implying µσ = min{i ∈ [n + 1] : σ(bi) = bi+1}. Since µσ > 1, it needs to

hold that σ(b1) = g1 since the minimum would be attained for i = 1 otherwise.

Let Iσ 6= ∅. Then µσ = min{i′ > max{i ∈ Iσ} : σ(bi′) ∧ σ(gi′) = σ(bi′+1)}. If µ
σ = 2,

then max{i ∈ Iσ} = 1, implying σ(b1) = g1 by the definition of Iσ. If µσ > 2, the
contraposition of Property (B1) states

σ(bi+1) = gi+1 =⇒ [i ≥ µσ − 1 ∨ σ(bi) = gi].

Let m := max{i ∈ Iσ}. Then, by definition, m < µσ and σ(bm) = gm. We thus either have

m− 1 ≥ µσ − 1 or σ(bm−1) = gm−1. Since m− 1 ≥ µσ − 1 contradicts m < µσ, we have

σ(bm−1) = gm−1. The argument can now be applied iteratively, implying σ(b1) = g1.

The following statement now shows a deep connection between the choice of bµσ and

the set of incorrect levels if the strategy σ has certain properties.

Lemma 6.1.4. Let σ ∈ ρ(σ0) have Properties (B1), (B2) and (BR1).

1. Let Iσ 6= ∅. Then σ(bi) = gi for all i ≤ max{i′ ∈ Iσ} and σ(bµσ) = gµσ .

2. Let Iσ = ∅. Then σ(bi) = gi for all i < µσ and σ(bµσ) = bµσ+1. In addition, µσ > 1
implies σ(b2) = g2 ⇐⇒ µσ > 2.

Consequently, Iσ = ∅ if and only if σ(bµσ) = bµσ+1.

Proof. The last statements follows directly from the first two, so only these are proven.

1. Since Iσ 6= ∅ implies µσ 6= 1, the first statement follows by the same arguments

used in the proof of Lemma 6.1.3. The second statement follows directly from

Lemma 6.1.2 as σ has Property (B2) and Property (BR1).

2. The first statement from µσ = min{i ∈ [n + 1] : σ(bi) = bi+1} in this case. The

second statement follows directly since µσ > 1 implies σ(b1) = g1 in this case.

The second statement of Lemma 6.1.4 yields the following corollary for well-behaved

strategies by Property (D1). This corollary allows us to simplify several proofs regarding

valuations of vertices in Mn later.

Corollary 6.1.5. Let σ be a well-behaved strategy with Iσ = ∅. Then i < µσ implies σ(di).

Before discussing canonical strategies in general, we provide one more lemma that

significantly simplifies several proofs. It is closely related to properties of the type (MNS*)

and proves that several of their assumptions imply useful statements.

Lemma 6.1.6. Let σ ∈ ρ(σ0) have Properties (B1) and (B3) and let µσ = 1.

1. If mσ
b ≤ mσ

s ,m
σ
g , then mσ

b = 2.

2. If mσ
g < mσ

s ,m
σ
b and mσ

g > 1, then mσ
g + 1 = mσ

b .
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Proof. Note that µσ = 1 implies σ(b1) = b2.

1. By σ(b1) = b2, we have mσ
b ≥ 2. Assume mσ

b > 2 and let i := mσ
b − 2. Then i < mσ

g ,

implying σ(gi) = Fi,1. In addition, i < mσ
s , implying σ(si,1) = hi,1. Since i+1 < mσ

b ,

also σ(bi+1) = bi+2. Consequently, by Property (B3), σ(gi+1) 6= σ(bi+2) = 1 since

i+ 2 = mσ
b . But this implies σ(gi+1) = Fi,0, contradicting i+ 1 ≤ mσ

g .

2. Let i := mσ
g − 1. Then σ(gi) = Fi,1, implying σ(si,1) = hi,1 by the choice of i.

Furthermore, σ(bi+1) = bi+2 as i+ 1 = mσ
g < mσ

b . Consequently, by Property (B3),

0 = σ(gi+1) 6= σ(bi+2), implying σ(bi+2) = 1 and thus mσ
g + 1 = i+ 2 = mσ

b .

The framework for the vertex valuations

We now discuss the general framework used for describing and characterizing the vertex

valuations. Whenever referring to valuations, we henceforth add one of three possible

upper indices. If we consider the valuations exclusively in the sink game Sn resp. the

Markov decision process Mn, we include an upper index S resp. M. If the arguments or

statements apply to both Sn and Mn, then we use the general wildcard symbol ∗.
For most proofs, we do not consider the real valuations as described in Sections 2.2

and 3.2 but a “reduced” version, referred to as rVal. In Sn, the motivation for considering

reduced valuations is that the game is constructed in such a way that the most significant

difference between two vertex valuations will always be unique and typically have a

priority larger than six. That is, vertices of priority three or four will rarely ever be

relevant when comparing valuations. They can thus be ignored in most cases, simplifying

the vertex valuations. In Mn, the reduced valuations are motivated differently. Consider

some cycle center Fi,j . Its valuation is equal to

εValMσ (si,j) +
1− ε

2
ValMσ (di,j,0) +

1− ε

2
ValMσ (di,j,1).

Intuitively, if Fi,j is not closed, then the contribution of si,j to the valuation of Fi,j is

very likely to be negligible. However, if Fi,j is closed, then εValMσ (Fi,j) = εValMσ (si,j),
so ValMσ (Fi,j) = ValMσ (si,j) for every ε > 0. Thus, defining rValMσ as the limit of ValMσ for

ε → 0 yields an easier way of calculating valuations as it eliminates terms of order o(1).
There are however several cases in which the real valuations ValMσ need to be considered

since εValMσ (si,j) is not always negligible. This motivation justifies the following definition.

Definition 6.1.7 (Reduced valuation). Let v ∈ V and σ ∈ ρ(σ0). The reduced valuation

of v with respect to σ in Sn is rValSσ(v) := ValSσ(v) \ {v
′ ∈ ValSσ(v) : Ω(v

′) ∈ {3, 4, 6}}.
In Mn, the reduced valuation of v ∈ V with respect to σ is rValMσ (v) := limε→0Val

M
σ (v).

We now introduce a unified notation for reduced valuations. This enables us to perform

several calculations and arguments for Sn and Mn simultaneously. Since vertex valuations

in Sn are sets of vertices, we begin by arguing that valuations in Mn can also be described

as sets of vertices, although they are usually defined via edges.

SinceMn is weakly unichain, the reduced valuation of a vertex is typically a path ending

in the vertex t with probability 1 after finitely many steps. The only exception are cycle
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centers escaping to both b2 and g1 which we discuss later. By construction, the reward of

any edge leaving a vertex v is 〈v〉 := (−N)Ω(v), where Ω(v) denotes the priority of v. If the
reduced valuation of a vertex v corresponds to a path P ending in t, then the total reward

collected along the edges of P in Mn can thus be expressed as
∑

v∈P 〈v〉. This argument

does however not apply to cycle centers. The reduced valuation of a cycle center Fi,j

might depend on both the reduced valuations of g1 and b2. This is the case if Fi,j escapes

towards both of these vertices using its cycle vertices and corresponding escape vertices.

In this case, the reduced valuation of Fi,j is the arithmetic mean of the reduced valuations

of g1 and b2. Since Mn is weakly unichain and by the definition of the reduced valuations,

the reduced valuations of these two vertices are disjoint paths ending in t. In particular,

the previous interpretation can be applied to both of these vertices and it can thus be

extended naturally to the cycle center Fi,j . In summary, the reduced valuation of any

vertex can be interpreted as either a single path or a union of two disjoint paths leading

to t.
Table 6.3 introduces a unified notation that can be used for discussing vertex valuations

in both Sn and Mn simultaneously. In addition, it defines several subsets of vertices that

turn out to be useful when describing vertex valuations. These sets are, for example,

all vertices in a level i that contribute to the valuations of the vertices, or sets that will

typically be part of several valuations. Although the sets contained in this table formally

depend on the current strategy, we do not include an index denoting this strategy as it

will always be clear from the context. To simplify this notation, we write 〈v1, v2, . . . , vk〉
to denote

∑
i∈[k] 〈vi〉 for arbitrary sets {v1, . . . , vk} of vertices.

It is immediate that rValSσ(v)⊳ rValSσ(w) implies ValSσ(v)⊳ValSσ(w). This is not however
not completely obvious for Mn since it is not clear how much we “lose” by using the

reduced instead of the real valuation. However, as shown by the following lemma, we

only lose a negligible amount of o(1). Hence, if rValMσ (v) > rValMσ (w) and if the difference

between the two terms is sufficiently large, then we can deduce ValMσ (v) > ValMσ (w).

Lemma 6.1.8. Let P = {g∗, s∗,∗, hi∗,∗} be the set of vertices with priorities in Mn. Let

S, S′, P ⊆ P be non-empty subsets, let
∑

(S) :=
∑

v∈S 〈v〉 and define
∑

(S′) analogously.

1. |
∑

(S)| < N2n+11 and ε · |
∑

(S)| < 1 for every subset S ⊆ P , and

2. |maxv∈S 〈v〉 | < |maxv∈S′ 〈v〉 | if and only if |
∑

(S)| < |
∑

(S′)| .

Since N = 7n is larger than the number of vertices with priorities, Lemma 6.1.8 implies

that we can use reduced valuations in Mn in the following way.

Corollary 6.1.9. Let σ ∈ ρ(σ0). Then rValMσ (w) > rValMσ (v) implies ValMσ (w) > ValMσ (v).

Proof. Reduced valuations can be represented as sums of powers of N . If the reduced

valuations of two vertices differ, then they thus differ by terms of order at leastN . However,

by Lemma 6.1.8, the reduced valuation of a vertex and its real valuation only differ by

terms of order o(1) since the difference between the real and the reduced valuation of a

vertex is always an expression of the type ε · |
∑

(S)| for some subset S. Consequently, if
the reduced valuation of v is larger than the reduced valuation of w, the same is true for

the real valuations.
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W S
i := {gi, si,σ(gi), hi,σ(gi)}

2⋃

1

WM
i :=

〈
gi, si,σ(gi), hi,σ(gi)

〉

LS
i,ℓ :=

ℓ⋃

i′=i

{WP
i′ : σ(bi′) = gi′} LM

i,ℓ :=

ℓ∑

i′=i

{WM
i′ : σ(bi′) = gi′}

RS
i,ℓ :=

µσ−1⋃

i′=i

WP
i′ ∪

ℓ⋃

i′=µσ+1

{WP
i′ : σ(bi′) = gi′} RM

i,ℓ :=

µσ−1∑

i′=i

WM
i′ +

ℓ∑

i′=µσ+1

{WM
i′ : σ(bi′) = gi′}

BS
i,ℓ :=

{
RP

i,ℓ if i < µσ and σ(bi) = gi

LP
i,ℓ otherwise

BM
i,ℓ :=

{
RM

i,ℓ if i < µσ and σ(bi) = gi

LM
i,ℓ otherwise

unified notation ⊕/
⊕∗
∗ J·K ≺ / ≻ 0 W ⊂ rVal∗σ(·).

corr. notation for Sn ∪/
⋃∗
∗ {·} ⊳/⊲ ∅ All w ∈ W are contained in rValSσ(·)

corr. notation for Mn +/
∑∗
∗ 〈·〉 < / > 0 All w ∈ W are summands of rValMσ (·).

Table 6.3.: Abbreviations and notation used for unified arguments and vertex valuations. We also
define L∗

i := L∗
i,n, R

∗
i := R∗

i,n, B
∗
i := B∗

i,n

It is possible that rValMσ (w) = rValMσ (v) but ValMσ (w) 6= ValMσ (v). This case can occur if

there are two cycle centers Fi,0 and Fi,1 which are in the same state. Then, the valuations

of the corresponding upper selection vertices decide which of these two vertices has

the better valuation. Since the influence of these vertices is however neglected when

considering the reduced valuation, we need to investigate the real valuations in such a

case.

Before characterizing the vertex valuations, we state the following general statements

regarding the terms of Table 6.3. We will not always refer to this lemma when we use it

as it is used in nearly all calculations. However, we want to especially underline the last

statement, as this formalizes the intuition that traversing a single level i completely is

more beneficial then traversing all levels below level i.

Lemma 6.1.10. Let σ ∈ ρ(σ0) be well-behaved.

1. Let σ(bµσ) = bµσ+1. Then L∗i � R∗i for all i ∈ [n] and L∗i ≺ R∗j for j < i ≤ µσ.

2. Let σ(bµσ) = gµσ . Then L∗i � R∗i for all i ∈ [n] and Li ≻ R∗j for i ≤ µσ and j ∈ [n]
and Li ⊕ JgjK ≻ Rj for i ≤ µσ and j < µσ.

3. Let i ≥ µσ > j. Then R∗j ≺ Jsi,j , hi,jK ⊕ L∗i+1.

4. For all i ∈ [n], it holds that Jgi, si,∗, hi,∗K ≻
⊕

i′<iW
∗
i′ and L∗1 ≺ Jsi,j , hi,jK ⊕ L∗i+1.
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Characterizing vertex valuations

The remainder of this section is dedicated to explicitly determine the vertex valuations for

well-behaved strategies. Most of the proofs are very technical and are thus deferred to

Appendix A.2. We however also provide some proofs here in the main part to show how

these statements are proven. We begin by discussing the valuations of the entry vertices

bi for i > 1 and of selector vertices gi when i < µσ and σ(b2) = g2.

Lemma 6.1.11. Let σ ∈ ρ(σ0) be well-behaved and i > 1. Then rVal∗σ(bi) = B∗i and i < µσ

and σ(b2) = g2 imply rVal∗σ(gi) = R∗i .

Proof. We prove both statements by backwards induction on i and begin with the first

statement. Let i = n and σ(bn) 6= gn. Then rVal∗σ(bn) = 0. Since B∗n = L∗n = 0, the
statement follows. Now let σ(bn) = gn. Then, by Property (D1), σ(dn) and σ(si) by
Property (S2) since µσ ≤ n by Lemma 6.1.2. Hence rVal∗σ(bn) = W ∗n . Since W ∗n = B∗n in

this case, the statement follows for both Sn and Mn.

Now let i < n, i > 1, and assume that the statement holds for i + 1. We show that it

holds for i as well. This part of the proof uses the second statement of the lemma directly,

i.e., in a non-inductive way. Since we use the first statement when proving the second

inductively, the induction is correct. We distinguish several cases.

• Let σ(bi) = bi+1 and µσ = min{i′ : σ(bi′) = bi′+1}. Then, µσ ≤ i and we show

rVal∗σ(bi) = L∗i . By the definition of µσ, there is no i′ ∈ [n] such that σ(bi′) = gi′ and
σ(bi′+1) 6= σ(gi′). Since the statement holds if σ(bi′) = bi′+1 for all i

′ > i consider
the smallest i′ > i with σ(bi′) = gi′ . Since i′ > i > 1 we obtain rVal∗σ(bi′) = B∗i′
by the induction hypotheses. Furthermore, B∗i′ = L∗i′ by µσ ≤ i < i′. By the

choice of i′ we have rVal∗σ(bi) = rVal∗σ(bi+1) = · · · = rVal∗σ(bi′) = L∗i′ as well as
L∗i′ = L∗i′−1 = · · · = L∗i . As µ

σ ≤ i implies L∗i = B∗i , we thus have rVal∗σ(bi) = B∗i .

• Let σ(bi) = bi+1 and µσ = min{i′ > max{i ∈ Iσ} : σ(bi′) ∧ σ(gi′) = σ(bi′+1)}.
Assume i ≥ µσ. Then rVal∗σ(bi) = rVal∗σ(bi+1) = B∗i+1 by the induction hypotheses

and B∗i+1 = L∗i+1 by the choice of i. Since B∗i = L∗i and L∗i = L∗i+1 as σ(bi) = bi+1,

the statement follows. Hence assume i < µσ. Since σ(bi) = bi+1 and since σ is

well-behaved, Property (B1) yields σ(bi′) = bi′+1 for all i′ ∈ {i, . . . , µσ − 1}. By

the induction hypothesis, we thus have rVal∗σ(bi′) = B∗i′ = L∗i′ for these indices. In

particular, rVal∗σ(bi+1) = L∗i+1. Note that this also holds for the case i + 1 = µσ.

Since σ(bi) = bi+1 implies L∗i = L∗i+1 and rVal∗σ(bi) = rVal∗σ(bi+1), this then yields

rVal∗σ(bi) = L∗i+1 = L∗i = B∗i .

• Let σ(bi) = gi and i ≥ µσ. As before, the induction hypothesis yields rVal∗σ(bi′) = L∗i′
for all i′ > i. Let j := σ(gi). Then, Fi,j is closed by Property (D1) since i > 1. Thus
rVal∗σ(Fi,j) = rVal∗σ(si,j). In addition, σ(si,j) = hi,j by Property (S1). Since i ≥ µσ

and σ(bi) = gi we have j = σ(gi) = σ(bi+1). By construction we thus have

rVal∗σ(bi) = rVal∗σ(gi) = W ∗i ⊕ rVal∗σ(bi+1) = W ∗i ⊕ L∗i+1 = L∗i = B∗i .

• Finally, let σ(bi) = gi and i < µσ. Using the contraposition of Property (B1) we

obtain that either i− 1 ≥ µσ − 1 or σ(bi−1) = gi−1. Since i− 1 ≥ µσ − 1 contradicts
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i < µσ, it follows that σ(bi−1) = gi−1. Applying this statement inductively then

yields σ(b2) = g2. Using the second statement of this lemma directly we then obtain

rVal∗σ(bi) = rVal∗σ(gi) = R∗i = B∗i .

We now show that i < µσ and σ(b2) = g2 imply rVal∗σ(gi) = R∗i . This proof uses the
first statement in an inductive way. The statement is shown by backwards induction on i,
so let i = µσ − 1. Then σ(gi) = Fi,0 by Property (BR1) and rVal∗σ(Fi,0) = rVal∗σ(si,0) since
Fi,0 is closed by Property (D2). Also, σ(si,0) = hi,0 by Property (S2). By construction, and

using the first statement inductively we obtain

rVal∗σ(gi) = W ∗i ⊕rVal∗σ(bi+2) = W ∗i ⊕B∗i+2 = W ∗µσ−1⊕B∗µσ+1 = W ∗µσ−1⊕L∗µσ+1 = R∗µσ−1.

Let i < µσ−1. By Properties (BR1) and (D2), σ(gi) = Fi,1 and rVal∗σ(Fi,1) = rVal∗σ(si,1).
By Property (S2), also σ(si,1) = hi,1. By construction, the induction hypotheses thus yields

rVal∗σ(gi) = W ∗i ⊕ rVal∗σ(gi+1) = R∗i+1 ∪W ∗i = R∗i = B∗i .

The next lemma shows how the valuation of gi might change if the additional require-

ments used in the second statement of Lemma 6.1.11 are not met resp. if i = 1. As

its proof is rather involved, requires some case distinctions but uses again a backwards

induction and 6.1.11, its proof is deferred to the appendix.

Lemma 6.1.12. Let σ ∈ ρ(σ0) be well-behaved and i < µσ. Then rValSσ(gi) = RS
i and

rValMσ (gi) =





BM
2 +

k−1∑

j=i

WM
j + 〈gk〉 , if k := min{k ≥ i : ¬σ(dk)} < µσ

rValMσ (gi) = RM
i , otherwise.

This lemma can now be used to generalize the first statement of Lemma 6.1.11.

Lemma 6.1.13. Let σ ∈ ρ(σ0) be well-behaved. Then rValσ(bi)
S = BS

i for all i ∈ [n] and
rValMσ (bi) = BM

i for all i ∈ {2, . . . , n}. Furthermore,

rValMσ (b1) =





BM
2 +

k−1∑

j=1

WM
j + 〈gk〉 , if k := min{i ≥ 1: ¬σ(di)} < µσ,

BM
1 , otherwise.

Proof. The case i > 1 follows by Lemma 6.1.11. It therefore suffices to consider the case

i = 1. Let σ(b1) = b2. Then µσ = 1 by Lemma 6.1.3. Therefore, by Lemma 6.1.11,

we have rVal∗σ(b2) = B∗2 = L∗2. Since σ(b1) = b2 implies L∗2 = L∗1 we thus obtain

rVal∗σ(b1) = rVal∗σ(b2) = B∗2 = L∗2 = L∗1 = B∗1 .
Assume σ(b1) = g1. Then µσ > 1 by Lemma 6.1.3. Consider the case Gn = Sn first.

Then, rValSσ(g1) = RS
1 by Lemma 6.1.12. Hence, since i = 1 < µσ and σ(b1) = g1 it holds

that BS
1 = RS

1 . Thus rVal
S
σ(b1) = rValSσ(g1) = RS

1 = BS
1 .

Consider the caseGn = Mn next. If rValMσ (g1) = RM
1 , the statement follows by the same

arguments used for the case Gn = Sn. Hence let k := min{i ≥ 1: ¬σ(di)} < µσ. Then,

since σ(b1) = g1 implies rValMσ (b1) = rValMσ (g1), Lemma 6.1.12 implies the statement.
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We thus completely characterized the valuation of all vertices bi. The next vertex

valuation we discuss is the valuation of g1 for the special case of µσ = 1. As the vertex

valuation of this vertex is rather complex and the proof requires several case distinctions,

we defer it to Appendix A.2.

As always, we identify bi for i > n with t for convenience of notation.

Lemma 6.1.14. Let µσ = 1 and m := min{mσ
g ,m

σ
s }. Then

rVal∗σ(g1) =





〈g1〉+ rValMσ (b2), if mσ
b ≤ mσ

s ,m
σ
g ∧Gn = Mn ∧ ¬σ(d1),

W ∗1 ⊕ rVal∗σ(b2), if mσ
b ≤ mσ

s ,m
σ
g ,

∧ (Gn = Sn ∨ [Gn = Mn ∧ σ(d1)]),
m⊕

i′=1

W ∗i′ ⊕ rVal∗σ(bmσ
g+2) if mσ

g < mσ
s ,m

σ
b ,

∧ [(σ(bmσ
g+1) ∧Gn = Sn) ∨ ¬σ(ebmσ

g
)],

m−1⊕
i′=1

W ∗i′ ⊕ JgmK ⊕ rVal∗σ(b2) otherwise.

The next vertex valuation that we investigate in detail is the valuation of the vertices Fi,j ,

i.e., of the cycle centers. For these vertices we need to distinguish between the sink game Sn

and the Markov decision process Mn. We begin with case Gn = Mn as the corresponding

statement follows directly from the definition of rValMσ .

Lemma 6.1.15. Let Gn = Mn. Let σ ∈ ρ(σ0) be well-behaved and i ∈ [n], j ∈ {0, 1}. Then

rValMσ (Fi,j) =





rValMσ (si,j), if σ(di,j),

rValMσ (g1), if σ(egi,j) ∧ ¬σ(ebi,j),

rValMσ (b2), if σ(ebi,j) ∧ ¬σ(egi,j),
1
2 rVal

M
σ (g1) +

1
2 rVal

M
σ (b2), if σ(egi,j) ∧ σ(ebi,j).

The exact behavior of player 1 in the sink game Sn requires a more sophisticated analysis.

The reason is that the behavior of player 1 very much depends on the configuration of the

complete counter and the exact setting of several vertices in different levels. In particular,

depending on the setting of the cycle vertices and the upper selection vertex of a cycle

center, the valuations of di,j,0, di,j,1 si,j can be completely different. Consequently, player 1
can theoretically choose from up to three different valuations. As the player always

minimizes the valuation of the vertices, this requires us to analyze and compare a lot of

valuations exactly. We thus do not provide its proof here but defer it to Appendix A.2.

132



6.1. Vertex Valuations and Well-Behaved Strategies

Lemma 6.1.16. Let Gn = Sn. Let σ ∈ ρ(σ0) be well-behaved and i ∈ [n], j ∈ {0, 1}. Then

rValSσ(Fi,j) =





rValSσ(si,j), if σ(di,j),

{si,j} ∪ rValSσ(b2), if σ(egi,j) ∧ ¬σ(ebi,j) ∧ µσ = 1,

rValSσ(g1), if σ(egi,j) ∧ ¬σ(ebi,j) ∧ µσ 6= 1,

rValSσ(b2), if σ(ebi,j) ∧ ¬σ(egi,j) ∧ µσ = 1

∧ (¬σ(si,j) ∨ σ(bi+1) = j),

rValSσ(si,j), if σ(ebi,j) ∧ ¬σ(egi,j)

∧ (µσ 6= 1 ∨ (σ(si,j) ∧ σ(bi+1) 6= j)),

rValSσ(g1), if σ(ebi,j) ∧ σ(egi,j) ∧ σ(g1) 6= σ(b2),

rValSσ(b2), if σ(ebi,j) ∧ σ(egi,j) ∧ σ(g1) = σ(b2).

This exact characterization of the valuations of the cycle centers can be used to determine

the exact valuations of all selector vertices. We begin by considering the case Gn = Mn.

Corollary 6.1.17. Let Gn = Mn. Let σ ∈ ρ(σ0) be well-behaved, i ∈ [n] and define

λM
i := min{ℓ ≥ i : σ(bℓ) = gℓ ∨ σ(gℓ) = Fℓ,0 ∨ σ(sℓ,σ(gℓ)) = b1 ∨ ¬σ(dℓ)}.

Then rValMσ (gi) =
∑λ−1

ℓ=i WM
ℓ + rValMσ (gλ) where λ := λM

i and

rValMσ (gλ) =





rValMσ (bλ), if σ(bλ),

〈gλ〉+
1
2 rVal

M
σ (g1) +

1
2 rVal

M
σ (b2), if ¬σ(bλ) ∧ σ(egλ) ∧ σ(ebλ),

〈gλ〉+ rValMσ (g1), if ¬σ(bλ) ∧ σ(egλ) ∧ ¬σ(ebλ),

〈gλ〉+ rValMσ (b2), if ¬σ(bλ) ∧ ¬σ(egλ) ∧ σ(ebλ),〈
gλ, sλ,σ(gλ)

〉
+ rValMσ (b1), if ¬σ(bλ) ∧ σ(dλ) ∧ ¬σ(sλ),

WM
λ + rValMσ (bλ+2), otherwise.

Proof. To simplify notation let λ := λM
i . By the definition of λ, for all ℓ ∈ {i, . . . , λ− 1},

it holds that σ(gℓ) = Fℓ,1, σ(dℓ,1) and σ(sℓ,1) = hℓ,1. This implies the first part of the

statement as this yields rValMσ (gℓ) = WM
ℓ + rValMσ (gℓ+1) for each such index.

Thus consider rValMσ (gλ). The first four cases follow immediately resp. by Lemma 6.1.15.

Consider the case ¬σ(bλ)∧σ(dλ)∧¬σ(sλ). Then σ(sλ,σ(gλ)) = b1 and the statement follows

from rValMσ (Fλ,σ(gλ)) = rValMσ (sλ,σ(gλ)). Hence consider the “otherwise” case, implying

¬σ(bλi
) ∧ σ(dλ) ∧ σ(sλ). By the definition of λ, this yields σ(gλi

) = Fλ,0.

We now prove the corresponding statement for the case Gn = Sn.

Corollary 6.1.18. Let Gn = Sn. Let σ ∈ ρ(σ0) be well-behaved, i ∈ [n] and define

λS
i := min{ℓ ≥ i : σ(bℓ) = gℓ ∨ σ(gℓ) = Fℓ,0 ∨ σ(sℓ,σ(gℓ)) = b1 ∨ σ(bℓ+1) = gℓ+1}.
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Then rValSσ(gi) =
⋃λi−1

i′=i W S
i′ ∪ rValSσ(gλi

), where λ := λS
i and

rValSσ(gλ) =





rValSσ(bλ) if σ(bλ) = gλ,

{gλ} ∪ rValSσ(g1) if ¬σ(bλ) ∧ σ(egλ) ∧ ¬σ(ebλ) ∧ µσ 6= 1,

{gλ} ∪ rValSσ(b2) if ¬σ(bλ) ∧ σ(ebλ) ∧ ¬σ(egλ) ∧ µσ = 1

∧ (¬σ(sλ) ∨ σ(bλ+1) = σ(gλ)),

{gλ} ∪ rValSσ(g1) if ¬σ(bλ) ∧ σ(ebλ) ∧ σ(egλ) ∧ σ(g1) 6= σ(b2),

{gλ} ∪ rValSσ(b2) if ¬σ(bλ) ∧ σ(ebλ) ∧ σ(egλ) ∧ σ(g1) = σ(b2),

{gλ, sλ,σ(gλ)} ∪ rValSσ(b1) if none of the above and σ(sλ,σ(gλ)) = b1,

W S
λ ∪ rValSσ(bλ+2) if none of the above and σ(gλ) = Fλ,0,

W S
λ ∪ rValSσ(bλ+1) otherwise.

Proof. Let λ := λS
i and ℓ ∈ {i, . . . , λ−1}. We prove rValSσ(Fℓ,σ(gℓ)) = rValSσ(sℓ,σ(gℓ)). Since

ℓ < λ, it follows that σ(bℓ) = bℓ+1, σ(gℓ) = Fℓ,1, σ(sℓ,1) = hℓ,1 and σ(bℓ+1) = bℓ+2. We

show that this implies that none of the cases 3,4,6 and 7 of Lemma 6.1.16 can occur.

If the conditions of the third case were true, then σ(sℓ,1) = b1 by Property (EG1),

contradicting σ(sℓ,1) = hℓ,1. If the conditions of the fourth case were true, then ¬σ(sℓ,1) ∨
σ(bℓ+1) = 1. But, since σ(sℓ,1) = hℓ,1 and σ(bℓ+1) = bℓ+2, this cannot hold. If the

conditions of the sixth or seventh case were true, then σ(ebℓ,1) ∧ σ(egℓ,1). But then, since
σ(sℓ,1) = hℓ,1, Property (EBG1) implies σ(bℓ+1) = gℓ+1, contradicting σ(bℓ+1) = bℓ+2.

Hence rValSσ(Fℓ,σ(gℓ)) = rValSσ(sℓ,σ(gℓ)). Since also σ(gℓ) = 1 and σ(sℓ,1) = hℓ,1, this

implies the first part of the statement. It thus remains to investigate rValSσ(gλ).

The first five statements follow directly from Lemma 6.1.16. Thus consider the sixth.

Since none of the five previous cases must hold, one of the following holds:

1. σ(bλ) = bλ+1 ∧ ¬σ(ebλ) ∧ [¬σ(egλ) ∨ µσ = 1]

2. σ(bλ) = bλ+1 ∧ ¬σ(egλ) ∧ [¬σ(ebλ) ∨ µσ 6= 1 ∨ (σ(sλ) ∧ σ(bλ+1) 6= σ(gλ))].

We now consider these two cases together with the assumption σ(sλ,σ(gλ)) = b1. It again
suffices to show rValSσ(Fλ,σ(gλ)) = rValSσ(sλ,σ(gλ)).

1. If ¬σ(ebλ) ∧ ¬σ(egλ), then σ(dλ). Consequently, by Lemma 6.1.16, the statement

follows. Otherwise we have ¬σ(ebλ) ∧ σ(egλ) ∧ µσ = 1. But then, the conditions of

the second case of Lemma 6.1.16 hold and the statement follows again.

2. As previously, the statement follows if ¬σ(egλ) ∧ ¬σ(ebλ). Since σ(sλ,σ(gi)) = b1 by
assumption, the conditions can thus only be fulfilled if ¬σ(egλ) ∧ σ(ebλ) ∧ µσ 6= 1.
But then, the conditions of case 5 of Lemma 6.1.16 hold and the statement follows.

Next consider the seventh case. Then σ(gλ) = 0. Note that σ(sλ,0) = hλ,0 holds by

assumption and that it again suffices to show rValSσ(Fλ,0) = rValSσ(sλ,0). We thus again

investigate the two cases mentioned before together with the assumption σ(sλ,0) = hλ,0
and σ(gλ) = 0.

1. Here, the same arguments used before can be applied again.

2. If either ¬σ(egλ)∧¬σ(ebλ) or ¬σ(egλ)∧σ(ebλ)∧µσ 6= 1, then the statement follows

by the previously given arguments. Hence consider the case ¬σ(egλ) ∧ σ(ebλ) ∧
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µσ = 1 ∧ (σ(sλ) ∧ σ(bλ+1) 6= σ(gλ)). But then, the conditions of the fifth case of

Lemma 6.1.16 are fulfilled again, implying the statement.

Finally, consider the eighth case. We then have σ(bλ) = bλ+1, σ(sλ,1) = hλ,1 and σ(gλ) = 1.
By the definition of λ, we thus need to have σ(bλ+1) = gλ+1. It hence suffices to prove

that rValSσ(Fλ,1) = rValSσ(sλ,1). This however follows by the same arguments used in the

last case.

To conclude the characterization of the vertex valuations, we state one additional lemma.

This lemma allows us to simplify the evaluation of the valuation of the cycle centers under

certain conditions without having to check the conditions of Lemma 6.1.15 resp. 6.1.16.

It will in particular be used when analyzing cycle centers during phase 1.

Lemma 6.1.19. Let σ ∈ ρ(σ0) be well-behaved, let i ∈ [n], j ∈ {0, 1} and consider the cycle

center Fi,j . Assume that σ has Properties (ESC1), (EV1)1 and (USV1)i. It then holds that

rVal∗σ(Fi,j) = rVal∗σ(si,j) if σ(di,j) and rVal∗σ(Fi,j) = rVal∗σ(b1) otherwise.

Proof. If σ(di,j), then the statement follows from Lemma 6.1.15 resp. 6.1.16. Hence

consider the case that Fi,j is not closed and let Gn = Sn. We show that the conditions of

either the first or the fourth case of Lemma 6.1.16 are fulfilled and that the corresponding

valuations can be expressed as rValSσ(b1).

By Property (ESC1), the last two cases of Lemma 6.1.16 cannot occur. Let, for the sake

of contradiction, the conditions of the second case be fulfilled, i.e., σ(egi,j),¬σ(ebi,j) and
µσ = 1. Then σ(b1) = b2. By Property (EV1)1 and the definition of the induced bit state,

this implies β1 = 0. Hence, by Property (ESC1), σ(e∗,∗,∗) = b2. Since Fi,j is not closed, this

implies that there is at least one k ∈ {0, 1} such that σ(di,j,k) = ei,j,k and σ(ei,j,k) = b2.
But then σ(ebi,j) contradicting ¬σ(ebi,j).

Now let, for the sake of contradiction, the conditions of the fifth case of Lemma 6.1.16

be fulfilled, i.e., σ(ebi,j),¬σ(egi,j) and either µσ 6= 1 or σ(si,j) ∧ σ(bi+1) 6= j. If µσ 6= 1,
we can deduce σ(egi,j) by the same arguments used for the second case, again resulting

in a contradiction. Thus let σ(si,j) = hi,j and σ(bi+1) 6= j. Then, by Property (USV1)i,

j = βi+1. But then, the other condition states σ(bi+1) 6= βi+1 which is a contradiction

since βi+1 = σ(di,bi+1) by definition.

Consider the third case of Lemma 6.1.16. Then, µσ 6= 1 implies σ(b1) = g1 by

Lemma 6.1.3. Thus, rValSσ(b1) = rValSσ(g1) = rValSσ(Fi,j). Consider the fourth case of

Lemma 6.1.16. Then µσ = 1, implying rValSσ(b1) = rValSσ(b2) = rValSσ(Fi,j) as σ(b1) = b2.

Now let Gn = Mn and let Fi,j not be closed. By Property (ESC1), Fi,j cannot escape

towards both g1 and b2. By Property (EV1)1, β1 = 1 if and only ifσ(b1) = g1. The statement

thus follows since Property (ESC1) implies that Fi,j escapes to g1 if β1 = 1 and to b2 if

β1 = 0.

This concludes our general results on the vertex valuations. As it will turn out that

every strategy calculated by the strategy improvement resp. policy iteration algorithm is

well-behaved. Consequently, these characterization can be applied to all strategies that

are considered in the following sections.
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6.2. The Application of Individual Improving Switches

This section contains technical details related to the application of individual improving

switches and the different phases of a single transition. We consider a fixed number

b ∈ Bn. Before analyzing the single phases, we develop some general statements that

are either not related to a single phase or are used repeatedly in the upcoming proofs.

Henceforth, b ∈ Bn is a fixed number and ν := ℓ(b+ 1) denotes the least significant set

bit of b+ 1. We further define the abbreviation
∑

(b, i) :=
∑

l<i bl · 2
l−1.

Most of the proofs of this section are deferred to Appendix A.2.

Basic statements and statements independent of the phases

The first lemma enables us to compare the valuations of cycle centers in Mn for several

well-behaved strategies calculated by the strategy improvement algorithm.

Lemma 6.2.1. Let Gn = Mn. Let σ ∈ ρ(σ0) be a well-behaved phase-k-strategy for some

b ∈ Bn having Property (USV1)i and Property (EV1)i+1 for some i ∈ [n] where k ∈ [5].
If Fi,0 and Fi,1 are in the same state and if either i ≥ ν or σ has Property (REL1), then

ValMσ (Fi,βi+1
) > ValMσ (Fi,1−βi+1

).

As mentioned at the beginning of Section 6.1, formal lemmas describing the applications

of the improving switches are proven only for well-behaved strategies. We will always

prove that the strategies obtained by the application of improving switches remain well-

behaved and prove that canonical strategies are well-behaved. Consequently, all strategies

calculated by the strategy improvement are well-behaved.

As a basis for these arguments, we prove that canonical strategies are well-behaved.

Lemma 6.2.2. Let σb be a canonical strategy for some b ∈ Bn. Then σb is well-behaved.

Proof. Let σ := σb and let i ∈ [n] such that σ(bi) = gi. Then, by the definition of a canonical

strategy, we have bi = 1, implying σ(gi) = Fi,bi+1 . Hence, σ(gi) = bi+1 = σ(bi+1). Thus
Iσ = ∅, implying

µσ = min{i ∈ [n+ 1] : σ(bi) = bi+1}. (6.1)

We prove that σ has all properties of Table 6.1. We investigate each property and show

that either its premise is false or that both the premise and the conclusion are true.

(S1) Let i ≥ µσ with σ(bi) = gi. Then, σ(gi) = bi+1 and σ(si,bi+1) = 1, hence σ(si).

(S2) Let i < µσ. Then, by (6.1), σ(bi) = gi. By Property (S1), this implies σ(si).

(B1) Let i < µσ − 1. Then σ(bi) = gi by (6.1), hence the premise is false.

(B2) By (6.1), we have σ(bµσ−1) = gµσ−1, so the premise is false.

(B3) Let i ∈ [n] with σ(bi+1) = bi+2. This implies bi+1 = 0, so σ(si,1) = b1.

(BR1) Let i < µσ. This implies σ(bi) = gi and σ(gi) = Fi,bi+1 . Assume bi+1 = 0. We

then have µσ ≤ i+ 1 by (6.1), implying µσ = i+ 1. But then σ(gi) = Fi,0 and

i = µσ − 1. Now assume bi+1 = 1. We then have µσ > i and µσ 6= i + 1, so
µσ > i+ 1. But then, σ(gi) = Fi,1 and i < µσ − 1 and in particular i 6= µσ − 1.
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(BR2) Since Iσ = ∅, i < µσ implies σ(di) by Corollary 6.1.5, so ¬σ(egi,σ(egi)).

(D1) Since σ(bi) = gi implies σ(gi) = bi+1 and that Fi,bi+1 is closed, both premise

and conclusion are true.

(D2) This follows by the same arguments used in the last case since σ(bi) = gi for
any i < µσ by (6.1).

(MNS1) By Lemma 6.1.6, the premise implies mσ
b = 2, hence σ(b2) = g2 and σ(b1) = b2.

Consequently, σ(g1) = Fi,1 as m
σ
b ≤ mσ

g ,m
σ
s , contradicting the definition of a

canonical strategy if Gn = Sn.

(MNS2) Assuming that there was some index i < mσ
g < mσ

s ,m
σ
b and µσ = 1 implies

σ(b1) = b2 as well as σ(g1) = F1,1, contradicting the definition of a canonical

strategy for the case Gn = Sn. If Gn = Mn, then we need to have b2 = 1,
implying mσ

b = 2. This is however a contradiction to 1 < mσ
g < mσ

b .

(MNS3) Let µσ = 1 and assume there was some i < mσ
s ≤ mσ

g < mσ
b . As Gn = Mn by

assumption, σ(s1,1) = h1,1 then implies b2 = 1 and thus mσ
b = 2, contradicting

1 < mσ
s < mσ

b .

(MNS4) Let µσ = 1, assumemσ
s ≤ mσ

g < mσ
b and let i := mσ

s . We prove that the premise

either yields a contradiction or implies σ(ebi) ∧ ¬σ(egi). Since µσ = 1 implies

σ(b1) = b2 and thus b1 = 0, the definition of a canonical strategy implies that

it suffices to prove that Fi,σ(gi) is not closed. This follows from the definition

of a canonical strategy if i = 1, so let i > 1. Then 1 < i = mσ
s ≤ mσ

g , hence

σ(g1) = F1,1. This however contradicts the definition of a canonical strategy

if Gn = Sn. If Gn = Mn, then this implies b2 = 1 and hence σ(b2) = g2, thus
mσ

b = 2. But this contradicts the premise mσ
g < mσ

b .

(MNS5) Let µσ = 1. We show that there is no i < mσ
s < mσ

b ≤ mσ
g . Assume there was

such an index i, implying that 1 < mσ
s < mσ

b ≤ mσ
g . Thus, σ(g1) = F1,1 and

σ(s1,1) = h1,1, implying b2 = 1. But then mσ
b = 2, contradicting 1 < mσ

s < mσ
b .

(MNS6) Let µσ = 1. If mσ
s 6= 1, the same arguments used when discussing Prop-

erty (MNS5) can be applied. However, for mσ
s = 1, the statement follows since

both cycle centers of level 1 are open and since these cycle centers escape to b2.

(EG1) By µσ = 1, we have σ(b1) = b2, implying b1 = 0. Thus, any cycle center which

is not closed escapes towards b2 by definition, hence the premise is incorrect.

(EG2) Follows by the same arguments used in the last case.

(EG3) Assume that there is some cycle center escaping towards g1. Then b1 = 1. This
implies σ(b1) = g1 and by the same arguments used earlier in this proof, this

implies σ(s1).

(EG4) This follows by the same arguments used when discussing Properties (EG1)

and (EG2).

(EG5) It is easy to see that σ(si,j) implies σ(bi+1) = j.

(EB*) Every premise of any of the properties (EB*) contains σ(b1) = g1. Hence, we
always have b mod 2 = 1, implying that no cycle center can escape towards b2.
But this implies that the premise any of these properties is false.

(EBG*) By the definition of a canonical strategy, no cycle center can escape towards

both b2 and g1.
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(DN1) By the definition of a canonical strategy, σ(dn) holds if and only if σ(bn) = gn.
Hence both the premise and the conclusion are true.

(DN2) If σ(dn) the statement follows analogously as in the last case. Hence assume

mσ
g = n. Then σ(gi) = Fi,1 for all i < n, so in particular, σ(g1) = F1,1. But,

by the definition of a canonical strategy, this immediately implies b1 = 1 and

σ(b1) = g1 if Gn = Sn and b2 and thus σ(b2) = g2 if Gn = Mn.

Our goal is to prove Lemma 5.3.12 next as this statement describes the set of improving

switches of canonical strategies. Before doing so, we analyze the terms used in Table 5.6

to describe the occurrence records of the cycle vertices in more detail. As the proofs of

the following lemmas are rather technical, they are deferred to Appendix A.2.

Lemma 6.2.3. Let b ∈ Bn. If 1j=0lfn(b, i+1)+1j=1lufn(b, i+1) = 0 for i ∈ [n], j ∈ {0, 1},
then ℓb(i, j, k) ≥ b for , k ∈ {0, 1}. Otherwise, the following hold:

Setting of bits bi = 1 ∧ bi+1 = 1− j bi = 0 ∧ bi+1 = j bi = 0 ∧ bi+1 = 1− j

ℓb(i, j, k) =
⌈
b+

∑
(b,i)+1−k
2

⌉ ⌈
b+2i−1+

∑
(b,i)+1−k

2

⌉ ⌈
b−2i−1+

∑
(b,i)+1−k

2

⌉

Lemma 6.2.4. Let b ∈ Bn and i ∈ [n] and j ∈ {0, 1} such that bi = 0 or bi+1 6= j. Then,

1j=0lfn(b, i+ 1)− 1j=1lufn(b, i+ 1) = 1j=0lfn(b+ 1, i+ 1)− 1j=1lufn(b+ 1, i+ 1).

Moreover, if i 6= ν, then ℓb(i, j, k) + 1 = ℓb+1(i, j, k).

Lemma 6.2.5. Let σb be a canonical strategy for b such that its occurrence records are

described by Table 5.6. Assume that σb has Properties (OR1)∗,∗,∗ to (OR4)∗,∗,∗. Then, the

following hold.

1. Let i ∈ [n] and j ∈ {0, 1} and assume that either bi = 0 or bi+1 6= j. Then, it holds
that φσb(di,j,∗, Fi,j) ≤ ⌊(b+ 1)/2⌋.

2. Let j := bν+1. Then, φσb(dν,j,0, Fν,j) = ⌊(b+ 1)/2⌋. In addition, ν = 1 implies

φσb(dν,j,1, Fν,j) = ⌊(b+ 1)/2⌋ and ν > 1 implies φσ(dν,j,1, Fν,j) = ⌊(b+ 1)/2⌋ − 1.

3. If i = 1, then σb(d1,1−b2,∗) 6= F1,1−b2 and φσb(d1,1−b2,0, F1,1−b2) = ⌊(b+ 1)/2⌋.

Lemma 6.2.6. Let b ∈ Bn and i ∈ [n]. It holds that fl(b, i) =
⌊
(b+ 2i−1)/2i

⌋
and

fl(b+ 1, i) = fl(b, i) + 1i=ν . In addition, for indices i1, i2 ∈ [n] with i1 < i2 and b ≥ 2i1−1

imply fl(b, i1) > fl(b, i2). Furthermore, if k := b+1
2ν−1 and x ∈ [ν−1], then fl(b, ν−x) = k·2x−1.

Now all general statements required for the upcoming proofs and statements are in

place. We begin by analyzing phase 1, or, more precisely, the statements that prove the

application of improving switches until reaching phase 2.

We first restate Lemma 5.3.12 and provide its formal proof.
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Lemma 5.3.12. Let σb ∈ ρ(σ0) be a canonical strategy for b ∈ Bn. Then, σb is a phase-1-
strategy for b and Iσb

= {(di,j,k, Fi,j) : σb(di,j,k) 6= Fi,j}.

Proof. It is easy to verify that canonical strategies are phase-1-strategies. To simplify

notation, let σ := σb and Dσ := {(di,j,k, Fi,j) : σ(di,j,k) 6= Fi,j}. It then suffices to show

Iσ = Dσ. We thus have to prove that σ(di,j,k) 6= Fi,j implies Val∗σ(Fi,j) > Val∗σ(ei,j,k) and
that there are no other improving switches.

Let e = (di,j,k, Fi,j) with σ(di,j,k) 6= Fi,j . By Lemma 6.2.2, σ is well-behaved, and the

results of Section 6.1 can be applied. By Lemma 6.1.19, rVal∗σ(Fi,j) = rVal∗σ(b1). Con-
sider the case Gn = Sn. Then, Val

S
σ(Fi,j) = {Fi,j , di,j,k′ , ei,j,k′} ∪ValSσ(σ(ei,j,k′)) for some

k′ ∈ {0, 1}, implying ValSσ(ei,j,∗)⊳ValSσ(Fi,j) since σ(ei,j,0) = σ(ei,j,1) by Property (ESC1).

Now let Gn = Mn. By Property (ESC1) and Property (EV1)1, Val
M
σ (e∗,∗,∗) = ValMσ (b1)

for all escape vertices e∗,∗,∗. Thus, ValMσ (Fi,j) = (1 − ε)Valσ(b1) + εValMσ (si,j) and it

suffices to prove ValMσ (si,j) > ValMσ (b1). If σ(si,j) = b1, then this follows immediately

from ValMσ (si,j) = 〈si,j〉 + ValMσ (b1) > ValMσ (b1). Thus assume σ(si,j) = hi,j . Then,

by Property (USV1)i, j = βi+1 and rValMσ (si,j) = 〈si,j , hi,j〉 + rValMσ (bi+1) by Prop-

erty (EV1)i+1. Hence Fi,j is the active cycle center of level i. Since it is not closed

by assumption, we thus have bi = 0 by Property (EV1)i and i ≥ µσ by Property (REL1),

implying rValMσ (bi+1) = LM
i+1. Furthermore, by Lemma 6.1.13 and Corollary 6.1.5,

rValMσ (b1) = BM
1 . If BM

1 = LM
1 , then Lemma 6.1.10 (4.) implies LM

1 < 〈si,j , hi,j〉+ LM
i+1.

If BM
1 = RM

1 , then i ≥ µσ and Lemma 6.1.10 (3.) yields RM
1 < 〈si,j , hi,j〉 + LM

i+1.

Hence rValMσ (si,j) > rValMσ (b1), implying rValMσ (Fi,j) > rValMσ (ei,j,∗). Consequently,

σ(di,j,k) 6= Fi,j impliesVal∗σ(Fi,j) > Val∗σ(σ(di,j,k)) in both Sn andMn, so (di,j,k, Fi,j) ∈ Iσ.
It remains to show that there are no other improving switches.

We first show that there is no improving switch e = (bi, ∗). Let i ∈ [n] and σ(bi) = gi.
We need to show Val∗σ(bi+1) � Val∗σ(gi). Since σ(bi) = gi implies rVal∗σ(bi) = rVal∗σ(gi),
it suffices to show rVal∗σ(bi+1) ≺ rVal∗σ(bi). By Lemma 6.1.13 and Corollary 6.1.5, we

have rVal∗σ(bi+1) = B∗i+1 and rVal∗σ(bi) = B∗i . Assume i < µσ. Then B∗i = R∗i and the

statement follows directly if B∗i+1 = R∗i+1. If B
∗
i+1 = L∗i+1, we need to have i + 1 = µσ.

But then σ(bi+1) = bi+2 and thus L∗i+1 ≺ R∗i = W ∗i ⊕ L∗i+1. Thus assume i ≥ µσ. Then

B∗i+1 = L∗i+1 and B∗i = L∗i and the statement follows by σ(bi) = gi.

Now let σ(bi) = bi+1. We prove rVal∗σ(gi) ≺ rVal∗σ(bi+1). Note that bi = 0 implies

µσ ≤ i, so rVal∗σ(bi+1) = L∗i+1 = L∗i . We use Corollary 6.1.17 resp. Corollary 6.1.18

to compute the valuation of gi. We thus need to evaluate λM
i resp. λS

i . If σ(gi) = Fi,0,

we have λ∗i = i. If σ(gi) = Fi,1 ∧ σ(bi+1) = bi+2, we have σ(gi) = 1 6= 0 = bi+1.

Thus, by the definition of a canonical strategy, σ(si,σ(gi)) = b1, implying λ∗i = i. Hence

assume σ(gi) = Fi,1 ∧ σ(bi+1) = gi+1. If Gn = Sn, then this implies λS
i = i by the

definition of λS
i . If Gn = Mn, then, λ

M
i = i follows since we need to have ¬σb(di) due to

σ(bi) = bi+1, σ(gi) = Fi,1 and σ(bi+1) = gi+1. Hence, λ
∗
i = i in both cases.

Let Gn = Sn and consider the different cases listed in Corollary 6.1.18 describing the

vertex valuations for selection vertices in Sn. In order to show the statement we distinguish

the cases listed in that corollary. Note that the first case cannot occur.

• Let σ(egi),¬σ(ebi) and µσ 6= 1. Then, rValSσ(gi) = {gi} ∪ rValSσ(g1) by Corol-

lary 6.1.18. Since µσ 6= 1 implies 1 < µσ, rValSσ(g1) = RS
1 by Lemma 6.1.12.
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Hence, since i ≥ µσ,

rValSσ(gi) = {gi} ∪RS
1 ⊳

⋃

i′≥i

{W S
i′ : σ(bi′) = gi′} = LS

i .

• Let σ(ebi),¬σ(egi), µ
σ = 1 and (¬σ(si,j) ∨ σ(bi+1) = σ(gi)). Then, by Corol-

lary 6.1.18, rValSσ(gi) = {gi} ∪ rValSσ(b2). Since µσ = 1 we have rValSσ(b2) = LS
2 .

Thus, since σ(bi) = bi+1, we obtain rValSσ(gi) = {gi}∪ rValSσ(b2) = {gi}∪LS
2 ⊳LS

i+1.

This covers the first three cases. The fourth and fifth case cannot occur since they

require a cycle center to escape towards both g1 and b2.
• Let the conditions of case six be fulfilled. Then rValSσ(gi) = {gi, si,j} ∪ rValSσ(b1)

where j = σ(gi). If rValSσ(b1) = LS
1 , then rValSσ(gi) = {gi, si,j} ∪ LS

1 ⊳ LS
i+1. If

rValSσ(b1) = RS
1 , then the statement follows by the same calculations used in the

first case.

• Let the conditions of case seven be fulfilled. Then σ(gi) = Fi,0. It is easy to

verify that we then have σ(bi) = bi+1 and either ¬σ(ebi) ∧ [¬σ(egi) ∨ µσ = 1]
or ¬σ(egi) ∧ [¬σ(ebi) ∨ µσ 6= 1 ∨ σ(bi+1)¬σ(gi)]. If ¬σ(ebi) ∧ ¬σ(egi), then σ(di).
But then, σ(bi) = bi+1 implies σ(gi) 6= σ(bi+1). Hence, Property (USV1)i implies

σ(si,0) = b1, contradicting the currently considered case.

Thus consider the case ¬σ(ebi) ∧ σ(egi) ∧ µσ = 1 next. Then, since µσ = 1 and

since σ is well-behaved, b1 = 0. But σ(egi) implies b1 = 1 which is a contradiction.

Next, consider the case ¬σ(egi) ∧ σ(ebi) ∧ µσ 6= 1. As before, µσ 6= 1 implies b1 = 1
whereas σ(ebi) implies b1 = 0, again resulting in a contradiction.

Thus, consider the case ¬σ(egi) ∧ σ(ebi) ∧ µσ = 1 ∧ σ(bi+1) 6= σ(gi). Then, since
σ(gi) = Fi,0, we have σ(bi+1) = gi+1. Since µσ = 1 implies rValSσ(bi+1) = LS

i+1, we

thus have rValSσ(gi) = W S
i ∪ rValSσ(bi+2)⊳W S

i+1 ∪ rValSσ(bi+2) = rValSσ(bi+1).

• Case eight can only occur if Fi,bi+1 is closed, contradicting bi = 0.

Let Gn = Mn and consider Corollary 6.1.17. As before, we distinguish between the

different cases listed in this corollary. The first two cases cannot occur due to σ(bi) = bi+1

resp. Property (ESC1). Consider the third case, implying σ(b1) = g1 and consequently

rValMσ (g1) = rValMσ (b1) = RM
1 . Using i ≥ µσ and rValMσ (gi) = 〈gi〉+ rValMσ (g1) we obtain

rValMσ (gi) = 〈g1〉+RM
1 <

∑

ℓ≥i

{WM
ℓ : σ(bℓ) = gℓ} = LM

i .

Consider the fourth case. Then rValMσ (gi) = 〈gi〉+ rValMσ (b2) and rValMσ (b2) = LM
2 . Thus,

by σ(bi) = bi+1, we obtain rValMσ (gi) = 〈gi〉 + rValMσ (b2) = 〈gi〉 + LM
2 < LM

i+1. Consider

the fifth case, implying rValMσ (gi) =
〈
gi, si,σ(gi)

〉
+ rValMσ (b1). Then, the statement follows

analogously to the third case if σ(b1) = g1 and analogously to the fourth case if σ(b1) = b2.
The sixth case requires that the active cycle center of level i is closed, contradicting bi = 0
resp. Property (EV1)i. Therefore there are no improving switches e = (bi, ∗).
Now consider some gi with i ∈ [n− 1] since σ(gn) = Fn,0 for every σ by construction.

First assume bi = 0. Then, by Definition 5.1.2 resp. 5.2.1, Fi,bi+1 is not closed. Assume
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that Fi,1−bi+1 is not closed either. Then, by Property (ESC1) and Property (REL1), µσ = 1
implies σ(ebi,j) ∧ ¬σ(egi,j) and µσ 6= 1 implies σ(egi,j) ∧ ¬σ(ebi,j) for both j ∈ {0, 1}.
Let Gn = Sn. Then, by Lemma 6.1.19, both cycle centers of level i escape towards the

same vertex via some escape vertex. Since Ω(Fi,0) = 6 and Ω(Fi,1) = 4, this implies

ValSσ(Fi,0)⊲ValSσ(Fi,1). Thus, (gi, Fi,1−σ(gi)) /∈ Iσ as σ(gi) = Fi,0 by Definition 5.1.2. Let

Gn = Mn. Then, ValMσ (Fi,bi+1) > ValMσ (Fi,1−bi+1) by Lemma 6.2.1, also implying the

statement since σ(gi) = Fi,bi+1 by Definition 5.2.1. Thus consider the case that Fi,1−bi+1

is closed. Then σ(gi) = 1 − bi+1 by Definition 5.1.2 resp. 5.2.1. Since Fi,bi+1 is not

closed, Lemma 6.1.19 implies rVal∗σ(Fi,bi+1) = rVal∗σ(b1). The statement thus follows

since Property (USV1)i implies rVal∗σ(Fi,1−bi+1) =
q
si,1−bi+1

y
⊕ rVal∗σ(b1).

Let bi = 1, implying σ(gi) = Fi,bi+1 , σ(di,bi+1) and rVal∗σ(Fi,bi+1) = rVal∗σ(si,bi+1). By
the definition of a canonical strategy, rVal∗σ(si,bi+1) =

q
si,bi+1 , hi,bi+1

y
⊕ rVal∗σ(bi+1) since

σ(bi+1) = gi+1 if and only if bi+1 = 1, and Fi,1−bi+1 is not closed. Hence, by Lemma 6.1.19,

rVal∗σ(Fi,1−bi+1) = rVal∗σ(b1). It thus suffices to show rVal∗σ(b1) ≺ rVal∗σ(si,bi+1). This

however follows immediately since σ(bi) = gi implies rVal∗σ(si,bi+1) ⊆ rVal∗σ(b1).

Next consider some escape vertex ei,j,k with i ∈ [n], j, k ∈ {0, 1} and let b be even. Then

σ(ei,j,k) = b2, so we prove Val∗σ(g1) � Val∗σ(b2). Since b1 = 0, we have σ(b1) = b2 by

Property (EV1)1. Since we however already proved that (b1, g1) /∈ Iσ, we need to have

Val∗σ(g1) � Val∗σ(b2). Now let b mod 2 = 1, implying σ(b1) = g1. In this case, σ(ei,j,k) = g1,
and Val∗σ(b2) � Val∗σ(g1) follows since (b1, b2) /∈ Iσ.

Consider some upper selection vertex si,j with i ∈ [n] and j = bi+1. Then σ(si,j) =
hi,j , so we prove Val∗σ(b1) � Val∗σ(hi,j). By Property (EV1)i+1, we have rVal∗σ(hi,j) =
Jhi,jK ⊕ rVal∗σ(bi+1). There are two cases. If bi = 0, then we have hi,j /∈ rVal∗σ(b1).
If bi = 1, then we have gi ∈ rVal∗σ(b1). However, this implies rVal∗σ(b1) ≺ rVal∗σ(hi,j)
in either case since rVal∗σ(bi+1) ⊆ rVal∗σ(b1). Now let j 6= bi+1. In this case we prove

Val∗σ(hi,j) � Val∗σ(b1). Consider the case j = 0 first. Then rVal∗σ(hi,j) = Jhi,jK⊕rVal∗σ(bi+2),
so W ∗i+1 /∈ rVal∗σ(hi,j). In particular we then have bi+1 = 1, implying Wi+1 ⊆ rValσ(b1).
We thus have rVal∗σ(hi,j) � rVal∗σ(b1). Similarly, if j = 1, we have gi+1 ∈ rVal∗σ(hi,j) and
gi+1 /∈ rVal∗σ(b1), implying the statement.

We now begin with our discussion of the application of individual improving switches.

This is organized as follows. For each phase, we provide a table that contains a summary

of most of the statements related to the corresponding phase. Each row of such a table is

then proven by an individual lemma. Both the tables and the proofs are very technical,

and it is not obvious why the strategies the strategy improvement algorithm produces

have the corresponding properties. We thus defer most of the proofs to Appendix A.2. We

do not discuss the execution of the corresponding algorithm in all technical details here,

but provide lemmas summarizing several of the more technical lemmas. These lemmas

then also relate the application of the individual switches to the occurrence records given

in Table 5.6. The formal and exact description of the application of the algorithm is then

given in Section 6.3 where the results of this section will be applied.

We refer to Figure 5.10 through 5.15 for visualizations of the strategies at the beginning

of the different phases in the graph S3. To simplify the description of the improving

switches, we define Dσ := {(di,j,k, Fi,j) : σ(di,j,k) 6= Fi,j} as in Table 5.9.
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Improving switches of phase 1

In this phase, cycle edges (d∗,∗,∗, F∗,∗) and edges (g∗.F∗,∗) are applied. As explained

previously, we provide an overview describing the application of individual switches

during phase 1 in Table 6.4. We interpret each row of this table stating that if a strategy σ
fulfills the given conditions, applying the given switch e results in a strategy σe that has
the claimed properties. For convenience, conditions specifying the improving switch, resp.

the level or cycle center corresponding to the switch, are contained in the second column.

Note that we also include one improving switch that technically belongs to phase 2. This

is included as Table 6.4 then contains all statements necessary to prove that applying

improving switches to σb yields the phase-2-strategy that is described in Tables 5.8 and 5.9.

Conditions for σ Switch e Properties of σe

Fi,j is open and Iσ = Dσ (di,j,k, Fi,j) Phase-1-strategy for b and Iσe = Dσe

Gn = Sn and Iσ = Dσ (di,1−bi+1,k, Fi,1−bi+1
) Phase-1-strategy for b

σ(gi) = Fi,1−bi+1
i 6= 1 Iσe = Dσe

Iσ = Dσ and σ(gi) = Fi,bi+1
(di,1−bi+1,k, Fi,1−bi+1

) Phase-1-strategy for b

σ(di,1−bi+1,1−k) = Fi,1−bi+1
bi = 0 Iσe = Dσe ∪ {(gi, Fi,1−bi+1

)}
Iσ = Dσ ∪ {(gi, Fi,1−bi+1

)} (gi, Fi,1−bi+1
) Phase-1-strategy for b

Fi,j is closed i 6= 1 ∧ bi = 0 Iσe = Iσ \ {e} = Dσe

(dν,bν+1,k, Fν,bν+1
)

ν = 1 ⇒ Phase-3-strategy for b

ν = 1 ∧ σ(gν) = Fν,bν+1
imply

Iσe = Dσe ∪ {(b1, g1)} ∪ {(e∗,∗,∗, g1)}

Iσ = Dσ ν > 1 ⇒ Phase-2-strategy for b

σ(dν,bν+1,1−k) = Fν,bν+1

ν > 1 ∧ σ(gν) = Fν,bν+1
imply

Iσe = Dσe ∪ {(bν , gν), (sν−1,1, hν−1,1)}
σ(gν) 6= Fν,bν+1

implies

Iσe = Dσe ∪ {(gν , Fν,bν+1
)}

Pseudo phase-2- resp. phase-3-strategy

Pseudo phase-2-strategy and ν > 1
(gν , Fν,bν+1

)
Phase-2-strategy for b

Iσ = Dσ ∪ {(gν , Fν,bν+1
)} Iσe = Dσe ∪ {(bν , gν), (sν−1,1, hν−1,1)}

Table 6.4.: Improving switches applied during phase 1. For convenience, we always assume σ ∈
ρ(σ0) and that σ is a phase-1-strategy for b if not stated otherwise. We thus also always
have σe ∈ ρ(σ0).

The first lemma shows that performing switches at cycle vertices that do not close any

cycle centers does not create any new improving switches and does not make existing

switches unimproving.

Lemma 6.2.7 (First row of Table 6.4). Let σ ∈ ρ(σ0) be a well-behaved phase-1-strategy
for b ∈ Bn with Iσ = Dσ. Let i ∈ [n], j, k ∈ {0, 1} such that e := (di,j,k, Fi,j) ∈ Iσ and

σ(di,j,1−k) 6= Fi,j . Then σe is a well-behaved phase-1-strategy for b with σe ∈ ρ(σ0) and
Iσe = Dσe.

The next lemma describes what happens when the inactive cycle center Fi,1−βσ
i+1

is

closed under the assumption that the selector vertex of level i points towards this cycle

center. This happens when cycle centers with a low occurrence record have to “catch up”.

We exclude level 1 here since the edges of the cycle centers in this level switch sufficiently
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often. Consequently, this behavior does not occur for i = 1. Also, we only need to consider

this for Gn = Sn since it cannot happen that gi points towards Fi,1−βσ
i+1

if Gn = Mn.

Lemma 6.2.8 (Second row of Table 6.4). Let Gn = Sn. Let σ ∈ ρ(σ0) be a well-behaved

phase-1-strategy for b ∈ Bn with Iσ = Dσ. Let i ∈ [n], j, k ∈ {0, 1} such that e :=
(di,j,k, Fi,j) ∈ Iσ and σ(di,j,1−k) = Fi,j , i 6= 1, j 6= bi+1 as well as σ(gi) = Fi,j . Then σe is a
well-behaved phase-1-strategy for b with Iσe = Dσe and σe ∈ ρ(σ0).

The next lemma describes what happens when the inactive cycle center Fi,1−βσ
i+1

of

some level i ∈ [n − 1] is closed under the assumption that the selector vertex of level i
does not point towards that cycle center. In this case, the valuation of Fi,1−βσ

i+1
increases

significantly, making the switch (gi, Fi,1−βσ
i+1

) improving.

Lemma 6.2.9 (Third row of Table 6.4). Let σ ∈ ρ(σ0) be a well-behaved phase-1-strategy
for b ∈ Bn with Iσ = Dσ. Let i ∈ [n− 1], j, k ∈ {0, 1} such that e := (di,j,k, Fi,j) ∈ Iσ and

σ(di,j,1−k) = Fi,j , j = 1− βσ
i+1, σ(bi) = bi+1 and σ(gi) = Fi,1−j . Then σe is a well-behaved

phase-1-strategy for b with σe ∈ ρ(σ0) and Iσe = Dσe ∪ {(gi, Fi,j)}.

It can thus happen that improving switches (gi, Fi,j) are created. We prove that applying

this switch again yields a strategy σ with Iσ = Dσ.

Lemma 6.2.10 (Fourth row of Table 6.4). Let σ ∈ ρ(σ0) be a well-behaved phase-1-
strategy for b ∈ Bn with Iσ = Dσ ∪ {(gi, Fi,1−bi+1)} for some index i ∈ [n − 1]. Let

e := (gi, Fi,1−bi+1) ∈ Iσ and bi = 0, i 6= 1 and σ(di,j). Then σe is a well-behaved phase-1-
strategy for b with Iσe = Iσ \ {e}.

This now allows us to formalize the application of the first set of improving switches

that are applied during phase 1.

Lemma 6.2.11. Let σ ∈ ρ(σb) be a well-behaved phase-1-strategy for b with Iσ = Dσ. Let

σb ∈ ρ(σ0) and let σb have the canonical properties. Let i ∈ [n], j, k ∈ {0, 1} such that

e := (di,j,k, Fi,j) ∈ Iσ, Iσb
with φσ(e) = φσb(e) = ⌊(b+ 1)/2⌋− 1. Then σe is a well-behaved

phase-1-strategy for b with σe ∈ ρ(σ0). Furthermore, σ(di,j,1−k) = Fi,j , j 6= bi+1, σ(gi) =
Fi,1−j and σ(bi) 6= gi imply Iσe = (Iσ \ {e}) ∪ {(gi, Fi,j)}. Otherwise, Iσe = Iσ \ {e}. In
addition, the occurrence record of e with respect to σe is described correctly by Table 5.6 when

interpreted for b+ 1.

The next lemma now formalizes the last row of Table 6.4. It describes what happens

when the cycle center Fν,bν+1 is closed, concluding phase 1.

Lemma 6.2.12 (Fifth row of Table 6.4). Let σ ∈ ρ(σ0) be a well-behaved phase-1-strategy
for b ∈ Bn and Iσ = Dσ. Let ν := ℓ(b + 1) and j := bν+1. Let e := (dν,j,k, Fν,j) ∈ Iσ and

σ(dν,j,1−k) = Fν,j for some k ∈ {0, 1}. The following statements hold.

1. βσe = b+ 1.

2. σe has Properties (EV1)i and (EV3)i for all i > ν. It also has Property (EV2)i and

Property (USV1)i for all i ≥ ν as well as Property (REL1), and µσe = µσ = ν.

3. σe is well-behaved and σe ∈ ρ(σ0).
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4. If ν = 1, then σe is a phase-3-strategy for b. If σ(gν) = Fν,j , then it holds that

Iσe = Dσe ∪ {(b1, g1)} ∪ {(e∗,∗,∗, g1)}. If σ(gν) 6= Fν,j , then Iσe = Dσe ∪ {(gν , Fν,j)}
and σe is a pseudo phase-3-strategy.

5. If ν > 1, then σe is a phase-2-strategy for b. If σ(gν) = Fν,j , then it holds that

Iσe = Dσe∪{(bν , gν)}∪{(sν−1,1, hν−1,1)}. If σ(gν) 6= Fν,j , then Iσe = Dσe∪{(gν , Fν,j)}
and σe is a pseudo phase-2-strategy.

The final statement contained in Table 6.4 does technically not belong to Phase 1. It

considers the case that σ(gν) 6= Fν,bν+1 when the cycle center Fν,bν+1 is closed. We show

that applying (gi, Fν,bν+1) then results in the same strategy that would be achieved if

σ(gν) = Fν,j already held.

Lemma 6.2.13 (Sixth row of Table 6.4). Let σ ∈ ρ(σ0) be a well-behaved pseudo phase-

2-strategy for b ∈ Bn with ν > 1. Let e := (gν , Fν,bν+1) and Iσ = Dσ ∪ {(gν , Fν,bν+1)}.
Assume that σ has Property (REL1). Then σe is a well-behaved phase-2-strategy for b with

σe ∈ ρ(σ0) and Iσe = Dσe ∪ {(bν , gν), (sν−1,1, hν−1,1)}.

This concludes our discussion of the application of improving switches that potentially

yield a phase-2-strategy for b as described by Tables 5.8 and 5.9. We next provide the

lemmas necessary for proving that the strategy improvement algorithm reaches a phase-

3-strategy regardless of whether we have Gn = Sn or Gn = Mn and of the parity of b.

This is done by investigating the improving switches of phase 2 as well as proving how a

“real” phase-3-strategy can be obtained by the respective algorithm only yields a pseudo

phase-3-strategy at the end of phase 1.

Improving switches of phase 2

During phase 2, the entry vertices bi of levels i ∈ {2, . . . , ν} and the upper selection vertices

si,(b+1)i+1
of levels i ≤ ν − 1 are updated. We again provide an overview describing the

application of individual improving switches during phase 2 as well as the application of

the switch (gν , Fν,(b+1)ν+1
) if the algorithm produces a pseudo phase-3-strategy.

We now formalize and prove the statements summarized in Table 6.5. We begin by

describing the application of (bν , gν).

Lemma 6.2.14 (First row of Table 6.5). Let σ ∈ ρ(σ0) be a well-behaved phase-2-strategy for
b ∈ Bn with ν > 1. Let Iσ = Dσ ∪ {(bν , gν), (sν−1,1, hν−1,1)}. Let σ have Property (REL1)

as well as Property (USV3)i for all i < ν. Let e := (bν , gν). Then, σe is a well-behaved

phase-2-strategy for b with σe ∈ ρ(σ0). In addition ,ν 6= 2 implies

Iσe = Dσe ∪ {(bν−1, bν), (sν−1,1, hν−1,1), (sν−2,0, hν−2,0)}

if ν 6= 2 and ν = 2 implies

Iσe = Dσe ∪ {(b1, b2), (s1,1, h1,1)} ∪ {(e∗,∗,∗, b2)}.
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Properties of σ Switch e Properties of σe

(bν , gν)

Phase-2-strategy for b

Iσ = Dσ ∪ {(bν , gν), (sν−1,1, hν−1,1)} ν 6= 2 implies

Property (REL1) Iσe = (Iσ \ {e}) ∪ {(bν−1, bν), (sν−2,0, hν−2,0)}

Property (USV3)i for all i < ν ν = 2 implies

Iσe = Dσe ∪ {(b1, b2), (s1,1, h1,1)} ∪ {(e∗,∗,∗, b2)}

i′ < µσ ⇒ Fi′,σ(g
i′
) is closed (si,j , hi,j) i 6= 1 ⇒ Phase-2-strategy for b

Property (USV3)i′ for all i
′ ≤ i i < µσ i = 1 ⇒ Phase-3-strategy for b

Properties (EV1)µσ , (EV1)i+1 j = βσ
i+1 Iσe = Iσ \ {e}

i′ < µσ ⇒ Fi′,σ(g
i′
) is closed

Phase-2-strategy for b

Property (USV3)i′ for all i
′ ≤ i

(bi, bi+1) i 6= 2 implies

i′ > i ⇒ Properties (EV1)i′∧(EV2)i′
i > 1 Iσe = (Iσ \ {e}) ∪ {(bi−1, bi), (si−2,0, hi−2,0)}

i′ > i, i′ 6= µσ ⇒Property (EV3)i′
i < µσ i = 2 implies

Iσe = (Iσ \ {e}) ∪ {(b1, b2)} ∪ {(e∗,∗,∗, b2)}

Pseudo phase-3-strategy and ν = 1
(gν , Fν,bν+1

)
Phase-3-strategy for b

Iσ = Dσ ∪ {(gν , Fν,bν+1
)} Iσe = Dσe ∪ {(b1, g1)} ∪ {(e∗,∗,∗, g1)}

Table 6.5.: Improving switches applied during phase 2. For convenience, we always assume σ ∈
ρ(σ0), that σ is a phase-2-strategy for b and that ν > 1 if not stated otherwise. We
thus also always have σe ∈ ρ(σ0). We also include one application here that technically
belongs to phase 3.

The following lemma describes the application of switches (si,j , hi,j) for i ∈ [µσ − 1]
and j = βσ

i+1. Depending on whether i 6= 1 or i = 1, applying this switch might conclude

phase 2 and thus lead to a phase-3-strategy for b. As the following lemma describes a

strategy that is obtained after the application of several improving switches during phase 2,
we include several additional assumptions that encode the application of these previously

applied switches.

Lemma 6.2.15 (Second row of Table 6.5). Let σ ∈ ρ(σ0) be a well-behaved phase-2-
strategy for some b ∈ Bn with ν > 1. Assume that σ(di′) = 1 for all i′ < µσ and that

e = (si,j , hi,j) ∈ Iσ for some i ∈ [µσ − 1] where j := βσ
i+1. Further assume that σ has

Property (USV3)i′ for all i
′ ≤ i. Also, assume that σ has Properties (EV1)µσ and (EV1)i+1.

If i 6= 1, then σe is a well-behaved phase-2-strategy for b. If i = 1, then σe is a well-behaved

phase-3-strategy for b. In either case, Iσe = Iσ \ {e}.

The following lemma describes the application of an improving switch (bi, bi+1) for
levels i ∈ {2, . . . , ν − 1} during phase 2.

Lemma 6.2.16 (Third row of Table 6.5). Let σ ∈ ρ(σ0) be a well-behaved phase-2-strategy
for b ∈ Bn with ν > 1. Assume that σ(di′) = 1 for all i′ < µσ and e = (bi, bi+1) ∈ Iσ
for some i ∈ {2, . . . , µσ − 1}. In addition, assume that σ has Property (USV3)i′ for all

i′ < i, Property (EV1)i′ and Property (EV2)i′ for all i
′ > i as well as Property (EV3)i′ for all

i′ > i, i′ 6= µσ.

Then σe is a well-behaved phase-2-strategy for b. Furthermore, i 6= 2 implies

Iσe = (Iσ \ {e}) ∪ {(bi−1, bi), (si−2,0, hi−2,0)}

and i = 2 implies Iσe = (Iσ \ {e}) ∪ {(b1, b2)} ∪ {(e∗,∗,∗, b2)}.
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This concludes our overview related to the improving switches applied during phase 2.
The next lemma considers a special case that can occur at the beginning of phase 3.
Although we closed the cycle center Fν,(b+1)ν+1

at the end of phase 1, it is not guaranteed

that the selection vertex of level ν points towards this cycle center if ν = 1. That is,

it is not guaranteed that we immediately obtain a “proper” phase-3-strategy. Such a

strategy is then called pseudo phase-3-strategy. If the first phase-3-strategy is a pseudo

phase-3-strategy, then the improving switch (gν , Fν,(b+1)ν−1
) will be applied immediately

at the beginning of phase 3. The lemma thus describes the last row of Table 6.5.

Lemma 6.2.17 (Last row of Table 6.5). Let σ ∈ ρ(σ0) be a well-behaved pseudo phase-3-
strategy for some b ∈ Bn with ν = 1. Let Iσ = Dσ ∪ {(gν , Fν,bν+1)} and e := (gν , Fν,bν+1).
Then σe is a well-behaved phase-3-strategy for b with σe ∈ ρ(σ0) and

Iσe = (Iσ \ {e}) ∪ {(b1, g1)} ∪ {(e∗,∗,∗, g1)}.

These are all lemmas necessary for describing phase 2. We consider the statements

related to the application of the improving switches during phase 3 next.

Improving switches of phase 3

We now discuss the application of improving switches during phase 3, which highly

depends on whether we have Gn = Sn or Gn = Mn and on the least significant set bit of

b+1. As usual, we provide an overview describing the application of individual improving

switches during phase 3. To simplify and unify the arguments, we define t→ := b2 if

ν > 1 and t→ := g1 if ν = 1. Similarly, let t← := g1 if ν > 1 and t← := b2 if ν = 1. We

furthermore define Eσ := {(di,j,k, Fi,j), (ei,j,k, t
→) : σ(ei,j,k) = t←}.

There are also additional statements describing the application of the improving switches

during phase 3. These statements are however more involved and cannot be stated in

the same way the statements contained in Table 6.6 can be described. We defer these

statements and their discussion for the moment and begin with a lemma characterizing

the vertex valuations for several phase-3-strategies. As its proof is rather short and yields

some interesting insights regarding phase-3-strategies, it is also given directly here and

not deferred to the appendix.

Lemma 6.2.18. Let σ ∈ ρ(σ0) be a well-behaved phase-3-strategy for b ∈ Bn.

1. If ν = 1, then rVal∗σ(b2) = L∗2 and rVal∗σ(g1) = W ∗1 ⊕ rVal∗σ(b2), so in particular

Val∗σ(g1) ≻ Val∗σ(b2).

2. If ν > 1, then rVal∗σ(b2) = L∗2 and Val∗σ(b2) ≻ Val∗σ(g1)⊕ Jsi,jK for i ∈ [n], j ∈ {0, 1},
so in particular rVal∗σ(b2) ≻ rVal∗σ(g1).

Proof. Let ν = 1. Since σ is a phase-3-strategy, this implies rVal∗σ(b2) = L∗2 as µσ = 1.
Let Gn = Sn. By Property (EV1)2 and Property (CC2), σ(g1) = σ(b2) = βσ

2 . Thus,

βσ
2 = 0 implies σ(g1) = F1,0 and β2 = 1 implies σ(b2) = g2. In either case, λS

1 = 1.
We now investigate which of the cases of Corollary 6.1.18 can occur and prove that

rValSσ(g1) = W S
1 ∪ rValSσ(b2) for the respective cases. The first case cannot occur since
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Properties of σ Switch e Properties of σe

(ei,j,k, t
→)

Phase-3-strategy for b

If Gn = Sn: Property (USV2)i′,∗∀i
′ < µσ σ(di,j,1−k) = ei,j,1−k

If Gn = Mn: σ(si′,∗) = b1 implies
∨[σ(di,j,1−k) = Fi,j ∧ j 6= βσ

i+1] imply

σ(ebi′,∗) ∧ ¬σ(egi′,∗) | ∀i
′ < µσ Iσe = (Iσ \ {e}) ∪ {(di,j,k, ei,j,k)}

σ(di,j,1−k) = Fi,j ∧ j = βσ
i+1 imply

Iσe = Iσ \ {e}
Gn = Sn

Phase-3-strategy for b
σ(di,j) =⇒ j 6= βσ

i+1 (di,j,k, ei,j,k)
Iσe = Iσ \ {e}

σ(ei,j,k) = t→

Gn = Mn
(di,j,k, ei,j,k)

Phase-3-strategy for b

σ(ei,j,k) = t→
βσ
i = 1

Iσe = Iσ \ {e}
j = βσ

i+1

Gn = Mn and σ(gi) = Fi,1−j (di,j,k, ei,j,k)
Phase-3-strategy for b

Fi,j is t←-halfopen, Fi,1−j is t→-open βσ
i = 0

Iσe = Iσ \ {e}
σ(ei,j,k) = t→ j = βσ

i+1

Gn = Mn (si,j , b1)
Phase-3-strategy for b

ν > 1 i < ν
Iσe = (Iσ \ {e})

σ(ebi,j) ∧ ¬σ(egi,j) j = 1− βσ
i+1

Gn = Mn and σ(ei,j,k) = t→
(di,j,k, ei,j,k) Phase-3-strategy for b

Fi,j is t→-halfopen
j = 1− βσ

i+1 Iσe = (Iσ \ {e})
βσ
i = 0 ⇒ [σ(gi) = Fi,j ∧ Fi,1−j is t←-halfopen]

Gn = Sn, ν > 1 and Iσ = Eσ ∪ {(b1, b2)}
σ(di,j,k) = Fi,j ⇔ βσ

i = 1 ∧ βσ
i+1 = j Phase-4-strategy for b with µσe = 1

(ESC4)i,j for all (i, j) ∈ S1 (b1, b2) Iσe = (Iσ \ {e}) ∪ {(sν−1,0, b1)}
(ESC5)i,j for all (i, j) ∈ S2 ∪{(si,1, b1) : i ≤ ν − 2} ∪X0 ∪X1

i < µσ ⇒ σ(si,∗) = hi,∗

Gn = Mn, ν > 1 and Iσ = Eσ ∪ {(b1, b2)}

(b1, b2)
Phase-5-strategy for b with µσe = 1

σ(di,j,k) = Fi,j ⇔ βσ
i = 1 ∧ βσ

i+1 = j
Iσe = (Iσ \ {e}) ∪X0 ∪X1

(ESC4)i,j for all (i, j) ∈ S1

∪{(di,−1,βσ
i+1

,∗, Fi,1−βσ
i+1

) : i < ν}(ESC5)i,j for all (i, j) ∈ S2

Equation (USV1)i for all i ∈ [n]

Phase-5-strategy with µσe = u

ν = 1 and Iσ = Eσ ∪ {(b1, g1)} Iσe = (Iσ \ {e})
σ(di,j,k) = Fi,j ⇔ βσ

i = 1 ∧ βσ
i+1 = j

(b1, g1)
∪

m−1
⋃

i′=u+1
βσ
i =0

{(di,1−βσ
i+1

,∗, Fi,1−βσ
i+1

)}(ESC3)i,j for all (i, j) ∈ S4

(ESC5)i,j for all (i, j) ∈ S3

Table 6.6.: Improving switches applied during phase 3. For convenience, we always assume σ ∈
ρ(σ0) and that σ is a phase-3-strategy for b if not stated otherwise, implying that
σe ∈ ρ(σ0). The definition of the sets Xk, Si can be found in Tables 5.5 and 5.9.
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µσ = 1 implies σ(b1) = b2. The second up to the fifth case cannot occur since Prop-

erty (REL2) and Property (CC2) imply σ(d1). In addition, Property (CC2) implies

σ(g1) = β2. Thus, by Property (USV1)1, σ(s1,σ(g1)) = h1,σ(g1), so the conditions of

the sixth case of Corollary 6.1.18 cannot hold. Consequently, the conditions of one of the

last two cases of Corollary 6.1.18 are fulfilled. However, since σ(b2) = b3 if σ(g1) = F1,0

by Property (CC2) and Property (EV1)2, the statement follows in either case.

Let Gn = Mn and consider Corollary 6.1.17. If β2 = 0, then σ(g1) = F1,0 by Prop-

erty (CC2), implying λM
1 = 1. Since σ(d1) ∧ σ(s1) as shown previously,it follows that

rValMσ (g1) = WM
1 + rValMσ (b2) since the conditions of the last case are fulfilled. If βσe

2 = 1,
then λM

1 = 2 by Property (EV2)2. Consequently, rVal
M
σe(g1) = WM

1 + rValMσe(b2) since the

conditions of the first case are fulfilled.

This concludes the case ν = 1, hence assume ν > 1. We prove rVal∗σ(b2) = L∗2
first. If σ(b2) = b3, this follows by definition. Hence assume σ(b2) = g2. Then, by

Property (EV1)2 and Property (CC2), σ(g1) = F1,0. In addition, ν = µσ > 1 implies

σ(b1) = g1. Consequently, 1 ∈ Iσ. Since σ has Property (EV1)i and Property (EV2)i for

all i > 1, no other index can be contained in Iσ. But this implies Iσ = {1} and thus, since

σ(b2) = g2, µ
σ = 2, implying rVal∗σ(b2) = L∗2 as claimed.

We now prove that ν > 1 implies Val∗σ(b2) ≻ Val∗σ(g1) ⊕ Jsi,jK for i ∈ [n], j ∈ {0, 1}.
Since ν > 1 implies σ(b1) = g1, this implies that rVal∗σ(g1) = rVal∗σ(b1). Furthermore, by

1 < µσ and σ(b1) = g1, Lemma 6.1.13 and B∗2 = L∗2 imply that either rVal∗σ(b1) = R∗1 or
Gn = Mn and rValMσ (b1) = 〈gk〉+

∑k−1
j=1 W

M
j + LM

2 where k = min{i ≥ 1: ¬σ(di)} < µσ.

In the second case the statement follows directly, in the first it follows by Lemma 6.1.10

since Iσ 6= ∅ implies σ(bµσ) = gµσ by Lemma 6.1.4.

We now begin with the lemmas describing phase 3. The first lemma describes the

application of (ei,j,k, g1) resp. (ei,j,k, b2) for the case that σ(di,j,k) = Fi,j . As all of the

following lemmas, this lemma contains some conditions encoding the behavior of the

strategy improvement algorithm and the application of previous improving switches.

Since phase 3 is not exactly identical for Sn and Mn, there are also some conditions

distinguishing between the two.

Lemma 6.2.19 (First row of Table 6.6). Let σ ∈ ρ(σ0) be a well-behaved phase-3-strategy
for b ∈ Bn. Let i ∈ [n], j, k ∈ {0, 1} such that (ei,j,k, t

→) ∈ Iσ and σ(di,j,k) = Fi,j . Further

assume the following.

1. If Gn = Sn, then, σ has Property (USV2)i′,j′ for all i
′ < µσ, j′ ∈ {0, 1}.

2. If Gn = Mn, then, σ(si′,j′) = b1 implies σ(ebi′,j′) ∧ ¬σ(egi′,j′) for all i
′ < µσ and

j′ ∈ {0, 1}.

Then σe is a well-behaved phase-3-strategy for b with σe ∈ ρ(σ0). If σ(di,j,1−k) = ei,j,1−k or

[σ(di,j,1−k) = Fi,j and j 6= βσ
i+1], then Iσe = (Iσ \{e})∪{(di,j,k, ei,j,k)}. If σ(di,j,1−k) = Fi,j

and j = βσ
i+1, then Iσe = Iσ \ {e}.

We now want to describe the application of improving switches (di,j,k, ei,j,k) in phase 3.
The main challenge regarding these switches is that there are several different cases that

need to be considered when a switch of this type is applied. We thus provide several
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individual lemmas that are combined later to give a lemma summarizing the application

of these switches. We first show that we always obtain a well-behaved phase-3-strategy.

Lemma 6.2.20. Let σ ∈ ρ(σ0) be a well-behaved phase-3-strategy for b. Let i ∈ [n] and
j, k ∈ {0, 1} such that σ(ei,j,k) = t→ and e := (di,j,k, ei,j,k) ∈ Iσ. Let σ(di,j,1−k) = ei,j,1−k
or [σ(di,j,1−k) = Fi,j and j 6= βσ

i+1]. Then σe is a well-behaved phase-3-strategy for b with

σe ∈ ρ(σ0).

Lemma 6.2.20 justifies to omit the upper index when referring to the induced bit state.

For a well-behaved phase-3-strategy σ with e ∈ Iσ, we thus define β := βσ = βσe = b+ 1
while we discuss phase 3.

We now describe the application of switches (d∗,∗,∗, e∗,∗,∗). While this application is not

hard to describe in Sn, it is very complex inMn. The reason is that applying these switches

always has an influence on the valuation of the cycle centers in Mn. Thus, we need to

carefully investigate the application of these switches and need to pay heavy attention to

the exact order of application.

We begin with the application of an improving switch (d∗,∗,∗, e∗,∗,∗) during phase 3 in Sn.

This lemma is significantly easier than the lemmas for the case Gn = Mn as the valuation

of the cycle center Fi,j does not change when applying (di,j,k, ei,j,k), i ∈ [n], j, k ∈ {0, 1}
in Sn.

Lemma 6.2.21 (Second row of Table 6.6). Let Gn = Sn. Let σ ∈ ρ(σ0) be a well-behaved

phase-3-strategy for b ∈ Bn. Let i ∈ [n], j, k ∈ {0, 1} such that e := (di,j,k, ei,j,k) ∈ Iσ and

σ(ei,j,k) = t→. Further assume that σ(di,j) implies j 6= βσ
i+1. Then σe is a well-behaved

phase-3-strategy for b with σe ∈ ρ(σ0) and Iσe = Iσ \ {e}.

We now focus on the case Gn = Mn. The next lemma describes the application of

switches (di,j,k, ei,j,k) where i ∈ [n], j, k ∈ {0, 1} within levels i with βσ
i = 1. We skip the

upper index M to denote that we have Gn = Mn since we exclusively consider this case.

Lemma 6.2.22 (Third row of Table 6.6). Let Gn = Mn and let σ ∈ ρ(σ0) be a well-behaved

phase-3-strategy for b. Let i ∈ [n]with βi = 1 and let j := 1−βi+1. Let e := (di,j,k, ei,j,k) ∈ Iσ
and σ(ei,j,k) = t→ for some k ∈ {0, 1}. Then σe is a well-behaved phase-3-strategy for b with

σe ∈ ρ(σ0) and Iσe = Iσ \ {e}.

The next lemma describes the application of an improving switch (di,j,k, ei,j,k) within a

t→-open cycle center.

Lemma 6.2.23 (Fourth row of Table 6.6). Let Gn = Mn. Let σ ∈ ρ(σ0) be a well-behaved

phase-3-strategy for b ∈ Bn. Let i ∈ [n] with βσ
i = 0, j := βσ

i+1 and let Fi,j be t
←-halfopen.

Let Fi,1−j be t→-open and σ(gi) = Fi,1−j . Let e := (di,j,k, ei,j,k) ∈ Iσ and σ(ei,j,k) = t→

with k ∈ {0, 1}. Then σe is a well-behaved phase-3-strategy for b with σe ∈ ρ(σ0) and
Iσe = Iσ \ {e}.

The next lemma describes the application of improving switches within levels i ∈ [n]
in which no cycle center is closed at the beginning of phase 3. The first case describes

the first improving switch that is applied in such a level. This switch is applied in the
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cycle center Fi,σ(gi) to avoid the creation of an additional improving switch at the selector

vertex. The second case describes the second improving switch that is then applied in the

cycle center Fi,1−σ(gi). The statement of this lemma is not included in Table 6.6 as it is to

involved and does not fit the framework of the lemmas summarized there.

Lemma 6.2.24. LetGn = Mn. Let σ ∈ ρ(σ0) be a well-behaved phase-3-strategy for b ∈ Bn.

Let i ≥ µσ + 1 and assume σ(gi) = βσ
i+1.

1. If both cycle centers of level i are t←-halfopen, then let j := σ(gi).

2. If Fi,βσ
i+1

is mixed and Fi,1−βσ
i+1

is t←-halfopen, then let j := 1− σ(gi).

In any case, assume e := (di,j,k, ei,j,k) ∈ Iσ and σ(ei,j,k) = t→ for k ∈ {0, 1}. Then, σe is a
well-behaved phase-3-strategy for b with σe ∈ ρ(σ0) and Iσe = Iσ \ {e}.

The next lemma describes the application of a switch (di,∗,∗, ei,∗,∗) within a closed but

inactive cycle center for the case that βi = 0. The lemma requires that the strategy σ
fulfills several rather complicated assumptions. As usual, these assumptions somehow

“encode” the order of application of the improving switches.

Lemma 6.2.25. Let Gn = Mn. Let σ be a well-behaved phase-3-strategy for b ∈ Bn with

σ ∈ ρ(σ0). Let i ∈ [n] and j := 1 − βσ
i+1. Let e := (di,j,k, ei,j,k) ∈ Iσ and σ(ei,j,k) = t→

for some k ∈ {0, 1}. Further assume that there is no other triple of indices i′, j′, k′ with
(di′,j′,k′ , ei′,j′,k′) ∈ Iσ, that Fi,j is closed and that σ fulfills the following assumptions:

1. If βσ
i = 0, then σ(gi) = Fi,j and Fi,1−j is t

←-halfopen.

2. i < µσ implies [σ(si,j) = hi,j and σ(si′,j′) = hi′,j′ ∧ σ(di′) for all i
′ < i, j′ ∈ {0, 1}]

and that the cycle center Fi′,1−σ(gi′ )
is t←-halfopen for all i′ < i. In addition, i < µσ−1

implies σ(ebi+1).

3. i′ > i implies σ(si,1−βσ
i′+1

) = b1.

4. i′ > i and βσ
i′ = 0 imply that either [σ(gi′) = βσ

i′+1 and Fi,0, Fi,1 are mixed] or

[σ(gi′) = 1− βσ
i′+1, Fi′,1−βσ

i′+1
is t→-open and Fi′,βσ

i′+1
is mixed] and

5. i′ > i and βσ
i′ = 1 imply that Fi′,1−βσ

i′+1
is either mixed or t→-open.

Then σe is a well-behaved phase-3-strategy for b with σe ∈ ρ(σ0) and Iσe = Iσ \ {e} if i ≥ µσ

and Iσe = [Iσ ∪ {(si,j , b1)}] \ {e} if i < µσ.

The next lemma describes the application of an improving switch (si,j , b1) that might

be unlocked by the application of a switch (di,j,k, ei,j,k). In Mn, these switches are already

implied during phase 3 while they are applied during phase 4 in Sn. Thus, the following

lemma only considers Mn.

Lemma 6.2.26 (Fifth row of Table 6.6). Let Gn = Mn. Let σ ∈ ρ(σ0) be a well-behaved

phase-3-strategy for b ∈ Bn with ν > 1. Let i < µσ, j = 1 − βσ
i+1 and e := (si,j , b1) ∈ Iσ.

Further assume σ(ebi,j) ∧ ¬σ(egi,j). Then σe is a well-behaved phase-3-strategy for b with

Iσe = Iσ \ {e} and σe ∈ ρ(σ0).

The next lemma now describes the application of the second improving switch of the

kind (di,j,k, ei,j,k) within a cycle center that was closed in phase 1.
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Lemma 6.2.27 (Sixth row of Table 6.6). Let Gn = Mn. Let σ ∈ ρ(σ0) be a well-behaved

phase-3-strategy for b ∈ Bn. Let i ∈ [n] and j := 1 − βσ
i+1. Let Fi,j be t→-halfopen

and assume that βσ
i = 0 implies that Fi,1−j is t←-halfopen as well as σ(gi) = Fi,j . Let

e := (di,j,k, ei,j,k) ∈ Iσ and σ(ei,j,k) = t→ for k ∈ {0, 1}. Then σe is a well-behaved

phase-3-strategy for b with σe ∈ ρ(σ0) and Iσe = Iσ \ {e}.

This concludes the discussion of the application of switches (d∗,∗,∗, e∗,∗,∗). The next

lemma describes the end of phase 3 in Sn for ν > 1. In contrast to the Markov decision

process Mn, none of the switches (si,1−βi+1
, b1) with i < µσ is applied during phase 3. In

Sn, these switches only become improving after applying the switch (b1, b2). This then
starts phase 4 and the beginning of this phase is described by the following lemma. We

refer to Table 5.5 resp. Table 5.9 for the definition of the sets S1 and S2 resp. Xk that are

used in the statement.

Lemma 6.2.28 (Seventh row of Table 6.6). Let Gn = Sn. Let σ ∈ ρ(σ0) be a well-behaved

phase-3-strategy for b ∈ Bn with ν > 1. Let

Iσ = {(b1, b2)} ∪ {(di,j,k, Fi,j), (ei,j,k, b2) : σ(ei,j,k) = g1}

and σ(di,j,k) = Fi,j ⇔ βσ
i = 1 ∧ βσ

i+1 = j for all i ∈ [n], j, k ∈ {0, 1}. Assume that σ has

Property (ESC4)i,j for all (i, j) ∈ S1 and Property (ESC5)i,j for all (i, j) ∈ S2. Further assume

that σ(si,j) = hi,j for all i < ν, j ∈ {0, 1}. Let e := (b1, b2) andm := max{i : βσ
i = 1}. Then

σe is a well-behaved phase-4-strategy for b with µσe = 1 and

Iσe = (Iσ \ {e}) ∪ {(sν−1,0, b1)} ∪ {(si,1, b1) : i ≤ ν − 2} ∪X0 ∪X1

where Xk is defined as in Table 5.9.

As mentioned earlier, there is no phase 4 if Gn = Mn, even for ν > 1. Hence, the

application of the improving switch (b1, b2) directly yields a phase-5-strategy if all of the

switches (si,j , b1) have been applied before.

Lemma 6.2.29 (Eighth row of Table 6.6). Let Gn = Mn. Let σ ∈ ρ(σ0) be a well-behaved

phase-3-strategy for b ∈ Bn with ν > 1. Let

Iσ = {(b1, b2)} ∪ {(di,j,k, Fi,j), (ei,j,k, b2) : σ(ei,j,k) = g1}.

Let σ have Property (USV1)i for all i ∈ [n] and let σ(di,j,k) = Fi,j ⇔ βσ
i = 1∧βσ

i+1 = j for all
i ∈ [n], j, k ∈ {0, 1}. Let σ have Property (ESC4)i,j for all (i, j) ∈ S1 and Property (ESC5)i,j
for all (i, j) ∈ S2. Further assume that e := (b1, b2) ∈ Iσ and let m := max{i : βσ

i = 1}.
Then, σe is a well-behaved phase-5-strategy for b with µσe = 1 and

Iσe = (Iσ \ {e}) ∪ {(di,1−βσ
i+1,k

, Fi,1−βσ
i+1

) : i < ν} ∪X0 ∪X1

where Xk is defined as in Table 5.9.

The next lemma now describes the direct transition from phase 3 to phase 5 for b ∈ Bn

with ν = 1. In this case, there is no need to distinguish whether Gn = Sn or Gn = Mn.
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Lemma 6.2.30 (Last row of Table 6.6). Let σ ∈ ρ(σ0) be a well-behaved phase-3-strategy
for b ∈ Bn with ν = 1. Let Iσ = {(b1, g1)} ∪ {(di,j,k, Fi,j), (ei,j,k, g1) : σ(ei,j,k) = b2} and

assume that σ has Property (ESC5)i,j for all (i, j) ∈ S3 and Property (ESC3)i,j for all

(i, j) ∈ S4. Let σ(di,j,k) = Fi,j ⇔ βσ
i = 1 ∧ βσ

i+1 = j for all i ∈ [n], j, k ∈ {0, 1}. Let

e := (b1, g1) and define m := max{i : βσ
i = 1} and u := min{i : βσ

i = 0}. Then σe is a

well-behaved phase-5-strategy for b with µσe = u, σe ∈ ρ(σ0) and

Iσe = (Iσ \ {e}) ∪
m−1⋃

i′=u+1
βσ
i =0

{(di,1−βσ
i+1,0

, Fi,1−βσ
i+1

), (di,1−βσ
i+1,1

, Fi,1−βσ
i+1

)}.

This concludes our discussion of the application of the improving switches of phase 3.
We now discuss the improving switches that are applied during phase 4 if this phase is

present.

Improving switches of phase 4

As explained earlier, it is still necessary to apply improving switches (s∗,∗, b1) in Sn if ν > 1.
These switches are applied during phase 4. Since these switches are the only switches

that are applied during phase 4, we do not provide a table summarizing the application of

improving switches during this phase. Instead, we provide the following single lemma.

Lemma 6.2.31. Let Gn = Sn. Let σ ∈ ρ(σ0) be a well-behaved phase-4-strategy for b ∈ Bn

with ν > 1. Assume that there is an index i < ν such that e := (si,j , b1) ∈ Iσ where

j := 1− βσ
i+1. Further assume the following:

1. σ has Property (USV1)i′ for all i
′ > i.

2. For all i′, j′, k′, it holds that σ(di′,j′,k′) = Fi′,j′ if and only if βσ
i′ = 1 ∧ βσ

i′+1 = j′.

3. i′ < ν implies σ(gi′) = 1− βσ
i′+1.

4. i′ < i implies σ(si′,∗) = hi′,∗.

If there is an index i′ < i such that (si′,1−βσ
i′+1

, b1) ∈ Iσ, then σe is a well-behaved phase-4-

strategy for b. Otherwise, it is a well-behaved phase-5-strategy for b. In either case, it holds

that Iσe = (Iσ \ {e}) ∪ {(di,j,0, Fi,j), (di,j,1, Fi,j)}.

Improving switches of phase 5

We now discuss the improving switches which are applied during phase 5. As usual,

we provide a table that contains one row per “type” of improving switch and provide a

statement for each row of that table. This overview is given by Table 6.7. There is one

more complex statement describing the application of improving switches of the type

(e∗,∗,∗, g1) resp. (e∗,∗,∗, b2) during phase 5. Due to its complexity, this statement is not

contained in Table 6.7.

We begin by providing the lemma describing the application of the improving switches

involving the escape vertices. As usual, we define t→ := g1 ∧ t← := b2 if ν = 1 and

t← := b2 ∧ t→ := g1 if ν > 1.
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Lemma 6.2.32. Let σ ∈ ρ(σ0) be a well-behaved phase-5-strategy for b ∈ Bn. Let i ∈ [n]
and j, k ∈ {0, 1} with e := (ei,j,k, t

→) ∈ Iσ and σ(ebi,j)∧σ(egi,j). Furthermore assume that

Gn = Sn implies

j = 1 ∧ ν > 1 =⇒ ¬σ(egi,1−j) and j = 1 ∧ ν = 1 =⇒ ¬σ(ebi,1−j).

Similarly, assume that Gn = Mn implies

j = 1− βσ
i+1 ∧ ν > 1 =⇒ ¬σ(egi,1−j) and j = 1− βσ

i+1 ∧ ν = 1 =⇒ ¬σ(ebi,1−j).

Moreover, assume that ν = 2 implies σ(g1) = F1,0 if Gn = Sn. Then the following hold.

1. If there are indices (i′, j′, k′) 6= (i, j, k) with (ei′,j′,k′ , t
→) ∈ Iσ or if there is an index i′

such that σ does not have Property (SVG)i′/(SVM)i′ , then σe is a phase-5-strategy for b.

2. The strategy σe is well-behaved.

3. If there are no indies (i′, j′, k′) 6= (i, j, k) with (ei′,j′,k′ , t
→) ∈ Iσ and if σ has Prop-

erty (SVG)i′/(SVM)i′ for all i
′[n], then σe is a phase-1-strategy for b+ 1.

4. If Gn = Sn, then

(gi, Fi,j) ∈ Iσe ⇐⇒ βσ
i = 0 ∧ σe(gi) = 1 ∧ j = 0 ∧

{
σ(ebi,1−j), ν > 1

σ(egi,1−j), ν = 1
.

If Gn = Mn, then

(gi, Fi,j) ∈ Iσe ⇐⇒ βσ
i = 0 ∧ σe(gi) = 1− βσ

i+1 ∧ j = βσ
i+1 ∧

{
σ(ebi,1−j), ν > 1

σ(egi,1−j), ν = 1
.

If the corresponding conditions are fulfilled, then

Iσe = (Iσ \ {e}) ∪ {(di,j,1−k, Fi,j), (gi, Fi,j))}.

Otherwise, Iσe = (Iσ \ {e}) ∪ {(di,j,1−k, Fi,j)}.

Properties of σ Switch e Properties of σe

σ(bi) = bi+1
(di,j,k, Fi,j)

Phase-5-strategy for b

σ(gi) = 1− βσ
i+1

i 6= 1
Iσe = Iσ \ {e}

j = 1− βσ
i+1

βσ
i = 0

(gi, Fi,j)

σ(e∗,∗,∗) = t→∧(SVG)i′/(SVM)i′ ∀i
′ ∈ [n]

ν = 1 ⇒ σ(egi,j) ∧ ¬σ(egi,j) ⇒ Phase-1-strategy for b+ 1
ν > 1 ⇒ σ(ebi,j) ∧ ¬σ(egi,j)

Otherwise phase-5-strategy for b
µσ = 1 implies

Iσe = Iσ \ {e}
[i′ ≥ i ⇒ σ(di′,∗) ∨ (σ(ebi′,∗) ∧ ¬σ(egi′,∗)]

Table 6.7.: Improving switches applied during phase 5. For convenience, we always assume σ ∈
ρ(σ0) and that σ is a phase-5-strategy for b . Note that we thus also always have
σe ∈ ρ(σ0).

The following lemma describes the application of improving switches that involve cycle

vertices during phase 5.
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Lemma 6.2.33 (First row of Table 6.7). Let σ ∈ ρ(σ0) be a well-behaved phase-5-strategy
for b ∈ Bn. Let i ∈ [n], j = 1 − βσ

i+1, k ∈ {0, 1} with e := (di,j,k, Fi,j) ∈ Iσ and assume

σ(bi) = bi+1, σ(gi) = 1− βσ
i+1 and i 6= 1. Then σe is a well-behaved Phase-5-strategy for b

with σe ∈ ρ(σ0) and Iσe = Iσ \ {e}.

The next lemma concludes our discussion on the application of the improving switches

and the corresponding transition through the phases. It describes the application of

switches involving selector vertices during phase 5.

Lemma 6.2.34 (Second row of of Table 6.7). Let σ ∈ ρ(σ0) be a well-behaved phase-5-
strategy for b ∈ Bn. Let i ∈ [n], j ∈ {0, 1} with e := (gi, Fi,j) ∈ Iσ and βσ

i = 0. Assume that

ν = 1 implies σ(egi,j)∧¬σ(ebi,j) and that ν > 1 implies σ(ebi,j)∧¬σ(egi,j). Further assume

that µσ = 1 implies that for any i′ ≥ i and j′ ∈ {0, 1}, either σ(di′,j′) or σ(ebi′,j′)∧¬σ(egi′,j′).
If σ(ei′,j′,k′) = t→ for all i′ ∈ [n], j′, k′ ∈ {0, 1} and if σe has Property (SVG)i′/(SVM)i′ for

all i′ ∈ [n], then σe is a phase-1-strategy for b+1. Otherwise it is a phase-5-strategy for b. In
either case, σe is well-behaved and Iσe = Iσ \ {e}.

This concludes our discussion of the lemmas describing the exact application of individual

improving switches in Gn. The next section now applies the results of this section to

provide formal proofs of the statements of Section 5.3.

6.3. Proving the Main Statements

In this section, we provide the formal proofs for the statements given in Section 5.3. Before

providing these proofs, we briefly explain how this section is organized. We begin by

considering a canonical strategy σb for some b ∈ Bn that has the canonical properties. For

each of the k phases, we prove that applying improving switches according to Zadeh’s

rule yields a phase-k-strategy σ(k) as described by Tables 5.8 and 5.9. This is done by

considering the phases one after another. At the end, we prove that applying the improving

switches of phase 5 to σ(5) yields a canonical strategy σb+1 for b+ 1.
When proving these statements, we typically immediately prove that the occurrence

record of an edge e is described correctly by Table 5.6 when interpreted for b+ 1 after its

application. The only kind of edges for which this is not proven immediately are edges of

the form (g∗, F∗,∗). The reason is that we need to analyze more than a single transition

to properly analyze the occurrence records of these edges. Consequently, we defer the

discussion of the occurrence records of these edges to the end of this section.

When proving the statements of this section, we often state smaller statements within

the proofs as Claims. Using claims allows us to hide several more technical aspects on the

macroscopic level, making the important proofs shorter and thus easier to comprehend.

The proofs of all claims can however be found in Appendix A.2.

Consider some fixed b ∈ Bn , let ν := ℓ(b+1) denote the least significant set bit of b+1
and let σb ∈ ρ(σ0) be a canonical strategy for b that has the canonical conditions. As a a

reminder, for two strategies σ, σ′ with σ′ ∈ ρ(σ), the set Aσ′
σ describes the set of improving

switches applied by the strategy improvement resp. policy iteration algorithm during the

transition σ → σ′. Also, we define the parameter m := ⌊(b+ 1)/2⌋ as this quantity will
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often be used when analyzing the occurrence records as it serves as a natural upper bound

and is the maximum occurrence record that improving switches have.

Reaching a phase-2-strategy

We begin by proving that Zadeh’s pivot rule together with the tie-breaking rule given in

Definition 5.3.5 yields a phase-2-strategy σ(2) ∈ ρ(σ0) as described by the corresponding

rows of Tables 5.8 and 5.9. That is, we provide the proof of a slightly extended version of

Lemma 5.3.14. This extension states that σ(2) is well-behaved. This was not included in

the original statement as the term “well-behaved” was only introduced in Chapter 6.

Lemma 6.3.1 (Extended version of Lemma 5.3.14). Let σb ∈ ρ(σ0) be a canonical strategy

for b ∈ Bn with ν = ℓ(b + 1) > 1 having the canonical properties. After applying finitely

many improving switches, the strategy improvement algorithm produces a well-behaved

phase-2-strategy σ(2) for b as described by the corresponding rows of Tables 5.8 and 5.9.

Proof. By Lemma 6.2.2, σb is well-behaved. Let j := bν+1 = (b+1)ν+1. Since σb is a canon-
ical strategy, we have σb(dν,j,∗) 6= Fν,j . Moreover, Iσb

= Dσb and σb is a phase-1-strategy

for b by Lemma 5.3.12. In particular, (dν,j,∗, Fν,j) ∈ Iσb
. By Lemma 6.2.5, (dν,j,0, Fν,j)max-

imizes the occurrence record among all improving switches and φσb(dν,j,1, Fν,j) = m− 1.
By Property (OR4)∗,∗,∗, Iσb

can be partitioned into Iσb
= I<m

σb
∪ Imσb

where e ∈ I<m
σb

if

φσb(e) = m − 1 and e ∈ Imσb
if φσb(e) = m. If I<m

σb
6= ∅, then a switch contained in this

set is applied first as the LeastEntered pivot rule always chooses an improving switch

minimizing the occurrence record. By applying Lemma 6.2.11 iteratively, the algorithm

applies switches e ∈ I<m
σb

until it either reaches a strategy σ with I<m
σ = ∅ or until an edge

(gi, Fi,j′) with j′ 6= j becomes improving. By Lemma 6.2.11, Table 5.6 (interpreted for

b+ 1) correctly describes the occurrence record of all switches applied in the process.

Claim 1. If an edge (gi, Fi,j′) with i ∈ [n] and j′ 6= bν+1 becomes improving during the

application of improving switches contained in I<m, then it is applied immediately. Its

application is described by row 4 of Table 6.4.

Such an edge (gi, Fi,j′) is only applied if Fi,j′ was closed by the previous applications.

This implies that either (di,j′,0, Fi,j′), (di,j′,1, Fi,j′) ∈ I<m
σb

or σ(di,j′,1−k) = σb(di,j′,1−k) =
Fi,j′ . The first case can only happen for i = ν and j′ = 1−bν+1. Thus, if a switch (gi, Fi,j′)
is applied, then either i = ν or σb(di,j′,1−k) = Fi,j′ and (di,j′,k, Fi,j′) ∈ I<m

σb
.

The previous arguments can now be applied until a strategy is reached for which no

edge has a “low” occurrence record. Thus let σ be a phase-1-strategy σ with I<m
σ = ∅

and G ∩ Iσ = ∅. Further note that Aσ
σb

⊆ D1 ∪ G and that (gi, Fi,j) ∈ Aσ
σb

implies

bi = 0 ∧ bi+1 6= j and that the previous arguments hold independent of ν.

We discuss improving switches contained in Imσb
next.

Claim 2. Let ν > 1 and let σ denote the strategy obtained after applying all improving

switches contained in I<m
σ . For all suitable indices i ∈ [n], j′ ∈ {0, 1} it holds that

σ(di,j′,1) = Fi,j′ , implying that no cycle center is open for σ.
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Let σ ∈ ρ(σb) be a phase-1-strategy with Iσ = {e = (di,j,k, Fi,j) : φ
σ(e) = m} = Dσ as

described previously. We prove that e := (dν,j,0, Fν,j) is applied next. By Lemma 6.2.5,

the definition of a canonical strategy and since only edges with an occurrence record less

than m were applied so far, this implies e ∈ Iσ. Since all improving switches have the

same occurrence records, it is sufficient to show that no other improving switch is ranked

lower by the tie-breaking rule. By Claim 2, there are no open cycle centers. Hence, the

ordering of the edges is based on the bits represented by the levels, the index of the levels

and whether the cycle center is active. To be precise, the first switch according to the

tie-breaking rule is the improving switch contained in the active cycle center of the lowest

level with a bit equal to 0. This edge is precisely e = (dν,j,0, Fν,j).

We now prove that the occurrence record of e is described by Table 5.6 when interpreted

for b+ 1 after the application. Since Fν,j is closed for σ but was open for σb, we prove

φσe(e) =

⌈
lfn(b+ 1, ν, {(ν + 1, j)}) + 1

2

⌉
.

By the definition of ν, it holds that b+ 1 = lfn(b+ 1, ν, {(ν + 1, j)}). The statement thus

follows since m+ 1 = ⌈(b+ 1 + 1)/2⌉.
By row 5 of Table 6.4, σe is a well-behaved (potentially pseudo) phase-2-strategy for b.

If σ(gν) 6= Fν,j , then (gν , Fν,j) minimizes the occurrence record among all improving

switches. Due to the tie-breaking rule, this switch is then applied next, and this application

is formalized in row 6 of Table 6.4.

Let σ denote the strategy obtained after applying (gν , Fν,j) if σ(gν) 6= Fν,j resp. after

applying (dν,j,0, Fν,j) if σ(gν) = Fν,j . Then, by row 5 resp. 6 of Table 6.4,

Iσ = Dσ ∪ {(bν , gν)} ∪ {(sν−1,1, hν−1,1)}.

Furthermore, σ has Property (USV3)i for all i < ν as σb has Property (USV1)i and

bi = 1 − (b + 1)i for i ≤ ν. In addition, σ(di,j,k) 6= Fi,j implies φσ(2)
(di,j,k, Fi,j) = m

by Corollary 6.3.3. Moreover, since no improving switch (d∗,∗,∗, e∗,∗,∗) was applied and

bi = 1− βσ
i+1 for all i < ν, it holds that σ(gi) = 1− βσ

i+1 and σ(di,1−βσ
i+1

) for all i < ν.

We henceforth refer to the phase-2-strategy that is described by the corresponding rows

of Tables 5.8 and 5.9 and whose existence we just proved by σ(2). When proving the

existence of this strategy, we furthermore implicitly proved the following three corollaries.

We later show that the condition ν > 1 can be dropped in the first corollary.

Corollary 6.3.2. Let σb be a canonical strategy for b having the canonical properties and

ν > 1. Let i ∈ [n] and j ∈ {0, 1}. Then, the edge (gi, Fi,j) is applied as improving switch

during phase 1 if and only if Fi,j is closed during phase 1, σb(gi) 6= Fi,j and i 6= ν. A cycle

center can only be closed during phase 1 if either i = ν or if there exists an index k ∈ {0, 1}
such that σb(di,1−bi+1,k) = Fi,1−bi+1 , φ

σb(di,1−bi+1,1−k, Fi,bi+1) < m and σb(bi) = bi+1.

Corollary 6.3.3. Let σb be a canonical strategy for b having the canonical properties and let

i ∈ [n], j, k ∈ {0, 1} such that σb(di,j,k) 6= Fi,j . If φ
σb(di,j,k, Fi,j) < m, then (di,j,k, Fi,j) is

applied during phase 1.
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Corollary 6.3.4. No cycle center is open with respect to σ(2).

Corollary 6.3.5. Table 5.6 correctly specifies the occurrence record of every improving switch

applied during σb → σ(2) when interpreted for b+1, excluding switches (g∗, F∗,∗). In addition,

each switch is applied at most once.

Reaching a phase-3-strategy

We now prove that the algorithm produces a phase-3-strategy by proving a slightly extended
version of Lemma 5.3.15. If ν = 1, then this follows by analyzing phase 1 in a similar

fashion as done when proving Lemma 6.3.1. It in fact turns out that nearly the identical

arguments can be applied. If ν > 1, then we use that lemma to argue that we obtain a

phase-2-strategy. We then investigate phase 2 in detail and prove that we also obtain a

phase-3-strategy. The proof uses the statements summarized in Tables 6.4 and 6.5, and we

refer to these tables and the corresponding statements in proofs of the related statements.

Lemma 6.3.6 (Extended version of Lemma 5.3.15). Let σb ∈ ρ(σ0) be a canonical strategy

for b ∈ Bn having the canonical properties. After applying a finite number of improving

switches, the strategy improvement algorithm produces a well-behaved phase-3-strategy

σ(3) ∈ ρ(σ0) as described by the corresponding rows of Tables 5.8 and 5.9.

Proof. Consider the case ν = 1 first. As shown in the proof of Lemma 6.3.1, the set Iσb

can be partitioned into I<m
σb

and Imσb
. Since Lemma 6.2.11 also applies for ν = 1, the

same arguments imply that the algorithms calculate a phase-1-strategy σ ∈ ρ(σ0) with

Iσ = {e = (di,j,k, Fi,j) : φ
σ(e) = m} = Dσ. We can again deduce Aσ

σb
⊆ D1 ∪G and that

(gi, Fi,j) ∈ Aσ
σb

implies bi = 0 ∧ bi+1 6= j or i = ν for all i ∈ [n], j ∈ {0, 1}. We can

further assume (g∗, F∗,∗) /∈ Iσ. Also, by Lemma 6.2.11, the occurrence records of edges

(d∗,∗,∗, F∗,∗) ∈ Aσ
σb

is described by Table 5.6 when interpreted for b+ 1.

Since all improving switches now have the same occurrence records, their order of

application depends on the tie-breaking rule. Due to the first criterion, improving switches

contained in open cycle centers are applied first. Hence, a sequence of strategies is

produced until a strategy without open cycle centers is reached. All produced strategies

are well-behaved phase-1-strategies for b, reachable from σ0 by row 1 of Table 6.4. Also,

by the tie-breaking rule, the edge (d∗,∗,0, F∗,∗) is applied as improving switch in an open

cycle center F∗,∗. By the same arguments used when proving Lemma 6.3.1, the second

switch of Fν,bν+1 is applied next and, possibly, (gν , Fν,bν+1) is applied afterwards.

Let σ(3) denote the strategy obtained after closing the cycle center Fν,bν+1 resp. after

applying (gν , Fν,bν+1) if it becomes improving.

Claim 3. Let i ∈ [n], j, k ∈ {0, 1} such that (di,j,k, Fi,j) ∈ Aσ(3)

σb
. The occurrence records

of (di,j,k, Fi,j) with respect to σ(3) is specified by Table 5.6 when interpreted for b+ 1.

Note that the last row of Table 6.5 can be used to describe the application of (gν , Fν,bν+1).
Then, by row 5 of Table 6.4 resp. the last row of Table 6.5 and our previous arguments,

σ(3) has all properties listed in the respective rows of Tables 5.8 and 5.9. Furthermore, as

157



6. Technical Details of the Exponential Lower Bound Construction

we used the same arguments, Corollary 6.3.2 is also valid for ν = 1 and we can drop the

assumption ν > 1.
Consider the case ν > 1, implying b ≥ 1. By Lemma 6.3.1, applying improving switches

to σb yields a phase-2-strategy σ = σ(2) for b with Iσ = Dσ ∪ {(bν , gν), (sν−1,1, hν−1,1)}
and σ ∈ ρ(σ0). By Table 5.6 and Lemma 6.2.6,

φσ(bν , gν) = fl(b, ν) = φσ(sν−1,1, hν−1,1) and fl(b, ν) =

⌊
b+ 2ν−1

2ν

⌋
.

Since ν > 1 and b ≥ 1, this implies fl(b, ν) ≤ ⌊(b + 2)/4⌋ ≤ m. By Lemma 6.3.1, any

improving switch (d∗,∗,∗, F∗,∗) ∈ Iσ has an occurrence record of m. Thus, by the tie-

breaking rule, (bν , gν) is applied next. Let σe denote the strategy obtained after applying

(bν , gν). It is easy to verify that σ has the properties of row 1 of Table 6.5. Consequently, σe
is a phase-2-strategy for b with σe ∈ ρ(σ0). By Lemma 6.2.6, φσe(bν , gν) = fl(b, ν) + 1 =
fl(b+ 1, ν), so Table 5.6 describes the occurrence record of (bν , gν) with respect to b+ 1.
The set of improving switches for σe now depends on ν, see row 1 of Table 6.5.

Let ν = 2. Then Iσe = Dσe ∪ {(b1, b2), (s1,1, h1,1)} ∪ {(e∗,∗,∗, b2)}. In this case, (s1,1, h1,1)
is applied next and its application yields the desired phase-3-strategy σ(3).

Claim 4. Let ν = 2 and consider the phase-2-strategy σ obtained after the application

of (bν , gν). Then, the edge (s1,1, h1,1) is applied next, and the obtained strategy is a

well-behaved phase-3-strategy for b described by the respective rows of Tables 5.8 and 5.9.

If ν > 1, then we do not obtain the desired strategy yet and we have to consider a

longer sequence of improving switches that are applied. Thus, let ν > 2, implying b 6= 1.
Then, the first row of Table 6.5 implies

Iσe = Dσe ∪ {(bν−1, bν), (sν−1,1, hν−1,1), (sν−2,0, hν−2,0)}.

By Table 5.6, φσe(bν−1, bν) = fl(b, ν − 1)− 1 and φσe(sν−1,1, hν−1,1) = fl(b, ν). In addition,

φσe(sν−2,0, hν−2,0) = fl(b, ν − 1) − 1. Hence, both edges (bν−1, bν) and (sν−2,0, hν−2,0)
minimize the occurrence record. By the tie-breaking rule, the switch e′ := (bν−1, bν) is
now applied. We show that the application of e′ can be described by row 3 of Table 6.5.

We thus need to show the following:

• σe(di′) for all i
′ < µσe: This follows from Lemma 6.3.1 as no switch (d∗,∗,∗, e∗,∗,∗)

was applied during σb → σ(2) and no improving switch involving selector vertices

was applied in a level i′ < µσe.

• σe has Property (USV3)i′ for all i
′ < ν − 1: Since no switch (si′,∗, ∗) was applied

for i′ < ν − 1, this follows since σb has Property (USV1)i′ for those indices.

• σe has Property (EV1)i′ and (EV2)i′ for all i′ > ν − 1 and (EV3)i′ for all

i′ > ν − 1 with i′ 6= µσe: Since µσe − 1 = ν − 1 and σe is a phase-2-strategy for b,

it suffices to prove that σe has Property (EV1)ν and Property (EV2)ν . This however

follows since the strategy in which (bν , gν) was applied had Property (CC2).

For simplicity, we denote the strategy that is obtained by applying e′ to σe by σ. By
our previous arguments and row 3 of Table 6.5, σ is a well-behaved phase-2-strategy

for b that has Property (CC2) as well as Properties (EV1)i and (EV2)i for all i ≥ ν − 1
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and Property (EV3)i for all i > ν − 1, i 6= ν. In addition, σ(di) for all i < ν and σ has

Property (USV3)i for all i < ν − 1 Furthermore, Lemma 6.2.6 implies

φσ(e) = fl(b, ν − 1)− 1 + 1 = fl(b, ν − 1) = fl(b+ 1, ν − 1)− (b+ 1)ν−1,

so Table 5.6 describes the occurrence record of e with respect to b + 1. By row 3 of

Table 6.5, ν − 1 > 2 implies

Iσ = Dσ ∪ {(sν−1,1, hν−1,1), (sν−2,0, hν−2,0), (bν−2, bν−1), (sν−3,0, hν−3,0)}.

Similarly, ν − 1 = 2 implies

Iσ = Dσ ∪ {(ei,j,k, b2)} ∪ {(b1, b2), (s2,1, h2,1), (s1,0, h1,0)}.

In both cases, e := (sν−1,1, hν−1,1) ∈ Iσ is applied next.

Claim 5. After the application of (bν−1, bν) in the case ν > 2, the switch e = (sν−1,1, hν−1,1)
is applied next. Its application can be described by row 2 of Table 6.5 and Table 5.6 specifies

its occurrence record after the application correctly when interpreted for b+ 1.

Let ν − 1 > 2. We argue that applying improving switches according to Zadeh’s pivot

rule and our tie-breaking rule then results in a sequence of strategies such that we finally

obtain a strategy σ′ with Iσ′ = Dσ′ ∪ {(e∗,∗,∗, b2)} ∪ {(b1, b2), (s1,0, h1,0)}. Note that such

a strategy is also obtained after the application of (sν−1,1, hν−1,1) if ν − 1 = 2. For any
x ∈ {2, . . . , ν − 2}, Lemma 6.2.6 implies

φσe(sν−x,0, hν−x,0) < φσe(bν−x, bν−(x+1)) = φσe(sν−(x−1),0, hν−(x−1),0)

< φσe(e∗,∗,∗, b2).
(6.2)

Thus, (sν−2,0, hν−2,0) is applied next. It is easy to verify that σe meets the requirements of

row 2 of Table 6.5, so it can be used to describe the application of (sν−2,0, hν−2,0).
Let σ′ denote the strategy obtained. Then Iσ′ = Dσ ∪ {(bν−2, bν−1), (sν−3,0, hν−3,0)}.

Also, the occurrence record of (sν−2,0, hν−2,0) is described by Table 5.6 when interpreting

the table for b + 1. By Equation (6.2) and the tie-breaking rule, (bν−2, bν−1) is applied
next. Similar to the previous cases, it is easy to check that row 3 of Table 6.5 applies to

this switch. We thus obtain a strategy σ such ν − 2 6= 2 implies

Iσ = Dσ ∪ {(sν−3,0, hν−3,0), (bν−3, bν−2), (sν−4,0, hν−4,0)}

and ν − 2 = 2 implies

Iσ = Dσ ∪ {(e∗,∗,∗,, b2)} ∪ {(b1, b2), (s1,0, h1,0)}.

In either case, a simple calculation implies that the occurrence record of (bν−2, bν−1) is
described by Table 5.6 interpreted for b+ 1.

In the first case, we can now apply the same arguments again iteratively as Equation (6.2)

remains valid for σ′ and x ∈ {2, . . . , ν − 3}. After applying a finite number of improving

switches we thus obtain a phase-2-strategy σ ∈ ρ(σ0) with

Iσ = Dσ ∪ {(e∗,∗,∗, b2)} ∪ {(b1, b2), (s1,0, h1,0)}.
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Furthermore, σ has Properties (EV1)i, (EV2)i and (USV2)i,βi+1
for all i > 1 as well as

Property (EV3)i for all i > 1, i 6= µσ and Property (CC2). In addition, σ(gi) = 1 − βi+1

and σ(di,1−βi+1
) for all i < ν and the occurrence records of all edges applied so far (with

the exception of switches (g∗, F∗,∗)) is described by Table 5.6 when being interpreted for

b+ 1. Note that all of this also holds if ν − 1 = 2.
Consequently, σ meets the requirements of row 2 of Table 6.5. As ν > 2, we have β2 = 0.

By Table 5.6,

φσ(s1,0, h1,0) = fl(b, 2)− 1 < fl(b, 1)− 1 = φσ(b1, b2)

as well as

fl(b, 2)− 1 = ⌊(b+ 2)/4⌋ − 1 < ⌊b/2⌋ = φσ(e∗,∗,∗, b2).

Hence, the switch e = (s1,0, h1,0) is applied next and by row 2 of Table 6.5, σ(3) := σe is a

phase-3-strategy for b with

Iσ(3) = Dσ(3)
∪ {(ei,j,k, b2)} ∪ {(b1, b2)}.

We thus obtain a strategy as described by the corresponding rows of Tables 5.8 and 5.9.

We henceforth use σ(3) to refer to the phase-3-strategy described by Lemma 6.3.6.

Note that we implicitly proved the following corollaries where the second follows by

Corollary 6.3.5.

Corollary 6.3.7. No cycle center is open with respect to σ(3).

Corollary 6.3.8. Table 5.6 specifies the occurrence record of every improving switch applied

during σb → σ(3) when interpreted for b+ 1, excluding switches (g∗, F∗,∗). In addition, each

such switch was applied once.

Reaching a phase-4-strategy or a phase-5-strategy

We now discuss the application of improving switches during phase 3, which highly

depends on whether Gn = Mn or Gn = Sn and on the least significant set bit of b + 1.
The next lemma now summarizes the application of improving switches during phase 3

and is a generalization of Lemma 5.3.16. Depending on Gn and ν, we then either obtain

a phase-4-strategy or a phase-5-strategy for b. As with the previous lemmas, this lemma

is an extension of Lemma 5.3.16. We also use the usual notation and define t→ := b2 if
ν > 1 and t→ := g1 if ν = 1. Similarly, let t← := g1 if ν > 1 and t← := b2 if ν = 1.

Lemma 6.3.9 (Extended version of Lemma 5.3.16). Let σb ∈ ρ(σ0) be a canonical strategy

for b ∈ Bn having the canonical properties. After applying finitely many improving switches,

the strategy improvement algorithm produces a well-behaved strategy σ with the following

properties: If ν > 1, then σ is a phase-k-strategy for b, where k = 4 if Gn = Sn and k = 5
if Gn = Mn. If ν = 1, then σ is a phase-5-strategy for b. In any case, σ ∈ ρ(σ0) and σ is

described by the corresponding rows of Tables 5.8 and 5.9.

Before proving this lemma, we provide an additional lemma that summarizes the

application of switches of the type (d∗,∗,∗, e∗,∗,∗). Its proof is omitted here and deferred to

Appendix A.2.
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Lemma 6.3.10. Let σ ∈ ρ(σ(3)) be a well-behaved phase-3-strategy for b obtained through

the application of a sequence Aσ
σ(3) ⊆ E1 ∪ D0 of improving switches. Assume that the

conditions of row 1 of Table 6.6 were fulfilled for each intermediate strategy σ′ of the transition
σ(3) → σ. Let t→ := b2 if ν > 1 and t→ := g1 if ν = 1. Let i ∈ [n], j, k ∈ {0, 1} such that

e := (di,j,k, ei,j,k) ∈ Iσ is applied next and assume σ(ei,j,k) = t→, βσ
i = 0 ∨ βσ

i+1 6= j and

Iσ ∩D0 = {e}. Further assume that either i ≥ ν or that we consider the case Gn = Sn. Then

σe is a phase-3-strategy for b with Iσe = (Iσ \ {e}).

This now enables us to prove Lemma 6.3.9.

Proof of Lemma 6.3.9. By Lemma 6.3.6, applying improving switches according to Zadeh’s

pivot rule and our tie-breaking rule yields a phase-3-strategy σ(3) ∈ ρ(σ0) described by the

corresponding rows of Tables 5.8 and 5.9. As it simplifies the formal proof significantly,

we begin by describing phase 3 informally.

For every cycle vertex d∗,∗,∗, it either holds that σ
(3)(d∗,∗,∗) = F∗,∗ or σ

(3)(d∗,∗,∗) = e∗,∗,∗
and (d∗,∗,∗, F∗,∗) ∈ Iσ(3) . It will turn out that only switches corresponding to cycle vertices

of the first type are applied during phase 3. Consider an arbitrary but fixed such cycle

vertex di,j,k for some suitable indices i, j, k. Then, the switch (ei,j,k, t
→) will be applied. If

(b+ 1)i = 0 or (b+ 1)i+1 6= j, then (di,j,k, ei,j,k) becomes improving and is applied next.

This procedure then continues until all such improving switches have been applied. During

this procedure, it might happen that an edge (si′,∗, b1) with i′ < ν becomes improving after

applying some switch (d∗,∗,∗, e∗,∗,∗) if ν > 1 and Gn = Mn. In this case, the corresponding

switch is applied immediately. Finally, (b1, b2) resp. (b1, g1) is applied, resulting in a

phase-4-strategy if ν > 1 and Gn = Sn and in a phase-5-strategy otherwise.

We now formalize this behavior. We first show that switches (e∗,∗,∗, t
→) minimize the

occurrence record among all improving switches. Consider some indices i, j, k such that

(di,j,k, Fi,j) ∈ Iσ(3) . Then, φσ(3)
(di,j,k, Fi,j) = m by Lemma 6.3.6 resp. Table 5.8. If ν > 1,

then

φσ(3)
(ei,j,k, b2) =

⌊
b

2

⌋
= m− 1 = fl(b, 1)− b1 = φσ(3)

(b1, b2)

by Table 5.6. Similarly, if ν = 1, then φσ(3)
(ei,j,k, g1) = φσ(3)

(b1, g1). By the tie-breaking

rule, a switch of the type (ei′,j′,k′ , t
→) with σ(3)(di′,j′,k′) = Fi′,j′ for some suitable indices is

thus applied next. Since σ(3)(si′,∗) = hi′,∗ for all i
′ < µσ(3)

by Lemma 6.3.6, the statement

of row 1 of Table 6.6 can be applied.

Let i ∈ [n], j, k ∈ {0, 1} denote the indices such that e := (ei,j,k, t
→) ∈ Iσ ∩ E1 is the

switch that is applied next. We prove that the characterization given in the first row of

Table 6.6 implies Iσe = (Iσ \ {e}) ∪ {(di,j,k, ei,j,k)} if βi = 0 ∨ βi+1 6= j and Iσe = Iσ \ {e}
else. As explained earlier, the strategy σ fulfills the requirements of the first row of

Table 6.6. Consider the strategy σe. By the first row of Table 6.6, (di,j,k, ei,j,k) is improving

for σe if and only if either σ(di,j,1−k) = ei,j,1−k or [σ(di,j,1−k) = Fi,j and j 6= βi+1]. It

thus suffices to prove that βi = 0 ∨ βi+1 6= j is equivalent to the disjunction of these two

conditions. We do so by showing βi = 1 ∧ βi+1 = j ⇔ σ(di,j,1−k) = Fi,j ∧ βi+1 = j. The
direction “⇒” follows since the cycle center Fi,j is then active and closed. The direction

“⇐” follows since σ(di,j,1−k) = Fi,j implies that Fi,j is closed as e being improving for σ
implies σ(di,j,k) = Fi,j . But then, by the definition of β and the choice of j, βi = 1.
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Consequently, by the tie-breaking rule and row 1 of Table 6.6, improving switches

(e∗,∗,∗, t
→) ∈ E1 are applied until a switch of this type with i ∈ [n], j ∈ {0, 1} and

βi = 0 ∨ βi+1 6= j is applied. The occurrence record of each applied switch is described

by Table 5.6 when interpreted for b+ 1 since ⌊b/2⌋+ 1 = m if b is odd and ⌈b/2⌉+ 1 =
⌈(b+ 1)/2⌉ if b is even. By row 1 of Table 6.6, (di,j,k, ei,j,k) now becomes improving. As

(di,j,k, ei,j,k) /∈ Aσ
σb

and since switches of the type (e∗,∗,∗, t
→) minimize the occurrence

record, Table 5.6 and the tie-breaking rule imply that (di,j,k, ei,j,k) is applied next. In

particular, an edge (di,j,k, ei,j,k) is applied immediately if it becomes improving and this

requires that (ei,j,k, t
→) was applied earlier. Therefore, the application of improving

switches (e∗,∗,∗, t
→) is described by row 1 of Table 6.6 and whenever an edge (d∗,∗,∗, e∗,∗,∗)

becomes improving, its application is described by Lemma 6.3.10. In particular, the

occurrence record of all these edges is described by Table 5.6 when interpreted for b+ 1.
Let Gn = Sn. Then, row 1 of Table 6.6 and Lemma 6.3.10 can be applied until

reaching a strategy σ such that all improving switches (ei,j,k, t
→) with i ∈ [n], j, k ∈ {0, 1}

and σ(3)(di,j,k) = Fi,j were applied. Since a fixed improving switch (di,j,k, ei,j,k) was

applied if and only if βi = 0 ∨ βi+1 = j, this implies that σ(di,j,k) = Fi,j is equivalent

to βi = 1 ∧ βi+1 = j for all i ∈ [n], j, k ∈ {0, 1}. Consequently, every cycle center is

closed or escapes towards t→. In addition, for suitable indices i, j, k, an edge (di,j,k, Fi,j)
is an improving switch exactly if the corresponding switch (ei,j,k, t

→) was not applied.

Consequently,

Iσ = {(di,j,k, Fi,j), (ei,j,k, t
→) : σ(ei,j,k) = t←} ∪ {(b1, t

→)}.

Now, as φσ(b1, t
→) = φσ(e∗,∗,∗, t

→) and E1 = ∅, the switch e := (b1, t
→) is applied next

due to the tie-breaking rule. We prove that we can apply row 7 resp. 9 of Table 6.6,

implying the statement for the case Gn = Sn and arbitrary ν and for the case Gn = Mn

and ν = 1. The following claim shows that one of the key requirements for the application

of the corresponding statements is fulfilled.

Claim 6. Let σ denote the phase-3-strategy in which the improving switch (b1, t
→) should

be applied next. If ν > 1, then σ(ebi,j) ∧ ¬σ(egi,j) for all (i, j) ∈ S1 and, in addition,

σ(ebi,j) ∧ σ(egi,j) for all (i, j) ∈ S2. If ν = 1, then σ(egi,j) ∧ ¬σ(ebi,j) for all (i, j) ∈ S4

and σ(ebi,j) ∧ σ(egi,j) for all (i, j) ∈ S3.

In addition to the two statements of the claim, it holds that σ(di,j,∗) = Fi,j if and only

if βi = 1 ∧ βi+1 = j for all i ∈ [n], j ∈ {0, 1}.. Consequently, all requirements of row 7
are met for the case Gn = Sn and ν > 1, implying that the application of e = (b1, b2)
yields a phase-4-strategy as described by the corresponding rows of Tables 5.8 and 5.9.

Analogously, all requirements of row 9 are met for the case that ν = 1, implying that the

application of e = (b1, g1) yields a phase-5-strategy as described by the corresponding

rows of Tables 5.8 and 5.9 in this case.

It remains to consider the case ν > 1 for Gn = Mn, implying t→ = b2 and t← = g1.
Using the same argumentation as before, row 1 of Table 6.6 and Lemma 6.3.10 imply that

improving switches within levels i ≥ ν are applied until we obtain a phase-3-strategy σ
for b with

Iσ ={(di,j,k, Fi,j) : i < ν ∧ σ(di,j,k) 6= Fi,j}
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∪ {(di,j,k, Fi,j), (ei,j,k, b2) : i ≥ ν ∧ σ(ei,j,k) = g1} ∪ {(b1, b2)}.

As no cycle center in any level i′ < ν was opened yet, the switch e = (ei,j,k, b2) with

i = ν − 1, j = 1 − βi+1 and k ∈ {0, 1} is applied next. Since σ(di,j,k) = Fi,j , row 1 of

Table 6.6 implies Iσe = (Iσ\{e})∪{(di,j,k, ei,j,k)}. Due to the tie-breaking rule, (di,j,k, ei,j,k)
is applied next.

Claim 7. The strategy σe meets the five requirements of Lemma 6.2.25 and the lemma

thus describes the application of the improving switch (di,j,k, ei,j,k).

Therefore, applying (di,j,k, ei,j,k) yields a well-behaved phase-3-strategy σ ∈ ρ(σ0) for b
with Iσ = (Iσe \{(di,j,k, ei,j,k)})∪{(si,j , b1)}. We prove φσ(si,j , b1) < φσ(ei,j,k, b2) = ⌊b/2⌋,
implying that (si,j , b1) is applied next. It is easy to verify that (si,j , b1) /∈ Aσ

σb
. Consequently,

by Table 5.6 and as i = ν − 1 and j = 1− βi+1 = 0,

φσ(si,j , b1) = fl(b, i+ 1)− j · bi+1 = fl(b, ν) ≤

⌊
b+ 2

4

⌋
<

⌊
b+ 1

2

⌋

if b ≥ 3 since ν ≥ 2. If b1 = 1, then (si,j , b1) is also the next switch applied as the

tie-breaking rule then ranks (si,j , b1) higher than any switch of the type (e∗,∗,∗, b2). Since
(ei,j,k, b2), (di,j,k, ei,j,k) ∈ Aσ

σb
and since the cycle center Fi,j was closed when (ei,j,k, b2)

was applied, we have σ(ebi,j) ∧ ¬σ(egi,j). Therefore, the fifth row of Table 6.6 describes

the application of e = (si,j , b1). Consequently, σe is a phase-3-strategy with Iσe = Iσ \ {e}
and φσe(si,j , b1) = fl(b, ν)+ 1 = fl(b+1, ν) by Lemma 6.2.6. Thus, Table 5.6 describes the

occurrence record of (si,j , b1) when interpreted for b+ 1. Since Fi,j is b2-halfopen for σe
whereas Fi,1−j is g1-halfopen, (ei,j,1−k, b2) is applied next. By the first row of Table 6.6,

this application unlocks (di,j,1−k, ei,j,1−k). Using our previous arguments and observations,

it is easy to verify that (di,j,1−k, ei,j,1−k) is applied next and that its application is described

by the second-to-last row of Table 6.6. The tie-breaking rule then chooses to apply

(ei,1−j,k, b2) ∈ E1 next. By row 1 of Table 6.6, (di,1−j,k, ei,1−j,k) then becomes improving

and is applied next. Its application is described by row 5 of Table 6.6. After applying this

switch, we then obtain a strategy σ with

Iσ ={(di,j,k, Fi,j) : i < ν − 1 ∧ σ(di,j,k) 6= Fi,j}

∪ {(di,j,k, Fi,j), (ei,j,k, b2) : i ≥ ν − 1 ∧ σ(ei,j,k) = g1} ∪ {(b1, b2)}.

It is easy to verify that the same arguments can be applied iteratively as applying a switch

(si′,j′ , b1) with i′ < ν always requires to open the corresponding cycle center Fi′,j′ first.

Thus, after finitely many iterations, we obtain a strategy σ with

Iσ = {(di,j,k, Fi,j), (ei,j,k, b2) : σ(ei,j,k) = g1} ∪ {(b1, b2)}.

By the same arguments as for Gn = Sn, the conditions of the row 8 of Table 6.6 are met,

so we obtain a strategy as described by the corresponding rows of Tables 5.8 and 5.9.

Note that we implicitly proved the following which follows from Corollary 6.3.8.
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Corollary 6.3.11. Let σ(4) be the phase-4-strategy calculated by the strategy improvement

algorithm when starting with a canonical strategy σb having the canonical properties as

described by Lemma 6.3.9. Then, Table 5.6 specifies the occurrence record of every improving

switch applied during σb → σ(4) when interpreted for b+ 1, excluding switches (g∗, F∗,∗). In
addition, each such switch was applied once.

As indicated by Lemma 6.3.9, we do not always obtain a phase-5-strategy immediately

after phase 3 as there might be improving switches involving selection vertices si,∗ in levels

i < ν that still need to be applied if Gn = Sn. We thus prove that we also reach a phase-5-
strategy after applying these switches. Consequently, we always reach a phase-5-strategy.
The following lemma generalizes Lemma 5.3.17.

Lemma 6.3.12 (Extended version of Lemma 5.3.17). Let σb ∈ ρ(σ0) be a canonical

strategy for b ∈ Bn having the canonical properties. After applying finitely many improving

switches, the strategy improvement resp. policy iteration algorithm produces a well-behaved

phase-5-strategy σ(5) ∈ ρ(σ0) as described by the corresponding rows of Tables 5.8 and 5.9.

Proof. By Lemma 6.3.9, it suffices to consider the case Gn = Sn and ν > 1. The same

lemma implies that the strategy improvement algorithm calculates a phase-4-strategy σ
for b with σ ∈ ρ(σ0) and

Iσ = {(di,j,k, Fi,j), (ei,j,k, b2) : σ(ei,j,k) = g1} ∪ {(sν−1,0, b1)}

∪ {(si,1, b1) : i ≤ ν − 2} ∪X0 ∪X1.

Claim 8. Let σ denote the first phase-4-strategy in Sn for ν > 1. Then, the switch

(sν−1,0, b1) is applied next and the application of this switch is described by Lemma 6.2.31.

Consider the case ν = 2 first. Then, applying e = (s1,0, b1) yields a phase-5-strategy

and φσe(e) = fl(b, ν) + 1 = fl(b + 1, ν) by Lemma 6.2.6. Hence, Table 5.6 describes the

occurrence record of e with respect to b+ 1. In addition, we then have

Iσe = (Iσ \ {e}) ∪ {(d1,0,0, F1,0), (d1,0,1, F1,0)})

= {(di,j,k, Fi,j), (ei,j,k, b2) : σe(ei,j,k) = g1} ∪ {(di,1−βi+1,∗, Fi,1−βi+1
) : i ≤ ν − 1}

∪X0 ∪X1.

Since σe is a phase-5-strategy, it has Property (REL1), implying µσe = u = min{i : βi = 0}.
Thus, σe has all properties listed in the corresponding rows of Tables 5.8 and 5.9.

Before discussing the case ν > 2, we discuss edges (di,j,∗, Fi,j) that become improving

when a switch (si,j , b1) with i < ν and j = 1− βi+1 is applied, see Lemma 6.2.31. Since

i < ν implies 1− βi+1 = bi+1, their cycle centers Fi,j were closed for σb. Therefore, their
occurrence records might be very low with respect to the current strategy σ. However, their
occurrence records are not “too low” in the sense that they interfere with the improving

switches applied during phase 4. More precisely, we prove that i < ν and j = bi+1 imply

φσb(di,j,k, Fi,j) > ⌊(b+ 2)/4⌋ − 1. By Table 5.6,

φσb(di,j,k, Fi,j) =

⌈
lfn(b, i, {(i+ 1, j)}) + 1− k

2

⌉
.
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Since i < ν, we have b1 = · · · = bi = 1 and, by the choice of j, bi+1 = j and b ≥ 2ν−1 − 1.
This implies lfn(b, i, {(i+ 1, j)}) = b−

∑
(b, i) = b− 2i−1 + 1. Thus

φσb(di,j,k, Fi,j) =

⌈
b− 2i−1 + 2− k

2

⌉
≥

⌈
b− 2i−1 + 1

2

⌉
=

⌊
2b− 2i + 4

4

⌋
.

Since ⌊(b+ 2)/4⌋ − 1 = ⌊(b− 2)/4⌋, it suffices to prove 2b − 2i + 4 − (b − 2) > 4. This
follows as i ≤ ν − 1 implies

2b− 2i + 4− b+ 2 = b− 2i + 6 ≥ 2ν−1 − 1− 2i + 6 ≥ 2i − 2i + 5 = 5.

Let ν > 2. We obtain φσe(e) = fl(b+ 1, ν) as before. Furthermore, Lemma 6.2.31 yields

Iσe = {(di,j,k, Fi,j), (ei,j,k, b2) : σe(ei,j,k) = g1}

∪ {(si,1, b1) : i ≤ ν − 2} ∪ {(dν−1,0,0, Fν−1,0), (dν−1,0,1, Fν−1,0)}.

We show that the switches (sν−2,1, b1), . . . , (s1,1, b1) are applied next and in this order.

To simplify notation, we denote the current strategy by σ. By Table 5.6, it holds that

φσ(si,1, b1) = fl(b, i+ 1)− 1 for all i ≤ ν − 2. Hence φσ(sν−2,1, b1) < · · · < φσ(s1,1, b1) by
Lemma 6.2.6. It thus suffices to show that the occurrence record of (s1,1, b1) is smaller

than the occurrence record of any switch improving for σ and any improving switch that

might be unlocked by applying some switch (si,1, b1) for i ≤ ν − 2.
The second statement follows since φσb(s1,1, b1) = fl(b, 2) − 1 = ⌊(b+ 2)/4⌋ − 1 and

since the occurrence record of any edge that becomes improving is bounded by ⌊(b+ 2)/4⌋
as discussed earlier. It thus suffices to show the first statement.

Let e := (di,j,k, Fi,j) ∈ Iσ with i ∈ [n], j, k ∈ {0, 1} and σ(ei,j,k) = g1. By Lemma 6.3.6

and Lemma 6.2.6, it then holds that φσ(e) = m = fl(b, 1). In addition, ν > 2 implies

fl(b, 1) > fl(b, ν − 1), hence φσ(e) < φσ(s1,1, b1) follows. Next let e := (ei,j,k, b2) ∈ Iσ
with i ∈ [n], j, k ∈ {0, 1} and σ(ei,j,k) = g1. Then, since b is odd, Table 5.6 implies

φσ(e) = ⌊b/2⌋ = ⌊(b+ 1)/2⌋−1 = fl(b, 1)−1. Consequently, we have φσ(e) > φσ(s1,1, b1).
If b+ 1 is not a power of two, we need to show this estimation for some more improving

switches. But this can be shown by easy calculations similar to the calculations necessary

when discussing the application of (sν−1,0, b1) which can be found in the proof of Claim 8

in Appendix A.2.

Consequently, the switches (sν−1, b1), . . . , (s1,1, b1) are applied next, and they are applied

in this order. It is easy to verify that the requirements of Lemma 6.2.31 are always met,

so this lemma describes the application of these switches. It is also easy to check that

the occurrence records of these edges are described by Table 5.6 after applying them.

Let σ denote the strategy obtained after applying (s1,1, b1). Then σ is a well-behaved

phase-5-strategy for b with σ ∈ ρ(σ0) and µσ = min{i : βi = 0}. This further implies

Iσ = {(di,j,k, Fi,j), (ei,j,k, b2) : σ(ei,j,k) = g1}

∪ {(di,1−(b+1)i+1,∗, Fi,1−(b+1)i+1
) : i ≤ ν − 1} ∪X0 ∪X1.

We observe that σ(ei,j,k) = g1 still implies φσb(di,j,k, Fi,j) = φσ(di,j,k, Fi,j) = m for all

indices i ∈ [n], j, k ∈ {0, 1} since the corresponding switches are improving since the end
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of phase 1. Also, every improving switch was applied at most once and we proved that

the occurrence record of every improving switch that was applied is described correctly

by Table 5.6 when interpreted for b + 1. Since no improving switches involving cycle

vertices were applied, σ(di,j,∗) = Fi,j if and only if (b+ 1)i = 1 and (b+ 1)i+1 = j where

i ∈ [n], j ∈ {0, 1}. Hence, all conditions listed in the corresponding rows of Tables 5.8

and 5.9 are fulfilled, proving the statement.

We henceforth use σ(5) to refer to the phase-5-strategy described by Lemma 6.3.12. As

before, we implicitly proved the following corollary which follows from Corollaries 6.3.8

and 6.3.11.

Corollary 6.3.13. Let σ(5) be the phase-5-strategy calculated by the strategy improvement

algorithm when starting with a canonical strategy σb having the canonical properties as

described by Lemma 6.3.12. Then, Table 5.6 specifies the occurrence record of every improving

switch applied during σb → σ(5) when interpreted for b+ 1, excluding switches (g∗, F∗,∗). In
addition, each such switch was applied once.

Reaching a canonical strategy part I: Everything but the occurrence records

There are two major statements that we still have to prove. First, we have to prove that

applying improving switches to σ(5) yields a canonical strategy σb+1 for b+ 1 having the

canonical properties. Note that this implies Lemma 5.3.18, stating that applying improving

switches yields the strategies as described by Tables 5.8 and 5.9. Second, we need to

investigate the occurrence records of edges (g∗, F∗,∗) which we ignored until now.

We begin by proving the first statement. We also prove several smaller statements

implicitly which will be used when proving that σb+1 has the canonical properties.

Lemma 6.3.14. Let σb ∈ ρ(σ0) be a canonical strategy for b having the canonical properties.

Then, applying improving switches according to Zadeh’s pivot rule and the tie-breaking rule

produces a canonical strategy σb+1 ∈ ρ(σ0) for b+ 1 with Iσb+1
= Dσb+1 .

Proof. By Lemma 6.3.12, applying improving switches according to Zadeh’s pivot rule

and our tie-breaking rule yields a phase-5-strategy σ := σ(5) for b with σ(5) ∈ ρ(σ0) and
µσ = u = min{i : βi = 0}. Let m := max{i : βi = 1}.

Consider the case ν = 1. We begin by proving that the occurrence records of the

improving switches are bounded by m. We furthermore characterize the improving

switches which will be applied next.

Claim 9. For all e ∈ Iσ, it holds that φσ(e) ≤ m. Let e ∈ Iσ with φσ(e) < m. Then,

e = (di,j,k, Fi,j) with i ∈ {u+ 1, . . . ,m− 1}, j = 1− βi+1, k ∈ {0, 1} and σb(di,j,k) = Fi,j .

Thus, improving switches (di,j,k, Fi,j) with i ∈ {u+ 1, . . . ,m− 1}, βi = 0, j = 1− βi+1

and k ∈ {0, 1} are applied first. Let e = (di,j,k, Fi,j) denote such a switch with φσ(e) < m

minimizing the occurrence record. Since σb(di,j,k) = Fi,j , ewas not applied during phase 1,

it follows that φσ(e) = φσb(e) = ℓb(i, j, k) + 1.
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Claim 10. Let σ denote the phase-5-strategy at the beginning of phase 5 for ν = 1. Let
i,∈ [n], j, k ∈ {0, 1} such that e = (di,j,k, Fi,j) ∈ Iσ and φσ(e) < m. Row 1 of Table 6.7

can be applied to describe the application of e.

Thus, σe is a well-behaved phase-5-strategy for b with σe ∈ ρ(σ0) and Iσe = Iσ \ {e}.
By Lemma 6.2.4 and the choice of i and j, it follows that ℓb(i, j, k) + 1 = ℓb+1(i, j, k). In
particular,

φσe(e) = ℓb(i, j, k) + 1 + 1 = ℓb+1(i, j, k) + 1 ≤

⌊
b+ 1

2

⌋
≤

⌊
(b+ 1) + 1− k

2

⌋
.

Thus, by choosing the parameter tb+1 = 1, which is feasible since i 6= 1, the occurrence

record of e is described by Table 5.6 when interpreted for b+ 1.

Now, the same arguments can be used for all improving switches e′ ∈ D1 ∩ Iσ with

φσ(e′) < m. All of these switches are thus applied and their occurrence records are

specified by Table 5.6 when interpreted for b+ 1. After the application of these switches,

we obtain a well-behaved phase-5-strategy σ for b with σ ∈ ρ(σ0) and

Iσ ={(di,j,k, Fi,j), (ei,j,k, g1) : σ(ei,j,k) = b2}

∪
m−1⋃

i=u+1
βi=0

{
e = (di,1−βi+1,∗, Fi,1−βi+1

) : φσ(e) = m
}
. (6.3)

In particular, all improving switches have an occurrence record of m. Thus, the tie-

breaking rule now applies a switch of the type (e∗,∗,∗, g1). Let i ∈ [n], j, k ∈ {0, 1} such

that e := (ei,j,k, g1) is the next applied improving switch.

Claim 11. Let ν = 1 and let σ denote the strategy obtained after applying all improving

switches with an occurrence record less than m during phase 5. Then, Lemma 6.2.32 can

be applied to describe the application of e = (ei,j,k, g1).

In fact, Claim 11 can be applied for any improving switch of the type (e∗,∗,∗, g1). Fur-
thermore, φσe(e) is specified by Table 5.6 when interpreted for b + 1 as ν = 1 implies

⌈b/2⌉+ 1 = ⌈(b+ 1)/2⌉. Depending on whether the conditions listed in the fourth case

of Lemma 6.2.32 are fulfilled, either

Iσe = (Iσe \ {e}) ∪ {(di,j,1−k, Fi,j), (gi, Fi,j)} or Iσe = (Iσe \ {e}) ∪ {(di,j,1−k, Fi,j)}.

In particular, ẽ := (di,j,1−k, Fi,j) becomes improving in either case. As formalized by the

following corollary, ẽ has an occurrence record of at least m. This corollary will be used in

later arguments, hence it is not a claim as we use the term claim solely for statements that

are only relevant within a single proof. Nevertheless, its proof is deferred to Appendix A.2.

Corollary 6.3.15. Let ν = 1 and i ∈ [n], j, k ∈ {0, 1}. If the edge ẽ = (di,j,1−k, Fi,j) becomes

improving during phase 5 due to the application of (ei,j,k, g1), then the corresponding strategy

has Property (OR4)i,j,1−k.
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Now, consider the case that (gi, Fi,j) becomes improving when applying (ei,j,k, g1). We

prove that this implies (gi, Fi,j) /∈ Aσe
σb
. The conditions stated in Lemma 6.2.32 imply that

the switch was not applied previously in phase 5. For the sake of a contradiction, assume

that (gi, Fi,j)was applied during phase 1 of the current transition. Then, by Corollary 6.3.2,
the cycle center Fi,j was closed during phase 1. Since (ei,j,k, g1) was applied immediately

before unlocking (gi, Fi,j), we have φσb(di,j,k, Fi,j) = m by Lemma 6.3.12. However, by

Corollary 6.3.2, a cycle center can only be closed during phase 1 if either i = ν or if the

occurrence record of both cycle edges is less than m. We thus need to have i = ν = 1. But
then βi = 1, implying that (gi, Fi,j) cannot become improving. Hence, a switch (gi, Fi,j)
that is unlocked during phase 5 was not applied earlier in the same transition if ν = 1.

Since φσe(gi, Fi,j) = φσb(gi, Fi,j), we have φσe(gi, Fi,j) ≤ φσb(di,j,k, Fi,j) = m by Ta-

ble 5.6. By Corollary 6.3.15, φσe(di,j,1−k, Fi,j) ≥ m. Therefore, the occurrence record

of any improving switch except (gi, Fi,j) is at least m. Thus, (gi, Fi,j) either uniquely
minimizes the occurrence record or has the same occurrence record as all other improving

switches. Consequently, by the tie-breaking rule, (gi, Fi,j) is applied next in either case.

We prove that row 2 of Table 6.7 applies to this switch. Since ν = 1, µσe = u > 1 and

βi = 0, it suffices to prove σe(egi,j) ∧ ¬σe(ebi,j). But this follows as we applied (ei,j,k, g1)
earlier and since Fi,j was mixed when this switch was applied. Observe that the following

corollary holds due to the conditions which specify when a switch (gi, Fi,j) is unlocked,
independent on ν.

Corollary 6.3.16. Let ν = 1. If an improving switch (gi, Fi,j) is applied during phase 5,
then the resulting strategy has Property (SVG)i/(SVM)i.

Let σ denote the strategy obtained after applying (ei,j,k, g1) (and potentially (gi, Fi,j) if it
became improving). Assume that there is an improving switch of the type (e∗,∗,∗, g1) ∈ Iσ.
Then, by Lemma 6.2.32 resp. row 2 of Table 6.7, σ is a phase-5-Strategy for b. By

our previous discussion, the occurrence records of all improving switches are at least m.

Among all improving switches with an occurrence record of exactly m, the tie-breaking

rule then decides which switch to apply. There are two types of improving switches.

Each switch is either of the form (d∗,∗,∗, F∗,∗j) or of the form (ei′,j′,k′ , g1) for indices

i′ ∈ [n], j′, k′ ∈ {0, 1} with σ(di′,j′,k′) = ei′,j′,k′ . Since every edge (e∗,∗,∗, g1) minimizes

the occurrence record among all improving switches, an edge of this type is chosen.

Let (ei′,j′,k′ , g1) denote this switch. Then, the same arguments used previously can be

used again. More precisely, Lemma 6.2.32 applies to this such a switch, making the

edge (di′,j′,1−k′ , Fi′,j′) and eventually also (gi′ , Fi′,j′) improving. Also, Corollaries 6.3.15

and 6.3.16 apply to these switches and another switch of the form (e∗,∗,∗, g1) is applied
afterwards. Thus, inductively, all remaining improving switches (e∗,∗,∗, g1) are applied.

Let σ denote the strategy that is reached before the last improving switch (e∗,∗,∗, g1) is
applied. We argue that this switch is e := (e1,1−β2,k, g1) for some k ∈ {0, 1} and that σ
has Property (SVG)i/(SVM)i for all i ∈ [n]. As the tie-breaking rule applies improving

switches in higher levels first, it suffices to prove that there there is a k ∈ {0, 1} such

that e ∈ Iσ(5) . This however follows from Lemma 6.3.12 as ν = 1 implies (1, β2) ∈ S3. It

remains to prove that σ has Property (SVG)i/(SVM)i for all i ∈ [n].
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Claim 12. If ν = 1, then the strategy σ obtained before the application of the switch

e := (e1,1−β2,k, g1) has Property (SVG)i/(SVM)i for all i ∈ [n].

Thus, Lemma 6.2.32 applies to e := (e1,βσ
2 ,k

, g1). Let σb+1 := σe denote the strategy

obtained by applying e. Then, as we assume that there are no further indices (i′, j′, k′)
such that (ei′,j′,k′ , g1) ∈ Iσb+1

, Lemma 6.2.32 implies that σb+1 is a phase-1-strategy for

b + 1 with σb+1 ∈ ρ(σ0). Since every edge was applied at most once during σb → σ(5)

by Lemma 6.3.12 and since no edge applied during σ(5) → σb+1 was applied earlier,

every edge was applied at most once as improving switch during σb → σb+1. We further-

more implicitly proved the following corollary where the second statement follows from

Corollary 6.3.15.

Corollary 6.3.17. Let ν = 1 and let σb+1 denote the strategy obtained after the application of

the final improving switch (e∗,∗,∗, g1). Let i ∈ [n] and j, k ∈ {0, 1}. Then, (di,j,k, Fi,j) ∈ A
σb+1

σ(5)

if and only if σb(di,j,k) = Fi,j , φ
σb(di,j,k, Fi,j) < m, i ∈ {u + 1, . . . ,m − 1}, βi = 0 and

j = 1− βi+1. In addition, σb+1 has Property (OR2)i,j,k.

It remains to prove that σb+1 is a canonical strategy for b+ 1 with Iσb+1
= Dσb+1 .

We begin with the second statement. This can be proven by using the characterization

given in Equation (6.3) and showing Iσ ⊆ Dσb+1 and Iσ ⊇ Dσb+1 .

Claim 13. It holds that Iσb+1
= {(di,j,k, Fi,j) : σb+1(di,j,k) 6= Fi,j}.

To simplify notation, let σ := σb+1. We now prove that σ is a canonical strategy for b,

concluding the case ν = 1. Since σ is a phase-1-strategy for b+ 1, it holds that b+ 1 = β.
Consider the conditions listed in Definition 5.1.2 resp. 5.2.1. Condition 1 is fulfilled

since σ(e∗,∗,∗) = g1 and ν = 1. Condition 2(a) is fulfilled since βσ
i = (b+ 1)i = 1 implies

σ(bi) = gi by Property (EV1)i for every i ∈ [n]. Consider condition 2(b) and let i ∈ [n].
If (b+ 1)i = 1, then Fi,(b+1)i+1

is closed by Property (EV1)i. We prove that (b+ 1)i = 1
implies that Fi,j with j := 1− (b+ 1)i+1 cannot be closed.

Consider σ(5) and let k ∈ {0, 1}. Then, σ(5)(di,j,k) = Fi,j if and only if βσ(5)

i = 1∧βσ(5)

i+1 =

j. Hence, σ(5)(di,j,0) 6= Fi,j and it suffices to show that e := (di,j,0, Fi,j) was not applied

during σ(5) → σ. By Corollary 6.3.17, it suffices to show φσ(5)
(e) ≥ m. By Lemma 6.2.3, it

holds that ℓb(i, j, 0) ≥ m. Since ν = 1, Property (OR4)i,j,0 implies φσb(e) 6= ℓb(i, j, 0)− 1,

hence φσ(5)
(e) ≥ φσb(e) ≥ m. Consequently, condition 2(b) is fulfilled. Condition 2(c) is

fulfilled by βσ = b+ 1 and Property (EV2)∗.

Conditions 3(a) and 3(b) are fulfilled since σ has Property (EV1)∗. Consider condi-

tion 3(c) and let i ∈ [n]. We prove that (b + 1)i = 0, j = 1 − (b + 1)i+1 and σ(di,j)
imply σ(gi) = Fi,j . Since Sn is a sink game and Mn is weakly unichain, Fi,j being closed

implies rVal∗σ(Fi,j) = rVal∗σ(si,j). Thus, Val
∗
σ(Fi,j) = Jsi,jK ⊕ Val∗σ(g1) by the choice of j

and since ν = 1. As shown by Lemmas 6.1.15 and 6.1.16, µσ 6= 1, σ(egi,1−j),¬σ(ebi,1−j)
and 1− j = βi+1 implies Val∗σ(Fi,1−j) = {Fi,1−j , di,1−j,k, ei,1−j,k, b1} ∪Val∗σ(g1) for some

k ∈ {0, 1}. But this implies σ(gi) = Fi,j since (gi, Fi,1−j) ∈ Iσ otherwise, contradicting

Iσ = {(di,j,k, Fi,j) : σ(di,j,k) = Fi,j}. Consider condition 3(d) and let i ∈ [n] and let j := 0
if Gn = Sn and j := βi+1 if Gn = Mn. It suffices to prove Val∗σ(Fi,j) ≻ Val∗σ(Fi,1−j) if
none of the cycle centers are closed. For Gn = Mn, this follows from Lemma 6.2.1 or an
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easy calculation using i ≥ 1 = ν. For Gn = Sn, this follows from Ω(Fi,0) > Ω(Fi,1) and
since both priorities are even.

Conditions 4 and 5 follow easily since σ has Property (USV1)∗. For condition 6, let

i := ℓ(b + 2), j := (b + 1)i+1 and k ∈ {0, 1}. Since ℓ(b + 1) = 1, we have i ≥ 2 and

bi = (b+ 1)i = 0 as well as bi+1 = (b+ 1)i+1 = j. We prove σ(di,j,k) 6= Fi,j . For the sake

of a contradiction, let σ(di,j,k) = Fi,j . Then, by the choice of i and j and Lemma 6.3.12, it

holds that(di,j,k, Fi,j) ∈ Aσ
σ(5) . Thus, by Corollary 6.3.17 and Property (OR2)i,j,k, it holds

that φσ(5)
(di,j,k, Fi,j) < m and φσb(di,j,k, Fi,j) = ℓb(i, j, k) + 1. But, by Lemma 6.2.3, we

have

ℓb(i, j, k) =

⌈
b+ 2i−1 +

∑
(b, i) + 1− k

2

⌉
≥

⌈
b+ 3− k

2

⌉
=

⌊
b+ 2− k

2

⌋
,

which is a contradiction. Hence, σ(di,j,k) 6= Fi,j .

This concludes the case ν = 1. We now prove the same statements for the case ν > 1.

Consider the case ν > 1. Then, b is odd and m = ⌊b/2⌋+1. By Lemma 6.3.12, applying

improving switches according to Zadeh’s pivot rule and the tie-breaking rule given in

Definition 5.3.5 yields a well-behaved phase-5-strategy σ for b with σ ∈ ρ(σ0) and µσ = u.
In addition

Iσ = {(di,j,k, Fi,j), (ei,j,k, b2) : σ(ei,j,k) = g1}

∪
ν−1⋃

i=1

{(di,1−βi+1,∗, Fi,1−βi+1
)} ∪X0 ∪X1,

(6.4)

where Xk is defined as in Table 5.9.

To deduce which improving switch is applied next, it is necessary to analyze their

occurrence records.

Claim 14. Let ν > 1. The occurrence records of the improving switches with respect to

the phase-5-strategy σ described by Lemma 6.3.12 is described correctly by Table 6.8.

We partition Iσ into three subsets, based on their occurrence records. An improving

switch e ∈ Iσ is called

• type 1 switch if φσ(e) = m

• type 2 switch if φσ(e) = m− 1 and

• type 3 switch if φσ(e) < m− 1.

By Zadeh’s pivot rule, type 3 switches are applied first, and we discuss the application

of these switches next.

Claim 15. Let ν > 1 and consider the first phase-5-strategy. The application of type 3
switches is described by row 1 of Table 6.7.

Let i ∈ [n], j, k ∈ {0, 1} and let e = (di,j,k, Fi,j) denote the type 3 switch that is applied

next. We show that Table 5.6 specifies the occurrence record of e after its application

when interpreted for b + 1. Consider the case i ∈ {ν + 1, . . . ,m − 1}, βi = 0, j =
1 − βi+1 and k ∈ {0, 1} first. Since e is a type 3 switch, it holds that σb(di,j,k) = Fi,j ,
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Switch e (di,j,k, Fi,j) (ei,j,k, b2) (dν,1−bν+1,k, Fν,1−bν+1)

Condition σ(ei,j,k) = g1 –

φσ(e) = m = m− 1 = m

Switch e (di,j,k, Fi,j)

Condition
i ∈ {ν + 1, . . . ,m}, bi = 0, j = 1− bi+1, k ∈ {0, 1}

σb(di,j,k) = Fi,j σb(di,j,k) 6= Fi,j

φσ(e) ≤ m− 1 = m

Switch e (di,j,k, Fi,j)

Condition
i ≤ ν − 1, j = 1− bi+1

i = 1 i = 2 i = 3 i > 3

φσ(e) m = m− k = m− 1− k < m− 1

Table 6.8.: Occurrence records of the improving switches at the beginning of phase 5 for ν > 1.

implying φσb(e) = ℓb(i, j, k) + 1 by Property (OR2)i,j,k. Thus, the statement follows since

ℓb+1(i, j, k) = ℓb(i, j, k) + 1 by Lemma 6.2.6. Now consider the case i ≤ ν − 1. Then, Fi,j

was closed with respect to σb and j = bi+1 = 1− βi+1. It is easy to verify that this implies

φσb(e) = ⌈(b−
∑

(b, i) + 1− k)/2⌉. Since (b + 1)i = 0 ∧ (b + 1)i+1 6= j and the switch

e is applied, it suffices to prove ℓb+1(i, j, k) = ⌈(b−
∑

(b, i) + 1− k)/2⌉ as we can then

choose tb+1 = 1 as feasible parameter. This however follows directly from

ℓb+1(i, j, k) =

⌈
b+ 1− 2i−1 +

∑
(b+ 1, i) + 1− k

2

⌉
=

⌈
b+ 1− 2i−1 + 1− k

2

⌉

=

⌈
b+ 1 +

∑
(b, i)− 1 + 1− k

2

⌉
=

⌈
b−

∑
(b, i) + 1− k

2

⌉
.

Note that we do not prove yet that choosing this parameter is in accordance with Properties

(OR1)∗,∗,∗ to (OR4)∗,∗,∗. Since e is a type 3 switch, this furthermore implies φσe(e) ≤
m − 1 = ⌊(b+ 1 + 1)/2⌋ − 1. Hence, σe has Property (OR1)i,j,k and we have implicitly

proven the following corollary.

Corollary 6.3.18. Let ν > 1 and i ∈ [n], j, k ∈ {0, 1}. Every switch e = (di,j,k, Fi,j) with
φσb(e) < m− 1 is applied during phase 5, and the resulting strategy has Property (OR1)i,j,k.

Now, the first row of Table 6.7 and the corresponding arguments can be applied for

every improving switch of type 3. Thus, we obtain a phase-5-strategy σ ∈ ρ(σ0) such that

every improving switch is of type 1 or 2. The next improving switch that is applied has an

occurrence record of ⌊(b+ 1)/2⌋ − 1, i.e., it is of type 2, so we discuss the application of

these switches next.

Since any improving switch is either of the form (d∗,∗,∗, F∗,∗) or (e∗,∗,∗, b2) and since the

latter switches are of type 2, some improving switch (e∗,∗,∗, b2) is applied next due to the

tie-breaking rule.
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Claim 16. Let ν > 1 and let σ denote the strategy obtained after the application of all

improving switches of type 3 during phase 5. The application of type 2 switches of the

form (e∗,∗,∗, b2) is described by row 1 of Lemma 6.2.32.

Let i ∈ [n], j, k ∈ {0, 1} and let e = (ei,j,k, b2) denote the applied improving switch. Then,

Table 5.6 describes the occurrence record of e after the application when interpreted for

b+1 since φσe(e) = φσb(e)+1 = ⌊b/2⌋+1 = m. Now, by Lemma 6.2.32, (di,j,1−k, Fi,j) ∈ Iσe
and the edge (gi, Fi,j) might become improving for σe. The strategy σe is now either a

phase-5-strategy for b or a phase-1-strategy for b+ 1. The following corollary which is

proven in Appendix A.2 now describes the improving switch (di,j,1−k, Fi,j) in more detail.

Corollary 6.3.19. Let i ∈ [n], j, k ∈ {0, 1} and let σ denote the strategy obtained after the

application of an improving switch (ei,j,k, b2) during phase 5. If (di,j,1−k, Fi,j) ∈ Iσ, thenσ
has Property (OR4)i,j,1−k and it holds that mink′∈{0,1} φ

σb(di,j,k′ , Fi,j) ≤ m− 1.

We now use Corollary 6.3.19 to prove that e := (gi, Fi,j) is applied next if it becomes

improving. For simplicity, let σ denote the current strategy that was obtained by applying

an improving switch (ei,j,∗, b2) according to Lemma 6.2.32.

By the tie-breaking rule and Corollary 6.3.19, it suffices to prove

φσ(gi, Fi,j) ≤

⌊
b+ 1

2

⌋
− 1. (6.5)

Since Table 5.6 and Corollary 6.3.19 yield

φσb(gi, Fi,j) ≤ min
k′∈{0,1}

φσb(di,j,k′ , Fi,j) ≤

⌊
b+ 1

2

⌋
− 1,

it suffices to prove (gi, Fi,j) /∈ Aσ
σb
.

Claim 17. Let i ∈ [n], j, k ∈ {0, 1} and let σ denote the strategy obtained after the

application of an improving switch (ei,j,k, b2) during phase 5. If (gi, Fi,j) ∈ Iσ, then
(gi, Fi,j) /∈ Aσ

σb
.

Due to the tie-breaking rule, (gi, Fi,j) is thus applied next. We prove that row 2 of

Table 6.6 applies to the application of e.
First, βi = 0 follows from the conditions of Lemma 6.2.32. Second, σ(ebi,j) ∧ ¬σ(egi,j)

follows as the cycle center Fi,j was mixed earlier and since we just applied (ei,j,k, b2).
To prove that σ(di′,j′) ∨ [σ(ebi′,j′) ∧ ¬σ(egi′,j′)] holds for all i′ ≥ i and j ∈ {0, 1}, fix
some i′ ≥ i and j′ ∈ {0, 1}. If βi′ = 1 ∧ βi′+1 = j′, then the statement follows from

Property (EV1)i′ . We may hence assume βi′ = 0 ∨ j′ 6= βi+1 and that Fi′,j′ is not closed.

Then, by Lemma 6.3.12, either σ(ebi′,j′) ∧ σ(egi′,j′) or σ(ebi′,j′) ∧¬σ(egi′,j′). Assume that

the first case was true, implying i′ 6= i. Then, σ(ei′,j′,k) = g1 and σ(di′,j′,k) = ei′,j′,k for

some k ∈ {0, 1}. This in particular implies (ei′,j′,k, b2) ∈ Iσ. But this is a contradiction to

the fact that we apply improving switches according to the tie-breaking rule since i′ > i
implies that the switch (ei′,j′,k, b2) is applied before the switch (ei,j′,k, b2).
Hence, all requirements of the second row of Table 6.7 are met. Further note that

the strategy obtained after applying the switch has Property (SVG)i/(SVM)i due to the

conditions described in Lemma 6.2.32. In particular, Corollary 6.3.16 also holds for ν > 1.
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After the application of (ei,j,k, b2) (or (gi, Fi,j) if it becomes improving), the tie-breaking

rule determines which switch is applied next. Since (di,j,1−k, Fi,j) has an occurrence

record of at least m − 1, another switch of the type (e∗,∗,∗, b2) is applied. But then, the
same arguments used previously can be applied again. That is, we can apply some

switch (ei′,j′,k′ , b2), making (di′,j′,1−k′ , Fi′,j′) improving, and eventually making (gi′ , Fi′,j′)
improving as well. The switch (gi′ , Fi′,j′) is applied immediately (if it becomes improving)

whereas the other switch is not applied. Then, inductively, all remaining switches of the

form (e∗,∗,∗, b2) are applied.

Let σ denote the strategy that is reached after applying the final improving switch of

the type (e∗,∗,∗, b2). We prove that σ has Property (SV*)1 if (g1, F1,j) does not become

improving and Property (SV*)i for all i ≥ 2. We first determine which is the last switch of

the form (e∗,∗,∗, b2) that will be applied. It holds that (1, β2) ∈ S2, implying (e1,β2,k, b2) ∈
Iσ(5) for some k ∈ {0, 1} by Lemma 6.3.12. Due to the tie-breaking rule, this is thus

the last switch of the form (e∗,∗,∗, b2) that will be applied. This might also unlock the

corresponding improving switch (g1, F1,β2). Let σ denote the strategy obtained after the

application of the switch (e1,β2,k, b2) resp. after the application of the switch (g1, F1,β2) if
it becomes improving.

Claim 18. Let ν > 1. The strategy σ obtained after the application of the final improving

switch of phase 5 has Property (SV*)i for all i ∈ [n].

Thus, by Lemma 6.2.32 resp. the row 2 of Table 6.7, σ is a well-behaved phase-1-strategy

for b+ 1 with σ ∈ ρ(σ0). It remains to show that σ is a canonical strategy for b+ 1 with

Iσ = {(di,j,k, Fi,j) : σ(di,j,k) 6= Fi,j}. This is formalized by the two following claims whose

proofs can be found in Appendix A.2. The first statement is again shown by proving that

the two sets are contained in each other. The proof of the second statement is analogous

to the corresponding statement for ν = 1 and is thus deferred to the appendix.

Claim 19. Let σ denote the strategy obtained after applying the final improving switch of

phase 5 for ν > 1. Then Iσ = {(di,j,k, Fi,j) : σ(di,j,k) 6= Fi,j}.

Claim 20. Let σ denote the strategy obtained after applying the final improving switch of

phase 5 for ν > 1. Then σ is a canonical strategy for b+ 1.

This concludes the case ν > 1 and hence proves the statement.

Using the previous similar corollaries of this type, it follows that we also implicitly

proved the following corollary.

Corollary 6.3.20. Let σb+1 be the canonical strategy for b + 1 calculated by the strategy

improvement algorithm as described by Lemma 6.3.14. Then, Table 5.6 specifies the occurrence

record of every improving switch applied until reaching σb+1, excluding switches (g∗, F∗,∗),
when interpreted for b+ 1. In addition, each such switch was applied once.

It remains to prove that the canonical strategy σb+1 fulfills the canonical conditions and

to investigate the occurrence records of edges of the type (g∗, F∗,∗). By Corollary 6.3.20,

it suffices to prove that σb+1 has Properties (OR1)∗,∗,∗ to (OR4)∗,∗,∗ and that Table 5.6

specifies the occurrence records of all edges that were not applied during σb → σb+1.
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We begin by investigating the canonical properties. The following statement is required

when discussing Properties (OR1)∗,∗,∗ to (OR4)∗,∗,∗. It states that the occurrence record

of the cycle edges of Fℓ(b+2),1−(b+2) are large if b is even and will be used repeatedly. This

is useful as the canonical properties with respect to σb+1 depend on b+ 2. Its proof can
be found in Appendix A.2.

Lemma 6.3.21. Let b ∈ Bn be even, i := ℓ(b + 2) and j := 1 − (b + 2)i+1. If b + 2
is a power of 2, then φσb(di,j,∗, Fi,j) = m. Otherwise, φσb(di,j,0, Fi,j) = ⌊(b+ 1)/2⌋ and

φσb(di,j,1, Fi,j) = m− 1. In any case, σb(di,j,k) 6= Fi,j for both k ∈ {0, 1}.

We now prove that σb+1 has Properties (OR1)∗,∗,∗ to (OR4)∗,∗,∗.

Lemma 6.3.22. Let σb+1 denote the canonical strategy calculated by the strategy improve-

ment algorithm as described by Lemma 6.3.14. Then σb+1 has Properties (OR1)∗,∗,∗ to

(OR4)∗,∗,∗.

Proof. To simplify notation, let σ := σb+1. We first prove that σ has Properties (OR1)∗,∗,∗,

(OR2)∗,∗,∗ and (OR4)∗,∗,∗ and discuss Property (OR3)∗,∗,∗ at the end.

Consider the case ν > 1 first. Let i ∈ [n], j, k ∈ {0, 1} and consider Property (OR4)i,j,k.

We prove that any improving switch has an occurrence record of either m or m − 1 as

m = ⌊(b+ 1 + 1)/2⌋ due to ν > 1. Any e ∈ Iσ was either improving for σ(5) or became

improving when transitioning from σ(5) to σ. As shown in the proof of Lemma 6.3.14,

all improving switches not applied during phase 5 had an occurrence record of at least

m− 1. More precisely, this was shown implicitly when giving the characterization of the

improving switches. Also, the occurrence records of these edges are at most m, proving

the statement for these edges. For improving switches that were unlocked during phase 5,

the statement follows by Corollary 6.3.19. Hence, σ has Property (OR4)i,j,k.

We prove that σ has Property (OR2)∗,∗,∗ and Property (OR1)∗,∗,∗. Consider some indices

i ∈ [n], j ∈ {0, 1} with βi = 0 ∨ βi+1 6= j and let k ∈ {0, 1}. We prove

σ(di,j,k) = Fi,j ⇐⇒ φσ(di,j,k, Fi,j) = ℓb+1(i, j, k) + 1. (6.6)

Let σ(di,j,k) = Fi,j . Then, since σ(5)(di,j,k) 6= Fi,j by the choice of i and j and Ta-

ble 5.8, the switch was applied during σ(5) → σ. Consequently, the edge (di,j,k, Fi,j)
was not applied as improving switch before phase 5 as switches are applied at most

once by Corollary 6.3.20. Thus, φσb(di,j,k, Fi,j) = φσ(5)
(di,j,k, Fi,j) < m − 1. But this

implies σb(di,j,k) = Fi,j since the switch would have been applied in phase 1 otherwise.

Consequently, by Lemma 6.2.6,

φσ(di,j,k, Fi,j) = φσb(di,j,k, Fi,j) + 1 = ℓb(i, j, k) + 1 + 1 = ℓb+1(i, j, k) + 1 ≤ m− 1.

This implies both “⇒” of the equivalence (6.6) as well as Property (OR1)i,j,k.

Now, let φσ(di,j,k, Fi,j) = ℓb+1(i, j, k)+1. We prove that this implies σ(di,j,k) = Fi,j . First,

φσ(di,j,k, Fi,j) = ℓb+1(i, j, k) + 1 ≤ ⌊(b+ 1 + 1− k)/2⌋ implies ℓb+1(i, j, k) ≤ ⌊(b− k)/2⌋.
By Lemma 6.2.3, this implies that βi+1 = 1 − j. Consider the case bi = 0 ∧ bi+1 6= j.
Then, φσb(di,j,k, Fi,j) = min(⌊(b+ 1− k)/2⌋ , ℓb(i, j, k) + tb) for some tb feasible for b.
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Assume φσb(di,j,k, Fi,j) 6= ℓb(i, j, k) + tb for all feasible parameters and note that this

implies φσb(di,j,k, Fi,j) = ⌊(b+ 1− k)/2⌋. Then φσ(di,j,k, Fi,j) < ℓb(i, j, k) + 1, implying

ℓb+1(i, j, k) = ℓb(i, j, k) + 1 >

⌊
b+ 1− k

2

⌋
+ 1 =

⌊
b+ 3− k

2

⌋
≥

⌊
b+ 1 + 1− k

2

⌋

which is a contradiction. Consequently, φσb(di,j,k, Fi,j) = ℓb(i, j, k)+tb for some feasible tb.
Assume φσ(di,j,k, Fi,j) = ℓb(i, j, k). Then

φσ(di,j,k, Fi,j) = ℓb+1(i, j, k) + 1 = ℓb(i, j, k) + 2 = φσb(di,j,k, Fi,j) + 2,

implying that the switch would have been applied twice during σb → σ. This is a

contradiction. The same contradiction follows if we assume φσb(di,j,k, Fi,j) = ℓb(i, j, k)−1.
Hence, it holds that φσb(di,j,k, Fi,j) = ℓb(i, j, k) + 1, implying σb(di,j,k) = Fi,j . Since

ℓb(i, j, k) = ℓb+1(i, j, k)− 1, this also implies that the switch was indeed applied during

the transition. However, σb(di,j,k) = Fi,j implies that the switch was not applied during

phase 1 of that transition. But then it must have been applied in phase 5, implying

σ(di,j,k) = Fi,j .

We now show that the same holds if bi = 1 and bi+1 = j, implying i < ν. This then
yields

φσb(di,j,k, Fi,j) =

⌈
lfn(b, i, {(i+ 1, j)}) + 1− k

2

⌉
=

⌈
b− 2i−1 + 1 + 1− k

2

⌉

=

⌈
b+ 1− 2i−1 + 1− k

2

⌉
= ℓb+1(i, j, k).

Since φσ(di,j,k, Fi,j) = ℓb+1(i, j, k) + 1, this implies that the switch was applied during

phase 5 of σb → σ. Consequently, σ(di,j,k) = Fi,j . This proves “⇐” and hence the

equivalence (6.6). Most importantly, σ thus has Property (OR2)i,j,k.

Now assume ν = 1. Let i ∈ [n], j, k ∈ {0, 1} and consider Property (OR4)i,j,k. We prove

that e := (di,j,k, Fi,j) ∈ Iσ implies that e has an occurrence record of ⌊(b+ 2)/2⌋ − 1 = m

or ⌊(b+ 2)/2⌋ = m+ 1. It is easy to verify that for such an edge e, one of the following

cases holds.

• e ∈ Iσ′ for all σ′ ∈ ρ(σb), i.e., the switch was improving during the complete

transition. Then, φσ(e) = φσb(e) = m by Corollary 6.3.3.

• There is a strategy σ′ ∈ ρ(σ(5)) with (di,j,k, Fi,j) ∈ Iσ′ but (di,j,k, Fi,j) /∈ Iσ(5) . That

is, the switch became improving during phase 5. Then, σ has Property (OR4)i,j,k by

Corollary 6.3.15.

• The edge e became an improving switch when applying (b1, g1) at the end of phase 3.
Then i ∈ {u+ 1, . . . ,m− 1}, j = 1− βi+1 and βi = 0. Thus, by the characterization

of Iσ given in the beginning of the proof of Lemma 6.3.14, φσ(di,j,k, Fi,j) = m since

the switch would have been applied during phase 5 otherwise.

Thus, σ has Property (OR4)i,j,k.

Now let i ∈ [n] and j ∈ {0, 1} with βi = 0 ∨ βi+1 6= j, let k ∈ {0, 1} and consider

Property (OR2)i,j,k. Then σ(5)(di,j,k) 6= Fi,j by Lemma 6.3.12. We again prove that σ
fulfills the equivalence (6.6) and that σ has Property (OR1)i,j,k simultaneously.

175



6. Technical Details of the Exponential Lower Bound Construction

Let σ(di,j,k) = Fi,j . By Lemma 6.3.12, (di,j,k, Fi,j) ∈ Aσ
σ(5) . Since improving switches

are applied at most once per transition, this implies

φσ(5)
(di,j,k, Fi,j) = φσb(di,j,k, Fi,j) < m

and σb(di,j,k) = Fi,j by Corollary 6.3.17. Thus, by Property (OR2)i,j,k and Lemma 6.2.6,

φσb(di,j,k, Fi,j) = ℓb(i, j, k) + 1 = ℓb+1(i, j, k). Hence

φσ(di,j,k, Fi,j) = φσ(5)
(di,j,k, Fi,j) + 1 = ℓb+1(i, j, k) + 1 < m+ 1 =

⌊
b+ 2

2

⌋

by integrality. Thus, “⇒” as well as Property (OR1)i,j,k follow.

Let φσ(di,j,k, Fi,j) = ℓb+1(i, j, k) + 1. By Lemma 6.3.12. σ(5)(di,j,k) = Fi,j if and only if

βi = 1 ∧ βi+1 = j. It thus suffices to prove (di,j,k, Fi,j) ∈ Aσ
σ(5) . By Corollary 6.3.17, we

thus need to show that

1. φσb(di,j,k, Fi,j) < m ∧ σb(di,j,k) = Fi,j ,

2. βi = 0 ∧ βi+1 6= j and

3. i ∈ {u+ 1, . . . ,m− 1}.

Since

φσ(di,j,k, Fi,j) = ℓb+1(i, j, k) + 1 ≤

⌊
b+ 1 + 1− k

2

⌋
, (6.7)

Lemma 6.2.3 implies that βi = 0∧βi+1 = 1− j,. Consequently since ν = 1 implies that no

bit switches from 1 to 0, it follows that bi = 0 ∧ bi+1 = 1− j. This implies that there is a

feasible tb with φσb(di,j,k, Fi,j) = min(⌊(b+ 1− k)/2⌋ , ℓb(i, j, k) + tb). Note that tb 6= −1
due to the parity of b and Property (OR3)i,j,k. We prove that φσb(di,j,k, Fi,j) = ℓb(i, j, k)+1
by ruling out the other possible cases.

• Assume φσb(di,j,k, Fi,j) = ⌊(b+ 1− k)/2⌋ and that neither 0 nor 1 are feasible

parameters. As i 6= ν, this implies ℓb+1(i, j, k) = ℓb(i, j, k) + 1 > ⌊(b+ 1− k)/2⌋.
But then ℓb+1(i, j, k) + 1 > ⌊(b+ 1 + 1− k)/2⌋ , contradicting Equation (6.7).

• Next assume φσb(di,j,k, Fi,j) = ℓb(i, j, k). Then, since ℓb(i, j, k) = ℓb+1(i, j, k) − 1,
the switch (di,j,k, Fi,j) would have been switched twice during σb → σ. This is a
contradiction.

Hence φσb(di,j,k, Fi,j) = ℓb(i, j, k) + 1. It remains to prove i ∈ {u+ 1, . . . ,m− 1}. Since
i ≥ m implies ℓb(i, j, k) ≥ b, this implies that we need to have i < m as we have

φσb(di,j,k, Fi,j) = ℓb(i, j, k) + 1 < m. Also, assuming i = u yields φσb(di,j,k, Fi,j) ≥ m

as discussed earlier. Consequently, all of the three necessary conditions hold, so Corol-

lary 6.3.17 implies the direction “⇐” of the equivalence (6.6). Thus, σ has Properties

(OR1)∗,∗,∗, (OR2)∗,∗,∗ and (OR4)∗,∗,∗ if ν = 1.

It remains to prove that σ has Property (OR3)∗,∗,∗. Property (OR3)i,j,k states that

φσ(di,j,k, Fi,j) = ℓb+1(i, j, k)− 1∧φσ(di,j,k, Fi,j) 6= ⌊(b+ 1 + 1− k)/2⌋ if and only if b+1
is odd, b + 2 is not a power of 2, i = ℓ(b + 2), j 6= (b + 2)i+1 and k = 0. We first prove

the “if” part. Since b + 1 is odd, b is even. As b + 2 is not a power of 2 by assumption,

φσb(di,j,0, Fi,j) = m and φσb(di,j,1, Fi,j) = m−1 as well σb(di,j,k) 6= Fi,j for both k ∈ {0, 1}
by Lemma 6.3.21. Consider phase 1 of σb → σ. Then, (di,j,1, Fi,j) is applied in this phase
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by Corollary 6.3.3. Thus, by the tie breaking rule, (di,j,0, Fi,j) is not applied during phase 1.
Since no switch with an occurrence record of m is applied during phase 5, the switch is

also not applied during phase 5. Consequently,

φσ(di,j,0, Fi,j) = φσb(di,j,0, Fi,j) =

⌊
b+ 1

2

⌋
=

⌊
b+ 1 + 1

2

⌋
− 1

since b+ 1 is odd. It remains to show ℓb+1(i, j, 0) = ⌊(b+ 1 + 1)/2⌋. Since b+ 1 is odd,

ℓ(b+2) 6= ν and bi = 0. Hence, ℓb+1(i, j, 0) = ℓb(i, j, 0)+1 = ⌊b/2⌋+1 = ⌊(b+ 1 + 1)/2⌋
by Lemma 6.2.6. Thus, the “if” part is fulfilled.

The “only if” part can be show using contraposition by dividing the proof into several

small statements, each proving that one of the conditions is necessary. We state all of the

statements here and defer their proofs to Appendix A.2. More precisely, the following

statements imply the “only if” part:

Claim 21. Let i ∈ [n], j, k ∈ {0, 1} and consider the two equations

φσ(e) 6= ℓb+1(i, j, k)− 1, (6.8)

φσ(e) =

⌊
b+ 1 + 1− 2

2

⌋
. (6.9)

1. If j = (b+ 2)i+1, then either Equation (6.8) or Equation (6.9) holds.

2. If i 6= ℓ(b + 2) and j 6= (b + 2)i+1, then either Equation (6.8) or Equation (6.9)

holds.

3. If b+ 1 is even, i = ℓ(b+ 2) and j 6= (b+ 2)i+1, then Equation (6.9) holds.

4. If b + 1 is odd, i = ℓ(b + 2), j = 1 − (b + 2)i+1, k ∈ {0, 1} and b + 2 is a power of

two, then Equation (6.9) holds.

5. If b is even, i = ℓ(b+ 2), j 6= (b+ 2)i+1, k = 1 and b+ 2 is not a power of two, then

Equation (6.9) holds.

This show that σ has Property (OR3)∗,∗,∗ and thus yields the statement.

Reaching a canonical strategy part II: The occurrence records

It now remains to prove that Table 5.6 specifies the occurrence records with respect to the

canonical strategy σb+1 for b+ 1 when it is interpreted for b+ 1. This then implies that

σb+1 has the canonical properties which can then be used to give inductive proofs of the

main statements of Section 5.3.

As in particular the investigation of edges of the type (g∗, F∗,∗) is rather involved, we
show two separate statements and consider all other edges first.

Lemma 6.3.23. Let σb+1 be the canonical strategy for b + 1 calculated by the strategy

improvement resp. policy iteration algorithm when starting with a canonical strategy σb
having the canonical properties as described by Lemma 6.3.14. Then, Table 5.6 specifies the

occurrence records of all edges e ∈ E0 but edges of the type (g∗, F∗,∗) that were applied during

σb → σb+1.
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Proof. There are two types of edges. Each edge was either applied as improving switch

when transitioning from σb to σb+1 or was not applied as an improving switch. We already

proved that Table 5.6 specifies the occurrence records of all improving switch that were

applied, with the exception of switches (g∗, F∗,∗). It thus suffices to consider switches that

were not applied when transitioning from σb to σb+1. We thus identify edges that were

not applied as improving switches and prove that their occurrence records are described

by Table 5.6. To simplify notation, let σ := σb+1.

Let ν > 1 and let i ∈ [n], j, k ∈ {0, 1} be suitable indices. We first prove the statement

for all edges that are not of the type (d∗,∗,∗, F∗,∗).

1. Consider edges of the type (bi, ∗). Since ν > 1, the edges (bi, bi+1) for i ∈ [ν − 1] as
well as the edge (bν , gν) were applied as improving switches. Let e = (bi, bi+1) and
i ≥ ν. Then φσ(e) = fl(b, i)−bi = fl(b+1, i)−(b+1)i since either fl(b, i) = fl(b+1, i)
and bi = (b+ 1)i+1 (if i > ν) or fl(b+ 1, i) = fl(b, i) + 1 and bi = 0, (b+ 1)i = 1 (if

i = ν). Let e = (bi, gi) for i 6= ν. Then, by Lemma 6.2.6, φσ(e) = fl(b, i) = fl(b+1, i).

2. Consider some edge (gi, Fi,j) that was not applied during σb → σ. Then, the upper

bound remains valid as it can only increase.

3. Consider some vertex si,j . Since ν > 1, the edges (sν−1,1, hν−1,1), (sν−1,0, b1) as well
as the edges (si,0, hi,0), (si,1, b1) for i ∈ [ν − 2] were switched. It thus suffices to

consider indices i ≥ ν. For these edges, the choice of i implies

φσ(si,j , b1) = fl(b, i+ 1)− j · bi+1 = fl(b+ 1, i+ 1)− j · (b+ 1)i+1,

φσ(si,j , hi,j) = fl(b, i+ 1)− (1− j)bi+1 = fl(b+ 1, i+ 1)− (1− j)(b+ 1)i+1.

4. For e = (ei,j,k, g1), Table 5.6 implies φσ(ei,j,k, g1) = ⌈b/2⌉ = ⌈(b+ 1)/2⌉ since ν > 1.

5. For e = (di,j,k, ei,j,k), we need to prove φσ(e) ≤ φσ(ei,j,k, g1) = ⌈(b+ 1)/2⌉ since b is

odd. This follows from φσ(e) ≤ φσb(e)+1 ≤ ⌊b/2⌋+1 = ⌊(b+ 2)/2⌋ = ⌈(b+ 1)/2⌉ .

Let i ∈ [n], j, k ∈ {0, 1} and consider some edge e = (di,j,k, Fi,j) that was not switched

during σb → σ. We distinguish the following cases.

1. Let (bi = 1 ∧ bi+1 = j) and ((b + 1)i = 1 ∧ (b + 1)i+1 = j). Then, since any

intermediate strategy had Property (EV1)i, the cycle Fi,j was always closed during

σb → σ. Thus i 6= ν, implying lfn(b, i, {(i + 1, j)}) = lfn(b + 1, i, {(i + 1, j)}).
Therefore, φσ(e) is described by Table 5.6.

2. Let (bi = 1 ∧ bi+1 = j) and (b + 1)i = 0, implying i < ν. Then bit i + 1 also

switched, so (b + 1)i = 0 ∧ (b + 1)i+1 6= j. Consequently, e was not switched

during phase 1 since Fi,j was closed with respect to any intermediate strategy due

to Property (EV1)i. It is however possible that such a switch is applied during

phase 5. Since i ≤ ν− 1, this switch is applied if and only if φσb(e) < m− 1. We may

thus assume φσb(e) ≥ m− 1 = ⌊(b− 1)/2⌋ and only need to consider the edge e if
⌊(lfn(b, i, {(i+ 1, j)}) + 2− k)/2⌋ ≥ ⌊(b− 1)/2⌋ . This inequality holds if and only

if one of the following three cases applies:

• lfn(b, i, {(i+ 1, j)}) + 2− k ≥ b− 1.

• lfn(b, i, {(i+ 1, j)}) + 2− k is even and lfn(b, i, {(i+ 1, j)}) + 2− k = b− 2.
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• lfn(b, i, {(i+ 1, j)}) + 2− k is odd and lfn(b, i, {(i+ 1, j)}) + 2− k = b.

These assumptions can only hold if i ∈ {1, 2} ∨ (i = 3 ∧ k = 0). It thus suffices to

consider three more cases.

For i = 1, it holds that

ℓb+1(i, j, k) =

⌈
b+ 1− 1 + 1− k

2

⌉
=

⌈
b+ 1− k

2

⌉
= φσ(e).

Similarly, for i = 2, it holds that

ℓb+1(i, j, k) =

⌈
b+ 1− 2 + 1− k

2

⌉
=

⌈
b− k

2

⌉
=

⌊
b+ 1− k

2

⌋
= φσ(e).

Finally, for i = 3 and k = 0,it holds that

ℓb+1(i, j, k) =

⌈
b+ 1− 4 + 1− k

2

⌉
=

⌈
b− 2− k

2

⌉
= φσ(e).

Hence, the parameter tb+1 = 0 can be chosen in all three cases.

3. Let (bi = 0 ∧ bi+1 6= j) and ((b + 1)i = 0 ∧ (b + 1)i+1 6= j), implying i > ν. First
let 1j=0lfn(b, i + 1) + 1j=1lufn(b, i + 1) = 0. Then ℓb(i, j, k) ≥ b by Lemma 6.2.3,

implying φσb(e) = ⌊(b+ 1− k)/2⌋. Since b is odd, ⌊(b+ 1− 1)/2⌋ < m. Hence,

(di,j,1, Fi,j) was applied during phase 1 of σb → σ and e = (di,j,0, Fi,j) /∈ Aσ
σb
. Thus,

since ℓb+1(i, j, k) ≥ b + 1 by the choice of i, choosing tb+1 = 0 yields the desired

characterization.

Let 1j=0lfn(b, i + 1) + 1j=1lufn(b, i + 1) 6= 0, implying i < m = max{i : βi = 1}.
Using i > ν ≥ 2, this yields

ℓb(i, j, k) =

⌈
b− 2i−1 +

∑
(b, i) + 1− k

2

⌉

=

⌈
b− 2i−1 +

∑ν−1
l=1 2l−1 +

∑i−1
l=ν+1 bl2

l−1 + 1− k

2

⌉

≤

⌈
b− 2i−1 + 2ν−1 − 1 + 2i−1 − 2ν + 1− k

2

⌉
=

⌈
b− 2ν−1 − k

2

⌉

≤

⌈
b− 2− k

2

⌉
=

⌊
b− 1− k

2

⌋
≤

⌊
b+ 1− k

2

⌋
− 1.

If σb(di,j,k) 6= Fi,j , this implies φσb(di,j,k, Fi,j) ≤ ℓb(i, j, k) ≤ ⌊(b+ 1− k)/2⌋ − 1.
Then, by Corollary 6.3.3 the switch was applied during phase 1. We may hence

assume σb(di,j,k) = Fi,j , implying φσb(e) = ℓb(i, j, k) + 1 ≤ ⌊(b+ 1− k)/2⌋ as well
as φσb(e) ≤ m − 1 by Property (OR1)i,j,k. As we assume e /∈ Aσ

σb
, it suffices to

consider the case φσ(e) = φσb(e) = ⌊(b+ 1)/2⌋− 1 since e is applied during phase 5

otherwise (see Corollary 6.3.19). Since ℓb+1(i, j, k) = ℓb(i, j, k)+1 by Lemma 6.2.6,

choosing tb+1 = 0 yields the desired characterization.
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4. Let bi = 0 ∧ bi+1 6= j and (b + 1)i = 1 ∧ (b + 1)i+1 6= j, so i = ν. The statement

follows by the same argument used earlier if 1j=0lfn(b, i+1)+1j=1lufn(b, i+1) = 0.
Hence consider the case 1j=0lfn(b, i+ 1) + 1j=1lufn(b, i+ 1) 6= 0. This implies that

we have ℓb(i, j, k) = ⌊(b+ 1− k)/2⌋ . Since σb is a canonical strategy for b, we

have σb(di,j,k) 6= Fi,j . If φσb(e) = ℓb(i, j, k), then φσb(e) = ⌊(b+ 1− k)/2⌋ and

the same arguments used in the third case can be used to show the statement.

If φσb(e) = ℓb(i, j, k) − 1, then φσb(e) = m − 1 since we need to have k = 0 by

Property (OR3)i,j,k. But this implies that e was switched during phase 1 and that

we do not need to consider it here.

5. Finally, let bi = 0∧bi+1 = j. It suffices to consider the case (b+1)i = 0∧(b+1)i+1 = j,
implying i > ν. If 1j=0lfn(b, i + 1) + 1j=1lufn(b, i + 1) = 0, then the statement

follows by the same arguments made earlier. Otherwise, we can also use the previous

same arguments since ℓb(i, j, k) > ⌊(b+ 1− k)/2⌋ implies φσ(e) = ⌊(b+ 1− k)/2⌋.

Now let ν = 1 and i ∈ [n], j, k ∈ {0, 1}. We again begin by proving the statement for all

edges that are not of the type (d∗,∗,∗, F∗,∗).

1. Consider edges of the type (bi, ∗). Since ν = 1, the only such edge that was applied

was (b1, g1). Let e = (bi, gi) and i 6= 1. Then, φσ(e) = φσb(e) = fl(b, i) = fl(b+ 1, i)
by Table 5.6 and Lemma 6.2.6 as required.

For e = (bi, bi+1) and i ∈ [n], we have φσ(e) = φσb(e) = fl(b, i) − bi. If i 6= 1, then
fl(b + 1, i) = fl(b, i) and bi = (b + 1)i. If i = 1, then fl(b + 1, i) = fl(b, i) + 1 and

bi = 0 as well as (b+ 1)i = 1. In both cases, the occurrence record is described by

Table 5.6.

2. Consider some edge (gi, Fi,j) that was not applied. Then, the upper bound can only

increase and thus remains valid.

3. Consider some vertex si,j . Then, since ν = 1, no edge (s∗,∗, ∗) was switched. The

statement then follows since fl(b, i+1)−(1−j)bi+1 = fl(b+1, i+1)−(1−j)(b+1)i+1

and fl(b, i+ 1)− j · bi+1 = fl(b+ 1, i+ 1)− j(b+ 1)i+1.

4. Consider some edge e = (ei,j,k, b2). Then, the statement follows directly as ν = 1
implies φσ(e) = φσb(e) = ⌊b/2⌋ = m.

5. Consider some edge of the type e = (di,j,k, ei,j,k) that was not applied. Then, ν = 1
implies that φσ(e) = φσb(e) ≤ ⌈b/2⌉ = ⌊(b+ 1)/2⌋ = ⌊b/2⌋. The upper bound is

thus valid for σ since φσb(ei,j,k, b2) = φσ(ei,j,k, b2),.

It remains to consider edges of the type e = (di,j,k, Fi,j) that were not applied. As the

arguments used for proving this are similar to the ones used for the case ν > 1, we defer

the discussion of these edges to Appendix A.2.

Claim 22. Let ν = 1. The occurrence records of edges of the type (d∗,∗,∗, F∗,∗) not applied
during σb → σ is described correctly by Table 5.6.

We now investigate the occurrence records of edges of the type (g∗, F∗,∗) that were
applied during σb → σ. Determining the exact occurrence records of these edges is
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challenging as it is challenging to describe the exact conditions under which edges of these

type become improving. In particular, these conditions depend on whether we consider

the sink game Sn or the Markov decision process Mn, making it even harder to describe

these in terms of the unified framework Gn. For these reasons, we prove that the upper

bound on the occurrence records of these edges given in Table 5.6 remains valid for σ by

an inductive argument as follows. We begin by determining the exact set of conditions

under which the application of an improving switch (g∗, F∗,∗) might yield an occurrence

record that could violate Table 5.6. That is, we explicitly determine properties that σ
needs to have for the upper bound to hold with equality. The idea of the proof is then to

show that these conditions imply that there is an earlier canonical strategy σ′ in which

there was a slack between the upper bound of the occurrence record of (g∗, F∗,∗) and the

actual occurrence record of this edge. We then prove that this slack is still present when

the strategy σ is reached, implying that the upper bound cannot hold with equality and

remains valid.

For this reason, the proof itself is an inductive proof that requires us to consider up to 4

previous transitions and uses the statements of this section. As we always excluded the

occurrence records of edges of the type (g∗, F∗,∗) in these statements, we can in fact use

them within the following induction. For example, we heavily use that each improving

switch is applied at most once per transition. To keep the proof more readable and not

refer to one of the previous lemmas in every second sentence, we do not always explicitly

mention the lemma proving such a statement.

Lemma 6.3.24. Let σb ∈ ρ(σ0) be a canonical strategy for b ∈ Bn calculated by the

strategy improvement resp. policy iteration algorithm having the canonical properties. Then

φσb(gi, Fi,j) ≤ mink∈{0,1} φ
σb(di,j,k, Fi,j). In particular, Table 5.6 specifies the occurrence

records of all edges of the type (g∗, F∗,∗).

Proof. Let i ∈ {n}, j ∈ {0, 1} be fixed and let e := (gi, Fi,j) be an arbitrary but fixed edge

of the type (g∗, F∗,∗). We prove the statement via induction on b. We first consider the

case i 6= 1 and discuss the case i = 1 later.

We begin by investigating the first transition in which e could have been applied. Thus,

let b ≤ 2i =: t. Then ti+1 = 1 and for all d ≤ t, it holds that di+1 = 0. We prove that e was

applied at most once when transitioning from σ0 to σt and that this application can only

happen during σt−1 → σt. The statement then follows since the occurrence records of the

cycle edges of Fi,j are both at least one.

Since σ0(gi) = Fi,0, the switch e cannot have been applied during phase 1 of any

transition encountered during the sequence σ0 → σt as the choice of t implies that there

is no d ≤ t with di = 1 ∧ di+1 = 1. It is also easy to show that this implies that it cannot

happen that the cycle center Fi,j was closed during phase 1 if j = 1−di+1 as the occurrence

record of the cycle edges is too low. The switch (gi, Fi,j) can thus only have been applied

during some phase 5. However, since σ0(gi) = Fi,0 and due to the choice of t, this can

only happen when transitioning from σt−1 to σt.

Thus, the statement holds for all canonical strategies σb representing numbers b ≤ 2i.
Now, assume that it holds for all b′ < b for an arbitrary but fixed b > 2i. We prove that

the statement also holds for σb. Consider the strategy σb−1. We begin by arguing that

181



6. Technical Details of the Exponential Lower Bound Construction

several cases do not need to be considered.

First of all, every improving switch is applied at most once in a single transition. If

mink∈{0,1} φ
σb(di,j,k, Fi,j) > mink∈{0,1} φ

σb−1(di,j,k, Fi,j), then the statement thus follows

by the induction hypothesis. We thus assume

min
k∈{0,1}

φσb(di,j,k, Fi,j) = min
k∈{0,1}

φσb−1(di,j,k, Fi,j). (6.10)

Similarly, if e is not applied during σb−1 → σb, then the statement also follows by the

induction hypothesis. We thus assume e ∈ Aσb
σb−1

.

These observations give first structural insights on b−1 and b. First, if bi = 1∧(b−1)i = 1,
then it is not possible to apply e during σb−1 → σb. Second, if bi = 1 ∧ (b − 1)i = 0,
then i = ℓ(b). By Definition 5.1.2 resp. 5.2.1, both cycle centers of level ℓ(b) are open

for σb−1. Hence, Corollary 6.3.2 implies that Fi,j is closed during σb−1 → σb by applying

both switches (di,j,0, Fi,j) and (di,j,1, Fi,j). But then, Equation (6.10) is not fulfilled and

the statement follows. This implies that it suffices to consider the case bi = 0.

We now show that these three conditions imply that the occurrence record of the edges

(di,j,∗, Fi,j) is “large”. To be precise, we prove that Equation (6.10), e ∈ Aσb
σb−1

and bi = 0
imply

min
k∈{0,1}

φσb−1(di,j,k, Fi,j) ≥

⌊
b

2

⌋
− 1. (6.11)

It then suffices to prove φσb−1(gi, Fi,j) <
⌊
b
2

⌋
− 1 to complete the proof.

It is easy but tedious to verify that these conditions either already imply the desired

inequality or give additional structural insights.

Claim 23. Equation (6.10), e = (gi, Fi,j) ∈ Aσb
σb−1

and bi = 0 either imply Inequality (6.11)

directly or that exactly one of the cycle edges of Fi,j is switched during σb−1 → σb.

Consequently, it suffices to consider the case that exactly one of the two cycle edges

(di,j,0, Fi,j), (di,j,1, Fi,j) is applied during σb−1 → σb. However, by Equation (6.10), this

implies that the the occurrence record of both edges (di,j,0, Fi,j), (di,j,1, Fi,j) is the same

with respect to σb−1.

Now assume that Fi,j is open or halfopen for σb−1. Then, there is at least one k ∈ {0, 1}
with σb−1(di,j,k) 6= Fi,j . The statement thus follows since Property (OR4)i,j,k implies

φσb−1(di,j,k, Fi,j) ≥ ⌊b/2⌋ − 1. Thus assume that Fi,j is closed for σb−1. This implies that

either (b − 1)i = 1 ∧ (b − 1)i+1 = j or (b − 1)i = 0 ∧ (b − 1)i+1 6= j holds. In the first

case, φσb−1(di,j,k, Fi,j) =
⌊
(b− 2i−1 + 2− k)/2

⌋
and ℓ(b) > 1 need to hold. This implies

that b− 2i−1 + 2 is even as we have i 6= 1 by assumption. But this implies that we have

φσb−1(di,j,1, Fi,j) < φσb−1(di,j,0, Fi,j) which is a contradiction.

We thus need to have (b − 1)i = 0 ∧ (b − 1)i+1 6= j. Then, since Fi,j is closed,

Property (OR2)i,j,∗ implies ℓb−1(i, j, 0) = ℓb−1(i, j, 1) since

φσb−1(di,j,0, Fi,j) = ℓb−1(i, j, 0) + 1 = ℓb−1(i, j, 1) + 1 = φσb−1(di,j,1, Fi,j).

But this implies
⌈
(b− 1− 2i−1 +

∑
(b− 1, i))/2

⌉
=

⌈
(b− 2i−1 +

∑
(b− 1, i))/2

⌉
. Since

b− 2i−1 +
∑

(b− 1, i) is always odd due to i 6= 1, this is however not possible.
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This concludes this part of the proof. Since mink∈{0,1} φ
σb−1(di,j,k, Fi,j) ≥ ⌊b/2⌋ − 1, it

suffices to prove φσb−1(gi, Fi,j) < ⌊b/2⌋ − 1 under the given conditions.

We begin by stating one more structural insight.

Claim 24. Assume that Equation (6.10), e = (gi, Fi,j) ∈ Aσb
σb−1

, bi = 0 hold and that

exactly one of the two cycle edges (di,j,0, Fi,j), (di,j,1, Fi,j) is applied during σb−1 → σb.
Then (b− 1)i = 0.

To simplify notation, we denote the binary number obtained by subtracting 1 from a

binary number (b′n, . . . , b
′
1) by [b′n, . . . , b

′
1]− 1. Then, b and b− 1 can be represented as

b = (bn, . . . , bi+1,0, bi−1, . . . , b1),

b− 1 = (bn, . . . , bi+1,0, [bi−1, . . . , b1]− 1)

where bit i is marked in bold. The idea of the proof is now the following. We define

two smaller numbers that are relevant for the application of (gi, Fi,j). We use these

numbers and the induction hypothesis to prove that even if (gi, Fi,j) was applied during

the maximum number of transitions, the claimed bound still holds.

We define

b̄ := ([bn, . . . , bi+1]− 1,1, 1 . . . , 1)

b̂ := ([bn, . . . , bi+1]− 1,1, 0, . . . , 0)

where bit i is again marked in bold. These numbers are well-defined since b ≥ 2i.

Consider b̂. Let N(b̂, b − 1) denote the number of applications of (gi, Fi,j) when

transitioning from σ
b̂
to σb−1. Then, since b′i = 1 for all b′ ∈ {b̂, . . . , b̄}, we have

N(b̂, b− 1) = N(b̄, b− 1). We thus can describe the occurrence record of (gi, Fi,j) as

φσb−1(gi, Fi,j) = N(0, b− 1) = N(0, b̂) +N(b̂, b− 1) = φσ
b̂(gi, Fi,j) +N(b̄, b− 1).

Our goal is to bound the two terms on the right-hand side. Using the induction hypothesis

and that b̂ is even, it is easy to verify that the first term can be bounded by ⌊b̂/2⌋. Since
every improving switch is applied at most once per transition by Corollary 6.3.20, we have

N(b̄, b−1) ≤ (b−1)− b̄. However, this upper bound is not strong enough. To improve this

bound, we now distinguish between when exactly (gi, Fi,j) is applied during σb−1 → σb.
Note that we refer to even earlier transitions in the last statement of the following claim.

Claim 25. Assume that Equation (6.10), e = (gi, Fi,j) ∈ Aσb
σb−1

, bi = 0 hold and that

exactly one of the two cycle edges (di,j,0, Fi,j), (di,j,1, Fi,j) is applied during σb−1 → σb. If
(gi, Fi,j) is applied during phase 1 of σb−1 → σb, then

1. b is even and i 6= 2,

2.
∑

(b, i) = 2i−1 − 2 and

3. if (gi, Fi,j) ∈ A
σb−1
σb−2 , then (gi, Fi,j) /∈ A

σb−2
σb−3 .
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If (gi, Fi,j) was applied during phase 1, then the last statement of Claim 25 implies

N(b̄, b− 1) ≤ (b− 1)− b̄− 1. Combining these results and using b̄ = b−
∑

(b, i)− 1 and

b̂ = b−
∑

(b, i)− 2i−1 yields the statement as

φσb−1(gi, Fi,j) = φσ
b̂(gi, Fi,j) +N(b̄, b− 1)

≤

⌊
b̂

2

⌋
+ (b− 1)− b̄− 1 =

⌊
b̂

2

⌋
+ b− b̄− 2

=

⌊
b−

∑
(b, i)− 2i−1

2

⌋
+ b− b+

∑
(b, i) + 1− 2

=

⌊
b− 2i−1 +

∑
(b, i)

2

⌋
− 1 =

⌊
b− 2i−1 + 2i−1 − 2

2

⌋
− 1

=

⌊
b− 2

2

⌋
− 1 =

⌊
b

2

⌋
− 2 <

⌊
b

2

⌋
− 1.

This proves the statement if (gi, Fi,j) was applied during phase 1 of σb−1 → σb.

Hence assume that e = (gi, Fi,j) was applied during phase 5 of σb−1 → σb. Let σ
denote the phase-5-strategy in which e is applied. Then, σ(gi) = 1 − j needs to hold.

Consequently, either σb−1(gi) = 1 − j or σb−1(gi) = j and (gi, Fi,1−j) ∈ Aσ
σb−1

. We thus

distinguish between these two cases. In the first case, the following statement similar to

Claim 25 can be shown.

Claim 26. Assume that Equation (6.10), e = (gi, Fi,j) ∈ Aσb
σb−1

, bi = 0 hold and that

exactly one of the two cycle edges (di,j,0, Fi,j), (di,j,1, Fi,j) is applied during σb−1 → σb. If
(gi, Fi,j) is applied during phase 5 of σb−1 → σb and σb−1(gi) = 1− j, then

1. i 6= 2,

2.
∑

(b, i) = 2i−1 − 2 and

3. if (gi, Fi,j) ∈ A
σb−1
σb−2 , then(gi, Fi,j) /∈ A

σb−2
σb−3 .

The statement thus follows analogously.

Thus, assume σb−1(gi) = j and (gi, Fi,1−j) ∈ Aσb
σb−1

. Since at most one improving switch

involving a selection vertex is applied during phase 5, this implies that (gi, Fi,1−j) was

applied during phase 1 of σb−1 → σb. It could technically also be applied at the beginning

of phase 2 resp. 3 when closing the final cycle center only creates a pseudo phase-2 resp.

pseudo phase-3-strategy. For clarity of presentation, we include this case in the second

case and interpret the application of this improving switch as being part of phase 1. In
particular, we thus have 1 − j = 1 − bi+1 resp. j = bi+1 as (b − 1)i = bi = 0 implies

i 6= ℓ(b). We prove that we need to have i 6= 2.

For the sake of a contradiction, assume i = 2. Then, since (b− 1)i = 0, we have b1 = 1
and b− 2 = b̄. Consequently, 1− j = 1− b3 = (b− 2)3. Thus, the cycle center Fi,1−j is

active and closed with respect to σb−2. As b is odd, this implies

φσb−2(di,1−j,k, Fi,1−j) =

⌊
lfn(b− 2, i, {(i+ 1, (b− 2)3)})− k

2

⌋
+ 1
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=

⌊
b− 2− 1− k

3

⌋
+ 1 =

⌊
b− 1− k

2

⌋
=

⌊
b− 1

2

⌋
− k.

Since the cycle center is closed with respect to σb−2, none of these two edges is applied

as improving switch during phase 1 of σb−2 → σb−1. However, since ℓ(b − 1) > 1,
the switches are also not applied during phase 5 of that transition. But this implies

σb−1(di,1−j,k) 6= Fi,1−j for both k ∈ {0, 1}, contradicting that (gi, Fi,1−j) is applied during

phase 1 of σb−1 → σb. Note that this argument further proves that we cannot have

b− 2 = b̄.

We can thus assume i > 2 and b − 3 ≥ b̄. Since we apply (gi, Fi,1−j) during phase 1

of σb−1 → σb, we can use the same arguments used when proving Claim 25 resp. 26 to

prove
∑

(b, i) ≤ 2i−1 − 2. Similar to the last cases, we prove that there is at least one

transition between b̄ and b− 1 in which the switch (gi, Fi,j) is not applied. As this follows

if (gi, Fi,j) /∈ A
σb−1
σb−2 , assume (gi, Fi,j) ∈ A

σb−1
σb−2 .

First, since b − 3 ≥ b̄ and since we apply (gi, Fi,j) in phase 5 of σb−1 → σb, it holds
that j = bi+1 = (b − 1)i+1 = (b − 2)i+1. This implies that (gi, Fi,j) was not applied

during phase 1 of σb−3 → σb−2. The reason is that this could only happen if i = ℓ(b− 2),
contradicting (b − 2)i = 0, or if (b − 3)i = 0 ∧ j 6= (b − 3)i+1. However, this then

contradicts the previous identities regarding j. Thus, (gi, Fi,j) is applied during phase 5

of σb−3 → σb−2.
For the sake of a contradiction, assume (b − 3)i = 1. Then, b − 3 = b̄, implying

(b − 3)i+1 6= j. This further implies (b − 3)i′ = 1 for all i′ ≤ i. Then, since Fi,1−j is

closed with respect to σb−3 and i ≥ 3, it is easy to calculate that we then need to have

φσb−3(di,1−j,k, Fi,1−j) < ⌊(b− 3 + 1)/2⌋− 1. But, since ℓ(b− 2) > 1, this implies that both

of these edges are applied at the beginning of phase 5 of σb−3 → σb−2. Thus, Fi,1−j is

closed at the beginning of phase 5 of σb−3 → σb−2, contradicting the assumption that

(gi, Fi,j) is applied during phase 5 of σb−3 → σb−2, see Lemma 6.2.32.

Thus assume (b − 3)i = 0 ∧ (b − 3)i+1 = j. This implies b − 4 ≥ b̄ and that the

transition from σb−4 to σb−3 is thus part of the currently considered sequence of transi-

tions. Then, since (gi, Fi,j) is applied during both σb−3 → σb−2 and σb−2 → σb−1, the
improving switch (gi, Fi,1−j) has to be applied in between. This switch can only be ap-

plied during phase 1 of σb−2 → σb−1. It is easy to see that this implies that there is a

k ∈ {0, 1} such that φσb−2(di,1−j,k, Fi,1−j) = ℓb−2(i, 1 − j, k) + 1 ≤ ⌊(b− 1)/2⌋ − 1 and

φσb−2(di,1−j,1−k, Fi,1−j) = ⌊(b− 1)/2⌋ − 1. Using
∑

(b, i) ≤ 2i−1 − 2, it is then easy to

verify that ℓb−3(i, 1− j, k′) ≤ ⌊(b− k′)/2⌋ − 3 for k′ ∈ {0, 1}.
This implies that we need to have φσb−3(di,1−j,1, Fi,1−j) = ℓb−3(i, 1− j, 1) + 1 and that

the edge (di,1−j,1, Fi,1−j) is applied as improving switch during phase 5 of σb−3 → σb−2.
We thus need to have k = 1. Consider (di,1−j,0, Fi,1−j). Then,

ℓb−3(i, 1− j, 0) =

⌊
b

2

⌋
− 3 =

⌊
b− 2

2

⌋
− 2 <

⌊
b− 2

2

⌋
− 1 =

⌊
b− 3 + 1

2

⌋
− 1.

By Property (OR4)i,1−j,0, we thus need to have σb−3(di,1−j,0) = Fi,1−j . In particular, it

implies that Fi,1−j is closed for σb−3 and thus σb−3(gi) = Fi,1−j .

This now enables us to show that the edge (gi, Fi,j) was not applied as improving switch

during the transition σb−4 → σb−3. Independent on whether b− 4 = b̄ or b− 4 6= b̄, the
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switch was not applied during phase 5 of σb−4 → σb−3 as we have σb−3(gi) = Fi,1−j . If

(b− 4)i = 0 ∧ (b− 4)i+1 = j, then it also follows directly that the switch was not applied

during phase 1 of that transition. Thus consider the case (b − 4)i = 1 ∧ (b − 4)i+1 6= j,
implying b − 4 = b̄. But this immediately implies that the switch is not applied during

phase 1.

This concludes the proof for the case that (gi, Fi,j) was applied during phase 5 of

σb−1 → σb and thus concludes the proof for i ≥ 2.

It remains to consider the case i = 1. We prove the statement again via induction

on b. It is easy to verify that the statement hold for both Gn = Sn and Gn = Mn for the

canonical strategies σ0, σ1, σ2. Hence let b > 2 and assume that the statement holds for

all b′ < b. We show that the statement then also holds for b.

An improving switch (g1, F1,j) can only be applied during phase 1 if 1 = ℓ(b) and j = b2.

Since we then have (b− 1)i = 0, both edges (d1,b2,0, F1,b2) and (d1,b2,1, F1,b2) are switched

during phase 1 of σb−1 → σb. Thus, the statement follows by the induction hypothesis.

Thus consider the case (b − 1)i = 1. Then, a switch (g1, F1,j) can only be applied in

phase 5. Consider the case Gn = Sn first. Then, by the conditions of the application of

such a switch in phase 5, we need to have j = 0 and σb−1(g1) = 1. Since (b− 1)1 = 1 this

implies b = (. . . , 0, 0), b − 1 = (. . . , 1, 1) and b − 2 = (. . . , 1, 0). It follows directly that

(g1, F1,0) is not applied during the transition σb−2 → σb−1. However, during phase 1 of

both transitions σb−2 → σb−1, exactly one of the cycle edges of F1,0 is switched. Using

the induction hypothesis, this implies the statement. If Gn = Mn, then we then need to

have j = b2 and σb−1(g1) = 1− b2. If j = 0, then the statement follows by the exact same

arguments used for the case Gn = Sn. If j = 1, it follows by similar arguments.

We can now prove the statements of Section 5.3. For convenience, we restate these

statements before proving them.

We begin by showing that applying the improving switches according to Zadeh’s pivot

rule and the tie-breaking rule of Definition 5.3.5 yields the strategies described by Tables 5.8

and 5.9.

Lemma 5.3.18. Let σb ∈ ρ(σ0) be a canonical strategy for b ∈ Bn having the canonical

properties. Let σ be a strategy obtained by applying a sequence of improving switches to σb.
Let σ and Iσ have the properties of row k of Table 5.8 and 5.9 for some k ∈ [5]. Then,

applying improving switches according to Zadeh’s pivot rule and the tie-breaking rule of

Definition 5.3.5 produces a strategy σ′ that is described by the next feasible rows of Tables 5.8

and 5.9.

Proof. By Lemma 6.3.14, applying improving switches to σ produces a canonical strategy

σb+1 for b + 1. When proving this lemma, we proved that the algorithm produces the

intermediate strategies as described by the corresponding rows of Tables 5.8 and 5.9.

More precisely, this follows from Lemmas 6.3.1, 6.3.6, 6.3.9 and 6.3.12.

By Lemma 6.3.14, Iσb+1
= {(di,j,k, Fi,j) : σb+1 6= Fi,j}. In particular, this set is described

as specified by Table 5.9. It thus remains to prove that σb+1 has the canonical properties.

More precisely, we prove the following three statements:
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1. The occurrence records φσb+1 are described correctly by Table 5.6: This follows from

Lemmas 6.3.23 and 6.3.24.

2. σb+1 has Properties (OR1)∗,∗,∗ to (OR4)∗,∗,∗: This follows from Lemma 6.3.22.

3. Any improving switch was applied at most once per previous transition between

canonical strategies: This follows from Corollary 6.3.20.

Thus, σb+1 is a canonical strategy for b+ 1 and has the canonical properties.

This now immediately implies the following theorem of Section 5.3, stating that applying

improving switches to a canonical strategy for b having the canonical properties produces

such a strategy for b+ 1.

Theorem 5.3.19. Let σb ∈ ρ(σ0) be a canonical strategy for b ∈ Bn having the canonical

properties. After applying finitely many improving switches according to Zadeh’s pivot rule

and the tie-breaking rule of Definition 5.3.5, the strategy improvement algorithm calculates

a strategy σb+1 with the following properties.

1. Iσb+1
= {(di,j,k, Fi,j) : σb+1(di,j,k) 6= Fi,j}.

2. The occurrence records are described by Table 5.6 when interpreted for b+ 1.

3. σb+1 is a canonical strategy for b+ 1 and has Properties (OR1)∗,∗,∗ to (OR4)∗,∗,∗.

4. When transitioning from σb to σb+1, every improving switch is applied at most once.

In particular, σb+1 has the canonical properties.

This now enables us to prove the remaining statements of Section 5.3 simultaneously.

Theorem 5.3.10. Let σb be a canonical strategy for b ∈ Bn and assume that the improving

switches are applied as described in Section 5.3.3. Then, Table 5.6 describes the occurrence

records of all edges e ∈ E0 with respect to σb.

Theorem 5.3.20. Using Zadeh’s pivot rule and the tie-breaking rule of Definition 5.3.5 when

applying

1. the strategy improvement algorithm of [VJ00] to Sn,

2. the policy iteration algorithm of [How60] to Mn,

3. the simplex algorithm of [Dan51] to the linear program induced by Mn

to the game Gn or the induced linear program requires at least 2n iterations for finding the

optimal strategy resp. solution when using σ0 as initial strategy.

Proof. By Observation 5.3.2 and Lemma 5.3.13, the initial strategy σ0 is a canonical

strategy representing 0 having the canonical properties. In addition, by Lemma 5.3.3 it is

a sink strategy for Sn and a weak unichain policy for Mn.

By Theorem 5.3.19, applying improving switches to σ0 yields a canonical strategy σ1
representing the number 1. Also, the occurrence record of the edges is described correctly

by Table 5.6 for σ1. In particular, Theorem 5.3.19 can be applied to σ1 again, yielding a

canonical strategy σ2 representing the number 2.
This argument can now be applied iteratively. Thus, applying improving switches

according to Zadeh’s pivot rule and the tie-breaking rule defined in Definition 5.3.5
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produces the strategies σ0, σ1, . . . , σ2n−1. By Theorem 5.3.19, Table 5.6 describes the

occurrence records for each of these strategies, implying Theorem 5.3.10. Since these

are 2n different strategies, since Gn has size O(n) and all rewards and probabilities (for

Gn = Mn) and priorities (for Gn = Sn) can be encoded using a polynomial number of bits,

this implies the exponential lower bound for the strategy improvement and policy iteration

algorithm. By Corollary 3.3.5, there is a linear program such that the simplex algorithm

using the same pivot and tie-breaking rule requires the same number of iterations as it

requires for Mn. Consequently, the lower bound also applies to the simplex algorithm.
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7. Conclusion

In this thesis, we considered the general framework of strategy improvement and its

application to parity games and Markov decision processes. We discussed the connection

between two subclasses of these frameworks, sink games and weakly unichain Markov

decision processes, and investigated the connection of the latter to linear programming.

Our main focus was Zadeh’s LeastEntered pivot rule, and we considered the strategy

improvement algorithm, the policy iteration algorithm and the simplex algorithm when

parameterized with this pivot rule.

We began by introducing parity games, Markov decision processes and linear programs.

We introduced the abstract concepts of valuations for parity games and Markov decision

processes and considered special subclasses of parity games and Markov decision processes

afterwards. More precisely, we analyzed the classes of sink games and weakly unichain

Markov decision processes in detail, redeveloped previously used definitions and provided

a clean framework for using these two classes. In addition, we revisited the connection

between Markov decision processes and linear programs by providing a linear program

and discussing the connection between Howard’s policy iteration algorithm and Dantzig’s

simplex algorithm.

The first major contribution of this thesis was a detailed exposition of Friedmann’s

subexponential lower bound construction for Zadeh’s pivot rule. This famous construction

was discussed in detail, and we showed that it belongs to a new class of lower bound

constructions based on the connection between Markov decision processes and linear

programs. We then pointed out that there are several smaller and onemajor issue regarding

the original analysis. Although the major issue requires a significant change regarding the

application of the improving switches, we resolved all of the issues without affecting the

macroscopic structure of Friedmann’s example, and were able to retain his original result.

The second main and major contribution was the development of a new lower bound

construction, based on the same connection between Markov decision processes and linear

programs. More precisely, we presented the first exponential lower bound for Zadeh’s

LeastEntered pivot rule for all of the discussed algorithms. This in particular answered

the question whether one of the classic deterministic pivot rule admits a subexponential

worst-case running time, a question that remained open even after Friedmann’s result.

This construction implements the same key ideas as Friedmann’s example but only requires

linear space. The example was designed such that a single construction and description

could be used for both sink games and weakly unichain Markov decision process, allowing

us to unify most of the proofs and statements. We believe that our framework is applicable

to previous and future constructions as well, and that it might even be possible to define a

class of sink games and weakly unichain Markov decision processes on which the strategy
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improvement and policy iteration algorithm behave exactly the same. In addition, our

findings were verified for sink games and small instances using an implementation of

Friedmann.

Of course, there are still many open questions and mysteries. It is still unknown

whether there is a pivot rule guaranteeing a polynomial number of iterations for any of the

algorithms. Also, the construction presented in this thesis highly depends on the chosen

tie-breaking rule. Although it would be extremely challenging to find an example that

provides a superpolynomial lower bound independent of the chosen tie-breaking rule, it

might be possible to find at least examples that rule out full classes of tie-breaking rules.

On a more abstract level, it is still an open question whether there is an even closer

connection between sink games and weakly unichain Markov decision processes. Although

our own, as well as previously developed constructions, use well-known similarities and

connections between these frameworks, there is still no canonical transformation between

subclasses of parity games and Markov decision processes. Such a common subclass would

allow to phrase and analyze several algorithmic problems and questions from both game

theory and linear programming in a single context.

In addition, it remains unclear whether the observation that all of the lower bound

constructions using Markov decision processes can be formalized. As all of them implement

the same key idea of implementing a binary counter and share several similarities, it might

be possible to prove that all of these constructions are just special cases of some general

binary counting Markov decision process. Such a general lower bound construction would

not only simplify and unify all of the new lower bound constructions, but would potentially

also allow for easily constructing new lower bound examples.
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A. Proofs

This appendix contains all proofs that were omitted in the main part of the thesis. For

convenience, we restate the proven statements.

A.1. Proofs of Chapter 4

Lemma 4.1.4. Let b ∈ Bn and i, j ∈ [n]. Then the following hold:

1. Let S, S′ be schemes and S ⊆ S′. Then M(b, S′) ⊆ M(b, S).

2. Let S, S′ be schemes and S ⊆ S′. Then f(b, i, S′) ≤ f(b, i, S).

3. It holds that f(b, j) = f(b, j, {(i, 0)})+f(b, j, {(i, 1)}) and f(b, j) =
⌊
(b+ 2j−1)/2j

⌋
.

4. Let i ≤ j and S be a scheme. Then f(b, j, S) ≤ f(b, i, S) and thus f(b, j) ≤ f(b, i).

5. Let i < j. Then F (b, j) = F (b, j, {(i, 0)}) and thus f(b, j, {(i, 0)}) = f(b, j).

Proof. We prove the statements one after another.

1. Let S, S′ be schemes and S ⊆ S′. Since every number matching S′ also matches S,
it follows that M(b, S′) ⊆ M(b, S) for all b ∈ Bn.

2. This follows directly from (1) and the definition of f(b, i, S′).

3. The first statement follows since either bi = 0 or bi = 1 for every b ∈ Bn and i ∈ [n].

It remains to prove f(b, j) =
⌊
(b+ 2j−1)/2j

⌋
for b ∈ Bn and j ∈ [n]. The smallest

number matching the scheme Sj := {(j, 1), (j−1, 0), . . . , (1, 0)} is 2j−1. This implies

the statement for b < 2j−1. Let mi denote the i-th number matching the scheme Sj .

Then, by the previous argument, m1 = 2j−1. As only numbers ending on the

subsequence (1, 0, . . . , 0) of length j match Sj , we have mi = (i− 1) · 2j +2j−1. This
implies f(mi, j) =

⌊
(mi + 2j−1)/2j

⌋
since f(mi, j) = i by definition and

⌊
mi + 2j−1

2j

⌋
=

⌊
(i− 1) · 2j + 2j−1 + 2j−1

2j

⌋
=

⌊
i · 2j

2j

⌋
= i.

Now let b ∈ Bn and choose i ∈ N such that b ∈ [mi,mi+1). Then, f(b, j) = i by the

definition of f(b, j). In addition, by the choice of i,
⌊
b+ 2j−1

2j

⌋
≥

⌊
mi + 2j−1

2j

⌋
= f(mi, j) = i (A.1)

and ⌊
b+ 2j−1

2j

⌋
<

⌊
mi+1 + 2j−1

2j

⌋
= f(mi+1, j) = i+ 1. (A.2)
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By integrality, Equations (A.1) and (A.2) imply
⌊
(b+ 2j−1)/2j

⌋
= i and thus the

statement.

4. Let i ≤ j and b ∈ Bn. Let Sj := {(j, 1), (j − 1, 0), . . . , (1, 0)} and define Si analo-

gously. Consider any b′ ≤ bmatching Sj and S. Then, since i ≤ j there needs to be at

least one b̂ ≤ b′ matching Si and S. This immediately implies f(b, j, S) ≤ f(b, i, S).

The second inequality follows immediately when setting S := ∅.

5. Let i < j and define Sj := {(j, 1), (j − 1, 0), . . . , (1, 0)}. Since i < j, we have

(i, 0) ∈ Sj , immediately implying F (b, j) = F (b, j, {(i, 0)}) .

Lemma 4.3.2. None of the edges (b1i,k, A
1
i ) for i ∈ [n] and k ∈ {0, 1} is an improving switch

with respect to σ∗.

Proof. To simplify the calculations, let Val := Valσ∗ . Let i ∈ [n] and k ∈ {0, 1}. Then,
the definition of σ∗ implies σ∗(b1i,k) = t. Therefore, Val(b1i,k) = Val(σ∗(b1i,k)) = Val(t) = 0

since r(b1i,k, t) = 0. Analogously,Val(b1i,1−k) = 0. This implies that (b1i,k, A
1
i ) is an improving

switch if and only if Val(A1
i ) > 0. But, due to σ∗(ki+1) = t, it holds that

Val(A1
i ) = εVal(d1i ) +

1− ε

2
Val(b1i,k) +

1− ε

2
Val(b1i,1−k)

= εVal(d1i ) = ε
(
−N)6 +Val(σ⋆(d1i ))

]
= ε

[
N6 +Val(h1i )

]

= ε
[
N6 + (−N)2i+8 +Val(ki+1)

]

= ε
[
N6 +N2i+8 + (−N)2(i+1)+7 +Val(t)

]
= ε

[
N6 +N2i+8 −N2i+9

]
< 0,

as N = 7n+ 1 ≥ 8 and i ≥ 1. Consequently, (b1i,r, A
1
i ) is not an improving switch.

Lemma 4.3.9. Let σ be a phase 3 strategy and let e ∈ L3
σ. Then L3

σe = Lσ \ {e}.

Proof. We only discuss the case e ∈ L3,1
σ as the cases e ∈ L3,2

σ and e ∈ L3,3
σ follow from

similar arguments. Let e ∈ L3,1
σ . Then, e = (ki, kν) for some i ∈ [n] with σ(ki) 6= kν

and (b+ 1)i = 0. As any edge in L3
σ is improving for σ by [Fri11c, Lemma 4], (ki, kν) is

improving for σ. Thus, σe(ki) = kν , implying e /∈ L3,1
σe and e /∈ L3

σe.

Let ẽ ∈ L3
σ and ẽ 6= e. We prove ẽ ∈ L3

σe. Since ẽ ∈ L3
σ, we have ẽ = (v, kν) where

either v = ki′ or v = bji′,k for some i′ ∈ [n] and k, j ∈ {0, 1}. In addition, since ẽ ∈ L3
σ, we

have σ(v) 6= kν . The switch (ki, kν) is the only switch applied in σ. Therefore, σ(v) 6= kν
implies σe(v) 6= kν as the target of no vertex other than ki changes. As furthermore the

conditions (b + 1)i = 0 and (b + 1)i+1 6= j remain valid, it follows that ẽ ∈ L3
σe. This

implies L3
σ ⊆ L3

σe ∪ {e}.
For the sake of a contradiction, assume that there is some edge ẽ ∈ L3

σe ∪ {e} but ẽ /∈ L3
σ.

Then, e ∈ L3
σ implies e 6= ẽ. Thus, ẽ = (v, kν) for some v as previously and σe(v) 6= kν .

Since (ki, kν) is the only switch applied in σ, this implies σ(v) 6= kν . But then, e ∈ L3
σ

which is a contradiction. Consequently, L3
σe ∪ {e} ⊆ L3

σ and thus L3
σe ∪ {e} = L3

σ.

Lemma 4.3.11. Let i ∈ {2, . . . , n − 2} and l < i. Then, there is a number b ∈ Bn with

ℓ(b+ 1) = ν = l such that for all j ∈ {i+ 2, . . . , n}, it holds that φσb(ki, kν) < φσb(kj , kν)
and (ki, kν), (kj , kν) ∈ L3

σb
.
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Proof. Let b := 2i+2l−1− 1 and j ∈ {i+2, . . . , n}. Then, ℓ(b+1) = ℓ(2i+2l−1) = l since
l < i. Furthermore, j ≥ i+ 2, i > l and i ≥ 2 imply

b+ 1 = 2i + 2l−1 ≤ 2i + 2i−2 ≤ 2j−2 + 2j−4 < 2j−1 − 1.

Now consider the flip set F (b, l) containing all b̃ ≤ b with ℓ(b̃) = l. Since b < 2j−1, it
holds that b̃j = 0 for all b̃ ≤ b, hence F (b, l) = F (b, l, {(j, 0)}). Thus, by Table 4.5,

φσb(kj , kν) = φσb(kj , kl) = f(b, l, {(j, 0)}) = f(b, l).

In addition, since b+ 1 < 2j−1 − 1 and thus (b+ 1)j = 0 and σb(kj) = kℓ 6= kν due to the

invariants discussed in Section 4.1, we have (kj , kν) ∈ L3
σb
. However, since b > 2i, i ≥ 2

and i > l, it holds that b̃ := 2i−1 + 2l−1 ∈ F (b, l) since b̃ ≤ b. Furthermore b̃i = 1.
As a consequence, b̃ /∈ F (b, l, {(i, 0)})). But this implies F (b, l, {(i, 0)}) ( F (b, l). Since
φσb(ki, kl) = f(b, l, {(i, 0)}) and |F (b, l{(i, 0)})| = f(b, l, {(i, 0)}) by Table 4.5, this implies

φσb(ki, kν) = φσb(ki, kl) = f(b, l, {(i, 0)}) < f(b, l) = φσb(kj , kl) = φσb(kj , kν).

As i > l = ℓ(b+1) and σb(ki) = kℓ 6= kν imply (b+1)i = bi = 0, we also have (ki, kν) ∈ L3
σb

as claimed.

Lemma 4.3.13. Assume that all edges of L3
σb

are applied during phase 3 of the transition

from σb to σb+1 for all b ∈ Bn. Let i ∈ {2, . . . , n − 2} and l < i be fixed. Then, there is a
b ∈ Bn with ℓ(b + 1) = l such that φσb(ki+1, kν) < φσb(b1i,k, kν) for some k ∈ {0, 1} and

(ki+1, kν), (b
1
i,k, kν) ∈ L3

σb
.

Proof. We begin by observing that Table 4.5 can be used as we assume that all edges

of L3
σb

are applied during phase 3, and since this set is exactly the set of edges that should

be applied during phase 3 by Lemma 4.3.8.

Consider some b ∈ Bn with ℓ(b + 1) = ν = l, its exact value will be fixed later. By

Table 4.5, since ν = l, and by Lemma 4.1.4 it holds that

φσb(ki+1, kν) = f(b, ν, {(i+ 1, 0)}),

φσb(b1i,k, kν) = f(b, ν, {(i, 0)}) + f(b, ν, {(i, 1), (i+ 1, 0)}),

f(b, ν, {(i, 0)}) = f(b, ν, {(i, 0), (i+ 1, 0)}) + f(b, ν, {(i, 0), (i+ 1, 1)}).

These equations imply that φσb(b1i,k, kν) can be expressed as

f(b, ν, {(i, 0), (i+ 1, 0)}) + f(b, ν, {(i, 0), (i+ 1, 1)}) + f(b, ν, {(i, 1), (i+ 1, 0)}).

Since f(b, ν, {(i, 1), (i + 1, 0)}) + f(b, ν, {(i, 0), (i + 1, 0)}) = f(b, ν, {(i + 1, 0)}), the in-

equality φσb(ki+1, kν) < φσb(b1i,k, kν) can be formulated equivalently as

f(b, ν, {(i+ 1, 0)}) < f(b, ν, {(i+ 1, 0)}) + f(b, ν, {(i, 0), (i+ 1, 1)}).

It thus suffices to find a b ∈ Bn such that f(b, ν, {(i, 0), (i+ 1, 1)}) > 0, ℓ(b+ 1) = l and
(ki+1, kν), (b

1
i,k, kν) ∈ L3

σb
.
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We prove that b := 2i+1 + 2l−1 − 1 has all of these properties. Since l < i, we have

ℓ(b+ 1) = ℓ(2i+1 + 2l−1) = l. In addition, l < i implies bi+1 = 0, so σb(ki+1) = kℓ 6= kν .
Furthermore, (b + 1)i+1 = 0, implying (ki+1, kν) ∈ L3

σb
. Also, since (b + 1)i+1 = 0 6= 1

and σb(b
1
i,k) = kℓ 6= kν , we also have (b1i,k, kν) ∈ L3

σb
.

Now, consider b′ := 2i + 2l−1 ∈ Bn. This number fulfills b′ < b, b′i = 0 and b′i+1 = 1.
But this implies f(b, ν, {(i, 0), (i+ 1, 1)}) ≥ 1 and thus concludes the proof.

Lemma 4.4.6. Let σ be a phase 3 strategy. Then maxe∈L3
σ
φσ(e) ≤ f(b, ν).

Proof. As discussed in Section 4.3, the setL3
σ can be partitioned into three subsetsL3,1

σ , L3,2
σ

and L3,3
σ , so we distinguish three cases. The last two cases can be discussed together as

the occurrence records of edges contained in L3,2
σ and L3,3

σ are the same (cf. Table 4.5).

1. e ∈ L3,1
σ . Then, e = (ki, kν), where σ(ki) 6= kν and (b+ 1)i = 0. The first condition

implies that the switch e was not applied yet during σb → σb+1. Consequently,

φσb(ki, kν) = φσb(ki, kν). Since φσb(e) = f(b, ν, {(i, 0)}) by Table 4.5, this implies

φσ(e) = f(b, ν, {(i, 0)}). By Lemma 4.1.4 (3), this yields

φσ(e) = f(b, ν, {(i, 0)}) = f(b, ν)− f(b, ν, {i, 1}) ≤ f(b, ν).

2. e ∈ L3,2
σ or e ∈ L3,3

σ . Then, e = (bji,r, kν) for some r ∈ {0, 1} where σ(bji,r) 6= kν
and either (b+ 1)i = 0 or (b+ 1)i+1 6= j. The first condition implies that e was not

applied yet during σb → σb+1. Hence φσ(bji,r, kν) = φσb(bji,r, kν). Thus, Table 4.5

implies

φσ(e) = f(b, ν, {(i, 0)}) + f(b, ν, {(i, 1), (i+ 1, 1− j)}).

By Lemma 4.1.4 (2), it also holds that f(b, ν, {(i, 1), (i+1, 1−j)}) ≤ f(b, ν, {(i, 1)}).
Thus, φσ(e) ≤ f(b, ν, {(i, 0)}) + f(b, ν, {(i, 1)}) = f(b, ν).

Lemma 4.4.9. Let σ be a phase 3 strategy. Assume that the strategy iteration algorithm is

started with the initial strategy σ⋆. Then mine∈L4
σ∪L

5
σ∪L

5
σ
φσb(e) ≥ f(b, ν).

Proof. Since σ is calculated after σb, we have φσ(e) ≥ φσb(e) for all edges e. It therefore
suffices to show φσb(e) ≥ f(b, ν) for all e ∈ L4

σ ∪ L5
σ ∪ L6

σ. We distinguish three cases.

1. e ∈ L4
σ: Then, by Table 4.4, e = (h0i , kℓi+2(b+1)) for some i ∈ [n] and, in addition,

σ(h0i ) /∈ {kℓi+2(b+1), t}. Since σ(h0i ) 6= t, there needs to be a next bit equal to 1 with

an index of at least i+ 2 as a switch (h0i , kl) is only applied when a number b′ with

ℓ(b′) = l is calculated.

By the definition of ν := ℓ(b+1), it holds that bj = (b+1)j for all j ∈ {ν+1, . . . , n}.
Therefore, the first bit equal to 1 with an index of at least i+ 2 does not change if

i ≥ ν − 1, so ℓi+2(b) = ℓi+2(b+ 1). This implies i ≤ ν − 2 since σ(h0i ) = kℓi+2(b+1)

otherwise. But this contradicts that (h0i , kℓi+2(b+1)) is an improving switch. As also

(b + 1)j = 0 for j < ν, it follows that ℓj+2(b + 1) = ν for all j ∈ [ν − 2]. Thus,

e = (h0i , kν) for some i ∈ [ν − 2], and φσb(e) = f(b, ν) by Table 4.5.

2. e ∈ L5
σ: Then, by Table 4.4, e = (s, kν). Therefore, since φσb(s, kν) = f(b, ν) by

Table 4.5, it holds that φσb(e) = f(b, ν).
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3. e ∈ L6
σ: We have L6

σb
= {(d1ν−1, h

1
ν−1), (d

0
ν−1, s)} ∪ {(d0i , h

0
i ), (d

1
i , s) : i ∈ [ν − 2]}

by Theorem 4.4.8. Since L6
σ ⊆ L6

σb
can be proven analogously to Lemma 4.3.8, it

suffices to prove the inequality for all e ∈ L6
σb
.

Let e = (d0ν−1, s). Then, φ
σb(d0ν−1, s) = f(b, ν−1+1)+0·bi+1 = f(b, ν) by Table 4.5.

Analogously, φσb(d1ν−1, h
1
ν−1) = f(b, ν) for e = (d1ν−1, h

1
ν−1). Therefore, it holds that

φσb(e) ≥ f(b, ν) for e ∈ {(d0ν−1, s), (d
1
ν−1, h

1
ν−1)}.

Let e = (d1i , s) for some i ∈ [ν−2]. Then, e is improving if and only bit i+1 switches

from 1 to 0. The first transition in which (d1i , s) becomes improving is therefore the

transition from σ2i+1−1 to σ2i+1 . As the strategy iteration algorithm is initialized

with the strategy representing the number 0, the number b ∈ Bn is represented after

b many transitions. Therefore, e is an improving switch every 2i+1-th transition.

We now interpret φσb(e) and f(b, ν) as “counters”, which increase during the execu-

tion of the algorithm. As argued previously, φσb(e) increases every 2i+1 transitions.

In contrast to this, f(b, ν) (for fixed ν with increasing b) increases the first time

when 2ν−1 is reached. But then, after another 2ν−1 transitions, the number 2ν

is reached and ℓ(2ν) = ν + 1. Therefore, it takes another 2ν−1 transitions until

the “counter” f(b, ν) increases again. To summarize, the counter f(b, ν) increases
every 2ν iterations, excluding the first increase which happens after 2ν−1 iterations.
Since i + 1 ≤ ν − 1 as i ≤ ν − 2, this proves that whenever the counter f(b, ν) is
increased, the counter φσb(e) must have been increased at least once before or in

the same iteration. Therefore, φσb(e) ≥ f(b, ν).

For e = (d0i , h
0
i ), the statement follows by the same arguments as follows. The

switch (d1i , s) is applied whenever bit i+1 is no longer equal to 1. The switch (d0i , h
0
i )

is applied whenever bit i+ 1 becomes 0. Both of these happen whenever bit i+ 1
switches from 1 to 0 and thus, the same arguments used before can be applied.

Lemma 4.4.10. Let σ be a phase 3 strategy. Let e1 ∈ L3
σ and e2 ∈ Iσ ∩ (U3,4

σ ∪ · · · ∪ U3,9
σ ).

Then φσ(e1) ≤ φσ(e2).

Proof. Let σ be a phase 3 strategy and let e1 ∈ L3
σ. Then, φ

σ(e1) ≤ f(b, ν) by Lemma 4.4.6.

It thus suffices to show φσ(e) ≥ f(b, ν) for all e ∈ Iσ ∩ (U3,4
σ ∪ · · · ∪ U3,9

σ ). We distinguish

the following 5 cases.

1. e ∈ U3,4
σ : Then, e = (h0i , kl) for some l ≤ ℓi+2(b+1). By Table 4.5, φσb(e) = f(b, l)

and since σ is calculated after σb, also φσ(ẽ) ≥ φσb(e) = f(b, l). Let l ≤ ν. Then, by
Lemma 4.1.4 (4), f(b, l) ≥ f(b, ν), implying φσ(e) ≥ f(b, ν).

For the sake of a contradiction, let l > ν. We prove that (h0i , kl) is not an improving

switch in this case by showing Valσ(σ(h
0
i )) ≥ Valσ(kl). Let ℓi+2 := ℓi+2(b+ 1). By

construction, σ(h0i ) ∈ {t, ki+2, . . . , kn}. Assume ℓi+2 6= n + 1 first. Then, by the

definition of ℓi+2 and the invariants discussed in Section 4.1, σ(h0i ) = kℓi+2
. We thus

prove Valσ(kℓi+2
) ≥ Valσ(kl).

Since l > ν and ℓi+2 ≥ l by the choice of e, also ℓi+2 > ν. Therefore, bj = (b+ 1)j
for all j ≥ ℓi+2. This implies that no bicycle of one of these levels was opened

during phase 1. It furthermore implies that the target of none of the vertices

203



A. Proofs

kℓi+2
, . . . , kn was changed during phase 2 as only the target of kν is switched during

phase 2. Therefore, by Lemma 4.3.6, Valσ(kℓi+2
) = Sℓi+2

. By the same lemma, also

Valσ(kl) ≤ Tl. Thus, using that bj = (b+ 1)j for all j > ν and l > ν, we obtain,

Valσ(kl) ≤ Tl =
∑

j≥l:(b+1)j=1

[N2j+8 −N2j+7 −N7 +N6]

=
∑

j≥l:bj=1

[N2j+8 −N2j+7 −N7 +N6].

By definition, ℓi+2 is the smallest index larger than or equal to i+ 2 such that the

corresponding bit of b+ 1 is equal to 1. By constriction, σ(h0i ) ∈ {t, ki+2, . . . , kn},
implying l ≥ i + 2. Therefore, bl = bl+1 = · · · = bℓi+2−1 = 0 since l ≤ ℓi+2. Using

the previous inequality, we thus obtain

Valσ(kl) ≤
∑

j≥l:bj=1

[N2j+8 −N2j+7 −N7 +N6]

=
∑

j≥ℓi+2:bj=1

[N2j+8 −N2j+7 −N7 +N6] = Sℓi+2
= Valσ(kℓi+2

).

Consequently, e is not an improving switch if ℓi+2 6= n+ 1.

Now assume ℓi+2 = n+1. Then, (b+1)i′ = bi′ = 0 for all i′ ≥ i+2. In particular, we

then have σ(h0i ) = t. As Valσ(t) = 0, it suffices to prove Valσ(kl) ≤ 0. This however
follows immediately since l > i+2 implies σ(kl) = kℓ and since Lemma 4.3.6 yields

Valσ(kk) = r(kl, kℓ) + Valσ(kℓ) < 0.

Thus, l > ν implies e /∈ Iσ in every case so, φσ(e) ≥ f(b, ν) for all e ∈ Iσ ∩ U3,4.

2. e ∈ U3,5
σ : Then, e = (s, ki) for some i < ν and σ(s) 6= ki. Therefore, by Table 4.5,

φσb(s, ki) = f(b, i). Since σ is calculated after σb, also φσ(s, ki) ≥ φσb(s, ki). Since
i < ν and by Lemma 4.1.4 (4), this implies φσ(s, ki) ≥ φσb(s, ki) = f(b, i) ≥ f(b, ν).

3. e ∈ U3,6
σ : Then, e = (dji , v) for v ∈ {s, hji} where i ∈ [ν], j ∈ {0, 1} and σ(dji ) 6= v.

First, assume that v = s. Then σ(dji ) = hji . Since i < ν, it holds that bi+1 = 1 for

i 6= ν − 1 and bi+1 = 0 for i = ν − 1. Furthermore, the target vertex of dji can only

be changed during phase 6 and was thus not changed yet. This implies that either

dji = d1i and σ(d1i ) = h1i and i < ν − 1 or dji = d0ν−1 and σ(dji ) = h0i−1 if i = ν − 1.
For these switches we however already showed in the proof of Lemma 4.4.9 that

φσb(e) ≥ f(b, ν), implying φσ(e) ≥ f(b, ν).

Now assume v = hji , so e = (dji , h
j
i ). Analogously to the case v = s it is easy to

verify that either hji = h0i and σ(d0i ) = h0i for i < ν − 1 or hji = h1i and σ(d1i ) = h1i
for i = ν − 1. Again, these edges have already been investigated in the proof of

Lemma 4.4.9 and the inequality φσ(e) ≥ f(b, ν) was shown there.

4. e ∈ U3,7
σ or e ∈ U3,8

σ : By Lemma 4.4.9, φσ(e) ≥ f(b, ν) for all e ∈ L6
σ. Since

U3,7
σ , U3,8

σ ⊆ L6
σ, this implies the statement.
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5. e ∈ U3,9
σ : The set U3,9

σ contains edges that are improving switches since phase 1. We

thus refer to the rules listed in Section 4.4 describing the application of these edges.

We need to investigate the occurrence record of switches that could have been applied

during phase 1 but were not applied. By the rules 1 to 5 and Theorem 4.4.3, only one

instead of two improving switches are switched in a bicycle Aj
i when φσb(Aj

i ) = b.

Since we always chose to switch the edge with the lower occurrence record in

a bicycle and their occurrence records differ at most by one by Equation (4.3),

this implies φσb(bji,l, A
j
i ) = ⌈b/2⌉ = ⌊(b+ 1)/2⌋ for any e = (bji,l, A

j
i ) ∈ U3,9

σ with

σ(bji,l) 6= Aj
i . By Lemma 4.1.4 (3) resp. (4), we obtain ⌊(b+ 1)/2⌋ = f(b, 1) and

consequently φσ(e) ≥ φσb(e) = f(b, 1) ≥ f(b, ν).

Lemma 4.4.12. Let σ be a phase 3 strategy and let e denote the switch that is applied in σ.
Let σ′ denote an arbitrary phase 3 strategy of σb → σb+1 calculated after the strategy σ.

1. If e = (ki, kν), then Iσ′ ∩ S3,1
i,σ′ = ∅.

2. If e = (bji,l, kν) with σ(bji,l) 6= kν and (b+ 1)i = 0, then Iσ′ ∩ S3,2
i,j,l,σ′ = ∅.

3. If e = (bji,l, kν) with σ(bji,l) 6= kν and (b+ 1)i+1 6= j, then Iσ′ ∩ S3,3
i,j,l,σ′ = ∅.

Proof. We prove the first statement in detail and only sketch the proof of the other two

statements since all of them use the same arguments.

1. Let ẽ ∈ S3,1
i,σ′ . We show that ẽ is not an improving switch with respect to σ′. Due to

the application of e in σ and since σ′ is reached after σ, it holds that σ′(ki) = kν .
Since ẽ ∈ S3,1

i,σ′ , we have ẽ = (ki, kz) for some z ≤ ν and σ′(ki) 6= kz. It thus suffices

to show that Valσ′(kν) ≥ Valσ′(kz). Since σ
′ is a phase 3 policy, Lemma 4.3.6 implies

Valσ′(kz) ≤
∑

j≥z:(b+1)j=1

[
(−N)2j+8 + (−N)2j+7 + (−N)7 + (−N)6

]
. (A.3)

Since σe is also a phase 3 policy, the active bicycle of level ν was already closed

during phase 1 and σ′(kν) = cj
′

ν where j′ = (b+1)i+1. In addition, no active bicycle

contained in a level j > ν was opened as bj = (b+1)j for these indices. This implies

Valσe(kν) =
∑

j≥ν:(b+1)j=1

[
(−N)2j+8 + (−N)2j+7 + (−N)7 + (−N)6

]
. (A.4)

As the valuations are non-decreasing, Valσ′(kν) ≥ Valσe(kν). Since (b+ 1)j = 0 for

all j < ν, combining Equations (A.3) and (A.4) yields

Valσ′(kν) ≥ Valσe(kν) =
∑

j∈≥ν:(b+1)j=1

[
(−N)2j+8 + (−N)2j+7 + (−N)7 + (−N)6

]

=
∑

j∈[n]:(b+1)j=1

[
(−N)2j+8 + (−N)2j+7 + (−N)7 + (−N)6

]
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≥
∑

j≥z:(b+1)j=1

[
(−N)2j+8 + (−N)2j+7 + (−N)7 + (−N)6

]
≥ Valσ′(kz)

Thus, Valσ′(kν) ≥ Valσ′(kz) and ẽ = (ki, kz) is not improving for σ′.

2. We need to show that for every phase 3 policy σ′ reached after applying e = (bji,r, kν)
in σ, no switch contained in S3,2

i,j,r,σ′ is an improving switch.

Let σ′ be a phase 3 policy of σb → σb+1 reached after σ. Then, σe(bji,r) = kν and

thus Valσe(b
j
i,r) = Valσe(kν). Since any edge ẽ ∈ S3,2

i,j,r,σ′ is of the form ẽ = (bji,r, kz)
for some z ≤ ν, it therefore suffices to show Valσ′(kν) ≥ Valσ′(kz). This however
follows by the same estimations used in the first case.

3. This is proven analogously to 2.

Lemma 4.4.13. Let σ be a phase 3 strategy. Then L3
σ ∩ argmine′∈Iσ φ

σ(e′) 6= ∅.

Proof. Since a policy is optimal if and only if the set of improving switches is empty, we

have Iσ 6= ∅ as σ is a phase 3 strategy. Let e ∈ argminẽ∈Iσ φ
σ(e).

Since σ is a phase 3 strategy, L3
σ 6= ∅. By [Fri11c, Lemma 4], e ∈ L3

σ or e ∈ U3
σ \ L3

σ.

Let e ∈ U3
σ \ L3

σ, since the statement follows directly in the first case. Since U3,1
σ , . . . , U3,9

σ

define a partition of U3
σ , there is exactly one k ∈ {1, . . . , 9} with e ∈ U3,k

σ .

Let k ∈ {4, . . . , 9}. Then, by Lemma 4.4.10, φσ(e) ≥ φσ(ẽ) for all ẽ ∈ L3
σ since

e ∈ Iσ. Since e minimizes the occurrence record, this implies φσ(e) = φσ(ẽ) for all

ẽ ∈ L3
σ. This implies there is at least one ẽ ∈ L3

σ minimizing the occurrence record,

so ẽ ∈ argminẽ∈Iσ φ
σ(ẽ) ∩ L3

σ.

Now let k ∈ {1, 2, 3} and distinguish the following cases.

1. e ∈ U3,1
σ : Then, e = (ki, kz) for some i ∈ [n] and z ∈ [ℓ] with σ(ki) /∈ {kz, kν}

and (b + 1)i = 0. Thus, e ∈ S3,1
i,σ . First assume that (ki, kν) was not applied

yet in the current transition. Then, φσ(ki, kν) = φσb(ki, kν) and, by Table 4.5,

φσb(ki, kν) = f(b, ν, {(i, 0)}). Using z ≤ ν and Lemma 4.1.4 (4), this implies

φσ(ki, kν) = φσb(ki, kν) = f(b, ν, {(i, 0)}) ≤ f(b, z, {(i, 0)}) = φσb(e) ≤ φσ(e).

Since e minimizes the occurrence records among all improving switches, it holds

that φσ(ki, kν) = φσ(e). This implies (ki, kν) ∈ argminẽ∈Iσ φ
σ(ẽ), so the statement

follows from (ki, kν) ∈ L3
σ.

It remains to prove that (ki, kν) was not applied yet. For the sake of a contradiction,

assume that it was applied previously during this transition. Then there was a phase

3 strategy σ′ reached before σ such that (ki, kν) was applied in σ′. But then, by

Lemma 4.4.12, Iσ ∩ S3,1
i,σ = ∅. This is a contradiction since e ∈ Iσ and e ∈ S3,1

i,σ .

2. e ∈ U3,2
σ : Then, e = (bji,r, kz) for some i ∈ [n] and z[ν] with σ(bji,l) /∈ {kz, kν}

and (b + 1)i = 0. Hence, e ∈ S3,2
i,j,r,σ. Assume that (bji,r, kν) was not applied yet in

the current transition. Then, since z ≤ ν, by Table 4.5 and by Lemma 4.1.4 (4),

φσ(bji,r, kν) = φσb(bji,l, kν) = f(b, ν, {(i, 0)}) + f(b, ν, {(i, 1), (i+ 1, 1− j)})
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≤ f(b, z, {(i, 0)}) + f(b, z, {(i, 1), (i+ 1, 1− j)}) = φσb(e) ≤ φσ(e).

Since e minimizes the occurrence records among all improving switches, it holds

that φσ(bji,r, kν) = φσ(e). This implies that (bji,r, kν) ∈ argminẽ∈Iσ φ
σ(ẽ), so the

statement follows from (bji,r, kν) ∈ L3
σ.

It remains to show that (bji,r, kν) was not applied yet. However, assuming that this

switch was applied before results in the same contradiction as in the last case.

3. e ∈ U3,3
σ : This follows analogously to the previous case.

Lemma 4.4.16. Let p ∈ {1, 2, 4, 5, 6} and let σ be a phase p strategy. Then, there is an

improving switch e ∈ Lp
σ such that φσ(e) ≤ mine′∈Up

σ∩Iσ
φσ(e′).

Proof. We distinguish between the five possible choices for p. Let σ denote a phase p
policy for the corresponding p.

• Let p = 1. Then, since Table 4.4 implies Lσ = Iσ = Uσ for any phase 1 policy σ, the
statement follows directly.

• Let p = 2 and e ∈ L2
σ. Then, by Table 4.4, e = (kν , c

j
ν) where j = (b+ 1)ν+1. Since

U2
σ = L1

σ ∪ L2
σ and Iσ ⊂ U2

σ , it suffices to prove φσ(e) ≤ mine′∈L1
σ
φσ(e′).

Let e′ ∈ L1
σ. Then, e

′ = (bji,k, A
j
i ) for some i ∈ [n] and j, k ∈ {0, 1} and σ(bji,k) 6= Aj

i .

This implies that e′ was not applied during phase 1. As we have already discussed

in the proof of Lemma 4.4.10, we thus have φσ(e′) = f(b, 1). But then, since

φσ(e) = f(b, ν, {(ν + 1, j)}) by Table 4.5 and Lemma 4.1.4 (2,4), this implies that

φσ(e) = f(b, ν, {(ν + 1, j)}) ≤ f(b, ν) ≤ f(b, 1) = φσ(e′).

• Let p = 4 and e ∈ Lσ4 . As proven in Lemma 4.4.9, Case 1, φσ(e) = f(b, ν). It

therefore suffices to prove φσ(e) ≥ f(b, ν) for all e ∈ U4
σ ∩ Iσ.

By definition, U4
σ = U3,4

σ ∪ · · · ∪ U3,9
σ . We already proved φσ′(e′) ≥ f(b, ν) for all

e′ ∈ Iσ′∩U
4
σ′ in the proof of Lemma 4.4.10 when σ′ is a phase 3 policy. The statement

follows for phase 4 policies by applying the same arguments.

• Let p = 5 and e ∈ L5
σ, implying e = (s, kν). Thus, by Table 4.5, φσ(e) = f(b, ν) , so

it suffices to prove φσ(e′) ≥ f(b, ν) for all e′ ∈ U5
σ . This can be shown by the same

arguments used in the proof of Lemma 4.4.10 since U5
σ = U3,5

σ ∪ · · · ∪ U3,9
σ .

• Let p = 6 and e ∈ L6
σ. Since U6

σ = L1
σ ∪ L6

σ, it suffices to prove φσ(e) ≤ φσ(e′) for
all e′ ∈ L1

σ. Let e
′ ∈ Lσ1 . As shown in the proof of Lemma 4.4.10, φσ(e′) = f(b, 1)

since e′ ∈ L6
σ and e′ was not applied during phase 1. Since e ∈ L6

σ, either e = (dji , s)

for some i ∈ [n] and j ∈ {0, 1}, implying φσ(e) = f(b, i+1)− j · bi+1 or e = (dji , h
j
i )

for some i ∈ [n], j ∈ {0, 1}, implying φσ(e) = f(b, i + 1) − (1 − j) · bi+1. Using

Lemma 4.1.4 (4), this yields φσ(e) ≤ f(b, i+ 1) ≤ f(b, 2) ≤ f(b, 1) = φσ(e′).

A.2. Proofs of Chapter 6

This part of the appendix contains all proofs related to the exponential lower bound

construction. We begin by providing proofs for the statements of Section 6.1.
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Omitted proofs of Section 6.1

Lemma 6.1.8. Let P = {g∗, s∗,∗, hi∗,∗} be the set of vertices with priorities in Mn. Let

S, S′, P ⊆ P be non-empty subsets, let
∑

(S) :=
∑

v∈S 〈v〉 and define
∑

(S′) analogously.

1. |
∑

(S)| < N2n+11 and ε · |
∑

(S)| < 1 for every subset S ⊆ P , and

2. |maxv∈S 〈v〉 | < |maxv∈S′ 〈v〉 | if and only if |
∑

(S)| < |
∑

(S′)| .

Proof. The highest priority of any vertex is 2n + 10 and there are no more then 5n
vertices with priorities. Let v, w be two vertices with Ω(v) > Ω(w). Then, by construction,

〈v〉 ≥ N · 〈w〉. In other words, if two vertices v, w do not have the same priority, then the

rewards associated with the vertices are apart by at least a factor of N . Thus, for S ⊆ P ,

∣∣∣
∑

(S)
∣∣∣ ≤

∣∣∣
∑

(P )
∣∣∣ ≤ |P | ·

∣∣∣∣max
v∈P

〈v〉

∣∣∣∣ ≤ |P | ·N2n+10 = 5n ·N2n+10 < N2n+11,

implying the first statement since ε = N−(2n+11) by definition.

Let S, S′ ⊆ P be non-empty. Let |maxv∈S 〈v〉| < |max v∈S′ 〈v〉|. Then

∣∣∣
∑

(S)
∣∣∣ ≤ |S| ·

∣∣∣∣max
v∈S

〈v〉

∣∣∣∣ < 5n

∣∣∣∣max
v∈S

〈v〉

∣∣∣∣ ≤ 5n
|maxv∈S′ 〈v〉|

N
<

∣∣∣∣max
v∈S′

〈v〉

∣∣∣∣ ≤
∣∣∣
∑

(S′)
∣∣∣ .

Now let |
∑

(S)| < |
∑

(S′)|. Then

∣∣∣∣max
v∈S

〈v〉

∣∣∣∣ ≤
∣∣∣
∑

(S)
∣∣∣ <

∣∣∣
∑

(S′)
∣∣∣ < 5n

∣∣∣∣max
v∈S′

〈v〉

∣∣∣∣ ,

so |maxv∈S 〈v〉| < 5n |maxv∈S′ 〈v〉|. Since N ≥ 7n, this implies the statement.

Lemma 6.1.10. Let σ ∈ ρ(σ0) be well-behaved.

1. Let σ(bµσ) = bµσ+1. Then L∗i � R∗i for all i ∈ [n] and L∗i ≺ R∗j for j < i ≤ µσ.

2. Let σ(bµσ) = gµσ . Then L∗i � R∗i for all i ∈ [n] and Li ≻ R∗j for i ≤ µσ and j ∈ [n]
and Li ⊕ JgjK ≻ Rj for i ≤ µσ and j < µσ.

3. Let i ≥ µσ > j. Then R∗j ≺ Jsi,j , hi,jK ⊕ L∗i+1.

4. For all i ∈ [n], it holds that Jgi, si,∗, hi,∗K ≻
⊕

i′<iW
∗
i′ and L∗1 ≺ Jsi,j , hi,jK ⊕ L∗i+1.

Proof. We prove the statements one after another.

1. The first statement follows directly if i ≥ µσ since this impliesR∗i = L∗i . Thus assume

i < µσ. Then, σ(bµσ) = bµσ+1 implies L∗i =
⊕µσ−1

ℓ=i {W ∗ℓ : σ(bℓ) = gℓ} ⊕ L∗µσ+1. The
first statement follows since

µσ−1⊕

ℓ=i

{W ∗ℓ : σ(bℓ) = gℓ} �

µσ−1⊕

ℓ=i

W ∗ℓ and R∗i =

µσ−1⊕

ℓ=i

W ∗ℓ ⊕ Lµσ+1.

The second statement follows since j < i ≤ µσ implies
⊕µσ−1

ℓ=i W ∗ℓ ≺
⊕µσ−1

ℓ=j W ∗ℓ .
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2. The first statement follows directly if i > µσ since this impliesR∗i = L∗i . Thus assume

i ≤ µσ. Since σ(bµσ) = gµσ , the statement then follows since

L∗i =
⊕

ℓ≥i

{W ∗ℓ : σ(bℓ) = gℓ} =

µσ−1⊕

ℓ=i

{W ∗ℓ : σ(bℓ) = gℓ} ⊕Wµσ ⊕ L∗µσ+1

≻

µσ−1⊕

ℓ=1

W ∗ℓ ⊕ L∗µσ+1 = R∗1 � R∗j .

The same calculation implies the third statement as the estimations remain correct

if j < µσ.

3. By i ≥ µσ > j, we have

R∗j =

µσ−1⊕

ℓ=j

Wℓ ⊕
⊕

ℓ≥µσ+1

{Wℓ : σ(bℓ) = gℓ} ≺

µσ⊕

ℓ=1

Wℓ ⊕
⊕

ℓ≥µσ+1

{Wℓ : σ(bℓ) = gℓ}

≺
i⊕

ℓ=1

Wℓ ⊕
⊕

ℓ≥i+1

{Wℓ : σ(bℓ) = gℓ} ≺ Jsi,j , hi,jK ⊕ L∗i+1.

4. For Gn = Sn, the statement follows since the most significant difference is the vertex

hi∗ and since the priority of this vertex is even. For Gn = Mn, this follows intuitively

since the 〈hi,∗〉 has the largest exponent of all terms in the expression and since it is

the only vertex that has this exponent. Thus, 〈hi,∗〉 is by a factor of N larger than

all other quantities in the given expression, and as N is sufficiently large, this term

dominates. Formally, this can be shown by an easy but tedious calculation.

The second statement follows from the first.

Lemma 6.1.12. Let σ ∈ ρ(σ0) be well-behaved and i < µσ. Then rValSσ(gi) = RS
i and

rValMσ (gi) =





BM
2 +

k−1∑

j=i

WM
j + 〈gk〉 , if k := min{k ≥ i : ¬σ(dk)} < µσ

rValMσ (gi) = RM
i , otherwise.

Proof. This statement is shown by backwards induction on i. Let i = µσ − 1, implying

σ(gi) = Fi,0 by Property (BR1).

• Let σ(di). Since σ(si,0) = hi,0 by Property (S2), Lemma 6.1.11 yields

rVal∗σ(gi) = W ∗i ⊕ rVal∗σ(bi+2) = W ∗i ⊕B∗i+2 = W ∗i ⊕ L∗i+2 = R∗i .

• Let ¬σ(di). Consider Gn = Sn first. By Property (BR2), either τσ(Fi,0) = di,0,k
where σ(di,0,k) = ei,0,k and σ(ei,0,k) = b2 for some k ∈ {0, 1} or τσ(Fi,0) = si,0.
Since player 1 chooses τσ(Fi,0) such that the valuation of gi is minimized we need to

compare BS
2 ∪{gi} (if player 1 chooses di,0,k) and RS

i (if player 1 chooses si,0). Note
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that σ(b2) = b3 if µ
σ > 2 by Property (EB6) and that µσ = 2 implies BS

2 = LS
2 . We

prove that this implies RS
i ⊳LS

2∪{gi} and thus rValSσ(gi) = RS
i . As mentioned before,

σ(gi) = Fi,0. In addition, we have σ(ebi,0) ∧ ¬σ(egi,0). Thus, by Property (EB1),

we have σ(bi+1) = σ(bµσ) 6= 0. Hence σ(bµσ) = gµσ and σ(bi+1) = gi+1. The

statement thus follows from Lemma 6.1.10 (2). Consider Gn = Mn next. By

the choice of i and assumption, it holds that i = min{k ≥ i : ¬σ(dk)} < µσ. By

Property (BR2), this implies ¬σ(egi,0). Thus rVal
M
σ (Fi,j) = rValMσ (b2). Therefore,

rValMσ (gi) = 〈gi〉+ rValMσ (b2) = 〈gi〉+BM
2 by Lemma 6.1.11.

Now let i < µσ − 1, implying σ(gi) = Fi,1 by Property (BR1) and µσ ≥ 3.

1. Let σ(di). Consider Gn = Sn first. Then, τσ(Fi,1) = si,1 and σ(si,1) = hi,1 by

Property (S2). Using the induction hypotheses, this yields

rValSσ(gi) = W S
i ∪ rValSσ(gi+1) = W S

i ∪RS
i+1 = RS

i .

If Gn = Mn, then the same property implies rValMσ (Fi,1) = rValMσ (si,1) as well

as σ(si,1) = hi,1. Thus rValMσ (gi) = WM
i + rValMσ (gi+1). Applying the induction

hypotheses to rValMσ (gi+1) yields the result.

2. Let ¬σ(di). Consider Gn = Sn first. By the same arguments used for i = µσ − 1,
we need to show RS

i ⊳ BS
2 ∪ {gi}. By Properties (BR2) and (EB2) we thus have

σ(b2) = b3 and B2 = L2 as µσ ≥ 3. It thus suffices to prove RS
i ⊳ LS

2 ∪ {gi}. Let,
for the sake of contradiction, µσ = min{i′ : σ(bi′) = bi′+1}. By Property (BR2) and

¬σ(di), we have σ(ebi,1) ∧ ¬σ(egi,1). Thus, by Property (EB1), σ(bi+1) = bi+2. But

this implies µσ ≤ i+ 1, contradicting i < µσ. Hence Iσ 6= ∅, implying σ(bµσ) = gµσ

by Lemma 6.1.4. But then, the statement follows from Lemma 6.1.10 (2).

Consider Gn = Mn next. Then i = min{k ≥ i : ¬σ(dk)} < µσ. As in the case

i = µσ − 1, we have rValMσ (Fi,j) = rValMσ (b2). Therefore,

rValMσ (gi) = 〈gi〉+ rValMσ (b2) = 〈gi〉+BM
2

by Lemma 6.1.11.

Lemma 6.1.14. Let µσ = 1 and m := min{mσ
g ,m

σ
s }. Then

rVal∗σ(g1) =





〈g1〉+ rValMσ (b2), if mσ
b ≤ mσ

s ,m
σ
g ∧Gn = Mn ∧ ¬σ(d1),

W ∗1 ⊕ rVal∗σ(b2), if mσ
b ≤ mσ

s ,m
σ
g ,

∧ (Gn = Sn ∨ [Gn = Mn ∧ σ(d1)]),
m⊕

i′=1

W ∗i′ ⊕ rVal∗σ(bmσ
g+2) if mσ

g < mσ
s ,m

σ
b ,

∧ [(σ(bmσ
g+1) ∧Gn = Sn) ∨ ¬σ(ebmσ

g
)],

m−1⊕
i′=1

W ∗i′ ⊕ JgmK ⊕ rVal∗σ(b2) otherwise.

Proof. This statement is proven by distinguishing between several cases. Most of the cases

are proven by backwards induction, some are proven directly.

210



A.2. Proofs of Chapter 6

1. mσ
b ≤ mσ

s ,m
σ
g , Gn = Mn and ¬σ(d1): We prove that this implies that we

have rValMσ (g1) = 〈g1〉+ rValMσ (b2). By Lemma 6.1.6, mσ
b ≤ mσ

s ,m
σ
g implies mσ

b =
2. Thus, σ(b2) = g2, σ(g1) = F1,1 and it suffices to prove σ(eb1,1) ∧ ¬σ(eg1,1).
By Property (EG1), it cannot hold that σ(eg1,1) ∧ ¬σ(eb1,1) as this would imply

σ(s1,1) = b1. This however contradicts σ(s1,1) = h1,1 which follows from 1 < mσ
s

and σ(g1) = F1,1. By Property (EBG3), we cannot have σ(eb1,1) ∧ σ(eg1,1) as this
would imply σ(d1), contradicting the current assumptions. Thus, σ(eb1,1)∧¬σ(eg1,1).

2. mσ
b ≤ mσ

s ,m
σ
g , Gn = Mn and σ(d1): By Lemma 6.1.6, it holds that mσ

b = 2.
This implies σ(b2) = g2, σ(g1) = F1,1 and σ(s1,1) = h1,1. Thus, the chose cycle

center of level 1 is closed, implying rValMσ (g1) = WM
1 + rValMσ (b2).

3. mσ
b ≤ mσ

s ,m
σ
g and Gn = Sn: By the same argument used in the last case, it

suffices to prove σ(d1). This however follows since ¬σ(eb1) by Property (MNS1) and

¬σ(eg1) by Property (EG1).

4. mσ
g < mσ

s ,m
σ
b ∧ ¬σ(ebmσ

g
) ∧ [Gn = Sn =⇒ ¬σ(bmσ

g
+1)]: We prove that

rVal∗σ(gi) =

mσ
g⊕

i′=i

W ∗i′ ⊕ rVal∗σ(bmσ
g+2) (A.5)

for all i ≤ mσ
g by backwards induction. Let i = mσ

g . Then, by the choice of

i, σ(gi) = Fi,0 and σ(si,0) = hi,0. Since we assume ¬σ(ebmσ
g
) = ¬σ(ebi,0), Fi,0

does not escape towards b2. In addition, by Property (EG1), it cannot be the case

that σ(egi,0) ∧ ¬σ(ebi,0) as this would imply σ(si,0) = b1. Hence Fi,0 is closed, so

rVal∗σ(Fi,0) = rVal∗σ(si,0). Consequently, rVal∗σ(gi) = W ∗i ⊕ rVal∗σ(bi+2) which is

exactly Equation (A.5) by the choice of i.

Let i < mσ
g . By i < mσ

g , it holds that σ(gi) = Fi,1. By Property (MNS2), it

also holds that ¬σ(ebi). Using Property (EG1) as before, we conclude that Fi,1

is closed, so rVal∗σ(Fi,1) = rVal∗σ(si,1). Also, σ(si,1) = hi,1 since i < mσ
s . This

implies rVal∗σ(gi) = W ∗i ⊕ rVal∗σ(gi+1), so Equation (A.5) follows from the induction

hypothesis.

5. mσ
g < mσ

s ,m
σ
b ∧ σ(bmσ

g
+1) and Gn = Sn: We prove that

rValSσ(gi) =

mσ
g⋃

i′=i

W S
i′ ∪ rValSσ(bmσ

g+2) (A.6)

for all i ≤ mσ
g by backwards induction. Let i = mσ

g . Then, by the choice of i, it holds
that σ(gi) = Fi,0 and σ(si,0) = hi,0. By Property (EG1), it cannot be the case that

σ(egi,0) ∧ ¬σ(ebi,0) as this would imply σ(si,0) = b1. By Property (EBG1), it cannot

be the case that σ(egi,0)∧σ(ebi,0) as this would imply σ(bi+1) = 0, contradicting the

assumption. In particular, this implies ¬σ(egi,0). Thus, depending on the choice of

player 1, either rValSσ(Fi,0) = rValSσ(b2) or rVal
S
σ(Fi,0) = rValSσ(si,0). It is now easy

to see that σ(bmσ
g+1) implies rValSσ(si,0)⊳ rValSσ(b2) and thus τσ(Fi,0) = si,0. Hence

rValSσ(gi) = W S
i ∪ rValSσ(bi+2) as required.
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Let i < mσ
g . By i < mσ

g , it follows that σ(gi) = Fi,1 and consequently σ(si,1) = hi,1.
Using Properties (EG1), (EBG1) and i < mσ

b , we can again conclude that ¬σ(egi,1).
Consequently, either rValSσ(Fi,1) = rValSσ(b2) or rValSσ(Fi,1) = rValSσ(si,1). Using

σ(bmσ
g+1) and the induction hypotheses, it is again follows thatrValSσ(si,1)⊳rValSσ(b2).

Thus, the statement again follows by applying the induction hypotheses.

6. mσ
g < mσ

s ,m
σ
b ∧ ¬σ(bmσ

g
+1) ∧ σ(ebmσ

g
) and Gn = Sn: Let, for the sake of

contradiction, mσ
g > 1. Then, by Lemma 6.1.6, mσ

b = mσ
g + 1 and in particular

σ(bmσ
g+1), contradicting the assumption. Thus, mσ

g = 1. This implies σ(g1) = F1,0

and σ(s1,0) = h1,0. Let, for the sake of contradiction, σ(eb1,0) ∧ σ(eg1,0). Then,

σ(g1) = σ(b2) as ¬σ(b2) by assumption and mσ
g = 1. But then, Property (EBG3)

implies σ(d1) which is a contradiction. Consequently, σ(ebi,0) ∧ ¬σ(egi,0). Since

rValσ(b2)⊳ {s1,0, h1,0} ∪ rValσ(b2) = 〈s1,0, h1,0〉 ∪ rValσ(b3),

this yields rValSσ(g1) = {g1} ∪ rValσ(b3).

7. mσ
g < mσ

s ,m
σ
b ∧ σ(ebmσ

g
) and Gn = Mn: We prove that

rValMσ (gi) =

mσ
g−1∑

i′=i

WM
i +

〈
gmσ

g

〉
+ rValMσ (b2) (A.7)

for all i ≤ mσ
g by backwards induction. Let i = mσ

g . Then, by construction,m
σ
g 6= n as

mσ
b ≤ n . We prove¬σ(egi,0). Assume otherwise, implying σ(ebi,0)∧σ(egi,0). Assume

mσ
g > 1. Then, by Lemma 6.1.6, σ(bmσ

g+1) = 1, contradicting Property (EBG1).

Hence assume mσ
g = 1. If σ(b2) = σ(g1), then Property (EBG3) implies σ(d1),

contradicting the assumption. If σ(b2) 6= σ(g1), then σ(b2) = 1, again contradicting

Property (EBG1). Thus, ¬σ(egi,0) needs to hold. Consequently, as σ(ebi,0)∧¬σ(egi,0),
this yields rValMσ (gmσ

g
) = 〈gmσ

g
〉+ rValMσe(b2).

Let i < mσ
g . Then σ(gi) = Fi,1 and σ(si,1) = hi,1. In addition, by Property (MNS2),

¬σ(ebi,1). Since σ(egi,1) would imply σ(si,1) = b1 by Property (EB1), we have

¬σ(ebi)∧¬σ(egi), implying σ(di). This implies rValMσ (gi) = WM
i +rValMσ (gi+1) and

the statement then follows by using the induction hypotheses.

8. mσ
s ≤ mσ

g < mσ
b or mσ

s < mσ
b ≤ mσ

g : Let m := min{mσ
g ,m

σ
s }. We prove that

rVal∗σ(gi) =
m−1⊕

i′=i

W ∗i′ ⊕ JgmK ⊕ rVal∗σ(b2) (A.8)

for all i ≤ m. Let i = m and j := σ(gi). We can assume i = mσ
s in both cases,

implying i = mσ
s ≤ n in both cases. By either Property (MNS4) or Property (MNS6),

we have σ(ebi)∧¬σ(egi). This implies rValMσ (Fi,j) = rValMσ (b2), hence the statement

follows forGn = Mn. Consider the caseGn = Sn. Since i = mσ
s , we have σ(si,j) = b1.

Therefore, using σ(b1) = b2, we obtain rValSσ(si,j) = {si,j} ∪ rValSσ(b2)⊲ rValSσ(b2).
Thus τσ(Fi,j) = di,j,k and therefore rValSσ(gm) = {gm} ∪ rValSσ(b2).

Let i < m. Since i < mσ
s ≤ mσ

g in both cases, σ(gi) = Fi,1 and σ(si,1) = hi,1.
Let Gn = Sn. By Property (EG1), it cannot be the case that σ(egi,1) ∧ ¬σ(ebi,1)
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as this would imply σ(si,1) = b1. By Property (EBG1), it cannot be the case that

σ(ebi,1) ∧ σ(egi,1) as this would imply σ(bi+1) = gi+1, contradicting the choice of i.
Hence, either σ(di,j) or σ(ebi,1) ∧ ¬σ(egi,1). We prove that τσ(Fi,j) = si,j holds in
any case. It suffices to consider the second case as this follows directly in the first case.

Since σ(ebi,1) ∧ ¬σ(egi,1), it suffices to prove rValSσ(si,1)⊳ rValSσ(b2). This however
follows by the induction hypotheses and rValSσ(si,1) = {si,1, hi,1}∪rVal

S
σ(gi+1). Thus,

τσ(Fi,j) = si,j for Gn = Sn in any case.

If Gn = Mn, then either Property (MNS3) or Property (MNS5) implies the cycle

center Fi,1 is closed. Hence, using the induction hypotheses, Equation (A.8) follows

from rVal∗σ(gi) = W ∗i ⊕ rVal∗σ(gi+1).

Note that the cases listed here suffice, i.e., every possible relation between the three

parameters mσ
s ,m

σ
g and mσ

b is covered by exactly one of the cases.

Lemma 6.1.16. Let Gn = Sn. Let σ ∈ ρ(σ0) be well-behaved and i ∈ [n], j ∈ {0, 1}. Then

rValSσ(Fi,j) =





rValSσ(si,j), if σ(di,j),

{si,j} ∪ rValSσ(b2), if σ(egi,j) ∧ ¬σ(ebi,j) ∧ µσ = 1,

rValSσ(g1), if σ(egi,j) ∧ ¬σ(ebi,j) ∧ µσ 6= 1,

rValSσ(b2), if σ(ebi,j) ∧ ¬σ(egi,j) ∧ µσ = 1

∧ (¬σ(si,j) ∨ σ(bi+1) = j),

rValSσ(si,j), if σ(ebi,j) ∧ ¬σ(egi,j)

∧ (µσ 6= 1 ∨ (σ(si,j) ∧ σ(bi+1) 6= j)),

rValSσ(g1), if σ(ebi,j) ∧ σ(egi,j) ∧ σ(g1) 6= σ(b2),

rValSσ(b2), if σ(ebi,j) ∧ σ(egi,j) ∧ σ(g1) = σ(b2).

Proving this statement requires the following additional lemma.

Lemma A.2.1. Let Gn = Sn and let σ ∈ ρ(σ0). Let i ∈ [n] such that σ(egi). Then there is

some i′ < i such that either σ(gi′) = Fi′,0 or σ(si′,σ(gi′ )) = b1.

Proof. Let, for the sake of contradiction, σ(gi′) = Fi′,1 and σ(si′,σ(gi′ )) = hi′,σ(gi′ ) for all
i′ < i. Then, player 1 can create a cycle by setting τσ(Fk,1) = sk,1 for all k < i and
τ(Fi,σ(gi)) = di,σ(gi),k where k is chosen such that the cycle center escapes towards g1. But
this contradicts the fact that Sn is a sink game.

Proof of Lemma 6.1.16. Consider a cycle center Fi,j . We distinguish the following cases:

1. σ(di,j): Then Fi,j is closed and rValSσ(Fi,j) = rValSσ(si,j) since Sn is a sink game.

2. σ(egi,j),¬σ(ebi,j) and µσ = 1: We prove rValSσ(Fi,j) = {si,j} ∪ rValSσ(b2). Since
¬σ(ebi,j), player 1 choose a cycle vertex escaping towards g1 or si,j . As player 1
minimizes the vertex valuations, it suffices to prove rValSσ(si,j) ⊳ rValSσ(g1). Prop-
erty (EG2) implies σ(d1) and hence rValSσ(g1) = {g1} ∪ rValSσ(s1,σ(g1)). By Prop-

erty (EG3), also σ(s1,σ(g1)) = h1,σ(g1). Since σ(g1) = σ(b2) by Property (EG4), it

then follows that rValSσ(h1,σ(g1)) = rValSσ(b2). Hence rValSσ(g1) = W S
1 ∪ rValSσ(b2).

Furthermore, rValSσ(si,j) = {si,j}∪ rValSσ(b1) = {si,j}∪ rValSσ(b2) by Property (EG1)

and µσ = 1, and consequently rValSσ(si,j)⊳ rValSσ(g1).
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3. σ(egi,j),¬σ(ebi,j) and µσ 6= 1: We prove rValSσ(Fi,j) = rValSσ(g1). Assume

σ(si,j) = b1. Since σ(b1) = g1 by Lemma 6.1.3,

rValSσ(g1) = rValSσ(b1)⊳ {si,j} ∪ rValSσ(b1) = {si,j} ∪ rValSσ(g1) = rValSσ(si,j),

implying τσ(Fi,j) = si,j since ¬σ(ebi,j). Assume σ(si,j) = hi,j . By Property (EG5),

it then holds that j = σ(bi+1). Since also σ(b1) = g1 and µσ 6= 1, it suffices to prove

RS
1 ⊳ {si,j , hi,j}∪ rValσ(bi+2−j). This can be shown by the following case distinction

based on j and the relation between i+ 1 and µσ.

a) Let j = 1 and i + 1 < µσ. Then rValSσ(bi+2−j) = rValSσ(bi+1) = RS
i+1 since

σ(bi+1) = gi+1 by Property (EG5). It thus suffices to proveRS
1⊳{si,j , hi,j}∪R

S
i+1

which follows from ∆(RS
i+1 ∪ {si,j , hi,j}, R

S
1) = gi.

b) Letj = 1 and i + 1 ≥ µσ. Then rValSσ(bi+1) = LS
i+1 and it suffices to prove

RS
1 ⊳ {si,j , hi,j} ∪ LS

i+1. This follows from Lemma 6.1.10 if i ≥ µσ and is easy

to verify for i+ 1 = µσ.

c) Let j = 0 and i + 2 ≤ µσ. We first show rValSσ(bi+2) = LS
i+2. If i + 2 = µσ,

then this follows by definition. Thus let i + 1 < µσ − 1. Since σ(si,j) =
hi,j , Property (EG5) implies σ(bi+1) = bi+2. This implies σ(bi+2) = bi+3 by

Property (B1). Consequently, also rValSσ(bi+2) = LS
i+2 in this case. As usual, we

have rValσ(b1) = RS
1 and thus prove RS

1 ⊳ {si,j , hi,j} ∪ LS
i+2. But this follows

from Lemma 6.1.10 since σ(bi+1) = bi+2 implies LS
i+1 = LS

i+2 as follows: By

µσ ≥ i + 2 and σ(bi+1) = bi+2, we have µσ 6= min{i′ ∈ [n] : σ(bi′) = bi′+1}.
Hence Iσ 6= ∅ and σ(bµσ) = gµσ by Lemma 6.1.4. Thus i + 2 ≤ µσ implies

RS
1 ⊳ LS

i+2 ⊳ LS
i+2 ∪ {si,j , hi,j} by Lemma 6.1.10.

d) Let j = 0 and i+2 > µσ. Then rValSσ(bi+2) = LS
i+2 = LS

i+1 since σ(bi+1) = bi+2

by Property (EG5). Thus, RS
1 ⊳ {si,j , hi,j} ∪ LS

i+1 by Lemma 6.1.10.

4. σ(ebi,j),¬σ(egi,j), µ
σ = 1 and (σ(si,j) = b1 ∨ σ(bi+1) = j): We prove

rValSσ(Fi,j) = rValSσ(b2). Due to ¬σ(egi,j), it suffices to show rValSσ(b2)⊳ rValSσ(si,j).
If σ(si,j) = b1, then the statement follows directly since µσ = 1 implies σ(b1) = b2).
Hence let σ(si,j) = hi,j ∧ σ(bi+1) = j. As µσ = 1, it holds that rValSσ(bi) = LS

i

for all i ∈ [n]. Hence, rValSσ(b2) = LS
2 and rValSσ(si,j) = LS

i+2−j ∪ {si,j , hi,j} since

σ(bi+1) = j. We thus prove LS
2 ⊳ LS

i+2−j ∪ {si,j , hi,j}. It is sufficient to show

σ(bi) = bi+1 since this implies Wi * L2. For the sake of contradiction let σ(bi) = gi.
Since µσ = 1, Property (D1) implies that the chosen cycle center of level i is closed.
However, σ(bi+1) = j and Iσ = ∅ then imply σ(gi) = j. Hence this cycle center is

Fi,j , contradicting σ(ebi,j).

5. σ(ebi,j),¬σ(egi,j) and µσ 6= 1 ∨ (σ(si,j) = hi,j ∧ σ(bi+1) 6= j): By Prop-

erty (EB1), we can assume σ(bi+1) 6= j in either case. We prove that it holds that

rValSσ(Fi,j) = rValSσ(si,j) by proving rValSσ(si,j)⊳ rValSσ(b2).

a) Let σ(si,j) = hi,j and σ(b1) = b2, implying µσ = 1. Let j = 0. Since none of

the cycle vertices of Fi,j escapes to g1 and σ(si,j) = σ(si,0) = hi,0, we have to

prove {si,0, hi,0}∪ rValSσ(Li+2)⊳ rValSσ(L2) since µ
σ = 1. This however follows

as σ(bi+1) 6= j = 0 implies σ(bi+1) = gi+1. Now let j = 1. We then need to
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prove rValSσ(si,1)⊳ rValSσ(b2). However, the exact valuation of si,1 is not clear
in this case and depends on several vertices of level 1 and i+ 1. To be precise

we can have the following paths:

si,1 hi,1 gi+1 Fi+1,∗

b2

g1 F1,∗

b2

s1,∗

b1

h1,∗ b3

g2

si+1,∗

b1

hi+1,∗

bi+3

gi+2

We show that rValSσ(si,1)⊳rValSσ(b2) holds for all marked “endpoints” that could

be reached by si,1. In all cases, j = 1 and σ(bi+1) 6= j imply σ(bi+1) = bi+2.

• b2: Then, rVal
S
σ(si,1)⊳ rValSσ(b2) follows as it is easy to verify that we then

have ∆(rValSσ(b2), rVal
S
σ(si,1)) = gi+1 in each possible case.

• bi+3: Then rValSσ(si,1) = {si,1, hi,1, gi+1, si+1,0, hi+1,0} ∪ rValSσ(bi+3) and
σ(gi+1) = Fi+1,0. Since σ(si,1) = hi,1, Property (B3) implies σ(gi+1) 6=
σ(bi+2), hence σ(bi+2) = gi+2. Since µσ = 1 implies rValSσ(b2) = LS

2 we

therefore have W S
i+2 ⊆ rValSσ(b2). This yields the statement.

• b3: Then rValSσ(si,1) = {si,1, hi,1, gi+1} ∪W S
1 ∪ rValSσ(b3) and thus,

rValSσ(si,1) = {si,1, hi,1, gi+1} ∪W S
1 ∪ LS

3

E {si,1, hi,1, gi+1} ∪W S
1 ∪ LS

2 ⊳ rValSσ(b2).

• g2: Then, it holds that rVal
S
σ(si,1) = {si,1, hi,1, gi+1}∪W S

1 ∪ rValSσ(g2) and
rValSσ(b2) = LS

2 . As before we need to show rValSσ(si,1)⊳ rValSσ(b2). Note
that we can assume i ≥ 2 since Sn is a sink game and the valuation of si,1
contains a cycle for i = 1.

First let σ(b2) = g2. Then rValSσ(g2) = rValSσ(b2). This implies that we

have ∆(rValSσ(si,1), rVal
S
σ(b2)) = gi+1 since i ≥ 2 and W S

i+1 * rValSσ(b2)

due to σ(bi+1) = bi+2 and µσ = 1. Since gi+1 ⊆ rValSσ(si,1), this implies

rValSσ(si,1)⊳ rValSσ(b2).

Thus let σ(b2) = b3, implying rValSσ(b2) = rValSσ(b3) and let k := σ(g2).
Similar to the picture showing the “directions” to which the vertex si,1 can

lead, there are several possibilities towards which vertex the path starting

in F2,k leads. For all of the following cases, the main argument will be the

following. No matter what choices are made in the lower levels and no

matter how many levels the path starting in g2 might traverse, the vertex

gi+1 contained in rValSσ(si,1) will always ensure rValSσ(si,1)⊳rValSσ(b2). We

distinguish the following cases.

i. F2,k escapes towards b2. Then rValSσ(g2) = {g2} ∪ rValSσ(b2) and thus

rValSσ(si,1) = {si,1, hi,1, gi+1, g2} ∪W S
1 ∪ rValSσ(b2)⊳ rValSσ(b2).
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ii. F2,k escapes towards g1. Depending on the configuration of level 1,

the path can end in different vertices. As Sn is a sink game, it cannot

end in g1 or g2 since this would constitute a cycle. It can thus either

end in b1, b2 or b3. Since σ(b1) = b2 and σ(b2) = b3, we then have

rValSσ(g2) = {g2} ∪W S
1 ∪ rValSσ(b3) in either case and thus

rValSσ(si,1) = {si,1, hi,1, gi+1, g2} ∪W S
1 ∪ rValSσ(b2)⊳ rValSσ(b2).

iii. F2,k does not escape level 2 and k = 0. In this case, τ(F2,k) = s2,0.
If σ(s2,0) = b1, then the statement follows by the same arguments

used in the last case. Thus consider the case σ(s2,0) = h2,0, implying

rValSσ(g2) = W S
2 ∪ rValSσ(b4). Then, since i ≥ 2,

rValSσ(si,1) = {si,1, hi,1, gi+1} ∪W S
1 ∪W S

2 ∪ rValSσ(b4)

⊳ rValSσ(b4)E rValSσ(b2).

iv. F2,k does not escape level 2 and k = 1. In this case we can use the

exact same arguments to show that either rValσ(si,1) ⊳ rValσ(b2) or
that the path reaches g4. In fact, the same arguments can be used until

vertex gi−1 is reached. We now show that once this vertex is reached

the inequality rValSσ(si,1)⊳ rValSσ(b2) is fulfilled. Let k
′ := σ(gi−1). If

Fi−1,k′ escapes towards b2, then rValSσ(si,1)⊳ rValSσ(b2) follows from

rValSσ(g2) =

i−2⋃

i′=2

W S
i′ ∪ {gi−1} ∪ rValSσ(b2).

If Fi−1,k′ escapes towards b1 via si−1,k′ , then the statement follows

analogously since σ(b1) = b2. Thus assume that the cycle center

escapes towards g1. By the same arguments used before, it can be

shown that level 1 needs to escape towards either b1, b2 or b3. However,
the same calculation used before can be applied in each of these cases.

Next assume that the cycle center Fi−1,k′ does not escape level i− 1
but traverses the level and reaches vertex bi+1. Then,

rValSσ(g2) =

i−1⋃

i′=2

W S
i′ ∪ rValSσ(bi+1)

and rValSσ(si,1) ⊳ rValSσ(bi+1) E rValSσ(b2). The last case we need to

consider is if level i− 1 is traversed and gi is reached. In this case we

need to have σ(gi) = Fi,0 since player 1 could create a cycle otherwise,

contradicting that Sn is a sink game. If the cycle center Fi,0 escapes

towards g1 or b2 the statement follows by the same arguments used

before. If it reaches bi+2, then the statement follows from

rValSσ(si,1) = {si,1, hi,1, gi+1} ∪
i⋃

i′=1

W S
i′ ∪ rValSσ(bi+2)E rValSσ(b2).
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• gi+2: This implies rValSσ(si,1) = {si,1, hi,1} ∪W S
i+1 ∪ rValSσ(gi+2) and we

prove rValSσ(si,1)⊳ rValSσ(b2). This case is organized similarly to the last

case. We prove that the statement follows for all but one possible config-

urations of the levels i + 2 to n − 1. It then turns out that this missing

configuration contradicts Property (DN1). We distinguish the following

cases.

i. Level i + 2 escapes towards b2 via some cycle center Fi+2,∗. Then

rValSσ(gi+2) = {gi+2} ∪ rValSσ(b2) implies the statement.

ii. Level i+ 2 escapes towards b1 via some upper selection vertex si+2,∗.

Then, rValSσ(gi+2) = {gi+2, si+2,∗} ∪ rValSσ(b2) as σ(b1) = b2, implying

the statement.

iii. Level i + 2 is traversed completely and reaches bi+4 directly. In this

case, σ(gi+2) = Fi+2,0. Since σ(si+1,1) = hi+1,1 and σ(bi+2) = bi+3

by Property (B3), this implies σ(bi+3) = gi+3. Thus, it holds that

rValSσ(gi+2) = W S
i+2 ∪ rValSσ(bi+4) which implies the statement due to

σ(bi+3) = gi+3.

iv. Level i + 2 escapes towards g1 via some cycle center Fi+2,∗. Then,

rValSσ(gi+2) = {gi+2} ∪ rValSσ(g1). Consider level 1. If F1,σ(g1) escapes

towards b1, b2 or b3, the statement follows by the same arguments used

in the last two cases since rValSσ(b3)ErValSσ(b2). Since Sn is a sink game,

the cycle center cannot escape towards g1. Thus assume that it escapes

towards g2. By the same arguments used previously, the statement

either holds or level 3 is traversed and the path reaches g4. We now

iterate this argument until we reach a level k < i+ 2 such that either

σ(gk) = Fk,0 or σ(sk,σ(gk)) = b1. Such a level exists by Lemma A.2.1.

We only consider the second case here since the statement follows by

calculations similar to the previous ones if σ(gk) = Fk,0. Then

rValSσ(gi+2) = {gi+2} ∪
k−1⋃

i′=1

W S
i′ ∪ {gk, sk,∗} ∪ rValSσ(b1),

implying the statement since k ≤ i+ 1.

v. Level i + 2 is traversed completely and reaches gi+3. This implies

that σ(si+1,1) = hi+1,1, σ(bi+2) = bi+3 and σ(gi+2) = Fi+2,1. Thus, by

Property (B3), also σ(bi+3) = bi+4. We can therefore use the same

arguments used before since rValSσ(gi+2) = W S
i+2 ∪ rValSσ(gi+3). That

is, the statement either holds or we reach the vertex gn−1. If level

n− 1 escapes towards b1, b2 or g1, the statement follows by the same

arguments used for level i + 2. We thus assume that level n − 1 is

traversed completely. Note that σ(sn−2,1) = hn−2,1 and σ(bn−1) = bn
(apply Property (B3) iteratively). Consider the case σ(gn−1) = Fn−1,0
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first. Then, σ(bn) = gn by Property (B3) and thus

rValSσ(si,1) = {si,1, hi,1} ∪
n−1⋃

i′=i+1

W S
i′ ⊳W S

n = rValSσ(bn)E rValSσ(b2).

Consider the case σ(gn−1) = Fn−1,1 next. Since we assume that level

n − 1 does not escape towards one of the vertices b1, b2 or g1, we
traverse this level and reach gn. If level n escapes towards b1, b2 or

g1 the statement follows as usual. We thus assume that the level n is

traversed completely. We observe that the vertex hn,1 has the highest

even priority among all vertices in the parity game. Thus, player 1

would avoid this vertex if this was possible. We thus need to have

σ(dn). But this is a contradiction to Property (DN1) since σ(bn) = t by
Property (B3) and σ(b1) = b2 by assumption.

b) Let σ(si,j) = hi,j and σ(b1) = g1, implying µσ 6= 1 by Lemma 6.1.3.

i. Let j = 0 and i = 1. Then, rValSσ(si,j) = {s1,0, h1,0} ∪ rValSσ(b3). By
Property (EB2), it holds that µσ = 2, implying rValSσ(b2) = LS

2 and

rValSσ(b3) = LS
3 . It thus suffices to prove LS

2 ⊲ {s1,0, h1,0} ∪ LS
3 which

follows from Property (EB1) as this implies σ(bi+1) 6= j, so σ(b2) = g2.

ii. Let j = 0 and i > 1. Then rValSσ(si,j) = {si,0, hi,0} ∪ rValSσ(bi+2). By

Property (EB2), it follows that µσ = i+1, implying rValSσ(bi+2) = LS
i+2. In

addition, σ(b2) = b3 by Property (EB3), implying rValSσ(b2) = LS
2 . We thus

prove LS
2 ⊲ {si,0, hi,0} ∪ LS

i+2. This follows since Property (EB1) implies

σ(bi+1) = σ(bµσ) 6= j = 0 and thus σ(bµσ) = gµσ

iii. Let j = 1. Then rValSσ(si,j) = {si,1, hi,1} ∪ rValSσ(gi+1). By Property (EB4),

we have i+1 < µσ and, by Property (EB1), also σ(bi+1) = bi+2. Therefore,

rValSσ(gi+1) = RS
i+1. This also implies µσ 6= min{i′ ∈ [n] : σ(bi′) = bi′+1}

since this would contradict µσ > i+ 1. In particular it holds that Iσ 6= ∅,
implying σ(bµσ) = gµσ by Lemma 6.1.4. Since µσ > i + 1 ≥ 2, we can

apply Property (EB6), implying σ(b2) = b3. Hence rValSσ(b2) = LS
2 . It thus

suffices to prove LS
2 ⊲ {si,1, hi,1} ∪RS

i+1 which follows from σ(bµσ) = gµσ

and i+ 1 < µσ.

c) Next let σ(si,j) = b1 and σ(b1) = g1, implying µσ 6= 1. Consider the case

µσ > 2 first. Then, by Property (EB6), σ(b2) = b3, so rValSσ(b2) = LS
2 and

µσ 6= min{i′[n] : σ(bi′) = bi′+1}. Hence Iσ 6= ∅ and thus σ(bµσ) = gµσ . Since

rValSσ(b1) = RS
1 , we prove rValSσ(si,j) = {si,j} ∪ RS

1 ⊳ LS
2 which follows from

σ(bµσ) = gµσ . Now consider the case µσ = 2, implying rValSσ(b2) = LS
2 . Since

σ(b2) = g2 by Property (EB5), the statement follows by the same arguments.

6. σ(ebi,j), σ(egi,j) and σ(g1) 6= σ(b2): We prove rValSσ(Fi,j) = rValSσ(g1). To

simplify the proof, we show rValSσ(g1)⊳rValSσ(b2) first. If rVal
S
σ(F1,σ(g1)) = rValSσ(b2),

then the statement follows from rValSσ(g1) = {g1}∪rVal
S
σ(F1,σ(g1)) = {g1}∪rVal

S
σ(b2).

In addition, since Sn is a sink game, the chosen cycle center of level 1 cannot escape
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towards g1 since this would close a cycle. If rValSσ(Fi,σ(g1) = rValSσ(g1), then the

claim also follows as player 1 always minimizes the valuations and could choose

vertex b2 but prefers g1. Thus let τ
σ(F1,σ(g1)) = s1,σ(g1) and assume σ(s1,σ(g1)) = b1.

Then, since Sn is a sink game, we need to have σ(b1) = b2 since there would be a

cycle otherwise. But then rValSσ(g1) = {g1, s1,σ(g1)} ∪ rValSσ(b2)⊳ rValSσ(b2). We can

therefore assume σ(s1,σ(g1)) = h1,σ(g1) and distinguish two cases.

• Let σ(g1) = F1,0. Then σ(b2) = g2. Therefore, by Property (EBG4), µσ ≤ 2.
Thus rValSσ(b2) = LS

2 and rValSσ(b3) = LS
3 , hence

rValSσ(g1) = W S
1 ∪ rValSσ(b3) = W S

1 ∪ LS
3 ⊳W S

2 ∪ LS
3 = LS

2 = rValSσ(b2).

• Let σ(g1) = F1,1. Then, rVal
S
σ(g1) = W S

1 ∪ rValSσ(g2) and σ(b2) = b3. This im-

plies µσ 6= 2 by Property (EBG5). Consider the case µσ > 2 first. Lemma 6.1.12

then implies rValSσ(b2) = LS
2 as well as rValSσ(g2) = RS

2 . Also, σ(b2) = b3 and

µσ > 2 together imply µσ 6= min{i′ ∈ [n] : σ(bi′) = bi′+1}. Thus, I
σ 6= ∅ and

σ(bµσ) = gµσ by Lemma 6.1.4. Combining all of this then yields

rValSσ(g1) = W S
1 ∪RS

2 ⊳W S
µσ ∪ Lµσ+1 = LS

µσ E LS
2 = rValSσ(b2).

Now consider the case µσ = 1. Then again rValSσ(b2) = LS
2 . We apply

Lemma 6.1.14 to give the exact valuation of g1. The case mσ
b ≤ mσ

s ,m
σ
g

cannot occur as this would imply σ(b2) = g2 by Lemma 6.1.6.

Consider the case mσ
g < mσ

s ,m
σ
b . As σ(g1) = F1,1, it holds that m

σ
g 6= 1. Let

i := mσ
g . Thus, by assumption, σ(gi−1) = Fi−1,1 and consequently σ(si−1,1) =

hi−1,1 as well as σ(bi) = bi+1. Thus, Property (B3) implies 0 = σ(gi) 6= σ(bi+1),
hence σ(bi+1) = 1. But then, σ(bmσ

g+1), so Lemma 6.1.14 yields

rValσ(g1) =

mσ
g⋃

i′=1

W S
i′ ∪ rValSσ(bmσ

g+2)

⊳Wmσ
g+1 ∪ rValSσ(bmσ

g+2) = rValSσ(bmσ
g+1)E rValSσ(b2).

Thus rValSσ(g1) ⊳ rValSσ(b2). We next prove that we have rValSσ(g1) ⊳ rValSσ(si,j),
implying that player 1 chooses to escape to g1.

a) Let σ(si,j) = b1. If σ(b1) = g1, then rValSσ(si,j) = {si,j} ∪ rValSσ(g1) implies the

statement. If σ(b1) = b2 we have rValSσ(b1) = rValSσ(b2). The statement then

follows since rValSσ(g1)⊳ rValSσ(b2) and rValSσ(si,j) = {si,j} ∪ rValSσ(b1).

b) Let σ(si,j) = hi,j . Then, Property (EBG1) implies σ(bi+1) = j and thus

rValSσ(si,j) = {si,j , hi,j} ∪ rValSσ(bi+1) . Let µσ = 1. Then, σ(b1) = b2, im-

plying rValSσ(b1) = rValSσ(b2) and rValSσ(bi+1) = LS
i+1. Combining this with

rValSσ(g1)⊳ rValSσ(b2) yields the statement as

rValSσ(g1)⊳ rValSσ(b2) = LS
2 = ⊳{si,j , hi,j} ∪ LS

i+1 = rValSσ(si,j).
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Now let µσ 6= 1, implying rValSσ(g1) = RS
1 by Lemma 6.1.12. Consider the

case µσ ≥ i + 1 and BS
i+1 = LS

i+1 first. Then, since σ(bi+1) = bi+2 by BS
i+1 =

LS
i+1, we have µσ 6= i + 1. This implies µσ 6= min({i′ : σ(bi′) = bi′+1}) and

consequently σ(bµσ) = gµσ . The statement then follows from Lemma 6.1.10 (2)

and rValSσ(si,j)⊲LS
i+1. If µ

σ ≥ i+1 andBS
i+1 = RS

i+1 then the statement follows

since RS
1 ⊳ {si,j , hi,j} ∪ RS

i+1 in this case. If µσ < i + 1, then the statement

follows from Lemma 6.1.10 (3).

7. σ(ebi,j), σ(egi,j) and σ(g1) = σ(b2): We prove rValSσ(Fi,j) = rValSσ(b2). Similar

to the last case we prove rValSσ(b2)⊳ rValSσ(g1) and rValSσ(b2)⊳ rValSσ(si,j).

The assumption σ(g1) = σ(b2) implies σ(h1,σ(g1)) = σ(b2). By Property (EBG3),

the chosen cycle center of level 1 is closed. In addition, σ(s1) by Property (EBG2).

Hence, rValSσ(g1) = W S
1 ∪ rValSσ(b2), implying rValSσ(b2)⊳ rValSσ(g1).

It remains to show rValSσ(b2)⊳ rValSσ(si,j). Let σ(si,j) = b1 first. If σ(b1) = b2, then
the statement follows from rValSσ(si,j) = {si,j} ∪ rValSσ(b2). Thus let σ(b1) = g1,
implying rValSσ(si,j) = {si,j} ∪ rValSσ(g1). But this implies rValSσ(si,j) ⊲ rValSσ(g1)
and consequently also rValSσ(si,j) ⊲ rValSσ(b2). Thus, let σ(si,j) = hi,j , implying

σ(bi+1) = j by Property (EBG1). We distinguish two cases.

a) Let j = 0. Then rValSσ(si,j) = {si,0, hi,0} ∪BS
i+2. We first consider the case that

BS
i+2 = LS

i+2 and show {si,0, hi,0} ∪ LS
i+2 ⊲ LS

2 , R
S
2 since this suffices to show

rValσ(si,j) ⊲ rValσ(b2). Since σ(bi+1) = bi+2 by Property (EBG1) and j = 0,
i ≥ 2 implies

{si,0, hi,0} ∪ LS
i+2 = ⊲

i⋃

i′=2

{W S
i′ : σ(bi′) = gi′} ∪

⋃

i′≥i+1

{W S
i′ : σ(bi′) = gi′} = LS

2

and i = 1 implies {si,0, hi,0}∪LS
i+2 = {s1,0, h1,0}∪LS

3 = {s1,0, h1,0}∪LS
2 ⊲LS

2 .

Thus let rValSσ(b2) = RS
2 and consider the case µσ ≤ i + 1 first. Then, by

Lemma 6.1.10 and since σ(bi+1) = bi+2, it holds that L
S
i+1 = LS

i+2 and thus

RS
2 ⊳ RS

1 ⊳ {si,0, hi,0} ∪ LS
i+1. Now assume µσ > i + 1, implying µσ 6= 1 and

i + 2 ≤ µσ. This implies µσ 6= min{i′ : σ(bi′) = bi′+1} since Property (EBG1)

implies σ(bi+1) = bi+2. Thus σ(bµσ) = gµσ by Lemma 6.1.4. Then, the state-

ment follows from {si,0, hi,0} ∪LS
i+2 ⊲LS

i+2 and LS
i+2 ⊲RS

2 which follows from

Lemma 6.1.10 (2).

Next, let BS
i+2 = RS

i+2. We show that this results in a contradiction. First,

BS
i+2 = RS

i+2 implies i + 2 < µσ and σ(bi+2) = gi+2. In particular we have

µσ ≥ 4, implying µσ − 1 ≥ 3. But then Property (BR1) implies σ(g1) = F1,1

which implies σ(b2) = g2 by assumption. Now consider level i. Again, by Prop-

erty (BR1), σ(gi) = Fi,1. Now, combining all of this and using Property (S2)

yields σ(si,1) = hi,1. But then, since we have σ(bi+1) = bi+2 by assumption,

Property (B3) now implies σ(gi+1) 6= σ(bi+2). Since i + 1 < µσ − 1, Prop-
erty (BR1) now implies σ(gi+1) = Fi+1,1, i.e., we have σ(gi+1) = 1. But this
now implies σ(bi+2) = 0, i.e., σ(bi+2) = bi+3 which is a contradiction since

σ(bi+2) = gi+2 by BS
i+2 = RS

i+2.
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b) Let j = 1. Then, σ(bi+1) = gi+1, implying rValSσ(si,j) = {si,1, hi,1} ∪BS
i+1. We

now show {si,1, hi,1} ∪ BS
i+1 ⊲ BS

2 for all possible “choices” of BS
i+1 and BS

2 .

Let BS
i+1 = LS

i+1 and BS
2 = LS

2 . Then {si,1, hi,1} ∪ LS
i+1 ⊲ LS

2 , so the statement

holds. Now consider the case BS
2 = RS

2 , implying that 2 < µσ. First assume that

µσ ≤ i. Then, {si,1, hi,1}∪LS
i+1⊲RS

2 follows from Lemma 6.1.10 (3). It cannot

happen thatµσ > i, as this would yield µσ ≥ i+ 1. But this is a contradiction

as this would imply BS
i+1 = RS

i+1 as we currently assume BS
i+2 = LS

i+2.

Now consider the case BS
i+1 = RS

i+1 and BS
2 = RS

2 . Then i+ 1 < µσ, hence the

statement follows from {si,1, hi,1} ⊲
⋃

i′<iWi′ . Finally assume BS
i+1 = RS

i+1

and BS
2 = LS

2 . Since µσ > i + 1 ≥ 2 it holds that σ(b2) = b3, implying

BS
2 = BS

3 . Applying Property (B1) repeatedly thus yields BS
2 = BS

k = RS
k where

k = min{i′ ∈ {2, . . . , i+ 1} : σ(bi′) = gi′} ≤ i+ 1. Thus, the statement follows

from {si,1, hi,1}⊲
⋃

i′<iWi′ resp. {si,j , hi,1}⊲ ∅.

Omitted proofs of Section 6.2

Here, we provide the formal proofs of all statements of Section 6.2 that have not been

proven there.

Lemma 6.2.1. Let Gn = Mn. Let σ ∈ ρ(σ0) be a well-behaved phase-k-strategy for some

b ∈ Bn having Property (USV1)i and Property (EV1)i+1 for some i ∈ [n] where k ∈ [5].
If Fi,0 and Fi,1 are in the same state and if either i ≥ ν or σ has Property (REL1), then

ValMσ (Fi,βi+1
) > ValMσ (Fi,1−βi+1

).

Proof. To simplify notation let j := βi+1. Since both cycle centers are in the same state, it

suffices to prove rValMσ (si,j) > rValMσ (si,1−j). By Property (USV1)i and Property (EV1)i+1,

rValMσ (si,1−j) = 〈si,1−j〉 + rValMσ (b1) and rValMσ (si,j) = 〈si,j , hi,j〉 + rValMσ (bi+1). Let

µσ = 1. Then, σ(b1) = b2 and thus rValMσ (b1) = rValMσ (b2) = LM
2 and rValMσ (bi+1) = LM

i+1.

The statement then follows from 〈si,j , hi,j〉 >
∑

ℓ≤iW
M
ℓ + 〈si,1−j〉.

Hence let µσ > 1, implying σ(b1) = g1. We distinguish the following cases.

1. Let rValMσ (b1) = RM
1 and rValMσ (bi+1) = RM

i+1. This implies i + 1 < µσ and the

statement thus again follows from 〈si,j , hi,j〉 >
∑

ℓ≤iW
M
ℓ + 〈si,1−j〉.

2. Let rValMσ (b1) = RM
1 and rValMσ (bi+1) = LM

i+1. Property (EV1)i+1 implies

ValMσ (si,j) = 〈si,j , hi,j〉+ LM
i+1 >

∑

ℓ≤i

WM
ℓ + 〈si,1−j〉+ LM

i+1.

If µσ ≤ i, then

∑

ℓ≤i

WM
ℓ =

∑

ℓ≤µσ

WM
ℓ +

i∑

ℓ=µσ+1

WM
ℓ >

∑

ℓ<µσ

WM
ℓ +

i∑

ℓ=µσ+1

{WM
ℓ : σ(bi) = gi},

implying ValMσ (si,j) > ValMσ (si,1−j). If µ
σ = i + 1, then

∑
ℓ≤iW

M
ℓ =

∑
ℓ<µσ WM

ℓ ,

again implying ValMσ (si,j) > ValMσ (si,1−j). Let µ
σ > i + 1. Then, by assumption,
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it needs to hold that σ(bi+1) = bi+2. Thus µ
σ 6= min{i′ : σ(bi′) = bi′+1}, implying

σ(bµσ) = gµσ by Lemma 6.1.4. The statement the follows from

∑

ℓ≤i

WM
ℓ + LM

i+1 =
∑

ℓ≤i

WM
ℓ +

µσ−1∑

ℓ=i+1

{WM
ℓ : σ(bℓ) = gℓ}+WM

µσ + LM
µσ+1

>
∑

ℓ<µσ

WM
ℓ + LM

µσ+1 = RM
1 .

3. Let rValMσ (b1) = 〈gk〉 +
∑

ℓ<k W
M
ℓ + rValMσ (b2), k = min{i′ : ¬σ(di′)} < µσ, and

rValMσ (bi+1) = RM
i+1. We show that these assumptions yield a contradiction. The

second equality implies that i+ 1 < µσ. We now prove that σ has Property (REL1)

in any case, so assume that i ≥ ν. This implies ν < i + 1 < µσ and thus ν 6= µσ.

Consequently, σ cannot be a phase-2-strategy or phase-3-strategy for b as it then had

Property (REL2), implying µσ = ν. Therefore, by the definition of the phases, σ has

Property (REL1) in any case, so µσ = min{i′ : σ(bi′) = bi′+1}. Consequently, it holds
that Iσ = ∅. But then i′ < µσ implies σ(di′) by Corollary 6.1.5. This contradicts the

characterization of rValMσ (b1).

4. Let rValMσ (b1) = 〈gk〉 +
∑

ℓ<k W
M
ℓ + rValMσ (b2), k = min{i′ : ¬σ(di′)} < µσ, and

rValMσ (bi+1) = LM
i+1. Then

rValMσ (si,j) = 〈si,j , hi,j〉+ LM
i+1 >

∑

ℓ≤i

WM
ℓ + LM

i+1 + 〈si,1−j〉 ≥ 〈si,1−j〉+ LM
2 .

If rValMσ (b2) = LM
2 , the statement thus follows since rValMσ (b1) < rValMσ (b2) in

this case. Thus assume rValMσ (b2) = RM
2 , implying σ(b2) = g2 and µσ > 2. If

σ(bµσ) = gµσ , then 〈si,1−j〉 + LM
2 > RM

2 , implying the statement. Hence assume

σ(bµσ) = bµσ+1, implying µσ = min{i′ : σ(bi′) = bi′+1}. In particular, σ(bi′) = gi′ for
all i′ ∈ {1, . . . , µσ − 1}. Thus, since rValMσ (bi+1) = LM

i+1, we need to have i+1 ≥ µσ

and in particular i ≥ µσ − 1. Then, the statement follows from

rValMσ (si,j) >
∑

ℓ≤i

WM
ℓ + LM

i+1 + 〈si,1−j〉

≥
∑

ℓ<µσ

WM
ℓ + LM

µσ+1 + 〈si,1−j〉 = RM
2 + 〈si,1−j〉 .

Lemma 6.2.3. Let b ∈ Bn. If 1j=0lfn(b, i+1)+1j=1lufn(b, i+1) = 0 for i ∈ [n], j ∈ {0, 1},
then ℓb(i, j, k) ≥ b for , k ∈ {0, 1}. Otherwise, the following hold:

Setting of bits bi = 1 ∧ bi+1 = 1− j bi = 0 ∧ bi+1 = j bi = 0 ∧ bi+1 = 1− j

ℓb(i, j, k) =
⌈
b+

∑
(b,i)+1−k
2

⌉ ⌈
b+2i−1+

∑
(b,i)+1−k

2

⌉ ⌈
b−2i−1+

∑
(b,i)+1−k

2

⌉
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Proof. Let m := 1j=0lfn(b, i+ 1) + 1j=1lufn(b, i+ 1) 6= 0. Then, lfn(b, i, {(i+ 1, j)}) 6= 0
and we distinguish three cases.

1. Let bi = 1 and bi+1 = 1− j. We prove lfn(b, i, {(i+ 1, j)}) = b− 2i −
∑

(b, i) and
m = b−2i−1−

∑
(b, i). By definition, b′ := lfn(b, i, {(i+1, j)}) is the largest number

smaller than b such that ν(b′) = i and b′i+1 = j. Since bi+1 = 1− j, subtracting 2i

switches bit i+ 1 and only bit i+ 1. By subtracting
∑

(b, i), all bits below bit i that
are equal to 1 are set to 0. Therefore, b′ = b− 2i −

∑
(b, i). Note that b′ > 0.

Assume j = 1, implying m = lfn(b, i+1) 6= 0. Since m is the largest number smaller

than b with least significant set bit equal to 1 being bit i+ 1 and since bi+1 = 1, we
have m = b−

∑
(b, i+ 1) = b− 2i−1 −

∑
(b, i). Consequently,

ℓb(i, j, k) =

⌈
b− 2i −

∑
(b, i) + 1− k

2

⌉
+ b− b+ 2i−1 +

∑
(b, i)

=

⌈
b+

∑
(b, i) + 1− k

2

⌉
.

2. By similar arguments, it can be shown that lfn(b, i, {(i+1, j)}) = b−2i−2i−1−
∑

(b, i)
and m = b− 2i −

∑
(b, i) in this case, implying the statement analogously.

3. By similar arguments, it can be shown that lfn(b, i, {(i+1, j)}) = b− 2i−1 −
∑

(b, i)
and m = b−

∑
(b, i) in this case, implying the statement analogously.

If 1j=0lfn(b, i+ 1) + 1j=1lufn(b, i+ 1) = 0, the statement follows immediately.

Lemma 6.2.4. Let b ∈ Bn and i ∈ [n] and j ∈ {0, 1} such that bi = 0 or bi+1 6= j. Then,

1j=0lfn(b, i+ 1)− 1j=1lufn(b, i+ 1) = 1j=0lfn(b+ 1, i+ 1)− 1j=1lufn(b+ 1, i+ 1).

Moreover, if i 6= ν, then ℓb(i, j, k) + 1 = ℓb+1(i, j, k).

Proof. Consider the first statement. Assume lufn(b, i+1) 6= lufn(b+1, i+1). This can only

occur if b+1 = lufn(b+1, i+1), implying (b+1)i+1 = · · · = (b+1)1 = 0. But this implies

ν(b+ 1) ≥ i+ 2, hence b1 = · · · = bi = bi+1 = 1. Since bi = 0 ∨ bi+1 6= j by assumption,

it thus needs to hold that j = 0. This proves that lufn(b, i+ 1) 6= lufn(b+ 1, i+ 1) implies

j = 0. In a similar way it can be proven that lfn(b, i + 1) 6= lfn(b + 1, i + 1) implies

j = 1. Consequently, it is impossible that both lufn(b, i + 1) 6= lufn(b + 1, i + 1) and
lfn(b, i + 1) 6= lufn(b + 1, i + 1) hold. If lufn(b, i + 1) 6= lufn(b + 1, i + 1), then it holds

that j = 0 and lfn(b, i+ 1) = lfn(b+ 1, i+ 1). If lfn(b, i+ 1) 6= lfn(b+ 1, i+ 1), we have

j = 1 and lufn(b, i+ 1) = lufn(b+ 1, i+ 1). But this implies

1j=0lfn(b, i+ 1)− 1j=1lufn(b, i+ 1) = 1j=0lfn(b+ 1, i+ 1)− 1j=1lufn(b+ 1, i+ 1).

Now let also i 6= ν. It suffices to prove lfn(b, i, {(i+ 1, j)}) = lfn(b+ 1, i, {(i+ 1, j)}). But
this follows directly since the choice of i implies lfn(b+ 1, i, {(i+ 1, j)}) 6= b+ 1.

Lemma 6.2.5. Let σb be a canonical strategy for b such that its occurrence records are

described by Table 5.6. Assume that σb has Properties (OR1)∗,∗,∗ to (OR4)∗,∗,∗. Then, the

following hold.

223



A. Proofs

1. Let i ∈ [n] and j ∈ {0, 1} and assume that either bi = 0 or bi+1 6= j. Then, it holds
that φσb(di,j,∗, Fi,j) ≤ ⌊(b+ 1)/2⌋.

2. Let j := bν+1. Then, φσb(dν,j,0, Fν,j) = ⌊(b+ 1)/2⌋. In addition, ν = 1 implies

φσb(dν,j,1, Fν,j) = ⌊(b+ 1)/2⌋ and ν > 1 implies φσ(dν,j,1, Fν,j) = ⌊(b+ 1)/2⌋ − 1.

3. If i = 1, then σb(d1,1−b2,∗) 6= F1,1−b2 and φσb(d1,1−b2,0, F1,1−b2) = ⌊(b+ 1)/2⌋.

Proof. The first statement follows immediately since bi = 0 ∨ bi+1 6= j imply

φσb(di,j,k, Fi,j) = min

(⌊
b+ 1− k

2

⌋
, ℓb(i, j, k) + tb

)
≤

⌊
b+ 1− k

2

⌋
≤

⌊
b+ 1

2

⌋
.

Consider the second statement and observe that it suffices to prove

φσb(dν,j,k, Fν,j) =

⌊
b+ 1− k

2

⌋
(A.9)

for k ∈ {0, 1}. Let 1j=0lfn(b, ν + 1) − 1j=1lufn(b, ν + 1) = 0. Then, by Lemma 6.2.3,

ℓb(ν, j, k) ≥ b. In order to show Equation (A.9), it thus suffices to prove that either

b− 1 ≥ ⌊(b+ 1− k)/2⌋ or that the parameter tb = −1 is not feasible. Since it holds that

b− 1 ≥ ⌊(b+ 1)/2⌋ for b ≥ 2, it suffices to show that tb = −1 is not feasible for b = 0, 1.
By Table 5.6, the parameter −1 can only be feasible if b1 = 1 ∧ ν 6= 1. It is therefore not

feasible for b = 0. Let b = 1 and φσb(dν,j,k, Fν,j) = ℓb(ν, j, k)−1. Since b+1 = 2 is a power
of two and since σb has Properties (OR1)∗,∗,∗ to (OR4)∗,∗,∗, Property (OR3)ν,j,k implies

φσb(dν,j,k, Fν,j) = ⌊(b+ 1− k)/2⌋. Consequently, φσb(dν,j,k, Fν,j) = ⌊(b+ 1− k)/2⌋. Now
let 1j=0lfn(b, ν + 1) − 1j=1lufn(b, ν + 1) 6= 0. Then, by the definition of ν and j and

Lemma 6.2.3,

ℓb(ν, j, k) =

⌈
b+ 2ν−1 +

∑
(b, ν) + 1− k

2

⌉
≥

⌈
b+ 2ν−1 + 1− k

2

⌉
≥

⌊
b+ 1− k

2

⌋
+ 1.

Since −1, 0 and 1 are the only feasible parameters, this implies Equation (A.9).

Consider the third statement and let i = 1, j = 1− b2. Then, independent of whether

b1 = 0 or b1 = 1, ℓb(i, j, k) ≥ ⌈(b− k)/2⌉ = ⌊(b+ 1− k)/2⌋ by Lemma 6.2.3. By

the first statement and by Property (OR1)i,j,k and Property (OR2)i,j,k, this implies

σ(di,j,k) 6= Fi,j for both k ∈ {0, 1} as φσb(di,j,k, Fi,j) = ℓb(i, j, k) + 1 otherwise. Fur-

thermore, this implies ℓb(i, j, 0) = ⌊(b+ 1)/2⌋. Assume that φσ(di,j,0, Fi,j) = ℓb(i, j, 0)− 1.
Then, φσb(di,j,0, Fi,j) 6= ⌊(b+ 1)/2⌋. Hence, by Property (OR4)i,j,k, it holds that b is odd

and i = ν(b+ 1). But this contradicts i = 1.
Consequently, φσb(di,j,0, Fi,j) = ℓb(i, j, 0) = ⌊(b+ 1)/2⌋.

Lemma 6.2.6. Let b ∈ Bn and i ∈ [n]. It holds that fl(b, i) =
⌊
(b+ 2i−1)/2i

⌋
and

fl(b+ 1, i) = fl(b, i) + 1i=ν . In addition, for indices i1, i2 ∈ [n] with i1 < i2 and b ≥ 2i1−1

imply fl(b, i1) > fl(b, i2). Furthermore, if k := b+1
2ν−1 and x ∈ [ν−1], then fl(b, ν−x) = k·2x−1.

Proof. As a reminder, a binary number b matches the pair (i, q) if bi = q. It matches a

set S if b matches every (i, q) ∈ S. Consider the first two statements. By definition, it

holds that fl(b+1, i) = fl(b, i)+1i=ν . Let Si := {(i, 1), (i− 1, 0), . . . , (1, 0)}. By definition,
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fl(b, i) is the number of numbers smaller than or equal to b matching Si. Since 2i−1 is

the smallest number matching Si, the statement follows if b < 2i−1. Let mk denote the

k-th number matching the scheme Si. Then m1 = 2i−1. As only numbers ending on the

subsequence (1, 0, . . . , 0) of length i match Si, we have mk = (k − 1) · 2i + 2i−1. Since
fl(mk, i) = k by definition and

⌊
mk + 2i−1

2i

⌋
=

⌊
(k − 1) · 2i + 2i−1 + 2i−1

2i

⌋
=

⌊
k · 2k

2k

⌋
= k,

this implies fl(mk, i,=)
⌊
(mk + 2i−1)/2i

⌋
. Let b ∈ Bn and k ∈ N such that b ∈ [mk,mk+1).

Then, by the definition of fl(b, i), we have fl(b, i) = k. In addition,

⌊
b+ 2i−1

2i

⌋
≥

⌊
mk + 2i−1

2i

⌋
= fl(mk, i) = k

by the choice of k and

⌊
b+ 2i−1

2i

⌋
<

⌊
mk+1 + 2i−1

2i

⌋
= fl(mk+1, i) = k + 1.

Integrality thus implies
⌊
(b+ 2i−1)/2i

⌋
r = k, hence fl(b, i) = k =

⌊
(b+ 2i−1)/2i

⌋
.

Now let i1, i2 ∈ [n] with i1 < i2 and b ≥ 2i1−1. Then, fl(b, i1) =
⌊
(b+ 2i1−1)/2i1

⌋
and

similarly fl(b, i2) =
⌊
(b+ 2i2−1)/2i2

⌋
. If b = 2i1−1, then b < 2i2−1, implying

fl(b, i1) =

⌊
b

2i1
+

1

2

⌋
=

⌊
2i1−1

2i1
+

1

2

⌋
= 1 > 0 =

⌊
2i1−1

2i2
+

1

2

⌋
= fl(b, i2).

Thus let b > 2i1−1. Choose k ∈ N such that k · 2i1−1 < b ≤ (k + 1)2i1−1. Then

fl(b, i1) =

⌊
b

2i1
+

1

2

⌋
>

⌊
k · 2i1−1

2i1
+

1

2

⌋
=

⌊
k + 1

2

⌋
≥

⌊
k

2

⌋

and thus fl(b, i1) ≥ ⌊k/2⌋+ 1 by integrality. In addition, b ≤ (k + 1)2i1−1 < (k + 1)2i2−1

implies

fl(b, i2) =

⌊
b

2i2
+

1

2

⌋
<

⌊
(k + 1)2i2−1

2i2
+

1

2

⌋
=

⌊
k + 2

2

⌋
=

⌊
k

2

⌋
+ 1,

hence fl(b, i2) ≤ ⌊k/2⌋, implying the statement.

Now consider the third statement. By definition, ν is the least significant set bit of b+1.
Consequently, b+ 1 is dividable by 2ν−1, hence k ∈ N and in particular b = k · 2ν−1 − 1.
Using Lemma 6.2.3 and 1

2 − 1
2ν−x ∈ (0, 12), this implies

fl(b, ν − x) =

⌊
b+ 2ν−x−1

2ν−x

⌋
=

⌊
k · 2ν−1 − 1 + 2ν−x−1

2ν−x

⌋
=

⌊
k · 2ν−1

2ν−x
−

1

2ν−x
+

1

2

⌋

=

⌊
k · 2ν−1

2ν−x

⌋
=

⌊
k · 2x−1

⌋
= k · 2x−1.
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Lemma 6.2.7 (First row of Table 6.4). Let σ ∈ ρ(σ0) be a well-behaved phase-1-strategy
for b ∈ Bn with Iσ = Dσ. Let i ∈ [n], j, k ∈ {0, 1} such that e := (di,j,k, Fi,j) ∈ Iσ and

σ(di,j,1−k) 6= Fi,j . Then σe is a well-behaved phase-1-strategy for b with σe ∈ ρ(σ0) and
Iσe = Dσe.

Proof. Since Fi,j is open for σ, Property (ESC1) implies σ(ebi,j) = σe(ebi,j), σ(egi,j) =
σe(egi,j) and σ(di,j) = σe(di,j) = 0. Hence, σ being well-behaved implies that σe is well-
behaved. By the same arguments, σe is a phase-1-strategy for b and it suffices to prove

Iσ[e] = Dσe.

Consider the case Gn = Sn. By Property (ESC1), it holds that σ(ebi,j) = σe(ebi,j) and
σ(egi,j) = σe(egi,j). Since σe is a phase-1-strategy for b, also µσ = µσe by the choice of e.
Thus, rValSσ(Fi,j) = rValSσe(Fi,j) by Lemma 6.1.16. In particular, the valuation of Fi,j does

not change. Since Fi,j is the only vertex that has an edge towards di,j,k, this implies that

the valuation of no other vertex but di,j,k changes, hence Iσe = Iσ \ {e} if Gn = Sn.

Consider the case Gn = Mn and let j = σ(gi). Then, Fi,σ(gi) is not closed with respect

to either σ or σe. Therefore, the valuations of Fi,j and gi increase, but only by terms of size

o(1). Now, Property (EV1)i and Property (EV2)i imply σ(bi) = bi+1, hence σ(si−1,1) = b1
by Property (USV1)i−1. In particular, the valuation of no other vertex than di,j,k, Fi,j , gi
and hi−1,1 increases. It is now easy to calculate that (bi, gi), (si−1,1, hi−1,1) /∈ Iσe as the
change of the valuation of gi is only of size o(1), implying the statement.

Let j 6= σ(gi) and let t→ := g1 if b is odd and t→ := b2 if b is even. Then, di,j,k and

Fi,j are the only vertices whose valuation increases by applying e. Since (gi, Fi,j) /∈ Iσ
by assumption, it thus suffices to prove (gi, Fi,j) /∈ Iσe. By the choice of e, it holds
that ValMσe(Fi,j) = 1−ε

1+ε Val
M
σe(t
→) + 2ε

1+ε Val
M
σ (si,j). First assume that Fi,1−j is t→-open.

Then, by Lemma 6.2.1 and since (gi, Fi,j) /∈ Iσ, we have j = 1 − bi+1. We prove that

σ(si,j) = b1 (Property (USV1)i), σ(b1) = t→ (Property (EV1)1 and Property (ESC1)) as

well as σ(si,1−j) = hi,1−j and σ(bi+1) = 1 − j (Property (USV1)i) imply the statement.

We have

ValMσe(Fi,1−j)−ValMσe(Fi,j)

=
ε(1− ε)

1 + ε
ValMσe(t

→) + εValMσe(si,1−j)−
2ε

1 + ε

(
〈si,j〉+ValMσe(t

→)
)

= ε

(
ValMσe(si,1−j)−ValMσe(t

→)−
2

1 + ε
〈si,j〉

)

> ε
(
ValMσe(si,1−j)−ValMσe(t

→)− 2N10
)

= ε
(
〈si,1−j , hi,1−j〉+ValMσe(bi+1)−ValMσe(t

→)− 2N10
)
.

It thus suffices to prove 〈si,1−j , hi,1−j〉+ValMσe(bi+1)−ValMσe(t
→)−2N10 ≥ 0. We distinguish

three cases.

1. Let t→ = b2. Then, σ(b1) = b2 and µσ = 1. In particular, ValMσe(bi+1) = LM
i+1 and

ValMσe(t
→) = LM

2 . Consequently,

〈si,1−j ,hi,1−j〉+ValMσe(bi+1)−ValMσe(t
→)− 2N10

= 〈si,1−j , hi,1−j〉+ LM
i+1 − LM

2 − 2N10 = 〈si,1−j , hi,1−j〉+ LM
2,i − 2N10
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> 〈si,1−j , hi,1−j〉 −
i∑

ℓ=2

WM
ℓ − 2N10

≥ N2i+10 +N8 −
i∑

ℓ=1

(N2ℓ+10 −N2ℓ+9 +N10)− 2N10

= N2i+10 +N8 −
N2i+11 −N11

N + 1
− (i+ 2)N10

> N2i+10 +N8 −
N2i+11 −N11

N + 1
−N11.

This term is larger than 0 if (2N +1)N2i+2 +N +1 > N3(N +2) which holds since

i ≥ 1 and N is sufficiently large.

2. Let t→ = g1 and ValMσe(bi+1) = RM
i+1. Then σ(b1) = g1 and ValMσe(t

→) = RM
1 . In

particular, since σ is a phase-1-strategy and i+1 < µσ∧σ(bi+1) = gi+1 by assumption,

it holds that b1 = · · · = bi+1 = 1. This then implies

〈si,1−j ,hi,1−j〉+ValMσe(bi+1)−ValMσe(t
→)− 2N10

= 〈si,1−j , hi,1−j〉+RM
i+1 −RM

1 − 2N10 = 〈si,1, hi,1〉 −
i∑

ℓ=1

WM
ℓ − 2N10

= 〈si,1, hi,1〉 −
i∑

ℓ=1

(N2ℓ+10 −N2ℓ+9 +N8)− 2N10

> N2i+10 +N8 −
i∑

ℓ=1

(N2ℓ+10 −N2ℓ+9)−N11

which is larger than 0 as shown above.

3. Let t→ = g1 and ValMσe(bi+1) = LM
i+1. It cannot hold that i+1 < µσe since this implies

σe(bi+1) = gi+1 and thus ValMσe(bi+1) = RM
i+1. Consequently, i+ 1 ≥ µσe. In addition,

ValMσe(b1) = RM
1 as before. Consequently,

〈si,1−j , hi,1−j〉+ValMσe(bi+1)−ValMσe(t
→)− 2N10

= 〈si,1−j , hi,1−j〉+ LM
i+1 −RM

1 − 2N10

= 〈si,1−j , hi,1−j〉 −

µσe−1∑

ℓ=1

WM
ℓ −

i∑

ℓ=µσe+1

{WM
ℓ : σe(bℓ) = gℓ} − 2N10

> 〈si,1−j , hi,1−j〉 −
i∑

ℓ=1

WM
ℓ − 2N10

which is larger than 0 as proven before.

This concludes the case that Fi,1−j is t
→-open. If it is not t→-open, then it has to be

closed or t→-halfopen by Property (ESC1). Assume that it is closed. If 1− j = bi+1, then

rValMσe(Fi,1−j) = 〈si,1−j , hi,1−j〉+ rValMσe(bi+1) by Properties (USV1)i and (EV1)i+1. Since
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〈si,1−j , hi,1−j〉 >
∑

ℓ∈[i]W
M
ℓ , this implies rValMσe(Fi,1−j) > rValσe(Fi,j) = rValMσe(t

→). If

j = bi+1, then the same properties imply rValσe(Fi,1−j) = 〈si,1−j〉 + rValMσe(b1). Since

rValMσe(b1) = rValMσe(t
→) = rValMσe(Fi,j), this implies the statement.

Hence let Fi,1−j be t
→-halfopen. ThenValMσe(Fi,1−j) =

1−ε
1+ε Val

M
σ (t→)+ 2ε

1+ε Val
M
σe(si,1−j).

We prove that ValMσe(si,1−j) > ValMσe(t
→) in this case. If 1− j 6= bi+1, then this follows from

Property (USV1)i as Val
M
σe(si,1−j) = 〈si,1−j〉+ValMσe(t

→) in that case. If 1− j = bi+1, then

ValMσe(si,1−j) = 〈si,1−h, hi,1−j〉 + ValMσe(bi+1) by Properties (USV1)i and (EV1)i+1. The

statement then follows since 〈hi,1−j〉 >
∑

ℓ∈[i]W
M
ℓ .

Consequently,ValMσe(si,1−j) > ValMσe(t
→). This impliesValMσe(Fi,1−j) > (1−ε)ValMσe(t

→)+
εValMσe(si,1−j) which yields ValMσe(Fi,1−j) > ValMσe(Fi,j) as proven earlier.

Lemma 6.2.8 (Second row of Table 6.4). Let Gn = Sn. Let σ ∈ ρ(σ0) be a well-behaved

phase-1-strategy for b ∈ Bn with Iσ = Dσ. Let i ∈ [n], j, k ∈ {0, 1} such that e :=
(di,j,k, Fi,j) ∈ Iσ and σ(di,j,1−k) = Fi,j , i 6= 1, j 6= bi+1 as well as σ(gi) = Fi,j . Then σe is a
well-behaved phase-1-strategy for b with Iσe = Dσe and σe ∈ ρ(σ0).

Proof. Since σ(gi) = Fi,j and j 6= bi+1 = βσ
i+1, we have σe(bi) = σ(bi) = bi+1 by Prop-

erty (EV2)i. This implies i ≥ µσ by Property (REL1). As µσ = µσe, this implies that σe has

Property (CC1)i′ for all indices i
′. This further implies that σe has Property (ESC1),(EV1)i′

and (USV1)i′ for all i
′ ∈ [n]. Furthermore, since σ has all other properties defining a

phase-1-strategy, σe has them as well. As we do not perform changes within the cycle

center Fi,βσ
i+1

, also βσ = βσe =: β. Since σ has Property (SVG)i and since the cycle

center Fi,j is not closed for σ by the choice of e, we have j = 0. This implies that σe has
Property (SVG)i as well. Hence σe is a phase-1-strategy for b.

Proving that σe is well-behaved follows by re-evaluating Properties (D1), (MNS4),

(MNS6), (EG2), (DN1) and (DN2). This set of properties is sufficient as we do not need to

verify properties where the conclusion might become true or the premise might become

false since the implication is then already true.

(D1) By the premise of this property, σe(bi) = gi, contradicting σe(bi) = bi+1. Prop-

erty (D2) holds by the same argument since i < µσe implies σe(bi) = gi.

(MNS4) Since σ is well-behaved, this only needs to be reevaluated if i = mσe
s . Since i 6= 1

cannot occur by assumption, let i > 1. Then, 1 < mσe
s ≤ mσe

g < mσe
b . Thus, in

particular σe(b1) = b2, σe(g1) = F1,1 and σe(s1,1) = h1,1. By Property (USV1)1
and Property (EV1)2, σe(b2) = g2, implying mσe

b = 2. But this contradicts the
premise since 1 < mσe

s < mσe
b implies mσe

b ≥ 3.

(MNS6) Since σ is well-behaved, this only needs to be reevaluated if i = mσe
s . Since

i = 1 cannot occur by assumption, let i > 1. Then, 1 < mσe
s ≤ mσe

g < mσe
b ,

implying the same contradiction as in the last case.

(EG2) The cycle center Fi,j is closed with respect to σe, so the premise is incorrect.

(DN*) Since the only cycle center in level n is Fn,0 and since we always have bn+1 = 0
by definition, the choice of j implies that we cannot have i = n.

We next prove Iσe = {(di,j,k, Fi,j) : σe(di,j,k) 6= Fi,j}. The only vertices that have an

edge towards Fi,j are di,j,∗ and gi. Since closing Fi,j increases its valuation, the valuation
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of these vertices might increase as well. Since no player 0 vertex has an edge to either

di,j,0 or di,j,1, no new improving switch involving these vertices can emerge. However,

the valuation of gi might increase due to σ(gi) = σe(gi) = Fi,j . We now prove that this

increase does not create new improving switches and that all switches but e that are

improving for σ stay improving for σe.

It suffices to prove that σe(bi) = bi+1 and ValSσe(gi)EValSσe(bi+1) as well asσe(si−1,1) =
b1 and ValSσe(hi−1,1) E ValSσe(b1). Since σ(bi) = σe(bi) = bi+1 and i ≥ µσe, we have

rValSσe(bi+1) = LS
i+1. Since σe(di,j) implies rValSσe(Fi,j) = rValSσe(si,j) by Lemma 6.1.16,

we have rValSσe(gi) = {gi, si,j} ∪ rValSσe(b1) = {gi, si,j} ∪ BS
1 by the choice of j and Prop-

erty (USV1)i. Thus, {gi, si,j} ⊳
⋃

ℓ∈[i]W
S
ℓ and {gi, si,j} ⊳

⋃
ℓ∈[i]{W

S
ℓ : σe(bℓ) = gℓ} yield

rValSσe(gi) ⊳ rValSσe(bi+1). For the second statement, we observe that bi = 0 implies

σe(si−1,1) = b1 by Property (USV1)i−1. The second part then follows using similar calcu-

lations as before since rValSσe(hi−1,1) = {hi−1,1, gi, si,j} ∪ rValSσe(b1).

Lemma 6.2.9 (Third row of Table 6.4). Let σ ∈ ρ(σ0) be a well-behaved phase-1-strategy
for b ∈ Bn with Iσ = Dσ. Let i ∈ [n− 1], j, k ∈ {0, 1} such that e := (di,j,k, Fi,j) ∈ Iσ and

σ(di,j,1−k) = Fi,j , j = 1− βσ
i+1, σ(bi) = bi+1 and σ(gi) = Fi,1−j . Then σe is a well-behaved

phase-1-strategy for b with σe ∈ ρ(σ0) and Iσe = Dσe ∪ {(gi, Fi,j)}.

Proof. By similar arguments used in the proof of Lemma 6.2.8, Properties (ESC1), (REL1)

and (USV1)i′ , (CC1)i′ , (EV1)i′ , (EV2)i′ and (EV3)i′ for i
′ ∈ [n] are valid for σe. Consider

Property (SVM)i and let Gn = Mn. Since 1 − j = βσ
i+1, the premise of this property is

incorrect, hence σe has Property (SVM)i. Consider Property (SVG)i and let Gn = Sn. If

1− j = βσ
i+1 = 0, then σe has Property (SVG)i as well. Hence assume 1− j = βσ

i+1 = 1.
Then, since σ has Property (SVG)i, it follows that σ(di,1), implying σe(di,1). Thus, σe has
Property (SVG)i resp. Property (SVM)i, implying that σe is a phase-1-strategy for b.

Since σ(gi) = Fi,1−j , applying e does not close the chosen cycle center. It is thus not

necessary to reevaluate the assumptions of Table 6.1 and thus, σ being well-behaved

implies that σe is well-behaved. It hence remains to prove Iσe = Dσe ∪ {(gi, Fi,j)}.

By Property (EV1), σ(bi) = σe(bi) = bi+1 implies that Fi,1−j is not closed with re-

spect to both σ and σe. Hence, rVal∗σe(Fi,1−j) = rVal∗σe(b1) by Lemma 6.1.19. Since

Property (USV1)i and the choice of j imply σe(si,j) = σ(si,j) = b1, it holds that

rVal∗σe(Fi,1−j) = rValσe(b1)
∗
⊳ Jsi,jK ⊕ rVal∗σe(b1) = rVal∗σe(Fi,j),

implying (gi, Fi,j) ∈ Iσe.

Since σ(gi) = Fi,1−j , the only vertices whose valuations change by applying e are

di,j,0, di,j,1 and Fi,j . This implies that no new switches besides the switch (gi, Fi,j) are
created and that all improving switches for σ but e stay improving for σe.

Lemma 6.2.10 (Fourth row of Table 6.4). Let σ ∈ ρ(σ0) be a well-behaved phase-1-
strategy for b ∈ Bn with Iσ = Dσ ∪ {(gi, Fi,1−bi+1)} for some index i ∈ [n − 1]. Let

e := (gi, Fi,1−bi+1) ∈ Iσ and bi = 0, i 6= 1 and σ(di,j). Then σe is a well-behaved phase-1-
strategy for b with Iσe = Iσ \ {e}.
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Proof. Let j := 1 − bi+1 = 1 − βσ
i+1. Since σ is a phase-1-strategy for b, bi = 0 implies

σ(bi) = bi+1. Since no cycle center is closed when applying e, σe has Properties (ESC1),
(EV1)i′ , (EV3)i′ , (CC1)i′ and (USV1)i′ for all i

′ ∈ [n]. Also, since σe(bi) = bi+1, the premise

of Property (EV2)i is incorrect with respect to σe, hence it has the property for all indices.

Since σ has Property (REL1) and σe(bi) = bi+1, it also has Property (REL1). This implies

Iσe = ∅, and thus i ≥ µσe = µσ. Also, since σ(di,j) by assumption, σe has Property (SVG)i
resp. Property (SVM)i.

By the choice of e, by i ≥ µσe and since σ is well-behaved, it suffices to investigate

Properties (B3), (MNS4), (MNS6) and (EG4) in order to prove that σe is well-behaved.

(B3) Since σ has Property (USV1)i, the premise of this property is incorrect.

(MNS4) Let the premise be correct, i.e., let µσe = 1 ∧mσe
s ≤ mσe

g < mσe
b . Let i

′ := mσe
s .

For the sake of a contradiction, let i′ = 1. Then σe(b1) = b2 since µσe = 1. If
σe(g1) = F1,1, then σe(s1,1) = b1. Thus, β2 = b2 = 0 by Property (USV1)1.

If also σ(g1) = F1,1, Property (SVG)1 resp. Property (SVM)1 would imply

σ(d1,1), contradicting Property (MNS4) for σ. If σ(g1) = F1,0, then mσ
g = 1. If

also mσe
g = 1, then the statement follows by applying Property (MNS4) to σ.

Otherwise, we need to have e = (g1, F1,1), contradicting the assumption i 6= 1.
Hence consider the case i′ = mσe

s > 1. Then 1 < mσe
s ≤ mσe

g < mσe
b , implying

σe(g1) = F1,1, σe(s1,1) = h1,1 and mσe
b ≥ 3. By Property (USV1)1, this implies

β2 = 1, hence σe(b2) = g2 by Property (EV1)2. But then mσe
b = 2 which is a

contradiction. Therefore the premise cannot be correct, hence the implication

is correct.

(MNS6) Assume the premise is correct, i.e., assume µσe = 1 ∧mσe
s < mσe

b ≤ mσe
g . Let

i′ := mσe
s and assume i′ = 1. Then σe(g1) = F1,1, σe(s1,1) = b1 and σe(b1) = b2.

If also σ(g1) = F1,1, then Property (SVG)1 resp. Property (SVM)1 would imply

σ(d1,1) as in the last case, contradicting Property (MNS6) for σ. However,

since σ(g1) = F1,0 implies e = (g1, F1,1), this again contradicts the assumption

i 6= 1. Hence consider the case i′ = mσe
s > 1. Then 1 < mσe

s < mσe
b ≤ mσe

g which

implies the same contradiction that occurred when discussing Property (MNS4).

(EG4) By Property (ESC1), the premise of this property is always incorrect, hence the

implication is correct.

Note that the other Properties (MNS*) do not need to be considered since their conclusion

is correct for level i by assumption. In addition, none of the properties (EBG*) needs to

be checked due to Property (ESC1).

It remains to prove Iσe = Iσ \ {e}. This follows by proving σe(bi) = bi+1 and Val∗σe(gi) ≺
Val∗σe(bi+1) as well as σe(si−1,1) = b1 and Val∗σe(hi−1,1) ≺ Val∗σe(b1). This can be proven in

the same way as it was proven in the proof of Lemma 6.2.8.

Lemma 6.2.11. Let σ ∈ ρ(σb) be a well-behaved phase-1-strategy for b with Iσ = Dσ. Let

σb ∈ ρ(σ0) and let σb have the canonical properties. Let i ∈ [n], j, k ∈ {0, 1} such that

e := (di,j,k, Fi,j) ∈ Iσ, Iσb
with φσ(e) = φσb(e) = ⌊(b+ 1)/2⌋− 1. Then σe is a well-behaved

phase-1-strategy for b with σe ∈ ρ(σ0). Furthermore, σ(di,j,1−k) = Fi,j , j 6= bi+1, σ(gi) =
Fi,1−j and σ(bi) 6= gi imply Iσe = (Iσ \ {e}) ∪ {(gi, Fi,j)}. Otherwise, Iσe = Iσ \ {e}. In
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addition, the occurrence record of e with respect to σe is described correctly by Table 5.6 when

interpreted for b+ 1.

Proof. By transitivity, σ ∈ ρ(σ0). Since e = (di,j,k, Fi,j) ∈ Iσ, the cycle center Fi,j cannot be

closed. Hence, since σ is a phase-1-strategy for b, either bi = 0 or bi+1 6= j. Consequently,
exactly one of the following cases is true:

1. σ(di,j,1−k) 6= Fi,j

2. σ(di,j,1−k) = Fi,j ∧ j 6= bi+1 ∧ σ(gi) = Fi,j

3. σ(di,j,1−k) = Fi,j ∧ j 6= bi+1 ∧ σ(gi) = Fi,1−j ∧ σ(bi) 6= gi

4. σ(di,j,1−k) = Fi,j ∧ j 6= bi+1 ∧ σ(gi) = Fi,1−j ∧ σ(bi) = gi

5. σ(di,j,1−k) = Fi,j ∧ j = bi+1

We prove that case four and five cannot occur. Assume that the conditions of the

fourth case were true. Then, since σ is a phase-1-strategy for b, Property (EV1)i and

Property (EV2)i, imply bi = 1 and bi+1 = 1 − j. This also implies that tb = 0 is

the only feasible parameter for (di,j,k, Fi,j) and (di,j,1−k, Fi,j). Now, by assumption,

σ(di,j,1−k) = Fi,j . If σb(di,j,1−k) = Fi,j , then Property (OR1)i,j,k and Property (OR2)i,j,k
imply φσb(di,j,1−k, Fi,j) = ℓb(i, j, 1−k)+1, contradicting that tb = 0 is the only feasible pa-
rameter. Thus, assume σb(di,j,1−k) 6= Fi,j . Then (di,j,1−k, Fi,j) was applied during σb → σ
and in particular before (di,j,k, Fi,j). Thus, σb(di,j,1−k) 6= Fi,j and Property (OR4)i,j,1−k
implies φσb(di,j,1−k, Fi,j) =

⌊
b+1
2

⌋
− 1. Since bi = 1 ∧ bi+1 = 1− j, Lemma 6.2.3 implies

ℓb(i, j, 1− k) =

⌈
b+

∑
(b, i) + 1− k

2

⌉
≥

⌊
b+ 1

2

⌋
.

As tb = 0 is the only feasible parameter, it thus needs to hold that

φσb(di,j,1−k, Fi,j) =

⌊
b+ 1

2

⌋
− 1 =

⌊
b+ 1− (1− k)

2

⌋
.

This implies k = 0 and that b is odd. But then φσ(di,j,k, Fi,j) = ⌊(b+ 1)/2⌋, contradicting
the assumptions.

Consider the fifth case. Then, bi = 0 as j = bi+1. If σb(di,j,1−k) = σ(di,j,1−k) = Fi,j ,

then i 6= ν by the definition of a canonical strategy. If σb(di,j,1−k) 6= Fi,j , then the switch

(di,j,1−k, Fi,j) was applied during σb → σ. This implies φσ(di,j,1−k, Fi,j) < ⌊(b+ 1)/2⌋. By
Lemma 6.2.5, there can be at most one improving switch in level ν with an occurrence

record strictly smaller than ⌊(b+ 1)/2⌋. This implies i 6= ν. Since i = 1 would imply i = ν
due to bi = 0, we thus have i ≥ 2.

Assume σb(di,j,1−k) = Fi,j . Then φσ(di,j,1−k, Fi,j) = ℓb(i, j, 1− k) + 1 < ⌊(b+ 1)/2⌋ by
Property (OR2)i,j,1−k and Property (OR1)i,j,−1−k, hence ℓb(i, j, 1− k) < ⌊(b+ 1)/2⌋ − 1.
However, since bi = 0 and bi+1 = j, Lemma 6.2.3 implies that either ℓb(i, j, 1− k) ≥ b or

ℓb(i, j, 1− k) =

⌈
b+ 2i−1 +

∑
(b, i) + 1− (1− k)

2

⌉
≥

⌊
b+ 3

2

⌋
=

⌊
b+ 1

2

⌋
+ 1

which is a contradiction in either case. The case σb(di,j,1−k) 6= Fi,j yields the same

contradiction developed for case four.
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Thus one of the first three listed cases needs to be true. In the first resp. third case,

we can apply Lemma 6.2.7 resp. 6.2.9 to prove the part of the statement regarding the

improving switches. In order to apply Lemma 6.2.8, we need to prove that the conditions

of the second case can only occur if Gn = Sn and i 6= 1.
Thus assume that the conditions of the second case were true. Assume i = 1. Then,

since σ(g1) = F1,1−b2 , wit holds that b1 = 0 by Property (EV1)1 and Property (EV2)1. By

the choice of j and Lemma 6.2.3, this implies ℓb(i, j, k) = ⌊(b+ 1− k)/2⌋. By Prop-

erty (OR3)i,j,k and Property (OR4)i,j,k, it thus needs to hold that φσb(di,j,k, Fi,j) =
ℓb(i, j, k) = ⌊(b+ 1)/2⌋ − 1. This can only happen if k = 1 and if b is odd, contra-

dicting b1 = 0. Consequently, i 6= 1. Proving that the conditions can only occur if Gn = Sn

can be done by proving that we have (gi, Fi,1−j) ∈ Iσ if Gn = Mn, contradicting Iσ = Dσ.

As proving this is rather tedious, we omit this part here.

It remains to show that there is a feasible parameter tb+1 for b+ 1 such that

φσe(di,j,k, Fi,j) = min

(⌊
(b+ 1) + 1− k

2

⌋
, ℓb+1(i, j, k) + tb+1

)
.

Since φσ(e) = φσb(e), we have φσe(e) = φσb(e) + 1. Also, there is a parameter tb feasible
for b such that φσ(e) = min(⌊(b+ 1− k)/2⌋ , ℓb(i, j, k) + tb) = ⌊(b+ 1)/2⌋ − 1 by the

choice of e. Consequently, φσe(e) = ⌊(b+ 1)/2⌋. We distinguish two cases.

1. i = ν ∧ j = bν+1. Since we have one of the first three cases discussed earlier, this

implies σ(di,j,1−k) 6= Fi,j . Moreover, b needs to be odd since both cycle edges of

Fν,bν+1 have an occurrence record of ⌊(b+ 1)/2⌋ if b is even. Consequently, ν > 1.
Thus, by the choice of e and Lemma 6.2.5, it holds that k = 1. It therefore suffices to

show ⌊(b+ 1)/2⌋ = ⌈lfn(b+ 1, i, {(i+ 1, j)})/2⌉ . This however follows immediately

from the choice of i and j and the fact that b is odd.

2. i 6= ν ∨ j 6= bi+1. This implies bi = 0∨ j 6= bi+1, hence (b+1)i = 0∨ (b+1)i+1 6= j.
We thus need to show that there is a parameter tb+1 feasible for b+ 1 such that

⌊
b+ 1

2

⌋
= min

(⌊
(b+ 1) + 1− k

2

⌋
, ℓb+1(i, j, k) + tb+1

)
.

By Lemma 6.2.4, ℓb(i, j, k) + 1 = ℓb+1(i, j, k). We distinguish the following cases.

a) Let ⌊(b+ 1)/2⌋ − 1 = ⌊(b+ 1− k)/2⌋. This implies k = 1 and b mod 2 = 1.
Consequently, φσe(e) = ⌊(b+ 1)/2⌋ = ⌊(b+ 1 + 1− k)/2⌋. It remains to define

a feasible parameter tb+1. Since φσb(e) = ⌊(b+ 1− k)/2⌋, there is a feasible tb
for b such that ⌊(b+ 1− k)/2⌋ ≤ ℓb(i, j, k) + tb. Since σb(di,j,k) 6= Fi,j due to

e ∈ Iσb
, Property (OR2)i,j,k implies tb 6= 1. Hence we can choose tb+1 = 0 as

φσe(e) = ⌊(b+ 1− k)/2⌋+ 1 ≤ ℓb(i, j, k) + 1 = ℓb+1(i, j, k).

b) Let ⌊(b+ 1)/2⌋ − 1 = ℓb(i, j, k) + tb for some parameter tb feasible for b but

⌊(b+ 1)/2⌋ − 1 6= ⌊(b+ 1− k)/2⌋. Then, Property (OR2)i,j,k implies tb 6= 1.
Consider the case tb = 0 first. Then φσe(e) = ℓb(i, j, k) + 1 = ℓb+1(i, j, k)
and φσ(e) = ⌊(b+ 1)/2⌋ ≤ ⌊(b+ 1 + 1− k)/2⌋. Thus, choosing tb+1 = 0
is a feasible choice giving the correct characterization. Thus consider the

case tb = −1. Then, by Property (OR3)i,j,k, b is odd and k = 0. This then
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implies that φσe(e) = ℓb(i, j, k) = ⌊(b+ 1)/2⌋ = ⌊(b+ 1 + 1− k)/2⌋ as well

as φσe(e) = ℓb+1(i, j, k) − 1. We thus choose tb+1 = 0 which is a feasible

choice, does not contradict Property (OR3) for b + 1 and yields the desired

characterization.

Lemma 6.2.12 (Fifth row of Table 6.4). Let σ ∈ ρ(σ0) be a well-behaved phase-1-strategy
for b ∈ Bn and Iσ = Dσ. Let ν := ℓ(b + 1) and j := bν+1. Let e := (dν,j,k, Fν,j) ∈ Iσ and

σ(dν,j,1−k) = Fν,j for some k ∈ {0, 1}. The following statements hold.

1. βσe = b+ 1.

2. σe has Properties (EV1)i and (EV3)i for all i > ν. It also has Property (EV2)i and

Property (USV1)i for all i ≥ ν as well as Property (REL1), and µσe = µσ = ν.

3. σe is well-behaved and σe ∈ ρ(σ0).

4. If ν = 1, then σe is a phase-3-strategy for b. If σ(gν) = Fν,j , then it holds that

Iσe = Dσe ∪ {(b1, g1)} ∪ {(e∗,∗,∗, g1)}. If σ(gν) 6= Fν,j , then Iσe = Dσe ∪ {(gν , Fν,j)}
and σe is a pseudo phase-3-strategy.

5. If ν > 1, then σe is a phase-2-strategy for b. If σ(gν) = Fν,j , then it holds that

Iσe = Dσe∪{(bν , gν)}∪{(sν−1,1, hν−1,1)}. If σ(gν) 6= Fν,j , then Iσe = Dσe∪{(gν , Fν,j)}
and σe is a pseudo phase-2-strategy.

Proof. We have ν = µσ as σ has Property (REL1) and Property (EV1)i′ for all i
′ < ν. Also,

µσ = µσe by the choice of e. Since we do not close any cycle centers in any level below

µσe, σe has Property (CC1)i′ for all i
′ ∈ [n].

1. Since the cycle centers of levels i > ν are not changed, βσe
i = βσ

i = bi = (b + 1)i
for all i > ν. Moreover, βσe

i = σe(dν,j) = 1 = (b+ 1)ν by the definition of ν and the

choice of e. It remains to show βσe
i = 0 for all i < ν. This is proven by backwards

induction. Hence let i = ν − 1 and consider βσe
i = σe(di,βσe

i+1
).

Since βσe
i+1 = 1, we prove σe(di−1,1) = 0. We have βσ

ν−1 = 1 and βσ
ν = 0. Thus

σ(bν−1) = gν−1 by Property (EV1)ν−1, so 0 = σ(dν−1,1−βσ
ν
) = σ(dν−1,1) = σe(dν−1,1)

by Property (EV3)ν−1.

Now consider some i < ν − 1. By the induction hypotheses, βσe
i+1 = 0. We hence

prove σe(di,βσe
i+1

) = σe(di,0) = 0. By the definition of ν, βσ
i = βσ

i+1 = 1. Hence,

σ(bi) = gi by Property (EV1)i, implying σ(di,0) = 0 by Property (EV3)i.

2. We prove that σe has the listed properties. Since βσe
i = βσ

i for all i > ν, σe has

Property (EV1)i for all i ≥ ν. This also implies that it has Property (EV2)i and

(USV1)i for all i ≥ ν. In addition, it has Property (EV3)i for all i ≥ ν and thus in

particular for all i > ν. As Property (REL1) does not consider cycle centers, it remains

valid for σe. Since βσ
1 = 1 if and only if βσe

1 = 0 and since σ has Property (ESC1), σe
has Property (ESC2) if ν = 0. Thus σe has all properties for the bound µσe if ν > 1
resp. for the bound 1 if ν = 1 as specified in Table 5.5.

3. Since σ is well-behaved, it suffices to reevaluate Properties (MNS4), (MNS6), (DN1)

and (DN2).
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(MNS4) By the choice of e, the premise of this property is true for σe if and only

if it is true for σ. In particular, mσe
s = mσ

s ,m
σe
g = mσ

g and mσ
b = mσe

b . In

addition, µσ = µσe = 1 implies that we close the cycle center F1,b2 . If

mσ
s 6= 1, then the conclusion is correct for σe if and only if it is correct

for σe, hence σe has Property (MNS4). It thus suffices to consider the

case mσe
s = 1. Assume the conditions of the premise were fulfilled and let

j′ := σ(g1). Then, by assumption, σe(smσe
s
) = σe(s1,j′) = b1. Thus, by the

choice of j, it follows that we do not close the cycle center F1,j′ . Hence,

since σ(ebmσ
s
)∧¬σ(egmσ

s
) by Property (MNS4), also σe(ebmσe

g
)∧¬σ(egmσe

s
).

(MNS6) This follows by the same arguments used for Property (MNS4).

(DN1) Since i = n in this case, σe(b1) = σ(b1) = g1 by the definition of ν.

(DN2) This statement only needs to be considered if ¬σ(dn) ∧ σe(dn), hence,
only if ν = n. Then, βσ

1 = · · · = βσ
n−1 = 1. But then Property (EV1)i

implies σe(bi) = gi for all i ≤ n− 1.

Since σ is well-behaved, σe is thus well-behaved.

4. We prove that σ(gν) 6= Fν,j and ν = 1 imply Iσe = Dσe ∪ {(gν , Fν,j)}.

We first prove (gν , Fν,j) ∈ Iσe. Since ν = µσe = 1 and by Property (ESC1) and

Property (USV1)i, either rVal
∗
σe(Fν,1−j) = rVal∗σe(sν,1−j) = Jsν,1−jK ⊕ rVal∗σe(b1) or

rVal∗σe(Fν,1−j) = rVal∗σe(b2). By Property (USV1)i and Property (EV1)ν+1, it also

holds that rVal∗σe(Fν,j) = Jsν,j , hν,jK ⊕ rVal∗σe(bν+1). The statement thus follows

in either case since Jhν,jK ≻ Jsν,1−jK ⊕ L∗1,ν ≻ L∗1,ν and rVal∗σ(b1) = rVal∗σ(b2) =
L∗1,ν ⊕ L∗ν+1 as well as rVal∗σ(bν+1) = L∗ν+1, implying that the valuation of Fν,j is

higher than the valuation of Fν,1−j .

Since σ(gν) = Fν,1−j , the valuation of gν does not change. Hence, only the valuations
of the cycle vertices dν,j,0, dν,j,1 can change. Since Fν,j is the only vertex with an

edge to these vertices, the valuations of all other vertices remain the same. Thus, all

switches improving with respect to σ but e stay improving with respect to σe and no

further improving switches are created.

Next, let σ(gν) = Fν,j and ν = 1. We prove Iσe = Dσe ∪ {(b1, g1)} ∪ {(e∗,∗,∗, g1)}. We

first prove (b1, g1) ∈ Iσe.

By Property (EV1)1, σe(b1) = b2, and it suffices to show rVal∗σe(g1) ≻ rVal∗σe(b2).
Since µσe = 1, we have rVal∗σe(b2) = L∗2. Let Gn = Sn. We use Corollary 6.1.18 to

determine the valuation of g1. We hence need to analyze λS
1 . If σe(b2) = g2, then

λS
1 = 1. If σe(b2) = b3, then j = b2 = 0 by Property (EV1)2 and thus σe(gj) = Fj,0

by assumption. Thus, λS
1 = 1 in either case. Consider the different cases listed in

Corollary 6.1.18. Since σe(b1) = b2, the first case cannot occur. In addition, since

σe(g1) = F1,j and the cycle center F1,j is closed, the cases 2 to 5 cannot occur.

Hence consider the sixth case. As before, σe(g1) = j = b2 by assumption, implying

σe(s1,σe(g1)) = σe(s1,j) = h1,j by Property (USV1)1. Thus, the sixth case cannot occur.

As a consequence, by applying either the seventh or eighth case of Corollary 6.1.18,

Property (USV1)1 implies rValSσe(g1) = W S
1 ∪ rValSσe(b2)⊲ rValSσe(b2) since j = σe(b2).

This also implies that any edge (e∗,∗,∗, g1) is an improving switch as claimed.
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Now consider the case Gn = Mn. We use Corollary 6.1.17 to evaluate rValMσ (g1)
and thus determine λM

1 . If σe(b2) = b3, then λM
1 = 1 by the same arguments

used when analyzing λS
1 . Since σe(d1) ∧ σe(s1) in this case, the conditions of the

last case of Corollary 6.1.17 are fulfilled. Consequently, σe(b2) = b3 implies that

rValMσ (g1) = W1+rValMσ (b2) > rValMσ (b2). If σe(b2) = g2, we have λ
M
1 = 2. However,

by Corollary 6.1.17, case 1, rValMσ (g1) = W1 + rValMσ (b2) > rValMσ (b2) holds also in

this case. This again implies that any edge (e∗,∗,∗, g1) is improving for σe.

We now show that no further improving switches are created and that existing

improving switches remain improving. The only vertices having edges towards g1
are the vertices b1 and e∗,∗,∗. It thus suffices to show that the valuations of these

vertices does not change. This however follows from σe(b1) = b2 and σe(ei,j,k) 6= g1.

It remains to show that σe is a phase-3-strategy for b in either case. By the first two

statements, it suffices to show that σe has Property (USV2)i,bi+1 for all i < ν. But,
since ν = 1, there is no such i. Also, by the definition of a pseudo phase-3-strategy,
it directly follows that σe is a such a strategy if σ(gν) 6= Fν,bν+1 .

5. Since σ is a phase-1-strategy for b, σ(si,βσ
i+1

) = hi,βσ
i+1

and σ(si,1−βσ
i+1

) = b1 by

Property (USV1)i for all i < ν. As bi = βσ
i = 1− βσe

i = 1− (b+ 1)i+1 for all i ≤ ν,
this implies that σe has Property (USV3)i for all i < ν.

We prove that σ(gν) 6= Fν,j and ν > 1 imply Iσe = Dσe∪{(gν , Fν,j)}. We observe that

either rVal∗σe(Fν,1−j) = rVal∗σe(sν,1−j) or rVal
∗
σe(Fν,1−j) = rVal∗σe(g1). In addition,⊕

ℓ∈[ν−1]Wℓ∗ ≺ Jsν,1−jK ⊕
⊕

ℓ∈[ν−1]W
∗
ℓ ≺ Jhν,jK. The statement can thus be shown

by the same arguments used in the case ν > 1.

Let σ(gν) = Fν,j and ν > 1. We prove Iσe = Dσe ∪ {(bν , gν)} ∪ {(sν−1,1, hν−1,1)}.
We first show that (sν−1,1, hν−1,1) is improving for σe. Since σe(sν−1,1) = b1 by

Property (USV1)ν−1, we prove rVal∗σe(hν−1,1) ≻ rVal∗σe(b1).

It holds that rVal∗σe(hν−1,1) = Jhν−1,1K ⊕ rVal∗σe(gν). Since Fν,j is closed for σe,
Properties (USV1)ν and (EV1)ν+1 imply rVal∗σe(gν) = W ∗ν ⊕ rVal∗σe(bν+1). As it also
holds that rVal∗σ(bν+1) = L∗ν+1, it hence follows that

rVal∗σe(hν−1,1) = Jhν−1,1K ⊕W ∗ν ∪ L∗ν+1 ≻
ν−1⊕

i=1

W ∗i ⊕ L∗ν+1 = R∗1 = rVal∗σe(b1).

Thus (sν−1,1, hν−1,1) ∈ Iσe. Also,

rVal∗σe(gν) = W ∗ν ⊕ rVal∗σe(bν+1)⊲ rVal∗σe(bν+1) = rVal∗σe(bν)

since σe(bν) = bν+1, implying (bν , gν) ∈ Iσe.

We argue why no further improving switches are created and that existing improving

switches remain improving. The only vertices with edges to gν are sν−1,1 and bν . It
thus suffices to show that their valuations does not change. But this follows from

σe(bν) = bν+1 and σe(sν−1,1) = b1.

It remains to prove that σe is a phase-2-strategy. By the first two statements, it

suffices to show that there is some i < ν such that Property (USV3)i and the
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negations of both Property (EV2)i and Property (EV3)i are fulfilled as ν = µσe.

Choose any i < ν. Then, by our previous arguments, σe has Property (USV3)i.

We next show that σe does not have Property (EV2)i. This follows from βσ
i+1 = 1,

Property (EV1)i, Property (EV2)i (both applied to σ) and 1 − βσe
i+1 = βσ

i+1. We

finally show that σe does not have Property (EV3)i. But this also immediately follows

from 1− βσe
i+1 = βσ

i+1 and by applying Property (EV1)i and Property (EV3)i to σ. By
definition, this also implies that σe is a pseudo phase-2-strategy if σ(gν) 6= Fν,j .

Lemma 6.2.13 (Sixth row of Table 6.4). Let σ ∈ ρ(σ0) be a well-behaved pseudo phase-

2-strategy for b ∈ Bn with ν > 1. Let e := (gν , Fν,bν+1) and Iσ = Dσ ∪ {(gν , Fν,bν+1)}.
Assume that σ has Property (REL1). Then σe is a well-behaved phase-2-strategy for b with

σe ∈ ρ(σ0) and Iσe = Dσe ∪ {(bν , gν), (sν−1,1, hν−1,1)}.

Proof. Let j := bν+1. We prove that σe is a phase-2-strategy for b. By the choice of e,
βσe = βσ = b + 1 =: β. As σ has Property (REL2), ν = µσ. Since e ∈ Iσ implies

σ(bν) = bν+1 by Property (EV2)ν , we have Iσ = ∅ as σ has Property (REL1). By the

choice of e and σe(bν) = σ(bν) = bν+1, this implies Iσe = Iσ = ∅ and µσe = µσ = ν.
Hence σe has Properties (REL1) and (REL2). By the choice of e, σe(gν) = Fν,j . Hence

Property (EV2)i remains valid for all i ≥ ν. It remains to show that there is an i < ν such

that σe has Property (USV3)i but not Property (EV2)i and Property (EV3)i. Since σ is a

pseudo phase-2-strategy for b, there is such an index fulfilling these conditions with respect

to σ. This index also fulfills these conditions with respect to σe. As σ being a pseudo

phase-2-strategy implies that σe has the remaining properties, σe is a phase-2-strategy
for b.

Since σ is well-behaved, µσ = µσe = ν 6= 1 and a switch involving a selector vertex is

applied we need to reevaluate the following properties.

(B3) Assume that the premise was fulfilled by σe. Then, by Property (USV1)ν and

Property (EV1)ν+1, σe(sν,1) = hν,1 implies j = βν+1 = 1. Consequently, it holds
that σe(bν+1) = gν+1, contradicting σ(bν+1) = bν+2.

(EG4) Since ν > 1, the target of g1 is not changed.

(EBG*) Any premise requires a cycle center to escape towards both g1 and b2, contra-
dicting Property (ESC2).

(DN2) Since σe is a pseudo phase-2−strategy for b there is some index i such that

Property (EV2)i is not fulfilled. This implies σe(bi) = gi.
We prove Iσe = Dσe ∪{(bν , gν), (sν−1,1, hν−1,1)} and prove (sν−1,1, hν−1,1) ∈ Iσe first. By

Property (USV3)ν−1, σe(sν−1,1) = b1. It thus suffices to prove rVal∗σe(hν−1,1) ≻ rVal∗σe(b1).
It holds that

rVal∗σe(hν−1,1) = Jhν−1,1K ⊕ rVal∗σe(gν) = Jhν−1,1K ⊕W ∗ν ⊕ rVal∗σe(bν+1)

since σe(gν) = βν+1 and σe has Property (USV1)ν . Since µσe = ν, we also have that

rVal∗σe(bν+1) = L∗ν+1 and σe(bµσe) = bµσe+1. The statement then follows since Corol-

lary 6.1.5 implies rVal∗σ(b1) = R∗1.
We next show (bν , gν) ∈ Iσe. Since σe(bν) = bν+1, we proverVal∗σe(gν) ⊲ rVal∗σe(bν+1).

This however follows since rVal∗σe(gν) = W ∗ν ⊕ rVal∗σe(bν+1) as discussed previously.
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It remains to show that improving switches remain improving and that no new improving

switches are created. By the choice of e, the valuation of gν increases. However, as discussed
before, σe(bν) = bν+1 and σe(sν−1,1) = b1. Since bν and sν−1,1 are the only vertices that

have an edge towards gν , the vertex gν is the only vertex whose valuation changes when

transitioning from σ to σe, implying the statement.

Lemma 6.2.14 (First row of Table 6.5). Let σ ∈ ρ(σ0) be a well-behaved phase-2-strategy for
b ∈ Bn with ν > 1. Let Iσ = Dσ ∪ {(bν , gν), (sν−1,1, hν−1,1)}. Let σ have Property (REL1)

as well as Property (USV3)i for all i < ν. Let e := (bν , gν). Then, σe is a well-behaved

phase-2-strategy for b with σe ∈ ρ(σ0). In addition ,ν 6= 2 implies

Iσe = Dσe ∪ {(bν−1, bν), (sν−1,1, hν−1,1), (sν−2,0, hν−2,0)}

if ν 6= 2 and ν = 2 implies

Iσe = Dσe ∪ {(b1, b2), (s1,1, h1,1)} ∪ {(e∗,∗,∗, b2)}.

Proof. We first show that σe is a phase-2-strategy for b. Since the same set of cycle centers

is closed for σ and σe, βσe = βσ = b + 1 =: β. Thus Property (USV1)i′ remains valid

for all i ≥ µσ and Property (CC1)i remains valid for all i ∈ [n]. We next show µσ = µσe.

By the choice of e, σe(bν) = gν . In addition, since σ has Property (REL2), µσ = ν. Thus
σe(bν−1) = σ(bν−1) = gν−1 by Lemma 6.1.4 as Property (REL1) applied to σ implies

Iσ = ∅. Note that Lemma 6.1.4 is applied to σ which is well-behaved. Since σ is well

behaved and ν − 1 < µσ we have σe(gi−1) = σ(gi−1) = Fi,0 by Property (BR1). But

then, since σe(bi) = σ(bi) for all i ∈ [n], i 6= ν and σe(gi) = σ(gi) for all i ∈ [n], we
have Iσ = {ν − 1}. Since σe(gν) = σe(bν+1) by Property (CC2), it therefore follows that

µσe = ν. Thus, since σ is phase-2-strategy, any statement regarding a level larger than

ν = µσ = µσe remains valid. Property (EV1)ν and Property (EV2)ν follow directly from

Property (CC2) and the choice of e. It remains to show that there is some i < µσe such that

Property (USV3)i as well as the negations of both Property (EV2)i and Property (EV3)i
hold. However, since σ is a phase-2-strategy, there exists such an index for σ, so the same

index can be used for σe.
Since we switched the target of bν and ν = µσe 6= 1 we need to reevaluate the following

assumptions to prove that σe is well-behaved.

(S1) Since σ(gν) = Fν,βν+1 by Property (EV2)ν , the premise and the conclusion are

true.

(S2) This property only needs to be checked if µσe = 2. Then, the only index for

which the premise might become true is i = 1. But then, it cannot hold that

σe(b2) = g2 ∧ i > 1. Thus, the premise is either incorrect for i = 1, implying

that the implication is correct for σe, or one of the other two conditions of the

premise is true for σe. But then, these conditions were also already true for σ,
and hence σ(si) = σe(si) = 1 follows.

(B3) As discussed earlier, σe(bν−1) = gν−1, hence the premise is incorrect.

(D1) By Property (EV1)ν and Property (EV2)ν , the conclusion is true, hence the

implication.
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(D2) Again, this property only needs to be checked if µσe = 2. But then, there is no

i ≥ 2 with i < µσe, hence the premise is incorrect.

(EG5) We only need to show that the premise is not true for j = 0. It thus suffices

to show that the cycle center Fν−1,0 is closed. If µσe > 2, then ν − 1 > 1.
By Lemma 6.1.4, it then holds that σe(bν−1) = σ(bν−1) = gν−1. Hence, by

Properties (D1) and (BR1), σe(dν−1) = σe(dν−1,0). This in particular implies

¬σe(ebν−1,0), so the premise is incorrect of µσe > 2. Now consider the case µσe =
2. Then, by the definition of a phase-2-strategy, the negation of Property (EV3)1
holds. Thus, since β2 = 1 in this case, we have σe(dν,1−β2) = σe(d1,0).

We next prove that Iσe = Dσe ∪ {(bν−1, bν), (sν−2,0, hν−2,0), (sν−1,1, hν−1,1)} if ν 6= 2.
We first show that (bν−1, bν) ∈ Iσe. Since σe(bν) = gν and σe(bν−1) = gν−1 it suffices to

show Val∗σe(bν) ≻ Val∗σe(bν−1). This follows since rVal∗σe(bν) = L∗ν ≻ R∗ν−1 = rVal∗σe(bν−1)
by Lemma 6.1.10.

We next show (sν−2,0, hν−2,0) ∈ Iσe. By Property (USV3)ν−2, σe(sν−2,0) 6= hν−2,0. Using
σe(bν) = gν , ν = µσe, βν = 1, Property (USV1)ν , (sν−2,0, hν−2,0) ∈ Iσe follows from

rVal∗σe(hν−2,0) = Jhν−2,0K ⊕W ∗ν ⊕ L∗ν+1 ≻
⊕

i<ν

W ∗i ∪ L∗ν+1 = R∗1 = Val∗σe(b1).

Using the same arguments yields (sν−1,1, hν−1,1) ∈ Iσe. Since the valuation of all other

vertices is unchanged, no other switch becomes improving and improving switches stay

improving.

We prove that Iσe = Dσe ∪ {(b1, b2), (s1,1, h1,1)} ∪ {(e∗,∗,∗, g1)} if ν = 2. All of the

equations developed for the case ν 6= 2 are also valid for ν = 2. In particular we have

rVal∗σe(b2) ≻ rVal∗σe(g1) and σe(b1) = g1, implying (b1, b2) ∈ Iσe. In addition, we have

σe(ei,j,k) = g1 for all i ∈ [n] and j, k ∈ {0, 1}, hence (ei,j,k, b2) ∈ Iσe for these indices.

By the usual arguments, no other new improving switches are created and improving

switches stay improving (with the exception of e).

Lemma 6.2.15 (Second row of Table 6.5). Let σ ∈ ρ(σ0) be a well-behaved phase-2-
strategy for some b ∈ Bn with ν > 1. Assume that σ(di′) = 1 for all i′ < µσ and that

e = (si,j , hi,j) ∈ Iσ for some i ∈ [µσ − 1] where j := βσ
i+1. Further assume that σ has

Property (USV3)i′ for all i
′ ≤ i. Also, assume that σ has Properties (EV1)µσ and (EV1)i+1.

If i 6= 1, then σe is a well-behaved phase-2-strategy for b. If i = 1, then σe is a well-behaved

phase-3-strategy for b. In either case, Iσe = Iσ \ {e}.

Proof. We first observe that σ(s1,βσ
2
) = b1 by Property (USV3)1. Since σ has Properties

(REL2) and (EV1)µσ , it follows that σ(bµσ) = gµσ . Thus, by Lemma 6.1.4, Iσ 6= ∅. By the

choice of e, βσ = βσe =: β, µσ = µσe, Iσe = Iσ 6= ∅ and σe(bµσe) = gµσe . In particular, σe
has Properties (EV1)µσe and (EV1)i+1. Let i 6= 1. We prove that σe is a phase-2-strategy.

Since i < µσe, it suffices to check the special conditions of phase 2 since all other properties
of Table 5.5 remain valid for σe. We show that the index 1 fulfills these special conditions.

Since µσe 6= 1, we have σe(b1) = g1. As the choice of i 6= 1 implies µσ = µσe > 2,
applying Property (BR1) to σ yields σe(g1) = σ(g1) = 1. For the sake of a contradiction,

assume that σe had Property (EV2)1. Then, 1 = σ(g1) = β2, implying ν = µσ = 2,

238



A.2. Proofs of Chapter 6

contradicting the choice of i. Consequently, Property (EV2)1 does not hold for σe. Now, for
the sake of contradiction, assume that σe had Property (EV3)1. Then, since σ(b1) = g1 and
ν = µσ > 2, the cycle center F1,1−β2 = F1,1 is not closed. By Property (ESC2), this implies

σ(eg1,1) ∧ ¬σ(eb1,1). Since σ(g1) = 1, Property (EG3) then implies σ(s1) = σ(s1,1) = 1.
Consequently, by Property (EG5), this implies σ(b2) = 1, so σ(b2) = g2. But then,

σ(b2) = g2 ⇔ µσ > 2 as both statements are true. Thus, since σ(b1) = g1, Property (D1)

implies that F1,σ(g1) = F1,1 is closed which is a contradiction. Hence σe does not have

Property (EV3)1. Finally, we have σe(s1,0) = σ(s1,0) = σ(s1,β2) = b1 by assumption and

σe(s1,1) = σ(s1,1) = σ(s1,1−β2) = 1 by Property (S2). Hence the index 1 fulfills all of the

special conditions of the definition of a phase-2-strategy, so σe is a phase-2-strategy for b.

If i = 1, then the assumptions imposed on σ and the choice of e directly imply that σe is
a phase-3-strategy for b.

We prove that σe is well-behaved. Note that σe(gi) = σ(gi) and thus, by Property (BR1),

σ(gi) = 1 if and only if i 6= µσe − 1, implying j = 1 − σ(gi). By the usual arguments, it

suffices to investigate the following properties.

(B3) We only need to consider this property if j = 1, i.e., if βi+1 = 1. Since i < µσe

this implies that i = µσe−1. But then σe(bi+1) = σe(bµσe) = gµσe , so the premise

is incorrect.

(EG5) Since σe fulfills Property (EV1)i+1, σ(bi+1) = βi+1 = j. Thus, the conclusion of

Property (EG5) is correct, implying that the implication is correct.

It remains to show Iσe = Iσ \ {e}. The vertex Fi,j is the only vertex that has an edge

to si,j . Let Gn = Sn first. Since ValSσ(si,j) E ValSσe(si,j), proving τσ(Fi,j) 6= si,j implies

τσe(Fi,j) 6= si,j . This then implies that the valuation of no other vertex than si,j changes,
implying Iσe = Iσ \ {e}.
For the sake of a contradiction, assume τσ(Fi,j) = si,j . Then, by Lemma 6.1.16, one

of three cases holds. Since µσe 6= 1, it cannot hold that [σ(ebi,j) ∧ ¬σ(ebi,j) ∧ µσ = 1]. As
σ(di,1−j) by Property (BR1) and assumption, Property (CC1)i implies ¬σ(di,j). Since σe
has Property (ESC2), σ(ebi,j) ∧ ¬σ(egi,j) ∧ [µσ 6= 1 ∨ (σ(si,j) ∧ σ(bi+1) 6= j)] also cannot

hold. Consequently, by Lemma 6.1.16, τσ(Fi,j) 6= si,j .
Now let Gn = Mn. Again, as σe(di,1−j) by assumption, Property (CC2) implies that Fi,j

is not closed. By Lemma 6.1.15 and Property (ESC2), this implies rValMσe(Fi,j) = rValMσe(g1)
and in particular rValMσe(Fi,j) 6= rValMσe(si,j). The only vertices that have an edge to Fi,j

are di,j,0, di,j,1 and gi. We prove that σ(di,j,k) 6= Fi,j implies ValMσ (Fi,j) > ValMσ (ei,j,k),
so (di,j,k, Fi,j) ∈ Iσ. Since σ(di,j,k) = Fi,j implies (di,j,k, Fi,j) /∈ Iσ, this then proves that

σ(di,j,k) 6= Fi,j ⇔ (di,j,k, Fi,j) ∈ Iσ. We then argue why the same arguments can be

applied to σe which proves (di,j,k, Fi,j) ∈ Iσ ⇔ (di,j,k, Fi,j) ∈ Iσe.
Hence assume σ(di,j,k) 6= Fi,j , implying σ(di,j,k) = ei,j,k. By Property (ESC2), all escape

vertices escape to g1, hence Fi,j is either g1-open or g1-halfopen. Also, σ(si,j) = b1 and
σ(b1) = g1 imply ValMσ (si,j) = 〈si,j〉+ValMσ (g1). Thus,

ValMσ (Fi,j)−ValMσ (ei,j,k) = q[ValMσ (si,j)−ValMσ (g1)],

where the exact value of q > 0 depends on whether Fi,j is open or halfopen. But then,

ValMσ (si,j) = 〈si,j〉+ValMσ (g1) implies ValMσ (Fi,j) > ValMσ (ei,j,k). Since

ValMσe(si,j) = 〈si,j〉+ValMσe(hi,j) > 〈si,j〉+ValMσe(g1)
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as the edge (si,j , b1) would otherwise be improving for σe which cannot happen, the same

argument implies ValMσe(Fi,j) > ValMσe(ei,j,k).
No vertex but Fi,j has an edge towards di,j,k. Thus, although the valuation of di,j,k

increases due to the application of e, it is impossible to have an improving switch (∗, di,j,k)
for either σ or σe. Consequently, we do not need to consider this vertex when investigating

whether new improving switches are created.

It thus remains to prove σ(gi) = σe(gi) = Fi,1−j and (gi, Fi,j) /∈ Iσ, Iσe. Once this

statement is proven, combining all of the previous statements yields Iσe = Iσ \ {e}.
Since Property (BR1)i and the choice of j imply that σe(gi) = Fi,1−j , it suffices to

prove ValMσe(Fi,1−j) > ValMσe(Fi,j). Since σe(b1) = g1, the assumption σe(di′) for all

i′ < µσe implies rValMσe(Fi,j) = rValMσe(g1) = RM
1 . This furthermore yields rValMσe(Fi,1−j) =

rValMσe(si,1−j). Property (USV2)i,1−j implies that σe(si,1−j) = hi,1−j . If j = βi+1 = 1, then

rValMσe(Fi,1−j) = Jsi,1−j , hi,1−jK + rValMσe(bi+2).

But this implies i = ν − 1, so

rValMσe(Fi,1−j) = Jsν−1,1−j , hν−1,1−jK + rValMσe(bν+1) >

ν−1∑

ℓ=1

WM
ℓ + LM

ν+1 = RM
1 .

If j = βi+1 = 0, then i < ν − 1 and rValMσe(Fi,1−j) = Jsi,1−j , hi,1−jK + rValMσe(gi+1). Using
Lemma 6.1.12, this implies

rValMσe(Fi,1−j) = Jsi,1−j , hi,1−jK +RM
i+1

= Jsi,1−j , hi,1−jK +
ν−1∑

ℓ=i+1

WM
ℓ + LM

ν+1 >

ν−1∑

ℓ=1

WM
ℓ + LM

ν+1 = RM
1 .

Lemma 6.2.16 (Third row of Table 6.5). Let σ ∈ ρ(σ0) be a well-behaved phase-2-strategy
for b ∈ Bn with ν > 1. Assume that σ(di′) = 1 for all i′ < µσ and e = (bi, bi+1) ∈ Iσ
for some i ∈ {2, . . . , µσ − 1}. In addition, assume that σ has Property (USV3)i′ for all

i′ < i, Property (EV1)i′ and Property (EV2)i′ for all i
′ > i as well as Property (EV3)i′ for all

i′ > i, i′ 6= µσ.

Then σe is a well-behaved phase-2-strategy for b. Furthermore, i 6= 2 implies

Iσe = (Iσ \ {e}) ∪ {(bi−1, bi), (si−2,0, hi−2,0)}

and i = 2 implies Iσe = (Iσ \ {e}) ∪ {(b1, b2)} ∪ {(e∗,∗,∗, b2)}.

Proof. By the choice of e and by assumption, σe has Property (USV3)i′ for all i
′ < i. In

particular, σ(si−1,0) = σ(si−2,0) = b1 since i < µσ = ν.
We prove that σe is a phase-2-strategy for b. Since e = (bi, bi+1) and i < µσ = ν, it

suffices to prove µσ = µσe and that there is an index i′ < i fulfilling the special conditions of
a phase-2-strategy. Since µσ > i, µσ = ν and since σ has Property (EV1)µσ , σ(bµσ) = gµσ .

Hence, by Lemma 6.1.4, Iσ 6= ∅. We show i = max{i′ ∈ Iσ}. By the choice of e,
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σ(bi) = 1. If i+ 1 = µσ, then σ(bi+1) = σ(bµσ) = 1 and σ(gi) = 0 by Property (BR1). If

i+ 1 < µσ, then i+ 1 ≤ µσ − 1, so σ(bi+1) = βσ
i+1 = (b+ 1)i+1 = 0 by Property (EV1)i+1

and σ(gi) = 1 by Property (BR1). In either case σ(gi) 6= σ(bi+1), hence i ∈ Iσ. For any

i′ ∈ {i+1, . . . ν−1}, Property (EV1)i′ and µσ = ν imply σ(bi′) = 0. Thus i = max{i′ ∈ Iσ}.
We now prove i − 1 ∈ Iσe since this suffices to prove µσe = µσ as σe(bi′) = bi′+1 for all

i′ ∈ {i, . . . , µσ − 1}.
By Property (EV1)i−1, it holds that σe(bi−1) = σ(bi−1) = 1 since Property (B2) would

imply σ(bi) = bi+1 otherwise. By Property (BR1) and i − 1 < µσ − 1, it follows that

σe(gi−1) = σ(gi−1) = 1. Also, σe(bi) = 0 by the choice of e. Hence i − 1 ∈ Iσe, implying

i− 1 = max{i′ ∈ Iσe}. Consequently, µσe = µσ = ν, so σe has Property (REL2).

We show that i− 1 fulfills the special conditions of Table 5.5 for phase-2-strategies. As
shown previously, σe(bi−1) = 1 and σe(gi−1) = 1 = 1− βi. Thus Property (EV2)i−1 does

not hold for σe. If i > 2, Lemma 6.1.4 implies σ(b2) = g2 as i = max{i′ ∈ Iσ}. If i = 2
then σ(b2) = g2 since (b2, b3) ∈ Iσ. Thus, by applying Property (D2) to σ, it follows that

σ(di−1) = σe(di−1) = σe(di−1,1−βi
) = 1. Thus σe fulfills the negation of Property (EV3)i−1.

Finally, σe also has Property (USV3)i−1 by assumption. Thus the index i− 1 fulfills the

special conditions of Table 5.5, so σe is phase-2-strategy for b.

Since σ is a phase-2-strategy, it suffices to check the following properties:

(B1) If i < µσe − 1, then i+ 1 < µσe. Since σ has Property (EV1)i+1 by assumption,

Property (REL2) implies σe(bi+1) = σ(bi+1) = bi+2.

(B3) For this property, it might happen that either the premise becomes true with

respect to σe or that it is true while the conclusion becomes false for σe. Consider
the first case first. Then, σe(si−1,1) = hi−1,1 and σe(bi) = bi+1. However, since

i = max{i′ ∈ Iσe}, we have σe(gi) = σ(gi) 6= σ(bi+1) = σe(bi+1), hence the

conclusion is true as well. Now assume that the premise is correct for σe while

the conclusion became false by the application of e. Then σe(si−2,1) = hi−2,1
and σe(bi−1) = bi. But this cannot happen since σe(bi−1) = gi−1 as proven

earlier.

(EG5) Since σe(bi) = 0 we need to show σe(di−1,1) = 1 which was already shown

earlier.

We now show that i 6= 2 implies Iσe = (Iσ \ {e}) ∪ {(bi−1, bi), (si−2,0, hi−2,0)} and that

i = 2 implies Iσe = (Iσ \ {e})∪ {(b1, b2)} ∪ {(e∗,∗,∗, g1)}. By Lemma 6.1.4, σe(bi−1) = gi−1
and also, by assumption, σ(si−2,0) = σe(si−2,0) = b1 if i 6= 2. We hence need to show

rVal∗σe(bi) ≻ rVal∗σe(gi−1) and Jhi−2,0K ⊕ rVal∗σe(bi) ≻ rVal∗σe(b1). This in particular implies

that any edge (e∗,∗,∗, b2) is improving for σe if i = 2 since σ(e∗,∗,∗) = g1 by Property (ESC2).
Since either i + 1 < µσe and σe(bi+1) = bi+2 by Property (B1) or i + 1 = µσe, we

have rVal∗σe(bi) = L∗i+1 since σe(bi) = bi+1. By assumption, σ(di′) = σe(di′) = 1 for all

i′ < µσe. Thus, rVal∗σe(gi−1) = R∗i−1 by Lemma 6.1.12. Therefore, σe(bµσe) = gµσe implies

rVal∗σe(bi) ≻ rVal∗σe(gi−1) by Lemma 6.1.10.Since rVal∗σe(b1) = R∗1, Lemma 6.1.10 further

implies Jhi−2,0K ⊕ rVal∗σe(bi) ≻ rVal∗σe(b1) if i 6= 2. Thus (bi−1, bi), (si−2,0, hi−2,0) ∈ Iσe if
i 6= 2 and (b1, b2), (e∗,∗,∗, b2) ∈ Iσ if i = 2.

Lemma 6.2.17 (Last row of Table 6.5). Let σ ∈ ρ(σ0) be a well-behaved pseudo phase-3-
strategy for some b ∈ Bn with ν = 1. Let Iσ = Dσ ∪ {(gν , Fν,bν+1)} and e := (gν , Fν,bν+1).
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Then σe is a well-behaved phase-3-strategy for b with σe ∈ ρ(σ0) and

Iσe = (Iσ \ {e}) ∪ {(b1, g1)} ∪ {(e∗,∗,∗, g1)}.

Proof. Let j := bν+1. We first show µσe = µσ. Since σ is a pseudo phase-3-strategy for b,

µσ = ν = 1. Hence, σ(b1) = b2, implying σe(b1) = b2, so µσe = 1. Note that this implies

that σe has Property (CC2) as the cycle center Fν,j is closed due to βσ = βσe = b+ 1 =: β.
We next show that σe is a phase-3-strategy for b. The only properties other than

Property (CC2) involving e = (gν , Fν,j) are Properties (REL1) and (EV2)1. These do not

need to be fulfilled for a phase-3-strategy so, σ being a pseudo phase-3-strategy implies

that σe is a phase-3-strategy for b.

We now show that σe is well-behaved. Since σ is a well-behaved pseudo phase-3-strategy
for b, µσe = 1 and by the choice of e, it suffices to investigate the following properties:

(MNS1) Since the cycle center F1,j is closed with respect to σe due to βσe = b+ 1 and

since j = σe(gi), the conclusion of this property is true for σe.

(MNS2) If σe(b2) = g2, then mσe
b = 2 and there cannot be an index fulfilling the

conditions of the premise. If σe(b2) = b3, then β2 = j = 0 by Property (EV1)2,

implying σe(g1) = F1,0. But then mσe
g = 1, hence there cannot be an index such

that the conditions of the premise are fulfilled.

(MNS3) This follows by the same arguments used for Property (MNS2).

(MNS4) By the choice of e, the definition of j and Property (EV1)2, we either have

mσe
g = 1 ∧ mσe

b > 2 or mσe
g > 1 ∧ mσe

b = 2. Since the second case contradicts

the conditions of the premise, assume mσe
g = 1 ∧mσe

b > 2. Then, σe(b2) = b3,
hence j = βσe

2 = 0, implying σe(g1) = F1,0. In addition, mσe
s = 1 as mσe

s ≤ mσe
g .

Thus, by the definition of mσe
s , we have σe(s1,0) = b1. But this contradicts

Property (USV1)1 as this implies σe(s1,β2) = σe(s1,0) = h1,0.

(MNS5) This follows by the same arguments used for Property (MNS2).

(MNS6) By the choice of e, the definition of j and Property (EV1)2, we either have

mσe
g = 1 ∧mσe

b > 2 or mσe
g > 1 ∧mσe

b = 2. Since the first case contradicts the

conditions of the premise, assume mσe
g > 1∧mσe

b = 2. Then, σe(b2) = g2, hence
j = β2 = 1, implying σe(g1) = F1,1. In addition, mσe

s = 1 as mσe
s < mσe

b = 2.
Thus, by the definition of mσe

s , we have σe(s1,1) = b1. But this contradicts

Property (USV1)1 as this implies σe(s1,βσe
2
) = σe(s1,1) = h1,1.

(EG4) Since the conclusion is true for σe by the choice of e, the implication is true.

(EBG2) Since σe(g1) = σe(b2) = β2 = j, µσe = 1 and Property (USV1)1 together imply

σe(s1) = 1.

(EBG3) Since σe(g1) = σe(b2) = β2 = j, ν = 1 and β = b+ 1 imply σe(d1) = 1.

It thus remains to show that Iσe = (Iσ \{e})∪{(b1, g1)}∪{(e∗,∗,∗, g1)}. Since σe(b1) = b2
and µσe = 1, this can be shown by using the same arguments used in the proof of

Lemma 6.2.12 (4).

Lemma 6.2.19 (First row of Table 6.6). Let σ ∈ ρ(σ0) be a well-behaved phase-3-strategy
for b ∈ Bn. Let i ∈ [n], j, k ∈ {0, 1} such that (ei,j,k, t

→) ∈ Iσ and σ(di,j,k) = Fi,j . Further

assume the following.
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1. If Gn = Sn, then, σ has Property (USV2)i′,j′ for all i
′ < µσ, j′ ∈ {0, 1}.

2. If Gn = Mn, then, σ(si′,j′) = b1 implies σ(ebi′,j′) ∧ ¬σ(egi′,j′) for all i
′ < µσ and

j′ ∈ {0, 1}.

Then σe is a well-behaved phase-3-strategy for b with σe ∈ ρ(σ0). If σ(di,j,1−k) = ei,j,1−k or

[σ(di,j,1−k) = Fi,j and j 6= βσ
i+1], then Iσe = (Iσ \{e})∪{(di,j,k, ei,j,k)}. If σ(di,j,1−k) = Fi,j

and j = βσ
i+1, then Iσe = Iσ \ {e}.

Proof. Since a phase-3-strategy does not need to fulfill Property (ESC1) or (ESC2), σ
being a phase-3-strategy for b implies that σe is a phase-3-strategy for b. We prove that σe
is well-behaved. By assumption, σe(di,j,k) = σ(di,j,k) = Fi,j . Hence Fi,j escapes towards

g1 resp. b2 with respect to σ if and only if it escapes towards the same vertex with respect

to σe. Since there are no other conditions on escape vertices except the escape of cycle

centers in Table 6.1, σe is well-behaved since σ is well-behaved.

It remains to show the statements related to the improving switches. We first prove that

σ(di,j,1−k) = ei,j,1−k implies Iσe = (Iσ \ {e}) ∪ {(di,j,k, ei,j,k)}. As di,j,k is the only vertex

having an edge to ei,j,k, it suffices to prove (di,j,k, ei,j,k) ∈ Iσe. We distinguish two cases.

1. Let µσe = 1. Then rVal∗σe(di,j,k) = rVal∗σe(Fi,j) and rVal∗σe(ei,j,k) = rVal∗σe(g1). More-

over, rVal∗σe(g1) = W ∗1 ⊕ rVal∗σe(b2) and rVal∗σe(b2) = L∗2 by Lemma 6.2.18. We thus

prove rVal∗σe(g1) ≻ rVal∗σe(Fi,j) and distinguish two further cases.

a) Let σe(ei,j,1−k) = g1. Since σe(di,j,1−k) = ei,j,1−k and σe(di,j,k) = Fi,j we then

have σe(egi,j) ∧ ¬σe(ebi,j) and, by assumption, µσe = 1. Let Gn = Sn. Then,

Lemma 6.1.16 implies rValSσe(Fi,j) = rValSσe(si,j). Since Property (EG1) implies

σe(si,j) = b1 and σe(b1) = b2 follows from µσe = 1, it holds that rValSσe(Fi,j) =
{si,j} ∪ rValSσe(b2). Hence, by Lemma 6.2.18, rValSσe(g1) ⊲ rValSσe(Fi,j), so
(di,j,k, ei,j,k) ∈ Iσe. Now let Gn = Mn. Then, since Fi,j is g1-halfopen,

ValMσe(g1)−ValMσe(Fi,j) =
2ε

1 + ε
[ValMσ (g1)−ValMσ (si,j)],

so it suffices to prove ValMσe(si,j) < ValMσe(g1). This follows by the previous

arguments since ValMσe(si,j) = 〈si,j〉+ValMσe(b2) < WM
1 +ValMσe(b2) = ValMσe(g1).

b) Now assume σe(ei,j,1−k) = b2. By the same arguments used in case 1(a) this

implies σe(ebi,j) ∧ ¬σe(egi,j). Let Gn = Sn and consider Lemma 6.1.16. Either

the conditions of case four or of case five are then fulfilled. If the conditions

of case four are true, then rValSσe(Fi,j) = rValSσe(b2). Since rValSσe(g1) = W S
1 ∪

rValSσe(b2), this implies rValSσe(g1)⊲ rValSσe(Fi,j). For the sake of a contradiction,

assume that the conditions of case five were true. Then σe(si,j) and σe(bi+1) 6= j.
But then Property (USV1)i implies j = βσe

i+1 and Property (EV1)i+1 implies

j 6= βi+1 which is a contradiction. If Gn = Mn, then the statement follows

directly since rValMσe(Fi,j) = rValMσe(b2).

2. Let µσe 6= 1. Then, rVal∗σe(ei,j,k) = rVal∗σe(b2) and we prove rVal∗σe(Fi,j) ≺ rVal∗σe(b2).

a) Assume σe(ei,j,1−k) = b2. Then σe(ebi,j)∧¬σe(egi,j) and µσe 6= 1 by assumption.

From Property (EB1) and Property (EV1)i+1, it follows that j 6= βi+1. Let

Gn = Sn. By Lemma 6.1.16, rValSσe(Fi,j) = rValSσe(si,j). Consider the case
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σe(si,j) = b1 first. Then rValSσe(Fi,j) = {si,j} ∪ rValSσe(b1) = {si,j} ∪ RS
1 . Since

σe(bµσe) = gµσe and W S
µσe ⊲

⋃
ℓ<µσe W S

ℓ ∪ {si,j}, this implies

rValSσe(Fi,j) = {si,j} ∪RS
1 ⊳W S

µσe ∪
⋃

ℓ≥µσe+1

{W S
ℓ : σe(bℓ) = gℓ}

= LS
µσe = LS

2 = rValSσe(b2).

Next let σe(si,j) = hi,j . Then, since j = 1 − βi+1 and since σe has Prop-

erty (USV1)ℓ for all ℓ ≥ µσe, we must have i < µσe. Consequently,

rValSσe(Fi,j) = {si,j , hi,j} ∪

{
rValSσe(gi+1), j = 1

rValSσe(bi+2), j = 0
.

We now focus on the case j = 1 and continue considering the case Gn =
Sn. Then, rVal

S
σe(Fi,j) = {si,j , hi,j} ∪ rValSσe(gi+1) as Property (BR1) implies

i < µσe − 1. We now determine rValSσe(gi+1) using Corollary 6.1.18. By

Property (BR1), it holds that σ(gi′) = Fi′,1 for all i′ < µσe − 1 as well as

σe(gµσe−1) = Fµσe−1,0. By assumption, we also have σe(si′,j′) = hi′,j′ for all
i′ < µσe and j′ ∈ {0, 1}. Since σ(bi′) = bi′+1 for all i′ < µσe, we obtain

λS
i+1 = µσe − 1. By Property (BR2), ¬σe(egλS

i+1
). But this implies that the

conditions of the sixth case of Corollary 6.1.18 are fulfilled, hence

rValSσe(Fi,j) = {si,j , hi,j} ∪

µσe−1⋃

ℓ=i+1

W S
ℓ ∪ rValSσe(bµσe+1)

⊳W S
µσe ∪ rValSσe(bµσe+1) = rValSσe(b2).

Let Gn = Mn and j = 1. It then suffices to prove ValMσe(si,j) < ValMσe(b2).
Consider the case σe(si,j) = b1, implying rValMσe(si,j) = 〈si,j〉 + rValMσe(b1). If
rValMσe(b1) = BM

1 , then rValMσe(b1) = RM
1 and the arguments follows by the same

arguments used for the case Gn = Sn. If rVal
M
σe(b1) = BM

2 +
∑

j′<k W
M
j′ + 〈gk〉

where k = min{i′ ≥ 1: ¬σe(di′)} < µσ, then

rValMσe(si,j) = 〈si,j , gk〉+
∑

j′<k

W k
j′ +BM

2 < BM
2 = rValMσe(b2).

Let σe(si,j) = hi,j . As j = 1, it holds that rValMσe(Fi,j) = 〈si,j , hi,j〉+rValMσe(gi+1).
We use Corollary 6.1.17 to evaluate rValMσe(gi+1) and thus determine λM

i+1.

Assume there was some index i′ ∈ {i+1, . . . , µσe−1} such that σe(si′,σ(gi′ )) = b1.
Then, by assumption, σe(ebi′)∧¬σe(egi′). As σe(bi′) = bi′+1 by Property (EV1)i′ ,

Corollary 6.1.17 then implies the statement.

Hence assume there was no such index. By Property (BR1), λM
i+1 ≤ µσe −

1. The case σe(dλM
i+1

) ∧ ¬σe(sλM
i+1

) cannot happen by assumption. Also, by

Property (BR2), ¬σe(egλM
i+1

). Consequently, either σe(ebλM
i+1

)∧¬σe(egλM
i+1

) and
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the statement follows by the same arguments used before or σe(dλM
i+1

). This

however implies λM
i+1 = µσe − 1 and thus

rValMσe(si,j) =
〈
si,j,hi,j

〉
+

µσe−1∑

ℓ=i+1

WM
ℓ + rValMσe(bµσe+1)

< WM
µσe + rValMσe(bµσe+1) = rValMσe(b2).

This concludes the case j = 1, hence let j = 0. Then, βi+1 = 1, so i = µσe − 1
and the statement follows from rVal∗σe(Fi,j) = Jsµσe−1,0, hµσe−1,0K ⊕ L∗µσe+1 and

Jsµσe−1,0, hµσe−1,0K ≺ W ∗µσe .

b) Now assume σe(ei,j,1−k) = g1. Then σe(egi,j) ∧ ¬σe(ebi,j) ∧ µσe 6= 1. Thus, by
Lemmas 6.1.15 and 6.1.16, rVal∗σe(Fi,j) = rVal∗σe(g1). But then Lemma 6.2.18

implies rVal∗σ(Fi,j) ≺ rVal∗σ(b2).

We now show that σe(di,j,1−k) = Fi,j and j 6= βi+1 also imply (di,j,k, ei,j,k) ∈ Iσe by proving

rVal∗σe(Fi,j) ≺ rVal∗σe(ei,j,k). (A.10)

In this case, Fi,j is closed. Thus, by Lemmas 6.1.15 and 6.1.16, rVal∗σe(Fi,j) = rVal∗σe(si,j).
If σe(si,j) = b1, then this implies rVal∗σe(Fi,j) = Jsi,jK ⊕ rVal∗σe(b1). If µσe = 1, then
rVal∗σe(ei,j,k) = rVal∗σe(g1). We then obtain (A.10) as in case 1(a).

If µσe 6= 1, then rVal∗σe(ei,j,k) = rVal∗σe(b2) and rVal∗σe(Fi,j) = Jsi,jK ⊕ rVal∗σe(g1). By the

same arguments used in case 2 (b), this implies (A.10). Hence let σe(si,j) = hi,j . By the

choice of j, this implies that we need to have µσe 6= 1 due to Property (USV1)i. But then,

(A.10) can be shown by the same arguments used for case 2 (a).

Finally, we show that σe(di,j,1−k) = Fi,j and j = βi+1 imply Iσe = Iσ \ {e}. As only

the valuation of ei,j,k can increase, it suffices to show that (di,j,k, ei,j,k) /∈ Iσ, Iσe. As

Fi,j = Fi,βi+1
is closed for σ, this implies βi = 1 by the definition of the induced bit

state. Thus, by Property (REL2), it follows that i ≥ ν = µσ = µσe. Consequently, by

Property (USV1)i, Property (EV1)i+1 and σe(di,j,1−k) = Fi,j , it follows that

rVal∗σe(Fi,j) = rVal∗σe(si,j) = Jsi,jK ⊕ rVal∗σe(hi,j) = Jsi,j , hi,jK ⊕ rVal∗σe(bi+1).

We distinguish the following cases.

1. Let µσe = 1. Then σe(ei,j,k) = g1, hence rVal∗σe(ei,j,k) = W ∗1 ⊕ rVal∗σe(b2) = W ∗1 ⊕ L∗2
by Lemma 6.2.18. In this case, µσe = 1 implies

rVal∗σe(Fi,j) = Jsi,j , hi,jK ⊕ L∗i+1 ≻
i⊕

i′=1

W ∗i′ ⊕ L∗i+1 � W ∗1 ⊕ L∗2 = rVal∗σe(ei,j,k)

if i 6= 1 whereas i = 1 implies

rVal∗σe(Fi,j) = Js1,j , h1,jK ⊕ rVal∗σe(b2) ≻ W ∗1 ⊕ rVal∗σe(b2) = rVal∗σe(ei,j,k).

Hence rVal∗σe(Fi,j) ≻ rValσe∗(ei,j,k) in either case, so (di,j,k, ei,j,k) /∈ Iσe.
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2. Let µσe 6= 1. Then, σe(ei,j,k) = b2, hence rVal∗σe(ei,j,k) = rVal∗σe(b2) = L∗2 by

Lemma 6.2.18. If rVal∗σe(bi+1) = L∗i+1, then the statement follows from

rVal∗σe(Fi,j) = Jsi,j , hi,jK ⊕ L∗i+1 ≻
i⊕

ℓ=2

Wℓ ⊕ L∗i+1 ≻ L∗2.

If rVal∗σe(bi+1) = R∗i+1, then σe(bi+1) = gi+1 and i + 1 < µσe. But then, by Prop-

erty (EV1)i+1, βi+1 = 1 contradicting µσe = ν.

Since these arguments can be applied to σ analogously, (di,j,k, ei,j,k) /∈ Iσ, Iσe and the

statement follows.

Lemma 6.2.20. Let σ ∈ ρ(σ0) be a well-behaved phase-3-strategy for b. Let i ∈ [n] and
j, k ∈ {0, 1} such that σ(ei,j,k) = t→ and e := (di,j,k, ei,j,k) ∈ Iσ. Let σ(di,j,1−k) = ei,j,1−k
or [σ(di,j,1−k) = Fi,j and j 6= βσ

i+1]. Then σe is a well-behaved phase-3-strategy for b with

σe ∈ ρ(σ0).

Proof. We first show that σe is a phase-3-strategy for b. If Fi,j is halfopen, then the

application of e can only influence Properties (ESC1) and (ESC2). In that case, there is

nothing to show as σe does not need to fulfill these properties. If Fi,j is closed for σ, then
j 6= βσ

i+1 by assumption. As j 6= βσe
i+1, Property (EV1)i remains valid. Consequently, σe is

a phase-3-strategy for b and in particular µσe = ν = µσ. We thus skip the upper index σ
resp. σe when referring to the induced bit status as b+ 1 = βσ = βσe.

We prove that σe is well-behaved. We need to consider all properties related to escape

vertices where the premise might become true or where the conclusion might become

false.

(BR2) This property only needs to be checked if the conclusion becomes false. Thus,

assume i < µσe, implying µσe > 1. But then, e = (ei,j,k, b2), hence it cannot

happen that the conclusion becomes false by applying the switch e.

(D2) By Property (REL2),σe(b2) = g2 implies µσe ≤ 2, hence the premise cannot be

fulfilled.

(MNS1) Assume µσe = 1 ∧mσe
b ≤ mσe

s ,m
σe
g and Gn = Sn. By Property (REL2), it holds

that µσe = ν = 1. Since σe has Property (CC2), this implies that the cycle center

d1,σe(g1) is closed and thus ¬σe(eb1).

(MNS2) Assume µσe = 1 and let i < mσe
g < mσe

s ,m
σe
b . If σe(b2) = g2, then mσe

b = 2 by

definition and there cannot be an index fulfilling the conditions of the premise.

If σe(b2) = b3, then β2 = 0 by Property (EV1)2, implying σe(g1) = F1,0 by

Property (CC2). But then mσe
g = 1, hence there cannot be an index such that

the conditions of the premise are fulfilled.

(MNS3) This follows by the same arguments used for Property (MNS2).

(MNS4) Assume µσe = 1 ∧mσe
s ≤ mσe

g < mσe
b . If mσe

b = 2, then mσe
s = mσe

g = 1, implying

σe(g1) = F1,0 and σe(s1,0) = b1. But this contradicts Property (CC2) since

Property (EV1)2 implies σe(g1) = β2 = σe(b2) = 1. Thus assume mσe
b > 3,

implying σe(b2) = b3. Then, by Property (CC2), σe(g1) = F1,0 and σe(s1,0) =
h1,0 by Property (USV1)1. But this implies 1 = mσe

g < mσe
s , contradicting the

premise.
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(MNS5) Assume µσe = 1 ∧ i < mσe
s < mσe

b ≤ mσe
g . Since no such i can exist if mσe

b = 2,
assume mσe

b > 2. This in particular implies σe(b2) = b3, hence σe(g1) = F1,0 by

Property (CC2). This implies mσe
g = 1, contradicting the assumption.

(MNS6) If mσe
b > 2, then the same arguments used for Property (MNS5) can be applied

again. Hence assume mσe
b = 2, implying σe(b2) = g2. Then, by Property (CC2),

σe(g1) = F1,1 and σe(s1,1) = h1,1. But this implies mσe
s > 2, contradicting

mσe
s < mσe

b .

(EG1) This property only needs to be considered if its premise is incorrect for σ but

correct for σe. Therefore, since µσ = µσe = 1 implies that the switch (ei,j,k, g1)
was applied, we need to have ¬σ(egi,j) ∧ ¬σ(ebi,j). This implies σ(di,j), hence
j 6= βi+1 by assumption, implying σe(si,j) = b1 by Property (USV1)i.

(EG2) If µσe = 1, then σe(d1) = σe(dµσe) by Property (CC2) and the choice of e, so the

implication is correct.

(EG3) The premise of this property can only become true if µσe = 1 as we need to apply

the switch (ei,j,k, g1). Thus, Property (CC2) implies that σe(d1), σe(g1) = βi+1

and hence, by Property (USV1)1, σe(s1).

(EG4) By Property (EV1)2, it holds that σe(b2) = β2 and by Property (CC2) and the

premise we have σe(gµσe) = σe(g1) = β2.

(EG5) The premise of this implication cannot become correct since σe(egi,j)∧¬σe(ebi,j)
imply µσe = 1.

(EB1) Assume that the conditions of the premise were fulfilled. Then σe(ebi,j) ∧
¬σe(egi,j). If also σ(ebi,j) ∧ ¬σ(egi,j), the statement follows since σ is well-

behaved. Hence suppose that this is not the case. Then, σ(di,j), implying that

j 6= βi+1 = σe(bi+1) by assumption and Property (EV1)i+1.

(EB2) If the premise is true for σ, then there is nothing to prove. Hence assume that

it is incorrect for σ. Then, either σ(ebi,0) ∧ σ(egi,0) or σ(di,0). In the first case,

Property (EBG1) (applied to σ) yields σ(bi+1) = 0. This is a contradiction

to Property (EB1) (applied to σe) since it implies σ(bi+1) = σe(bi+1) 6= 0.
Consequently, σ(di,0), implying 0 6= βi+1 and thus 1 = βi+1. We now show

that i < µσe, implying µσe = i + 1 since µσe = ν by Property (REL2). For

the sake of a contradiction assume i ≥ µσe. Then, by Property (USV1)i and

Property (EV1)i+1, σe(bi+1) = βi+1 = 0. However, by Property (EB1), also

σe(bi+1) 6= 0 which is a contradiction.

(EB3) As before, there is nothing to prove if the premise is also correct for σ. By

the same arguments used for Property (EB2), we can deduce that assuming

σ(ebi,j) ∧ σ(egi,j) yields a contradiction. Hence, σ(di,j), implying j 6= βσe
i+1 by

assumption. If µσe > 2, then σe(b2) = b3 follows by Property (EV1)2. Hence

assume µσe = 2, implying i ≥ µσe. Consequently, σe has Property (USV1)i,

implying j = βi+1 since σe(si,j) = hi,j by assumption. This is however a

contradiction to the choice of j.

(EB4) If the premise is true for σ, then there is nothing to prove. Hence assume that

it is incorrect for σ. By the same arguments used earlier, we deduce σ(di,1),
implying 1 6= βi+1 and thus 0 = βi+1. We now show that i < µσe, implying
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µσe > i+ 1 since µσe = ν by Property (REL2). Towards a contradiction assume

i ≥ µσe. Then, by Property (USV1)i and Property (EV1)i+1, σe(bi+1) = βi+1 = 0.
However, by Property (EB1), also σe(bi+1) 6= 0 which is a contradiction.

(EB6) By Property (REL2), µσe > 2 implies ν > 2. Hence β2 = 0, implying σe(b2) = b3
by Property (EV1)2.

(EB5) By Lemma 6.1.4 it suffices to show Iσe 6= ∅. Consider the case µσe > 2 first.

Then σe(b2) = b3 by Property (EB6), implying µσe 6= min{i′ : σe(bi′) = bi′+1}.
Hence Iσe 6= ∅ in this case. Now consider the case µσe = 2. Then, by assump-

tion, σe(b1) = g1 and σe(b2) = g2 by Property (REL2) and Property (EV1)2.

Furthermore, by Property (BR1), σe(g1) = F1,0, hence Iσe 6= ∅.

(EBG1) If i ≥ µσe, then Property (USV1)i and σe(si,j) = hi,j imply that j = βi+1. Hence

j = σe(bi+1) by Property (EV1)i+1. Thus assume i < µσe, implying µσe > 1.
Therefore, the switch (ei,j,k, b2) was applied, implying σ(egi,j) ∧ ¬σ(ebi,j). But
then, σe(bi+1) = σ(bi+1) = j by Property (EG5).

(EBG2) By assumption and Property (EV2)2, it follows that σe(g1) = σe(b2) = β2. Thus,
σe(s1) = σe(s1,σe(g1)) = σe(s1,β2) and hence, by either Property (USV2)1,β2 or

Property (USV1), σe(s1) = 1.

(EBG3) If µσe = 1, then σe(d1) follows from Property (CC2). Thus assume µσe > 1,
implying σe(b1) = g1. Towards a contradiction, assume that the cycle center

F1,β2 = F1,σe(g1) was not closed. Since the game is a sink game resp. weakly

unichain, the cycle center cannot escape towards g1 since player 1 could then

create a cycle in Sn resp. sinceMn would not have the weak unichain condition.

Thus, by assumption, σe(eb1,σe(g1)) ∧ ¬σe(eg1,σe(g1)) ∧ σe(b1) = g1. But then,

Property (EB1) implies σe(g1) 6= σe(b2), contradicting the assumption.

(EBG4) The assumptions σe(b2) = g2 and σe(g1) = F1,0 imply µσe = 2 if σe(b1) = g1. If
this is not the case, we have σe(b1) = b2, implying µσe = 1.

(EBG5) By assumption σe(g1) = F1,1 and σe(b2) = b3. Towards a contradiction assume

µσe = 2. Then we need to have σe(b1) = g1 and µσe = min{i′ : σe(bi′) = bi′+1}.
But then σe(b1)∧σe(g1) 6= σe(b2), implying Iσe 6= ∅, contradicting Lemma 6.1.4.

(D1) Assume i 6= 1. Then, by Property (EV1)i, σe(bi) = gi implies βi = 1 and

σe(gi) = βi+1 by Property (EV2)i. Since we only open inactive cycle centers,

there is nothing to show in this case. Hence assume i = 1. If µσe = 1, then
σe(b1) = b2, hence the premise is incorrect. Thus assume µσe > 1. This implies

t→ = b2. In particular, σe(ebi,j) ∧ ¬σe(egi,j), hence µσe > 2 implies σe(b2) = b3
by Property (EB6). Thus, µσe > 2 6⇔ σe(b2) = g2, so the premise is incorrect.

Hence σe is well-behaved.

Lemma 6.2.21 (Second row of Table 6.6). Let Gn = Sn. Let σ ∈ ρ(σ0) be a well-behaved

phase-3-strategy for b ∈ Bn. Let i ∈ [n], j, k ∈ {0, 1} such that e := (di,j,k, ei,j,k) ∈ Iσ and

σ(ei,j,k) = t→. Further assume that σ(di,j) implies j 6= βσ
i+1. Then σe is a well-behaved

phase-3-strategy for b with σe ∈ ρ(σ0) and Iσe = Iσ \ {e}.

Proof. By Lemma 6.2.20, it suffices to prove Iσe = Iσ \ {e}. By construction, di,j,k is the

only vertex having an edge to ei,j,k and Fi,j is the only vertex having an edge towards
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di,j,k. It thus suffices to show that the valuation of Fi,j does not change when applying e,
so we prove ValSσ(Fi,j) = ValSσe(Fi,j). Since σ(di,j,k) 6= ei,j,k implies that we cannot have

σ(egi,j) ∧ σ(ebi,j), it suffices to distinguishing the following cases.

• Let σ(di,j), implying rValSσe(Fi,j) = rValSσe(si,j) by Lemma 6.1.16. If t→ = b2, then
σe(ebi,j) ∧ ¬σe(egi,j) and µσe 6= 1. If t→ = g1, then σe(egi,j) ∧ ¬σe(ebi,j) and µσe = 1.
This however yields τσe(Fi,j) = si,j in either case by Lemma 6.1.16, implying the

statement.

• Let σ(egi,j) ∧ ¬σ(ebi,j). Since the target of Fi,j does not change when applying e
if σe(egi,j) ∧ ¬σe(ebi,j) we can assume σe(egi,j) ∧ σe(ebi,j). This implies t→ = b2,
so µσe 6= 1, implying τσe(Fi,j) = g1 by Lemma 6.1.16. It now suffices to show

σe(g1) 6= σe(b2). For the sake of contradiction, assume σe(g1) = σe(b2). Then, by
Property (EBG3), F1,σe(g1) is closed. Thus, by the definition of β, it holds that1 =
σe(d1,β2) = β1, implying ν = 1. But this contradicts µσe 6= 1 by Property (REL2).

• Let σ(ebi,j)∧¬σe(egi,j). By the same arguments used in the last case we can assume

σe(ebi,j) ∧ σe(egi,j). Hence, t
→ = g1 and µσ = µσe = 1. By Property (USV1)i and

Property (EV1)i+1, we have σ(si,j) = b1 if j 6= βi+1 or σ(bi+1) = j if j = βi+1. In

either case, τσ(Fi,j) = b2 by Lemma 6.1.16. It hence suffices to show σe(g1) = σe(b2).
This however follows from Property (CC2) since µσe = 1.

Lemma 6.2.22 (Third row of Table 6.6). Let Gn = Mn and let σ ∈ ρ(σ0) be a well-behaved

phase-3-strategy for b. Let i ∈ [n]with βi = 1 and let j := 1−βi+1. Let e := (di,j,k, ei,j,k) ∈ Iσ
and σ(ei,j,k) = t→ for some k ∈ {0, 1}. Then σe is a well-behaved phase-3-strategy for b with

σe ∈ ρ(σ0) and Iσe = Iσ \ {e}.

Proof. By Lemma 6.2.20, it suffices to prove Iσe = Iσ \ {e}.
By Property (REL2), ν = µσ = µσe, so in particular i ≥ µσe. By Property (EV2)i, we

have σ(gi) = 1− j = βi+1. We thus begin by showing (gi, Fi,j) /∈ Iσ, Iσe. This is done by

showing

Valσ(Fi,1−j) = Valσe(Fi,1−j),

Valσe(Fi,1−j) > Valσe(Fi,j)
(A.11)

which suffices as Valσe(Fi,j) ≥ Valσ(Fi,j). Since βi = 1 implies i ≥ ν, we have σ(di,1−j)
by Property (EV1)i and σ(si,1−j) = hi,1−j by Property (USV1)i. By Property (EV1)i+1,

this yields

Valσ(Fi,1−j) = 〈si,1−j , hi,1−j〉+Valσ(bi+1) = 〈si,1−j , hi,1−j〉+ Li+1.

This implies Valσ(Fi,1−j) = Valσe(Fi,1−j). Since Fi,j is not closed for σe, it either es-

capes to t→ or is mixed. Consequently, it either holds that rValσe(Fi,j) = rValσe(t
→) or

rValσe(Fi,j) =
1
2 rValσe(t

→) + 1
2 rValσe(t

←). As rValσe(t
→) > rValσe(t

←) by Lemma 6.2.18,

we have rValσe(Fi,j) ≤ rValσe(t
→). Let t→ = b2. Since σ(b2) = g2 implies ν = 2 by

Property (EV1)2, we have rValσe(b2) = L2 in any case. Consequently,

rValσe(Fi,j) ≤ rValσe(b2) = L2 = L2,i + Li+1 < 〈si,1−j , hi,1−j〉+ Li+1 = rValσe(Fi,1−j).
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Let t→ = g1. Then, rValσe(g1) = W1 + rValσe(b2) by Lemma 6.2.18. Consequently,

rValσe(Fi,j) ≤ W1 + rValσe(b2) = W1 + L2 = W1 + L2,i + Li+1

< 〈si,1−j , hi,1−j〉+ Li+1 = rValσe(Fi,1−j).

Thus, (gi, Fi,j) /∈ Iσ, Iσe as claimed.

We now consider the cycle edges of Fi,j . First, (di,j,k, Fi,j) /∈ Iσe as (di,j,k, ei,j,k) was just

applied. If σ(di,j,1−k) = Fi,j , then also (di,j,1−k, Fi,j) /∈ Iσ, Iσe, implying Iσe = Iσ \ {e}
since the valuation of no further vertex changes due to σ(gi) = Fi,1−j . Hence assume

σ(di,j,1−k) = ei,j,1−k. We prove (di,j,1−k, Fi,j) ∈ Iσ ⇔ (di,j,1−k, Fi,j) ∈ Iσe which suffices

to prove the statement since no other vertex but Fi,j has an edge to di,j,1−k.
Let v := σ(ei,j,1−k) = σe(ei,j,1−k). We prove that i ≥ µσe and σ(gi) = σe(gi) = Fi,1−j

imply Valσ(v) = Valσe(v). If v = b2, then Valσ(v) = Valσe(v) = L2 by Lemma 6.2.18.

If v = g1, then either rValσ(v) = rValσe(v) = 〈gℓ〉 +
∑

i′∈[ℓ−1]Wi′ + rValσ(b2) where

ℓ = min{i′ ≥ 1: ¬σ(di′)} < µσ or rValσ(v) = rValσe(v) = R1. We furthermore observe

that σ(gi) = σe(gi) 6= j implies min{i′ ≥ 1: ¬σ(di′)} = min{i′ ≥ 1: ¬σe(di′)}. Thus, if
Valσ(Fi,j) > Valσ(v), then also Valσe(Fi,j) > Valσe(v), so

(di,j,1−k, Fi,j) ∈ Iσ ⇒ (di,j,1−k, Fi,j) ∈ Iσe.

Hence assume (di,j,1−k, Fi,j) /∈ Iσ, implying Valσ(Fi,j) ≤ Valσ(v). Since σ(di,j,k) = Fi,j

and σ(di,j,1−k) = ei,j,1−k, we have

Valσ(Fi,j)−Valσ(v) =
2ε

1 + ε
[〈si,j〉+Valσ(b1)−Valσ(v)] ≤ 0.

Thus, Valσ(b1) + 〈si,j〉 ≤ Valσ(v), hence Valσ(b1) < Valσ(v). Since Valσ(t
←) < Valσ(t

→)
by Lemma 6.2.18, this implies that v = t→ and σ(b1) = t← have to hold. As it holds that

Valσ(t
←) = Valσe(t

←), this then implies

Valσe(Fi,j)−Valσe(v) = (1− ε)Valσe(t
→) + εValσe(si,j)−Valσe(t

→)

= ε[〈si,j〉+Valσe(b1)−Valσe(t
→)] ≤ 0,

hence (di,j,1−k, Fi,j) /∈ Iσe.

Lemma 6.2.23 (Fourth row of Table 6.6). Let Gn = Mn. Let σ ∈ ρ(σ0) be a well-behaved

phase-3-strategy for b ∈ Bn. Let i ∈ [n] with βσ
i = 0, j := βσ

i+1 and let Fi,j be t
←-halfopen.

Let Fi,1−j be t→-open and σ(gi) = Fi,1−j . Let e := (di,j,k, ei,j,k) ∈ Iσ and σ(ei,j,k) = t→

with k ∈ {0, 1}. Then σe is a well-behaved phase-3-strategy for b with σe ∈ ρ(σ0) and
Iσe = Iσ \ {e}.

Proof. Since Fi,j is t
←-halfopen, the choice of e implies σ(di,j,1−k) = ei,j,1−k. Consequently,

by Lemma 6.2.20, it suffices to prove Iσe = Iσ \ {e}.
Since σ(gi) = Fi,1−j , the application of e can only increase the valuation of Fi,j , di,j,0

and di,j,1. In addition, and since there are no player 0 vertices v with (v, di,j,∗) ∈ E0. It

thus suffices to prove (gi, Fi,j) /∈ Iσ, Iσe. This however follows from Lemma 6.2.18 since

rValσ(Fi,1−j) = rValσ(t
→) > rValσ(t

←) = rValσ(Fi,j)
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and

rValσe(Fi,1−j) = rValσe(t
→) >

1

2
rValσe(t

→) +
1

2
rValσe(t

←) = rValσe(Fi,j).

Lemma 6.2.24. LetGn = Mn. Let σ ∈ ρ(σ0) be a well-behaved phase-3-strategy for b ∈ Bn.

Let i ≥ µσ + 1 and assume σ(gi) = βσ
i+1.

1. If both cycle centers of level i are t←-halfopen, then let j := σ(gi).

2. If Fi,βσ
i+1

is mixed and Fi,1−βσ
i+1

is t←-halfopen, then let j := 1− σ(gi).

In any case, assume e := (di,j,k, ei,j,k) ∈ Iσ and σ(ei,j,k) = t→ for k ∈ {0, 1}. Then, σe is a
well-behaved phase-3-strategy for b with σe ∈ ρ(σ0) and Iσe = Iσ \ {e}.

Proof. In both cases, e = (di,j,k, ei,j,k) is applied within a t←-halfopen cycle center. This

implies σ(di,j,1−k) = ei,j,1−k, hence, by Lemma 6.2.20, it suffices to prove Iσe = Iσ \ {e}.
Let both cycle centers be t←-halfopen for σ and let j := σ(gi) = βi+1. By Lemma 6.2.1,

Valσ(Fi,j) > Valσ(Fi,1−j) and by Lemma 6.2.18, also Valσe(Fi,j) > rValσe(Fi,1−j). Thus,
(gi, Fi,1−j) /∈ Iσ, Iσe. Note that Lemma 6.2.1 can be applied since i ≥ µσ + 1 = ν + 1 by

Property (REL2) and since it has Property (USV1)i and Property (EV1)i+1. Due to the

application of the switch e, the valuation of gi increases. We prove that this does not

create new improving switches. We thus first prove σ(bi) 6= gi and (bi, gi) /∈ Iσ, Iσe. Since
i ≥ µσ + 1, no cycle centers being closed implies βi = 0, hence σ(bi) = σe(bi) = bi+1 by

Property (EV1)i. Furthermore, if µσ > 1 and thus t→ = b2, then

rValσe(bi+1) = Li+1 > 〈gi〉+
i−1∑

ℓ=1

Wℓ + Li+1 ≥ 〈gi〉+ L2 = 〈gi〉+ rValσe(b2) = rValσe(gi)

and, by Lemma 6.2.18, rValσ(bi+1) > 〈gi〉 + rValσ(g1) = rValσ(gi) follows by the same

estimation. Consequently, (bi, gi) /∈ Iσ, Iσe if µ
σ > 1. The statement follows by a similar

argument if µσ = 1 by rValσ(g1) = W1 + rValσ(b2).
We now prove that σ(si−1,1) = b1 and (si−1,1, hi−1,1) /∈ Iσ, Iσe. It cannot happen that

i = 1 due to i ≥ µσ + 1, hence we do not need to consider a possible increase of the

valuation of g1. Since i ≥ µσ+1 implies i−1 ≥ µσ and since βi+1 = 0, Property (USV1)i−1
implies σ(si−1,1) = σe(si−1,1) = b1. It remains to prove rValσ(b1) > rValσ(hi−1,1) and
rValσe(b1) > rValσe(hi−1,1). We only prove the second statement since it implies the first

statement due to rValσe(b1) = rValσ(b1) and rValσe(hi−1,1) > rValσ(hi−1,1). If µσe = 1,
then σe(b1) = b2, t

→ = g1 and rValσe(g1) = W1 + rValσe(b2). Consequently,

rValσe(b1) = rValσe(b2) > 〈hi−1,1, gi〉+W1 + rValσe(b2)

= 〈hi−1,1, gi〉+ rValσe(g1) = rValσe(hi−1,1).

If µσe > 1, then σe(b1) = g1 and t→ = b2. The statement can then be shown by similar

arguments as i > µσ implies 〈gi〉 <
∑

ℓ∈[i−1]Wℓ.

This concludes the case that both cycle centers of level i are t←-open. Consider the case

that Fi,βi+1
is mixed and that Fi,1−βi+1

is t←-halfopen for σ. Then, j = βi+1 = 1−j implies

that no other edge but (gi, Fi,j) can become improving. However, after the application of e,
both cycle centers aremixed. Hence,Valσe(Fi,βi+1

) > Valσe(Fi,1−βi+1
) by Lemma 6.2.1.
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Lemma 6.2.25. Let Gn = Mn. Let σ be a well-behaved phase-3-strategy for b ∈ Bn with

σ ∈ ρ(σ0). Let i ∈ [n] and j := 1 − βσ
i+1. Let e := (di,j,k, ei,j,k) ∈ Iσ and σ(ei,j,k) = t→

for some k ∈ {0, 1}. Further assume that there is no other triple of indices i′, j′, k′ with
(di′,j′,k′ , ei′,j′,k′) ∈ Iσ, that Fi,j is closed and that σ fulfills the following assumptions:

1. If βσ
i = 0, then σ(gi) = Fi,j and Fi,1−j is t

←-halfopen.

2. i < µσ implies [σ(si,j) = hi,j and σ(si′,j′) = hi′,j′ ∧ σ(di′) for all i
′ < i, j′ ∈ {0, 1}]

and that the cycle center Fi′,1−σ(gi′ )
is t←-halfopen for all i′ < i. In addition, i < µσ−1

implies σ(ebi+1).

3. i′ > i implies σ(si,1−βσ
i′+1

) = b1.

4. i′ > i and βσ
i′ = 0 imply that either [σ(gi′) = βσ

i′+1 and Fi,0, Fi,1 are mixed] or

[σ(gi′) = 1− βσ
i′+1, Fi′,1−βσ

i′+1
is t→-open and Fi′,βσ

i′+1
is mixed] and

5. i′ > i and βσ
i′ = 1 imply that Fi′,1−βσ

i′+1
is either mixed or t→-open.

Then σe is a well-behaved phase-3-strategy for b with σe ∈ ρ(σ0) and Iσe = Iσ \ {e} if i ≥ µσ

and Iσe = [Iσ ∪ {(si,j , b1)}] \ {e} if i < µσ.

Proof. By Lemma 6.2.20, it suffices to prove the statements related to the set of improving

switches. We first prove (gi, Fi,∗) /∈ Iσ, Iσe. Let βi = 0 first. Then, σ(gi) = Fi,j by

assumption 1., implying (gi, Fi,j) /∈ Iσ, Iσe. We thus prove (gi, Fi,1−j) /∈ Iσ, Iσe. By

assumption 1., σ(di,j), hence rValσ(Fi,j) = rValσ(si,j) and rValσe(Fi,j) = rValσe(t
→) by

Lemma 6.1.15. Since Fi,1−j is t
←-halfopen by assumption, rValσe(Fi,1−j) < rValσe(Fi,j)

since Valσe(t
←) < Valσe(t

→) by Lemma 6.2.18. Consequently, (gi, Fi,1−j) /∈ Iσe and it

remains to prove rValσ(Fi,1−j) < rValσ(Fi,j).
If σ(si,j) = b1, then the equivalences σ(b1) = b2 ⇔ µσ = 1 ⇔ t← = b2 implies

rValσ(Fi,j) = 〈si,j〉+ rValσ(b1) = 〈si,j〉+ rValσ(t
←) > Valσ(t

←) = Valσ(Fi,1−j).

Hence assume σ(si,j) = hi,j , implying i < µσ by Property (USV1)i as j = 1− βi+1. This

implies µσ > 1, so t← = g1 and t→ = b2. Let i = µσ − 1. Then j = 1 − βν = 0, hence
rValσ(Fi,j) = 〈si,j , hi,j〉+rValσ(bν+1). By assumption 2, σ(di′) for all i

′ < i. Consequently,

rValσ(Fi,1−j) = rValσ(g1) = R1 < 〈sν−1,j , hν−1,j〉+ Lν+1 = rValσ(Fi,j).

Let i < µσ − 1, implying j = 1 and thus rValσ(Fi,j) = 〈si,j , hi,j〉 + rValσ(gi+1). Since
σ(ebi+1) by assumption 2. and ¬σ(egi+1) by Property (BR2) and thus in particular

¬σ(di+1), we have rValσ(gi+1) = 〈gi+1〉+ rValσ(b2) by Corollary 6.1.17. Furthermore, as

σ(di′) for all i
′ < i, it holds that rValσ(g1) =

∑
ℓ<iWℓ + 〈gi+1〉+ rValσ(b2). Consequently,

as rValσ(g1) = rValσ(Fi,1−j), it follows that

rValσ(Fi,j) = 〈si,j , hi,j , gi+1〉+ rValσ(b2)>
∑

ℓ∈[i]

WM
ℓ + 〈gi+1〉+ rValσ(b2) = rValσ(Fi,1−j).

Hence, rValσ(Fi,1−j) < rValσ(Fi,j) holds in any case, so (gi, Fi,1−j) /∈ Iσ, Iσe. As also

(gi, Fi,j) /∈ Iσ, Iσe, this proves that βi = 0 implies (gi, Fi,∗) /∈ Iσ, Iσe.
Now let βi = 1. Then, by Property (REL2), i ≥ µσ = µσe = ν. By Property (CC2),

σ(gi) = Fi,βi+1
= Fi,1−j . We hence prove (gi, Fi,j) /∈ Iσ, Iσe. Since βi = 1, the cycle
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center Fi,1−j is closed. By Property (USV1)i, Property (EV1)i+1 and since i ≥ µσ, µσe we

thus obtain rValσ(Fi,1−j) = 〈si,1−j , hi,1−j〉+ rValσ(bi+1) = 〈si,1−j , hi,1−j〉+ Li+1 and the

corresponding equality for rValσe(Fi,1−j).

As Fi,j is closed with respect to σ and escapes towards t→ with respect to σe, Prop-
erty (USV1)i yields rValσ(Fi,j) = 〈si,j〉 + rValσ(t

←) and rValσe(Fi,j) = rValσe(t
→). It is

now easy to see that 〈si,1−j , hi,1−j〉 >
∑

ℓ=∈[i]Wℓ implies rValσ(Fi,1−j) > rValσ(Fi,j)
and rValσe(Fi,1−j) > rValσe(Fi,j). Therefore, (gi, Fi,j) /∈ Iσ, Iσe if βi = 1. As also

(gi, Fi,1−j) /∈ Iσ, Iσe in this case due to σ(gi) = Fi,1−j , this proves (gi, ∗) /∈ Iσ, Iσe in

any case. By the choice of e, we also have (di,j,k, Fi,j) /∈ Iσ, Iσe and σ(di,j,1−k) = Fi,j as

we assume Fi,j to be closed with respect to σ. Thus also (di,j,1−k, Fi,j) /∈ Iσ, Iσe.

If βi = 1, the increase of the valuation of Fi,j can only have an immediate effect on the

vertices gi, di,j,0 and di,j,1. However, as βi = 1 implies σ(gi) = Fi,1−j and since there are

no player 0 vertices edges towards di,j,∗, we immediately obtain Iσe = Iσ \ {e}. We thus

only consider the case βi = 0 for the remainder of this proof, implying σ(gi) = Fi,j .

Since σ(gi) = Fi,j , the valuation of gi increases due to the increase of the valuation

of Fi,j . We investigate how this increase influences the set of improving switches. We

first prove that i 6= 1 implies σ(bi) = bi+1 and (bi, gi) /∈ Iσ, Iσe. If i = 1, then µσ > 1
as βi = 0 by assumption, implying σ(b1) = g1 and thus (bi, gi) /∈ Iσ, Iσe. Hence let

i 6= 1. Then, σ(bi) = bi+1 by Property (EV1)i. If σ(bi+1) = gi+1, then βi+1 = 1 and thus

i + 1 ≥ µσ = ν, implying rValσ(bi+1) = Li+1 in any case. The same holds for σe, so in

particular rValσ(bi+1) = rValσe(bi+1). It hence suffices to prove rValσe(bi+1) > rValσe(gi)
as rValσe(gi) ≥ rValσ(gi).

By the choice of e and our assumptions, rValσe(gi) = 〈gi〉+ rValσe(t
→). If t→ = b2, then

rValσe(t
→) = rValσe(b2). If t

→ = g1, then rValσe(t
→) = rValσe(g1) = W1 + rValσe(b2) by

Lemma 6.2.18 as µσe = 1. This in particular yields

rValσe(gi) = 〈gi〉+ rValσe(t
→) ≤ 〈gi〉+W1 + rValσe(b2) = 〈gi〉+W1 + L2

= 〈gi〉+W1 + L2,i−1 + Li+1 < Li+1 = rValσe(bi+1)

as σ(bi) = bi+1. Thus (bi, gi) /∈ Iσ, Iσe for all i.

Now let i > µσe. We prove that this implies σ(si−1,1) = b1,Valσ(b1) > Valσ(hi−1,1)
and Valσe(b1) > Valσe(hi−1,1). When proving these statements, we will also prove that

Valσ(b1) = Valσe(b1),Valσ(g1) = Valσe(g1) and Valσ(b2) = Valσe(b2). We then argue why

this suffices to prove the statement for µσe = 1 and then consider the case µσe > 1 and

i < µσe. It is not necessary to consider the case i = µσe as βi = 0.

Since βi = 0 and i > µσe implies i− 1 ≥ µσe, Property (USV1)i−1 implies σ(si−1,1) =
σe(si−1,1) = b1. This implies that the valuation of no further vertex than hi−1,1 and the

vertices discussed previously can change when transitioning from σ to σe. None of these

vertices are part of the valuation of b1, g1 and b2 since i > µσe, σ(bi) = σe(bi) = bi+1 and

σ(si−1,1) = σ(si−1,1) = b1, implying that their valuations do not change. In particular,

Valσ(b1) = Valσe(b1). If we can show (si−1,1, b1) /∈ Iσ, Iσe, this thus proves Iσe = Iσ \{e} for
the case µσe = 1. Since Valσ(b1) = Valσe(b1), it suffices to prove Valσe(b1) > Valσe(hi−1,1)
as Valσe(hi−1,1) ≥ Valσ(hi−1,1). Consider the case µσe = 1 first, implying t→ = g1 and

rValσe(g1) = W1 + rValσe(b2) by Lemma 6.2.18. Thus, since rValσe(gi) = 〈gi〉+ rValσe(t
→)
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and rValσe(b2) = Valσe(b1) since σe(b1) = b2 due to µσe = 1, it follows that

rValσe(hi−1,1) = 〈hi−1,1, gi〉+ rValσe(gi) = 〈hi−1,1, gi〉+W1 + rValσe(b2) < rValσe(b1).

Consider the case µσe > 1 next. Then t→ = b2 and σe(b1) = g1. Now, either rValσe(b1) = R1

or rValσe(b1) = gi′ +
∑

ℓ<i′Wℓ + rValσe(b2) where i′ = min{ℓ ≥ 1: ¬σe(di′)} < µσe. In the

first case, i > µσe implies

rValσe(hi−1,1) = 〈hi−1,1, gi〉+ rValσe(b2) < Lµσe+1 < R1 = rValσe(b1).

In the second case, i > µσe > i′ implies

rValσe(hi−1,1) = 〈hi−1,1, gi〉+ rValσe(b2) < 〈gi′〉+
∑

ℓ<i′

Wℓ + rValσe(b2) = rValσe(b1).

Hence i > µσe implies (si−1,1, hi−1,1) /∈ Iσ, Iσe, proving the statement for µσe = 1.
It remains to investigate the case i < µσe, implying µσe > 1 and t→ = b2, t

← = g1. In
this case, opening the cycle center Fi,j changes the valuation of g1. Since µσe > 1 implies

σ(b1) = g1, this also changes the valuation of b1 and of possibly every vertex that has

an edge to either one of these vertices. These are in particular upper selection vertices,

escape vertices and cycle centers. We begin by observing that

Valσ(Fi,j) = Valσ(si,j) = 〈si,j , hi,j〉+

{
Valσ(bi+2), j = 0

Valσ(gi+1), j = 1

= 〈si,j , hi,j〉+

{
Valσ(bi+2), i = µσe − 1

Valσ(gi+1), i < µσe − 1

Valσe(Fi,j) =
1− ε

1 + ε
Valσe(b2) +

2ε

1 + ε
Valσe(si,j)

rValσ(g1) =

{
R1, i = µσe − 1

〈gi+1〉+
∑

ℓ<i+1Wℓ +Valσ(b2), i < µσe − 1
,

rValσe(g1) = 〈gi〉+
∑

ℓ<i

Wℓ +Valσe(b2).

Furthermore, Valσ(b2) = Valσe(b2) = L2 and i 6= 1 implies σ(bi) = σe(bi) = bi+1. Note

that we have rValσ(g1) < rValσ(b2) and rValσe(g1) < rValσe(b2) by Lemma 6.2.18. We

begin by investigating upper selection vertices and prove that (si,j , b1) is improving for σe.
Since σ(si,j) = σe(si,j) = hi,j by assumption, it suffices to prove Valσe(hi,j) < Valσe(b1).
Consider the case i = µσe − 1 first, implying j = 0. Then, since Property (EV1)i′ implies

σ(bi′) = bi′+1 for all i
′ ∈ {2, . . . , µσe − 1},

rValσe(hi,j) = 〈hi,j〉+Valσe(bi+2) < 〈gi〉+
∑

ℓ<i

Wℓ +Wi+1 + Li+2

= 〈gi〉+
∑

ℓ<i

Wℓ + Li+1 = 〈gi〉+
∑

ℓ<i

Wℓ + L2 = rValσe(g1) = rValσe(b1).
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Therefore, (si,j , b1) ∈ Iσe if i = µσe − 1. Consider the case i < µσe − 1, implying j = 1.
Then, since σ(ebi+1) ∧ ¬σ(egi+1) by assumption 2 and Property (BR2),

rValσe(hi,j) = 〈hi,j〉+ rValσe(gi+1) = 〈hi,j , gi+1〉+ rValσe(b2)

< 〈gi〉+
∑

ℓ<i

Wℓ + rValσe(b2) = rValσe(g1),

hence (si,j , b1) ∈ Iσe if i < µσe. It remains to prove that no further improving switch is

created.

First, we prove that for all i′ ∈ [n] and j′ ∈ {0, 1} with (i′, j′) 6= (i, j), σ(si′,j′) = hi′,j′

implies (si′,j′ , b1) /∈ Iσ, Iσe. Hence let i′, j′ be such a pair of indices and i′ ≥ µσe first. Then,

rValσ(hi′,j′) =
〈
hi′,j′

〉
+rValσ(bi′+1) =

〈
hi′,j′

〉
+Li′+1 follows from Property (USV1)i′ and

Property (EV1)i′+1 and rValσe(hi′,j′) =
〈
hi′,j′

〉
+ Li′+1 follows analogously. This implies

rValσ(hi′,j′), rValσe(hi′,j′) > rValσ(b2) = rValσe(b2). Since rValσ(g1) < rValσ(b2) as well as
rValσe(g1) < rValσe(b2) by Lemma 6.2.18, σ(si′,j′) = hi′,j′ thus implies (si′,j′ , b1) /∈ Iσ, Iσe
for i′ ≥ µσe. Next let i′ < µσe and i < i′ < µσe. Then, by assumption 3, j′ = βi′+1, so

Valσe(hi′,j′) =
〈
hi′,j′

〉
+Valσe(bi′+1) =

〈
hi′,j′

〉
+Li′+1 by Property (EV1)i′+1. Furthermore,

rValσe(b1) = rValσe(g1) = 〈gi〉+
∑

ℓ<i

Wℓ + rValσe(b2) = 〈gi〉+
∑

ℓ<i

Wℓ + L2.

Since β2 = · · · = βi′ = 0 due to i′ < µσe = ν and 〈gi〉+
∑

ℓ<iWℓ < 0, this implies

rValσe(b1) < L2 = Li′+1 <
〈
hi′,j′

〉
+ Li′+1 = rValσe(hi′,j′)

and thus (si′,j′ , b1) /∈ Iσe. The same calculations also yield (si′,j′ , b1) /∈ Iσ.
Now let i′ < i < µσe. If j′ = βi′+1, then the same arguments used previously can be

applied again. Hence let j′ = 1− βi′+1. Since i′ < i < µσe implies i′ < µσe − 1, we have

βi′+1 = 0 and thus j′ = 1. By assumption 2, the cycle center Fℓ,σe(gℓ) is closed and σe(sℓ)
for all ℓ < i. Since ℓ < i < µσe furthermore implies σe(gℓ) = Fℓ,1 by Property (BR1), we

have λi′+1 = i. Consequently, as the last case of Corollary 6.1.17 is fulfilled,

rValσe(hi′,j′) =
〈
hi′,j′

〉
+ rValσe(gi′+1) =

〈
hi′,j′

〉
+ 〈gi〉+

i−1∑

ℓ=i′+1

Wℓ + rValσe(b2)

>

i′∑

ℓ=1

Wℓ + 〈gi〉+
i−1∑

ℓ=i′+1

Wℓ + rValσe(b2)

= 〈gi〉+
∑

ℓ<i

Wℓ + rValσe(b2) = rValσe(b1),

implying (si′,j′ , b1) /∈ Iσe. The same arguments can also be used to show (si′,j′ , b1) /∈ Iσ. If
i′ = i < µσe, then j′ = βi′+1 as we consider indices (i′, j′) 6= (i, j), implying the statement

by the same arguments as before.

We next investigate escape vertices ei′,j′,k′ . If σ(ei′,j′,k′) = σe(ei′,j′,k′) = b2, then
Lemma 6.2.18 implies rValσ(b2) > rValσ(g1), hence (ei′,j′,k′ , g1) /∈ Iσ. Analogously,
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(ei′,j′,k′ , g1) /∈, Iσe and, by definition, (ei′,j′,k′ , b2) /∈ Iσ, Iσe. Using the same arguments, it

follows that σ(ei′,j′,k′) = g1 implies (ei′,j′,k′ , b2) ∈ Iσ, Iσe as well as (ei′,j′,k′ , g1) /∈ Iσ, Iσe.
In particular, we have (ei′,j′,k′ , ∗) ∈ Iσ ⇔ (ei′,j′,k′ , ∗) ∈ Iσe.

We next investigate the selector vertices gi′ . We do not need to consider the case i′ = i
as we already proved (gi, ∗) /∈ Iσ, Iσe. Consider the case βσ

i′ = 1 first, implying i′ ≥ µσ > i
by Property (REL2). Since i′ ≥ µσ > 1, we have σ(gi′) = βi′+1, σ(di′) and σ(si′). We thus

prove Valσ(Fi′,βi′+1
) ≥ Valσ(Fi′,1−βi′+1

). By the previously shown properties,

Valσ(Fi′,βi′+1
) =

〈
si′,βi′+1

, hi′,βi′+1

〉
+Valσ(bi′+1).

Now, either rValσ(Fi′,1−βi′+1
) = 1

2 rValσ(g1)+
1
2 rValσ(b2) or rValσ(Fi′,1−βσ

i′+1
) = rValσ(b2)

by assumption 4. As Valσ(b2) > Valσ(g1) by Lemma 6.2.18, it suffices to consider the

second case. The statement then follows since

rValσ(Fi′,βi′+1
) =

〈
si′,βi′+1

, hi′,βi′+1

〉
+ rValσ(bi′+1) =

〈
si′,βi′+1

, hi′,βi′+1

〉
+ Li′+1

≥ L2,i′ + Li′+1 = L2 = rValσe(b2) ≥ rValσ(Fi′,1−βi′+1
).

Consequently, (gi′ , ∗) /∈ Iσ. As i
′ 6= i, these estimations can also be applied to σe, implying

(gi′ , ∗) /∈ Iσe. Hence βσ
i′ = 1 implies (gi′ , ∗) /∈ Iσ, Iσe.

Next assume βi′ = 0 and i′ > i. Then, by assumption 4, either [σ(gi′) = βi′+1 and

Fi′,0, Fi′,1 are mixed] or [σ(gi′) = 1− βi′+1, Fi′,1−βi′+1
is b2-open and Fi′,βσ

i′+1
is mixed].

In the first case, both cycle centers are in the same state with respect to both σ and

σe. Consequently, it suffices to prove Valσ(si′,βi′+1
) > Valσ(si′,1−βi′+1

). But this follows

as σ(si′,1−βi′+1
) = b1, σ(si′,βi′+1

) = hi′,βi′+1
and σ(bµσ) = gµσ . As these arguments also

apply to σe, it follows that (gi′ , ∗) /∈ Iσ, Iσe. In the second case, the argument follows

since rValσ(b2) > rValσ(g1) by Lemma 6.2.18. By the same argument, (gi′ , ∗) /∈ Iσe. This
concludes the case βi′ = 0 and i′ > i.
Consider the case βi′ = 0 ∧ i′ < i next. Then, since i′ < i ≤ µσ − 1, Property (BR1)

implies σ(gi′) = 1. We thus prove rValσ(Fi′,1) > rValσ(Fi′,0). By assumption 2, it holds

that σ(si′,0) = hi′,0 and σ(si′,1) = hi′,1. Since Fi′σ(gi′ )
is closed by assumption 2, this

implies rValσ(Fi′,1) =
〈
si′,1, hi′,1

〉
+ rValσ(gi′+1). Using Corollary 6.1.17, it follows that

rValσ(gi′+1) =
∑µσ−1

ℓ=i′+1Wℓ + rValσ(bµσ+1). By assumption 2., the other cycle center Fi′,0

of level i′ is g1-halfopen. Let i = µσ − 1, implying rValσ(g1) = R1. Then

rValσ(Fi′,1) =
〈
si′,1, hi′,1

〉
+ rValσ(gi′+1) =

〈
si′,1, hi′,1

〉
+

µσ−1∑

ℓ=i′+1

Wℓ + rValσ(bµσ+1)

>
i′∑

ℓ=1

Wℓ +

µσ−1∑

ℓ=i′+1

Wℓ + rValσ(bµσ+1) = R1 = rValσ(g1) = rValσ(Fi′,0).

Let i < µσ − 1, implying rValσ(g1) = 〈gi+1〉 +
∑

ℓ<i+1Wℓ + rValσ(b2). Then, due

to σ(ebi+1) ∧ ¬σ(egi+1), it follows that rValσ(gi′+1) = 〈gi+1〉 +
∑i

ℓ=i′+1Wℓ + rValσ(b2).
Consequently,

rValσ(Fi′,1) =
〈
si′,1, hi′,1

〉
+ rValσ(gi′+1) =

〈
si′,1, hi′,1, gi+1

〉
+

i∑

ℓ=i′+1

Wℓ + rValσ(b2)
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> 〈gi+1〉+
i′∑

ℓ=1

Wℓ +
i∑

ℓ=i′+1

Wℓ + rValσ(b2) = rValσ(g1) = rValσ(Fi′,0).

Hence, (gi′ , ∗) /∈ Iσ. Since it holds that rValσe(gi′+1) = 〈gi〉 +
∑i−1

ℓ=i′+1Wℓ + rValσ(b2)
and rValσe(g1) = 〈gi〉+

∑
ℓ<iWℓ + rValσe(b2), the same calculation can be used to obtain

rValσe(Fi′,1) > rValσe(Fi′,0). Hence, also (gi′ , ∗) /∈ Iσe.
This covers all cases, hence (gi′ , Fi′,∗) /∈ Iσ, Iσe for any index i′ ∈ [n].
We next consider entry vertices bi′ for i

′ ∈ [n]. First of all, since σ(b1) = σe(b1) = g1
and Valσ(b2) > Valσ(g1) as well as Valσe(b2) > Valσe(g1) by Lemma 6.2.18, we have

(b1, b2) ∈ Iσ, Iσe. Thus consider some edge (bi′ , bi′+1) for i
′ 6= 1. Since (bi′ , bi′+1) /∈ Iσ, Iσe

if σ(bi′) = bi′+1, assume σ(bi′) = gi′ . Then βi′ = 1, implying i′ ≥ µσ. This directly implies

Valσ(bi′) = Li′ = Wi′ + Li′+1 > Li′+1 = Valσ(bi′+1), hence (bi′ , bi′+1) /∈ Iσ. The same

argument can be used to prove (bi′ , bi′+1) /∈ Iσe.
Next, consider some edge (bi′ , gi′). If σ(bi′) = gi′ , then (bi′ , gi′) /∈ Iσ, Iσe, hence assume

σ(bi′) = bi′+1, implying i′ > 1. By Property (EV1)i′ , it then holds that βi′ = 0. Let

i′ > i. By assumption 4, the cycle center Fi′,σ(gi′ )
is then either mixed or b2-open. Since

Valσ(b2) > Valσ(g1), it suffices to consider the case that it is b2-open. Thus,

rValσ(gi′) ≤ 〈gi′〉+Valσ(b2) = 〈gi′〉+L2 = 〈gi′〉+L2,i′−1 +Li′+1 < Li′+1 = rValσ(bi′+1),

hence (bi′ , gi′) /∈ Iσ and, by the same arguments, also (bi′ , gi′) /∈ Iσe. Now consider the

case i′ < i. Then, by assumption 2, the cycle center Fi′,σ(gi′ )
is closed. Depending on

whether i = µσ − 1 or i < µσ − 1, we then have

rValσ(gi′) =

µσ−1∑

ℓ=i′

Wℓ + rValσ(bµσ+1) or rValσ(gi′) = 〈gi+1〉+
i∑

ℓ=i′

Wℓ + rValσ(b2).

The statement follows in either case since i′ < i < µσ implies rValσ(bi′+1) = rValσ(b2)
and since σ(bµσ) = gµσ . As the same arguments can be applied to σe, this implies

(bi′ , gi′) /∈ Iσ, Iσe. The case i
′ = i can be shown by similar arguments since rValσ(bi+1) = L2

and in particular Wµσ ⊂ L2 due to σ(bµσ) = gµσ . Hence, (bi′ , ∗) ∈ Iσ ⇔ (bi′ , ∗) ∈ Iσe for
all i′ ∈ [n].
We next consider upper selection vertices si′,j′ for arbitrary i′, j′. We already proved

that (i′, j′) 6= (i, j) implies (si′,j′ , b1) /∈ Iσ, Iσe. We thus only prove (si′,j , hi′,j′) /∈ Iσ, Iσe
for arbitrary i′, j′. This is immediate if σ(si′,j′) = hi′,j′ , so let σ(si′,j′) = b1. This implies

i′ > i due to assumption 2 as well as Valσ(si′,j′) =
〈
si′,j′

〉
+Valσ(g1) and j′ = 1− βi′+1.

We now distinguish several cases. First assume i = µσ − 1, implying rValσ(g1) = R1. Also,

since i′ > i = µσ − 1, we have i′ ≥ µσ. Assume βi′+1 = 0, implying j′ = 1 − βi′+1 = 1.
Thus, rValσ(hi′,j′) =

〈
hi′,j′

〉
+ rValσ(gi′+1). By assumption 2, Fi′+1,σ(gi′+1)

is either mixed

or b2-open. Since the valuation of the cycle center is larger if it is b2-open, it suffices to

consider this case. Using βi′+1 = 0, we thus have

rValσ(hi′,j′) ≤
〈
hi′,j′ , gi′+1

〉
+ rValσ(b2) =

〈
hi′,j′ , gi′+1

〉
+ L2

< Li′+2 = Li′+1 ≤ Lµσ+1 <
∑

ℓ<µσ

Wℓ + Lµσ+1 = rValσ(g1),
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implying (si′,j′ , hi′,j′) /∈ Iσ if βi′+1 = 0. Consider the case βi′+1 = 1, implying j′ = 0. Then

rValσ(hi′,j′) < Li′+1 ≤ Lµσ+1 <
∑

ℓ<µσ

Wℓ + Lµσ+1 = rValσ(g1)

implying (si′,j′ , hi′,j′) /∈ Iσ if βi′+1 = 1. This concludes the case i = µσ − 1. Hence assume

i < µσ − 1, implying rValσ(g1) = 〈gi+1〉+
∑

ℓ<i+1Wℓ + rValσ(b2). Note that it thus might

happen that i′ ≤ µσ. Consider the case βi′+1 = 0. By the same arguments used for the

case i = µσ−1, we then have rValσ(hi′,j′) < Li′+1. If i
′ > µσ, then i+1 < µσ thus implies

rValσ(hi′,j′) < Li′+1 ≤ Lµσ+1 < 〈gi+1〉+
∑

ℓ<i+1

Wℓ +Wµσ + Lµσ+1

= 〈gi+1〉+
∑

ℓ<i+1

Wℓ + rValσ(b2) = rValσ(g1),

hence (si′,j′ , hi′,j′) /∈ Iσ. If i
′ < µσ, then i < i′ implies

rValσ(hi′,j′) ≤
〈
hi′,j′ , gi′+1

〉
+ L2,i′ + Li′+1 =

〈
hi′,j′ , gi′+1

〉
+ Lµσ

< 〈gi+1〉+
∑

ℓ<i+1

Wℓ + rValσ(b2) = rValσ(g1),

hence (si′,j′ , hi′,j′) /∈ Iσ. Thus consider the case βi′+1 = 1 , implying i′ ≥ µσ − 1. Since
we consider the case i < µσ − 1, it holds that j = 1− βi′+1 = 0, implying

rValσ(hi′,j′) =
〈
hi′,j′

〉
+ rValσ(bi′+2) =

〈
hi′,j′

〉
+ Li′+2

< 〈gi+1〉+
∑

ℓ<i+1

Wℓ +Wi′+1 + Li′+2

= 〈gi+1〉+
∑

ℓ<i+1

Wℓ + Li′+1 ≤ 〈gi+1〉+
∑

ℓ<i+1

Wℓ + Lµσ = rValσ(g1),

hence (si′,j′ , hi′,j′) /∈ Iσ. Thus, under all circumstances, (si′,j′ , hi′,j′) /∈ Iσ.
We now prove (si′,j′ , hi′,j′) /∈ Iσe. We have rValσe(g1) = 〈gi〉+

∑
ℓ<iWℓ+rValσe(b2). Let

βi′+1 = 0 first. Then, using the same arguments used for σ as well as i′ > i, we obtain

rValσe(hi′,j′) =
〈
hi′,j′

〉
+ rValσe(gi′+1) < 〈gi〉+

∑

ℓ<i

Wℓ + rValσe(b2) = rValσe(g1),

so (si′,j′ , hi′,j′) /∈ Iσe. Thus let βi′+1 = 1. Then, by the same arguments used before and

i′ > i, it follows that

rValσe(hi′,j′) =
〈
hi′,j′

〉
+ rValσe(bi′+2) =

〈
hi′,j′

〉
+ Li′+2 < 〈gi〉+

∑

ℓ<i

Wℓ +Wi′+1 + Li′+2

= 〈gi〉+
∑

ℓ<i

Wℓ + Li′+1 ≤ 〈gi〉+
∑

ℓ<i

Wℓ + L2 = rValσe(b2),

implying (si′,j′ , hi′,j′) /∈ Iσe. We thus have (si′,j′ , ∗) /∈ Iσ, Iσe for all indices i
′, j′ with the

exception of the edge (si,j , b1).
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Since there are no indices i′, j′, k′ besides i, j, k such that (di′,j′,k′ , ei′,j′,k′) ∈ Iσ by

assumption, it suffices to prove (di′,j′,k′ , ei′,j′,k′) /∈ Iσe for all such indices. The statement

follows if σ(di′,j′,k′) = ei′,j′,k′ , hence assume σ(di′,j′,k′) = Fi′,j′ . Let σ(ei′,j′,k′) = b2.
Then, since Valσ(b2) = Valσe(b2) = L2, the valuation of ei′,j′,k′ does not increase by

the application of e. As (di′,j′,k′ , ei′,j′,k′) /∈ Iσ implies Valσ(Fi′,j′) ≥ Valσ(ei′,j′,k′) and
the valuation of Fi′,j′ can only increase, this implies (di′,j′,k′ , ei′,j′,k′) /∈ Iσe. Thus let

σ(ei′,j′,k′) = g1, implying rValσe(ei′,j′,k′) = 〈gi〉+
∑

ℓ<iWℓ + rValσe(b2). Assume that Fi′,j′

is not closed with respect to σ. Then the assumption σe(di′,j′,k′) = Fi′,j′ implies that the

cycle center is halfopen with respect to σ. Due to the assumptions of this lemma, it is easy

to see that this implies that Fi′,j′ is g1-halfopen with respect to both σ and σe and that we

either have i′ = i and j′ = 1− j or i′ < i < µσe and j′ = 1−σe(gi′). In both cases, we have

j′ = 1−σe(gi′) = βi′+1 by Property (BR1) and σe(si′,j′) = hi′,j′ by Property (USV2)i′,βi′+1
.

Consequently, by Property (EV1)i′+1 and i′ + 1 ≤ i+ 1 ≤ µσe, we obtain

rValσe(si′,j′) =
〈
si′,j′ , hi′,j′

〉
+ rValσe(bi′+1) =

〈
si′,j′ , hi′,j

〉
+ rValσe(bµσ) > rValσe(b2),

implying Valσe(Fi′,j′) > Valσe(g1) as rValσe(b2) > rValσe(g1). Consequently, it holds that
(di′,j′,k′ , ei′,j′,k′) /∈ Iσe. Now let Fi′,j′ be closed with respect to σ. Consider the case βi′ =
1 ∧ βi′+1 = j′ first, implying i′ > i as i < µσe = ν by assumption. Then, Property (USV1)i′

implies

rValσe(Fi′,j′) =
〈
si′,j′ , hi′,j′

〉
+Valσe(bi′+1) =

〈
si′,j′ , hi′,j′

〉
+ Li′+1 > L2,i′ + Li′+1

> 〈gi〉+
∑

ℓ<i

Wℓ + L2,i′ + Li′+1 = 〈gi〉+
∑

ℓ<i

Wℓ + L2 = rValσe(g1),

hence (di′,j′,k′ , ei′,j′,k′) /∈ Iσe. Next assume βi′ = 1 ∧ βi′+1 6= j′. Then, Property (USV1)i′

implies σe(si′,j′) = b1 as i
′ ≥ µσe = ν. Since Fi′,j′ is closed, we then have

rValσe(Fi′,j′) = rValσe(si′,j′) =
〈
si′,j′

〉
+ rValσe(g1) > rValσe(g1),

hence (di′,j′,k′ , ei′,j′,k′) /∈ Iσe. Since βi′ = 0 ∧ βi′+1 = j′ is impossible if Fi′,j′ is closed, it

remains to consider the case βi′ = 0 ∧ βi′+1 6= j′. By assumption 4, we then need to have

i′ ≤ i < µσe as well as σe(si′,j′) = hi′,j′ . Consider the case i′ = i first, implying j′ = j. As
we just applied the switch (di,j,k, ei,j,k), it is clear that this switch is not improving for σe.
Hence consider (di,j,1−k, ei,j,1−k). We have

Valσe(Fi,j) =
1− ε

1 + ε
Valσe(b2) +

2ε

1 + ε
Valσe(si,j).

If σ(ei,j,1−k) = g1, then (di,j,1−k, ei,j,1−k) /∈ Iσe due to rValσe(b2) > rValσe(g1). It cannot
happen that σ(ei,j,1−k) = b2 since this would imply (di,j,1−k, ei,j,1−k) ∈ Iσ, contradicting
the assumption. The reason is that Wµσ is not part of the valuation of Fi,j which results in

rValσ(Fi,j) = rValσ(si,j) < rValσ(b2) = rValσ(ei,j,1−k). Hence (di,j,1−k, ei,j,1−k) /∈ Iσe and
we consider the case i′ < i next. Then, since σe(di′) by assumption 2 and since i′ < i < µσe,

we need to have j′ = σe(gi′) = 1− βi′+1 = 1. Consequently,

rValσe(Fi′,j′) = rValσe(si′,1) =
〈
si′,1, hi′,1

〉
+ rValσe(gi′+1)
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=
〈
si′,1, hi′,1

〉
+ 〈gi〉+

i−1∑

ℓ=i′+1

Wℓ + rValσe(b2)

>
i′∑

ℓ=1

Wℓ +
i−1∑

ℓ=i′+1

Wℓ + 〈gi〉+ rValσe(b2) = rValσe(g1).

Thus, if σ(ei′,j′,k′) = g1, then (di′,j′,k′ , ei′,j′,k′) /∈ Iσe. Since

rValσ(Fi′,j′) ≤ rValσe(Fi′,j′) < rValσe(b2) = rValσ(b2),

also σ(ei′,j′,k′) = g1 has to hold since σ(ei′,j′,k′) = b2 implies (di′,j′,k′ , ei′,j′,k′) ∈ Iσ,
contradicting our assumption. Consequently, (di′,j′,k′ , ei′,j′,k′) /∈ Iσe for all indices i

′, j′, k′.
It remains to consider edges (d∗,∗,∗, F∗,∗). We prove that (di′,j′,k′ , Fi′,j′) ∈ Iσ ⇔

(di′,j′,k′ , Fi′,j′) ∈ Iσe. If σ(di′,j′,k′) = Fi′,j′ , then (di′,j′,k′ , Fi′,j′) /∈ Iσ, Iσe and the state-

ment follows. Note that also (di,j,k, Fi,j) /∈ Iσ, Iσe. Hence fix some indices i′, j′, k′ with

σ(di′,j′,k′) = ei′,j′,k′ . Then, the cycle center Fi′,j′ is not closed with respect to σ or σe,
implying βi′ = 0 ∨ βi′+1 6= j′. Consider the case βi′ = 0 first and assume i′ > i. By

assumption 4., Fi′,j′ is ether mixed or b2-open. Consider the case that Fi′,j′ is mixed. Then

rValσ(Fi′,j′) =
1

2
rValσ(b2) +

1

2
rValσ(g1),

rValσe(Fi′,j′) =
1

2
rValσe(b2) +

1

2
rValσe(g1).

If σ(ei′,j′,k′) = g1, then rValσ(ei′,j′,k′) < rValσ(Fi′,j′) and rValσe(ei′,j′,k′) < rValσe(Fi′,j′)
by Lemma 6.2.18, implying (di′,j′,k′ , Fi′,j′) ∈ Iσ, Iσe. If σ(ei′,j′,k′) = b2, then Lemma 6.2.18

implies rValσ(ei′,j′,k′) > rValσ(Fi′,j′) and rValσe(ei′,j′,k′) > rValσe(Fi′,j′) and it follows that

(di′,j′,k′ , Fi′,j′) /∈ Iσ, Iσe. Next assume that Fi′,j′ is b2-open. If βi′+1 6= j′, then assumption 3

implies σ(si′,j′) = b1 and thus Valσ(si′,j′) =
〈
si′,j′

〉
+Valσ(g1). By Lemma 6.2.18, it holds

that
〈
si′,j′

〉
+Valσ(g1) < Valσ(b2), implying Valσ(Fi′,j′) < Valσ(ei′,j′,k′). Since the same

holds for σe, this implies (di′,j′,k′ , Fi′,j′) /∈ Iσ, Iσe. If βi′+1 = j′, then Property (EV1)i′+1

implies that Valσ(si′,j′) =
〈
si′,j′ , hi′,j′

〉
+ Valσ(bi′+1) and thus Valσ(si′,j′) > Valσ(b2) as〈

si′,j′ , hi′,j′
〉
> L2,i′ . Since the same holds for σe, we thus have (di′,j′,k′ , Fi′,j′) ∈ Iσ, Iσe.

Next, assume βi′+1 = 0 and i′ ≤ i < µσe. Then, Fi′,j′ is closed for σ if j′ = σ(gi′) and
g1-halfopen if j′ = 1− σ(gi′) by either assumption 1 or assumption 2. Since we assume

σ(di′,j′,j′) = ei′,j′,k′ , it suffices to consider the second case. Then σ(ei′,j′,k′) = g1 and

Valσ(Fi′,j′) =
1− ε

1 + ε
Valσ(g1) +

2ε

1 + ε
Valσ(si′,j′).

Now, by Property (BR1), σ(gi′) = 1−βi′+1, implying 1−σ(gi′) = j′ = βi′+1. Consequently,

by Property (USV2)i′ and Property (EV1)i′+1, we have

Valσ(si′,j′) =
〈
si′,j′ , hi′,j′

〉
+Valσ(bi′+1) > Valσ(b2) > Valσ(g1).

This implies Valσ(Fi′,j′) > Valσ(g1) = Valσ(ei′,j′,k′), hence (di′,j′,k′ , Fi′,j′) ∈ Iσ. Since the

same arguments can be used for σe, we also obtain (di′,j′,k′ , Fi′,j′) ∈ Iσe.
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Finally, consider the case βi′ = 1 ∧ βi′+1 6= j′. Then i′ ≥ µσ > i, hence Fi′,j′ is

either mixed or b2-open by assumption 5. We however already showed that this implies

(di′,j′,k′ , Fi′,j′) ∈ Iσ ⇔ (di′,j′,k′ , Fi′,j′) ∈ Iσe.

Lemma 6.2.26 (Fifth row of Table 6.6). Let Gn = Mn. Let σ ∈ ρ(σ0) be a well-behaved

phase-3-strategy for b ∈ Bn with ν > 1. Let i < µσ, j = 1 − βσ
i+1 and e := (si,j , b1) ∈ Iσ.

Further assume σ(ebi,j) ∧ ¬σ(egi,j). Then σe is a well-behaved phase-3-strategy for b with

Iσe = Iσ \ {e} and σe ∈ ρ(σ0).

Proof. By the choice of e, σe is a phase-3-strategy for b with σe ∈ ρ(σ0). Consequently,
by the choice of i and Property (REL2), we have ν = µσ = µσe > 1. We prove that σe is
well-behaved. Since µσe > 1 and since σe(ebi,j) ∧ ¬σe(egi,j), we only need to reevaluate

Property (S2). We show that the premise of this property cannot be fulfilled. By Prop-

erty (BR1), we have σ(gi) = j, hence ¬σe(di). As µ
σe > 1 implies σe(b1) = g1, assume

σe(b2) = g2. Then, by Property (BR1), σe(g1) = 0 6= 1 = σe(b1) and σe(b2). Consequently,
1 ∈ Iσe. However, since σe(bi′) implies σe(gi′) = σe(bi′+1) by Property (EV2)i′ for i

′ > 1,
this implies Iσe = {1} and thus µσe = 2. But then, i = 1, hence the premise of the property

cannot be fulfilled.

It remains to show that Iσe = Iσ \ {e}. Applying e = (si,j , b1) increases the valuation

of Fi,j . However, since σe(ebi,j) ∧ ¬σe(egi,j), the valuation is only changed by terms of

order o(1). It is now easy but tedious to prove that the increase of the valuation of Fi,j

by terms of order o(1) neither creates further improving switches nor makes improving

switches unimproving. This implies the statement.

Lemma 6.2.27 (Sixth row of Table 6.6). Let Gn = Mn. Let σ ∈ ρ(σ0) be a well-behaved

phase-3-strategy for b ∈ Bn. Let i ∈ [n] and j := 1 − βσ
i+1. Let Fi,j be t→-halfopen

and assume that βσ
i = 0 implies that Fi,1−j is t←-halfopen as well as σ(gi) = Fi,j . Let

e := (di,j,k, ei,j,k) ∈ Iσ and σ(ei,j,k) = t→ for k ∈ {0, 1}. Then σe is a well-behaved

phase-3-strategy for b with σe ∈ ρ(σ0) and Iσe = Iσ \ {e}.

Proof. Since Fi,j is t
→-halfopen and by the choice of e, it holds that σ(di,j,1−k) = ei,j,1−k.

We can thus apply Lemma 6.2.20 and only need to prove Iσe = Iσ \ {e}.
Since Fi,j is t

→-halfopen with respect to σ and t→-open with respect to σe, the valuation
of Fi,j only changes by terms of order o(1) when applying the switch e. It is easy but

tedious to verify that this implies Iσe = Iσ \ {e}.

Lemma 6.2.28 (Seventh row of Table 6.6). Let Gn = Sn. Let σ ∈ ρ(σ0) be a well-behaved

phase-3-strategy for b ∈ Bn with ν > 1. Let

Iσ = {(b1, b2)} ∪ {(di,j,k, Fi,j), (ei,j,k, b2) : σ(ei,j,k) = g1}

and σ(di,j,k) = Fi,j ⇔ βσ
i = 1 ∧ βσ

i+1 = j for all i ∈ [n], j, k ∈ {0, 1}. Assume that σ has

Property (ESC4)i,j for all (i, j) ∈ S1 and Property (ESC5)i,j for all (i, j) ∈ S2. Further assume

that σ(si,j) = hi,j for all i < ν, j ∈ {0, 1}. Let e := (b1, b2) andm := max{i : βσ
i = 1}. Then

σe is a well-behaved phase-4-strategy for b with µσe = 1 and

Iσe = (Iσ \ {e}) ∪ {(sν−1,0, b1)} ∪ {(si,1, b1) : i ≤ ν − 2} ∪X0 ∪X1

where Xk is defined as in Table 5.9.
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Proof. We first show µσe = 1. Since σ is a phase-3-strategy for b, it has Property (EV1)i
and Property (EV2)i for all i > 1. This implies i /∈ Iσ for all i > 1 and thus, by the

choice of e, i /∈ Iσe for all i > 1. Since σe(b1) = b2, also 1 /∈ Iσe, hence Iσe = ∅, implying

µσe = min{i : σe(bi) = bi+1} = 1.

We now show that σe is a phase-4-strategy for b. By the choice of e and the induced

bit state, βσ = βσe = b + 1 =: β. Since σ is a phase-3-strategy and by the choice of e it

suffices to show that σ has Properties (EV1)1, (EV2)2, (EV3)1, (EV3)ν , (CC2) and (REL1).

Furthermore, we need to show that there is an index i < ν with σ(si,1−βi+1
) = hi,1−βi+1

.

First, σe has Property (EV3)ν since σ(di,j) ⇔ βi = 1 ∧ βi+1 = j. Second, the special

condition as well as Property (ESC4)i,j and Property (ESC5)i,j are fulfilled for the relevant

indices by assumption as well. In addition, 0 = β1 = σe(d1,β2) by definition. Thus,

since σe(b1) = b2, σe has Property (EV1)1 and consequently also Property (EV2)1 and

Property (EV3)1. In addition, σe has Property (CC2) since σ is a phase-3-strategy. Since
Iσe = ∅, it also has Property (REL1). Hence, σe is a phase-4-strategy.

We show that σe is well-behaved. Since µσe = 1 and since the target of the vertex b1
changed when transitioning to σe, the following assumptions need to be reevaluated.

(S1) Let i ≥ µσe = 1 and σe(bi) = gi. By Property (EV1)i this implies i ≥ ν and thus,

by Property (USV1)i, σe(si).

(D1) σe(bi) = gi implies σe(di) by Property (EV1)i and Property (EV2)i.

(MNS1) Assume that the premise was correct. Then, by Lemma 6.1.6, mσe
b = 2. This

implies σe(b2) = σ(b2) = g2 and thus in particular µσ = ν = 2. But then, by
Property (BR1) (applied to σ), this implies σ(g1) = σe(g1) = F1,0 and thus

mσe
g = 1. This however contradicts the premise.

(MNS2) Assume there was some i < mσe
g < mσe

s ,m
σe
b and that ¬σe(bmσe

g +1). Then

mσe
b = ν = µσ, implying mσe

g = mσe
b − 1 = µσ − 1 by Property (BR1). But then

σe(bmσe
g +1) = σe(bmσe

b
) = σe(bν) = gν by Property (EV1)ν , contradicting the

assumption.

(MNS3) Assume there was some index i < mσe
s ≤ mσe

g < mσe
b and let ℓ := mσe

s . Then,

σe(sℓ,σe(gℓ)) = b1 and ℓ < mσe
b = ν. But this contradicts the assumption that

σe(si′,j′) = hi′,j′ for all i′ < ν, j′ ∈ {0, 1}. This argument also applies to

Properties (MNS4), (MNS5) and (MNS6), hence σe has all of these properties.

(EG*) It can easily be checked that for all indices i ∈ [n], j ∈ {0, 1} not listed in either of

the sets S1 or S2, σ(di,j) and thus σe(di,j) holds. Hence σe(egi,j) =⇒ σe(ebi,j),
so the premise of any of any of the assumptions (EG*) is incorrect.

(DN1) By Property (EV1)n, σe(dn) implies σe(bn).

(DN2) We only need to consider this assumption if mσe
g = n. Since µσ 6= 1, this implies

σe(gi) = σ(gi) = 1 for all i ∈ [n− 1] by Property (BR1) (applied to σ). Thus, by
assumption, i 6= µσ − 1 for all of those i, hence n = µσ − 1. But this implies

µσ = n+ 1, contradicting the definition of µσ.

We now show the statements regarding the improving switches. First, (sν−1,0, b1) ∈ Iσe
follows since σ(sν−1,0) = hν−1,0 by assumption and since µσe = 1 and σe(b1) = b2 imply

rValSσe(b1) = LS
1 = LS

ν = W S
ν ∪ LS

ν+1 ⊲ {hν−1,0} ∪ LS
ν+1 = rValSσe(hν−1,0).
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We now show (si,1, b1) ∈ Iσe for all i ≤ ν − 2. Fix some i ≤ ν − 2. Then, since

i+ 1 < ν = µσ,

rValSσ(hi,1) = {hi,1} ∪ rValSσ(gi+1) = {hi,1} ∪RS
i+1

⊲

i⋃

i′=1

W S
i′ ∪

µσ−1⋃

i′=i+1

W S
i′ ∪ LS

µσ+1 = RS
1 = rValSσ(b1).

Since σ(si,1) = σe(si,1) = hi,1, the statement then follows from

rValSσe(b1) = LS
1 = LS

µσ = W S
µσ ∪ LS

µσ+1 ⊲

µσ−1⋃

i′=i+1

W S
i′ ∪ {hi,1} ∪ LS

µσ+1 = rValSσe(hi,1).

We now show that the edges contained in the sets X0 and X1 are improving switches

if βσ is not a power of 2 and that no other edge is an improving switch otherwise. We

distinguish the following cases.

1. Let β = 2k for some k ∈ N, implying rValSσe(b1) = LS
1 = W S

µσ . By applying the

improving switch e = (b1, b2) the valuation of b1 increased. The only vertices with

edges towards b1 are upper selection vertices. We hence show that for any vertex si,j ,
one of the following statements is true:

a) σe(si,j) = hi,j and ValSσe(hi,j)DValSσe(b1).

b) σe(si,j) = hi,j and (si,j , b1) ∈ Iσe.

c) σe(si,j) = b1 and τσ(Fi,j), τ
σe(Fi,j) 6= si,j .

We distinguish the following cases:

• i ≤ ν−2 and j = 0: Then, σe(si,0) = hi,0. Also, σe(hi,0) = bi+2, so i+2 ≤ µσ

implies rValSσe(hi,0) = {hi,0} ∪ rValSσe(bi+2) = {hi,0} ∪W S
µσ ⊲ rValSσe(b1).

• i ≤ ν − 2 and j = 1: As proven before, all of these edges are improving.

• i = ν − 1 and j = 0: As proven before, (sµσ−1,0, b1) is improving for σe.

• i = ν − 1 and j = 1: By assumption, it holds that σe(si,1) = hi,1. Thus, by
the choice of i, rValSσe(hi,1) = {hi,1}∪ rValSσe(gµσe) = {hi,1}∪W S

µσe ⊲ rValSσe(b1).

• i = ν and j = 0: Since βσ = 2k, this then implies σe(sν,0) = hν,0 by

Property (USV1)ν . But then, rVal
S
σe(hν,0) = {hν,0}⊲W S

ν = rValSσe(b1).

• i = ν and j = 1: Then, by Property (USV1)ν , σe(sν,1) = b1. We need to show

τσ(Fi,j) 6= si,j and τσe(Fi,j) 6= si,j . This is done by showing that the first, second

and fifth case of Lemma 6.1.16 cannot occur. The first case cannot occur since

j = 1 = 1−βi+1 = 1−βi+1 and both σ and σe have Property (EV3)ν . The second
case cannot occur with respect to both σ and σe since there is no cycle center

Fi,j with σ(egi,j)∧¬σ(ebi,j) by Property (ESC4)i,j and Property (ESC5)i,j . The

fifth case cannot occur for σe since µσe = 1 and σe(si,j) = b1. It can also not

occur for σ since β = 2k implies σ(ebµσ ,1) ∧ σ(egµσ ,1) by Property (ESC5)µσ ,1.

• i > ν and j = 0: Since βi′ = 0 for all i′ 6= ν, i > ν implies βi = βi+1 = 0.
Hence, by Property (USV1)i, σe(si,0) = hi,0 and consequently rValSσe(hi,0) =
{hi,0}⊲W S

µσ = rValSσe(b1).
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• i > ν and j = 1: Then σe(si,j) = σe(si,1) = b1 by Property (USV1)i, hence

it suffices to show τσ(Fi,1), τ
σe(Fi,1) 6= si,1. This is again proven by showing

that the first, second and fifth case of Lemma 6.1.16 cannot be fulfilled. Since

β = 2k for some k ∈ N by assumption, m = max{i : σe(bi) = gi} = ν. Hence,
by Property (ESC5)i,1 (resp. by assumption), we have σe(ebi,1) ∧ σe(egi,j)
and σ(ebi,j) ∧ σ(egi,j). Consequently, either the sixth or the seventh case of

Lemma 6.1.16 is true, both implying τσe(Fi,1), τ
σ(Fi,1) 6= si,1.

2. Now assume that there is no k ∈ N such that β = 2k. We prove X0, X1 ⊆ Iσe and
that the edges contained in Iσe according to the lemma are indeed improving. Fix

some k ∈ {0, 1}. We prove Xk ⊆ Iσe.

• We first show (di,j,k, Fi,j) ∈ Iσe where i = µσ = ν and j = 1 − βi+1. By

assumption, σ(di,j,k) = σe(di,j,k) 6= Fi,j . Hence σe(di,j,k) = σ(di,j,k) = ei,j,k
and it suffices to show ValSσe(Fi,j)⊲ValSσe(ei,j,k). Since σe(di,j,k) = ei,j,k, Prop-
erty (ESC4)i,j implies σe(ei,j,k) = b2, so ValSσe(ei,j,k) = {ei,j,k} ∪ ValSσe(b2).
Since ¬σe(si,j) by the choice of j and Property (USV1)i, µ

σe = 1, σe(ebi,j) and
¬σe(egi,j), Lemma 6.1.16 thus implies

ValSσe(Fi,j) = {Fi,j , di,j,k′ , ei,j,k′}∪ValSσe(b2)⊲ {ei,j,k}∪ValSσe(b2) = ValSσe(ei,j,k)

for some k′ ∈ {0, 1}. Hence (di,j,k, Fi,j) ∈ Iσe.

• Let i ∈ {ν+1, . . . ,m−1}with βi = 0 and j = 1−βi+1. We prove σe(di,j,k) 6= Fi,j

and ValSσe(Fi,j)⊲ValSσe(ei,j,k). However, since σe(ebi,j) ∧ ¬σe(egi,j) this can be

shown by the same arguments used before.

We prove that no other edge becomes an improving switch. Let (i, j) be a pair

of indices for which the edge (si,j , b1) does not become improving for σe. By our

assumptions on Iσ, it then suffices to prove that one of the following three cases is

true.

a) σe(si,j) = hi,j and ValSσe(hi,j)DValSσe(b1) or

b) σe(si,j) = b1 and τσ(Fi,j), τ
σe(Fi,j) 6= si,j or

c) σe(si,j) = b1, j = 1− σ(gi) and ValSσe(Fi,1−j) > ValSσe(Fi,j).

We distinguish the following cases:

• i ≤ ν−1 and j ∈ {0, 1}: Then, the statement follows by the same arguments

used for the corresponding cases for β = 2k, k ∈ N.
• i = ν and j = βν+1: Then, σe(si,j) = hi,j by Property (USV1)ν . Hence, by

Property (EV1)i+1 and since {hν,j}⊲ L1,ν ,

rValSσe(hi,j) = {hν,j} ∪ rValSσe(bν+1) = {hν,j} ∪ Lν+1 ⊲ LS
1 = rValSσe(b1).

• i = ν and j = 1 − βν+1: Then, σe(si,j) = b1 by Property (USV1)ν and

σe(gi) = Fi,1−j by Property (EV2)ν . We prove rValSσe(Fi,1−j) ⊲ rValSσe(Fi,j).
Note that we do not need to consider the cycle vertices here as we proved that

the corresponding edges become improving for σe. Since (i, j) ∈ S1, σe has

Property (ESC4)i,j . Thus, σe(ebi,j)∧¬σe(egi,j)∧µ
σe = 1, implying rValσe(Fi,j) =
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rValσe(b2). Since Fi,1−j is closed by Property (EV1)ν , σe(si,1−j) = hi,1−j by

Property (USV1)i, Property (EV1)i+1 and the choice of i imply

rValSσe(Fi,1−j) = {si,1−j , hi,1−j} ∪ rValSσe(bi+1)⊲W S
i ∪ rValSσe(bi+1)

= rValSσe(bi) = rValSσe(bν) = rValSσe(b2) = rValSσe(Fi,j).

• i ∈ {ν + 1, . . . ,m − 1}, βi = 0 and j = βi+1: Again, σe(si,j) = hi,j by
Property (USV1)i in this case. By Property (EV1)i+1 we then obtain

rValSσe(hi,j) = {hi,j} ∪ rValSσe(bi+1) = {hi,j} ∪ LS
i+1 ⊲ LS

1 = rValSσe(b1).

• i ∈ {ν + 1, . . . ,m − 1}, βi = 0 and j = 1 − βi+1: Then, by Prop-

erty (USV1)i, we have σe(si,j) = b1. In addition, (i, j) ∈ S1 and (i, 1− j) ∈ S2,

implying σ(ebi,j) ∧ ¬σ(egi,j) as well as σ(ebi,1−j) ∧ ¬σ(egi,1−j). By Prop-

erty (EBG3) and since only cycle centers Fi′,βi′+1
are closed by assumption,

ν > 1 implies σ(g1) 6= σ(b2). Consequently, by Lemma 6.1.16 and since player 1
always chooses the vertex minimizing the valuation,

rValSσe(Fi,j) = rValSσe(b2) > rValSσe(g1) = rValSσe(Fi,1−j).

By our assumptions on Iσ, this implies that it holds that σ(gi) = σe(gi) = Fi,j .

We thus prove σe(bi) = bi+1 and rValSσe(bi+1) > rValSσe(gi) to prove (bi, gi) /∈ Iσ
and σe(si−1,1) = b1 and rValSσe(b1) > rValSσe(hi−1,1) to prove (si−1,1, hi−1,1) /∈
Iσe.

First, σe(bi) = bi+1 follows from Property (EV1)i whereas σe(si−1,1) = b1
follows from i − 1 ≥ ν and Property (USV1)i−1. Since we need to analyze

rValSσe(gi) using Corollary 6.1.18, we determine λS
i . However, since σe(si,j) = b1

and σe(gi) = j, this lemma implies rValSσe(gi) = {gi} ∪ rValSσe(g1). Since the

conditions of the third case of Lemma 6.1.14 are fulfilled (by Property (BR1)

applied to σ, Property (EV1)i′ for i
′ ≤ ν and our assumption),

rValSσe(gi) = {gi} ∪ rValSσe(g1) = {gi} ∪
ν−1⋃

i′=1

W S
i′ ∪ rValSσ(bν+1)

= {gi} ∪
ν−1⋃

i′=1

W S
i′ ∪ LS

ν+1,i−1 + LS
i+1 ⊳ LS

i+1 = rValSσe(bi+1),

rValSσe(hi−1,1) = {hi−1,1, gi}∪ rValSσe(g1)⊳ rValSσe(g1)⊳ rValSσe(b2) = rValSσe(b1).

• i ∈ {ν + 1, . . . ,m− 1}, βi = 1 and j = βi+1: As before, σe(si,j) = hi,j by
Property (USV1)i. The statement thus follows by the same arguments used

before.

• i ∈ {ν + 1, . . . ,m − 1}, βi = 1 and j = 1 − βi+1: Then, σe(si,j) = b1 by
Property (USV1)i. We prove τσ(Fi,j), τ

σe(Fi,j) 6= si,j . By Property (ESC5)i,j ,

both σe(egi,j) ∧ σe(ebi,j) and σ(egi,j) ∧ σ(ebi,j) hold. Hence, by Lemma 6.1.16,

τσ(Fi,j), τ
σe(Fi,j) 6= si,j .
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• i ≥ m and j = βi+1: By the choice of i, we then have βi = 0. For i 6= n, the
statements follows similar to the last cases. For i = n, we have

rValSσe(hi,0) = {hn,0}⊲
⋃

i′≥1

{W S
i′ : σe(bi′) = gi′} = LS

1 = rValSσe(b1).

• i ≥ m and j = 1−βi+1: Then, it holds that σe(si,j) = b1 by Property (USV1)i.
Hence we need to show τσ(Fi,j), τ

σe(Fi,j) 6= si,j . However, this follows imme-

diately from Lemma 6.1.16 since Property (ESC5) implies σ(ebi,j)∧ σ(egi,j) as
well as σe(ebi,j) ∧ σe(egi,j).

Lemma 6.2.29 (Eighth row of Table 6.6). Let Gn = Mn. Let σ ∈ ρ(σ0) be a well-behaved

phase-3-strategy for b ∈ Bn with ν > 1. Let

Iσ = {(b1, b2)} ∪ {(di,j,k, Fi,j), (ei,j,k, b2) : σ(ei,j,k) = g1}.

Let σ have Property (USV1)i for all i ∈ [n] and let σ(di,j,k) = Fi,j ⇔ βσ
i = 1∧βσ

i+1 = j for all
i ∈ [n], j, k ∈ {0, 1}. Let σ have Property (ESC4)i,j for all (i, j) ∈ S1 and Property (ESC5)i,j
for all (i, j) ∈ S2. Further assume that e := (b1, b2) ∈ Iσ and let m := max{i : βσ

i = 1}.
Then, σe is a well-behaved phase-5-strategy for b with µσe = 1 and

Iσe = (Iσ \ {e}) ∪ {(di,1−βσ
i+1,k

, Fi,1−βσ
i+1

) : i < ν} ∪X0 ∪X1

where Xk is defined as in Table 5.9.

Proof. We begin by proving that σe is a phase-5-strategy. Since βσe = βσ = b+ 1 =: β and

ν > 1, σe has Properties (EV1)i, (EV2)i and (EV3)i for all i ∈ [n]. Also, σe does not have
Property (ESC1) as it has Property (ESC5)i,j for all (i, j) ∈ S2 and S2 6= ∅. Therefore, as
σe has Property (USV1)i for all i ∈ [n] by assumption, it is a phase-5-strategy for b. We

next prove that σe is well-behaved. Since µσ 6= 1 but µσe = 1 as Iσe = ∅ due to the choice

of e, we need to reevaluate the following properties.

(S1) By Properties (USV1)i and (EV2)i, σe(bi) = gi implies σe(si) for all i ≥ 1.

(D1) By Properties (EV1)i and (EV2)i, σe(bi) = gi implies σe(di).

(MNS2) Assume there was some i < mσe
g < mσe

s ,m
σe
b . Then 1 < mσe

g , implying σe(g1) =
F1,1. By the choice of i, it holds that mσe

b ≥ 3, hence σe(b2) = b3. But then,

Property (USV1)1 implies σe(s1,σe(g1)) = σe(s1,1) = b1, contradictingm
σe
g < mσe

s .

(MNS3) Assume there was some i < mσe
s ≤ mσe

g < mσe
b . Then 1 < mσe

s ≤ mσe
g , implying

σe(g1) = F1,1 and σe(s1,1) = h1,1. Hence, by Property (USV1)1, it holds that

σe(b2) = g2 and thus mσe
b = 2. But this is a contradiction as the premise implies

mσe
b > 3.

(MNS4) If mσe
s > 1, then the same arguments used for Property (MNS3) can be used

again. Hence consider the case mσe
s = 1. Then, σe(s1,σ(g1)) = b1. In particular,

Property (USV1)1 implies σ(g1) 6= β2, hence σe(g1) = 1 − βσe
2 . But then, by

Property (ESC4)1,1−β2 , we have σe(ebmσe
s
) ∧ ¬σe(egmσe

s
).
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(MNS5) Assuming that there was some i < mσe
s < mσe

b ≤ mσe
b yields the same contradic-

tion devised for Property (MNS3).

(MNS6) If mσe
s > 1, then the same arguments used for Equation (MNS3) can be used to

show that the premise cannot hold. Hence assume mσe
s = 1. But then, the same

arguments used for Property (MNS4) can be used to prove the statement.

(EG*) It is easy to verify that each cycle center is either closed, escapes only to b2 or to
both b2 and g1. In particular, there is no cycle center Fi,j with σ(egi,j)∧¬σ(ebi,j).

(DN1) By Property (EV1)n, σe(dn) implies σe(bn) = gn.

(DN2) We only need to consider this assumption if mσe
g = n. Since µσ 6= 1, this implies

σe(gi) = σ(gi) = 1 for all i ∈ {1, . . . , n− 1} by Property (BR1) (applied to σ).
Thus, by assumption, i 6= µσ − 1 for all of those i, hence n = µσ − 1. But this
implies µσ = n+ 1, contradicting Property (REL2) for σ.

It remains to prove the statement regarding the improving switches. We observe that

ValMσe(g1) < rValMσe(b2) since σ(ei,j,k) = g1 implies (ei,j,k, b2) ∈ Iσ.

Let i < ν, j := 1 − βi+1 and k ∈ {0, 1}. We prove (di,j,k, Fi,j) ∈ Iσe. By assump-

tion, the cycle center Fi,j is open, so in particular σe(di,j,k) 6= Fi,j . By the choice of i
and j, Property (ESC4)i,j implies σe(ebi,j) ∧ ¬σe(egi,j). Consequently, by Lemma 6.1.15,

ValMσe(Fi,j) = (1 − ε)ValMσe(b2) + ε · ValMσe(si,j). Since σe(b1) = b2, the choice of j and

Property (USV1)i imply ValMσe(si,j) = 〈si,j〉 + ValMσe(b2). Thus, (di,j,k, Fi,j) ∈ Iσe follows

from ValMσe(Fi,j) = (1− ε)ValMσe(b2) + εValMσe(si,j) > ValMσe(b2) = ValMσe(ei,j,k).

We prove that X0, X1 are improving for σe if β is not a power of two. Fix k ∈ {0, 1}
and let i := ν, j := 1 − βν+1. We begin by proving (di,j,k, Fi,j) ∈ Iσe. By the choice

of j and our assumptions, σe(di,j,k) 6= Fi,j . In addition Property (ESC4)i,j implies that

σe(ebi,j)∧¬σe(egi,j). Since this implies Valσe(Fi,j) = (1−ε)ValMσe(b2)+εValMσe(si,j) as well
asValMσe(ei,j,k) = ValMσe(b2), it suffices to proveValMσe(si,j) > ValMσe(b2). This however follows

directly since Property (USV1)i and the choice of j implyValMσe(si,j) = 〈si,j〉∪ValMσe(b2). By
applying the same arguments, we also obtain (di,j,k, Fi,j) ∈ Iσe for i ∈ {ν + 1, . . . ,m− 1}
with βi = 0 and j = 1− βi+1 as (i, j) ∈ S1 for these indices.

We now prove that no further improving switch is created. Note that no additional

improving switches (di,j,k, Fi,j) but the ones discussed earlier are created in any case.

The reason is that the only indices (i, j) with (i, j) ∈ S1 are i < ν and j = 1− βi+1 if β
is a power of 2. All other indices (i, j) are contained in S2 since ν = m. Consequently,

rValMσe(Fi,j) =
1
2 rVal

M
σe(b2) + rValMσe(g1) < rValMσe(b2). By the same argument, no further

improving switch (di,j,k, Fi,j) besides the ones discussed earlier is created for the case that

β is not a power of 2.

The application of e increases the valuation of the vertex b1. The only vertices that have

an edge towards b1 are upper selection vertices si,j . As we fully covered the cycle vertices,

it now suffices to prove that the following statements hold:

1. If σe(si,j) = hi,j , then (si,j , b1) /∈ Iσ, Iσe.

2. If σe(si,j) = b1 and σe(gi) 6= j, then (gi, Fi,j) /∈ Iσ, Iσe.

3. If σe(si,j) = b1 and σe(gi) = j, then ValMσe(gi)−ValMσ (gi) ∈ o(1).
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Consider the case σe(si,j) = hi,j first. Then, by Property (USV1)i, j = βi+1. Conse-

quently, since σe(b1) = b2 and since 〈hi,j〉 >
∑

ℓ∈[i]W
M
ℓ , Property (EV1)i+1 yields

rValMσe(hi,j) = 〈hi,j〉+ rValMσe(bi+1) = 〈hi,j〉+ LM
i+1 > LM

1,i + LM
i+1 = LM

1 = rValMσe(b1).

Since rValσ(hi,j) = rValσe(hi,j) and rValMσe(b1) > rValMσ (b1), this implies (si,j , b1) /∈ Iσ, Iσe.
Now consider the case σe(si,j) = b1 and σe(gi) 6= j. Then, by Property (USV1)i, it holds

that j = 1− βi+1 and thus, by Property (EV1)i+1

rValMσe(si,j) = 〈si,j〉+ rValMσe(b1) = 〈si,j〉+ LM
ν ,

rValMσe(hi,1−j) = 〈hi,1−j〉+ rValMσe(bi+1) = 〈hi,1−j〉+ LM
i+1 > 〈si,j〉+ LM

ν .

We prove that this implies ValMσe(Fi,1−j) > ValMσe(Fi,j) in any case. Let Fi,1−j be closed.

Then, βi = 1 ∧ βi+1 = 1− j. Consequently,

rValMσe(Fi,1−j) = 〈si,1−j , hi,1−j〉+rValMσe(bi+1) = 〈si,1−j , hi,1−j〉+LM
i+1 > LM

2 = rValMσe(b2).

Since either rValMσe(Fi,j) = rValMσe(b2) or rValMσe(Fi,j) = 1
2 rValσe(b2) +

1
2 rVal

M
σe(g1) and

rValMσe(g1) < rValMσe(b2), this implies the statement. Thus assume that Fi,1−j is not closed,

implying βi = 0. For the sake of a contradiction, assume i < ν. Then, σe(gi) = 1−j = βi+1.

However, since ν = µσ, applying Property (BR1) to σ implies σ(gi) = σe(gi) = 1− βi+1

which is a contradiction. Since Fi,1−j is not closed, it suffices to consider the case i > ν. If
i < m, then (i, 1− j) ∈ S1 and (i, j) ∈ S2. Then, by Properties (ESC4)i,1−j , (ESC5)i,j and

(EV1)i+1, we have

rValMσe(Fi,1−j) = rValMσe(b2) and rValMσe(Fi,j) =
1

2
rValMσe(b2) +

1

2
rValMσe(g1),

implying the statement. If i > m, then (i, j), (i, 1 − j) ∈ S2 and the statement fol-

lows from rValMσe(hi,1−j) > rValMσe(si,j). As it holds that rValMσ (si,j) < rValMσe(si,j) and
rValMσ (hi,1−j) = rValMσe(hi,1−j) we thus have (gi, Fi,j) /∈ Iσ, Iσe.
Finally, assume σe(si,j) = b1 and σe(gi) = j. Since ValMσe(gi) − ValMσ (gi) ≥ 0, we

prove that this difference is smaller than 1. By Property (USV1)i, j = 1 − βi+1. By

the assumptions of the lemma, this implies that Fi,j is neither closed with respect to

σ nor to σe. Consequently, either ValMσe(gi) − ValMσ (gi) = ε[ValMσe(si,j) − ValMσ (si,j)] or
ValMσe(gi) − ValMσ (gi) = 2ε

1+ε [Val
M
σe(si,j) − ValMσ (si,j)]. In either case, the difference is

smaller than 1 by the choice of ε.

Lemma 6.2.30 (Last row of Table 6.6). Let σ ∈ ρ(σ0) be a well-behaved phase-3-strategy
for b ∈ Bn with ν = 1. Let Iσ = {(b1, g1)} ∪ {(di,j,k, Fi,j), (ei,j,k, g1) : σ(ei,j,k) = b2} and

assume that σ has Property (ESC5)i,j for all (i, j) ∈ S3 and Property (ESC3)i,j for all

(i, j) ∈ S4. Let σ(di,j,k) = Fi,j ⇔ βσ
i = 1 ∧ βσ

i+1 = j for all i ∈ [n], j, k ∈ {0, 1}. Let

e := (b1, g1) and define m := max{i : βσ
i = 1} and u := min{i : βσ

i = 0}. Then σe is a

well-behaved phase-5-strategy for b with µσe = u, σe ∈ ρ(σ0) and

Iσe = (Iσ \ {e}) ∪
m−1⋃

i′=u+1
βσ
i =0

{(di,1−βσ
i+1,0

, Fi,1−βσ
i+1

), (di,1−βσ
i+1,1

, Fi,1−βσ
i+1

)}.
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Proof. As usual, the choice of e implies βσ = βσe = b+ 1 =: β.
We begin by proving µσe = u. Since σ is a phase-3-strategy for b, it has Property (EV1)i

and Property (EV2)i for all i > 1. This implies i /∈ Iσ and thus i /∈ Iσe for all i > 1. Since
σe(b1) = g1, it suffices to show σe(gi) = σe(bi+1), implying Iσe = ∅ and µσe = u. This

however follows directly as σ has Property (CC2).

We now show that σe is a phase-5-strategy for b. Since σ is a phase-3-strategy for b

and e = (b1, b2), it suffices to show that the σ has Properties (EV1)1, (EV2)1, (EV3)1 and

(CC2). Note that ν = 1 implies S3 6= ∅, implying that σe does not have Property (ESC1).

By definition, 1 = β1 = σe(d1,β2). Thus, since σe(b1) = g1, σe has Property (EV1)1. It also

has Property (EV2)1 and Property (CC2) since σ has Property (CC2). Since ¬σ(d1,1−β2) by
assumption, also ¬σe(d1,1−β2), hence σe has Property (EV3)1. Thus, σe is a phase-5-strategy
for b.

We prove that σe is well-behaved. Since e = (b1, g1), µ
σ = 1 and µσe = u > 1, it suffices

to investigate the following properties.

(S2) Let i < µσe. Then, since µσe = u, we have σe(bi) = gi. Consequently, by

Property (EV1)i, Property (EV2)i and Property (USV1)i, σe(di) and σe(si).

(B1) As µσe = u, the premise can never be correct as i < µσe − 1 implies σe(bi) = gi.

(B2) This again holds since µσe = u.

(BR1) Let i := µσe − 1. Then σe(bi) = gi and σe(bi+1) = bi+2. Thus, by Properties

(EV1)i and (EV1)i+1 as well as Property (EV2)i, we have σe(gi) = Fi,0. For

i < µσe − 1, we have σe(gi) = Fi,1 as we then have σe(bi+1) = gi+1.

(BR2) Since i < µσe implies σe(bi) = gi, Property (EV1)i implies σe(di) and thus

¬σe(egi).

(D2) This follows by the same argument used for Property (BR2).

(EG5) By Property (USV1)i, σe(si,j) implies σe(bi+1) = j.

(EB*) Any pair of indices i ∈ [n], j ∈ {0, 1} either fulfills Property (ESC5)i,j , Prop-

erty (ESC3)i,j or σe(di,j). Hence, there are no indices such that σe(egi,j) ∧
¬σe(ebi,j), so the premise of any of the Properties (EB*) is always incorrect.

(EBG4) Since µσe > 1 implies σe(b1) = g1, it is impossible that both σe(g1) = F1,0 and

σe(b2) = g2.

(EBG5) Since µσe > 1 implies σe(b1) = g1, it is impossible that both σe(g1) = F1,1 and

σe(b2) = b3.
It remains to show that

Iσe = (Iσ \ {e}) ∪
m−1⋃

i=u+1
βi=0

{(di,1−βi+1,0, Fi,1−βi+1
), (di,1−βi+1,1, Fi,1−βi+1

)}.

Let i ∈ {u+1, . . . ,m− 1}, βi = 0, j = 1−βi+1 and k ∈ {0, 1}. We prove (di,j,k, Fi,j) ∈ Iσe.
By Property (ESC3)i,j , it holds that σe(egi,j) ∧ ¬σe(ebi,j). In addition, σ(di,j,k) 6= Fi,j . It

thus suffices to show Val∗σe(ei,j,k) ≺ Val∗σe(Fi,j).
Consider the case Gn = Sn first. Since σe(di,j,k) = ei,j,k, Property (ESC3)i,j implies

ValSσe(ei,j,k) = {ei,j,k} ∪ValSσe(g1). Now, by Lemma 6.1.16, we obtain

ValSσe(Fi,j) = {Fi,j , di,j,k′ , ei,j,k′} ∪ValSσe(g1)
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for some k′ ∈ {0, 1} as µσe 6= 1. This however implies the statement for Gn = Sn as the

priority of Fi,j is even and larger than the priorities of both di,j,k′ , ei,j,k′ .
Consider the case Gn = Mn. Then ValMσe(Fi,j) = (1 − ε)ValMσe(g1) + εValMσe(si,j), it

therefore suffices to prove ValMσe(si,j) > ValMσe(g1). This however follows directly as Prop-

erty (USV1)i, the choice of j and σe(b1) = g1 imply ValMσe(si,j) = 〈si,j〉+ValMσe(g1).
It remains to show that no other improving switch is created and that switches that are

improving for σ are improving for σe (with the exception of e). By applying e = (b1, g1),
the valuation of b1 increases. The only vertices that have an edge towards b1 are the

vertices si,j , i ∈ [n], j ∈ {0, 1}. To show that no other improving switch is created and that

switches that are improving for σ are also improving for σe, it suffices to show that one of

the following holds for all i ∈ [n], j ∈ {0, 1} not considered earlier:

1. σe(si,j) = hi,j implies Val∗σe(hi,j) ≻ Val∗σe(b1).

2. σe(si,j) = b1 and (i, j) /∈ S4 implies (di,j,k, Fi,j) ∈ Iσ ⇔ (di,j,k, Fi,j) ∈ Iσe.

3. If Gn = Sn, then σe(si,j) = b1 implies either τσ(Fi,j) = τσe(Fi,j) 6= si,j or σe(gi) =
Fi,j and σe(bi) = bi+1 ∧ (bi, gi) /∈ Iσe as well as σe(si−1,1) = b1 ∧ (si−1,1, hi−1,1) /∈ Iσe.

4. IfGn = Mn, then σe(si,j) = b1 and σe(gi) = 1−j implies ValMσe(Fi,1−j) > ValMσe(Fi,j).

5. If Gn = Mn, then σe(si,j) = b1 and σe(gi) = j implies ValMσe(gi)−ValMσ (gi) ∈ (0, 1).

We now prove these statements one after another.

1. Fix indices i, j with σe(si,j) = hi,j . Then, by Property (USV1)i, j = βi+1. Con-

sequently, by Property (EV1)i+1, rVal
∗
σe(hi,j) = Jhi,jK ⊕ rVal∗σe(bi+1). Since σe has

Property (EV1)i′ and Property (EV2)i′ for all i
′ < µσe, there is no i′ < µσe with

¬σe(di′). Consequently, by Lemma 6.1.12, rVal∗σe(g1) = R∗1 in any case. Now, since

Jhi,jK ≻
⊕

i′≤iW
∗
i′ , this implies rVal∗σe(hi,j) ≻ rVal∗σe(g1) for both possible cases

rVal∗σe(bi+1) = L∗i+1 and rVal∗σe(bi+1) = R∗i+1.

2. Consider some edge (di,j,k, Fi,j) for which we did not prove that (di,j,k, Fi,j) ∈ Iσe,
i.e., assume (i, j) /∈ S4. We show that (di,j,k, Fi,j) ∈ Iσ ⇔ (di,j,k, Fi,j) ∈ Iσe. Let

(di,j,k, Fi,j) ∈ Iσ. Then, by our assumptions on Iσ, σ(ei,j,k) = b2. This implies that

σ(egi,j) ∧ σ(ebi,j) has to hold and, due to (di,j,k, Fi,j) ∈ Iσ and σ(g1) = σ(b2),

rValMσ (Fi,j) =
1

2
rValMσ (g1) +

1

2
rValMσ (b2) > rValMσ (b2) = rValMσ (ei,j,k),

ValSσ(Fi,j) = {Fi,j , di,j,k′ , ei,j,k′} ∪ValSσ(b2)⊲ {ei,j,k′} ∪ValSσ(b2) = ValSσ(ei,j,k).

But then, rVal∗σ(ei,j,k) = rVal∗σe(ei,j,k) and rVal∗σe(g1) � rVal∗σ(g1), the same esti-

mation holds for σe, implying (di,j,k, Fi,j) ∈ Iσe. Now let (di,j,k, Fi,j) /∈ Iσ, imply-

ing σ(ei,j,k) = σe(ei,j,k) = g1. If σ(di,j,k) = Fi,j , then there is nothing to show

hence assume σ(di,j,k) = ei,j,k. This implies σ(egi,j) and σe(egi,j). Assume σ(ebi,j).
Then, using the same estimations used for the case (di,j,k, Fi,j) ∈ Iσ, we can show

(di,j,k, Fi,j) /∈ Iσe. Thus assume ¬σ(ebi,j). Then, σ(egi,j) ∧ ¬σ(ebi,j), implying

(i, j) ∈ S4. This however contradicts our choice of i and j, proving the statement.

3. Let Gn = Sn and σ(si,j) = σe(si,j) = b1. Then, by Property (USV1)i, j = 1− βi+1.

By our assumptions, Fi,j is thus either mixed or g1-open. Consider the case that it

is mixed first. Then, by Property (EV2)1, σe(g1) = σe(b2), implying σ(g1) = σ(b2)
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by the choice of e. Consequently, by Lemma 6.1.16, rValSσ(Fi,j) = rValSσ(b2) and
rValSσe(Fi,j) = rValSσe(b2). Thus, τ

σ(Fi,j), τ
σe(Fi,j) 6= si,j .

Now assume that Fi,j is g1-open. Then, by our assumptions on the cycle centers,

(i, j) ∈ S4, implying i ∈ {u + 1, . . . ,m − 1} with βi = 0 and j = 1 − βi+1. We

prove ValSσ(Fi,j)⊲ValSσ(Fi,1−j), implying σ(gi) = σe(gi) = Fi,j by our assumptions

on Iσ. We then prove that σe(bi) = bi+1 and (bi, gi) /∈ Iσe as well as σe(si−1,1) = b1
and (si−1,1, hi−1,1) /∈ Iσe (if i > 1), implying that the valuation of no further vertex

changes, proving the statement.

Since 1 − j = βi+1, we have (i, 1 − j) ∈ S3 by assumption. Consequently, by

Property (ESC5)i,j , it holds that σ(egi,1−j) ∧ σ(ebi,1−j). As pointed out earlier, this

implies rValSσ(Fi,1−j) = rValSσ(b2). Since µ
σ = 1, Lemma 6.1.16 yields rValSσ(Fi,j) =

{si,j} ∪ rValSσe(b2). This implies rValSσ(Fi,j)⊲ rValSσe(Fi,1−j). We hence need to have

σ(gi) = σe(gi) = Fi,j by our assumptions on Iσ.

By βi = 0, Property (EV1)i implies σe(bi) = bi+1. Since ν = 1 implies β1 = 1,
we have i > 1. Thus, Property (USV1)i−1 implies σe(si−1,1) = b1. Consequently,
rValSσe(bi+1) = LS

i+1. Since σe(egi,j) ∧ ¬σe(ebi,j) ∧ µσe > 1, Lemma 6.1.16 implies

rValSσe(Fi,j) = rValSσe(g1) = RS
1 . Consequently, since i ≥ µσe and σe(bi) = bi+1 imply

RS
i = LS

i = LS
i+1,

rValSσe(gi) = 〈gi〉+RS
1 = 〈gi〉+RS

1,i−1 +RS
i

= 〈gi〉+RS
1,i−1 + LS

i+1 ⊳ LS
i+1 = rValSσe(bi+1).

As rValSσe(b1) ⊲ rValSσe(bi+1) and rValSσe(hi−1,1) = 〈hi−1,1〉 ∪ rValSσe(gi), a similar

estimation yields rValSσe(hi−1,1)⊳ rValSσe(b1). Consequently, (bi, gi) /∈ Iσe as well as
(si−1,1, hi−1,1) /∈ Iσe.

4. Let Gn = Mn and σe(si,j) = b1 and σe(gi) = 1 − j. Then, by Property (USV1)i,

j = 1 − βi+1 and σe(si,1−j) = hi,1−j . Assume that Fi,1−j is closed. Then, by

Property (EV1)i+1, we have rValMσe(Fi,1−j) = 〈si,1−j , hi,1−j〉+ rValMσe(bi+1). Since it

is not possible that Fi,j is closed, either

rValMσe(Fi,j) = rValMσe(g1) or rValMσe(Fi,j) =
1

2
rValMσe(g1) +

1

2
rValMσe(b2).

As rValMσe(b2) < rValMσe(g1) and
∑

ℓ∈[i]W
M
ℓ < 〈si,1−j , hi,1−j〉, this implies that we

have rValMσe(Fi,1−j) > rValMσe(Fi,j) in any case.

Thus assume that Fi,1−j is not closed. Since 1 − j = βi+1, it then follows that

(i, 1− j) ∈ S3. If (i, j) ∈ S3, then both cycle centers are in the same state. Since σe
has Property (USV1)i, Property (EV1)i+1 and since i ≥ ν = 1, the statement thus

follows from Lemma 6.2.1.

Thus assume (i, j) ∈ S4. Then, by Property (ESC5)i,1−j and Property (ESC4)i,j ,

we have rValMσ (Fi,1−j) = 1
2 rValσ(g1) +

1
2 rValσ(b2) and rValMσ (Fi,j) = rValσ(g1).

But then, rValMσ (Fi,j) > rValMσ (Fi,1−j), implying (gi, Fi,1−j) ∈ Iσ, contradicting our

assumption on Iσ.
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5. Let Gn = Mn and σe(si,j) = b1 and σe(gi) = j. Then, Property (USV1)i implies

j = 1− βi+1. In particular, Fi,1−j is not closed. Thus, either σ(egi,j) ∧ ¬σ(ebi,j) or
σ(egi,j)∧σ(ebi,j). In the first case, ValMσ (Fi,j) = (1− ε)ValMσ (g1)+ εValMσ (si,j). But
then, sinceValMσ (g1) = ValMσe(b1) = RM

1 , this impliesValMσe(Fi,j)−ValMσ (Fi,j) ∈ (0, 1).
If σ(egi,j) ∧ σ(ebi,j), the statement follows analogously since ValMσ (b2) = ValMσe(b2).

Lemma 6.2.31. Let Gn = Sn. Let σ ∈ ρ(σ0) be a well-behaved phase-4-strategy for b ∈ Bn

with ν > 1. Assume that there is an index i < ν such that e := (si,j , b1) ∈ Iσ where

j := 1− βσ
i+1. Further assume the following:

1. σ has Property (USV1)i′ for all i
′ > i.

2. For all i′, j′, k′, it holds that σ(di′,j′,k′) = Fi′,j′ if and only if βσ
i′ = 1 ∧ βσ

i′+1 = j′.

3. i′ < ν implies σ(gi′) = 1− βσ
i′+1.

4. i′ < i implies σ(si′,∗) = hi′,∗.

If there is an index i′ < i such that (si′,1−βσ
i′+1

, b1) ∈ Iσ, then σe is a well-behaved phase-4-

strategy for b. Otherwise, it is a well-behaved phase-5-strategy for b. In either case, it holds

that Iσe = (Iσ \ {e}) ∪ {(di,j,0, Fi,j), (di,j,1, Fi,j)}.

Proof. We first note that µσ = µσe = 1 since σ is a phase-4-strategy for b and by the choice

of e. Furthermore, by the choice of e, βσ = βσe = b + 1 =: β. We first prove that σe is

well-behaved. By the choice of e, we need to reevaluate the following properties:

(S1) σe(bi) = gi implies βi = 1 by Property (EV1)i, hence i ≥ ν.

(MNS1) By Lemma 6.1.6, mσe
b ≤ mσe

s ,m
σe
g implies mσe

b = ν = 2. But then, by assump-

tion 3., σe(g1) = F1,0, implying mσe
g = 1 and thus contradicting the premise.

(MNS2) By assumption 3, mσe
g = ν − 1. By the choice of i and j, we have mσe

s ≤ ν − 1.
Thus mσe

s ≤ mσe
g and the premise of this property cannot be fulfilled.

(MNS4) The conclusion is always true since i′ < ν implies (i′, 1− βi′+1) ∈ S1, implying

that ¬σe(ebi′) ∧ ¬σe(egi′).

(MNS6) See Property (MNS4).

(EG3) For every pair of indices i, j, either σ(di,j) or σ(ebi,j) ∧ ¬σ(egi,j) or σ(ebi,j) ∧
σ(egi,j) by either β = b+1 or Property (ESC4)i,j resp. (ESC5)i,j . Consequently,

the premise is incorrect for σe,

(EBG2) By assumption 3 and Property (EV1)2, σe(g1) = σ(g1) 6= σ(b2) = σe(b2), hence
the premise is incorrect.

We next prove that σ is a phase-4-strategy if there is an index i′ < i such that

(si′,1−βσ
i′+1

, b1) ∈ Iσ and a phase-5-strategy otherwise. By the definition of the phases, it

suffices to prove that σe has Property (USV1)ℓ for all ℓ ∈ [n] if there is no such index.

Hence assume that no such index exists and let i′ < i as there is nothing to prove if i′ ≥ i
and let j′ := 1− βi′+1. Then, since (si′,j′ , b1) /∈ Iσ, assumption 4 implies σ(si′,j′) = hi′,j′

and ValSσ(hi′,j′) ⊲ ValSσ(b1). It now suffices to prove that this cannot happen, hence we

prove that σ(si′,j′) = hi′,j′ implies ValSσ(hi′,j′)⊳ValSσ(b1).
Since i′ < i < ν, we have i′ ≤ ν + 2, implying j′ = 1 − βi′+1 = 1. Consequently,

rValSσ(hi′,j′) = {hi′,j′} ∪ rValSσ(gi′+1). Since σ has Property (USV1)i′+1 by assumption 1
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and σ(gi′+1) = 1 − βi′+1 by assumption 3, we have σ(si′+1,σ(gi′+1)
) = b1. This implies

λS
i′+1 = i′ + 1. Since i′ + 1 < ν, the cycle center Fi′+1,σ(gi′+1)

cannot be closed by

assumption 2. As also ¬σ(si′+1) and ¬σ(bi′+1) by Property (EV1)i′+1, Corollary 6.1.18,

implies that either

rValSσ(gi′+1) = {gi′+1} ∪ rValSσ(g1) or

rValSσ(gi′+1) = {gi′+1} ∪ rValSσ(b2) or

rValSσ(gi′+1) = {gi′+1, si′+1,σ(gi′+1)
} ∪ rValSσ(b1).

As µσe = 1 implies σe(b1) = b2, the statement directly follows in the last two cases. In the

first case, it follows from rValSσe(g1)⊳rValSσe(b2)which can be shown by using Lemmas 6.1.6

and 6.2.18 and assumption 3.

We now show that (di,j,0, Fi,j), (di,j,1, Fi,j) are improving for σe. Let k ∈ {0, 1}. It

suffices to show ValSσe(Fi,j) ⊲ ValSσe(ei,j,k) since σe(di,j,k) = ei,j,k by assumption. By

Property (ESC4)i,j , we have σe(ebi,j) ∧ ¬σe(egi,j). Since σe(di,j,k) = ei,j,k, this implies

σe(ei,j,k) = b2. Hence, by Lemma 6.1.16,

ValSσe(Fi,j) = {Fi,j , di,j,k, ei,j,k} ∪ValSσe(b2)⊲ {ei,j,k} ∪ValSσe(b2) = ValSσe(ei,j,k).

We now explain how we prove Iσe = (Iσ \ {e}) ∪ {(di,j,0, Fi,j), (di,j,1, Fi,j)}. Applying the

switch e increases the valuation of Fi,j . By the choice of j and assumption 3, the valuation

of gi increases as well. We thus begin by showing σe(bi) = bi+1 and (bi, gi) /∈ Iσ, Iσe.
However, applying the switch e also increases the valuation of several vertices contained

in levels below level i. To be precise, since σ(gℓ) = Fℓ,1, τ
σ(Fℓ,1) = sℓ,1 and σ(sℓ,1) = hℓ,1

for all ℓ < i, the valuation of all of these vertices gℓ and Fℓ,1 increases. We thus show that

the following statements hold:

1. σe(bℓ) = bℓ+1 and (bℓ, gℓ) /∈ Iσ, Iσe.

2. The edges (dℓ,1,0, Fℓ,1) and (dℓ,1,1, Fℓ,1) are not improving for σe.

Since also the valuation of g1 increases, we also prove that σ(ei′,j′,k′) = b2 implies

(ei′,j′,k′ , g1) /∈ Iσ, Iσe for any indices i′, j′, k′. This then proves the statement as σe(b1) = b2
due to µσe = 1, implying that the valuation of no further vertex can change.

First, since i < ν, Property (EV1)i implies σe(bi) = bi+1. By the choice of i and j,
Property (ESC4)i,j implies σ(ebi,j) ∧ ¬σ(egi,j). As µ

σe = 1 and σe(si,j) = b1 by the choice

of e, Corollary 6.1.18 implies

rValSσe(gi) = {gi, si,σ(gi)} ∪ rValSσe(b2) < rValSσe(b2) = rValSσe(bi+1)

as i + 1 ≤ ν. Since rValSσ(bi+1) = rValSσe(bi+1) = LS
i+1 and rValSσ(gi) ≤ rValSσe(gi), this

implies (bi, gi) /∈ Iσ, Iσe. Now, for any ℓ < i, σe(bℓ) = bℓ+1 follows also by Property (EV1)ℓ
and (bℓ, gℓ) /∈ Iσ, Iσe follows as

rValSσe(gℓ) =
i−1⋃

i′=ℓ

W S
ℓ ∪ {gi, si,σ(gi)} ∪ rValSσe(b2)⊳ rValSσe(b2).
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Similarly, as rValSσe(Fℓ,1) = rValσe(gℓ) \ {gℓ} and rValSσe(eℓ,1,k) = rValSσe(b2) by Prop-

erty (ESC4)ℓ,1, the same estimation yields (dℓ,1,0, Fℓ,1), (dℓ,1,1, Fℓ,1) /∈ Iσ, Iσe. Finally,

if σe(ei′,j′,k′) = b2, then the same estimation implies (ei′,j′,k′ , g1) /∈ Iσ, Iσe. Consequently,
Iσe = (Iσ \ {e} ∪ {(di,j,0, Fi,j), (di,j,1, Fi,j)}.

Lemma 6.2.32. Let σ ∈ ρ(σ0) be a well-behaved phase-5-strategy for b ∈ Bn. Let i ∈ [n]
and j, k ∈ {0, 1} with e := (ei,j,k, t

→) ∈ Iσ and σ(ebi,j)∧σ(egi,j). Furthermore assume that

Gn = Sn implies

j = 1 ∧ ν > 1 =⇒ ¬σ(egi,1−j) and j = 1 ∧ ν = 1 =⇒ ¬σ(ebi,1−j).

Similarly, assume that Gn = Mn implies

j = 1− βσ
i+1 ∧ ν > 1 =⇒ ¬σ(egi,1−j) and j = 1− βσ

i+1 ∧ ν = 1 =⇒ ¬σ(ebi,1−j).

Moreover, assume that ν = 2 implies σ(g1) = F1,0 if Gn = Sn. Then the following hold.

1. If there are indices (i′, j′, k′) 6= (i, j, k) with (ei′,j′,k′ , t
→) ∈ Iσ or if there is an index i′

such that σ does not have Property (SVG)i′/(SVM)i′ , then σe is a phase-5-strategy for b.

2. The strategy σe is well-behaved.

3. If there are no indies (i′, j′, k′) 6= (i, j, k) with (ei′,j′,k′ , t
→) ∈ Iσ and if σ has Prop-

erty (SVG)i′/(SVM)i′ for all i
′[n], then σe is a phase-1-strategy for b+ 1.

4. If Gn = Sn, then

(gi, Fi,j) ∈ Iσe ⇐⇒ βσ
i = 0 ∧ σe(gi) = 1 ∧ j = 0 ∧

{
σ(ebi,1−j), ν > 1

σ(egi,1−j), ν = 1
.

If Gn = Mn, then

(gi, Fi,j) ∈ Iσe ⇐⇒ βσ
i = 0 ∧ σe(gi) = 1− βσ

i+1 ∧ j = βσ
i+1 ∧

{
σ(ebi,1−j), ν > 1

σ(egi,1−j), ν = 1
.

If the corresponding conditions are fulfilled, then

Iσe = (Iσ \ {e}) ∪ {(di,j,1−k, Fi,j), (gi, Fi,j))}.

Otherwise, Iσe = (Iσ \ {e}) ∪ {(di,j,1−k, Fi,j)}.

Proof. As usual, βσ = βσe =: β by the choice of e. Since σ is a phase-5-strategy, it has
Property (REL1). Thus, µσ = min{i′ : σ(bi′) = bi′+1}. Also, by the choice of e, µσe = µσ.

We first discuss some statements that will be used several times during this proof.

Since σ is well-behaved, ν > 1 implies that there is no cycle center Fi′,j′ with σ(egi′,j′)∧
¬σ(ebi′,j′). More precisely, for the sake of a contradiction, assume there was such a

cycle center. By Properties (EG2) and (EG3), this implies σ(d1) and σ(s1). Thus, by

Property (USV1)1, the cycle center F1,βσ
2
is closed. This however contradicts ν > 1.
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Similarly, it is easy to verify that ν = 1 implies that there is no cycle center Fi′,j′ with

σ(ebi′,j′) ∧ ¬σ(egi′,j′). As we assume σ(ebi,j) ∧ σ(egi,j), the choice of e implies

ValSσe(Fi,j) = {Fi,j , di,j,∗, ei,j,∗} ∪ValSσe(t
→)

and

ValMσe(Fi,j) = (1− ε)ValMσe(t
→) + ε ·ValMσe(si,j).

Using these observations, we now prove the statements of the lemma.

1. If there are indices i′, j′, k′, (i, j, k) 6= (i′, j′, k′) such that (ei′,j′,k′ , t
→) ∈ Iσ, then σe

cannot have Property (ESC1). This implies that σe is a phase-5-strategy for b. If

there is an index i′ such that σ does not have Property (SVG)i′ resp. (SVM)i′ , then

σe can also not have the corresponding property. Consequently, due to the special

condition of phase 5, σe is a phase-5-strategy for b.

2. We next show that the strategy σe is well-behaved. Depending on ν, we thus need

to investigate the following properties:

(MNS1) Assume that the premise of this property is correct. Then, by Lemma 6.1.6,

mσe
b = 2 and consequently σe(g1) = F1,1 ∧ σe(s1,1) = h1,1. But this

contradicts that ν = 2 implies σe(g1) = σ(g1) = F1,0 if Gn = Sn.

(MNS2) Assume that the premise of this property is correct. Then σe(g1) = F1,1

and σe(s1,1) = h1,1. But then, by Property (USV1)1, σe(b2) = g2, implying

mσe
b = 2, contradicting the assumption.

(MNS3) This follows by the same arguments used for Property (MNS2).

(MNS4) We only need to investigate this property if i = mσe
s = mσ

s and if the

premise is true for σe. But then, the premise was already true for σ,
implying σ(ebmσ

s
) ∧ ¬σ(egmσ

s
). Since µσ = 1 implies ν > 1, we apply an

improving switch (ei,j,k, b2). But then, also σe(ebmσe
s
) ∧ ¬σe(egmσe

s
).

(MNS5) This follows by the same arguments used for Property (MNS2).

(MNS6) This follows by the same arguments used for Property (MNS4).

(EG1) By assumption, σ(ebi,j)∧σ(egi,j). In order to have σe(egi,j)∧¬σe(ebi,j)∧
µσe = 1 we thus need to have applied a switch (ei,j,∗, g1). This however
implies µσe 6= 1, contradicting the premise.

(EG2) Follows by the same arguments.

(EG4) Follows by the same arguments.

(EG3) Assume the premise was true. Since σ(egi,j) ∧ σ(ebi,j), we need to have

µσ 6= 1. But then, σ(b1) = 1 by Property (EV1)1, implying σ(s1) by

Property (EV2)1 and Property (USV1)1.

(EG5) If the premise is true, then σ(si,j). Hence, j = βi+1 = σ(bi+1) by

Property (USV1)i and Property (EV1)i+1. Since σ(si,j) = σe(si,j) and
σ(bi+1) = σe(bi+1) by the choice of e, the statement follows.

(EB*) Assume σe(ebi,j) ∧ ¬σe(egi,j). Since σ(ebi,j) ∧ σ(egi,j), we need to have

applied a switch (ei,j,∗, b2). But this implies µσ = 1 and thus σ(b1) = b2,
contradicting all of the premises.
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(EBG*) Since σ(ebi,j) ∧ σ(egi,j) by assumption, it is impossible to have σe(ebi,j) ∧
σe(egi,j) after applying e. Hence the premise of any of these properties is

incorrect.

3. Assume that there are no indices i′, j′, k′ such that (ei′,j′,k′ , t
→) ∈ Iσ and that σ

has Property (SVG)i′/(SVM)i′ for all i
′ ∈ [n] We prove that σe is a phase-1-strategy

for b + 1. Since σ is a phase-5-strategy for b and by the choice of e, we have

βσ = b+ 1 = βσe. Also, by our assumptions and the definition of phase-1-strategies
and phase-5-strategies, it suffices to show that σe has Property (ESC1).

Consider the case ν > 1, implying µσe = 1. Then, by assumption, there are no

further indices i′, j′, k′ such that (ei′,j′,k′ , b2) ∈ Iσ. Thus, for all these indices, it

either holds that σ(ei′,j′,k′) = b2 or σ(ei′,j′,k′) = g1 ∧Val∗σ(g1) � Val∗σ(b2). It suffices

to prove that the second case cannot occur. We do so by proving

ν > 1 =⇒ Val∗σ(g1) ≺ Val∗σ(b2) (A.12)

and showing that the arguments also apply to σe. Consider the different cases listed

in Lemma 6.1.14. If the conditions of either the first or the “otherwise” case are

fulfilled, then the statement follows. It thus suffices to prove that the conditions of

the second and third case cannot be fulfilled.

Assume that the conditions of the second case were fulfilled. Since µσ = 1 implies

σ(b1) = b2 and thus mσ
b ≥ 2, we then have σ(g1) = F1,1 and σ(s1,1) = h1,1. But then

Property (USV1)1 yields ν = 2 which is a contradiction if Gn = Sn. We thus need to

have Gn = Mn and σ(d1). But then, the cycle center F1,β2 is closed, implying β1 = 1
by definition. This however contradicts ν > 1. Thus the conditions of the second

case cannot be fulfilled.

Assume that the conditions of the third case were fulfilled. Let mσ
g > 1, implying

mσ
b > 2. Then σ(g1) = F1,1 and σ(s1,1) = h1,1. Then Property (USV1)1 impliesmσ

b =
2 which is a contradiction. Thus let mσ

g = 1. Then σ(g1) = F1,0 and σ(s1,0) = h1,0.
Consequently, by Property (USV1)1, β2 = 0, so in particular ¬σ(bmσ

g+1). For the sake
of a contradiction, assume ¬σ(eb1). Since ν > 1 and β2 = 0 imply that F1,0 cannot

be closed, it thus needs to hold that σ(eg1,0) ∧ ¬σ(eb1,0). But then, Property (EG1)

implies σ(s1,0) = b1, contradicting σ(s1,0) = h1,0. Thus the conditions of the third

case of Lemma 6.1.14 cannot be fulfilled, implying Equation (A.12). Note that these

arguments can also be applied to σe, hence the same statement holds for σe.

Now consider the case ν = 1, implying µσ 6= 1 and σ(b1) = g1. Then, by assump-

tion, there are no further indices i′, j′, k′ such that (ei′,j′,k′ , g1) ∈ Iσ. Thus, either
σ(ei′,j′,k′) = g1 or σ(ei′,j′,k′) = b2 and Val∗σ(b2) � Val∗σ(g1) by the choice of e. We

now show that the second case cannot occur by proving

ν = 1 =⇒ Val∗σ(b2) ≺ Val∗σ(g1). (A.13)

It holds that rVal∗σ(g1) = R∗1 as i
′ < µσ implies σ(di′) by Corollary 6.1.5. Consider

the case σ(b2) = g2 first. Then, µ
σ > 2, implying rVal∗σ(b2) = R∗2. Hence rVal

∗
σ(b2) =

R∗2 ≺ R∗1 = rVal∗σ(g1).
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Now let σ(b2) = b3. Then, µσ = 2 and rVal∗σ(b2) = L∗2, so Lemma 6.1.10 im-

plies rVal∗σe(b2) ≺ R∗1 = rVal∗σe(g1). Therefore, rVal
∗
σ(b2) ≺ rVal∗σ(g1) in any case,

contradicting Val∗σ(b2) � Val∗σ(g1). Note again that the same arguments apply to σe.

∗ Before we prove the remaining aspects, we prove that (di,j,1−k, Fi,j) ∈ Iσe in any case.

As we assume σ(ebi,j) ∧ σ(egi,j), it holds that σe(di,j,1−k) = ei,j,1−k. It thus suffices

to show Val∗σe(Fi,j) ≻ Val∗σe(ei,j,1−k). By assumption σ(ei,j,1−k) = σe(ei,j,1−k) = t→.
If Gn = Sn, the statement thus follows from

ValSσe(Fi,j) = {Fi,j , di,j,∗, ei,j,∗}∪ValSσe(t
→)⊲{ei,j,1−k}∪ValSσe(t

→) = ValSσe(ei,j,1−k).

If Gn = Mn, we then have ValMσe(Fi,j) = (1− ε)ValMσe(t
→) + εValMσe(si,j). To prove

the statement, it thus suffices to prove ValMσe(si,j) > ValMσe(t
→).

We only consider the case ν > 1, the case ν = 1 follows analogously. In this case,

t→ = b2. If j = βi+1, then rValMσe(si,j) = 〈si,j , hi,j〉+rValMσe(bi+1) by Property (EV1)i.
The statement thus follows since 〈hi,j〉 >

∑
ℓ∈[i]W

M
ℓ . If j 6= βi+1, then µσe = 1

implies σe(b1) = b2 and thus rValMσe(si,j) = 〈si,j〉+ rValMσe(b1) = 〈si,j〉+ rValMσe(b2).

4. We prove that (gi, Fi,j) is improving for σe if and only if the corresponding conditions

are fulfilled. Assume that the corresponding conditions are fulfilled. We distinguish

the following cases.

a) The cycle center Fi,1−j cannot be closed as either σ(ebi,1−j) or σ(egi,1−j).

b) Let Fi,1−j be t
→-open. Then, if Gn = Sn, the statement follows since j = 0 and

ValSσe(Fi,0) = {Fi,0, di,j,∗, ei,j,∗} ∪ValSσe(t
→)

⊲ {Fi,1, di,1,∗, ei,1,∗} ∪ValSσe(t
→) = ValSσe(Fi,1).

If Gn = Mn, then the statement follows by Lemma 6.2.1 since j = βi+1 and

Fi,j is also t→-open.

c) Let Fi,1−j be t→-halfopen. If Gn = Sn, then the statement follows analogously

to the last case. If Gn = Mn, then the statement follows by an easy but tedious

calculation.

d) Let Fi,1−j be mixed. Then, by either Equation (A.12) or Equation (A.13), it

holds that rVal∗σe(Fi,1−j) � rVal∗σe(t
→). We can thus use the same arguments

used in one of the last two cases to prove the statement.

As we proved that it is not possible that any cycle center escapes only to t← at the

beginning of this proof, these are all cases that need to be covered. Hence, if all the

stated conditions are fulfilled, then the edge (gi, Fi,j) is an improving switch for σe.
We now prove that (gi, Fi,j) is not improving for σe if any of these conditions is not

fulfilled, proving the claimed equivalence. We consider the different conditions one

after another.

a) Let βi = 1. Then, since σe is a phase-5-strategy for b, it holds that σe(bi) = gi
and σe(gi) = Fi,βi+1

. Furthermore, this cycle center is then closed. Since

σ(ebi,j) ∧ σ(egi,j) by assumption, we then need to have j = 1− βi+1 and con-

sequently σe(gi) = 1− j. By Properties (USV1)i and (EV1)i+1, this thus yields
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rVal∗σe(Fi,1−j) = Jsi,1−j , hi,1−jK ⊕ rVal∗σe(bi+1). Since rVal∗σe(Fi,j) = rVal∗σe(t
→),

the statement thus follows from Jsi,j , hi,jK ≻
⊕

ℓ≤iWℓ.

b) Let σ(gi) = 0 resp. σ(gi) = βi+1 depending whether we consider Gn = Sn or

Gn = Mn. Due to the first case, we may assume βi = 0. We furthermore may

assume j = 1 resp. j = 1− βi+1 if Gn = Sn resp. Gn = Mn as we otherwise

already have (gi, Fi,j) /∈ Iσe by definition. We prove Val∗σe(Fi,1−j) � Val∗σe(Fi,j)
by distinguishing the different possible states of Fi,1−j .

i. Let Fi,1−j be closed. Since βi = 0, this implies 1− j = 1− βi+1. Thus, by

Property (USV1)i,

rVal∗σe(Fi,1−j) = Jsi,1−jK ⊕ rVal∗σe(b1) ≻ rVal∗σe(b1) = rVal∗σe(Fi,j).

ii. Let Fi,1−j be t
→-open or t→-halfopen. Since 1−j = 0 resp. 1−j = βi+1, the

same arguments used when proving that (gi, Fi,j) ∈ Iσe can be applied if the

corresponding conditions are fulfilled to obtain Val∗σe(Fi,1−j) � Val∗σe(Fi,j)
in either case.

iii. Let Fi,1−j be mixed. Then, σe(ebi,1−j) ∧ σe(egi,1−j) by the choice of e.
However, in any context and for any ν, this contradicts the assumptions of

the lemma.

By the observations made at the beginning of this proof, these are all cases that

can occur.

c) Let j = 1 resp. j = 1 − βi+1. Due to the first two cases, we may assume

βi+1 = 0 and σe(gi) = 1 resp. σe(gi) = 1− βi+1. But this implies (gi, Fi,j) /∈ Iσe
by the definition of an improving switch.

d) We only discuss the last condition for ν > 1 as the statement follows for ν = 1
analogously. Hence let ¬σ(ebi,1) resp. ¬σe(ebi,1−βi+1

). Due to the last cases,

we may assume βi = 0, σ(gi) = 1 resp. σ(gi) = 1 − βi+1 and j = 0 resp.

j = βi+1. By the observations made at the beginning of the proof, we cannot

have σe(egi,1) resp. σe(egi,1−βi+1
). This implies that we need to have σe(di,1)

resp. σe(di,1−βi+1
), implying the statement in either case. More precisely, we

then either have

rVal∗σe(Fi,1−j) = Jsi,1−jK ⊕ rVal∗σe(b1) = Jsi,1−jK ⊕ rVal∗σe(b2) ≻ rVal∗σe(Fi,j)

or

rVal∗σe(Fi,1−j) = Jsi,1−j , hi,1−jK ⊕ rVal∗σe(bi+1) ≻ rVal∗σe(b2) = rVal∗σe(Fi,j).

Thus, if any of the given conditions is not fulfilled, then (gi, Fi,j) /∈ Iσe. Consequently,
(gi, Fi,j) ∈ Iσe if and only if the stated conditions are fulfilled.

It remains to show that no other improving switches are created in any case. By

assumption, σ(ebi,j) ∧ σ(egi,j), implying σe(di,j,∗) = ei,j,∗. Since the application
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of e increases the valuation of Fi,j , we begin by proving (di,j,k, Fi,j) ∈ Iσ, Iσe. This
however follows easily by Equations (A.12) and (A.13) since

rVal∗σ(di,j,k) = rVal∗σ(t
←) ≺ rVal∗σ(t

→) = rVal∗σ(Fi,j),

ValSσe(di,j,k) = {ei,j,k} ∪ValSσe(t
→)⊳ {Fi,j , ei,j,k∗ , di,j,k∗} ∪ValSσe(t

→) = ValSσe(Fi,j)

,ValMσe(di,j,k) = ValMσe(t
→) < (1− ε)ValMσe(t

→) + εValMσe(si,j) = ValMσe(Fi,j)

for some k∗ ∈ {0, 1} since ValMσe(si,j) > ValMσe(b1). Moire precisely, if j = 1 − βi+1,

then this follows directly since we have Valσe(si,j) = 〈si,j〉+ValMσe(b1) in that case.

If j = βi+1 then this follows as ValMσe(si,j) = 〈si,j , hi,j〉+ValMσe(bi+1) in that case.

We now consider the possible change of the valuation of gi. If σe(gi) 6= j, then
the edge (gi, Fi,j) is the only edge (besides the edges (di,j,∗, Fi,j) that we already

considered) that might become improving for σe. We however already completely

described the conditions under which this edge becomes improving. Hence consider

the case σe(gi) = j. We first observe that we cannot have i = 1 since σ(egi,j) would
then contradict the fact that Gn is a sink game resp. weakly unichain. We prove that

we then have σe(bi) = bi+1 and Val∗σe(bi+1) � rVal∗σe(gi) as well as σe(si−1,1) = b1
and Val∗σe(b1) � Val∗σe(hi−1,1). By assumption and the choice of e, the cycle center

Fi,j is not closed for σe. If j = βi+1, this implies σe(bi) = bi+1 and σe(si−1,1) = b1 by
Property (EV1)i resp. Property (USV1)i−1. If j = 1− βi+1, then we need to have

βi = 0 since Property (EV1)i and Property (EV2)i would imply σe(gi) = βi+1 = 1−j
otherwise. Thus σe(bi) = bi+1 and σe(si−1,1) = b1 in any case. We now prove

Val∗σe(bi+1) � Val∗σe(gi). Since σe(bi) = bi+1 implies i ≥ µσe by Property (REL1),

we have rVal∗σe(bi+1) = L∗i+1. If ν = 1, then σe(egi,j) ∧ ¬σe(ebi,j) ∧ µσe 6= 1. Then,
by Lemma 6.1.15 resp. Lemma 6.1.16, rVal∗σe(Fi,j) = rVal∗σe(g1) = R∗1. This in

particular implies rVal∗σe(gi) = JgiK ⊕R∗1. The statement thus follows directly since

JgiK ≺
⊕i−1

ℓ=1W
∗
ℓ . If ν > 1, then σe(ebi,j) ∧ ¬σe(egi,j) ∧ µσe = 1. Since Properties

(EV1)i+1 and (USV1)i imply that either σe(si,j) = b1 or σe(bi+1) = j, Lemma 6.1.15

resp. Lemma 6.1.16 thus imply rVal∗σe(gi) = JgiK ⊕ rVal∗σe(b2). Then, the statement

again follows since JgiK ≺
⊕i−1

ℓ=1W
∗
ℓ . Therefore rVal

∗
σe(bi+1) ≺ rVal∗σe(gi) in any case.

Since µσe = 1 ⇔ σe(b1) = b2 ⇔ ν > 1, the same arguments imply

rVal∗σe(hi−1,1) = Jhi−1,1, giK ⊕ rVal∗σe(b1) ≺ rVal∗σe(b1).

Lemma 6.2.33 (First row of Table 6.7). Let σ ∈ ρ(σ0) be a well-behaved phase-5-strategy
for b ∈ Bn. Let i ∈ [n], j = 1 − βσ

i+1, k ∈ {0, 1} with e := (di,j,k, Fi,j) ∈ Iσ and assume

σ(bi) = bi+1, σ(gi) = 1− βσ
i+1 and i 6= 1. Then σe is a well-behaved Phase-5-strategy for b

with σe ∈ ρ(σ0) and Iσe = Iσ \ {e}.

Proof. As in the last proofs, we have βσ = βσe =: β by the choice of e. Let j := 1− βi+1.

We begin by showing that σe is a phase-5-strategy for b. If σ(di,j,1−k) 6= Fi,j , then the same

cycle centers are closed with respect to σ and σe. In this case, σ being a phase-5-strategy
immediately implies that σe is a phase-5-strategy. Thus assume σ(di,j,1−k) = Fi,j . Then,
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the cycle center Fi,j = Fi,1−βi+1
is closed with respect to σ but not with respect to σe. It

thus sufficient to investigate Property (EV3)i and Property (CC1)i. Since, by assumption,

σe(bi) = σ(bi) = bi+1, Property (EV3)i remains valid. As σ has Property (REL1), σe also
has Property (REL1). This implies µσe = min{i′ : σe(bi′) = bi′+1}. Thus, i ≥ µσe, so σe has
Property (CC1)i. Therefore, σe is a phase-5-strategy for b.

We now show that σe is well-behaved. If σ(di,j,1−k) 6= Fi,j , this follows immediately

since σ is well-behaved. Hence assume σ(di,j,1−k) = Fi,j and note that we have i ≥ µσe

as argued earlier. Since we close a cycle center Fi,σ(gi) with i ≥ µσe, we investigate the

following properties.

(MNS4) Since σ is well-behaved, this property only needs to be reevaluated if i =
mσe

s . Since the case i = 1 cannot occur by assumption, assume i > 1. This

implies 1 < mσe
s ≤ mσe

g < mσe
b . Thus, in particular σe(b1) = b2, σe(g1) = F1,1

and σe(s1,1) = h1,1. By Property (USV1)1 and Property (EV1)2, σe(b2) = g2,
implyingmσe

b = 2. But this contradicts the premise since 1 < mσe
s < mσe

b implies

mσe
b ≥ 3.

(MNS6) Since σ is well-behaved, this only needs to be reevaluated if i = mσe
s . Since

i 6= 1 by assumption, assume i > 1. Then, 1 < mσe
s ≤ mσe

g < mσe
b , implying the

same contradiction as in the last case.

(DN*) Since there is no cycle center Fn,1 by construction, we cannot have i = n.

Consequently, σe is well-behaved.

It remains to show that Iσe = Iσ \ {e}. We distinguish three different cases.

• The cycle center Fi,j is closed with respect to σe. Then, since j = 1− βi+1, we have

σe(si,j) = b1 by Property (USV1)i, implying rVal∗σe(Fi,j) = Jsi,jK ⊕ rVal∗σe(b1). The
only vertices that have an edge towards Fi,j are di,j,0, di,j,1 and gi. Since Fi,j is closed

for σe and σ(gi) = j by assumption, the valuation of these vertices might change

when applying e. However, σe(di,j,k) = Fi,j implies that (di,j,0, Fi,j), (di,j,1, Fi,j) /∈ Iσe.
Since no player 0 vertex has an edge to di,j,∗, consider the vertex gi. The only vertices
having an edge towards gi are bi and hi−1,1. Since σe(bi) = bi+1 by assumption and

σe(si−1,1) = b1 by Property (USV1)i, it suffices to show (bi, gi), (si−1,1, hi−1,1) /∈ Iσe.
We begin by showing (bi, gi) /∈ Iσe. It suffices to show rVal∗σe(bi+1) ⊲ rVal∗σe(gi).
As mentioned before, we have rVal∗σe(gi) = Jgi, si,jK ⊕ rVal∗σe(b1). If µσe = 1, the
statement follows since

rVal∗σe(gi) = Jgi, si,jK ⊕ rVal∗σe(b1) = Jgi, si,jK ⊕ L∗1 ≺ L∗i+1 = rVal∗σe(bi+1).

Now consider the case µσe 6= 1, implying rVal∗σe(b1) = R∗1 since i
′ < µσe implies σ(di′)

by Corollary 6.1.5 and Property (REL1). Since σe(bi) = bi+1 implies i+ 1 > µσe, we

have rVal∗σe(bi+1) = L∗i+1. Consequently,

rVal∗σe(gi) = Jgi, si,jK ⊕R∗1 ≺
⊕

i′≥i+1

{W ∗i′ : σe(bi′) = gi′} = L∗i+1 = rVal∗σe(bi+1).

It remains to prove (si−1,1, hi−1,1) /∈ Iσe by showing Val∗σ(b1) ≻ Val∗σe(hi−1,1). This
however follows by rVal∗σe(hi−1,1) = Jhi−1,1, gi, si,jK ⊕ rVal∗σe(b1) ≺ rVal∗σe(b1).
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• The cycle center Fi,j is not closed and σe(ebi,j). Then, since σe(di,j,k) = Fi,j , we have

σe(ebi,j)∧¬σe(egi,j). Consider the case thatGn = Sn. Then, by Lemma 6.1.16, either

rValSσe(Fi,j) = rValSσe(si,j) or rVal
S
σe(Fi,j) = rValSσe(b2). In the first case we can use

the same arguments as before to prove (bi, gi), (si−1,1, hi−1,1) /∈ Iσe. Hence consider

the second case. Then, by Lemma 6.1.16, we need to have µσe = 1. But then, it
follows that rValSσe(gi) = {gi} ∪ rValSσe(b1) = {gi} ∪ LS

1 ⊳ LS
i+1 = rValSσe(bi+1) and

rValSσe(hi−1,1) = {hi−1,1, g1}∪ rValSσe(b1)⊳rValSσe(b1), so (bi, gi), (si−1,1, hi−1,1) /∈ Iσe.
Now consider the case Gn = Mn. Since Fi,j is b2-halfopen, rVal

M
σe(Fi,j) = rValMσe(b2).

It suffices to prove µσe = 1 as we can then apply the same arguments used in the

case Gn = Sn. But this follows from Property (EB5) as σe(ebi,j)∧¬σe(egi,j)∧µσe 6= 1
implies σe(bµσe) = gµσe , contradicting Property (REL1).

• The cycle center Fi,j is not closed and σe(egi,j). Similar to the last case, we then

have σe(egi,j) ∧ ¬σe(egi,j). Consider the case Gn = Sn. Then, by Lemma 6.1.16,

either rValSσe(Fi,j) = rValSσe(si,j) or rVal
S
σe(Fi,j) = rValSσe(g1). Since the second case

implies µσe 6= 1, similar arguments as the ones used previously can be used to show

(bi, gi), (si−1,1, hi−1,1) /∈ Iσe in both cases. IfGn = Mn, then rValMσe(Fi,j) = rValMσe(g1)
and it again suffices to prove µσe 6= 1. This follows from Property (EG1) and

Property (EG2) since these properties would imply that the cycle center F1,β2 was

closed. Then, Property (EV1)1 would imply σe(b1) = g1, contradicting µσe = 1.

Lemma 6.2.34 (Second row of of Table 6.7). Let σ ∈ ρ(σ0) be a well-behaved phase-5-
strategy for b ∈ Bn. Let i ∈ [n], j ∈ {0, 1} with e := (gi, Fi,j) ∈ Iσ and βσ

i = 0. Assume that

ν = 1 implies σ(egi,j)∧¬σ(ebi,j) and that ν > 1 implies σ(ebi,j)∧¬σ(egi,j). Further assume

that µσ = 1 implies that for any i′ ≥ i and j′ ∈ {0, 1}, either σ(di′,j′) or σ(ebi′,j′)∧¬σ(egi′,j′).
If σ(ei′,j′,k′) = t→ for all i′ ∈ [n], j′, k′ ∈ {0, 1} and if σe has Property (SVG)i′/(SVM)i′ for

all i′ ∈ [n], then σe is a phase-1-strategy for b+1. Otherwise it is a phase-5-strategy for b. In
either case, σe is well-behaved and Iσe = Iσ \ {e}.

Proof. We first show that σe is a phase-1-strategy for b+ 1 resp. a phase-5-strategy for b.

We observe that we have βσ = βσe =: β as the status of no cycle center or entry vertex is

changed. Since we change the target of a selector vertex with βi = 0, it suffices to check

Properties (REL1), (CC2), (EV2)i and (SVG)i/(SVM)i.

It is immediate that σe has Property (REL1) as βi = 0. To prove that it has Property (CC2)
assume i = ν. But this implies β = 1, contradicting again the assumption. By definition, σe
has Property (ESC1) if and only if there are no indies i′, j′, k′ with σ(ei′,j′,k′) 6= t→. Thus,

if there are no such indices and if σe has Property (SVG)i′/(SVM)i′ for all i
′ ∈ [n], then

σe is a phase-1-strategy for b+ 1. Otherwise, it is a phase-5-strategy for b. In particular,

µσ = µσe = min{i′ : σe(bi′) = bi′+1}.
We next show that σe is well-behaved. Since we change the target of a selector vertex

and i 6= n, we need to investigate the following assumptions:

(S2) Since βi = 0 implies i ≥ µσe, it cannot hold that i < µσe.

(D2) This follows by the same argument.

(B3) Since σe has Property (USV1)i and Property (EV1)i+1, the premise of this

assumption is always incorrect.

281



A. Proofs

(BR1) Since βi = 0 implies i ≥ µσe, it cannot hold that i < µσe.

(MNS1) If the premise is correct for both σ and σe, then σe has this property as σ has it.

The implication is also fulfilled if the premise is incorrect for σe. Hence assume

that the premise is correct for σe but incorrect for σ. Since σe is well-behaved,
Lemma 6.1.6 implies mσe

b = 2. Thus, σe(b2) = g2, hence σe(s1,1) = h1,1 and

σe(s1,0) = b1. As we assume that the premise is incorrect for σ, the choice of e
implies mσ

g = 1 and thus e = (g1, F1,1). We thus need to have σ(g1) = F1,0 and

ValSσ(F1,1)⊲ValSσ(F1,0). We show that this cannot be true.

Since we have µσe = µσ = 1 and σe(b2) = g2, the cycle center F1,1 cannot be

closed. Consequently, by assumption, σ(eb1,1) ∧ ¬σ(eg1,1). Thus,

ValSσ(F1,1) = {F1,1, d1,1,k∗ , e1,1,k∗} ∪ValSσ(b2)

for some k∗ ∈ {0, 1} by Lemma 6.1.16. If also σ(eb1,0)∧¬σe(eg1,0), then this also

yields ValSσ(F1,0) = {F1,0, d1,0,k∗ , e1,0,k∗} for some k∗ ∈ {0, 1}. The statement

then follows since Ω(F1,0) > Ω(F1,1) and since the priority of F1,0 is even. If

this is not the case, then F1,0 is closed by assumption. But this implies

rValSσ(F1,0) = {s1,0} ∪ rValSσ(b2) > rValSσ(b2) = rValSσ(F1,1).

(MNS2) Assume µσe = 1, let i′ < mσe
g < mσe

s ,m
σe
b and let Gn = Sn imply ¬σe(bmσe

g +1).
Then σe(b2) = b3 since σe(b2) = g2 implies mσe

b = 2, contradicting the premise.

Consequently, β2 = 0. However, since 1 < mσe
g < mσe

s , it holds that σe(g1) =
F1,1 and σe(s1,1) = h1,1. But this implies β2 = 1 by Property (USV1)1 and

Property (EV1)2 which is a contradiction.

(MNS3) If the premise is true, then β2 = 0 since we need to have σe(b2) = b3. But, since
1 < mσe

s ≤ mσe
g implies σe(g1) = F1,1 and σe(s1,1) = h1,1, we also have β2 = 1

which is a contradiction.

(MNS4) Let µσe = 1 and mσe
s ≤ mσe

g < mσe
b . If mσe

s > 1, then the same arguments

used for proving that σe has Property (MNS3) can be used to prove that σe
has Property (MNS4) as follows. Thus assume 1 = mσe

s , implying that we have

σe(s1,σe(g1)) = b1. In particular, by Property (USV1)1 and Property (EV2)2,

it holds that σe(g1) 6= σe(b2) = β2. If mσ
s = mσe

s and mσ
g = mσe

g , then the

statement follows by applying Property (MNS4) to σ. Thus assume mσe
s 6= mσ

s .

Then σe(s1,σ(g1)) = h1,σ(g1). But this implies e = (gi, Fi,j) = (g1, F1,1−βσe
i+1

)
and thus, by assumption, σe(eb1,j) ∧ ¬σe(egi,j). Hence assume mσe

s = mσ
s and

mσe
g 6= mσ

g . If m
σ
g < mσ

b , then the statement follows since we can again apply

Property (MNS4) to σ. Thus assume mσ
g ≥ mσ

b . But then, m
σ
s < mσ

b ≤ mσ
g ,

hencemσe
s = mσ

s and applying Property (MNS6) to σ imply σe(ebmσe
s
)∧σe(egmσe

g
).

(MNS5) If the premise is true, then 1 < mσe
s < mσe

b ≤ mσe
g . In particular, σe(g1) = F1,1

and σe(s1,1) = h1,1. By Property (EV1)2, this implies σe(b2) = g2 and thus

mσe
b = 2. This however is a contradiction since the premise implies mσe

b ≥ 3.

(MNS6) If mσe
s > 1, then the same arguments used for Property (MNS5) can be used

to prove that the premise cannot be correct. Hence assume mσe
s = 1, implying
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σe(g1) = F1,1 and σe(s1,1) = b1. This in particular implies 1 = σe(g1) 6= βσe
2 = 0

and thus σ(b2) = σe(b2) = b3 by Property (USV1)1 and Property (EV1)2.

If mσ
s = mσe

s and mσ
g = mσe

g , then the statement follows by applying Prop-

erty (MNS6) to σ. Assume mσ
s 6= mσe

s . Then σ(s1,σ(g1)) = h1,σ(g1) and thus

σ(g1) = βσe
2 . But then, e = (gi, Fi,j) = (g1, F1,1−βσe

2
), so σe(ebi,j) ∧ ¬σe(egi,j)

by assumption. Thus assume mσ
s = mσe

s and mσ
g 6= mσe

g . Since the statement

follows by applying Property (MNS6) to σ ifmσ
s < mσ

b ≤ mσ
g , assumemσ

g < mσ
b .

But then, 1 = mσ
s ≤ mσ

g < mσ
b . Since applying an improving switch in level 1

implies mσ
s 6= mσe

s , we have σ(g1) = σe(g1). But then the statement follows by

applying Property (MNS4) to σ.

(EG*) Since µσe = 1 implies ν > 1, we have σe(ebi,j) ∧ ¬σe(egi,j). Hence the premise

of any of the Properties (EG1) to (EG4) is incorrect. Note that we do not need

to validate Property (EG5).

(EBG*) By assumption, we cannot have σe(ebi,j) ∧ σe(egi,j), hence the premise of any

of these assumptions is incorrect.

Hence σe is a well-behaved strategy.

It remains to show that Iσe = Iσ \{e}. Since we apply the improving switch e = (gi, Fi,j),
the valuation of gi increases. If i 6= 1, then there are only two vertices that have an edge

to gi, namely bi and hi−1,1. However, if i = 1, then also the valuation of escape vertices

and hence cycle centers might be influenced. We prove that σe(bi) = bi+1 ∧ (bi, gi) /∈ Iσe
for all i ∈ [n] and σe(si−1,1) = b1 ∧ (si−1,1, hi−1,1) /∈ Iσe if i > 1. We then discuss the case

i = 1 at the end of this proof.

Thus let i ∈ [n]. Since βi = 0 and by Property (EV1)i, it holds that σe(bi) = bi+1. It thus

suffices to prove Val∗σe(bi+1) ≻ Val∗σe(gi). We distinguish the following cases.

1. Let µσe = 1. Then rVal∗σe(bi+1) = L∗i+1. By assumption, σe(ebi,j) ∧ ¬σe(egi,j). Thus,
depending on whether Gn = Sn or Gn = Mn, Lemma 6.1.16 and Property (USV1)i
respectively Lemma 6.1.15 imply rVal∗σe(Fi,j) = rVal∗σe(b2). Consequently,

rVal∗σe(gi) = JgiK ⊕ rVal∗σe(b2) = JgiK ⊕ L∗2 = JgiK ⊕ L∗2,i−1 ⊕ L∗i+1 ≺ L∗i+1.

2. Let µσe 6= 1. Since βi = 0, it cannot hold that rVal∗σe(bi+1) = R∗i+1. This implies

that rVal∗σe(bi+1) = L∗i+1 and i ≥ µσe. By assumption, σe(egi,j)∧¬σe(ebi,j). Thus, by
Lemma 6.1.15 resp. 6.1.16, rVal∗σe(gi) = JgiK⊕rVal∗σe(g1). Note that rVal

∗
σe(b1) = R∗1

in any case by Corollary 6.1.5. Thus, by Property (USV1)i and since i ≥ µσe,

rVal∗σe(gi) = Jgi, si,jK ⊕ rVal∗σe(b1) = Jgi, si,jK ⊕R∗1

= Jgi, si,jK ⊕
µσe−1⊕

i′=1

W ∗i′ ⊕ L∗µσe+1,i−1 ⊕ L∗i+1 ≺ L∗i+1 = rVal∗σe(bi+1).

Thus rVal∗σe(gi) ≺ rVal∗σe(bi+1) in any case, implying (bi, gi) /∈ Iσe.

We prove that i 6= 1 implies σe(si−1,1) 6= hi−1,1 and (si−1,1, hi−1,1) /∈ Iσe. The first

statement follows since βi = 0 and Property (USV1)i−1 imply σe(si−1,1) = b1. It thus

remains to prove Val∗σe(b1) ≻ Val∗σe(hi−1,1). We again distinguish the following cases.
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1. Assume µσe = 1 first. Then rVal∗σe(b1) = L∗1. By assumption, σe(ebi,j) ∧ ¬σe(egi,j).
By Property (USV1)i and since µσe = 1 implies σe(b1) = b2, we then have

rVal∗σe(hi−1,1) = {hi−1,1, gi} ⊕ rVal∗σe(b2) ≺ rVal∗σe(b2) = rVal∗σe(b1).

2. Let µσe 6= 1. Then σe(b1) = g1, implying rVal∗σe(b1) = rVal∗σe(g1) = R∗1 by Corol-

lary 6.1.5. By assumption, σe(egi,j) ∧ ¬σe(ebi,j). Thus, by Lemma 6.1.15 resp.

Lemma 6.1.16, rVal∗σe(hi−1,1) = Jhi−1,1, giK ⊕ rVal∗σe(g1) ≺ rVal∗σe(b1).

It remains to discuss the case i = 1. Since βi = 0 by assumption, we then have

µσe = 1. In particular, for any cycle center Fi′,j′ , either σe(di′,j′) or σe(ebi′,j′) ∧ ¬σe(egi′,j′)
by assumption. Thus, the valuation of no cycle center is increased as this could only happen

if σe(egi′,j′). Moreover, there is di′,j′,k′ with σe(di′,j′,k′) = ei′,j′,k′ and σe(ei′,j′,k′) = g1. It
thus suffices to prove that σe(di′,j′)∧σe(ei′,j′,k′) = g1 implies (di′,j′,k′ , ei′,j′,k′) /∈ Iσ, Iσe and
that σe(ei′,j′,k′) = b2 implies (ei′,j′,k′ , g1) /∈ Iσ, Iσe.

Consider the second statement first. It suffices to prove rVal∗σe(b2) ≻ rVal∗σe(g1). If

σe(eb1) ∧ ¬σe(eg1), then this follows since rVal∗σe(g1) = Jg1K ⊕ rVal∗σe(b2) in that case. If

σe(d1), then we need to have σe(gi) = 1 − β2 due to µσe = 1 and ν > 1. But then, the
statement follows since rVal∗σe(g1) = Jg1, s1,β2K⊕rVal∗σe(b2). Since the same arguments hold

for σ, the statement follows. Thus consider some cycle center Fi′,j′ closed with respect to σe.
It suffices to show rValσe(Fi′,j′) ≻ rVal∗σe(g1). If j

′ = 1− βi′+1, then the statement follows

since rVal∗σe(Fi′,j′) =
q
si′,j′

y
⊕ rVal∗σe(b2) in this case and since rVal∗σe(b2) ≻ rVal∗σe(g1)

as proven before. If j′ = βi′+1, then rVal∗σe(Fi′,j′) =
q
si′,j′ , hi′,j′

y
⊕ rVal∗σe(bi′+1) and the

statement follows since rVal∗σe(Fi′,j′) ≻ rVal∗σe(b2).

Omitted proofs of Section 6.3

The following statements are claims that are used within proofs of the statements in

Section 6.3. Each claim thus refers to the notation used in the corresponding proof, and

this notation is not restated here.

Claim 1. If an edge (gi, Fi,j′) with i ∈ [n] and j′ 6= bν+1 becomes improving during the

application of improving switches contained in I<m, then it is applied immediately. Its

application is described by row 4 of Table 6.4.

Proof. Consider the first phase-1-strategy σ such that after applying an improving switch

e = (di,j′,k, Fi,j′) to σ, the edge (gi, Fi,j′) becomes improving for σe. Then, Aσe
σb

⊆ D1.

Furthermore, σe is a phase-1-strategy for b by Lemma 6.2.11 and Iσe = Dσe ∪ {(gi, Fi,j′)}.
Moreover, Fi,j′ is closed for σe and φσb(gi, Fi,j′) ≤ φσb(di,j′,k, Fi,j′) by Table 5.6. Since

(di,j′,k, Fi,j′) minimized the occurrence record for σ, the switch (gi, Fi,j′) minimizes the

occurrence record for σe. By the tie-breaking rule, this switch is thus applied next. Since

e ∈ I<m
σb

, Lemma 6.2.5 implies that it cannot happen the cycle center F1,1−b2 was closed

by applying e, so i 6= 1. It is easy to verify that the other conditions of row 4 of Table 6.4

hold as well, since (gi, Fi,j′) would not have become an improving switch otherwise.

Thus, by row 4 of Table 6.4, the strategy σ′ obtained by applying (gi, Fi,j′) to σe is a

well-behaved phase-1-strategy for b with σ′ ∈ ρ(σ0) and Iσ′ = Dσ′ . This proves that the
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first switch of the type (g∗, F∗,∗) is applied immediately when it becomes an improving

switch. The same arguments can however also be applied for any edge (g∗, F∗,∗) that
becomes improving.

Claim 2. Let ν > 1 and let σ denote the strategy obtained after applying all improving

switches contained in I<m
σ . For all suitable indices i ∈ [n], j′ ∈ {0, 1} it holds that

σ(di,j′,1) = Fi,j′ , implying that no cycle center is open for σ.

Proof. Assume there were indices i ∈ [n], j′ ∈ {0, 1} with σ(di,j′,1) 6= Fi,j′ and let e :=
(di,j′,1, Fi,j′). Then e ∈ Iσ, so φσ(e) = m. Since σ(di,j′,1) 6= Fi,j′ implies that Fi,j′ is not

closed, bi = 0 ∨ bi+1 6= j′ as σ is a phase-1-strategy for b. As e was not applied during

σb → σ, this yields

φσb(e′) = φσ(e′) = min

(⌊
b+ 1− k

2

⌋
, ℓb(i, j′, k) + tb

)

for a feasible tb for b. In particular, φσ(e) ≤ ⌊(b+ 1− 1)/2⌋ = ⌊b/2⌋. But this is a

contradiction, since φσ(e) = m > ⌊b/2⌋ since b is odd.

Claim 3. Let i ∈ [n], j, k ∈ {0, 1} such that (di,j,k, Fi,j) ∈ Aσ(3)

σb
. The occurrence records

of (di,j,k, Fi,j) with respect to σ(3) is specified by Table 5.6 when interpreted for b+ 1.

Proof. Consider some fixed indices i ∈ [n], j, k ∈ {0, 1} such that (di,j,k, Fi,j) ∈ Aσ(3)

σb
. As

argued previously, this edge is contained in a cycle center Fi,j which is open for σb. If
the occurrence record of one of the cycle edges of Fi,j is m− 1, then the application of

(di,j,k, Fi,j) is described by Lemma 6.2.11 and we do not need to consider it here. Also,

due to the tie-breaking rule, we do not apply an improving switch contained in halfopen

cycle centers (with the exception of Fν,bν+1) as we only consider switches contained in Imσb
.

We may thus assume that Fi,j is open with respect to σb and that both cycle edges have

an occurrence record of m.

We now distinguish between several possible indices. Consider the case i 6= ν or

i = ν ∧ j 6= bi+1 first. By the tie-breaking rule, we then need to have k = 0 as the edge

e := (di,j,0, Fi,j) is then applied as improving switch. Let σ denote the strategy in which

e is applied. Since b is even, φσe(e) = m+ 1 = ⌊(b+ 2)/2⌋. It thus suffices to show that

there is a parameter tb+1 feasible for b+ 1 such that

⌊
b

2

⌋
+ 1 ≤ ℓb+1(i, j, k) + tb+1. (⋆)

By the choice of i and j, Lemma 6.2.4 implies ℓb(i, j, k) + 1 = ℓb+1(i, j, k). Therefore,
φσ(e)+ 1 ≤ ℓb(i, j, k)+ tb+1 ≤ ℓb+1(i, j, k)+ tb for some tb feasible for b. Since b is even,

Property (OR4)i,j,0 implies φσb(e) 6= ℓb(i, j, k) − 1. In addition, by Property (OR2)i,j,0,

it holds that tb 6= 1 as this would imply σb(di,j,0) = Fi,j , contradicting our assumption.

Consequently, tb = 0, implying that tb+1 = 0 is a feasible parameter that yields (⋆).

Consider the case i = ν and j = bν+1 next. Then, both switches (di,j,∗, Fi,j) are applied.

Using Lemma 6.2.3, it is easy to verify that φσb(di,j,k, Fi,j) = ⌊(b+ 1− k)/2⌋ for both
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k ∈ {0, 1}. Also, by the tie-breaking rule, Fi,j is closed once there are no more open cycle

centers. In particular, both cycle edges of Fi,j are then applied and their application is

described by row 1 resp. 5 of Table 6.4. Let σ denote the strategy obtained after closing Fi,j .

Then, by definition and the choice of i and j, it holds that b+1 = lfn(b+1, ν, {(ν+1, j)}).
Since ⌈

(b+ 1) + 1− k

2

⌉
=

⌊
b+ 1 + 2− k

2

⌋
=

⌊
b+ 1− k

2

⌋
+ 1,

this then implies

φσ(di,j,k, Fi,j) =

⌈
lfn(b+ 1, ν, {(ν + 1, j)}) + 1− k

2

⌉

as required.

Claim 4. Let ν = 2 and consider the phase-2-strategy σ obtained after the application

of (bν , gν). Then, the edge (s1,1, h1,1) is applied next, and the obtained strategy is a

well-behaved phase-3-strategy for b described by the respective rows of Tables 5.8 and 5.9.

Proof. As a reminder, the current strategy is denoted by σe and the set of improving

switches for σe is given by Iσe = Dσe ∪ {(b1, b2), (s1,1, h1,1)} ∪ {(e∗,∗,∗, b2)}. By Table 5.6,

φσe(e∗,∗,∗, b2) = ⌊b/2⌋ , φσe(b1, b2) = fl(b, 1) − 1 and φσe(s1,1, h1,1) = fl(b, 2). Since b is

odd, Lemma 6.2.6 implies fl(b, 1)− 1 =
⌊
b
2

⌋
. Consequently, φσe(b1, b2) = φσe(e∗,∗,∗, b2). If

b = 1, then fl(b, 2) =
⌊
b+2
4

⌋
= 0 =

⌊
b
2

⌋
and φσe(s1,1, h1,1) = φσe(b1, b2). In this situation

(s1,1, h1,1) is applied next as this is exactly the exception described in which the tie-

breaking rule behaves differently, see Definition 5.3.5. If b > 1, then ν = 2 implies b ≥ 5.
But this implies φσe(s1,1, h1,1) < φσe(b1, b2), so (s1,1, h1,1) is applied next. Consequently,

e′ := (s1,1, h1,1) is applied next in any case.

We now prove that the requirements of row 2 Table 6.5 are fulfilled. Since µσe = ν = 2,
we show the following statements:

1. σe(d1) : No switch of the type (d∗,∗,∗, e∗,∗,∗) was applied during σb → σ(2) by

Lemma 6.3.1. Also, no such switch or switch of the type (g∗, F∗,∗,) was applied

during σ(2) → σe. Thus, by Lemma 6.3.1, σe(d1).

2. σe has Property (USV3)1: Since ν = 2, we have βσe
2 = 1. Since we did not apply

any improving switch of the type (s∗,∗, ∗) during σb → σe, the statement then follows

by applying Property (USV1)1 to σb.

3. σe has Property (EV2)2 and Property (CC2): We already argued that σe has these
properties when applying the statement described by row 1 of Table 6.5.

Thus, all requirements of row 2 of Table 6.5 are met.

To simplify notation ,we denote the strategy obtained by applying e′ = (s1,1, h1,1) to σe
again by σ. Then, σ is a phase-3-strategy for b with σ ∈ ρ(σ0) and

Iσ = Iσe \ {e
′} = Dσ ∪ {(b1, b2)} ∪ {(e∗,∗,∗, b2)}.

Since b is odd,

φσ(e′) = fl(b, 2) + 1 =

⌊
b+ 2

4

⌋
+ 1 =

⌊
(b+ 1) + 2

4

⌋
= fl(b+ 1, 2)
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and Table 5.6 describes the occurrence record of (s1,1, h1,1) with respect to b+ 1. Since
we did not apply any improving switch (g∗, F∗,∗) or (d∗,∗,∗, e∗,∗,∗), the conditions on cycle

centers in levels below ν hold for σ(3) as they held for σ(2). Therefore, σ is a strategy as

described by the respective rows of Tables 5.8 and 5.9.

Claim 5. After the application of (bν−1, bν) in the case ν > 2, the switch e = (sν−1,1, hν−1,1)
is applied next. Its application can be described by row 2 of Table 6.5 and Table 5.6 specifies

its occurrence record after the application correctly when interpreted for b+ 1.

Proof. By the definition of ν, there is a number k ∈ N such that b = k · 2ν−1 − 1. By

Table 5.6, Lemma 6.2.6 and using ν > 2, we obtain the following:

φσ(sν−1,1, hν−1,1) = fl(b, ν) =

⌊
k · 2ν−1 − 1 + 2ν−1

2ν

⌋
=

⌊
k

2

⌋

φσ(sν−2,0, hν−2,0) = fl(b, ν − 1)− 1 = k · 20 − 1 = k − 1

φσ(sν−3,0, hν−3,0) = φσ(bν−2, bν−1) = fl(b, ν − 2)− 1 = k · 22−1 − 1 = 2k − 1

φσ(e∗,∗,∗, b2) =

⌊
b

2

⌋
=

⌊
k · 2ν−1 − 1

2

⌋
=

⌊
k · 2ν−2 −

1

2

⌋
= 2ν−2k − 1.

If k > 2, then (sν−1,1, hν−1,1) is the unique improving switch minimizing the occurrence

records. If k ≤ 2, then the occurrence records of (sν−1,1, hν−,1) and (sν−2,0, hν−2,0) are
identical and lower than the occurrence record of every other improving switch. Since

the tie-breaking rule applies improving switches at selection vertices contained in higher

levels first, (sν−1,1, hν−1,1) is also applied first then. Consequently, e := (sν−1,1, hν−1,1) is
applied next in any case.

We prove that σ fulfills the conditions of row 2 of Table 6.5. By our previous arguments,

it suffices to prove that σ has Property (USV3)ν−1. As βν = 1, this however follows

since (sν−1,1, hν−1,1) ∈ Iσ and since σ has Property (USV2)ν−1,0 by the definition of

a phase-2-strategy. By our previous arguments and row 2 of Table 6.5, σe then has

Properties (USV2)ν−1,1, (CC2), (EV1)ν and (USV3)i,1−βi+1
for all i < ν − 1. Furthermore,

Iσe = Dσe ∪ {(sν−2,0, hν−2,0), (bν−2, bν−1), (sν−3,0, hν−3,0)}

if ν − 1 > 2 and ν > 2 implies

Iσe = Dσe ∪ {(e∗,∗,∗, b2)} ∪ {(b1, b2), (s1,0, h1,0)}.

Also note that ν > 2 implies φσe(sν−1,1, hν−1,1) = fl(b, ν)+1 = fl(b+1, ν) by Lemma 6.2.6,

so Table 5.6 specifies its occurrence record with respect to b+ 1.

Lemma 6.3.10. Let σ ∈ ρ(σ(3)) be a well-behaved phase-3-strategy for b obtained through

the application of a sequence Aσ
σ(3) ⊆ E1 ∪ D0 of improving switches. Assume that the

conditions of row 1 of Table 6.6 were fulfilled for each intermediate strategy σ′ of the transition
σ(3) → σ. Let t→ := b2 if ν > 1 and t→ := g1 if ν = 1. Let i ∈ [n], j, k ∈ {0, 1} such that
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e := (di,j,k, ei,j,k) ∈ Iσ is applied next and assume σ(ei,j,k) = t→, βσ
i = 0 ∨ βσ

i+1 6= j and

Iσ ∩D0 = {e}. Further assume that either i ≥ ν or that we consider the case Gn = Sn. Then

σe is a phase-3-strategy for b with Iσe = (Iσ \ {e}).

Proof. As usual, we define t← := {g1, b2} \ {t→}. We consider the case Gn = Sn and

j = βi+1 first. Then, since σ is a phase-3-strategy for b, it cannot happen that σ(di,j)
as this would imply βi = 1. In particular, σ(di,j) thus implies βi+1 6= j. But then, by

Lemma 6.2.21, σe is a well-behaved phase-3-strategy for b with Iσe = Iσ \ {e}.

Hence consider the case Gn = Mn and βi = 1. Then, by assumption, βi+1 = 1 − j,
so the statement follows by Lemma 6.2.22. It thus suffices to consider the case βσ

i = 0,
implying i > ν by assumption. We remind here that µσ = ν by Property (REL2) and

distinguish two cases.

1 : Let βi+1 = j. We prove that the application of e is then described by Lemma 6.2.23

or Lemma 6.2.24. We begin by proving that Fi,j is t←-halfopen and then discuss the

possible states of Fi,1−j .

Since βi = 0 ∧ βi+1 = j, the cycle center Fi,j was not closed for σ(3). In particular, as

the choice of e implies σ(di,j,k) = σ(3)(di,j,k) = Fi,j , Corollary 6.3.7 and Aσ
σ(3) ∩ D1 = ∅

imply σ(di,j,1−k) = ei,j,1−k. As improving switches were applied according to Zadeh’s

pivot rule and our tie-breaking rule, this implies (ei,j,1−k, t
→) /∈ Aσ

σ(3) . Consequently,

σ(di,j,1−k) = ei,j,1−k ∧ σ(ei,j,1−k) = t←, so Fi,j is t
←-halfopen with respect to σ.

We now discuss the possible states of Fi,1−j . First, Fi,1−j cannot be t←-open for σ as

this would imply that it is also t←-open for σ(3), contradicting Corollary 6.3.7.

Also, Fi,1−j cannot be closed as it would then be the unique closed cycle center in level i.
Then, the tie-breaking rule would have applied some switch (ei,1−j,∗, t

→). But this would
have made the corresponding edge (di,1−j,∗, ei,1−j,∗) improving by Lemma 6.2.19. Fur-

thermore, this switch would then already have been applied, contradicting the assumption

that Fi,1−j was closed.

Let, for the sake of contradiction, Fi,1−j be mixed. Then, σ(di,1−j,∗) = ei,1−j,∗ as well as
σ(ei,1−j,k′) = t→ and σ(ei,1−j,1−k′) = t← for some k′ ∈ {0, 1}. This implies that Fi,1−j was

t←-halfopen with respect to σ(3) and that (ei,1−j,k′ , t
→) ∈ Aσ

σ(3) . Hence, this switch was

ranked higher by the tie-breaking rule. But this is a contradiction as the tie-breaking rule

ranks switches contained in Fi,βσ
i+1

= Fi,j higher if both cycle centers are t←-halfopen.

It is also immediate that Fi,1−j cannot be t→-halfopen as the tie-breaking rule would

then choose the edge (ei,1−j,k′ , t
→) with σ(ei,1−j,k′) = t← as next improving switch.

Now assume that Fi,1−j is t
→-open. We show that this implies that Fi,1−j was closed

at the end of phase 1. As the cycle center Fi,1−j is t
→-open and σ(3)(ei,1−j,∗) = t←, this

implies (ei,1−j,0, t
→), (ei,1−j,1, t

→) ∈ Aσ
σ(3) . As all improving switches (e∗,∗,∗, t

→) have the

same occurrence records, this implies that the tie-breaking rule ranked (ei,1−j,0, t
→) and

(ei,1−j,1, t
→) higher than (ei,j,k, t

→). However, since j = βi+1, this can only happen if Fi,1−j

was closed with respect to σ(3). If Fi,1−j was not closed for σb, then Corollary 6.3.2 and

Aσ
σ3 ⊆ D0∪E1 imply σ(3)(gi) = σ(gi) = Fi,1−j . If it was closed for σb, then σb(gi) = Fi,1−j

by Definition 5.2.1. Moreover, by the choice of j and i and Corollary 6.3.2, it is not possible

that the cycle center Fi,j was closed during phase 1. Consequently, also σ(gi) = Fi,1−j .

Thus, the statement follows by Lemma 6.2.23.
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Finally, assume that Fi,1−j is t
←-halfopen. Then, since Aσ

σ(3) ⊆ E1 ∪D0, this implies that

Fi,1−j was t←-halfopen for σ(3). In particular, this implies that no cycle center of level i
was closed during phase 1. But this implies σ(gi) = σ(3)(gi) = σb(gi) = Fi,βi+1

= Fi,j

by Corollary 6.3.2. Since i ≥ ν + 1 = µσ + 1 by assumption, Lemma 6.2.24 implies the

statement. This concludes the case j = βi+1.

2 : Let 1 − βi+1 = j. We investigate Fi,j first. As j = 1 − βi+1, it is possible that

Fi,j was closed with respect to σ(3). Depending on whether or not improving switches

corresponding to Fi,j were applied during σ(3) → σ, the cycle center is either (a) closed,

(b) t→-halfopen or (c) t←-halfopen for σ. Consider the cycle center Fi,1−j . It cannot be

closed as 1 − j = βi+1 and βi = 0. If Fi,1−j was t←-open with respect to σ, then the

assumption Aσ
σ(3) ⊆ E1∪D0 implies that it was t←-open with respect to σ(3), contradicting

Corollary 6.3.7. If Fi,1−j was t→-open, then (ei,1−j,k′ , t
→) ∈ Aσ

σ(3) for both k′ ∈ {0, 1}.

This implies that σ(3)(di,1−j,k′) = Fi,1−j , hence Fi,1−j was closed with respect to σ(3). But

this is not possible as 1− j = βi+1 and i > ν then imply βi = 1, contradicting that Fi,1−j

is t→-open. By the same argument, Fi,1−j cannot be t→-halfopen for σ.
Now assume that Fi,1−j is mixed. Then, (ei,1−j,k′ , b2), (di,1−j,k′ , ei,1−j,k′) ∈ Aσ

σ3
for some

k′ ∈ {0, 1}. This implies that (ei,1−j,k′ , t
→) precedes (ei,j,k, t

→) within the tie-breaking

rule. Consequently, Fi,j cannot be closed or t→-halfopen and is hence t←-halfopen.
Furthermore, this implies that Fi,1−j = Fi,βi+1

was also t←-halfopen for σ(3). Therefore,

no cycle center of level i was closed at the end of phase 1. Thus, by Corollary 6.3.2,

σ(gi) = σ(3)(gi) = σb(gi) = Fi,1−j . The statement thus follows by Lemma 6.2.24.

Next, assume that Fi,1−j is g1-halfopen. Then Fi,j cannot be g1-halfopen since the

tie-breaking rule would then choose to apply an improving switch involving Fi,1−j as

1 − j = βi+1. Thus consider the case that Fi,j is closed. We show that we can apply

Lemma 6.2.25. By assumption, Iσ ∩ D0 = {e}, hence there is no other improving switch

(d∗,∗,∗, e∗,∗,∗). As βi = 0 and since Fi,1−j is t
←-halfopen, we also need to prove σ(gi) = Fi,j .

This however follows by Corollary 6.3.2 if Fi,j is closed during phase 1 resp. Definition 5.2.1

if it was already closed with respect to σb. Since σ is a phase-3-strategy, i′ > i > ν implies

σ(si,1−βi′+1
) = b1 by Property (USV1)i. Now, let i′ > i and βi′ = 0. Then, due to the

tie-breaking rule, all improving switches (ei′,∗,∗, b2) ∈ E1 have already been applied. Since

βi′ = 0, the cycle center Fi′,βi′+1
cannot have been closed with respect to σ(3). If both

cycle centers of level i′ were t←-halfopen for σ(3), then they are mixed for σ, and, in
addition, σ(gi′) = σ(3)(gi′) = σb(gi′) = Fi′,βi′+1

. If the cycle center Fi′,1−βi′+1
is closed for

σ(3), then Fi′,βi′+1
can only be t←-halfopen for σ(3). Consequently, by Corollary 6.3.2 resp.

Definition 5.2.1 and our previous arguments, this implies σ(gi′) = 1− βi′+1. Furthermore,

Fi′,1−βi′+1
is then t→-open and Fi′,βi′+1

is t→-halfopen (for σ). Similarly, if i′ > i and

βi′+1 = 1, then Fi′,1−βi′+1
is t→-open if it was closed for σ(3) and mixed if it was t←-

halfopen. Hence, all requirements of Lemma 6.2.25 are met and the statement follows

since i > ν.
Finally, assume that Fi,j is t→-halfopen. If we can prove that σ(gi) = Fi,j , then the

statement follows by Lemma 6.2.27. This however follows immediately since Fi,j can only

be t→-halfopen if it was closed with respect to σ(3), implying σ(gi) = Fi,j by the same

statements used several times before.
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Claim 6. Let σ denote the phase-3-strategy in which the improving switch (b1, t
→) should

be applied next. If ν > 1, then σ(ebi,j) ∧ ¬σ(egi,j) for all (i, j) ∈ S1 and, in addition,

σ(ebi,j) ∧ σ(egi,j) for all (i, j) ∈ S2. If ν = 1, then σ(egi,j) ∧ ¬σ(ebi,j) for all (i, j) ∈ S4

and σ(ebi,j) ∧ σ(egi,j) for all (i, j) ∈ S3.

Proof. The definition of the sets S1 to S4 implies that βi = 0∨βi+1 6= j for all of the relevant
indices. We thus begin by considering some fixed but arbitrary indices i ∈ [n], j, k ∈ {0, 1}
with βi = 0 ∨ βi+1 6= j. Then, due to the previous application of the improving switches

during phase 3, it holds that (ei,j,k, t
→) ∈ Aσ

σ(3) if and only if σ(3)(di,j,k) = Fi,j . Thus,

(ei,j,k, t
→) /∈ Aσ

σ(3) if and only if σ(3)(di,j,k) = ei,j,k. Since ei,j,k has an outdegree of 2 by

construction, this implies that σ(ei,j,k) = t← if and only if σ(3)(di,j,k) = ei,j,k. In particular,

due to βi = 0 ∨ βi+1 6= j, the switch (di,j,k, ei,j,k) was then also applied. Hence, if there is

a k′ ∈ {0, 1} with σ(3)(di,j,k′) = ei,j,k′ , then σ(egi,j) if ν > 1 resp. σ(ebi,j) if ν = 1.
Now, consider some fixed indices i ∈ [n], j ∈ {0, 1} and the corresponding cycle

center Fi,j . Since every cycle center is closed or escapes to t→ with respect to σ, either
σ(ebi,j) ∧ σ(egi,j) or σ(ebi,j) ∧ ¬σ(egi,j) or σ(di,j) if ν > 1. Similarly, if ν = 1, either
σ(egi,j) ∧ σ(ebi,j) or σ(egi,j) ∧ ¬σ(ebi,j) or σ(di,j). Consequently, σ(ebi,j) ∧ σ(egi,j) holds
if and only if there is ak ∈ {0, 1} such that that σb(di,j,k) 6= Fi,j and (di,j,k, Fi,j) was not

applied during phase 1. By Lemma 6.3.6, all improving switches of the type (d∗,∗,∗, F∗,∗)
not applied in phase 1 had φσb(d∗,∗,∗, F∗,∗) = m. By Corollary 6.3.7, it thus suffices to prove

that there is a k ∈ {0, 1} with φσb(di,j,k, Fi,j) = m to prove σ(ebi,j)∧σ(egi,j). Analogously,
to prove σ(ebi,j) ∧ ¬σ(egi,j) resp. σ(egi,j) ∧ ¬σ(ebi,j), it suffices to show that Fi,j was

closed at the end of phase 1.

Let ν > 1. Let m = max{i : σ(bi) = gi} and u = min{i : σ(bi) = bi+1}.

1. We prove that φσb(di,j,0, Fi,j) = m for all (i, j) ∈ S2.

• Let i ≤ ν − 1, j = βi+1 and k ∈ {0, 1}. Then, bi+1 6= (b+ 1)i+1 = βi+1 by the

choice of i. In particular, j 6= bi+1. Thus, there is a feasible tb for b with

φσb(di,j,k, Fi,j) = min

(⌊
b+ 1− k

2

⌋
, ℓb(i, j, k) + tb

)
.

However, the choice of i implies bi = 1 and thus tb = 0 is the only feasible

parameter. It thus suffices to show ℓb(i, j, 0) ≥ m. Since bi = 1 and j 6= bi+1,

this follows from Lemma 6.2.3.

• Let i ∈ {ν + 1, . . . ,m}, βi = 1 and j = 1 − βi+1. Since i > ν implies βi = bi
and βi+1 = bi+1, we can deduce ℓb(i, j, 0) ≥ m as in the previous case.

• Let i ∈ {ν, . . . ,m− 1} ∧ βi = 0 and j = βi+1. Since i+ 1 > ν implies that we

have βi+1 = bi+1, bν−1 = 1 and ν ≥ 2, we obtain ℓb(i, j, 0) > m+ 1 as

ℓb(i, j, 0) =

⌈
b+ 2i−1 +

∑
(b, i) + 1

2

⌉
≥

⌈
b+ 2i−1 + 2ν−2 + 1

2

⌉

≥

⌈
b+ 2ν−1 + 2ν−2 + 1

2

⌉
≥

⌈
b+ 4

2

⌉
=

⌊
b+ 5

2

⌋
>

⌊
b+ 1

2

⌋
+ 1.

Thus, ℓb(i, j, 0) + tb > m for every tb feasible for b, implying the statement.
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• Let i > m and j ∈ {0, 1}. Then, lfn(b, i + 1) = lufn(b, i + 1) = 0 since

b′i = 0 for all b′ ≤ b. Hence, by Lemma 6.2.3, ℓb(i, j, k) ≥ b. Consequently,

φσb(di,j,0, Fi,j) = m

• Let b + 1 = 2l for some l ∈ N. Then ν = l + 1 and bν = 0. This im-

plies lfn(b, ν, {(ν, 1)}) = lfn(b, ν + 1) = lufn(b, ν + 1) = 0 and consequently

φσb(di,j,0, Fi,j) = m.

2. We prove that either σb(di,j) or φ
σb(di,j,k, Fi,j) < m for both k ∈ {0, 1} holds for all

(i, j) ∈ S1.

• Let i ≤ ν − 1 and j = 1− βi+1. Then bi = 1 and j = 1− βi+1 = bi+1. Hence

Fi,j was closed with respect to σb.

• Let i ∈ {ν, . . . ,m − 1}, βi = 0, j = 1 − βi+1 and k ∈ {0, 1}. Then bi = βi =
0, βi+1 = bi+1 and βi = 0 implies i 6= ν. In particular, ν ≤ i − 1 and bν = 0.
Using Lemma 6.2.3, this implies ℓb(i, j, k) ≤ ⌊(b+ 1− k)/2⌋ − 1. Rearranging
this inequality implies φσb(di,j,k, Fi,j) ≤ ℓb(i, j, 1) + 1. If this inequality is

strict, the statement follows. If the inequality is tight, then σb(di,j,k) = Fi,j by

Property (OR2)i,j,k and thus φσb(di,j,k, Fi,j) < m by Property (OR1)i,j,k.

• Assume that there is no l ∈ N with b+ 1 = 2l and let i = ν and j = 1− bν+1.

Since b is odd, Property (OR3)i,j,0 implies φσb(di,j,0, Fi,j) < m. For k = 1, b
being odd implies φσb(di,j,1, Fi,j) ≤ ⌊(b+ 1− 1)/2⌋ < m.

We now consider the case ν = 1, implying bi = (b+ 1)i for all i > 1.

1. We prove that φσb(di,j,0, Fi,j) = m for all (i, j) ∈ S3.

• Let i ∈ [u] and j = 1− βi+1. By the definition of u, it holds that βi = bi = 1 if

i < u ∧ i 6= 1 and bi = 0 if i = u ∨ i = 1. In either case, j = 1− bi+1. Hence,

in the first case, Lemma 6.2.3 implies

ℓb(i, j, 0) =

⌈
b+

∑
(b, i) + 1

2

⌉
≥

⌈
b+ 1

2

⌉
≥

⌊
b+ 1

2

⌋
.

This implies φσb(di,j,0, Fi,j) = m since −1 is not a feasible parameter as b is

even. Consider the second case, implying

ℓb(i, j, 0) =

⌈
b− 2i−1 +

∑
(b, i) + 1

2

⌉
.

If i = 1, then ℓb(i, j, 0) = ⌈b/2⌉ = m. If i = u, then bi′ = 1 for all indices

i′ ∈ {2, . . . , u − 1} and b1 = 0. This implies ℓb(i, j, 0) = m, and hence the

statement since b is even.

• Let i ∈ {u + 1, . . . ,m}, βi = 1 and j = 1 − βi+1. Then i ≥ 2, bi = 1 and

j = 1− bi+1. Thus, φ
σb(di,j,0, Fi,j) = m follows by the same arguments used

in the last case.

• Let i ∈ {u+ 1, . . . ,m− 1}, βi = 0 and j = βi+1. Then i ≥ 2 as well as bi = 0
and j = bi+1 and φσb(di,j,0, Fi,j) = m follows from Lemma 6.2.3 and

ℓb(i, j, 0) =

⌈
b+ 2i−1 +

∑
(b, i) + 1

2

⌉
≥

⌈
b+ 3

2

⌉
≥

⌊
b+ 1

2

⌋
+ 1.
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• Let i > m and j ∈ {0, 1}. Then, 1j=0lfn(b, i + 1) + 1j=1lufn(b, i + 1) = 0
by the definition of m. Hence, by Lemma 6.2.3, ℓb(i, j, k) ≥ b. This implies

φσb(di,j,0, Fi,j) = m.

• Finally consider the pair (u, βσ
u+1). Then, by definition, βu = 0 and βu+1 = bu+1.

If u > 1, the statement follows as in the third case. The case u = 1 is not

possible since ν = 1.

2. We prove that φσb(di,j,k, Fi,j) < m for both k ∈ {0, 1} for all (i, j) ∈ S4. First,

(i, j) ∈ S4 implies i ∈ {u + 1, . . . ,m − 1}, βi = 0 and j = 1 − βi+1. Since i > u
implies i > 1, we have bi = 0 and j = 1− bi+1. Consequently, by Lemma 6.2.3,

ℓb(i, j, k) =

⌈
b− 2i−1 +

∑
(b, i) + 1− k

2

⌉

=

⌈
b− 2i−1 +

∑u−1
l=2 2l−1 +

∑i−1
l=u+1 bl2

l−1 + 1− k

2

⌉
.

We prove that this implies ℓb(i, j, k) < m, implying the statement as we then either

have φσb(di,j,k, Fi,j) < m or φσb(di,j,k, Fi,j) = ℓb(i, j, k) + 1. If u = 2, then

ℓb(i, j, k) =

⌈
b− 2i−1 +

∑i−1
l=3 bl2

l−1 + 1− k

2

⌉
≤

⌈
b− 2i−1 + 2i−1 − 4 + 1− k

2

⌉

=

⌈
b− 3− k

2

⌉
=

⌈
b− 1− k

2

⌉
− 1 ≤

⌊
b+ 1− k

2

⌋
− 1

≤

⌊
b+ 1

2

⌋
− 1 <

⌊
b+ 1

2

⌋
.

If u > 2, then

ℓb(i, j, k) ≤

⌈
b− 2i−1 +

∑u−1
l=2 2l−1 +

∑i−1
l=u+1 2

l−1 + 1− k

2

⌉

=

⌈
b− 2i−1 + 2u−1 − 2 + 2i−1 − 2u + 1− k

2

⌉
=

⌈
b− 2u−1 + 1− k

2

⌉

≤

⌈
b− 4 + 1− k

2

⌉
<

⌊
b+ 1

2

⌋
.

Claim 7. The strategy σe meets the five requirements of Lemma 6.2.25 and the lemma

thus describes the application of the improving switch (di,j,k, ei,j,k).

Proof. As a reminder, we have i = ν − 1, j = 1 − bi+1 and k ∈ {0, 1}. There are no

other indices i′, j′, k′ with (di′,j′,k′ , ei′,j′,k′) ∈ Iσe. Also, since no such switch was applied

previously in any level below level i, the cycle center Fi,j is closed for σe as it was closed

for σ(3) by Lemma 6.3.6. As i < ν and bi = 1 ∧ bi+1 6= βσe
i+1, Definition 5.2.1 implies
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that σb(gi) = Fi,j . By the same arguments used when discussing the case Gn = Sn resp.

Claim 6, it can be proven that Fi,1−j was not closed during phase 1 as (i, 1−j) ∈ S2. Conse-

quently, σe(gi) = Fi,j follows from Corollary 6.3.2. By the tie-breaking rule, no improving

switch involving Fi,1−j was applied yet. Therefore, σe(ei,1−j,∗) = σ(3)(ei,1−j,∗) = g1 as well
as σe(di,1−j,∗) = σ(3)(di,1−j,∗). By Corollary 6.3.7, Fi,1−j cannot be open for σ(3), so it is

not open for σe. Therefore, as βi = 0 and 1− j = βi+1, it is g1-halfopen. Thus, the first

requirement of Lemma 6.2.25 is met.

By Lemma 6.3.6 and since (si′,∗, hi′,∗) /∈ Aσe
σ(3) for all i

′ < ν, it follows that we have

σe(si′,∗) = σ(3)(si′,∗) = hi′,∗ for all i
′ < ν. Furthermore, i′ < ν implies bi′ = 1 and no

improving switch (d∗,∗,∗, e∗,∗,∗) below level ν was applied yet. Consequently, σe(di′) for
all i′ < ν. Now consider some cycle center Fi′,j′ where i′ < i and j′ = 1 − σe(gi′). We

prove that Fi′,j′ is g1-halfopen. The cycle center Fi′,βi′+1
is not closed while Fi′,1−βi′+1

is

closed due to 1− βi′ = bi′ . Thus, by Corollary 6.3.2 and the same arguments used before,

σe(gi′) = σb(gi′) = 1 − βi′+1 and, in particular, j′ = βi′+1. However, by Corollary 6.3.7

and the tie-breaking rule, this implies that Fi′,j′ is g1-halfopen as before. Thus, the second

requirement is met.

The third requirement is met as i′ > i = ν − 1 and since σe has Property (USV1)i′ .

Consider the fourth requirement. Let i′ > i and βi′ = 0. Then, due to the tie-breaking

rule, all improving switches (ei′,j′,k′ , b2) with σ(3)(di′,j′,k′) = Fi′,j′ have already been

applied. Since βi′ = 0, Fi′,βi′+1
cannot have been closed for σ(3). If both cycle centers

of level i′ were g1-halfopen for σ(3), then they are mixed for σ, and σ(gi′) = σ(3)(gi′) =
σb(gi′) = Fi′,βi′+1

. If Fi′,1−βi′+1
is closed for σ(3), then Fi′,βi′+1

can only be g1-halfopen

for σ(3). Consequently, by Corollary 6.3.2 resp. Definition 5.2.1, σ(gi′) = 1 − βi′+1.

Furthermore, Fi′,1−βi′+1
is then b2-open and Fi′,βi′+1

is b2-halfopen (for σ). Thus, the

fourth requirement is met.

By the same argument, if i′ > i and βi′+1 = 1, then Fi′,1−βi′+1
is b2-open if it was closed

for σ(3) and mixed if it was g1-halfopen. Thus, the fifth and final requirement is met.

Claim 8. Let σ denote the first phase-4-strategy in Sn for ν > 1. Then, the switch

(sν−1,0, b1) is applied next and the application of this switch is described by Lemma 6.2.31.

Proof. We first consider the case that b+ 1 is a power of two, implying b = 2ν−1 − 1. We

distinguish four kinds of improving switches.

1. Let e = (sν−1,0, b1). Then, φ
σ(e) = 0 follows from

φσ(e) = fl(b, ν) =

⌊
b+ 2ν−1

2ν

⌋
<

⌊
2ν−1 + 2ν−1

2ν

⌋
.

2. Let e = (si,1, b1) for i ≤ ν−2. Then, φσ(e) = fl(b, i+1)−j·bi+1 =
⌊
(b+ 2i)/2i+1

⌋
−1.

If i = ν − 2, then ν ≥ 3 and

φσ(e) =

⌊
2ν−1 − 1 + 2ν−2

2ν−1

⌋
− 1 =

⌊
1 +

2ν−2 − 1

2ν−1

⌋
− 1 = 0.

If i ≤ ν − 3, then ν ≥ 4 and

φσ(e) ≥

⌊
2ν−1 − 1 + 2ν−3

2ν−2

⌋
− 1 =

⌊
2 +

2ν−3 − 1

2ν−2

⌋
− 1 = 1.
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3. Let e = (di,j,k, Fi,j) for some indices i ∈ [n], j, k ∈ {0, 1} with σ(ei,j,k) = g1. Then
φσ(e) = m ≥ 1.

4. Let e = (ei,j,k, b2) for some indices i ∈ [n], j, k ∈ {0, 1} with σ(ei,j,k) = g1. Then,
φσ(e) = ⌊b/2⌋ ≥ 1 if b > 1 and φσ(e) = 0 if b = 1.

Thus, (sν−1,0, b1) and (sν−2,1, b1) both minimize the occurrence record if b > 1. If b = 1,
then all switches (ei,j,k, b2) with i ∈ [n], j, k ∈ {0, 1} and σ(ei,j,k) = g1 also minimize the

occurrence record. Due to the tie-breaking rule, (sν−1,0, b1) is thus applied next in either

case.

Now consider the case that b+ 1 is not a power of two. Then b ≥ 2ν + 2ν−1 − 1 and

b ≥ 6, implying ⌊(b+ 2)/4⌋ < m and ⌊(b+ 2)/4⌋ < ⌊b/2⌋. We prove that (sν−1,0, b1)
minimizes the occurrence record.

1. Let e = (sν−1,0, b1). Then, φσ(e) = fl(b, ν) =
⌊
(b+ 2ν−1)/2ν

⌋
≤ ⌊(b+ 2)/4⌋ as

b ≥ 6 implies ν ≥ 2.

2. Let e = (di,j,k, Fi,j) with i ∈ [n], j, k ∈ {0, 1} and σ(ei,j,k) = g1. Then φσ(e) = m,

implying that φσ(e) > φσ(sν−1,0, b1).

3. Let e = (ei,j,k, b2) with i ∈ [n], j, k ∈ {0, 1} and σ(ei,j,k) = g1. Then φσ(e) = ⌊b/2⌋
by Table 5.6, implying that φσ(e) > φσ(sν−1,0, b1).

4. Let e = (si,1, b1) with i ≤ ν − 2. Then, φσ(e) = fl(b, i + 1) − bi+1 = fl(b, i + 1) − 1
by Table 5.6. Hence, φσ(e) = fl(b, i + 1) − 1 > fl(b, ν) − 1 > φσ(sν−1,0, b1) − 1 by

Lemma 6.2.6. Thus, by integrality, φσ(e) ≥ φσ(sν−1,0, b1).

5. Let e = (di,j,k, Fi,j), with i = ν, j = 1− βi+1 and k ∈ {0, 1}. By the definition of a

canonical strategy, σb(di,j,k) 6= Fi,j . Hence φσb(e) = min(
⌊
b+1−k

2

⌋
, ℓb(i, j, k) + tb),

where tb is feasible for b. Since bi = bν = 0 and βi+1 = bi+1, Lemma 6.2.3 then

implies

ℓb(i, j, k) =

⌈
b− 2i−1 +

∑
(b, i) + 1− k

2

⌉

=

⌈
b− 2i−1 + 2i−1 − 1 + 1− k

2

⌉
=

⌊
b+ 1− k

2

⌋
.

Hence, by Property (OR3)i,j,k, φ
σb(e) = ℓb(i, j, k) − 1 = m − 1 for k = 0 and

φσb(e) = ℓb(i, j, k) = m − 1 for k = 1. If k = 1, Corollary 6.3.3 implies that the

edge e was applied during phase 1. Consequently, φσ(e) = m > φσ(sν−1,0, b1).

6. Let e = (di,j,k, Fi,j) with i ∈ {ν + 1, . . . ,m− 1}, βi = 0, j = 1− βi+1 and k ∈ {0, 1}.
By the choice of i, it then follows that bi = 0 and j = 1 − bi+1. If we have

φσb(e) = ⌊(b+ 1− k)/2⌋, then it either holds that φσb(e) = m − 1 or φσb(e) = m.
In both cases, b ≥ 6 implies that φσ(sν−1,0, b1) ≤ φσb(e) ≤ φσ(e). Thus assume

φσb(e) = ℓb(i, j, k) + tb for some tb feasible for b and φσb(e) 6= ⌊(b+ 1− k)/2⌋. By
Lemma 6.2.3,

ℓb(i, j, k) =

⌈
b− 2i−1 +

∑
(b, i) + 1− k

2

⌉
≥

⌈
b− 2i−1 + 2ν−1 − k

2

⌉

=

⌊
b− 2i−1 + 2ν−1 + 1− k

2

⌋
.
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We prove that ℓb(i, j, k) > ⌊(b+ 2)/4⌋, implying φσ(e) ≥ φσ(sν−1,0, b1). We begin

by observing

ℓb(i, j, k) =

⌊
b− 2i−1 + 2ν−1 + 1− k

2

⌋

=

⌊
2b− 2i + 2ν + 2− 2k

4

⌋
≥

⌊
2b− 2i + 2ν

4

⌋
.

By the choice of i and j, the cycle center Fi,j was closed at least once during some

previous transition. But, since bi = 0, the cycle center was also opened again later.

This implies b ≥ 2i−1 + 2i−1 + 2ν−1 − 1 = 2i + 2ν−1 − 1. Thus,

2b− 2i + 2ν − [b+ 2] = b− 2i + 2ν − 2

≥ 2i + 2ν−1 − 1− 2i + 2ν − 2

= 2ν + 2ν−1 − 3 ≥ 4 + 1− 3 = 2.

Since 2b − 2i + 2ν is even and larger than 0 and since b being odd implies b + 2
being odd, this difference is at least 3. It is easy to show that, in general, x being

even and larger than 0, y being odd and x − y ≥ 3 implies ⌊x/4⌋ > ⌊y/4⌋. This
yields ℓb(i, j, k) > ⌊(b+ 2)/4⌋.

It remains to prove that Lemma 6.2.31 describes the application of e. Since σ is a phase-

4-strategy and since i′ > i = ν− 1 implies i′ ≥ ν, σ has Property (USV1)i′ for all i
′ > i. By

Lemma 6.3.9, it follows that σ also meets the other requirements of Lemma 6.2.31.

Claim 9. For all e ∈ Iσ, it holds that φσ(e) ≤ m. Let e ∈ Iσ with φσ(e) < m. Then,

e = (di,j,k, Fi,j) with i ∈ {u+ 1, . . . ,m− 1}, j = 1− βi+1, k ∈ {0, 1} and σb(di,j,k) = Fi,j .

Proof. By Lemma 6.3.12, the set of improving switches can be partitioned as follows:

1. Let e = (di,j,k, Fi,j) resp. e = (ei,j,k, g1) with i ∈ [n], j, k ∈ {0, 1} and σ(ei,j,k) = b2.
Then φσ(e) = m resp. φσ(e) = φσb(e) = ⌈b/2⌉ = m by Lemma 6.3.12.

2. Let e = (di,j,k, Fi,j) with βi = 0, i ∈ {u+ 1, . . . ,m− 1}, j = 1− βi+1 and k ∈ {0, 1}.
Then, bi = 0 and j = 1 − bi+1 since i ≥ u + 1 > 1 and ν = 1. In addition, b1 = 0
and, due to i > u, there is at least one l ∈ {2, . . . , i − 1} with (b + 1)l = bl = 0.
Consequently, Lemma 6.2.3 yields

ℓb(i, j, k) =

⌈
b− 2i−1 +

∑
(b, i) + 1− k

2

⌉
≤

⌈
b− 3− k

2

⌉
=

⌊
b− k

2

⌋
− 1.

Since there is a tb feasible for b, φσb(e) = min(⌊(b+ 1− k)/2⌋ , ℓb(i, j, k) + tb). We

thus distinguish the following cases.

a) Let φσb(e) = ℓb(i, j, k)+ 1. Then, by Property (OR2)i,j,k, σb(di,j,k) = Fi,j and e
was not applied during σb → σ as switches of this type were only applied during

phase 1 so far. Consequently, φσ(e) = φσb(e) < m by Property (OR1)i,j,k.
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b) Let φσb(e) = ℓb(i, j, k). Then, φσb(e) ≤ φσ(e) ≤ ⌊(b− k)/2⌋ − 1 < m as well as

σb(di,j,k) 6= Fi,j by Property (OR2)i,j,k. Using Property (OR4)i,j,k, this implies

φσb(e) = m − 1. Hence, by Corollary 6.3.3, e was applied during phase 1.

Consequently, φσ(e) = φσb(e) + 1 = m.

c) The case φσb(e) = ℓb(i, j, k)− 1 cannot occur since the parameter tb = −1 is

not feasible as b is even.

d) Let φσb(e) = ⌊(b+ 1− k)/2⌋ but ⌊(b+ 1− k)/2⌋ 6= ℓb(i, j, k), ℓb(i, j, k) + 1.
This implies that we need to have ⌊(b+ 1− k)/2⌋ < ℓb(i, j, k) since it holds

that φσb(e) = min(⌊(b+ 1− k)/2⌋ , ℓb(i, j, k) + tb). But this is a contradiction

since ℓb(i, j, k) ≤ ⌊(b− k)/2⌋ − 1.

Since the only improving switches with an occurrence record lower thanm are the switches

described in case 2.a), the second part of the statement follows.

Claim 10. Let σ denote the phase-5-strategy at the beginning of phase 5 for ν = 1. Let
i,∈ [n], j, k ∈ {0, 1} such that e = (di,j,k, Fi,j) ∈ Iσ and φσ(e) < m. Row 1 of Table 6.7

can be applied to describe the application of e.

Proof. We currently consider the first phase-5-strategy σ as described by Lemma 6.3.12 and

an improving switch e = (di,j,k, Fi,j) with i ∈ {u+1, . . . ,m− 1}, βi = 0, j = 1− βi+1 and

k ∈ {0, 1} as well as σb(di,j,k) = Fi,j . We have to prove σ(bi) = bi+1, j = 1− βi+1, σ(gi) =
1− βi+1 and i 6= 1. The first two statements follow directly since σ is a phase-5-strategy
and βi = 0 as well as by the choice of j. Also, i 6= 1 follows from i ≥ u + 1 > 1. It thus
suffices to show σ(gi) = 1− βi+1.

For the sake of a contradiction, let σ(gi) = Fi,βi+1
. Since βi = 0 and ν = 1, it holds

that bi = (b + 1)i = 0, implying i 6= ν. By Corollary 6.3.2, the only improving switch

from a selector vertex towards the active cycle center of a level that can be performed

during phase 1 is (gν , Fν,bν+1). This implies (gi, Fi,βi+1
) /∈ Aσ

σb
, hence σb(gi) = Fi,βi+1

.

If σb(di,j,1−k) = Fi,j , then Fi,j = Fi,1−βi+1
was closed at the beginning of phase 1 as

σb(di,j,k) = Fi,j . But this implies σb(gi) = Fi,1−βi+1
by the definition of a canonical

strategy which is a contradiction. Thus let σb(di,j,1−k) 6= Fi,j , implying that we have

φσb(di,j,1−k, Fi,j) 6= ℓb(i, j, 1− k) + 1. Then, by the same arguments used when proving

Claim 9, it follows that ℓb(i, j, 1− k) ≤ ⌊(b− (1− k))/2⌋ − 1. Also, by these arguments,

it cannot happen that φσb(di,j,1−k) = ⌊(b+ 1− (1− k))/2⌋ 6= ℓb(i, j, 1 − k). Since the

parameter tb = −1 is not feasible, we thus have

φσb(di,j,1−k, Fi,j) = ℓb(i, j, 1− k) ≤

⌊
b− (1− k)

2

⌋
− 1 <

⌊
b+ 1

2

⌋
.

But this implies that (di,j,1−k, Fi,j) was applied in phase 1 by Corollary 6.3.3. Hence, Fi,j

was closed in phase 1. But then, by Corollary 6.3.2, (gi, Fi,j) became improving during

phase 1 and was thus applied. This implies σ(gi) = Fi,j = Fi,1−βi+1
, contradicting the

assumption. Consequently, σ(gi) = Fi,1−βi+1
.

Claim 11. Let ν = 1 and let σ denote the strategy obtained after applying all improving

switches with an occurrence record less than m during phase 5. Then, Lemma 6.2.32 can

be applied to describe the application of e = (ei,j,k, g1).
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Proof. First, we show that Fi,j is mixed. Since e = (ei,j,k, g1) ∈ Iσ implies (di,j,k, Fi,j) ∈ Iσ
by Equation (6.3), we have σ(ebi,j). In particular, Fi,j is not closed, so βi = 0 ∨ βi+1 6= j.
Consequently, (i, j) ∈ S3 or (i, j) ∈ S4. By Lemma 6.3.12, σ(ebi,j), and as no improving

switch (e∗,∗,∗, b2) was applied during σ(5) → σ, we need to have (i, j) ∈ S3, implying the

statement. We now prove that j = 1 implies ¬σ(ebi,1−j) if Gn = Sn. Since j = 1, we need

to prove ¬σ(ebi,0). If Fi,0 is closed, then the statement follows. If Fi,0 is not closed, then

βi = 0 ∨ βi+1 6= j as Fi,1 cannot be closed by the choice of e. Consequently, (i, 0) ∈ S3

or (i, 0) ∈ S4. In the second case, ¬σ(5)(ebi,0) by Lemma 6.3.12 and the statement

follows as no improving switch (e∗,∗,∗, b2) was applied during σ(5) → σ. Consider the case

(i, 0) ∈ S3. Then, by Lemma 6.3.12, Fi,0 and Fi,1 are mixed with respect to σ(5). Thus,

as we consider the case Gn = Sn, the tie-breaking rule must have applied the improving

switches (ei,0,∗, g1) prior to (ei,1,k, g1), implying the statement. Note that the statement

“j = 1− βi+1 =⇒ ¬σ(ebi,1−j) if Gn = Mn” follows by the same arguments and since the

tie-breaking rule applies improving switches (ei,βi+1,∗, g1) first.

Corollary 6.3.15. Let ν = 1 and i ∈ [n], j, k ∈ {0, 1}. If the edge ẽ = (di,j,1−k, Fi,j) becomes

improving during phase 5 due to the application of (ei,j,k, g1), then the corresponding strategy

has Property (OR4)i,j,1−k.

Proof. Let σ denote the strategy before the application of the switch (ei,j,k, g1) and let σe
denote the strategy obtained after the application of this switch. By the same arguments

used in the proof of Claim 11, it follows that Fi,j is mixed with respect to σ. By the

characterization of Iσ given in Equation (6.3), it holds that (di,j,k, Fi,j) ∈ Iσ, implying

σ(di,j,k) 6= Fi,j and σe(di,j,k) 6= Fi,j . Since σ is a phase-5-strategy for b, this furthermore

implies βi = 0 ∨ βi+1 6= j.

Assume that ẽ was applied previously in this transition. It is not possible that ẽ was

applied during phase 5 as this would imply σ(di,j,1−k) = Fi,j , contradicting that Fi,j is

mixed with respect to σ. Consequently, ẽ was applied during phase 1. We thus need

to have σb(di,j,1−k) 6= Fi,j and φσb(ẽ) ∈ {m − 1,m} by Property (OR4)i,j,1−k. This in

particular implies φσe(ẽ) ∈ {m,m+ 1} and hence the statement.

Now assume that ẽwas not applied previously in this transition, implying φσe(ẽ) = φσb(ẽ).
Let σb(di,j,1−k) 6= Fi,j . Then, by Property (OR4)i,j,1−k and Corollary 6.3.3, it follows that

φσb(ẽ) = m. Thus let σb(di,j,1−k) = Fi,j . Then, by Properties (OR1)i,j,1−k and (OR2)i,j,1−k,

it holds that φσb(ẽ) = ℓb(i, j, 1− k)+1 < m. We now prove that this yields a contradiction.

1. Let, for the sake of a contradiction, βi = 1 ∧ βi+1 6= j. Assume bi = 0 ∧ bi+1 6= j.
Since ν = 1, this implies i = ν = 1. Thus, as b is even,

ℓb(i, j, 1− k) =

⌈
b− 20 +

∑
(b, i) + 1− (1− k)

2

⌉
=

⌊
b+ 1

2

⌋
= m

by Lemma 6.2.3. But then, φσb(ẽ) = ℓb(i, j, 1−k)+1 = m+1which is a contradiction.

Assuming bi = 1 ∧ bi+1 6= j also results in a contradiction since

ℓb(i, j, 1− k) =

⌈
b+

∑
(b, i) + 1− (1− k)

2

⌉
≥

⌈
b+ k

2

⌉
≥

⌊
b+ 1

2

⌋
.
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2. Let, for the sake of a contradiction, βi = 0 ∧ βi+1 = j. Then also bi = 0 ∧ bi+1 = j
and i ≥ 2 since ν = 1. Then, Lemma 6.2.3 implies

ℓb(i, j, 1− k) ≥

⌈
b+ 3− (1− k)

2

⌉
≥

⌊
b+ 1

2

⌋
+ 1.

This yields a contradiction as before.

3. Let, for the sake of a contradiction, βi = 0 ∧ βi+1 6= j. This implies that i ≥ u. If
i > m, then Lemma 6.2.3 implies ℓb(i, j, 1 − k) ≥ b, contradicting that we have

φσb(ẽ) = ℓb(i, j, 1− k) + 1 < m. We hence may assume i ∈ {u, . . . ,m− 1}. If i 6= u,
then Lemma 6.3.12 implies (di,j,1−k, Fi,j) ∈ Iσ(5) . But then, the switch was applied

during σb → σe, contradicting the assumption. Hence let i = u. Then, βi′ = 1 for all

i′ < u = i. Consequently,

ℓb(i, j, 1− k) =

⌈
b− 2i−1 +

∑
(b, i) + 1− (1− k)

2

⌉

=

⌈
b− 2i−1 + 2i−1 − 1− 1 + 1− 1 + k

2

⌉
=

⌈
b− 2 + k

2

⌉

=

⌊
b− 1 + k

2

⌋
.

But this implies φσb(di,j,1−k) = ℓb(i, j, 1 − k) + 1 = m and thus contradicts Prop-

erty (OR1)i,j,1−k.

Claim 12. If ν = 1, then the strategy σ obtained before the application of the switch

e := (e1,1−β2,k, g1) has Property (SVG)i/(SVM)i for all i ∈ [n].

Proof. Consider some arbitrary but fixed index i ∈ [n]. If βi = 1, then the statements

follow from the definition of a phase-5-strategy. If βi = 0 and (gi, Fi,j) ∈ Aσ
σ(5) , then this

follows from Corollary 6.3.16. Thus, let βi = 0 and (gi, Fi,j) /∈ Aσ
σ(5) , implying i 6= 1 since

ν = 1. We now prove the following statement. If σ(gi) = 1 resp. σ(gi) = 1 − βi+1 and

¬σ(di,1) resp. ¬σ(di,1−βi+1
) then (gi, Fi,0) ∈ Iσ resp. (gi, Fi,βi+1

) ∈ Iσ. This is sufficient to

prove the statement as Iσ ∩G = ∅.
Thus, let j := 0 (if Gn = Sn) resp. j := βi+1 (if Gn = Mn) and assume ¬σ(di,1−j).

It suffices to prove Val∗σ(Fi,j) ≻ Val∗σ(Fi,1−j). Since σ(ei′,j′,k′) = g1 for all (i′, j′, k′) 6=
(1, β2, k), i 6= 1 and µσ = u 6= 1, the two cycle centers Fi,∗ are either closed or escape only

to g1.
Consider the case Gn = Sn. If both cycle centers escape towards g1, then the statement

follows from

ValSσ(Fi,0) = {Fi,0, di,0,∗, ei,0,∗, b1} ∪ValSσ(g1)

⊲ {Fi,1, di,1,∗, ei,1,∗, b1} ∪ValSσ(g1) = ValSσ(Fi,1).

Since we currently consider the case βi = 0, only Fi,1−βi+1
can be closed, so assume this

is the case. Assume that 0 = 1− βi+1, so j = 1− βi+1. Then, by Property (USV1)i and
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σ(b1) = g1, the statement follows since ValSσ(Fi,0) = {si,0, b1}∪ValSσ(g1) and ValSσ(Fi,1) =
{Fi,1, di,1,k, ei,1,k, b1} ∪ rValSσ(g1) for some k ∈ {0, 1}. Thus assume that 0 = βi+1, so

j = βi+1. Then, the cycle center Fi,1−j = Fi,1 is closed, contradicting the assumption

developed at the beginning of the proof.

Consider the case Gn = Mn next and note that we thus have j = βi+1 from now on.

If both cycle centers of level i are g1-open or g1-halfopen, then the statement follows by

Lemma 6.2.1 since i > ν = 1. Thus consider the case that Fi,j is g1-open and that Fi,1−j

is g1-halfopen. By assumption, j = βi+1, implying σ(si,j) = hi,j and σ(si,1−j) = b1 by

Property (USV1)i. Thus, by Property (EV1)i+1,

ValMσ (Fi,j) = (1− ε)ValMσ (g1) + ε
[
〈si,j , hi,j〉+ValMσ (bi+1)

]

and

ValMσ (Fi,1−j) = ValMσ (g1) +
2ε

1 + ε
〈si,1−j〉 .

To prove ValMσ (Fi,j) > ValMσ (Fi,1−j), it thus suffices to prove

〈si,j , hi,j〉+ValMσ (bi+1)−ValMσ (g1)−
2

1 + ε
〈si,1−j〉 > 0.

This can be shown by an easy but tedious calculation using ValMσ (g1) = RM
1 , βi = 0,

i + 1 > µσ, and ValMσ (bi+1) = LM
i+1. Now let Fi,j be g1-halfopen and Fi,1−j be g1-open.

Then, by the same arguments used before,

ValMσ (Fi,j) =
1− ε

1 + ε
ValMσ (g1) +

2ε

1 + ε
[〈si,j , hi,j〉+ValMσ (bi+1)]

and

ValMσ (Fi,1−j) = ValMσ (g1) + ε 〈si,1−j〉 .

It thus suffices to prove

〈si,j , hi,j〉+ValMσ (bi+1)−ValMσ (g1)−
1 + ε

2
〈si,1−j〉 > 0

which follows analogously. Since only Fi,1−βi+1
= Fi,1−j can be closed in level i, the

statement then follows by the same argument used for the case Gn = Sn.

Claim 13. It holds that Iσb+1
= {(di,j,k, Fi,j) : σb+1(di,j,k) 6= Fi,j}.

Proof. To simplify notation, let σ := σb+1. Consider the strategy σ(5). Using the charac-

terization of the strategy that was obtained after having applied all switches (di,j,k, Fi,j)
with an occurrence record smaller than m (see Equation (6.3)), we obtain

Iσ = {(di,j,∗, Fi,j) : σ
(5)(ei,j,∗) = b2}

∪
m−1⋃

i=u+1
βσ
i =0

{
e = (di,1−βσ

i+1,∗
, Fi,1−βσ

i+1
) : φσ(5)

(e) =

⌊
b+ 1

2

⌋}
.
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In particular, Iσ ⊆ {(di,j,k, Fi,j) : σ(di,j,k) 6= Fi,j} and every improving switch has an

occurrence record of at least m. To prove {(di,j,k, Fi,j) : σ(di,j,k) 6= Fi,j} ⊆ Iσ, let

e := (di,j,k, Fi,j) with σ(di,j,k) 6= Fi,j . It suffices to show Val∗σ(Fi,j) ≻ Val∗σ(ei,j,k). Prop-
erty (ESC1) and ν = 1 imply σ(egi,j) ∧ ¬σ(ebi,j). Furthermore, Property (REL1) yields

µσ = min{i′ : σ(bi′) = bi′+1} 6= 1. This implies ValSσ(Fi,j) = {Fi,j} ∪ValSσ(ei,j,k), implying

the statement if Gn = Sn. If Gn = Mn, it suffices to prove ValMσ (si,j) > ValMσ (g1) as
this implies ValMσ (Fi,j) > ValMσ (g1). Since σ(di,j,k) 6= Fi,j , either βi = 0 or βi+1 6= j. In
the second case, Property (USV1)i implies σ(si,j) = b1 and the statement follows since

ValMσ (si,j) = 〈si,j〉 + ValMσ (g1) due to σ(b1) = g1. Thus let βi = 0 ∧ βi+1 = j. Then, the
statement follows since ValMσ (si,j) = 〈si,j , hi,j〉 + ValMσ (bi+1) by Property (EV1)i+1 and

〈si,j , hi,j〉 >
∑

ℓ<i

〈
gℓ, sℓ,σ(gℓ), hℓ,σ(gℓ)

〉
.

Claim 14. Let ν > 1. The occurrence records of the improving switches with respect to

the phase-5-strategy σ described by Lemma 6.3.12 is described correctly by Table 6.8.

Proof. We consider each cell of the table individually. We also observe that σ(ei,j,k) = g1
implies (ei,j,k, b2) ∈ Iσ, it holds that Val

∗
σ(g1) ≺ Val∗σ(b2) .

1. Let e = (di,j,k, Fi,j) with σ(ei,j,k) = g1. Then, φ
σ(e) = φσb(e) = m by Lemma 6.3.12.

2. Let e = (ei,j,k, b2) with σ(ei,j,k) = g1. Then, φ
σ(e) = φσb(e) = m− 1 by Table 5.6.

3. Let e = (dν,j,k, Fν,j) with j := 1 − βν+1 for some k ∈ {0, 1}. This edge is only an

improving switch if b+ 1 is not a power of two. Note that this in particular implies

1j=0lfn(b, ν + 1) + 1j=1lufn(b, ν + 1) 6= 0. Since bν = 0 ∧ bν+1 6= j, Lemma 6.2.3

thus implies

ℓb(ν, j, k) =

⌈
b− 2ν−1 +

∑
(b, ν) + 1− k

2

⌉
=

⌈
b− 2ν−1 + 2ν−1 − 1 + 1− k

2

⌉

=

⌈
b− k

2

⌉
=

⌊
b+ 1− k

2

⌋
=

⌊
b+ 1

2

⌋
− k.

Since b + 1 is not a power of two, the parameter tb = −1 is not feasible by Prop-

erty (OR3)i,j,k. Hence φσb(dν,j,k, Fν,j) = m− k. Then, Corollary 6.3.3 implies that

(dν,j,1, Fν,j) was applied during σb → σ. Consequently, for both k ∈ {0, 1}, it holds
that φσ(dν,j,k, Fν,j) = m.

4. Let e = (di,j,k, Fi,j) with i ∈ {ν +1, . . . ,m− 1}, βi = 0, j := 1− βi+1 and k ∈ {0, 1}.
This edge is only an improving switch if b+1 is not a power of two. Since i > ν, βi = 0
implies bi = 0∧bi+1 6= j. Also, i < m implies 1j=0lfn(b, i+1)+1j=1lufn(b, i+1) 6= 0
since j = 1− βi+1 and b ≥ 1 by the choice of i. Since bν = 0, this yields

ℓb(i, j, k) =

⌈
b− 2i−1 +

∑
(b, i) + 1− k

2

⌉
≤

⌈
b− 2i−1 + 2i−1 − 1− 2ν−1 + 1− k

2

⌉

=

⌈
b− 2ν−1 − k

2

⌉
≤

⌈
b− 2− k

2

⌉
=

⌊
b− 1− k

2

⌋
≤

⌊
b− 1

2

⌋
≤ m− 1.

There are two cases. If σb(di,j,k) = Fi,j , then φσb(di,j,k, Fi,j) = ℓb(i, j, k)+1 ≤ m− 1
by Property (OR1)i,j,k. If σb(di,j,k) 6= Fi,j , then φσb(di,j,k, Fi,j) = ℓb(i, j, k) ≤ m− 1.
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In the first case, e was not applied during phase 1 and φσb(e) = φσ(e) ≤ m− 1. In
the second case, φσb(e) = m− 1 by Property (OR4)i,j,k. Then, e was applied during

phase 1, implying φσ(di,j,k, Fi,j) = m.

5. Let e = (di,j,k, Fi,j) with i ≤ ν − 1 and j := 1 − βi+1. Then, bit i and bit i + 1
switched during σb → σ(5). In particular, Fi,j was closed with respect to σb and

consequently (di,j,k, Fi,j) /∈ Aσ
σb
. Hence, by Table 5.6,

φσ(e) = φσb(e) =

⌈
lfn(b, i, {(i+ 1, j)}) + 1− k

2

⌉
=

⌈
b−

∑
(b, i) + 1− k

2

⌉

=

⌈
b− 2i−1 + 1 + 1− k

2

⌉
=

⌊
b− 2i−1 + 3− k

2

⌋
.

We now distinguish several cases.

• For i = 1, φσ(e) = ⌊(b+ 2− k)/2⌋ = m independent of k.

• For i = 2, φσ(e) = ⌊(b+ 1− k)/2⌋, so φσ(e) = m− k.

• For i = 3, φσ(e) = ⌊(b− 1− k)/2⌋, so φσ(e) = m−1 if k = 0 and φσ(e) = m−2
if k = 1.

• For i > 3, it is easy to see that the occurrence record is always strictly smaller

than m− 1.

Claim 15. Let ν > 1 and consider the first phase-5-strategy. The application of type 3
switches is described by row 1 of Table 6.7.

Proof. As a reminder, e = (di,j,k, Fi,j) being a type 3 switch implies that we either have

i < ν − 1, j = 1− βi+1 or i ∈ {ν +1, . . . ,m− 1}, βi = 0, j := 1− βi+1. In the second case,

σb(di,j,k) = Fi,j holds as well. Since it is easy to verify that i 6= 1 and σ(bi) = bi+1 (for

example by the arguments used in the proof of Claim 14), we only show σ(gi) = 1− βi+1.

By Lemma 6.3.12, this holds for all i ≤ ν − 1. It thus suffices to prove this for i ∈
{ν + 1, . . . ,m− 1} ∧ βi = 0. We show the statement by proving that σ(gi) = βi+1 implies

(gi, Fi,1−βi+1
) ∈ Iσ, contradicting the characterization of Iσ given in Equation (6.4).

Since j = 1−βi+1, it suffices to proveVal∗σ(Fi,j) ≻ Val∗σ(Fi,1−j). We have (i, j) ∈ S1 and

(i, 1−j) ∈ S2. Thus, by Lemma 6.3.12, σ(ebi,j)∧¬σ(egi,j) as well as σ(ebi,1−j)∧σ(egi,1−j).
Also, by the choice of j and Property (USV1)i, σ(si,j) = b1. Thus, by Lemmas 6.1.15

and 6.1.16, rVal∗σ(Fi,j) = rVal∗σ(b2) regardless of whether Gn = Sn or Gn = Mn. Also,

since ν ≥ 2, σ(g1) = 1 − β2 6= σ(b2) by Lemma 6.3.12. Thus, if Gn = Sn, then

Lemma 6.1.16 implies rValSσ(Fi,1−j) = rValSσ(g1) ⊳ rValSσ(b2) = rValSσ(Fi,j) as player 1
minimizes the valuation. If Gn = Mn, then rValMσ (Fi,1−j) =

1
2 rVal

M
σ (g1) +

1
2 rVal

M
σ (b2),

hence the statement follows since rValMσ (g1) < rValMσ (b2).

Claim 16. Let ν > 1 and let σ denote the strategy obtained after the application of all

improving switches of type 3 during phase 5. The application of type 2 switches of the

form (e∗,∗,∗, b2) is described by row 1 of Lemma 6.2.32.
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Proof. Let i ∈ [n], j, k ∈ {0, 1} and let e := (ei,j,k, b2) be an improving switch. We begin by

proving that the cycle center Fi,j is mixed. Since only improving switches of type 3 were

applied so far during phase 5, σ(ei,j,k) = g1 implies σ(di,j,k) = ei,j,k. Consequently, we
have σ(egi,j). In particular, Fi,j is not closed, so βi = 0 ∨ βi+1 = j. Thus, either (i, j) ∈ S1

or (i, j) ∈ S2. By Lemma 6.3.12, σ(egi,j) and as no switch (e∗,∗,∗, g1) was applied during

σ(5) → σ, we need to have (i, j) ∈ S2, implying that Fi,j is mixed.

We next prove that j = 1 resp. j = 1 − βi+1 (depending on whether Gn = Sn or

Gn = Mn) implies ¬σ(egi,1−j). Consider the case Gn = Sn and thus j = 1 first. We

prove ¬σ(egi,0). If Fi,0 is closed, then the statement follows. If it is not closed, then

βi = 0∨βi+1 6= 0. Consequently, either (i, 0) ∈ S1 or (i, 0) ∈ S2. In the first case, ¬σ(egi,0)
follows from Lemma 6.3.12 as no improving switch (e∗,∗,∗, b2)was applied during σ(5) → σ,
so assume (i, 0) ∈ S2. Then, by the same lemma, both cycle centers Fi,0, Fi,1 were mixed

for σ(5). Thus, as we consider the case Gn = Sn, the tie-breaking rule must have applied

the improving switches (ei,0,∗, b2) prior to (ei,j,k, b2), implying ¬σ(egi,0). If Gn = Mn, then

¬σ(egi,1−j) follows by the same arguments as the tie-breaking rule applied the improving

switches (ei,βi+1,∗, b2) first. Finally, as no improving switch (g∗, F∗,∗) was applied during

σ(5) → σ, ν = 2 implies σ(g1) = F1,0 if Gn = Sn by Lemma 6.3.12. Thus, all requirements

of Lemma 6.2.32 are met.

Corollary 6.3.19. Let i ∈ [n], j, k ∈ {0, 1} and let σ denote the strategy obtained after the

application of an improving switch (ei,j,k, b2) during phase 5. If (di,j,1−k, Fi,j) ∈ Iσ, thenσ
has Property (OR4)i,j,1−k and it holds that mink′∈{0,1} φ

σb(di,j,k′ , Fi,j) ≤ m− 1.

Proof. To simplify the notation, let σ denote the strategy obtained after the application of

(ei,j,k, b2) and let e := (di,j,1−k, Fi,j) ∈ Iσ. We prove that σ has Property (OR4)i,j,1−k by

proving

φσ(di,j,1−k, Fi,j) ∈

{⌊
b+ 1 + 1

2

⌋
− 1,

⌊
b+ 1 + 1

2

⌋}
. (A.14)

The second statement is shown along the way.

Consider the case e ∈ Aσ
σb
. Since e ∈ Aσ

σ(5) would imply σ(di,j,1−k) = Fi,j , we need

to have e ∈ Aσ(5)

σb
. This implies that the switch was applied during phase 1 as well

as σb(di,j,1−k) 6= Fi,j and φσb(e) ∈ {m − 1,m}. The only improving switches of type

(d∗,∗,∗, F∗,∗) with an occurrence record of m applied in phase 1 are the cycle edges of

Fν,βν+1 . Consequently, φσb(e) = m − 1 as Fν,βν+1 is closed and its cycle edges cannot

become improving switches. Hence

φσ(e) = φσb(e) + 1 ∈

{⌊
b+ 1 + 1

2

⌋
− 1,

⌊
b+ 1 + 1

2

⌋}
,

proving both parts of the statement.

Consider the case e /∈ Aσ
σb

next. Since the switch was not applied, this then implies

φσb(e) = φσ(e). We distinguish two cases.

1. Consider the case σb(di,j,1−k) = Fi,j first. Then, Property (OR1)i,j,1−k implies

φσb(e) = ℓb(i, j, 1− k) + 1 ≤ m− 1. Assume φσb(di,j,1−k, Fi,j) < m− 1. This implies

ℓb(i, j, 1− k) ≤ m− 3 by integrality. Since ℓb(i, j, 0) and ℓb(i, j, 1) differ by at most 1,
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it follows that ℓb(i, j, k) ≤ m−2. This implies that φσb(di,j,k, Fi,j) ≤ m−1. But this is
a contradiction since (ei,j,k, b2) ∈ Iσ(5) implies φσb(di,j,k, Fi,j) = m by Lemma 6.3.12.

Hence the statement follows from φσb(e) = φσ(e) = m− 1.

2. Let σb(di,j,1−k) 6= Fi,j . Then, φσ(e) = φσb(e) = m by Property (OR4)i,j,1−k and

Corollary 6.3.3. This already implies the first of the two statements. In addi-

tion, either σb(di,j,k) = Fi,j and φσb(di,j,k, Fi,j) ≤ m − 1 or σb(di,j,k) 6= Fi,j and

φσb(di,j,k, Fi,j) = m− 1. If none of these were true, then Fi,j would be open at the

end of phase 1, contradicting Corollary 6.3.4. This proves the second part of the

statement.

Claim 17. Let i ∈ [n], j, k ∈ {0, 1} and let σ denote the strategy obtained after the

application of an improving switch (ei,j,k, b2) during phase 5. If (gi, Fi,j) ∈ Iσ, then
(gi, Fi,j) /∈ Aσ

σb
.

Proof. Let e = (gi, Fi,j). By Lemma 6.2.32, e ∈ Iσ if and only if βi = 0, σ(ebi,1−j) and
[j = 0 ∧ σ(gi) = 1] if Gn = Sn resp. [j = βi+1 ∧ σ(gi) = 1 − βi+1] if Gn = Mn.

Let, for the sake of contradiction, (gi, Fi,j) ∈ Aσ
σb
. The conditions on j and σ(gi) imply

(gi, Fi,j) /∈ Aσ
σ(5) . Since βi = 0 implies i 6= ν, also (gi, Fi,j) 6= (gν , Fν,∗). Thus, by

Lemma 6.3.12, bi = 0 ∧ bi+1 6= j. Consequently, 0 = bi = βi+1 = (b + 1)i+1 and

j = 1 − bi+1. Since all bits below level ν have bi = 1 ∧ (b + 1)i = 0, this implies i > ν.
Therefore, bi+1 = (b+ 1)i+1 = 1− j and in particular j = 1− βi+1 This is a contradiction

if Gn = Mn as j = βi+1. Hence consider the case Gn = Sn. Then, j = 1 − βi+1 = 0,
implying βi+1 = 1. Thus, i ∈ {ν + 1, . . . ,m − 1}, βi = 0 and j = 1 − βi+1, implying

(i, j) ∈ S1. Therefore, σ
5(ebi,j) ∧ ¬σ5(egi,j), contradicting (ei,j,k, b2), (di,j,k, ei,j,k) ∈ Iσ(5) .

Thus, (gi, Fi,j) /∈ Aσ(5)

σb
, implying the statement.

Claim 18. Let ν > 1. The strategy σ obtained after the application of the final improving

switch of phase 5 has Property (SV*)i for all i ∈ [n].

Proof. As a reminder, σ is the strategy obtained after the application of the switch

(e1,β2,k, b2) resp. after the application of the switch (g1, F1,β2) if it becomes improving. First

consider some i ≥ 2. If βi = 1, then σ has Property (SV*)i as it is a phase-5-strategy. If

βi = 0 and (gi, Fi,j) ∈ Aσ
σ(5) , then this follows from Corollary 6.3.16. Thus, let βi = 0 and

(gi, Fi,j) /∈ Aσ
σ(5) . For the sake of a contradiction, assume that σ does not have Property

(SV*)1. Then, σ(gi) = 1 resp. σ(gi) = 1−β (depending on whetherGn = Sn orGn = Mn)

and ¬σ(di,1) resp. ¬σ(di,1−βi+1
). To simplify notation, let j := 0 resp. j := βi+1. We

show that we then have Val∗σ(Fi,j) ≻ Val∗σ(Fi,1−j), implying (gi, Fi,j) ∈ Iσ. But this is

a contradiction as any improving switch of this kind is applied immediately and i ≥ 2
implies that the application of (e1,βσ

2 ,k
, b2) cannot have unlocked this switch.

As the last improving switch of the type (e∗,∗,∗, b2) was just applied, any cycle center

is either closed or escapes to b2. We first consider the case Gn = Sn. Since σ is a phase-

5-strategy for b, it has Property (USV1)i and Property (EV1)i+1. Consequently, either

σ(bi+1) = j or ¬σ(si,j) If both cycle centers of level i escape towards b2, then the statement

follows since

ValPσ (Fi,j) = {Fi,0, ei,0,∗, di,0,∗} ∪ValPσ (b2)⊲ {Fi,1, ei,1,∗, di,1,∗} ∪ValPσ (b2) = ValPσ (Fi,1−j)
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by Lemma 6.1.16. Since βi = 0, only Fi,1−βi+1
can be closed in level i. Let this cycle

center be closed. If j = 1 − βi+1 = 0, then Property (USV1)i and σ(b1) = b2 implies

rValPσ (Fi,0) = {si,0} ∪ rValPσ (b2) and the statement follows from rValSσ(Fi,1) = rValSσ(b2).
If j = βi+1 = 0, then Fi,1−j = Fi,1 is closed, contradicting the assumption ¬σ(di,1).

Consider the case Gn = Mn. If both cycle centers are b2-open or b2-halfopen, then the

statement follows by Lemma 6.2.1 since σ has Property (REL1). If Fi,j is b2-open and

Fi,1−j is b2-halfopen, then the statement follows by an easy but tedious calculation. Thus

consider the case that Fi,j is b2-halfopen and that Fi,1−j is b2-open. Then, by the choice of

j and Property (USV1)i,

ValMσ (Fi,j) =
1− ε

1 + ε
ValMσ (b2) +

2ε

1 + ε
ValMσ (si,j)

=
1− ε

1 + ε
ValMσ (b2) +

2ε

1 + ε
[〈si,j , hi,j〉+ValMσ (bi+1)]

ValMσ (Fi,1−j) = (1− ε)ValMσ (b2) + εValMσ (si,1−j) = ValMσ (b2) + ε 〈si,1−j〉 ,

ValMσ (Fi,j)−ValMσ (Fi,1−j) =
2ε

1− ε
(〈si,j , hi,j〉+ValMσ (bi+1))−

2ε

1 + ε
ValMσ (b2)− ε 〈si,j〉

= ε

[
2

1 + ε
(〈si,j , hi,j〉+ValMσ (bi+1)−ValMσ (b2))− 〈si,1−j〉

]

It thus suffices to show that the last term is larger than zero which follows easily from

βi = 0.
In level i, only Fi,1−βi+1

= Fi,1−j can be closed. Then, the statement follows by the

same argument used for the case Gn = Sn.

We now consider Property (SV*)1. Assume that (g1, F1,β2) does not become improving

when applying (e1,β2,k, b2). Then, by Lemma 6.2.32, we need to have σ(gi) = βi+1 if

Gn = Mn. Consider the case Gn = Sn. If β2 = 0, then Lemma 6.2.32 implies that we

need to have σ(g1) = 0. If β2 = 1, then ν = 2. But this implies σb(g1) = F1,0 since the

cycle center F1,0 was then closed with respect to σb. For this reason, the switch (g1, F1,1)
was not applied during phase 1. Since a switch involving a selection vertex gi can only be

applied during phase 5 if σ(gi) = 1 by Lemma 6.2.32, the switch cannot have been applied

during phase 5. Consequently, σ(g1) = σb(g1) = F1,0 Thus, σ has Property (SV*)1. If the

edge (g1, F1,β2) becomes an improving switch, then the strategy obtained after applying it

has Property (SV*)i by Corollary 6.3.16.

Claim 19. Let σ denote the strategy obtained after applying the final improving switch of

phase 5 for ν > 1. Then Iσ = {(di,j,k, Fi,j) : σ(di,j,k) 6= Fi,j}.

Proof. Let σ(5) denote the phase-5-strategy of Lemma 6.3.12 with σ ∈ ρ(σ(5)). We first

observe that βσ = βσ(5)
, so the upper index can be omitted. It is easy to verify that Iσ can

be partitioned as

Iσ = {(di,j,∗, Fi,j) : σ
(5)(ei,j,∗) = g1} ∪ {(dν,1−βν+1,∗, Fν,1−βν+1)}

∪
{
e = (di,1−βi+1,∗, Fi,1−βi+1

) : i ∈ {ν + 1, . . . ,m− 1}, βi = 0, φσ5(e) = m− 1
}

∪
{
e = (di,1−βi+1,∗, Fi,1−βi+1

) : i < ν, φσ(5)
(e) ≥ m− 1

}
,
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if b+ 1 is not a power of two. A similar partition can be derived if b+ 1 is a power of two.

In particular, Iσ ⊆ {(di,j,k, Fi,j) : σ(di,j,k) 6= Fi,j}. We prove that e = (di,j,k, Fi,j) implies

e ∈ Iσ if σ(di,j,k) 6= Fi,j .

If σ(5)(ei,j,k′) = g1 for some k′ ∈ {0, 1}, then e ∈ Iσ as one of the cycle edges of Fi,j

is improving for σ(5) while the other becomes improving after applying (ei,j,k′ , b2). Thus
let σ(5)(ei,j,∗) = b2, implying ¬σ(5)(egi,j). Then, by Lemma 6.3.12, either σ(5)(di,j) or
σ(5)(ebi,j) ∧ ¬σ(5)(egi,j). In the first case, βi = 1 ∧ βi+1 = j by Lemma 6.3.12. But this

implies σ(di,j) since σ is a phase-5-strategy for b and thus has Property (EV1)i. This

however contradicts σ(di,j,k) 6= Fi,j . Hence, assume that σ(5)(ebi,j) ∧ ¬σ(5)(egi,j). Then,
by Lemma 6.3.12, (i, j) ∈ S1. We distinguish three cases.

1. Let (i, j) ∈ {(i, 1− βi+1) : i ≤ ν − 1}. If φσ(5)
(e) < m− 1, then e was an improving

switch of type 3 for σ(5) and thus applied during phase 5. But this contradicts

σ(di,j,k) 6= Fi,j since no switch (d∗,∗,∗, e∗,∗,∗) is applied during phase 5. This implies

(i, j) ∈ {(i, 1− βi+1) : i ≤ ν − 1, φσ(5)
(e) ≥ m− 1}, hence e ∈ Iσ.

2. Let (i, j) ∈ {(i, 1 − βi+1) : i ∈ {ν + 1, . . . ,m − 1}, βi = 0} which can only occur

if b + 1 is not a power of 2. As proved when discussing Iσ(5) , we then either

have σb(di,j,k) = Fi,j , implying φσb(di,j,k, Fi,j) ≤ m − 1 or σb(di,j,k) 6= Fi,j and

φσb(di,j,k, Fi,j) = m − 1. Consider the first case. If the inequality is strict, the

switch was applied previously during phase 5, yielding a contradiction. Otherwise,

(di,j,k, Fi,j) ∈ Iσ. In the second case, the switch was applied during phase 1, hence

it was a switch of type 1 during phase 5, also implying (di,j,k, Fi,j) ∈ Iσ.

3. Finally, let i = ν ∧ j = 1− βν+1 which only needs to be considered if b+ 1 is not a

power of 2. In this case we however have e ∈ Iσ(5) , implying e ∈ Iσ.

Thus, e ∈ Iσ in all case, proving the statement.

Claim 20. Let σ denote the strategy obtained after applying the final improving switch of

phase 5 for ν > 1. Then σ is a canonical strategy for b+ 1.

Proof. Consider Definitions 5.1.2 and 5.2.1. As σ is a phase-5-strategy for b, it holds

that β = b + 1. Thus, condition 1 follows since σ(e∗,∗,∗) = b2 and ν > 1. This also

implies that conditions 2(a), 2(c), 3(a) and 3(b) are fulfilled as σ has Property (EV1)∗
and Property (EV2)∗.

Consider condition 2(b) and let i ∈ [n]. Since (b + 1)i = 1 implies that Fi,(b+1)i+1

is closed, we prove that Fi,1−(b+1)i+1
is not closed. Let j := 1 − (b + 1)i+1. Then, by

Lemma 6.3.12, σ(5)(di,j,∗) = ei,j,∗ and it suffices to prove (di,j,0, Fi,j) /∈ Aσ
σ(5) . As such a

switch is applied during σ(5) → σ if and only if it is of type 3 by Corollary 6.3.18, we

prove

φσ(5)
(di,j,0, Fi,j) ≥

⌊
b+ 1

2

⌋
− 1. (A.15)

This follows if 1j=0lfn(b, i + 1) + 1j=1lufn(b, i + 1) = 0 since this implies ℓb(i, j, k) ≥ b.

Thus suppose that this term is not 0. Then, since b1 = 1 and by the choice of i and j,

ℓb(i, j, k) =

⌈
b+

∑
(b, i) + 1− k

2

⌉
≥

⌈
b+ 2− k

2

⌉
=

⌊
b+ 1− k

2

⌋
+ 1.
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But this implies Inequality (A.15) since ℓb(i, j, 0) ≥ ⌊(b+ 1)/2⌋+ 1.
Consider condition 3(c) and let i ∈ [n] and j := 1− (b+ 1)i+1. It is easy to prove that σ

has condition 3(c) since (b+1)i = 0 and Fi,j being closed imply Val∗σ(Fi,j) ≻ Val∗σ(Fi,1−j).
Since Fi,j is closed, rVal

∗
σ(Fi,j) = Jsi,jK ⊕ rVal∗σ(b2) by Property (USV1)i, Lemma 6.1.16

and σ(b1) = b2. Since Fi,1−j cannot be closed due to the choice of j and (b+ 1)i = 0, we
have σ(ebi,1−j) ∧ ¬σ(egi,1−j). Consequently, rVal

∗
σ(Fi,1−j) = rVal∗σ(b2) since σ(b1) = b2.

But this implies rVal∗σ(Fi,1−j) ≺ rVal∗σ(Fi,j). Next, consider condition 3(d) and consider

a level i with (b + 1)i = 0. Let j := 0 resp. j := βi+1 depending on whether Gn = Sn

or Gn = Mn. We prove that Val∗σ(Fi,j) ≻ Val∗σ(Fi,1−j) if none of the two cycle centers is

closed. If Gn = Mn, this either follows from Lemma 6.2.1 since σ has Property (REL1) or

by an easy but tedious calculation. If Gn = Sn, this follows since Ω(Fi,0) > Ω(Fi,1) and as

these priorities are even.

Property (USV1) implies that σ fulfills conditions 4 and 5 for all indices. Finally,

consider condition 6 and let i = ℓ(b+ 2), j = βℓ(b+2)+1. By the same argument used for

condition 3(c), it suffices to prove φσ(di,j,k, Fi,j) ≥ ⌊(b+ 1)/2⌋ − 1 for both k ∈ {0, 1}.
This however follows from ℓ(b+ 1) = 1, β2 = 1− b2 and b1 = 1 by

ℓb(1, 1− b2, k) =

⌈
b+

∑
(b, 1) + 1− k

2

⌉
=

⌈
b+ 1− k

2

⌉
=

⌊
b+ 2− k

2

⌋
=

⌊
b+ 1

2

⌋
,

implying the statement. Hence, σ is a canonical strategy for b+ 1.

Lemma 6.3.21. Let b ∈ Bn be even, i := ℓ(b + 2) and j := 1 − (b + 2)i+1. If b + 2
is a power of 2, then φσb(di,j,∗, Fi,j) = m. Otherwise, φσb(di,j,0, Fi,j) = ⌊(b+ 1)/2⌋ and

φσb(di,j,1, Fi,j) = m− 1. In any case, σb(di,j,k) 6= Fi,j for both k ∈ {0, 1}.

Proof. Assume b+ 2 = 2l for some l ∈ N. Then, the choice of i and j implies b+ 2 = 2i−1

and j = 1. In particular lufn(b, i + 1) = 0, implying ℓb(i, j, k) ≥ b by Lemma 6.2.3.

Consequently, φσb(di,j,k, Fi,j) = ⌊(b+ 1− k)/2⌋ = m since b + 1 is odd. In addition,

φσb(di,j,k, Fi,j) 6= ℓb(i, j, k) + 1, hence σb(di,j,k) 6= Fi,j as σb has the canonical properties.

Thus assume that b+2 is not a power of 2. Since b is even and by the choice of i, it holds
that b1 = 0 and b2 = · · · = bi−1 = 1. In particular 1j=0lfn(b, i+1)+1j=1lufn(b, i+1) 6= 0.
Hence, by Lemma 6.2.3,

ℓb(i, j, k) =

⌈
b− 2i−1 +

∑
(b, i) + 1− k

2

⌉
=

⌈
b− 2i−1 + 2i−1 − 2 + 1− k

2

⌉

=

⌈
b− 1− k

2

⌉
=

⌊
b− k

2

⌋
.

Furthermore, b being even and Property (OR4)i,j,0 implies φσb(di,j,k, Fi,j) 6= ℓb(i, j, k)−
1. Hence φσb(di,j,0, Fi,j) = ⌊(b+ 1)/2⌋ and ℓb(i, j, 1) = ⌊(b− 1)/2⌋ = m − 1. Also,

σb(di,j,k) 6= Fi,j for both k ∈ {0, 1} since φσb(di,j,k, Fi,j) = ℓb(i, j, k) + 1 < m otherwise,

contradicting the previous arguments.

Claim 21. Let i ∈ [n], j, k ∈ {0, 1} and consider the two equations

φσ(e) 6= ℓb+1(i, j, k)− 1, (6.8)
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φσ(e) =

⌊
b+ 1 + 1− 2

2

⌋
. (6.9)

1. If j = (b+ 2)i+1, then either Equation (6.8) or Equation (6.9) holds.

2. If i 6= ℓ(b + 2) and j 6= (b + 2)i+1, then either Equation (6.8) or Equation (6.9)

holds.

3. If b+ 1 is even, i = ℓ(b+ 2) and j 6= (b+ 2)i+1, then Equation (6.9) holds.

4. If b + 1 is odd, i = ℓ(b + 2), j = 1 − (b + 2)i+1, k ∈ {0, 1} and b + 2 is a power of

two, then Equation (6.9) holds.

5. If b is even, i = ℓ(b+ 2), j 6= (b+ 2)i+1, k = 1 and b+ 2 is not a power of two, then

Equation (6.9) holds.

Proof. As a remainder, we currently consider a canonical strategy σ for b+1 with Iσ = Dσ.

We prove the statements one after another.

1. We distinguish several cases.

a) Let bi = 1 ∧ bi+1 = j. This implies i 6= 1 since i = 1 contradicts the choice of j.
Also b ≥ 4 for the same reason. Let

1j=0lfn(b+ 1, i+ 1) + 1j=1lufn(b+ 1, i+ 1) = 0.

Then ℓb+1(i, j, k)− 1 ≥ b by Lemma 6.2.3. Since φσ(e) ≤ φσb(e) + 1, we then

have φσ(e) ≤ m+1. Since b ≥ 4, this implies φσ(e) < ℓb+1(i, j, k)−1, implying

the statement. Let 1j=0lfn(b+1, i+1)+1j=1lufn(b+1, i+1) 6= 0 and observe

φσb(e) =

⌈
lfn(b, i, {(i+ 1, j)}) + 1− k

2

⌉
=

⌈
b−

∑
(b, i) + 1− k

2

⌉
.

We distinguish two more cases.

i. Let (b+ 1)i = 1, implying (b+ 1)i+1 = j. Then e /∈ Aσ
σb
, and consequently

φσb(e) = φσ(e). It is easy to verify that

1j=0lfn(b+1, i+1)+1j=1lufn(b+1, i+1) = b+1−
∑

(b+1, i)−2i−1−2i−1

in this case. Hence, by the definition of ℓb+1(i, j, k), we have

ℓb+1(i, j, k) =

⌈
lfn(b+ 1, i, {(i+ 1, j)}) + 1− k

2

⌉
−
∑

(b+ 1, i) + 2i

= φσb+1(e) +
∑

(b+ 1, i) + 2i ≥ φσb+1(e) + 4,

so φσb+1(e) ≤ ℓb+1(i, j, k)− 4, implying Equation (6.8).

ii. Assume (b + 1)i = 0, implying i < ν and thus (b + 1)i+1 6= bi = j.
Then b1 = · · · = bi = 1 and (b + 1)1 = · · · = (b + 1)i = 0. Hence, by

Lemma 6.2.6,

ℓb+1(i, j, k) =

⌈
b+ 1− 2i−1 +

∑
(b+ 1, i) + 1− k

2

⌉
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=

⌈
b− (2i−1 − 1) + 1− k

2

⌉

=

⌈
b−

∑
(b, i) + 1− k

2

⌉
= φσb(e).

This implies φσ(e) ≥ φσb(e) = ℓb+1(i, j, k), and thus Equation (6.8).

b) Let bi = 1 ∧ bi+1 6= j. Since j = (b + 2)i+1, this implies (b + 2)i+1 6= bi+1.

Hence, bit i + 1 was switched when transitioning from σb to σb+2. In one

of the two transitions, the first bit switched from 0 to 1 and this bit was the

only bit that was switched in this transition. Thus, either [i < ℓ(b + 1) and
ℓ(b + 2) = 1] or [ℓ(b + 1) = 1 and i < ℓ(b + 2)]. Consider [i < ℓ(b + 1) and
ℓ(b+2) = 1] first. Since bi = 1 and bi+1 6= j, Lemma 6.2.3 implies that it holds

that ℓb(i, j, k) = ⌈(b+
∑

(b, i) + 1− k)/2⌉ . Now, since i < ℓ(b + 1), we have

bl = 1 for all l < i, implying ℓb(i, j, k) =
⌈
(b+ 2i−1 − k)/2

⌉
. If i = 1, then

ℓb(i, j, k) =

⌈
b+ 1− k

2

⌉
≥

⌊
b+ 1− k

2

⌋
.

This implies Equation (6.9) since the only feasible tolerance for i = 1 is 0. If

i > 1, then Equation (6.9) follows from

ℓb(i, j, k) ≥

⌈
b+ 2− k

2

⌉
=

⌊
b+ 3

2

⌋
=

⌊
b+ 1− k

2

⌋
+ 1.

Thus, φσb(e) = ⌊(b+ 1− k)/2⌋ 6= ℓb(i, j, k) + 1. Consequently, by Prop-

erty (OR1)i,j,k, σb(di,j,k) 6= Fi,j for both k ∈ {0, 1}. Since ℓ(b + 1) > i ≥ 1
implies that b is odd, this yields φσb(di,j,1, Fi,j) < φσb(di,j,0, Fi,j). Combining

these implies that (di,j,1, Fi,j) is applied during phase 1 of σb → σb+1, so

φσ(di,j,1, Fi,j) =

⌊
b

2

⌋
+ 1 =

⌊
b+ 1

2

⌋
=

⌊
b+ 1 + 1− 1

2

⌋
and

φσ(di,j,0, Fi,j) =

⌊
b+ 1

2

⌋
=

⌊
b+ 1 + 1− 0

2

⌋
.

Next let ℓ(b+1) = 1 and i < ℓ(b+2). Since ℓ(b+1) = 1 implies b1 = 0, bi = 1
implies i > 1. In addition, i < ℓ(b+2) implies bi′ = 1 for all i′ ∈ {2, . . . , i− 1}.
Consequently, as in the last case,

ℓb(i, j, k) =

⌈
b+

∑
(b, i) + 1− k

2

⌉
=

⌈
b+ 2i−1 − 2 + 1 + k

2

⌉

≥

⌈
b+ 1− k

2

⌉
≥

⌊
b+ 1− k

2

⌋
.

Since b is even, tb = −1 is not a feasible parameter for b. This implies that

φσb(e) = ⌊(b+ 1− k)/2⌋ and in particular φσb(e) 6= ℓb(i, j, k) + 1. Thus,
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Property (OR1)i,j,k implies σb(di,j,k) 6= Fi,j for both k ∈ {0, 1}. Since b is even,

φσb(di,j,0, Fi,j) = φσb(di,j,1, Fi,j). Hence, as discussed previously, the switch

(di,j,0, Fi,j) is applied during σb → σ. Thus, Equation (6.9) follows from

φσb+1(di,j,0, Fi,j) =

⌊
b+ 1

2

⌋
+ 1 =

⌊
b+ 1 + 1− 0

2

⌋
and

φσb+1(di,j,1, Fi,j) =

⌊
b

2

⌋
=

⌊
b+ 1

2

⌋
=

⌊
b+ 1 + 1− 1

2

⌋
.

c) Let bi = 0 and (b+ 1)i = 1 ∧ j = (b+ 1)i+1, implying i = ℓ(b+ 1). Hence, as
the occurrence record of e with respect to σ is described by Table 5.6,

φσ(e) =

⌈
lfn(b+ 1, i, {(i+ 1, j)}) + 1− k

2

⌉

=

⌈
b+ 1 + 1− k

2

⌉
=

⌊
b+ 1− k

2

⌋
+ 1.

Since 1j=0lfn(b + 1, i + 1) + 1j=1lufn(b + 1, i + 1) < b + 1 − 2i, this implies

ℓb+1(i, j, k) > φσ(e) + 2 and consequently Equation (6.8).

d) Let bi = 0 and (b + 1)i = 1 ∧ j 6= (b + 1)i+1. Then, i = ℓ(b + 1). Since

j = (b + 2)i+1 by assumption, the bit with index i + 1 has switched when

transitioning from b+1 to b+2. This is however only possible if i = ℓ(b+1) = 1.
As this also implies bi+1 = (b+ 1)i+1 6= j, this implies

ℓb(i, j, k) =

⌈
b− 2i−1 +

∑
(b, i) + 1− k

2

⌉
=

⌈
b− 1 + 1− k

2

⌉
=

⌊
b+ 1− k

2

⌋

Property (OR3)i,j,k applied to σb thus implies φσb(e) = ⌊(b+ 1− k)/2⌋. By the

same arguments used in the earlier cases, we devise (di,j,0, Fi,j) ∈ Aσ
σb
. But,

similar to the previous cases, this implies Equation (6.9).

e) Let bi = 0 and (b + 1)i = 0. Then, i > 1 and bi+1 = (b + 1)i+1 = (b + 2)i+1,

hence j = bi+1. Thus, by Lemma 6.2.3,

ℓb(i, j, k) =

⌈
b+ 2i−1 +

∑
(b, i) + 1− k

2

⌉
≥

⌈
b+ 2i−1 + 1− k

2

⌉

≥

⌈
b+ 2 + 1− k

2

⌉
=

⌈
b+ 1− k

2

⌉
+ 1 ≥

⌊
b+ 1− k

2

⌋
+ 1.

Therefore ⌊(b+ 1− k)/2⌋ ≤ ℓb(i, j, k)− 1, implying φσb(e) = ⌊(b+ 1− k)/2⌋.
This implies Equation (6.9) by using the same arguments as in the last cases.

2. Since i 6= ℓ(b + 2), it is not possible that (b + 1)i+1 = 0 ∧ (b + 2)i+1 = 1. It thus
suffices to investigate the following cases.
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a) Let bi = 0 ∧ (b + 1)i = 1, i.e., i = ℓ(b + 1) = ν. Then bi+1 = (b + 1)i+1 and

(b+ 1)i+1 = (b+ 2)i+1 if and only if i 6= 1. Consider the case i 6= 1 first. Then,

j 6= bi+1, hence j = 1− bi+1. Since i = ℓ(b+ 1), Lemma 6.2.3 then implies

ℓb(i, j, k) =

⌈
b− 2i−1 +

∑
(b, i) + 1− k

2

⌉
=

⌈
b− 2ν−1 + 2ν−1 − 1 + 1− k

2

⌉

=

⌊
b+ 1− k

2

⌋
.

Now, φσb(e) = ⌊(b+ 1− k)/2⌋ or φσb(e) = ℓb(i, j, k) − 1 6= ⌊(b+ 1− k)/2⌋.
Consider the first case. Then σb(di,j,k) 6= Fi,j by Property (OR2)i,j,k. Us-

ing the same arguments used when proving the first statement, this implies

φσ(di,j,k, Fi,j) = ⌊(b+ 1 + 1− k)/2⌋. Consider the second case. By our pre-

vious calculation and by Property (OR3)i,j,k, φ
σb(di,j,k, Fi,j) = m − 1 and

k = 0. Also, by Property (OR2)i,j,k, σb(di,j,0) 6= Fi,j . Thus, by Corollary 6.3.3,

e ∈ Aσ
σb
. Hence φσ(e) = ⌊(b+ 1)/2⌋ = ⌊(b+ 2)/2⌋ since b is odd. Conse-

quently, φσ(e) = ⌊(b+ 1 + 1− 0)/2⌋, so Equation (6.9) holds.

Now consider the case i = 1, i.e., (b+1)i+1 6= (b+2)i+1. Then j = bi+1, hence

ℓb(i, j, k) =

⌈
b+ 2i−1 +

∑
(b, i) + 1− k

2

⌉
=

⌈
b+ 2− k

2

⌉
=

⌊
b+ 1− k

2

⌋
+ 1.

Thus, ℓb(i, j, k) − 1 = ⌊(b+ 1− k)/2⌋, implying φσb(e) = ⌊(b+ 1− k)/2⌋.
Since F1,j is the cycle center that is closed during the transition from σb to σb+1,

the switch (d1,j,k, F1,j) is applied for both k. Since b is even, Equation (6.9)

follows from φσ(e) = ⌊(b+ 1− k)/2⌋+ 1 = ⌊(b+ 1 + 1− k)/2⌋ .

b) Let bi = 0 ∧ (b + 1)i = 0. Since i 6= ℓ(b + 2), we have (b + 2)i = 0. This

implies bi+1 = (b + 1)i+1 = (b + 2)i+1, so j = 1 − bi+1 and i > 2. Thus, by
Lemma 6.2.3,

ℓb(i, j, k) =

⌈
b− 2i−1 +

∑
(b, i) + 1− k

2

⌉
.

Since (b+ 1)i = 0 implies i 6= ℓ(b+ 1), Property (OR3)i,j,k implies that either

φσb(di,j,k, Fi,j) 6= ℓb(i, j, k) − 1 or φσb(di,j,k, Fi,j) = ⌊(b+ 1− k)/2⌋. Assume

φσb(di,j,k, Fi,j) = ⌊(b+ 1− k)/2⌋ and let ℓb(i, j, k) + 1 = ⌊(b+ 1− k)/2⌋ first.
Then, since ℓb(i, j, k) + 1 = ℓb+1(i, j, k) by Lemma 6.2.6, we obtain

φσ(e) ≥ φσb(di,j,k, Fi,j) = ℓb(i, j, k) + 1 = ℓb+1(i, j, k).

Hence φσ(di,j,k, Fi,j) 6= ℓb+1(i, j, k)−1. Now let φσb(di,j,k, Fi,j) 6= ℓb(i, j, k)+1.
Then, by Property (OR2)i,j,k, σb(di,j,k) 6= Fi,j . Since φσb(e) = ⌊(b+ 1− k)/2⌋,
we can apply the same arguments used when discussing previous cases to

obtain Equation (6.9).

Let φσb(di,j,k, Fi,j) 6= ℓb(i, j, k) − 1 6= ⌊(b+ 1− k)/2⌋ as we could apply the

same arguments used before otherwise. Thus, either φσb(di,j,k, Fi,j) = ℓb(i, j, k)
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or φσb(di,j,k, Fi,j) = ℓb(i, j, k) + 1. Since ℓb+1(i, j, k) = ℓb(i, j, k) + 1, the
statement follows directly if φσb(di,j,k, Fi,j) = ℓb(i, j, k) + 1. Hence assume

φσb(di,j,k, Fi,j) = ℓb(i, j, k). Then, Property (OR2)i,j,k implies σb(di,j,k) 6= Fi,j .

As φσb(di,j,k, Fi,j) < ⌊(b+ 1− k)/2⌋, e is applied when transitioning from σb
to σ. Thus φσ(e) = φσb(e) + 1 = ℓb+1(i, j, k), implying Equation (6.8).

c) Let bi = 1 ∧ j = 1− bi+1. Then, Lemma 6.2.3 implies

ℓb(i, j, k) =

⌈
b+

∑
(b, i) + 1− k

2

⌉
≥

⌊
b+ 1− k

2

⌋
.

Since i 6= ℓ(b + 1) as bi = 1, this yields φσb(e) = ⌊(b+ 1− k)/2⌋ by Prop-

erty (OR3)i,j,k. In particular, σb(di,j,k) 6= Fi,j , so the same arguments used

previously yield Equation (6.9).

d) Let bi = 1 ∧ j = bi+1, implying φσb(e) = ⌈(lfn(b, i, {(i+ 1, j)}) + 1− k)/2⌉.
Since j 6= (b + 2)i+1, bit i + 1 switched. As i 6= ℓ(b + 2) and bi = 1 yields

i 6= 1, this implies i ≤ ν − 1. In particular, φσb(e) =
⌈
(b− 2i−1 + 2− k)/2

⌉
.

Furthermore, we then have (b + 1)i+1 = 0 ∧ (b + 1)i+1 6= j. Hence, by

Lemma 6.2.3,

ℓb+1(i, j, k) =

⌈
b+ 1− 2i−1 +

∑
(b+ 1) + 1− k

2

⌉

=

⌈
b− 2i−1 + 2− k

2

⌉
= φσb(e).

Thus, φσ(e) ≥ φσb(e) = ℓb+1(i, j, k), so φσ(e) 6= ℓb+1(i, j, k)− 1.

3. Since i = ℓ(b+2), we have (b+1)i = 0. This further implies (b+1)i+1 = (b+2)i+1,

so j 6= (b+ 1)i+1. Thus, by Lemma 6.2.3,

ℓb+1(i, j, k) =

⌈
b+ 1− 2i−1 +

∑
(b+ 1, i) + 1− k

2

⌉

=

⌈
b+ 1− 2ν−1 + 2ν−1 − 1 + 1− k

2

⌉

=

⌈
b+ 1− k

2

⌉
=

⌊
b+ 1 + 1− k

2

⌋
.

Since b + 1 is even, the parameter tb+1 = −1 is not feasible. This implies Equa-

tion (6.9).

4. By the choice of i, there is no number b′ ≤ b + 1 with i = ℓ(b′). Consequently,

it holds that lfn(b + 1, i + 1) = lufn(b + 1, i + 1) = 0. Thus, by Lemma 6.2.3,

ℓb+1(i, j, k) ≥ b+ 1 > ⌊(b+ 1 + 1− k)/2⌋, implying Equation (6.9).

5. Since k = 1, it suffices to show φσ(di,j,1, Fi,j) = m. Since b is even, we have

ℓ(b + 1) = 1, hence bi = 0. As shown in the proof of Lemma 6.3.21, this implies

ℓb(i, j, k) = ⌊(b− 1)/2⌋ = m − 1. Consequently, by Lemma 6.3.21, it holds that

φσb(di,j,1, Fi,j) = ℓb(i, j, k) < φσb(di,j,0, Fi,j). Since Property (OR2)i,j,1 now implies
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σb(di,j,1) 6= Fi,j , this implies (di,j,1, Fi,j) ∈ Aσ
σb
. But then, the statement follows

since we then have φσ(di,j,1, Fi,j) = m.

Claim 22. Let ν = 1. The occurrence records of edges of the type (d∗,∗,∗, F∗,∗) not applied
during σb → σ is described correctly by Table 5.6.

Proof. Let i ∈ [n], j, k ∈ {0, 1}. We distinguish four cases.

1. Let bi = 1∧bi+1 = j. Since ν = 1, this implies (b+1)i = 1∧(b+1)i+1 = j.Hence, Fi,j

is closed for both σb and σ and the switch was not applied during σb → σ, implying

i 6= 1. Consequently, lfn(b, i, {(i + 1, j)}) = lfn(b + 1, i, {(i + 1, j)}), implying the

statement.

2. Let bi = 0∧bi+1 6= j. Consider the case (b+1)i = 0∧ (b+1)i+1 6= j, implying i 6= 1.
Let 1j=0lfn(b, i+1)+1j=1lufn(b, i+1) = 0, implying ℓb(i, j, k) ≥ b by Lemma 6.2.3.

Since φσb(di,j,k, Fi,j) ≤ m, this implies φσ(e) = φσb(e) = m independent of k
since b + 1 is odd. Note that this implies σb(di,j,∗) 6= Fi,j by Property (OR1)i,j,∗.

Consequently, both (di,j,0, Fi,j) and (di,j,1, Fi,j) could have been applied during

phase 1. However, due to the tie-breaking rule, only (di,j,0, Fi,j) was applied during

phase 1. It thus suffices to investigate e := (di,j,1, Fi,j). Since ℓb+1(i, j, 1) ≥ b by

Lemma 6.2.3 and φσ(e) = φσb(e), we thus obtain

φσ(e) =

⌊
b+ 1

2

⌋
=

⌊
(b+ 1) + 1− k

2

⌋
= min

(⌊
(b+ 1) + 1− k

2

⌋
, ℓb+1(i, j, k)

)
,

hence choosing tb+1 = 0 yields the correct description of the occurrence record.

Let 1j=0lfn(b, i+1)+1j=1lufn(b, i+1) 6= 0. Then, by Lemma 6.2.3 and since b1 = 0,

ℓb(i, j, k) ≤

⌈
b− 2i−1 + 2i−1 − 1− 1 + 1− k

2

⌉
= m− k. (A.16)

If σb(di,j,k) 6= Fi,j and φσb(e) < m, then (di,j,k, Fi,j) was applied in phase 1 by

Corollary 6.3.3. By Property (OR1)i,j,k, σb(di,j,k) = Fi,j and φσb(e) = m is not

possible. Consider the case σb(di,j,k) = Fi,j and φσb(di,j,k, Fi,j) < m. We show that e
was then applied during phase 5. By Corollary 6.3.17, we need to show i > u
and i < m. If i 6= u, the first statement follows as bi = 0 and (b + 1)i = 0. If

i = u, Inequality (A.16) is tight, contradicting σb(di,j,k) = Fi,j since we then had

φσb(di,j,k, Fi,j) = ℓb(i, j, k) + 1 ≥ m. Assume, for the sake of contradiction, i > m.

Then b < 2i−1, hence lfn(b, i+1) = lufn(b, i+1) = 0. Consequently, by Lemma 6.2.3,

ℓb(i, j, k) ≥ b, contradicting Properties (OR1)i,j,k and (OR2)i,j,k. Therefore, e was

applied during phase 5 and we do not consider it here. It thus suffices to consider

the case σb(di,j,k) 6= Fi,j and φσb(e) = m. It then holds that φσb(e) = ℓb(i, j, k) + tb
for some feasible tb due to Inequality (A.16). This implies φσ(e) = ℓb(i, j, 1) + 1
if k = 1, contradicting σb(di,j,1) 6= Fi,j . Thus k = 0 and φσb(e) = ℓb(i, j, 0). But

this implies that Inequality (A.16) is an equality. Consequently, i = ℓ(b+ 2). Also,
1j=0lfn(b, i+ 1) + 1j=1lufn(b, i+ 1) 6= 0 by assumption, hence b+ 2 is not a power
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of two. Hence, by Property (OR3)i,j,0, the parameter tb+1 = −1 is feasible. Since

ℓb+1(i, j, 0) = ℓb(i, j, 0) + 1 by Lemma 6.2.4 and m = ⌊(b+ 1 + 1− 0)/2⌋ − 1, this
parameter describes the occurrence record with respect to σ. Hence,

φσ(e) = min

(⌊
b+ 1 + 1− 0

2

⌋
, ℓb+1(i, j, 0) + tb+1

)
<

⌊
b+ 1 + 1− 0

2

⌋

for tb+1 = −1, so the occurrence record is correctly described by Table 5.6. This

concludes the case (b+ 1)i = 0 ∧ (b+ 1)i+1 6= j.

Consider the case (b + 1)i = 1 and (b + 1)i+1 6= j next, implying i = ν = 1. If

1j=0lfn(b, 2) + 1j=1lufn(b, 2) = 0, we can use the same arguments used for the case

(b+ 1)i = 0 ∧ (b+ 1)i+1 6= j. Hence let 1j=0lfn(b, 2) + 1j=1lufn(b, 2) 6= 0. Then by

Lemma 6.2.3, ℓb(1, j, k) = m for both choices of k ∈ {0, 1}. Since the parameter

tb = −1 is not feasible as b is even and choosing tb = 1 violates Lemma 6.2.5, it

thus holds that φσ(e) = ℓb(i, j, k) = ⌊(b+ 1)/2⌋ for both k ∈ {0, 1}. In particular,

σb(di,j,k) 6= Fi,j for both k ∈ {0, 1}. Hence, by the tie-breaking rule, (di,j,0, Fi,j)
is applied during phase 1. Consequently, (di,j,1, Fi,j) is not applied during phase

1 and the same arguments used previously can be used to show that choosing

tb+1 = 0 is feasible and implies the desired characterization. This concludes the case

(b+ 1)i = 1 ∧ (b+ 1)i+1 6= j. Since only the first bit switches during σb → σ, this
also concludes the case bi = 0 ∧ bi+1 6= j.

3. Let bi = 0∧bi+1 = j. Since only the first bit switches, it suffices to consider i 6= 1 and
(b+1)i = 0∧(b+1)i+1 = j. As before, if 1j=0lfn(b, i+1)+1j=1lufn(b, i+1) = 0, then
the statement follows directly. Hence assume 1j=0lfn(b, i+1)+1j=1lufn(b, i+1) 6= 0.
Then, ℓb(i, j, k) ≥ ⌈(b+ 2 + 1− k)/2⌉ ≥ m+1 by Lemma 6.2.3. Since the parameter

tb = −1 is not feasible, this implies φσb(di,j,∗, Fi,j) = m and σb(di,j,∗) 6= Fi,j . By the

same arguments used before, (di,j,1, Fi,j) is not applied and its occurrence record

with respect to σ is described by Table 5.6 when interpreted for b+ 1.

4. Finally, consider the case bi = 1 ∧ bi+1 6= j. Since only the first bit switches, this

implies i 6= 1 and (b+ 1)i = 1 and (b+ 1)i+1 6= j. It is easy to see that this enables

us to use the same arguments used previously.

Claim 23. Equation (6.10), e = (gi, Fi,j) ∈ Aσb
σb−1

and bi = 0 either imply Inequality (6.11)

directly or that exactly one of the cycle edges of Fi,j is switched during σb−1 → σb.

Proof. By Equation (6.10), at most one of the two edges of the cycle center Fi,j is switched.

We distinguish the following cases.

1. Let Fi,j be open for σb−1. Then, one of the two cycle edges is applied during phase 1

of σb−1 → σb since no cycle center is open at the end of phase 1 by Corollary 6.3.4

resp. 6.3.7.

2. Let Fi,j be closed for σb−1. Then, since bi = 0, either (b− 1)i = 1 ∧ (b− 1)i+1 = j
or (b− 1)i = 0 ∧ (b− 1)i+1 6= j. Consider the first case. This case can only happen

if i < ℓ(b), additionally implying j 6= bi+1. In addition, we then have

φσb−1(di,j,k, Fi,j) =

⌊
lfn(b− 1, i, {(i+ 1, j)})− k

2

⌋
+ 1

313



A. Proofs

=

⌊
b− 1− 2i−1 + 1− k

2

⌋
+ 1

=

⌊
b− 2i−1 − k

2

⌋
+ 1 =

⌊
b− 2i−1 + 2− k

2

⌋
.

for k ∈ {0, 1}. For i = 2, this implies

φσb−1(di,j,0, Fi,j) =

⌊
b− 2 + 2− 0

2

⌋
=

⌊
b

2

⌋

φσb−1(di,j,1, Fi,j) =

⌊
b− 2 + 2− 1

2

⌋
=

⌊
b− 1

2

⌋
≥

⌊
b

2

⌋
− 1

and thus the statement. For i ≥ 3 it is easy to verify that this implies that the

occurrence record of at least one of the cycle edges is so low that the corresponding

edge is applied as improving switch during phase 5 of σb−1 → σb. This concludes
the first case, hence assume (b− 1)i = 0 ∧ (b− 1)i+1 6= j. Then, Fi,j being closed

implies φσb−1(di,j,k, Fi,j) = ℓb−1(i, j, k) + 1 ≤ ⌊b/2⌋ − 1 and σb−1(di,j,k) = Fi,j for

both k ∈ {0, 1}. If this inequality is met with equality for both k, then the statement

follows as the occurrence record of the edges is sufficiently high. If the inequality is

strict for at least one k, then the corresponding switch is applied during phase 5 of

the transition σb−1 → σb.

3. Let Fi,j be halfopen for σb−1. Then, for some k ∈ {0, 1}, σb−1(di,j,k) = Fi,j as well as

φσb−1(di,j,k, Fi,j) = ℓb−1(i, j, k) + 1 ≤ ⌊b/2⌋ − 1. Furthermore, σb−1(di,j,1−k) = Fi,j

and φσb−1(di,j,k, Fi,j) ∈ {⌊b/2⌋ − 1, ⌊b/2⌋}. If φσb−1(di,j,k, Fi,j) = ⌊b/2⌋ − 1, then
the edge is applied as an improving switch and the statement follows. Hence

assume φσb−1(di,j,k, Fi,j) = ⌊b/2⌋. Then, due to σb−1(di,j,k) 6= Fi,j , this implies

ℓb−1(i, j, 1− k) + 1 6= ⌊b/2⌋. However, ℓb−1(i, j, k) ≤ ⌊b/2⌋ − 2 since it then holds

that φσb−1(di,j,k, Fi,j) = ℓb−1(i, j, k) + 1 ≤ ⌊b/2⌋ − 1. But, since ℓb−1(i, j, k) and
ℓb−1(i, j, 1− k) differ by at most one, this implies ℓb−1(i, j, 1− k) ≤ ⌊b/2⌋ − 1. But
this is a contradiction to φσb−1(di,j,1−k, Fi,j) = ⌊b/2⌋.

Claim 24. Assume that Equation (6.10), e = (gi, Fi,j) ∈ Aσb
σb−1

, bi = 0 hold and that

exactly one of the two cycle edges (di,j,0, Fi,j), (di,j,1, Fi,j) is applied during σb−1 → σb.
Then (b− 1)i = 0.

Proof. Let, for the sake of contradiction, (b−1)i = 1. Then, as bi = 0, we have i < ℓ(b) and
consequently (b− 1)i+1 6= bi+1. It further implies that b is even. Then, since e ∈ Aσb

σb−1
by

assumption, the switch e = (gi, Fi,j)was applied during phase 5 of σb−1 → σb. This implies

j = 0 if Gn = Sn resp. j = bi+1 = 1− (b− 1)i+1 if Gn = Mn. Consider the case Gn = Mn

first. Then, since (b− 1)i = 1∧ j = 1− (b− 1)i+1 imply ℓb−1(i, j, k) ≥ ⌊(b− k)/2⌋+1 for

k ∈ {0, 1} by Lemma 6.2.3, we obtain φσb−1(di,j,k, Fi,j) = ⌊(b− k)/2⌋.
In addition, since φσb−1(di,j,k, Fi,j) 6= ℓb−1(i, j, k)+1 for both k ∈ {0, 1}, Fi,j is then open

with respect to σb−1 by Property (OR2)i,j,∗. This implies that (di,j,1, Fi,1) is applied during

phase 1 of σb−1 → σb. But then mink∈{0,1} φ
σb−1(di,j,k, Fi,j) < mink∈{0,1} φ

σb(di,j,k, Fi,j),
contradicting Equation (6.10). Now consider the case Gn = Sn. If j = 0 = 1− (b− 1)i+1,
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then the statement follows by the same arguments. This is the case if and only if i < ℓ(b)−1,
so let i = ℓ(b) − 1. By Definition 5.1.2, this implies σb−1(gi) = Fi,0. Since Fi,0 is then

closed during phase 1 of the transition σb−1 → σb and since (gi, Fi,1) cannot be applied

during phase 5 in Sn, this is a contradiction.

Claim 25. Assume that Equation (6.10), e = (gi, Fi,j) ∈ Aσb
σb−1

, bi = 0 hold and that

exactly one of the two cycle edges (di,j,0, Fi,j), (di,j,1, Fi,j) is applied during σb−1 → σb. If
(gi, Fi,j) is applied during phase 1 of σb−1 → σb, then

1. b is even and i 6= 2,

2.
∑

(b, i) = 2i−1 − 2 and

3. if (gi, Fi,j) ∈ A
σb−1
σb−2 , then (gi, Fi,j) /∈ A

σb−2
σb−3 .

Proof. By Corollary 6.3.2, there is some index k ∈ {0, 1} such that σb−1(di,j,k) = Fi,j

as well as φσb−1(di,j,k, Fi,j) = ℓb−1(i, j, k) + 1 ≤ ⌊b/2⌋ − 1. Moreover, it holds that

φσb−1(di,j,1−k, Fi,j) = ⌊b/2⌋ − 1 and (di,j,1−k, Fi,j) is applied during phase 1 of σb−1 → σb.
By Equation (6.10), (di,j,k, Fi,j) is not applied as improving switch during σb−1 → σb. It
is easy to verify that this implies that we need to have φσb−1(di,j,k, Fi,j) = ⌊b/2⌋ − 1 as

well as ℓ(b) > 1. This implies that b is even and, since (b− 1)i = 0 and that we cannot

have i = 2. In particular, the first statement holds and we have ℓb−1(i, j, k) = ⌊b/2⌋ − 2.
Since ℓb−1(i, j, 1) ≤ ℓb−1(i, j, 0), this implies k = 1 as φσb−1(di,j,1−k, Fi,j) ≤ ⌊b/2⌋−2 held

otherwise. This implies ⌊(b− 2)/2⌋ =
⌊
(b− 2i−1 +

∑
(b− 1, i) + 1)/2

⌋
as

⌊
b− 2

2

⌋
=

⌊
b

2

⌋
− 1 = ℓb−1(i, j, 1) + 1 =

⌈
b− 1− 2i−1 +

∑
(b− 1, i)

2

⌉
+ 1

=

⌊
b− 2i−1 +

∑
(b− 1, i) + 2

2

⌋
=

⌊
b− 2i−1 +

∑
(b− 1, i) + 1

2

⌋
.

where the last equality follows since i ≥ 3 and since
∑

(b − 1, i) is odd as b is even.

Since b is even and i 6= 1, the nominators on both sides are then even. But this implies

that the nominators have to be equal. Since
∑

(b, i) =
∑

(b − 1, i) + 1, this implies∑
(b, i) = 2i−1 − 2. More precisely,

∑
(b, i) =

∑
(b− 1, i) + 1 = b− 2− b+ 2i−1 − 1 + 1 = 2i−1 − 2,

implying the second statement.

We now prove that it is not possible that (gi, Fi,j) was applied during both σb−2 → σb−1
and σb−3 → σb−2, implying (c). First note that i ≥ 3 implies b− 3 ≥ b̄, i.e., b− 3 is indeed

“contributing” to N(b̄, b− 1). Since the statement follows if (gi, Fi,j) /∈ A
σb−1
σb−2 , assume that

this was the case. Since we assume that (gi, Fi,j) is applied during phase 1 of σb−1 → σb
and since i 6= ℓ(b) and i 6= ℓ(b − 1), it is not possible that (gi, Fi,j) was applied during

phase 5 of σb−2 → σb−1. It was thus applied during phase 1 of σb−2 → σb−1. Since b is

even, this implies φσb−2(di,j,k, Fi,j) ≤ ⌊(b− 2 + 1)/2⌋ − 1 = ⌊b/2⌋ − 2 for both k ∈ {0, 1}.
Now, for the sake of contradiction, assume (gi, Fi,j) ∈ A

σb−2
σb−3 . By the same argument

used previously, it is not possible that this switch was applied during phase 5 of that

transition. It thus needs to be applied during phase 1. This is an immediate contradiction
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if (b − 3)i = 1. Thus assume (b − 3)i = 0. Then, since (gi, Fi,j) was applied during

phase 1 of σb−3 → σb−2, there is some k ∈ {0, 1} such that σb−3(di,j,1−k) 6= Fi,j as well as

φσb−3(di,j,1−k, Fi,j) = ⌊(b− 3 + 1)/2⌋ − 1 = ⌊b/2⌋ − 2. Since this switch is then applied

during phase 1, this implies φσb−2(di,j,1−k, Fi,j) = ⌊b/2⌋ − 1 which is a contradiction.

Claim 26. Assume that Equation (6.10), e = (gi, Fi,j) ∈ Aσb
σb−1

, bi = 0 hold and that

exactly one of the two cycle edges (di,j,0, Fi,j), (di,j,1, Fi,j) is applied during σb−1 → σb. If
(gi, Fi,j) is applied during phase 5 of σb−1 → σb and σb−1(gi) = 1− j, then

1. i 6= 2,

2.
∑

(b, i) = 2i−1 − 2 and

3. if (gi, Fi,j) ∈ A
σb−1
σb−2 , then(gi, Fi,j) /∈ A

σb−2
σb−3 .

Proof. We remind here that we have bi = 0 and (b− 1)i = 0, implying bi+1 = (b− 1)i+1.

By the conditions describing under which circumstances an improving switch (gi, Fi,j)
becomes improving in phase 5 (see Lemma 6.2.32) and the assumption, we have j = 0
if Gn = Sn resp. j = βσ

i+1 = bi+1 = (b − 1)i+1 if Gn = Mn. By Definition 5.1.2 resp.

5.2.1, σb−1(gi) = Fi,1−j then implies that Fi,1−j has to be closed with respect to σb−1. As
(b− 1)i = 0, it also implies that 1− j = 1− (b− 1)i+1 needs to hold for both Mn and Sn

But this implies that

φσb−1(di,1−j,k, Fi,1−j) = ℓb−1(i, 1− j, k) + 1 ≤

⌊
b

2

⌋
− 1

for both k ∈ {0, 1}. We show this implies i 6= 2 as assuming φσb−1(d2,1−j,0, F2,1−j) =
ℓb−1(2, 1− j, 0) + 1 contradicts φσb−1(d2,1−j,0, F2,1−j) ≤ ⌊b/2⌋ − 1.

Assume i = 2. Then, since (b−1)2 = b2 = 0, we need to have b1 = 1, so b is odd. Hence,

ℓb−1(2, 1− j, 0) + 1 = ⌊(b− 2 + 1)/2⌋ = ⌊b/2⌋ . Also, ⌊(b− 2)/2⌋ = ⌊b/2⌋ − 1 due to the

parity of b and thus ⌊(b− 2)/2⌋ ≥
⌊
(b− 2i−1 +

∑
(b− 1, i) + 1)/2

⌋
, which contradicts

the previously given inequality. Using the same arguments used when proving Claim 25,

this implies
∑

(b, i) ≤ 2i−1 − 2.
It remains to prove that (gi, Fi,j) ∈ A

σb−1
σb−2 implies (gi, Fi,j) /∈ A

σb−2
σb−3 . As we have

σb−1(gi) = 1 − j, the switch (gi, Fi,j) cannot have been applied during phase 5 of

σb−2 → σb−1. It was thus applied during phase 1 of σb−2 → σb−1. Assume b − 2 = b̄

which can happen if b is odd. But then, (gi, Fi,j) was not applied during phase 1 of

σb−2 → σb−1 as we then have (b − 2)i = 1. Thus assume b̄ ≤ b − 3 and that (gi, Fi,j)
was applied during phase 1 of σb−2 → σb−1. Towards a contradiction, assume that

(gi, Fi,j) is applied during σb−3 → σb−2. Since we apply the same switch during phase 1

of σb−2 → σb−1 and i 6= ℓ(b− 1) due to (b− 1)i = 0, the switch must have been applied

during phase 1 of σb−3 → σb−2. If this was not the case, i.e., if it was applied during

phase 5, we had σb−2(gi) = Fi,j and it would not be possible to apply (gi, Fi,j). Note

that this implies (b − 3)i = 0 and in particular (b − 3)i+1 = j. Then, since (gi, Fi,j) is
applied during both σb−3 → σb−2 and σb−2 → σb−1, the improving switch (gi, Fi,1−j) has
to be applied in between. This switch can only be applied during phase 1 of σb−2 → σb−1
since j = (b− 3)i+1 = bi+1 and since (gi, Fi,j) was applied during phase 5 of σb−1 → σb.
But this is a contradiction as we apply (gi, Fi,j) during phase 1 of that transition and

i 6= ℓ(b− 2).
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active bicycle, 50

active cycle center, 85

basic direction, 25

basic feasible solution, 23

basic solution, 23

basis, 23

matrix, 23

bias, 19

bicycle

closed, see closed bicycle

of type k, 68
open, see open bicycle

bicycle vertex, 51

bounded

linear program, 20

polyhedron, 22

canonical properties, 109

canonical strategy for Mn, 89

canonical strategy for Sn, 84

chosen cycle center, 119

closed bicycle, 51

closed cycle center, 84

constraint matrix, 20

convex, 22

counterstrategy, 34

cycle center, 83

active, see active cycle center

chosen, see chosen cycle center

closed, see closed cycle center

halfopen, see halfopen cycle center

inactive, see inactive cycle center

mixed, see mixed cycle center

open, see open cycle center

cycle component, 12

cycle edges, 83

cycle vertex, 83

entry vertex

in the construction of [Fri11c], 51

in the exponential construction, 83

escape vertex, 84

expected average reward criterion, 19

expected total reward criterion, 17

feasible

basis, 23

linear program, 20

solution, 20

finite

MDP, 41

flip number, 49

flip set, 49

gain, 19

halfopen cycle center, 84

halfspace, 22

hyperplane, 22

improving switch, 34

MDP, 42

inactive bicycle, 50

inactive cycle center, 85

incorrect level, 101

induced bit state, 85

infeasible

linear program, 20

initial phase 1 strategy, 56
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last flip number, 104

linear program, 20

Markov decision process (MDP), 15

match set, 49

matching a scheme, 49

maximal flip number, 49

minimum ratio test, 26

mixed cycle center, 84

next relevant bit, 101

objective function, 20

occurrence record, 94

open bicycle, 51

open cycle center, 84

optimal

basis, 26

solution, 20

strategy, 34

strategy (MDP), 17

strategy for exp. avg. reward, 19

strategy for exp. total reward, 17

vertex, 22

optimality equations, 17

Parity game (PG), 11

path component, 12

phase-k-strategy, 104
play, 12

induced, 12

player

edge, 15

vertex, 15

polyhedron, 22

polytope, 22

priority function, 11

randomization

edge, 15

vertex, 15

reachable strategy, see strategy

reduced cost

Linear program, 26

MDP, 46

reduced valuation, 127

representing a number

in the construction of [Fri11c], 54

reward function, 15

right-hand side, 20

scheme, 49

selector vertex

in the exponential construction, 83

sink

MDP, 40

Parity game, 36

sink strategy, 37

slice, 74

solving a parity game, 13

spinal path, 82

strategy

in a Markov decision process, 15

in a parity game, 12

reachable, 94

well-behaved, see well-behaved

tie-breaking rule

for the exponential construction, 98

unbounded

linear program, 20

upper selection vertex, 83

valuation

vertex (MDP), 17

vertex (Sink game), 38

value

vertex (MDP), 17

vertex

of a polyhedron, 22

vertex valuations, 34

weak unichain condition, 40

weak unichain strategy, 40

weakly unichain MDP, 40

well-behaved, 123

winning

a play, 12

a set, 13

a vertex, 13

winning set, 13
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The Simplex algorithm is one of the most important algorithms

in discrete optimization, and is the most used algorithm for

solving linear programs in practice. In the last 50 years,

several pivot rules for this algorithm have been proposed and

studied. For most deterministic pivot rules, exponential lower

bounds were found, while a probabilistic pivot rule exists that

guarantees termination in expected subexponential time.

One deterministic pivot rule that is of special interest is Zadeh’s

pivot rule since it was the most promising candidate for a

polynomial pivot rule for a long time. In 2011, Friedmann

proved that this is not true by providing an example forcing

the Simplex algorithm to perform at least a subexponential

number of iterations in the worst case when using Zadeh’s

pivot rule. Still, it was not known whether Zadeh’s pivot rule

might achieve subexponential worst case running time. Next

to analyzing Friedmann’s construction in detail, we develop

the first exponential lower bound for Zadeh’s pivot rule. This

closes a long-standing open problem by ruling out this pivot

rule as a candidate for a deterministic, subexponential pivot

rule in several areas of linear optimization and game theory.
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