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Abstract

Nowadays, models have become central artifacts in several application areas such
as software development, reverse and re-engineering, simulation and verification,
and optimization. Their benefits are that they are precisely defined in terms of
metamodels and that they can be processed by generic tools.

In whichever application area models are used, there is the need for analyzing
and extracting information from them using querying tools and for manipulating
models or generating new models from given models using transformations.

This thesis is about a new model querying and transformation approach called
FunnyQT which is realized as a set of APIs and embedded domain-specific lan-
guages (DSLs) in the JVM-based functional Lisp-dialect Clojure.

Founded on a powerful model management and manipulation API, FunnyQT
provides querying services such as comprehensions, quantified expressions, regular
path expressions, logic-based, relational model querying, and pattern matching.

On the transformation side, it supports the definition of typical unidirectional
model-to-model transformations, of complex in-place transformations based on
rules using pattern matching for identifying structures of interest and rewriting
them, it supports defining bidirectional transformations that built upon its relational
querying capabilities in order to synchronize information back and forth between
two models, and it supports a new kind of co-evolution transformations that allow
for evolving a model together with its metamodel simultaneously.

Next to the querying and transformation services, several auxiliary services such
as polymorphic functions, model visualization, and XML processing are supported,
too.

There are several properties which make FunnyQT unique. First of all, it is just a
Clojure library. Thus, a FunnyQT query or a transformation is essentially a Clojure
program. However, most higher-level querying and transformation services are
provided as task-oriented embedded DSLs which use Clojure’s powerful macro-
system to support the users with tailor-made language constructs important for the
task at hand.

Since queries and transformations are essentially just Clojure programs, they
may use any Clojure or Java library for their own purpose. For example, FunnyQT
has no service dedicated to model-to-text transformations because users can just
use some existing JVM-based templating tool together with FunnyQT’s querying
service for this purpose.

Conversely, just like every Clojure program, FunnyQT queries and transforma-
tions compile to normal JVM byte-code and can easily be called from other JVM
languages such as Java.

Furthermore, FunnyQT is platform-independent and designed with extensibility
in mind. By default, it supports the Eclipse Modeling Framework and JGraLab,
and support for other modeling frameworks can be added with minimal effort and
without having to modify the respective framework’s classes or FunnyQT itself.

Lastly, because FunnyQT is embedded in a functional language, it has a functional
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emphasis itself. Every query and every transformation compiles to a function which
can be passed around, given to higher-order functions, or be parametrized with
other functions itself.
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Zusammenfassung

In vielen Anwendungsgebieten wie Software-Entwicklung, Reverse- und Re-Engi-
neering, Simulation und Verifikation und Optimierung spielen Modelle heute eine
zentrale Rolle. Zu ihren Vorteilen gehört, dass sie durch ihr Metamodell präzise
definiert sind und von generischen Tools verarbeitet werden können.

Zu den wichtigsten Tools im Umgang mit Modellen gehören Anfragesprachen, mit
denen sich Modelle analysieren und Informationen extrahieren lassen. Weiterhin
spielen Transformationen eine wichtige Rolle, welche Modelle manipulieren oder
neue Modelle aus vorhandenen Modellen generieren.

Das Thema dieser Arbeit ist ein neuer Modellanfrage- und Transformationsansatz
namens FunnyQT, der als Menge von APIs und domänenspezifischen Sprachen
(DSLs) in den funktionalen Lisp-Dialekt Clojure eingebettet ist.

Basierend auf einer leistungsstarken API zur Verwaltung und Manipulation von
Modellen bietet FunnyQT Anfragekonstrukte wie Comprehensions, quantifizierte
Ausdrücke, reguläre Pfadausdrücke, relationale Anfragen und Pattern Matching.

Auf Seite der Transformationen unterstützt es die Definition typischer unidi-
rektionaler Modell-zu-Modell-Transformationen, und es unterstützt die Definition
komplexer In-Place-Transformationen basierend auf Regeln, die mittels Pattern
Matching Strukturen im Modell finden und manipulieren. Zudem können bidirek-
tionale Transformationen definiert werden, welche Informationen zwischen zwei
Modellen in jedwede Richtung synchronisieren können. Weiterhin wird eine neue Art
von Co-Evolutions-Transformationen ermöglicht, welche ein Metamodell evolvieren
und dabei gleichzeitig ein Instanzmodell anpassen.

Neben den Anfrage- und Tranformationsdiensten werden auch noch einige weit-
ere Hilfsdienste bereitgestellt. Dazu gehören polymorphe Funktionen, Modell-
Visualisierung und XML-Verarbeitung.

FunnyQT besitzt einige Eigenschaften, die es einzigartig machen. Zunächst ist
FunnyQT nur eine gewöhnliche Clojure-Bibliothek. Anfragen und Transformationen
sind also gewöhnliche Clojure-Programme. Allerdings benutzt FunnyQT Clojures
leistungsfähiges Makro-System, um die meisten seiner höherwertigen Dienste als
eingebettete, domänenspezifische Sprachen mit speziell für die jeweilige Aufgabe
maßgeschneiderten Sprachkonstrukten anzubieten.

Da Anfragen und Transformationen gewöhnliche Clojure-Programme sind, kön-
nen sie selbst auch beliebige Clojure- und Java-Bibliotheken verwenden. Beispiels-
weise bietet FunnyQT keine spezialisierte API oder DSL zur Definition von Modell-
zu-Text-Transformationen weil diese ebensogut mittels FunnyQTs Anfrage-API und
einem beliebigen existierenden Templating-Tool definiert werden können.

Umgekehrt kompilieren FunnyQT-Anfragen und Transformationenwie alle Clojure-
Programme zu gewöhnlichem JVM-Bytecode und können somit leicht aus anderen
JVM-Sprachen wie Java aufgerufen werden.

Eine weitere Besonderheit ist FunnyQTs Plattformunabhängigkeit. Es unterstützt
Modelle vom Eclipse Modeling Framework und von JGraLab, und Unterstützung
für weitere Modellierungs-Frameworks kann mit minimalem Aufwand und ohne
Änderungen an ebendiesen oder FunnyQT hinzugefügt werden.
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Da FunnyQT in eine funktionale Sprache eingebettet ist, hat es selbst eine
überwiegend funktionale Ausrichtung. Jede Anfrage und jede Transformation ist
eine Funktion, welche an Funktionen höherer Ordnung übergeben oder selbst mit
anderen Funktionen parametrisiert werden kann.
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Chapter 1

Context and Motivation

With the advent ofmodel-driven engineering (MDE, [Ken02; Sch06; BCW12]), models
have become central artifacts in software engineering nowadays which provide a
more abstract view on the system under development. Different models concentrate
on different aspects and together provide a complete view on the system. They
provide a powerful means for managing complexity by allowing to separate concerns
and describe complex systems from different points of view and using different levels
of abstraction.

Models facilitate communication among developers and all other stakeholders.
Whereas code is understandable only for IT experts, especially the rather abstract
models developed in the early phases of a project can be understood and validated
by domain experts reducing the risk of design errors which are hard to fix later on.

Another strength of models is that they are defined using modeling languages
such as the UML [OMG15c], SysML [OMG15b], or BPMN [OMG11a] which are
precisely defined by a metamodel and possibly further constraints expressed, e.g.,
using OCL [OMG14b]. Therefore, they cannot be structurally incorrect and they
can be queried for extracting information.

Transformations play a key role in MDE. The idea is that large parts of the final
system can be generated by a chain of model transformations. Starting with very
abstract models, these are refined incrementally and the final model is essentially
the code realizing the envisioned system using concrete technologies.

For example, OMG’s model-driven architecture (MDA, [OMG14a]) categorizes
models into three different architectural layers. Business and domain models (also
called computation independent models, CIMs) describe the business domain of a
system and its requirements, i.e., they describe the actual domain and not how that
domain is to be represented within the system. Logical system models (also called
platform independent models, PIMs) describe the components which constitute
the system and their interactions without respect to concrete technologies like
programming languages, frameworks, or libraries. Finally, implementation models
(also called platform specific models, PSMs) enrich the logical system models with
knowledge about concrete platforms and technologies.
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4 CHAPTER 1. CONTEXT AND MOTIVATION

In the MDA vision, model transformations are used in order to come from more
abstract to more concrete models. From the CIM models, initial PIMs can be gener-
ated which are then extended incrementally until the complete system structure
and application logic is defined by them. Thereafter, these PIMs are transformed
to PSMs where the transformations add platform specifics. E.g., there might be
two different transformations which take a PIM and generate a PSM where one
transformation targets the Java EE platform and the other transformation targets
the .NET platform.

With MDE and MDA, the most important kind of transformations are out-place
or model-to-model transformations that generate new target models from given
source models, the final model being the actual source code of the runnable system
for a concrete platform and technology. However, this process is usually not linear.
Oftentimes, different models are developed separately and need to be synchronized
later on. This is a use-case for bidirectional transformations which are able to
propagate changes between two models back and forth.

Modeling, querying, and transformation are not limited to software development
but many other application areas exist, too.

For example, executable models are a further trend nowadays. Here, a system
is fully specified by a model which is not eventually transformed to code in some
programming language. Instead, the model itself is interpreted in order to execute
the system. Such a model interpreter obviously relies heavily on querying and it can
be implemented as an in-place transformation which changes the system’s model
in place. There is a subset of the UML called foundational UML (fUML, [OMG13])
with a precisely specified behavioral semantics and a generic model execution
environment for modeling languages whose behavioral semantics is defined using
fUML has been developed already in [May14].

Alternatively, [Der14] introduces a realization concept for systems where code
and models co-exist. In such a system, performance-critical parts may be realized
by code whereas other parts may be realized by models which are interpreted at
runtime. Having models at runtime allows for more flexibility because models can
be modified so that the system’s behavior can be adapted (e.g., by transformations)
while it is running.

Models also play an important role in reverse engineering [Ebe+02; Bru+14]
where different artifacts of legacy systems, e.g., its documentation and source code,
are parsed into models which are then analyzed by model queries in order to regain
an understanding of the system. For the same purpose, model transformations can
be used for generating more abstract models from the overly detailed source code
models.

With re-engineering and software migration [FHR11; Wag14], the reverse engi-
neering activities are followed by forward engineering activities which refactor the
legacy system to re-establish its maintainability or to port its functionality to differ-
ent architectures or to different platforms. These forward engineering activities
can be supported by transformations, e.g., refactorings are usually implemented
as in-place transformations and migrations are frequently realized as out-place
transformations.
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Yet another application field is simulation and verification [Lar03; ZR11] where
the state of a system is represented by a model and the behavior of the system is
defined in terms of transformations which transition the system from one state into
another state. Thereby, different properties can be checked through queries, e.g.,
invariants which must be satisfied in all states.

In recent years, there is a trend away from general modeling languages like the
UML towards domain-specific modeling languages (DSML, e.g., in [BOM15; TFW14;
KAL14]) which allow for raising the abstraction level even further by providing
custom-tailored constructs for modeling the aspects relevant in a concrete domain.
Such DSMLs can be specific to one single company or even project and therefore
they can evolve rapidly in order to keep up with the needs of the domain. However,
when a modeling language evolves, there is a chance that old models conforming to
an earlier version of the language don’t conform to the new version anymore. Thus,
there is a need for co-evolution transformations which support upgrading models
conforming to old metamodel versions to the new metamodel version.

So to summarize, different modeling application areas require different querying
and transformation capabilities. Whereas there is no clear categorization for dif-
ferent kinds of queries1, there are four somewhat distinct kinds of transformations:
1. Out-place transformations (also called model-to-model transformations) create

new target models for given source models. Usually, the modeling languages
(metamodels) of the source and target models are different, thus, out-place
transformations are translators from one modeling language to another model-
ing language.

2. In-place transformations change a given model in place. Usually, they consist
of rules that define which parts of the model have to be changed in which way.
A typical use-case for in-place transformations are refactorings.

3. Bidirectional transformations are out-place transformations where there is no
strict distinction of which model is the source model and which model is the
target model. Given one model, the transformation can generate the respective
other model. And given two existing models, it can check whether the two
models are consistent with respect to the transformation rules. If they are not,
it can modify one of the two models in order to regain consistency again.

4. Co-evolution transformations are transformations which update models con-
forming to version i of a modeling language so that the updated models conform
to version j of that language. How this is achieved technically, e.g., in-place or
out-place, is not important here. The main motivation is to reduce the effort
needed. That is, the developer should not need to specify a full transformation
from models conforming to version i models conforming to version j but he
should only need to deal with the parts of the language which actually changed.

From a very high-level point of view, all four above mentioned transformation
kinds are well-supported by the querying and transformation languages and tools
which exist today. However, there are certain issues with the current state of the
art which are to be addressed by this thesis.

1One could say there are SQL-like comprehensions, constraints (e.g., quantified expressions), pattern
matching, logic-based querying, ...
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Most querying and transformation tools target just one kind of models, i.e.,
they are specifically designed for one single model representation. Usually, this
model representation is the one provided by the Eclipse Modeling Framework (EMF,
[Ste+09]) which is not overly astonishing given that this framework is the de-facto
standard nowadays. But still there are other modeling frameworks around (some are
even specific to a concrete transformation tool) which have qualities that might make
them a better fit in concrete scenarios. Ideally, the choice of a modeling framework
and the choice of querying and transformation tools should be orthogonal issues
which don’t influence each other. This implies that querying and transformation tools
should be generic, i.e., they should be able to work with any model representation.

Model management is concerned with loading and storing of models and query re-
sults and with defining algorithms working on models and their elements. Right now,
querying and transformation approaches usually don’t support model management
at all. Therefore, scripting queries and transformations and defining algorithms on
models has to be done in a general purpose programming language such as Java us-
ing the respective modeling framework’s API. This is inconvenient and obviously not
generic at all. Model management is the foundation of querying and transformation
and as such it should be provided as a first-class service.

Furthermore, current querying approaches are rather inflexible and limited.
Usually, they provide only few querying concepts, e.g., one or two out of SQL-
like comprehensions, powerful path expressions, logic-based querying, or pattern
matching. Each one has its use-cases but ideally one should be able to mix them
arbitrarily.

The same situation applies to transformation languages. Most current approaches
implement just one single kind of transformations, may it be in-place, out-place, or
bidirectional transformations. Thus, when really living the model-driven idea, one
needs to use more than one language and tool which requires more learning effort
and there is a risk of running into interoperability problems. What is needed is a
comprehensive approach where all common querying and transformation services
are provided in a seamless manner.

With respect to expressiveness and reusability, there is a lot to be learned from
functional languages. Queries and transformations should be represented using
proper abstractions. They should be first-class objects that can be passed around,
be composed using higher-order functions and be parametrized with other queries
and transformations themselves.

Concerning interoperability, queries and functions should be equally accessible
and callable from general purpose programming languages like Java. Many current
approaches provide APIs which can be used to load queries or transformations
from files and then execute them but this is usually not very intuitive. It would be
better if queries and transformations were compiled directly to classes which can be
instantiated and executed immediately. This would provide a seamless experience
when using queries and transformations as integral parts of applications.

In the opposite direction, right now queries and transformations are usually
isolated from their surrounding, i.e., they cannot access information which is not
represented by models. Ideally, queries and transformations defined using a dedi-
cated approach should be as flexible in this respect as queries and transformations
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being defined using a general purpose programming language. For example, it is
easy to conceive transformations which query a relational database in addition to
models, or queries which communicate with remote services over a network.

Last but not least, the usability of most current approaches when defining queries
and transformations is far from perfect at least when being compared with the way
how programs in many modern languages can be developed today. With the former,
changing a query or transformation usually entails editing the definition followed by
re-executing it against some test models. The latter step requires the start of a new
execution environment, loading the models (which is very time-consuming at least
with large models), executing the query or transformation, and inspecting its result.
Many modern programming languages provide support for interactive development
where editors and IDEs are connected to a life execution environment at all times.
After changing some definition in the code, only this single definition is transferred
to the execution environment and replaces its former version. Therefore, changes
can be re-tested instantly without the need to restart the execution environment
and setup the test context anew. This capability provides a much shorter feedback
loop and allows for developing complex queries and transformations incrementally.

In the following, the requirements of the envisioned model querying and transfor-
mation approach which is going to be to conceptualized and realized in this thesis
are defined.

The major goal of the approach is its comprehensiveness, i.e., it should provide
the right building blocks for dealing with all model querying and transformation
tasks in any of the application areas introduced in the beginning of this chapter. This
leads to the functional requirements, i.e., the concrete querying and transformation
services it needs to provide. These are introduced in chapter 2 starting on page 9.

Thereafter, chapter 3 starting on page 13 introduces the non-functional require-
ments that are to be consider during the design of the approach.

Chapter 4 starting on page 17 then sketches a solution concept which provides
some insights on how the functional and non-functional requirements are to be
fulfilled.

Lastly, chapter 5 starting on page 21 gives an overview of the structure of this
thesis.





Chapter 2

Targeted Services

As already mentioned, the primary goal of the envisioned model querying and
transformation approach is its comprehensiveness. The set of services it provides
should support all common querying and transformation tasks in the different
application areas using adequate constructs. In this chapter, these required services
are briefly introduced.

Model management. Model management is concerned with all the low-level func-
tionality required in order to handle models. This includes loading and persisting of
models, retrieving elements from models, creating and deleting elements, accessing
and setting property values of elements, and accessing a model’s metamodel. It
might also contain auxiliary functionality such as model visualization and persisting
of model-related data, e.g., results from queries. Furthermore, a model manage-
ment language should also provide control flow structures which let users define
algorithms on models.

The general model management facilities are already provided by every modeling
framework in terms of their application programming interfaces (APIs). However,
the envisioned approach should be platform-independent, so its model management
functionality has to provide a uniform interface which abstracts away from the APIs
of concrete model representations.

Model querying. Model queryingmeans extraction of arbitrary information stored
in models. In essence, a query is a function that receives a model and returns some
usually simpler structured value, e.g., a scalar value or lists or sets of values.

Queries are typically used for calculating metrics on models, for checking con-
straints that add further restrictions (invariants) to models in addition to the struc-
tural constraints imposed by their metamodel and queries are also at the heart of
model transformations where transformations combine querying a source model
with creating elements in a target model.

Typical querying concepts include quantified expressions and comprehensions
which must obviously be supported by the envisioned approach. Another very

9
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expressive concept for querying complex, non-local relationships between elements
are regular path expressions which should be supported, too.

Pattern matching. Pattern matching is a special kind of querying. While queries
usually encode a concrete algorithm using adequate querying constructs, pattern
matching allows for a more declarative and expressive form of querying abstracting
away from any concrete algorithm for finding solutions to the query.

With pattern matching, a pattern mimics a structure in the model in terms of
nodes and edges connecting these nodes. These nodes and edges include identifiers
and typing information and patterns may also include further constraints, e.g., on
attribute values.

The matching process then deals with finding occurrences of the pattern in a
concrete model. An occurrence in a model is a substructure of the model consisting
of elements which correspond to the nodes in the pattern. I.e., every element has to
be an instance of the type declared for the corresponding node in the pattern and
the elements have to be linked with each other exactly as specified by the pattern’s
edges1. Furthermore, all additional constraints specified in the pattern have to hold.

Pattern matching is a very concise concept especially suited if the structure of
the substructures to be matched is local and fixed. It is also at the heart of in-place
transformations, thus, the envisioned approach should provide powerful pattern
matching capabilities.

In-place transformations. In-place transformations deal with the modification of
a given model. The usual concept for in-place transformations is to have rules which
use pattern matching in order to find structures of interest in a model and then act on
them in arbitrary ways. For example, optimization tasks such as constant folding or
refactoring tasks like extract superclass are typical in-place transformation problems
where the transformation changes a given abstract syntax graph in-place.

In-place transformations are also used in simulation scenarios where the model
under transformation represents the state of a system. Each transformation rule
defines a transition from one system state to another system state. Here, important
questions are if there is a sequence of rule applications which would transition the
system into some erroneous state, e.g., a deadlock, or if all possible rule application
sequences lead to one well-defined terminal state.

The envisioned approach should provide means for defining in-place transforma-
tions and it should also provide a some kind of state space analysis framework for
answering questions like the ones stated in the simulation case above.

Out-place transformations. Out-place or model-to-model transformations are
unidirectional transformations which create new target models given a set of source
models. Usually, the metamodels of the source models are different from the
metamodels of the target models. Therefore, such transformations provide means

1That is, the mapping from elements in the pattern to elements in the model has to be an isomorphism
or at least a homomorphism.
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to translate from the abstract syntax of a source language to the abstract syntax of
the target language.

The most common way to define out-place transformations is to do it in a rule-
based manner where each rule is responsible for creating one kind of target elements
for a given kind of source elements. But other approaches are conceivable, too.

Out-place transformations play a very important role in model-driven engineering,
thus, they have to be supported by the envisioned approach.

Bidirectional transformations. Whereas in-place transformations deal with the
modification of a given model and out-place transformations deal with the generation
of new target models given a set of source models, a bidirectional transformation
specifies correspondences between a left and a right model without respect to any
direction. E.g., a bidirectional transformation between class diagram and database
schema models might specify that a class in the left model corresponds to a table in
the right model in case they have the same name.

Such bidirectional transformations can be used for creating a new right model
for a given left model or vice versa. But bidirectional transformations are more than
two out-place transformations integrated into one specification. If they are run on
an existing left model and an existing right model, they can check if both models
are consistent with respect to the transformation and they can modify the chosen
target model in order to achieve consistency again. Therefore, they are important
in cases where pairs of models evolve separately and changes in one model should
be propagated to the other model.

Therefore, The specification of bidirectional transformations is also to be sup-
ported by the envisioned approach.

Co-Evolution transformations. Co-evolution of metamodels and models deals
with problems that occur when evolving metamodels. When a metamodel is evolved,
models which conform to the previous metamodel version might not be valid in-
stances of the new version. Therefore, they have to be adapted.

Co-evolution of metamodels and models is usually seen as a two-step process.
First, the metamodel is evolved resulting in a new version and then all instance
models conforming to the previous version have to be adapted in order to conform to
the new metamodel version. Several tools have been developed in order to perform
the co-adaption step at least semi-automatically.

The envisioned transformation approach should also target co-evolution but using
a radically new approach. Instead of considering co-evolution as a two-step process,
it should enable evolving the metamodel of a loaded model in-place while keeping
the model in conformance simultaneously.





Chapter 3

Design Goals

In this chapter, the general quality goals to be considered during the design of the
envisioned approach are introduced. Some are general software quality goals as
defined by standards such as ISO/IEC 9126 [ISO01] while others are more specific
to programming languages because the envisioned approach is no software tool for
end-users but a querying and transformation language.

Usability. Usability is a key factor for the success of a tool or language and there
are several aspects influencing it.

One aspect is commonality. A user who is already fluent in one querying or
transformation language will easily be able to learn another language which pro-
vides similar concepts and/or a similar syntax. Therefore, the envisioned approach
should borrow well-understood and useful concepts from existing popular languages
whenever that makes sense.

Another aspect of usability is tool support. A computer language intended to be
written by humans is only as good as the tools supporting its use. It is good when
a user has a choice in which tools she might use and ideally she can stick to the
tools she already uses. This is the usual situation with established general purpose
programming languages such as Java where a wide range of excellent editors and
IDEs exist, however, for niche languages with restricted scope, the situation is
usually less than ideal.

Yet another usability aspect is support for rapid and interactive development
where changes applied to some part of a (query or transformation) specification can
instantly be tested and complete solutions can be built in an incremental fashion
without going through repeated time-consuming compilation cycles.

Documentation is also an important aspect of usability. Every construct provided
to the user should be properly documented and documentation should be a first-
class citizen instead of being a kind of secondary appendix which usually becomes
outdated rather sooner than later.

13
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Platform Independence and Extensibility. Nowadays, the Eclipse Modeling
Framework [Ste+09] is by far the most widespread modeling framework and most
querying and transformation tools are specifically built to handle its models. But
there are also some others like JGraLab1 which is being developed at our institute,
or the .NET Modeling Framework2.

In the end, users should be free to use a model representation which fits their
needs best. In other situations, there might be no choice but the kind of models
to be used is fixed by someone else. And of course, new modeling frameworks
might be developed in the future. Therefore, the envisioned model querying and
transformation approach should be as platform independent as possible. It should
even allow handling models of different modeling frameworks simultaneously. For
example, it should be possible to define model-to-model transformations crossing
the boundaries of frameworks, e.g., transformations which query an EMF model in
order to create a JGraLab model.

Obviously, it is not feasible to support each and every modeling framework
natively, thus the envisioned approach should be extensible by defining some abstract
view on models which can be extended upon concrete model representations. This
extension mechanism should be applicable by users and it should not induce too
much overhead.

Reusability, Flexibility, and Openness. Reusability is a major concern in soft-
ware development and there’s no doubt that reusability should also be addressed
by querying and transformation approaches.

For example, it is reasonable to aggregate queries extracting information from
models conforming to a certain metamodel into one metamodel specific querying
library. Every transformation that uses this metamodel as its source metamodel
should be able to reuse those queries instead of having to define its own versions.
The same applies to transformation building blocks such as rules for which sharing
between several transformations should be possible, too. On a higher level, also
composing queries and transformations from other queries and transformations, or
parameterizing queries or transformations with other queries and transformations
should be feasible.

Furthermore, the envisioned approach should be flexible and open enough in
order to reuse functionality which is not provided by itself. For example, if a
transformation needs to query a database in addition to some source models, this
should be doable by reusing some external database querying functionality instead
of having to support databases directly. Likewise, for model-to-text transformations
it would be much better to be able to utilize existing templating languages instead
of providing yet another tool-specific solution.

Expressiveness and Conciseness. Expressiveness in programming languages
means that the language allows for notating ideas and algorithms using intuitive
concepts without accidental complexity induced by infrastructural code (boilerplate).
Conciseness means that this notation is also short.

1http://jgralab.github.io/ (last visited: 2015-10-31)
2https://nmf.codeplex.com/ (last visited: 2015-10-31)
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For example, when the task is to invoke a function on every element in a collection
and collect the results, a foreach loop is more expressive than a loop with a counter
variable because the length of the collection and element access by indices has
nothing to do with the actual task. In turn, the higher-order function map: (a -> b)
-> [a] -> [b] found in functional languages which receives a function transforming
an a to a b and a collection of a elements and which returns a collection of b elements
is even more expressive than a foreach loop because it already entails collecting
the results of applying the function.

The envisioned approach should provide expressive and concise constructs sup-
porting the concrete querying or transformation task at hand. Especially, it should
allow the query or transformation writer to concentrate on the actual problem and
the logic required for solving it without blurring the solution with boilerplate code.

For example, important declarative querying concepts such as regular path
expressions and pattern matching facilitate expressiveness and conciseness and so
do proper abstraction concepts supporting reuse.

Efficiency and Scalability. Efficiency and scalability are further properties re-
quired for a comprehensive and generally applicable approach. Both queries and
transformations should be evaluated as fast as possible and with larger model sizes
their runtime and memory requirements shouldn’t increase more than proportionally.
In essence, the main influence factor with respect to performance should be the un-
derlying model representation. There should be no significant overhead inherent to
the envisioned approach, neither with respect to runtime nor memory requirements.

Whenever possible, techniques for improving the performance, e.g., paralleliza-
tion, should be supported.





Chapter 4

Solution Concept

As outlined in the previous chapters, the envisioned model querying and transfor-
mation approach should be comprehensive providing services for
(1) model management,
(2) model querying including pattern matching,
(3) in-place transformations,
(4) out-place transformations,
(5) bidirectional transformations, and
(6) co-evolution transformations.
Next to the comprehensive set of provided services, it should be expressive and
concise, it should be generic and extensible with respect to model representations,
it should provide flexible reuse mechanisms, and it should be efficient and scale
well also for large models. And most importantly, it should be practically usable for
solving actual querying and transformation tasks.

In order to achieve the abovementioned goals and provide the envisioned services,
the implementation of the envisioned approach called FunnyQT1 is realized as an
API and a set of embedded domain-specific languages (embedded DSLs, [Fow11])
for the JVM-based functional Lisp-dialect Clojure2. In the remainder of this chapter,
a justification for this design decision is given.

Domain-specific languages are a current trend in software engineering. In
contrast to a general-purpose programming language (GPL) such as Java, their aim
is to focus on exactly one application domain and provide users with tailor-made
constructs for accomplishing the tasks relevant there. In fact, most model querying
and transformation languages are DSLs, too3.

One major advantage of DSLs is that they provide users with expressive, concise,
and convenient constructs with an appropriate abstraction level for realizing the
tasks relevant in a concrete domain, i.e., they are optimized for usability. For

1http://funnyqt.org (last visited: 2015-10-26)
2http://clojure.org/ (last visited: 2015-10-26)
3As notable exceptions, there are some querying and transformation approaches which are realized as

APIs in some programming language, e.g., GReTL [EH14] or NMF [HH15]
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example, quantified expressions, comprehensions, and role name navigation are
concepts one expects from a model querying language and mapping rules implying
some kind of traceability relationships are a concept one expects from a typical
model-to-model transformation language. Of course, all this can be realized using a
GPL and the APIs provided by modeling frameworks. However, a single statement
written in a DSL or a simple diagram in a visual DSL might be equivalent to dozens
of lines of complex code in a GPL where the actual query or transformation logic
realized by the code is blurred by infrastructural aspects (boilerplate code).

Because DSLs are limited to a specific purpose by design and have a high abstrac-
tion level, they are also easier to learn and provide less possibilities for introducing
bugs.

A disadvantage of DSLs is that they are complete computer languages on their
own. Each DSL requires its own toolset consisting at least of a parser or a graphical
editor in case of a visual DSL and an interpreter or compiler. Given the aspired
comprehensiveness of the envisioned approach it becomes apparent that such a
DSL would not be very small and every functionality would need to be implemented
from scratch. Therefore, the effort would be unacceptably high.

Embedded or internal DSLs are a special kind of DSLs. An embedded DSL is
usually provided just as a library and enhances a GPL, called its host language in
this context, with domain-specific constructs. For this purpose, it uses only features
provided by its host language itself, i.e., code written in an embedded DSL is also
valid code in the host language. The syntactic and semantic autonomy of the embed-
ded DSL depends largely on the features provided by the underlying host language.
Languages withmetaprogramming capabilities, i.e., the ability of a language to treat
a program in that language as data which can be manipulated (at compile-time or
even runtime), enable further possibilities with respect to development of embedded
DSLs.

Embedded DSLs combine the advantages of their general-purpose host languages,
e.g., maturity, flexibility, generality, and tool support, with the advantages of DSLs,
e.g., expressiveness and ease-of-use in clean-cut domains. They don’t require custom
tools like parsers and editors but instead rely on the tooling available to their host
language. And whenever the constructs provided by an embedded DSL don’t suffice
in a certain scenario, users can always retract to the host language to fill in the
missing pieces.

It should not be neglected that embedded DSLs also have some disadvantages.
Whereas a normal, external DSL is limited on purpose, an embedded DSL is open by
design and builds upon its host language. Therefore, external DSLs can potentially
be much easier to learn, to analyze, and they can have better, domain-specific tool
support. In contrast, an embedded DSL requires knowledge of its host language
and analyzing an artifact written in an embedded DSL essentially means analyzing
a program in the host language.

However, with the goals of the envisioned querying and transformation approach
in mind, the benefits of embedded DSLs outweigh their drawbacks. Therefore, the
decision has been made to realize the envisioned approach as a set of embedded
DSLs, one embedded DSL per targeted service.
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Today, the Eclipse Modeling Framework (EMF, [Ste+09]) is by far the most wide-
spread modeling framework around. Next to that, there are only few alternatives.
Two of them are JGraLab4 and the .NET Modeling Framework5. In addition, some
model transformation tools have their own custom model representations.

FunnyQT should be able to handle different model representations and certainly
it must support EMF in order to be practically relevant at all. As will be shown
later in chapter 8, an approach on genericity which is not founded on conversion or
wrapping is highly favored. I.e., the approach should handle all different kinds of
models natively by providing some generic view on models which in turn uses the
application programming interfaces of the respective frameworks.

Both EMF and JGraLab are implemented in Java which restricts the possibilities
of host language choices for FunnyQT to JVM-based languages which are able to
call Java APIs, e.g., Java itself, Scala, Clojure, Groovy, JRuby, and Jython6.

Functional languages provide expressive and concise concepts and abstractions
like functions as first-class objects including lexical closures, higher-order functions,
and lazy evaluation. Such features can also be used beneficially in the course
of model querying and transformation, so the decision has been made to use a
JVM-based functional language as the host language of the envisioned approach.
From the cited six languages, Clojure is predominantly functional (although not
pure). Both Scala and Groovy are multi-paradigm languages which are mainly
object-oriented but support many functional concepts, too.

Scala is a statically typed language with strong type inference capabilities
whereas Clojure and Groovy are dynamically typed. With Groovy, types may be
declared for variables, however, this only leads to Groovy generating appropriate
type checks in the relevant byte-code, i.e., typing errors are caught but only at
runtime.

In general, all these three languages are viable alternatives for implementing
the envisioned approach. For extending existing classes with a generic interface,
Clojure provides protocols, Scala provides traits, and Groovy provides mixins. For
development of embedded DSLs, Clojure has a powerful macro system, Scala has
its implicits, operator overloading, and an experimental macro system, and Groovy
also supports operator overloading, is very flexible in its syntax, and also provides
a macro system which allows defining transformations on the program’s abstract
syntax graph at compile time.

In the end, the decision to base the envisioned approach on Clojure is mostly a
matter of the author’s personal preferences who already had long-term experiences
with languages in the Lisp-family in general and Clojure in particular.

To summarize, FunnyQT is a library for the functional Lisp-dialect Clojure which
provides a comprehensive set of APIs and embedded DSLs for realizing tasks in
various model querying and transformation domains. Concretely, it provides the
services enumerated in fig. 4.1 on the following page.

4http://jgralab.github.io (last visited: 2015-10-26)
5https://nmf.codeplex.com/ (last visited: 2015-10-26)
6There are several more JVM-based languages but the cited six are the most prominent ones which

can be assumed to be mature enough and actively maintained and developed also in the future.
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(1) Generic Model Management API
(2) Querying Services

(a) Functional Querying API
(b) Embedded Pattern Matching DSL
(c) Embedded Relational Model Querying DSL

(3) Transformation Services
(a) Embedded In-Place Transformation DSL
(b) Out-Place Transformation Services

(i) Embedded Rule-Based Out-Place Transformation DSL
(ii) Extensional Out-Place Transformation API

(c) Embedded Bidirectional Transformation DSL
(d) Co-Evolution Transformation API

Figure 4.1: FunnyQT Services

The generic model management API provides the ground layer of the approach
providing functionality for loading and storing models and accessing model elements
and their properties. All other querying and transformation services use this API as
their foundation.

FunnyQT provides three kinds of querying services. Firstly, there is a rich
functional querying API providing comprehensions, quantified expressions, and
regular path expressions. Secondly, there is an embedded pattern matching DSL
allowing for defining complex patterns with many advanced features. Lastly, there
is a logic-based relational model querying DSL.

Four kinds of transformation services are provided. There is an embedded in-place
transformation DSL which allows for defining rules which use pattern matching for
finding subgraphs of interest and act on them. There are two different approaches
for realizing out-place transformations: one embedded rule-based transformation
DSL, and one operational transformation API which defines a transformation’s target
model in terms of the extensions of its metamodel’s constituents. Furthermore,
there is support for defining bidirectional transformations, again provided as an
embedded DSL. Lastly, FunnyQT also allows to specify co-evolution transformations
which operationally evolve a model’s metamodel simultaneously with the model
itself.



Chapter 5

Structure of this Thesis

Part II: Foundations starting on page 25 introduces the basics required for using
FunnyQT and for understanding this thesis. Chapter 6 gives an introduction into
the Clojure programming language, and chapter 7 introduces and compares the
two directly supported modeling frameworks JGraLab and EMF.

Part III: The FunnyQT Approach starting on page 81 gives a high-level overview.
Chapter 8 discusses FunnyQT’s approach for achieving genericity. Chapter 9 de-
scribes the terminology and conventions which are used and followed both in this
thesis and in the implementation. Then, chapter 10 depicts the general architecture
of FunnyQT by detailing how it is decomposed into namespaces, each namespace
being dedicated to one concrete querying or transformation service, and the depen-
dencies between those namespaces. At last, chapter 11 compares FunnyQT to the
Epsilon framework which is similar to FunnyQT because it is also a comprehensive
approach.

Part IV: On Model Management and Querying starting on page 105 is de-
voted to FunnyQT’s model management and querying services. First, chapter 12
describes the heart of FunnyQT, the generic model management API upon which
all higher-level querying and transformation services are built. Chapter 13 and
chapter 14 then introduce the framework-specific core APIs for JGraLab and EMF
models, respectively. These are used internally for implementing the generic view
on models but they are also provided to users. They also support some details of
the respective modeling frameworks which are not exposed through the generic
core API. Furthermore, they use the native terminology of the frameworks so some
users may prefer them in case they are dealing with just one kind of models anyway.
Chapter 15 introduces some more generic model management, querying, and utility
services such as regular path expressions, polymorphic functions, persistence of
model-related data, XML processing, and model visualization. Finally, chapter 16
discusses related model querying approaches.

Part V: On Pattern Matching starting on page 181 first gives an introduc-
tion into this concept by describing the pattern matching features found in many
functional languages as well as graph pattern matching services. Chapter 18 then
depicts FunnyQT’s embedded pattern matching DSL in all its details. Chapter 19
closes this part with a discussion of related approaches.
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Part VI: On In-Place Transformations starts on page 221 and is dedicated
to transformations which change a model in place. Again, the part starts with an
introduction in chapter 20 after which chapter 21 discusses FunnyQT’s embedded
DSL for defining in-place transformation rules. Thereafter, chapter 22 explains how
such transformation rules can be composed using higher-order rule combinators
and how their behavior can be modified using rule application modifiers. Chapter 23
describes FunnyQT’s state space exploration capabilities which can be used for
analyzing in-place transformations. Finally, chapter 24 gives an overview of related
approaches and compares them with FunnyQT.

Part VII: On Out-Place Transformation starting on page 259 again gives an
introduction into this concept in chapter 25. Thereafter, FunnyQT’s two different
approaches for defining model-to-model transformations are described: chapter 26
explains a rule-based embedded DSL for doing so, and chapter 27 explains an API
which allows to define a target model in terms of the extensions of its metamodel’s
constituents. The use of both approaches is illustrated using an example. Eventually,
chapter 28 discusses related transformation approaches.

Part VIII: On Relational Model Querying is concerned with relational, logic-
based model querying and starts on page 311. First, chapter 29 gives an introduction
to relational querying in general and then chapter 30 describes FunnyQT’s embedded
relational model querying DSL. Chapter 31 illustrates the use of this DSL using
some examples before chapter 32 discusses related logic-based querying languages.

Part IX: On Bidirectional Transformations starting on page 339 begins with
an introduction in chapter 33, and then chapter 34 describes FunnyQT’s embedded
bidirectional transformation DSL. Chapter 35 classifies the approach according to
several characteristics found in the literature. Thereafter, chapter 36 illustrates the
use of the embedded bidirectional transformation DSL with a non-trivial example.
Finally, chapter 37 discusses related approaches.

Part X: On Co-Evolution Transformations is about FunnyQT’s approach to
co-evolution transformations, that is, transformations that modify a metamodel
in-place and adapt a conforming instance model at the same time. The part starts
at page 375 and begins with an introduction in chapter 38 followed by a detailed
description of FunnyQT’s co-evolution API in chapter 39. Chapter 40 exemplifies the
API’s usage and chapter 41 discusses the related work in the context of co-evolution
of metamodels and models.

Part XI: Finale starting on page 403 concludes this thesis with an evaluation of
the approach in chapter 42 and a conclusion and outlook in chapter 43.
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Summary

FunnyQT is intended as a comprehensive model querying and trans-
formation approach realized and providing APIs and embedded domain-
specific languages in the Clojure programming language. For this reason,
some foundational knowledge of the latter is required in order to define
queries and transformations using it. Consequently, chapter 6 starting
on page 27 gives a brief overview of the Clojure language and discusses
the most important concepts and abstractions provided by it which are
relevant in the rest of this writing.

FunnyQT is also intended to work with arbitrary model representations.
It comes with builtin support for the model representations of JGraLab
and the Eclipse Modeling Framework, and support for other model repre-
sentations can be added without touching FunnyQT’s internals. Chapter 7
starting on page 69 gives short overviews of the two directly supported
modeling frameworks and compares them briefly.





Chapter 6

The Clojure Programming
Language

Clojure is a dynamically typed, general-purpose programming language targeting the
Java Virtual Machine1 (JVM), i.e. Clojure code is directly compiled to JVM bytecode.
This implies that Clojure provides wrapper-free access to any existing Java library,
which is a very important fact considering that most modeling frameworks such as
JGraLab and EMF are implemented in Java.

Clojure is predominantly a functional language, i.e., it has first-class functions
including lexical closures, it emphasizes higher-order functions, and it ships with a
rich set of immutable, persistent data structures.

In contrast to functional languages like Haskell, Clojure is not purely functional
but a slim set of so-called reference types with accompanying functions allow for
maintaining mutable state in a clean and consistent manner even in multithreaded
systems using a system of software transactional memory and a reactive agent
system. These reference types provide mutable references to immutable data
structures. However, models are highly mutable data structures, so this important
Clojure concept is not relevant for FunnyQT and thus not included in the introduction.

In the remainder of this section, a brief overview of the central Clojure concepts
needed for understanding the rest of this work is given. As a convention, whenever
a code example is given, the code itself is printed top-level, and the value resulting
from evaluating the code is shown in a comment introduced with ;=>. Sometimes, if
the code prints to standard out/error, then the output is added as comment between
the code and the result.

(time (+ 1 2)) ;; The code
; "Elapsed time: 0.037436 msecs" ;; Its output
;=> 3 ;; Its result

1There are also Clojure ports to the CLR, JavaScript, and Python.
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6.1 Evaluation Cycle

Clojure facilitates an interactive style of development in that it provides a read-eval-
print-loop (REPL). The Clojure expressions given in the remainder of this section
can be typed in at the REPL. They are read in (R), compiled and evaluated (E), and
the results are printed (P) immediately. Thereafter, the REPL accepts further input
which makes the loop (L) in REPL.

As already said, Clojure is a Lisp dialect. As such, Clojure source code is repre-
sented using the language’s own data structures. This property is usually referred
to as homoiconicity, and it entails very useful metaprogramming capabilities. In
contrast to traditional Lisp dialects like Common Lisp [IC96] and Scheme [Spe+10],
Clojure not only uses lists but also vectors for representing code, and it reduces
the number of parentheses where possible. In any case, humans are encouraged
to read the code by its indentation instead of counting parentheses. The Clojure
evaluation cycle is illustrated in fig. 6.1.

Figure 6.1: The Clojure evaluation cycle

First, the Reader parses the source code from a file or the user input given at
the REPL. It translates the textual representation into an abstract syntax tree (AST)
represented in Clojure’s own data structures (e.g., lists, vectors, numbers, symbols,
etc.). This data structure is then fed into the Compiler which gives a meaning
to the elements of the AST, e.g., which symbols denote functions, and then emits
JVM byte-code. The byte-code generation is preceded by the macro-expansion step
allowing for applying user-defined functions, so-called macros (see section 6.12
on page 60, to the AST. The byte-code is then evaluated on the JVM delivering the
result as some data structure. If the original code was given at the REPL, this result
is then translated to a textual representation again by the Printer.
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6.2 Syntax

The syntax of Clojure and all other Lisp dialects is extremely simple. In contrast to
imperative languages, there are no statements but everything is an expression, i.e.,
its evaluation returns some value. Everything that can be evaluated is called a form.
If a form is a list, i.e., enclosed in parentheses, it is a function application in prefix
notation2. Every other form is either a literal or a variable.

17 ;; (1) A literal
;=> 17
*ns* ;; (2) A variable
;=> #<Namespace user>
(+ 1 (- 1 2) (*)) ;; (3) A (nested) function call
;=> 1
(println "Hello World!") ;; (4) Another function call
; Hello World!
;=> nil

Literals such as the number 17 evaluate to themselves. The evaluation of a
variable results in the value bound to the variable. *ns* is a special variable that is
always bound to the current namespace. In (3), there is a nested function call. In
each list, the first element is (or refers to) a function (+, -, and * in the example),
and all following elements are the arguments passed to the function. A function is
evaluated by evaluating all arguments from left to right first, and then calling the
function itself. All arithmetic functions are defined for any number of arguments, so
the application of + sums up three numbers, the application of - substracts 2 from 1,
and the application of * returns the identity element of the multiplication, i.e., 1. As
already said, there are no statements but every form is an expression. In (4), the
println function is used to print the string “Hello World!” to standard output. This
function is useful only for its side-effects, so it always returns nil which is identical
to Java’s null.

Single-line comments are prefixed with ;. The number of semicolons is not
important. A single form, possibly spanning several lines, can be commented by
prefixing it with #_.

6.3 Basic Types

As a language running on the JVM, Clojure uses all the basic Java types, e.g., Boolean,
Double, Long, Character, and String. Note that integral literals are read as long rather
than integer values. Additionally, Clojure has a class for rational numbers. A division
between two integral values results in a ratio. In Java, a division between integers
results in an integer again and the remainder of the division is disregarded.

(class true)
;=> java.lang.Boolean

2It might also be an application of a special form (section 6.5 on page 33) or macro (section 6.12 on
page 60).
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(class 17)
;=> java.lang.Long
(class 17.3)
;=> java.lang.Double
(class 17/4)
;=> clojure.lang.Ratio
(class \newline)
;=> java.lang.Character
(class "Hello")
;=> java.lang.String

Beside those common types, it has two more basic types: keywords and symbols.
Keywords are symbolic identifiers that always evaluate to themselves. They are
written with a leading colon although that does not belong to their name. They are
primarily used as keys of maps.

:a-keyword
;=> :a-keyword
(name :a-keyword)
;=> "a-keyword"

Symbols are also symbolic identifiers. In contrast to keywords, they don’t evaluate
to themselves but they refer to something else, e.g., + is a symbol that refers to the
addition function, or *ns* is a symbol referring to the variable holding the current
namespace. This mapping from symbols to variables is of dynamic nature and
managed by namespaces (see section 6.10 on page 55).

Clojure supports regular expressions with a literal syntax which is exactly the one
documented in the java.util.regex.Pattern class3. In contrast to Java, where regular
expressions are specified as strings in order to be passed to the Pattern.compile()
method, in Clojure no additional escaping of backslashes is needed.

(re-matches #"(\w+)@(\w+)[.](de|com|org|net)" "user@host.com")
;=> ["user@host.com" "user" "host" "com"]

6.4 Collection Types

Clojure offers four core collection types: lists, vectors, hash-maps, and hash-sets.
They are all immutable and persistent. Immutability means that the contents of the
data structures cannot change. Adding an item to a collection creates a new, updated
version of it. Persistency means that all previous versions are still accessible because
the new version shares large parts of its structure. Furthermore, the performance
of accessing items or “updating” any version of the structure-sharing collections is
guaranteed to happen in some strict bounds. For example, retrieving a value for
some key in a map is guaranteed to happen in O(log32(n)) for n being the number of
entries in the map.

3http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html (last visited: 2015-
01-19)
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The simplest collection type are singly-linked lists. They are created using the
list function that receives arbitrary elements as its arguments. Alternatively, the
literal form of lists can be used by enclosing the elements in parentheses4.

(list 1 2 "three")
;=> (1 2 "three")
'(1 2 "three")
;=> (1 2 "three")

Vectors are the other ordered collection type. In contrast to lists, they provide
efficient random access via indices (starting with 0). Vectors are created using the
vector function or using their literal representation where the elements are enclosed
in brackets.

(vector 1 2 "three")
;=> [1 2 "three"]
[1 2 "three"]
;=> [1 2 "three"]

Vectors are also functions of their indices, i.e., a vector can be applied as a
function that receives an index and returns the value at position. If there is no such
index, an IndexOutOfBoundsException is thrown.

([1 2 "three"] 2)
;=> "three"
([1 2 "three"] 3)
; No message.
; [Thrown class java.lang.IndexOutOfBoundsException]

Hash-maps associate arbitrary keys with values without implying any order. They
are created with the hash-map function receiving arbitrary many key-value pairs
(entries), or using their literal representation {...}. If a key is given multiple times,
an IllegalArgumentException is thrown.

(hash-map :first-name "Jon" :last-name "Doe")
;=> {:last-name "Doe", :first-name "Jon"}
{:first-name "Jon" :last-name "Doe"}
;=> {:last-name "Doe", :first-name "Jon"}
{:first-name "Jon" :last-name "Doe" :first-name "Jack"}
; Duplicate key: :first-name
; [Thrown class java.lang.IllegalArgumentException]

Maps are functions of their keys receiving a key and an optional default value.
If the given key is associated with a value, then the value is returned. If not, the
optional default value or nil is returned.

4In order to distinguish function calls from literal lists, the latter have to be quoted. Quoting is
discussed in section 6.5 on page 33.
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({:first-name "Jon" :last-name "Doe"} :first-name)
;=> "Jon"
({:first-name "Jon" :last-name "Doe"} :address)
;=> nil
({:first-name "Jon" :last-name "Doe"} :address :not-found)
;=> :not-found

The value of the last form could mean two different things. Either the map
contains no :address key (which is clearly the case here), or it contains an entry
where the key :address maps to the value :not-found. To cope with this issue, there
is the function find which given a map and a key returns the complete entry of that
key represented as vector, or nil if the map contains no such key.

(find {:first-name "Jon" :last-name "Doe"} :first-name)
;=> [:first-name "Jon"]
(find {:first-name "Jon" :last-name "Doe"} :address)
;=> nil

For the sake of completeness, there is also a sorted flavour of maps created with
the functions sorted-map (natural ordering of keys) or sorted-map-by (user-defined
comparator).

While lists and vectors are ordered collections, hash-sets obey the usual mathe-
matical set semantics, i.e., the ordering of their elements is unspecified and there
are no duplicates. Sets are created with the hash-set function or by using their
literal syntax where elements are enclosed by #{...}. Essentially, a set is a map
accociating keys with themselves. Thus, if an element (key) is given multiple times,
an IllegalArgumentException is thrown.

(hash-set 1 2 "three")
;=> #{1 2 "three"}
#{1 2 "three"}
;=> #{1 2 "three"}
#{1 2 "three" 1}
; Duplicate key: 1
; [Thrown class java.lang.IllegalArgumentException]

Sets are functions of their keys. They receive a key and return it in case it is
contained in the set. If not, nil is returned.

(#{1 2 "three"} "three")
;=> "three"
(#{1 2 "three"} 3)
;=> nil
(#{1 2 nil} nil)
;=> nil

The last form in the example illustrates that using sets as functions is not suited
for testing if some key is contained in a set in cases where the set may also contain
nil or false. The proper predicate contains? is depicted in the next section.
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In analogy to maps, there is a sorted flavor of sets created with the functions
sorted-set (natural ordering) or sorted-set-by (user-defined comparator).

All collection types implement the Java interface java.util.Collection to ease in-
teroperability. Clojure lists and vectors also implement java.util.List, vectors also
implement java.util.RandomAccess, sets implement java.util.Set, and maps implement
java.util.Map. Since the Clojure collections are immutable, all modification methods
specified by the Java interfaces simply throw an UnsupportedOperationException on
invocation.

This section only discussed the literal representations and creation functions for
the different collection types, and how some of them can be applied as functions.
All functions that operate on collections, e.g., access elements or update collections
with new elements, are defined upon abstractions instead of concrete types. They
are going to be discussed in section 6.6 on page 39 on section 6.6 on page 39.

6.5 Special Forms

In section 6.2 on page 29, it was said that every list-form was a function application.
This statement is not completely true: it could also be the application of a special
form or macro.

Special forms are forms for which the usual evaluation semantics for function
calls depicted above do not apply. They are necessary as primitives responsible for
defining functions, scopes, or modeling control flow.

The first special form going to be introduced here is the conditional form if. It
receives a test-form, a then-form, and an optional else-form. In contrast to a function
application for which all arguments are evaluated first, the then- and else-forms
given to if are only evaluated depending on the result of the test-form.

(if (= (+ 1 1) 2)
:math-works
:math-is-broken)

;=> :math-works

Expressions used as conditionals don’t need to evaluate to a boolean value to be
valid because Clojure has a more general rule of truthyness:

Everything is logically true except for false and nil.

false and nil are said to be falsy or logical false, everything else is said to be
truthy or logical true.

The when macro5 is similar to the if special form with omitted else-clause. In
contrast to if, arbitrary many expressions may be given as its body, and the last
expression’s value is the result of the when form.

5Macros are discussed in section 6.12 on page 60.
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(when true
(println "True")
17)

; True
;=> 17

Another special form is do. It wraps arbitrarily many other forms in order to
create a new compound form. When evaluating a do-form, all included forms are
evaluated one after the other, and do’s value is the value of its last form. It follows
that all but the last form are evaluated for side-effects only.

(do
(println "Been here")
17)

; Been here
;=> 17

The special form quote suppresses the evaluation of the form given to it, i.e., the
form is just read as raw data (symbols, literals, lists, vectors), but neither symbol
resolution or evaluation is performed.

(quote *ns*)
;=> *ns*
(class (quote *ns*))
;=> clojure.lang.Symbol

Additionally, a form can be quoted by prefixing it with a ' (a quote character).
This is a shorthand supported by the Clojure reader. By quoting a form twice, it is
possible to check what is literally read by the reader.

'*ns*
;=> *ns*
(class '*ns*)
;=> clojure.lang.Symbol
''*ns*
;=> (quote *ns*)
(quote (quote *ns*))
;=> (quote *ns*)

The last two form shows that 'form and (quote form) are exactly equivalent.
The special form let6 introduces a new lexical scope. It receives a vector of

bindings given as symbol-value pairs followed by arbitrary many expressions as
its body, which are wrapped in an implicit do. Later bindings may refer to earlier
bindings. Inside the body, all symbols are bound to the values as specified by the
bindings vector.

6Actually, let is not a special form but a macro that expands into the special form let*. The same
applies to some other forms that are introduced as special form here (e.g., fn vs. fn*, loop vs. loop*), but
the distinction is of no importance because the latter are never used directly.
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(let [a 2, b (* a a)]
(println "a is" a "and b is" b)
(+ a b))

; a is 2 and b is 4
;=> 6

In contrast to the local scopes created with let, the special form def defines a new
namespace-global var with an optional docstring and an optional initial value called
the var’s root binding. A var is the simplest Clojure reference types and merely
encapsulates a storage location holding some value. Evaluating a var returns the
value it is bound to.

(def answer ;; The var's name
"The meaning of life and everything." ;; Its optional docstring
42) ;; Its initial value (root binding)

;=> #'user/answer
answer
;=> 42
(def unbound-var)
;=> #'user/unbound-var
unbound-var
;=> #<Unbound Unbound: #'user/unbound-var>

The vars created in the example above are essentially constants. While it is
possible to change a var’s root binding either by def-ing it again or using the function
alter-var-root, those are only meant to be used during interactive development.

As mentioned above, evaluating a var results in the value it is bound to. To
retrieve the var object itself, there is the special form var. The reader supports a
special literal var syntax: #' followed by the var’s name.

(var answer)
;=> #'user/answer
#'answer
;=> #'user/answer

Retrieving vars instead of the var’s value is almost always done for accessing a
var’s metadata which is discussed in section 6.9 on page 53.

(meta #'user/answer)
;=> {:ns #<Namespace user>,
; :name answer,
; :doc "The meaning of life and everything.",
; :line 1,
; :file "NO_SOURCE_FILE"}

Anonymous functions are created using the fn special form. It receives a vector
of the function’s arguments and arbitrary many expressions as its body which are
wrapped in an implicit do, thus the value of the last body form is the value of applying
the function.
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(let [incrementor (fn [i]
(fn [n]
(+ n i)))

inc10 (incrementor 10)
inc20 (incrementor 20)]

(inc20 (inc10 0)))
;=> 30

In the example, incrementor is a function that receives one parameter i. It returns
another function that receives one parameter n and adds to that the number i given
to incrementor. Thus, inc10 is a function of arity one that increments a given number
by 10, and inc20 is a function that increments by 20.

The feature of capturing the definition location’s lexical context (e.g., i) and
making it available in the function’s body is usually referred to as lexical closures.

Anonymous functions can also be defined using an even shorter notation. A
list preceded with a hash is also a function consisting only of the body where the
parameters are notated as %i, where the highest i declares the number of parameters.
%1 may be abbreviated with %.

(#(+ 1 %1 %2) 2 3)
;=> 6
(#(* % %) 3)
;=> 9

This notation is almost only used for very short and simple functions that are
passed to higher-order functions (see section 6.8 on page 50).

Functions can be overloaded with multiple arities. The following listing defines a
addition function that accepts any number of arguments.

(let [add (fn this
([] 0)
([a] a)
([a b] (+ a b))
([a b & more] (apply this (this a b) more)))]

(add 1 2 3 4 5))
;=> 15

The first thing to note is the this following the fn. It is an optional, local function
name bound to the function only inside the function itself to allow for recursion.
Thereafter, the definitions for each arity are specified as lists where the first element
is always an argument vector.

The zero-arity version of the add function returns the identity element of the
addition. The version with one argument simply returns the given argument. The
version with arity two delegates to +. The last version is the most interesting one. It
receives two arguments a and b plus arbitrary many other arguments indicated by &.
All additional arguments, are conflated in a sequence bound to the parameter more.
In the call to add above, more will be bound to (3 4 5). The definition then applies the
very same function to the result of adding the arguments a and b. Thus, with every
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recursion the number of arguments shrinks by one so that eventually, the version
with arity two terminates the recursion.

apply is a higher-order function (HOF). Several others are going to be discussed in
section 6.8 on page 50. It receives a function and any number of arguments. The last
argument must be a sequence. It then calls the given function with all arguments
where the elements of the sequence are provided as individual arguments. Thus,
the following holds.

(= (- 1 2 3)
(apply - 1 2 [3])
(apply - 1 [2 3])
(apply - [1 2 3]))

;=> true

For conveniently defining namespace-global functions, there is the defn macro
which is a shorthand combining def and fn. The following two definitions are
equivalent7.

(def fact (fn fact [i]
(if (zero? i)
1
(*' i (fact (dec i))))))

;=> #'user/fact
(defn fact [i]

(if (zero? i)
1
(*' i (fact (dec i)))))

;=> #'user/fact

The special form letfn allows for defining named, local functions that are available
only in its lexical scope. It is similar to let in combination with fn, but all functions
defined in a letfn may refer to any other function defined in the same letfn, thus
allowing for mutual recursive functions.

(letfn [(even? [n]
(or (zero? n) (odd? (dec n))))

(odd? [n]
(if (zero? n) false (even? (dec n))))]

[(even? 100) (odd? 100)])
;=> [true false]

One issue with recursive functions is that they consume stack space which limits
the maximum recursion depth. Considering the fact function above, for every level
of recursion the current value of i, the function to be applied to i, and the result of
the recursive call has to be remembered in a stack frame.

(fact 20000)
; No message.
; [Thrown class java.lang.StackOverflowError]

7The arithmetic functions +, -, and * throw exceptions if an integer overflow occurs. The variants
suffixed with ' automatically promote to bigints instead.
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However, every self-recursive function can be formulated in a way where the
recursive call is the last expression to be evaluated by using an additional accumula-
tor to pass intermediate results as parameters through the recursion. The recursive
call is said to be in tail-position.

(defn fact
([i] (fact 1 i))
([acc i]

(if (zero? i)
acc
(fact (*' acc i) (dec i)))))

;=> #'user/fact

The version of arity one simply delegates to the version of arity two where acc is
set to 1 initially. In the aritiy-2 version, the final result is calculated when building
up the recursion instead of deferring the computation to when the recursive calls
return. Because every application of fact depends only on its own arguments, there
is no need to remember the current lexical extent in a new stack frame but the same
stack frame can be reused over and over again just by rebinding the values of acc
and i. This technique is known as tail-call optimization (TCO) or tail-call elimination.
While some functional language specifications, e.g., Scheme [Spe+10], mandate
automatic TCO wherever possible, neither Clojure nor the JVM perform TCO at all.
Thus, trying to calculate the factorial of a larger integer with the last definition still
results in a StackOverflowError. However, Clojure provides the special form recur as
a form of explicit TCO. It restarts the current function with the parameters rebound
to the values given to it. Any occurrence of recur other than in tail-position is a
compile-time error.

(defn fact
([i] (fact 1 i))
([acc i]

(if (zero? i)
acc
(recur (*' acc i) (dec i)))))

;=> #'user/fact
(count (str (fact 50000))) ;; no of digits of 50000!
;=> 213237

loop is similar to let except that it also creates a recur target. Using loop and
recur, the last definition can be written more consisely.

(defn fact [i]
(loop [acc 1, i i]
(if (zero? i)
acc
(recur (*' acc i) (dec i)))))

;=> #'user/fact

The major advantage is that the synthetic accumulator doesn’t shine through in
the function’s signature.
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Vars may be defined to have a dynamic scope by adding ^:dynamic metadata to
the var in its definition form. By convention, dynamic vars are often prefixed and
suffixed with an asterisk (*, frequently referred to as earmuffs). Existing dynamic
vars can be rebound using the binding special form which is similar to let except that
the bindings are established thread-local for the whole dynamic scope of its body
instead of the lexical scope. Another difference is that the bindings are established
in parallel, thus later bindings cannot refer to the new values of earlier bindings.
After the evaluation of binding’s body, the vars are set back to their previous value,
i.e., either the values bound by another binding form in whose dynamic scope the
execution takes place or their root bindings.

(def ^:dynamic *foo* 1)
;=> #'user/*foo*
(defn get-foo [] *foo*)
;=> #'user/get-foo
*foo*
;=> 1
(get-foo)
;=> 1
(binding [*foo* 2]
(get-foo))

;=> 2

There are several predefined dynamic vars. For example *ns* holding the current
namespace, or *out*, *err*, and *in* bound to standard output/error, and standard
input. Since the function println always prints to the value of *out* (which must be
a java.io.Writer), binding can be used to redirect output to arbitrary other writers
on strings, files, or sockets.

(binding [*out* *err*]
(println "Written to standard error."))

; Written to standard error.
;=> nil

Dynamic vars are usually used for allowing the user of a library to customize
internal behavior. For example, a CSV-reading library might define a variable
*on-invalid-line-fn* with a root binding to a function that receives the invalid line
and throws an exception. An invalid line in a CSV file could be a line with the wrong
number of entries, or a line containing a string entry where a number was expected.
Then, the user can rebind that dynamic var to an own function in order to treat
invalid lines specifically, or to simply ignore them.

6.6 Abstractions

Section 6.4 on page 30 only covered the creation of collections of the four concrete
collection types and their usage as functions. The reason is that Clojure’s core
functions for updating or retrieving elements from collections are defined upon
abstractions that are usually implemented by more than one concrete type. Those
abstractions and their corresponding functions are explained in this section.
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6.6.1 The Collection Abstraction

Lists, vectors, maps, and sets all participate in the collection abstraction which has
five associated functions.

The function conj (for conjoin) receives a collection and a value and returns a
new version of the collection including the new value.

(conj '(1 2) 3)
;=> (3 1 2)
(conj [1 2] 3)
;=> [1 2 3]
(conj #{1 2} 3)
;=> #{1 2 3}
(conj {:a 1, :b 2} [:c 3])
;=> {:c 3, :a 1, :b 2}

For ordered collections (lists and vectors) conj adds where it is most efficient,
i.e., conjoining to a list prepends and conjoining to a vector appends.

The function count returns the number of elements contained in some collection.
For maps, this is the number of entries.

The function seq returns a sequence view of the given collection’s values or nil
for empty collections. Sequences, usually called “seqs”, are the most pervasive
abstraction in Clojure going to be discussed in the next section. For now, a sequence
is very similar to a list in almost all respects8.

(seq [1 2 3]) ;; non-empty collection
;=> (1 2 3)
(seq '()) ;; empty collection
;=> nil
(seq {:a 1, :b 2}) ;; map
;=> ([:a 1] [:b 2])

Since seq returns nil for empty collections, it is also the canonical non-emptiness
test.

The equality predicate = is defined for arbitrary many arguments of abitrary types.
Equality is usually determined intuitively by a type-sensitive, deep comparison. For
example, the character \x is not equal to the string "c" because their types differ.
However, for collections the type-sensitivity is relaxed. With respect to equality,
there are three categories: sequential collections (lists, vectors, sequences), sets
(hash-sets and sorted sets), andmaps (hash-sets and sorted maps). In every category,
two collections are equal if they have the same length, they contain equal elements,
and for sequential collections the order has to match as well. Collections of different
category are never equal.

(= '(1 2) [1 2] (seq [1 2])) ;; list vs. vector vs. sequence
;=> true

8In fact, lists participate in the sequence abstraction directly, e.g., calling seq on a non-empty list
simply returns the list again.
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(= #{1 2} (sorted-set-by > 1 2)) ;; hash-set vs. descendingly ordered set
;=> true
(= {1 "ONE", 2 "TWO"} ;; hash-map vs. descendingly ordered map

(sorted-map-by > 1 "ONE" 2 "TWO"))
;=> true
(= [1 2] #{1 2}) ;; vector vs. hash-set
;=> false

The last function defined for the collection abstraction is empty. It receives a
collection and returns a new, empty collection of the same type. For sorted sets and
maps, the new collection also uses the same comparator on its elements.

6.6.2 The Sequence Abstraction

The sequence abstraction provides a uniform way of traversing different sources
of values, i.e., it provides a sequential view on composite data structures. In the
previous section, it was shown that the function seq produces a seq for a given Clojure
collection. But seq also works for arrays, Java collections, Java maps (maps are no
collections there), all java.lang.CharSequence derivates including String where seq
returns a sequence of characters, and all types implementing the java.lang.Iterable
interface. All types supporting seq are said to be seqable. In the following, whenever
a function is said to receive a sequence, it will always mean the function accepts
any seqable object as well.

The sequences abstraction defines three functions for traversing seqs: first,
rest, and next.

first obtains the first value of a given sequence. Implicitly, it calls seq on its
argument, so it can be called directly on any seqable object.

(first (seq [1 2 3]))
;=> 1
(first [1 2 3])
;=> 1
(first {:a 1, :b 2})
;=> [:a 1]

The functions rest returns the seq of all elements of its argument except for its
first one.

(rest [1 2 3])
;=> (2 3)
(rest [1])
;=> ()
(rest [])
;=> ()

next is almost identical to rest except that it calls seq on its result. As a conse-
quence, next returns nil for seqs of length one and empty seqs.
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(next [1 2 3])
;=> (2 3)
(next [1])
;=> nil
(next [])
;=> nil

This slight difference is of importance when working with lazy, possibly infinite
sequences which are going to be discussed in the next paragraph.

Before, the two functions cons and list* for creating new seqs are introduced.
cons prepends a new value to a seq, and list* prepends arbitrarily many new values
to a seq. Finally, reverse reverses a seq (or any seqable object).

(let [xs [4 5 6]]
[(cons 1 (cons 2 xs)), (list* 1 2 xs), (reverse xs)])

[(1 2 4 5 6) (1 2 4 5 6) (6 5 4)]

Lazy Sequences

As stated above, various composite data structures beyond collections may be used
as the source of a sequence. Lazy seqs are sequences whose source is a computation
being able to produce the desired values stepwise. The computation is delayed until
elements are consumed (in terms of first, next, or rest). The process of accessing
elements in a lazy seq is call realization.

For creating a lazy seq, there is the macro lazy-seq. It simply wraps a body
of arbitrary many expressions that would produce the desired sequence (usually
recursively). This is best explained using an example. The following function returns
the lazy seq of Fibonacci numbers.

(defn fibonacci-seq
([]

(fibonacci-seq 0 1))
([a b]

(lazy-seq #_(println "Realized" a) ;; for visualizing realization
(cons a (fibonacci-seq b (+' a b))))))

;=> #'user/fibonacci-seq

The variant for arity zero just delegates to the version with arity two providing
the first two Fibonacci numbers. The second variant returns the seq of Fibonacci
numbers starting with a and b. If a and b are consecutive Fibonacci numbers, then
the seq is a prepended to the Fibonacci sequence starting with b and the sum of a
and b.

When ignoring the lazy-seq, the code clearly looks like a non-terminating recur-
sion. The trick here is that lazy-seq creates a clojure.lang.LazySeq data structure
that receives the expressions wrapped in an anonymous function of arity zero (a
so-called thunk) which closes over the arguments a and b. When seq is invoked on
the lazy seq (usually implicitly by first, rest, or next) this anonymous function is
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called for realization. Its value is the seq where the first element is the value of a
and the rest is the unrealized lazy seq of Fibonacci numbers starting with 1 and 1.

The already realized elements are cached. Therefore, lazy sequences are almost
always defined in terms of functions returning them instead of being bound to some
global var directly, because the latter would not allow for reclaiming memory.

The realization process can be visualized by uncommenting the println form in
the example above. In the following listing, the forms evaluating to a lazy seq are
wrapped in a (do ... nil) in order to suppress printing them which would force
their full realization and thus never terminate.

(do (fibonacci-seq) nil) ;; (1)
;=> nil
(first (fibonacci-seq)) ;; (2)
; Realizing 0
;=> nil
(do (rest (fibonacci-seq)) nil) ;; (3)
; Realizing 0
;=> nil
(do (next (fibonacci-seq)) nil) ;; (4)
; Realizing 0
; Realizing 1
;=> nil

(1) Creating the lazy seq of Fibonacci numbers realizes nothing at all.
(2) Taking the first element only realizes that.
(3) Taking the rest of the Fibonacci seq returns its tail blindly and so needs only to

realize its head.
(4) In contrast, next calls seq on its result (and thus would return nil if the tail was

empty) which forces the realization of one more element. Thus, rest is a bit
more lazy than next.
There are many functions that take or return lazy sequences, the most important

being discussed here.
take gets a number n and a (possibly lazy) seq and returns a lazy seq of the n

first values of the seq. drop has the same signature and returns the lazy seq of
values after the first n. concat returns the lazy seq that is the concatenation of an
arbitrary number of given seqs.

(take 10 (fibonacci-seq))
;=> (0 1 1 2 3 5 8 13 21 34)
(take 10 (drop 10 (fibonacci-seq)))
;=> (55 89 144 233 377 610 987 1597 2584 4181)
(let [head (take 20 (fibonacci-seq))

tail (drop 10 head)]
(concat (take 10 head) tail))

;=> (0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181)

The function range returns a lazy seq of numbers with an optional end value
defaulting to infinity, an optional start value defaulting to 0, and an optional step
value defaulting to 1.
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(take 10 (range))
;=> (0 1 2 3 4 5 6 7 8 9)
(range 10)
;=> (0 1 2 3 4 5 6 7 8 9)
(range 10 20)
;=> (10 11 12 13 14 15 16 17 18 19)
(range 0 100 10)
;=> (0 10 20 30 40 50 60 70 80 90)

The repeat function gets a value and returns an infinite lazy seq of the given
value. It also has a variant of arity two that gets the desired number of repetitions
and the value and returns a finity lazy seq.

(take 10 (repeat 0))
;=> (0 0 0 0 0 0 0 0 0 0)
(repeat 10 0)
;=> (0 0 0 0 0 0 0 0 0 0)

To force the complete realization of finite lazy seqs, there are the functions doall
and dorun. The former realizes and returns the lazy seq again so that it resides
completely in memory. The latter walks through the lazy seq’s elements without
retaining the head of the sequence and eventually returns nil. Therefore, the
sequence doesn’t need to fit into memory. Forcing the realization of lazy seqs is
only useful if the function computing the values has side-effects.

There are many more functions for working with or creating lazy sequences.
Especially, core higher-order functions like map and filter all produce lazy sequences.
Those are going to be discussed in section 6.8 on page 50.

6.6.3 The Associative Abstraction

All collection types that somehow link keys with values participate in the associative
abstraction defining the functions get, contains?, assoc, and dissoc. Maps are the
primary example here, but also vectors are associatives where the keys are the
indices, and sets are associatives where the keys and values are identical.

The get function looks up the value of a given key in some associative data
structure and returns nil if there is no such key. An optional default value may be
specified for the latter case.

(get {:a 1, :b 2} :b)
;=> 2
(get [1 2 3 4] 3)
;=> 4
(get [1 2 3 4] 4)
;=> nil
(get [1 2 3 4] 4 :not-found)
;=> :not-found

One crucial difference between using vectors as functions of their indices and
using get on vectors is that the former throws an IndexOutOfBoundsException if there
is no such index whereas get just returns nil or the default value.



6.6. ABSTRACTIONS 45

The second function defined for associatives is contains? which checks for the
presence of a key in a data structure.

(contains? {:a 1, :b 2} :b)
;=> true
(contains? #{1 2 3} 4)
;=> false
(contains? [1 2 3] 0)
;=> true

The last form is true because vectors are associatives where the keys are the
vector’s indices.

For creating changed versions of associatives, there are the functions assoc and
dissoc. assoc adds one or many new associations or changes existing associations.
It is supported only for maps and vectors.

(assoc {:a 1, :b 2} :c 3 :a 4)
;=> {:c 3, :a 4, :b 2}
(assoc [1 2 2] 2 3)
;=> [1 2 3]

The function dissoc removes an association. It is only supported by maps since it
makes no sense to remove an index from a vector. A vector cannot have gaps.

(dissoc {:a 1, :b 2, :c 3} :a :c)
;=> {:b 2}

6.6.4 The Indexed Abstraction

The indexed abstraction is defined for many data structures that can be numerically
indexed. Foremost, these are vectors and Java arrays, but also lists, sequences,
strings, and regular expression matchers9.

The indexed abstraction consists of only one function: nth. nth takes an object
participating in the indexed abstraction, a numerical index, and an optional default
value, and it returns the element at the given index. For vectors, nth is very similar
to get except that it throws an IndexOutOfBoundsException if the given index does not
exist.

(nth [1 2 3] 2)
;=> 3
(nth [1 2 3] 3)
; No message.
; [Thrown class java.lang.IndexOutOfBoundsException]
(nth (list 1 2 3) 1)
;=> 2
(nth (list 1 2 3) 3 :no-such-index)
;=> :no-such-index

9http://docs.oracle.com/javase/8/docs/api/index.html?java/util/regex/Pattern.html (last vis-
ited: 2015-01-19)
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6.6.5 The Stack Abstraction

The stack abstraction enables the usage of lists and vectors with last-in, first-out
semantics. It consists of three functions: conj, pop, and peek.

conj, which was already discussed in the paragraph of the collection abstraction,
adds an item to the stack. peek returns the top-most item of the stack, and pop
returns a new version of the stack with the top-most item removed. Calling pop on
an empty stack throws an IllegalStateException.

When vectors are used as stacks, elements are conjoined to the end, and popping
the stack drops the last element.

(conj (conj [] 1) 2) ;; a vector as stack
;=> [1 2]
(peek (conj (conj [] 1) 2))
;=> 2
(pop (conj (conj [] 1) 2))
;=> [1]
(pop [])
; Can't pop empty vector
; [Thrown class java.lang.IllegalStateException]

When lists are used as stacks, elements are prepended to the list, and popping
the stack returns the rest of the list.

(conj (conj '() 1) 2) ;; a list as stack
;=> (2 1)
(peek (conj (conj '() 1) 2))
;=> 2
(pop (conj (conj '() 1) 2))
;=> (1)
(pop '())
; Can't pop empty list
; [Thrown class java.lang.IllegalStateException]

6.6.6 The Set Abstraction

The set abstraction, only applicable for hash-sets and sorted sets, defines only the
single function disj (for disjoin) that returns a new version of the set with a given
value removed.

(disj #{1 2 3} 2)
;=> #{1 3}

The namespace clojure.set defines many more functions on sets like superset?,
subset?, union, intersection, and difference. For sets of maps which can be seen as
a kind of database table, there also exist typical relational algebra functions such as
select, project, join, and index.



6.6. ABSTRACTIONS 47

6.6.7 The Sorted Abstraction

The sorted abstraction guarantees a stable ordering upon all values of participating
collections, namely sorted sets and maps. The functions sorted-map and sorted-set
create maps and sets sorted according natural ordering.

The sorting order can be customized using a comparator or predicate when
creating sorted collections with sorted-map-by and sorted-set-by. A comparator
(java.util.Comparator) has a method int compare(T a, T b) which returns a negative
integer if a is smaller than b, a positive integer if b is smaller than a, and zero if both
are equal.

If a predicate is given to sorted-map-by or sorted-set-by, a comparator is created
implicitly10 which applies the predicate to the values to compare, and if this com-
parison results in a truthy value, -1 is returned. If the comparison is false, then the
values are compared in the reverse order given to the comparator. If this is truthy,
1 is returned. If both comparisons are false, the values are considered equal and 0
is returned.

(let [s (sorted-set-by > 1 2 3 4 5 6 7 8 9 0)
m1 (sorted-map-by compare :c 1, :b 2, :a 3)
m2 (sorted-map :c 1, :b 2, :a 3)]

[s m1 m2])
[#{9 8 7 6 5 4 3 2 1 0} {:a 3, :b 2, :c 1} {:a 3, :b 2, :c 1}]

The function compare is a default comparator function working with every object
implementing Comparable but also for nil. It is used by the functions sorted-map and
sorted-set, so the first and the second sorted map creation are identical.

The sorted abstraction specifies the three functions rseq, subseq, and rsubseq.
The rseq function is similar to seq except that it returns a reversed sequence of

the sorted collection’s (or a vector’s) values.

(let [s (sorted-set-by > 1 2 3 4 5 6 7 8 9 0)
m (sorted-map :c 1, :b 2, :a 3)]

[(rseq s) (rseq m)])
[(0 1 2 3 4 5 6 7 8 9) ([:c 1] [:b 2] [:a 3])]

The subseq function receives a sorted collection, a test predicate (one of <, <=, =>,
or >) and a key, and it returns a seq of elements whose keys are sorted before, before-
or-equal, after-or-equal, or after the given key. The function is overloaded with a
variant that receives a second test predicate and key which allows for selecting a
range from within the sorted collection.

(let [s (sorted-set-by > 1 2 3 4 5 6 7 8 9 0)]
[(subseq s > 5) (subseq s > 7 < 3)])

[(4 3 2 1 0) (6 5 4)]

10 This functionality is also exposed to the user by the comparator function. A comparator is a function
receiving two objects and returning a negative value if the first object is less than the second object, a
positive value if the first element is greater than the second object, or zero otherwise.
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The first subseq call results in the sequence of elements that are sorted after the
key 5, and the second call returns the sequence of elements that are sorted after 7
but before 3.

Finally, the last function provided by the sorted abstraction is rsubseq. It is
signature and semantics is the same as subseq except that rsubseq returns a reversed
sequence of the selected range.

6.7 Destructuring

Destructuring is a notion for concisely selecting values inside seqable objects and
maps by mirroring their structure. It is supported for let and loop bindings and
function parameters.

6.7.1 Sequential Destructuring

All objects participating in the indexed abstraction can be destructured by providing
a vector of symbols in place of a symbol in a binding form. This includes all sequential
collections, sequences, strings, Java collections, regular expression matchers, and
arrays. The i-th symbol is bound to the i-th element in the indexed object given
as expression. If the indexed object contains more or fewer elements than are
destructured, those are dismissed or filled with nil.

(let [[a b c] (range)]
[a b c])

;=> [0 1 2]
(let [[a b c] [1]]

[a b c])
;=> [1 nil nil]

The first form is entirely equivalent to the following listing11 except that the latter
introduces an additional variable r which the former doesn’t.

(let [r (range)
a (nth r 0 nil)
b (nth r 1 nil)
c (nth r 2 nil)]

[a b c])

Furthermore, the varargs syntax & may be used to bind the tail (next) of the
seqable object that is not captured by preceding symbols to another symbol.

(let [[a b c & more] (range 10)]
[a b c more])

;=> [0 1 2 (3 4 5 6 7 8 9)]

11In fact, let is a macro whose expansion replaces the destructuring binding form with exactly this
binding form in a let* which is the primitive special form for introducing a new lexical scope.
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(let [[a b c & more] (range 3)]
[a b c more])

;=> [0 1 2 nil]

Destructuring forms can also be composed arbitrarily deeply to capture elements
inside seqables that are contained in other seqables.

(let [[a b [c d & e] & more] [1 2 [3 4 5 6] 7]]
[a b c d e more])

;=> [1 2 3 4 (5 6) (7)]

Finally, sequential destructuring allows for a final symbol preceded by the key-
word :as for retaining the seqable object being destuctured as a whole.

(let [[a b [c d & e] & more :as v] [1 2 [3 4 5 6] 7]]
[a b c d e more v])

;=> [1 2 3 4 (5 6) (7) [1 2 [3 4 5 6] 7]]

6.7.2 Map Destructuring

Whereas sequential destructuring is available for every object participating in the
indexed abstraction, map destructuring is available for every object participating in
the associative abstraction. Here, a map of symbol-key pairs is used in place of only
a symbol, and the symbols are bound to (get aobj key) where aobj is the associative
object being destructured.

The following listing demonstrates how maps and vectors, the latter being asso-
ciatives of their indices, can be destructured.

(let [{a :a, b :b, c :c, d :d} {:a 1, :b 2, :c 3}
{u 0, v 1, w 2} [10 11]]

[a b c d u v w])
;=> [1 2 3 nil 10 11 nil]

Because maps with keywords as keys are extremely common in Clojure, there
is a special :keys notion for this case. A vector of symbols is provided, and those
symbols are bound to the values of looking up the keyword with the same name in
the associative object. Using that, the first binding form of the last example can be
written more concise like so.

(let [{:keys [a b c d]} {:a 1, :b 2, :c 3}]
[a b c d])

;=> [1 2 3 nil]

A map from symbols to default values may be specified using an :or clause. In
this case, the value is looked up using (get aobj key default).

(let [{:keys [a b c d] :or {a 1, d 4}} {:a nil, :b 2, :c 3}]
[a b c d])

;=> [nil 2 3 4]



50 CHAPTER 6. THE CLOJURE PROGRAMMING LANGUAGE

Just like with sequential destructuring, an :as clause may be used to capture the
complete object.

(let [{:keys [a b c d] :as m} {:a 1, :b 2, :c 3}]
[a b c d m])

;=> [1 2 3 nil {:a 1, :c 3, :b 2}]

Of course, sequential and map destructuring forms can be combined arbitrarily.

(let [[a {:keys [b c]} d & more] (list 1 {:b 2, :c 3} 4 5 6)]
[a b c d more])

;=> [1 2 3 4 (5 6)]

A common idiom is to use map destructuring for function parameters where
multiple parameters are optional and have default values.

(defn open-socket [host port & {:keys [protocol bindiface bindport]
:or {protocol :tcp}}]

...)

The function receives a mandatory host and a port, and optionally the used
protocol (defaulting to TCP), and the locally bound interface and port may be
specified. An example call might look like the following.

(open-socket "host.domain.com" 1234 :protocol :udp :bindport 4321)

6.8 Higher-Order Functions

Higher-order functions (HOFs) are one of the most prominent functional program-
ming constructs. It is enabled by the fact that functions are values themselves and
thus can be passed around like any other value. Therefore, a higher-order function
is a function that receives another function as argument or returns a function as
its value. In this section, the most prominent Clojure higher-order functions are
discussed. In most cases, the use of low-level constructs such as recursion can be
avoided by the use of high-level HOFs.

The higher-order function apply has already been discussed briefly when intro-
ducing variadic functions in section 6.5 on page 33. apply receives a function as its
first argument, possibly further arguments, and a sequence as its last argument.
It then applies the given function to the argument list formed by prepending all
intervening arguments to the sequence given as last argument. For example, the
following two function calls are equivalent to (* 1 2 3).

(apply * 1 [2 3])
;=> 6
(apply * [1 2 3])
;=> 6
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In combination with the function range, this allows for defining the factorial
function in a concise manner without the need of explicit recursion or loops. The
factorial of an integer n is the product of the numbers in the range from 1 to n,
inclusive.

(defn fact [n]
(apply *' (range 1 (inc n))))

;=> #'user/fact
(fact 30)
;=> 265252859812191058636308480000000N
(fact 0)
;=> 1

It also works for 0, because (range 1 1) is the empty sequence resulting to a
call to the *' variant of arity zero that simply returns the identity element of the
multiplication.

The function reduce is the core aggregation function. It receives a function of arity
two and some sequence. First, it calls the given function with the first two elements
of the seq. Thereafter, the function is called repeatedly with the intermediate result
and the successive next elements. reduce also has a variant that receives a function,
a start value, and a sequence. Here, the the given function is called with the start
value and the first element of the sequence12.

For example, the following function counts the number of even numbers in the
given sequence. The reduction function receives two parameters where the first
parameter %1 is the intermediate number of evens, and the second parameter %2 is
the next number to test.

(defn count-even [coll]
(reduce #(if (even? %2) (inc %1) %1) ;; reduction function

0 coll)) ;; start value & seq
;=> #'user/count-even
(count-even (range 1000))
;=> 500

The filter function receives a predicate and a sequence and returns a lazy
sequence of the given seq’s elements that satisfy the predicate. remove is just the
opposite of filter. It results in a lazy seq of the given sequence’s elements for which
the predicate does not hold.

(let [r (range 15)]
[(filter even? r) (remove even? r)])

;=> [(0 2 4 6 8 10 12 14) (1 3 5 7 9 11 13)]

The map function receives a function of arity one and a sequence, and it returns
the lazy sequence of applying the given function to every element. map can also be
called with a function of arity n and n sequences. In that case, it returns the lazy
12In that sense, the reduce version with arity two is equivalent to Haskell’s foldl1, and the version with

arity three is equivalent to foldl.
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seq of the results of applying the given function to the respective i-th elements of
the given sequences. The shortest sequence determines the length of the result, so
mapping with a mix of finite and infinite seqs is finite again.

(map + [0 5 10 15 20 25]
(range))

;=> (0 6 12 18 24 30)

The mapcat function has the same signatures as map. It maps the given function
through the elements and concatenates the results which implies that the individual
function calls must result in collections.

(mapcat #(list % (* % %)) (range 5))
;=> (0 0 1 1 2 4 3 9 4 16)

The iterate function gets a function f and a value x and returns the lazy sequence
x, (f x), (f (f x)), and so forth.

(take 10 (iterate #(*' 2 %) 1))
;=> (1 2 4 8 16 32 64 128 256 512)

The function partial receives a function f and arbitrary many values. It returns
a new function of variadic arity that applies f with the arguments given to partial
and any additional arguments appended, i.e., a version of f where the first few
parameters are fixed to concrete values. Thus, the last example can be written
equivalently like so.

(take 10 (iterate (partial *' 2) 1))
;=> (1 2 4 8 16 32 64 128 256 512)

comp is the (right-to-left) function composition, i.e., (comp g f) is g◦f with (g◦f)(x) =
g(f(x)). It is defined for arbitrary many function arguments.

(def count-evens (comp count (partial filter even?)))
;=> #'user/count-evens
(count-evens (range 1000))
;=> 500

The complement function takes a function and returns a new function that calls
the given function but returns its logically inverse result.

(filter (complement even?) [1 2 3 4])
;=> (1 3)
(map (complement identity) [1 true :foo nil false])
;=> (false false false true true)

juxt receives one or many functions and returns the juxtaposition of these func-
tions, i.e., ((juxt a b c) x) is equivalent to [(a x) (b x) (c x)].
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((juxt + - * /) 2 3)
;=> [5 -1 6 2/3]

Functions that are defined entirely in terms of function composition, partial appli-
cation, or other combinators are said to follow the point-free or tactic programming
style, because they are completely missing explicit parameters and intermediate
variables (points). While many favor point-free style for its conciseness and prox-
imity to maths, others discourage it for being less comprehensible than explicit
functions with sensibly named parameters. E.g., to determine valid parameters
for the count-evens function, the right-most function in the composition has to be
inspected. In turn, that is a partial function of filter, where filter receives a
predicate and a sequence, and the predicate is already preset to even?. Since even?
is defined only for integer numbers, count-evens must be a function that receives a
seq of integers and returns an integer because count does so.

Concludingly, point-free style is desirable if it’s complemented with good docu-
mentation. Here, metadata plays an important role.

6.9 Metadata

Metadata is data about other data. In Clojure, metadata takes the form of hash-maps.
Every Clojure object can be annotated with metadata. This includes collections, vars,
symbols, and functions but excludes Java objects like numbers or strings. Metadata
does not contribute to the value of an object, i.e., it does not affect equality or hash
codes. If two objects differ only in their metadata, they are equal (but not identical).

The with-meta function receives an arbitrary Clojure object and an arbitrary
metadata map. It returns a new version of the object that is associated with the
given metadata. While with-meta replaces the object’s metadata map, the function
vary-meta applies a given function to the current metadata of the object and returns
the object with the resulting new version of metadata.

The function meta gets an arbitrary Clojure object and returns its metadata map
or nil if it has no associated metadata.

(let [v [1 2 3]
v1 (with-meta v {:k1 true})
v2 (vary-meta v1 assoc :k2 17 )]

{:all-equal? (= v v1 v2)
:hash-codes (map hash [v v1 v2])
:identical? (identical? v v1)
:meta-v (meta v)
:meta-v1 (meta v1)
:meta-v2 (meta v2)})

;=> {:all-equal? true, :hash-codes (30817 30817 30817), :identical? false,
; :meta-v nil, :meta-v1 {:k1 true}, :meta-v2 {:k2 17, :k1 true}}

Clojure uses metadate extensively for documentation purposes and for providing
information to the compiler using a pre-defined set of keywords with special meaning.
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The metadata maps are written as map literal prefixed with ^, and they preced the
thing they apply to.

Vars defined with def (or defn) may have the following metadata.

(def ^{:private false,
:doc "The maximum depth.",
:tag java.lang.Long,
:dynamic true}

*max-depth* 17)
;=> #'user/*max-depth*

The value of :private determines if var is private to the defining namespace. :doc
is a documentation string. :tag is a type hint used by the compiler to avoid reflective
method calls (see section 6.11 on page 57). The value of :dynamic specifies if a var
is dynamically scoped and thus may be rebound using binding.

Every metadata key whose value is a boolean may be abbreviated to ^:key with
the meaning that this key is set to true.

(def ^:private ^:dynamic *private-and-dynamic*)
;=> #'user/*private-and-dynamic*
(meta #'*private-and-dynamic*)
;=> {:ns #<Namespace user>, :name *private-and-dynamic*,
; :dynamic true, :private true, :line 1, :file "NO_SOURCE_FILE"}

As can be seen, the Clojure compiler automatically adds some more metadata to
vars. :ns is the defining namespace, :name is a symbol denoting the simple name of
the var, and :file and :line provide information about where the var is defined. The
value NO_SOURCE_FILE indicates that the var was defined interactively at the REPL.
For functions, there is also a :arglists entry where the value is a list of the function’s
argument vectors.

(:arglists (meta #'map))
;=> ([f coll] [f c1 c2] [f c1 c2 c3] [f c1 c2 c3 & colls])

Usually, :arglists is automatically constructed from the function definition with
defn but it can also be specified directly, e.g., for properly documenting functions
defined in point-free style.

(def ^{:doc "Returns the number of even numbers in coll."
:arglists '([coll])}

count-evens (comp count (partial filter even?)))
;=> #'user/count-evens

Onemajor difference betweenmetadata and documentation specifiedwith JavaDoc
or Doxygen is that metadata is always accessible at runtime. For convenience, there
is the doc macro in the clojure.repl namespace that given the name of a var prints
its documentation metadata.
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(doc count-evens)
; -------------------------
; user/count-evens
; ([coll])
; Returns the number of even numbers in coll.
;=> nil
(doc map)
; -------------------------
; map
; ([f coll] [f c1 c2] [f c1 c2 c3] [f c1 c2 c3 & colls])
; Returns a lazy sequence consisting of the result of applying f to the
; set of first items of each coll, followed by applying f to the set
; of second items in each coll, until any one of the colls is
; exhausted. Any remaining items in other colls are ignored. Function
; f should accept number-of-colls arguments.
;=> nil

The :tag metadata briefly mentioned above plays an important role when inter-
operating with Java objects which is the topic of section 6.11 on page 57.

6.10 Namespaces

Clojure code is structured in namespaces. Therefore, a namespace is roughly
equivalent to a Java package. More technically, a namespace is a set of dynamic
mappings from symbols to Java classes and from symbols to vars, the latter having
values such as functions or constants. Therefore, namespaces control symbol
resolution, i.e., a namespace defines the meaning of the symbols occurring in it for
the Clojure compiler.

When starting a REPL, a namespace user is created automatically. When vars
are printed, the namespace is always printed and separated from the var name with
a slash.

*ns*
;=> #<Namespace user>
(def x 1)
;=> #'user/x
(resolve 'x)
#'user/x
x
;=> 1

def creates a new var with the value 1 and adds a mapping from the symbol x to
the newly created var in the current namespace. The function resolve can be used
to check what a given symbol resolves to in the current namespace.

By default, every namespace refers the namespace clojure.core where all stan-
dard Clojure functions and macros are defined. Referring means that for any public
var in the referred namespace, a mapping from a symbol denoting the var’s simple
name to the referred var is installed in the current namespace. Because of that,
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every core Clojure function and macro can usually be accessed by its simple name.
Furthermore, for every Java classifier in java.lang a mapping from a symbol denoting
the simple class name to the class object is installed.

(resolve 'first)
;=> #'first
Object
;=> java.lang.Object
(class Object)
;=> java.lang.Class

Clojure source code files always start with a namespace declaration specified
with ns. A symbol denotes the name of the namespace, and a single :refer-clojure
and arbitrary many :require, :use, and :import clauses may follow.

For example, a file my/example_ns/core.clj might start with the following declara-
tion. Note that hyphens in the namespace name correspond to underscores in the
directory/file name.

(ns my.example-ns.core
(:refer-clojure :exclude [ancestors descendants])
(:require clojure.pprint

[clojure.string :as str])
(:use clojure.pprint

[clojure.set :only [difference]])
(:import java.io.Writer

(java.util ArrayList LinkedList)))

The example defines a new namespace my.example-ns.core.
The :refer-clojure clause says to install symbol-to-var mappings for all public Clo-

jure vars except for #'ancestors and #'descendants, most probably because this names-
pace defines functions with the same simple name. The core functions can still be ac-
cessed by qualifying them: clojure.core/ancestors and clojure.core/descendants. If
this clause was omitted, mappings would be created for all public vars in clojure.core
and the compiler would emit warnings at the definition forms defining the two vars
in the current namespace.

The namespaces enumerated in the :require clause are merely loaded but their
vars need to be accessed in a qualified manner. The vector notation with the :as
keyword can be used to define a shorter namespace-local alias for the required
namespace. Therefore, in the namespace defined by the listing above, the Clojure
pretty-printing namespace is loaded and its functions need to be called qualified like
(clojure.pprint/pprint [1 2 3]), and (str/blank? "\n\t") and (clojure.string/blank?
"\n\t") are calls of the same function, because str is made an alias for clojure.string
in the current namespace.

The vars of the namespaces enumerated in the :use clause are loaded and re-
ferred and can be used in the declared namespace without namespace qualification.
The vector notation with the :only keyword can be used to make only parts of a
namespace’s vars accessible13.
13The general suggestion is to never use :use but :requirewith :as to make it obvious where the functions

called in a namespace originate from.
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Finally, the :import clause enumerates Java classes that should be imported in
order to be accessible without qualification. The list notation allows for importing
many classes in one package. Wildcards corresponding to Java’s import pkg.*; are
not supported.

During interactive development at the REPL, the current namespace can be
changed using the in-ns function which receives the target namespace as a symbol.

*ns*
;=> #<Namespace my.example-ns.core>
(in-ns 'user)
;=> #<Namespace user>
*ns*
;=> #<Namespace user>

There are also the functions require, use, and import which correspond to the
ns-causes of the same name. Those are rarely used in Clojure code but they are the
primitives used by the the ns macro itself.

Since namespaces are dynamic mappings from symbols to vars, they can be
changed without recompiling and reloading the complete namespace. During devel-
opment, the IDE is always connected to the running JVM via the REPL, and changing
a function will only replace the value of a var with the new definition. This makes it
possible to fix bugs, add functions, and re-run test cases without ever needing to
recompile and restart the system.

6.11 Java Interop

Being able to interoperate easily with existing Java libraries has been a major goal
of Clojure right from the beginning. The term Java interop is a bit misleading. In
fact, Clojure has direct, wrapper-free access to the JVM abstractions that are the
result of compiling programs of JVM-hosted languages. These abstractions happen
to be classes with fields and methods, and for Java there is a direct one-to-one
correspondence between the classes/methods in the source code and the resulting
JVM classes/methods. For other languages such as Clojure, Scala, or JRuby that
provide other concepts like first-class functions, traits, or mixins this correspondence
is not so clear and merely an implementation detail.

The special form new is used to create a new object. It receives a class and any
number of arguments which are provided to the class’ constructor.

(new java.awt.Point 7 10)
;=> #<Point java.awt.Point[x=7,y=10]>

The new special form is almost never used directly. Instead, the reader supports
the shorter notation where the class name suffixed with a dot is in function position.

(java.awt.Point. 7 10)
;=> #<Point java.awt.Point[x=7,y=10]>
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The dot special form is the basic construct for accessing fields and callingmethods.
For accessing a static field or calling a static method, it receives the class and the
field or method name. In case of a method call, more parameters may be specified.

(. Math PI) ;; static field access
;=> 3.141592653589793
(. Math sqrt 9) ;; static method call
;=> 3.0

If the first element of a dot-form is an object instead of a class, it is an instance
field access or method call.

(let [p (java.awt.Point. 7 10)]
[[(. p x) (. p getY)] ;; instance x-field access & getY-method call
(do
(. p move 0 0)
[(. p x) (. p getY)])])

;=> [[7 10.0] [0 0.0]]

Like new, the dot-special form is almost never used in Clojure but the reader
supports a more consise and clear notation.

Math/PI ;; static field access
;=> 3.141592653589793
(Math/sqrt 9) ;; static method call
;=> 3.0
(let [p (java.awt.Point. 7 10)]
[(.x p) (.getX p)]) ;; instance x-field access & getY-method call

;=> [7 7.0]

The assignment special form set! can be used to set the values of public Java
fields. It receives a field access form and the value to be set for the accessed field.

(let [p (java.awt.Point. 7 10)]
[(.x p) (do

(set! (.x p) 10)
(.x p))])

;=> [7 10]

Since almost all classes have private or protected fields that are set only in terms
of setter methods, set! is very seldomly used.

Of course, being able to access Java fields and call methods is only the lowest
level of interoperability. To facilitate a higher level of interoperability, Clojure tries to
participate in the most prominent Java abstractions, e.g., the Java Collections Frame-
work. Therefore, all Clojure collection types including (lazy) sequences implement
the java.util.Collection interface. Because Clojure collections are immutable, the
methods that change a collection’s contents throw an UnsupportedOperationException.

(.add [1 2 3] 4)
; No message.
; [Thrown class java.lang.UnsupportedOperationException]
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But all concrete Java collection classes have a copy constructor receiving an
arbitrary collection. Thus, Clojure collections can be easily converted to Java
collections for interoperating with libraries mandating mutability.

(let [l (java.util.ArrayList. (range 10))]
(java.util.Collections/shuffle l)
[(class l) l])

;=> [java.util.ArrayList [0 8 2 6 5 3 1 4 7 9]]

Furthermore, Clojure’s sequential collection types (list, vectors, sequences) imple-
ment java.util.List. Vectors also implement java.util.RandomAccess, sets implement
java.util.Set, and maps implement java.util.Map.

Clojure functions also participate in the common Java abstractions in that they
implement java.lang.Runnable and java.util.concurrent.Callable, which makes them
suited for being distributed to threads.

Since Clojure is dynamically typed, the concrete method to be called cannot be
determined at compilation time. Therefore, correct method has to be determined at
runtime using reflection which is much slower than a direct method call. However,
when calling Java methods, the programmer knows the class or interface of the
method receiver and the method’s arguments. By providing type hints, he allows
the Clojure compiler to create byte-code that is equivalent to a direct method call in
Java.

Type hints can be specified using :tag metadata on symbols defined with def, let,
loop, binding, or function parameters. Additionally, all forms may be hinted denoting
the type of the form’s result, with the exception of Java literals (numbers, strings)
that don’t allow for added metadata. The reader supports the concise ^TypeName
notation that is equivalent to ^{:tag TypeName}.

For example, the following example defines a subseq? predicate that simply wraps
the boolean String.contains(CharSequence) method. First, it is defined without and
then again with type hints. time is a macro that simply prints the time needed for
evaluating the given expression. dotimes repeats its body the given number of times
for side-effects and always returns nil.

(defn subseq? [s cs]
(.contains s cs))

;=> #'user/subseq?
(time (dotimes [_ 1000000] (subseq? "abcd" "bc")))
; "Elapsed time: 4568.265582 msecs"
;=> nil
(defn subseq? [^String s cs]
(.contains s cs))

;=> #'user/subseq?
(time (dotimes [_ 1000000] (subseq? "abcd" "bc")))
; "Elapsed time: 33.737549 msecs"
;=> nil

As can be seen, the hinted call is more than 100 times faster. Since the method
String.contains() is not overloaded, the hinting of the cs parameter can be omitted,
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because the compiler can infer that the second argument must be a CharSequence.
The compiler is also able to track the types though chains of method calls, so type
hints are only needed for the innermost call. The return type of functions can also
be specified by adding a type hint to the function’s argument vector(s).

Type hints only have an effect on instance method calls or instance field accesses.
Therefore, there is no reason to specify type hints for functions that don’t call
methods directly. There is a globally defined var *warn-on-reflection* which will
make the compiler issue warnings whenever it cannot resolve a method call.

There are several more facilities for interoperating with Java which are of no
importance for this works. For example, there is a set of functions for working with
Java arrays, and special type hints for primitive types and arrays of primitive types.
Their main use-case is high-performance numerical computations. And there are
proxy and reify that allow for creating objects of anonymous classes extending and
implementing other classes and interfaces.

6.12 Macros

Macros are functions that are run at compile time rather than runtime. Whereas
a function receives concrete values bound to its parameters when being called,
macros are called by the Clojure compiler, and the parameters of the macro are
bound to the raw, unevaluated forms given to it. It may act on them arbitrarily, and
its result is another form called its expansion which takes the place of the original
macro call. Of course, its expansion may result in a form that contains another
macro call which will be expanded again until no macro calls but only function calls
and applications of special forms are left over.

The major point separating Clojure or Lisp macros in general from preprocessor
macros in C is that the latter are substitutions on strings. Due to Lisp’s homoiconicity,
i.e., Lisp source code is at the same time the abstract syntax tree represented in the
language’s own data structures, Lisp macros are essentially endogenous in-place
transformations.

In section 6.5 on page 33, it was already mentioned that some of the special
forms discussed there are in fact macros. Especially the binding forms that allow
for destructuring like let, loop, or fn are actually macros built upon simpler special
forms let*, loop*, and fn* that don’t provide the destructuring feature.

There are the functions macroexpand and macroexpand-1. They receive a form and
expand it if it is a macro form. The latter function performs exactly one expansion,
and the former expands repeatedly until the returned form is no macro form anymore.
These functions are usually called by the compiler but they are also very helpful for
understanding macros. For example, the following listing shows an expansion of a
let form using sequential and map destructuring.

(let [[a b {:keys [c d] :or {d 17}}] [1 2 {:c 10}]]
[a b c d])

;=> [1 2 10 17]
(macroexpand '(let [[a b {:keys [c d] :or {d 17}}] [1 2 {:c 10}]]

[a b c d]))
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;=> (let* [vec__2048 [1 2 {:c 10}]
; a (nth vec__2048 0 nil)
; b (nth vec__2048 1 nil)
; map__2049 (nth vec__2048 2 nil)
; map__2049 (if (seq? map__2049)
; (clojure.lang.PersistentHashMap/create map__2049)
; map__2049)
; d (get map__2049 :d 17)
; c (get map__2049 :c)]
; [a b c d])

Without going into details, it can be seen that two new symbols vec__2048 and
map__2049 are created implicitly, that sequential destructuring corresponds to picking
out values using nth, and that map destructuring picks out values using get.

There are only few but good reasons for using macros.
1. Removing boilerplate: Clearly, the let form with destructuring is much more

concise and clear than its expansion. Similarly, function definitions with defn
are more concise and clear than their expansion, a def whose value is a function
definition with fn. Therefore, definition forms are typically implemented as
macros.

2. Controlling evaluation: if is the only construct that allows for conditional
evaluation, i.e., depending on the result of the condition, either its then- or
its else-part is evaluated. Upon that, macros can be used to define richer
control structures with custom evaluation semantics. For example, the logical
operators or and and should be short-circuiting. Therefore, they cannot be
functions, because function arguments are evaluated before the function is
called. Instead, they are macros on top of if. For example, (and a b c) expands
to (if a (and b c) false) where the inner and expands to (if b c false) again.

3. Performance: Every calculation that does not depend on runtime values can be
performed at compile time. As an example, there is the core.match14 library
that provides macros for doing pattern matching on Clojure data structures.
These macros implement the algorithm described in [Mar08] to generate highly
efficient decision trees at compile time, i.e., cascades of let and if forms.

One important concept for writing macros is quasi-quoting or syntax-quoting.
Quoting with a backtick character ` is similar to quoting with quote or ', except that
it allows for unquoting, that is, evaluating, inner forms using ~.

`(1 2 ~(+ 1 2) 4)
;=> (1 2 3 4)

Furthermore, expressions resulting in sequences can be unquoted with ~@ in
which case the result is spliced into the outer form.

`(1 2 ~@(range 3 6) 7)
;=> (1 2 3 4 5 7)

14https://github.com/clojure/core.match (last visited: 2015-01-19)
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Another quasi-quoting feature is that symbols suffixed with a hash character #
are translated to symbols with guaranteed unique names. If such a symbol occurs
multiple times in the same quasi-quoted form, its translation is always the same.

`(a# b# a#)
;=> (a__2473__auto__ b__2474__auto__ a__2473__auto__)

The function gensym is responsible for generating such unique symbols. Given
an optional string, it returns a symbol whose name starts with the given prefix.
Therefore, this quasi-quoting feature is frequently called auto-gensym.

Finally, quasi-quoting qualifies symbols. All symbols denoting vars are qualified
with their defining namespace, all other symbols are qualified with the current
namespace.

`(*ns* first subseq? x)
;=> (*ns* first user/subseq? user/x)

*ns* and first are symbols denoting vars defined in Clojure’s core namespace,
subseq? denotes a var defined in section 6.11 on page 57 in the user namespace, and
x is a free symbol and thus is qualified with the current namespace user.

For defining macros, there is the defmacro macro. Its signature is the same as
that of defn, i.e., it receives the name of the new macro, an optional docstring, an
argument vector, and arbitrary many body forms. As said, when a macro is called,
its arguments are bound to the raw forms passed to it. Its body may act on them
and has to result in another form that takes the place of the macro form.

For example, let’s define a foreach macro that mimics the advanced Java for-loop,
i.e., it evaluates a body of arbitrary many expressions for every element in some
seqable object. The desired syntax and semantics are given in the next listing.

(foreach [x (range 5)]
(println x "*" x "=" (* x x)))

; 0 * 0 = 0
; 1 * 1 = 1
; 2 * 2 = 4
; 3 * 3 = 9
; 4 * 4 = 16
;=> nil

So foreach should receive a binding vector consisting of a symbol denoting the
current element and an expression resulting in a sequence, and a body of one or
many expressions. The individual parts can be picked out easily using destructuring.

(defmacro foreach
"Evaluates body on each elem of coll."
[[elem coll] & body]
`(loop [c# ~coll]

(when (seq c#)
(let [~elem (first c#)]
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~@body
(recur (rest c#))))))

;=> #'user/foreach

The macro’s definition mirrors its expansion using quasi-quoting. Clearly, the
desired iteration can be based on loop and recur. Here, a new symbol for binding the
value of the sequence expression has to be introduced. This new, implicitly created
symbol must not clash with any other symbol in this scope which is guaranteed by
the hash-notation. The expansion of the example is given in the following listing.
The namespaces are removed for readability.

(loop [c__2593__auto__ (range 5)]
(when (seq c__2593__auto__)

(let [x (first c__2593__auto__)]
(println x "*" x "=" (* x x))
(recur (rest c__2593__auto__)))))

There are two important macro writing rules:
1. A macro should never unquote an argument more than once.
2. A macro should never capture other symbols in its scope.
The reason for the first rule is that users of a macro usually expect forms they

have written only once to be evaluated only once, too. This can be demonstrated
with a naive implementation of a square macro.

(defmacro square [exp]
`(* ~exp ~exp))

;=> #'user/square
(square 3)
;=> 9
(square (rand-int 10))
;=> 12

The rand-int function returns a random integer between 0 and the given number.
Clearly, 12 is no square number. The reason for this result is that exp is unquoted
twice in the macro definition, thus its expansion is (* (rand-int 10) (rand-int 10)).

The second macro rule is concerned with macro hygiene. In Clojure, where
quasi-quoting qualifies symbols automatically, it is really hard to be unhygienic. For
example, trying to correct the square macro so that it doesn’t evaluate its argument
twice might result in the following.

(defmacro square [exp]
`(let [x ~exp]

(* x x)))

But since x will be qualified to user/x, and let cannot bind qualified symbols,
any application of this macro won’t even compile. Auto-gensyms or using gensym
explicitly make it easy to stick to hygienic macros. So the following two definitions
of square are both hygienic and correct, and their expansions will always be the
same except for the name of the newly introduced symbol.
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(defmacro square1 [exp]
`(let [x# ~exp]

(* x# x#)))

(defmacro square2 [exp]
(let [x (gensym)]

`(let [~x ~exp]
(* ~x ~x))))

Usually, auto-gensyms are preferred over explicit gensyms. However, since an
auto-gensym symbol like the x# above denotes only the same symbol inside one
single quasi-quoted form, macros that contain many quasi-quoted forms that need
to share symbols will need to use explicit gensyms.

Concludingly, macros are good for implementing new control structures, for
defining custom binding forms, and for hiding boilerplate code. As such, they enable
the definition of domain-specific mini-lisps providing exactly the constructs suited
for that domain. However, in contrast to functions, macros are no first-class objects.
For example, they cannot be passed to higher-order function.

(map square [1 2 3])
; Can't take value of a macro: #'user/square
; [Thrown class java.lang.RuntimeException]

Therefore, macros are only used when a function won’t do, and clearly defining
square as a macro doesn’t make sense at all.

The next section discusses the most important utility macros occurring frequently
in Clojure programs.

6.13 Utility macros

This section discusses some of the very frequently used standard macros.
As its name suggests, if-let combines if with let. It receives a binding vector

consisting of a symbol and a test expression, a then-form, and an optional else-form.
If the test succeeds, the then-form is evaluated with the symbol bound to the value
of the test. Else, the else-form is evaluated.

This macro is frequently used by functions that recurse through sequences such
as the eager-reduce function in the next listing.

(defn eager-reduce [f s coll]
(loop [acc s, c coll]
(if-let [r (seq c)]

(recur (f acc (first c)) (rest c))
acc)))

;=> #'user/eager-reduce
(eager-reduce + 0 (range 10))
;=> 45
(eager-reduce * 1 (range 1 10))
;=> 362880
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The when-let macro complements if-let in the same way as when complements
if. It has no else-form but arbitrary many then-forms can be specified.

The cond macro receives arbitrary many test/expression pairs and returns the
value of the expression that is paired with the first succeeding test. If no test
succeeds, nil is returned.

(let [x 7]
(cond

(= 10 x) :ten
(even? x) :even
:else :none-were-true))

;=> :none-were-true

Clearly, x is neither equal to 10 nor even. The value of the third clause is the
evaluation result not because :else has a special meaning but because :else is a
keyword which is neither nil nor false and thus truthy.

The for macro is a sequence comprehension. It receives a binding vector of
symbol-expression pairs where the expressions must evaluate to seqables, and one
body expression. The seqables are iterated in a nested, rightmost fastest fashion,
and for each binding the body expression is evaluated. The result of for is the lazy
seq of body expression values.

(for [x (range 3), y (range 3)]
[x y])

;=> ([0 0] [0 1] [0 2] [1 0] [1 1] [1 2] [2 0] [2 1] [2 2])

The binding vector may also contain the keyword modifiers :let, :when, and
:while. :let gets a binding vector, and the introduced symbols are available in all
following for-bindings and the body expression. :when gets an expression that is
used to impose constraints on values. Only if it is truthy, the for’s body expression
is evaluated, else the next iteration is started. :while also gets an expression which
terminates the iteration preceding it when it becomes logical false.

The following uses these modifiers to compute a seq of triples where the first
number in each triple is an integer between 0 and 10, and the second and third
number are two factors.

(for [x (range) :while (<= x 10)
y (range (inc x)), z (range (inc x))
:when (<= y z)
:let [yz (* y z)]
:when (= x yz)]

[x y z])
;=> ([0 0 0] [1 1 1] [2 1 2] [3 1 3] [4 1 4] [4 2 2] [5 1 5] [6 1 6]
; [6 2 3] [7 1 7] [8 1 8] [8 2 4] [9 1 9] [9 3 3] [10 1 10] [10 2 5])

The doseq macro gets a binding vector with the syntax and semantics of for and
aritrary many body forms. It evaluates the body for every valid binding and always
returns nil. Therefore, it is only of use for its body’s side-effects and mostly used
when interoperating with Java.
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Another Java interop macro is doto. It gets an expression and arbitrary many
other forms. The expression is evaluated and its result is added as first argument in
each following form, finally returning the result. If any of these forms in not a list
already, it is created implicitly.

(doto (java.util.BitSet.)
(.flip 0)
(.flip 3 7))

;=> #<BitSet {0, 3, 4, 5, 6}>

The threading macros -> (thread first) and ->> (thread last) get an expression
and arbitrary many other forms. The expression is evaluated, and the successive
next forms are evaluated on the result of the respective previous form. With ->, the
result is added as first argument, with ->> it is added as last argument. Like with
doto, forms that are no lists already are made lists implicitly.

(-> (range 10) (conj (rand-int 10)) (conj (rand-int 10)) sort)
;=> (0 1 2 3 4 4 5 6 6 7 8 9)
(->> (range 20) (filter even?) count)
;=> 10

6.14 Protocols

Clojure protocols are similar to Java interfaces in that a protocol declares a set of
method signatures without providing implementations. Concrete types can partici-
pate in arbitrary many protocols just like a Java class can implement many interfaces.
And invoking a protocol method performs an efficient polymorphic dispatch based
on the method receiver’s type.

A protocol is declared using defprotocol. It receives a symbol denoting the
protocol’s name, an optional docstring, and arbitrary many method specifications.
Each method specification consists of a name, one or many parameter vectors, and
an optional docstring.

For example, the following listing defines a run-length coding protocol consisting
of two method signatures.

(defprotocol RunLengthCoding
"A protocol for run-length encoding/decoding."
(run-length-encode [this]

"Run-length encodes this.")
(run-length-decode [this]

"Run-length decodes this."))

One crucial difference between Java interfaces and protocols is that types that
should participate in an abstraction defined by interfaces need to implement those.
In contrast, Clojure protocols can be dynamically extended upon existing types.

With respect to the RunLengthCoding protocol, every type that implements some
ordered collection of values can participate in the protocol in a sensible manner.
This includes Clojure vectors, lists, and sequences but also strings or Java lists.
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The next listing defines a private functions for run-length encoding. The only
requirement of the encoding function rle is that its argument is some object par-
ticipating in the sequence abstraction. Its result is a vector of tuples (vectors of
length 2), where the first element is a value and the second element is the number
of consecutive occurrences in the original seq.

(defn- rle [coll]
(reduce (fn [r e]

(let [[l n] (peek r)]
(if (= l e)

(conj (pop r) [l (inc n)])
(conj r [e 1]))))

[[(first coll) 0]]
coll))

The decoding function rld given in the next listing assumes this representation
and unpacks it to a sequence again.

(defn- rld [coll]
(mapcat (fn [[c l]]

(repeat l c))
coll))

These two functions are the low-level primitives suited to provide implementa-
tions for the RunLengthCoding protocol. The following listing shows some example
applications on a vector and a string.

(rle [1 1 1 2 2 3 4 4 4 4 4])
;=> [[1 3] [2 2] [3 1] [4 5]]
(rld (rle [1 1 1 2 2 3 4 4 4 4 4]))
;=> (1 1 1 2 2 3 4 4 4 4 4)
(rle "aaabbccccc")
;=> [[\a 3] [\b 2] [\c 5]]
(rld (rle "aaabbccccc"))
;=> (\a \a \a \b \b \c \c \c \c \c)
(apply str (rld (rle "aaabbccccc")))
;=> "aaabbccccc"

To provide implementations for a protocol, there is the extend-protocol macro.
It gets the protocol name as a symbol followed by arbitrary many implementation
specifications. Each implementation specification consists of a type on which the
protocol is extended followed by implementations of the protocol’s methods.

In the next listing, the RunLengthCoding protocol is extended upon java.util.List
and java.lang.String mostly by delegating to the private functions rle and rld.

(extend-protocol RunLengthCoding
java.util.List
(run-length-encode [this]

(rle this))
(run-length-decode [this]
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(let [v (rld this)]
(if (= String (::orig-type (meta this)))
(apply str v)
v)))

String
(run-length-encode [this]
(with-meta (rle this)

{::orig-type String})))

In the case of strings, there is only an implementation of the encoding function,
because a string’s run-length encoded representation is a vector which implements
java.util.List. Metadata is used to ensure that run-length encoding and decoding
a string results in a string again rather than a sequence of characters. Keywords
like ::orig-type starting with two colons are qualified with the current namespace
by the Clojure reader which is appropriate here because this metadata is meant
only for internal use.



Chapter 7

Modeling Frameworks

In this chapter, the two modeling frameworks JGraLab and EMF are introduced.
They are directly supported by FunnyQT, and their commonalities and differences
are highlighted.

7.1 JGraLab

With JGraLab, models are represented as so-called TGraphs [ERW08]. A TGraph
is a graph where both the vertices and the edges are typed and may be attributed.
Even the graph itself is typed and may be attributed, too. Edges are directed but
navigation is always possible in both directions. There is a global order upon all
vertices in a TGraph, a global order upon all edges, and at every vertex, there is a
local order upon all incident edges. Lastly, every vertex and every edge in a TGraph
has an integral ID.

Figure 7.1 on the next page shows a visualization of an example TGraph1. Many
of the TGraph properties can be seen. The vertex v1 has the type Female and its
name attribute has the value “Jane Smith”. The edge e1 has the type HasSpouse and
its marriageDate attribute has some composite value which encodes the date March
13, 2001. The IDs of this vertex and this edge are both 1, i.e., the prefixes “v” and
“e” are only artifacts of the visualization.

As mentioned above, even the graph itself may be attributed. However, in the
visualization there is no representation of the graph, only of its vertices and edges.

The global order between all vertices and all edges in the graph is not visible. In
general, the IDs of vertices and edges do not indicate the order. A vertex or and
edge may be moved forward and backward in the list of a graph’s vertices and edges
which affects the order but the ID stays stable. Also, if a vertex or edge is deleted,
the ID which has become unused will eventually be reused by a new vertex or edge
which is by default appended to the graph’s list of vertices or edges.

1This visualization has been generated by FunnyQT’s visualization facility which is discussed in
section 15.3 on page 158
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v1: Female

name = "Jane Smith"

v2: Male

name = "Jim Smith"

e1: HasSpouse
marriageDate = [day: 13, month: MARCH, year: 2001]

husband

wife

v3: Male

name = "Jon Smith"

e2: HasChild

children

parents

v4: Female

name = "Jill Smith"

e4: HasChild

children

parents

e3: HasChild

children

parents

e5: HasChild

children

parents

Figure 7.1: An example TGraph

However, in the special case that a graph is created from scratch using only
create methods, the IDs correspond to both the global order of vertices and edges,
and the IDs of the edges also indicate the incidence order at each vertex. So when
assuming this situation, the incidence order at the vertex v2 is e1 first, then e3, and
lastly e5.

Every TGraph conforms to a schema. A schema is a metamodel for a class of
TGraphs which is defined as a GraphUML class diagram. GraphUML (grUML)
is a profile of the UML class diagram language [OMG15c] which comprises only
those elements that are compatible with graph semantics. For example, the UML
supports n-ary associations with n > 2 but grUML does not because that would
require hypergraphs2.

The schema the TGraph from fig. 7.1 conforms to is shown in fig. 7.2 on the
facing page. This schema defines a graph class Genealogy which is the type of
all conforming graphs. The graph class has one attribute version of attribute type
(domain) Integer.

Vertex types (vertex classes) are defined as grUML classes, and edge types (edge
classes) are defined as grUML associations or association classes in case attributes
are defined for them. There may be specializations (including multiple inheritance)
between the vertex classes on the one hand and between the edge classes on the
other hand.

The schema defines three vertex classes: Person, Female, and Male. The Person
class is abstract and specialized by the two other vertex classes. Therefore, the
name attribute of domain String is inherited by the latter two classes.

2There is a JGraLab variant supporting Distributed Hierarchical Hyper-TGraphs (DHHTGraphs, [Bil12;
BE11]) but it is not supported by FunnyQT.
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Figure 7.2: The schema of the graph in fig. 7.1 on page 70

The schema also defines two edge classes HasSpouse and HasChild. The HasSpouse
edge class starts at the vertex class Female and ends at the vertex class Male, thus
edges of this type must always start at a Female vertex and end at a Male vertex3.
The role names and multiplicities define that every female has at most one husband,
and every male has at most one wife.

The domain of the marriageDate attribute of the HasSpouse edge class is Date
which is a custom record domain. A record domain defines a structured datatype,
e.g., similar to a struct in C. Each component of the record domain has a name
and a domain. Thus, a Date consists of a day, a month, and a year where the first
and the last are integers and the month is an enumeration constant defined by the
enumeration domain Month which is also defined by the schema.

The concepts available for modeling a TGraph schema are defined by the grUML
metaschema which is self-describing meaning it is a valid schema on its own. This
metaschema is shown in fig. 7.3 on the following page.

It defines that every schema must contain exactly one graph class. Furthermore,
it may define any number of vertex classes, edge classes, and domains4. As already
mentioned above, the graph class, vertex classes, and edge classes may be attributed,
and there are separate specialization hierarchies for vertex classes and edge classes,
respectively.

The end points of edge classes with their properties are encoded by incidence
classes. These properties include the multiplicities, a role name (which is optional),

3This schema is easily understandable and therefore nice for illustration purposes. It is definitely not
intended as a statement against same-sex marriage.

4The figure does not include the Package class for formatting reasons. Each schema contains one
default package which may contain other packages. All named elements are contained in some package,
and the graph class and all domains except for record and enum domains must reside in the default
package.
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Figure 7.3: The grUML metaschema

and the aggregation kind. The latter is used to encode if an edge class defines a
part-of relationship, and at most one incidence class of an edge class may have
an aggregation kind different from NONE. An edge class A2B starting at a vertex
class A and ending at a vertex class B has a strict containment semantics if the
aggregation kind of the incidence class at B is COMPOSITE, i.e., it then corresponds
to a UML composition. If it was SHARED, it would have weak containment semantics,
i.e., it would then correspond to a UML aggregation. An edge class where both
incidence classes have the aggregation kind NONE has no containment semantics
and corresponds to a usual UML association.

The lower part of fig. 7.3 shows the different domains available as attribute types.
The supported basic domains correspond to the Java types boolean, int, long, double,
and String. As has been seen in fig. 7.2 on page 71, a schema may define custom
record and enumeration domains. Furthermore, list- and set-valued homogeneous
collection domains are supported which have a given base domain, e.g., the domain
List<Integer> in a schema denotes the list domain with base domain integer. Lastly,
there is the map domain which has a key domain and a value domain.
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Programming with JGraLab. When programming with TGraphs, every graph
is an object being an instance of the JGraLab interface Graph. From a graph, all
vertices and edges contained by it can be retrieved. Those are instances of the
JGraLab interfaces Vertex and Edge, respectively.

Graphs, vertices, and edges are all instances of the interface AttributedElement
which declares methods for retrieving and setting attribute values. From all at-
tributed elements, the corresponding attributed element class in the schema can be
accessed.

From an edge, the source vertex (alpha) and the target vertex (omega) can be
accessed, and from a vertex, the sequence of all incident edges can be retrieved.
And from a vertex, adjacent vertices can also be accessed by the role names defined
for far-end incidence classes. Vertices can also be added to a role which then implies
the creation of edges.

JGraLab provides two runtime representations for TGraphs. With the generic
representation, the graph and its vertices and edges are accessed using the inter-
faces named above. All constraints imposed by the schema are checked dynamically
at runtime, e.g., when trying to create an edge being instance of some edge class
between two vertices, it is checked if these vertices are instances of the source and
target vertex classes of the edge class. If not, an exception is thrown.

Alternatively, JGraLab can generate an object-oriented API for a given schema. In
this case, the standard interfaces mentioned above and the corresponding implemen-
tation classes are further specialized so that for any graph class, vertex class, and
edge class defined in the schema, a corresponding interface (and implementation
class) exists. This generated API ensures most constraints imposed by the schema in
terms of static typing already, e.g., the create method for HasSpouse edges requires
that a Female start vertex and a Male end vertex is given.

There is almost no measurable difference in performance or memory require-
ments between the two representations. However, the generated API is much more
convenient when programming with TGraphs in Java. Generic tools such as FunnyQT
which have to work with any TGraphs no matter the schema can obviously only
use the generic API. But since the schema-specific interfaces specialize the generic
ones, the generic API is always available.

7.2 The Eclipse Modeling Framework

With the Eclipse Modeling Framework (EMF, [Ste+09]), a model is a set of typed
EObject instances (eobjects for short) which may be attributed and may reference
each other.

Figure 7.4 on the next page shows a visualization of a simple EMF model which
represents the same facts as the TGraph in fig. 7.1 on page 70. All three properties
of eobjects are clearly visible. The topmost eobject in the visualization has the type
Genealogy. Its version attribute is set to 0, and it references five other eobjects:
four Female and Male eobjects are referenced with the persons reference, and one
Marriage eobject is referenced with the marriages reference.
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:Genealogy

version = 0

:Female

name = "Jane Smith"

                    

persons

:Male

name = "Jim Smith"

                    

persons

:Male

name = "Jon Smith"

                    

persons

:Female

name = "Jill Smith"

                    

persons

:Marriage

date = Tue Mar 13 01:00:00 CET 2001

                    

marriages

                    

children

                    

children

                    

marriage

wife

                    

children

                    

children

                    

marriage

husband

Figure 7.4: An example EMF model

The name attribute values of Female and Male eobjects are obviously strings.
However, the type of the date attribute of the Marriage eobject seems to be some
kind of timestamp.

With EMF, there is no explicit object representing the model itself. Therefore, an
explicit Genealogy object is used in order to be able to assign a version. Furthermore,
it is good although not required practice for an EMF model to have some root
object which contains all other eobjects directly or indirectly. In the visualization,
references denoting containments are visualized with a filled diamond at the side of
the container.

References in EMF are just links without an identity. Therefore, whereas an
attributed edge has been used to indicate that Jane and Jim are married to each other,
the EMF model has to represent this fact with a Marriage eobject which references
both Jane and Jim5.

References in EMF are either unidirectional or bidirectional. For example, the
persons reference is a unidirectional containment reference where the unidirection-
ality is visualized by having a label only at the target side. Bidirectional references
are visualized by having a label at both sides. In fact, a bidirectional reference is
actually a pair of unidirectional references where the respective other one is set
as the opposite reference. For example, the wife reference is the opposite of the
husband reference, and together they can be viewed as a bidirectional reference.

Every EMF model conforms to an Ecore metamodel which defines the abstract
syntax of model instances. The model from fig. 7.4 conforms to the metamodel
shown in fig. 7.5 on the facing page.

Metamodels are defined using Ecore diagrams which are EMOF [OMG15a]
5It is a running gag in our working group to refer to such a thing as a “nedge” (or “Knante” in German)

because it is a node (ger. Knoten) which actually represents a relationship that should be modeled with
an edge (ger. Kante).
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Person

name : EString

Female Male

Marriage

date : EDate

Genealogy

version : EInt

[1..1] wife

[0..1] marriage

[1..1] husband

[0..1] marriage

[0..*] children

[0..*] persons

[0..*] marriages

Figure 7.5: The metamodel of the model in fig. 7.4 on page 74

compatible class diagrams. Each class in the diagram defines an EClass with its
attributes (EAttribute). Specialization including multiple inheritance is supported
between eclasses.

Associations in the diagram define references (EReference). If there is only one
role name, a unidirectional reference is defined. If there are role names at both
sides of the association, a bidirectional reference is defined, i.e., a pair of two
unidirectional references opposite to each other.

Ecore distinguishes only plain references modeled as associations from contain-
ment references modeled as compositions, i.e., weak containment semantics cannot
be expressed.

So the persons reference is a unidirectional containment reference where a
Genealogy is the container of arbitrary many Person eobjects. The children reference
is unidirectional and has no containment semantics. Lastly, the references wife and
husband are opposite to each other and together form a bidirectional reference
without containment semantics.

The concepts available for modeling metamodels are defined by the Ecore
metametamodel which is depicted in fig. 7.6 on the following page. This is ac-
tually a fragmentary version reduced to the core concepts because the actual Ecore
metametamodel is quite large and very near to the implementation.

The most important concept is the EClass which may specialize other eclasses
and contain structural features which are either attributes or references.

Structural features are typed elements, therefore they have a type. That the
eType reference is optional according to the multiplicities has a purely technical
reason. In a valid Ecore metamodel, all typed elements have a type6. All typed
elements have multiplicities. If the upper bound is greater than one, a typed element
is said to be multi-valued in which case the many attribute would be set to true. A
multi-valued attribute in an Ecore metamodel corresponds to a list-valued attribute
in a TGraph schema. Although not shown in fig. 7.6, typed elements can also be set
to unique in which case a multi-valued attribute would represent a set. In practice,
multi-valued attributes are rarely used.

The eType reference is actually subsetted by two references at EAttribute and
6Also, every structural feature is contained by some eclass, and every classifier is contained by some

epackage.
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Figure 7.6: The Ecore metametamodel

EReference in order to define that the type of an eattribute is always an EDataType
whereas the type of an ereference is always an EClass.

EMF supports more datatypes than JGraLab. Next to all the primitive Java types
(boolean, byte, short, char, int, long, float, and double), strings, and custom enumer-
ations, it also supports dates (java.util.Date), big integers (java.math.BigInteger),
and big decimals (java.math.BigDecimal). Furthermore, Ecore allows to define arbi-
trary custom datatypes. For persistence, the user has to define methods for writing
instances of such a datatype to a string and for reading it back. In practice, how-
ever, almost all Ecore metamodels use only the primitive Java types, strings, and
enumerations for attributes.

Programming with EMF. Every element in a model is represented as an instance
of the EObject interface which provides methods for accessing and setting attribute
values and references. Furthermore, there is a method for retrieving the EClass the
eobject is an instance of.

Like with JGraLab, a model can be represented generically at runtime (called a
dynamic model instance in this context), or code may be generated from an Ecore
metamodel. In the latter case, many constraints imposed by the schema are already
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ensured statically but the generated interfaces and classes extend the generic ones,
so a generic access is always possible, too.

As said above, with EMF there is no real representation of the model or the
metamodel itself. A model is just a set of interrelated eobjects, and a metamodel is
in essence just a set of interrelated eclasses. Interestingly, EClass is a subinterface
of EObject, thus with EMF, a metamodel is a model, too.

For persistence, there is the Resource interface. A resource is a container for
eobjects. When saving a resource, all eobjects are saved which are contained directly
or indirectly by the resource7. Furthermore, many resources can be combined in
one ResourceSet.

When comparing EMF with TGraphs, a TGraph is a closed system whereas EMF
models are more open. A TGraph contains its vertices and edges, and edges can only
start and end at vertices of the same graph. With EMF, objects are not restricted
in that respect. Only for persistence, the objects need to be placed in a resource.
Especially with transformations on EMF models, it is common practice to have
the traceability information, i.e., which target element has been created for which
source element, represented as a model whose elements reference eobjects in the
transformation’s source and target model. This is a valuable feature which is not
possible with TGraphs. On the other hand, TGraphs are more expressive especially
due to having typed and attributed edges.

In the next part, a generic view on models including its terminology is conceptu-
alized. All higher-level querying and transformation concepts provided by FunnyQT
are based on this generic view and thus agnostic to the actual modeling framework
used for representing models at runtime.

7This is the reason why most Ecore metamodels define a strict containment hierarchy.
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Summary

In this part, a high-level overview of the FunnyQT approach is given.
First, chapter 8 starting on page 83 discusses several possible options for
achieving genericity in model querying and transformations, and then it
goes on explaining the option chosen by FunnyQT in more detail.

Chapter 9 starting on page 91 explicates the terminology used through-
out this writing and introduces the conventions used when designing the
FunnyQT API.

Finally, the way FunnyQT is structured into several namespaces, i.e.,
its architecture, is explained in chapter 10 starting on page 95.





Chapter 8

On Genericity

As stated in chapter 3 starting on page 13, one of FunnyQT’s major goals is to be
generic, i.e., to allow for defining queries and transformations on models without
having to take into account concrete modeling frameworks and their inherent model
representations. Therefore, some kind of a generic view on models has to be realized.

There are various options how genericity can be achieved. The most important
ones are discussed along their advantages and disadvantages in section 8.1. The
option taken by FunnyQT is then discussed in more detail in section 8.2 on page 88.

8.1 Viable Options for Genericity

In this section, three options for achieving genericity in model querying and trans-
formations are discussed. Two options, the interface-based approach discussed in
section 8.1.1 and the protocol-based approach discussed in section 8.1.3 on page 88,
deal with defining a generic view on the existing model representations used by to-
day’s modeling frameworks. In contrast, another option is to define a custom model
representation with import and export facilities for models of existing frameworks
as suggested by the approach discussed in section 8.1.2 on page 87.

8.1.1 Interface-Based Genericity

The most obvious option and standard practice for achieving genericity in Java is to
define the assumptions and requirements that are relevant in a certain context as a
set of interfaces accompanied by documentation specifying the contract of every
method declared by the interfaces. Then, the actual functionality is implemented
on top of those interfaces and can be obtained from every object whose concrete
implementation class implements one or more of those interfaces.

In the context of model querying and model transformation, a generic view on
models and metamodels would be needed in order to build querying and trans-
formation capabilities on top. This generic view would need at least the common

83
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CRUD-capabilities1, i.e., it must provide the abilities to create new model elements,
to access and set elements’ attributes and references, and to delete model elements
from a model again. Furthermore, it also needs to provide at least a read-only view
on metamodels, e.g., in order to distinguish and filter elements according to their
metamodel classes.

A sketch of how such an interface-based model and metamodel view might look
like is shown in fig. 8.1.

Figure 8.1: A sketch of an interface-based model view

A metamodel consists of arbitrary many classes. For every metamodel class,
one can get its qualified name and the sets of direct super- and subclasses. A
metamodel class may possess attributes and references which both have a name.
Every reference has a metamodel class as target type, and it may either be single-
or multi-valued.

Then, a model consists of a set of elements. From a model, one can retrieve the
metamodel to which the model conforms to, and from a model element, one can
retrieve the metamodel class the element is an instance of. Furthermore, the element
interface declares methods for accessing and setting the values of properties.

All in all, the interfaces in fig. 8.1 specify a generic view on models where model
elements are typed and attributed, and navigation between elements is performed in
terms of reference names. This view is very similar to the standard EMF interfaces
except that it is a bit simplified. E.g., the EMF interface EObject fulfills the role
of the Element interface in the figure where the methods eGet() and eSet() provide
the functionality of Element’s attribute and reference getter and setter methods.
Likewise, one can have this view also on JGraLab’s TGraphs by ignoring first-class
edges and only considering the role names as references which are declared for the
edge classes.

There are three options with respect to how a concrete modeling framework
could be supported with such an interface-based approach.

The first one is that the framework’s model and metamodel representation in-
terfaces or classes extend or implement the generic model view interfaces directly.

1CRUD means create/read/update/delete
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This puts the burden of implementing the view on the developers of the respective
modeling frameworks, and it adds a mandatory dependency between the modeling
framework and the interfaces making up the generic model view. For this reason,
this option is very unlikely to happen.

The second option is to use aspect-oriented programming (AOP, [Kic96] and
specifically [Kic+01] for AspectJ2/Java), especially inter-type declarations, to make
a modeling framework’s interfaces extend the generic interfaces. There is no
way to distinguish if an interface has been implemented directly or if it has been
implemented by an advice that wove in the required byte-code at load-time. Thus, the
AOP-based approach is equivalent to direct implementation of the generic interfaces
with the crucial advantage that it can be performed without touching a concrete
modeling framework’s interfaces and classes. For inter-type declarations there
also shouldn’t be a performance penalty involved. On the negative side, aspects
introduce a dependency to a concrete AOP framework like AspectJ and require
additional tool support in IDEs and build infrastructure.

The third option to access concrete models using the interfaces of the generic
view is to write adapter classes (see Adapter Pattern in [Gam+95]) which implement
the generic interfaces, wrap an object of a concrete modeling framework, and then
translate calls of the generic methods to calls of the framework-specific methods.

The following listing shows how such a class for adapting EMF objects would be
implemented.

class EMFElement implements Element {
private EObject adaptee;

public EMFElement(EObject adaptee) {
this.adaptee = adaptee;

}

public Class getMetaModelClass() {
return new EMFClass(adaptee.eClass());

}

public Object getAttribute(String attrName) {
EClass eclass = adaptee.eClass();
EStructuralFeature sf = eclass.getEStructuralFeature(attrName)
if (sf instanceof EAttribute) {

return adaptee.eGet(sf);
} else throw new RuntimeException("No such attribute " + attrName);

}

// ...
}

EMFElement is an Element-adapter for EMF objects. Its method getMetaModel-
Class() simply delegates to the wrapped object’s eClass()method and wraps its return
value in a Class-adapter for EMF EClass objects.

2https://www.eclipse.org/aspectj/ (last visited: 2015-12-26)



86 CHAPTER 8. ON GENERICITY

The getAttribute() method’s implementation caters for the fact that EObject’s
eGet() method considers both attributes and references, and receives a structural
feature instead of only a name.

A similar adapter could be written for adapting JGraLab’s Vertex interface to the
generic Element interface.

The positive aspects of such an adapter-based implementation of the generic
interfaces is that it can be done without touching the interfaces of a modeling
framework similar to the AOP-based implementation approach. In contrast to
that, the adapter-based approach does not require additional tool support but this
advantage is dearly bought by having (at least) one wrapper object per model
element.

In general, positive aspects of an interface-based approach for genericity is
that it is relatively easy to implement and still uses the framework-specific model
representations. Therefore, a model can be accessed with both the generic and the
framework-specific interfaces which makes it possible to use a combination of tools
requiring the generic interfaces and native tools working on the concrete modeling
framework’s interfaces.

A negative aspect of the interface-based approach is that interfaces don’t provide
adequate means to deal with optionality or variability. The generic model view
in fig. 8.1 on page 84 models only the intersection of features provided by dif-
ferent modeling frameworks’ model representations. All additional properties a
concrete model representation offers (e.g., first-class edges) should be accessible
for querying and transformation services, too. However, it is hardly possible to
model every combination of supported features in terms of a hierarchy of interfaces.

For example, consider the functionality of accessing attribute values. In the mini-
mal interface sketch in fig. 8.1 on page 84 this is only possible for Element instances
which correspond to JGraLab’s vertices and EMF’s eobjects. But in JGraLab, also
edges and even the graph itself might possess attributes. Thus, the functionality of
accessing attributes shouldn’t be declared in the Element interface but in its own At-
tributedElement interface which could then be extended by Element. Since in general
a model has no attributes on its own, Model should not specialize AttributedElement
but we might define a new interface AttributedModel which specializes Model and
AttributedElement. Next comes the functionality of retrieving the relationships in
a model which can only be implemented if the concrete model representation has
first-class edges, thus a new ModelWithRelationships interface is due. And of course,
this might come in an attributed version, too. It is easy to see that it is at least
very tedious to press each and every functionality that might be supported by some
modeling framework in a hierarchy of interfaces.

This problem could be somehow mitigated by not following the standard Java
practice that if a class implements an interface, the methods brought in by that
interface can be called safely on objects of that class. That is, the interfaces defining
the generic model view could model the union of features instead of their intersection.
In that case, the implementation of a method which cannot be supported by a
concrete model representation, e.g., retrieving the first-class relationships of an
EMF model, would simply throw an UnsupportedOperationException. However, there
is no good way to test if a method is supported other than to call it to see if it returns
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a sensible value or throws an exception3.

8.1.2 A Custom Model Representation

Another way to achieve genericity is to define a custom FunnyQT-specific model
representation with import and export facilities for the common modeling frame-
works such as EMF and JGraLab. Then all querying and transformation services
can be based on a single well-defined data structure, and to add support for another
modeling framework only an import and export service needs to be implemented.

Such an approach has some attractiveness. Because FunnyQT is implemented
as a Clojure API and Clojure is a functional language, a purely functional model
data structure would be a prefect match. A purely functional data structure is a
data structure which is immutable and persistent. This means that a modification
to the data structure, e.g., the addition of a new element, creates a new version
of the structure where the old version is still accessible. These properties can be
achieved trivially by a copy-on-write strategy but modern functional data structures
such as the ones designed in [Oka98] are much more sophisticated and efficient by
having updated versions share large parts of their (usually tree-based) internals with
previous versions. All Clojure collection types are such functional data structures.

The crucial benefit of functional data structures is that they can be accessed
and manipulated concurrently without any locking because every thread only sees
a specific version that can never change and all updates are only visible to the
updating thread itself. Clojure provides several reference types which allow for
concurrent (and possibly coordinated) atomic updates of state shared by multiple
threads. Because any update might need to be retried in case another thread
performed an update in the meantime, it is crucial that update actions are free of
side-effects which implies that the data structure itself needs to be a functional one.

Some work has been done to come up with a fully functional graph data structure
in [Erw97; Erw01] leading to Haskell’s Functional Graph Library (FGL4) which
provides directed inductive multi-graphs with labeled nodes and edges. However,
those graphs are still far off the expressivity and performance of modern modeling
frameworks like JGraLab and EMF.

And with a custom model representation, the same considerations with respect
to optionality and variability apply. Ideally, it should be able to expose features that
are only supported by a subset of model representations for which an import facility
exists.

This does not mean that this option is infeasible but it is a hard research problem
on its own and thus not tackled by FunnyQT.

3Another way would be to use Java annotations with @Retention(RetentionPolicy.RUNTIME) for marking
methods as unsupported and then accessing them using reflection.

4http://hackage.haskell.org/package/fgl (last visited: 2015-12-26)
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8.1.3 Protocol-Based Genericity

The third approach to achieve genericity is protocol-based. This is the approach
eventually taken by FunnyQT.

Clojure protocols have already been discussed in section 6.14 on page 66. To
recapitulate, a protocol is similar to an interface in that it has a name and declares
one or more methods accompanied by documentation without providing implemen-
tations. After a protocol has been declared, implementations of its methods can be
added for arbitrary interfaces and classes. This is similar to the AOP-based option
of implementing interfaces discussed in section 8.1.1 on page 83 except that this
extension of applicability to another type happens at runtime rather than compile-
or load-time, and there is also no byte-code modification involved.

The crucial difference between interfaces and protocols is that the former com-
plect typing with applicability of method calls whereas protocols only deal with
the latter. That is, when a class C implements an interface I in order to provide
an implementation for I’s doi() method, then C-objects are also I-instances. When
a protocol P is extended upon a class C, it only means that the protocol’s methods
can be called for C-objects (and objects of C’s subclasses) without changing C’s type
hierarchy. And it is possible to test if a given object’s class satisfies a protocol.

Every functionality one may assume from a model or model element can be
specified as a protocol. One such functionality is to retrieve the value of an attribute.
Thus, this protocol has to be extended upon all types that possess attributes. For
JGraLab, this is the graph itself and its vertices and edges. For EMF, only eobjects
are attributed. That way, FunnyQT can use the native model representations which
it accesses in terms of a generic protocol-based API. And by testing if a concrete
framework-specific class satisfies a given protocol or set of protocols, it can unlock
additional features which require those protocols.

So in conclusion, protocols are an adequate means to achieve genericity. A more
detailed description of how FunnyQT uses protocols is given in section 8.2.

8.2 Protocol-Based Genericity for Model Querying
and Transformation

FunnyQT uses the native model representations of concrete modeling frameworks.
I.e., with EMF a model is a Resource containing EObject instances, and with JGraLab
a model is a Graph containing Vertex and Edge instances.

FunnyQT’s generic model management and querying API which is discussed later
in part IV starting on page 105 defines several protocols for accessing models and
model elements. For example, there is a protocol IElements that declares an elements
method. When being applied to a model, it should return the sequence of elements
contained in that model. For EMF, there is an implementation for Resource which
returns the sequence of eobjects contained in that resource. For JGraLab, there is
an implementation for Graph which returns the sequence of vertices of that graph.

For model representations which provide first-class edges, there is also a protocol
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IRelationships declaring a relationships method. This protocol is only implemented
for JGraLab’s Graph interface where it returns the sequence of edges of the given
graph.

The model elements and relationships returned by the methods elements and
relationships can be restricted to specific metamodel types in case a type-checking
protocol ITypeMatcher is extended upon a concrete framework’s types.

Likewise, there is a protocol IAttributeValueAccess declaring the methods aval
and set-aval!. For EMF, this protocol is extended upon the EObject interface. For
JGraLab, it is extended upon the AttributedElement interface which is the superinter-
face of all JGraLab types that may possess attributes namely vertices, edges, and
the graph itself.

There are several more such protocols but they all have in common that they
are very slim (most of the time they only declare one method) and encode only one
single functionality. The most important protocols are:
IElements for retrieving the elements contained in a model
IRelationships for retrieving the relationships contained in a model with first-class

edges
IAttributeValueAccess for accessing and setting attribute values
ITypeMatcher for restricting elements and relationships to a certain type
IQualifiedName for retrieving the qualified name of a metamodel class
IMMClass for retrieving a metamodel class by its qualified name or the metamodel

class of a given model element
ICreateElement for creating elements in a model
ICreateRelationship for creating a relationship between two elements in a model

with first-class edges
IDelete for deleting elements or relationships in a model
IAdjacenciesInternal for navigating between elements in terms of role or reference

names
All these protocol realize a duck-typed5 view on models. With such a view, it’s

not a label that classifies a thing, it’s the set of observable properties it has. Or in
programming language terms: it’s not the class of an object that’s relevant, it’s the
set of methods it responds to. So for FunnyQT, it’s not an object’s type which makes
it a model, a model element, or a metamodel element but it’s the set of protocol
methods which are applicable for the object.

For example, if an object satisfies the IElements and ICreateElement protocol to
retrieve its model elements and to create new ones, then FunnyQT may treat this
object as a model because it possesses all essential properties one expects from a
model. If it also satisfies the protocols IRelationships and ICreateRelationship, then it
is even a model with first-class edges. Thus, EMF resources and JGraLab graphs
are both models although their only common supertype is java.lang.Object. In the
same sense, EMF eobjects and JGraLab vertices are model elements because those
are returned by the IElements method elements, and JGraLab edges are relationships
because those are returned by the IRelationships method relationships. And since in
a model every object is an instance of a class in the metamodel, we can retrieve this

5“When I see a bird that walks like a duck and swims like a duck and quacks like a duck, I call that
bird a duck.” — James Whitcomb Riley
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(element or relationship) class with the mm-class method declared by the IMMClass
protocol.



Chapter 9

Terminology and Conventions

This chapter briefly introduces the terminology aroundmodels which is used through-
out this thesis and FunnyQT’s documentation. This terminology encompasses all
generally useful concepts which are likely to exist in many modeling frameworks.

While the terminology is being discussed, also some conventions are introduced.
This is done using short code snippets containing exemplary function calls. Those
functions are discussed later in chapter 12 starting on page 107, but their exact
semantics is not needed for the purpose of exemplifying conventions, anyway.

Figure 9.1 shows a simple example metamodel that models a filesystem structure
both as TGraph schema on the left and as Ecore model on the right. This metamodel
is used for illustrating important concepts in the following.

FSEntry

name : EString

Directory File Link

[0..*] entries

[1..1] directory

[1..1] target

Figure 9.1: A filesystem metamodel as TGraph schema and Ecore model

As said in section 8.2 on page 88, FunnyQT has a duck-typed view on models. As
such, amodel is essentially just a container formodel elements, i.e., one can retrieve
the model elements contained in it, one can create new elements in it, and one can
delete elements in it. If the underlying model representation supports first-class
edges, then a model may also contain relationships that can be enumerated, created,
and deleted.

Each model conforms to some metamodel which FunnyQT treats as a container
of element classes and possibly relationship classes. That is, for a metamodel it

91
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should be possible to enumerate all element and relationship classes, and it should
be possible to retrieve a concrete class by its qualified name1. Furthermore, any
model element or relationship should be able to return the metamodel class it is an
instance of.

In FunnyQT, wherever a metamodel class has to be specified, it is provided as a
Clojure symbol denoting the fully qualified name of that type. With respect to fig. 9.1
on page 91, to create a new File element in a model, one would use (create-element!
model 'File) where the symbol File denotes the correspondingly named metamodel
class. Or in case the model supports first-class relationships, (relationships model
'HasTarget) would return the sequence of all HasTarget relationships contained in
the model.

Depending on the underlying model representation, metamodel element and
relationship classes may possess attributes whose values may be retrieved and set
for instances of those classes. In FunnyQT, wherever an attribute has to be specified,
it is provided as a Clojure keyword denoting the name of the attribute. So in order
to retrieve the value of a filesystem entry’s name attribute, one would write (aval
entry :name).

A metamodel class may define references that are like attributes whose type
is another metamodel class. Modeling frameworks without first-class edges such
as EMF have only references whereas modeling frameworks with first-class edges
might allow the usage of references in addition to edges. In JGraLab, an edge
class may define role names for its source and target ends which can be treated
like references in EMF. Therefore, the terms reference and role name are used
interchangeably.

With respect to fig. 9.1 on page 91, the element class FSEntry has a reference
named directory, Directory has an entries-reference, and Link has a target-reference.
In FunnyQT, wherever a reference has to be specified, it is provided as a Clojure
keyword denoting the reference name. For example, one would write (adj link
:target) to get the filesystem entry link points at.

For many metamodels it is sensible and natural to define a strict containment
hierarchy. For example, a metamodel for Java might model that a package contains
classes, classes contain fields and methods, and methods contain statements. Such
containment references are commonly visualized as UML compositions. The meta-
model class owning the containment reference is called the whole or the container
and the metamodel class on the opposite side is called the part or contents. Such
containment references also denote an existential dependency between the part
and the whole. There cannot be a field or a method which is not contained in a
class2. Usually, this also implies a cascading delete semantics on the instance level.
When deleting the container, e.g., a class element, all its contents, e.g, its fields and
methods, are deleted, too.

The metamodel in fig. 9.1 on page 91 also defines a strict containment hierarchy.
A directory contains filesystem entries, and every filesystem entry is contained in
exactly one directory. Thus, the reference entries is a containment reference. In the

1Optionally, metamodel classes may also be specified using their simple class name in case that is
unique and the IUniqueName protocol is satisfied.

2Of course, there can be statements not directly contained in a method. This would be modeled by a
(0,1) multiplicity on the side of the container, i.e., the method.
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TGraph schema on the left, we say that HasEntry is a containment relationship class.
Every reference which has no strict containment semantics is called a cross-

reference. Likewise, relationship classes with no strict containment semantics are
called cross-referencing relationship classes.

In fig. 9.1 on page 91, the Link class’ target-reference is a cross-reference, and
the edge class HasTarget is a cross-referencing relationship class.

Next, references can be distinguished in unidirectional references and bidi-
rectional references. A reference is bidirectional if it has an opposite reference,
otherwise it’s unidirectional. I.e., a bidirectional reference is actually a pair of two
references where one points from A to B and the other from B to A. Modeling
frameworks such as EMF automatically synchronize such bidirectional references.

In fig. 9.1 on page 91, the entries-reference is bidirectional because it has the
opposite directory-reference. Thus, the latter is also bidirectional3. In contrast, target
is a unidirectional reference. There is no way to navigate from some filesystem
entry to the links pointing to it via a role name. Of course, in the case of JGraLab
one can still do that by traversing all incoming HasTarget edges.

The term property is frequently used as the superordinate concept of attributes
and references. Properties can be single-valued or multi-valued. A property is
single-valued if its multiplicity is (0,1) or (1,1). If its maximum multiplicity is larger
than one, it is multi-valued.

With respect to fig. 9.1 on page 91, the references directory and target are single-
valued whereas entries is multi-valued. The attribute name is single-valued.

Attributes with multiplicities other than (0,1) are rather uncommon but supported
in EMF. With JGraLab, attributes of the domains list, set, or map are considered
multi-valued.

Those were all the terms used in the remainder of this thesis when talking about
models in general. Models contain elements and possibly relationships and conform
to a metamodel which defines element classes and possibly relationship classes.
For those metamodel classes, attributes may be defined. For element classes,
also references may be defined. References can be distinguished in unidirectional
and bidirectional references. References and relationship classes may either be
containment- or cross-referencing. And lastly, any property may be either single- or
multi-valued.

With respect to conventions, it can be summarized that metamodel class names
are always referred to using Clojure symbols denoting their qualified name, and
properties are always referred to using Clojure keywords.

3It would bemore correct to say that entries and directory together define one bidirectional reference but
because they inherently belong together one usually names only one role name and calls it bidirectional.





Chapter 10

The FunnyQT Architecture

The FunnyQT API is structured into several namespaces (see section 6.10 on page 55).
Each namespace provides an API consisting of functions and macros for a specific
use-case. These namespaces are illustrated in fig. 10.1 on the following page. The
arrows denote dependencies. Each namespace implements its services using the
constructs provided by the namespaces it depends on.

In this figure, the namespaces are arranged in layers. On the lowest layer
named Model Management, there are namespaces that support the basic access
to models with their elements and relationships. This is also the layer that defines
and implements FunnyQT’s protocol-based generic view on models which has been
discussed in section 8.2 on page 88.

Above that, there is the Querying layer which provides higher-level querying
nor transformation services. Furthermore, the namespaces in the Transformation
layer provide high-level transformation services. Additionally, there are several
namespaces printed with blue background color that provide auxiliary utility services
that are neither model management nor querying services.

The complete model management API is the topic of part IV starting on page 105.
The generic model management API funnyqt.generic is discussed in chapter 12 start-
ing on page 107. In this namespace, all the protocols defining FunnyQT’s generic
model view are declared. This generic API is complemented by two framework-
specific APIs residing in the namespaces funnyqt.tg for accessing JGraLab TGraphs
(see chapter 13 starting on page 123) and funnyqt.emf for accessing EMF models
(see chapter 14 starting on page 137).

The namespace funnyqt.query which among other services defines regular path
expressions, and also the namespaces implementing auxiliary services such as model
visualization (funnyqt.visualization), persistence of model-related data (funnyqt.edn),
polymorphic functions (funnyqt.polyfns), and XML processing (funnyqt.xmltg) are
also discussed in part IV.

The namespace funnyqt.pmatch provides an embedded pattern matching DSL
which is discussed in part V starting on page 181. Based on this pattern matching
API, the namespace funnyqt.in-place provides constructs to define transformation
rules that match elements using a pattern and then act on the matched elements.
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EMF API JGraLab API

funnyqt.emf funnyqt.tgfunnyqt.generic

funnyqt.queryfunnyqt.pmatch

funnyqt.in-place

funnyqt.relational

funnyqt.model2model

funnyqt.extensional

funnyqt.coevo

funnyqt.bidi

funnyqt.polyfns

Java

Model 
Management

Querying

Transformation

funnyqt.visualization funnyqt.xmltgfunnyqt.edn

Figure 10.1: The FunnyQT architecture

This namespace is discussed in part VI starting on page 221.
FunnyQT provides two kinds of out-place transformation APIs.
The namespace funnyqt.model2model provides an internal DSL for out-place trans-

formations which traverse the source models and incrementally build up the target
models. The funnyqt.extensional namespace uses a different take on out-place trans-
formations by specifying the target model in terms of extensional semantics. Both
are discussed in part VII starting on page 259.

The funnyqt.relational namespace provides an API for querying models using a
relational paradigm similar to Prolog logic programming language. It is discussed
in part VIII starting on page 311.

Based on the funnyqt.relational namespace, the funnyqt.bidi namespace provides
an internal DSL for specifying bidirectional transformations similar to the QVT
Relations language [OMG11b]. This namespace is discussed in discussed in part IX
starting on page 339.

At last, the namespace funnyqt.coevo supplies an API for co-evolution transforma-
tions which simultaneously change a model and its metamodel at runtime. For exam-
ple, it allows to create new metamodel classes and instances thereof. For this pur-
pose, it reuses the concept of extensional semantics used by the funnyqt.extensional
namespace. The co-evolution transformation API is discussed in part X starting on
page 375.

Some of the querying and transformation namespaces shown in fig. 10.1 are
complemented by additional namespaces containing framework-specific versions or
extensions of the original namespace.

The central point, however, is that any other modeling framework which can
be accessed using a Java API can be supported by FunnyQT without touching its
internals. Only the protocols declared in the funnyqt.generic namespace have to
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be extended upon that framework’s model representation classes, and then the
FunnyQT services on the Querying and Transformation layer will just work1. Even
better, most services require only a subset of protocols to be satisfied. For exam-
ple, out of the more than thirty protocols defined by FunnyQT, the funnyqt.pmatch
namespace providing sophisticated pattern matching capabilities requires only four
of them to be satisfied.

1A notable exception is funnyqt.coevo which has much higher assumptions and requirements on meta-
models.





Chapter 11

Related Work

This chapter discusses model querying and transformation approaches which are
related to FunnyQT with respect to comprehensiveness and genericity. At the
current point in time, there is only one such approach.

The Epsilon1 framework [Kol+15] is a comprehensive model management, query-
ing, and transformation approach which is integrated tightly into the Eclipse IDE. It
shares with FunnyQT the property that it is generic and can be used with various
kinds of model representations.

Epsilon is implemented as a set of external DSLs. The Epsilon Object Language
(EOL) is a model management language providing constructs for loading and persist-
ing models, for accessing their elements and creating new ones, and for retrieving
and setting their properties. All other Epsilon languages are implemented on top
of EOL. This is very similar to FunnyQT’s architecture where there is one generic
core API which is then used in order to provide several higher-level querying and
transformation DSLs. A difference is that FunnyQT provides internal DSLs whereas
Epsilon is an external DSL where the individual sub-languages extend EOL.

Table 11.1 on the next page shows a comparison between the services provided
by Epsilon and FunnyQT. As can be seen, there is a great overlap.

There are some services which have no dedicated support in FunnyQT. Firstly,
the Epsilon Wizard Language (EWL) provides means for defining simple and small
update transformations which are applied to a set of model elements selected in
an Eclipse editor. Such transformations might require user interaction which is
provided by graphical user interfaces, i.e., wizards. So wizards are intended for
easing the usability when working with Epsilon inside Eclipse. FunnyQT has no
support for any specific IDE but any editor with Clojure support is a workable
FunnyQT development environment.

Secondly, the Epsilon Generation Language (EGL) offers special support for
model-to-text transformations. FunnyQT doesn’t need dedicated support for this
task since it can use any Clojure or Java templating library for this purpose. For

1http://www.eclipse.org/epsilon/ (last visited: 2015-10-13)
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Service Epsilon FunnyQT
Model Management EOL funnyqt.generic
Querying EOL funnyqt.generic, funnyqt.query
Constraints EVL funnyqt.generic, funnyqt.query
Pattern Matching EPL funnyqt.pmatch
In-Place Transf. EPL funnyqt.in-place
Out-Place Transf. ETL funnyqt.model2model,

funnyqt.extensional
Wizard Generation EWL (no dedicated support)
Model-to-Text Transf. EGL (no dedicated support)
Model Comparison ECL (no dedicated support)
Model Merging EML (no dedicated support)
Model Migration Epsilon Flock funnyqt.coevo
Relational Querying (not supported) funnyqt.relational
Bidirectional Transf. (not supported) funnyqt.bidi

Table 11.1: Service comparison between Epsilon and FunnyQT

example, the FunnyQT solution to the TTC FIXML case [Hor14a] used the Stencil2
templating library for implementing a model-to-Java/C++/C#/C transformation,
and the FunnyQT-Henshin tool3 uses FunnyQT’s model management and querying
APIs and Clojure macros in order to compile Henshin transformations provided as
Henshin models to equivalent FunnyQT transformations.

Thirdly, the Epsilon Comparison Language (ECL) provides support for customized
model comparisons. FunnyQT only provides an equal-models? function which is able
to test two models for equality (see section 12.8 on page 115) where the measure of
equality is fixed. Two models are equal if and only if every element in one model
has exactly one equal element in the other model. Two elements are equal when
they have the same type, the same attribute values, and the same references or
incident relationships. Optionally, the order of references/incident relationships
may be considered, too.

Lastly, Epsilon has dedicated support for model merging with its Epsilon Merging
Language (EML) which provides means to suppress duplication when merging mod-
els with overlaps, for conformance checking during the merge, and for reconciling
and restructuring the merged model after the merge. FunnyQT doesn’t provide
such a service at the current point in time.

On the other hand, there are also some FunnyQT services which have no coun-
terpart in Epsilon. It has support for declarative logic-based querying (see part VIII
starting on page 311), and it allows for defining bidirectional transformations (see
part IX starting on page 339).

In-depth comparisons between Epsilon languages (and other languages) and
FunnyQT namespaces providing similar capabilities are made later in the related
work chapters corresponding to concrete FunnyQT services, i.e., chapter 16 starting
on page 173 discusses model management, querying, and constraint approaches,
chapter 19 starting on page 217 discusses pattern matching approaches, chapter 24

2https://github.com/davidsantiago/stencil (last visited: 2015-10-13)
3https://github.com/jgralab/funnyqt-henshin (last visited: 2015-10-13)
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starting on page 249 discusses in-place transformation approaches, chapter 28
starting on page 301 discusses out-place transformation approaches, chapter 32
starting on page 335 discusses relational querying approaches, chapter 37 starting
on page 369 discusses bidirectional transformation approaches, and chapter 41
starting on page 397 discusses co-evolution approaches.

For achieving genericity, Epsilon has a model connectivity layer where drivers
for different model representations can be added. By default, Epsilon supports
EMF models, MDR4 models, MetaEdit5 models, and it can also treat plain XML files,
BibTEX files, and Z specifications as models in a wider sense.

Other drivers can be added, too. Here, Epsilon uses a variant of the interface-
based approach discussed in section 8.1.1 on page 83. Whereas the approach
sketched in this section suggested providing interfaces for metamodels, metaclasses,
models, and model elements, Epsilon uses a more light-weight approach. In essence,
there is only one single interface IModel that needs to be implemented which specifies
methods for retrieving elements and creating new elements, for type checks, and
for retrieving and setting values of element properties. Thus, a driver is just a
wrapper class around the framework-specific model representation implementing
this interface, and Epsilon uses the native representation for model elements.

One drawback of this approach is that the API is not very appealing. Metamodel
types are represented as plain strings, and every action on a model element is
initiated from an IModel instance, too. However, this is no problem for Epsilon
because the API is only used for implementing EOL itself and no user needs to be
aware of it. In contrast, with FunnyQT users have to use the provided APIs directly,
so their design is of utmost importance.

Another drawback of Epsilon’s approach on genericity is that it considers models
as containers for model elements which may be typed and have properties but there
is no notion of first-class relationships whereas FunnyQT has optional support for
typed and attributed edges.

All in all, the vision and goals of Epsilon and FunnyQT are quite similar. They
overlap in a large set of services, and each approach has some additional services
which the other one lacks.

One major difference is that Epsilon follows a more traditional imperative and
object-oriented paradigm whereas FunnyQT has an overall functional emphasis with
some logic-based/relational parts.

A second major difference is that FunnyQT is extremely light-weight compared
to Epsilon. FunnyQT’s complete implementation consists of about 12.000 lines of
Clojure code (without counting comments but including documentation strings)
arranged in 22 files. In contrast, Epsilon consists of 4652 files, about 400.000
non-commented lines of Java code, about 40.000 lines of XML configurations, and a
complex build infrastructure.

4MDR (NetBeans MetaData Repository) has been a modeling framework developed by Sun Microsys-
tems in the early noughties as a response to the OMG’s Model-Driven Architecture initiative. It has been
discontinued long ago.

5http://www.metacase.com/mwb/ (last visited: 2015-10-13)
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And lastly, Epsilon’s EOL atop of which all other Epsilon languages are built is
an interpreted language which is not overly performant. FunnyQT and Clojure in
general compile to JVM byte-code, and there are no obvious bottlenecks in FunnyQT’s
implementation. So in general, a query or transformation written in FunnyQT can
potentially be as efficient as an equivalent query or transformation written in plain
Java.



Part IV

On Model Management and
Querying
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Summary

In this part, FunnyQT’s core model management and querying APIs are
discussed. Those consist of a generic core API discussed in chapter 12
starting on page 107 which is applicable to both JGraLab TGraphs and EMF
models, and which can be extended to support other modeling frameworks,
too.

Next to that, there is a JGraLab-specific core API which is discussed
in chapter 13 starting on page 123 and an EMF-specific core API which
is discussed in chapter 14 starting on page 137. Whereas the generic
core API supports the common duck-typed view on models discussed
in section 8.2 on page 88, these framework-specific core APIs also give
access to all features that are only present in their respective framework.
Furthermore, the functions and constructs of the framework-specific APIs
are named according to the terminology inherent to that framework, so
JGraLab and EMF users should feel right at home.

Chapter 15 starting on page 147 finally introduces a broad set of
generic model management and querying features such as regular path
expressions and polymorphic functions which are based on the generic
core API discussed in chapter 12.





Chapter 12

Generic Model Management
and Querying

The core API implemented in the namespace funnyqt.generic declares many protocols
for accessing models and model elements in a generic manner. They are extended
upon JGraLab’s and EMF’s interfaces to provide the generic duck-typed view on
models which has already been discussed in chapter 8 starting on page 83.

In this view, a model consists of elements and possibly relationships between
elements. Both elements and relationships may possess attributes, and one may
navigate between elements by traversing relationships or using references.

The central point of the generic API is to provide a foundation on which features
can be implemented that instantly work for any supported modeling framework.
The protocols declared by the generic core API are all very fine-granular, i.e., most
protocols define only one single method. All querying and transformation features
discussed in the rest of this work require only a subset of these protocols. Appendix A
starting on page 423 names all protocols which need to be extended in order to add
support for a certain querying or transformation feature to a modeling framework
other than JGraLab and EMF.

12.1 Creating and Deleting Elements and Relation-
ships

Elements are created using the create-element! method. It receives the model in
which to create the element, and a symbol cls specifying the metamodel class by its
qualified name (see concept 1 on the following page) or unique name (see concept 2
on the next page).

The optional prop-map is a map from property names given as keywords to property
values to be set, i.e., it may contain entries for attributes and references. In the
case of multi-valued properties, the respective entry’s value must be a collection.
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Protocol: funnyqt.generic/ICreateElement
(create-element! model cls)
(create-element! model cls prop-map)

The ICreateElement protocol is extended upon JGraLab’s interface Graph where it
creates a vertex and EMF’s interface Resource where it creates an EObject.

Concept 1: Qualified Name. The qualified name of a metamodel class is a symbol
consisting of the package path of the class followed by the name of the class. Package
names and class name are separated by dots.

Wherever a metamodel type has to be stated, e.g., to create a new element of
that type or at a type check, a qualified name has to be specified.

The qualified name of a metamodel class can be retrieved using the qname method
defined by the IQualifiedName protocol.
Protocol: funnyqt.generic/IQualifiedName
(qname el)

The argument el can be both a model element or a metamodel element. In
the former case, the qualified name of the metamodel class el is an instance of is
returned.

Note that qualified names given to functions or protocol methods such as
create-element! (see page 108) need to be quoted in order to protect them from
evaluation. In contrast, when given to macros such as defpolyfn (see section 15.2
on page 155) they must not be quoted.

Concept 2: Unique Names. A unique name of a metamodel class is a symbol
denoting the name of the class in its metamodel. If the class name is unique in the
metamodel, then the unique name equals the class name. If the metamodel contains
multiple classes with that name in different packages, the unique name equals the
qualified name (see concept 1).

Unique names can be used wherever qualified names can be used. In addition,
the unique name of metamodel classes is used for deriving function names from
metamodel classes by several macros which generate custom APIs from metamodels
(see section 12.11 on page 120).

The unique name of a metamodel class can be retrieved using the uname method
defined by the IUniqueName protocol.
Protocol: funnyqt.generic/IUniqueName
(uname el)

The argument el can be both a model element or a metamodel element. In
the former case, the qualified name of the metamodel class el is an instance of is
returned.

Like with qualified names, unique names must be quoted when given to functions



12.2. ITERATING ELEMENTS AND RELATIONSHIPS 109

or protocol methods. When given to macros, they must not be quoted.

Relationships are created using the create-relationship! function. It receives
the model in which to create the relationship, the qualified name of the relationship
class cls, and the source and target element. The optional attr-map is a map from
attribute names given as keywords to attribute values to be set.
Protocol: funnyqt.generic/ICreateRelationship
(create-relationship! model cls source target)
(create-relationship! model cls source target attr-map)

The ICreateRelationship protocol is extended upon the JGraLab interface Graph
where it creates an edge.

The delete! method deletes the given element elem. The parameter recursively
(defaulting to true) determines if elem’s contents should also be deleted. The contents
of an element are all adjacent elements which are referenced with a reference with
strict containment semantics where elem is in the role of the container.
Protocol: funnyqt.generic/IDelete
(delete! elem)
(delete! elem recursively)

The IDelete protocol is extended upon the JGraLab interfaces Vertex and Edge,
and upon the EMF interface EObject. It is also extended upon java.util.Collection
where all elements and relationship contained in that collection are deleted.

12.2 Iterating Elements and Relationships

The elements and relationships of a model can be iterated using the protocol methods
elements and relationships. Both return lazy sequences and can be restrict using a
type specification type-spec (see concept 3).
Protocol: funnyqt.generic/IElements
(elements model)
(elements model type-spec)

Protocol: funnyqt.generic/IRelationships
(relationships model)
(relationships model type-spec)

The IElements protocols is extended upon JGraLab’s Graph interface and EMF’s
Resource and ResoureSet interfaces. The relationships method is only applicable for
model representations with first-class edges, so it is extended only upon JGraLab’s
Graph interface.

Concept 3: Type Specification. A type specification defines a set of metamodel
classes.

A simple type specification is a qualified name (see concept 1 on page 108)
defining the set containing this class (or data type) and all its subclasses. The



110 CHAPTER 12. GENERIC MODEL MANAGEMENT AND QUERYING

qualified name QName may be suffixed with an exclamation mark (!) for excluding the
class’ subclasses, and it may be prefixed with an exclamation mark for negation:

QName ;; Class QName with its subclasses
QName! ;; Class QName without its subclasses
!QName ;; all classes except for QName and its subclasses
!QName! ;; all classes except for QName

If ts1, ts2,... are type specifications, then the following vectors are type specifi-
cations, too.

[:or ts1 ts2 ...] ;; disjunction (set union)
[ts1 ts2 ...] ;; shorthand for [:or ts1 ts2 ...]
[:and ts1 ts2 ...] ;; conjunction (set intersection)
[:nor ts1 ts2 ...] ;; non-disjunction
[:nand ts1 ts2 ...] ;; non-conjunction
[:xor ts1 ts2 ...] ;; exclusive disjunction (symmetric set difference)

A model element matches a type specification if its type is included in the set of
metamodel types implied by a type specification.

Type specifications are handled internally by the method type-matcher defined by
the ITypeMatcher protocol.
Protocol: funnyqt.generic/ITypeMatcher
(type-matcher model type-spec)

Given a model (used to access its metamodel) and a type specification, it returns
a predicate receiving a model element and returning true if and only if the given
element’s type is included in the set of types defined by the type specification. The
returned predicate is called a type matcher.

Such a type matcher is also a valid type specification in itself. When given
a function as second argument to type-matcher, this function is simply returned.
Therefore, type matchers can easily be composed as shown in the next listing.

(let [a? (type-matcher model 'A)
b? (type-matcher model 'B)]

(elements model [:or a? b?]))

This is equivalent to the call (elements model [:or 'A 'B]) but the type matcher used
by elements is composed of the two already existing type matchers a? and b?.

For convenience, FunnyQT allows for using unique names (see concept 2 on
page 108) in place of qualified names for the definition of type specifications. How-
ever, this is an implementation detail which does not need to be followed when
extending the ITypeMatcher protocol upon the interfaces or classes of other modeling
frameworks.

Note that type names in type specifications given to functions or protocol methods
such as elements (see page 109) need to be quoted in order to protect them from
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evaluation. In contrast, when given to macros such as type-case (see page 114) they
must not be quoted.

For accessing the source and target elements of a relationship, there is the
IRelationshipSourceTarget protocol with its source and target functions.
Protocol: funnyqt.generic/IRelationshipSourceTarget
(source rel)
(target rel)

This protocol is extended upon the JGraLab interface Edge. Its implementations
return a given edge’s alpha and omega vertex.

The protocol IIncidentRelationships declares the method incident-relationships.
This method returns the lazy sequence of relationships incident to a given element
el. The relationships may be restricted by the given type specification type-spec, and
they may be restricted by the given direction specification dir-spec (see concept 4).
Protocol: funnyqt.generic/incident-relationships
(incident-relationships el)
(incident-relationships el type-spec)
(incident-relationships el type-spec dir-spec)

The IIncidentRelationships protocol is extended upon JGraLab’s Vertex interface.

Concept 4: Direction Specification. A direction specification defines which re-
lationships are to be considered with respect to a incident vertex. Possible direction
specifications are the following:

• The keyword :in considers only incoming edges.
• The keyword :out considers only outgoing edges.
• The keyword :inout and nil consider both incoming and outgoing edges.

12.3 Attribute Value Access

For accessing attribute values, there is the aval method. It receives an element (or
relationship) elem and the name of an attribute attr given as a keyword. An attribute
can be set using the set-aval! method receiving an element elem, the attribute name
attr given as keyword, and the value val to be set.
Protocol: funnyqt.generic/IAttributeValueAccess
(aval elem attr)
(set-aval! elem attr val)

The IAttributeValueAccess protocol is extended upon JGraLab’s AttributedElement
and Record interfaces, and upon EMF’s EObject interface.
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12.4 Role Name Navigation

To navigate to adjacent elements by traversing edges or references, there are several
adjacency functions.

The adj functions returns the element that can be reached from elem by traversing
role and possibly many other roles one after the other. All roles must exist and be
single-valued, and no intermediate role may be nil.
Function: funnyqt.generic/adj
(adj elem role & roles)

Function: funnyqt.generic/adj*
(adj* elem role & roles)

The adj* function is like adj except that it doesn’t signal an error if a role is
undefined or an intermediate role is not set. In that case, it simply returns nil.

The adjs function returns the elements that can be reached form elem by traversing
role and possibly many other roles one after the other. All roles may be single- or
multi-valued. All roles must exist. The return value is a vector.
Function: funnyqt.generic/adjs
(adjs elem role & roles)

Function: funnyqt.generic/adjs*
(adjs* elem role & roles)

The adjs* function is like adjs except that it simply returns nil if some role is
undefined instead of throwing an exception.

These four adjacency functions delegate to the method adjs-internal of the
protocol IAdjacenciesInternal which defines a one-step traversal from one element
to its adjacent elements with respect to a single role. The method receives an
element elem, a single role given as keyword, and two booleans allow-unknown-role
and single-valued and always returns a collection of adjacent elements.
Protocol: funnyqt.internal/IAdjacenciesInternal
(adjs-internal elem role allow-unknown-role single-valued)

If allow-unknown-role is true and role is undefined for elem, it simply returns an
empty collection. Otherwise, an exception is thrown in this situation.

If single-valued is true and role denotes a multi-valued reference of elem, an
exception is thrown.

The protocol is extended upon the JGraLab interface Vertex and the EMF interface
EObject, and it can be extended upon the model element class or interface of other
modeling frameworks to add support for role name navigation.

The IModifyAdjacencies protocol declares methods for setting and adding adjacent
elements.

set-adj! puts relem in the single-valued role of elem. If there is already an element
in that role, it is removed beforehand.

set-adjs! is set-adj!’s counterpart for multi-valued roles. It receives a collection
relems of elements to be set as adjacencies of elem.
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Protocol: funnyqt.generic/IModifyAdjacencies
(set-adj! elem role relem)
(set-adjs! elem role relems)
(add-adj! elem role relem)
(add-adjs! elem role relems)
(remove-adj! elem role relem)
(remove-adjs! elem role relems)

The add-adj! method allows to add one single element relem to elem’s role, and
add-adjs allows to add a collection of relems. Both are applicable only for multi-valued
roles.

Lastly, the remove-adj! and remove-adjs! methods allow to remove references to
the given element or elements. Again, both are applicable only for multi-valued
roles.

12.5 Type Checks

The IElement protocol declares just one element? method which returns true if and
only if the given object o is a model element.
Protocol: funnyqt.generic/IElement
(element? o)

Likewise, the IRelationship protocol declares just one method relationship? which
returns true if and only if the given object o is a relationship.
Protocol: funnyqt.generic/IRelationship
(relationship?)

Both protocols have default implementations for Object and nil which return
false, and there are JGraLab and EMF implementations such that element? returns
true for JGraLab vertices and EMF eobjects, and relationship? returns true for
JGraLab edges.

The IInstanceOf protocol declares the is-instance? method.
Protocol: funnyqt.generic/IInstanceOf
(is-instance? el mm-class)

The method returns true if and only the model element el is an instance of the
metamodel class mm-class. Note that mm-class must indeed be a metamodel class,
i.e., a JGraLab GraphClass or GraphElementClass, or an EMF EClass.

The IInstanceOf protocol is extended upon JGraLab’s Graph, Vertex, and Edge
interfaces and upon EMF’s EObject interface.

Based on the ITypeMatcher protocol (see concept 3 on page 110) there is the
has-type? function.
Function: funnyqt.generic/has-type?
(has-type? el type-spec)
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It receives a model element el and a type specification type-spec and returns true
if and only if the element’s type matches the type specification.

Based on has-type? there is the type-case macro which allows a dispatch between
multiple type specifications.
Macro: funnyqt.generic/type-case
(type-case el & clauses)

Every clause in clauses consists of a type specification and an expression. The
element el’s type is matched against the type specifications one after the other, and
the expression paired with the first matching one is evaluated forming the result of
the type-case expression.

A single default expression may be the last form in a type-case. It is evaluated if
no type specification matches el’s type.

The following example demonstrates type-case’s syntax.

(type-case el
;; each clause has the form:
;; type-spec expression
MMTypeA (do-a-stuff el)
[:or MMTypeB MMTypeC] (do-bc-stuff el)
;; a single default expression may follow
(do-default-stuff el))

12.6 Containers and Contents

In many models the elements are arranged in a containment tree with only some
cross-references turning the tree into a graph. This containment structure can be
queried with the methods container and contents provided by the protocols IContainer
and IContents, respectively.

The container method returns the container of a given model element el. The
container is a model element which references elwith a strict containment reference.
Optionally, a type specification (see concept 3 on page 109) on the relationship type
or a role name ts-or-role may be given.
Protocol: funnyqt.generic/IContainer
(container el)
(container el ts-or-role)

If el is not contained by some other element, nil is returned. With EMF, every
element has at most one container. With JGraLab, the creation of edges with
containment semantics does not check if an element is already contained by some
other element, thus it is possible that a vertex is contained by more than one other
vertex at a given point in time1. In that case, container returns the container vertex
whose corresponding containment edge comes first in the incidence sequence of el.

1Strictly speaking, in this case the graph doesn’t conform to its schema. However, it can be useful to
have a vertex temporally be contained by more than one other vertex and restoring conformance later
on.
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The contents method declared by the IContents protocol returns the sequence of
direct contents of a given model element el, i.e., all elements which are referenced
by el via some containment reference.
Protocol: funnyqt.generic/IContents
(contents el)
(contents el ts)

The contained elements may be restricted to certain element classes using a type
specification ts.

12.7 Neighboring Elements

Quite similar to the adjacency functions is the neighbors method of the INeighbors
protocol.
Protocol: funnyqt.generic/INeighbors
(neighbors elem)

Given a model element elem it simply returns the sequence of elem’s neighboring
model elements. Neighboring elements are those which are referenced by elem by
an arbitrary reference.

12.8 Model Equality

The protocol IEqualModels defines a method equal-models? which can be used to test
two models for equality.
Protocol: funnyqt.generic/IEqualModels
(equal-models? m1 m2)
(equal-models? m1 m2 link-order)

Two models are considered equal if there is a bijective mapping f between
the elements of the first model and the elements of the second model such that
(el1 7→ el2) ∈ f ⇐⇒ equal(el1, el2). Two elements are considered equal if
1. they are instances of the same metamodel element class,
2. their attribute values are equal,
3. and

(a) all incident relationships are equal for models with first-class edges, i.e.,
i. they are instances of the same metamodel relationship class,
ii. their attribute values are equal,
iii. their start and end elements are equal, or

(b) all references contain equal elements for models with only references.
If the link-order argument is true, then the order of incident relationships or the

order in the reference lists is also considered. The default is false.
In other words, two models are considered equal if there exists a graph isomor-
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phism between the two models which considers not only structural equality but also
equality of typing, attribution, and optionally link order.

The protocol is implemented upon the JGraLab interface Graph and the EMF
interface Resource. If the models are not equal, false is returned. If they are equal,
a map which assigns to every element and relationship in the first model its equal
counterpart in the second model and vice-versa is returned. However, the protocol
only specifies the predicate semantics of equal-models?, so this behavior doesn’t
need to be followed when adding another implementation.

12.9 Copying Models

Sometimes, it is convenient to be able to copy a model, for example, to test a trans-
formation without having to worry that some error in the transformation invalidates
it. This can be done with the copy-model method specified by the ICopyModel protocol.
Protocol: funnyqt.generic/ICopyModel
(copy-model model)

The copy-model method receives a model and returns a copy. The protocol is
extended upon the JGraLab Graph interface and the EMF Resource interface.

The copy of the original model is at least so exact that (equal-models? original
copy true) would succeed, i.e., they are structurally equal and contain elements
which are equal with respect to typing, attribution, and referenced elements where
the order of incident relationships or the order of referenced elements is equal, too.
However, there can be some minor differences in details. Concretely, for JGraLab
TGraphs, the IDs of vertices and edges might differ in case they don’t correspond to
the creation order.

12.10 Metamodel Access

The generic API also defines some functions and protocols withmethods for accessing
and querying metamodel elements. Those are rarely useful for writing queries and
transformations but they are extensively used internally for implementing several
of the more elaborated querying and transformation features in a generic way.

To load ametamodel, there is the mm-load function which receives a string denoting
a file.
Function: funnyqt.generic/mm-load
(mm-load file)

Depending on the file’s extension, the appropriate framework-specific function is
determined and called. This is controlled by the var mm-load-handlers.
Var: funnyqt.generic/mm-load-handlers
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Its value is a map from regular expression matched against the file name to
functions for loading a metamodel. By default, it contains entries for the regular
expressions ".*\.ecore$" and ".*\.tg$" with the appropriate load functions for EMF
and JGraLab metamodels.

The IMMClass protocol defines a method mm-class. The version of arity one returns
the metamodel class of a given model element or relationship. The version of arity
two gets a model and a qualified name qname and returns the metamodel class with
the given qname in the metamodel of model. It also declares a method mm-class? which
given some object returns true only if that object is a metamodel class.
Protocol: funnyqt.generic/IMMClass
(mm-class elem)
(mm-class model qname)
(mm-class? obj)

The protocol is extended upon JGraLab’s AttributedElement and Schema interfaces,
and upon EMF’s Resource, ResourceSet, and EObject interfaces. Additionally, there
are default implementations for the mm-class? predicate for java.lang.Object and nil
which simply return false.

The protocols IMMElementClass and IMMRelationshipClass define simple predicates
mm-element-class? and mm-relationship-class? which return true if and only if the
given obj is an element or relationship class defined in some metamodel, respectively.
Protocol: funnyqt.generic/IMMElementClass
(mm-element-class? obj)

Protocol: funnyqt.generic/IMMRelationshipClass
(mm-relationship-class? obj)

Both protocols have a default implementations for java.lang.Object and nil which
return false, and there are IMMElementClass implementations for JGraLab’s Vertex-
Class interface and EMF’s EClass interface which return true. Additionally, there’s
an IMMRelationshipClass implementation for JGraLab’s EdgeClass interface also re-
turning true.

The mm-element-classes methods specified by the IMMElementClasses protocol re-
turns the sequence of metamodel element classes in mm-or-cls. mm-or-cls may be
either a metamodel or a metamodel class. In the latter case, all classes of the
metamodel which contains mm-or-cls are returned.
Protocol: funnyqt.generic/IMMElementClasses
(mm-element-classes mm-or-cls)

It is extended upon JGraLab’s Schema and GraphElementClass interfaces and
EMF’s Resource, ResourceSet, and EClass interfaces.

For relationship classes, there’s the method mm-relationship-classes.
Protocol: funnyqt.generic/IMMRelationshipClasses
(mm-relationship-classes mm-or-cls)
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The IMMRelationshipClasses protocol is extended upon the JGraLab interfaces
Schema and GraphElementClass but not upon any EMF interface because EMF doesn’t
have typed relationships.

The methods mm-relationship-class-source and mm-relationship-class-target de-
clared by the IMMRelationshipClassSourceTarget protocol receive a relationship class
and return its source and target element class, respectively.
Protocol: funnyqt.generic/IMMRelationshipClassSourceTarget
(mm-relationship-class-source rel-cls)
(mm-relationship-class-source rel-cls)

The protocol is extended upon the JGraLab interface EdgeClass.

The mm-direct-superclasses method of the IMMDirectSuperclasses protocol returns
the sequence of a given class’ direct superclasses.
Protocol: funnyqt.generic/IMMDirectSuperclasses
(mm-direct-superclasses class)

The protocol is extended upon JGraLab’s GraphElementClass and EMF’s EClass
interfaces.

The function mm-all-superclasses uses the mm-direct-superclassesmethod in order
to compute the set of all superclasses of the given class.
Function: funnyqt.generic/mm-all-superclasses
(mm-all-superclasses class)

The mm-all-subclasses method of the IMMAllSubclasses protocol returns the se-
quence of a given class’ subclasses including both direct and indirect ones.
Protocol: funnyqt.generic/IMMAllSubclasses
(mm-all-subclasses class)

The protocol is extended upon JGraLab’s GraphElementClass and EMF’s EClass
interfaces.

The IMMSuperclass protocol defines the predicate mm-superclass? that returns true
if and only if super is a superclass of sub.
Protocol: funnyqt.generic/IMMSuperclass
(mm-superclass? super sub)

It is extended upon JGraLab’s GraphElementClass and EMF’s EClass interfaces.

The mm-abstract? method declared by the IMMAbstract protocol returns true if and
only if the given metamodel class is abstract.
Protocol: funnyqt.generic/IMMAbstract
(mm-abstract? class)

It is extended upon JGraLab’s GraphElementClass and EMF’s EClass interfaces.
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The protocol IMMContainmentReference declares the mm-containment-reference?
method which returns true if and only if ref (given as keyword) is a containment
reference of the element class cls.
Protocol: funnyqt.generic/IMMContainmentReference
(mm-containment-reference? cls ref)

It is extended upon the JGraLab interface VertexClass and the EMF interface
EClass.

The method mm-referenced-element-class which is declared by the protocol
IMMReferencedElementClass receives an element class cls and a reference name ref
given as a keyword and returns the element class being the target of the reference.
Protocol: funnyqt.generic/IMMReferencedElementClass
(mm-referenced-element-class cls ref)

The protocol is extended upon the JGraLab interface VertexClass and the EMF
interface EClass.

The IMMBooleanAttribute protocol declares themethod mm-boolean-attribute?which
returns true if and only if attr is a boolean attribute of cls.
Protocol: funnyqt.generic/IMMBooleanAttribute
(mm-boolean-attribute? cls attr)

It is extended upon the JGraLab interface AttributedElementClass and the EMF
interface EClass.

The IMMAttributes and IMMReferences protocols declare methods mm-attributes and
mm-references which return the sequence of attributes and references declared for
the class cls, respectively. The attributes and references are returned as keywords.
Protocol: funnyqt.generic/IMMAttributes
(mm-attributes cls)
Protocol: funnyqt.generic/IMMReferences
(mm-references cls)

The protocols are extended upon JGraLab’s AttributedElementClass and EMF’s
EClass interfaces.

The functions mm-all-attributes and mm-all-references return the sets of attributes
and references declared for class cls or any of its superclasses.
Function: funnyqt.generic/mm-all-attributes
(mm-all-attributes cls)
Function: funnyqt.generic/mm-all-references
(mm-all-references cls)

Again, the attributes and references are returned as keywords.

Lastly, there is the IMMMultiValuedProperty protocol which declares a method
mm-multi-valued-property?. It returns true if and only if prop (given as keyword) is a
multi-valued property of cls.
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Protocol: funnyqt.generic/IMMMultiValuedProperty
(mm-multi-valued-property? cls prop)

The protocol is extended upon the JGraLab AttributedElementClass interface and
the EMF EClass interface.

12.11 Generating a Metamodel-Specific API

Given a metamodel, FunnyQT can generate a specialized API for accessing models
conforming to this metamodel. This generated API contains functions for creating
and iterating elements of all classes declared in the metamodel, for retrieving and
setting attribute values, and for retrieving and setting referenced elements. The
functions of the generated API are only convenience shorthands for the generic
functions discussed in the previous sections. However, their usage allows for even
more concise and understandable code. E.g., instead of writing (aval el :id) to
retrieve the value of el’s id attribute the generated API contains a getter for this
attribute so that the same effect is achieved with just (id el).

The metamodel-specific API is generated by the generate-metamodel-functions
macro.
Macro: funnyqt.generic/generate-metamodel-functions
(generate-metamodel-functions mm-file)
(generate-metamodel-functions mm-file nssym)
(generate-metamodel-functions mm-file nssym alias)
(generate-metamodel-functions mm-file nssym alias prefix)

The macro receives the metamodel file name mm-file as a string. The metamodel
needs to be loadable using the mm-load method (see section 12.10 on page 116).

The second argument nssym is a symbol denoting a namespace into which the API
should be generated. If the namespace doesn’t exist, it will be created. If omitted
or nil, the functions are generated into the current namespace.

The third argument alias is a symbol denoting an alias under which the names-
pace denoted by nssym should be required. If omitted, the current namespace won’t
have an alias for the namespace nssym.

The last argument prefix is a symbol which will be prepended to all names of the
generated functions. This is useful for preventing name clashes with existing vars
when generating the API into an existing namespace.

The generated API consists of the following functions.
For every element class E, there is a function (create-E! model) which creates a

new E instance and adds it to the model, a function (all-Es model)2 which returns the
possibly lazy sequence of E instances of model, and a predicate (isa-E? el) which
returns true only if el is an instance of element class E.

For every relationship class R, there is a function (create-R! model src trg) which
creates a relationship between the elements src and trg and adds it to the model, a
function (all-Rs model) which returns the possibly lazy sequence of R instances of

2The properly inflected plural form of E is used here.
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model, a function (incident-Rs el dir-spec) which returns the possibly lazy sequence
of R relationships incident to the element el which may be restricted by the optional
direction specification dir-spec (see concept 4 on page 111) and a predicate (isa-R?
rel) which returns true only if rel is an instance of relationship class R.

For every attribute name attr, there is a getter function (attr el) which returns
the given attributed element’s attr value, and a setter function (set-attr! el val)
which sets el’s attr value to val. In case attr is a boolean attribute and the protocol
IMMBooleanAttribute is extended appropriately, the getter function is named attr?
instead.

For every reference name ref, there is a getter function (->ref el) which returns
the element if ref is single-valued or the elements referenced by el, a setter func-
tion (->set-ref! el refed) which sets the value of el’s ref reference to refed, and
for a multi-valued reference, there are two additional adder functions (->add-ref!
el refed & more) and (->addall-ref! el rs). ->add-ref! is for adding individual ele-
ments, ->addall-ref! adds all elements in the collection rs.

The macro metamodel-api-generator is the underlying facility used to create the
metamodel-specific API. It is also exposed to users to provide a convenient way to
generate custom APIs for given metamodels.
Macro: funnyqt.generic/metamodel-api-generator
(metamodel-api-generator mm-file nssym alias prefix element-class-fn

relationship-class-fn attr-fn ref-fn)→֒

(metamodel-api-generator mm-file nssym alias prefix element-class-fn
relationship-class-fn attr-fn ref-fn extension-hook)→֒

The arguments mm-file, nssym, alias, and prefix have the same meaning as the
arguments of the generate-metamodel-functions macro above.

element-class-fn, relationship-class-fn, attr-fn, and ref-fn are all functions that
are called automatically and should return code, e.g., function definitions.

element-class-fn is a function receiving an element class and the prefix. It will
be called once for every element class defined by the metamodel. element-class-fn
may be nil in which case no code is generated for element classes.

Similarly, relationship-class-fn is a function receiving a relationship class and
the prefix which is called for each relationship class in the metamodel.

attr-fn is a function receiving an attribute name as keyword, a set of attributed
element classes declaring an attribute of that name, and the prefix. It is called for
every attribute name occurring at one or many attributed element classes defined
in the metamodel.

Lastly, ref-fn is a function receiving a reference name as keyword, a set of
element classes having a reference of that name, and the prefix. It is called once
for every reference name occurring at one or many element classes defined in the
metamodel.

The optional last argument extension-hook is a function which can be used for
generating auxiliary definitions which don’t fall into the categories of element
classes, relationship classes, attributes, or references. The extension hook function
receives the loaded metamodel and should return a collection of definition forms.





Chapter 13

Managing and Querying
TGraphs

In this chapter, FunnyQT’s core JGraLab API defined in the namespace funnyqt.tg
is discussed. This API consists of the elementary model management functions
like loading and saving graphs and schemas (section 13.1), functions for creating
elements (section 13.2 on the following page), element access and traversal functions
(section 13.3 on page 125, section 13.4 on page 125, and section 13.6 on page 127),
functions for accessing and modifying the element order (section 13.5 on page 126)
and attribute values (section 13.7 on page 128), type predicates (section 13.11 on
page 131), and functions for accessing a graph’s schema (section 13.12 on page 131).

It also contains functions and macros for JGraLab’s subgraph restriction concept
(section 13.14 on page 133), a macro for generating schema-specific APIs (sec-
tion 13.13 on page 132), and several auxiliary functions (section 13.8 on page 129,
section 13.9 on page 129, and section 13.10 on page 130).

13.1 Loading and Saving Graphs and Schemas

A TGraph can be loaded with the function load-graph.
Function: funnyqt.tg/load-graph
(load-graph file)
(load-graph file impl)

It loads the graph from the given file as a generic graph and returns it. file has
to be a string denoting a file name. The implementation type impl to be used can
be specified, too. It must be either :generic (the default if omitted) or :standard in
which case classes for the graph’s schema are generated and compiled in memory
in case they are not found by the current class loader.

A TGraph schema can be loaded with the load-schema function.
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Function: funnyqt.tg/load-schema
(load-schema file)
(load-schema file impl)

In the aritiy one version, it loads the schema from the given file and returns it
as a generic schema, i.e., an instance of the JGraLab class SchemaImpl. file has to
be a string denoting a file name.

In the arity two version, again the implementation type is specified using the
impl parameter. Possible values are :generic (the default) and :standard in which
case classes are generated for that schema and compiled in memory. An instance of
the generated schema class is returned.

A TGraph can be saved to a file using the function save-graph.
Function: funnyqt.tg/save-graph
(save-graph g file)

The argument g is the graph to be saved, and file is a string denoting a file name.
Usually, the file name should have a .tg suffix. If the suffix is .tg.gz, the file will
automatically be zipped.

Likewise, there is a function save-schema for saving a schema to a file.
Function: funnyqt.tg/save-schema
(save-schema s file)

The argument s is the schema to be saved, and file is a string denoting a file
name. Like with save-graph, if the file name has a .gz suffix, it will be zipped.

13.2 Creating Graphs, Vertices, and Edges

To create a new, empty graph, there is the new-graph function.
Function: funnyqt.tg/new-graph
(new-graph schema)
(new-graph schema gid)
(new-graph schema gid impl)

The schema of the graph has to be given. Optionally, the graph’s ID (a string) and
its implementation type may be specified. The graph ID defaults to a timestamp
denoting the creation time. The implementation type may be :generic (the default)
or :standard in which case classes are generated and compiled in memory for the
given schema if they do not exist already. Objects of those classes are then used to
represent the graph, its vertices, and its edges.

For creating vertices in an existing graph, there is the function create-vertex!.
Function: funnyqt.tg/create-vertex!
(create-vertex! g vc)
(create-vertex! g vc prop-map)

Its first argument g is the graph in which to create the vertex, vc is either the
VertexClass or the qualified name of the vertex class (see concept 1 on page 108)
which is the type of the new vertex, and prop-map is an optional map from property
names given as keywords to values to be set. Properties encompass both attributes
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and role names. In the latter case, edges are created implicitly.
For creating edges in an existing graph, there is the create-edge! function.

Function: funnyqt.tg/create-edge!
(create-edge! g ec from to)
(create-edge! g ec from to attr-map)

Its first argument g is the graph in which to create the edge and ec is either
the EdgeClass or the qualified name of the edge class which is the type of the new
edge. Furthermore, the start vertex from and target vertex to of the new edge have
to be specified. Lastly, attr-map is an optional map from attribute names given as
keywords to values to be set.

13.3 Accessing Graph Elements by ID

As discussed in section 7.1 on page 69, all vertices and edges in a graph have a
unique ID, a positive integer value. This ID can be retrieved with the id function.
Function: funnyqt.tg/id
(id elem)

The id function may also be called with a graph. It returns the graph’s ID in this
case (a string).

The other way round, elements can be retrieved by their ID using the functions
vertex and edge. Both functions are constant-time operations looking up the elements
in the graph’s array of vertices/edges which is indexed by the IDs.
Function: funnyqt.tg/vertex
(vertex g id)

Function: funnyqt.tg/edge
(edge g id)

The edge function returns the oriented edge with the given id, that is, if the given
ID is negative, the reversed edge of the edge with ID (Math/abs id) is returned.

13.4 Accessing Vertices and Edges by their Order

The vertices and edges in a graph as well as the incidences at some vertex are
represented by double linkage. E.g., the graph knows its first and last vertex, and
every vertex knows its previous and next vertex in the global order of the graph’s
vertices. The same is true for the edges in a graph. With incidences, a vertex knows
the first and last edge incident to it, and every edge knows the previous and next
incident edge with respect to the vertex.

This is exposed by the following six functions.
Function: funnyqt.tg/first-vertex
(first-vertex g)
(first-vertex g pred)

Function: funnyqt.tg/last-vertex
(last-vertex g)
(last-vertex g pred)

Function: funnyqt.tg/first-edge
(first-edge g)
(first-edge g pred)

Function: funnyqt.tg/last-edge
(last-edge g)
(last-edge g pred)
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Function: funnyqt.tg/first-inc
(first-inc v)
(first-inc v pred)

Function: funnyqt.tg/last-inc
(last-inc v)
(last-inc v pred)

If a predicate pred is given, the functions don’t return the logical first/last element
but the first/last element for which the predicate succeeds.

As said, every vertex references the previous vertex and the next vertex in the
graph’s vertex sequence, every edge references the previous edge and the next edge
in the graph’s edge sequence. Similarly, every incidence references the previous
incidence and the next incidence in the incidence sequence of the corresponding
vertex. This is exposed by the following functions.
Function: funnyqt.tg/next-vertex
(next-vertex v)
(next-vertex v pred)

Function: funnyqt.tg/prev-vertex
(prev-vertex v)
(prev-vertex v pred)

Function: funnyqt.tg/next-edge
(next-edge e)
(next-edge e pred)

Function: funnyqt.tg/prev-edge
(prev-edge e)
(prev-edge e pred)

Function: funnyqt.tg/next-inc
(next-inc e)
(next-inc e pred)

Function: funnyqt.tg/prev-inc
(prev-inc e)
(prev-inc e pred)

If a predicate pred is given, the functions don’t return the logical next/previous
element but the next/previous element for which the predicate returns true.

13.5 Querying and Manipulating Element Order

The order upon the vertices or edges of a graph can be tested explicitly using the
predicates before? and after?.
Function: funnyqt.tg/before?
(before? a b)

Function: funnyqt.tg/after?
(after? a b)

Both functions must be given either two vertices or two edges a and b. If given
the same vertex or edge twice, they return false.

The order may be changed using the functions put-before! and put-after!.
Function: funnyqt.tg/put-before!
(put-before! a b)

Function: funnyqt.tg/put-after!
(put-after! a b)

Again, a and b must either be two vertices or two edges. put-before! puts a
immediately before b in the graph’s vertex/edge sequence, and put-after! puts a
immediately after b.

Likewise, the functions before-inc? and after-inc? test if an incidence a comes
before/after another incidence b.
Function: funnyqt.tg/before-inc?
(before-inc? a b)

Function: funnyqt.tg/after-inc?
(after-inc? a b)

In case a and b are not incident to the same vertex, false is returned.
The incidence order can be manipulated using the functions put-before-inc! and

put-after-inc!.
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Function: funnyqt.tg/put-before-inc!
(put-before-inc! a b)

Function: funnyqt.tg/put-after-inc!
(put-after-inc! a b)

put-before-inc! puts a immediately before b in the corresponding vertex’s inci-
dence sequence, and put-after-inc! puts a immediately after b. In case a and b are
not incident to the same vertex, an exception is thrown.

13.6 Lazy Vertex and Edge Sequences

As discussed in section 7.1 on page 69, in a TGraph there is a global order upon all
vertices and all edges, and for every vertex, there is a local order upon all incident
edges. These vertex, edge, and incidence sequences are exposed by the functions
vseq, eseq, and iseq.
Function: funnyqt.tg/vseq
(vseq g)
(vseq g ts)

Function: funnyqt.tg/eseq
(eseq g)
(eseq g ts)

Function: funnyqt.tg/iseq
(iseq v)
(iseq v ts)
(iseq v ts ds)

All these functions return lazy sequences of the graph g’s vertices and edges or
the vertex v’s incident edges. The sequences may be restricted to vertices/edges
matching the type specification ts (see concept 3 on page 109). The sequence of
incidences iseq of a vertex may also be restricted to only incoming or outgoing
edges by providing a direction specification ds (see concept 4 on page 111).

The function vseq may also be called with a vertex g instead of a graph. In that
case, it returns the lazy sequence of vertices following that vertex in the global
vertex sequence. Likewise, eseq may be called with an edge g instead of a graph
to get the lazy sequence of edges following the given edge, and iseq may be called
with an edge v to get the lazy sequence of incidences following the given edge.

Because all vertex and edge sequences in TGraphs are doubly linked, all lazy
element sequence functions have reverse counterparts.
Function: funnyqt.tg/rvseq
(rvseq g)
(rvseq g ts)

Function: funnyqt.tg/reseq
(reseq g)
(reseq g ts)

Function: funnyqt.tg/riseq
(riseq v)
(riseq v ts)
(riseq v ts ds)

If given a graph g, rvseq returns the lazy reversed vertex sequence of that graph.
If given a vertex g, it returns the lazy reversed sequence of vertices preceding that
vertex in the global vertex sequence.

If given a graph g, reseq returns the lazy reversed edge sequence of that graph.
If given an edge g, it returns the lazy reversed sequence of edges preceding that
edge in the global edge sequence.
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Lastly, if given a vertex v, riseq returns the lazy reversed sequence of incidences
of that vertex. If given an incidence v instead, it returns the lazy reversed sequence
of incidences preceding the given one.

13.7 Attribute Value Access

For retrieving the value of some attributed element’s attribute, there is the value
function.
Function: funnyqt.tg/value
(value ae attr)

The value function receives an attributed element ae and an attribute name attr
given as keyword and returns the value of that attribute on that element. ae may
also be a record instead of an attributed element, in which case the value of the
record’s attr component is returned.

For setting the value of some element’s attribute, there is the function set-value!.
Function: funnyqt.tg/set-value!
(set-value! ae attr val)

It receives an attributed element ae, an attribute name attr given as keyword,
and the value val to be set.

When setting an attribute whose domain is list, set, or map the value may be a Clo-
jure collection which will be converted to a corresponding PCollection1. Concretely,
Clojure sequences and vectors are converted to PVector instances, Clojure sets are
converted to PSet instances, and Clojure maps are converted to PMap instances.

When setting numeric attribute values, Clojure ratios are converted to double
values. Furthermore, long values are converted to integers when setting an attribute
of domain Integer2. If the value is too small or large to be represented as an integer,
an exception is thrown.

To set the value of an attribute of an enumeration domain, the concrete enumera-
tion constant has to be provided. The enum-constant function can be used to retrieve
it.
Function: funnyqt.tg/enum-constant
(enum-constant ae qname)

It gets some attributed element ae and returns the enumeration constant with
the qualified name qname defined in the schema of that element. The qualified name
is given as a symbol, e.g., 'dates.Month.JANUARY.

To set the value of an attribute of a record domain, a concrete record instance
has to be provided. Such an instance can be created using the record function.
Function: funnyqt.tg/record
(record ae qname m)

1JGraLab uses immutable pcollections for storing collection-valued attributes.
2Remember that Clojure uses Long values for integral numbers by default (see section 6.3 on page 29).
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It receives an attributed element ae, the qualified name of the record domain
qname, and a map m from keywords denoting record component names to the values
to be set for the components. The provided map must specify all of the record’s
components.

13.8 Auxiliary Graph Functions

The graph containing a given vertex or edge can be retrieved using the graph function.
Function: funnyqt.tg/graph
(graph ge)

The other way round, the functions contains-vertex? and contains-edge? can be
used to test if a given graph g contains some given vertex v or given edge e.
Function: funnyqt.tg/contains-vertex?
(contains-vertex? g v)

Function: funnyqt.tg/contains-edge?
(contains-edge? g e)

Note that (contains-vertex? g v) is not equivalent to (= g (graph v)) in the pres-
ence of traversal contexts (see section 13.14 on page 133).

To get the number of vertices or edges of a graph, there are the vcount and ecount
functions.
Function: funnyqt.tg/vcount
(vcount g)
(vcount g ts)

Function: funnyqt.tg/ecount
(ecount g)
(ecount g ts)

The versions of arity one return the total number of vertices or edges, and they
are constant-time operations. The arity two versions return the number of vertices
or edges matching a given type specification ts, and their complexity scales linearly
to the total number of vertices or edges.

13.9 Auxiliary Vertex Functions

The degree of a vertex, i.e., the number of incident edges, can be retrieved with the
degree function.
Function: funnyqt.tg/degree
(degree v)
(degree v ts)
(degree v ts ds)

It may be restricted to incidences matching a given type specification ts and
direction specification ds (see concept 4 on page 111).

To delete incidences at a vertex v, there is the unlink! function.
Function: funnyqt.tg/unlink!
(unlink! v)
(unlink! v ts)
(unlink! v ts ds)

The incident edges to be deleted may be restricted by type using a type specifi-
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cation ts and a direction specification ds.
Lastly, the relink! function provides a convenient way to relocate the incidences

of a vertex from to some other vertex to.
Function: funnyqt.tg/relink!
(relink! from to)
(relink! from to ts)
(relink! from to ts ds)

Again, the incidences to be relinked may be restricted by a type specification ts
and a direction specification ds.

13.10 Auxiliary Edge Functions

Every edge e in a graph has one start and one end vertex which are also called the
alpha- and omega-vertex of that edge. Those can be retrieved by the functions alpha
and omega.
Function: funnyqt.tg/alpha
(alpha e)

Function: funnyqt.tg/omega
(omega e)

The start and end vertex of an edge e can be set to some vertex v using the
functions set-alpha! and set-omega!.
Function: funnyqt.tg/set-alpha!
(set-alpha! e v)

Function: funnyqt.tg/set-omega!
(set-omega! e v)

When obtaining an edge incident to some vertex, e.g., using first-inc/next-inc
or iseq, it is either outgoing or incoming. Outgoing incidences are called normal
edges, incoming incidences are called reversed edges. To distinguish both, there is
the normal-edge? predicate.
Function: funnyqt.tg/normal-edge?
(normal-edge? e)

To get the corresponding normal edge form a reversed edge, there is the normal-
edge function.
Function: funnyqt.tg/normal-edge
(normal-edge e)

If the given edge e already is the normal edge, e is returned again.
Likewise, the reversed-edge function returns the reversed edge of the edge e.

Function: funnyqt.tg/reversed-edge
(reversed-edge e)

If e already is the reversed edge, it is returned again.
The inverse-edge function returns the reversed edge if the given edge e is normal.

Otherwise it returns the normal edge.
Function: funnyqt.tg/inverse-edge
(inverse-edge e)

The vertex fromwhich an incidence is retrieved is called the this-vertex in JGraLab
parlance. The vertex at the opposite side is called the that-vertex. They can be
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retrieved using the this and that functions.

Function: funnyqt.tg/this
(this e)

Function: funnyqt.tg/that
(that e)

For normal edges, the this-vertex is the alpha-vertex and the that-vertex is the
omega-vertex. For reversed edges, it is the other way round.

The this- and that-vertex may also be modified with the set-this! and set-that!
functions.
Function: funnyqt.tg/set-this!
(set-this! e v)

Function: funnyqt.tg/set-that!
(set-that! e v)

13.11 Type Predicates

The core JGraLab API also contains several predicates for testing if an object is
an instance of the central JGraLab classes. On the instance level, there are the
following functions.
Function: funnyqt.tg/graph?
(graph? g)

Function: funnyqt.tg/vertex?
(vertex? v)

Function: funnyqt.tg/edge?
(edge? e)

Function: funnyqt.tg/graph-element?
(graph-element? ge)

Function: funnyqt.tg/attributed-element?
(attributed-element? ae)

Similar predicates exist to test if an object is an instance of one of the classes
that constitute a TGraph schema.
Function: funnyqt.tg/schema?
(schema? s)

Function: funnyqt.tg/graph-class?
(graph-class? gc)

Function: funnyqt.tg/vertex-class?
(vertex-class? vc)

Function: funnyqt.tg/edge-class?
(edge-class? ec)

Function: funnyqt.tg/graph-element-class?
(graph-element-class? gec)

Function: funnyqt.tg/attributed-element-class?
(attributed-element-class? aec)

13.12 Schema Access

The core TGraph API contains only a very slim schema access part because it is
usually not needed when writing queries and transformations. The few functions
are mostly used internally.

The function schema allows to get the schema of an element.
Function: funnyqt.tg/schema
(schema elem)

elem may be an attributed element, an attributed element class, or a domain.
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The function domain returns the domain with the given qname in the schema of
element elem.
Function: funnyqt.tg/domain
(domain elem qname)

elem may be a schema, an attributed element, an attributed element class, or
a domain. qname has to be the qualified name of a JGraLab domain, e.g., 'Integer
or 'String. For JGraLab’s collection domains, a vector notation is used. For ex-
ample, '[Map Integer [Set String]] is the qualified name of the domain Map<String,
Set<Integer>>.

The function attributed-element-class returns the attributed element class of
a given attributed element ae. In the arity two version, it returns the attributed
element class with the qualified name qname in the schema of elem.
Function: funnyqt.tg/attributed-element-class
(attributed-element-class ae)
(attributed-element-class elem qname)

Like with the domain function, elem may be a schema, an attributed element, an
attributed element class, or a domain.

13.13 Generating a Schema-Specific API

The funnyqt.tg namespace also contains the macro generate-schema-functions which
generates a schema-specific API encompassing functions for element creation,
element traversal, and attribute access. It is the TGraph-specific counterpart to
the generic generate-metamodel-functions macro (see section 12.11 on page 120). In
contrast to the latter, the functions it generates are named according to the TGraph
terminology and delegate to functions in the funnyqt.tg namespace instead of their
generic protocol method counterparts.
Macro: funnyqt.tg/generate-schema-functions
(generate-schema-functions schema-file)
(generate-schema-functions schema-file nssym)
(generate-schema-functions schema-file nssym alias)
(generate-schema-functions schema-file nssym alias prefix)

The macro receives the TG file schema-file containing the schema as its first
argument.

The second argument nssym is a symbol naming the namespace in which the API
should be generated. That namespace will be created if it doesn’t exist. If nssym is
nil or not given, then the API is generated in the current namespace.

If nssym has been given, this namespace can be referred to by the alias (a symbol)
given as third argument.

Lastly, an optional prefix (a symbol) may be given in which case the names
of all functions of the generated API are prefixed with it. This can be used to
prevent name clashes when generating the API in an already existing and populated
namespace, although it is generally advisable to designate one new namespace for
each generated schema-specific API.
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The actual generated API consists of the following functions.
For every vertex class with unique name VC (see concept 2 on page 108) defined

in the schema saved in schema-file, there is a function (create-VC! g) that creates a
new vertex of type VC in the graph g, a function (vseq-VC g) that returns the lazy
sequence of VC vertices in the graph g, and a predicate (isa-VC? v) that returns true
only if v is a vertex of type VC.

Likewise, for every edge class with unique name EC defined in the schema, there
is a function (create-EC! g alpha omega) that creates a new edge of type EC starting
at vertex alpha and ending at vertex omega in the graph g, a function (eseq-VC g) that
returns the lazy sequence of EC edges in the graph g, and a predicate (isa-EC? e)
that returns true only if e is an edge of type EC.

For every attribute attr name, there is a getter function (attr ae) and a setter
function (set-attr! ae val). Since attribute names are not necessarily unique, the
functions are applicable to all attributed elements ae that are instances of classes
that have such an attribute. For boolean attributes, the getter function is named
(attr? ae). (If attr is both a name of a boolean attribute and of an attribute of some
other domain, then both getter functions are generated.)

For every role name role, there is a getter function (->role v) and a setter function
(->set-role! v val). The setter function implicitly created edges. If role is single-
valued, the getter function returns the vertex in that role or nil if there is none.
If there are more than one vertex in that role, an exception is thrown3. If role is
multi-valued, the sequence of vertices in that role is returned. Likewise, the setter
function requires val to be a single vertex if role is single-valued. Otherwise, val
must be a collection of vertices. If, because role names aren’t unique, role denotes
both as single- and a multi-valued role, then v’s type is used to determine which
one is meant. For multi-valued roles, additional adder functions (->add-role! v ov &
more) and (->addall-role! v vs) are generated, too.

13.14 Traversal Contexts

Sometimes it is convenient to be able to concentrate on certain parts of a graph
while ignoring other parts. For example, one might want to navigate through a
graph only over edges of a specific type. One way to achieve this is to use type
specifications matching only edges of this type everywhere where some traversal
function is called.

An alternative approach is offered by JGraLab’s traversal contexts. A traversal
context restricts all navigation and traversal related functions to act only on a
subgraph of the original complete graph.

To create such a traversal context, there are the functions vsubgraph and esubgraph.
Function: funnyqt.tg/vsubgraph
(vsubgraph g pred)
(vsubgraph g pred precalc)

Function: funnyqt.tg/esubgraph
(esubgraph g pred)
(esubgraph g pred precalc)

Both receive the graph g to be restricted and a predicate pred which is applied to
3JGraLab doesn’t treat multiplicities strictly.
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a graph element to test if that element is included in the subgraph. For vsubgraph,
the predicate is applied to vertices, for esubgraph, it is applied to edges.

For convenience, pred may also be a type specification or a collection of ver-
tices (for vsubgraph) or edges (for esubgraph). In the former case, all vertices/edges
matching the type specification are included in the subgraph, in the latter case, all
elements being member of the collection are included.

The optional argument precalc is a boolean value (defaulting to true) determining
if the subgraph should be pre-calculated. Pre-calculation costs are linear in the
number of vertices and edges of the complete graph but navigation over a pre-
calculated subgraph is about as fast as navigating in a unrestricted graph. Without
pre-calculation, pred will be called before any traversal step. The major benefit of
omitting pre-calculation is that it allows the traversal context to adapt to changes
in the graph. For example, a pre-calculated vsubgraph for a type specification 'T
includes all vertices of type T that existed at subgraph creation time. If new T-vertices
are created afterwards, they are not included. Without pre-calculated, they are
included.

vsubgraph creates a vertex-induced subgraph meaning that it includes all vertices
for which pred holds plus all edges between included vertices.

Likewise, esubgraph creates an edge-induced subgraph meaning that it includes
all edges for which pred holds plus all vertices being the alpha or omega of an
included edge.

Simply creating a traversal context with vsubgraph or esubgraph has no side-effect
and doesn’t make it effective. To restrict a graph to the subgraph induced by the
traversal context, there is the on-subgraph macro.
Macro: funnyqt.tg/on-subgraph
(on-subgraph [g tc] & body)

It receives a vector containing the complete graph g and a traversal context tc,
and arbitrary many forms as body. The body code (including its dynamic extent)
is then evaluated on the subgraph imposed by tc, and its result is the result of
the on-subgraph form. When control flow exits the on-subgraph form, the subgraph
restriction is removed from the graph g again even if the exit is caused by an
exception.

The macros on-subgraph-intersection and on-subgraph-union allow to restrict the
current subgraph restriction even more or to relax it a bit. Like on-subgraph, they
receive a vector containing the complete graph g, a traversal context tc, and a body
of code.
Macro: funnyqt.tg/on-subgraph-intersection
(on-subgraph-intersection [g tc] & body)

on-subgraph-intersectionmakes a new subgraph effective that includes only those
elements that are included in both the current subgraph and the subgraph imposed
by tc.
Macro: funnyqt.tg/on-subgraph-union
(on-subgraph-union [g tc] & body)

on-subgraph-union makes a new subgraph effective that includes only those el-
ements that are included in the current subgraph or the subgraph imposed by
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tc.
Lastly, to temporally remove a subgraph restriction, there is the on-graph macro.

Macro: funnyqt.tg/on-graph
(on-graph [g] & body)

It removes the current subgraph restriction from the graph g, executes body, and
re-establishes the subgraph restriction again.

The following contrieved example demonstrates the usage of the various subgraph
restriction macros.

(+ (vcount g) ;; (1)
(on-subgraph [g tc1]

(- (vcount g) ;; (2)
(on-subgraph-intersection [g tc2]
(vcount g)) ;; (3)

(on-subgraph-union [g tc3]
(+ (vcount g) ;; (4)

(on-graph [g]
(vcount g))))))) ;; (5)

The vcount call at position (1) is not restricted by any traversal context, thus
it returns the number of vertices in the complete graph. The call at position (2)
returns the number of vertices in the subgraph imposed by traversal context tc1.
The call at position (3) returns the number of vertices that are contained in both the
subgraph imposed by tc1 and the subgraph imposed by tc2. The call at position (4)
returns the number of vertices that are contained in the subgraph imposed by tc1
or the subgraph imposed by tc3. Lastly, the call at position (5) returns the number
of vertices in the complete graph just like the call at position (1).





Chapter 14

Managing and Querying EMF
Models

In this chapter, the core EMF API is discussed. It consists of the basic model
management functions for managing resources (section 14.1), functions for creating
and deleting elements (section 14.2 on the following page), element access functions
(section 14.3 on page 139), and property access functions (section 14.4 on page 140).

Additionally, there are functions to access the conceptual edges contained in an
EMF model (section 14.5 on page 141), macros for generating metamodel-specific
APIs (section 14.8 on page 144), and several auxiliary functions.

14.1 Managing Resources

As mentioned in section 7.2 on page 73, in the Eclipse Modeling Framework model
elements, i.e., EObject instances, are not existentially dependent on some model
structure. Only for the sake of persistence model objects have to be added to
some resource which can be saved to a file and loaded again. Every object can be
contained in at most one resource, however the objects of one single conceptual
model may be separated in several resources.

To load such a resource and the objects it contains, there is the load-resource
function.
Function: funnyqt.emf/load-resource
(load-resource f)

The parameter f has to be a string denoting a file name, a java.io.File, an
org.eclipse.emf.common.util.URI, or a java.net.URL.

To load a resource containing an Ecore model, i.e., an EMF metamodel, there is
the load-ecore-resource function.
Function: funnyqt.emf/load-ecore-resource
(load-ecore-resource f)

In addition to loading and returning the resource, it registers the metamodel’s
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packages at the global EMF package registry thus making the classes and data
types defined in the metamodel available.

Lastly, there is the save-resource function for saving a resource.
Function: funnyqt.emf/save-resource
(save-resource resource)
(save-resource resource f)

The version with two arguments associates the given resourcewith the file denoted
by f and saves it. The version with just one single argument saves the given resource
which has to be associated with a file already. If it is not, an exception is thrown.

A new resources can be created with the new-resource function.
Function: funnyqt.emf/new-resource
(new-resource)

Objects can be added and removed from a resource using the functions eadd!,
eaddall!, eremove!, and eremoveall!.
Function: funnyqt.emf/eadd!
(eadd! resource eo)

Function: funnyqt.emf/eaddall!
(eaddall! resource coll)

Whereas eadd! adds just one single object eo to the given resource, eaddall! adds
all objects contained in a collection coll.

Likewise, eremove! removes one single object eo from the given resource whereas
eremoveall! removes all objects in the given collection coll.
Function: funnyqt.emf/eremove!
(eremove! resource eo)

Function: funnyqt.emf/eremoveall!
(eremoveall! resource coll)

All four functions return the given resource again.
Note that the four functions are overloaded and are also used to modify multi-

valued properties (see section 14.4 on page 140).

14.2 Creating and Deleting EObjects

To create new elements, there is the function ecreate!.
Function: funnyqt.emf/ecreate!
(ecreate! resource ec)
(ecreate! resource ec prop-map)

It creates a new eobject of type ec and adds it to resource which may be nil.
prop-map is an optional map from property names given as keywords to values to be
set for these properties (see function eset! in section 14.4 on page 140).

The parameter ec denotes the EClass, i.e., the metamodel class, of the new object.
It may be an EClass instance or a unique name or qualified name of an eclass.

FunnyQT registers epackages at the global EMF package registry, and there
eclasses are looked up by their unique or qualified name. However, the registry
maps from EPackage namespace URIs to EPackage, so it is perfectly fine to have two
epackages of the same name but with different namespace URIs registered that in
turn contain eclasses of the same name. For example, there could be two versions
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of a metamodel registered, one with the namespace URI http://mypkg/1.0 and one
with the namespace URI http://mypkg/1.1.

Therefore, a unique or qualified name may also be expressed as a map containing
one single entry in which a namespace URI given as string maps to a symbol denoting
the unique or qualified name, e.g., {nsURI QName}. For such a unique/qualified name,
the eclassifier lookup is restricted to the epackage with the given namespace URI.

Alternatively, the eclassifier lookup can be restricted to certain epackages with
the with-ns-uris macro.
Macro: funnyqt.emf/with-ns-uris
(with-ns-uris [uris] & body)

It receives one or many namespace uris as a vector, and then every eclassifier
lookup in the dynamic extent of body is restricted to those namespace URIs.

To delete an eobject, there is the function edelete!.
Function: funnyqt.emf/edelete!
(edelete! eo)
(edelete! eo recursively)
(edelete! eo recursively unset-uni-crossrefs)

It receives the eobject eo to be deleted and then unsets all of eo’s references and
removes it from its containing eobject and resource. The return value is eo again. If
recursively is true (the default), then it first calls edelete! on the objects contained by
eo. If unset-uni-crossrefs is true, then also unidirectional cross-references pointing
to eo from other objects contained in the same root object, resource, or resource
set as eo are unset. This is a very expensive operation, so the default value of
unset-uni-crossrefs is false.

14.3 Lazy Content Sequences

The function econtents returns the lazy sequence of objects directly contained by
some container.
Function: funnyqt.emf/econtents
(econtents container)
(econtents container ts)

The container may be an eobject, a collection, a resource, or a resource set.
The sequence may be restricted to objects matching a type specification ts (see
concept 3 on page 109).

The eallcontents function returns the lazy sequence of transitively contained
objects of container.
Function: funnyqt.emf/eallcontents
(eallcontents container)
(eallcontents container ts)

Again, container may be an eobject, a collection, a resource, or a resource set,
and the sequence may be restricted to objects matching the type specification ts.
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Conversely, every eobject can be asked for its containing eobject with the
econtainer function, and it can be asked for its containing resource with the eresource
function.
Function: funnyqt.emf/econtainer
(econtainer eo)

Function: funnyqt.emf/eresource
(eresource eo)

For eresource, the returned resource may contain eo directly or indirectly.

14.4 EObject Structural Feature Access

In EMF, there’s no strict separation between attributes and references. Both are
so-called structural features, and their value can be retrieved using the functions
eget and eget-raw.
Function: funnyqt.emf/eget
(eget eo sf)

Function: funnyqt.emf/eget-raw
(eget-raw eo sf)

Both functions get an eobject eo and the name of a structural feature sf given as
keyword. The difference is that eget converts mutable EMF collections to immutable
Clojure collections; UniqueEList instances are converted to sets, EMap instances
are converted to maps, and EList instances are converted to vectors. In contrast,
eget-raw returns the feature value without any conversion, so calling eget-raw on a
multi-valued reference returns an EList that can be mutated.

The values of structural features can be set with the eset! function.
Function: funnyqt.emf/eset!
(eset! eo sf value)

It receives an object eo, the name of a structural feature sf given as keyword,
and the value to be set. For multi-valued features, any Clojure collection of elements
of the expected element type of the feature may be given. When setting numeric
attribute values, Clojure ratios are converted to double values. Furthermore, long
values are converted to integers when setting an attribute of type EInt1. If the value
is too small or large to be represented as an integer, an exception is thrown.

To set the value of an attribute whose type is an enumeration, the concrete
enumeration constant has to be provided. The eenum-literal function can be used
to retrieve it.
Function: funnyqt.emf/eenum-literal
(eenum-literal qname)

It receives the qualified name qname of the enumeration’s literal to retrieve.
The eunset! function can be used to unset a structural feature.

Function: funnyqt.emf/eunset!
(eunset! eo sf)

Unsetting a multi-valued reference clears the EList holding the referenced eob-
jects. Unsetting a single-valued reference sets it to null. Unsetting an attribute
sets its value to the default value specified in the metamodel, or to an appropriate
default value depending on its type, e.g., 0 for EInt and ELong.

1Remember that Clojure uses Long values for integral numbers by default (see section 6.3 on page 29).
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New values can be added to multi-valued features using eadd! and eaddall!.
Function: funnyqt.emf/eadd!
(eadd! eo sf value & more)

Function: funnyqt.emf/eaddall!
(eaddall! eo sf coll)

Both receive an eobject eo and the name of a structural feature sf given as
a keyword. eadd! then receives one value and possibly more values to be added.
eaddall! receives a collection coll of values.

Likewise, there are the functions eremove! and eremoveall! for removing values
of multi-valued features.
Function: funnyqt.emf/eremove!
(eremove! eo sf value & more)

Function: funnyqt.emf/eremoveall!
(eremoveall! eo sf coll)

Both receive an eobject eo, the name of a structural feature sf, and the values
to be removed, the former as variable number of arguments and the latter as a
collection.

Note that the add- and remove-functions are overloaded and are also used to
modify the contents of resources (see section 14.1 on page 137).

14.5 Access to Referenced Objects and Conceptual
Edges

The erefs function is used to get the objects referenced by some object eo.
Function: funnyqt.emf/erefs
(erefs eo)
(erefs eo rs)

In the version of arity one, it receives just one object eo and returns a sequence of
all objects referenced by it no matter by which EReference. In the arity two version,
the sequence is restricted by an ereference specification rs (see concept 5) which
allows to consider only a subset of eo’s references.

Concept 5: EMF Reference Specification. An EMF reference specification
restricts the traversal of an eobjects references. The possible values are:

• nil allows the traversal of any reference.

• An EReference instance allows the traversal of exactly this reference.
• A keyword :ref allows the traversal of references named ref.
• A predicate (fn [r] ...) taking an EReference r allows the traversal of all
references for which it returns true.

• If rs1, rs2, etc. are valid ereference specifications, then a vector [rs1 rs2 ...]
is a reference specification, too, which allows the traversal of the union of
references allowed by the individual specifications (logical or).
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While erefs considers all references, the ecrossrefs function considers only cross-
references, i.e., non-containment references.
Function: funnyqt.emf/ecrossrefs
(ecrossrefs eo)
(ecrossrefs eo rs)

The arguments are the same as for erefs.
Analogously, there is a function econtentrefs that considers only containment-

references.
Function: funnyqt.emf/econtentrefs
(econtentrefs eo)
(econtentrefs eo rs)

Note that econtentrefs returns only children of eo and not eo’s parent.
(econtentrefs eo) is equivalent to (econtents eo) but using their respective second
argument, the former allows to restrict the references whereas the latter allows to
restrict the types of the referenced objects.

The next two functions allow to query which other objects reference a given
object eo using a reference allowed by the reference specification rs.
Function: funnyqt.emf/inv-erefs
(inv-erefs eo)
(inv-erefs eo rs)
(inv-erefs eo rs container)

Function: funnyqt.emf/inv-ecrossrefs
(inv-ecrossrefs eo)
(inv-ecrossrefs eo rs)
(inv-ecrossrefs eo rs container)

If container is not given or nil, then only eo’s opposite reference are checked
if they match rs. In that case, (inv-erefs eo rs) is equivalent to (erefs eo [or1
or2]) where or1 and or2 are all opposite references of a reference accepted by rs.
Thus, the versions of arity one and two cannot return objects that reference eo
with a unidirectional reference. Therefore, a container may be provided. If it is an
eobject, a resource, or a resource set, all objects directly or indirectly contained
in it referencing eo with a reference matching rs are returned. If the container is a
collection, then only the objects directly contained in it are tested.

FunnyQT also provides three functions for accessing pairs of eobjects referencing
each other. Such a pair is conceptually an edge when the EMF model is viewed as a
graph.
Function: funnyqt.emf/epairs
(epairs r)
(epairs r src-rs trg-rs)
(epairs r src-rs trg-rs src-ts trg-ts)

Function: funnyqt.emf/ecrosspairs
(ecrosspairs r)
(ecrosspairs r src-rs trg-rs)
(ecrosspairs r src-rs trg-rs src-ts trg-ts)

Function: funnyqt.emf/econtentpairs
(econtentpairs r)
(econtentpairs r src-rs trg-rs)
(econtentpairs r src-rs trg-rs src-ts trg-ts)

The epairs function receives a resource or resource set r and returns the lazy
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sequence of all [src trg] eobject pairs where src references trg with a reference
matching trg-rs whose opposite reference matches src-rs. Additionally, the types
of src and trg have to match src-ts and trg-ts, respectively. If both a src-rs and
trg-rs are non-nil, unidirectional edges are excluded. To include unidirectional
edges, src-rs must be nil.

ecrosspairs is like epairs except that it only considers cross-references, and
econtentpairs only considers containment references. Here, the source object is
always the container and the target object is part of its contents.

All three functions take care of not returning inverse duplicates caused by consid-
ering both a reference and its opposite reference. The identity of a conceptual edge
is a tuple [#{src trg} #{src-ref trg-ref}] where src references trg with its trg-ref
EReference and src-ref is its opposite reference. That is, if both [eo1 eo2] and
[eo2 eo1] are contained in the result sequence, then the corresponding #{src-ref
trg-ref} sets are disjoint.

14.6 Type Predicates

The core EMF API also contains several predicates for testing if a given object is an
instance of one of the central EMF classes.
Function: funnyqt.emf/eobject?
(eobject? eo)

Function: funnyqt.emf/eclass?
(eclass? ec)

Function: funnyqt.emf/eattribute?
(eattribute? ea)

Function: funnyqt.emf/ereference?
(ereference? er)

Function: funnyqt.emf/epackage?
(epackage? ep)

Note that EClass is a subclass of EObject, so for an EClass ec both (eclass? ec) and
(eobject? ec) are true.

14.7 Metamodel Access

Several functions are used to access metamodel elements. Any eobject eo can be
asked for its metamodel class with the eclass function.
Function: funnyqt.emf/eclass
(eclass eo)

The sequence of all eclasses registered at the global package registry can be
retrieved with the eclasses function2.
Function: funnyqt.emf/eclasses
(eclasses)
(eclasses ecore-resource)

2Also see the with-ns-uris macro on page 139 to get to know how to restrict the eclass lookup to only
packages with certain namespace URIs.
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If it is called with an ecore-resource, then only the sequence of contained eclasses
are returned.

The eclassifiers function returns the sequence of classifiers registered at the
global package registry. Classifiers are both EClass and EDataType instances, e.g.,
EInt, EString, or custom EEnum subtypes. If given an ecore-resource (a Resource or
ResourceSet), the function only returns the eclassifiers contained in that resource.
Function: funnyqt.emf/eclassifiers
(eclassifiers)

The eclassifier function returns an eclassifier given its simple or qualified name
qname.
Function: funnyqt.emf/eclassifier
(eclassifier qname)

esuperclasses returns the sequence of direct superclasses of the eclass ec, and
eallsuperclasses returns the sequence of direct and indirect superclasses.
Function: funnyqt.emf/esuperclasses
(esuperclasses ec)

Function: funnyqt.emf/eallsuperclasses
(eallsuperclasses ec)

Analogously, esubclasses returns the sequence of direct subclasses of the eclass
ec, and eallsubclasses returns the sequence of direct and indirect subclasses.
Function: funnyqt.emf/esubclasses
(esubclasses ec)

Function: funnyqt.emf/eallsubclasses
(eallsubclasses ec)

The direct subpackages of an EPackage epkg can be retrieved with esubpackages.
Function: funnyqt.emf/esubpackages
(esubpackages epkg)

Function: funnyqt.emf/eallsubpackages
(eallsubpackages epkg)

The eallsubpackages function returns direct and indirect subpackages.

14.8 Generating an Ecore-Model-Specific API

A metamodel-specific API encompassing creation, traversal, and property
access functions can be generated for a given Ecore model using the
generate-ecore-model-functions macro. It is the EMF-specific counterpart to the
generic generate-metamodel-functions macro (see section 12.11 on page 120). In
contrast to the latter, the functions it generates are named according to the EMF
terminology and delegate to functions in the funnyqt.emf namespace instead of their
generic protocol method counterparts.
Macro: funnyqt.emf/generate-ecore-model-functions
(generate-ecore-model-functions ecore-file)
(generate-ecore-model-functions ecore-file nssym)
(generate-ecore-model-functions ecore-file nssym alias)
(generate-ecore-model-functions ecore-file nssym alias prefix)

The macro receives the Ecore file ecore-file containing the metamodel as its
first argument.

The second argument nssym is a symbol naming the namespace in which the API
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should be generated. That namespace will be created if it doesn’t exist. If nssym is
nil or not given, then the API is generated in the current namespace.

If nssym has been given, this namespace can be referred to by the alias (a symbol)
given as third argument.

Lastly, an optional prefix (a symbol) may be given in which case the names
of all functions of the generated API are prefixed with it. This can be used to
prevent name clashes when generating the API in an already existing and populated
namespace, although it is generally advisable to designate one new namespace for
each generated metamodel-specific API.

The generated API consists of the following functions.
For any eclass with unique name EC (see concept 2 on page 108), there is a create

function (create-EC! r) that creates a new instance of the eclass and adds it to the
resource r which may be nil. There is also a (all-ECs! r)3 function that returns the
lazy sequence of EC objects in r where r may be an eobject, a collection, a resource,
or a resource set. Lastly, there is a function (isa-EC? eo) testing if eo is an instance
of EC.

For any eattribute name attr, there is a getter function (attr eo) and a setter
function (set-attr! eo val). Since attribute names are not necessarily unique, the
functions are applicable to all eobjects eo that are instances of eclasses that have
such an attribute. For boolean attributes, the getter function is named attr?. If attr
is both a name of a boolean attribute and a name an attribute of some other type,
then both getter functions are generated.

For any ereference name ref, there is a getter function (->ref eo) and a setter
function (->set-ref eo val). If ref is single-valued, the getter function returns the
referenced eobject or nil if there is none. If ref is multi-valued, the collection of
referenced eobjects is returned (in terms of eget). Likewise, the setter function
requires val to be a single object if ref is single-valued. Otherwise, val must be a
collection of eobjects. If, because reference names aren’t unique, ref denotes both
as single- and a multi-valued reference, then eo’s type is used to determine which
one is meant. For multi-valued references, additional adder functions (->add-ref!
eo reo & more) and (->addall-role! eo reos) and a remove function (->remove-ref!
eo reo & more) are generated, too.

3ECs is a proper plural inflection for the singular noun EC, e.g., for an eclass named Shelf the function
would be called all-Shelves.





Chapter 15

Generic Querying and Model
Management Features

In this chapter, miscellaneous FunnyQT querying and model management features
are going to be discussed. The first one are regular path expressions (section 15.1)
that allow for the computation of the set of reachable elements given a start element
or set of start elements and a regular path expression specifying the paths in the
model that may be traversed.

The next feature going to be discussed are polymorphic functions (section 15.2
on page 154) which allow the definition of functions that dispatch between different
implementations based on the metamodel type of their first argument. As such, they
are similar to methods in object-oriented programming languages.

Lastly, section 15.6 on page 168 discusses further querying functions such as
quantified expressions, higher-order combinator functions, and several utility se-
quence functions which are useful for model querying.

15.1 Regular Path Expressions

A FunnyQT regular path expression (RPE in short) defines a set of paths in a model
using edge symbols or role names and regular operators such as sequence, option,
alternative, or iteration. RPEs allow the computation of all elements that can be
reached by a path matching the RPE from a given start node or a set of start nodes.

As such, they are quite similar to regular expressions on strings. The regular
expression #"a" allows reading the character “a” in a string. Likewise, the edge
symbol --> in an RPE allows the traversal of an outgoing edge. The regular expres-
sion #"a|b" allows reading the character “a” or the character “b”. Likewise, the RPE
[p-alt --> <--] allows the traversal of an outgoing or an incoming edge.

In the next few paragraphs, the generic version of FunnyQT’s regular path
expression API is introduced. Thereafter, section 15.1.1 on page 152 discusses some
framework-specific extensions.
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Simple Path Expressions. Simple path expressions allow a one-step traversal,
i.e., given a start node or a set of start nodes incident edges matching the simple path
expression may be traversed to compute the set of adjacent nodes. The funnyqt.query
namespace defines eight functions being simple RPEs.

The protocol methods --> and <-- return the adjacent nodes that can be reached
by either outgoing or incoming edges.
Protocol: funnyqt.query/ISimpleRegularPathExpression
(--> n)
(--> n spec)
(--> n spec pred)
(<-- n)
(<-- n spec)
(<-- n spec pred)

The mandatory argument n is the start node or a set of start nodes. spec is a
specification used to restrict the edges to some given kind. For JGraLab, it is a
type specification (see concept 3 on page 109) matched against the edge class. For
EMF, which doesn’t have typed edges, it is an ereference specification. The pred
argument is a predicate applied to the edge in order to test if its traversal is allowed.
Because there are no first-class edges in EMF, the versions with arity three are not
implemented for it.

It should be noted that on EMF models, the backward-directed simple path ex-
pressions (<-- n) and (<-- n :role), i.e., the set of nodes that reference n (using their
role-reference), only traverse bidirectional references for performance reasons. If
unidirectional references were also considered, every element in the complete model
would have to be tested if it references n (with its role-reference). Section 15.1.1 on
page 154 discusses some EMF-specific simple path expressions which don’t have
this limitation, but in general it is advisable to use only forward-directed simple
path expressions with EMF if possible.

The protocol methods ---> and <--- are very similar to the --> and <-- methods
discussed above. Again, they return the set of nodes reachable via either outgoing
or incoming edges but with the additional restriction that only cross-referencing
edges may be traversed.
Protocol: funnyqt.query/ISimpleRegularPathExpression
(---> n)
(---> n spec)
(---> n spec pred)
(<--- n)
(<--- n spec)
(<--- n spec pred)

The next two protocol methods <-> and <--> return the set of adjacent nodes no
matter what the direction of the edge is. Analogously to above, <--> considers only
cross-referencing edges.
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Protocol: funnyqt.query/ISimpleRegularPathExpression
(<-> n)
(<-> n spec)
(<-> n spec pred)
(<--> n)
(<--> n spec)
(<--> n spec pred)

(<-> n spec) is equivalent to (set/union (--> n spec) (<-- spec)).

The last two protocol methods <>-- and --<> return the nodes reachable via a
containment edge, either from the container to its contents or vice versa.
Protocol: funnyqt.query/ISimpleRegularPathExpression
(<>-- n)
(<>-- n spec)
(<>-- n spec pred)
(--<> n)
(--<> n spec)
(--<> n spec pred)

In contrast to the backward-directed edge functions <-- and <--- discussed above,
containment edges are always traversable in both directions even in EMF models.
Usually, Ecore models define containments unidirectionally where only the container
references its parts but every EObject can retrieve its container anyhow.

Finally, when occurring in a regular path expression, every keyword is a simple
path expression resulting in the set of nodes reachable by traversing edges whose
far-end role is named like the keyword.

Regular Path Operators. The “regular” in RPEs comes from the regular path
operators going to be introduced in this paragraph. The first regular path operator
is the regular path sequence function p-seq.
Function: funnyqt.query/p-seq
(p-seq n & ps)

It gets a start node or set of start nodes n and arbitrary many RPEs ps, and it
returns the set of nodes that can be reached by traversing paths matching the RPEs
in ps one after the other. For example, (p-seq n --> :next) returns the set of nodes
that can be reached from n by following an arbitrary outgoing edge and then a
reference named next.

The next regular path operator is the regular path option function p-opt.
Function: funnyqt.query/p-opt
(p-opt n p)

It receives a start node or set of start nodes n and an RPE p and returns the set
containing n extended by the nodes reachable from n by traversing a path matching
p. In set-theoretic terms, (p-opt n p) is equivalent to (set/union n (p n)).

Next, there is the regular path alternative function p-alt.
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Function: funnyqt.query/p-alt
(p-alt n & ps)

It receives a start node or set of start nodes n and returns the set of nodes
reachable from n by traversing a path that matches any RPE in ps. In set-theoretic
terms, (p-alt n p1 p2 p3) is equivalent to (set/union (p1 n) (p2 n) (p3 n)).

Then, there is the regular path exponent function p-exp.
Function: funnyqt.query/p-exp
(p-exp n l u p)
(p-exp n i p)

It gets a start node or set of start nodes n, non-negative integer values l and
u with (<= l u) or a non-negative integer i, and an RPE p. It returns the nodes
reachable from n via a path that matches p i times or at least l (lower bound) and at
most u (upper bound) times. Clearly, (p-exp n 0 1 p) is equivalent to the path option
(p-opt n p). (p-exp n i p) is equivalent to a regular path sequence that repeats p i
times.

There are the two regular path iteration functions p-* and p-+. p-* is the reflexive
transitive closure, p-+ is the transitive closure.
Function: funnyqt.query/p-*
(p-* n p)

Function: funnyqt.query/p-+
(p-+ n p)

p-* gets a start node or set of start nodes n and an RPE p and returns the set of
nodes that can be reached from n by traversing a path matching p zero or many times.
p-+ returns the set of nodes that can be reached by traversing a path matching p
one or many times.

Lastly, there is the regular path restriction function p-restr.
Function: funnyqt.query/p-restr
(p-restr n ts)
(p-restr n ts pred)

It receives a node or set of nodes n and returns the subset of nodes in n that
match the type specification ts (see concept 3 on page 109) and the predicate pred.
This function is used to filter nodes in a path expression.

Composition of Regular Path Expressions. The regular path operators dis-
cussed in the previous paragraph are all higher-order functions receiving a regular
path expression p or a sequence ps thereof. Those are ordinary functions, thus, RPEs
can be composed simply by providing regular path functions as arguments, possi-
bly wrapped in anonymous functions when some arguments should have concrete
values.

The following listing shows an example. Starting at some node or set of nodes n,
the set of nodes reachable by traversing one foo reference followed by traversing a
bar or baz-reference one or many times is computed and then filtered to nodes of
type Quux.
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(p-seq n :foo
(fn [n]
(p-+ n (fn [n]

(p-alt n :bar :baz))))
(fn [n]

(p-restr n 'Quux)))

While this is perfectly legal code, it is not easy to understand or write. The
important parts are obscured by the three anonymous functions needed to pass
through the start nodes argument n and to define the arguments of each call.

Therefore, any RPE may be expressed concisely as a possibly nested vector. In
every vector, the first element is the regular path function to be applied, and the
remaining elements are the function’s arguments where the start node argument n
which is the first argument of any regular path function is omitted. Such a regular
path expression in vector notation can be applied using the function p-apply.
Function: funnyqt.query/p-apply
(p-apply n p)

It receives a start node or set of start nodes n and a regular path expression in
vector notation p and returns the set of nodes reachable from n via paths matching
p.

Using regular path expressions in vector notation and p-apply, the regular path
expression above can be rewritten as follows.

(p-apply n [p-seq :foo
[p-+ [p-alt :bar :baz]]
[p-restr 'Quux]])

This version is clearly more concise and much better to understand.
Internally, all regular path operator functions also use p-apply to execute the

regular path expressions being their arguments. Therefore, it needs to deal not only
with RPEs in vector notation but also with keywords and plain functions. Thus, in a
call (p-apply n p)

(1) if p is a function, (p n) is called,
(2) if p is a vector [rpe & args], (apply rpe args) is called, and
(3) if p is a keyword, the adjs* function discussed on page 112 is called for any node

in n with the keyword p and the results are combined in a set.
The items (1) and (2) reveal that users can easily define custom regular path

functions. Every function that receives a node or a set of nodes as its first argument
and returns a set of nodes again can be used in a regular path expression and
applied by p-apply.

For example, many models have a strict containment hierarchy where every
element except one single root element is contained by some other element. In such
cases, the computation of all elements contained directly or indirectly in some other
element might be used very frequently, so a shorthand p-contents could be valuable.

(defn p-contents
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([n] (p-apply n [p-+ <>--]))
([n ts] (p-apply n [p-seq [p-+ <>--] [p-restr ts]])))

With this definition, the expression

(p-apply function [p-seq [p-+ <>--] [p-restr 'Variable] :type])

computing the set of variable types in a function contained in a model conforming
to some hypothetical programming language metamodel could be written more
concise as shown in the next listing.

(p-apply function [p-seq [p-contents 'Variable] :type])

15.1.1 Framework-Specific Simple Path Expressions

The generic simple path expressions -->, <--, --->, <---, <->, <-->, <>--, and --<> dis-
cussed above have the advantage that they work on every model representation upon
whose node representation the ISimpleRegularPathExpression has been extended. As
said above, by default, it is extended upon JGraLab’s Vertex interface and EMF’s
EObject interface, and java.util.Collection. When the methods are called with a collec-
tion of nodes, the collection implementation simply calls itself recursively for each
node in the collection and combines the results of the calls.

The disadvantage of this approach its overhead. When ns is a collection of nodes,
then (--> ns) first dispatches to the Collection implementation of --> which in turn
calls (--> n) for every node n in ns. This means that evaluating (--> ns) results in (+ 1
(count ns)) protocol dispatches to find the implementation responsible for ns’s type
which is then called. Because the number of (intermediate) nodes when evaluating
a regular path expression can become large, this admittedly small overhead for
traversal step may cumulate and become significant.

Therefore, FunnyQT provides framework-specific simple path expression func-
tions in the funnyqt.query.tg and funnyqt.query.emf namespaces. Those assume that
the start node argument is a JGraLab Vertex or an EMF EObject or a collection thereof
and omit any dispath or recursive calls. For that reason, they are faster and their
performance benefit increases with the size of the node set. With larger models and
complex RPEs, the performance difference can be factor two or even more.

An even more important justification for also having framework-specific simple
RPE functions is that those can be sensible to a concrete framework’s characteristic
features. With the generic simple RPEs, one can distinguish traversal of cross-
referencing edges and traversal of containment edges. However, as discussed in
section 7.1 on page 69, JGraLab has two kinds of containment edges. There are
edges with strict containment semantics (like UML’s compositions) and edges with
weak containment semantics (like UML’s aggregations). The JGraLab-specific simple
RPEs allow to distinguish those, too.
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JGraLab-Specific Simple Path Expressions

The following six JGraLab-specific simple path expressions are completely equivalent
to the generic ones of the same names discussed above.
Function: funnyqt.query.tg/-->
(--> v)
(--> v ts)
(--> v ts pred)

Function: funnyqt.query.tg/<--
(<-- v)
(<-- v ts)
(<-- v ts pred)

Function: funnyqt.query.tg/--->
(---> v)
(---> v ts)
(---> v ts pred)

Function: funnyqt.query.tg/<---
(<--- v)
(<--- v ts)
(<--- v ts pred)

Function: funnyqt.query.tg/<->
(<-> v)
(<-> v ts)
(<-> v ts pred)

Function: funnyqt.query.tg/<-->
(<--> v)
(<--> v ts)
(<--> v ts pred)

For all of them, v is a Vertex or a collection of vertices, ts is a type specification
(see concept 3 on page 109) used to restrict the edges to the specified types, and
pred is a predicate on the edges determining wether an edge may be traversed.

In contrast to EMF, JGraLab has not only cross-referencing edges and strict
containment edges but like with UML every edge class may be modeled as an asso-
ciation (cross-referencing edge), an aggregation with weak containment semantics,
or as a composition with strict containment semantics. The simple path expressions
given in the following allow a more fine-granular distinction.

The aggregation path expressions implemented by the functions <?>-- and --<?>
return the set of vertices reachable from v via an edge with aggregation or composi-
tion semantics.
Function: funnyqt.query.tg/<?>--
(<?>-- v)
(<?>-- v ts)
(<?>-- v ts pred)

Function: funnyqt.query.tg/--<?>
(--<?> v)
(--<?> v ts)
(--<?> v ts pred)

The <?>-- function defines a traversal from the whole v to its parts, --<?> defines
a traversal from parts to the wholes.

The aggregation-only path expression defined by the functions <->-- and --<-> re-
turns the set of vertices reachable by traversing an edge with aggregation semantics
(but no composition semantics).
Function: funnyqt.query.tg/<->--
(<->-- v)
(<->-- v ts)
(<->-- v ts pred)

Function: funnyqt.query.tg/--<->
(--<-> v)
(--<-> v ts)
(--<-> v ts pred)

Again, with <->-- traversal is from the whole to its parts, with --<-> it’s from the
parts to the wholes.

Lastly, there is the composition-only path expression defined by the functions
<>-- and --<> which returns the set of vertices reachable by traversion an edge with
strict composition semantics.
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Function: funnyqt.query.tg/<>--
(<>-- v)
(<>-- v ts)
(<>-- v ts pred)

Function: funnyqt.query.tg/--<>
(--<> v)
(--<> v ts)
(--<> v ts pred)

So <>-- and --<> are equivalent to the generic simple path expressions <>-- and
--<> in the funnyqt.generic namespace.

EMF-Specific Simple Path Expressions

The following EMF-specific path expressions have the very same semantics as their
generic counterparts.
Function: funnyqt.query.emf/-->
(--> obj)
(--> obj rs)

Function: funnyqt.query.emf/--->
(---> obj)
(---> obj rs)

Function: funnyqt.query.emf/<>--
(<>-- obj)
(<>-- obj rs)

Function: funnyqt.query.emf/--<>
(--<> obj)
(--<> obj rs)

The argument obj is an EObject or a set of eobjects, and rs is an ereference
specification.

Since EMF doesn’t have first-class edges, in contrast to the generic protocol
methods of the same name, there are no versions of arity three which also accept a
predicate on the edges.

The EMF-specific backward-edge functions <-- and <--- are a bit more powerful
than their generic versions.
Function: funnyqt.query.emf/<--
(<-- obj)
(<-- obj rs)
(<-- obj rs container)

Function: funnyqt.query.emf/<---
(<--- obj)
(<--- obj rs)
(<--- obj rs container)

They accept an optional third argument container. If that is nil or omitted, then
the functions behave equivalently to the generic protocol methods. In contrast, if
container is an EObject, a Resource, or a ResourceSet, then all direct and indirect
contents of container are tested if they reference obj with a reference matching rs.
container may also be a collection of eobjects in which case only those are tested
but not their contents.

15.2 Polymorphic Functions

FunnyQT supports the definition of polymorphic functions (polyfns in short) by
providing two macros in its funnyqt.polyfns namespace. Such a polyfn possesses
different behaviors depending on the metamodel type of its first argument which
needs to be a model element. Therefore, they are similar to abstract methods in
object-oriented languages which are declared in some class or interface and then
implemented or overridden in subclasses or classes implementing the interface.
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A FunnyQT polyfn has to be declared once, and then implementations for dif-
ferent metamodel classes can be added. The declaration is done once using the
declare-polyfn macro.
Macro: funnyqt.polyfns/declare-polyfn
(declare-polyfn name doc-string? attr-map? [args] & body)

The macro receives the name of the new polymorphic function, an optional docu-
mentation string doc-string, an optional attr-map of options, an argument vector args,
and an optional body of code being the default implementation. The first argument
in args must denote a model element.

Implementations for instances of a given metamodel type can be added using
the defpolyfn macro.
Macro: funnyqt.polyfns/defpolyfn
(defpolyfn name type args & body)

The argument name denotes the name of the polyfn for which an implementation
should be added. type is the qualified name of the metamodel class for which this
implementation is responsible (see concept 1 on page 108) given as a symbol. It
may also be a list of qualified name symbols in which case this implementation is
added to all those types. args is an argument vector which must equal the argument
vector of the polyfn declaration except that argument names can be chosen freely1.
Lastly, the body of code implementing the behavior follows.

When calling such a polyfn, a polymorphic dispatch based on the function’s first
argument is performed to find and execute the implementation applicable for the
first argument’s metamodel class. If there is no applicable implementation, the
default behavior provided at the polyfn declaration is invoked. If no default behavior
was provided, an exception is thrown. In the presence of multiple inheritance in a
metamodel multiple implementations could be applicable. In this case, an exception
is thrown and developer has to add another implementation for the metamodel type
in question to remove the ambiguity.

Which protocols have to be extended in order to add support for polymorphic func-
tions on models of modeling frameworks other than JGraLab and EMF is discussed
in appendix A.2 on page 423

15.2.1 Implementation

The declaration of a polyfn using declare-polyfn creates a function-valued var in the
declaring namespace. By default, this var has as metadata a specification table and
a dispatch table, both initialized with empty hash-maps.

Whenever an implementation for some metamodel type is added using defpolyfn,
a mapping from the qualified name of the type to an anonymous function being the
implementation for instances of that type is added to the specification table of the
polyfn var.

1In other words, only the number and order of arguments is significant.
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When the polyfn is called the very first time, the dispatch table is built according
to the contents of the specification table. Whereas the specification table only
contains entries for the types an implementation has been added for, the dispatch
table contains entries for every metamodel class for which there is an applicable
implementation. E.g., if the specification table contains just one entry for some
metaclass A, the dispatch table contains entries for A and for all direct and indirect
subclasses of A, too. Furthermore, the keys of the dispatch table are metamodel
classes and not only the qualified names of the metamodel classes. During this
dispatch table build process, an exception is thrown if any ambiguities are detected,
i.e., if there is some metamodel class for which multiple polyfn implementations are
applicable.

For the second and later calls, the polyfn simply looks up the implementation
responsible for the first argument’s metaclass in the dispatch table. If there is one,
it is invoked. If there is none, either the default behavior gets executed (if it was
provided) or an exception is thrown.

It should be noted that evaluating a defpolyfn form clears the dispatch table.
Thus, new implementations can be added even at runtime where the respective next
call of the polyfn will cause a regeneration of the dispatch table.

The dispatch table approach offers a good performance because only the first
call computes the implementations responsible for all metaclasses of the complete
metamodel and any later call only looks that up from a hash-map. However, if
the metamodel changes at runtime, the information in the dispatch table may
become invalid. In part X starting on page 375, transformations are discussed
that evolve a model’s metamodel in-place while at the same time keeping the
model in conformance. Such transformation allow for example the addition of a
new metamodel class as a subclass of an existing class. If a polyfn with already
built dispatch table was called for an instance of this new metaclass an exception
would be thrown because the dispatch table wouldn’t contain an implementation for
that. Therefore, the :no-dispatch-table option can be set to true in the attr-map of a
declare-polyfn form. It can also be added as metadata to the polyfn’s name. In this
case, the polyfn won’t have a dispatch table and the implementation responsible for
the metaclass of the first argument is computed anew on every call.

15.2.2 Examples

The polymorphic dispatch should be exemplified using the (quite contrived) meta-
model shown in fig. 15.1 on the facing page.

Let’s assume the following polyfn foo. It is declared to take one argument el
and no default behavior is specified. Line 2 defines one implementation for the
metamodel class A which simply returns the keyword :a.

1 (declare-polyfn foo [el])
2 (defpolyfn foo A [el] :a)
3

4 (foo a-instance) ;=> :a
5 (foo b-instance) ;=> :a
6 (foo c-instance) ;=> :a
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Figure 15.1: An example metamodel

7 (foo d-instance) ;=> :a
8 (foo e-instance) ; Exception: No polyfn implementation defined for type E
9 (foo f-instance) ;=> :a

Whenever this polyfn is called with a direct or indirect instance of class A, the
single implementation is executed and returns :a. In line 8 it is called with a direct
instance of class E. This class does not inherit the implementation defined for class
A and since no default behavior is specified, an exception is thrown.

Now let’s assume another polyfn bar. It is also declared to take one argument el
and is possesses a default behavior which simply returns the keyword :default.

Line 2 defines an implementation for class A which returns :a, and line 3 defines
another implementation for class B which returns :b.

1 (declare-polyfn ^:no-dispatch-table bar [el] :default)
2 (defpolyfn bar A [el] :a)
3 (defpolyfn bar B [el] :b)
4

5 (bar a-instance) ;=> :a
6 (bar b-instance) ;=> :b
7 (bar c-instance) ;=> :a
8 (bar d-instance) ; Exception: Multiple bar polyfn impls for type D.
9 (bar e-instance) ;=> :default

10 (bar f-instance) ; Exception: Multiple bar polyfn impls for type F.

When being called with a direct A-instance it returns :a. When it is called with a
direct B-instance it returns :b. The implementation for class A is inherited by class
C, so the call in line 7 returns :a.

For class D the implementations for class B and class A (inherited via C) are both
applicable, thus the call in line 8 throws an exception to inform the developer of
this ambiguity.
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For class E there is no implementation defined. Therefore, the default behavior
gets executed in line 9 returning :default.

Lastly, for F-instances the implementations for A and B are applicable again, so
the call in line 10 triggers another exception.

To remove the ambiguities, the developer has to define another polyfn implemen-
tation for class D which would then be inherited also by class F.

If the polyfn declaration for bar didn’t have specified the :no-dispatch-table option,
then the two ambiguities would have been detected already at the first call while
building the dispatch table.

15.3 Model Visualization

FunnyQT supports generating model visualizations with its funnyqt.visualization
namespace. It doesn’t implement any graph layout algorithms on its own but
instead provides a convenient interface to GraphViz2. In order to use FunnyQT’s
visualization facility, the GraphViz program dot needs to be installed on the system.

The visualization namespace provides only the single function print-model.
Function: funnyqt.visualization/print-model
(print-model m f & opts)

The function receives the model m to be printed, the file name f where the
visualization should be saved, and a sequence of further options opts.

The file type is determined by the extension of f, e.g., when the value of this
argument is "test.pdf", the visualization will be saved as a PDF file. The supported
file formats are DOT, XDOT, PS (PostScript), SVG, SVGZ, PNG, GIF, and PDF. In addi-
tion, f may also be one of the keywords :gtk or :image. If f is :gtk, the visualization
is displayed immediately in the GraphViz viewer instead of saving it to a file. If f is
:image, the visualization is returned as a java.awt.Image object which can then be
displayed in a graphical user interface.

There is a large set of options which can be provided using the opts parameter.
All options consist of a keyword and a value.
:name The name of the visualization which must be a valid DOT ID, i.e., it must not

contain whitespaces. Depending on the output format, the value may or may
not be used. When generating a PDF visualization, the value is used as the
PDF’s title.

:exclude A sequence of model elements which should be excluded from visualization.
:include A sequence of model elements which should be included in the visualization.

If omitted or set to nil, all elements are included implicitly. When both :include
and :exclude are given, the elements in the former which do not occur in the
latter are visualized.

:exclude-attributes A map of the form {pred [attr1 attr2 ...], ...} defining that
the attributes attr1, attr2, etc. should not be printed for all elements for which
the predicate pred returns true.

2http://graphviz.org/
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:mark A sequence of model elements which are to be marked (printed in red instead
of black). The value may also be a predicate which is applied to elements and
should return true if and only if that element should be marked.

:node-attrs A map of the form {pred node-attrs, ...}. The predicate pred is applied
to model elements, and if it returns true, node-attrs is appended to the given
node’s DOT definition3. This can be used, e.g., to colorize elements by their
type. For example,
:node-attrs {#(g/has-type? % 'Person) "fillcolor=\"green\""

#(g/has-type? % 'Address) "fillcolor=\"blue\""}

will print elements of the metamodel class Person with a green background and
elements of the Address metamodel class with a blue background.

:edge-attrs The same as :node-attrs except that here the predicate is applied to
relationships. Obviously, this option has only an effect for models with first-class
edges.

:qualified-names If set to true, the types of elements and relationships are printed
as qualified names. If set to :unique, the unique type names are printed. If
omitted or set to nil or false, only the simple type names are printed.

In addition to these special options which are handled by print-model itself, ar-
bitrary DOT graph attributes3 may be given. For example, the call (print-model m
"test.pdf" :layout "circo" :fontname "Helvetica" :fontsize 9) prints a visualization
of the given model m to the given file. Instead of the default DOT layout algorithm,
the circo circular layout algorithm is used. Furthermore, the call defines that the
Helvetica font in size 9 is to be used for rendering the text in the visualization.

15.4 XML Processing

XML4 is an ubiquitous format. Therefore, treating XML documents as a kind of
model which can be queried and transformed is reasonable.

There are two implementation choices how this can be achieved. Firstly, FunnyQT
could treat XML DOM5 trees as models in a wider sense, i.e., the applicability of the
generic model management protocol methods discussed in chapter 12 starting on
page 107 could be extended to the interfaces and classes of some concrete DOM API.
The second option is to use JGraLab graphs or EMF models as representation and
convert XML documents to models conforming to some generic XML metamodel.

While the first alternative seems very elegant and an XML document can in
fact be seen as a model conforming to a metamodel defined by its XML schema or
DTD on an abstract level, there are some difficulties in details because XML and
the DOM API don’t really fit too well into the generic view on models discussed in
chapter 8 starting on page 83. For example, having an XML schema or DTD is only
optional but when it is provided, it might change semantics. E.g., it might declare
that some attribute declared for an XML element type has the type IDREF which

3The DOT graph, node, and edge attributes are documented at http://www.graphviz.org/content/
attrs (last visited: 2015-09-24)

4http://www.w3.org/TR/2006/REC-xml11-20060816/ (last visited: 2015-10-19)
5Document Object Model, http://www.w3.org/DOM/ (last visited: 2015-10-19)
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turns it into something more similar to a reference than an attribute. Also, with
models in the strict sense, the main facility for navigation are named references
or typed edges but with XML, the only generally available navigation concepts is
(anonymous) containment of elements inside of other elements. FunnyQT defines
a protocol method contents (see page 115) which could be used for retrieving all
elements returned by a given element but XML elements may also contain character
contents which are just plain strings and thus don’t fit into the contract of contents.

For these reasons, FunnyQT uses the second implementation choice and its
funnyqt.xmltg API provides functions for converting between XML documents and
TGraphs conforming to the schema shown in fig. 15.2.

Figure 15.2: FunnyQT’s XML Schema

With this schema, an XML document is represented by an XMLGraph. Such
a graph has exactly one RoolElement which is a special Element. Elements may
have attributes, each Attribute having a name and a value. Elements may also have
contents which is a sequence of elements and CharContent objects.

Attributes and character contents may encode references to other elements in
case their type is IDREF or IDREFS. This capability is modeled by the Referent class.

XML’s namespace concept is also supported. Every element and attribute is
a NamespacedElement having a nsPrefix and a nsURI, and every Element may de-
clare more namespaces with its declaredNamespaces attribute which is a map from
namespace prefixes to namespace URIs.

The function xml2xml-graph converts the given XML file f into a new XML graph
conforming to the metamodel shown in fig. 15.2.
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Function: funnyqt.xmltg/xml2xml-graph
(xml2xml-graph f)
(xml2xml-graph f attr-type-fn)
(xml2xml-graph f attr-type-fn text-type-fn)
(xml2xml-graph f attr-type-fn text-type-fn xml-graph)

If the XML file references a DTD file or contains an embedded DTD, then Ref-
erences edges for attributes of types IDREF and IDREFS are created automatically.
If not, an additional attr-type-fn may be provided which is a function receiving
an element’s qualified name6, an attribute name, and a corresponding attribute
value. The function should return the type of the attribute where the following
types are recognized: "ID" (other elements may reference this element using this
attribute value), "IDREF" (a reference to some other element with an attribute of type
ID), "IDREFS" (a reference to a sequence of other elements), "EMFFragmentPath" (an
XPath-like navigation expression used in XMI documents of the Eclipse Modeling
Framework), or nil (no special type).

Although no real XML concept, in practice IDs and references to other elements
are frequently encoded as character contents. For example, an XML document might
contain <person><id>SOME-ID</id> ... </person> instead of the more correct def-
inition <person id="SOME-ID">...</person>. For tracking such IDs and creating
References edges, an additional text-type-fn may be provided. It receives three
arguments: the parent element’s qualified name, the current element’s qualified
name, and the character contents as string. It should return the type of the character
contents where again the values "ID", "IDREF", "IDREFS", "EMFFragmentPath", and nil
are considered.

Lastly, instead of creating a new XML graph, an existing xml-graph may be pro-
vided. In this case, the existing given graph is populated and returned again7.

The function xml-graph2xml simply serializes the XML graph g back to its XML
representation and stores it in the file f.
Function: funnyqt.xmltg/xml-graph2xml
(xml-graph2xml g f)

The two functions xml2xml-graph and xml-graph2xml provide the core of the names-
pace funnyqt.xmltg. After an XML document has been converted to a graph, all
generic and TGraph-specific model management and querying functions discussed
so far can be used with it. However, there are somemore auxiliary functions provided
which ease working with XML graphs.

The functions ns-prefix and ns-uri return the namespace prefix and URI of the
given XML element or attribute elem-or-attr.
Function: funnyqt.xmltg/ns-prefix
(ns-prefix elem-or-attr)
Function: funnyqt.xmltg/ns-uri
(ns-uri elem-or-attr)

If the given element doesn’t declare a namespace itself, the respective parent
elements are consulted recursively.

6A qualified name in this context is a string of the form "nsPrefix:tag-name" for namespaced elements
and just the tag name for non-namespaced elements.

7In this case, the graph contains one RootElement per XML document read into it.
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The next three functions return different kinds of names of a given element or
attribute elem-or-attr.
Function: funnyqt.xmltg/declared-name
(declared-name elem-or-attr)
Function: funnyqt.xmltg/qualified-name
(qualified-name elem-or-attr)
Function: funnyqt.xmltg/expanded-name
(expanded-name elem-or-attr)

The declared-name is the name as written in the XML file, i.e., it includes a names-
pace prefix only if it has been specified in the XML file, too. The qualified-name is
a name in the form "nsPrefix:name", i.e., it always contains the namespace prefix
unless the element or attribute is not namespaced. Lastly, the expanded-name has the
form "{nsURI}name", i.e., it always includes the namespace URI unless the element
or attribute is not namespaced.

The children function returns the sequence of children elements of the given
element elem. The children may be restricted to a given name which may be given as
a plain tag name, a qualified, or an expanded name.
Function: funnyqt.xmltg/children
(children elem)
(children elem name)

The siblings function returns the siblings of a given element elem as a vec-
tor [pred-sibs succ-sibs] such that (concat pred-sibs [elem] succ-sibs) is equal to
(children elem), i.e., pred-sibs is the sequence of the children of elem’s parent pre-
ceding elem, and succ-sibs is the sequence of the children of elem’s parent following
elem.
Function: funnyqt.xmltg/siblings
(siblings elem qn)

Lastly, the attribute-value function returns the value of elem’s attr attribute.
Function: funnyqt.xmltg/attribute-value
(attribute-value elem attr)

The attribute may be given as a plain or qualified attribute name. In case the
element doesn’t have such an attribute, an exception is thrown.

15.5 Persistence of Model-Related Data

When querying and transforming models, there is often a need to persist auxiliary
data for later use such as query results or transformation traces. Such data may
contain arbitrary objects, e.g., sets of lists of model elements, and there is no
universal data format which can be used for the task as-is.

EMF-based tools usually capture such data as models where the model’s elements
may reference elements in the queried or transformed models using unidirectional
references. Then, these query result or transformation trace models can be persisted
using EMF’s usual XMI [OMG14c] serialization. For JGraLab, there is no such
predefined format.
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In any case, since FunnyQT allows to query and transform different kinds of
models arbitrarily mixed, a persistence format is needed which supports persisting
references to models and model elements of arbitrary kinds. In addition, this format
has to be extensible. When a user adds support for another modeling framework
next to JGraLab and EMF by extending the FunnyQT protocols, the user must also
be able to extend the persistence facilities.

15.5.1 The Extensible Data Notation

The Extensible Data Notation (EDN8) proposed by the Clojure author Rich Hickey
is a light-weight alternative to XML. In essence, EDN is a subset of Clojure data
comprising the null value (nil), booleans (true and false), characters (\x), sym-
bols (example), keywords (:kw), integers (-17), floating point numbers (-0.1), strings
("a string"), sets (#{1 2 3}), lists ((1 2 3)), and maps ({1 :one, 2 :one}).

EDN aims to be an interoperable format, and indeed there are EDN reading
and writing libraries for at least Clojure, Java, Ruby, C, C++, JavaScript, .NET,
ObjectiveC, Python, Erlang, Haskell, PHP, and Scala. Although its standard types
and their serialization format originate from Clojure, its not the exact runtime
type of an object that defines the suitable EDN type but rather it is its semantics.
For example, the EDN vector is meant to be used for collection types which have
random access capabilities. Clojure vectors exhibit this semantics as well as arrays
in Clojure, Scala, Java, Ruby, Python, or JavaScript.

EDN is also extensible. Applications and libraries can define their own EDN
format for their custom data types and corresponding readers. For this purpose,
EDN uses tagged values. As the name suggests, a tagged value consists of a tag
and a value. The tag is a symbol prefixed with # consisting of an owner and a
name component, and the value may be an arbitrary EDN datum. For example,
#de.myshop/OrderItem [18 2 2.99] is a valid tagged value. The value is a vector of
two integers and one floating point number, and the tag specifies that this vector
represents an item in an order of some web shop. Usually, domains or namespace
names like de.myshop are used as owner component of the tag symbol.

To read such a custom EDN datum, a reader function has to be defined and
registered for the custom tag’s symbol. For example, for the order items, a custom
reader function might look like this:

(defn order-item-reader [[article-no quantity price]]
(OrderItem. article-no quantity price))

The reader defines the semantics of the tagged value. Here, the reader defines
that the first integer in the vector is the article number, the second integer is the
quantity, and the final floating point number is the price. It simply uses these values
to create and return a new OrderItem instance.

EDN itself defines two standard tagged value formats in addition to the standard
untagged types listed above. Those can be recognized by their tags not having

8http://edn-format.org (last visited: 2015-05-28)
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an owner component. Firstly, there are instants in time in RFC-3339 [KN02] for-
mat (#inst "1985-04-12T23:20:50.52Z"), and secondly, there are universally unique
identifiers (UUID, [LMS05]) (#uuid "f81d4fae-7dec-11d0-a765-00a0c91e6bf6").

With EDN, there may be alternative readers suitable for a given tagged value.
and user is free to choose which one to use.

In the following, the FunnyQT extensions to the EDN format are discussed
including with the corresponding functions for writing and reading data containing
references to models and model elements.

15.5.2 EDN Format Extensions

FunnyQT defines EDN format extensions for storing references to models and model
elements. The tags for those use as owner component the FunnyQT namespaces
dealing with these kinds of models, e.g., funnqt.tg for references to JGraLab TGraphs,
vertices, and edges, and funnyqt.emf for references to EMF resource sets, resources,
and eobjects.

Concretely, this is the EDN format for JGraLab TGraphs, vertices, and edges.

;; Reference to a TGraph
#funnyqt.tg/Graph "918348b4-5153b25a-5668c393-2767b494"
;; Reference to a Vertex in a TGraph
#funnyqt.tg/Vertex [#funnyqt.tg/Graph "918348b4-5153b25a-5668c393-2767b494", 1]
;; Reference to an Edge in a TGraph
#funnyqt.tg/Edge [#funnyqt.tg/Graph "918348b4-5153b25a-5668c393-2767b494", 1]

A reference to a graph is written using the tag #funnyqt.tg/Graph, and the value is
the graph’s unique identifier which is computed when a graph is created and won’t
change afterwards.

A reference to a vertex is written using the tag #funnyqt.tg/Vertex, and the value
is a vector of two components. The first one is a reference to the graph containing
that vertex, and the second component is the ID of the vertex.

References to edges are written with the tag #funnyqt.tg/Edge, and the value is
again a vector containing the reference to the containing graph and the edge’s ID.

As said, a graph’s unique identifier is stable and won’t change over time, thus it is
very suitable for the task. The IDs of vertices and edges also don’t change in general,
however if a vertex or edge with a given ID gets deleted, this ID will eventually
be reused for a new element. That said, as long as the referenced elements aren’t
deleted and new elements are created, the EDN representation stays valid.

The EDN format for EMF resources, resource sets, and eobjects is given in the
following listing.

;; References to Resources
#funnyqt.emf/Resource "example.families"
#funnyqt.emf/Resource #funnyqt.emf/URI

"file:/home/horn/Repos/uni/funnyqt/test/input/example.families"→֒
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;; Reference to a ResourceSet
#funnyqt.emf/ResourceSet #{#funnyqt.emf/Resource "example.families",

#funnyqt.emf/Resource "Families.ecore"}→֒

;; Reference to an EObject
#funnyqt.emf/EObject [#funnyqt.emf/Resource "example.families", "//@families.2"]

A reference to a resource is written using the tag #funnyqt.emf/Resource, and the
value is either the simple name of the resource, or the EDN representation of the
resource’s URI. A URI is written using the tag #funnyqt.emf/URI, and the value is a
string denoting that URI. Which representation is used depends on the value of the
following dynamic var whose default value is true.
Var: funnyqt.edn/*edn-emf-store-resources-by-simple-name*

EMF resources don’t have a unique identifier which could be used to unambigu-
ously identify it, so the file name or the resource’s URI is the best thing one can use
to reference them. But when using simple names, it is not possible to reference two
different resources having the same name but residing in different directories. And
when using URIs, the references become invalid and need to be updated as soon as
resources are moved. And of course both representations are invalidated when a
resource is renamed.

A reference to a resource set is written using the tag #funnyqt.emf/ResourceSet,
and the value is a set of resources.

A reference to an EObject contained in some resource is written using the tag
#funnyqt.emf/EObject, and the value is a vector of two components. The first is the
containing resource, the second is the EMF fragment path denoting the eobject
inside the resource. Such an EMF fragment path is an ID in case the metamodel
defines an attribute with ID semantics for the type of that element. If this is not the
case like in the example above, the fragment path denotes the path to that element
starting at the root element. This representation is fragile because it depends on
element order, e.g., the fragment path above denotes the third eobject in the root
object’s families reference. If an object occurring earlier in this list gets deleted, the
reference is invalidated, i.e., it points to the eobject that comes after the originally
referenced object.

With all these problems discussed above in mind, the solution to solve them is
very simple. When a model for which data has been saved is going to be modified in
a way which would invalidate the EDN data, this data needs to be loaded before the
modification and persisted again afterwards.

The actual functions for writing and reading EDN data are discussed in the
following two sections. Lastly, section 15.5.5 on page 167 describes how the EDN
format can be extended.

15.5.3 Writing EDN Data

The following four functions are responsible for writing EDN data. They all have
the same names as the core Clojure data printing functions.
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Function: funnyqt.edn/pr
(pr obj)

Function: funnyqt.edn/prn
(prn obj)

Function: funnyqt.edn/pr-str
(pr-str obj)

Function: funnyqt.edn/spit
(spit obj file)

The function pr prints the given object’s EDN representation to the current value
of the dynamic var clojure.core/*out* which is standard output by default but can
be bound to any java.io.Writer, e.g., in order to write to a file, or to send the EDN
text over the network. prn is just like pr but prints a final newline.

The pr-str function is like pr but returns obj’s EDN representation as a string, i.e.,
it is a shorthand for using pr to print into a java.io.StringWriter and then returning
its contents.

Lastly, the function spit saves the EDN representation of obj into a file which
may be either a string denoting the file’s name or a java.io.File object. If the
specified file already exists, it will be overwritten.

15.5.4 Reading EDN Data

There are three functions for reading EDN data: read, read-string, and slurp.
Function: funnyqt.edn/read
(read reader models)
(read opts reader models)

Function: funnyqt.edn/read-string
(read-string string models)
(read-string opts string models)

Function: funnyqt.edn/slurp
(slurp file models)
(slurp opts file models)

The read functions reads one datum from the given reader which must be a
java.io.PushbackReader or a subclass instance. The read-string function reads from
a given string instead from a reader. Lastly, slurp reads from a file which may be
given as java.io.File or as a string denoting the file name.

In all three cases, a collection of models must be provided. Whenever a reference
to a model or model element is read, it is resolved with respect to this collection. If
a referenced model or model element cannot be resolved, an exception is thrown.

read and read-string delegate to the functions of the same name in the Clojure
standard library’s clojure.edn namespace, and slurp is only a shorthand for reading
from a PushbackReader wrapping a java.io.FileReader. These Clojure standard library
functions accept a map of options (opts) which can optionally be provided when
using the FunnyQT variants. The map of options may contain the following entries:
:eof The value of this key is the value to be returned when reading from a reader or

string which doesn’t contain another value anymore. By default, an exception
is thrown.

:default A default reader function of two arguments. Whenever a tagged value is
encountered for which no reader is defined, this function is called with the
tag symbol and the value. By default, tagged values for which no reader is
available trigger an exception.

:readers A map from symbols denoting tags to corresponding reader functions
responsible for reading such tagged values.
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By default, the FunnyQT EDN read functions call the Clojure versions with the
:readers map initialized with readers appropriate for reading references to models
and model elements. If a :reader map is given in the opts, this map is merged with
the default map where entries in the explicitly given map may override default ones,
i.e., the reader functions defined by FunnyQT may be swapped with custom ones.

15.5.5 Extending the EDN Format

Extending the EDN format in order to add support for new kinds of models and
elements requires two steps: the extension of the writing and the reading part.

To extend the writing part, the FunnyQT IWriteEDN protocol has to be extended.
Protocol: funnyqt.edn/IWriteEDN
(write-edn obj out)

The write-edn method receives an object obj and a java.io.Writer out and should
write obj’s EDN representation to the writer. For example, this is the definition for
JGraLab vertices.

(extend-protocol IWriteEDN
de.uni_koblenz.jgralab.Vertex
(write-edn [v out]

(.write out "#funnyqt.tg/Vertex ")
(write-edn [(tg/graph v) (tg/id v)] out)))

First, the tag is written to out, and then the write-edn method is invoked recur-
sively to write the vector forming the value of the #funnyqt.tc/Vertex tag.

To be able to read a tagged value, a reader function has to be provided and
registered for EDN elements with a given tag. This registration is done by altering
the value of the var edn-readers.
Var: funnyqt.edn/edn-readers

Its default value is given in the following which illustrates that for any tag denoting
a JGraLab or EMF model or model element, there is a corresponding reader function.

{'funnyqt.tg/Graph #'edn-tg-graph-reader
'funnyqt.tg/Vertex #'edn-tg-vertex-reader
'funnyqt.tg/Edge #'edn-tg-edge-reader
'funnyqt.emf/Resource #'edn-emf-resource-reader
'funnyqt.emf/ResourceSet #'edn-emf-resource-set-reader
'funnyqt.emf/EObject #'edn-emf-eobject-reader
'funnyqt.emf/URI #'edn-emf-uri-reader}

Every reader function receives the value associated with the tag it is responsible
for and should return the value corresponding to the EDN datum. The models given
at a call to read, read-string, or slurp are available to readers in terms of the dynamic
var *models* and can then be used for resolution of models and model elements.
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Var: funnyqt.edn/*models*

Note that EDN readers receive the already read and resolved value, i.e., reading
a nested EDN structure works bottom-up. For example, these are the definitions of
the readers for TGraphs and TGraph vertices.

(defn ^:private edn-tg-graph-reader [id]
(q/the #(and (instance? de.uni_koblenz.jgralab.Graph %)

(= id (tg/id %)))
*models*))

(defn ^:private edn-tg-vertex-reader [[g vid]]
(tg/vertex g vid))

The value of a TGraph reference is its ID (see page 164). In order to return the
actually referenced graph, the collection of *models* is searched for the model which
is a TGraph with the given ID.

The value of a vertex reference EDN tagged value is a vector containing a
reference to the graph, and the ID of the vertex in this graph. However, the reader
receives a vector containing the already resolved graph and the vertex ID, i.e., the
edn-tg-graph-reader has already been invoked on the TGraph reference before the
edn-tg-vertex-reader gets invoked.

15.6 Miscellaneous

In this section, several miscellaneous querying functions are discussed. First,
section 15.6.1 introduces FunnyQT’s quantified expressions on sequences, then
section 15.6.2 on the next page explains several utility sequence functions, sec-
tion 15.6.3 on page 171 defines several higher-order functions for composing predi-
cates, and lastly section 15.6.4 on page 171 provides some logic functions comple-
menting Clojure’s standard logic macros.

15.6.1 Quantified Expressions

There are three quantified expression predicates on sequences in FunnyQT. They all
receive a predicate and a seqable object.

The forall? quantified expression predicate returns true if and only if (pred el)
returns true for any el in the collection coll.
Function: funnyqt.query/forall?
(forall? pred coll)

forall? is short-circuiting, i.e., it stops testing elements and returns false as soon
as the first element not satisfying pred has been encountered. This is an important
property in case coll is a lazy (possibly infinite) sequence.
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The exists? predicate returns true if and only if (pred el) holds for at least one
element el in coll.
Function: funnyqt.query/exists?
(exists? pred coll)

exists? is also short-circuiting. It stops testing elements and returns true as soon
as the first element satisfying pred has been encountered.

Finally, exist-n? returns true if and only if there exist exactly n elements el in
coll for which (pred el) returns true.
Function: funnyqt.query/exist-n?
(exist-n? n pred coll)

Also exist-n? is short-circuiting returning false as soon as the (+ n 1)-th element
for which pred holds has been found.

15.6.2 Utility Sequence Functions

The funnyqt.query namespace defines several additional sequence utility functions.
The first one is the function the.

Function: funnyqt.query/the
(the xs)
(the pred xs)

Given a sequence xs, it returns the single element in the sequence, or the single
element for which pred holds. If the sequence does not contain exactly one element
(for which pred holds), then this function throws an exception. Therefore, the is
useful for specifying explicitly that some sequence must only contain one single
element (satisfying pred). Everything else would mean there is a bug.

The member? predicate returns true if and only if a given element e is member of
the given sequence xs.
Function: funnyqt.query/member?
(member? e xs)

This function is similar to contains? (see page 44) but the latter has the peculiar
property of checking if the given collection contains the given object as a key9. For
sets, the keys are the elements themself thus contains? and member? are equivalent
but for vectors (contains? 1 [3 4 5]) returns true because that vector does indeed
have the key 1 since the keys of a vector are its indices.

The functions pred-seq and succ-seq receive a sequence xs and return the lazy
predecessor and successor sequences.
Function: funnyqt.query/pred-seq
(pred-seq xs)

Function: funnyqt.query/succ-seq
(succ-seq xs)

In the lazy predecessor sequence, each element of xs is given as a pair of its
predecessor in xs and itself. nil is used as the first element’s predecessor. Likewise,

9Thus, it would have been better if it was named contains-key?, but that ship has sailed long ago.
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in the lazy successor sequence, each element of xs is given as pair of the element
itself and its successor in xs and nil is used as the last element’s successor. The
following example demonstrates this behavior.

(pred-seq [1 2 3 4])
;=> ([nil 1] [1 2] [2 3] [3 4])
(succ-seq [1 2 3 4])
;=> ([1 2] [2 3] [3 4] [4 nil])

And there is the lazy predecessor and successor sequence function pred-succ-seq.
Function: funnyqt.query/pred-succ-seq
(pred-succ-seq xs)

In the returned lazy sequence, every element in xs is represented as a triple of
its predecessor in xs, the element itself, and its successor in xs as demonstrated by
the following example. Again, nil is used to represent the nonexisting predecessor
of the first element and successor of the last element.

(pred-succ-seq [1 2 3 4])
;=> ([nil 1 2] [1 2 3] [2 3 4] [3 4 nil])

The seq-comparator function composes comparators in order to sort collections
containing tuples of homogenous values. To recapitulate, a comparator (see sec-
tion 6.6.7 on page 47) is a function receiving two objects and returning a negative
integer if the first object is less than the second object, a positive integer if the first
object is greater than the second object, or zero otherwise.
Function: funnyqt.query/seq-comparator
(seq-comparator & cmps)

It receives a varargs sequence of comparator functions and returns a new com-
parator. The returned comparator assumes that the two object given as its arguments
are sequences. It compares the i-th element of each sequence with the i-th compara-
tor given to seq-comparator until the first one returns a non-zero value. The following
example demonstrates its semantics.

(sort (seq-comparator compare #(- %2 %1))
[["Peter" 29] ["Alice" 31] ["James" 17] ["Peter" 17]])

;=> (["Alice" 31] ["James" 17] ["Peter" 29] ["Peter" 17])

A vector containing name-age pairs is to be sorted. The comparator returned by
the seq-comparator call compares the names using the compare function and the ages
by substracting the first pair’s age from the second pair’s age. Thus, in the result
sequence the pairs are sorted lexicographically with respect to the names, and for
equal names the pairs are sorted descendingly with respect to the age.

The last sequence utility function is sort-topologically.
Function: funnyqt.query/sort-topologically
(sort-topologically deps-fn els)
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It receives a sequence of elements els and a dependencies function deps-fn. The
dependency function is called once for each element in els and has to return that
element’s “dependencies”, i.e., the set of elements that should be sorted before it.
sort-topologically returns a topologically sorted vector of the elements in els or
false if there is a dependency cycle. Thus, this function also acts as a acyclicity test
with respect to deps-fn.

15.6.3 Higher-Order Predicate Combinators

FunnyQT provides several higher-order functions for combining predicates.
Function: funnyqt.query/and-fn
(and-fn & ps)

Function: funnyqt.query/or-fn
(or-fn & ps)

Function: funnyqt.query/nand-fn
(nand-fn & ps)

Function: funnyqt.query/nor-fn
(nor-fn & ps)

Function: funnyqt.query/xor-fn
(xor-fn & ps)

All these functions receive a varargs sequence of predicates ps and return a
new predicate combining the given predicate in the provided order using the logic
operation being the first part of their name. For example, (or-fn odd? zero?) yields
a predicate which returns true if and only if the given argument (which must be an
integer) is odd or zero.

The predicates returned by the combinator functions are all short-circuiting, e.g.,
the predicate returned by or-fn tests only one predicate after the other until one
returns true.

15.6.4 Logic Macros and Functions

Clojure provides the short-circuiting logic macros and and or. FunnyQT adds some
more.
Macro: funnyqt.query/nand
(nand & xs)

Macro: funnyqt.query/nor
(nor & xs)

Macro: funnyqt.query/xor
(xor & xs)

All three macros receive arbitrary many values. (nand ...) is a shorthand for
(not (and ...)), and (nor ...) is a shorthand for (not (or ...)). xor returns true if
and only if an odd number of its arguments are true.

FunnyQT provides the functionality of the logic operator macros also as functions.
Function: funnyqt.query/and*
(and* & xs)

Function: funnyqt.query/or*
(or* & xs)

Function: funnyqt.query/nand*
(nand* & xs)

Function: funnyqt.query/nor*
(nor* & xs)

Function: funnyqt.query/xor*
(xor* & xs)
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As functions, they are not short-circuiting because all arguments are evaluated
before a function gets executed. This property might be useful in some scenarios
but the major justification of their existence is that as functions they are first-class
objects which can be passed to higher-order functions as demonstrated in the
following example.

(apply and* [1 false true true nil])
;=> false
(apply or* [1 false true true nil])
;=> 1
(apply nand* [1 false true true nil])
;=> true
(apply nor* [1 false true true nil])
;=> false
(apply xor* [1 false true true nil])
;=> true

With respect to their return value, these functions are completely equivalent to
their macro counterparts. For example, or* returns the first truthy argument value
as does or.



Chapter 16

Related Work

In this chapter, related querying approaches are discussed. Approaches whose
main querying facility is pattern matching are discussed later in chapter 19 starting
on page 217. Similarly, related logic-based querying approaches are discussed
separately in chapter 32 starting on page 335.

The querying parts of FunnyQT have been strongly influenced by the declarative
TGraph querying language GReQL [EB10]. Its most common querying construct
is the from ... with ... report ... end expression which is a comprehension.
The from part binds variables to domains, the with part filters these bindings using
constraints, and the report part defines the structure of the result.

Furthermore, GReQL supports quantified expressions and comes with an exten-
sible function library. In order to add a new custom function to GReQL, only a class
implementing a simple predefined interface needs to be implemented.

Regular path expressions also come from GReQL. Essentially, GReQL supports
the same set of regular path operators as FunnyQT. However, the implementation is
quite different. Whereas FunnyQT implements regular path expressions in terms of
function composition, with GReQL, a deterministic finite automaton is constructed
from the RPE which is then used to steer a local search though the queried graph.

This automaton-based implementation has some benefits. In general, many RPEs
are evaluated slightly faster with GReQL than corresponding RPEs with FunnyQT.
Furthermore, the GReQL implementation provides more features. Whereas Fun-
nyQT’s RPEs allow only to compute the set of reachable elements given a start
element or a set of start elements, GReQL can also compute the inverse, i.e., all
possible start vertices for a given RPE and a target vertex or a set of target vertices.
And GReQL allows to compute a path system or a trace from a given RPE and a
start vertex. A path system contains one single path from the start vertex to any
reachable vertex, and this path is also guaranteed to be a shortest path. A trace
is the set of all vertices which are reachable from the start vertex or which are
contained in a path from the start vertex to at least one of the reachable vertices.

The benefit of the FunnyQT implementation is that it is much simpler and easier
to extend. For example, defining a custom regular path operator like p-contents
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on section 15.1 on page 151 is not possible for a GReQL user as it would require
modifications at least to the GReQL parser and the evaluator.

GReQL’s tender spot is that it is only an expression language, i.e., it lacks adequate
abstractions supporting reuse of existing queries which would allow for defining
libraries of related queries where one query might use other queries.

Concepts similar to regular path expressions are also used or have been proposed
for querying other tree- or graph-like structures, e.g., for querying XML documents
using XPath [W3C10], or for querying RDF1 graphs using an extended version of
SPARQL [W3C08; ABE09].

Although initially designed only as a constraint language, the Object Constraint
Language (OCL, [OMG14b]) is the standard model querying language nowadays,
and many transformation approaches use (variants of) it for their querying parts.
There is also a stand-alone OCL implementation2 for EMF models developed as part
of the Eclipse project.

At its heart, OCL supports the definition of constraints in the context of metamodel
elements, e.g., in the form of invariants that have to hold for instances of a given
metamodel class, or in the form of pre- and postconditions which have to hold
for operations defined in a UML [OMG15c] model. Additionally, initial values of
properties and expressions defining the values of derived properties can be specified.
The behavior of operations can be specified by providing an OCL body expression,
too. However, since OCL is a side-effect free language, only querying operations
can be defined.

For the same reason, OCL is not suitable for model management. The OMG’s
QVT standard [OMG11b] also specifies an extension to OCL called Imperative OCL
which provides operations for changing models and model elements, however this
extension is not supported by the Eclipse OCL implementation.

For querying purposes, OCL provides a large library consisting of operations
returning all instances of a given class, collection operations for filtering (select
and reject), mapping (collect), and reducing/folding (iterate), and there are also
quantified expressions (forAll and exists). Having filtering, mapping, and reducing
functions at hand, it seems plausible to assume that OCL is a functional language.
However, operations cannot be passed as parameters to other operations because
the concept of an operation is on the metametamodel level whereas OCL’s type
world is the metamodel of the model being queried (in addition to OCL’s own scalar
and collection types).

OCL provides a concise notation for navigating objects using its dot and arrow
operators, e.g., obj.srole.mrole->forAll(...) navigates from obj to the element
in its single-valued srole role and from there it retrieves the set of elements in
the multi-valued role mrole which results in a set on which a universally quantified
expression is tested.

OCL also supports a closure operation which returns the reflexive transitive
closure of a navigation expression, e.g., persons->closure(children) returns the set

1http://www.w3.org/RDF/ (last visited: 2015-10-14)
2http://www.eclipse.org/modeling/mdt/?project=ocl (last visited: 2015-10-2015)
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containing persons, their children, their grandchildren, etc. The closure expression
is required to return a collection of elements but may be chosen freely otherwise
which provides navigation possibilities similar to regular path expressions. E.g., the
closure operation corresponds to the path iteration, its expression may navigate
multiple roles which corresponds to the path sequence, it may take the union of
several roles which corresponds to the path alternative.

The Epsilon Object Language (EOL, [Kol+15]) is the model management language
of the Epsilon framework atop of which all other Epsilon languages are built. Its
querying parts are very similar to OCL, i.e., it provides largely the same kinds of fea-
tures with respect to role name navigation including transitive closures, quantified
expressions, and collection functions.

In addition, it provides variables, assignments, and typical imperative control
flow structures such as if and switch statements and loops. Even exceptions can
be thrown which can then be caught from Java.

Furthermore, it provides all means for model management and low-level model
manipulation, i.e., models can be loaded and persisted, elements can be created
and deleted, and properties can be retrieved and set.

EOL also supports the definition of custom operations. Those can be defined
in the context of a metamodel class in which case they are essentially methods of
this class. They may also be defined without context in which case they are plain
procedures. Operations may be annotated with a precondition and a postcondition.
Furthermore, there is an additional @cached annotation adding memoization to an
operation.

The Epsilon framework also provides a language specialized for model validation
in terms of constraint checking called Epsilon Validation Language (EVL). The
expressions that have to be tested are defined using EOL.

EVL allows for defining constraints and critiques which have different levels of
importance. Whereas invalidating a constraint is considered an error, critiques can
be used to implement style guidelines which are gently suggested to the user but
not strictly enforced. In the following, only the term constraint is used but it always
includes critiques as well.

Constraints are defined in the context of a metamodel class where they define an
invariant which all instances of that class have to satisfy.

Each constraints has a name and a boolean expression indicating if the constraint
is satisfied or not.

Optionally, a constraint may have a guard expression which can be used to restrict
the constraint to only a subset of instances of the context. This and the fact that
constraints are named makes it possible to express that some constraint depends on
another constraint. E.g., there may the two constraints that the names of entities
must not be undefined, and they must start with a capital letter. Clearly, when
already the first constraint fails, there is no value in testing the second one. Thus,
the guard of the second constraint may specify that the first constraint has to be
satisfied already.
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Every constraint may also have a message which is shown to the user in case the
constraint is not satisfied for a set of elements.

Lastly, every constraint may have arbitrary many fixes which are actions that
would resolve the issue. For example, a fix for an undefined name could be to ask
the user for a value. Each fix may have a title which is presented to the user, it
may have a guard controlling when it is enabled, and a block of EOL statements
implementing the actual repair actions of the fix.

In the past, there have been various other querying languages for EMF models:
EMF ModelQuery, EMF ModelQuery2, and EMFPath.

The first provided a Java API for programming queries mostly in the style of
SQL-like comprehensions, i.e., selection of model elements of a given type and
filtering using constraints.

Its successor EMF ModelQuery2 intended to increase the efficiency when query-
ing large models in terms of indexing and lazy loading of resources. Additionally,
next to its API it provided a SQL-like DSL for defining queries.

Lastly, EMFPath also went into the same direction as EMFModelQuery2 by trying
to increase efficiency in terms of lazy loading of models. Again, it was provided
as an API for querying EMF models, and it used Google’s Guava library which
provides function and predicate interfaces that can be used in mapping and filtering
operations on immutable Guava collections in order to provide some functional
programming capabilities3.

However, all three querying approaches have been discontinued.

The .NET Modeling Framework (NMF4) is a light-weight modeling framework
implemented in C#. Amongst other features, the framework provides NMF Expres-
sions [HH15] which allow to define queries on NMF models which can either be
evaluated in a batch-mode or incrementally. Queries are defined using LINQ5 [PR10],
the querying DSL embedded in all .NET languages. LINQ is a querying DSL sim-
ilar to SQL, i.e., it allows to define nested comprehensions and provides several
constructs for aggregating, sorting, or grouping values.

However, neither the NMF homepage4 nor the few NMF-related publications
explicit which LINQ constructs are actually supported by NMF Expressions.

Adding behavior to models is an obvious desire which can be achieved with most
if not all modeling frameworks. Usually, interfaces and implementation classes
can be generated from a metamodel, and the simplest approach to add behavior is
to add method declarations to the interfaces and implementations to the classes.
The problem here is that in case the metamodel is changed, the code needs to be
re-generated and manual changes get overridden.

EMF allows the declaration of methods already on the metamodel level where
even the body may already be specified, too. And special comments in the generated

3This part of Guava can be seen as a kind of predecessor of Java 8’s new streams API.
4https://nmf.codeplex.com/ (last visited: 2015-09-30)
5Language Integrated Query
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code allow to protect custom methods from being overridden when the code is
re-generated after a metamodel change.

Both JGraLab and EMF also allow for specializing the generated interfaces and
classes which provides another means for adding custom methods.

Also aspect-oriented programming [Kic96], especially inter-type declarations,
can be used for adding methods to the generated interfaces. This approach is taken
by KerMeta [MFJ05] which provides, among others, a concise and statically-typed
DSL that allows for defining operations for metamodel classes. Those are compiled
to aspects that are eventually woven in into the interfaces and classes generated for
the metamodel. The benefit of having a special DSL instead of defining the behavior
with plain AspectJ [Kic+01] directly is that the KerMeta DSL has direct support for
typical metamodeling concepts such as opposite references, associations, or derived
properties.
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Summary

This part’s topic is pattern matching. Chapter 17 starting on page 183
opens with a discussion of pattern matching facilities in functional lan-
guages and pattern matching on graphs.

Chapter 18 starting on page 193 then describes FunnyQT’s embedded
pattern matching DSL with all its features including positive and negative
application conditions, patterns with alternatives, and nested patterns.

Finally, chapter 19 starting on page 217 closes this part with a discus-
sion of related work.





Chapter 17

Introduction

Pattern matching is a widely used term in both functional programming languages
and graph transformations. A pattern usually equals or at least mimics the shape of
the data structure it is matched against and contains variables or placeholders.

Then, the intrinsic idea of pattern matching is to compute a total assignment
where every variable in the pattern gets assigned an element in the data structure
being matched against. If such an assignment exists, it is called a match of the
pattern.

It is important to emphasize that the match has to be total. Every variable in the
pattern needs to get assigned an object of the data structure being matched against.

A different way to look at pattern matching is to consider it a means for finding a
substitution for the placeholders (variables) in a pattern such that when applying
the substitution, the pattern equals the matched data structure.

Patterns may also contain constructs for restricting matches. For example, a
pattern may declare that some element must be of a certain type in order for a
possible match to be valid, or it may declare that some element must satisfy a given
predicate.

With pattern matching in functional languages, patterns are notated textually.
With pattern matching in graph transformation systems, patterns are frequently
notated visually but textual notations are not uncommon, too.

In section 17.1 on the next page, a short introduction of the pattern match-
ing facilities available in the functional languages Clojure and Haskell1 is given.
Section 17.2 on page 188 then generalizes the idea of pattern matching to graphs.

Starting with chapter 18 starting on page 193, FunnyQT’s pattern matching
approach is discussed in detail. It provides an embedded DSL for defining patterns
that can be matched on arbitrary models. Related approaches are then discussed
in chapter 19 starting on page 217. appendix A.3 on page 424 discusses how the
pattern matching DSL can be extended to support models of modeling frameworks
other than JGraLab and EMF.

1http://www.haskell.org (last visited: 2015-01-19)
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17.1 Pattern Matching in Functional Languages

Clojure’s destructuring capabilities, which have been discussed in section 6.7 on
page 48, are a simple form of pattern matching. For example, in the following listing

(let [[a b & more] (range 10)]
{:a a, :b b, :more more})

;=> {:a 0, :b 1, :more (2 3 4 5 6 7 8 9)}

the destructuring form [a b & more], i.e., the pattern, is matched against the se-
quence containing the numbers from 0 to 9. The pattern defines that the variable a
should map to the first element in the sequence, b should map to the second element,
and more should map to the remainder of the sequence. Such a destructuring form
works for all kinds of sequential collections, e.g., lists, sequences, vectors, and even
strings.

Additionally, there is also support for destructuring on maps as shown by the
next example.

(let [person {:first-name "Jim", :last-name "Miller",
:address {:street "Graham Road 17", :town "London"}}

{fname :first-name
lname :last-name
{s :street, t :town} :address} person]

[fname lname s t])
;=> ["Jim" "Miller" "Graham Road 17" "London"]

In there, person is a map representing a person. The person’s address is modeled
as a nested map with entries for the street and the town. The destructuring form
picks out the first name, the last name, the street, and the town and binds them to
the variables fname, lname, s, and t, respectively. Note that for picking out the street
and town values from the nested :address map a nested destructuring form is used.

Similar destructuring capabilities are also available in most other Lisp dialects
such as Common Lisp and Scheme.

As said above, with pattern matching one usually expects the match to be total.
Every variable in the pattern must get a value assigned. This aspect is not true for
Clojure destructuring, e.g., in

(when-let [[a b] [1]]
[a b])

;=> [1 nil]

the variable b has no assigned value because the vector being matched against con-
tains only one single element. Therefore, Clojure destructuring has been introduced
as a simple form of pattern matching. It exhibits the variable assignment part of
pattern matching but doesn’t enforce that the match function is total.

The clojure.core.match library2 provides much more extensive pattern matching
capabilities which also enforce that matches are total. It provides a match macro

2https://github.com/clojure/core.match (last visited: 2015-01-19)
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which gets a data structure to be matched against and arbitrarily many pattern/result
form pairs. Each pattern is matched against the data structure one after the other
and if it succeeds, the corresponding result form is the value of match. An optional
:else clause may end the match expression. Its result form is the value of the match
expression in case no pattern matches. If there is no :else clause and no pattern
matches, an exception is thrown.

The following listing provides an example.

(for [x [[1 2]
[1 2 3]
[1 2 3 4]
{:a 17, :b 2}
{:a 23, :b 7}]]

(match [x]
;; patterns ;; result forms
[[a b c]] [c b a]
[{:a a, :b 2}] {:a a}
[{:a (a :guard odd?), :b b}] {:a a, :b b}
:else :no-match))

;=> (:no-match [1 2 3] :no-match {:a 17} {:a 23, :b 7})

The variable x is bound to three different vectors and two different maps one after
the other. Each x value is then matched against the given patterns until one succeeds.
If no pattern succeeds, the :else clause defines the value of the match expression
to be :no-match.

The first pattern [[a b c]] matches vectors with exactly three elements and
binds those to the variables a, b, and c. These variables are only accessible in
the corresponding result form which returns a vector of the form [c b a], i.e., the
reversed vector.

The second pattern [{:a a, :b 2}] matches any map which has at least the keys
:a and :b. Additionally, the value of the :b key needs to be the number 2. In that case,
the value of the :a key is bound to the variable a, and the map {:a a} is returned.

The third pattern [{:a (a :guard odd?), :b b}] again matches maps which have
at least the keys :a and :b. The values are bound to the variables a and b. The :guard
attached to a additionally specifies that the value of the :a key needs to be an odd
integer for a match to succeed.

The :else clause finally defines that for values of x where no pattern matches,
the result of the match expression is :no-match.

The return value of the complete for comprehension is also printed in the listing.
For x being the vector [1 2] there is no match because the single vector pattern
matches only vectors of size 3. This matches only the second x value [1 2 3] but
not the third one [1 2 3 4] which is too long. The first map bound to x matches the
pattern [{:a a, :b 2}] because its :b key’s value is 2. Note that it would also match
the third pattern of the match expression but earlier patterns are always preferred to
later ones. Lastly, the map {:a 23, :b 7} can only be matched by the third pattern
in the match because the value of the :a key is odd. It cannot be matched by the
second pattern because the :b value is not 2.

It should be noted that the example match expression only demonstrates a small
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number of clojure.core.match’s features but it still suffices to give an idea about
the underlying concept, e.g., the computation of a total assignment of variables in
a pattern to elements in a matched structure which are restricted by the type of
the data structure, the size of the data structure, the contents of the data structure,
and arbitrary predicates on parts of the content.

One especially important aspect of clojure.core.match is that it performs lazy
pattern matching. This means that the match macro expands into a decision tree3
according to the algorithm described in [Mar08]. This decision tree based approach
is called lazy because every test is executed only if needed and at most once.

The decision tree generated for the match expression above is visualized in
fig. 17.1. In there, edges going to the left state the parent test succeeded and
edges going to the right state the parent test did not succeed. We can see that the

vector?

length = 3? map?

contains :a key?

:b value is 2?

pattern1
matches

no match

pattern2
matches

pattern3
matches

contains :b key?

:a value is odd?

no match

no match

no match

no match

Figure 17.1: The decision tree of the clojure.core.match example

common tests relevant for the second and third pattern are only tested once. I.e.,
since both patterns only match maps which contain at least an :a and a :b key, the
corresponding tests are shared. Because the third pattern may only match in case
the second pattern does not match, even the test if the :b value is 2 is shared. If the
test succeeds, then the second pattern matches. If not, then the third pattern might
match in case the :a value is odd.

Haskell’s pattern matching capabilities are quite similar to those provided by
clojure.core.match, i.e., they allow for destructuring with variable binding and
restricting based on contents and arbitrary predicates. In contrast to Clojure,
pattern matching is an essential part of the language.

For example, the function patternDemo defined in the next listing

patternDemo (a:b:[]) = [b,a]
patternDemo (1:2:xs) = xs

3Concretely, the decision tree is a deeply nested cond expression.
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patternDemo l | sum l == 5 = reverse l
| length l >= 5 = sort l
| True = []

-- patternDemo [1,2] -> [2,1] (1)
-- patternDemo [1,2,3,4,5] -> [3,4,5] (2)
-- patternDemo [2,0,3] -> [3,0,2] (3)
-- patternDemo [2,0,3,-12,1] -> [-12,0,1,2,3] (4)
-- patternDemo [0,1,2] -> [] (5)

is defined to receive and return a list of integers4. The definition is split into three
equations. Equations usually have the form functionName pattern = body.

The pattern (a:b:[]) of the first equation matches a list with exactly two elements.
The first element is bound to a and the second element is bound to b. The result is
the reversed two-element list [b,a]. Call (1) demonstrates this case.

The second equation’s pattern matches any list with at least two elements. The
first and second element must be 1 and 2, respectively. The remainder of the list is
bound to xs and is the result of the function as demonstrated by the call (2). Note
that both this pattern and the first equation’s pattern match the list [1,2]. In such
cases the declaration order is significant and resolves the ambiguity.

The third equation’s pattern binds the given list to the variable l, and then so-
called guards are used to test for certain properties of l. Every guard is a boolean
expression. Only if its result is true, the corresponding body is evaluated.

The first guard tests if the sum of the given list’s elements is 5. In this case, the
result of the function is the reversed list as shown by call (3).

The second guard tests if the length of the list is greater than or equal to 5. If so,
the result is the sorted list as demonstrated by call (4).

The last guard is a catch-all case which is always true. So any list which neither
has exactly two elements, nor starts with 1 and 2, nor has the sum 5, nor has a
length greater than or equal to 5 results in the empty list []. Call (5) shows that
[0,1,2] is such a list.

Patterns can also match depending on the type of the data structure being
matched on as shown by the following example.

data Shape = Square Float | Rectangle Float Float | Circle Float

surface (Square x) = x * x
surface (Rectangle x y) = x * y
surface (Circle r) = pi * r ^ 2
-- surface (Square 2) -> 4.0
-- surface (Rectangle 3 2) -> 6.0
-- surface (Circle 1) -> 3.1415927

The algebraic data type Shape is defined to be either a Square defined by its side
length, a Rectangle defined by its x and y lengths, or a Circle defined by its radius.

4The type [Int] -> [Int] can be omitted because the compiler is able to infer it from the patterns and
the result expressions.
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The surface function can then be defined by three equations whose patterns
match one of the three alternative types and bind their relevant components to
variables that are used in the equation bodies.

17.2 Pattern Matching on Graphs

Pattern matching on graphs is a quite intuitive extension to the pattern matching
approaches present in functional programming languages that were briefly illus-
trated in the previous section. Here, a pattern is a graph consisting of nodes and
edges. When such a pattern is matched on a graph, which is frequently called the
host graph in this context, an assignment from pattern graph nodes and edges
to host graph nodes and edges is computed. Such a match has to conform to the
connection constraints defined by the pattern’s edges, i.e., it has to be a subgraph
homomorphism.

Formally speaking, let the pattern graph be Gp = (Vp, Ep) and the host graph be
Gh = (Vh, Eh), and let there be src and trg functions that map edges to their source
and target nodes.

srcp : Ep −→ Vp, trgp : Ep −→ Vp

srch : Eh −→ Vh, trgh : Eh −→ Vh

Then a match is a pair of total functions

matchV : Vp −→ Vh, matchE : Ep −→ Eh

that map all pattern graph nodes to host graph nodes and all pattern graph edges
to host graph edges such that

∀e ∈ Ep : matchV (srcp(e)) = srch(matchE(e))

∧ matchV (trgp(e)) = trgh(matchE(e)),

i.e., the host graph node matched by a pattern edge e’s source node is the source
node of the host graph edge matched by e, and likewise, the host graph node matched
by e’s target node is the target node of the host graph edge matched by e. The
definition also implies that an edge can only be matched if both its source and target
node match.

Note that this definition allows that two different nodes in the pattern graph
are matched to the same host graph node, and the same applies to edges. In other
words, matchv and matcheE don’t need to be injective in order to comply with the
definition. For many graph pattern matching approaches, injectivity is enforced or
can optionally be enabled. In that case, one speaks of isomorphic matching or the
match function being a subgraph isomorphism.

With modern modeling frameworks where graphs and models conform to meta-
models, the nodes and edges of a pattern are usually augmented with typing infor-
mation. Then a host graph node can only be matched by a pattern graph node if it
is an instance of the metamodel type declared for the pattern node, and the same
applies to edges.
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Likewise, if nodes or edges possess attributes, then patterns can define additional
restrictions on their values.

One crucial difference between the pattern matching facilities of functional
programming languages discussed in the previous section and pattern matching on
graphs and models is that with the former, a pattern either matches a given data
structure or it does not. With the latter, a pattern can match multiple times because
the host graph can contain multiple subgraphs that comply the typing, connection,
and attribute value constraints imposed by the pattern. Therefore, one frequently
calls a match an occurrence of the pattern in the host graph. A pattern matching
approach may provide the ability to deliver one such occurrence, or it might be able
to enumerate all occurrences of the pattern in the host graph.

Figure 17.2 illustrates an example using a visual notation5. The pattern on the
left side defines that two Buddy nodes n1 and n2 and a Likes edge e starting at n1
and ending at n2 have to be matched.

n1 : Buddy

n2 : Buddy

e : Likes

:Buddy
name = “Andy”

:Buddy
name = “Jim”

:Buddy
name = “Jane”

l2 : Likes

l1 : Likes

l3 : Likes

Pattern Host Graph

Figure 17.2: A pattern matching example

The host graph is visualized on the right side. There are three Buddy nodes
representing Andy, Jane, and Jim. Andy likes Jane, Jane likes Jim, and Jim being a
peacocky guy likes himself.

With homomorphic pattern matching, there are three matches of the pattern in
the host graph. In the first (green) match, n1 maps to Andy, e to l1, and n2 to Jane.
In the second (blue) match, n1 maps to Jane, e to l2, and n2 to Jim. In the third and
last match (red), both n1 and n2 map to Jim, and e maps to l3.

In contrast, with isomorphic pattern matching there are only two matches: the
green and the blue one. The red one is no valid match because with isomorphic
matching distinct nodes in the pattern must be mapped to distinct nodes in the host
graph.

5As a Clojure library for programming queries and transformations, FunnyQT uses a textual notation
for patterns. The example pattern would be specified as n1<Buddy> -e<Likes>-> n2<Buddy>.
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Finding matches for kinds of patterns discussed so far which consist of typed
nodes and edges and possibly constraints on attribute values are the essentials
of pattern matching on graphs and models. But many approaches support more
advanced pattern matching concepts.

A feature which is widely common are positive and negative application conditions
called PACs and NACs for short. The nodes and edges defined by a PAC merely
define an existential assertion, i.e., occurrences of such nodes and edges have to
exist but they are not part of the matches.

Figure 17.3 shows an example of a pattern with positive application condition6.

n1 : Buddy

<<require>>
Buddy

<<require>>
Likes

:Buddy
name = “Andy”

:Buddy
name = “Jim”

:Buddy
name = “Jane”

l2 : Likesl1 : Likes

Pattern Host Graph

l3 : Likes
Figure 17.3: A pattern with positive application condition

The edge and the node marked with «require» make up the PAC. The complete
pattern matches all Buddy nodes which have an outgoing Likes edge ending at some
Buddy. However, the edge and the liked buddy are not part of the match. It’s only
their existence which matters. This pattern has two matches, namely Andy and
Jane.

Note that there would be three matches if the edge and the liked buddy node
were matched, too, instead of modeling their existence only using a PAC. In that
case, there would be two matches for Andy: one for him and Jane, and one for him
and Jim.

Negative application conditions are the inverse of PACs. They enforce that some
nodes and edges of the pattern must not match. Figure 17.4 on the facing page
gives an example7.

The edge and the node marked with «forbid» make up the NAC. The pattern
matches all Buddy nodes which have no outgoing Likes edges leading to some Buddy
node. In the example’s host graph, Jim is the only buddy who doesn’t like anyone
else.

There are several other features which are provided by different graph pattern
matching approaches, e.g., alternative patterns which allow for defining variable
parts inside a pattern, or patterns containing nested patterns which are matched in
the context of a match of the surrounding pattern.

6In FunnyQT, this pattern would be expressed as n1<Buddy> -<Likes>-> <Buddy>.
7This pattern would be expressed as n1<Buddy> -!<Likes>-> <Buddy> in FunnyQT.
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n1 : Buddy

<<forbid>>
Buddy

<<forbid>>
Likes

:Buddy
name = “Andy”

:Buddy
name = “Jim”

:Buddy
name = “Jane”

l2 : Likesl1 : Likes

Pattern Host Graph

l3 : Likes
Figure 17.4: A pattern with negative application condition

In the remainder of this part, FunnyQT’s take on pattern matching is discussed
in detail8. It supports all pattern matching concepts discussed in this section, i.e.,
basic patterns consisting of typed nodes and edges, arbitrary constraints, positive
and negative application conditions, alternative patterns, and also nested patterns.

Chapter 18 starting on page 193 introduces the FunnyQT macros for defining
patterns including the exact pattern syntax and semantics, and chapter 19 starting on
page 217 discusses related pattern matching approaches. Appendix A.3 on page 424
eventually explains how FunnyQT’s pattern matching facility can be extended to
support model representations other than JGraLab and EMF.

8A brief overview of FunnyQT’s pattern matching DSL has already been published in [Hor15a]





Chapter 18

Defining Patterns

FunnyQT uses an applicative notion of patterns. A pattern is a function that receives
a model as an argument and returns the lazy sequence of matches. An embedded
DSL is used to specify what is matched by a pattern. Because FunnyQT uses the term
pattern for the function that computes and returns the matches, the declarative
specification of what a pattern matches is named a pattern specification in the
following.

Patterns can be defined with three pattern definition forms. All these definition
forms are macros which receive a declarative pattern specification written in Fun-
nyQT’s internal pattern DSL which is going to be discussed in detail in section 18.1
on page 195, and they expand to plain Clojure function definitions. The code in
these functions’ bodies is generated from the pattern specification and performs a
search for matches in the model given at call-time.

The first and most important pattern definition form is defpattern.
Macro: funnyqt.pmatch/defpattern
(defpattern name docstring? attr-map? [args] [pattern-spec])
(defpattern name docstring? attr-map? ([args] [pattern-spec])+)

A pattern has a name (a symbol), an optional docstring, an optional attr-map con-
taining options affecting the pattern’s behavior, a vector of formal arguments args
where the first argument must denote the model the pattern is evaluated on, and
a pattern specification pattern-spec specifying the structure of the subgraph to be
matched. In the simplest case, a pattern specification consists of only node symbols
and connecting edge symbols but many more sophisticated features are available,
too (see section 18.1 on page 195).

As can be seen from the second signature, a pattern can be overloaded on arity
just like usual Clojure function definitions with defn (see page 37).

The following listing shows an example pattern definition. The pattern’s name
is difficult-relationships. It has a documentation string and its only formal argu-
ment is m. The pattern specification defines that two Person elements are to be
matched where p1 references p2 with its loves-reference, and p2 references p1 with

193



194 CHAPTER 18. DEFINING PATTERNS

its hates-reference.

(defpattern difficult-relationships
"A pattern matching two persons `p1` and `p2`
where `p1` loves `p2 and `p2` hates `p1`."
[m]
[p1<Person> -<:loves>-> p2<Person> -<:hates>-> p1])

As already said, a pattern definition like the one above expands into a plain Clojure
function definition. Evaluating the pattern definition above defines a function named
difficult-relationships in the current namespace which receives one argument m.
When the function is called, this argument must be bound to the model the pattern
is to be evaluated on. The code in the function’s body is generated from the pattern
specification and computes the lazy sequence (see section 6.6.2 on page 42) of
matches in the queried model m. By default, each match is represented as a map
where the identifiers (as keywords) of the pattern specification’s symbols are the
keys and the matched model elements are the values. Thus, every match of the
pattern above has the structure {:p1 #<x:Person>, :p2 #<y:Person>}.

There are three options that can be set in the attr-map of a defpattern form. First,
there is the :eager option. If it is set to true, then the pattern will be evaluated
eagerly when being called and returns a fully realized sequence of matches instead of
a lazy sequence. If there is more than one CPU available to the JVM, then FunnyQT
automatically parallelizes the pattern matching process. The second available
option :sequential suppresses this parallelization. The third option available is
:pattern-expansion-context with possible values :generic (the default), :tg, and :emf.
The last two values allow for making the pattern definition expand into framework-
specific code which is slightly faster because of less indirection. Furthermore, when
doing pattern matching on JGraLab’s TGraphs with the expansion context set to :tg,
patterns can also match edges (see section 18.2 on page 212). The options can also
be provided as metadata (see section 6.9 on page 53) attached to the pattern name.

Where defpattern defines a function-valued var in the current namespace, the
letpattern macro defines one or many local named patterns without creating vars in
the current namespace. Therefore, defpattern stands to letpattern like defn stands
to letfn (see page 37).
Macro: funnyqt.pmatch/letpattern
(letpattern [patterns] attr-map? & body)

It receives a vector of patterns, an optional attr-map, and arbitrary many body
forms. Each pattern in patterns is represented analogously to defpattern:

(pattern-name attr-map? [args] [pattern-spec])
(pattern-name attr-map? ([args] [pattern-spec])+)

The attr-map of the letpattern applies to all defined local patterns in patterns, and
those may add or override individual options.

Finally, there is the pattern macro which defines an anonymous pattern. There-
fore, defpattern stands to pattern like defn stands to fn (see page 35).
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Macro: funnyqt.pmatch/pattern
(pattern name? attr-map? [args] [pattern-spec])
(pattern name? attr-map? ([args] [pattern-spec])+)

It receives an optional name, a map of options attr-map, an argument vector args,
and a vector containing the pattern specification pattern-spec. Again, overloading
on arity is supported.

In the next section, the exact syntax and semantics of the pattern specification
provided as pattern-spec argument to the three pattern definition forms is going to
be discussed.

18.1 Pattern Syntax and Semantics

By default, FunnyQT performs homomorphic pattern matching. To discuss the
syntax and the semantics of FunnyQT patterns, the metamodel and model shown in
fig. 18.1 is used.
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Figure 18.1: A metamodel and a conforming graph for discussing patterns

The metamodel on the left defines a node class A with integer-valued attribute i
and two subclasses B and C. There is a node class D with integer-valued attribute j.
A-nodes may be connected with edges of type A2A with roles s and t, and there may
be A2D-edges starting at A-nodes and ending at D-nodes where only one role d is
defined.

The right part of the figure shows a conforming example graph. For reasons of
conciseness, the element types and attribute values have been encoded in labels. So
b1 is an instance of the class B where the attribute i has the value 1. For the edges,
the numbers only serve the purpose of making them unambiguously identifiable.
When writing down the match results in the remainder of this section, the example
graph nodes are notated as #<label>, e.g., #<c1> denotes the node c1 in fig. 18.1.
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In the following, the generic features of FunnyQT’s pattern specification DSL
are discussed. Those are used to define patterns that can be applied to all models
containing typed nodes that reference each other without having first-class edges.
Clearly, this exactly matches EMF models, and it also matches JGraLab’s TGraphs
when ignoring edge types and just using the role names. In section 18.2 on page 212,
some framework specific extensions are discussed. The extension for TGraphs
exploits the fact that edges are first-class entities which can also be matched.

After introducing all constituents of FunnyQT’s pattern specification DSL with
their syntax and semantics, section 18.1.18 on page 212 provides a concise summary
in terms of an EBNF.

18.1.1 Basic Pattern Specifications

A basic pattern specification consist of only node symbols which might be connected
using edge symbols.

The most basic pattern conceivable is (pattern [m] [a<A>]) whose pattern speci-
fication consists of only one single node symbol a<A>. This pattern matches nodes
which are an instance of metamodel class A or a subclass thereof. When applied to
the model in fig. 18.1 on page 195, the pattern matches all nodes except for d1 and
d2.

The node type may be prefixed with ! as a negation. For example, a pattern with
the pattern specification x<!A> matches any node which is not an instance of class A.
Thus, there are two matches: {:x #<d1>} and {:x #<d2>}.

The node type may also be suffixed with ! for restricting to direct instances.
Therefore, a pattern with the pattern specification a<A!> yields only the match {:a
#<a1>} which is the only direct instance of metamodel class A.

Both modifiers may be combined, so a pattern with the pattern specification
x<!A!> matches all nodes which are not direct instances of metamodel class A. In
the example model in fig. 18.1 on page 195, those would be {:x #<b1>}, {:x #<c1>},
{:x #<c2>}, {:x #<b2>}, {:x #<d1>}, and {:x #<d2>}.

The type in a node symbol is optional. A pattern with the pattern specification
x<> or even shorter just x matches any node in the host graph regardless of its type.

In a pattern specification, two node symbols may be connected by an edge symbol.
The pattern

(pattern [m] [c<C> -<:t>-> a<A>])

matches all occurrences of a C-node c and an A-node a where c references a
with its t-reference. As always in FunnyQT, reference/role names are specified as
keywords. In the example graph in fig. 18.1 on page 195, this pattern has four
matches: {:c #<c1>, :a #<a1>}, {:c #<c2>, :a #<a1>}, {:c #<c2>, :a #<b2>}, and also
{:c #<c1>, :a #<c1>} because FunnyQT does homomorphic matching by default.

Like with node symbols, the reference name in an edge symbol is optional. A
pattern with the pattern specification c<C> -<>-> a<A> or even shorter c<C> --> a<A>
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matches all occurrences of a C-node c and an A-node a where c references a with an
arbitrary reference. With respect to the example model in fig. 18.1 on page 195,
this pattern results in seven matches: {:c #<c1>, :a #<b1>}, {:c #<c1>, :a #<c1>},
{:c #<c1>, :a #<a1>}, {:c #<c2>, :a #<b1>}, {:c #<c2>, :a #<a1>}, and {:c #<c2>, :a
#<b2>}.

There are also the edge symbols <>-- and --<> which only match edges with strict
containment semantics, e.g., a pattern with pattern specification a <>-- b matches
all elements a and b where a contains b. Like with normal edge symbols, a role
name may be given, e.g., a <:bs>-- b matches all elements a and b where a contains
b using a containment reference bs.

Every edge symbol must connect two node symbols. If a pattern should match a
series of nodes connected by references, the pattern specification may be written
as a sequence of alternating node and edge symbols. Alternatively, one may also
specify nodes and edges separately. The following two patterns are completely
equivalent:

(pattern [m]
[n1<A> -<:t>-> n2<A> -<:t>-> n3<A>])

(pattern [m]
[n1<A> -<:t>-> n2<A>
n2 -<:t>-> n3<A>])

Note that in the second pattern, the node symbol n2 is notated twice. This is
perfectly valid1. Every node symbol identifier may occur arbitrarily often in a pattern
specification, and it always denotes the very same node. The type information, e.g.,
<A> for n2, may be omitted from all but one occurrence.

18.1.2 Anonymous Nodes

The identifier of node symbols is optional, too. Omitting it means that such a node
has to exist in the matched subgraph but it shouldn’t be part of the matches. Thus,
it models a kind of positive application condition.

For example, the pattern specification in

(pattern [m]
[b<B> -<:t>-> <C> -<:t>-> <> -<:t>-> a<A>])

contains an anonymous node <C> and another anonymous node <>. The pattern
matches all occurrences of a B-node b and an A-node a where a path exists which
starts at b, follows a t-reference to some C-node, then follows another t-reference to
some arbitrary node, and finally follows yet another t-reference to a. In the model
in fig. 18.1 on page 195, there are three matches for this pattern: {:b #<b1>, :a
#<c1>}, {:b #<b1>, :a #<a1>}, and {:b #<b1>, :a #<b2>}.

1Notating a node symbol twice is the only way to specify a pattern matching a node that references
itself: (pattern [m] [a<A> -<:t>-> a])
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Note that anonymous nodes only implement a restricted form of positive applica-
tion conditions because only the existence of single nodes can be asserted but not
the existence of a subgraph consisting of many interconnected nodes. E.g., in the
pattern above it’s not possible to specify that there is another edge connected to one
of the anonymous nodes because that would require a node identifier for notation.
Full PACs are supported by positive patterns which are going to be discussed in
section 18.1.11 on page 204.

18.1.3 Negative Edges

Negative edges implement a simple form of negative application conditions which
forbid the existence of certain edges. A negative edge is an edge marked with !.
For example, the pattern

(pattern [m] [a<A> -!<:d>-> <>])

matches all occurrences of an A-node a which doesn’t reference any node using
its d-reference. With respect to fig. 18.1 on page 195, there are the two matches
{:a #<b1>} and {:a #<b2>}.

The pattern

(pattern [m] [a<A> -!<:t>-> <C>])

matches all occurrences of an A-node a whose t-reference does not point to any
C-node. For this pattern, there are three matches with respect to the example graph:
one match for a1, one for c2, and one for b2.

If the target node of a negative edge is also bound, i.e., the target node symbol
has an identifier, then the semantics is to find all pairs of start and target nodes
where the start node doesn’t reference the target node using a reference of the
given kind. E.g., the pattern

(pattern [m] [a1<A> -!-> a2<A!>])

matches all occurrences of two nodes a1 and a2 of the specified types where a1
doesn’t reference a2. This pattern yields two matches: {:a1 #<a1>, :a2 #<a1>} and
{:a1 #<b1>, :a2 #<a1>}.

As said, negative edges only implement a restricted form of negative application
conditions as they can only forbid the existence of single edges but not the existence
of complex subgraphs. Full NACs are supported by negative patterns which are
going to be discussed in section 18.1.12 on page 205.

18.1.4 Isomorphic Matching

By default FunnyQT performs homomorphic matching, i.e., it is possible that multiple
node symbols in a pattern arematched to the very same host graph node. To suppress
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this behavior and switch to isomorphic matching, the :isomorphic keyword can be
used.

For example, the pattern

(pattern [m]
[c<C> -<:t>-> a<A>
:isomorphic])

only has three matches. The first one is {:c #<c1>, :a #<a1>}, the second one is {:c
#<c2>, :a #<a1>}, and the third one is {:c #<c2>, :a #<b2>}. Without the :isomorphic
keyword, it would also result in the match {:c #<c1>, :a #<c1>} as already discussed
in section 18.1.1 on page 196.

18.1.5 Constraints

Arbitrary constraints can be embedded in a pattern using :when clauses. If there are
multiple :when clauses, all of them have to evaluate to logical true. The pattern

(pattern [m]
[c<C> --> a<A>
:when (= 1 (aval c :i))
:when (= 1 (aval a :i))])

yields these four matches: {:c #<c1>, :a #<b1>}, {:c #<c1>, :a #<c1>}, {:c #<c1>,
:a #<c1>} again, and {:c #<c1>, :a #<a1>}. Like with the pattern [c<C> --> a<A>]
discussed in section 18.1.1 on page 196 the match {:c #<c1>, :a #<c1>} is in the
result twice because there is one match for c1 referencing itself using the t-reference
and another match for c1 referencing itself using the s-reference.

It should be noted that due to the way FunnyQT evaluates patterns, all variables
used in constraint expressions have to be declared before the constraint in the
pattern specification, else a compile-time exception is thrown.

18.1.6 Patterns with Node Arguments

As stated in chapter 18 starting on page 193, the first argument of a pattern must
refer to the model the pattern is evaluated on and an arbitrary number of additional
parameters may follow.

If a pattern specification includes an argument as node identifier, then this node
must always match to the node given as argument. If the argument is nil, the
pattern cannot match. Likewise, if the pattern declares a node type but the actual
argument is a node of a different type, the pattern cannot match.

For example, the following pattern has an additional argument a denoting a
node of strict node type A in the host graph which references a B-node using its
t-reference.

(pattern [m a]
[a<A!> -<:t>-> b<B>])
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When being applied to the model in fig. 18.1 on page 195 and nil, there are no
matches. When being applied to the model and any node except for a1, there are
no matches again because the argument a is not a direct instance of class A. Lastly,
when this pattern is applied to the model and node a1, it returns the sequence
containing the single match {:a #<a1>, :b #<b2>}.

It should be noted that it is advisable that patterns with node arguments start
the pattern with one of those for performance reasons. This advise is followed in
the above pattern. The result is that FunnyQT performs a local search starting at
the given node a. The next example defines the same pattern the other way round.

(pattern [m a]
[b<B> -<:s>-> a<A!>])

The result of this pattern is the same as for the pattern above but because the
argument node a doesn’t start the pattern, its evaluation will consider every B-node
in the complete model m and test if it references a with its s-reference which is
clearly less performant2.

It is also possible to have patterns asserting that two nodes given as arguments
are connected in some way like its done in the next example.

(pattern [m a b]
[a<A!> -<:t>-> b<B>])

When being applied to the model in fig. 18.1 on page 195, a1, and b2, it re-
turns the sequence containing one single match {:a #<a1>, :b #<b2>}. For all other
combinations of node arguments, it cannot find a match and returns the empty
sequence.

18.1.7 Local Bindings

Additional variables can be introduced and bound in a pattern using a :let clause
which gets a vector of symbol-expression pairs with the same syntax and semantics
as Clojure’s special form let (see page 34). The new variables can then be used in
later parts of the pattern, and they are also part of the pattern’s matches.

The following pattern matches occurrences of a node c of metamodel class C
and a referenced node d of metamodel class D. The i attribute value of c and the j
attribute value of d are bound to the new variables i and j.

(pattern [m]
[c<C> --> d<D>
:let [i (aval c :i)

j (aval d :j)]])

2FunnyQT emits a compile-time warning whenever a pattern with argument nodes doesn’t start with
one of them.
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The matches of this pattern in the model shown in fig. 18.1 on page 195 are {:c
#<c1>, :d #<d1>, :i 1, :j 1} and {:c #<c2>, :d #<d2>, :i 2, :j 2}.

In addition to :let, there is also the pattern binding keyword :when-let. It is
followed by a vector of exactly one variable-expression pair. Like with :let, the
variable is bound to the value of the expression. The difference, however, is that
with :when-let the variable value has to be logical true in order for a match to occur.
Essentially, :when-let [x (exp ...)] is a shorthand for a :let [x (exp ...)] followed
by the constraint :when x.

As with constraints, the expressions of a :let or :when-let clause may only access
variables declared earlier in the pattern specification.

18.1.8 Comprehension Bindings

A pattern may also include iterated bindings using a :for clause which has the
syntax and semantics of the standard Clojure sequence comprehension for (see
page 65). It receives a vector of variable-expression pairs (just like :let), but the
expressions have to evaluate to seqables. The variables are bound to the elements
of the sequences in a nested, rightmost fastest fashion.

For example, the following pattern produces a match for any C-node c which
references a D-node d using its d-reference together with any node f that can be
reached from c by traversing a t-reference one or many times3.

(pattern [m]
[c<C> -<:d>-> d<D>
:for [f (p-+ c :t)]])

With respect to the example model in fig. 18.1 on page 195, this pattern
has five matches: {:c #<c1>, :d #<d1>, :f #<c1>}, {:c #<c1>, :d #<d1>, :f #<a1>},
{:c #<c1>, :d #<d1>, :f #<b2>}, {:c #<c2>, :d #<d2>, :f #<a1>}, and {:c #<c2>, :d
#<d2>, :f #<b2>}.

As with constraints and bindings with :let and :when-let, the expressions of a
:for clause may only access variables declared earlier in the pattern specification.

18.1.9 Patterns Calling Patterns

As discussed in section 18.1.7 on page 200, a pattern can define local bindings using
a :let clause which receives a vector of variable-expression pairs. Of course, the
expressions may be applications of patterns again thus allowing to define patterns
where parts of the matches are sequence of matches of other patterns or of the
same pattern again.

3(p-+ c :t) is a regular path expression. Those are discussed in section 15.1 on page 147
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For example, the following successors pattern is defined recursively. Given a
model m and a model element cur it returns the lazy sequence of matches containing
the current node cur, a node next which is referenced by cur with its t-reference, and
the lazy sequence nnexts of matches of the same pattern where the current node
is the next. The arity two version simply delegates to an arity three version where
the set of known nodes is initialized with an empty set. This additional parameter in
combination with the :when constraint is used as the base case of the recursion.

(defpattern successors
([m cur] (successors m cur #{}))
([m cur known]
[:when (not (known cur))
cur<A> -<:t>-> next<A>
:let [nnexts (successors m next (conj known cur))]]))

When this pattern is applied to the model in fig. 18.1 on page 195 and b1 as
current node, it results in the following sequence of matches.

(successors model b1)
;=> ({:cur #<b1>,
; :next #<c1>,
; :nnexts ({:cur #<c1>,
; :next #<c1>,
; :nnexts ()}
; {:cur #<c1>,
; :next #<a1>,
; :nnexts ({:cur #<a1>,
; :next #<b2>,
; :nnexts ()})})}
; {:cur #<b1>,
; :next #<c2>,
; :nnexts ({:cur #<c2>,
; :next #<a1>,
; :nnexts ({:cur #<a1>,
; :next #<b2>,
; :nnexts ()})}
; {:cur #<c2>,
; :next #<b2>,
; :nnexts ()})})

There are two matches: one match where c1 is the next node, and one where
c2 is the next node. When looking at the first match’s :nnexts matches, we can see
that c1 has the two successors c1 and a1. In turn, a1 has b2 as successor. For c1,
the set known and the constraint ensure that the recursion ends after c1 has been
reported as current node once.

Note that the successors pattern would be valid even if the third parameter known
and the constraint testing if the current node is known were removed. In that case,
the match where cur and next are both c1 contains itself again as first match of its
nnexts sequence. But because the pattern returns a lazy sequence, the matches
are not realized until they are accessed. Thus, we could retrieve the first match
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in the :nnexts sequence of any match, and in the case where the match is {:cur
#<c1>, :next #<c1>, :nnexts (...)}we can do that an infinite number of times always
resulting in the same match. This would not cause a stack-overflow because with
each step, only one further step is realized. However, everything that causes a full
realization of the sequence of matches, e.g., printing the sequence of matches or
declaring the pattern with the :eager option set to true, causes a stack-overflow.

18.1.10 Match Representation

As said, by default a pattern’s matches are represented as maps where keywords
named according to the node identifiers and variables map to nodes matched in the
host graph and values assigned in the binding clauses :let, :when-let and :for. The
match representation can be overridden with an :as clause which gets an arbitrary
expression which has access to all identifiers and variables of the pattern and
evaluates to a custom match representation.

For example, the following pattern represents each match as a vector where the
matched nodes and attribute values are ordered by their first occurrence in the
pattern.

(defpattern c-d-with-vals [m]
[c<C> --> d<D>
:let [i (g/aval c :i)

j (g/aval d :j)]
:as [c d i j]])

Applied to the graph in fig. 18.1 on page 195, this pattern results in the two
matches [#<c1> #<d1> 1 1] and [#<c2> #<d2> 2 2].

Representing the matches as vectors can be very convenient depending on how
the results of a pattern are used, especially if the parts of the matches are to be
bound to individual variables again using destructuring (see section 6.7 on page 48).
For example, the following listing demonstrates how the individual parts of each
match can be extracted again using sequential destructuring.

(map (fn [[c d i j]]
(do-something-with c d i j))

(c-d-with-vals model))

Since do-something-with has the arity four, it can also be called with a vector
representing a match using apply (see page 50).

(map #(apply do-something-with %)
(c-d-with-vals model))

Maps can also be destructured but the syntax is more complex and harder to
understand, and it is also slightly less efficient. So if the above pattern had no :as
clause and thus matches were represented as maps, the same code would need to
be written as one of the two variants shown in the next listing.
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;; Variant 1
(map (fn [{:keys [c d i j]}]

(do-something-with c d i j))
(c-d-with-vals model))

;; Variant 2
(map (fn [{c :c, d :d, i :i, j :j}]

(do-something-with c d i j))
(c-d-with-vals model))

Therefore, FunnyQT provides the shorthand :as :vector which is equivalent to
the clause :as [c d i j] above. Matches are represented as vectors where the
values are ordered according to the first occurrence in the pattern. For reasons
of symmetry, the shorthand :as :map is equivalent to omitting the :as clause, i.e.,
matches are represented as maps.

18.1.11 Positive Patterns

In section 18.1.2 on page 197, anonymous nodes have been discussed which imple-
ment a weak form of positive application conditions. Those require the existence of
single nodes but they don’t suffice to require the existence of a complex subgraph
consisting of many arbitrarily interconnected nodes.

Positive patterns fill this gap by implementing full-blown PACs. The specification
of a positive pattern starts with the keyword :positive followed by a vector containing
the positive pattern specification. Arbitrarily many positive patterns may be specified
in a pattern. The semantics is that a pattern containing positive patterns can only
match if all of its positive patterns have at least one match.

A positive pattern specification may include identifiers of the surrounding pattern.
Those are bound to the nodes matched by the outer pattern and used to connect the
nodes of the outer pattern with the nodes of the positive pattern.

The following listing shows an example pattern which includes a positive pattern.

(defpattern b-with-positive-pattern [m]
[b<B>
:positive [b -<:t>-> c1<C> -<:t>-> a<A>

b -<:t>-> c2<C> -<:t>-> a
:isomorphic]])

It matches all B-nodes b which are connected to two C-nodes c1 and c2 which
both reference the same A-node a. All nodes have to be pairwise disjoint because of
the :isomorphic keyword.

When looking at fig. 18.1 on page 195 we can see that the positive pattern exactly
corresponds to the nodes b1, c1, c2, and a1. Thus, its only match is {:b #<b1>}.

In the pattern above, the outer pattern and the positive pattern were connected
by the common node b. This is not required. If they are not connected, then the
positive pattern specifies a global PAC, i.e., the positive pattern must have a match
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in the complete host graph. Due to the way patterns are evaluated in FunnyQT, it is
advisable to specify global PACs (and global NACs) as the first elements in a pattern
specification.

Positive patterns always inherit the :pattern-expansion-context of the surrounding
pattern. Again, that can be overridden by attaching metadata to the positive pattern
vector. Also the :eager and :sequential options can be set in this way although it is
unreasonable to compute all matches of a positive pattern when already the first
match suffices to make the surrounding pattern match.

Positive patterns are only a convenient shorthand notation of the general case
of patterns calling other patterns (see section 18.1.9 on page 201). The pattern
b-with-positive-pattern above is a shorthand for the following pattern.

(defpattern b-with-positive-pattern [m]
[b<B>
:when (seq ((pattern [m b]

[b -<:t>-> c1<C> -<:t>-> a<A>
b -<:t>-> c2<C> -<:t>-> a
:when (not= c1 c2)])

m b))])

A B-element b is only a valid match if the anonymous pattern also matches when
being applied to the model m and b, i.e., when its sequence of matches is non-empty.

18.1.12 Negative Patterns

In section 18.1.3 on page 198 negative edges have been introduced. They implement
a weak form of negative application conditions which only allow to forbid the
existence of particular edges. What they do not allow is the specification of a
complete subgraph which is interconnected with the positive part of the pattern in
arbitrary ways and which must not be matched.

Negative patterns fill this gap by implementing full-blown NACs. The specifica-
tion of a negative pattern starts with the keyword :negative followed by a vector
containing the negative pattern specification. There may be arbitrarily many neg-
ative patterns defined in a pattern. The semantics is that a pattern containing
negative patterns can only match if all its negative patterns don’t match.

Like with positive patterns, negative pattern may include the node identifiers of
its surrounding pattern. Those are bound to the nodes matched by the outer pattern
and used to connect the outer pattern with the nodes of the negative pattern.

The following listing shows an example pattern which includes a negative pattern.

(defpattern b-with-negative-pattern [m]
[b<B>
:negative [b -<:t>-> c1<C> -<:t>-> a<A>

b -<:t>-> c2<C> -<:t>-> a
:isomorphic]])
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This pattern matches all B-nodes b which are not connected to two different
C-nodes c1 and c2 that both reference the same A-node a. Because of the :isomorphic
keyword, all nodes have to be pairwise disjoint.

When looking at fig. 18.1 on page 195, we can see that the negative pattern
matches the nodes b1, c1, c2, and a1. Therefore, b1 cannot be a valid match for
b-with-negative-pattern. Thus, its only match is {:b #<b2>}.

Like with positive patterns, a negative pattern does not need to be connected
with the surrounding pattern. If both don’t share at least one node, then it acts as a
global NAC. As already mentioned, due to implementation details, global NACs and
global PACs should be specified as first elements in a pattern specification.

Like with positive patterns, negative patterns inherit the
:pattern-expansion-context of the surrounding pattern which can be overrid-
den by attaching metadata to the negative pattern vector. Likewise, the :eager and
:sequential options can be set in this way although it is unreasonable to compute
all matches of a negative pattern when already the first match suffices to specify
that the surrounding pattern cannot match.

Negative patterns are also only a convenient shorthand notation. The pattern
b-with-negative-pattern above is a shorthand for the following pattern.

(defpattern b-with-negative-pattern [m]
[b<B>
:when (empty? ((pattern [m b]

[b -<:t>-> c1<C> -<:t>-> a<A>
b -<:t>-> c2<C> -<:t>-> a
:when (not= c1 c2)])

m b))])

A B-element b is only a valid match if the anonymous pattern does not match
when being applied to the model m and b, i.e., when its sequence of matches is empty.

18.1.13 Logically Combined Patterns

Logically combined patterns are an extension of PACs and NACs. They allow to
specify that a pattern matches only if the results of several subpatterns combined
with a logical operation return true.

The specification of a logically combined pattern starts with one of the keywords
:and, :or, :xor, :nand, or :nor denoting the logical operations of the same names.
Then a vector of vectors follows where each inner vector contains a pattern specifi-
cation. The semantics is that the surrounding pattern can only match if the logically
combined patterns match according to the given logical operation.

Like with positive and negative patterns, logically combined patterns may include
node identifiers of the surrounding pattern. If they don’t, they specify a global
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application condition, and again, such global conditions should be written as first
elements in a pattern specification.

The following listing shows an example pattern that contains two subpatterns
combined with the logical OR.

(pattern [m]
[c<C>
:or [[c -<:t>-> c] ;; (1)

[c -<:t>-> <B>]]]) ;; (2)

This patternmatches C-nodes cwhich reference themselves using their t-reference
as specified by the subpattern (1), or which reference a B-node b using their
t-reference as specified by the subpattern (2). Of course, :or is non-exclusive,
so candidates for c for which both alternatives apply are also valid matches. With re-
spect to fig. 18.1 on page 195, this pattern has the two matches {:c #<c1>} (because
of the first alternative) and {:c #<c2>} (because of the second alternative).

Logically combined patterns are again only a shorthand notation for patterns
calling other patterns. The pattern above is a shorthand notation for the pattern
given in the next listing.

(pattern [m]
[c<C>
:when (or (seq ((pattern [m c]

[c -<:t>-> c :as {}])
m c))

(seq ((pattern [m c]
[c -<:t>-> <B> :as {:b b}])
m c)))])

As can be seen, the :or keyword translates into an application of Clojure’s or
macro, and the same applies to :and which translates to Clojure’s and macro. The
other keywords :xor, :nand, and :nor translate into the FunnyQT macros of the same
name discussed in section 15.6.4 on page 171. All these macros have short-cutting
semantics, so each logically combined pattern is only evaluated if needed.

Since logically combined patterns are an extension or generalization of positive
and negative patterns, there are some equivalences. I.e., combining subpatterns
with :and is equivalent to specifying each subpattern as a :positive pattern. And
combining subpatterns with :nor is equivalent to specifying each subpattern as
:negative pattern.

18.1.14 Alternative Patterns

Positive, negative, and logically combined patterns are all pure application condi-
tions, i.e., they only serve as constraints. Even if a positive pattern contains node
symbols that aren’t part of the surrounding pattern, those don’t contribute to the
matches of the surrounding pattern.
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However, sometimes it is convenient to allow expressing certain alternatives in a
pattern just like with logical patterns combined with :or but still have the elements
matched by the subpatterns available in the surrounding pattern. This is exactly
the use case of alternative patterns.

The specification of alternative patterns starts with the keyword :alternative
followed by a vector of vectors. Each inner vector contains the pattern specifica-
tion of an alternative subpattern. The semantics is similar as with :or-combined
subpatterns, i.e., the outer pattern can only match if at least one alternative sub-
pattern matches. However, the crucial difference is that the nodes matched by the
alternative subpatterns are also part of the outer pattern’s matches.

The following listing shows an example pattern containing alternative patterns.

(pattern [m]
[c<C>
:alternative [[c -<:t>-> a<A!>] ;; (1)

[c -<:t>-> x<A> -<:s>-> a<A!>]] ;; (2)
a -<:d>-> d<D>])

It matches a C-node c, a strict A-node a, an A-node x, and a D-node d where c
directly references a with its t-reference as specified by subpattern (1), or where c
references x with its t-reference which in turn references a with its s-reference as
specified by subpattern (2). Additionally, a references d with its d-reference.

All matches of the example pattern have the keys :c, :a, :x, and :d. In case a
match is produced by the first alternative subpattern, the value of the :x key is nil.

Alternative patterns are also a shorthand notation for patterns that call patterns
and bind their results using comprehension bindings as discussed in section 18.1.8
on page 201. The pattern above is a shorthand notation for the following pattern4.

(pattern [m]
[c<C>
:for [[a x] (funnyqt.utils/no-dups

(concat ((pattern [m c]
[c -<:t>-> a<A!> :as [a nil]])
m c)

((pattern [m c]
[c -<:t>-> x<A> -<:s>-> a<A!> :as [a x]])
m c)))]

a -<:d>-> d<D>])

18.1.15 Nested Patterns

Patterns can define nested patterns using :nested clauses. After the keyword follows
a vector of variable-pattern pairs where the patterns are notated as vectors. With

4no-dups is a simple utility function.
Function: funnyqt.utils/no-dups
(no-dups coll)

It returns a lazy sequence view of a given collection coll where duplicate elements are removed.
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nested patterns, as soon as the outer pattern has found a match, the nested patterns
compute their matches in the context of the match of the outer pattern. That is,
each match of the outer pattern contains lazy sequences of matches of the nested
patterns.

Here is an example pattern with three nested patterns.

(pattern [m]
[c<C>
:nested [ds [c -<:d>-> d :as d]

ss [c -<:s>-> s :as s]
ts [c -<:t>-> t :as t]]])

The outer pattern simply matches all C-nodes c in the model. Whenever a match
for c has been found, the three nested patterns are applied. The first one matches
all nodes d-referenced by the already matched c, the second all nodes s-referenced,
and the third matches all nodes referenced by c’s t-reference.

By default, the inner patterns’ matches would be represented as maps where
only the new nodes matched by the pattern are contained but not the nodes already
matched by the outer pattern. Thus, the first nested pattern would have matches
of the form {:d #<d1>}. Like with every pattern, an :as clause can be used to use a
different match representation. Since all three patterns only match one new node,
that node is defined to be the complete match.

The results of nested patterns are lazy sequences of matches. In the example
above, those are bound to the variables ds, ss, and ts respectively. When the
example pattern is applied to the model in fig. 18.1 on page 195, it results in the
two matches {:c #<c1>, :ds (#<d1>), :ss (#<b1> #<c1>), :ts (#<c1> #<a1>)} and {:c
#<c2>, :ds (#<d2>), :ss (#<b1>), :ts (#<a1> #<b2>)}.

Like normal patterns, nested patterns support the :eager and :sequential options
discussed at the beginning of this chapter. They can be specified as metadata
attached to the individual nested pattern vectors. Nested patterns always inherit
the :pattern-expansion-context of the surrounding pattern, though even that can be
overridden by the metadata.

Patterns can be nested arbitrarily deep, i.e., nested patterns can have nested
patterns themselves. The next example shows a pattern with nesting-depth two.

(pattern [m]
[a<A> -<:d>-> d<D>
:nested [f1 [a -<:t>-> a1

:nested [f2 [a1 -<:t>-> a2 :as a2]]]]])

The outer pattern matches occurrences of an A-node a referencing a D-node dwith
its d-reference. For every match, the nested pattern matches all nodes referenced by
a via its t-reference. This nested pattern has another nested pattern which matches
all nodes t-referenced by a1.

All in all, the complete pattern matches A-nodes a that have a D-node together
with all t-successors of a, and all t-successors of each successors. Thus, when applied
to the example model, these three matches are found:
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({:a #<c1>, :d #<d1>, :f1 ({:a1 #<c1>, :f2 (#<c1> #<a1>)}
{:a1 #<a1>, :f2 (#<b2>)})}

{:a #<c2>, :d #<d2>, :f1 ({:a1 #<a1>, :f2 (#<b2>)}
{:a1 #<b2>, :f2 ()})}

{:a #<a1>, :d #<d1>, :f1 ({:a1 #<b2>, :f2 ()})})

Like with positive and negative patterns, nested patterns are only a convenient
shorthand notation of the more general case of patterns calling other patterns that
has been discussed in section 18.1.9 on page 201. The doubly-nested pattern in the
last listing is equivalent to the following definition.

(pattern [m]
[a<A> -<:d>-> d<D>
:let [f1 ((pattern [m a]

[a -<:t>-> a1
:let [f2 ((pattern [m a1]

[a1 -<:t>-> a2
:as a2])
m a1)]])

m a)]])

This version defines the nested patterns as anonymous patterns that are applied
immediately to the model and elements of the containing match.

18.1.16 Distinct Matches

A pattern may contain the keyword :distinct. In that case, it will return only distinct
matches, i.e., duplicate matches are removed. This feature is especially useful in
conjunction with an :as clause. The following pattern matches all occurrences of
two different nodes n1 and n2 where n1 references n2. The matches are represented
as sets which posses no order, and only distinct matches are requested.

(defpattern connected-nodes [m]
[n1 --> n2
:isomorphic
:as #{n1 n2} :distinct])

When applied to the model in fig. 18.1 on page 195, there are nine matches, one
match for any pair of nodes where one references the other or both reference each
other.

If the :distinct keyword was removed, the pattern would have 15 matches be-
cause every match #{n1 n2} being caused by n1 referencing n2with its t-reference has
an opposite match #{n2 n1} which is caused by n2 referencing n1 with its s-reference.

If the :as clause was removed, the pattern would have 15 matches, too, because
all matches would be distinct in which match key maps to which node. E.g., where
the sets #{#<x> #<y>} and #{#<y> #<x>} are equal, the maps {:n1 #<x>, :n2 #<y>} and
{:n1 #<y>, :n2 #<x>} are not.
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18.1.17 Pattern Inheritance

FunnyQT supports a kind of inheritance between patterns. A pattern may extend one
or many other patterns using :extends clauses. The meaning is that the extending
pattern’s specification is the concatenation of all the pattern specs of the extended
patterns plus the additional specifications it defines besides its :extends clause.

An :extends clause has the form :extends [& extends-specs] where every extends
specification in extends-specs can take one of the following forms.

extended-pattern ;; (1)
(extended-pattern 1) ;; (2)
(extended-pattern :a a1 :b b2) ;; (3)
(extended-pattern 1 :a a1 :b b2) ;; (4)

In all cases, extended-pattern is the name of the pattern to be extended. Its pattern
specification, i.e., its node and edge symbols, constraints, and bindings are included
in the extending pattern. Since patterns can be overloaded on arity, an extends spec
may include the index of the version whose pattern spec to include as shown in (2).
The index starts with 0, and extended-pattern is equivalent to (extended-pattern 0).

An extends spec may also define renamings of node symbol identifiers and vari-
ables bound by :let, :when-let, :for, and :nested. In (3), extended-pattern is extended
but what is called a in extended-pattern is called a1 in the extending pattern. Likewise,
what is called b in extended-pattern is renamed to b2 in the extending pattern.

Finally, (4) demonstrates that an extends spec may specify both the index in an
overloaded pattern and renamings. In this case, the order is significant, i.e., first
the index of the pattern spec to be extended has to be given, then the renamings.

An example for pattern inheritance is given in the following listing which defines
the three patterns a-A, a-having-d, and a-with-a-having-d.

(letpattern [(a-A [m] [a<A>])
(a-having-d [m a d]
[:extends [a-A]
a -<:d>-> d<D>])

(a-with-a-having-d [m]
[a1 -<:t>-> a2
:extends [(a-having-d :a a1)

(a-having-d :a a2)]])]
(a-with-a-having-d model))

The a-A pattern matches nodes of metamodel class A. a-having-d extends a-A and
additionally specifies that a should reference a D-node d. Here, the information
that a has to be an A-node is inherited from a-A. The third pattern a-with-a-having-d
defines that a1’s t-reference targets a2, and it extends a-having-d twice. The first
extends-spec defines a renaming from a to a1, the second a renaming from a to a2.
As a result, the extending pattern defines two nodes a1 and a2 of type A (as indirectly
inherited from a-A) which both reference the same D-node d.

As said, pattern inheritance is a mechanism for inclusion of existing pattern specs
with possible renamings of the extended pattern’s symbols. The included specs
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are spliced in at the position of the :extends clause. The pattern a-with-a-having-d
could have been defined equivalently without pattern extension as shown in the
next listing.

(pattern a-with-a-having-d [m]
[a1 -<:t>-> a2
a1<A> -<:d>-> d<D>
a2<A> -<:d>-> d<D>])

When the pattern a-with-a-having-d is applied to the model in fig. 18.1 on
page 195, it results in the two matches {:a1 #<c1>, :a2 #<c1>, :d #<d1>} and {:a1
#<c1>, :a2 #<a1>, :d #<d1>}.

A pattern which is overloaded on arity may extend a different arity of itself as
shown in the following example.

(defpattern ex-extends
([g] [a<A> -<:d>-> d<D>

a -<:s>-> b<B> -<:s>-> c<C>])
([g a] [:extends [(ex-extends 0)]]))

Here, the implementation of arity two simply reuses the pattern spec defined for
the arity one version.

It should be noted that the pattern modifier keywords :isomorphic (see sec-
tion 18.1.4 on page 198) and :distinct (see section 18.1.16 on page 210) as well as
:as-clauses (see section 18.1.10 on page 203) are not propagated from extended
to extending patterns, thus it is up to the extending pattern to define if isomorphic
matching and distinct matches are enabled, and to define the representation of
matches.

18.1.18 Pattern Specification Summary

Listing 1 presents the syntax of the complete pattern specification DSL using a BNF-
like notation. In there, every uppercase identifier is a non-terminal. Parentheses
are used for grouping. The | character separates alternatives, ? denotes an option,
* denotes a zero-or-many repetition, and + denotes a one-or-many repetition. Every
other symbol is a terminal that appears in a pattern specification as-is. Additionally,
parentheses enclosed by single-quotes are terminals. This only occurs in the def-
inition of EXTENDS-SPEC.

18.2 Framework-Specific Patterns

As mentioned in the beginning of this chapter, FunnyQT patterns can expand into
generic or framework-specific code. This is controlled by the pattern definition forms’
:pattern-expansion-context option. The possible values are :generic (the default),
:emf, and :tg.
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With the :generic expansion context the generated code is protocol-based and
applicable to both EMF models and JGraLab TGraphs, and to all model representa-
tions that support the relevant protocols. These required protocols are discussed
later in appendix A.3 on page 424.

With :emf and :tg, the respective patterns can only be applied to models of the
corresponding framework, i.e., EMF and JGraLab, respectively.

EMF-specific patterns. The EMF variant is almost completely identical to the
generic variant except that the expansion uses functions defined in the funnyqt.emf
namespace directly. Thus, patterns with this expansion context are only applicable
to EMF models, and then their evaluation might be slightly more efficient due to less
indirection. Other than that, there are neither syntactic extensions to the pattern
specification DSL nor semantic differences to the evaluation.

JGraLab-specific patterns. With the :pattern-expansion-context option set to :tg,
the pattern’s expansion uses functions from the funnyqt.tg namespace instead of
generic protocol methods. Therefore, the evaluation of such a pattern might be
slightly more efficient compared to the evaluation of a pattern with :generic expan-
sion context.

In contrast to the EMF variant, the JGraLab variant is also slightly extended both
syntactically as well as semantically in order to support first-class edges instead of
only references. The following additional extensions are available.

In edge symbols, an edge class name can be specified in place of a reference
name. In this case, the direction of edges is also considered. E.g., a pattern with
the pattern spec a -<A2A>-> b matches two vertices a and b that are connected by
an A2A-edge which starts at a and ends at b.

Like for node symbols, the edge class name may be prefixed with ! for negation
and suffixed with ! for restricting to direct instances.

Furthermore, reversed edge symbols may be used. For example, the last pattern
spec can be specified as [b <-<A2A>- a], too.

Edges can be matched in addition to vertices by providing an identifier for the
edge symbol. E.g., every match of a pattern with the pattern spec a -e<A2A>-> b
contains two nodes a and b, and one edge e.

An edge symbol with a reference name, e.g., -<:role>->, is treated as a reference
compatible with the generic variant. That is, a -<:s>-> b matches a vertex a and a
vertex b which is in the role s from a’s point of view. The direction of the underlying
edge is not considered in this case. Again, for compatibility to the generic version, an
untyped edge symbol like in a --> b is also treated as a reference without considering
the edge direction.

That -<:role>-> treats edges as references without considering the direction is
sensible not only for compatibility to the generic version but because role name
navigation implies viewing a model as a set of elements that reference each other.
However, that --> is treated as a reference is only due to compatibility. In order to
allow untyped pattern edges where the edge direction is considered during matching,
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the edge type may be specified as _ (underscore). E.g., the a pattern with pattern
spec a -e-> b has twice as many matches as a pattern with spec a -e<_>-> b because
the first pattern treats every edge as a pair of a reference and its opposite reference
whereas the second pattern only considers edges which start at a and end at b.
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PATTERN-SPEC ::= ( PATTERN-SYMS | CONSTRAINT | BINDING | SUBPATTERN-SPEC
| EXTENDS-CLAUSE )*

| AS-CLAUSE? | MODIFIER*
PATTERN-SYMS ::= NODE-SYM ( EDGE-SYM NODE-SYM )*

NODE-SYM ::= IDENT | IDENT<NODE-TYPE?> | <NODE-TYPE?>
EDGE-SYM ::= -IDENT?-> | <-IDENT?-

| -IDENT?<EDGE-TYPE>-> | <-IDENT?<EDGE-TYPE>-
| <EDGE-TYPE<>-IDENT?- | -IDENT?-<EDGE-TYPE?>
| NEG-EDGE-SYM

NEG-EDGE-SYM ::= -!-> | <-!- | -!<EDGE-TYPE?>-> | <-!<EDGE-TYPE?>-
| <EDGE-TYPE?>-!- | -!-<EDGE-TYPE?>

NODE-TYPE ::= ;; a symbol denoting a metamodel element class qname;
;; may be prefixed/suffixed with ! with the same semantics
;; as in type specifications

EDGE-TYPE ::= ;; a keyword denoting a reference name, or a symbol denoting
;; a metamodel relationship class qname which may be
;; prefixed/suffixed with ! with the same semantics as in
;; type specifications

IDENT ::= ;; every legal Clojure symbol not containing < or > and not
;; equal to !

CONSTRAINT ::= WHEN-CONSTRAINT | APP-COND
WHEN-CONSTRAINT ::= :when EXPRESSION

EXPRESSION ::= ;; an arbitrary Clojure expression
APP-COND ::= POS-APP-COND | NEG-APP-COND | LOG-APP-COND

POS-APP-COND ::= :positive [PATTERN-SPEC]
NEG-APP-COND ::= :negative [PATTERN-SPEC]
LOG-APP-COND ::= LOG-OP [( [PATTERN-SPEC] )*]

LOG-OP ::= :and | :or | :xor | :nand | :nor
BINDING ::= LET-BINDING | WHEN-LET-BINDING | FOR-BINDING

LET-BINDING ::= :let [( DIDENT EXPRESSION )*]
DIDENT ::= IDENT | DESTRUCT-FORM

WHEN-LET-BINDING ::= :when-let [DIDENT EXPRESSION]
FOR-BINDING ::= :for [( ( DIDENT SEQ-EXP )

| WHEN-CONSTRAINT
| LET-BINDING
| WHEN-LET-BINDING )*]

SEQ-EXP ::= ;; an arbitrary Clojure expression resulting in a sequable
DESTRUCT-FORM ::= ;; a Clojure destructuring form

SUBPATTERN-SPEC ::= ALT-PATTERN | NESTED-PATTERN
ALT-PATTERN ::= :alternative [( [PATTERN-SPEC] )+]

NESTED-PATTERN ::= :nested [( IDENT [PATTERN-SPEC] )+]
EXTENDS-CLAUSE ::= :extends EXTENDS-SPEC

EXTENDS-SPEC ::= PATTERN-NAME | '('PATTERN-NAME INDEX? RENAMING*')'
PATTERN-NAME ::= ;; a symbol denoting the pattern which to extend

INDEX ::= ;; zero or a positive integer
RENAMING ::= KEYWORD IDENT
KEYWORD ::= ;; a Clojure keyword

AS-CLAUSE ::= :as EXPRESSION
MODIFIER ::= :isomorphic | :distinct

Listing 1: An EBNF grammar for the FunnyQT pattern specification DSL
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Related Work

In this chapter, approaches providing pattern matching as a stand-alone service are
discussed. In-place and graph transformation approaches which are usually heavily
based on pattern matching capabilities are discussed later in chapter 24 starting on
page 249 after FunnyQT’s in-place transformation DSL has been introduced.

EMF-IncQuery [Ujh+15] is a graph pattern matching approach for EMF models
which has a special focus on incremental pattern matching.

In contrast to traditional pattern matching approaches as provided by FunnyQT,
evaluating a pattern does not imply a search for matches in the queried model.
Instead, with the incremental approach, a special data structure based on RETE
networks [For82] is created from a pattern where every node in the network repre-
sents a part of the pattern. I.e., the top nodes in such a network represent typing
constraints, and a single bottom node represents the complete pattern. Nodes in
between model further constraints, e.g., connection constraints or constraints about
attribute values.

Every node in the network caches all elements in themodel matching the (sub-)pat-
tern represented by that node. When elements are added to or deleted from the
model or attribute values are changed, the EMF notifications framework is used
in order to inform the network about the changes which are then propagated for
updating the caches accordingly. Thus, all matches of all patterns are accessible
at all times and they are updated immediately when the model changes. However,
when the model to be queried is initially loaded, the network and its caches have
to be populated first which essentially means that notifications for every element,
every set reference, and every set attribute in the model have to be processed. This
initialization phase is very time-consuming, and of course the caches cause a high
memory overhead.

Therefore, the incremental pattern matching approach realized by EMF-IncQuery
is very adequate when the same set of queries needs to be re-evaluated over and
over again over an extended period of time on the same model. A prime example
for such a scenario is a model editor where an always up-to-date list of all elements
invalidating certain constraints should be displayed. Every edit operation performed
by the user can possibly introduce one or many new problems or fix one or many
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current problems. With a non-incremental approach, the queries finding elements
invalidating some constraint would need to be re-evaluated after every edit operation
but with the incremental approach, the matches are automatically updated with
minimal effort as soon as the model changes.

Recently, EMF-IncQuery got an alternative implementation [Búr+15] based on
local search, and the user can decide on a per-pattern basis which implementation
to choose. For future work, even hybrid patterns are considered where some
subpatterns are evaluated incrementally and others are evaluated by local search
giving the user even more flexibility for fine-tuning for a particular use-case.

Looking at its features, EMF-IncQuery supports only simple (structural) patterns
with constraints on attribute values. Patterns may call other patterns which defines a
kind of positive application condition. Furthermore, there are negative pattern calls
which implement negative application conditions. However, there is no support for
expressing alternatives, nested patterns, or other more advanced pattern matching
concepts.

The Scala MTL discussed in [GWS12] is a type-safe model transformation lan-
guage implemented as an internal DSL in Scala borrowing the general transforma-
tion concepts from ATL [Jou+08].

The approach also enables the use of Scala’s built-in pattern matching construct
match by generating case classes for all classes in a given metamodel. However,
Scala’s pattern matching facility only allows to test a given element against a number
of case patterns which may pose constraints on the element’s type and properties,
and may bind adjacent elements to variables.

SIGMA1 [KCF14] provides a set of embedded Scala DSLs for model management
and transformation tasks. As such, its goals are quite similar to the goals of Fun-
nyQT although its current scope is only on model management, model-to-model
transformations, and model-to-text transformations.

SIGMA integrates well with Scala’s built-in features, e.g., Scala’s static typing
and type inference also works for metamodel types, its pattern matching constructs
match/case constructs can be used on model elements similar to the previously
discussed approach, and Scala’s for expression can be used for encoding patterns
in the form of a comprehension for which all matches are to be retrieved from a
model.

In the related work chapter for in-place transformation approaches (chapter 24
starting on page 249), several more languages and tools with pattern matching
capabilities are discussed.

1Scala Internal Domain-Specific Languages for Model Manipulation, http://fikovnik.net/Sigma/
(last visited: 2015-09-30)
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Summary

This part is dedicated to in-place transformations which change a given
model in place in a rule-based manner. Chapter 20 starting on page 223
gives an introduction into the topic and its inherent concepts.

Thereafter, chapter 21 starting on page 227 describes FunnyQT’s em-
bedded in-place rule definition DSL, and chapter 22 starting on page 231
explains how the control flow between rules can be defined using higher-
order combinators and how the behavior of rules can be modified at
call-time.

Chapter 23 starting on page 237 then depicts FunnyQT’s state space
exploration facilities which can be used in order to analyze in-place trans-
formations.

The part closes with a discussion of related work in chapter 24 starting
on page 249.





Chapter 20

Introduction

In contrast to out-place transformations which query a given sourcemodel to produce
a new target model, in-place transformations are transformations that change a
given model in place, i.e., the given model is both the source and the target of the
transformation. Usually, pattern matching is used to match subgraphs in the model
under transformation which are then modified.

The most prominent representatives of this kind of transformations are graph
transformation systems such as AGG [Tae03], Henshin [Are+10; BET12], GROOVE
[Gha+12], GrGen.NET [Gei08], or VIATRA2 1.

In those systems, a transformation is represented as a set of rules where each
rule consists of a left-hand side (LHS) and a right-hand side (RHS). The left-hand side
is a pattern which is matched in the host graph. The right-hand side is a template
describing the effects of applying the rule to the elements matched by the LHS.
When a rule is applied, a match of the LHS is searched. The matched elements
that occur in both the LHS and the RHS are preserved, the matched elements that
occur only in the LHS are deleted, and the elements that occur only in the RHS are
created.

Many graph transformation languages use a visual notation for rules similar to
the one shown in fig. 20.1 on the following page. This rule named releaseRule is
part of a larger transformation which simulates a mutual exclusion algorithm where
many processes compete for resources and the transformation rules implement a
locking strategy. This transformation is discussed in [VSV05] which suggests it as a
benchmark for evaluating the performance of graph transformation systems.

The notation used in fig. 20.1 on the next page clearly separates the rule’s LHS
and RHS. The LHS matches a resource r which is held by a process p. The negative
application condition specifies that this process pmust not request another resource.
If the LHS matches for some process and resource, the changes induced by the RHS
are applied. Here, the held_by reference is deleted because it is not part of the RHS,
and a new release link is created between the resource and the process because it
occurs only in the rule’s RHS. The resource and the process are preserved because
they occur in both the LHS and the RHS.

1http://incquery.net/viatra2 (last visited: 2015-01-19)
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releaseRule

r: Resource

p: Process«forbid»
m: Resource

r: Resource

p: Process

release

«forbid»
request

held_by

Figure 20.1: A transformation rule with separated LHS and RHS in a visual notation

The visual notation with a strict separation of LHS and RHS can be found in AGG
for example. However, most visual graph transformation tools such as GROOVE
or Henshin prefer the notation of the LHS and RHS in the very same diagram
where colors and annotations are used for distinguishing which elements are to be
matched and deleted and which elements are to be created. Figure 20.2 also shows
the releaseRule from fig. 20.1 using this combined notation.

releaseRule

«forbid»
m: Resource

r: Resource

p: Process

«create»

release

«forbid»
request

«delete»

held_by

Figure 20.2: A transformation rule with combined LHS and RHS in a visual notation

In this rule definition, the fact that the held_by link has to be matched and then
deleted is indicated by its blue color and the «delete» annotation, and the fact that a
new release link has to be created between the resource and the process is indicated
by its green color and the «create» annotation.

With tools having a textual syntax for rule definitions, the LHS and RHS are
strictly separated. For example, listing 20.1 shows the definition of the releaseRule
in the textual GrGen.NET syntax.

1 rule releaseRule ( ) {
2 r :Resource −hb:held_by−> p: Process ;
3 negative {
4 p −req : request−> m:Resource ;
5 }
6 replace {
7 r −re l : release−> p;
8 }
9 }

Listing 20.1: The releaseRule in textual GrGen.NET syntax

Because the held_by edge hb matched the by the rule’s pattern does not occur in
the RHS formed by the replace part is is deleted by a rule application. In contrast,
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both the resource r and the process p occur in the RHS, so they are preserved. The
release edge rel is only specified in the replace part, thus it is created.

The algebraic approach to graph transformations [Cor+97; Ehr+97] is well-
founded on graph and category theory, and there are two major formalizations
to rule applications. One is the double-pushout (DPO) approach, the other is the
single-pushout (SPO) approach.

With the double-pushout approach, the LHS and the RHS of a rule are related
by an intermediate interface or gluing graph containing the elements that occur in
both the LHS and the RHS, i.e., the elements which are to be preserved by a rule
application. When a rule gets applied, first a match of the LHS is searched. In a
first rewriting step, the elements which are matched but have no counterparts in
the gluing graph are deleted. In a second rewriting step, elements which are only
defined by the RHS are created.

With DPO, the match of a rule’s LHS must satisfy the so-called gluing condition
which consists of two sub-conditions. (1) If the rule specifies the deletion of a node,
then it must also specify the deletion of all edges incident to that node (dangling
condition). (2) Every element which is to be deleted by the application of a rule
must be matched injectively, i.e., it must not have been matched to more than one
element of the LHS (identification condition).

The dangling condition ensures that there are no dangling edges after the appli-
cation of a rule, i.e., edges without a start or end node. In most if not all modeling
frameworks, dangling edges are not possible. Deletion of a node implies the deletion
of all incident edges. However, the strictness enforced by the dangling condition
provides additional safety because it prevents accidental deletion of edges, that is,
deletion of edges which simply weren’t considered by the transformation developer.

The identification condition prevents conflicts between deletion and preservation
which occur if a single host graph node is matched by two separate nodes in the LHS
where only one of them occurs also in the gluing graph. In this case, the matched
node would need to be deleted and preserved at the same time.

With the single-pushout approach, there is no intermediate gluing graph interfac-
ing between a rule’s LHS and RHS but the changes implied by a rule are performed
in one step. Also, the matches of a rule don’t need to satisfy the gluing condition. If
a rule specifies the deletion of a node, the deletion of all incident edges is implied
implicitly. And in case of a conflict between deletion and preservation, deletion
always takes preference.

The differences between the DPO and the SPO approach can be easily illustrated
with the pattern and host graphs shown in fig. 20.3 on the next page. The pattern
matches two nodes of metamodel type A which are connected by an edge of type E.
The start node of the edge is preserved but the edge and its end node are deleted.

With the DPO approach, the rule cannot be applied to any of the two host graphs
in the figure. It can’t be applied to host graph 1 because the dangling condition
doesn’t hold. If it was applied to the match (a, e, c) and e and c were deleted, the
edge f would be left dangling because its deletion has not been specified. If it was
applied to the other possible match (b, f, c) and f and c were deleted, the edge e

would be left dangling.
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a1:A <<delete>>
a2:A

<<delete>>
e:E

a:A

b:A
c:A

e:E

f:E

a:A

e:E

Rule:

Host Graph 1:

Host Graph 2:

Figure 20.3: Illustration of differences between DPO and SPO

The rule is also not applicable to host graph 2 because of the identification
condition. Since a2 is specified to be deleted, it must be matched injectively, i.e., it
must be matched to a different node than a1.

With the SPO approach, the rule can be applied to both host graphs. In case of
host graph 1, the deletion of node c implies the deletion of all incident edges. Thus,
depending on which of the two matches is chosen, after the rule application the
host graph either only contains the node a or b.

In case of host graph 2, the conflict between deletion and preservation is solved
in favor of deletion, thus after the rule application, the host graph is empty.

In comparison, the DPO approach is safer than the SPO approach because it
ensures that there can’t be any effects on the model under transformation which are
not explicitly defined by the transformation rules, i.e., rules are free of side-effects.
But the SPO approach is more expressive and viable for many practical purposes
because the dangling condition does not have to be satisfied.

Out of the cited languages above, AGG, Henshin, and GrGen.NET support both
the DPO and SPO approaches where the the approach to be used can be configured
on a per-rule basis. GROOVE only implements the SPO approach.
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Defining In-Place Rules

FunnyQT’s in-place transformation rules combine patterns, which have already been
discussed in the previous part, with actions to be applied on the elements matched
by the patterns.

Similar to patterns, FunnyQT provides the three different in-place rule definition
macros: defrule, letrule, and rule. They allow defining rules analogously to how
Clojure functions are defined.

The defrule macro defines a new rule in the current namespace.
Macro: funnyqt.in-place/defrule
(defrule name doc-string? attr-map? [args] [pattern-spec] & body)
(defrule name doc-string? attr-map? ([args] [pattern-spec] & body)+)

The macro receives the name of the rule to be defined (a symbol), an optional
doc-string, an optional attr-map containing options affecting the rule’s behavior, a
vector of formal arguments args, a vector containing a pattern-spec specifying what
elements the rule matches, and a body of arbitrary many forms.

The second signature shows that rules can be overloaded on arity just like patterns
or plain Clojure functions.

The first formal parameter in args must denote the model the rule is applied to
just like with patterns. The pattern-spec may use all pattern features discussed in
section 18.1 on page 195 with the exception of :as clauses. A rule’s pattern spec
may also contain :extends clauses for including the pattern specs of other patterns or
rules. :extends clauses only include pattern specs, i.e., when a rule has an :extends
clause naming some other rule, only the other rule’s pattern spec is included in the
extending rule’s pattern spec. The bodies of the two rules are not merged.

The body forms have access to all variables bound by the pattern, i.e., the forms
in the body are executed in an environment in which for every keyword used as
key in an entry of the map representing the pattern’s match there is a variable
of the same name which is bound to the value of that entry. For example, if the
pattern is specified by [a<A> -<:x>-> b<B> :let [c (foo b)]], the body is executed in
an environment where the variables a and b are bound to the matched elements and
c is bound to the value of calling foo with b.
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The body may contain arbitrary forms including recursive calls and recur-forms if
the rule should call itself tail-recursively.

The semantics of a rule when being applied to a model given as its first argument
is to find a match of the rule’s pattern, and then the rule’s body is executed in the
context of the match, and the return value is the value of the last expression in
the body which should be logically true by convention1. If there is no match of the
pattern, the rule returns nil.

Because the body is made up of arbitrary forms, the graph transformation terms
DPO and SPO are not applicable to FunnyQT in-place transformation rules. How-
ever, the behavior is very similar to the SPO approach because FunnyQT’s delete
operations for nodes always delete all incident edges, too.

The example rule which has been shown in a visual notation in fig. 20.1 and
fig. 20.2 on page 224 in the introduction could be specified with FunnyQT as shown
in the next listing.

(defrule release-rule
"Matches a resource held by a process which does not request more
resources, and lets the process releases that resource."
[g] ;; arguments
[r<Resource> -hb<HeldBy>-> p<Process> -!<Request>-> <>] ;; pattern
(delete! hb) ;; body
(create-edge! g 'Release r p))

The rule matches a Resource vertex r being held by a Process p which does not
request any resources. If such a resource and process exist, the HeldBy edge hb is
deleted, and a new Release edge starting at the resource and ending at the process
is created and is the return value of the rule application.

Like patterns, rule definitions expand to plain Clojure function definitions having
the name, documentation string, and arguments as defined by the defrule form.

Rule options. The attr-map that may be given to a rule definition may contain
several options. The first one is the :pattern-expansion-context option with possible
values :generic (the default), :tg, and :emf which specifies if the pattern should be
expanded to generic or slightly faster framework-specific code. This option has
already been discussed in chapter 18 starting on page 193.

If the :forall option is enabled, an application of the rule first evaluates the rule’s
pattern eagerly in order to find all matches. Then, the rule’s actions are applied to
all matches one after the other. The eager evaluation of the pattern gives rise to
parallelization which can be suppressed using the :sequential option. The return
value of a forall-rule is logical false if no match could be found. Otherwise, it returns
a vector containing the values of applying the rule’s body to each match. If the
vector of application results is not needed, its creation can be suppressed using
the :no-result-vec option. If it is enabled, the forall-rule only returns the number of
matches of the rule’s pattern.

1Since recur-forms are valid in a rule’s body, this convention cannot be enforced because recur-forms
have to be in tail-position.
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Note that there can be rules whose effects can create a new match of the same
rule. This implies that after the application of a forall-rule, there can still be matches
of the rule’s pattern in the model under transformation, namely the subgraphs
consisting of elements which became matches because of applying the rule’s effects
to other matches.

The situation above is harmless. However, when the effects of a rule can modify
a subgraph in such a way that it is no match of the same rule’s pattern anymore
although it has been before, a much more severe situation occurs, i.e., the rule’s
body is going to be applied to a match which has become invalid in the meantime.
If a rule’s definition allows for this situation to occur, it should have the :recheck
option enabled. This option causes each pre-calculated match to be re-validated to
test if it still satisfies the pattern just before the rule’s body is applied in its context.
If it is no match anymore, the effects are not applied.

As with FunnyQT patterns, the attr-map options may alternatively be given as
metadata attached to a rule’s name.

Parameter passing. In some transformation scenarios, if a rule r1 gets applied
it is very likely or even certain that another rule r2 can be applied to the elements
that are preserved or created by r1. In such cases, the involved rules may use
parameter passing to improve performance. Parameter passing means that the
elements which are a likely match of r2 are passed from r1 to an overloaded arity
version of r2 explicitly. Then r2 only needs to test if these elements indeed match its
pattern instead of performing a global search for matching elements in the model.
Depending on the context, the overloaded arity version of r2 may even test with only
a simpler pattern, or the check can be omitted completely.

The mutual exclusion transformation discussed in [VSV05] contains some rules
that can benefit from parameter passing as shown below.

(defrule take-rule [g]
[p<Process> -rq<Request>-> r<Resource> -t<Token>-> p]
(delete! t)
(delete! rq)
[r (create-edge! g 'HeldBy r p) p])

(defrule release-rule
([g] [r<Resource> -hb<HeldBy>-> p -!<Request>-> <>]
(release-rule g r hb p))
([g r hb p] [p -!<Request>-> <>]
(delete! hb)
(create-edge! g 'Release r p)))

The take-rule matches a process requesting a resource where it’s the process’
turn to act on the resource as indicated by the token. The effect is that the token
and request edges are deleted and the resource is assigned to the process by a new
HeldBy edge.

A resource being held by a process is exactly what the pattern of release-rule
matches except for the additional requirement that the process must not request
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other resources, too. Thus, for the results of the take-rule only the latter condition
needs to be checked by the release-rule.

To enable parameter passing, the release-rule is overloaded on arity. The version
which only receives the graph g specifies the full pattern and performs a search in
the graph when being applied. The version of arity four receives the graph and all
elements which the arity one version searches with its pattern and assumes that
those already have the right structure. Its pattern only ensures that the process
doesn’t request additional resources.

The take-rule’s value when being applied is a vector of a resource, a HeldBy
edge, and a process. Thus, when the two rules are applied as (apply release-rule g
(take-rule g)) and take-rule matches, the arity four version of the release-rule is
called. If the take-rule doesn’t match, then the arity one version of the release-rule
is called.

In the above case, it is likely that the release-rule can be applied to the result
of a take-rule application. Sometimes, the applicability of a rule is not only likely
but absolutely certain. In those cases, there are no additional restrictions that need
to be checked when an overloaded version of a rule gets called. Therefore, the
pattern is actually optional in a FunnyQT rule definition. If it is omitted, a rule is
completely equivalent to a function, i.e., it simply executes its body in the context of
its arguments.

The defrule macro discussed above defines a new function-valued var in the
current namespace. The letrulemacro defines one or many named rules as specified
by rule-specs which are accessible only in the lexical scope of body. As such, letrule
stands to defrule like letfn (see page 37) stands to defn.
Macro: funnyqt.in-place/letrule
(letrule [rule-specs] attr-map? & body)

Each rule in rule-specs is represented analogously to defrule.

(rule-name attr-map? [args] [pattern-spec] & body)
(rule-name attr-map? ([args] [pattern-spec] & body)+)

The optional attr-map of the letpattern can be used to specify options which apply
to all defined rules, and those may add or override individual options.

The rule macro defines an anonymous rule. Therefore, rule stands to defrule like
fn (see page 35) stands to defn.
Macro: funnyqt.in-place/rule
(rule name? attr-map? [args] [pattern-spec] & body)
(rule name? attr-map? ([args] [pattern] & body)+)

The rulemacro receives an optional name, an optional attr-map, a vector containing
a pattern-spec, and a body. Like with anonymous functions, the name is only accessible
from within the rule itself and can be used for recursive calls. Again, anonymous
rules may be overloaded on arity as indicated by the second signature.
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Defining Control Flow and
Modifying Behavior

As said in the last chapter, any rule defined with the rule definition macros defrule,
letrule, and rule expands into a plain Clojure function. Together with the contract
that a rule must only return logical false if it is not applicable, the standard Clo-
jure control structures may be used for controlling rule application. For example,
(or (rule-1 m) (rule-2 m) (rule-3 m)) applies the first applicable rule1 to the model
m and returns its value due to the short-circuiting nature of clojure.core/or.

Nevertheless, for frequently re-occurring rule application patterns such as as-
long-as-possible iteration and non-deterministic choice, FunnyQT defines several
higher-order rule combinators. These are discussed in section 22.1.

When applying a rule, it searches a match of its pattern. If a match can be found,
the rule’s actions are executed in the match’s context. This means that there is
no way to test if a rule is applicable without actually applying it. Section 22.2 on
page 235 introduces two rule application modifier macros which allow for testing a
rule for applicability and for retrieving the matches of a rule’s pattern.

22.1 Higher-Order Rule Combinators

In this section, several higher-order rule combinator functions are introduced.
They provide concise means to compose existing rules to new rules which support
frequently occurring rule application patterns in in-place transformations. These
patterns are
(1) sequential application of several rules to the same arguments,
(2) sequential application of several rules until one fails,
(3) sequential application of several rules until one succeeds,
(4) repeated application of one rule (either a fixed number of iterations or as long

1Actually, the rules are applied in sequence but if a rule can’t find a match (is inapplicable) it returns
nil and or evaluates the next rule application.
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as possible), or the
(5) application of one randomly chosen applicable rule from a given collection of

rules.
The rule combinators which might apply more than one rule or the same rule

multiple times have a starred variants supporting parameter passing which means
that values can be passed from one rule to the next rule.

It should be noted that all these combinators are not restricted to in-place trans-
formation rules. Their semantics only depend on the contract that a rule returns
a logically true value if it could be applied and logically false otherwise. All other
non-rule functions fulfilling this contract can be used with the higher-order combina-
tors discussed in the remainder of this section, too. Most importantly, the functions
returned by the combinators can be composed using the combinators again.

The first rule combinator is sequential-rule.
Function: funnyqt.in-place/sequential-rule
(sequential-rule & rules)

It receives a sequence of rules and returns a function of variable arguments. This
function applies each rule to its arguments in sequence collecting the individual
application results in a vector. It returns logical false if no rule could be applied.
Otherwise, i.e., if at least one rule could be applied, it returns the vector of application
results.

The conjunctive-rule combinator returns a function which behaves like a logical
and of the applications of the combined rules.
Function: funnyqt.in-place/conjunctive-rule
(conjunctive-rule & rules)

The returned varargs function applies all rules to its arguments in sequence until
an inapplicable rule is encountered. In this case, the function returns false. If all
rules could be applied, the return value is the value of the last rule application. I.e.,
((conjunctive-rule r1 r2 r3) m) is equivalent to (and (r1 m) (r2 m) (r3 m)).

In some transformation scenarios, applying some rule r1 might result in the
creation of a subgraph which is likely to be matched by another rule r2. In this case,
the rule r1 could return a vector which is suitable as sequence of actual parameters
for r2. The rule combinator conjunctive-rule* supports such a kind of parameter
passing between multiple rules.
Function: funnyqt.in-place/conjunctive-rule*
(conjunctive-rule* & rules)

It receives a sequence of rules again. The returned varargs function applies
the first rule to its arguments. Any later rule is applied to the return value of the
previous rule application. Like with conjunctive-rule, the first inapplicable rule
stops the overall application and false is returned. If all rules could be applied, then
the result is the value of the last rule’s application. Thus, for conjunctive-rule* the
equivalence in the following listing holds.

(= ((conjunctive-rule* r1 r2 r3) m x)
(when-let [ret (r1 m x)]

(when-let [ret (apply r2 ret)]
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(when-let [ret (apply r3 ret)]
ret))))

The next combinator, disjunctive-rule, returns a function which behaves like a
logical or of the applications of the combined rules.
Function: funnyqt.in-place/disjunctive-rule
(disjunctive-rule & rules)

Again, it receives a sequence of rules and it returns a varargs function. This
function applies the first applicable rule to the function’s arguments and returns
the value of the rule application. If none of the rules could be applied, logical false
is returned. I.e., ((disjunctive-rule r1 r2 r3) m) is equivalent to (or (r1 m) (r2 m)
(r3 m)).

For applying a rule a fixed number of times, there is the repeated-rule combinator.
Function: funnyqt.in-place/repeated-rule
(repeated-rule rule)
(repeated-rule n rule)

The combinator receives one single rule and an optional positive integer n. The
returned varargs function applies the given rule as long as possible but at most n
times and returns the number of successful applications.

The function returned by (repeated-rule r1) has the signature (fn [n & args]),
i.e., the number of repetitions has to be provided when the function is called whereas
it is already fixed when using the version of arity two. Thus, ((repeated-rule r1) 10
m) is equivalent to ((repeated-rule 10 r1) m).

The repeated-rule* combinator is similar to its counterpart without the star ex-
cept that it exhibits the same parameter passing feature as discussed above with
conjunctive-rule*.
Function: funnyqt.in-place/repeated-rule*
(repeated-rule* rule)
(repeated-rule* n rule)

The returned function’s behavior equals the behavior of the one returned by
repeated-rule. However, the given rule is only applied to the returned function’s
arguments once. All repeated rule calls receive the result of the previous application.

The next combinator, iterated-rule, returns a function performing an as-long-as-
possible iteration.
Function: funnyqt.in-place/iterated-rule
(iterated-rule rule)

The combinator receives a single rule and returns a varargs function. When
being called, that function applies the rule to its arguments as long as the rule
returns a logically true value2. The function returns the number of successful rule
applications or false if it couldn’t be applied at least once.

The iterated-rule* combinator is the parameter passing variant of iterated-rule.

2As a consequence, if rule can be applied indefinitely, the function returned by (iterated-rule rule)
will not terminate when being called.
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Function: funnyqt.in-place/iterated-rule*
(iterated-rule* rule)

The function being returned applies the rule to the arguments given to the
function once and then applies it iteratively to the value of the respective previous
application. Again, the number of successful applications is returned or false if the
rule couldn’t be applied at least once.

The random-rule combinator implements a non-deterministic choice.
Function: funnyqt.in-place/random-rule
(random-rule & rules)

The combinator receives a sequence of rules and returns a varargs function.
This function randomly selects one applicable rule and applies it to its arguments.
The value of the selected rule is the value of the overall application. If no rule is
applicable, then logical false is returned.

22.1.1 Interactive Rule Application

The interactive-rule combinator is a bit special and mainly intended for debugging
purposes because the returned function doesn’t implement somewell-defined control
flow between the given rules but it provides a facility for steering rule applications
interactively.
Function: funnyqt.in-place/interactive-rule
(interactive-rule & rules)

Calling the returned function will fire up a dialog window as shown in fig. 22.1.

Figure 22.1: The graphical user interface of an interactive rule

The dialog’s main compartment lists all rules which are currently applicable, one
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rule per line. The label starting each line states the rule’s name3.
The second component in each line is a combo box which shows a print repre-

sentation of the match which is currently selected for that rule. Initially, this is the
first match a rule is able to find but the user may select any match using the combo
box’s drop-down list.

The Show Match button allows for viewing the currently selected match in the
visualized model. In the screenshot, the bottom-left window shows the currently se-
lected match of the new-rule. The matched elements are highlighted in red color. The
match visualization always consists of all matched elements plus their neighboring
elements in order for the user to understand the context of the match.

Using the Apply Rule button, the user can apply the rule to the currently selected
match. As a result, the dialog vanishes and reappears with a refreshed list of
applicable rules and their matches.

At the bottom of the dialog, there are two more buttons. The View model button
opens a window visualizing the complete model. The window in the bottom-right of
the screenshot has been spawned by pressing this button. The Done button simply
quits the dialog without applying any rule.

The return value of the function returned by interactive-rule is either the number
of rules which have been applied, or it is nil in case no rule has been applied. If
an interactive rule is called and none of its rules has any match, then it returns
immediately with value nil.

22.2 Rule Application Modifiers

When a rule is executed, it searches for a match of its pattern and invokes its actions
in the context of this match. If there is no match, it returns logical false. Thus, the
test for applicability and the actual modification of the model in terms of the rule’s
actions are indivisible by default, e.g., when calling a rule like in (rule-1 model).
To be able to separate the test for a rule’s applicability from its actions, FunnyQT
defines two rule application modifier macros.

The first modifier is as-pattern which allows to apply a rule as a pattern.
Macro: funnyqt.in-place/as-pattern
(as-pattern rule-application)

So calling (as-pattern (rule-1 model)) returns the lazy sequence of matches of
rule-1’s pattern. The rule’s actions are completely disabled.

Being able to get all matches from a rule without having to apply its effects is a
valuable feature, and if (seq (as-pattern (rule-1 model))) returns logical true, then
rule-1 is indeed applicable, i.e., its sequence of matches is not empty.

However, this is not the best test for applicability. If the rule was called without
as-pattern afterwards, it would restart searching for a match again.

For testing a rule for applicability including the possibility to apply it afterwards,
3It is allowed to give anonymous rules to interactive-rule but those show up with generated names

like anon-rule22979--22984.
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there is the as-test modifier macro.
Macro: funnyqt.in-place/as-test
(as-test rule-application)

Calling (as-test (rule-1 model)) returns logical false if rule-1 is not applicable.
If it is applicable, it returns a parameter-less closure (a thunk) capturing the rule’s
first match and the rule’s actions. Applying the thunk executes the actions on the
captured match.

Thus, the following code tests rule-1 for its applicability, and if it is applicable, a
coin toss decides if the rule’s actions are applied to the captured match.

(when-let [t (as-test (rule-1 model))]
(when (>= (Math/random) 0.5)
(t)))

If rule-2 is a forall-rule, i.e., a rule with :forall option enabled, then the value of
the expression (as-test (rule-2 model)) is a vector of thunks, one thunk per match
of rule-2’s pattern in the model.

Note that rules called as tests can exhibit the same problem as forall-rules,
i.e., between the point in time where a match has been found and the time of the
application of the rule’s actions on this match, the model might have been modified
in a way which invalidates the match. Therefore, the :recheck rule option discussed
in chapter 21 starting on page 227 also applies to the thunks returned by calling
rules as tests. E.g., if rule-1 was declared with the :recheck option enabled, then
the thunk t would check if its captured match still conforms to the pattern before
applying the effects.



Chapter 23

Exploring State Space

State space exploration is a technique for analyzing in-place transformations. A
typical scenario is that there is a model representing a system in its current state
and a set of in-place transformation rules. When a rule matches and its actions are
applied, the system transitions into another state.

As example system, a simple counter with two digits is used in this chapter. Its
metamodel is shown in fig. 23.1.

Digit

val: Integer

Counter

0..1 1

secondaryHasSecondaryDigi t  

0..1 1

primaryHasPr imaryDig i t  

1 1

H a s N e x t  

Figure 23.1: A metamodel for a simple counter with two digits

The system of a counter consists of one Counter element and many Digit elements.
The latter have an integral value, e.g., the numbers from zero to nine. Every digit
knows the previous and next digit of the counter. Furthermore, the counter element
references one digit as its primary digit, and one digit as its secondary digit. These
two edges represent the clock hands of the counter when imagining it as an analog
clock, e.g., the HasPrimaryDigit edge represents the hand for minutes, and the
HasSecondaryDigit edge represents the hand for seconds.

Figure 23.2 on the following page shows three states of an example counter graph.
In order to keep the visualizations small and clear, a two-digit ternary counter is
used, i.e., there are three Digit elements with val attribute values from 0 to 2.

The leftmost graph represents the state 0:0, the graph in the middle represents
the state after ticking once, i.e., 0:1, and the rightmost graph represents the state
after ticking once again, i.e., 0:2. The next state induced by ticking once more
would be 1:0 where the secondary digit is 0 again and the primary digit advances
to 1. Then follow the states 1:1, 1:2, 2:0, 2:1, 2:2, and finally the initial state 0:0 is
reached again, i.e., in normal operation such a two-digit ternary counter is in one of

237
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v1: Digit

val = 0

v2: Digit

val = 1

e1: HasNext

v3: Digit

val = 2

e2: HasNext

e3: HasNext

v4: Counter

 

e4: HasPrimaryDigit

primary

e5: HasSecondaryDigit

secondary

v1: Digit

val = 0

v2: Digit

val = 1

e1: HasNext

v3: Digit

val = 2

e2: HasNext

e3: HasNext

v4: Counter

 

e4: HasPrimaryDigit

primary

e5: HasSecondaryDigit

secondary

v1: Digit

val = 0

v2: Digit

val = 1

e1: HasNext

v3: Digit

val = 2

e2: HasNext

e3: HasNext

v4: Counter

 

e4: HasPrimaryDigit

primary

e5: HasSecondaryDigit

secondary

Figure 23.2: The initial state of the counter graph (left) and the two following states
when ticking forward

32 = 9 different states at each time.
The transformation rules modifying the state of the counter are given in the

following. They are designed in a way which makes them applicable to any two-digit
counter no matter if it has digits from 0-2 or 0-60 or something else.

The tick-forward rule advances the counter. It uses :alternative patterns to
distinguish the situations where (1) only the secondary digit has to be advanced and
(2) where both the secondary and the primary digit have to be advanced. In both
cases, the advancement is realized by setting the target vertex of the respective
HasSecondaryDigit or HasPrimaryDigit edge to the digit which is connected to the
current one in terms of an outgoing HasNext edge.

(defrule tick-forward [g]
[c<Counter> -sec<:secondary>-> <> -<HasNext>-> next
:alternative [[:when (not (zero? (value next :val)))] ;; (1)

[:when (zero? (value next :val)) ;; (2)
c -prim<:primary>-> <> -<HasNext>-> next2]]]

(when prim
(set-omega! prim next2))

(set-omega! sec next))

The tick-backward rule is similar to the tick-forward rule except that its application
decreases the counter’s value and enables its usage as a countdown timer.

(defrule tick-backward [g]
[c<Counter> -sec<:secondary>-> cur <-<HasNext>- prev
:alternative [[:when (not (zero? (value cur :val)))] ;; (1)

[:when (zero? (value cur :val)) ;; (2)
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c -prim<:primary>-> <> <-<HasNext>- prev2]]]
(when prim

(set-omega! prim prev2))
(set-omega! sec prev))

The reset-counter resets the counter back to the state 0:0. It is applicable to all
states except for 0:0 in which case a reset would be a no-op anyway.

(defrule reset-counter [g]
[c<Counter> -<:secondary>-> d1
c -<:primary>-> d2
:when (or (not (zero? (value d1 :val)))

(not (zero? (value d2 :val))))]
(let [digit-zero (the #(zero? (value % :val))

(vseq g 'Digit))]
(set-adj! c :secondary digit-zero)
(set-adj! c :primary digit-zero)))

State space exploration helps analyzing scenarios where a set of rules modify
a system’s state by making these states explicit, i.e., during the exploration, an
explicit model consisting of states and rule-induced transitions is created. This
model is called the state space graph in the following, and its schema is shown in
fig. 23.3.

Model
InvalidTransition

failed : Set<String>

ValidTransition

Transition

rule : String

InvalidState

failed : Set<String>

ValidState

State

n : Integer
done : Set<String>

«graphclass»
StateSpaceGraph

1..* 1

«represents»

0..* 0..*
src t r g

Figure 23.3: FunnyQT’s state space schema

Every State in the state space graph corresponds to one or multiple equivalent
states of the model under transformation and every state of the model under trans-
formation corresponds to exactly one state in the state space graph1. States are
created with increasing values of their n attribute starting with 1. When a rule gets
applied to the model, a corresponding Transition edge having the rule’s name set as
value of the rule attribute is created which starts at the State corresponding to the

1Actually, every state of the model under transformation is represented as a separate copy of the
model with some changes



240 CHAPTER 23. EXPLORING STATE SPACE

model before the rule application and ends at the State corresponding to the model
after the rule application.

When a rule’s application results in a model which is equivalent (according
to a customizable definition of equivalence) to an earlier model, the State vertex
representing this earlier state of the model is reused. For example, when exploring
the state space of the counter example with respect to only the tick-forward rule
starting with the initial model representing the state 0:0, repeated rule application
creates states corresponding to 0:1 to 2:2. An appropriate definition of equivalence
in this scenario is that two models representing counter states are equivalent if and
only if both the primary and secondary hands point to digits with the same values.
Thus, when applying tick-forward after the creation of the state corresponding to
2:2 the resulting model is equivalent to the initial model representing the state 0:0
and thus its State vertex in the state space graph is reused.

All rules which were tried to be applied to the model corresponding to a state
are saved in the state’s done attribute. As soon as all rules have been applied to the
models corresponding to all State vertices in the state space graph, the state space
exploration is finished. Of course, depending on the system being modeled and the
transformation rules, it is possible that the rules always transition the system into
new states and this stop criterion is never met. For these cases, other stop criteria
may be defined which are going to be discussed in the remainder of this chapter
where FunnyQT’s state space exploration functions are discussed.

Step-wise state space generation. The function state-space-step-fn is the most
important FunnyQT state space generation construct. It receives an initial model
init-model of the system under transformation, a comparison function comparefn, a
collection of rules, and an optional map of options.

The comparefn receives two models representing the states before and after a
rule’s application and should return true if and only if the two models are equivalent.
A predefined comparison function is funnyqt.generic/equal-models?which has already
been discussed in section 12.8 on page 115.
Function: funnyqt.in-place/state-space-step-fn
(state-space-step-fn init-model comparefn rules)
(state-space-step-fn init-model comparefn rules options)

The return value of state-space-step-fn is a function for step-wise state space
generation. This function is overloaded on arity and possesses two metadata entries
as shown in the next listing.

(with-meta (fn ([] ...)
([select-rules-fn] ...)
([select-rules-fn select-state-fn] ...))

{:state-space-graph #<StateSpaceGraph>
:state2model-map #<volatile {#<State> #<CounterGraph>}>})

The :state-space-graph metadata key’s value is the state space graph, and the
:state2model-map metadata key’s value is a map assigning to each state in the state
space graph the corresponding model representing this state. This map is wrapped
in a volatile because it changes over time. Thus, by dereferencing the value of
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:state2model-map one retrieves the state-to-model map which is current at that point
in time.

Initially, that is, immediately after a state space step function has been created
and it has not been applied yet, the state space graph contains exactly one State
vertex with attribute n set to 1. This single state represents the initial model.

When the state space step function gets called, first the rules to be applied in this
step are computed by calling (select-rules-fn rules). The default select-rules-fn is
clojure.core/identity, i.e., all rules given to state-space-step-fn are to be applied. A
custom select-rules-fn can be used select only a subset of rules (or even a completely
separate set of rules) for application in this step.

After the rules selection, an unfinished state is selected by calling (select-state-fn
unfinished-states). An unfinished state is a state to which at least one of the selected
rules hasn’t been applied yet, i.e., a state whose done attribute doesn’t contain all the
names of the selected rules. The default state selection function is clojure.core/first.
The function clojure.core/rand-nth which picks a random element of a collection is
a likely candidate for a select-state-fn in case the state space generation should be
performed in a non-deterministic order.

After an unfinished state has been selected, the step function applies all selected
rules to it. Hereby, each rule is actually applied to a copy of the model under
transformation corresponding to the selected state. The copy is created using the
funnyqt.generic/copy-model function already discussed in section 12.9 on page 116.

Once a rule has been applied, the modified model is compared to the models cor-
responding to the state space graph’s states using the comparefn one after the other.
If there exists a model which is equivalent to the current one, its corresponding state
is re-used as target of a new Transition edge which starts at the state corresponding
to the model before the rule application. If all models of existing states are different,
then a new State is created as target vertex of the new Transition and associated
with the current model. In both cases, the transition’s rule attribute is set to the
name of the rule.

A state space step function returns false if the select-state-fn returned nil
which usually only happens if there are no unfinished states anymore. Otherwise, it
returns a logically true value. Thus, as long as the state space step function returns
a logically true value, the state space generation has not been completed yet.

The map of options given at the call to state-space-step-fn map contain entries
with the following keys:
:additional-args The value of this option is a sequence of additional arguments for

rule applications. The step-wise state space generation function applies rules
using (apply rule model (:additional-args options)).

:select-rules-fn The value of this option is a function that receives the collection
of rules given to state-space-step-fn and should return a collection of rules to
be applied in a step. If omitted, the collection rules given as argument is used
as-is and defines the order. The argument of the same name of the step-wise
state space generation function overrides the value of this entry.

:select-state-fn The value of this option is a function that receives the lazy sequence
of unfinished states and should return one of them. If omitted, the selected
rules are always applied to the first unfinished state’s model. The argument of
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the same name of the step-wise state space generation function overrides the
value of this entry.

:state-preds The value of this option is a collection of predicates on the model under
transformation. Each time the step function is going to create a new State for
the current state of the model, each of those predicates is tested on this model.
If all predicates return a logically true value, the new state’s vertex class is
ValidState. Otherwise, its vertex class is InvalidState and the failed attribute
names all predicates which returned a logically false value.
The :state-preds option should be used for specifying invariants of the model
under transformation which must not be infringed by the transformation rules.
If they do nonetheless, this is an error in the rules whose transitions lead to
the invalid state. An example invariant is given in the following listing.
(defn exactly-two-clock-hands? [cg]
(and (= 1 (ecount cg 'HasPrimaryDigit))

(= 1 (ecount cg 'HasSecondaryDigit))))

Every counter graph in the example needs to have exactly one HasPrimaryDigit
edge and exactly one HasSecondaryDigit edge.

:transition-preds The value of this option is a map whose keys are (a subset of)
the transformation rules and whose values are collections of predicates, e.g.,
{rule-1 [p1 p2], rule-2 [p3]}. When a rule has been applied to the model
corresponding to some state, each of the rule’s predicates p is called like (p
old-model match new-model), i.e., the predicate receives the model in the state
before the application, the match of the rule’s pattern, and the model in the
state after the application.
If all predicates associated with the applied rule return a logically true value,
then the edge class of the transition being created for the rule application is
ValidTransition. Otherwise, it is an InvalidTransition and the transition’s failed
attribute names all predicates which returned a logically false value.
The :transition-preds option is intended to be used for specifying post-conditions
of the transformation rules. An example transition predicate could assert that
after the rule reset-counter has been applied, the two clock hands represented
by the HasSecondaryDigit and HasPrimaryDigit edges must point to a Digit vertex
with val equaling 0 as tested by the counter-at-0:0? predicate shown below.
(defn counter-at-0:0? [old-model match new-model]
(let [val-of (fn [ec]

(value (omega (the (eseq new-model ec))) :val))]
(and (= 0 (val-of 'HasPrimaryDigit))

(= 0 (val-of 'HasSecondaryDigit)))))

It only asserts the condition stated above in the new-model without considering
the old-model and the match.

:state-space-preds The value of this option is a collection of predicates on the state
space graph itself. They don’t have an effect on the state space graph but can
be tested when needed.
This option should be used to specify invariants on the state space graph
itself. For example, with counter models and the transformation rules from the
example, it is clear that the state space graph’s number of states is bounded.
Concretely, with a ternary counter with two digits, there can be at most nine
different states in the state space graph. This invariant can be made explicit
by using at-most-9-states? being defined as
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(defn at-most-9-states? [ssg]
(<= (vcount ssg) 9))

as a state space predicate.
After discussing the validation options, the return value of the state space step

function can be concretized. Above, it has been said that it returns a logically true
value if the select-state-fn returned some unfinished state and thus rules have been
applied. In this case, the actual return value is a vector of the form

[invalid-states invalid-transitions failed-state-space-preds]

where invalid-states is the lazy sequence of State vertices for which at least one
predicate in :state-preds failed, invalid-transitions is the lazy sequence of Transi-
tion edges for which at least one predicate in :transition-preds failed, and finally,
failed-state-space-preds is the lazy sequence of predicates in :state-space-preds
which fail when being applied to the current state space graph.

These sequences can be inspected by the caller of the state space step function.
For example, a caller might call the step function repeatedly until either the complete
state space graph has been built and the step function returns false or until some
predicate failed.

Exhaustive state space generation. The function create-state-space can be used
to conveniently create the complete state space for a given inital model and a
collection of rules. It has the same arguments as the state-space-step-fn discussed
above, i.e., it receives an initial model init-model, a comparison function comparefn,
a collection of transformation rules, and an optional map of options.
Function: funnyqt.in-place/create-state-space
(create-state-space init-model comparefn rules)
(create-state-space init-model comparefn rules options)

In fact, create-state-space uses a step-wise state space creation function returned
by state-space-step-fn internally where the arguments of the former are passed to
the latter.

By default, create-state-space repeatedly calls its internal step-wise state space
creation function until either
(1) that returns false in which case the complete state space graph has been created,

or
(2) at least one predicate in :state-preds, :transition-preds, or :state-space-preds

failed.
The return value of create-state-space is a vector of the form

[state-space-graph state2model-map step-fn-retval]

where state-space-graph is the final state space graph, state2model-map is the final
map assigning to State vertices in the state-space-graph the corresponding models,
and step-fn-retval is the return value of the internal step-wise state space creation
function. The returned vector has :state-space-step-fnmetadata attached. Its value
is the internal step-wise state space creation function. Thus, it can be used to drive
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the state space creation further if create-state-space returned because of failed
predicates.

In addition to the options which are also applicable to state-space-step-fn,
create-state-space supports an entry with key :recur-pred in its map of options.
The value of this entry must be a function of five arguments.

(fn [ssg s2m-map invalid-states invalid-transitions failed-state-space-preds]
...)→֒

This function receives the current state space graph ssg, the current value of the
state-to-model map s2m-map, the lazy sequences of invalid states invalid-states, the
lazy sequence of invalid transitions invalid-transitions, and the lazy sequence of
state space predicates failed-state-space-preds which fail on the current state space
graph.

The :recur-pred predicate is called whenever the internal step-wise state space
function returned a logically true value, i.e., the state space generation hasn’t been
finished yet. If the predicate returns logically true, then the state space generation
resumes. Otherwise, create-state-space returns immediately.

The final state space graph created by the call of create-state-space in the next
listing is shown in fig. 23.4 on the facing page.

(create-state-space
initial-counter-graph
#(g/equal-models? %1 %2 false)
[tick-forward tick-backward reset-counter]
{:state-preds [exactly-two-clock-hands?]
:transition-preds {reset-counter [counter-at-0:0?]}
:state-space-preds [at-most-9-states?]})

;=> [#<StateSpaceGraph> {...} false]

The initial-counter-graph is the counter graph in state 0:0 as shown in the left part
of fig. 23.2 on page 238. This graph corresponds to the State vertex v1. The state
vertices v2 and v3 correspond to the counter graphs after applying the tick-forward
or tick-backward rule once to the initial graph, respectively, i.e., v2 represents the
counter graph in state 0:1 and v3 represents the counter graph in state 2:2.

As can be seen, there are exactly nine state vertices which is expected. In every
state, the tick-forward and tick-backward rules have been applied, and corresponding
Transition edges have been created. The reset-counter rule has been applied in
every state except for the initial state v1. Again, this is expected because the rule
explicitly checks that the secondary or the primary digit is non-zero. Therefore, it is
inapplicable in the initial state where the model represents the counter value 0:0.

The absence of InvalidState vertices and the return value of the create-state-space
call indicate that the invariant exactly-two-clock-hands? was satisfied by all states’
models. Likewise, the absence of InvalidTransition edges and the return value of the
create-state-space call indicate that the reset-counter post-condition counter-at-0:0?
has always been satisfied. Lastly, the return value also indicates that at all times,
the invariant at-most-9-states? has been satisfied by the state space graph.
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v1: ValidState

done = {tick-forward, tick-backward, reset-counter}
n = 1

v2: ValidState

done = {tick-forward, tick-backward, reset-counter}
n = 2

e1: ValidTransition
rule = "tick-forward"

trg

src

v3: ValidState

done = {tick-forward, tick-backward, reset-counter}
n = 3

e2: ValidTransition
rule = "tick-backward"

trg

src

e4: ValidTransition
rule = "tick-backward"

trg

src

e5: ValidTransition
rule = "reset-counter"

trg

src

v4: ValidState

done = {tick-forward, tick-backward, reset-counter}
n = 4

e3: ValidTransition
rule = "tick-forward"

trg

src

e6: ValidTransition
rule = "tick-forward"

trg

src

e8: ValidTransition
rule = "reset-counter"

trg

src

v5: ValidState

done = {tick-forward, tick-backward, reset-counter}
n = 5

e7: ValidTransition
rule = "tick-backward"

trg

src

e11: ValidTransition
rule = "reset-counter"

trg

src

e10: ValidTransition
rule = "tick-backward"

trg

src

v6: ValidState

done = {tick-forward, tick-backward, reset-counter}
n = 6

e9: ValidTransition
rule = "tick-forward"

trg

src

e14: ValidTransition
rule = "reset-counter"

trg

src

e12: ValidTransition
rule = "tick-forward"

trg

src

v7: ValidState

done = {tick-forward, tick-backward, reset-counter}
n = 7

e13: ValidTransition
rule = "tick-backward"

trg

src

e17: ValidTransition
rule = "reset-counter"

trg

src

e16: ValidTransition
rule = "tick-backward"

trg

src

v8: ValidState

done = {tick-forward, tick-backward, reset-counter}
n = 8

e15: ValidTransition
rule = "tick-forward"

trg

src

e20: ValidTransition
rule = "reset-counter"

trg

src

e18: ValidTransition
rule = "tick-forward"

trg

src

v9: ValidState

done = {tick-forward, tick-backward, reset-counter}
n = 9

e19: ValidTransition
rule = "tick-backward"

trg

src

e23: ValidTransition
rule = "reset-counter"

trg

src

e22: ValidTransition
rule = "tick-backward"

trg

src

e21: ValidTransition
rule = "tick-forward"

trg

src

e26: ValidTransition
rule = "reset-counter"

trg

src

e24: ValidTransition
rule = "tick-forward"

trg

src

e25: ValidTransition
rule = "tick-backward"

trg

src

Figure 23.4: The final state space graph for the ternary two-digit counter

Interactive state space generation and exploration. The explore-state-space
function provides means to create and explore the state space interactively using a
simple graphical user interface. It has the same arguments as state-space-step-fn,
and in fact, it utilizes a step-wise state space creation function internally.
Function: funnyqt.in-place/explore-state-space
(explore-state-space init-model comparefn rules)
(explore-state-space init-model comparefn rules options)

Figure 23.5 on the following page shows a screenshot of the explore-state-space
GUI. The call to explore-state-space had the same arguments as the call to
create-state-space above except that one additional rule erase-clock-hands has been
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specified. This rule erases the HasPrimaryDigit and HasSecondaryDigit edges from
the counter graph. Of course, this is not a sensible rule but it is used here only in
order to be able to illustrate how failing predicates are indicated in the GUI.

Figure 23.5: Screenshot of the explore-state-space GUI

The State Selection panel contains two combo boxes which allow the user to
select a state for viewing a visualization of the selected state’s model or for applying
the transformation rules to the model of that state. The combo boxes for state
selection use green checkmarks for valid states and red crosses for invalid states.
When the mouse hovers over an invalid state, a tooltip displays the names of the
invariants in :state-preds which returned false for the model corresponding to this
state.

The window on the right visualizes the model corresponding to the invalid state
number 4. This state is the result of applying the erase-clock-hands rule to the initial
model, and as can be seen, the Counter vertex has no outgoing HasPrimaryDigit and
HasSecondaryDigit edges anymore. Thus, the exactly-two-clock-hands? predicate fails
which is the reason why this model is represented by an InvalidState vertex in the
state space graph.

The bottom part of the panel displays some statistics about the current state space
graph, i.e., the number of states and transitions, and if all state space predicates
are satisfied by the current state space graph. Again, a green checkmark indicates
that all predicates are satisfied, and a red cross would indicate that there are failing
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predicates which would be displayed in a tooltip.
The Rule Selection panel displays checkboxes for all rules which have been

provided at the call to explore-state-space. Only the checked rules are considered
when applying rules to the model corresponding to some state.

Below the rule selection panel, there is a button to view the current state space
graph as shown in the lower window in the screenshot. Valid states are displayed
with a green background and invalid states are displayed using a red background. If
there were invalid transitions, those would be displayed in red, too. As can be seen
from the value of the failed attribute, v4 is an invalid state because the invariant
exactly-two-clock-hands? returns false when being applied to this state’s model.

The checkbox Show :done toggles if the value of the states’ done attribute should
be displayed in the visualization. Because this makes the state visualizations very
wide and thus degrades the layout, the option is disabled by default.

The Done button closes the GUI and makes explore-state-space return. The re-
turn value is a vector of the form [ssg s2m-map] where ssg is the state space graph
and s2m-map is the state-to-model map assigning to state vertices the correspond-
ing models. Like with create-state-space, the returned vector has the step-wise
state space generation function used internally attached as :state-space-step-fn
metadata.
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Related Work

In this chapter, several in-place transformation approaches are briefly discussed,
and similarities and differences with FunnyQT’s pattern matching and in-place
transformation DSLs are revealed.

The Epsilon framework [Kol+15] supports defining patterns and in-place trans-
formation rules using its Epsilon Pattern Language (EPL) which is a textual DSL. A
pattern consists of a name, one or many element declarations called roles, and an
optional match expression.

In the simplest form, each role consists of a variable and an element type meaning
that the variable can be bound to any element in the model being an instance of
this type. The match expression is a boolean EOL expression which may restrict
the pattern by defining connection constraints or constraints on attribute values. In
such a simple pattern, the match expression acts as a filter on the Cartesian product
of all possible bindings of the declared variables which is obviously inefficient.

Therefore, the possible bindings of a role may additionally restricted using a
domain and a guard both being EOL expressions. The domain must result in a
collection of model elements of the role’s declared type and only the elements of
this collection are considered valid bindings of the role instead of all instances of
the declare type. Usually, domain expressions navigate references of previously
declared roles encoding a local search. The guard expression is evaluated once
for every possible binding of a role, and only if its value is true, the binding is
considered.

Roles can also be negated in which case they define a simple form of negative
application conditions comparable to FunnyQT’s negative edges. Furthermore, roles
can be restricted with a cardinality consisting of a lower and an upper bound. Then,
a role has valid bindings if and only if its domain’s size fits into these bounds.

Roles may be declared as optional. In this case, if the pattern matches does not
depend on the optional roles. If they have no possible binding with respect to their
domains and guards, the pattern may still match. The optionality of a role may also
depend on other roles, e.g., it is possible to declare that a role is optional if and only
if some other role has found a match. This allows for defining alternatives similar

249



250 CHAPTER 24. RELATED WORK

to FunnyQT’s alternative patterns. However with FunnyQT, the alternatives are
complete subpatterns which may match arbitrary many elements instead of only
one element.

Lastly, roles can be declared as active only in certain conditions like some other
optional role having no binding. The difference between optional and inactive roles
is that for the latter, it won’t even be attempted to find a match whereas an optional
role will always match if its domain contains an element satisfying its guard.

Patterns may also contain three special blocks containing EOL statements which
effectively change a pattern from a querying construct to an in-place transformation
rule. There may be an onmatch block which is invoked for every binding of the
declared roles satisfying all guards and the match expression. There may also be
a nomatch block which is invoked for all bindings of roles for which at least one
guard or the match expression does not hold. These two blocks are called during
the search, and their statements must not modify the model because this could
break iterators. Finally, there may be a do block which has the same semantics
as the onmatch block except that it is invoked after the search for all matches has
already been finished. Here, EOL statements may be placed which actually change
the model.

Patterns can be invoked in a one-off or an iterated manner. With the former,
all matches are computed once (and then possibly acted upon), with the latter the
process is repeated until no matches can be found anymore or a fixed upper bound
of iterations has been performed. The one-off semantics correspond to FunnyQT’s
forall-rules and the iterated semantics correspond to repeating or iterating a forall-
rule with the rule combinators repeated-rule or iterated-rule.

AGG [Tae03] is a general graph transformation approach closely following the
algebraic approach to graph transformations [Cor+97; Ehr+97]. It uses the SPO
approach by default but DPO can be enabled, too.

AGG has its own graph representation where graphs consist of nodes and directed
arcs which are first-class objects. Both nodes and arcs may be typed and attributed
where the typing may be defined either as simple sets of possible labels for nodes
on the one hand and arcs on the other hand. Alternatively, a more strict typing
which also specifies the allowed start and end node types for arcs of some type, a
type graph may be defined which is a metamodel for a class of graphs. Multiple
inheritance is supported for node types. One specialty of AGG is that the nodes and
arcs of a graph may be attributed with arbitrary Java objects.

Transformation rules are defined visually with the left-hand side (LHS) and the
right-hand side (RHS) being separated, and the morphism mapping elements of the
LHS to elements of the RHS may be specified freely. For example, it is possible to
define a non-injective morphism where multiple nodes of the LHS are mapped to one
single node in the RHS which implies that these nodes are to be merged into one
single node which takes over all incident edges. Aside from the structural condition
implied by the LHS, attribute conditions and negative application conditions are
supported but more advanced pattern matching concepts such as alternative or
nested patterns are not.

Rules can be executed in two modes, the step mode and the interpretation mode.
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In the step mode, the user can select one single rule and one of the rule’s matches
interactively and execute the rule on the selected match. In interpretation mode,
a random applicable rule is selected and executed and this step is repeated until
either no rule is applicable anymore or the user stops the process.

I simple form of control flow is enabled by layering where rules can be assigned
to layers ≥ 0. With layered graph transformations, the rules of layer n are executed
only after all rules of layer n−1 have become inapplicable. Furthermore, every layer
may have exactly one trigger rule. If the trigger rule is not applicable, then all rules
of this layer are skipped.

AGG allows also to define consistency constraints which are invariants that have
to be satisfied by the initial graph under transformations and all graphs derived
by rule applications. From these global consistency constraints, so-called post
application constraints can be generated for selected rules. Such rules are only
applicable if the graph after the rule’s application still satisfies the constraint.

Furthermore, AGG supports critical pair analysis in order to show that a graph
transformation system consisting of multiple rules is confluent [HKT02], i.e., no
matter in which order the rules are applied to which matches, the final result graph
is always the same.

For testing if a given graph is member of the possibly infinite set of graphs
derivable by a graph grammar from a given initial graph, AGG provides a graph
parser. In essence, this parser inverts all rules of the grammar1 and then tries to
derive the initial graph from the given one.

GROOVE2 is a general graph transformation approach with a special emphasis
on verification of graph transformations. GROOVE uses simple labeled graphs and
the SPO approach for rewriting. Matching is performed non-injectively, i.e., distinct
nodes in the pattern may be matched to the same node in the host graph but special
edges labeled != may be inserted to define inequalities.

Rules are defined visually and the LHS and RHS of a rule are defined as single
diagrams where colors specify which elements are to be preserved, deleted, or
created.

GROOVE supports arbitrary constraints on attribute values, negative application
conditions, and nested rules allowing to match and rewrite all occurrences of
a subpattern in the context of a match of a surrounding pattern. Furthermore,
GROOVE allows for regular expressions as edge labels which are similar to regular
path expressions (see section 15.1 on page 147), e.g., an edge -father+-> between
two pattern nodes matches two nodes in the host graph which are connected by one
edge with label father or a sequence of multiple such edges.

By default, all rules are applied to an initial graph in parallel and as long as
possible leading to the state space induced by the initial graph and the set of rules.
Rules can have priorities in which case rules with a lower priority are inapplicable as
long as a rule with a higher priority is applicable (similar to AGG’s layered approach).
Additionally, there is a textual rule application language giving richer means for
defining the control flow between rules.

1This is not feasible in the general case thus the graph parsing capability depends on the grammar.
2http://groove.cs.utwente.nl (last visited: 2015-10-05)
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As mentioned, GROOVE focuses on verification of graph transformation systems.
From a given initial graph and a set of rules, the state space can be generated and
analyzed using a model checker which is able to verify properties expressed in linear
temporal logic (LTL) or computational tree logic (CTL).

A problem with state space analysis in general is that the number of states
induced by a set of transformation rules and an initial graph is possibly unbounded.
In [Gha+12], an abstraction concept of is introduced where parts of concrete graphs
are aggregated in abstractions called shapes. Every node and every edge in a shape
represents many concrete nodes and edges in the host graph. It can be shown that
using these abstractions, the state space stays finite and a simple logic expressing
certain properties on the graph’s nodes is preserved.

Like AGG, GROOVE also supports checking the confluence of a graph transfor-
mation system using critical pair analysis.

SDMLib3 [Eic+14] is a light-weight modeling framework implemented in Java with
an emphasis on programming. It provides Java APIs with fluent interfaces4 which
allow to program metamodels. From these metamodels, code can be generated
which in turn allows to program models conforming to these metamodels.

In addition to the model API, a metamodel-specific pattern matching API can
be generated. In combination with the framework’s standard pattern matching
API, patterns can be constructed and evaluated in plain Java. Beside structural
constraints, pattern may define attribute and cardinality constraints, negative appli-
cation conditions, and subpatterns. Subpatterns may be declared as being optional.
From every pattern it is possible to iterate all matches, thus when a pattern contains
a subpattern from which all matches are retrieved, this is equivalent to nested
patterns in FunnyQT.

Patterns may include calls to modification operations, i.e., for deleting matched
elements, creating new elements, or setting attributes and references, thus turning
a pattern into in-place transformation rules. Of course, in addition to these basic
modification operations on matched elements, arbitrary Java methods may also be
called.

Patterns and rules encoded in plain Java using the SDMLib API can be visualized
in which case a rule is drawn as a kind of object diagram comprising both the LHS
and the RHS where colors and stereotypes and further annotations indicate which
elements are preserved, deleted, or created, and which parts of a pattern forms a
NAC, an optional subpattern, or an iterated subpattern.

Henshin [Are+10; BET12] is a graph transformation language for EMF models.
Transformations rules are specified as extended object diagrams using an Eclipse-
based visual editor. Both the LHS and the RHS of a rule are drawn as one diagram
and stereotypes and colors are used to define which elements are to be preserved,
deleted, or created. For rewriting, the SPO and the DPO approach can be used and
arbitrarily mixed on a per-rule basis. The injectivity of pattern matching, i.e., if two

3https://sdmlib.org/ (last visited: 2015-10-07)
4http://www.martinfowler.com/bliki/FluentInterface.html (last visited: 2015-10-07)
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distinct elements in the pattern must be matched to distinct elements in the host
graph, may also be defined on a per-rule basis.

Concerning pattern matching and transformation features, Henshin supports
positive and negative application conditions, arbitrary constraints on attribute values
(specified as JavaScript expressions), parametrization of rules, and nested rules.
The latter implement a for-all semantics, i.e., for a match of the surrounding kernel
rule, all matches of the nested rule are found and rewritten. This is very similar to
FunnyQT’s nested patterns. However, with nested patterns in FunnyQT, the action
of a rule has access to all matches of the nested pattern whereas a nested rule
in Henshin has a strictly local perspective. It has access only to the match of the
surrounding pattern and the current match of the nested pattern.

The control flow between rules is also defined visually using different so-called
units. Rules are units, too, and there are further units for sequential execution,
conditional execution, execution by priorities, and iterated execution. Units may
have parameters allowing to pass values from one unit to the next unit.

Henshin comes with an efficient interpreter engine and alternatively provides a
code generator which emits Java code that utilizes Apache Giraph 5 for executing
rules on large models in a distributed and massively parallel manner.

For verification purposes, Henshin provides configurable state space generation
and analysis features with interfaces and exports to external tools. In the simplest
case, invariants can be defined using OCL but more properties can be checked using
external model checkers such as CADP6, mCRL27, and PRISM8.

For example, Henshin supports stochastic graph transformation systems as
defined in [HLM06]. Here, rules model transitions between different states of a
system, e.g., a formerly working connection between two nodes in a network goes
down. Rules are annotated with rates expressing how frequently such transitions are
to be expected. With such graph transformation systems, the state space analysis
does not only enumerate all states which are possible given the set of rules but for
every state, the likelihood of its occurrence is computed, too. A similar approach also
supported by Henshin are probabilistic graph transformation systems [KG12] where
a rule has one left-hand side and arbitrary many right-hand sides each associated
with a given probability.

The pattern matching and in-place transformation features of FunnyQT and
Henshin are quite similar. A prototypical translator from Henshin transformations
to equivalent FunnyQT transformations has been developed9. This translator allows
to define transformations using the visual Henshin editor in Eclipse and then export
it to a transformation defined using the FunnyQT in-place transformation DSL.

GrGen.NET [Gei08; JBK10; JBG15] is a graph transformation approach with a
special emphasis on graph rewriting in the context of compiler construction.

As its name suggests, GrGen.NET is based on the .NET platform. Therefore,
5http://giraph.apache.org/ (last visited: 2015-10-05)
6http://cadp.inria.fr/ (last visited: 2015-10-05)
7http://www.mcrl2.org/ (last visited: 2015-10-05)
8http://www.prismmodelchecker.org/ (last visited: 2015-10-05)
9https://github.com/jgralab/funnyqt-henshin (last visited: 2015-10-07)
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it comes with its own metamodel and model representations and provides textual
languages to define metamodels and models. The GrGen graph representation
considers edges as first-class entities similar to JGraLab, i.e., edges are typed and
may be attributed. The types of nodes and edges are modeled in a type graph as
node and edge classes with their attributes, and multiple inheritance between node
classes on the one hand and edge classes on the other hand is supported, too.

Rules are defined using a concise textual notation and, in the simplest case,
consist of a pattern part and a rewriting part. The definition of stand-alone patterns
for plain querying purposes is supported, too. By default, rewriting is performed
according to SPO semantics but can be switched to DPO using a rule modifier.
Additionally, it is also possible to require either only the identification or the dangling
condition to be ensured and there is an additional exact matching mode which allows
nodes to be matched only if all their incident edges are matched, too. Thus, the
exact mode in essence enforces the dangling condition also for nodes which are
not going to be deleted. Like with FunnyQT, GrGen.NET supports performing the
pattern matching process in parallel for specifically annotated rules in order to
increased efficiency.

GrGen.NET is very expressive and supports arbitrary constraints, negative and
positive application conditions, and patterns may contain subpatterns. There are
iterated subpatterns similar to FunnyQT’s nested patterns, optional subpatterns,
and alternative subpatterns. Every subpattern may define its own rewriting part.

In addition to usual graph rewriting, GrGen.NET allows for retyping both nodes
and edges. The attributes and incident edges in the case of a retyped node which
are allowed for both the old and the new type are retained.

Patterns and rules may be parametrized and they may define their return values
similar to FunnyQT’s custom match representations. Patterns and rules may call
other patterns and rules, and defining recursive rules is possible.

GrGen.NET uses extended graph rewrite sequences (XGRS) for controlling rule
executions. For example, if r, s, and t are rules, then r+ || s & t[2,17] executes
r as long as possible but at least once. Only if r couldn’t be applied at least once,
then s and t (the latter at least twice and at most 17 times) are executed (|| is the
short-circuiting logical OR), and the sequence yields success if both the executions
of s and t[2,17] were successful (& is the non-short-circuiting logical AND). XGRS
also supports assigning the results of a pattern or rule to a variable, and every rule
can be called as a pattern in which case its matches are returned without performing
the rule’s rewriting step similar to FunnyQT’s as-pattern rule application modifier.

Extra features provided by GrGen.NET are good graph visualizing capabilities,
and a visual debugger for rules which allows for inspecting matches. Additionally,
the execution of XGRS can be traced.

The new VIATRA (version 3, [Ber+15]) introduces itself as a platform for reactive
model transformations where rules are triggered by events instead of being invoked
explicitly. Such reactive transformations are enabled by VIATRA’s event-driven
virtual machine and executed continuously as reactions to changes applied to the
underlying models.

A reactive transformation rule consists of at least two parts: a pattern describing
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a precondition and actions to be performed on events fired for occurrences of this
pattern.

The patterns are defined using EMF-IncQuery which has already been discussed in
chapter 19 starting on page 217. EMF-IncQuery is an incremental pattern matching
approach, which means that all matches of a pattern are cached in a special data
structure which is updated automatically whenever the model is changed. Therefore,
all matches of all patterns are available at all times and appear or disappear as soon
as a corresponding change in the model is performed.

Actions are specified using plain Xtend10 code, thus like with FunnyQT, actions
are not limited to performing changes on the model but they can do arbitrary
computations.

There can be several different actions for each rule, each action being associated
with a specific event. The supported events are appearance, i.e., a new match of the
rule’s pattern came into being, disappearance, i.e., the elements of a previous match
have been deleted or modified in such a way that they form no match anymore, or
update, i.e., the elements of a previous match have been updated in a way which
make them stay a valid match of the rule’s pattern.

With reactive transformations, rules are triggered by events instead of explicitly
invoking them and there is a possibility that multiple rules are triggered for a given
change in the model. VIATRA allows for defining custom conflict resolvers which
select the rule to be executed next from the set of all activated rules. There are also
several predefined resolvers implementing standard strategies such as FIFO, FILO,
random choice, rule prioritization, or interactive selection by the user.

10http://www.eclipse.org/xtend/ (last visited: 2015-10-05)
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Summary

This part deals with the definition of out-place transformations which
create new or populate existing target models based on given source
models. First, chapter 25 starting on page 261 gives an introduction into
the topic.

After the introduction, FunnyQT’s two approaches for realizing such
transformations are described. On the one hand, there is an embedded
rule-based DSL discussed in chapter 26 starting on page 265, and on the
other hand, there is an operational API discussed in chapter 27 starting on
page 281 where the target model of a transformation is defined in terms
of the extensions of its metamodel’s constituents.

Finally, chapter 28 starting on page 301 closes this part with a discus-
sion of the related work in this field.





Chapter 25

Introduction

In contrast to in-place transformations which modify a given model and have been
discussed in part VI starting on page 221, out-place transformations are transfor-
mations between two or more models. In the case of two models, one model acts as
the source model and is only queried while the other acts as the target model in
which elements are created.

Frequently, the terms model-to-model transformation or just model transforma-
tion are used as a synonym for out-place transformations.

The classical scenario for out-place transformations as propagated by the Object
Management Group1 is illustrated in fig. 25.1.

t:Model

mb:Modelma:Model

mmt:MetaModel mmb:MetaModelmma:MetaModel

mmm:MetaMetaModel

«conformsTo»

targetsource

«conformsTo»
«conformsTo»

«conformsTo»

«conformsTo»
«conformsTo»

«conformsTo»

Figure 25.1: The classical out-place transformation scenario

At the bottom layer, there is a source model ma and a target model mb, and a
transformation t which translates the source model to the target model. Usually, the
metamodels of source and target model are different, i.e., mmb is a different language
than mmb but they conform to the same metametamodel mmm. For example, if the
metametamodel is Ecore, then the metamodels are Ecore models and the source
and target models of the transformation are EMF models. Or if the metametamodel

1http://www.omg.org (last visited: 2015-05-21)
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is grUML, then the metamodels are TGraph schemas, and the source and target
models of the transformation are TGraphs.

In the figure, the transformation t is a model conforming to a transformation
metamodel mmt itself2. This is true for most model transformation approaches and
it has the nice property that transformations can be subject to transformations
themselves, i.e., transformations can be refactored by in-place transformations or
transformations can be queried or produced by out-place transformations. However,
this is not a strict requirement for transformations.

In contrast to the illustration in the figure, out-place transformations may have
more than just one source and one target model.

A bidirectional transformation is also an out-place transformation. With respect
to fig. 25.1 on page 261, a bidirectional transformation is a transformation where
the transformation’s direction can be switched. The model mb can be produced
from the model ma but the reverse is also true. In this part, only unidirectional
out-place transformations are considered while bidirectional transformations and
their specification with FunnyQT are described in part IX starting on page 339.

FunnyQT provides two conceptually very different APIs for defining out-place
transformations.

Chapter 26 starting on page 265 describes a typical rule-based approach for
specifying model-to-model transformations. With this approach, a transformation
consists of a set of rules. Every rule receives elements from a source model as inputs
and creates elements in a target model as outputs. The applicability of rules can be
restricted by specifying the allowed metamodel types of input elements and further
constraints. For traceability purposes, the mapping from input to output elements
is managed on a per-rule basis and can be used during and after the transformation
execution.

Chapter 27 starting on page 281 describes an approach for defining model-to-
model transformations using a concept of extensional semantics. Instead of having
rules which produce output elements from input elements, there is a slim API which
allows for specifying the extensions of metamodel constituents. The extension of
an element class is its set of instances. For a relationship class, the extension is its
set of instances plus an incidence function which assigns to each relationship its
start and end element. And the extension of an attribute is just a function which
assigns values to the elements or relationships for which this attribute is defined.
Clearly, extensions cannot be specified directly but a concept based on archetype
sets is used which also forms the traceability concept of the approach.

Both approaches have several properties in common. Transformations are func-
tions, i.e., in contrast to the classical scenario illustrated in fig. 25.1 on page 261, a
FunnyQT out-place transformation is not a model itself and thus cannot be subject
to transformations. On the positive side, this means that there are no restrictions
about what a transformation can do. If a transformation needs to query a database
or communicate with some remote server, this can be done quite easily.

Support for multiple input and output models is also a feature supported by both
2In this case, the transformation is merely a specification which is executed by an interpreter or

transformation engine.
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approaches. And in contrast to the illustration in fig. 25.1 on page 261, the involved
models don’t need to be of the same modeling framework which implies that there
doesn’t need to be a unique metametamodel mmm as well. That is, it is perfectly
possible to have a transformation which queries a TGraph and produces an EMF
model or vice versa.

Also, both approaches don’t create the target models. Instead, target models
have to be provided and then are populated with new elements. Usually, empty
models are provided as target models but it is also allowed to use existing, non-empty
target models.





Chapter 26

Defining Rule-Based
Transformations

The FunnyQT namespace funnyqt.model2model provides an embedded DSL for defin-
ing unidirectional out-place transformations similar in the style to well-known trans-
formation languages such as ATL [Jou+08] or QVT Operational Mappings [OMG11b].

Transformations consist of a set of mapping rules which describe how source
elements are to be translated to target elements, i.e., each rule takes one or many
source model elements as input and produces one or many output elements in the
transformation’s target models. To initialize the references of a newly created target
element, rules may call other rules. Frequently, the transformation traverses the
containment hierarchy of the source models and thereby creates elements in the
target models.

When a rule creates new target elements from source elements, the mapping
is implicitly saved with respect to the rule and used during the transformation.
The complete mapping is also the result of the transformation and can be used for
traceability purposes once the transformation’s execution has finished.

In the following, section 26.1 describes the rule-based out-place transformation
DSL with all its details and then section 26.2 on page 276 gives an example. Ap-
pendix A.4 on page 426 gives insights on how this embedded DSL can be extended
in order to add support for modeling frameworks other than JGraLab and EMF.

26.1 Transformation Definitions

A rule-based out-place transformation is defined using the deftransformation macro.
Macro: funnyqt.model2model/deftransformation
(deftransformation name [args] extends-clause? & rules-and-functions)

A transformation has a name, a vector of arguments args, an optional extends-clause
which allows the defined transformation to inherit and override the rules of
another transformation (see section 26.1.8 on page 275), and arbitrary many
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rules-and-functions.
The deftransformation macro expands to an ordinary Clojure function which im-

plements the transformation. This function has the given name and args and is defined
in the current namespace. When it is applied, it performs the transformation as
specified by the transformation’s rules and functions, and it returns the traceability
mappings established by the transformation’s rules. The details of the traceability
mappings are going to be discussed in section 26.1.2 on page 268.

Usually, a transformation has at least one input and one output model. Those are
declared as arguments in args. Thereby, the metadata annotations ^:in, ^:out, and
^:inout are used to define which argument is an input, an output, or an input-output
model. Here are some examples:

(deftransformation t1 [^:in m1 ^:out m2] ...)
(deftransformation t2 [^:in m1 ^:in m2 ^:out m3] ...)
(deftransformation t3 [^:inout m1 ^:out m2 x y] ...)

The transformation t1 takes one input model and one output model. The trans-
formation t2 takes two input models m1 and m2 and creates elements in the single
output model m3. The transformation t3 takes two models m1 and m2 where m1 serves
both as input and output model, and m2 is only an output model. Additionally, the
transformation t3 takes two additional arguments x and y which are not defined to
be either input or output models.

A transformation with a model annotated with ^:inout like m1 in t3 could be
considered to be an in-place transformation at least in parts. In fact, the model m1
can be queried and modified at the same time so it is an in-place transformation
from a technical point of view. However, in contrast to the FunnyQT in-place
transformation DSL discussed in part VI starting on page 221 which allows to match
subgraphs in a model and replace them, the rule-based out-place transformation
discussed here has only additive semantics, e.g., the transformation t3 may query
m1 in order to create additional elements in it1.

Note that FunnyQT out-place transformations do not instantiate output models.
Instead, they have to be provided (as possibly empty models) when calling the
transformation.

26.1.1 Mapping Rules

The most important constituents of a transformation are its mapping rules. The
general syntax of such a rule is as follows:

(rule-name
:from [...]
:to [...]
body?)

1As will be discussed below, rules may have a body of arbitrary forms, so deletion of elements is
actually possible. However, the rule-based out-place transformation API is intended and best suited for
typical out-place transformation scenarios.
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Every rule has a rule-name, a :from clause defining its input elements, i.e., the
elements accepted by a rule, and a :to clause defining its output elements, i.e., the
elements which are created by the rule. An optional body of arbitrary forms may be
the last constituent of a rule definition.

When a rule is applied to some arguments, usually one or many source model
elements, it is tested if the arguments are accepted by the rule’s :from clause. If
they are, target model elements are created as specified by the rule’s :to clause.
Thereafter, the rule’s body is executed which has access to all input and output
elements declared by the :from and :to clauses.

Most of the time, rules can be defined without providing a body because the :to
clause already provides the means to create target model elements and to set their
properties. However, the body can be used for auxiliary services, e.g., it can be used
to log rule executions in some file or to visualize a target model (see section 15.3 on
page 158) after the execution of a specific rule for debugging purposes. Additionally,
it can be used gainfully with rules with input identities and disjunctive rules which
are introduced in section 26.1.4 on page 270 and section 26.1.5 on page 273,
respectively

Defining input elements. In the simplest case, a :from clause only defines the
number of the rule’s arguments and gives a name to them just like a plain Clojure
function argument vector. For example, the clause :from [a b c] declares that the
current mapping rule accepts exactly three arguments named a, b, and c. The
arguments could be anything, i.e., they don’t need to be model elements but could
be strings, numbers, or any other JVM object as well.

However, usually a mapping rule accepts only model elements of a given meta-
model type. For that purpose, a type specification (see concept 3 on page 109) may
be following each argument. For example, the clause :from [a 'A, x '[:or B C]]
defines that the rule accepts exactly two arguments a and x where a must be an
instance of metamodel class A and x must be an instance of metamodel class B or C.

Rule definitions expand to local functions internally, so if a rule is called with a
wrong number of arguments, an exception is thrown. In contrast, if a rule is called
with the correct number of arguments but the provided arguments don’t match the
types declared in the :from clause, then the rule is called correctly but not applicable
in which case it returns nil.

Defining output elements. The :to clause specifies which elements have to be
created in the target model (or the target models) if the arguments given at a rule
call match the rule’s :from clause.

In the simplest case, the :to clause is vector of variable names paired with
metamodel type names2. For example, the clause :to [u 'U, v 'V] defines that two
output elements u and v have to be created in the target model where u has the
target metamodel type U and v has the target metamodel type V.

2Type names can always be specified as qualified names (see concept 1 on page 108) and also as
unique names (see concept 2 on page 108) in case the corresponding protocol is extended upon the
interfaces or classes of the output model’s modeling framework. This is true for the directly supported
frameworks JGraLab and EMF.
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Instead of providing the target metamodel type as a symbol, it is also allowed to
specify an expression evaluating to a metamodel type or symbol denoting a target
metamodel type name. E.g., :to [u 'U, v (choose-type s)] is a valid :to clause where
the function call (choose-type s) returns a target metamodel based on s which could
be a source model element matched by the :in clause.

In case a transformation has two or more output models, :in clauses can be
used to define in which output model an element needs to be created. For example,
the clause :to [u 'U :in out1, v 'V :in out2] again defines that two elements of
the types U and V have to be created but u has to be created in the output model
out1 and v has to be created in the output model out2. In this case, the models
out1 and out2 have to be declared with ^:out or ^:inout metadata annotation in the
transformation’s argument vector as described on page 266.

If a transformation has multiple output models but there is no :in clause specified
for an element in the :to clause, then the first output model is used as default.

It is also possible to set the newly created elements’ attributes and references in
the :to clause. For that purpose, an output element’s specification may contain a
property map from keywords denoting attribute and reference names to the values
to be set for their attributes and references. This map must come after the output
element’s type and either before or after an :in clause. For example, the following
hypothetical rule java-class2uml-class

(java-class2uml-class
:from [jc 'JavaClass]
:to [uc 'UMLClass {

:name (aval jc :name)
:attributes (map field2attribute (adjs jc :fields))

}])

creates a UMLClass element for any given JavaClass element. The map defines that
the value of the name of the new UML class element should be set to the name of
the corresponding Java class element, and the attributes reference should be set to
the sequence of applying another rule, field2attribute, to the elements referenced
by the Java class element’s fields reference3.

A rule’s :to clause also defines its return value. If the rule’s :to clause declares
only one single output element, this element is the return value of the rule. If it
declares many output elements, then a vector of output elements in the declaration
order in :to is the return value.

Note that even if a rule has a body following the :to clause which may consist of
arbitrary expressions, the rule’s return value is still defined by the :to clause.

26.1.2 Traceability Mappings

Mapping rules implicitly create traceability relationships. When a rule gets applied
to some input elements matching its :from clause, it creates output elements as
declared by its :to clause, and the mapping from input elements to output elements

3See section 12.3 on page 111 for the aval function and section 12.4 on page 112 for the adjs function.
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is saved. If it gets applied another time with the same input elements, it simply
returns the output elements that have been created previously. Thus, both the
creation of target elements and the resolution of source elements to target elements
is performed by calling rules and rules define a one-to-one mapping between their
inputs and outputs.

The complete traceability mappings of all rules are the return value of a trans-
formation. The mappings are represented as a nested map where the outer map
assigns rule names represented as keywords to that rule’s traceability map, i.e., the
traceability map has the following form:

{:rule1 {in1 out1, ...} ;; single input / single output
:rule2 {[inA inB] outA, ...} ;; 2 inputs / single output
:rule3 {inU [outU outV], ...} ;; single input / 2 outputs
:rule4 {[inX inY] [outX outY], ...}} ;; 2 inputs / 2 outputs

As can be seen, the structure of a rule’s mappings depend on the number of
input and output elements it declares in its :from and :to clauses. If the :from clause
declares only one single element, then this element is used for the keys of the rule’s
traceability map. If it declares multiple input elements, a vector containing all
of them in declaration order is used. The same applies to the values of a rule’s
traceability map, i.e., the values are either plain elements in case the rule has only
one output element or the values are vectors of output elements if the rule has
multiple output elements. In the latter case, the vector contains the elements in the
declaration order in :to.

For example, the java-class2uml-class from the last section 26.1.1 on page 266
receives one single java class input element and creates one single UML class
output element, thus its entry in the transformation’s traceability map has the form
{:java-class2uml-class {jc-1 uc-1, jc-2 uc-2, ...}}, i.e., it assigns to any input ob-
ject jc-n being a JavaClass element a corresponding and newly created UMLClass
output element uc-n.

In general, the traceability relationship of each rule of a transformation is an
injective function, i.e., distinct inputs are translated into in distinct outputs. The
input of a rule is either one arbitrary object or a vector of two or more arbitrary
objects. Likewise, the output of an applicable rule is either one target element or a
vector of two or more target elements.

In section 26.1.4 on the following page, rules with input identities are introduced.
Such rules define a custom rule-specific equality semantics on their inputs. If such
a rule is called twice with distinct4 inputs which however are equal according to
the rule’s custom equality semantics, then the second call returns the outputs that
have been created on the first call. Thus, the traceability relationships of a rule with
input identities is not necessarily injective anymore. It may map distinct inputs to
the very same outputs.

4“distinct” in the sense of not identical.



270 CHAPTER 26. DEFINING RULE-BASED TRANSFORMATIONS

26.1.3 Constraints and Local Bindings

While the :from clause of a mapping rule already allows for specifying constraints on
the input elements’ types, :when clauses can be used to define arbitrary constraints.
A rule may possess multiple :when clauses and in order for a rule to be applicable to
the given input elements, the expressions of all :when clauses must be true.

Local bindings can be established using :let clauses. The value of a :let clause
is a vector of variables paired with expressions.

Lastly, there are :when-let clauses which combine local bindings with constraints.
The value is a vector of variables paired with expressions just like with :let clauses,
however the rule is only applicable if all expressions evaluate to a logically true
value, i.e., all variables are bound to values which are neither nil nor false.

The following example rule member2male illustrates constraints and local bindings.

(member2male
:from [m 'Member]
:when (male? m)
:let [w (wife m)]
:to [p 'Male {:spouse (and w (member2female w))}]

This rule is only applicable to input elements m which are an instance of the
metamodel class Member. Additionally, mmust also satisfy the helper predicate male?.
If so, the wife of m is computed by a helper function wife and bound to the local
variable w. This variable is then used in the :to clause which creates an output
element p of class Male and sets its spouse reference to the result of applying another
rule member2female to the wife w but only if w is non-nil.

A mapping rule may have any number of :when, :let, and :when-let clauses. They
are evaluated in their order of declaration and always after the :from clause and
before the :to clause. Thus, any constraint or local binding may refer to variables
bound by an earlier local binding clause or the :from clause but they cannot refer to
the variables bound by the :to clause.

26.1.4 Input Identities

As described earlier, a rule creates output elements for any unique combination
of input elements accepted by the rule. If it is called another time with the same
input elements, the output elements created at the first call are returned instead of
creating new element again. So by default, a rule returns for any valid input a new
output and there is a one-to-one correspondence between valid inputs and outputs.

However, there are situations where distinct elements in the source models
actually have the very same meaning and should be treated as if they were identical.
For example, consider some UML class model has been extended independently by
two developers and now a transformation should merge the two extended versions
into a new class model which contains the union of all classes, associations, and
attributes of the two extended versions. Of course, all classes which have been
modeled in the base version already are contained in the two extended versions,
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too. However, they are represented as different model elements which are neither
identical nor equal. Thus, when a normal mapping rule class2class was applied to a
given class pkg.C in the first extended model and then to the same class in the other
extended model, each call would result in the creation of a corresponding class in
the output model.

Input identities allow for specifying rules which translate different inputs to the
same (identical) outputs, i.e., for these rules there may be a many-to-one correspon-
dence between the valid inputs and the outputs. One can think of input identities as
a way to define custom equality semantics between input elements on a per-rule
basis.

By using an input identity which is specified using an :id clause whose value is a
vector of one variable and one expression which has access to all variables bound
by the :from clause. The variable is bound to the value of the expression, and then
different inputs to the rule are considered equal if and only if they result in the same
value.

In our example, a transformation developer may define that two classes represent
the very same thing if and only if their qualified name is equal, i.e., the identity of a
class is its qualified name, as shown in the next example listing.

(class2class
:from [ic 'UMLClass]
:id [qn (aval c :qualifiedName))
:to [oc 'UMLClass {:qualifiedName qn}])

In this case, the rule creates a class in the output model only once for every
unique qualified name of a class in one of the input models. With respect to the
example above, when the rule is called first with the class element with qualified
name pkg.C from the first extended model, a corresponding output class oc is created.
When the rule is called again with a different class element with the same qualified
name from the second extended model, no further element is created in the target
model but the element created at the first call is returned.

Rules with input identities also establish additional traceability mappings. Con-
cretely, there is one mapping for any unique :id value the rule has been called with
and there are additional mappings for all inputs having this identity, i.e., rules with
input identities define many-to-one mappings. With respect to the example, the
traceability map of the class2class rule might have the following structure.

{"pkg.C" #<UMLClass@23> ;; mapping for the id
#<UMLClass@1> #<UMLClass@23> ;; mapping for first element with id "pkg.C"
#<UMLClass@2> #<UMLClass@23> ;; mapping for second element with id "pkg.C"
...}

As can be seen, the rule maps at least two different model elements #<UMLClass@1>
and #<UMLClass@2> to the very same output element #<UMLClass@23> and there is an ad-
ditional mapping for the identity both input elements have in common, i.e., the string
"pkg.C" denoting the qualified name of the classes #<UMLClass@1> and #<UMLClass@2>.

The class2class rule above lets us create one unique class element in the output
model from any number of input class elements which are different but actually
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represent the same class. However, in our example scenario, the class pkg.C in
the first model could have been extended with an additional attribute x, and in the
second model it could have been extended with an additional attribute y. Therefore,
the corresponding class element in the output model should have the union of the
attributes defined by both representatives in the two input models.

For such kinds of problems, there is the :dup-id-eval option. If set to true,
the rule’s body is evaluated also for inputs which happen to have an :id value
that has been encountered earlier. The :to clause is not evaluated, i.e., no new
output elements are created. However, the output elements created at the first
call are resolved and bound to the variables of the :to clause. Then, multi-valued
properties of the outputs can be altered with the add-operations of FunnyQT’s model
management API in the rule’s body instead of specifying them in the property maps
of the output elements in the :to clause.

The following extended class2class rule gives an example.

(class2class
:from [ic 'UMLClass]
:id [qn (aval c :qualifiedName))
:dup-id-eval true
:to [oc 'UMLClass {:qualifiedName qn}]
(add-adjs! oc :attributes (map attribute2attribute (adjs ic :attributes))))

In contrast to the previous version, here the :dup-id-eval option is enabled. The
qualified name of the output UMLClass element is again set using a property map
in the :to clause of the rule. However, the attributes reference is altered only
in the rule’s body which will be run even for input elements ic which have an
:id value which has been encountered before. Here, the list of elements refer-
enced by oc’s attributes reference gets added the elements returned by calling the
attribute2attribute rule on any attribute of ic.

In the above example rule, the attributes created by the attribute2attribute rule,
which is also assumed to be a rule with input identity, are simply added to the
attributes reference of oc. If this is a correct approach depends on the target model.
With EMF, most multi-valued references are defined to be unique, i.e., references
are ordered but don’t allow duplicates. In contrast, with JGraLab the above body
can create parallel edges from some class element to some attribute element. So if
the output model was a TGraph, the attributes returned by the map call would need
to be filtered to those which aren’t an attribute of oc already.

It should be noted that when a rule with input identity is able to retrieve an
output element created earlier for some other element with the same :id value, no
constraints (:when or :when-let) will be checked and no local bindings (:let) will be
established anymore. This is partly for performance reasons but also has a semantic
explanation: input identities define per-rule equality semantics, so if two different
elements are to be considered equal by the rule, then it is a legitimate assumption
that any expression on them must return the same value.
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26.1.5 Disjunctive Rules

A special variant of rules are disjunctive rules. Instead of producing output elements
themselves, they just delegate to other rules for this task.

A disjunctive rule has no :to clause but instead a :disjuncts clause. Its value is a
vector of disjunct rules which may be ordinary rules or other disjunctive rules again.
When a disjunctive rule gets called and is applicable with respect to its :from clause
and its constraints, it tries to execute the disjunct rules one after the other until
the first one succeeds. The value of the succeeding disjunct rule is the value of the
disjunctive rule.

The next listing gives an example.

(member2person
:from [m 'Member]
:disjuncts [member2male member2female])
(member2male
:from [m]
:when (male? m)
:to [p 'Male])
(member2female
:from [m 'Member]
:when (not (male? m))
:to [p 'Female])

The member2person rule is a disjunctive rule dispatching between the ordinary
rules member2male and member2female, i.e., if member2person is called with a Member
element m, it tries to execute member2male first and if that fails, it tries to execute
member2female.

The two disjunct rules member2male and member2female transform the given Member
element either to a target Male or Female element depending on the value of (male?
m).

Rule disjunction can be seen as a kind of rule inheritance where the disjunctive
rule is a kind of super-rule for the disjunct rules. However, in contrast to typical
inheritance scenarios, the dispatch doesn’t need to be based on the input element’s
type but can also be based on constraints like above. Additionally, there might be
multiple applicable disjunct rules but since the :disjuncts clause imposes an order,
disjunct rules occurring earlier have a higher priority than later disjunct rules.

A disjunctive rule may bind the result of the disjunct rule which eventually
succeeded using an :as clause which must be the very last item in the :disjuncts
clause. This is convenient when the results of the disjunct rules are instances of
some base class because it allows to set the base class properties in the disjunctive
rule’s body instead of duplicating the code in each disjunct rule.

For example, in the example above, the two disjunct rules create Male or Female
elements which are subclasses of the metamodel class Person. Thus, all properties a
Person may possess can be set in member2person as shown in the following redef-
inition of the rule.
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(member2person
:from [m 'Member]
:disjuncts [member2male member2female :as p]
(set-aval! p :fullName (str (aval m :firstName) " "

(aval (family m) :lastName))))

Here, the result of either member2male or member2female is bound to the variable p
using an :as clause. In the disjunctive rule’s body, the new person’s full name is set
instead of doing that in both member2male and member2female.

26.1.6 Local Helper Functions

Next to a transformation’s rules, there may be local function definitions. Function
and rule definitions may be arbitrarily mixed and can access each other regardless
of declaration order. Functions are defined with the syntax of letfn (see page 37).

For example, the predicate male? already used above is defined as shown in the
next listing.

(male? [m]
(or (aval m :familyFather)

(aval m :familySon)))

26.1.7 Top-level Rules and Main Functions

Above it has been discussed how a transformation’s mapping rules and helper
functions can be defined. Rules and functions can call other rules and functions,
however until now, it hasn’t been said which rules or functions get applied when a
transformation is called initially.

There are two ways to define the entry points of a transformation: either by
defining top-level rules or by defining a main function.

A top-level rule is a rule to whose name ^:top metadata is attached. A transfor-
mation must have at least one top-level rule unless it has a main function. Top-level
rules are restricted to have exactly one input element in their :from clauses. When
the transformation is executed, all elements contained in the input models (the argu-
ments declared with ^:in or ^:inout metadata) and matching at least one top-level
rule’s input element’s type specification are applied to all top-level rules.

The following example transformation receives one input model i, one input-output
model io, and one output model o.

(deftransformation example [^:in i ^:inout io ^:out o]
(^:top rule-1
:from [a 'A]
...)

(^:top rule-2
:from [b 'B]
...)
...)
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The rules rule-1 and rule-2 are declared as top-level rules. Thus, when the
transformation is invoked, both rules are applied to all elements of the models i and
io which match the combined type specification [:or 'A 'B].

Alternatively, instead of annotating some rules as top-level rules, a main function
of arity zero may be defined. This function is called automatically when the transfor-
mation is applied and is responsible to call the transformation’s rules appropriately.

The example transformation above can be specified semantically equivalent using
a main function as shown below.

(deftransformation example [^:in i ^:inout io ^:out o]
(rule-1
:from [a 'A]
...)

(rule-2
:from [b 'B]
...)

(main []
(doseq [input-models [i io]]

(doseq [el (elements input-model [:or 'A 'B])]
(rule-1 el)
(rule-2 el)))))

Top-level rules are simpler, more concise, and more declarative whereas a trans-
formation developer gains more control when using a main function. When a
transformation contains both top-level rules and a main function, the latter takes
precedence. This situation doesn’t occur with a single transformation where one
could always either remove the ^:top metadata annotations or the main function
but it can occur with transformation inheritance which is discussed in the next
paragraph.

26.1.8 Transformation Inheritance

A transformation may extend one or many other transformations by specifying an
:extends clause right after the vector of arguments. The value of this clause is either
a symbol denoting the extended transformation’s name or a vector of symbols in
case multiple other transformations are to be extended as illustrated in the next
listing.

(deftransformation extends-example-1 [...]
:extends example-base
;; rules & functions
)

(deftransformation extends-example-2 [...]
:extends [example-base-1 example-base-2]
;; rules & functions
)



276 CHAPTER 26. DEFINING RULE-BASED TRANSFORMATIONS

The transformation extends-example-1 extends some other transformation
example-base. The transformation extends-example-2 extends two other transforma-
tions example-base-1 and example-base-2.

The effect of transformation inheritance is that the extending transformation
contains the union of all the functions and rules of all extended transformation.
The extending transformation may define additional rules and functions and it may
override inherited rules and functions by defining new ones with the same name as
the inherited ones.

Inherited top-level rules are top-level rules also in the extending transformation.
In case this doesn’t fit the intended semantics of the extending transformation, the
latter should have a main function as entry point which may define the control flow
appropriately and makes the top-level annotations of inherited rules ineffective.

In general, the argument vectors of the extending transformation should be
compatible with the argument vectors of the extended transformation especially
with respect to the order and the names of the input-output and output models.
Remember that a clause :to [a 'A, b 'B :in out2] creates an A element in the first
output model and a B element in the output model named out2. There are no such
strict dependencies on the pure input models, however it is possible that input models
are referenced by name in a rule’s body, too. So it is advisable to have extending
transformations re-use the argument vector of an extended transformation and
append additional arguments to the end.

26.2 Example

In this section, the rule-based out-place transformation DSL is illustrated using a
simple example transformation which translates a model conforming to the fami-
lies metamodel shown in fig. 26.1 on the next page to a model conforming to the
genealogy metamodel shown in fig. 26.2 on the facing page5.

A FamilyModel contains Family and Member elements. Families carry the last name
and address information, members only know about their first name. The different
roles a member can have in a family are modeled via references. Every family
has exactly one father and one mother, and there may be arbitrary many sons and
daughters.

The target genealogy metamodel has a more tree-like structure. A Person has a
full name and may be either a Male or a Female. Any person has at most two parents
and may have an arbitrary number of children. Additionally, a male and a female
may be liaised as indicated by the HasSpouse relationship class. Lastly, any person
lives at exactly one Address.

The general correspondences between source and target metamodel are quite
easy to see. Members correspond to persons, the different roles a member may

5This transformation is an extension of the ATL tutorial transformation available at https://wiki.
eclipse.org/ATL/Tutorials_-_Create_a_simple_ATL_transformation (last visited: 2015-06-16). The
transformation and the corresponding metamodels center around a very traditional family model which
is simple and well-suited for illustration purposes but should not be advertised as being the right model
in the real world.
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Figure 26.2: The target metamodel (grUML)

have in a family correspond to HasChild or HasSpouse relationships, and families
somehow correspond to addresses although there may be multiple families with the
same street and town attribute values which should still relate to one single Address.

Before illustrating the actual transformation from family models to genealogy
graphs, first some helper functions are introduced which aid in querying the source
model.

(defn family
"Returns the main family of member m."
[m]
(or (adj m :familyFather) (adj m :familyMother)

(adj m :familySon) (adj m :familyDaughter)))

(defn male?
"Returns true, iff member m is male."
[m]
(or (adj m :familyFather) (adj m :familySon)))

(defn parents
"Returns the set of parent members of m."
[m]
(p-seq m

[p-alt :familySon :familyDaughter]



278 CHAPTER 26. DEFINING RULE-BASED TRANSFORMATIONS

[p-alt :father :mother]))

(defn wife
"Returns the wife member of member m."
[m]
(adj* m :familyFather :mother))

The family function receives a member and returns the family where this member
is in a parental role. The male? predicate checks if the given member is male where
a member is considered to be male if and only if he is either a father or a son of
some family. The parents helper returns the (at most two) members which are the
parents of the given member using a regular path expression (see section 15.1 on
page 147). Lastly, the wife function returns the member being the wife of the given
member.

Using these helpers, the actual transformation definition is very simple. The
transformation families2genealogy has two arguments: an input model families
conforming to the metamodel from fig. 26.1 on page 277 and an output model
genealogy conforming to the metamodel from fig. 26.2 on page 277.

(deftransformation families2genealogy
"Transforms a family model to a genealogy model."
[^:in families ^:out genealogy]
(^:top member2person
:from [m 'Member]
:disjuncts [member2male member2female :as p]
(set-aval! p :fullName (str (aval m :firstName) " "

(aval (family m) :lastName)))
(set-adj! p :address (family2address (family m)))
(set-adjs! p :parents (map member2person (parents m))))
(member2male
:from [m 'Member]
:when (male? m)
:let [w (wife m)]
:to [p 'Male {:wife (member2female (wife m))}])
(member2female
:from [m 'Member]
:when (not (male? m))
:to [p 'Female])
(family2address
:from [f 'Family]
:id [st [(aval f :street) (aval f :town)]]
:to [adr 'Address {:street (first st), :town (second st)}]))

The transformation’s rules are explained in order of increasing complexity. The
member2female rule receives a member m, and if that member is not male, it creates
and returns a new female element p.

The member2male rule is very similar except that when creating a new target
male element for a given male member, the male’s wife is also set by applying the
member2female rule to the member’s wife6 and assigning the result.

6The member2person rule could have been used here, too.
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The member2person rule is a disjunctive rule which receives a member m and then
applies the first matching rule in the given :disjuncts vector, i.e., it applies either
member2male or member2female. The result of the matching disjunct rule is bound to
the variable p using an :as clause. This variable is then used in the rule’s body in
order to set all attributes and references males and females have in common. One
of these common properties is the address a person lives at. This role is set to the
value returned by applying the family2address rule to the member’s main family.

The family2address rule transforms families to addresses. There can be multiple
families with the same street and town attribute values, i.e., families living at the
same address. However, the Address elements in the target genealogy model should
be unique. For this purpose, the rule defines an input identity which specifies that
two families should be considered equal by the rule if they have the same street and
town values. Note that the input identity value is bound to the variable st and then
accessed later in the property map in the :to clause.





Chapter 27

Defining Extensional
Transformations

The out-place transformation DSL discussed in the previous chapter supported
specifying transformations as a set of rules. Each rule takes one or many source
model elements optionally restricted by type and arbitrary constraints and translates
them to one or many corresponding target model elements. Thereby, the rule also
sets the properties of the new target elements.

In contrast, the transformation approach discussed in this section is not rule-
based at all. Instead, it provides a small set of operations which let the transformation
developer specify the target model of a transformation in terms of the extensions of
its metamodel’s constituents.

With such a viewpoint of extensional semantics, a metamodel defines the set
of possible instance models that may exists. Every class defined in a metamodel
stands for a set of instances of that class in a concrete model. An abstract class
defines that at all times, the set of this class’ instances is the union of all subclass
instances. Likewise, an attribute of a class stands for a function which assigns to
every instance of this class a corresponding value of the domain defined by the
attribute’s type. That is, a model is just one specific extension of a metamodel, i.e.,
for every class defined by the metamodel there is a concrete set of instances, and
for any attribute declared for a metamodel class, the corresponding instances have
one concrete value.

The out-place transformation API provided by the funnyqt.extensional namespace
provides functions that let the transformation writer define one specific target
model in terms of the extensions of its metamodel constituents. The metamodel
constituents to be considered are element classes, attributes, and either relationship
classes or references depending on which flavor of linking elements is supported by
a concrete modeling framework. Additionally, the generalization hierarchy has to
be considered because a property defined for a metamodel element or relationship
class is implicitly also part of its subclasses.

Furthermore, this extensional transformation API forms the instance-only trans-
formation part of the co-evolution transformation API which will be discussed in

281
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part X starting on page 375. These transformations enable the simultaneous evolu-
tion of a metamodel and a conforming model at runtime.

In the following, section 27.1 formally defines the relevant metamodel con-
stituents and their respective extensions. It is shown that each model can be
specified unambiguously on a per-constituent basis. Then, section 27.2 on page 284
shows how the extensions of each metamodel constituent can be specified, and
section 27.3 on page 285 describes the traceability concept of the extensional trans-
formation approach. The concrete functions provided by the API are introduced in
section 27.4 on page 287, and lastly, section 27.5 on page 294 discusses an example
transformation.

How the extensional transformation API can be extended in order to support
models of different kinds than JGraLab and EMF is explained in appendix A.5 on
page 426.

27.1 Metamodel Constituents and Their Extensions

As said above, a metamodel consists of element classes which may possess attributes
and either the elements classes declare references or there are explicit relationship
classes. In the latter case, also the relationship classes may possess attributes
and there may be generalizations between element classes on the one side and
relationship classes on the other side.

Formally, let
• Element be a universe of elements,
• Relationship be a universe of relationships,
• TypeId be a universe of type identifiers,
• PropId be a universe of property identifiers, and
• V alue be a universe of attribute values.

Then, a model M can be defined as

M =

{

(E, R, inc, type, value) if M has first-class relationships, e.g., a TGraph
(E, type, ref, value) if M has only references, e.g., an EMF model

where
(i) E ⊆ Element is an element set,
(ii) R ⊆ Relationship is a relationship set,
(iii) inc : R→ E×E is an incidence function assigning to each relationship its source

and target element,
(iv) type : E ∪R→ TypeId is a typing function assigning to each element or relation-

ship its type,
(v) ref : E → (PropId → {〈e1, e2, ...〉 | ei ∈ E} where ∀x, y ∈ E : type(x) = type(y) =⇒

dom(ref(x)) = dom(ref(y)) is a reference function assigning to each element a
function which assigns a sequence of referenced elements to each defined
reference, and

(vi) value : E ∪ R → (PropId → V alue) where ∀x, y ∈ E ∪ R : type(x) = type(y) =⇒
dom(value(x)) = dom(value(y)) is an attribute function assigning to each element
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and relationship a function which assigns a value to each attribute defined for
the type of the element or relationship.

It must also hold that ∀e ∈ E : dom(ref(e)) ∩ dom(value(e)) = ∅, i.e., there mustn’t
be a property identifier which is used as both a reference and an attribute name.

Further constraints are imposed by the metamodel. The available element and
relationship types are defined including their generalization hierarchies, the source
and target element types of all relationship types are defined, the available refer-
ence and attribute names are defined on a per-type basis, the types of attributes
and references are defined, and for references also their cardinality is restricted
(essentially single-valued or multi-valued). So for example, the inc function is re-
stricted such that it ensures that only direct or indirect instances of the defined
source and target element class are assigned as source and target element of some
relationship. Likewise, the ref function has to be restricted with respect to the
type of the reference, and in case of a single-valued reference, it must assign only
sequences of length zero or one1.

The idea of the extensional transformation is to define the target model according
to the above definition. That is, if the target model is a real graph with first-class
relationships (e.g., a TGraph), the five components (E, R, inc, type, value) have to be
specified. If the target model is an object network with only references (e.g., an
EMF model), the four components (E, type, ref, value) have to be specified.

In [EH14; HE11], it has been shown that this can be done in a compositional
way by specifying the extension of each metamodel constituent separately. These
constituents are element classes, either relationship classes (including the incidence
functions) or references, and attributes.

Let ElementClass and RelationshipClass be the sets of element and relationship
classes defined by ametamodel, and let subtypes∗ : ElementClass ∪ RelationshipClass→
P(ElementClass) ∪ P(RelationshipClass) be a reflexive function assigning to each
metamodel type the set containing the type itself and all its direct or indirect
subtypes. Of course, for an element class it returns a set of element classes and for
a relationship class, it returns a set of relationship classes.

Then, the extensions of the metamodel constituents in a model M are simple
mathematical objects, namely sets and functions.
(1) There is a set Eec ⊆ E for every ec ∈ ElementClass containing the direct instances

of ec.
(2) There is a set Rrc ⊆ R for every rc ∈ RelationshipClass containing the direct

instances of rc. Assuming that rc is defined with source element class sec and
target element class tec, there is an incidence function

incrc : Rrc →
⋃

sec∗∈subtypes∗(sec)

Esec∗ ×
⋃

tec∗∈subtypes∗(tec)

Etec∗

assigning each relationship of type rc a source and a target element which is
a direct or indirect instance of the declared source element class sec or target
element class tec, respectively.

1In practice, the value of multi-valued references is a list of elements whereas the value of a single-
valued references is either nil or an element and not an empty sequence or a sequence containing just
one element. However, formalizing this distinction would require many additional definitions by cases
without providing any benefit.
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(3) For every reference r defined by the element class ec with target element class
tec, there is a function

refr :
⋃

ec∗∈subtypes∗(ec)

Eec∗ → {〈e1, e2, ...〉 | ei ∈
⋃

tec∗∈subtypes∗(tec)

Etec∗}

which assigns to direct or indirect instances of element class ec the sequence of
referenced elements. Those need to be direct or indirect instances of the target
element class tec.

(4) For every attribute a defined by element or relationship class xc with value type
Domaina ⊂ V alue, there is a function

valuea :

{

⋃

xc∗∈subtypes∗(xc) Exc∗ → Domaina if a is an element class attribute
⋃

xc∗∈subtypes∗(xc) Rxc∗ → Domaina if a is a relationship class attribute

which assigns to direct or indirect instances of element or relationship class xc

an attribute value complying with the declared type Domaina of attribute a.
Of course, (2) only applies to models with first-class edges, and (3) only to models

with references.
Given these sets and functions, a corresponding model M = (E, R, inc, type, value)

or M = (E, type, ref, value) is uniquely determined with

(i) E =
⋃

ec∈ElementClass Eec,

(ii) R =
⋃

rc∈RelationshipClass Rrc,

(iii) inc =
⋃

rc∈RelationshipClass incrc,

(iv) type : E ∪ R → TypeId with (a) ∀e ∈ E : type(e) = ec ⇐⇒ e ∈ Eec and (b) ∀r ∈ R :
type(r) = rc ⇐⇒ r ∈ Rrc,

(v) ref : E → (PropId → {〈e1, e2, ...〉 | ei ∈ E}) with ∀e ∈ E : ref(e)(r) = refed ⇐⇒
refr(e) = refed for all references r, and finally

(vi) value : E∪R→ (PropId→ V alue) with ∀x ∈ E∪R : value(x)(a) = v ⇐⇒ valuea(x) =
v for all attributes a.

Again, (ii), (iii), and (iv b) are relevant only for models with first-class relationships
whereas (v) is only relevant for models with references.

27.2 Indirect Specification of Extensions

In the previous section, it has been shown that a model can be uniquely determined
by defining the extensions of its metamodel’s constituents and those are just simple
mathematical objects, i.e., sets and functions. Therefore, one operation for each kind
of metamodel constituent is needed and actually provided by the funnyqt.extensional
namespace.
create-elements! defines the extension Eec of an element class ec.
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create-relationships! defines the extension Rrc of a relationship class rc together
with the corresponding incidence function incrc.

set-adjs! defines the extension of a reference r, i.e., it defines the function refr.
set-avals! defines the extension of an attribute a, i.e., it defines the function valuea.
These operations are discussed in detail later in section 27.4.3 on page 290.

Because the extension of, e.g., an element class, is its set of direct instances, the
extensions cannot be specified directly. Because the intention of create-elements!
is to create elements of some given element class, the existence of these elements
must not be a prerequisite. Instead, the extensional transformation approach uses
a concept of archetypes and images in order to specify the extensions of element
and relationship classes indirectly:

When defining the extension Eec of an element class ec with create-elements!, a
function returning a set of archetypes is provided and for each such archetype, one
element of type ec is created in the target graph of the transformation. Likewise,
when defining the extension of a relationship class rc with create-relationships!, a
function returning a set of triples (a, s, t) is provided where a denotes an archetype
for a new relationship and s and t denote the source and target element of the new
relationship and thereby encode the incrc function. The newly created elements
and relationships are called the images of their corresponding archetypes in this
context.

In both cases, archetypes can be arbitrary objects (but not nil). In many typical
transformation scenarios, the archetypes are elements which are queried from the
source model or set of source models but this is no requirement. They can also be
numbers, strings, collections, etc2.

As an example, if the create-elements! operation was called with an element type
X and an archetype set {1, 2, 3}, three new elements x1, x2, and x3 of type X would
be created in the target model. One is the image of the archetype 1, one is the
image of the archetype 2, and the last one is the image of the archetype 3. If then
the create-relationships! operation was called with the relationship type Y and the
set of triples {("a", x1, x2), ("b", x1, x3)}, two new relationships y1 and y2 were created
where one is the image of the archetype "a" (a string) and one is the image of the
archetype "b". The new relationship being the image of "a" starts at x1 and ends at
x2, and the new relationship being the image of "b" starts at x1, too, and ends at x3.

27.3 Traceability

When defining the extensions of element and relationship classes using
create-elements! and create-relationships!, traceability mappings are automatically
instantiated. Concretely, when defining the extension of an element or relationship
class xc, the two functions

2The only technical requirement is that they must be valid keys in hashed collections, i.e., their hash
code must not change during the transformation.
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imgxc : Objectxc
1:1,onto
−−−−−→ Exc ∪Rxc

archxc = img−1
xc

are defined. Here, the domain Objectxc ⊂ Object denotes the sets of archetypes
which have actually been used as archetypes for the element or relationship class
xc. The img functions assign to each archetype the corresponding image and the
arch functions are simply the inverse functions. They are trivially bijections because
one image is created for each object in a set of archetypes, so there is a one-to-one
correspondence out of construction.

The imgxc and archxc functions allow for a bidirectional, unambiguous navigation
between archetypes and images of an element or relationship class xc.

The incidence functions incrc for relationship classes, the reference functions refr,
and the attribute functions valuea all have to consider the generalization hierarchy of
the element and relationship classes defined by the metamodel. For example, if an
attribute a is defined for an element class ec, then the corresponding valuea function
assigns a value to each direct or indirect instance of ec because the attribute is
inherited by all subclasses, too. In order to make use of the traceability functions
also in such cases, two more traceability functions are defined.

Concretely, for an element or relationship class xc, the generalization-aware
traceability functions imagexc and archetypexc are defined:

imagexc : Objectxc
1:1,onto
−−−−−→

⋃

xc∗∈subtypes∗(xc)

Exc∗ ∪Rxc∗

imagexc =
⋃

xc∗∈subtypes∗(xc)

imgxc∗

archetypexc = image−1
xc ,

These traceability functions must also be bijections in order to guarantee bidi-
rectional, unambiguous navigation between archetypes and images of an element
or relationship class including all its subclasses. This implies that all archetype sets
used for creating instances of classes in a complete generalization hierarchy have
to be disjoint, i.e.,

∀xc ∈ElementClass ∪RelationshipClass :

∀xc∗1, xc∗2 ∈ subtypes∗(xc) : dom(imgxc∗
1
) ∩ dom(imgxc∗

2
) = ∅.

This is a quite sharp constraint which is enforced by the implementation. But the
extensional transformation API also provides somemacros which allow to circumvent
this restriction for parts of a transformation (see section 27.4.2 on page 288).
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27.4 Extensional Transformation Constructs

In this section, the actual functions and macros provided by the funnyqt.extensional
namespace are discussed and related with the formal definitions of the previous
sections. These functions and macros can be categorized into three groups. First,
there are functions for accessing the traceability information (section 27.4.1), then
there are macros for controlling which traceability information is captured (sec-
tion 27.4.2 on the following page), and lastly there are the actual transformation
operations which define the target model in terms of the extensions of its meta-
model’s constituents (section 27.4.3 on page 290).

27.4.1 Traceability Resolution

The image function resolves an image from a given archetype arch in the trace
mappings of some given metamodel class cls and its subclasses. If there’s no image
for the given archetype, it returns nil.

The archetype function is image’s inverse counterpart, that is, it looks up the
archetype of some given image with respect to some target metamodel class and its
subclasses. If there is no archetype, it returns nil3.
Function: funnyqt.extensional/image
(image cls arch)
(image m cls arch)

Function: funnyqt.extensional/archetype
(archetype cls img)
(archetype m cls img)

cls may be given as an actual metamodel class, i.e., a JGraLab VertexClass,
EdgeClass, or an EMF EClass, or it may be given as a symbol denoting the qualified
or unique name of the metamodel class. In the latter case, the target model m has to
be given in order to access the metamodel.

The image and archetype functions correspond to the image and archetype functions
defined formally above, i.e., (image m 'SomeClass arch) is imageSomeClass(arch).

The functions image-map and archetyp-map return the complete traceability maps
from archetypes to images or from images to archetypes with respect to the given
metamodel class and all its subclasses.
Function: funnyqt.extensional/image-map
(image-map cls)
(image-map m cls)
Function: funnyqt.extensional/archetype-map
(archetype-map cls)
(archetype-map m cls)

Again, clsmay be given as actual metamodel class or as symbol denoting the class’
qualified or unique name. In the latter case, the target model m whose metamodel
defines the class must be provided.

The image-map and archetype-map functions also correspond exactly to the image

3This might happen when a transformation is applied to a model which already contains elements and
relationships, or if elements or relationships were created without recording traceability information or
discarding it (see the next paragraph).
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and archetype functions defined formally above, i.e., (image-map m 'SomeClass) is
imageSomeClass.

The difference between image and image-map (and analogously archetype and
archetype-map) is the following. Internally, FunnyQT only maintains the imgxc and
archxc functions which only map to or from direct instances of the element or rela-
tionship class xc. In contrast, the resolution functions image and image-map and their
inverse counterparts do consider the inheritance hierarchy. Whereas image imme-
diately returns when the image of the given archetype has been found, image-map
constructs and returns a complete map from archetypes to images for the given
class and all transitive subclasses. Thus, when an looking up a single image for an
archetype, image is to be preferred. In contrast, when resolution of images of many
archetypes is intended, retrieving the image-map and then looking up all images in
that is preferred. Most importantly, because image-map returns a map, one can easily
iterate over the keys (the archetypes), the values (the images), or the entries (tuples
of archetypes with images).

There are some more shorthand resolution functions which are only bound in the
context of some of the extensional transformation operations. These operations are
going to be discussed in section 27.4.3 on page 290 where the shorthand resolution
functions are introduced, too.

27.4.2 Traceability Capturing

The actual extensional transformation operations create-elements!,
create-relationships!, set-adjs!, and set-avals! rely on some internal trace-
ability mapping data structures to be instantiated. This can be done using either
the with-trace-mappings or the ensure-trace-mappings macro.

The former macro and the macro without-trace-recording introduced at the end
of this subsection also allow for working around the restriction of disjointness
of all archetypes used for creating elements of one generalization hierarchy (see
section 27.3 on page 285). This is discussed at the end of this section.

The macro with-trace-mappings establishes new, empty traceability mappings and
then executes its body which consists of calls to the extensional transformation
operations4.
Macro: funnyqt.extensional/with-trace-mappings
(with-trace-mappings & body)

Therefore, an extensional transformation usually has the following shape.

(defn example-transformation [source-model target-model]
(with-trace-mappings

;; calls to the extensional transformation functions discussed in the
;; next section.
))

4It may also contain arbitrary other code.
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A transformation is a plain Clojure function that receives a source and a target
model5. The function establishes new traceability mappings which are required
by the extensional transformation operations which are going to be discussed in
section 27.4.3 on the following page. Calls to those are then performed in the
with-trace-mappings’ body and populate the internal traceability mapping data struc-
tures.

Similar to with-trace-mappings is the ensure-trace-mappings macro. If there are
already traceability mappings available in the current dynamic scope (see section 6.5
on page 38), then it just executes body. That is, the operation calls in the body popu-
late the traceability mappings of the surrounding scope. If there are no traceability
mappings available, it is equivalent to with-trace-mappings.
Macro: funnyqt.extensional/ensure-trace-mappings
(ensure-trace-mappings & body)

This is useful when a larger transformation should be structured into several
smaller transformations which may also be used separately.

(defn t-part-1 [in out]
(ensure-trace-mappings ...))

(defn t-part-2 [in out]
(ensure-trace-mappings ...))

(defn t-complete [in out]
(with-trace-mappings

(t-part-1 in out)
(t-part-2 in out)))

The transformation functions t-part-1 and t-part-2 can be used separately but
also be called from some other transformation like t-complete. In the latter case,
the traceability mappings of the calling transformation are simply reused, i.e., the
extensional transformation functions called in t-part-1 and t-part-2 add to the
mappings of t-complete.

The macro without-trace-recording allows to execute its body without having the
transformation operation calls contained in it add additional traceability mappings.
However, the mappings of the surrounding scope can still be accessed using image
and image-map and their inverse counterparts.
Macro: funnyqt.extensional/without-trace-recording
(without-trace-recording & body)

This macro allows to circumvent the restriction that all archetypes used for
specifying the extensions of the metamodel classes in one generalization hierarchy
have to be disjoint (see section 27.3 on page 285). But of course, resolving the ele-
ments created using the extensional transformation functions in the body using their
archetypes is not possible, too. Their traceability mappings are simply discarded.

Another means to circumvent the restriction is to wrap the parts of a trans-
formation which create elements with archetypes having already been used for

5In fact, there could be zero or many source models and one or many target models.
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other elements with with-trace-mappings. In that case, resolving elements by their
archetypes that have been created previously in this with-trace-mappings form is pos-
sible, however the traceability mappings of the surrounding scope are inaccessible.

27.4.3 Extensional Transformation Functions

As shown in section 27.1 on page 282 and section 27.2 on page 284, every model can
be specified uniquely by four operations. There is one operation create-elements! for
defining the extension of an element class, one operation create-relationships! for
defining the extension of a relationship class including the corresponding incidence
function, one operation set-adjs! for defining the extension of a reference, and one
operation set-avals! for defining the extension of an attribute.

The create-relationships! operation is only supported for models with first-class
relationships (e.g., TGraphs). The set-adjs! operation is only supported for models
with references (e.g., EMF models). Some kinds of models support both. With
TGraphs, edge classes may have role names which provide a reference-like view for
visiting adjacent vertices which internally translates to traversal of incident edges,
so set-adjs! is supported, too, and it implies creation of edges and thus is equivalent
to a create-relationships! call. There might be future modeling frameworks which
support both first-class relationships and references where the latter is not just a
view on the former but a different concept. Here, both operations could be supported,
and then there is no equivalence between them.

In the following paragraphs, the actual extensional transformation operations
are discussed in detail.

Creating elements. The create-elements! function creates new elements of the
element class provided as argument cls in the model m. The cls may be given as an
actual element class defined by m’s metamodel or as a symbol denoting the qualified
or unique name of such an element class.
Function: funnyqt.extensional/create-elements!
(create-elements! m cls archfn)

The argument archfn is a function of zero parameters which will be evaluated
internally and must result in a collection of arbitrary archetypes, i.e., arbitrary
objects. This collection is taken as a set and one element of type cls is created in
the model m for each of the set’s objects. The return value of the function is the
sequence of newly created elements, i.e., the images of the archetypes.

The traceability mappings from archetypes to images and the inverse mappings
are implicitly captured and accessible in the following operation calls in terms of
the traceability resolution functions image, image-map, archetype, and archetype-map
that have been discussed in section 27.4.1 on page 287.

The archfn only needs to return an arbitrary collection of archetypes instead of
a set of archetypes. This fact is only for convenience because almost all Clojure
collection functions are based on the sequence abstraction. However, the collection
must contain no duplicates in order to guarantee an unambiguous resolution from
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archetypes to images and vice versa. In case the collection contains some object
more than once or in case it contains an object for which an image already exists
with respect to the given cls or one of its super- or subclasses, an exception is
thrown as shown by the following example.

;; Create 10 TargetClass elements for the archetypes 0 to 9.
(create-elements! m 'TargetClass (fn [] (range 10)))
;=> (#<TargetClass> ...)
;; Try creating two more elements for the archetypes 0 and 1.
(create-elements! m 'TargetClass (fn [] [0 1])
; Exception: Bijectivity violation: the archetypes (0 1) are already contained
; in the domain of *img* for class TargetClass or a sub- or superclass thereof.

This restriction on disjointness of archetypes can be relaxed using the macros
introduced in section 27.4.2 on page 288. If the second create-elements! call was
wrapped in either with-trace-mappings or without-trace-recording, two more Target-
Class elements would be created successfully. With with-trace-mappings, the trace-
ability mappings would be added to new, empty traceability maps which were
only accessible in this with-trace-mappings’ scope. With without-trace-recording, the
image and archetype mappings wouldn’t be recorded altogether.

Creating relationships. The create-relationships! function creates new relation-
ships of relationship class cls in the model m. Like with create-elements!, the class
may be an actual relationship class or a symbol denoting its qualified or unique
name. The function’s return value is the sequence of newly created relationships.
Function: funnyqt.extensional/create-relationships!
(create-relationships! m cls archfn)

As shown in section 27.1 on page 282, the extension of a relationship class is its
set of instances. Additionally, a type-specific incidence function assigning to each
relationship its start and end element has to be defined. These two constituents
are combined here. The given archfn must be a function of zero arguments which
evaluates to a collection of triples of the form [arch start-el end-el] where arch is
an arbitrary object used as archetype for the new relationship and start-el and
end-el are the start and end element of the new edge.

The mappings from archetypes to images and vice versa are again captured im-
plicitly and are accessible in following operation calls using the standard resolution
functions introduced in section 27.4.1 on page 287.

In the context in which archfn is evaluated, the following two additional resolution
functions are bound.
Function: funnyqt.extensional/source-image
(source-image source-arch)
Function: funnyqt.extensional/target-image
(target-image target-arch)

Both return the image of a given archetype or nil if there is none. Hereby,
source-image performs the lookup with respect to the current relationship class’
source element class and target-image considers the relationship class’ target ele-
ment class.
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For example, if the metamodel defines a relationship class A2B starting at the
element class A and ending at the element class B, then the call

(create-relationships! m 'A2B
(fn []
(for [x2y (relationships source-model 'X2Y)]

[x2y (source-image (source x2y)) (target-image (target x2y))])))

creates one A2B relationship for each X2Y relationship in the source-model where
the relationship’s source and target elements are the images of the corresponding
source and target vertices in the source-model. I.e., (source-image el) is a shorthand
for (image m 'A el) and (target-image el) is a shorthand for (image m 'B el).

Setting attribute values. The set-avals! function sets the value of the given attr
defined for metamodel class cls for direct and indirect instances of that class in the
model m. The attribute name attr is given as keyword and the class cls may again
be an actual metamodel class or a symbol denoting its qualified or unique name.
Function: funnyqt.extensional/set-avals!
(set-avals! m cls attr valfn)

As defined in section 27.1 on page 282, the extension of an attribute attr is a
function valueattr that assigns to elements having this attribute a corresponding value
which conforms to the attribute’s declared type. The provided valfn is a function of
zero arguments which must return the attribute’s extension, i.e., the return value is
valueattr. Three different representations of the extension are supported.
1. The valfn may return a map of the form {el value, ...}.
2. It may also return a collection of [el value] tuples.
3. It may also return a function (fn [el] value) which receives an element el and

returns the attribute value to be set for this element.
The former two cases allow to specify the attribute’s extension partially, i.e., there
may be instances of cls for which no entry in the map or tuple in the collection
exists and thus no attribute value is set for these elements. In the third case, the
function representing the attribute’s extension is called for each direct or indirect
instance of cls in the model m and the returned value is set.

Like with create-relationships!, some additional resolution functions are bound
in the context where the valfn is called.
Function: funnyqt.extensional/element-image
(element-image arch)
Function: funnyqt.extensional/element-archetype
(element-archetype img)

The element-image function resolves a given archetype to its image with respect
to the cls given at the set-avals! call, i.e., the element or relationship class the
attribute attr is defined for. Thus, it is a shorthand for (image m cls arch). The
element-archetype function is the inverse of element-image, i.e., it resolves archetypes
from images.
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Considering a transformation which has already created one Person element for
each Contact element in the source model and using these contacts as archetypes
for the persons, the following two set-avals! calls are equivalent and both simply
copy over the name attribute values from contacts to persons.

;; representation 2: valfn returning a sequence of tuples
(set-avals! m 'Person :name
(fn []

(for [c (elements source-model 'Contact)]
[(element-image c) (aval c :name)])))

;; representation 3: valfn returning a function
(set-avals! m 'Person :name
(fn []

(fn [p]
(aval (element-archetype p) :name))))

As can be seen, when specifying the attribute’s extension as a sequence of
tuples (or a map) computed by an expression on the source model, the usage of
element-image is convenient in order to resolve the target model persons. When
specifying the attribute’s extension with a function receiving a target person, then
the usage of element-archetype is convenient.

Setting references. The set-adjs! function sets the elements referenced by the
reference ref defined for element class cls for instances contained in model m. Again,
ref is given as a keyword denoting the reference’s name and cls may be given as
actual element class or as a symbol denoting the qualified or unique name of the
element class.
Function: funnyqt.extensional/set-adjs!
(set-adjs! m cls ref reffn)

The reference’s extension is defined by the return value of reffn. By the formal
definition in section 27.1 on page 282, the extension of a reference r is a function
refr which assigns to each element for which this reference is defined the sequence
of referenced elements. In case of a single-valued reference, this sequence must
either be empty or contain just one element. However, this definition is this way
only in order to treat single- and multi-valued references equally, i.e., to have one
common codomain for all reference functions. Practically, the set-adjs! function
diverges a bit from the formal definition and is more intuitive.

Concretely, the reffn must return one of three possible representations of the ref
reference’s extension:
1. It may return a map of the form {el refed, ...}.
2. It may also return a collection of [el refed] tuples.
3. It may also return a function (fn [el] refed) which receives an element el and

returns the element or elements which should be referenced by el’s reference
ref.

Here, refed must be a single element or nil in case of a single-valued reference and
it must be a sequence of elements in case of a multi-valued reference.
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With the third representation, the returned function representing the reference’s
extension is called once for every direct or indirect instance of cls in the model m in
order to compute and set the reference.

In the context where reffn is executed, the element-image and element-archetype
resolution functions are bound as discussed for set-avals! above. In addition, two
more resolution functions are bound.
Function: funnyqt.extensional/target-image
(target-image arch)
Function: funnyqt.extensional/target-images
(target-images arches)

The target-image function resolves a given archetype to its image with respect
to the element class being the type of the reference, i.e., (target-image arch) is a
shorthand for (image m tcls arch)where tcls denotes the target type of the reference
ref. Likewise, (target-images arches) function is a shorthand for (map target-image
arches), i.e., it looks up the images of all archetypes in a given sequence arches of
archetypes. This is convenient when setting multi-valued references.

Like its name suggests, set-adjs! sets the references of elements which implies
that elements which have been referenced previously won’t be referenced anymore
after the call. For this reason, there’s also a function add-adjs! with purely additive
semantics.
Function: funnyqt.extensional/add-adjs!
(add-adjs! m cls ref reffn)

In contrast to set-adjs!, it adds the references defined by reffn to the elements of
class cls while keeping the previously referenced elements. Of course, this function
is only applicable to multi-valued references.

27.5 Example

In this section, the simple transformation problem which has already been solved
using the rule-based out-place transformation DSL in section 26.2 on page 276 is
solved again using a transformation specified with the extensional transformation
API. The transformation assumes the helper functions family, male?, parents, and
wife being defined as on page 278.

The complete transformation definition is given operation call by operation call
below. As discussed previously, an extensional transformation is just a plain Clojure
function. It receives a families model fs and a genealogy TGraph g. The fact that the
target model is a TGraph is only important in so far that this modeling framework
supports first-class edges which are created implicitly when setting references of
vertices. Thus, this example can demonstrate the use of both create-relationships!
and set-adjs!.

(defn families2genealogy
"Transforms the family model `fs` to the genealogy `g`."
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[fs g]
(with-trace-mappings

;; Body containing calls of the extensional transformation ops
)

In the function’s body, empty traceability mappings are established using the
with-trace-mappings macro6. Inside its dynamic scope, calls to the extensional trans-
formations are performed which create elements and relationships in the target
model g and set their attributes.

In the following, all calls of the extensional transformation operations realizing
the complete transformation are discussed one by one.

The first create-elements! call creates one Male element for each source model
Member element for which the male? predicate returns true.

(create-elements! g 'Male
(fn []

(filter male? (elements fs 'Member))))

After this operation has been evaluated, the following traceability functions are de-
fined and can be accessed using the resolution functions discussed in section 27.4.1
on page 287 or their shorthands introduced alongside the actual transformation
operations in section 27.4.3 on page 290.

EMemberM

EMemberF

EMember

EMale

EPersonimageMale

archetypeMale

imagePerson

archetypePerson

Circles with light gray background represent non-empty extensions. Dotted
circle lines denote the extensions which have not yet been considered. Thus, in the
source family model on the left, the extension of the Member class is divided into two
partitions: the members who are male (notated as EMemberM

) and the members who
are female (notated as EMemberF

), and there are no members which are outside these
two partitions7. In the target genealogy on the right, the extension of the element
class Male has been initialized by the operation call and a corresponding imageMale

traceability function came into being8. The extension of the abstract Person element
6ensure-trace-mappings could have been used as well.
7The extension of the Address element class is not shown for brevity.
8The inverse archetype functions are always brought into life, too, so they are not mentioned in the

text.
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class equals the extension of the Male element class and thus also the corresponding
imagePerson function equals imageMale.

The next create-elements! call creates one target model Female element for each
source model member who is not male.

(create-elements! g 'Female
(fn []
(remove male? (elements fs 'Member))))

The updated traceability functions are shown below.

EMemberM

EMemberF

EMember

EMale

EFemale

EPersonimageMale

archetypeMale

imageFemale

archetypeFemale

imagePerson

archetypePerson

A new function imageFemale came into being which returns a new target model
Female element for a given source model Member which has been recognized to be
female. Furthermore, imgPerson is now a total function assigning to every source
model member a corresponding target model person.

The set-avals! call in the next listing then sets the fullName attribute value of
any Person element which has been created in the target graph. Its value function
iterates all mappings of the imgPerson function, binding m to the member being the
archetype of the person p. It returns a sequence of pairs where the first element
is the person and the second element is the value to be set as full name, i.e., the
concatenation of the archetype member’s first name, a space, and then the member
family’s last name.

(set-avals! g 'Person :fullName
(fn []

(for [[m p] (image-map g 'Person)]
[p (str (aval m :firstName) " "

(aval (family m) :lastName))])))

The next call creates HasChild edges using the create-relationships! function.
The given archetype function returns a sequence of triples where the first element
is the archetype for the new relationship and the second and third element are the
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source and target elements. A comprehension iterating over the source Member
elements and the parents of each such member is used to compute the triples and
the source-image and target-image functions are used to resolve the target model
persons being the images of the source model members.

(create-relationships! g 'HasChild
(fn []

(for [m (elements fs 'Member)
p (parents m)]

[[m p] (source-image m) (target-image p)])))

The create-relationships! call also instantiates traceability mappings from [mem
p] to the new target model relationships in terms of the imgHasChild function.

EMemberC
× EMemberP

RHasChild

imageHasChild

archetypeHasChild

In this case, the traceability mappings are not between source and target model
elements. The domain of imageHasChild is a relation between two member elements,
one in the role of a child (∈ EMemberC

), the other in the role of a parent (∈ EMemberP
).

The codomain which equals the function’s range is the set of HasChild relationships.

The next set-adjs! call sets the single-valued wife reference of instances of the
target vertex class Male which implicitly creates HasSpouse relationships. Here, the
reference function returns a function which receives a target graph Male vertex
and returns its wife or nil if that male has no spouse. It does so by resolving the
source model member corresponding to the given male vertex. From that, the wife
is queried and translated back into the corresponding target graph Female vertex
using the target-image function.

(set-adjs! g 'Male :wife
(fn []
(fn [male]

(let [m (element-archetype male)]
(target-image (wife m))))))

As said, with TGraph models, using set-adjs! implies the creation of relation-
ships. However, in contrast to create-relationships! no traceability mappings will
be recorded.

The next create-elements! call creates one target model Address element per
unique tuple of two plain string values. The former denotes the name and number
of the street, the latter denotes the name of the town. Those values are taken from
the corresponding attributes of the source model Family elements. So if there were
multiple source model families whose street and town values are equal, only one
unique target model address would be created9.

9This is very similar to how input identities have been used with the rule-based out-place transformation
DSL.
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(create-elements! g 'Address
(fn []
(for [f (elements fs 'Family)]

[(aval f :street) (aval f :town)])))

This is reflected in the new traceability mappings. The domain of imageAddress is a
binary relation of strings denoting street names (V alueStringS

) and strings denoting
town names (V alueStringT

).

V alueStringS
× V alueStringT

EAddress

imageAddress

archetypeAddress

The next two set-avals! calls set the values of the new Address elements’ street
and town attributes. Here, the archetype-map function is used to compute the com-
plete map assigning to every new target model Address element its corresponding
archetypes. The archetypes are tuples of exactly the needed street and town names,
so picking out the first or second element of each such tuple gives the value to be
set.

(let [address-arch-map (archetype-map g 'Address)]
(set-avals! g 'Address :street

(fn []
(fn [addr]

(first (address-arch-map addr)))))
(set-avals! g 'Address :town

(fn []
(fn [addr]

(second (address-arch-map addr))))))

The final operation call of the transformation creates the LivesAt relationships
connecting each person to the address where he or she is living at. The archetype
function simply iterates over all source model members. The members themselves
are used as archetypes for the new relationships. The relationships’ source elements
are the images of the given member with respect to the Person element class because
the initial two operations of the transformation defined imagePerson : EMember

1:1,onto
−−−−−→

EPerson. The target address elements are retrieved by creating a tuple containing
the street and town attribute values of the member m’s family. By resolving these
tuples with respect to the target element class Address, the actual address elements
are retrieved.

(create-relationships! g 'LivesAt
(fn []

(for [m (elements fs 'Member)]
[m
(source-image m)
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(let [f (family m)]
(target-image [(aval f :street)

(aval f :town)]))])))

The complete transformation consists of 44 lines of code. Thus, it is almost twice
as long as the very same transformation specified using the rule-based out-place
transformation DSL (see section 26.2 on page 276). However, the completely isolated
treatment of all metamodel constituents makes the extensional transformation
approach suitable as the foundation for FunnyQT’s co-evolution transformation API
which allows to evolve a given model and its metamodel simultaneously at runtime.
This API is discussed in part X starting on page 375.





Chapter 28

Related Work

In this chapter, several unidirectional out-place transformation approaches are
briefly discussed, and similarities and differences with FunnyQT’s rule-based out-
place transformation DSL and its extensional transformation API are revealed.

ATL [Jou+08] is one of the first approaches implemented as responses to the
OMG’s Query/Views/Transformations RFP1. It provides means to produce one or
many EMF target models from one or many EMF source models. A transformation
consists of rules that define how elements of the source models are matched and
how the models are navigated in order to create and initialize the elements of the
target models.

ATL provides three kinds of rules: matched rules, lazy rules, and called rules.
A matched rule specifies a source and a target pattern and for all matches of the
source pattern elements in the target model are created according to the target
pattern. The source pattern may contain only one pattern element which specifies
the source model elements matched by the rule by stating the source metamodel
type and an optional condition expressed in a variant of the OCL [OMG14b].

The target pattern may specify multiple elements to be created for each matched
source element, however, the first one is called the rule’s default target pattern
element and plays a special role with respect to traceability. In the target pattern,
there are also assignments to the attributes and references. Interestingly, the values
being assigned to references are source model elements which will automatically
be translated to corresponding target model elements.

ATL transformations are executed in two phases. In the matching phase, source
elements are matched according to the source patterns of all matched rules and
the target elements are created according to the target patterns of rules but not
yet initialized, i.e., attributes and references are not set. Traceability mappings are
established between a rule’s single source element and its default target element. In
the target model initialization phase, the assignments of attributes and references
are executed. Since every source element considered by the transformation rules
already has a corresponding target model element, assignments of source model

1http://www.omg.org/cgi-bin/doc?ad/2002-4-10 (last visited: 2015-10-07)
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elements to references of target model elements actually assign the corresponding
target elements.

Matched rules may also contain blocks of imperative code which is executed dur-
ing the target model initialization phase. Here, also a special traceability operation
can be called which gives access to non-default target elements created by some
rule for some source element.

There’s also an inheritance concept for matched rules where a rule may extend
at most one other rule. This allows to align rules according to the specialization
hierarchy of the source metamodel. The types of elements in the source and target
pattern of the extending rule must be identical or more specific than in the extended
rule. Furthermore, the same names must be used. This is similar to rule disjunction
in FunnyQT’s rule-based transformation DSL where a superclass rule sets common
properties and then calls one of many disjunct rules corresponding to subclasses
although with the latter, the dispatch is not necessarily based on typing.

ATL also offers a specialization-like concept called superimposition for trans-
formations as a whole. A transformation may be superimposed on some other
transformation in which case it overrides rules of the same name of the other
transformation.

To some extend, top-level rules in FunnyQT’s out-place transformation DSL are
similar to ATL’s matched rules. However, with FunnyQT rules always call other
rules or functions in order to initialize references of target model elements, so it
can be seen as less declarative than ATL’s implicit approach on rule invocation and
traceability.

As mentioned above, ATL also knows lazy rules. A lazy rule has to be called
explicitly from the target patterns of other rules and creates elements as declared
by its target pattern on each call. It may be declared as being unique in which
case it executes its target pattern only once per given source element. Therefore,
unique lazy rules are very similar to non-top-level rules in FunnyQT’s out-place
transformation DSL.

Lastly, ATL supports called rules which may have parameters, a target pattern,
and an imperative code block but no source pattern. Those can only be called from
within imperative code blocks of other rules.

ATL also supports a so-called refining mode which provides some in-place trans-
formation capabilities. However, it is much less powerful than FunnyQT’s in-place
transformation DSL or the related in-place transformation approaches discussed in
chapter 24 starting on page 249.

ATL has frequently been used as a testbed for further transformation research.
For example, [JT10] discusses an extension to ATL for incremental model transfor-
mation and [Tis+11] proposes the lazy execution of model transformations. The
incremental ATL transformation extension executes transformations as live trans-
formations which run as a kind of demon in the background and observes changes
to the source model in order to propagate them immediately to the target model.
With lazy execution, target model elements are not created until they are accessed
which allows having transformations which generate possibly infinite target models.
However, both incremental and lazy ATL transformations handle only subsets of the
ATL language and the latter required even a modified version of EMF. Therefore,
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both approaches exist only as proof-of-concepts and are not part of the distributed
version of ATL.

An out-place transformation language which is both syntactically and semantically
very similar to ATL is the Epsilon Transformation Language (ETL, [KPP08]) which is
part of the Epsilon framework [Kol+15].

Like with ATL, rules have one source pattern element with an optional guard and
one or many target pattern elements. Each rule may have a block of imperative
code written in the Epsilon Object Language.

In contrast to ATL, resolution of target model elements from source elements is
performed explicitly using a special equivalents() operation instead of implicitly.

Normal ETL rules correspond to matched rules in ATL or top-level rules in
FunnyQT, i.e., for all source elements matching the source pattern of a rule, cor-
responding target elements are created automatically. Like ATL, ETL has lazy
rules which are invoked only when needed in terms of the equivalents() operation
mentioned above.

ETL also provides a rule specialization concept which in contrast to ATL allows
for having rules which extend multiple other rules.

Amongst others, the QVT standard [OMG11b] specifies the Operational Mappings
language (QVTo) which comprises an imperative extension to OCL [OMG14b] which
allows to create, delete, and modify model elements in conjunction to a few trans-
formation constructs. It is mainly intended for defining out-place transformations
but not restricted to this use-case.

A QVTo transformation consists of a main operation which is the transformation’s
entry point and arbitrary many so-called mapping operations. A mapping operation
is essentially an operation defined for some source metamodel class. There may
be further parameters, one or many output elements may be declared either just
as return type or as declarations of the form var1:TargetType1, var2:TargetType2,
and an optional guard OCL expression.

Usually, the operation’s body consists only of assignments to properties of the
target elements. When the operation is called for an instance of the declared source
metamodel class and possibly further arguments and the guard expression evaluates
to true, then instances of the declared target types are created and their properties
are set according to the body. In contrast to ATL and similar to FunnyQT, references
of newly created elements are set to the values returned by calling other mapping
operations instead of source model elements which then get resolved to target
elements implicitly.

A mapping operation creates target elements each time it is called, even if it
is called multiple times for the same source element. In order to resolve target
elements for given source elements, there are several traceability functions which
look up the target element or target elements that have been created by a given
mapping operation for a given source element. However, this traceability information
can only resolve elements which have been created prior to the call. To cope with this
situation, there is also a concept of late resolution. Late resolutions are postponed
until the end of the transformation where all target model elements have already
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been created. In contrast, FunnyQT’s rule-based out-place transformation DSL uses
the concept of rule invocation both for triggering the creation of target elements
(the first call with a given sequence of arguments) as well as for resolving target
elements (all following calls with the same arguments) which is a much simpler and
more intuitive concept from a user’s point of view.

QVTo provides three reuse mechanisms on the mapping operation level: mapping
disjunction, mapping inheritance, and mapping merges. FunnyQT’s concept of rule
disjunction (see section 26.1.5 on page 273) is borrowed from the QVTo concept of
mapping disjunction. Mapping inheritance is very similar to overriding of methods
in object-oriented languages because mapping operations are essentially operations
defined for source metamodel classes. However, the QVT specification is not very
detailed in this respect2. With mapping merges, a mapping operation is able to
express that a sequence of other operations are to be executed on its results after
its completion.

Transformations can be reused as a whole, too. An operational transformation
may call other transformations (not only other operational transformations), and
an operational transformation may specialize another operational transformation.
Again, the exact semantics of transformation inheritance are not specified in too
much detail but it should be understood as a concept similar to specialization
between classes in Java. Thus, an overriding semantics may be assumed where
the operations of the extending transformation override the operations of the same
name of the extended transformation.

With QVTo, a transformation may also define intermediate properties for source
metamodel classes, and they may define completely new intermediate classes. Those
only can be instantiated by mapping rules in order to hold intermediate data which
can then be accessed from other operations. As soon as the transformation finishes,
all intermediate classes, properties, and their values disappear.

Another interesting feature of QVTo are type extensions which allows to define
new names for existing types with possible further constraints. For example, it is
possible to define a type FullName as an alias for an OCL tuple with string-valued
components for a first name and a last name. One can also define a custom type
AbstractClass whose instances are all instances of the existing class Class whose
abstract attribute has the value true. And one can define a type AorB as a kind of
superclass of some existing types A and B.

At the current point in time, there is only one implementation of QVTo which is
provided by the Eclipse project3 and is able to transform EMF models. However, it
does not implement all features specified by the standard.

Tefkat4 [LS05] is a transformation approach which, like ATL, has been developed
initially as a response to the QMG’s Query/Views/Transformations RFP1 on page 301.

Tefkat is a declarative, logic-based transformation language where traceability
information is explicitly defined. I.e., each transformation defines custom tracking

2For example, the semantics of guards in the presence of inheritance is not specified, e.g., what
happens when the guard of the specialized operation succeeds but the guard of the specializing operation
does not, or the other way round.

3https://projects.eclipse.org/projects/modeling.mmt.qvt-oml (last visited: 2015-10-07)
4http://tefkat.sourceforge.net/ (last visited: 2015-10-07)
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classes (a traceability metamodel) which are explicitly instantiated in a so-called
tracking model during the transformation and link source element to target elements.

Transformations consist of rules where each rule consists of two constraints src

and trg. The src constraint is used as a query on the transformation’s source model
and the tracking model. The trg constraint expresses a kind of postcondition for a
rule which defines for elements satisfying the src constraints which corresponding
elements have to exist in the target model and the tracking model. Thus, rules have
a declarative forall-there-exists semantics.

Tefkat also allows to define stand-alone constraints on the source and tracking
model called patterns which may then be used as part of the src constraints of
multiple rules.

Rules may extend or supersede other rules. With the former, the extending rule
applies to elements for which the src constraints of both the extending and the
extended rule apply. With the latter, the superseding rule applies to all elements
matching its own src constraint. In both cases, the extended/superseded rule applies
to all elements which do not satisfy the extending/superseding rule’s src constraint
but which satisfy their own src constraint.

Tefkat also has reflective capabilities and supports an Any type which acts as a
supertype of all metamodel types. This allows to define transformations spanning
meta-levels. Everywhere a metamodel type is expected, there may also be an
expression which evaluates to a type. This makes it easy to write a generic copy
transformation. Here, a rule can simply accept elements of all types using the Any
type and create target elements of the same type using the reflective capabilities.

There are various model transformation approaches which are realized as em-
bedded DSLs in several different host languages.

RubyTL [CMT06] is a DSL for out-place model transformations embedded in the
Ruby programming language5.

A RubyTL transformation consists of rules where each rule declares a single
source metamodel class and one or many target metamodel classes. For each
instance of the source metamodel class, one instance of each target metamodel
class will be created.

Optionally, a rule may contain a filter block6 which is applied to all instances of
the rule’s source metamodel class. Only for those instances the block yields true,
corresponding target elements are created.

Furthermore, a rule usually contains a mapping block which receives the source
element and all target elements. Here, assignments of properties are performed.
Like with ATL, source elements are assigned to target element instances where the
resolution to appropriate target elements in terms of calling other rules is performed
implicitly.

The core of RubyTL is intentionally very simple. Advanced concepts such as spe-
cialization between rules or complete transformations are not supported. However,
RubyTL is extensible using a plugin system where plugins can change and extend

5https://www.ruby-lang.org (last visited: 2015-10-08)
6A block in Ruby defines a Proc object which is a kind of a lambda, i.e., an anonymous function.
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most aspects of the language. For example, by default a RubyTL transformation’s
entry point is its first rule but there is a plugin which adds the ability to define
top-level rules thus allowing to have transformations with multiple entry points.

Scala MTL [GWS12] is a rule-based out-place transformation language which is
implemented as an embedded DSL in the multi-paradigm language7 Scala8. The
approach allows for transforming EMF models and is similar to RubyTL.

Rules are objects which are instantiated with one source metamodel class and
one target metamodel class with the semantics that for each instance of the source
metamodel class, a corresponding target metamodel class is to be created.

A rule may define a when function which is a predicate used for filtering the
source elements. It also may contain a perform function which is called with each
source element accepted by the rule and the corresponding newly created target
element. Here, the properties of the target element are set. Like with ATL and
RubyTL, the references of target model elements are set to source model elements
which implies invoking a rule which is able to transform the given source elements
to the expected target model elements. This feature could be implemented elegantly
using Scala’s implicit conversion facility.

Scala MTL requires that interfaces and classes have been generated for the
source and target metamodels and models are being represented using those. But
then it provides static type-safety without clutter because Scala’s advanced type
inference and implicit conversion features usually allow for omitting explicit type
declarations at most places.

SIGMA [KCF14] is a model manipulation library for EMF models which is also
implemented as a set of embedded DSLs in Scala. SIGMA provides DSLs for model
manipulation, constraint checking, model-to-model transformations, and model-to-
text transformations.

Its out-place transformation DSL is very similar in capabilities to the Scala
MTL discussed above. With SIGMA, transformations are defined as classes whose
methods are the rules. The first parameter of a rule denotes the source element,
and the second to last element denote target elements which are to be created.
Rules may have a guard expression restricting their applicability. In the body of
a rule, properties of the newly created target elements are set. Like with ETL,
a special operation srcElement.sTarget[TargetType] is used in order to resolve
target elements of a given type for some given source element which might cause
another rule to be called.

Like Scala MTL, SIGMA transformations require that code has been generated for
the source and target metamodels but then transformations are statically type-safe.

NMF [HH14] is a modeling framework for the .NET platform implemented in C#
which is, among others, equipped with an embedded DSL for realizing model-to-
model transformations called NTL.

7Scala is both a functional and an object-oriented language.
8http://www.scala-lang.org/ (last visited: 2015-10-08)
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However, here the term embedded DSL is a bit overstating. Transformations are
defined as classes extending a predefined framework class. Transformation rules
are also defined as classes extending a predefined framework class. The base class
for rules has two type parameters representing the rule’s single source and target
element class. Those are fixed during specialization in order to define a concrete
rule.

A concrete rule class then overrides the Transform() method of the base class.
This method is called with the source and the target element and here the target
element’s attributes can be set.

In order to define for which source elements a rule is to be called and which
other rules have to be called, dependencies can be specified by overriding the
RegisterDependencies() method. The specifications in this method also contain
assignments to references.

Given that transformations and rules are defined as classes, the normal C#
inheritance concept can be used for specializing rules and whole transformations.

All in all, NTL transformations are provided as a solid C# API rather than an em-
bedded DSL with a somewhat autonomic syntax. Nevertheless, the typical embedded
DSL goals of being task-oriented while still retaining the host language’s flexibility
are mostly achieved although NTL requires transformation developers to write a lot
of infrastructural code which has nothing to do with the actual transformation task.

The FunnyQT extensional transformation API which has been discussed in sec-
tion 27.4 on page 287 can be seen as a direct successor of the transformation
language GReTL [EH14; HE11] with some differences in details. GReTL is imple-
mented as a Java API but also has a simple external DSL syntax.

Where GReTL was specific to the TGraph modeling framework JGraLab and
followed the concept of creating the target metamodel of a transformation in con-
junction with one conforming target model, FunnyQT’s extensional transformation
API works for any modeling framework but only supports operations on the instance
level. FunnyQT’s co-evolution API which will be discussed in part X starting on
page 375 again builds on GReTL concepts in order to allow the specification of
transformations that change a metamodel and a conforming model simultaneously.

GReTL had the same operations as FunnyQT’s extensional transformation API
with essentially the same archetype concept. Only some details have been changed.
With GReTL, when creating edges, the archetypes of the start and end vertex had to
be given. Likewise, when setting attributes the archetypes of the elements whose
attributes were to be set had to be given. With FunnyQT, the actual start and end
elements or the actual elements whose values are to be set are to be given. This
allows for transformations which extend a given model in place where the elements
don’t have archetypes and is generally less confusing.

GReTL uses GReQL [EB10] for its querying part. Usually, extensional FunnyQT
transformations obviously use FunnyQT’s querying facilities. With both GReTL and
FunnyQT, any other form of querying, e.g., querying a relational database using
SQL, could be used, too.
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Summary

This part is again dedicated to model querying. However, here the
emphasis is on querying models relationally where a query declaratively
defines relations between logic variables and the evaluation finds possible
bindings of these variables which make the relations hold.

Chapter 29 starting on page 313 introduces into the topic of relational
querying and then chapter 30 starting on page 323 describes FunnyQT’s
DSL for querying models relationally.

The approach is illustrated with a set of example queries in chapter 31
starting on page 331.

The part closes with chapter 32 starting on page 335 where related
relational and logic-based approaches for program and model querying
are discussed.





Chapter 29

Introduction

Until now, a model query has been considered to be a function. It receives a model
and possibly additional arguments and returns a result. The arguments are the
inputs to the query and the return value is the single output.

Relational model queries are quite different. A relational query declaratively
defines relations that need to hold between a set of logical variables. Each such
variable can either be fresh (not bound to a value) or ground (bound to a value).
Evaluating a relational query means finding bindings for the fresh logical variables
which fulfill the relations defined by the query. Thus, any variable of a relational
query can be input (when it is ground) or output (when it is fresh) and a relational
query may have zero or arbitrarily many results. As an example, the same relational
program which is able to compute a sorted list from a given list can also be used to
compute all permutations of a given sorted list. Therefore, it is frequently said that
a relational program can be run “backwards,” too.

Mathematically, a relation is a subset of the Cartesian product of the universes
of its arguments, i.e., a relation is a set of tuples. For example, there might be
a binary relation parent ⊆ Person × Person which relates persons in the role of a
parent with persons in the role of a child. On top of this relation which might be
manifested in a model with person elements and references or relationships for
assigning children to parents, other relations can be defined using conjunction,
disjunction, or quantification. For example, two persons a and b are siblings if they
have at least one common parent.

sibling : Person× Person

sibling = {(a, b) | ∃c ∈ Person : (c, a) ∈ parent ∧ (c, b) ∈ parent}

These concepts combined with unification form the core of relational model
querying and relational programming in general.

With respect to relational algebra in database systems, the siblings relation can
be seen as a selection of the Cartesian product parent× parent where the first and
third attribute are equal followed by a projection on the second and fourth attribute.
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Relational model querying is a nice feature on its own. All simple patterns
with positive and negative application conditions or constraints which have been
discussed in part V starting on page 181 can also be formulated as relations. On
the one hand, the fact that any parameter of a relation may be used both as input
and output allows for even more flexibility. On the other hand, patterns can be
evaluated much faster in general and so are to be preferred if performance matters
or the queried models are large. However, the utmost declarative nature of relations
make them very suitable for defining bidirectional transformations, and in fact,
the relational model querying API is the foundation of FunnyQT’s bidirectional
transformation DSL which is going to be discussed later in part IX starting on
page 339.

FunnyQT’s relational model querying DSL is not invented and implemented from
scratch. Instead, it extends the Clojure core.logic library which provides relational
programming capabilities on Clojure data structures with relations for querying
models. An introduction to relational programming with core.logic is given in
section 29.1. Thereafter, chapter 30 starting on page 323 introduces FunnyQT’s
extensions to core.logicwhich enable relational model querying. Chapter 31 starting
on page 331 demonstrates relational querying by defining some example relations
on models representing a genealogy.

Appendix A.6 on page 427 explains how the relational querying capabilities can
be extended upon other modeling frameworks in addition to EMF and JGraLab.

29.1 Relational Programming with core.logic

The core.logic library is a Clojure port ofminiKanren1 [FBK05; Byr09] which embeds
Prolog-style [II95] relational programming into the Lisp-dialect Scheme.

The beauty of miniKanren lays in its implementation which consists of less than
300 lines of functional Scheme code and yet suffices to solve about the same set of
problems which a standard Prolog implementation tackles2. However, the design
philosophies of Prolog and miniKanren are very different. Prolog’s main goal is
efficiency up to the point of sacrificing correctness3 where solutions of a program are
computed using a depth-first search thereby mutating data structures and undoing
the changes while backtracking. In contrast, miniKanren’s main goals are simplicity
and purity of the implementation and extensibility. The complete implementation is
free of mutation and side-effects.

One extension to miniKanren is cKanren [Alv+11] which supports constraint
logic programming over trees (CLP (Tree)) and finite domains (CLP (FD)). The for-
mer allows for specifying inequalities, the latter allows for defining arithmetical
constraints over integral values. Both extensions are supported by core.logic, too,
and they are also useful for relational model querying.

1http://miniKanren.org
2In the meantime, the core concepts of miniKanren have been extracted into a minimal relational

language named µKanren [HF13] consisting only of 40 lines of code.
3For example, Prolog implementations omit the occurs check on unification which forbids unifying

a variable with a term containing that variable. This omission may lead to cyclic structures and non-
termination.
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Both core.logic and miniKanren embed relational programming inside their
functional host languages Clojure and Scheme, i.e., there is a macro run* inside
which code has to be placed that is evaluated according to relational semantics. A
minimal example relational program is given in the following listing.

(run* [q]
(== q true))

;=> (true)

Logic variables. The run* macro receives a vector declaring one or more logic
variables. So in the example above, one logic variable q is declared. The logic
variables declared by run* are fresh initially, i.e., they are not bound to any value.
Variables which are bound to a variable are said to be ground.

Goals. After the logic variables vector, one or many goals are specified. A goal is
an application of a relational operator or a relation to logic variables. The semantics
of run* is to find all possible bindings of the declared logic variables which fulfill all
specified goals. In logic terms, the task of a relational program is to find all models
(in the logical sense), i.e., all interpretations of the logic variables fulfilling the goals
specified by the program.

One says a goal succeeds if and only if there exists at least one possible binding
of its logic variables satisfying the goal. Otherwise, i.e., if there is no such binding,
the goal is said to fail.

Unification and equality. In the example above, there is only one goal (== q
true). Here, the equality operator ==4 tries to unify the logic variable q with the
boolean literal true.

Unification of a fresh variable and a term (an actual datum or a ground variable)
assigns the value to the variable. Unification of two fresh variables guarantees that
whatever the values of the two variables will eventually be, they must be equal. And
lastly, the unification of two terms succeeds if they are equal and fails otherwise.

In the example above, q is fresh, thus unifying it with true succeeds. This is also
the only possible solution, so the list of solutions delivered by the program contains
just the single solution true.

Note that a term may contain logic variables itself. For example, the goal (== q [a
b c]) unifies q with a vector of length three where the actual elements are defined
by three other logic variables. Such a unification works according to the rules above
and there is one additional restriction: the unified variable must not be contained
in the structure being unified with. If it is, the unification fails. So the goal (== q
[q]) or a conjunction of goals (== q a) (== q [a]) will fail. This constraint is called
the occurs check and essentially forbids self-referential structures and is required
by a sound unification algorithm.

4Here, == is the equality operator clojure.core.logic/== and not the numeric comparison function
clojure.core/==.
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Relations. Relations are introduced best by comparing them with functions.
Whereas a function has separate input values (its arguments) and one single output
value (its return value), a relation’s arguments are logic variables which can act
both as inputs (when they are ground) or as outputs (when they are fresh). Thus,
when a relation is called (i.e., used as a goal) and all arguments are ground, it acts
like a predicate. When it is called and at least some arguments are fresh, it emits
all possible bindings of the fresh arguments which would make the relation hold.

Many Clojure functions have one or several relational counterparts. For example,
there is the relation (conso o r l) provided by core.logic. conso is a ternary relation
where o is some object, r is some list, and l is a list where o is the first element and
r is the rest. Its functional Clojure counterparts are first, rest, and cons. (first l)
returns the first element of the list l, (rest l) returns the rest of the list l, and
(cons o r) returns a new list whose first element is o and the rest is r.

In the following program, conso is used to decompose a given list q into its first
element o and its rest r.

(let [q (list 1 2 3 4)]
(run* [o r]
(conso o r q)))

;=> ([1 (2 3 4)])

Obviously, there is only one solution. But other programs might have an infinite
number of solutions. For example, the following program queries for all lists q (and
their rests r) which have the number 1 as first element.

(let [o 1]
(run* [r q]
(conso o r q)))

;=> ([_0 (1 . _0)])

Interestingly, the program still terminates immediately. The notation (1 . _0)
represents a list where 1 is the first element and _0 is the rest. _n : n ∈ N is the
print representation of a fresh logic variable, i.e., here the single result subsumes
all possible lists with the first element being 1. One could substitute _0 with any list
and get a correct answer.

As said, the core.logic library is a port of miniKanren which has been originally
implemented in Scheme. Although most Scheme implementations have a names-
pace facility, the Scheme standard [Spe+10] doesn’t require one. Therefore, the
convention of suffixing relations with an “o” in order to disambiguate them from
functions while still indicating a correspondence with some existing function came
into being and it is generally followed in core.logic and the whole community around
miniKanren5.

Existential quantification. The fresh macro receives a vector of symbols which
are to be declared as new, fresh variables, and one or many goals. Its semantics
is that there has to be at least one binding for the newly declared fresh variables

5The actual miniKanren publications use a superscript “o” for relations, e.g., conso, resto, and appendo.
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which would make all the given goals succeed. Therefore, it acts like an existential
qualification.

For example, the last program can be rewritten using fresh so that the rest of
the list r is not reported in the answers. The goal is read as there exists an r such
that adding o to the head of r gives q.

(let [o 1]
(run* [q]
(fresh [r]

(conso o r q))))
;=> ((1 . _0))

Here, the result is a sequence of possible values for the logic variable q rather
than a sequence of vectors, each containing a possible value of r and q.

Existential quantification is especially needed when defining custom relations
which are going to be discussed below.

Defining custom relations. Custom relations can be defined as ordinary Clojure
functions provided that they are defined completely using other relations or relational
operators. The following example defines a relation cconso which is like conso but
relates the first two elements f and s of a list with the rest r of the list l. The
definition states that when adding s to the front of r, one gets a new list l1, and
when adding f to that, one gets the final list l.

(defn cconso [f s r l]
(fresh [l1]
(conso s r l1)
(conso f l1 l)))

(run* [q]
(cconso 1 2 q (list 1 2 3 4 5)))

;=> ((3 4 5))

The query then asks for the list to which adding 2 and 1 in this order would result
in the list (1 2 3 4 5).

Conjunction. The goals in a run* or a fresh are wrapped in an implicit conjunction,
i.e., the solutions of a relational program must fulfill all the goals specified by it.
However, when defining custom relations just as as sequence of goals, conjunctions
have to be stated explicitly using all.

Disjunction. A disjunction can be specified using conde which consists of two or
many clauses. Each clause is a vector of goals which are wrapped in an implicit
conjunction.
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The following relation membero*6 succeeds if o is a member of the list l. The
definition uses conso to decompose the list l into its first element f and its rest r.
Now two cases are distinguished by conde. o is a member of l if l’s first element f
unifies with o, or if o is a member of the rest r of l.

(defn membero* [o l]
(fresh [f r]

(conso f r l)
(conde
[(== f o)]
[(membero* o r)])))

(run* [q]
(fresh [a b c]

(== q (list a b c))
(membero* 1 q)
(membero* 2 q)))

;=> ((1 2 _0) (1 _0 2) (2 1 _0) (_0 1 2) (2 _0 1) (_0 2 1))

The query then asks for all lists of length three which contain both 1 and 2. As
can be seen, there are six answers because there are 3! permutations of elements in
a list of length three. Every answer contains one fresh variable. Again, it could be
substituted with any value and the answer would still be correct.

Note that the delivery of all possible solution also means that conde is not short-
circuiting. If a clause succeeds, the other clauses are evaluated anyway and thus
have a chance to deliver more answers. There is some anecdotal evidence that this
fact also explains the “e” suffix of conde: every clause may succeed.

However, there are certain situations where not all possible solutions are needed
or trying to retrieve them would lead to non-termination. Therefore, miniKanren
and core.logic provide the additional disjunction operators conda (soft cut) and condu
(committed choice). They have the same syntax as conde but treat the head (the first
goal) of each clause specially. Concretely, the clauses are evaluated in order and if
the head of a clause succeeds, then these disjunctions commit to this clause and
ignore all other clauses. This corresponds to Prolog’s cut operator !. The difference
between conda and condu is that with the former, the head of the clause committed
to may still succeed an unbounded number of times whereas it may succeed at most
once with condu.

The following example demonstrates the differences in the behaviors between
conde, conda, and condu.

(defn y-or-n [x]
(conde
[(== x :y)]
[(== x :n)]))

(run* [x y]
(conde

6membero is a built-in core.logic relation, thus an asterisk is used in order not to overwrite it in the
defining namespace.
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[(y-or-n x) (== y 1)] ;; delivers [:y 1] and [:n 1]
[(== x :y) (== y 2)])) ;; delivers [:y 2]

;=> ([:y 2] [:y 1] [:n 1])

(run* [x y]
(conda
[(y-or-n x) (== y 1)] ;; delivers [:y 1] and [:n 1]
[(== x :y) (== y 2)])) ;; isn't evaluated

;=> ([:y 1] [:n 1])

(run* [x y]
(condu
[(y-or-n x) (== y 1)] ;; delivers only [:y 1] (once-semantics)
[(== x :y) (== y 2)])) ;; isn't evaluated

;=> ([:y 1])

Inequalities. As said in the introduction, core.logic supports constraint logic
programming over tree terms (CLP(Tree)7). This feature adds just one additional
relational operator != which can be used to express inequalities. A goal (!= a b)
states that whatever the final values of a and b may be, they must not be equal.

The following relational program illustrates the features provided by CLP(Tree)
by defining a relation dedupeo. It is a binary relation over two lists l and nl where nl
is l with consecutive duplicates removed.

(defn dedupeo [l nl]
(conde
[(conde [(== l ())] ;; (1)

[(fresh [x]
(== l (list x)))])

(== nl l)]
[(fresh [f s r r1] ;; (2)

(conso f r l)
(conso s r1 r)
(conde
[(== f s) (dedupeo r nl)] ;; (2.1)
[(!= f s) (fresh [acc] ;; (2.2)

(dedupeo r acc)
(conso f acc nl))]))]))

Two main cases are to be distinguished. For an empty or one-element list l as in
case (1), the deduped version nl simply equals the original list l.

For a list l starting with at least two elements f and s as in case (2), there are
again two cases to be handled. If the first element f and the second element s
are equal as in case (2.1), then deduping the rest r of the original list l, i.e., the
second to last element, will yield the same result nl. That is, the first element may
be ignored. If f and s are equal, then the deduped list nl is defined by deduping the
rest r of the original list l and adding the first element f to its head.

7The name CLP(Tree) is slightly misleading. The “tree” refers to the fact that terms may be trees.
Normal logic programming is already a restricted version of CLP(Tree) where the single constraint is
equality.
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Now, the new relation can be used to dedupe a given list which of course always
yields exactly one result.

(run* [q]
(dedupeo (list 1 2 2 3 3 3) q))

;=> ((1 2 3))

It can also be used to test if a given list is a deduped version of another given list.

(run* [q]
(dedupeo (list 1 2 2 3 3 3) (list 1 2 3)))

;;=> (_0) ;; yes
(run* [q]

(dedupeo (list 1 2 2 3 3 3) (list 3 2 1)))
;=> () ;; no, obviously not
(run* [q]

(dedupeo (list 1 2 2 3 3 3) (list 1 2 2 3)))
;=> () ;; no, nl isn't even deduped!

And lastly, it can be used to generate versions of a deduped list containing
duplicates.

(run 10 [q]
(dedupeo q (list 1 2 3)))

;=> ((1 2 3)
; (1 2 3 3)
; (1 1 2 3)
; (1 2 2 3)
; (1 2 3 3 3)
; (1 1 2 3 3)
; (1 1 1 2 3)
; (1 2 2 3 3)
; (1 1 2 2 3)
; (1 2 2 2 3))

Of course, the number of such lists is unbounded. So here, we use the core.logic
macro run which is similar to run* except that it receives an additional argument
which acts as the maximum number of solutions to be computed.

Constraints over finite domains. The core.logic library also implements con-
straint logic programming over finite domains (CLP(FD)) which means that the
domain of each logic variable may be restricted to a finite set.

In core.logic, this extension essentially allows to define simple arithmetic goals
on integral numbers by restricting the domain of the involved logic variables to a
certain finite subset of Z.

The following example uses the finite domain constraints < and > and the - relation
in order to define a relation (modo x y r) where x and y are positive integers and r is
the remainder of x divided by y. In the example, the alias fd maps to the namespace
clojure.core.logic.fd.
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(defn modo [x y r]
(conde
[(== y 0) fail] ;; (1)
[(== x y) (== r 0)] ;; (2)
[(fd/< x y) (== r x)] ;; (3)
[(fd/> x y) (fresh [d] ;; (4)

(fd/- x y d)
(modo d y r))]))

Four cases are distinguished. If the divisor y is zero as in case (1), the relation
fails8. If the dividend x and the divisor y are equal as in case (2), the remainder r is
zero. If the dividend is smaller than the divisor as in case (3), the remainder equals
the dividend. And lastly, if the dividend is larger than the divisor as in case (4), on
obtains the very same remainder r when computing the remainder of the difference
between x and y as dividend and y an divisor.

This relation can be used to compute the modulo of two given numbers.

(run* [q]
(modo 15 6 q))

;=> (3)

(run* [q]
(modo 271 13 3))

;=> () ;; no, the modulo is 11

The modo relation can also be used to compute numbers whose division would
return a given rest, or even all triples of integers related by modo. However, in
these cases CLP(FD) requires the fresh variables denoting integers to be restricted
to some finite domain, i.e., some finite subset of Z. This is done using the in and
interval constructs of core.logic’s CLP(FD) API.

(run* [x y]
(fd/in x y (fd/interval 1 15))
(modo x y 3))

;=> ([3 4] [7 4] [3 5] [3 6] [11 4] [8 5] [3 7] [3 8] [9 6] [3 9]
; [3 10] [15 4] [10 7] [3 11] [13 5] [3 12] [11 8] [3 13]
; [3 14] [12 9] [3 15] [13 10] [15 6] [14 11] [15 12])

(run 10 [x y r]
(fd/in x y r (fd/interval 1 15))
(modo x y r))

;=> ([1 2 1] [3 2 1] [2 3 2] [1 3 1] [4 3 1]
; [1 4 1] [5 2 1] [3 4 3] [2 4 2] [5 3 2])

Negation as failure and universal quantification. The negation as failure con-
straint with signature (nafc rel & args) succeeds if and only if the goal defined by
applying the relation rel to the given args fails. nafc is non-relational, i.e., the given
args won’t be unified with all combinations of objects for which rel does not hold.

8clojure.core.logic/fail is a goal which always fails.
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Instead, other goals must ensure that at some point in time, all args are ground, and
then the constraint will be checked.

The universal quantifier everyg is a pseudo-relation (or higher-order relation)
with signature (everyg rel coll) which succeeds if and only if (rel el) succeeds for
every element el contained in the collection coll.

In the following example, the relation answero unifies x with possible answers to
a yes-or-no question. Like in real life, answers to such questions aren’t as sharp as
the asker would like to, i.e., possible answers may also be :maybe and :dont-know.

(defn answero [x]
(conde
[(== x :yes)]
[(== x :no)]
[(== x :maybe)]
[(== x :dont-know)]))

(run* [q]
(fresh [a b]

(== q (list a b))
(everyg answero q)
(nafc membero :maybe q)
(nafc membero :dont-know q)))

;=> ((:yes :yes) (:yes :no) (:no :yes) (:no :no))

The run* query then asks for all two-element lists q containing only definitive
answers, i.e., answers which are not :maybe or :dont-know. It does so by asserting
that :maybe and :dont-know must not be members of the list q.



Chapter 30

Defining Relational Model
Queries

For providing relational model querying, FunnyQT simply defines some generic
relations on models and model elements. These are discussed in section 30.1.
Built upon these generic relations, more convenient metamodel-specific relational
querying APIs can be generated. This feature is discussed in section 30.2 on
page 328.

30.1 Generic Relations

The generic model querying relations discussed in this section are designed along
the generic view of models which has been introduced in chapter 8 starting on
page 83. In this view, a model is a container for elements and optionally relationships
between the elements. Elements and possibly relationships are typed and attributed.
Furthermore, elements may link to other elements in terms of named references
which may either be single-valued or multi-valued.

FunnyQT’s funnyqt.relational namespace provides one relation for each of these
properties, i.e., there is one relation concerned with elements in amodel, one relation
concerned with relationships in a model, one relation concerned with typing, one
relation concerned with attribution, and one relation concerned with references.

Elements. elemento is a relation where el is a model element. If el is fresh, it will
be unified once with each element of model m. Thus, elemento corresponds to the
generic protocol methods funnyqt.generic/elements (see section 12.2 on page 109)
and funnyqt.generic/element? (see section 12.5 on page 113), but in contrast to the
former, it is not concerned with typing.
Relation: funnyqt.relational/elemento
(elemento m el)

323
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The model parameter m must always be ground, so elemento is not fully relational
in the strict sense. If it were, it had to unify a fresh m with all possible models
containing el which is obviously infeasible.

All other model relations discussed in the following also have the model as first
argument. It would have been possible to define the relations without an explicit
model parameter and instead having it implicitly defined using, e.g., a dynamically
scoped var, however this would have restricted relational model queries to operate
on just one model or at least a set of models without being able to control which
elements belong to which models. Therefore, it is best to view the model argument
as some technical detail and consider elemento as a fully relational unary relation.

As discussed in the introduction to core.logic, custom relations can be defined
as plain functions provided that they only use existing relations for their definition.
Since relations are Clojure functions, it is easily possible to define higher-order
relations which receive other relations.

For example, there might be a relation constrained-elemento which restricts
elemento with some other relation given as a parameter.

(defn constrained-elemento [m relation el]
(all

(elemento m el)
(relation el)))

Again, the given relation is a technical parameter just like the model. If it were
part of the relation and could be fresh, it would have to be unified with all possible
relations which succeed for el.

Relationships. relationshipo is a relation where rel is a relationship, src is
its source element and trg is its target elements. Therefore, it is the rela-
tional counterpart to the protocol methods funnyqt.generic/relationships (see sec-
tion 12.2 on page 109), funnyqt.generic/relationship? (see section 12.5 on page 113),
funnyqt.generic/source, and funnyqt.generic/target (see section 12.2 on page 111).
Like with elemento, it is not concerned with typing.
Relation: funnyqt.relational/relationshipo
(relationshipo m rel src trg)

If relationshipo is used on a model m which has no first-class relationships, e.g.,
an EMF model, an exception is thrown.

Using relationshipo, questions about reachability in a graph can be easily an-
swered. As an example, the following relation reachableo succeeds for each pair of
model elements x and y where y is reachable from x by a path which traverses all
relationships only in the direction dir which is either :forward or :backward.

(defn reachableo [m x y dir]
(conde
[(== dir :backward) (reachableo m y x :forward)] ;; (1)
[(== dir :forward) (fresh [r] ;; (2)

(conde
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[(relationshipo m r x y)] ;; (2.1)
[(fresh [i]

(relationshipo m r x i) ;; (2.2)
(reachableo m i y dir))]))]))

In clause (1) dealing with :backward direction, the question is simply reversed.
Clause (2) deals with the :forward direction, and here two cases can be distinguished.
There might be an edge r which starts at x and ends at y (2.1), or there might be
some intermediate model element i being the target element of edge r starting at x,
and y is reachable from i.

This definition of reachableo is fully relational (except for the model parameter
m). It unifies x and y once for each path with direction dir leading from x to y. For
this reason, the graph m must be acyclic. Otherwise, the relation won’t terminate
because the number of paths is infinite.

If the relation were to be used on possibly cyclic graphs, the conde of clause (2)
could be changed to conda in which case the search for indirect connections (2.2)
would be skipped in presence of a direct connection (2.1).

Typing. typeo is a relation where el-or-rel is a model element or a relation and type
is its type. If provided, type may be an arbitrary type specification (see concept 3
on page 109). However reversely, i.e., when type is fresh, it will only be unified
with the simplest type specification matching the type of el-or-rel, namely a symbol
denoting the fully qualified name of el-or-rel’s metamodel class.
Relation: funnyqt.relational/typeo
(typeo m el-or-rel type)

typeo does not distinguish between elements and relationships, so a query like
(typeo m x t) on a TGraph model unifies x with all vertices and edges and t with the
corresponding type.

Attributes. avalo is a relation where el-or-rel is a model element or relationship,
attr is an attribute name (a keyword) and val is the attr value of el-or-rel. Thus,
it is the relational counterpart of the protocol method funnyqt.generic/aval (see
section 12.3 on page 111).
Relation: funnyqt.relational/avalo
(avalo m el-or-rel attr val)

avalo is quite interesting as it allows some very unusual kinds of queries which
would be complicated to formulate using the functional model querying API discussed
in part IV starting on page 105. For example, the following query results in all
tuples of an element or relationship in the model m together with an attribute name
(a keyword) whose value equals “John Doe.”

(run* [el-or-rel attr]
(avalo m el-or-rel attr "John Doe"))
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References. adjo is a relation where the model element el references the element
refed-el using its ref reference (a keyword). As such, it is the relational counterpart
of the functions funnyqt.generic/adj and funnyqt.generic/adjs (see section 12.4 on
page 112).
Relation: funnyqt.relational/adjo
(adjo m el ref refed-el)

With adjo, refed-el is always an element. That is, if ref denotes a single-valued
reference, refed-el will be unified with the element referenced by el. If the ref
reference of el is unset, then adjo fails. If ref denotes a multi-valued reference, then
for each el, refed-el will be unified once with each referenced object.

Like with relationshipo, reachability questions can be answered easily with adjo,
too. The following adj-reachableo is a relation where the element y can be reached
from the element x via a path following arbitrary references.

(defn adj-reachableo [m x y]
(fresh [ref]

(conda
[(adjo m x ref y)]
[(fresh [i]

(adjo m x ref i)
(adj-reachableo m i y))])))

In this example, conda has been used in order to guarantee termination in case of
cycles in the model1.

Declarativeness versus order of goals. Relational or logic programming is
declarative, and with the exception of the non-relational disjunctions conda and
condu, the order in which goals are states has no severe effect on the result of a rela-
tional program except that the order in which solutions are found may also change.
However, the order of goals may have a tremendous impact on the performance.

In theory, every relation simply has to make the core.logic machinery aware
of all the values its arguments may take. For example, a valid but inefficient
implementation for relationshipo could simply emit all tuples of the form (r, src, trg)
where r is some relationship, src is r’s source element and trg is r’s target element.
The unification machinery would then filter all possible bindings to determine the
solutions in the relational program where relationshipo is used as a goal. However,
it is clearly inefficient when every relationshipo goal would always emit as many
candidate bindings as there are relationships in the model.

Therefore, the actual implementations of the model querying relations use case
differentiations in order to emit only a minimum number of candidate bindings or
even no candidate bindings at all. Obviously, the differentiation is based on which
subset of arguments is ground already. For example, if the logic variable r denoting
the relationship in the goal (relationshipo m r src trg) is already ground, two cases
need to be distinguished. If r is in fact a relationship, then src and trg are unified
with r’s source and target element, i.e., there is only one candidate binding for the

1Two elements connected by a bidirectional reference form a cycle already.
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remaining fresh variables. If r is not a relationship, then relationshipo immediately
fails without emitting any candidate binding. In case src or trg are ground and
valid model elements, only candidate bindings for the outgoing or incoming incident
relationships need to be emitted. Again, those are usually much fewer than the
number of relationships in the complete model. So as a rule of thumb one can say
that the performance of evaluating a goal depends on the how many of its logic
variables are ground already.

Because the order in which logic variables are grounded is defined by the order
of goals, the order also has an effect on the efficiency of evaluating a relational query.
For example, the following relational model query computes all tuples (a, b, c, u, v)
where a, b, and c are elements of the metamodel classes A, B, and C respectively, u is
a relationship starting at a and ending at b, and v is a relationship starting at b and
ending at c.

(run* [a b c u v]
(typeo m a 'A)
(typeo m b 'B)
(typeo m c 'C)
(relationshipo m u a b)
(relationshipo m v b c))

This query is written in the worst possible way. The three typeo goals emit all
possible candidate bindings for a, b, and c where the candidates have the respective
types A, B, and C. Then, the candidate bindings are filtered by the two relationshipo
goals which also emit candidate bindings for u and v. In order to do so, the relation-
ships incident to a or b, or b or c have to be iterated, respectively. So essentially,
the query first computes the Cartesian product of all A elements with all B element
and all C elements and then restricts the possible candidate bindings using the
connection constraints.

The same query could be defined much more efficient as shown in the next listing.

;; Much faster version of the query in the previous listing
(run* [a b c u v]

(typeo m a 'A)
(relationshipo m u a b)
(typeo m b 'B)
(relationshipo m v b c)
(typeo m c 'C))

Here, the first goal emits one candidate binding for the logic variable a for all A
element in the model. Thus, a is already ground when the second goal, (relationshipo
m u a b) is evaluated, and therefore only bindings for u and b with an existing a need
to be computed by iterating the incident relationships of the already ground a. The
third goal restricts the candidate bindings for b to those where b is an instance of the
metamodel class B and then two further goals compute c and v. For all but the first
goal, there is at least one ground argument which restricts the number of candidate
bindings and the two last typeo goals don’t need to compute any candidate bindings
at all but only need to perform a fast type-check.
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30.2 Metamodel-Specific Relations

The relations elemento, relationshipo, typeo, avalo, and adjo together with the rela-
tional operators provided by core.logic, especially == (equality), fresh (existential
quantification), all (conjunction), conde (disjunction), conda, and condu (both non-
relational forms of disjunction) suffice for formulating the most important model
queries. However, they are on a very low-level of abstraction.

The single macro generate-metamodel-relations relations discussed in this section
generates a complete, relational API which is specific to one given metamodel and
thus specialized to write relations on models conforming to this metamodel.
Macro: funnyqt.generic/generate-metamodel-relations
(generate-metamodel-relations mm-file)
(generate-metamodel-relations mm-file nssym)
(generate-metamodel-relations mm-file nssym alias)
(generate-metamodel-relations mm-file nssym alias prefix)

The macro receives a string mm-file denoting the file containing the metamodel,
an optional namespace (as a symbol) in which to generate the relational API (default
is the current namespace), an optional alias (as a symbol) for the namespace nssym,
and an optional prefix which is to be prepended to the names of all generated
relations.

The following relations are generated:
1. For every element class ElementClass defined by the metamodel, there are the

following relations.
(ElementClass m el) is a relation where el is a direct or indirect instance of

ElementClass.
(ElementClass! m el) is a relation where el is a direct instance of ElementClass.
(!ElementClass m el) is a relation where el is not a direct or indirect instance

of ElementClass.
(!ElementClass! m el) is a relation where el is not a direct instance of Element-

Class.
2. For every relationship class RelationshipClass defined by the metamodel, there

are the following relations.
(RelationshipClass m rel s t) is a relation where rel is a direct or indirect

instance of RelationshipClass, and s and t are its source and target elements.
(RelationshipClass! m el s t) is a relation where rel is a direct instance of

RelationshipClass, and s and t are its source and target elements.
(!RelationshipClass m el s t) is a relation where rel is not a direct or indirect

instance of RelationshipClass, and s and t are its source and target elements.
(!RelationshipClass! m el s t) is a relation where rel is not a direct instance

of RelationshipClass, and s and t are its source and target elements.
3. For every attribute name attr defined for some element or relationship class,

there is the following relation.
(attr m el-or-rel val) is a relation where el-or-rel’s attr value is val.

4. For every reference name role defined for some element class, there is the
following relation.
(->role m el refed-el) is a relation where el references refed-el using its role

reference.
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These generated relations simply wrap the generic model querying relations
discussed in the previous section. They are slightly less flexible due to the type,
attribute, or reference name being fixed but they are more convenient and readable
because the concepts used in a query are more outstanding.

30.3 Utilities

The core.logic relations and relational operators plus FunnyQT’s model querying
relations almost suffice for defining arbitrary relational queries on models. In
this short section, three additional constructs are introduced which extend the
capabilities for queries working on strings (e.g., string-valued attributes), for higher-
order relations, and for more convenience.

The stro relation is the relational counterpart of Clojure’s str function which
concatenates strings. That is, stro is a relation where xy is the concatenation of
the strings x and y. Likewise, the version of arity four is a relation where xyz is the
concatenation of x, y, and z.
Relation: funnyqt.relational/stro
(stro x y xy)
(stro x y z xyz)

stro is not fully relational. The substrings x and y (and z) have to be ground or
the concatenation xy (or xyz) has to be ground.

The alwayso relation receives arbitrary many args and always succeeds.
Relation: funnyqt.relational/alwayso
(alwayso & args)

It is useful for higher-order relations which receive other relations in order to
use them as constraints restricting their own possible solutions. In such a case,
alwayso acts as a constraint which accepts anything.

The with-fresh macro receives one or many goals. All logic variables used in
these goals which are prefixed with a question mark are automatically declared as
new, fresh variables. Additionally, all occurrences of the don’t care logic variable _
are replaced with distinct fresh logic variables.
Macro: funnyqt.relational/with-fresh
(with-fresh & goals)

The with-fresh macro is very convenient when defining relations which work
on intermediate elements. For example, the following two relations example1 and
example1* are completely equivalent.

(defn example1 [in out]
(with-fresh

(goal1 _ in ?b _)
(goal2 ?b ?c)
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(goal3 _ ?c out _)))

(defn example1* [in out]
(fresh [dc1 ?b dc2 ?c dc3 dc4]

(goal1 dc1 in ?b dc2)
(goal2 ?b ?c)
(goal3 dc3 ?c out dc4)))

The version using with-fresh is much easier to read because it makes the impor-
tant variables outstanding whereas the variables which the developer doesn’t care
about are faded out. It is also easier to write because there is no need to invent
names for the variables which aren’t interesting anyhow.



Chapter 31

Example

To demonstrate relational model querying, the relations specified in the following
are defined on TGraphs conforming to the schema shown in fig. 31.1.

«graphclass»
Genealogy

FemaleMale

Person

fullName: String

Address

street: String
town: String

HasCh i ld  

0..2

parents

*
children

HasSpouse 0..1
husband

0..1
wife

L i v e s A t  

* 1

Figure 31.1: A simple genealogy metamodel

This is the simple genealogy metamodel which has already been used as target
schema for the out-place transformation examples in section 26.2 on page 276 and
section 27.5 on page 294.

Persons are either males or females which can be related to each other using
two kinds of relationships. HasChild relationships assign the parents to a person
in the role of a child and HasSpouse relationships connect a husband and a wife.
Furthermore, the addresses of persons are modeled where any person lives at
exactly one address but multiple persons may live at the same address.

For illustrating the relational queries which are going to be defined in the follow-
ing, the example TGraph genealogy model shown in fig. 31.2 on the following page
is used.
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Figure 31.2: A genealogy graph conforming to the schema of fig. 31.1 on page 331
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The example queries are defined using the metamodel-specific relational API
generated by the generate-metamodel-relations which has been introduced in sec-
tion 30.2 on page 328. The relations have been generated into some namespace
which is accessed using the alias gen in the following.

The first relation parento succeeds when parent is a parent of child. The version
of arity three just delegates to the generated ->children relation. The version of
arity five is more interesting. It accepts two more arguments parent-c and child-c
which can be used to constrain the parent and the child, respectively. Those are
non-relational arguments expecting two relations to be given, i.e., they must be
ground.

(defn parento
([m parent child]
(gen/->children m parent child))
([m parent-c child-c parent child]
(all
(parento m parent child)
(parent-c m parent)
(child-c m child))))

Using this second version, the typical roles in a family can be defined easily and
concisely. For example, a father is a parent who happens to be male and a daughter
is a child who happens to be female. In all cases, either a constraint on the parent
or on the child is needed but never both. Since two constraint have to be given,
alwayso is used as constraint on the element which does not need to be constrained.

(defn fathero [m father child]
(parento m gen/Male alwayso father child))

(defn mothero [m mother child]
(parento m gen/Female alwayso mother child))

(defn sono [m parent son]
(parento m alwayso gen/Male parent son))

(defn daughtero [m parent daughter]
(parento m alwayso gen/Female parent daughter))

Using these relations, one can easily query for all fathers with their daughters
like so.

;; Alternative 1
(run* [f d]

(fathero g f d)
(daughtero g f d))

;=> ([#<v4: Male> #<v1: Female>]
; [#<v8: Male> #<v10: Female>]
; [#<v12: Male> #<v7: Female>]
; [#<v12: Male> #<v15: Female>]
; [#<v12: Male> #<v16: Female>])
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;; Alternative 2
(run* [f d]

(parento g gen/Male gen/Female f d))
;=> same result as above

Next, the considered family circle is extended to the grandparents. A grandparent
of a grandchild is a parent of some intermediate ?parent who is in turn parent of
grandchild. Again, a second version of arity five could have been added in analogy
to parento to make is easy to define more relations for grandmothers, grandfathers,
granddaughters, and grandsons.

(defn grandparento [m grandparent grandchild]
(with-fresh
(parento m grandparent ?parent)
(parento m ?parent grandchild)))

Two persons are siblings when they have at least one common parent and are
distinct.

(defn siblingo [m s1 s2]
(with-fresh

(parento m ?parent s1)
(parento m ?parent s2)
(!= s1 s2)))

And then an aunt is a female sibling of one of a nephew’s parents.

(defn aunto [m aunt nephew]
(with-fresh

(gen/Female m aunt)
(siblingo m ?parent aunt)
(parento m ?parent nephew)))

(distinct
(run* [aunt nephew]
(aunto g aunt nephew)))

;=> ([#<v15: Female> #<v10: Female>] [#<v1: Female> #<v10: Female>]
; [#<v16: Female> #<v10: Female>] [#<v15: Female> #<v14: Male>]
; [#<v16: Female> #<v14: Male>] [#<v1: Female> #<v14: Male>])

The last relation going to be defined here is ancestoro. It is a relation where a is
an ancestor of the predecessor p. Two cases are distinguished: a might be a parent
of p, or a might be a parent of some intermediate child ?i who is an ancestor of p in
turn.

(defn ancestoro [m a p]
(conde
[(parento m a p)]
[(with-fresh

(parento m a ?i)
(ancestoro m ?i p))]))
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Related Work

In this chapter, several related logic-based program and model querying approaches
are discussed.

Ekeko [RS14] is a tool for analyzing Java software which like FunnyQT’s relational
querying facility is provided as an API extending Clojure’s core.logic library. With
Ekeko, queries are specified directly on the abstract Java syntax graphs provided by
JDT (Java Development Tools1). Additionally, inter-procedural control flow and data
flow information computed by the Soot program analysis framework [Lam+11] can
be accessed in queries.

Built on top of the logic-based querying API, there is also a functional graph
manipulation layer which allows to define in-place transformations on Java syntax
graphs, e.g., in order to implement refactoring operations.

Ekeko is tightly integrated with Eclipse. Query results can be visualized using
the ZEST Eclipse Visualization Toolkit2, Java elements contained in query results
are highlighted in the Java editor, problem markers can be added to AST nodes
based on query results which are then shown in the Eclipse Java editor and quick
fix operations can be defined using the AST manipulation API which can then be
applied for a given problem marker.

Ekeko is based on previous work on program querying in Eclipse of the same
authors. The SOUL tool suite [Roo+11; Nog+11] already provided a very similar
approach. It consists of the query language SOUL (Smalltalk Open Unification
Language) which in combination with CAVA library supports querying Java programs
using logic predicates over abstract JDT syntax graphs and it also supports querying
by example where the query contains concrete Java code with placeholder variables.
Lastly, Barrista integrates the Smalltalk parts of the tool suite with Eclipse and
provides extension points for other Eclipse plugins which want to make use of the
features provided by SOUL.

The problem with SOUL is the impedance mismatch between Smalltalk and Java
1http://www.eclipse.org/jdt (last visited: 2015-10-12)
2http://www.eclipse.org/gef/zest/ (last visited: 2015-10-12)
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(Eclipse, JDT). All required communication and data access has to be implemented
using foreign function interfaces in C and thus query results don’t contain the actual
JDT elements but only proxies which then need to resolved again. In contrast, Ekeko
runs natively on the JVM and therefore can work on the native JDT elements and
interact with Eclipse directly.

Similar to Ekeko and SOUL is the JQuery tool [Vol06] which provides Eclipse-
integrated declarative querying on JDT syntax graphs. It is based on the TyRuBa3
logic programming language.

Whereas Ekeko and SOUL allow for defining arbitrary complex queries,
JQuery only provides predicates which allow for querying Java artifacts up
to the signature level in a very concise and easy manner, i.e., query writ-
ers don’t need to know the details of JDT syntax graphs. For example, the
query type(?T),re_name(?T,/Figure$/),method(?T,?M),returns(?M,?R) searches
for classes and interfaces ?T whose name ends in ”Figure” which contain a method
?M whose return type is ?R.

The results of such queries are displayed in tree-view code browsers where the
elements are linked to the actual source code. Therefore, JQuery can be seen as a
sophisticated extension to the Eclipse Java search features.

EMF-Query [NJ15] is a relational querying approach for EMF models. Like
Ekeko and FunnyQT’s relational querying facility, it provides an API for defin-
ing queries based on Clojure’s core.logic library. Essentially, this API consists of
the relations (1) eobject which is almost identical to FunnyQT’s elemento relation,
(2) eobject-eclass which is similar to FunnyQT’s typeo relation, and (3) ehas which
is similar to FunnyQT’s avalo and adjo relations, i.e., it is a relation where some
eobject has some value set for some property.

In addition, there are the advanced relations reachable and echild+. reachable is a
relation between two eobjects where the second can be reached from the first, and
echild+ which is a variant of ehas for references where the given reference may be
traversed one or many times, i.e., (echild+ eo :refName reo) is the transitive closure
of (ehas eo :refName reo). The evaluation of queries using the basic and advanced
relations is implemented as an extension to Ekeko.

While queries can be defined using just core.logic and the EMF-Query relations,
the authors argue that this is too complicated and inconvenient for most develop-
ers. Therefore, EMF-Query also allows to define queries visually using so-called
model templates. A model template is essentially a pattern in the form of an object
diagram. The types of the objects, the slots, and the links are determined by the
queried model’s metamodel. Into this metamodel, a generic query metamodel is
woven in which allows for naming the objects and for notating links corresponding
to the advanced relations echild+ and reachable. From these visual query specifica-
tions, corresponding code using the relational querying API can be generated and
evaluated.

So all in all, EMF-Query provides a slim relational querying API and support for
defining simple patterns visually.

3http://tyruba.sourceforge.net/ (last visited: 2015-10-12)



Part IX

On Bidirectional
Transformations

337





Summary

This part is concerned with bidirectional transformations and chap-
ter 33 starting on page 341 introduces into the topic.

Thereafter, chapter 34 starting on page 345 introduces FunnyQT’s
embedded DSL for defining bidirectional transformations and chapter 35
starting on page 361 classifies the approach according to several proper-
ties which can be found in the bidirectional transformation literature.

FunnyQT’s take on bidirectional transformations is then illustrated
using a non-trivial example in chapter 36 starting on page 363.

A discussion of related approaches closes this part in chapter 37 start-
ing on page 369.





Chapter 33

Introduction

Unidirectional out-place transformations which have been discussed in part VII
starting on page 259 have clearly defined inputs and outputs. One model or a set of
models is the source of the transformation and another model or set of models is
the target of the transformation. The transformation itself describes how elements
in the source models are translated to elements in the target models.

With model driven engineering, it is common that a model is developed further
even though it might have been the source of a transformation already. Let the
model b conforming to a metamodel B be the result of applying a transformation
t : A → B to some initial model a conforming to metamodel A, i.e., t(a) = b. If the
source model a of the transformation is changed to a′, these changes might introduce
an inconsistency with respect to the transformation t, i.e., t(a′) 6= b. In such a case,
one can recreate a new target model b′ by applying the transformation again to a′,
i.e., t(a′) = b′.

Instead of recomputing the target model anew, there are also some incremental
model transformation approaches which update the original target model b in-place
in order to have it reflect the changes performed to the source model [HLR06;
JT10; Ber+15]. Most of these incremental approaches use live transformations (in
contrast to batch transformations) where the transformation keeps running as a
demon after the creation of the target model in order to observe changes applied
to the source model and then propagates them immediately to the target model.
However, FunnyQT’s two out-place transformation approaches which have been
discussed in part VII starting on page 259 only define batch transformations.

Another problematic scenario occurs when the target model b of a transformation
t is changed afterwards to a model b′. Again, the models a and b′ may have become
inconsistent with respect to the transformation t, i.e., t(a) 6= b′. In such cases, it is
often desirable to propagate the changes applied to the model b back to model a.
However, this is infeasible if t is a unidirectional transformation.

Lastly, there is also the worst-case scenario in which both the source and target
models of a transformation have been changed independently from each other in
which case it is often desired to synchronize the models again, i.e., to propagate
the changes performed in one model to the respective other model in either one
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direction only or both directions.

A bidirectional transformation t : A ⇆ B defined between models conforming to
metamodels A and B is a transformation which can be executed in both directions.
That is, a model a conforming to metamodel A can be transformed to a model b

conforming to metamodel B (forward transformation), and likewise a model b con-
forming to metamodel B can be transformed to a model a conforming to metamodel
A (backward transformation).

One important point here is that the transformation’s specification is inherently
agnostic to direction, i.e., one specification defines both forward and backward
transformation instead of having to specify the directions separately. Whereas a
unidirectional transformation rule may define how to create some target element for
a given source element using complex queries and imperative code, a bidirectional
transformation must be completely declarative. This is usually done by defining
correspondences between elements in one model and elements in the other model.

For example, in a bidirectional transformation between a UML class diagram
and a relational database schema, a rule might define a correspondence between a
UML class and a database table where the class and the table have the same name.
When executed in forward direction, this specification implies that one table has to
be created for each class and the new table’s name has to be set to the class’ name.
When executed in backward direction, the specification implies that one class has to
be created for each table, and the new class’ name has to be set to the table’s name.

Most bidirectional transformation approaches provide more services to the user
than just being able to perform batch forward and backward transformations. Con-
cretely, they allow for consistency checking and model synchronization, too.

Consistency checking means to be able to test if two given models a and b are
consistent with respect to the transformation specification, i.e., if for all elements in
one model there exists a corresponding element in the respective other model.

Model synchronization is possibly the most important and challenging feature a
bidirectional model transformation approach has to offer. It deals with the scenarios
sketched above where two models are consistent with respect to a transformation’s
rules and then one of the models (or even both) is further changed. Depending on
the changes, the models might not be consistent with respect to the transformation
anymore and the task is to restore consistency by propagating the changes to the
respective other model. Thus, model synchronization is even mode general than
incremental model transformations, i.e., the latter is essentially the forward-only
version of the former.

FunnyQT’s take on bidirectional transformations which is introduced starting
with the following chapter is based on the relational model querying API discussed
in part VIII starting on page 311 and offers all three services mentioned above, i.e.,
forward and backward transformations, consistency checking, and model synchro-
nization. Transformations define so-called transformation relations which relate
elements in a left model with elements in a right model. Each transformation relation
defines one conjunction of goals on the left model and one conjunction of goals
on the right model and the two conjunctions of goals are related by shared logic
variables usually denoting equality of attribute values of elements in both models.
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A transformation is always executed in one direction and then the semantics of
such a transformation relation is to ensure that for all solutions of the conjunction
of goals on the respective source model, there exists at least one solution of the
goals on the respective target model. In order to achieve this, new elements may be
created in the target model or existing elements might be changed.





Chapter 34

Defining Bidirectional
Transformations

In FunnyQT, bidirectional transformations consist of transformation relations (t-
relations for short) which relate elements in a left model with elements in a right
model by defining a :left and a :right clause. These clauses specify conjunctions of
relational goals.

By sharing logic variables between the two clauses, equality of certain values
can be specified. E.g., a t-relation might define that an element of type X in the left
model corresponds to an element of type Y in the right model if and only if the name
attribute of the X instance has the same value as the id attribute of the Y instance.

Bidirectional transformations are always executed in one direction and then
either the left or the right model becomes the target model and the respective other
model becomes the source model. The semantics of a t-relation is that it has to
ensure that for all solutions of the source clause, there exists at least one solution
of the target clause.

T-relations can have two different kinds of dependencies to other t-relations. On
the one hand, there are preconditions (see section 34.5 on page 353) which allow
to define that a t-relation only needs to hold under certain conditions. The most
common condition is to define that a relation only needs to hold if some subset of the
elements it relates have already been related by some other t-relation. On the other
hand, there are postconditions (see section 34.7 on page 355) which allow to define
that whenever the current t-relation is ensured, the specified other t-relations also
need to be ensured1.

In addition to the normal enforcement mode, bidirectional transformations can
also be run in a directed checkonlymode (see section 34.4 on page 349). In this mode,
the chosen target model will not be modified but only the traceability information

1 FunnyQT’s bidirectional transformation DSL is intentionally very similar to the QVT Rela-
tions [OMG11b] language and borrows the term postcondition with its described meaning from it.
This meaning differs from the meaning in program specification where the postcondition relates the
inputs of a function/method and the state of the object or system before the execution to its outputs and
the state of the object or system after the execution.
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will be computed. I.e., for each t-relation, there is a map from elements satisfying
the conjunction of goals on the source model to corresponding elements satisfying
the conjunction of goals on the target model. Additionally, the elements satisfying
the conjunction of goals on the source model but have no existing correspondence
in the target model are also reported.

For supporting reusability, there are inheritance concepts available for both
t-relations (see section 34.8 on page 356) and for complete bidirectional transfor-
mations (see section 34.9 on page 357).

Lastly, transformations may also define local relations (in the sense of plain
core.logic relations) which can then be used by other relations or t-relations (see
section 34.10 on page 359).

34.1 Transformation Definitions

A bidirectional FunnyQT transformation is defined using the deftransformation
macro.
Macro: funnyqt.bidi/deftransformation
(deftransformation name [left right & args] & t-relations)
(deftransformation name [left right & args] extends-clause & t-relations)

It receives the name of the transformation to be defined, a vector of arguments, an
optional extends-clause for transformation inheritance (see section 34.9 on page 357),
and one or many t-relations. The vector of arguments always starts with the formal
parameter for the left model and the formal parameter for the right model. Arbitrarily
many additional parameters may follow.

For example, a hypothetical transformation between class diagram and database
schema models could be defined like shown below2.

(deftransformation class-diagram2database-schema [cd db]
;; t-relation definitions
)

This defines a new bidirectional transformation class-diagram2database-schema
between a class diagram model cd and a database schema model db. The class
diagram is the left model and the database schema is the right model.

A bidirectional transformation definition expands into a plain Clojure function
at compile-time. This function has the arguments as declared by the transforma-
tion definition and one additional parameter is appended which determines the
transformation’s direction and mode (see section 34.4 on page 349).

The effects of a bidirectional transformation, i.e., the modification of the respec-
tive target model in order to make it consistent with the source model, happens
as a side-effect. The return value of the transformation is a map of traceability
information (see section 34.3 on the next page).

2A complete version of this bidirectional transformation is discussed in chapter 36 starting on page 363.
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34.2 Transformation Relations

A transformation relation has a name (a symbol), one :left, and one :right clause.
Both clauses are conjunctions of goals where the goals are formulated using the rela-
tional model querying API which has previously been discussed in chapter 30 starting
on page 323. They could use the generic relations typeo, elemento, relationshipo,
avalo, and adjo but it is advisable to use the generated, metamodel-specific relational
querying APIs (see section 30.2 on page 328).

All logic variables used in the clauses must be prefixed with a question mark and
they don’t need to be declared using fresh because the goals are wrapped in an
implicit with-fresh (see page 329).

A t-relation may be defined as a top-level t-relation by annotating the t-relation
name with ^:top metadata. Such top-level t-relations are automatically ensured
in their declaration order. All other t-relations must be invoked explicitly using
postconditions (see section 34.7 on page 355).

A simple top-level t-relation is given in the following listing. It assumes that
metamodel-specific relational APIs have been generated for the class diagram and
database schema metamodels and that these namespaces have been required using
the namespace aliases cd and db, respectively.

(^:top class2table
:left [(cd/Class cd ?class)

(cd/name cd ?class ?name)]
:right [(db/Table db ?table)

(db/name db ?table ?name)])

This t-relation defines that a class in the class diagram model corresponds to
a table in the database schema model given that the class and the table have the
same name.

The semantics of this t-relation when the transformation is executed in the
direction of the database schema model is that for every class in the class diagram,
there must exist at least one table in the database schema model which has the
same name as the class.

The semantics of the t-relation when the transformation is executed in the di-
rection of the class diagram model is that for every table in the database schema
model, there must exist at least one class in the class diagram which has the same
name as the table.

The exact semantics of the respective target clause, i.e., how the existence of
the elements in the target clause is ensured by creating new elements or changing
existing elements, is discussed in detail in section 34.4 on page 349.

34.3 Traceability

Whenever a t-relation relates elements and values from the left model with elements
and values from the right model, this relationship is saved as traceability information.
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Concretely, every t-relation’s traceability information is saved as a set of maps where
the maps assign to the names of the logic variables used in the t-relation (represented
as keywords) their final ground values. In the following, this set of logic variable
bindings providing a t-relation’s traceability information is called the t-relation’s
bindings.

For example, assuming that the t-relation class2table defined above has been
invoked in order to ensure that there are corresponding database tables for classes
A and B in the class diagram model, its t-relation bindings would look like given in
the next listing:

#{;; Binding for the class A and the corresponding table A
{:?class #<Class>, ;; defined by the :left clause
:?table #<Table>, ;; defined by the :right clause
:?name "A"}, ;; defined by both :left and :right clauses
;; Binding for the class B and the corresponding table B
{:?class #<Class>, ;; defined by the :left clause
:?table #<Table>, ;; defined by the :right clause
:?name "B"}} ;; defined by both :left and :right clauses

Then, the traceability information of a complete bidirectional transformation is a
map from t-relation names (keywords) to t-relation bindings, e.g.:

{:class2table #{...}, ;; as shown above
:attribute2column #{...},
...}

The t-relation bindings being sets of logic variable assignments are actually
relations in the mathematical sense and the FunnyQT implementation ensures
that they can also be used as relations in the core.logic sense. This means that
(class2table :?class ?c :?table ?t) is a valid goal which can be used inside the
:left or :right clauses of t-relations. The goal succeeds for every combination of a
class ?c and a table ?t which have previously been related by class2table3, i.e., the
keywords :?class and :?table refer to the logic variables of the same name in the
t-relation class2table.

Technically, t-relations are not relations in the strict core.logic sense. They are
local functions which query the respective source model and adapt the respective
target model. That they can still be used as relational goals is a convenience feature
provided by the deftransformation macro. It replaces any goal of the form above, i.e.,
a goal where the relation is a t-relation defined by the transformation, with a relateo
goal. For example, the class2table goal will be replaced with (relateo :class2table
:?class ?c :?table ?t).
Relation: funnyqt.bidi/relateo
(relateo t-relation & bindings)

relateo is a relation where the given t-relation (a keyword) defines the given
bindings. It is not fully relational, i.e., the t-relation must be ground and also all

3Such traceability goals are not specific to any of the two models. Therefore, they should actually be
defined in a :when clause defining a precondition (see section 34.5 on page 353).
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keywords referring to logic variables of t-relation must be ground4.

As mentioned above in section 34.1 on page 346, the return value of execut-
ing a bidirectional transformation is its complete traceability information. This is
represented as a map again with two entries.

{:related {:class2table #{...},
:attribute2column #{...},
...},

:unrelated {:class2table #{...},
:attribute2column #{...}}}

The value of the entry with the key :related is the map assigning to t-relation
names the corresponding t-relation bindings as discussed above. The value of the
entry with the key :unrelated has the same structure, i.e., it is also a map where
t-relation names get assigned a set of bindings. However, those sets contain only
the bindings for the logic variables in the respective source clause and precondition
(see section 34.5 on page 353) which could not be related to target model elements
by the t-relation. Usually, a bidirectional transformation enforces the existence of
corresponding elements defined by a t-relation’s target clause. Thus, the value of
the :unrelated entry is usually the empty map. However, transformations can also
be run in a checkonly mode where the target model won’t be modified. This is
discussed in section 34.4.

34.4 Transformation Direction and Modes

As already mentioned, a bidirectional transformation is always executed in one
direction and then either the :left clauses become the source clauses and the :right
clause become the target clauses, or it is the opposite way round.

In addition to the direction, every bidirectional transformation can be run in two
modes. First, there is the enforcement mode where the respective target model
will be adapted in order to ensure that for each binding of the logic variables in a
t-relation’s source clause (and precondition), there exists at least one binding for
the logic variables in the respective target clause. The exact enforcement algorithm
will be discussed below. Secondly, there is the checkonly mode where the target
model will not be modified. This mode is useful to test if two existing models are
consistent with each other with respect to the transformation’s t-relations. In this
mode, the value of the entry with key :unrelated in the transformation’s traceability
map will be populated as discussed in the previous section.

Section 34.1 on page 346 already mentioned that each bidirectional transfor-
mation has one last formal parameter which is not declared by the transformation
definition and defines the transformation’s direction and mode for the current call.
Thus, the complete signature of the example class-diagram2database-schema trans-
formation is (class-diagram2database-schema left right dir). The dir argument may
take the following values:

4relateo could be defined so that it is fully relational but there is no need for that because it already
suffices for its intended use-case, i.e., accessing existing bindings of previously executed t-relations.
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:right Enforcement mode in the direction of the right model, i.e., a forward trans-
formation.

:left Enforcement mode in the direction of the left model, i.e., a backward trans-
formation.

:right-checkonly Checkonly mode in the direction of the right model, i.e., a forward
consistency check.

:left-checkonly Checkonly mode in the direction of the left model, i.e., a backward
consistency check.

To illustrate how these modes and directions can be used, consider there is an
existing class diagram model cd and an existing database schema model db. Possibly,
one has been created from the other by some transformation but thereafter they
have been developed further individually. The task is to synchronize them again,
i.e., to make them consistent with each other with respect to the transformation’s
t-relations. There are multiple ways to do so.

After executing (class-diagram2database-schema cd db :right), the models are for-
ward-consistent, i.e., all class diagram elements considered by the transformation’s
t-relations have corresponding elements in the database schema model. However,
there might be database schema elements in the right model which have no coun-
terparts in the left class diagram model.

There are two options to restore full consistency. Obviously, one can simply run
the transformation in the other direction in order to ensure backward consistency,
too, i.e., (class-diagram2database-schema cd db :left). This is probably the best so-
lution in scenarios where the changes applied to each of the two models are equally
important. In case the database schema model has no important changes, one could
also use the traceability information5 returned by (class-diagram2database-schema
cd db :left-checkonly) in order to delete those elements from the database schema
model db which have no counterpart in the class diagram model cd.

In case the class diagram model’s changes are not important to us, we would
have started with a backward transformation followed by a forward consistency
check in order to figure out the elements that need to be deleted in the class diagram
model.

In the following, it is discussed how a t-relation’s target clause is enforced. For
illustration purposes, the t-relation in the following listing is used and it is assumed
that the transformation is run in the direction of the right model. Additionally, the
logic variables denoting attribute values, i.e., ?name, ?cname, and ?ctype are assumed
to be bound by the :left clause or a precondition (see section 34.5 on page 353).

(example-t-relation
:left [...]
:right [(db/Table db ?table)

(db/name db ?table ?name)
(db/->cols db ?table ?col)
(db/Column db ?col)
(db/name db ?col ?cname)
(db/type db ?col ?ctype)])

5Especially the value of the :unrelated key.
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The task of enforcement is to ensure that for all unique logic variable bindings
of the :left clause, a corresponding logic variable binding for the remaining fresh
variables in the :right clause exists. That is, for each unique binding of the :left
clause, there has to exist some table whose name is ?name. Furthermore, the table
must have some column ?col whose name is ?cname and whose type is ?ctype.

When using the usual metamodel-specific model relations discussed in sec-
tion 30.2 on page 328, the implementation enforces target clauses by only four
means:
(1) new elements and relationships may be created,
(2) elements may be added to multi-valued references,
(3) attribute values may be set in case they are currently unset, and
(4) single-valued references may be set in case they are currently unset.
All these adaptations are completely additive. Attribute values and single-valued
references which are already set are never changed. Likewise, if an element is
already contained by some other element, it will never be assigned to a different
container. And most importantly, FunnyQT will never delete elements.

So with respect to the example, if the model db already contains a table with the
required name and already contains a column of the required name and type, then
those are simply taken and no modification is performed. Otherwise, modifications
in the categories (1)-(4) are performed in order to make the t-relation hold.

Concretely, if there exists a table with the required name but the table does not
contain a column of the required name and type, then a new column will be created
and assigned to the table.

If there is no table with the required name, then it will be created. The required
column will be created, too, even though it is possible that the model already
contains a column with the required name and type. The reason is that (db/->cols db
?table ?col) only considers columns that are already contained by ?table because
this variable is already ground. If that is not the intended behavior, then the
goal (db/Column db ?col) could be added before the db/->cols goal. In this case,
all columns in the complete model would be considered. Because FunnyQT won’t
assign elements to a different container, valid bindings for ?col would be restricted
to columns which are not contained by any table already6.

Relations changing attribute values and single-valued references. As dis-
cussed above, by default FunnyQT’s bidirectional transformation implementation
performs only additive changes in order to enforce the target clauses of t-relations.
New elements and relationships may be created, elements may be added to multi-
valued references, and attribute values and single-valued references may be set in
case they are currently unset. And most importantly, elements and relationships
will never be deleted.

The benefit of this approach is that it is impossible to lose any information. The
source model won’t be changed anyway and the above rules guarantee that nothing
will be deleted or overwritten in the target model.

6However, columns without a containing table can be considered as errors in the model, thus one
would typically not cater for such situations in a transformation.
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However, this approach has also a downside in that it may create duplicate
elements which are almost equal to existing elements in the target model. Consider
a t-relation which relates attributes of some class which have a name and a type to
columns in a table which also have a name and a type. If this t-relation is enforced
in the direction of the database schema model, the following situation might occur.
For a given attribute, there already exists a corresponding column of the same name.
However, the attribute’s and the column’s type don’t match. Therefore, FunnyQT
creates a new column with the required name and type and assigns it to the table
corresponding to the given class. As a result, the table now has two columns of the
very same name, only their types are different.

Even worse, such element creations can cascade. Consider two models with one
root element and a very deep containment hierarchy each and a transformation
which essentially has one t-relation for the elements of every layer in the hierarchy.
If the two root elements cannot be related because of some minor mismatch in
some attribute value, a new one will be created. And because FunnyQT will never
change the container of some element, this means that also all contents of the new
root element will have to be created anew, transitively. The result is that the final
target model contains two root elements whose complete transitive contents could
be completely equal. Essentially, the target model has been created anew from
scratch.

So clearly, these purely additive change semantics are not suitable for practical
purposes. In order to cope with such situations, the metamodel-specific relational
querying APIs that can be generated by FunnyQT and which were discussed in sec-
tion 30.2 on page 328 define some more relations than have been discussed there.
In addition to the relations which have been discussed already, the following starred
relations are generated:
1. For every attribute name attr defined for some element or relationship class,

there is the following relation.
(attr* m el-or-rel val) is a relation where el-or-rel’s attr value is val.

2. For every reference name role which is defined as a single-valued reference
for at least one element class, there is the following relation.
(->role* m el refed-el) is a relation where el references refed-el using its role
reference.

When using these relations as goals in relational queries or the source clause of
bidirectional transformations, they are completely equivalent to their unstarred
counterparts. But when they are used as goals in the target clause of a bidirectional
transformation, they allow that the attribute value or single-valued reference they
refer to may be changed even if it is already set. Thus, they allow for overwriting
existing attribute values and single-valued references.

Typically, most if not all elements can be uniquely identified by only a subset of
their attributes and references. For example, a class in a class diagram is uniquely
determined by its qualified name and an attribute is uniquely determined by its
containing class and its name. Likewise, in a database schema, all tables have
unique names and every column is uniquely determined by its containing table and
its name. The data type of a column is of no importance for identification purposes.
Therefore, the example t-relation discussed above could be changed to the following
one.
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(example-t-relation
:left [...]
:right [(db/Table db ?table)

(db/name db ?table ?name)
(db/->cols db ?table ?col)
(db/Column db ?col)
(db/name db ?col ?cname)
(db/type* db ?col ?ctype)]) ;; the type may be changed

The semantics of this variant when being enforced in the direction of the right
database schema model is equivalent to the previous version except for one case: if
there is an existing table ?table having the required ?name and containing an existing
column ?col with the required ?cname but a type different from ?ctype, then the
currently set type may be overridden with the value of ?ctype.

In general, it is advisable to use the unstarred model relations for all attributes
and references which define or contribute to the identity of elements or relationships
of a given metamodel class. For all other attributes and single-valued references,
the starred relations are usually a better fit in practice.

34.5 Preconditions

In addition to a :left and a :right clause, a t-relation may have a :when clause which
defines a kind of precondition. Like the :left and :right clauses, the :when clause is
a conjunction of goals.

The :left and :right clauses have different semantics depending on the direction
in which the transformation is executed. I.e., when transforming in the direction
of the right model, the :left clause is the source clause and used only as a query
whereas the :right clause is the target clause and enforced which implies querying
the right model and possibly creating new elements in it and changing existing
elements. When transforming in the direction of the left model, the roles are
reversed.

In contrast, :when clauses are always used for querying only and their goals are
never enforced. Above it has been said that a t-relation ensures that for all possibly
bindings of the logic variables in its source clause, there exists at least one binding
of the logic variables in its target clause. This statement is still correct but the
source clause of a t-relation is not only either its :left or its :right clause. Instead
the actual source clause of a t-relation is the conjunction of the goals in the :left
clause and the :when clause when transforming in the right direction, or it is the
conjunction of the goals in the :right clause and the :when clause when transforming
in the left direction.

Precondition clauses are especially suited for goals which translate attribute
values between the two models and for restricting the applicability of t-relations in
terms of asserting that certain traceability relationships have to exist.

For example, consider the following top-level t-relation attribute2column which,



354 CHAPTER 34. DEFINING BIDIRECTIONAL TRANSFORMATIONS

as its name suggests, relates attributes of classes to columns of tables.

(^:top attribute2column
:left [(cd/Class cd ?cls)

(cd/->attrs cd ?cls ?attr)
(cd/Attribute cd ?attr)
(cd/name cd ?attr ?aname)]

:right [(db/Table db ?table)
(db/->cols db ?table ?col)
(db/Column db ?col)
(db/name db ?col ?cname)]

:when [(stro "c_" ?aname ?cname)
(class2table :?class ?cls :?table ?table)])

In this t-relation, the names of the attributes and the corresponding columns
are not defined to be equal. Instead, the columns are prefixed with the string "c_",
e.g., if there is some attribute with name "description", then the corresponding
column must have the name "c_description". This is specified by the goal (stro "c_"
?aname ?cname)7 in the precondition. In addition, the precondition also defines that
the class ?cls containing the attribute and the table ?table containing the column
have already been related by the t-relation class2table.

34.6 Target Clauses

Every t-relation may define one :target clause which is a vector of goals just like
the :left, :right, and :when clauses.

Asmentioned in the last section, the goals defined in the :when clause of a t-relation
are appended to the respective source clause when executing the transformation,
i.e., they are appended to either the :left clause when transforming in the right
direction, and they are appended to the :right clause when transforming into the
left direction.

Technically, the :target clause is the inverse of the :when clause. Its goals are
appended to the respective target clause, i.e., they are appended to the :left clause
when transforming in the left direction, and they are appended to the :right clause
when transforming in the right direction.

The use-case of the target clause is handling non-bijective mappings. For example
with respect to the running example, class diagrams have one unique type for strings
whereas database systems usually have multiple string types, i.e., they have types
for strings of a fixed length (CHAR(N)), strings of a variable length with a given
maximum length (VARCHAR(N)), and truly variable-length strings (TEXT). Thus, when
transforming a string attribute to a column, there is a choice to make for the column’s
type. A sensible default would be to use the largest type, i.e., TEXT. However, when
synchronizing in the same direction and there is already a column, its type should
be allowed to be any one of the three possibilities without imposing a change of the
model.

7The stro relation for concatenating strings has been discussed on page 329.
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This hypothetical situation with non-bijective correspondences in both direction
is handled by the complete transformation example which is going to be discussed
in chapter 36 starting on page 363.

34.7 Postconditions

Every t-relation may also have a postcondition which is specified by a :where clause.
In contrast to the other clauses, the postcondition is not a conjunction of relational
goals but a vector containing arbitrary Clojure code which has access to all variables
bound by the other clauses. This code is executed once for every logic variable
binding established by the t-relation’s :left, :right, and :when clauses.

The main intention of the postcondition is to define the control flow between the
individual t-relations in terms of an implication. If there exists a binding between the
current t-relation’s source and target clause, then also bindings for the t-relations
called in the :where clause have to exist. Speaking in terms of the example: if a class
and a table could be related, then their attributes and columns must also be related.

As already mentioned in footnote 1 on page 345, the term postcondition for the
:where clause is borrowed from QVT Relational and doesn’t really fit too well. It’s
actually more of a post-processing instruction rather than a condition. If the current
t-relation holds, then the other t-relations called from the :where clause also need to
be enforced and therefore will eventually hold, too.

Usually, there are only few top-level t-relations and they invoke other t-relations
from their :where clauses. Those may in turn invoke further t-relations from their
postconditions. Like with rule-based unidirectional out-place transformations (see
chapter 26 starting on page 265), the t-relations in a transformation and their call
dependencies are usually aligned according to the containment hierarchy of the
transformed models.

The following t-relations give an example. Instead of defining attribute2column
as a top-level t-relation and then testing in a precondition if the containing class and
table have already been related by class2table, the latter can call the former from a
:where clause. Additionally, the :where clause prints the related class and table.

(^:top class2table
:left [(cd/Class cd ?class)

(cd/name cd ?class ?name)]
:right [(db/Table db ?table)

(db/name db ?table ?name)]
:where [(println "Related" ?class "with" ?table)

(attribute2column :?cls ?class :?table ?table)])

(attribute2column
:left [(cd/->attrs cd ?cls ?attr)

(cd/Attribute cd ?attr)
(cd/name cd ?attr ?aname)]

:right [(db/->cols db ?table ?col)
(db/Column db ?col)
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(db/name db ?col ?cname)]
:when [(stro "c_" ?aname ?cname)])

In this example, attribute2column is called once for every pair of a class being
related with a table by class2table. The related elements are passed as arguments,
so ?cls and ?table in attribute2column are ground already when it starts executing.
Note that the invocations of attribute2column do not happen immediately when a new
binding has been established by class2table but they are deferred until class2table
has been completely enforced. Thus, attribute2column may assume that all classes
already have a corresponding table when transforming in the right direction, or that
all tables have a corresponding class when transforming in the left direction.

As mentioned above, top-level t-relations are executed in their declaration order.
Therefore, top-level t-relations with :when clauses restricting elements to those which
have already been related by other t-relations like in the example of the previous
section suffice for many transformation tasks. However, postconditions allow for
a more explicit control flow definition and they usually also perform better. The
attribute2column version on page 354 has to do a global search in the complete model
and then restrict the candidates according to the previously established t-relation
bindings of class2table. The effort for the latter is linear in the number of bindings
established by class2table. In contrast, the version presented in this section is called
once for every t-relation binding of class2table but since the class and the table are
already provided as arguments, only a local search has to be performed.

34.8 Transformation Relation Inheritance

The FunnyQT bidirectional transformation DSL provides a concept of t-relation
inheritance which allows to factor out common parts of multiple t-relations.

Let’s assume that the class diagram metamodel defines some abstract Classifier
element class and Class and Interface are two concrete subclasses. Both classes
and interfaces should be related to tables by the transformation8 and the relation is
again determined by equality of the name. This is what the abstract classifier2table
t-relation in the following listing defines.

(^:abstract classifier2table
:left [(cd/Classifier cd ?classifier)

(cd/name cd ?classifier ?name)]
:right [(db/Table db ?table)

(db/name db ?name)])

(class2table
:extends [(classifier2table :?classifier ?class)]
:left [(cd/Class cd ?class)]
:right [(class-tableo ?table)])

(interface2table

8This is obviously a contrived example. Objects are always instances of some class, so there is no need
for having tables for interfaces in an object-relational mapping scenario.
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:extends [(classifier2table :?classifier ?iface)]
:left [(cd/Interface cd ?iface)]
:right [(iface-tableo ?table)])

The two t-relations class2table and interface2table extend the abstract t-relation
classifier2table which means that their :left, :right, :when, and :where clauses are
the union of the extended t-relation’s clauses and their own clauses.

Like with pattern inheritance which has been discussed in section 18.1.17 on
page 211, the extending t-relations may define renamings for the logic variables
of the extended pattern. E.g., the logic variable ?classifier in the classifier2table
t-relation is named ?class in class2table and ?iface in interface2table.

Thus, class2table inherits that a left classifier corresponds to a right table with
the same name. It further restricts the left classifier to be a class and it restricts
the right table to be a table corresponding to a class. The class-tableo relation isn’t
specified further here but it is assumed that it succeeds if and only if the given table
corresponds to a class when the transformation is executed in the direction of the
left model.

A t-relation may extend multiple other t-relations and extension works transitively.
There mustn’t be cycles in a inheritance hierarchy. Metadata annotations such as
^:top and ^:abstract are not propagated from extended to extending t-relations.

When a t-relation is annotated with the ^:abstract metadata annotation, this
defines that the single purpose of this t-relation is to be extended by other t-relations.
For abstract t-relations, no code is generated, i.e., they disappear during macro-
expansion with the result that they cannot be used as goals nor can they be called
from postconditions.

In contrast, non-abstract t-relations can still be extended by other t-relations but
they can also be used as goals or called from postconditions. Note that t-relation
inheritance has no effect on the traceability information: the t-relation bindings of
an extended t-relation do not contain the union of all extending t-relations’ bindings.

34.9 Transformation Inheritance

As already mentioned in section 34.1 on page 346, the first form after a bidirectional
transformation definition’s argument vector may be an :extends clause. The value of
the :extends clause is either a symbol denoting the name of the bidirectional transfor-
mation to be extended or a vector of symbols in case multiple other transformations
are to be extended as illustrated in the next listing.

(deftransformation class-diagram2database-schema-1 [cd db]
:extends class-diagram2database-schema-base
;; t-relation definitions
)

(deftransformation class-diagram2database-schema-2 [cd db]
:extends [class-diagram2database-schema-base

class-diagram2database-schema-helpers]
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;; t-relation definitions
)

The extending transformation consists of the union of all t-relations it inherits
from the extended transformations plus its own t-relations. Inherited top-level
t-relations are top-level t-relations also in the extending transformation.

If the extending transformation defines a t-relation whose name equals the
name of an inherited t-relation, the former overrides the latter. If multiple extended
transformations define a t-relation of the same name, the version of the last extended
transformation is effective9 unless it is overridden again by a t-relation of the
extending transformation.

When a t-relation in an extending transformation overrides some inherited t-
relation, it should use the same logic variable names in its :left and :right clauses
and its precondition. This is because the names of the logic variables are referred
to by t-relation bindings, by traceability goals in preconditions, and by t-relation
calls in postconditions.

The extending transformation’s arguments must be compatible with the extended
transformations’ arguments because it inherits t-relations which use these argu-
ments. Compatibility of arguments is defined in the following sense:
1. The first and second argument denoting the left and right model may have

different names in the extending and all extended transformations. The names
defined for the extending transformation are the effective ones.

2. For all additional arguments holds:
a) The extending transformation must have the union of all additional argu-

ments of all extended transformations and it may declare further arguments.
b) If there is an argument of a given name which occurs as argument of

multiple transformations (no matter if the extending or some extended
transformation), then this argument must have the same meaning in all
transformations.

c) The order of arguments is not important.
Of course, if the extending transformation overrides all inherited t-relations where
some additional argument is used, then it may choose a different name for this
argument or omit it completely in case it is not used by the overriding t-relations.

As discussed above, t-relation overriding and having many different transforma-
tion arguments next to the parameters for the left and the right model can introduce
additional complexity. Therefore, it is advisable to use transformation inheritance
in a civilized manner, i.e., to extend some given transformation but not to change it
fundamentally. For example, there might be some simple transformation which only
considers subsets of the involved two metamodels which could then be extended by
a transformation which adds further t-relations for transforming elements which
haven’t been considered by the original transformation.

9This situation should generally be avoided or at least be well-documented.
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34.10 Plain Relations

Lastly, a bidirectional transformation may also define plain relations, i.e., locally
bound relations in the sense of relational model querying (see part VIII starting on
page 311). Those are defined using the syntax of letfn and can then be used as
helpers in the :left, :right, and :when clauses of t-relations.

For example, the goal (stro "c_" ?aname ?cname) in attribute2column above could
be factored out into its own helper relation in order to give it a meaningful name as
shown in the next listing.

(attribute-name2column-name [an cn]
(stro "c_" an cn))

(attribute2column
:left [(cd/->attrs cd ?cls ?attr)

(cd/Attribute cd ?attr)
(cd/name cd ?attr ?aname)]

:right [(db/->cols db ?table ?col)
(db/Column db ?col)
(db/name db ?col ?cname)]

:when [(attribute-name2column-name ?aname ?cname)])

In contrast to t-relations, the logic variables of plain helper relations don’t need
to be prefixed with a question mark.

The difference between a plain relation defined locally inside a transformation
and a relation defined globally in some namespace (like stro, cd/->attrs, etc.) is
that the former are also subject to transformation inheritance, i.e., an extending
transformation could override attribute-name2column-name in order to define a dif-
ferent correspondence between attribute and column names. A second difference is
that plain relations defined inside a transformation may use traceability goals in the
form of (t-rel :?a ?u :?b ?v) whereas relations defined elsewhere have no access
to the transformation’s t-relations and thus would need to use (relateo :t-rel :?a
?u :?b ?v) (see page 348).
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Characteristics

The literature (e.g., Stevens in [Ste10]), distinguishes several properties such as
determinism, correctness, hippocraticness, and undoability that bidirectional trans-
formations may have. In the following, it is discussed which of those apply to
bidirectional transformations with FunnyQT.

FunnyQT bidirectional transformations are always deterministic. Running a
transformation in either direction on the same two models will always result in the
same effects in the respective target model in whose direction the transformation is
executed, and the same traceability information is returned.

Correctness is defined in the following sense. Let T ⊆ M × N be a relation
between models conforming to the metamodels M and N , and T (m,n) holds if and
only if m and n are consistent. Such a consistency relation encodes two directional
transformations −→T : M ×N −→ N and ←−T : M ×N −→M . T is said to be correct if and
only if ∀m ∈M ∀n ∈ N : T (m,

−→
T (m,n)) ∧ T (

←−
T (m,n), n) holds. Informally speaking, the

definition says that after applying either −→T or←−T , the two models are consistent with
respect to T .

It is questionable if conforming to this definition is preferable in practice as it
implies the deletion of those elements in the respective target model which have
no correspondence in the respective source model. Consider the situation of two
consistent models that are then extended in parallel. If FunnyQT transformations
were correct according to the above definition, synchronization between the models
would be impossible because −→T (m,n) is required to delete the elements in the right
model n which have no counterpart in the left model m, and ←−T (m,n) is required
to delete the elements in the left model m which have no counterpart in the right
model n.

For example, let m = {1, 2, 3} and n = {a, b, d} with T defining that the integers in
m are the indices in the Latin alphabet of the characters in n. Then for a correct
transformation, −→T (m,n) must modify n to {a, b, c} in order to be consistent with m.
However, the additional information d which has been contained in n has irreversibly
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been deleted1.
FunnyQT has made the design decision of never deleting elements. The result is

that −→T (m,n) only restores forward consistency, i.e., everything in m has a correspond-
ing counterpart in n but not the other way round. Analogously,←−T (m,n) restores only
backward consistency, i.e., everything in n has a corresponding counterpart in m

but not the other way round. Thus, −→T (m,n) = {a, b, c, d} and ←−T (m,n) = {1, 2, 3, 4}.
Since FunnyQT transformations return the complete traceability mappings, it

is easy to delete elements with no correspondence after the transformation has
finished so that the composition of the transformation in one direction followed by
the cleanup is correct according the correctness definition above. The other way to
regain full consistency is to apply either ←−T (m,

−→
T (m,n)) or −→T (

←−
T (m,n), n).

Hippocraticness means that if two models are already consistent according to
the relation implied by the transformation, transforming in either direction won’t
modify the models. Bidirectional FunnyQT transformations are hippocratic.

The last property is undoability. Let T (m,n), i.e., the models m and n are
consistent. Now, the model m is modified to m′. T is undoable if and only if
−→
T (m,

−→
T (m′, n)) = n and analogously for ←−T with a modified version n′ of n.

For practical reasons, undoability is too strong as a general requirement. But
note that with transformations being correct according the definition discussed
above, −→T might delete information which is irreversibly lost at least in non-bijective
scenarios. In contrast, because FunnyQT transformations won’t delete elements,
the result of −→T (m,

−→
T (m′, n)) is a model which at least contains n but which might also

contain additional elements with no corresponding elements in m. So one can argue
that FunnyQT due to its slightly relaxed notion of correctness enables undoability.

1In case−→T and←−T created newmodels instead of modifying the respective target model, the information
would not be lost. But still there is no way to integrate the information from the old version of the target
model into the new model in terms of −→T or←−T .
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Example

In this chapter, a complete bidirectional transformation between a simple version
of UML class diagrams and relational database schemas is discussed in order to
illustrate how the features provided by FunnyQT’s bidirectional transformation DSL
are to be used in practice.

The class diagram metamodel is shown in fig. 36.1, and the database schema
metamodel is shown in fig. 36.2 on the next page. Both metamodels are simplified
in order to keep the solution compact but they are still substantial enough to keep
the problem interesting.

«enumeration»
AttributeTypes

BOOLEAN
INT
LONG
FLOAT
DOUBLE
STRING

Association

name: String

Attr ibute

name: String
type: AttributeTypes

Class

name: String

superclass

0..1

t r g

1

src

1

1

*

class attrs

Figure 36.1: A simple class diagram metamodel

The class diagram considers classes which have a name. The name is assumed
to be unique, e.g., it could be the qualified name of a class. Every class may have
attributes which in turn have a name and a type. It is assumed that the names of all
attributes are unique with respect to the containing class. The attribute types are
modeled as an enumeration.

In addition to classes, a class diagram consists of associations. Like with classes,
association names are assumed to be unique in the complete model. Every associa-
tion starts and ends at some class.

Lastly, every class may have at most one superclass with the usual generalization
semantics. I.e., the set of attributes of a class is the union of its own attributes and
the attributes inherited from the superclass. Likewise, if an association is declared
to start or end at instances of some class, then it may also start or end at subclass
instances.

The database schema metamodel is even much simpler. A database schema
consists of tables which have a name. Again, the names is assumed to be unique in

363



364 CHAPTER 36. EXAMPLE

«enumeration»
ColumnTypes

BOOLEAN
INTEGER
REAL
DOUBLE
VARCHAR
TEXT

Column

name: String
primary: Boolean
type: ColumnTypes

Table

name: String

0..1
pkey

1 *

cols

Figure 36.2: A simple database schema metamodel

the whole model. Tables consist of columns where each column has a name which
is unique with respect to the containing table, a type which is again modeled using
an enumeration, and a flag primary which is to be set to true for columns denoting
the primary key for a table in case there is any.

A column may refer to the primary key column of another table using the pkey
reference, i.e., a column where this reference is set denotes a foreign key constraint.

Before discussing the actual implementation of the transformation between class
diagrams and database schemas, the correspondences between the elements in the
models is first described informally.
(1) A class corresponds to a table where the class and the table have the same name

and the table has a primary key column named ID of type integer.
(2) An attribute of a class corresponds to a column in a table in case the class and

the table are already related and the attribute and the column have the same
name. The type of attributes and columns may be changed in enforcement mode.
One complication here is that there is no bijective mapping between the attribute
and column types. There are BOOLEAN and DOUBLE in both type worlds and FLOAT
corresponds to REAL. However, the class diagram STRING type corresponds to
both database types VARCHAR and TEXT. And the other way round, the database
type INTEGER corresponds to both class diagram types INT and LONG.
The transformation should handle these ambiguities in the following way:
(a) When setting an attribute’s or column’s type initially, the transformation

should use the most general type, i.e., LONG and TEXT.
(b) When encountering attributes and columns where the type is already set,

the value must not be modified in case it is a valid choice. E.g., when
transforming a string attribute to a column and a column of the attribute’s
name already exists, its type may be either TEXT or VARCHAR. Only if its type
is something else, the attribute value should be changed.

(3) A generalization between two classes corresponds to a foreign key constraint
between the corresponding tables’ primary key columns. This means that the
primary key ID column of a table corresponding to a subclass has a foreign key
constraint to the primary key column of the table corresponding to its superclass.

(4) An association between two classes in the class diagram model corresponds to
a table of the same name in the database schema. This table has two columns
SRC and TRG which have foreign key constraints referencing the primary key
columns of the tables corresponding to the association’s source and target
classes, respectively.

In the following, the complete implementation of the bidirectional transformation
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between class diagrams and relational database schemas is discussed. It is assumed
that relational querying APIs have been generated for the two metamodels and the
resulting namespaces are assumed to be accessible via the namespace aliases cd
and db, respectively.

As every bidirectional FunnyQT transformation, it is defined using the macro
deftransformation (see section 34.1 on page 346) as shown in the following listing.

(deftransformation class-diagram2database-schema [l r]
;; all following t-relations and relations are contained here
)

The transformation’s name is class-diagram2database-schema, and it only receives
the two mandatory model arguments. The left model l denotes the class diagram
model and the right model r denotes the database schema model.

All plain relations and t-relations discussed in the following are placed inside the
transformation’s body as indicated by the comment.

Before introducing the first t-relation, a very simple helper relation enum-const
is defined. It is a relation where m is a model, const is a symbol denoting the
qualified name of an enumeration constant in m’s metamodel and val is the runtime
representation of this enumeration constant.

(enum-const [m const val]
(== (funnyqt.generic/enum-constant m const) val))

As can be seen, this relation simply calls the generic enum-constant function and
asserts that its return value equals val. Therefore, both m and const have to be
ground when using this relation as a goal, i.e., it is not fully relational. However, it
is intended to be used only as a simple helper to retrieve a specific enumeration
constant and for this purpose it suffices.

The first actual t-relation is class2table which implements the informal rule (1)
and is shown in the next listing. This t-relation is a top-level t-relation which means
that it will be applied automatically to all possible and unique logic variable bindings
of the respective source clause, i.e., the :left clause when transforming into the
direction of the database schema model, and the :right clause when transforming
into the direction of the class diagram model.

(^:top class2table
:left [(cd/Class l ?cls)

(cd/name l ?cls ?name)]
:right [(db/Table r ?table)

(db/name r ?table ?name)
(db/->cols r ?table ?col)
(db/name r ?col "ID")
(db/primary* r ?col true)
(enum-const r 'ColumnTypes.INTEGER ?ctype)
(db/type* r ?col ?ctype)]

:where [(generalization2foreign-key :?subcls ?cls :?subcol ?col)
(attribute2column :?cls ?cls :?table ?table :?pkey-col-name "ID")])
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The t-relation expresses that a class ?cls in the left model having some ?name
corresponds to a table ?table of the same name in the right model. Furthermore,
the table must have a primary key column named ID of type INTEGER. The usage of
the relations db/primary* and db/type* allows modifications of the attributes of the
same name when enforcing the :right clause. Thus, when transforming into the
direction of the database schema, if ?table already has an ID column, it will be set
as primary column and its type will be set to INTEGER.

The postcondition then defines that if a class and a table could be related by
class2table, then generalization2foreign-key and attribute2columnmust also hold for
the given arguments.

The next listing shows the generalization2foreign-key t-relation which implements
the informal rule (3). A generalization indicated by the existence of a superclass ref-
erence between a ?subcls and a ?superclass corresponds to a foreign key constraint
where a ?subcol refers to some ?supercol.

(generalization2foreign-key
:left [(cd/->superclass l ?subcls ?supercls)]
:right [(db/->pkey r ?subcol ?supercol)]
:when [(class2table :?cls ?supercls :?col ?supercol)

(class2table :?cls ?subcls :?col ?subcol)])

The two traceability goals in the precondition define that ?subcol is the primary
key column of the table corresponding to ?subcls and ?supercol is the primary key
column of the table corresponding to ?supercls.

The next listing shows the plain relation cd-type2db-type which relates a class
diagram type cdt to a database type dbt.

(cd-type2db-type [cdt dbt]
(conda
[(all (enum-const l 'AttributeTypes.BOOLEAN cdt)

(enum-const r 'ColumnTypes.BOOLEAN dbt))]
[(all (enum-const l 'AttributeTypes.LONG cdt)

(enum-const r 'ColumnTypes.INTEGER dbt))]
[(all (enum-const l 'AttributeTypes.INT cdt)

(enum-const r 'ColumnTypes.INTEGER dbt))]
[(all (enum-const l 'AttributeTypes.FLOAT cdt)

(enum-const r 'ColumnTypes.REAL dbt))]
[(all (enum-const l 'AttributeTypes.DOUBLE cdt)

(enum-const r 'ColumnTypes.DOUBLE dbt))]
[(all (enum-const l 'AttributeTypes.STRING cdt)

(enum-const r 'ColumnTypes.TEXT dbt))]
[(all (enum-const l 'AttributeTypes.STRING cdt)

(enum-const r 'ColumnTypes.VARCHAR dbt))]))

The relation uses conda to define a disjunction. As discussed in section 29.1 on
page 314, conda commits to the first clause whose head succeeds. All clauses in
the above relation have just one conjunctive goal. The effect of using conda is that
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at most one clause can succeed and the order is significant. Thus, the attribute
type LONG is preferred over INT if cdt is fresh and the database column type TEXT is
preferred over VARCHAR if dbt is fresh.

The attribute2column t-relation shown in the next listing relates an attribute ?attr
having some ?name to some column ?col of the same name and also relates the types.
This t-relation implements the informal rule (2).

(attribute2column
:left [(cd/->attrs l ?cls ?attr)

(cd/name l ?attr ?name)
(cd/type* l ?attr ?atype)]

:right [(db/->cols r ?table ?col)
(db/name r ?col ?name)
(db/type* r ?col ?ctype)]

:when [(ccl/!= ?name ?pkey-col-name)]
:target [(cd-type2db-type ?atype ?ctype)])

This t-relation is called from the :where clause of class2table so the containing
class ?cls and its corresponding ?table are already ground. The call also binds the
?pkey-col-name variable to "ID" and the :when clause forbids equality between that
variable and ?name. The reason is that when transforming in the direction of the
class diagram, the synthetic primary key ID columns should not be transformed to
attributes.

Lastly, the relation between an attribute type ?atype and a corresponding column
type ?ctype is established by the cd-type2db-type goal in the :target clause.

In order to implement the semantics discussed in the beginning of this chapter, it
is utmost important that this goal is located in the :target clause. This ensures that
when this goal is evaluated, both ?atype and ?ctype are ground in the case where
there exists a target attribute or column of the right name already. Therefore, there
is at most one disjunctive clause in cd-type2db-type’s conda which may succeed. For
example, when trying to relate a string attribute to some existing VARCHAR column
of the same name, the last conda clause is the only possible choice and this choice
imposes no change of the column’s type.

If the goal was in the :when clause instead, then either ?atype or ?ctype would still
be fresh. A fresh variable can be unified with anything, so in case of the ambiguous
type mappings, always the first clause succeeding for the respective source type
would be chosen, and thus the target type would always be set to the most general
type, i.e., TEXT or LONG. That is, in the scenario sketched in the previous paragraph,
the VARCHAR column would be changed to TEXT.

Lastly, if the goal was the last goal in either the :left or the :right clause, then
the ambiguities were solved as intended only when transforming into one direction
whereas they would be solved by overriding with the most general type in the other
direction.

Thus, the semantics of a t-relation with respect to handling ambiguities are
deterministic and can be changed by placing the goal handling them in one of the
four different clauses (:left, :right, :when, or :target).
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The final t-relation of the transformation is association2table which implements
the informal rule (4). An association ?assoc in the class diagram with a given ?name
corresponds to a table ?table in the database schema of the same name. Additionally,
the table must have SRC and TRG columns for which there are foreign key constraints
referencing the primary key columns of the tables corresponding to the association’s
source and target class.

(^:top association2table
:left [(cd/Association l ?assoc)

(cd/name l ?assoc ?name)
(cd/->src* l ?assoc ?src)
(cd/->trg* l ?assoc ?trg)]

:right [(db/Table r ?table)
(db/name r ?table ?name)
(db/->cols r ?table ?src-col)
(db/name r ?src-col "SRC")
(db/type* r ?src-col ?src-pkey-type)
(db/->pkey* r ?src-col ?src-pkey)
(db/->cols r ?table ?trg-col)
(db/name r ?trg-col "TRG")
(db/type* r ?trg-col ?trg-pkey-type)
(db/->pkey* r ?trg-col ?trg-pkey)]

:when [(class2table :?cls ?src :?col ?src-pkey :?ctype ?src-pkey-type)
(class2table :?cls ?trg :?col ?trg-pkey :?ctype ?trg-pkey-type)])

Obviously, foreign key columns must have the same type as the primary key
columns they refer to. Therefore, the precondition queries the correspondence
between the association’s source and target classes and the corresponding primary
key columns and their types of the corresponding tables.
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Related Work

In this chapter, several bidirectional transformation approaches are discussed.
Thereby, commonalities and differences with FunnyQT’s bidirectional transformation
DSL are highlighted.

FunnyQT’s bidirectional transformation API is intentionally designed to be similar
to the QVT Relations language (QVTr, [OMG11b]).

A QVTr transformation is decomposed into relations, each relating elements in
two or more domains where each domain matches elements in one of the involved
models. In contrast to FunnyQT, a QVTr transformation might have more than two
involved models and for execution, exactly one of those has to be selected as target
model. Then the enforcement semantics are that for each valid binding of the source
domains of a relation, there has to exist a binding of the target domains of the
relation.

Like with FunnyQT, QVTr transformations can be run in an enforcement mode or
in a checkonly mode. In addition, domains in a relation can bemarked as checkonly in
which case they have checkonly semantics also when the transformation is enforced
into the direction of the model corresponding to this domain.

There has to be at least one top-level relation that is executed automatically and
a QVTr relation may enforce other relations in terms of a where clause.

Similar to FunnyQT, when clauses can be used specify that a relation only needs
to hold for elements that are already related by other relations.

There are some notable differences between QVTr and FunnyQT’s bidirectional
transformation facility, though. QVTr transformations delete target elements that
correspond to no source domain (according to the correctness definition discussed
in chapter 35 starting on page 361) whereas FunnyQT transformations intentionally
do not. But because FunnyQT transformations return the complete traceability
information, the deletion of elements with no correspondence may be implemented
as an additional step if required.

Furthermore, QVTr and FunnyQT have different concepts for specifying which
element properties may be overridden. In QVTr, there is the concept of keys which
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allows to specify which subset of properties of a metamodel class should be used to
uniquely identify instances of that class. Whenever a QVTr relation doesn’t find a
valid target element and a new one is going to be created, it is first checked if there
is one where at least the key properties match. If there is, this element is modified
in order to make it match instead of creating a completely new element. FunnyQT
provides separate starred relations for attributes and single-valued references
which are allowed to modify their value and which may be used in t-relations. Thus,
FunnyQT provides a more fine-granular (t-relation specific) means for allowing
property modifications than the transformation-global key concept of QVTr.

There are currently three implementations of QVTr. ModelMorf 1 is a proprietary
and standard-compliant QVTr implementation developed by Tata Consultancy Ser-
vices (TCS). A trial version consisting only of a command line tool can be obtained
for free which is able to transform XMI [OMG14c] models and the full version also
transforms models of the proprietary TCS MasterCraft framework2. It is unclear if
the tool is further developed. Its latest release is more than six years old.

The second implementation is mediniQVT3. It is able to transform EMF models
and provides an Eclipse-integrated editor and debugger. However, mediniQVT is
not fully compliant with the QVT standard and the project seems to be discontinued.
At least no release has been made since the last release candidate for version 1.7.0
appeared in 2011.

The third QVTr implementation is Eclipse QVTd (QVT Declarative)4 which had
its initial appearance in Eclipse Mars, released on June 24th, 2015. However, this
is only a preliminary release intended for experimenters according to the release
notes.

The Janus Transformation Language (JTL [Cic+10]) is similar to FunnyQT bidi-
rectional transformations in that it also uses logic programming, namely answer set
programming [GL88], and exploits the DLV constraint solver [Leo+06] for finding
solutions. JTL uses the concrete syntax of QVTr.

Whereas FunnyQT works on the native model representations (EMF or JGraLab)
directly, JTL transformations translate the EMF models into an intermediate repre-
sentation which is then used by the constraint solver and its results are eventually
re-translated back into their original EMF model representation.

The crucial benefit of JTL is that it allows for finding alternative solutions in
non-bijective bidirectional transformations scenarios. If there are multiple target
models that are consistent with the source model with respect to the transformation
relations, JTL is able to enumerate all of them. In contrast, bidirectional non-
bijective FunnyQT transformations always have an implied preferred target model
where alternative target models are only tolerated but would not be created when
transforming in the direction of an empty target model.

Also, if a target model is manually changed in a way that it cannot be derived by a
forward transformation from the source model, JTL utilizes traceability information

1http://www.tcs-trddc.com/trddc_website/ModelMorf/ModelMorf.htm (last visited: 2015-10-15)
2http://www.tcs.com/mastercraft/Pages/default.aspx (last visited: 2015-10-15)
3http://projects.ikv.de/qvt/ (last visited: 2015-10-15)
4https://projects.eclipse.org/projects/modeling.mmt.qvtd (last visited: 2015-10-15)



371

to propagate back the changes from the modified target model by inferring the
closest approximation of an ideal source model.

Echo5 [MC13] also provides a bidirectional transformation language re-using
the concrete syntax of QVTr. Like JTL, Echo exploits an external tool, namely the
Alloy6 [Jac06] model finder.

Echo transformations work according to the principle of least change meaning
that the target model is modifiedwith theminimum sequence of graph edit operations
required in order to bring it into a consistent state with respect to the source model.
The possible operations are creation or deletion of an element, and setting an
attribute value or reference.

This differs from the original QVTr semantics especially in the case of relations
between two elements where there is no key constraint defined for the target
element class. If there is no target element, the QVTr semantics require a new
element to be created. With the principle of least change, the most similar element
which has no corresponding partner in the source model is modified instead, i.e.,
attribute values and references are overridden. These are obviously fewer changes
because when creating new elements, the attributes and references need to be set,
too, and possibly elements with no counterparts need to be deleted which implies
that information not considered by the transformation might get lost.

By default, any edit operation has the cost 1 but Echo also allows for defining
custom costs for certain edit operations on a per-metamodel basis. Furthermore, it
is possible to define which edit operations are allowed at all.

Whereas the approaches discussed so far are based on a relational, logic-based
calculus, Triple Graph Grammars (TGG [Sch94]) provide a graph transformation
based approach to bidirectional transformations.

A TGG consists of rules. Like with graph grammars (GG), each rule consists of a
left-hand side and a right-hand side. There are two major differences with respect
to GG rules, though. (1) Whereas a GG rule describes how a single graph evolves,
a TGG rule describes how a triple consisting of a left graph, a right graph, and a
correspondence graph which connects elements of the left and right graphs evolves.
(2) TGG rules are monotonic, i.e., they cannot specify deletion or modification of
existing elements.

The correspondence graph can be seen as an explicit traceability model. Its
nodes reference the elements in the left graph and the right graph which are in
correspondence with respect to the transformation already.

With TGGs, there are special rules called axioms which have an empty LHS and
usually their RHS specifies the creation of the top-level elements in the left and right
graph connected by a new node referencing both in the correspondence graph.

So what the rules of a TGG transformation describe is how to build up a left and a
right graph simultaneously so that at all times, both graph are consistent with each
other. The axioms can be seen as the start symbols of the grammar: when applied

5http://haslab.github.io/echo/ (last visited: 2015-10-15)
6http://alloy.mit.edu/alloy/ (last visited: 2015-10-15)
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to two empty graphs, they create some initial elements with correspondence links
in between which make the LHS of other TGG rules applicable.

From any TGG transformation, a forward and a backward transformation can be
derived automatically which can then be applied to two existing graphs. Those can
be used for populating an empty right or left graph, or for synchronizing changes in
one graph into the respective other graph. They can also be used for testing if two
given graphs are already consistent in which case the transformation only tries to
build up the correspondence graph between the given left and right graph. If this is
possible, the graphs are consistent with respect to the TGG rules, otherwise they
are not.

The article [Leb+14] gives a good overview of three current TGG implementations:
MoTE7 [GHL14], the TGG Interpreter8 [GK10], and eMoflon9 [LAS14].

7https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/
mote-a-tgg-based-model-transformation-engine/ (last visited: 2015-10-16)

8http://www-old.cs.uni-paderborn.de/en/research-group/software-engineering/research/
projects/tgg-interpreter.html (last visited: 2015-10-16)

9http://www.emoflon.org (last visited: 2015-10-16)
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Summary

The topic of this part are transformations for co-evolution of metamod-
els and models where chapter 38 starting on page 377 gives an introduc-
tion.

FunnyQT’s co-evolution API which allows to evolve a metamodel and
one conforming model simultaneously is explained in section 39.1 on
page 381.

Chapter 40 starting on page 393 illustrates the use of this API with an
example.

Lastly, chapter 41 starting on page 397 concludes this part with a
discussion of related work.





Chapter 38

Introduction

As every software artifact, metamodels are subject to evolution. New classes,
attributes, or references may be introduced, and existing classes, attributes, or
references may be renamed, deleted, or their properties like the type of an attribute
or reference may be changed.

The problem with metamodel evolution is that many changes applied to a meta-
model during evolution make existing models non-conforming to the new metamodel.
I.e., a model conforming to version 1.0 of some metamodel might not be a valid
instance of version 1.1 of the same metamodel, thus it needs to be adapted.

The research field co-evolution or coupled evolution of metamodels and models
is concerned with developing techniques and tools for evolving metamodels and
updating conforming models accordingly1.

In the related work chapter 41 starting on page 397, several current co-evolution
approaches are discussed. What they all have in common is the idea of co-evolution
as a two-step process. First, the metamodel is evolved and then the model instances
are co-adapted.

FunnyQT’s take on co-evolution of models and metamodels pursues an idea which
is quite different from these approaches. Instead of considering co-evolution as a
two step process where the metamodel adaptation is followed by some co-adaptation
of the models, the transformation API which is going to be described in the next
chapter provides operations which change the metamodel of a loaded model in-place
while keeping the model compliant at the same time. The metamodel evolution and
the co-adaptation happen simultaneously at runtime.

The operations provided by FunnyQT’s co-evolution API perform small, atomic
changes to the metamodel and many imply a predefined semantics on the instance
level or can be parametrized in order to let the user define the intended semantics.

This approach will be described in detail in chapter 39 starting on page 379 and
then exemplified in chapter 40 starting on page 393.

1Co-evolution is actually an old topic which has been investigated much earlier in the context of
database systems. For example, [MS90] discusses the topic in the context of relational database systems
and [Ban+87] in the context of object-oriented databases. A broad overview of works in the database
context is given in [Rod92].
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Chapter 39

Defining Co-Evolution
Transformations

The FunnyQT co-evolution API provides a set of functions that allow the user to
change the metamodel of an already loaded model in-place while keeping the
instance conforming to its metamodel at all times. I.e., the model and its metamodel
are changed simultaneously and before and after each operation call, the model is a
valid instance of its metamodel.

The provided operations define atomic changes on the metamodel, e.g., creating
a new element class, or deleting some attribute. Some operations on the metamodel
have an impact on the model, e.g., deleting some class implies the deletion of all its
instances, while other operations such as renaming some class or attribute have no
impact on the model at least in the sense that no elements are created or deleted or
attribute values are changed. Of course, even renaming a class has some kind of
impact, e.g., before the renaming (elements m 'OldName) returned the lazy sequence
of OldName elements and after the renaming it throws an exception because OldName
doesn’t denote an element class in the metamodel anymore.

In contrast to all querying and transformation services provided by FunnyQT,
the co-evolution API is not generic but specific to TGraph models. The reason is
that the co-evolution API requires a much deeper integration between the FunnyQT
operations and the respective metamodel and model APIs which heavily depends
on how models and metamodels are represented at runtime. Especially, many
metamodel changes require certain low-level fix-up actions to be applied to the
elements in the model which need to adapt things which are not accessible via the
public modeling framework API. Since the TGraph modeling framework JGraLab (see
section 7.1 on page 69) is under our control, these required low-level manipulation
constructs could be added. Patching EMF similarly has no chance of ever getting
accepted upstream.

For example, in JGraLab the attribute values of a TGraph vertex or edge are
represented as an array of type Object which is sorted lexicographically according to
the names of the attributes of the corresponding vertex or edge class. Thus, when
renaming an attribute, the arrays holding the attribute values of all direct or indirect
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instances of classes for which this attribute is declared need to be re-sorted. With a
another model representation, a completely different model fix-up action could be
needed for the same change to the metamodel and this can hardly be abstracted
into a generic interface.

Another reason which makes TGraphs suitable for this kind of co-evolution trans-
formations is that every TGraph has its own, private copy of the schema (metamodel).
Of course there may be many graphs of the same schema but technically their
schemas are equal but not identical. Thus, the co-evolution operations only change
the private schema of the TGraph under transformation and simultaneously co-
adapt the graph itself, i.e., the schema changes are isolated and leave other graphs
conforming to the same schema which might be loaded unaffected. In contrast,
Ecore metamodels may be shared by multiple instance models. In this situation,
changing the metamodel would affect all instances loaded at the current point in
time and some of them might not be accessible by the transformation and thus
become invalid.

In addition to being restricted to TGraphs, co-evolution operations can only be
applied to TGraphs which use the generic graph representation, i.e., they are not
applicable if the graph is represented by objects being instances of the interfaces
and implementation classes which can optionally be generated for the graph’s
schema1. The reason is that otherwise schema adaptations would require changing
Java classes with life instances at runtime which is infeasible.

As mentioned above, FunnyQT’s co-evolution API provides operations performing
atomic changes to the graph’s schema. Because this API is specific to JGraLab
anyway, its operations are named according to the TGraph terminology. Concretely,
the API provides the following operations.
create-abstract-vertex-class! creates an abstract vertex class.
create-vertex-class! creates a concrete vertex class and allows to create new in-

stances at the same time.
create-abstract-edge-class! creates an abstract edge class.
create-edge-class! creates a concrete edge class and allows to create new instances

at the same time.
set-incidence-class-props! sets the properties (multiplicities, role names) of the

incidence classes of an edge class.
set-abstract! sets the abstractness property of a vertex or edge class.
create-attribute! creates a new attribute at some existing attributed element class

and allows to set the values of instances at the same time.
create-enum-domain! creates a new enumeration domain.
create-record-domain! creates a new record domain.
create-specialization! creates a new specialization relationship between two vertex

classes or edge classes, respectively.
rename-attributed-element-class! renames an attributed element class.
rename-attribute! renames an attribute.
rename-domain! renames a custom enumeration or record domain.
delete-graph-element-class! deletes a vertex or edge class and deletes all its in-

stances.
delete-attribute! deletes an attribute.

1By default, funnyqt.tg/load-graph loads graphs using this generic representation.
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delete-specialization! deletes a specialization relationship between two vertex or
edge classes.

delete-domain! deletes a custom enumeration or record domain.
These co-evolution operations are discussed in detail in section 39.2 on page 383.
All these operations ensure that after each operation call (1) the schema is valid,

i.e., it still conforms to the grUML metaschema, and (2) the graph is valid, i.e., it
still conforms to the evolved schema. Therefore, some operations have very strict
preconditions and calling them when those are not met will result in an exception.
For example, a concrete vertex or edge class cannot be set abstract in case there
are still direct instances of that class in the graph. The exact preconditions of each
operation are listed in section 39.2 when discussing the co-evolution operations one
by one.

A full list of all constraints with respect of conformance of a schema to the grUML
metaschema on the one hand and conformance of a graph to a schema on the other
hand is given in the next section.

39.1 Conformance of Schemas and Graphs

Conformance of a schema to the grUML metaschema. A TGraph schema is
valid, i.e., it conforms to the grUML metaschema, if and only if the constraints given
below hold. Every constraint is preceded with an identifier which will be used for
referencing these constraints later in section 39.2.
C-one-gc There must be exactly one graph class which must be located in the

default package of the schema, i.e., its qualified name must equal its simple
name.

C-unique-qnames The qualified names of all named elements (i.e., the graph class,
all vertex and edge classes, all packages, and all domains) must be unique,
e.g., it is not valid to have a vertex class with some qualified name and have an
edge class with the same qualified name.

C-unique-props All property names defined for a class must be unique also with
respect to specialization. This means that a vertex or edge class must not
declare an attribute of a name which it already owns or inherits from some
direct or indirect superclass2. For vertex classes, this constraint is widened
to cover also the role names defined by its own or inherited far-end incidence
classes. Likewise, it is also forbidden to inherit two different properties of the
same name but it is valid to inherit the same property via different paths.

C-naming All qualified names and property names must conform to the Java naming
conventions. This means class names have the form pkg.ClassName, package
names have the form pkg.sub_pkg, property names have the form propertyName,
and enumeration constants have the form ENUM_CONSTANT.

C-aggregation-kind At most one incidence class of an edge class may have an
aggregation kind different from NONE. Informally, this means that in a part-of

2Note that this constraint is more strict than in Java where a subclass may define a field of a name
which it already inherits. Here, the two fields would be independent, the subclass field would hide
the superclass field, and the latter could still be accessed with super.fieldName. But even in Java this is
arguably a bad design.
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relationships either A contains B or B contains A but not both.
C-multiplicities For every incidence class, the minimum multiplicity must be zero

or positive and the maximum multiplicity must be greater than or equal to the
minimum multiplicity.

C-acyclic-specialization Specializations between vertex classes on the one hand
and edge classes on the other hand must be acyclic.

C-ec-specialization-vc An edge class may specialize another edge class only if its
source and target vertex classes are equal to or subclasses of the source and
target vertex classes of the specialized edge class, respectively.

C-ec-specialization-ak With edge class specialization, the aggregation kinds of
the incidence classes of the sub-edge classes must equal the aggregation kinds
of the super-edge class’ incidence classes, i.e., if an edge class defines a plain
relationship, then its subclasses must not define aggregation or composition
semantics or vice versa.

C-ec-specialization-multies With edge class specialization, the multiplicities of
the incidence classes of the subclasses must be equal to or more restrictive
than the ones defined for the superclass’ incidence classes. I.e., both the lower
bounds and the upper bounds defined for a subclass must be less than or equal
to the bounds defined for the superclass.

This list does not contain the structural constraints which are already implied by
the class diagram defining the grUML language (see section 7.1 on page 69). E.g.,
the grUML class diagram already defines that every attribute must be contained
by exactly one attributed element class and must reference exactly one domain
defining the attribute’s type. These constraints must also be preserved by the co-
evolution operations, of course. But they can be preserved constructively in terms
of API design, e.g., the create-attribute! operation requires that the new attribute’s
containing attribute element class and its domain are given as arguments.

Conformance of a graph to its schema. A TGraph is valid, i.e., it conforms to
its schema, if and only if it satisfies its structural properties and also all further
constraints which may optionally be defined using GReQL.

The implementation in JGraLab enforces all structural constraints with the excep-
tion of multiplicities. For example, it is not possible to create an edge between two
vertices if the source and target vertices are no direct or indirect instances of the
corresponding edge class’ source and target vertex class. Likewise, it is impossible
to assign a value to some attribute if the value doesn’t match the attribute’s domain.
When trying to do so, exceptions are thrown3.

In contrast, multiplicities and further constraints specified using GReQL are not
enforced but can only be checked on demand. In fact, some of them cannot be
enforced strictly because they are necessarily invalidated at least at some points in
time. For example, constraints such as non-zero minimummultiplicities or attributes
which must not be null but have no default value will always be invalidated temporary
when elements are created.

The same notion of conformance is also ensured by FunnyQT’s co-evolution

3If Java interfaces and implementation classes are generated for a schema, then these constraints are
ensured statically.
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operations. After every operation call, the TGraph under transformations is a valid
instance of its evolved schema except that the number of edges incident to some
vertex might not be allowed by the multiplicities defined in the schema. Likewise,
further constraints specified using GReQL might not hold anymore4.

39.2 Co-Evolution Operations

In this section, the actual co-evolution operations are introduced one by one. Their
semantics on the instance-level is based on the extensional transformation API which
has been discussed in chapter 27 starting on page 281, i.e., when creating a new
vertex class, new vertices of that class may be created simultaneously, when creating
a new edge class, new edges of that class may be created simultaneously, and when
creating a new attribute, its value may be set for instances of the new attribute’s
class. For these purposes, the co-evolution operations accept optional archetype
and value function and simply delegate to the extensional transformation operations
create-elements!, create-relationships!, and set-values! after the adaptation of the
schema has been performed.

For every co-evolution operation discussed in the following, its preconditions are
listed. Hereby, the constraints the preconditions ensure are referenced using their
identifiers defined in section 39.1 on page 381.

The co-evolution operation create-abstract-vertex-class! receives the graph g
under transformation and creates a new abstract vertex class with the qualified
name qname in its schema.
Function: funnyqt.coevo.tg/create-abstract-vertex-class!
(create-abstract-vertex-class! g qname)

The following preconditions need to be satisfied.

Preconditions:
• qname must be a valid qualified name (C-naming).
• g’s schema must not contain a named element with qualified name

qname already (C-unique-qnames).

The create-abstract-vertex-class! operation has no effect on the instance level.

The co-evolution operation create-vertex-class! creates a new concrete vertex
class with the qualified name qname in the schema of the graph g. Optionally, an
archetype function archfn may be provided in case new instances should be created
immediately. If an archfn is provided, the effect is equivalent to performing a call to
funnyqt.extensional/create-elements! (see page 290) after creating the new vertex
class.
Function: funnyqt.coevo.tg/create-vertex-class!
(create-vertex-class! g qname)
(create-vertex-class! g qname archfn)

4In fact, GReQL constraints might even become invalid in case they include type or attribute names
which are renamed or deleted by a co-evolution operation call.
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The preconditions are the same as for create-abstract-vertex-class!.
The operation’s effect on the instance level is solely determined by archfn, i.e.,

one new vertex being an instance of the newly created vertex class is created for
every unique object in the sequence of archetypes returned by archfn. In this case,
traceability mappings are established as per create-elements! which implies that if
an archfn is given, the create-vertex-class! call must be located in the dynamic scope
of one of the traceability mapping initializing macros which have been discussed
in section 27.4.2 on page 288. This applies to all other creational co-evolution
operations so it won’t be restated in the following.

The co-evolution operation create-abstract-edge-class! creates a new abstract
edge class with the qualified name qname in the schema of the graph g which starts
at the vertex class from and ends at the vertex class to. These two vertex classes
may be given by their qualified names or as actual VertexClass objects.
Function: funnyqt.coevo.tg/create-abstract-edge-class!
(create-abstract-edge-class! g qname from to)
(create-abstract-edge-class! g qname from to props)

Optionally, a map props may be given in order to define the properties of the two
incidence classes implied by the new edge class. This map has the following form.
The listing shows the default values which are used for missing entries in the map
or if the map is omitted.

{:from-multis [0, Integer/MAX_VALUE]
:from-role ""
:from-kind AggregationKind/NONE
:to-multis [0, Integer/MAX_VALUE]
:to-role ""
:to-kind AggregationKind/NONE}

I.e., the props map can be used to define the multiplicities (default: 0..*), the
role name (default: no role name), and the aggregation kind (default: NONE) of the
source and target incidence classes.

Preconditions:
• qname must be a valid qualified name (C-naming).
• g’s schema must not contain a named element with qualified name

qname already (C-unique-qnames).
• The incidence class properties must be valid, i.e., the role names must
be strings or keywords conforming to the Java naming conventions
for fields (C-naming), the maximum multiplicity must be equal to or
greater than the minimum multiplicity which in turn must be zero or
positive (C-multiplicities), and lastly, at most one incidence class may
have an aggregation kind different from NONE (C-aggregation-kind).

The create-abstract-edge-class! operation has no effect on the instance level.

The co-evolution operation create-edge-class! creates a new concrete edge class
with qualified name qname starting at vertex class from and ending at vertex class
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to in the schema of the graph g. Again, the vertex classes may be given by their
qualified names or as actual VertexClass objects.
Function: funnyqt.coevo.tg/create-edge-class!
(create-edge-class! g qname from to)
(create-edge-class! g qname from to props-or-archfn)
(create-edge-class! g qname from to props archfn)

Two optional parameters are accepted: a props map for defining the properties
of the incidence classes of the new edge class, and an archetype function archfn
which allows to create new instances of the new edge class. Providing an archfn
has the same effect as performing a call to the extensional transformation function
funnyqt.extensional/create-relationships! (see page 291) after the call to the co-
evolution operation.

The create-edge-class! co-evolution operation has the same preconditions as
create-abstract-edge-class!.

The operation’s effect on the instance level is solely determined by archfn, i.e., it
has to return a sequence of triples [arch src trg] where arch denotes an archetype
for a new edge, and src and trg denote its source and target vertex. For each unique
archetype, a new edge being an instance of the newly created edge class is created.

The co-evolution operation set-incidence-class-props! allows to change the prop-
erties of the incidence classes of the edge class ec which may be given by its
qualified name or as actual EdgeClass object. The argument props is an incidence
class properties map with the same format as the argument of the same name in
create-abstract-edge-class! and create-edge-class!.
Function: funnyqt.coevo.tg/set-incidence-class-props!
(set-incidence-class-props! g ec props)

The same preconditions about the validity of the provided incidence class prop-
erties as for create-abstract-edge-class! and create-edge-class! have to be satisfied.
In contrast to these two operations, properties which have not been specified stay
unchanged instead of setting them to the default values.

This operation has no effect on the instance level.

The co-evolution operation set-abstract! sets the abstractness property of the
given graph element class gec to val which must be a boolean. The graph element
class may be given by its qualified name or as actual VertexClass or EdgeClass object.
Function: funnyqt.coevo.tg/set-abstract!
(set-abstract! g gec val)

Preconditions:
• If gec is currently a concrete graph element class and val is true, then

gec must have no direct instances.

Thus, making an abstract class concrete is always possible but the inverse is
forbidden in case there are direct instances.

The set-abstract! operation has no effect on the instance level.
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The co-evolution operation create-attribute! creates a new attribute of name attr
with the given domain at the attributed element class aec. The attributed element
class and the domain may be given by their qualified names or as actual GraphClass,
VertexClass, EdgeClass, or Domain object, respectively.
Function: funnyqt.coevo.tg/create-attribute!
(create-attribute! g aec attr domain)
(create-attribute! g aec attr domain default-or-valfn)
(create-attribute! g aec attr domain default valfn)

Two optional arguments are accepted: firstly, a default value may be specified,
and secondly, a value function valfn may be given in order to set the value of the
new attribute for existing instances of the attributed element class. The effect
of providing a valfn is the same as performing a call to the extensional transfor-
mation function funnyqt.extensional/set-avals! (see page 292) after the call to the
co-evolution operation.

Preconditions:
• attr must be a valid attribute name (C-naming).
• In the complete inheritance hierarchy of aec, there must not exist a
property with name attr already (C-unique-props).

• The default value must be an instance of domain.

The effects on the instance level are solely determined by the optionally given
valfn.

The co-evolution operation create-enum-domain! creates a new enumeration do-
main with qualified name qname and the given literals in the schema of graph g. The
literals are given as a collection of symbols, e.g., (create-enum-domain g 'Modifier
(list 'PRIVATE 'PUBLIC ...)).
Function: funnyqt.coevo.tg/create-enum-domain!
(create-enum-domain! g qname literals)

The following preconditions need to be satisfied.

Preconditions:
• qname must be a valid qualified name (C-naming).
• All literals must be valid enumeration literal names, i.e., all-capitals
with numbers and underscores (C-naming).

• g’s schema must not contain a named element with qualified name
qname already (C-unique-qnames).

The create-enum-domain! operation has no effect on the instance level.

The co-evolution operation create-record-domain! creates a new record domain
with qualified name qname in the schema of the graph g. comp-doms is a map defining
the record domain’s components using entries consisting of the name of the compo-
nent and its domain, e.g., (create-record-domain! g 'SourcePosition {:file 'String,
:line 'Integer}).
Function: funnyqt.coevo.tg/create-record-domain!
(create-record-domain! g qname comp-doms)
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The following preconditions need to be satisfied.

Preconditions:
• qname must be a valid qualified name (C-naming).
• All component names defined by comp-doms must be valid, i.e., they
must conform to the Java naming conventions for fields (C-naming).

• g’s schema must not contain a named element with qualified name
qname already (C-unique-qnames).

The create-record-domain! operation has no effect on the instance level.

The co-evolution operation create-specialization! creates a new specialization
between the given super class and the given sub class which may be either ver-
tex classes, edge classes, or the qualified names of two vertex or edge classes,
respectively.
Function: funnyqt.coevo.tg/create-specialization!
(create-specialization! g super sub)

The following preconditions must hold.

Preconditions:
• The new specialization must not add a cycle to the specialization hier-
archy (C-acyclic-specialization).

• The subclass sub or any of its subclasses must not own a property of
the same name as super or any of its superclasses (C-unique-props).

• In case super and sub are edge classes, the following additional precon-
ditions must be satisfied.
– The source and target vertex class of sub must be identical or
subclasses of the source and target vertex class of super (C-ec-
specialization-vc).

– sub must specify the same aggregation semantics as super (C-ec-
specialization-ak).

– The multiplicities of sub’s incidence classes must be in confor-
mance with C-ec-specialization-multies, i.e., both lower and upper
bound must be equal or lower than the corresponding multiplicity
of super’s incidence classes.

• The traceability archetype and image mappings for super and sub must
be disjoint.

The last precondition ensures that navigation between archetypes and images
stays possible even though the inheritance hierarchy is modified.

The operation has no effect on the instance level.

The co-evolution operation rename-attributed-element-class! renames the given
attributed element class aec to the new qualified name new-qname in the schema of
graph g. The attributed element class may be specified using its current qualified
name or as actual GraphClass, VertexClass, or EdgeClass object.
Function: funnyqt.coevo.tg/rename-attributed-element-class!
(rename-attributed-element-class! g aec new-qname)
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This operation can also be used tomove a graph element class from one package to
another package, e.g., (rename-attributed-element-class! g 'pgk_one.C 'pkg_two.C).

The following preconditions must be satisfied.

Preconditions:
• new-qname must be a valid qualified (C-naming).
• In case the graph class is renamed, new-qname must have no package
part (C-one-gc).

• No named element with qualified name new-qname must exist already
(C-unique-qnames).

The operation has no effect on the instance level.

The co-evolution operation rename-attribute! renames the attribute oldname de-
fined for the attributed element class aec to newname. The attribute element class
may be given by its qualified name or as actual GraphClass, VertexClass, or EdgeClass
object.
Function: funnyqt.coevo.tg/rename-attribute!
(rename-attribute! g aec oldname newname)

The following preconditions have to hold.

Preconditions:
• newname is a valid attribute name (C-naming).
• In the complete inheritance hierarchy of aec there exists no property
with name newname already (C-unique-props).

The operation has no effect on the instance level.

The rename-domain! operation renames the given domain to new-qname. The standard
domains like Integer or List cannot be renamed. Again, the domain may be given by
its qualified name or as actual Domain object.
Function: funnyqt.coevo.tg/rename-domain!
(rename-domain! g domain new-qname)

The following preconditions need to be satisfied.

Preconditions:
• domain must be a custom enumeration or record domain.
• new-qname is a valid qualified name (C-naming).
• The schema doesn’t contain a named element with qualified name

new-name already (C-unique-qnames).

The operation has no effect on the instance level.

The co-evolution operation delete-graph-element-class! deletes the graph element
class gec from the schema of graph g. All subclasses of gec are deleted, too, and
likewise all direct and indirect instances of gec are deleted from the graph g.
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Function: funnyqt.coevo.tg/delete-graph-element-class!
(delete-graph-element-class! g gec)

In addition, all archetype and image mappings which have been recorded with
respect to gec and its subclasses are deleted.

Preconditions:
• If gec is a vertex class, there must be no edge classes connected to
itself or any of its subclasses.

The co-evolution operation delete-attribute! deletes the attribute attr defined
for the attributed element class aec in the schema of graph g. Like always, the at-
tributed element class may be specified by its qualified name or as actual GraphClass,
VertexClass, or EdgeClass object.
Function: funnyqt.coevo.tg/delete-attribute!
(delete-attribute! g aec attr)

The operation has no preconditions. The effect on the instance level is that
afterwards no attr attribute can be accessed anymore for aec instances and the
corresponding values are erased.

The co-evolution operation delete-specialization! deletes a specialization be-
tween two vertex or edge classes super and sub.
Function: funnyqt.coevo.tg/delete-specialization!
(delete-specialization! g super sub)

The following precondition has to be met.

Preconditions:
• When deleting a specialization between two vertex classes super
and sub, there must not be edge classes incident to super and sub
which are specialized themselves because this would invalidate C-ec-
specialization-vc.

The operation has no effects on the instance level except that properties originally
inherited from super to sub cannot be accessed anymore.

The co-evolution operation delete-domain! deletes the given domain from the
schema of the graph g. The domain must be an enumeration or record domain, i.e.,
the standard domains like Integer or List cannot be deleted. The domain may be
specified by its qualified name or as actual Domain object.
Function: funnyqt.coevo.tg/delete-domain!
(delete-domain! g domain)

The following precondition needs to hold.

Preconditions:
• The schema must not contain an attribute of the given domain.
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The operation has no effect on the instance level.

Those were the actual co-evolution operations which operate on the schema and
possibly the instance level and implement one single, atomic co-evolution change
each. There are three more functions defined in the funnyqt.coevo.tg namespace,
namely pull-up-attribute!, downtype! and empty-graph which are useful in many co-
evolution scenarios.

The pull-up-attribute! operation receives a graph g, a graph element class super,
and an attribute name attr (a keyword), and then performs the well-known pull up
attribute refactoring operation. Concretely, it deletes the attr attribute from all
direct subclasses of super and creates it for super itself.
Function: funnyqt.coevo.tg/pull-up-attribute!
(pull-up-attribute! g super attr)

This refactoring operation has the following precondition.

Preconditions:
• All subclasses of super must declare an attribute of name attr.
• The domains of all subclass attr attributes must be equal.
• The default values (if any) of all subclass attr attributes must be equal.

The attr values of subclass instances stay the same as they were before. If super
is concrete and has direct instances, those will have attr’s default value afterwards.

The downtype! function works only on the instance level. It receives the graph
under transformation g, a graph element class super, one of its subclasses sub, and a
predicate. It then “downtypes” all direct super instances for which predicate holds
to sub instances. The graph element classes super and sub may be given by their
qualified names or as actual VertexClass or EdgeClass objects.
Function: funnyqt.coevo.tg/downtype!
(downtype! g super sub predicate)

Concretely, for every direct super instance for which predicate holds, a new sub
instance is created and all attribute values are copied over. If super and sub denote
vertex classes, then also all edges incident to the super vertices are relinked to the
corresponding new sub vertices. Thereafter, the original super instances are deleted.

If there have been image and archetype traceability mappings for the original
super instances, those are adapted to point to/from the new sub instances afterwards.

The downtype! function allows to conveniently handle the instance-adaptation of
the frequently re-occurring metamodel evolution scenario where a formerly concrete
class is subclassed and then made abstract. This scenario also occurs in the example
in chapter chapter 40 starting on page 393.

The empty-graph function receives a qualified schema name sqname and a graph
class name gcname and returns an empty graph conforming to a minimal schema
which contains nothing but a graph class of the given name.
Function: funnyqt.coevo.tg/empty-graph
(empty-graph sqname gcname)
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This function is useful when a transformation should create a completely new
target schema simultaneously with a conforming graph instead of evolving an
existing schema and graph. This allows for defining transformations is the style of
the GReTL transformation language [EH14; HE11].





Chapter 40

Example

In this chapter, an example co-evolution transformation is illustrated. Figure 40.1
shows a very simple component metamodel1.
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Figure 40.1: A simple component schema

A component has a name and may contain sub-components and ports. Ports can
be connected to each other using connectors.

This metamodel has some weaknesses which should be fixed in a new version.
(1) All three element classes declare a name attribute instead of abstracting that
away. (2) The metamodel allows for connectors that start and end at the same port
but connectors should always connect two different ports. (3) Each port should act
as either input or output but the metamodel allows for ports which act as both.

The first weakness is only a minor design flaw without negative consequences.
However, the second and third weakness allow model instances which are actually
wrong and could easily be excluded statically by a more restrictive metamodel.
Therefore, the metamodel should be evolved accordingly so that it equals the one in
fig. 40.2 on the following page.

Here, the name attribute has been extracted into a new abstract NamedElement
1The metamodels used here are variants of the ones found in [Ros+14].
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Figure 40.2: The evolved component schema

element class which is specialized by the other element classes fixing issue (1)
from above. Furthermore, the element class Port has been made abstract and is
specialized by two new element classes OutputPort and InputPort fixing problem (3).
Because connectors now always start at an output-port and end at an input-port,
problem (2) is fixed, too. In addition, the ComesFrom and GoesTo relationship classes
have been renamed to HasSource and HasTarget, respectively, and the role names
have been changed, too.

The transformation evolve-component-schema is a plain function and performs this
co-evolution to some given graph g and its schema. Its complete definition is given
in listing 2 on the next page.

First, it tests if the graph can be handled by the transformation as indicated by
comment (1). It checks if the graph contains ports which are not connected at all or
have both incoming and outgoing connectors. For the former, there is no way to
decide if the port is meant to model an input or an output port, and the latter ports
are not representable in the evolved metamodel where each port is either an input
or an output port. Therefore, some user intervention would be needed here before
the transformation can be applied.

Of course, in a concrete scenario there might be other possibilities to handle
these situations. For example, there might be a convention for the names of ports
which could be used to decide if an unconnected port is intended to model an input
or an output port. Likewise, for ports with incoming and outgoing connectors, the
connectors which are wrong according to the port’s name could be deleted.

The first actual co-evolution operation calls follow the comment with number (2).
A new, abstract vertex class NamedElement is created in the schema of the graph
g using create-abstract-vertex-class!. Then the already existing vertex classes
Component, Port, and Connector are made subclasses of the new NamedElement class
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(defn evolve-component-schema [g]
;; (1) Check preconditions
(when-not (forall? #(xor (seq (adjs % :incoming))

(seq (adjs % :outgoing)))
(vseq g 'Port))

(error "There're ports which are not connected or both input and output!"))

;; (2) NamedElement specialization
(create-abstract-vertex-class! g 'NamedElement)
(create-specialization! g 'NamedElement 'Component)
(create-specialization! g 'NamedElement 'Port)
(create-specialization! g 'NamedElement 'Connector)
(pull-up-attribute! g 'NamedElement :name)

;; (3) Port specialization
(create-vertex-class! g 'InputPort)
(create-vertex-class! g 'OutputPort)
(create-specialization! g 'Port 'InputPort)
(create-specialization! g 'Port 'OutputPort)
(downtype! g 'Port 'InputPort #(seq (adjs % :incoming)))
(downtype! g 'Port 'OutputPort #(seq (adjs % :outgoing))))
(set-abstract! g 'Port true)

;; (4) EdgeClass & role renaming
(rename-attributed-element-class! g 'ComesFrom 'HasSource)
(rename-attributed-element-class! g 'GoesTo 'HasTarget)
(set-incidence-class-props! g 'HasSource {:to-role :source})
(set-incidence-class-props! g 'HasTarget {:to-role :target}))

Listing 2: A co-evolution transformation from the schema version shown in fig. 40.1
on page 393 to the schema version shown in fig. 40.2 on page 394

by calling create-specialization! three times. Finally, the name attribute is pulled
up into NamedElement from all three subclasses. These changes affect only the
schema but have no effects on the graph g.

The next four co-evolution operation calls following the comment with number (3)
create two new vertex classes InputPort andOutputPort as specialization of the existing
Port class. Then, two downtype! calls replace the existing Port vertices of the graph
with instances of the subclasses InputPort and OutputPort. The predicate #(seq (adjs
% :incoming)) at the first call defines that a port is an input port if there are incoming
connectors. Likewise, the predicate at the second call defines that a port is an
output port if there are outgoing connectors. Because of the precondition (1), there
cannot be any direct Port instances left after the two calls and therefore it is possible
to set the vertex class to be abstract.

The final changes of the co-evolution follow the comment with number (4). The
edge classes ComesFrom and GoesTo are renamed to HasSource and HasTarget, re-
spectively, and similarly the role names of the two edge classes at the side of the
Port vertex class are changed to source and target. These changes have again no
effect on the instance level.



396 CHAPTER 40. EXAMPLE

Note that the transformation did not establish image and archetype traceabil-
ity mappings using either with-trace-mappings or ensure-trace-mappings (see sec-
tion 27.4.2 on page 288). The reason is that those are only required in case the
create-vertex-class! and create-edge-class! operations are called with an archetype
function in order to create new instances of the newly created vertex or edge
class, or in case the extensional transformation operations create-elements! or
create-relationships! are used directly. The transformation in listing 2 did cre-
ate new instances, namely new input and output ports, but it did so using the
downtype! operation. This operation does not require traceability mappings but if
they were in place, it would modify them in order to transfer the original archetypes
of the superclass (i.e., Port) instances to the newly created subclass (i.e., InputPort
or OutputPort) instances.
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Related Work

All existing co-evolution approaches with the exception of FunnyQT realize co-
evolution in a two-step manner. First, the metamodel is evolved and then the
instances of the old metamodel version are co-adapted in order to conform to the
new metamodel version. Frequently, the actual metamodel evolution is not in the
scope of the tool but it is only concerned with the co-adaptation step.

Of course, any co-adaptation can be specified as an out-place transformation from
metamodel version MM1 to metamodel version MM2. However, with reasonable
large metamodels and frequent releases of new metamodel versions, the effort
needed for implementing co-adaptation transformations manually becomes much
too high.

In [Wac07], different relations between two versions MM1 and MM2 of a meta-
model are considered according to semantics-preservation and instance-preservation
properties. A metamodel transformation t with t(MM1) = MM2 is strictly seman-
tics-preserving if the extensions, i.e., the sets of possible instances, of MM1 and MM2

are equal. A metamodel evolution where common properties of several subclasses
are extracted into a new, abstract superclass would fall into this category. Co-
evolution in such scenarios doesn’t require any co-adaptation. Models conforming
to MM1 conform to MM2 and the reverse is also true.

More interesting in the context of co-evolution are instance-preservingmetamodel
adaptations. A metamodel transformation t with t(MM1) = MM2 is strictly instance-
preserving if the extension of MM1 is equal to or a subset of MM2, i.e., every instance
of MM1 is an instance of MM2 but the reverse may not hold. So again, an instance-
preserving metamodel adaptation requires no co-adaptation to be performed on the
models but only in one single direction. Adding new classes or adding non-mandatory
attributes and references fall into this category.

In most co-evolution scenarios, the metamodel adaptation is not strictly instance-
preserving and certainly not semantics-preserving but less strict preservation prop-
erties apply. For many cases, a co-adaptation transformation can be generated
automatically, and for others, it can be generated semi-automatically. For example,
when a class is deleted from a metamodel, a co-adaptation transformation can simply
delete the instances. When a new mandatory attribute is introduced instead, some
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default value or function computing an appropriate value is needed. Based on these
insights, several co-evolution tools have been developed.

In [Bor07], an algorithm coined conservative copying for model transformations
is described. This algorithm copies over the instances of unchanged metamodel
classes from the source model conforming to the old metamodel version to the target
model conforming to the new metamodel version.

This algorithm is implemented in Epsilon Flock [Kol+15; Ros+10; Ros+14].
Using it, the transformation writer has to define migration rules only for the source
metamodel classes whose instances require co-adaptation and all other elements
are handled automatically. This greatly reduces the size of the transformation
specification because usually the changes between two metamodel versions affect
only a small and localized fraction of classes.

A similar but visual approach is provided by the Model Change Language (MCL,
[Nar+09]). MCL is a domain-specific modeling language. The base and the evolved
metamodel are loaded in a visual editor where the user defines which old meta-
model elements correspond to which evolved metamodel elements and specifies the
translation rules.

For example, if some port class has been made abstract and specialized by two
new classes input-port and output-port, then the old port class corresponds to both
new subclasses and some predicate has to be stated in order to define which old
port is to be transformed into an input-port and which is to be transformed into an
output-port. For elements for which no explicit correspondence is defined, the tool
uses a conservative copying algorithm.

Other approaches and tools utilize metamodel differencing in order to perform
co-adaptation. For example, the approach discussed in [Gar+09] computes the
differences between a current and an evolved metamodel version and then automat-
ically generates a higher-order transformation for the co-adaptation by using a set
of heuristics.

Edapt1 is a tool for co-evolving Ecore metamodels and conforming EMF models.
It incorporates the facilities originating from the COPE Workbench [Her10; Her11].
The tool is a visual Ecore editor providing so-called coupled operations. These
operations specify adaptations on the metamodel (e.g., create opposite reference,
make class abstract, extract superclass), and they also define a certain semantics
on instance models. The user is supposed to evolve the metamodel using these op-
erations whose application is recorded in a history. Using this history, co-adaptation
transformations from any version to any other version can be generated and then
applied to model instances.

All approaches cited above perform the co-adaptation step in terms of an out-
place transformation between the old version and the new version of the metamodel.

1https://www.eclipse.org/edapt/ (last visited: 2015-09-04)
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In [Mey+11], a step-wise co-evolution approach based on in-place transformations
is suggested.

The overall metamodel delta is computed by differencing and then decomposed
into a sequence of sub-deltas, each one describing some well-known, frequently
occurring change. For each such sub-delta, there is a default co-adaptation trans-
formation which a user may select, edit, or replace with a completely new one.
The interesting point here is that these co-adaptation transformations are in-place
transformation rules which are executed on a merged metamodel MMi−1,i. This
metamodel has the property that every model conforming to MMi−1 or MMi also
conforms to MMi−1,i. This merged metamodel is generated from metamodel version
MMi−1 and the delta to version MMi.

The authors argue that this step-wise, in-place approach provides crucial benefits.
Firstly, in-place transformation rules don’t touch unaffected elements thus external
references to such elements stay valid. And secondly, the step-wise approach reduces
accidental complexity because in each step, the scope is narrowed down to the
elements affected by the change. Changes which are introduced by a delta from
version i to i + 1 or a later version are not visible in the merged metamodel MMi−1,i.

This is a little bit similar to FunnyQT’s co-evolution approach. With that, every
invocation of a co-evolution operations performs a small, atomic evolution step
which changes one single metamodel constituent and immediately adapts the corre-
sponding model.

Although it is no co-evolution approach, the GReTL [EH14; HE11] transformation
language can be seen as a direct predecessor of FunnyQT’s co-evolution API.

GReTL is specific to the TGraph modeling framework JGraLab and is implemented
as a Java API where a simple external DSL is provided, too. GReTL transformations
are able to create a new target schema including one conforming target graph.
Such transformations are also possible with FunnyQT’s co-evolution API by having a
transformation which starts with an empty schema and changes that (and the single
conforming graph) to the desired evolved schema.

The archetype concept used by FunnyQT’s extensional transformation and co-
evolution APIs also stems from GReTL although it is implemented with several
differences in details in FunnyQT. These details have already been discussed in
chapter 28 starting on page 301.
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Summary

Many of the FunnyQT services discussed in this thesis have been eval-
uated by participating in all editions of the Transformation Tool Contest
since 2013. Chapter 42 starting on page 405 summarizes the cases which
have been solved and the parts of FunnyQT which have been used in doing
so. The solutions scored very well and the awards which have been won
are also mentioned.

Thereafter, a conclusion is given in chapter 43 starting on page 415
which closes the thesis with a summary of FunnyQT’s contributions and
an outlook on possible future directions.





Chapter 42

Evaluation

Due to the short FunnyQT project period and the large amount of work that had to
fit into it, there has not been enough time left for an evaluation in a strictly scientific
sense. Instead, FunnyQT has been extensively tested by participating in the last
three editions of the Transformation Tool Contest (TTC). The aims of the TTC are
given on its homepage1.

The aim of this event is to evaluate and compare the expressiveness,
the usability and the performance of transformation tools for structured
data along a number of selected challenging case studies. That is, we
want to learn about the pros and cons of each tool considering different
applications. A deeper understanding of the relative merits of different
tool features will help to further improve the existing tools, to indicate
open problems, and to integrate and standardize transformation tools.

As quoted above, people can submit case studies related to model querying and
transformations. In each edition, the two or three most interesting and challenging
case studies are selected and then users and developers of querying and transfor-
mation tools may submit solutions. These solutions are discussed and reviewed
in an open review phase where solution submitters score the other solutions sub-
mitted for the same case. During the workshop, the solutions are presented to a
wider audience2 which also has a chance to give scores to the solutions. Based on
the results of the open review phase and the audience scores, overall scores are
computed and awards are assigned to solutions. Usually, for every case there is an
overall winner award and there might be additional awards for certain evaluation
criteria which the case authors considered as most important for the case.

In the TTC editions from 2013 to 2015, eight case studies have been selected
and all of them could be solved appropriately using FunnyQT. Three of these eight
solutions were awarded with the overall winner award for the respective case and
five additional awards in categories such as correctness or performance have been

1http://www.transformation-tool-contest.eu (last visited: 2015-12-30)
2Since the TTC is part of the STAF conference series which also hosts the ICMT and ICGT conferences,

the audience usually consists of experts in model-driven technologies.
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won making FunnyQT the most successful competitor in the whole history of the TTC.
This gives strong evidence that FunnyQT’s comprehensiveness makes it applicable
to a very broad set of different model querying and transformation tasks.

One benefit of this kind of evaluation was that there was actually one evaluation
per year. Thus, FunnyQT received early feedback in its very initial, prototypical
version in the year 2013, then again in an improved version in 2014, and lastly in the
almost complete version in 2015. The feedback and critics received at the TTC have
been a major driving force in the further development of FunnyQT which eventually
led to the current version which is extensively documented in this thesis.

In the remainder of this part, the different TTC case studies and their FunnyQT
solutions are briefly described. For each solution, the FunnyQT features which
have been utilized for solving the case are mentioned and the full case and solution
descriptions in the TTC proceedings are referenced.

42.1 The TTC 2013 Flowgraphs Case

Analysis and transformations in compiler construction were the topic of the TTC’13
flowgraphs case [Hor13d]. From abstract syntax graphs of Java programs, control
flow and data flow graphs had to be generated.

In order to reduce the effort for solution developers, the Java programs to be
considered contained only one single class with a single method but no restrictions
were made with respect to control structures. Programs used for validating the
solutions contained deeply nested loops and the jump statements break and continue
including jumps to loop labels had to be handled, too.

The Java programs to be analyzed were given as JaMoPP [Hei+09] models repre-
senting the abstract syntax graphs of the programs. The first actual task required
the solution developers to implement an out-place transformation which takes such
a very detailed and syntax-near JaMoPP model and generates a structure graph rep-
resenting the same program with a much simpler and more manageable metamodel.

The second task, stated as an in-place transformation problem, required to
analyze the structure graph according to the Java language semantics and to enrich
it with control flow edges, i.e., for every statement the possible successor statements
had to be computed and linked to the predecessor.

In the third task, an intra-procedural data flow analysis had to be performed. For
this purpose, the out-place transformation from task 1 had to be extended so that
it creates variable and parameter objects which are connected to the statements
that read from or write to them. Then, the control flow graph with the enriched
information about variable uses had to be analyzed in order to create data flow
edges to come to a program dependence graph [FOW87].

The FunnyQT solution [Hor13c] to the flowgraphs case realized task 1 with an
early, prototypical version of the rule-base out-place transformation DSL whose
current version is discussed in chapter 26 starting on page 265. The transformation
also utilized polymorphic functions (see section 15.2 on page 154).
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The second and third task were tackled algorithmically using the EMF-specific
model management and querying API which has been introduced in chapter 14
starting on page 137 and plain Clojure programming.

The FunnyQT solution won the best efficiency award and it has been by far the
most concise solution3.

42.2 The TTC 2013 Class Diagram Restructuring
Case

The class diagram restructuring case [LR13] dealt with performing in-place refac-
toring operations [Fow99] to UML class diagrams.

The first refactoring to be implemented was pull up attributes. When the model
contains a class with several subclasses which all declare an attribute of the same
name and type, then the attribute should be pulled up into the superclass and
deleted from the subclasses.

The second refactoring to be implemented was extract superclass. When the
model contains a class with several subclasses where a subset of the subclasses
declares an attribute of the same name and type, this attribute should be pulled up
into a new abstract superclass. In case there are multiple attributes that could be
pulled up, those with the largest subset of declaring subclasses should be preferred.

The third refactoring task was very similar to the second refactoring task but
here classes which are on top of the specialization hierarchy had to be considered.
If there are multiple top-level classes declaring some attribute of the same name
and type, the attribute had to be pulled up into a new abstract superclass.

The FunnyQT solution to the class diagram restructuring case [Hor13a] solves all
three tasks in an improved way which has not been required by the case description.
Instead of pulling up one attribute at a time, the solution always pulls up the maximal
set of attributes which are duplicated in a maximum set of classes. The case has
been solved algorithmically using only FunnyQT’s model management and querying
API (see part IV starting on page 105).

The solution won the best overall solution award for this case.

42.3 The TTC 2013 Petri-Nets to Statechart Case

The TTC Petri-nets to statecharts case [GR13] dealt with transforming flat Petri-net
models to hierarchical statechart models. The overall transformation which had to
be implemented works in two phases.

The initialization phase executes a simple out-place transformation which cre-
ates one state in the target statechart model for any place in the source Petri-net.
Likewise, transitions between places are translated to hyper-edges between states.

3Most concise in terms of usual metrics such as number of lines of code or number of statements.
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The job of the reduction phase is to build up the hierarchy in the statechart model
resulting from the initialization phase. Here, two in-place transformation rules had
to be implemented which query and change both the source Petri-net model and the
target statechart model. One rule is responsible for creating compound AND states,
the other one is responsible for creating compound OR states. Both match a certain
structure in the Petri-net and then delete parts of this structure while creating the
respective compound state in the statechart. Thus, the transformation is input-
destructive, and the transformation is guaranteed to terminate with a Petri-net
model which only consists of one single place left.

The FunnyQT solution [Hor13b] implemented the initialization transformation
using an early version of its rule-based outplace transformation DLS (see chapter 26
starting on page 265). The reduction rules have been implemented algorithmi-
cally using only FunnyQT’s model management and querying API which has been
introduced in part IV starting on page 105.

The FunnyQT solution has won the best overall solution award and the best
efficiency award.

42.4 The TTC 2014 Movie Database Case

The TTC movie database case [HKT14] was mainly intended as a pattern matching
performance evaluation case. Themodels to be considered contained the information
from the International Movie Database4 (IMDb), i.e., movies with their participating
actors, directors, and user ratings.

The first task dealt with generating synthetical test models for verification pur-
poses.

The second task dealt with finding couples of two actors who acted together in
at least three movies. For those, new couple elements linking the actors had to be
created.

For the third task, the newly created couple elements had to be enriched with
the average rating of the common movies.

The first extension task requested that two top-15 lists had to be generated. One
list had to be sorted according to the average rating of common movies, the other
list had to be sorted according to the number of common movies.

The second extension task extended task 2. Instead of finding and creating
couples of two actors, cliques of size 3, 4, and 5 had to be found and manifested
in the model. The task encouraged solution developers to implement this task as a
higher-order transformation which receives the clique size as a parameter and then
generates an appropriate transformation rule.

The third extension task extended task 3 for cliques instead of couples.

The FunnyQT solution [Hor14b] to the movie database case implemented all core
and extension tasks. The generation of test models has been realized using only

4http://www.imdb.com/ (last visited: 2015-09-28)
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the model management and querying API discussed in part IV starting on page 105.
The tasks 2 and 3, and the extension tasks 2 and 3 have been solved by providing
a Clojure macro which generates a suitable FunnyQT in-place transformation rule
(see part VI starting on page 221) for a given number of actors, i.e., when given
the number 2, the macro generates an in-place transformation rule identifying and
manifesting couples. The top-15 lists required by task 3 and extension task 3 have
again been solved using FunnyQT’s model querying API, polymorphic functions, and
general Clojure programming.

The FunnyQT solution was ranked third of all nine submitted solutions and it has
been the only solution with a full correctness and completeness score.

42.5 The TTC 2014 FIXML to Java, C#, and C++
Case

The TTC FIXML case [LMT14] dealt with transforming XML files conforming to the
FIXML schema5 to appropriate classes in several object-oriented languages which
could then be used to represent the data encoded in the files. The core task required
to target Java, and extension tasks for C# and C++ have been stated. Additionally,
it has been encouraged to think about how the transformation could be extended in
order to target a non-object-oriented language such as C.

The transformation had to be structured into three separate tasks. In the first
task, a given FIXML document had to be transformed into a model conforming to a
simple XML metamodel.

The second task required a transformation which takes an XML model and
creates a model conforming to a metamodel suitable for the targeted object-oriented
language.

In the third task, a model-to-text transformation had to be written which takes a
model resulting from task 2 and generates program text in the targeted programming
language.

As an extension task, it has been encouraged to guess appropriate data types for
the fields of the generated classes by inspecting the values of the corresponding
XML attributes in the FIXML documents.

The FunnyQT solution [Hor14a] to the FIXML case solves all core and extension
tasks. The conversion from XML documents to XML models has been realized by
using FunnyQT’s XML processing API which has been discussed in section 15.4
on page 159. Task 2 has been implemented using FunnyQT’s rule-based out-place
transformation DSL (see chapter 26 starting on page 265). This transformation
targets a generic metamodel which is suitable for all object-oriented languages
and it also implements the heuristics for guessing appropriate data types for the
fields of classes. The model-to-text transformation is implemented using FunnyQT’s
model querying API (see part IV starting on page 105) and polymorphic functions

5http://fixwiki.org/fixwiki/FIXwiki (last visited: 2015-09-28)
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(see section 15.2 on page 154) in combination with the Clojure templating library
Stencil6.

The FunnyQT solution is able to target the languages Java, C#, C++, and C. For
the former three, appropriate classes with fields are generated. With C as the target
language, structs are generated instead. For C++, the solution also generates the
appropriate destructors for the generated classes, and for C, additional functions for
freeing pointers to the generated structs are created. For C++ and C, the generated
code is also split into header and implementation files which are properly guarded
using #ifndef-ed #include preprocessor statements. All generated files for all four
target languages compile without warnings when using the standard compilers for
those languages.

The FunnyQT solution has won the most accurate solution award and scored in
the second place in the overall evaluation for this case.

42.6 The TTC 2015 Model Execution Case

The TTC model execution case [MW15] required solution developers to implement
the execution semantics of the UML activity diagram language in terms of an in-place
transformation. The execution semantics are defined using a token game where the
currently executed activity nodes have tokens which are then offered on outgoing
control flow edges. In general, an activity node can start its execution as soon as
there are tokens offered on all control flow edges leading to this node. Specific
activity node types such as fork nodes, join nodes, decision nodes, or opaque actions
have more complex execution semantics.

The case could be solved in different variations with increased complexity start-
ing with simple control flows to complex control flow including the evaluation of
expressions.

The FunnyQT solution to the model execution case [Hor15c] implements the most
ambitious variant realizing the complete UML activity diagram execution semantics
with the exception of object flows which have not been considered by the case.

The case has been solved algorithmically using FunnyQT’s model management
and querying API and an activity diagram specific API which has been generated from
the metamodel (see section 14.8 on page 144). To implement different execution
semantics depending on the type of activity nodes, polymorphic functions have been
used which were introduced in section 15.2 on page 154. The solution is an almost
literal translation of the informal specification of the execution semantics given in
the case description. For every step in the execution, there is exactly one function
performing this step.

The FunnyQT solution has won the most correct solution award for this case, and
in fact, it has been the only solution with a full correctness score.

6https://github.com/davidsantiago/stencil (last visited: 2015-09-28)
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42.7 The TTC 2015 Java Refactoring Case

The TTC Java refactoring case [KPL15] dealt with refactoring Java programs. The
solutions had to be structured into three steps.

In the first step, solutions should utilize some arbitrary Java parser such as
JaMoPP7 or MoDisco8 in order to parse the given Java source code and generate a
model representation from it. Then, an out-place transformation had to be defined
which transforms this tool-specific representation to a model of a predefined program
graph metamodel.

In the second step, the actual refactorings had to be applied to the program graph
model. The refactorings to be considered where pull up method, create superclass,
and extract superclass (extension). Additionally, a second extension task suggested
to implement a means for proposing refactorings to the user.

The third step of the transformation dealt with propagating the changes per-
formed in the program graph model back to the Java source code where unchanged
parts must not be modified. Because the program graph model did not contain all the
details of the original Java source code, this task is dependent on the transformation
from step 1, i.e., the changes in the program graph had to be propagated into the
original JaMoPP or MoDisco model, and then this one had to be serialized again.

An extensive test framework was provided which calls the transformations of the
different steps on several test files and validates the results.

The FunnyQT solution to the Java refactoring case [Hor15b] uses JaMoPP to
parse the Java source code and generated a model representation from it. The
transformation to a program graph model has been realized using the rule-based
out-place transformation DSL from chapter 26 starting on page 265.

The actual refactoring operations are implemented using in-place transformation
rules (see part VI starting on page 221) which heavily utilize FunnyQT’s pattern
inheritance feature. The solution implements themore general pull upmember refac-
toring instead of only being able to pull up methods. The extension task of proposing
possible refactorings to the user has been solved using the interactive-rule combi-
nator (see section 22.1.1 on page 234).

The third step of the transformation is encoded already in the refactoring rules of
step 2. The refactoring rules receive an additional parameter which is a map from
program graph elements to corresponding JaMoPP model elements. This map is built
from the traceability information of the JaMoPP to program graph transformation in
step 1. Whenever a refactoring rule is applied, it immediately performs the changes
on the program graph model and then returns a closure which will perform the
corresponding changes in the original JaMoPP model. These closures are eventually
executed by the test framework. Thus, the only thing that remains to be done is
saving the JaMoPP models which automatically serializes the changed parts to the
corresponding Java files.

The FunnyQT solution has won the overall winner award for the Java refactoring
7http://www.jamopp.org/index.php/JaMoPP (last visited: 2015-09-28)
8https://eclipse.org/MoDisco/ (last visited: 2015-09-28)



412 CHAPTER 42. EVALUATION

case.

42.8 The TTC 2015 Train Benchmark Case

The TTC train benchmark case [Szá+15] dealt with incremental model validation.
The models to be considered represented railway networks with routes, switches,
sensors, segments, and semaphores. A valid model must respect several constraints
of increasing complexity such as the length of a segment must be greater than zero,
every switch must be connected to a sensor, or all sensors that are associated with
a switch that belongs to a route must also be associated directly with the same
route. Solutions had to discover invalidations of these constraints and fix them
appropriately.

The case had a special focus on incrementality because the idea was that users
define such models using a visual editor and should always have an up-to-date list
of invalid parts in their model. Performing an edit operation could create a new
invalidation or fix one or many existing problems and therefore it would be desirable
if the list of invalid elements could be updated without having to search the complete
model again. Thus, the transformation task was custom-tailored to incremental
pattern matching approaches such as EMF-IncQuery [Ujh+15].

An extensive testing framework has been provided which calls the solutions,
measures the execution time and validates the results for different model sizes. The
execution was structured into two phases. In the first phase, the solutions had to
compute all invalidations in the complete model. The second phase consisted of
ten repair and re-check cycles in which either a fixed number or 10% of all invalid
elements were repaired. For an incremental pattern matching approach, the re-
check phase is obviously not needed because the matches of a pattern are up-to-date
at all times, however non-incremental approaches need to re-evaluate the patterns
in each cycle.

The FunnyQT solution to the train benchmark case [Hor15d] uses the in-place
transformation DSL which has been introduced in part VI starting on page 221
for identifying and fixing elements invalidating the constraints defined by the case
description. Especially its rule application modifier as-test (see section 22.2 on
page 235) has been a very convenient utility here since it allowed to define the
queries and corresponding fixes as in-place transformation rules while still allowing
to compute the sequence of invalid elements first and to defer the execution of the
repair actions to a later point in time.

The solution ranked first in the reviewer scores which considered correctness,
conciseness, and readability and therefore won the overall quality award for this
case. With respect to performance, the FunnyQT solution was reasonably fast given
that it is no incremental pattern matching approach.
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42.9 TTC Summary

Table 42.1 summarizes the eight TTC cases for which FunnyQT solutions have
been implemented. For every case, the kinds of tasks that had to be solved are
summarized together with the FunnyQT services which were employed for solving
them9. Lastly, also the awards that have been won are listed, too.

TTC Case Tasks Used Services Awards
Flowgraphs ’13 out-place transf.,

control- and data-
flow analysis

funnyqt.emf,
funnyqt.generic*,
funnyqt.model2model*,
funnyqt.polyfns,
funnyqt.query

best efficiency

CD Restr. ’13 refactoring (in-
place transf.)

funnyqt.emf,
funnyqt.generic*,
funnyqt.query

best overall
solution

PN2SC ’13 out-place transf., in-
place transf.

funnyqt.emf,
funnyqt.generic*,
funnyqt.model2model*,
funnyqt.query

best overall
solution, best
efficiency

MovieDB ’14 model generation,
in-place transf.,
querying

funnyqt.emf,
funnyqt.generic,
funnyqt.in-place,
funnyqt.polyfns,
funnyqt.query

3rd overall
winner

FIXML ’14 XML-to-model, out-
place, model-to-text

funnyqt.emf,
funnyqt.generic,
funnyqt.model2model,
funnyqt.polyfns,
funnyqt.tg,
funnyqt.xmltg

most accurate
solution, 2nd
overall winner

Model Exec. ’15 model interpreta-
tion/execution

funnyqt.emf,
funnyqt.polyfns,
funnyqt.query

most correct
solution

Java Refact. ’15 out-place, refac-
toring (in-place
transf.), change
propagation

funnyqt.emf,
funnyqt.generic,
funnyqt.in-place,
funnyqt.model2model,
funnyqt.pmatch,
funnyqt.query

overall winner

Train Bench. ’15 incremental pattern
matching, in-place
transf.

funnyqt.emf,
funnyqt.in-place

overall quality

Table 42.1: Summary of the FunnyQT TTC solutions

9Some namespaces are marked with an asterisk meaning that at the time of the case, the namespace
had a different name and/or provided its service in a very preliminary shape compared with the current
version.





Chapter 43

Conclusion

This final chapter of the thesis first summarizes the realized querying and transfor-
mation approach in section 43.1 and highlights its contributions. Lastly, an outlook
is given in section 43.2 on page 418.

43.1 Summary and Contributions

This thesis described the model querying and transformation approach FunnyQT.
Part I gave an introduction into the context of this thesis and motivated why the

current state of the art querying and transformation approaches do not suffice by
pointing out their tender spots. Based on these weaknesses, requirements have
been derived, and a solution concept has been sketched. This concept envisioned a
comprehensive model querying and transformation approach which is generic and
can handle models of different modeling frameworks, is embedded in a functional
language, and provides its services in the form of APIs and embedded DSLs. As host
language, the functional JVM-based Lisp-dialect Clojure has been chosen.

Part II was concerned with the foundations required to use FunnyQT. Since
queries and transformations are essentially just Clojure programs, quite some space
has been devoted to introduce the most important concepts of the language which
are useful also in the querying or transformation context. Furthermore, the modeling
frameworks EMF and JGraLab have been described and compared briefly.

Part III mainly discussed FunnyQT’s protocol-based approach on genericity which
provides a duck-typed view on models of different kinds. EMF and JGraLab models
are supported by default and support for further modeling frameworks can be added
without touching FunnyQT’s internals. This part also introduced the terminology
and conventions which are used both in this thesis and FunnyQT itself. Lastly, the
overall architecture has been depicted.

Part IV then introduced FunnyQT’s model management API which provides
the basis onto which all other querying and transformation services are built. In
combination with Clojure’s standard language features, this API can be used for
scripting queries and transformations, or for writing algorithms on models and
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their elements. The same part also introduced some powerful querying constructs
such as regular path expressions and several auxiliary services including model
visualization, persistence of model-related data, XML processing, and polymorphic
functions which can be seen as methods that are dynamically attached to metamodel
classes.

Part V was devoted to pattern matching where FunnyQT provides very sophisti-
cated capabilities. Patterns are defined using a concise and convenient embedded
DSL and compile to normal Clojure functions which receive at least a model and
return the lazy sequence of the pattern’s matches. Patterns may also be declared
to be evaluated eagerly and then the pattern matching process is automatically
parallelized on multi-core systems for improved efficiency. The embedded DSL
supports the definition of patterns with arbitrary constraints, positive and negative
application conditions (and a generalization thereof), patterns with alternatives, and
patterns with nested subpatterns which are matched in the context of a match of the
surrounding pattern. For reusability, there is also a concept of pattern inheritance.

Part VI then turned towards the topic of in-place transformations. FunnyQT
allows the definition of such transformations in terms of rules which use pattern
matching in order to find one match of the pattern and then apply arbitrary actions to
it. Alternatively, rules with for-all semantics can be specified, too, where the actions
are applied to all matches of the rule’s pattern. In the latter case, the pattern match-
ing process is again parallelized automatically. In-place transformation rules can be
composed to new rules with certain semantics, e.g., as-long-as-possible-application
or non-deterministic choice, using higher-order rule combinator functions. Fur-
thermore, rules can be applied as patterns where they just return their pattern’s
matches, and they can be applied as tests where they return a thunk encapsulating
the rule’s actions in case their pattern has a match. This allows to test a rule’s
applicability while omitting or deferring the rule’s actions. Finally, FunnyQT sup-
ports a highly customizable state space analysis framework. Essentially, there is
a higher-order function for generating the state space which is parametrized with
transformation rules, a function for comparing states, and several different kinds of
constraints to be tested on the states or the state space itself.

Part VII was dedicated to out-place transformations which populate target models
from given source models and usually realize unidirectional language translations.
Here, FunnyQT provides two different approaches. First, there is an embedded DSL
where transformations are defined in terms of mapping rules which translate one or
many given source elements to one or many target elements. Such rules usually
define one-to-one mappings between a rule’s input and output. FunnyQT’s concept
of input identities allows for defining different notions of equality on a per-rule
basis and permits to specify many-to-one mappings, too. For reusability, inheritance
between transformations is supported. Secondly, there is an operational approach
for defining out-place transformations where the target graph of the transformation
is defined in terms of the extensions of its metamodel’s constituents.

Part VIII then discussed relational, logic-based model querying. With FunnyQT’s
embedded relational model querying DSL, queries declaratively define relations
between logic variables. Each variable can either be fresh (unbound) or ground
(bound) and the evaluation of a query finds all possible variable bindings which
make all relations hold.
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Part IX was concerned with bidirectional transformations. With FunnyQT’s em-
bedded bidirectional transformation DSL, a transformation consists of relations
which relate elements in a left model with elements in a right model. Such trans-
formations can be used as a pair of unidirectional transformations, i.e., they can
produce a right model for a given left model and vice versa. But more importantly,
they can be used in a checkonly mode to test if two given models are consistent
with respect to the transformation, and if not, they can be used for synchronizing
the models in order to regain consistency again.

Part X then introduced the last service provided by FunnyQT: co-evolution trans-
formations. In contrast to existing approaches, FunnyQT does not consider co-
evolution as a two-step process where first the metamodel is evolved and then
the instance models are co-adapted, i.e., migrated to the new metamodel version.
Instead, FunnyQT provides an operational co-evolution API which evolves a given
model’s metamodel at runtime and simultaneously adapts the model to keep it
conforming.

The goals underlying the design of FunnyQT which have been outlined in chap-
ter 3 have been achieved. There is no doubt that FunnyQT is a very comprehensive
approach providing a diverse set of powerful and expressive query and transforma-
tion concepts. As the evaluation in chapter 42 has shown, all transformation cases
of the last three editions of the TTC could be easily solved using it. But still it is a
very light-weight, maintainable, and extensible approach consisting of only about
12.000 well-documented lines of code.

With the single exception of its co-evolution API, it is also completely generic
and extensible for adding support for modeling frameworks other than EMF and
JGraLab.

The embedding in the functional language Clojure allows for excellent reusability
and flexibility. Queries, patterns, rules, and complete transformations are essentially
just functions which can be passed around and composed to new functions and they
can be parametrized with other queries and transformations themselves. They are
not isolated but can interact with and make use of any other software components
and libraries available on the JVM.

The embedding in Clojure also enhances usability in that no dedicated editing
environment is required for conveniently defining queries and transformations.
Any editor or IDE with Clojure support, from Emacs and Vim to IntelliJ IDEA,
NetBeans, and Eclipse, is a good FunnyQT editing environment providing the usual
features such as syntax highlighting and auto-completion. Most importantly, all the
mentioned tools provide support for interactive development where changes are
instantly deployed to a running JVM and can immediately be tested and refined
further.
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43.2 Outlook

At the time of this writing, FunnyQT1 is complete and all its services are well-tested
and working as described in this thesis. But that, of course, doesn’t mean that
there’s no more room for improvements. In this section, some suggestions on future
directions and extensions are given.

First of all, one future direction could be adding support for model representations
other than those of JGraLab and EMF. Given that Big Data is one of the major trends
in computer science, modern graph databases which promise the efficient handling
of distributed graphs of unlimited sizes are prime candidates in this respect. A
suitable choice could be the Java-based Neo4J2. Its graph model is simple and just
consists of nodes and binary and directed relationships between nodes. Both nodes
and relationships may be attributed. The nodes are labeled with possibly multiple
labels per node and the relationships are typed where the type is essentially just a
string. In contrast to modeling frameworks like EMF and JGraLab, Neo4J graphs
have no metamodel but attributes, node labels, and relationship types come into
being dynamically.

Another interesting extension to FunnyQT would be to add support for incremen-
tal pattern matching as provided by EMF-IncQuery [Ujh+15]. With incremental
pattern matching, a special data structure based on RETE networks [For82] is
created for patterns where every node in the network represents a part of some
pattern. The top nodes represent just elements of some type, intermediate nodes
represent connection constraints, nodes further down represent subpatterns, and
the bottom nodes represent the complete patterns defined by the user. The nodes in
the network cache all matches of the subpattern or pattern they represent and the
modeling framework’s notification facilities are used to propagate changes applied
to the model through the network in order to update the caches. With incremental
pattern matching, the complete sets of matches of all patterns are available at all
times. The downside is that the caches induce a high memory overhead.

Incremental pattern matching also gives rise to reactive transformations as
supported by VIATRA [Ber+15] which builds upon EMF-IncQuery. Here, the nodes
representing the patterns in the RETE network emit events themselves when their
caches are updated, e.g., a new match came into being or an existing match has
been modified in such a way that it is no match any longer. Applications built
around models can register for receiving these events and then react appropriately,
e.g., initiate a transformation. This capability would be very useful especially with
models@run.time where a system’s execution is monitored, validated, and possibly
adapted based on models which are managed at runtime.

Another possibility for future work is to add support for incremental execution
of FunnyQT’s rule-based out-place transformations. Such transformations keep
running after all source model elements have been transformed to target model
elements and then observe changes applied to the source model and immediately
propagate them to the target models. For purely additive changes, this should be
rather easy to implement. However, the consequences of deletion and property
changes of source model elements are much more severe and might cause massive

1http://funnyqt.org
2http://neo4j.com/ (last visited: 2015-10-31)
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changes on the target models.
The state of the art in bidirectional model transformations is a step ahead of

FunnyQT’s implementation. With the latter, transformations are completely deter-
ministic. Given two models and the transformation specification, one can derive
how the respective target model will look alike after executing the transformation
in either direction. Non-bijective transformations can be defined but they always
encode a preference order among the possible solutions. Advanced bidirectional
transformation implementations such as JTL [Cic+10] allow for enumerating all
possible solutions or even query the user to let him decide among a given set of
alternatives. Another advanced language is Echo [MC13] which is able to guaran-
tee that consistency is restored with the least amount of changes. Implementing
such features is most likely not feasible with FunnyQT’s current implementation
which accesses the models directly in their native representation as it would entail
speculatively trying out possible solutions, assessing them, and possibly undoing
them. But both JTL and Echo don’t work on the native model representations either
but instead convert the models to some logical representation used by different
constraint solvers. A similar approach can be envisioned for FunnyQT, too.

FunnyQT’s co-evolution API allows for solving typical coupled evolution scenarios
where models conforming to a metamodel version i are to be updated to a metamodel
version j. However, since the evolution of the metamodel and one conforming model
happen simultaneously at runtime, they are not limited to this scenario. Again, the
context ofmodels@run.time could be a good opportunity for evaluating this capability
in a novel context. Consider a system where parts of its behavior is executed by
interpreting some model which is managed at runtime. The interpreter could be
realized using FunnyQT’s polymorphic functions which also support modification at
runtime. Thus, in this scenario co-evolution transformations could be used to evolve
the model’s metamodel at runtime and thereby adapting both the model and also
the model interpreter.

So to conclude, FunnyQT as it is today provides a solid and practically usable
foundation. Most of its services have been evaluated with great success in the course
of the Transformation Tool Contest. Some other services, especially its relational
querying API, its bidirectional transformation DSL, and its co-evolution API are
well-tested internally but are still waiting for actual real-world cases to be solved
using them.

I really hope others share my excitement for FunnyQT and I’d love to see it used
out there in the wild. This thesis comes to its end now but FunnyQT is and will stay
freely available3 for everyone interested in playing with it at http://funnyqt.org.

3Free as in freedom as well as in free beer.
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Appendix A

Extensibility

A.1 Extending Regular Path Expressions

In order to add support for regular path expressions which have been discussed in
section 15.1 on page 147 for models of modeling frameworks other than JGraLab
and EMF, two protocols need to be extended.

The ISimpleRegularPathExpression protocol must be extended upon that frame-
work’s interface or class whose instances represent model elements. By default,
it is extended upon JGraLab’s Vertex interface, EMF’s EObject interface, and upon
java.util.Collection. When one of its methods is called with a collection of model
elements, the implementation simply calls itself for each element in the collection
combining the results of each call.

Likewise, in order to support traversal to neighboring nodes in terms of role
names by using keywords, the IAdjacenciesInternal procotol discussed on page 112
has to be extended upon the modeling framework’s element representation interface
or class.

All regular path operators are purely generic with the exception of the regular
path restriction funnyqt.query/p-restr. In order to support it for model representa-
tions other than JGraLab’s TGraphs or EMF, the ITypeMatcher protocol discussed on
page 110 has to be extended upon that representation’s model element class.

A.2 Extending Polymorphic Functions

In order to make the FunnyQT polymorphic function facility (see section 15.2 on
page 154) work with model representations other than JGraLab and EMF, the
following four protocols have to be extended upon that model representation’s
classes.

IQualifiedName for getting the qualified name of a metamodel class (see page 108)
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IMMDirectSuperclasses for getting the direct superclasses of a metamodel class (see
page 118)

IMMElementClasses for getting the sequence of classes contained in a metamodel (see
page 117)

IMMClass for getting the metamodel class of a model element (see page 117)

A.3 Extending the Pattern Matching Facilities

The FunnyQT pattern matching facilities which has been discussed in part V start-
ing on page 181 can be extended in two ways to support model representations
other than JGraLab and EMF. The obvious choice is to extend the relevant protocols
needed by the generic pattern matching variant. This possibility is discussed in ap-
pendix A.3.1. It is also possible to provide custom framework-specific pattern match-
ing capabilities that can be enabled by the pattern option :pattern-expansion-context.
The latter option is explained in appendix A.3.2.

A.3.1 Extending the Generic Pattern Matching Facility

The generic pattern matching variant relies on the following four protocols being
extended upon the relevant model representation’s interfaces or classes.

ITypeMatcher for testing if a model element is instance of a given type using the
has-type? function (see concept 3 on page 110 for the ITypeMatcher protocol
and section 12.5 on page 113 for the has-type? function)

IElements for retrieving all model elements of a given type (see section 12.2 on
page 109)

IAdjacenciesInternal for retrieving the adjacent model elements given a role name
with edge symbols of the form -<:role>-> (see section 12.4 on page 112)

INeighbors for retrieving all adjacent model elements with edge symbols without
role, i.e., --> (see section 12.7 on page 115)

A.3.2 Providing Framework-Specific Pattern Matching Facili-
ties

In order to provide a framework-specific pattern matching variant, a function has
to be provided which transforms a pattern graph to a binding form suitable for a
sequence comprehension. Such a function must take as arguments the argument
vector of the pattern to be defined, and its pattern graph. Then, this function can
be added to the hash-map valued var pattern-graph-transform-function-map.
Var: funnyqt.pmatch/pattern-graph-transform-function-map
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The value of this var is a map from keywords denoting pattern matching variants
to transformer functions from pattern graph to sequence comprehension binding
forms. Its default value is given below.

{:generic pg-to-for+-bindings-generic
:tg pg-to-for+-bindings-tg
:emf pg-to-for+-bindings-emf}

Clearly, providing such a transformer function is a non-trivial task. However,
because the generic and EMF versions are very similar, they have been abstracted
into a common base function named pg-to-for+-bindings-only-refs.
Function: funnyqt.generic/pg-to-for+-bindings-only-refs
(pg-to-for+-bindings-only-refs argvec pg elements-fn adjs-fn neighbors-fn)

The base transformer function receives the pattern’s argument vector, its pattern
graph, and three functions. The elements-fn has to be a function for retrieving all
elements of a given type from a model, adjs-fn has to be a function that given an
element and a role name returns the elements in that role, and neighbors-fn is a
function returning all elements referenced by a given element.

The generic and EMF-specific transformer functions simply call this base function
with different parametrizations.

(defn pg-to-for+-bindings-generic [argvec pg]
(pg-to-for+-bindings-only-refs argvec pg

`funnyqt.generic/elements
`funnyqt.generic/adjs
`funnyqt.generic/neighbors))

(defn pg-to-for+-bindings-emf [argvec pg]
(pg-to-for+-bindings-only-refs argvec pg
`funnyqt.emf/eallcontents
`eget-1 ;; A small wrapper around `eget-raw`
`funnyqt.emf/erefs))

This base function can be used to provide a framework-specific pattern matching
variant with the same feature set as the generic and EMF variants. That is, the
variant is not aware of possible first-class edges, i.e., only nodes can be matched
and only role name navigation is possible.

The sequence comprehension form emitted by the base transformer function still
contains calls to the has-type? function, thus the ITypeMatcher protocol (see concept 3
on page 110) needs to be extended upon the relevant interfaces or classes.

In order to provide a framework-specific variant that supports first-class edges,
there is no special implementation support provided, i.e., a transformer function
from pattern graph to sequence comprehension binding form has to be written
from scratch. Having a look at the JGraLab version pg-to-for+-bindings-tg is highly
recommended.
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A.4 Extending the Rule-Based Out-Place Transfor-
mation DSL

In order to extend the out-place transformation capabilities provided by the FunnyQT
namespace funnyqt.model2model which has been discussed in chapter 26 starting on
page 265 to models of other kinds than JGraLab and EMF, the following protocols
declared in the namespace funnyqt.generic have to be extended upon the types of
the new model representation.
ITypeMatcher for constraining the rules’ input elements by the optionally given type

specifications in the rules’ :from clauses.
IElements for the transformation being able to iterate the elements in the input

models annotated with ^:in or ^:inoutmetadata in case top-level rules are used
as the transformation’s entry points.

ICreateElement for creating new elements in the output models as defined by the
rules’ :to clauses.

IAttributeValueAccess for setting attribute values.
IModifyAdjacencies for setting references.

A.5 Extending the Extensional Out-Place Transfor-
mation API

In order to extend the transformation capabilities provided by the FunnyQT names-
pace funnyqt.extensionalwhich has been depicted in chapter 27 starting on page 281
to models of other kinds than JGraLab and EMF, the following protocols declared in
the namespace funnyqt.generic have to be extended upon the appropriate types of
the new model representation.
ICreateElement for creating elements in the target model using create-elements!.
ICreateRelationship for creating relationships in the target model using the function

create-relationships!.
IAttributeValueAccess for setting the attributes of target model elements using

set-avals!.
IModifyAdjacencies for setting the references of target model elements using the

set-adjs! and add-adjs! functions.
IElements for iterating the target model elements when attribute or reference ex-

tensions are specified as functions receiving an element and returning a value.
IRelationships for iterating the target model relationships when the extension of an

attribute defined for a relationship class are specified as functions receiving a
relationship and returning a value.

IMMClass for retrieving metamodel class by its qualified or unique name.
IMMAllSubclasses for querying the subclasses of a given metamodel class when re-

solving images from archetypes and vice versa using the image and archetype
functions or their variants.

IMMDirectSuperclasses for querying the superclasses of a given metamodel class.
IMMRelationshipClassSourceTarget for querying the source and target element classes

of a relationship class when instances are created using create-relationships!.
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A.6 Extending the Relational Querying API

In order to extend the transformation capabilities provided by the FunnyQT names-
pace funnyqt.extensionalwhich has been introduced in part VIII starting on page 311
to models of other kinds than JGraLab and EMF, the following protocols declared in
the namespace funnyqt.generic have to be extended upon the appropriate types of
the new model representation.
IElements for iterating all elements in a model.
IElement for testing if some object is an element.
IRelationships for iterating all relationships in a model.
IRelationship for testing if some object is a relationship.
IIncidentRelationships for iterating incident relationships of some element.
IAttributeValueAccess getting the attribute value of an element or relationship.
IAdjacenciesInternal for getting the elements referenced by some element.
IQualifiedName for accessing the qualified name of metamodel classes.
IMMClass for retrieving the metamodel class of some element or relationship.
IMMElementClass for testing if some object is an element class.
IMMRelationshipClass for testing if some object is a relationship class.
IMMAttributes for getting the attributes defined for some metamodel class.
IMMReferences for getting the references defined for some metamodel element class.
IMMDirectSuperclasses for querying the superclasses of a given metamodel class.

A.7 Extending the Bidirectional Transformation DSL

In order to extend the applicability of FunnyQT’s bidirectional transformation DSL
which has been introduced in part IX starting on page 339 to models of frameworks
other than EMF or JGraLab, all the protocols required for relational querying have
to be satisfied (see appendix A.6).

In addition, the following protocols must be extended:
IMMSuperclass for testing generalization relationships.
IUnset for testing if an attribute or reference is unset.
IMMMultiValuedProperty for testing if a reference is multi-valued.
IModifyAdjacencies for setting and adding to references.
ICreateElement for creating elements.
ICreateRelationship for creating relationships.
IContainer for accessing the container of an element.
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.NET Modeling Framework, 176
:import, see namespaces
:pattern-expansion-context, 212
:refer-clojure, see namespaces
:require, see namespaces
:use, see namespaces

accessing containers, 114
accessing contents, 114
accessing referenced EObjects, see ref-

erence access
adding to structural features, 140
adjacences, 112
AGG, 250
alpha-vertex, 130
anonymous function, 35
anonymous in-place rule definitions, 230
anonymous pattern definitions, 194
anonymous pattern nodes, 197
archetype function, 290, 291
archetypes, 285
AspectJ, 85, 177
ATL, 301
attribute value access, 111
attributes, 92
auto-gensyms, 61, 63

bidirectional reference, 93
bidirectional transformations, 342, 345,

346
Boolean, 29

Character, 29
checkonly mode, 349
Clojure abstractions, 39

associative, 44
collection, 40
indexed, 45
lazy sequence, 42
sequence, 41
set, 46

sorted, 47
stack, 46

Clojure Vars & Special Forms
', see quote
*err*, 39
*in*, 39
*ns*, 29, 39, 55, 57
*out*, 39
->>, 66
->, 66
., 58
=, 40
#', see var
~, see unquote
~@, see unquote splicing
apply, 50
assoc, 45
binding, 38
comparator, 47
compare, 47
complement, 52
comp, 52
concat, 43
cond, 65
conj, 40, 46
cons, 42
contains?, 44
count, 40
defmacro, 62
defn, 37
defprotocol, 66
def, 35
disj, 46
dissoc, 45
doall, 44
doc, 54
dorun, 44
doseq, 65
doto, 65
do, 34
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drop, 43
empty, 41
extend-protocol, 67
filter, 51
first, 41
fn, 35
for, 65
gensym, 62, 63
get, 44
if-let, 64
if, 33
import, 57
in-ns, 57
iterate, 52
juxt, 52
lazy-seq, 42
letfn, 37
let, 34
list*, 42
loop, 38
macroexpand-1, 60
macroexpand, 60
mapcat, 52
map, 51
meta, 53
new, 57
next, 41
ns, 56
nth, 45
partial, 52
peek, 46
pop, 46
println, 29, 39
quote, 34
range, 43
recur, 37
reduce, 51
repeat, 44
require, 57
resolve, 55
rest, 41
reverse, 42
rseq, 47
rsubseq, 48
seq, 40, 41
set!, 58
sorted-map-by, 47
sorted-map, 47
sorted-set-by, 47

sorted-set, 47
subseq, 47
take, 43
use, 57
vary-meta, 53
var, 35
when-let, 65
when, 33
with-meta, 53

closure, see lexical closure
collections, see immutable persistent col-

lections
comments (Clojure), 29
comparator, 47
conceptual edges in EMF, 142
conservative copying, 398
constraints, 270
containing eobject, 139
containing resource, 139
containment reference, 92
containment relationship class, 92
contents of a resource, 139
correctness, 361
creating elements, 107
creating EObjects, 138
creating relationships, 109
cross-reference, 93
cross-referencing relationship class, 93
custom regular path functions, 151

deleting elements, 109
deleting EObjects, 139
deleting incidences, 129
deleting relationships, 109
destructuring, 48, 184
determinism, 361
direction specification, 111
disjunctive rule, 273
Double, 29
dynamic variables, 38
dynamic extent, see dynamic scope
dynamic scope, 38

EAttribute, 74
Echo, 371
EClass, 74, 75
EClass lookup, 143
EClassifier lookup, 138
Eclipse Modeling Framework, see EMF
Eclipse QVT Declarative, 370
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Ecore, 74
ecore-model-specific API, 144
Edapt, 398
edge symbols, see pattern symbols
edge class, 70
edge direction specification, see direc-

tion specification
edge sequence, 127
edge-induced subgraph, 134
EEnum literal access, 140
EGL, 99, 100
Ekeko, 335
element, 91
element class, 91
EMF, 73
EMF ModelQuery, 176
EMF ModelQuery2, 176
EMF reference specification, 141
EMF-IncQuery, 217
EMF-Query, 336
EMFPath, 176
EML, 100
eMoflon, 372
enforcement mode, 349
EObject, 73
EOL, 99, 175
EPL, 249
Epsilon, 99, 175, 249, 303, 398
Epsilon Comparison Language, see ECL
Epsilon Flock, 398
Epsilon Generation Language, see EGL
Epsilon Merging Language, see EML
Epsilon Object Language, see EOL
Epsilon Pattern Language, see EPL
Epsilon Transformation Language, see

ETL
Epsilon Validation Language, see EVL
Epsilon Wizard Language, see EWL
EReference, 74
ETL, 303
EVL, 175
EWL, 99
extensional out-place transformations, 281
extensional semantics, 281
extensions of metamodel constituents, 282

form, 29
FunnyQT Vars & Protocols

*edn-emf-store-resources-by-simple-
name*, 165

*models*, 168
--->
funnyqt.query.emf, 154
funnyqt.query.tg, 153
funnyqt.query, 148

--<->, 153
--<>
funnyqt.query.emf, 154
funnyqt.query.tg, 154
funnyqt.query, 149

--<?>, 153
-->
funnyqt.query.emf, 154
funnyqt.query.tg, 153
funnyqt.query, 148

<---
funnyqt.query.emf, 154
funnyqt.query.tg, 153
funnyqt.query, 148

<-->
funnyqt.query.tg, 153
funnyqt.query, 149

<--
funnyqt.query.emf, 154
funnyqt.query.tg, 153
funnyqt.query, 148

<->--, 153
<->
funnyqt.query.tg, 153
funnyqt.query, 149

<>--
funnyqt.query.emf, 154
funnyqt.query.tg, 154
funnyqt.query, 149

<?>--, 153
add-adj!, 113
add-adjs!
funnyqt.extensional, 294
funnyqt.generic, 113

adj*, 112
adjo, 326
adjs*, 112
adjs-internal, 112
adjs, 112
adj, 112
after-inc?, 126
after?, 126
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alpha, 130
alwayso, 329
and*, 171
and-fn, 171
archetype-map, 287
archetype, 287
as-pattern, 235
as-test, 236
attribute-value, 162
attributed-element-class?, 131
attributed-element-class, 132
attributed-element?, 131
avalo, 325
aval, 111
before-inc?, 126
before?, 126
children, 162
conjunctive-rule*, 232
conjunctive-rule, 232
container, 114
contains-edge?, 129
contains-vertex?, 129
contents, 115
copy-model, 116
create-abstract-edge-class!, 384
create-abstract-vertex-class!, 383
create-attribute!, 386
create-edge!, 125
create-edge-class!, 385
create-element!, 108
create-elements!, 290
create-enum-domain!, 386
create-record-domain!, 386
create-relationship!, 109
create-relationships!, 291
create-specialization!, 387
create-state-space, 243
create-vertex!, 124
create-vertex-class!, 383
declare-polyfn, 155
declared-name, 162
defpattern, 193
defpolyfn, 155
defrule, 227
deftransformation
funnyqt.bidi, 346
funnyqt.model2model, 265

degree, 129
delete!, 109

delete-attribute!, 389
delete-domain!, 389
delete-graph-element-class!, 389
delete-specialization!, 389
disjunctive-rule, 233
domain, 132
downtype!, 390
eadd!, 138, 141
eaddall!, 138, 141
eallcontents, 139
eallsubclasses, 144
eallsubpackages, 144
eallsuperclasses, 144
eattribute?, 143
eclass?, 143
eclasses, 143
eclassifiers, 144
eclassifier, 144
eclass, 143
econtainer, 140
econtentpairs, 142
econtentrefs, 142
econtents, 139
ecount, 129
ecreate!, 138
ecrosspairs, 142
ecrossrefs, 142
edelete!, 139
edge-class?, 131
edge?, 131
edge, 125
edn-readers, 167
eenum-literal, 140
eget-raw, 140
eget, 140
element-archetype, 292
element-image, 292
element?, 113
elemento, 323
elements, 109
empty-graph, 390
ensure-trace-mappings, 289
enum-constant, 128
eobject?, 143
epackage?, 143
epairs, 142
equal-models?, 115
ereference?, 143
erefs, 141
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eremove!, 138, 141
eremoveall!, 138, 141
eresource, 140
eseq, 127
eset!, 140
esubclasses, 144
esubgraph, 133
esubpackages, 144
esuperclasses, 144
eunset!, 140
exist-n?, 169
exists?, 169
expanded-name, 162
explore-state-space, 245
first-edge, 125
first-inc, 126
first-vertex, 125
forall?, 168
generate-ecore-model-functions, 144
generate-metamodel-functions, 120
generate-metamodel-relations, 328
generate-schema-functions, 132
graph-class?, 131
graph-element-class?, 131
graph-element?, 131
graph?, 131
graph, 129
has-type?, 113
IAdjacenciesInternal, 112
IAttributeValueAccess, 111
IContainer, 114
IContents, 115
ICopyModel, 116
ICreateElement, 108
ICreateRelationship, 109
IDelete, 109
id, 125
IElements, 109
IElement, 113
IEqualModels, 115
IInstanceOf, 113
image-map, 287
image, 287
IMMAbstract, 118
IMMAllSubclasses, 118
IMMAttributes, 119
IMMBooleanAttribute, 119
IMMClass, 117
IMMContainmentReference, 119

IMMDirectSuperclasses, 118
IMMElementClasses, 117
IMMElementClass, 117
IMMMultiValuedProperty, 120
IMMReferencedElementClass, 119
IMMReferences, 119
IMMRelationshipClasses, 117
IMMRelationshipClassSourceTarget,

118
IMMRelationshipClass, 117
IMMSuperclass, 118
IModifyAdjacencies, 113
incident-relationships, 111
INeighbors, 115
interactive-rule, 234
inv-ecrossrefs, 142
inv-erefs, 142
inverse-edge, 130
IQualifiedName, 108
IRelationshipSourceTarget, 111
IRelationships, 109
IRelationship, 113
is-instance?, 113
iseq, 127
ISimpleRegularPathExpression, 148,

149
iterated-rule*, 234
iterated-rule, 233
ITypeMatcher, 110
IUniqueName, 108
IWriteEDN, 167
last-edge, 125
last-inc, 126
last-vertex, 125
letpattern, 194
letrule, 230
load-ecore-resource, 137
load-graph, 123
load-resource, 137
load-schema, 124
member?, 169
metamodel-api-generator, 121
mm-abstract?, 118
mm-all-attributes, 119
mm-all-references, 119
mm-all-subclasses, 118
mm-all-superclasses, 118
mm-attributes, 119
mm-boolean-attribute?, 119



450 INDEX

mm-class?, 117
mm-class, 117
mm-containment-reference?, 119
mm-direct-superclasses, 118
mm-element-class?, 117
mm-element-classes, 117
mm-load-handlers, 116
mm-load, 116
mm-multi-valued-property?, 120
mm-referenced-element-class, 119
mm-references, 119
mm-relationship-class-source, 118
mm-relationship-class?, 117
mm-relationship-classes, 117
mm-superclass?, 118
nand*, 171
nand-fn, 171
nand, 171
neighbors, 115
new-graph, 124
new-resource, 138
next-edge, 126
next-inc, 126
next-vertex, 126
no-dups, 208
nor*, 171
nor-fn, 171
normal-edge?, 130
normal-edge, 130
nor, 171
ns-prefix, 161
ns-uri, 161
omega, 130
on-graph, 135
on-subgraph-intersection, 134
on-subgraph-union, 134
on-subgraph, 134
or*, 171
or-fn, 171
p-*, 150
p-+, 150
p-alt, 150
p-apply, 151
p-exp, 150
p-opt, 149
p-restr, 150
p-seq, 149
pattern-graph-transform-function-

map, 424

pattern, 195
pg-to-for+-bindings-only-refs, 425
pr-str, 166
pred-seq, 169
pred-succ-seq, 170
prev-edge, 126
prev-inc, 126
prev-vertex, 126
print-model, 158
prn, 166
pr, 166
pull-up-attribute!, 390
put-after!, 126
put-after-inc!, 127
put-before!, 126
put-before-inc!, 127
qname, 108
qualified-name, 162
random-rule, 234
read-string, 166
read, 166
record, 128
relateo, 348
relationshipo, 324
relationships, 109
relink!, 130
remove-adj!, 113
remove-adjs!, 113
rename-attribute!, 388
rename-attributed-element-class!,

387
rename-domain!, 388
repeated-rule*, 233
repeated-rule, 233
reseq, 127
reversed-edge, 130
riseq, 127
rule, 230
rvseq, 127
save-graph, 124
save-resource, 138
save-schema, 124
schema?, 131
schema, 131
seq-comparator, 170
sequential-rule, 232
set-abstract!, 385
set-adj!, 113
set-adjs!
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funnyqt.extensional, 293
funnyqt.generic, 113

set-alpha!, 130
set-aval!, 111
set-avals!, 292
set-incidence-class-props!, 385
set-omega!, 130
set-that!, 131
set-this!, 131
set-value!, 128
siblings, 162
slurp, 166
sort-topologically, 170
source-image, 291
source, 111
spit, 166
state-space-step-fn, 240
stro, 329
succ-seq, 169
target-images, 294
target-image, 291, 294
target, 111
that, 131
the, 169
this, 131
type-case, 114
type-matcher, 110
typeo, 325
uname, 108
unlink!, 129
value, 128
vcount, 129
vertex-class?, 131
vertex?, 131
vertex, 125
vseq, 127
vsubgraph, 133
with-fresh, 329
with-ns-uris, 139
with-trace-mappings, 288
without-trace-recording, 289
write-edn, 167
xml-graph2xml, 161
xml2xml-graph, 161
xor*, 171
xor-fn, 171
xor, 171

generated API, see metamodel-specific

API
gensyms, 63
graph class, 70
GraphUML, see grUML
GraphViz, 158
GReQL, 173
GReTL, 307, 399
GrGen.NET, 253
GROOVE, 251
grUML, 70

hash-maps, 31
hash-sets, 32
Henshin, 252
higher-order in-place rule application func-

tions, 231
Hippocraticness, 362
homoiconicity, 28, 60

images, 285
immutable persistent collections, 30
in-place rule definitions, 227
in-place transformation rule applications,

231
in-place transformations, 223
incidence sequence, 127
incident relationships, 111
input identities, 271
instance-preservation, 397
Integer, 29
interface-based genericity, 83
inverse reference access, 142
iterating elements, 109
iterating relationships, 109

Janus Transformation Language, see JTL
Java Graph Laboratory, see JGraLab
Java interop, 57
JGraLab, 69
JQuery, 336
JTL, 370

Kermeta, 177
keywords, 30

in regular path expressions, 149

lexical closure, 36
lists, 30
loading Ecore metamodels, 137
loading EMFmodels, see loading resources
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loading metamodels, 116
loading resources, 137
local bindings, 270
local helper function, 274
local in-place rule definitions, 230
local pattern definitions, 194
logically combined patterns, 206
Long, 29

main function, 274
map destructuring, see also sequential

destructuring, 49
mapping rules, 266
maps, 31
MCL, 398
mediniQVT, 370
metadata, 53
metamodel, 91
metamodel API generator, 121
metamodel class access, 117
metamodel type checks, 113
metamodel-specific API, 120, 132, 144
model, 91
model element, see element
Model Change Language, see MCL
model element class, see element class
model transformations, 261
model visualization, 158
model-to-model transformations, 261
modeling framework, 69
ModelMorf, 370
modifying adjacencies, 112
modifying references, 112
MoTE, 372
multi-valued, 93

NAC, see negative application conditions
namespace URI, 138
namespaces, 55
negative application conditions, see nega-

tive edges and negative patterns
negative edges, 198
negative patterns, 205
nested patterns, 208
NMF, 176, 306
node symbols, see pattern symbols
normal edge, 130

Object Constraint Language, see OCL
OCL, 174

omega-vertex, 130
out-place transformations, 261
overloading, 36

PAC, see positive application conditions
pattern constraints, 199
pattern definitions, 193
pattern inheritance, 211
pattern match representation, 203
pattern matching, 183
pattern semantics, 195
pattern symbols, 196
pattern syntax, 195
persistence of model-related data, 162
persistent immutable collections, see im-

mutable persistent collections
plain relations, 359
polymorphic functions, 154
positive application conditions, see anony-

mous pattern nodes and positive
patterns

positive patterns, 204
postconditions, 355
preconditions, 353
property, 93
protocol-based genericity, 88
protocols, 66

qualified name, 91, 108
quasi-quote, see syntax-quote
QVT, 303
QVT Operational Mappings, see QVTo
QVT Relational, see QVTr
QVTo, 303
QVTr, 369

Ratio, 29
RDF, 174
read-eval-print-loop, see REPL
realization, 42
reference, 92
reference access, 141
reference function, 293
reference specification, see EMF refer-

ence specification
reflexive transitive closure (RPE), see reg-

ular path iteration
regular expressions, 30
regular path sequence, 149
regular path alternative, 149
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regular path exponent, 150
regular path expressions, 147
regular path expressions composition, 150
regular path iteration, 150
regular path operators, 149
regular path option, 149
regular path restriction, 150
relationship, 91
relationship class, 91
relationship direction specification, see

direction specification
relationship source, 111
relationship target, 111
relinking edges, 130
REPL, 28
reversed edge, 130
role, see role name
role name, 92
role name navigation, 112
RubyTL, 305
rule application functions, 231
rule application modifiers, 235
rule-based out-place transformations, 265

saving EMFmodels, see saving resources
saving resources, 138
Scala MTL, 218, 306
schema-specific API, 132
SDMLib, 252
semantics-preservation, 397
seqable, 41
sequence comprehension, 65
sequential destructuring, see also map

destructuring, 48
sets, 32
setting references, 112
SIGMA, 218, 306
simple path expressions, 148

EMF-specific, 154
JGraLab-specific, 153

single-valued, 93
SOUL, 335
SPARQL, 174
special forms, 33
state space exploration, 237
state space graph, 239
String, 29
sub-EClasses, 144
subgraph, see subgraph restriction

subgraph restriction, 133
super-EClasses, 144
symbols, 30
syntax (Clojure), 29
syntax-quote, 61

t-relation inheritance, 356
t-relations, 347
tail-call optimization, 38
target clauses, 354
TCO, see tail-call optimization
Tefkat, 304
TGG, 371
TGG Interpreter, 372
that-vertex, 130
this-vertex, 130
thunk, see also lexical closures, 42
top-level rules, 274
traceability, 347
traceability mappings, 268
traceability resolution, 287
transformation definitions, 265
transformation direction, 349
transformation inheritance, 275, 357
transformation relations, see t-relations
transitive closure (RPE), see regular path

iteration
traversal context, 133
Triple Graph Grammar, see TGG
truthyness, 33
type matcher, 110
type checks, 113
type hints, 59
type specification, 109
TyRuBa, 336

undoability, 362
unidirectional reference, 93
unique name, 108
unquote, 61
unquote splicing, 61
unsetting structural features, 140

value function, 292
Var, 35
variadic function, 36
vectors, 31
vertex class, 70
vertex sequence, 127
vertex-induced subgraph, 134



454 INDEX

VIATRA, 254
visualizing models, see model visualiza-

tion

XML processing, 159
XPath, 174
Xtend, 255
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This thesis is about a new model querying and transformation ap-
proach called FunnyQT which is realized as a set of APIs and em-
bedded domain-specific languages (DSLs) in the JVM-based func-
tional Lisp-dialect Clojure.

Founded on a powerful model management API, FunnyQT provides 
querying services such as comprehensions, quantified expressions, 
regular path expressions, logic-based, relational model querying, 
and pattern matching.  On the transformation side, it supports the 
definition of unidirectional model-to-model transformations, of in-
place transformations, it supports defining bidirectional transfor-
mations, and it supports a new kind of co-evolution transforma-
tions that allow for evolving a model together with its metamodel 
simultaneously.

Several properties make FunnyQT unique. Foremost, it is just a Clo-
jure library, thus, FunnyQT queries and transformations are Clo-
jure programs. However, most higher-level services are provided as 
task-oriented embedded DSLs which use Clojure‘s powerful mac-
ro-system to support the user with tailor-made language constructs 
important for the task at hand.

Since queries and transformations are just Clojure programs, they 
may use any Clojure or Java library for their own purpose, e.g., 
they may use some templating library for defining model-to-text 
transformations. Conversely, like every Clojure program, FunnyQT 
queries and transformations compile to normal JVM byte-code and 
can easily be called from other JVM languages.

Furthermore, FunnyQT is platform-independent and designed with 
extensibility in mind. By default, it supports the Eclipse Modeling 
Framework and JGraLab, and support for other modeling frame-
works can be added with minimal effort and without having to 
modify the respective framework‘s classes or FunnyQT itself.

Lastly, because FunnyQT is embedded in a functional language, it 
has a functional emphasis itself. Every query and every transforma-
tion compiles to a function which can be passed around, given to 
higher-order functions, or be parametrized with other functions.
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