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Abstract

When auralizing moving sound sources in Virtual Reality (VR) environments, the

two main input parameters are the location and radiated signal of the source. An

array measurement-based model is developed to characterize moving sound sources

regarding the two parameters in this thesis. This model utilizes beamforming, i.e.

delay and sum beamforming (DSB) and compressive beamforming (CB) to obtain

the locations and signals of moving sound sources. A spiral and a pseudorandom

microphone array are designed for DSB and CB, respectively, to yield good

localization ability and meet the requirement of CB. The de-Dopplerization

technique is incorporated in the time-domain DSB to address moving source

problems. Time-domain transfer functions (TDTFs) are calculated in terms of

the spatial locations within the steering window of the moving source. TDTFs

then form the sensing matrix of CB, thus allowing CB to solve moving source

problem. DSB and CB are further extended to localize moving sound sources,

and the reconstructed signals from the beamforming outputs are investigated

to obtain the source signals. Moreover, localization and signal reconstruction

are evaluated through varying parameters in the beamforming procedures, i.e.

steering position, steering window length and source speed for a moving periodic

signal using DSB, and regularization parameter, signal to noise ratio (SNR),

steering window length, source speed, array to source motion trajectory and

mismatch for a moving engine signal using CB. The parameter studies show

guidelines of parameter selection based on the given situations in this thesis

for modeling moving source using beamforming. Both algorithms are able to

reconstruct the moving signals in the given scenarios. Although CB outperforms

DSB in terms of signal reconstruction under particular conditions, the localization

abilities of the two algorithms are quite similar. The practicability of the model

has been applied on pass-by measurements of a moving loudspeaker using the

designed arrays, and the results can match the conclusions drawn above from

simulations. Finally, a framework on how to apply the model for moving source

auralization is proposed.
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1

Introduction

Urban environmental noise has been receiving increasing attention by urban

planners and decision-makers due to its impact on public health [1, 2]. Among

the many sources of urban environmental noise, traffic noise caused by moving

vehicles, such as cars and trains, is often the main contributor [3]. To sustain an

acoustically comfortable urban environment, it is therefore essential to predict,

assess and control traffic noise.

Sound pressure level (SPL) is the most commonly used metric to evaluate noise

in urban spaces. SPL has the advantage of being a simple number. However, it

ignores the human perception of sound, which is a significant factor when assess-

ing soundscapes in urban environments [3]. Auralization, as an efficient technique

compared to SPL, enables people to perceive simulated sounds intuitively, and

allows non-acousticians to evaluate proposed acoustic scenarios and thus partic-

ipate in the planning of the urban environment [4]. After decades of research

and development in auralization, a good progress has been achieved particularly

concerning powerful propagation simulation models and 3D audio technology.

But significant challenges still remain, e.g. a lack of methods, data formats and

standards for sound source characterization, which prohibits a vast extension

of auralization into practice, although progress has been made concerning the

human voice [4] and musical instruments [5].

Models used for sound synthesis according to their inherent principles can be

classified by forward and backward models [6]. The forward model requires

physical or spectral information, or relies on the generation mechanism of sound

sources. In previous studies, prediction tools and empirical equations were

used to generate the sound sources of aircraft [7, 8, 9, 10, 11, 12, 13, 14]. An

emission synthesizer of a wind turbine was established by empirical equations [15].

Similarly, empirical equations were also applied on synthesizing the sound sources

of an accelerating car [16], including tires [17]. Recently, physically based temporal
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CHAPTER 1. Introduction

synthesis models for rolling and impact noise of trains have been developed [18].

The backward model utilizes either near-field or far-field recordings to extract

sound source signals. Compared to the forward model, undertaking measurements

consumes much more time. Nevertheless, it saves the time to establish physical or

empirical models. Moreover, synthesis from recordings overcomes the deficiency of

low realism which is probably the main drawback of the forward model. Arntzen

et al. [11] concluded that the synthesized sounds of aircraft flyovers were perceived

differently compared to the measurements due to the empirical source models.

Similar results were reported when auralization was implemented in form of a

web-based virtual reality (VR) tool, which synthesized signals based on forward

modelling, resulting in artificial perception [19]. More problematically, theoretical

models or empirical equations are not always achievable.

In [20], sound samples were extracted by analyzing near-field recordings of an en-

gine running at various speeds. Target sounds were synthesized by concatenating

corresponding samples with an overlap and add algorithm in real time. Addition-

ally, in previous work, the synthesized signals were compared and validated with

the original signals [6]. Validation using the backward model is more convenient

since synthesized signals are obtained from measurements and thus comparison

can be directly conducted after synthesis, whereas the forward model addition-

ally needs specific validation measurements. A model for synthesizing electrical

railbound vehicles was suggested by Klemenz [21]. In this model, rolling noise

and air conditioner noise were added directly from recordings, while the tonal

traction noise components were synthesized by simple calculations of sinusoids

and sweeps.

If no near-field recordings are available, the backward model is needed to compute

source signals from far-field recordings. For example, aerodynamic noise, caused

by high-speed motion, is only possible to be measured at a comparatively large

distance from the moving object. In this sense, the backward model can also

be called inverse model. An aircraft auralization model was established using

microphone recordings based on a backward sound propagation model [22, 23].

For an aircraft, the sound source can be considered as one point source due to the

large measurement distance. However, for ground vehicles, e.g. cars and trains,

are typically placed closer to the measurement object, entailing that vehicles

cannot be considered as single point sources anymore, but have to be extended

to multiple independent point sources. Fig. 1.1 schematically depicts a pass-by

2



measurement of a car with potentially relevant individual point sources recorded

by microphones.

Microphones

Pass‐by car

Figure 1.1.: A sketch of a pass-by car measurement with an array of microphones.
The sound sources are represented by the solid dots.

The backward model was applied to synthesize sound sources of a train by

back propagating mono recordings in terms of various locations as the positions

of the sound sources [24]. Bongini et al. [25] addressed that sound sources

should be represented by their locations, spectral signals and directivities during

auralization. They used a two-dimensional microphone array to localize the

sound sources on a pass-by train using beamforming, and then derived the signals

and directivities of the sources by controlling the train passing slowly by its

back-propagated signals recorded by a vertical array. Nevertheless, although the

trains passed by slowly, the recording for a target source was still contaminated

by other sources as in [25]. Besides, the positions of sound sources on a moving

vehicle are mostly unknown.

To summarize, no proper general models for generating the source signals of

moving sources, e.g. cars and trains for the purpose of auralization are available.

Sounds generated by the forward model require a priori knowledge about the

generation mechanism of the sources, and normally lack high fidelity. In addition,

extra experiments for validation is another drawback. The backward model is

able to overcome these shortcomings, however, the synthesized sources of ground

vehicles delivered by the existing backward models are contaminated by other

non-target sources. Therefore, further development of the backward model is

3



CHAPTER 1. Introduction

desired.

Beamforming, as mentioned above [25], is a common post-processing algorithm

based on microphone array data and has been widely applied for sound source

localization [26, 27, 28]. Researchers have also been studying the localization for

moving sources in the past decades [29, 30, 31, 32, 33] by eliminating the Doppler

effect [34, 35, 36]. In addition, Sijtsma et al. [37] introduced the time-domain

transfer function (TDTF) incorporated with Doppler effect to enable the local-

ization of moving sources with arbitrary motions, for example, acceleration and

circular motions [37]. However, DSB fails to yield high spatial resolution [38],

which might result in reconstructed signals containing unwanted noise from

neighboring sources. In order to reconstruct signals more precisely, beamforming

methods with increased spatial resolution, which can be modified for moving

sound sources are necessary. Higher spatial resolution can be achieved, e.g. by

minimum variance distortionless response (MVDR) [39], multiple signal clas-

sification (MUSIC) [40], minimum power distortionless response (MPDR) and

linear constrained minimum variance (LCMV) [27]. Super-resolution even in the

presence of noise and reverberation is possible by means of the sparse recovery

(SR) algorithm [41, 42] and cross pattern coherence (CroPaC) algorithm [43], or

through compressive beamforming (CB) [44, 45, 46, 47, 48] using only a small

number of microphones.

All methods mentioned above have been used with varying degree of success

to localize sound sources, being it stationary or not. However, not all these

methods are able to reconstruct the source signal. CB, as originally proposed,

was utilized for the localization of moving sources [44, 47], however, not for the

extraction of the source signal. Edelmann and Gaumond [46] mentioned the

possibility to “listen to” the source by applying an inverse Fourier transform on

the CB output, but it was not executed and yet the target was still on stationary

sources. Therefore, DSB and CB will be explored with the focus on reconstructing

non-stationary signals, in this way extending the application of beamforming

algorithms for auralization.

In this thesis, the backward model using beamforming, i.e. DSB and CB, is

applied for localization and extended for signal reconstruction for the purpose of

auralizing moving sound sources.

This thesis therefore focuses on the following main contents:

• Microphone array design for DSB and CB;

4



• Extending DSB for the signal reconstruction of moving sound sources;

• Developing CB for the localization and signal reconstruction of moving

sound sources;

• Guidelines for using the model are provided through parameter studies;

• Framework development of the array measurement-based model for aural-

ization.

The outline of the thesis is as follows. Chapter 2 introduces the theoretical

aspects of moving sound sources, DSB and CB, spectral analysis and synthesis,

as well as the evaluation criteria of source localization and signal reconstruction.

In Chapter 3, fundamentals of microphone arrays are introduced, including the

design procedures of a spiral array for DSB, and a pseudorandom array for CB

are demonstrated. To compare with DSB, designing the pseudorandom array also

takes into account the localization performance of DSB. Chapter 4 extends DSB

for the signal reconstruction of a periodic signal. The model using DSB is further

evaluated with varying parameters, including steering window, window length

and source speed. Pass-by measurements are performed to apply and validate

the DSB model. Chapter 5 further develops CB for localizing and reconstructing

a moving engine signal, in which CB and DSB are compared. The performance

under various regularization parameters, window lengths, signal-to-noise ratios

(SNRs), basis mismatches and distances between the array and source trajectory

are investigated. Pass-by measurements are performed again to apply and validate

the developed CB model for localization and signal reconstruction of moving

sources. Chapter 6 proposes a framework of applying the array measurement-

based model for auralizing moving sound sources in VR. Last but not the least,

Chapter 7 concludes the thesis and provides an outlook for future work.
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2

Fundamentals

This chapter introduces the fundamental theories used in the thesis. The sound

fields generated by stationary and moving sound sources are first described.

Subsequently, modified DSB and CB for moving sound sources are delivered.

Moreover, time-frequency analysis and spectral modeling synthesis (SMS) are

introduced for the purpose of transforming the time-domain beamforming outputs

into the frequency domain and then synthesize. The evaluation criteria in terms

of localization and signal reconstruction are finally provided.

2.1. Moving sound source

This section will introduce the sound radiation from a point sound source with

stationary and moving status respectively, and the concept of de-Dopplerization,

the technique to eliminate Doppler shift in the received signal.

2.1.1. Sound Ąeld generated by a stationary source

Point sound sources and spherical wave propagation are assumed and this as-

sumption holds for all the following contents. If the positions of a source and

a microphone are �⃗�𝑠 and �⃗�𝑟, respectively, the distance between the source and

microphone is

𝑅 = ‖�⃗�𝑠 ⊗ �⃗�𝑟‖2. (2.1)

The signal radiated from the source and measured by the microphone is [49]

7



CHAPTER 2. Fundamentals

𝑝(𝑡) =
𝜌

4Þ𝑅
𝑞′(𝑡⊗ 𝑅

𝑐
), (2.2)

where 𝜌 is the density of the air, 𝑞′(𝑡) is the first derivative of the volume velocity

𝑞(𝑡), and 𝑐 is the speed of sound. 𝜌𝑞(𝑡) is the source strength. With defining 𝑠(𝑡)

as a characteristic function of the source which is equivalent to 𝜌𝑞′(𝑡),

𝑠(𝑡) ⊕ 𝜌𝑞′(𝑡), (2.3)

Eq. 2.2 can be rewritten in the form of

𝑝(𝑡) =
𝑠(𝑡⊗ 𝑅

𝑐
)

4Þ𝑅
. (2.4)

Here, signal 𝑠(𝑡) is the signal which plays a main role in the following contents.

It is the signal with the strength and characteristics of the source which can

represent the sound source. Thus, 𝑠(𝑡) is the signal to be reconstructed.

For 𝑀𝑝 microphones (𝑀𝑝 ∈ Z
+), with referring to Eq. 2.4, the received signal by

the 𝑚th microphone is expressed as

𝑝𝑚(𝑡) =
𝑠(𝑡⊗ 𝑅𝑚

𝑐
)

4Þ𝑅𝑚
, (2.5)

where 𝑚 = 1, 2, ...,𝑀𝑝. In the frequency domain, Eq. 2.5 can be transformed to

𝑃𝑚(æ) =
1

4Þ𝑅𝑚
𝑆(æ)𝑒⊗𝑗æ𝑅𝑚/𝑐, (2.6)

where 𝑃𝑚 and 𝑆𝑚 are the Fourier transform of 𝑝(𝑡) and 𝑠(𝑡), respectively. To

simplify the notation, æ/𝑐 is replaced by 𝑘, thus 𝑘𝑅 is discussed in the following

contents. The complex term incorporates the spatial characteristics of the

microphones and is referred to as manifold vector [27]. If 𝑁 focus points are

scanned as potential sound sources, the manifold vector can be written in a

matrix
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2.1. Moving sound source

⋃︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⨄︀

𝑒⊗𝑗𝑘(‖𝑅11‖)

𝑅11

𝑒⊗𝑗𝑘(‖𝑅21‖)

𝑅21
≤ ≤ ≤ 𝑒⊗𝑗𝑘(‖𝑅𝑁1‖)

𝑅𝑁1

𝑒⊗𝑗𝑘(‖𝑅12‖)

𝑅12

𝑒⊗𝑗𝑘(‖𝑅22‖)

𝑅22
≤ ≤ ≤ 𝑒⊗𝑗𝑘(‖𝑅𝑁2‖)

𝑅𝑁2

...
... ≤ ≤ ≤

...

𝑒
⊗𝑗𝑘(‖𝑅1𝑀𝑝 ‖)

𝑅1𝑀𝑝

𝑒
⊗𝑗𝑘(‖𝑅2𝑀𝑝 ‖)

𝑅2𝑀𝑝
≤ ≤ ≤ 𝑒

⊗𝑗𝑘(‖𝑅𝑁𝑀𝑝 ‖)

𝑅𝑁𝑀𝑝

⋂︀

⎥

⎥

⎥

⎥

⎥

⋀︀

, (2.7)

where 𝑛 = 1, 2, ..., 𝑁 .

2.1.2. Sound Ąeld generated by a moving source

When a sound source is moving following the trajectory of �⃗�𝑠(𝑡), the distance

between the source and the stationary microphone �⃗�𝑟 is

𝑅(𝑡) = ‖�⃗�𝑠(𝑡) ⊗ �⃗�𝑟‖2. (2.8)

The sound pressure field produced by the moving source [50] is described by the

following equation 1:

𝑝(𝑡) =
𝜌

4Þ𝑅(𝑡)(1 ⊗𝑀 cos 𝜃(𝑡))2
𝑞′(𝑡⊗ 𝑅(𝑡)

𝑐
)

+
𝜌(𝑣(𝑐𝑜𝑠𝜃(𝑡) ⊗𝑀))

4Þ𝑅(𝑡)2(1 ⊗𝑀𝑐𝑜𝑠(𝜃(𝑡)))3
𝑞(𝑡⊗ 𝑅(𝑡)

𝑐
),

(2.9)

where 𝑝(𝑡) is the sound pressure at the microphone in the sound field generated by

the moving source, 𝑞(𝑡) is the volume velocity of the source, 𝑅(𝑡) is the distance

between the source and the microphone, 𝑣 is the speed of the source, 𝑀 = 𝑣/𝑐

is the Mach number, and 𝜃(𝑡) is the angle between the moving direction of the

source and source-microphone direction. A simple illustration of a point source

moving rectilinearly at a constant speed of 𝑣 is given in Fig. 2.1. Since the source

is moving, 𝑅 and 𝜃 are functions of time 𝑡. When the speed of the sound source is

not too large compared to the sound speed, which is the case for current vehicles

(high-speed trains can reach 300 km/h (0.24𝑀)), and 𝑅(𝑡) is larger than 1 m,

1The expression of the original equation, Equation 11.2.15 in P724 in [50] is not consistent
with the derivations in the preceding pages. Eq. 2.9 in this thesis gives the corrected
expression.

9



CHAPTER 2. Fundamentals

the second term in Eq. 2.9 can be neglected. Again, this equation is rewritten

using the equivalent signal 𝑠(𝑡) and denoted as

Sound source

Microphone

R(t)

θ(t)v

Figure 2.1.: Illustration of the rectilinear motion of a point sound source moving
at a constant speed.

𝑝(𝑡) =
1

4Þ𝑅(𝑡)(1 ⊗𝑀 cos 𝜃(𝑡))2
𝑠(𝑡⊗ 𝑅(𝑡)

𝑐
). (2.10)

In the digital world, no continuous-time signal is achievable. Thus the recordings

of moving sound sources with microphones are discretized and simulated virtually.

Appendix A shows the simulation of microphone recordings and the MATLAB

codes used in this thesis.

2.1.3. De-Dopplerization

De-Dopplerization is the procedure to eliminate the Doppler effect [51]. In order

to implement de-Dopplerization, the microphone array is supposed to track

the moving sound source by steering the beam angle with respect to the spatial

positions of the source along the moving trajectory. In this way, there is no relative

movement between the microphone and the source, and thus the microphone is

assumed to be moving with the source simultaneously. The following part will

elaborate the de-Dopplerization procedure.

When a microphone is used to record a moving source, the recorded signal is

uniformly sampled with equal time intervals. If the emission time 𝑡𝑒 at the source

is taken as the reference time during the following calculation and consider 𝑡𝑒 as

uniformly sampled, the reception time 𝑡 at the microphone can be calculated by

10



2.1. Moving sound source

𝑡 = 𝑡𝑒 + 𝑅𝑒(𝑡𝑒)
𝑐

, leading to non-uniformly spaced reception time samples 𝑡 due to

the non-linearity of 𝑅𝑒(𝑡𝑒). Moreover, 𝑅𝑒(𝑡𝑒) and 𝑅(𝑡) are distinguished because

they are calculated in terms of different time variables 𝑡𝑒 and 𝑡, knowing that

𝑅𝑒(𝑡𝑒) = 𝑅(𝑡).

Therefore, first, the sampled microphone signal is interpolated in terms of the

calculated non-uniformly spaced time stamps and is denoted as 𝑝(𝑡) ≡ 𝑝(𝑡𝑒 +
𝑅𝑒(𝑡𝑒)

𝑐
) (Fig. 2.2(a)). According to Eq. 2.10,

𝑠(𝑡𝑒) = 4Þ𝑅𝑒(𝑡𝑒)(1 ⊗𝑀 cos 𝜃𝑒(𝑡𝑒))2𝑝(𝑡𝑒 +
𝑅𝑒(𝑡𝑒)

𝑐
), (2.11)

where 𝑅𝑒(𝑡𝑒) and 𝜃𝑒(𝑡𝑒) are calculated in terms of 𝑡𝑒, and 𝑠(𝑡𝑒) is the estimated

source signal (Shown in Fig. 2.2(b)). Furthermore, defining the distance between

the source and the “moving" microphone as 𝑅0, the de-Dopplerized signal can be

denoted as (Fig. 2.2(c))

𝑝(𝑡𝑒) =
1

4Þ

𝑠(𝑡𝑒 ⊗ 𝑅0

𝑐
)

𝑅0
, (2.12)

or

𝑝(𝑡) =
1

4Þ

𝑠(𝑡⊗ 𝑅0

𝑐
)

𝑅0
. (2.13)

In this thesis, 𝑅0 = 𝑚𝑖𝑛(𝑅(𝑡)), where the source is closest to the microphone.

Fig. 2.3 indicates how 𝑅0 is defined.

2.1.4. Transfer functions for moving sound sources

Since 𝑡 = 𝑡𝑒 + 𝑅𝑒(𝑡𝑒)
𝑐

, Eq. (2.10) can be written as

𝑝(𝑡) =
1

4Þ𝑅𝑒(𝑡𝑒)(1 ⊗𝑀 cos 𝜃𝑒(𝑡𝑒))2
𝑠(𝑡𝑒). (2.14)

The time-domain transfer function (TDTF) is denoted by [52, 37]

𝐻(𝑡𝑒) =
1

4Þ𝑅𝑒(𝑡𝑒)(1 ⊗𝑀 cos 𝜃𝑒(𝑡𝑒))2
, (2.15)

11



CHAPTER 2. Fundamentals

 Received signal: 

Interpolated signal: 

t

te

te

Reconstructed source signal: 

De-Dopplerized signal: 

)(tp

)(tp )(~ tp

(a)

(b)

(c)

)(ˆ
e

ts

)(~ tp

)(ˆ
e

tp

)(ˆ
e

ts

)(ˆ
e

tp

Figure 2.2.: De-Dopplerization procedure. a). The received signal (with the
“cross” symbol) and the interpolated signal (with the “square” sym-
bol); b). The source signal is reconstructed according to Eq. 2.11; c).
The de-Dopplerized signal at the “moving” microphone calculated
by Eq. 2.13.

Sound source

Microphone

R(t)

θ(t)v

Figure 2.3.: The closest distance between the microphone and the source motion
trajectory 𝑚𝑖𝑛(𝑅(𝑡)) is selected as 𝑅0.
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2.2. Beamforming

and it leads to

𝑝(𝑡) = 𝐻(𝑡𝑒)𝑠(𝑡𝑒). (2.16)

Here, the distance 𝑅(𝑡) is calculated by the emission time 𝑡𝑒 at the microphone.

In practice, noise is present in any measurement model. Therefore, Eq. (2.16)

with additive white Gaussian noise is denoted by

𝑝(𝑡) = 𝐻(𝑡𝑒)𝑠(𝑡𝑒) + 𝑛(𝑡). (2.17)

The time index 𝑡 and 𝑡𝑒 will be suppressed to simplify the notation. The problem

above is extended to 𝑀𝑝 microphones and 𝑁 potential sources, which yields the

following form

p = Hs + n, (2.18)

where p = [𝑝1, 𝑝2, ..., 𝑝𝑀𝑝 ]𝑇 , s = [𝑠1, 𝑠2, ..., 𝑝𝑁 ]𝑇 represents the focus points of

potential sources, n = [𝑛1, ..., 𝑛𝑀𝑝 ]𝑇 , and 𝐻 ∈ R
𝑀𝑝×𝑁 .

2.2. Beamforming

As mentioned in the Chapter. 1, beamforming has been a general way to local-

ize sound sources based on temporal and spatial filtering using a microphone

array [26, 28, 27]. This thesis is dedicated to address the localization and signal

reconstruction of moving sources. Thus the beamforming algorithms are extended

to moving sources, and their signal reconstruction problems. DSB and CB are

the focused beamforming algorithms in the current work.

2.2.1. Delay and sum beamforming

DSB for a stationary source

The array is steered to different focus points to search for potential sound sources.

For one focus point, the output of DSB is denoted as

13



CHAPTER 2. Fundamentals

𝑦(𝑡) =

𝑀𝑝
∑︁

𝑚=1

𝑤𝑚𝑝𝑚(𝑡+ á𝑚),𝑚 = 1, 2, ...,𝑀𝑝, (2.19)

where 𝑦(𝑡) is the beamformer’s output signal, 𝑀𝑝 is the number of microphones,

𝑝𝑚(𝑡) is the signal received by the 𝑚th microphone, 𝑤𝑚 is its amplitude weight,

á𝑚 = (�̂�𝑚 ⊗ �̂�0)/𝑐 is the compensation of the time delay for the 𝑚th microphone

in terms of the array origin, �̂�𝑚 is the distance between the focus point of the

array and the 𝑚th microphone, and �̂�0 is the distance between the focus point

and the array origin. Uniform weight is used here, 𝑤𝑚 = 1/𝑀𝑝.

Now combining Eq. 2.5 and Eq. 2.19, the DSB output signal is expressed as

𝑦(𝑡) =

𝑀𝑝
∑︁

𝑚=1

𝑤𝑚

4Þ𝑅𝑚
𝑠(𝑡⊗ 𝑅𝑚

𝑐
+ á𝑚)

=

𝑀𝑝
∑︁

𝑚=1

𝑤𝑚

4Þ𝑅𝑚
𝑠(𝑡⊗ �̂�0

𝑐
+
�̂�𝑚 ⊗𝑅𝑚

𝑐
),𝑚 = 1, 2, ...,𝑀𝑝.

(2.20)

When the focus point coincides with the sound source position, �̂�𝑚 = 𝑅𝑚 and

�̂�0 = 𝑅0, Eq. 2.20 becomes

𝑦(𝑡) =

𝑀𝑝
∑︁

𝑚=1

𝑤𝑚

4Þ𝑅𝑚
𝑠(𝑡⊗ 𝑅0

𝑐
)

=
1

4Þ
(

𝑀𝑝
∑︁

𝑚=1

𝑤𝑚

𝑅𝑚
)𝑠(𝑡⊗ 𝑅0

𝑐
)

= 𝐶1𝑠(𝑡⊗ 𝑅0

𝑐
),𝑚 = 1, 2, ...,𝑀𝑝,

(2.21)

where 𝐶1 =
∑︀𝑀𝑝

𝑚=1
𝑤𝑚/4Þ𝑅𝑚 is a constant which depends on the weight and

the positions of the potential sound source and microphones. The source signal

𝑠(𝑡) can be calculated by proper time shift and amplitude modification on the

beamforming output signal 𝑦(𝑡). If �̂�𝑚 ̸= 𝑅𝑚, a degraded version of 𝑠(𝑡) would

occur [28] and it leads to wrong localization, and thus wrong signal reconstruction.

14



2.2. Beamforming

DSB for a moving source

The de-Dopplerized signals can then be applied to DSB. Combining Eq. 2.19 and

Eq. 2.13, the modified equation of DSB for a moving sound source is denoted as

𝑦𝑀𝑆(𝑡) =

𝑀𝑝
∑︁

𝑚=1

𝑤𝑚𝑝𝑚(𝑡+ á ′
𝑚)

=

𝑀𝑝
∑︁

𝑚=1

𝑤𝑚
1

4Þ𝑅0
𝑚
𝑠(𝑡⊗ 𝑅0

𝑚

𝑐
+ á ′

𝑚).

(2.22)

Here, á ′
𝑚 = (�̂�0

𝑚 ⊗ �̂�0)/𝑐, where �̂�0
𝑚 is the distance between the 𝑚th “moving”

microphone and the focus point, and �̂�0 is the distance between the “moving”

array origin and the focus point. Similarly, if the focus point coincides with the

source position, �̂�0
𝑚 = 𝑅0

𝑚 and �̂�0 = 𝑅0, Eq. 2.22 becomes

𝑦𝑀𝑆(𝑡) =
1

4Þ
(

𝑀𝑝
∑︁

𝑚=1

𝑤𝑚

𝑅0
𝑚

)𝑠(𝑡⊗ 𝑅0

𝑐
)

= 𝐶2𝑠(𝑡⊗ 𝑅0

𝑐
),

(2.23)

where 𝐶2 = 1
4Þ

∑︀𝑀𝑝

𝑚=1
(𝑤𝑚/𝑅

0
𝑚) is a constant which depends on the weight (here

the weight is 1/𝑀𝑝) and the positions of the sound source and microphones. Simi-

lar to the stationary source, the estimated source signal 𝑠(𝑡) can be reconstructed

by time shift 𝑅0/𝑐 and division of the constant 𝐶2 on the beamforming output

signal 𝑦𝑀𝑆(𝑡).

2.2.2. Compressive beamforming

The concept of compressive sensing (CS) has been an emerging approach in

image and audio processing. It asserts that a signal can be reconstructed with

fewer measurements than conventional methods constricted by the Shannon

Theorem [53]. This work aims at using CB for localization, and investigating the
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CB output to reconstruct the signal of the moving source.

Description

𝑋 ∈ C
𝑁×1 represents the potential sound sources to be reconstructed. If 𝑋 is

sparse, it can be expressed in a sparse basis as 𝑋 = Ψ𝑠(𝑠 ∈ C
𝑀×1), where Ψ is

the sparse basis matrix or sparse transform matrix that transforms signals from

non-sparse basis to sparse basis. 𝑠 is the sparse parameter, which has 𝑘 nonzero

values. In the absence of noise, the relationship between 𝑠 and 𝑦 is

𝑦 = Φ𝑋 = ΦΨ𝑠 = 𝐴𝑠, (2.24)

where Φ is the measurement matrix, and 𝐴 ∈ C
𝑀×𝑁 is the sensing matrix,

which is the product of the transform matrix Ψ and Φ. Actually, 𝑋 and 𝑠

represent the same signals but at different basis. When 𝑀 < 𝑁 , this is a

underdetermined problem which has no unique solution. The method for solving

this underdetermined problem is to converge all possible solutions to obtain the

optimal solution according to the sparsity [47]. CS relies on two requirements:

(1) sparsity of the signals and (2) sufficient incoherence of the mapping procedure

from the source signals to the measurements [53]. In the spatial domain, sparsity

implies that the number of sound sources is less than the number of focus points

for array to scan. Incoherence expresses the idea that that objects having a sparse

representation in Ψ must be spread out in the domain in which they are acquired,

just as a Dirac or a spike in the time domain is spread out in the frequency

domain [53].

A metric to measure the coherence of A [47] and CB relies on [54] is the Restricted

Isometry Property (RIP). It is defined as: for each integer 𝑝 = 1, 2, . . . , the

isometry constant Ó𝑝 of a matrix Φ as the smallest number to meet the requirement

(1 ⊗ Ó𝑝) ‖𝑠‖2
2 ⊘ ‖𝐴𝑠‖2

2 ⊘ (1 + Ó𝑝) ‖𝑠‖2
2 , (2.25)

for all 𝑝-sparse vectors. 𝑝-sparse means that a vector has maximum 𝑝 nonzero

entries [54]. The isometry constant Ó𝑝 of matrix 𝐴 is as the smallest number.

𝐴 satisfies the RIP of order 𝑝 if Ó𝑝 ∈ (0, 1). The explanation of the RIP as the

guarantee of incoherence is that all subsets of the 𝑝 column(s) from 𝐴 are nearly
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2.2. Beamforming

orthogonal. They cannot be exactly orthogonal since 𝑁 > 𝑀 . In this thesis, the

1-sparse case is adopted to test if the matrix 𝐴 meets the RIP.

Solution

Usually the noise radiated by moving vehicles is generate by only a few sources,

e.g. rolling, engine and aerodynamic noise for cars and trains [55, 56, 57, 18]. The

presence of only a few sources enables exploiting the sparsity of s in Eq. (2.18).

To impose the sparsity, the ℓ0-norm problem needs to be solved. However, it

is a non-convex problem which demands large computation time [47]. Fig. 2.4

shows the solutions of the ℓ𝑝-norm problems representing by the ℓ𝑝-balls with

radius 𝑟,
}︃

𝑠 ♣ ‖𝑠‖𝑝 ⊘ 𝑟
⟨

[47]. To compare with the ℓ0- and ℓ1-norm problems,

the ℓ2-norm is also given. Even the ℓ2-norm problem is convex as the ℓ1-norm,

its aim is to minimize the energy of the signal through the ℓ2-norm instead of its

sparsity, leading to non-sparse solutions [47]. As the solutions shown in Fig. 2.4,

only the ℓ1-norm is equivalent to the ℓ0 problem and is adopted to search the

optimal sparse solution.

Previous studies applied the frequency-domain sensing matrix 𝐴 to solve the

problem [47, 48, 46], as well as in the time-domain [45] and the spatial domain [58].

However, they did not tackle the moving source problem. In this thesis, the

sensing matrix is formed by the TDTFs, which incorporate the transfer functions

in terms of the discrete spatial points of the source motion and thus incorporating

the Doppler effect. In this way CB is extended to the moving source case.

Recalling Eq. 2.18, the ℓ0-norm problem is

min
s∈R𝑁

♣♣s♣♣0 subject to p = Hs + n. (2.26)

Replacing it with the ℓ1-norm

min
s∈R𝑁

♣♣s♣♣1 subject to p = Hs + n, (2.27)

which can be recast as the unconstrained optimization

min
s∈R𝑁

♣♣p ⊗ Hs♣♣22 + Ú♣♣s♣♣1, (2.28)
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𝑠 = 𝑠   

𝑦 = 𝐴𝑠 
(a) 𝑠 0 

𝑦 = 𝐴𝑠 𝑠 = 𝑠  

(b) 𝑠 1 𝑠 ≠ 𝑠  

𝑦 = 𝐴𝑠 

(c) 𝑠 2 

Figure 2.4.: Geometrical interpretation of the ℓ0-, ℓ1-, ℓ2-norm problems.

where Ú is the regularization parameter which balances the norm of the residual

♣♣p ⊗ Hs♣♣ and the sparsity of s [44].

The stated solution is to solve the ℓ1-norm optimization problem for a single

time sample. For localization, single sample processing may find its application.

However, if the values of one or some of the chosen time samples happen to equal

or to be close to zero, the supposed spatial sparsity assumption would fail. In

addition, signal reconstruction also requires more time samples to benefit the

characteristic extraction in the frequency domain and signal synthesis. There-

fore, the problem is extended to multiple time samples. The cost function is

reformulated as

P = ℋS + N. (2.29)

where P = [p(𝑡1), ...,p(𝑡𝑇 )] ∈ R
𝑀𝑝×𝑇 , S ∈ R

𝑁×𝑇 , ℋ ∈ R
𝑀𝑝×𝑁×𝑇 which sam-

ples S temporally and spatially, N ∈ R
𝑁×𝑇 and 𝑇 is the number of the time

samples. Since sparsity is required in the spatial domain but not necessarily in

time [59, 44], the ℓ2-norm of all time samples of a focus point 𝑛 is calculated, i.e.

𝑠ℓ2
𝑛 = ♣♣𝑠𝑛(𝑡1), ..., 𝑠𝑛(𝑡𝑇 )♣♣2. With the ℓ1-norm of s(ℓ2) = [𝑠

(ℓ2)
1 , ..., 𝑠

(ℓ2)
𝑁 ], the cost
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2.3. Time-frequency analysis

function becomes

min
s

ℓ2 ∈R𝑁
♣♣P ⊗ ℋS♣♣2𝐹 + Ú♣♣sℓ2 ♣♣1, (2.30)

where ♣♣ ≤ ♣♣ represents the Frobenius norm. For a matrix G ∈ R
𝐼×𝐽 , ♣♣G♣♣𝐹 =

√︁

∑︀𝐼

𝑖=1

∑︀𝐽

𝑗=1
♣𝑎𝑖𝑗 ♣2.

As the reception time 𝑡 is calculated from the emission time 𝑡𝑒, the interpolated

recorded signal 𝑝(𝑡) is used as the substitution of 𝑝(𝑡) in Eq. (2.30) during the

calculation. The ℓ1-norm optimization problem is solved in MATLAB using the

cvx toolbox [60]. After detecting the source position index 𝑛𝑠, the source signal

reconstructed by CB is denoted as 𝑠𝑛𝑠 (𝑡), 𝑡 = 𝑡1, ..., 𝑡𝑇 .

To summarize, two beamforming algorithms, DSB and CB adapted for moving

sound sources have been introduced. DSB and CB are both able to localize

the spatial positions of the sound sources. More importantly, the source signals

can be reconstructed from the beamforming outputs. Further information, e.g.

spectral information from the reconstructed signals can be obtained for sound

synthesis, in order to prepare for future auralization.

2.3. Time-frequency analysis

The beamforming algorithms are performed in the time domain. It is necessary

to investigate the spectral information as well to further study the characteristics

of the reconstructed signals in the frequency domain. This section introduces

the common time-frequency transforms, i.e. Fourier transform (FT), short-time

Fourier transform (STFT) and wavelet transform (WT).

2.3.1. Fourier transform

The Fourier transform (FT) is perhaps the most broadly used tool for the signal

processing in science and engineering. Represented by a series of sinusoidal

signals with various frequencies, a signal is transformed from the time domain to

the frequency domain. The FT of a signal 𝑥(𝑡) with frequency 𝑓 is denoted as
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𝑆(𝑓) =

∫︁ ∞

⊗∞

𝑠(𝑡)𝑒⊗𝑗2Þ𝑓𝑡𝑑𝑡. (2.31)

Although FT is a convenient time-frequency transformation, its limitation is also

obvious. It delivers no time-variant frequency information since the integral in

Eq.2.31 is conducted on the whole time axis.

2.3.2. Short-time Fourier transform

With the purpose of avoiding the loss of time information, Gabor proposed

the window concept to slide the window uniformly along the time and perform

FT respectively. This is the so-called Short-time Fourier transform (STFT),

which overcomes the limitation of FT on the loss of time information after the

time-frequency transformation [61]. By the inner product between the signal x(t)

and the window function g(t), the STFT is defined as

𝑆𝑇𝐹𝑇 (á, 𝑓) =

∫︁ ∞

⊗∞

𝑥(𝑡)𝑔(𝑡⊗ á)𝑒⊗𝑗2Þ𝑓𝑡𝑑𝑡, (2.32)

where á is the hop size of the window function. STFT delivers also the time

information with the trade-off between time and frequency resolutions. When

the window type is selected, the resolutions of time and frequency on the entire

time and frequency scales are fixed.

STFT has not only the frequency but also the time information. It is beneficial

to analyze the spectral characteristics of signals as it does not take the average

over the whole time span. Each window can be regarded as a frame, where peak

detection can be conducted, which will be introduced in Section. 2.4.

2.3.3. Wavelet transform

In recent years, wavelet analysis becomes popular especially in the field of

image and signal processing in electric power systems since wavelet is able to

provide multi-resolution analysis in the frequency domain without loss of the

time information. Wavelet theory is based on the window function with variable
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length and originates from the research of Haar [20] in the beginning of the 20th

century. By applying scaling 𝑠 and time shift á , the wavelet transform (WT) can

be expressed as

𝑊𝑇 (𝑠, á) =
1√
𝑠

∫︁ ∞

⊗∞

𝑥(𝑡)å⋆(
𝑡⊗ á

𝑠
)𝑑𝑡, (2.33)

where å(𝑡) is the wavelet base. This expression is also called continuous wavelet

transform (CWT).

WT is more flexible than STFT since the time and frequency scalings are

adjustable. A finer time resolution can be obtained through WT. This benefits

short-time signals, because if more frames are required, STFT is not sufficient to

meet the requirement.

A comparison among FT, STFT and WT in reconstructing the frequency and

amplitude of a harmonic signal has been deployed [62]. The results showed

that using FT and STFT yielded more accurate reconstruction than using WT.

Nevertheless, WT is promising if the parameters are properly selected.

2.4. Spectral modeling synthesis

Spectral modeling synthesis is a technique that analyzes and synthesizes signals

separately with tonal and broadband components [63, 64]. The deterministic

components consists of a series of sinusoids that can be represented by amplitudes

and frequencies, and the broadband (stochastic) component is represented by

spectral envelopes. In [63, 64], SMS is implemented through STFT. In this thesis,

SMS is briefly introduced through CWT.

2.4.1. SMS Analysis

A signal is first segmented into frames. In each frame, CWT is implemented to

transfer the signal in the frame from the time domain to the frequency domain.
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Figure 2.5.: Wavelet-based SMS diagram.
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Peak detection

The center frequency 𝐹𝑐 of CWT can be calculated by the function 𝑐𝑒𝑛𝑡𝑓𝑟𝑞 in

MATLAB. If the wavelet is dilated by the scale 𝑎 and the sampling frequency is

𝑓𝑠, the value of the frequency 𝐹𝑎 corresponding to the specific scale is defined as:

𝐹𝑎 =
𝐹𝑐 ≤ 𝑓𝑠

𝑎
. (2.34)

According to the Nyquist theorem, 𝐹𝑎 varies from 0 to 𝑓𝑠/2. Therefore, the

scale parameter varies from 2𝐹𝑐 to infinity. However, it is not possible to set an

infinite value in the simulations. In practice, a scale which is large enough will

be applied.

The wavelet spectrogram and the spectrum are plotted in Fig. 2.6. Fig. 2.6(b) is

the spectrum of with the middle of the mother wavelet function overlapping with

the first sample of the tonal signal. After obtaining the WT coefficients of all the

frames, peak detection is conducted in each frame [64]. The found peaks in each

frame are stored for further selection.
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Figure 2.6.: Illustration of the spectrogram and spectrum of a tonal signal
(0.023 s) of 1 kHz using WT.
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Peak Continuation

After all peaks are detected for each frame, the peaks are tracked along the

frames to check if every peak is continuous. The peak continuation algorithm

is shown in Fig. 2.7 [63]. A particular tone can only be detected and saved in

the end if it has been continuously detected, although disappearance in some

frames is allowed. Otherwise, the peak is abandoned. The remaining peaks form

trajectories along the frames. Each trajectory represents a tone that appears

almost in the whole signal. The amplitudes and frequencies of the trajectories

can be calculated consequently.
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(b) Wavelet Spectrum.

Figure 2.7.: Illustration of the peak continuation calculation.

Residual (Stochastic) component

The stochastic component is subsequently achieved through the subtraction of

the detected deterministic (tonal) component from the original signal. It not

recommended to perform the subtraction in the time domain since the phase

information is not obtained from the peak detection and continuation procedure

and thus it will lead to phase distortion [65]. Therefore, the subtraction is

conducted in each frame in the frequency domain. For stochastic signals, the

detailed magnitudes in the frequency domain are less perceptually influential

than the envelope of the spectrum. The envelope is used for further synthesis.
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2.4.2. SMS Synthesis

As both deterministic and stochastic components are calculated, the audio signal

can be synthesized subsequently. Each sinusoidal component of the deterministic

part can be synthesized separately and added together afterwards.

Tonal synthesis

Because of the lack of the phase information for each sinusoidal component,

the deterministic part is synthesized using extracted frequency and amplitude

information. They are added up in the following form:

𝑆𝑑 =

𝑁
∑︁

𝑛=1

𝐴𝑐𝑜𝑠(2Þ𝑓𝑛𝑡), (2.35)

where 𝑓𝑛 and 𝐴𝑛 denote the frequency and amplitude of the 𝑛th tone, and 𝑁 is

the number of the detected tones.

Stochastic synthesis

As illustrated in the last section, the wavelet coefficients of the envelope of

the residual part are calculated after the spectral subtraction based on WT.

Thereafter, the inverse CWT is employed to reconstruct residual signals in the

time domain. The envelope plays as a filter and is convolved with white Gaussian

noise to synthesize the stochastic component [64].

2.5. Evaluation criteria

Locations and signals of the sources are two of the most important information

which must be taken into consideration for the auralization as mentioned in the

introduction. Beamforming is first applied to calculate the locations of potential

sound sources, and then the beamforming outputs with focusing on the angle

steering to the source are regarded as the reconstructed source signals. Therefore,

the first criterion regarding localization is the deviation between the calculated

and the real source positions. Second, for signal reconstruction, the criterion will
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be the deviation between the reconstructed and original signals.

Ideally, listening tests are able to provide straightforward human perception on

sound. However, listening tests are subjective and rely on the performance of

the subjects during the tests. Statistical performance can be achieved, but it

requires more participants and much time-consuming. Objective evaluation has

the advantage of quick evaluation and being objective due to the comparison

using physical or psychoacoustic properties [14]. For a periodic signal, the

reconstruction can be evaluated by the amplitudes and frequencies of the tones,

whereas for other signals, the spectra (or envelope) need to be compared to assess

the reconstruction.

2.5.1. Localization error

Define [�̂�, 𝑦] as the coordinates on the reconstruction plane. The reconstruction

plane Ω can be defined as reference to calculate beamforming outputs. The plane

is divided into grids for the array to scan potential sound sources (Fig. 4.1). Each

grid point on the reconstruction plane represents a focus point, where the sound

source is probably located.

The 𝑧 coordinate is omitted since the source locations and the moving trajectory

are only on Ω on the 𝑥𝑦-plane in the following analysis. The localization error as

𝑒𝑙𝑜𝑐:

𝑒𝑥 = ♣𝑥(𝑛) ⊗ �̂�(𝑛)♣, (2.36)

𝑒𝑦 = ♣𝑦(𝑛) ⊗ 𝑦(𝑛)♣, (2.37)

𝑒𝑙𝑜𝑐 =
√︀

𝑒𝑥
2 + 𝑒𝑦

2, (2.38)

where [𝑥, 𝑦] is the original coordinates of the source.

26



2.5. Evaluation criteria

2.5.2. Signal reconstruction error

Periodic signal

Define 𝑓(𝑛) and �̂�(𝑛) as the reconstructed frequency and level of the beamforming

output, respectively. The corresponding errors 𝑒𝑥 and 𝑒𝑦 are calculated by

𝑒𝑓 =
♣𝑓(𝑛) ⊗ 𝑓(𝑛)♣

𝑓(𝑛)
× 100, (2.39)

𝑒𝐿 = ♣𝐿(𝑛) ⊗ �̂�(𝑛)♣, 𝑛 = 1, 2, ..., 𝑁, (2.40)

If the two signals activate no different processing and perception in our hearing

system, the synthesis can be regarded realistic and can be applied for auralization.

Therefore, just-noticeable variations in frequency and amplitude are introduced.

Just-noticeable difference in frequency (JNDF) is approximated by [66]

𝐽𝑁𝐷𝐹 = 0.002 × 𝑓(𝑛), 𝑛 = 1, 2, ..., 𝑁. (2.41)

for 𝑓(𝑛) > 500𝐻𝑧. Therefore 𝑒𝑓 is denoted in the form of percent error in

Eq. 2.39.

Just-noticeable difference in level (JNDL) is level dependent and the value

decreases as sound pressure level (SPL) increases. For example, JNDL decreases

from 2 dB to 0.7 dB as the source level increases from 30 dB to 70 dB SPL [66].

However, since the measure of JNDL depends on the measurement technique,

there is no determined calculation for it. Therefore, the feasibility of level

reconstruction for auralization should be evaluated with respect to different

applications.

Spectrum

Jagla et al. [20] introduced a spectral method to evaluate the similarity between

signals with accounting for human hearing by considering A-weighting and

logarithmic sensitivity. They derived the difference between two signals by
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calculating the square of the subtraction between the absolute pressure values

and then obtaining the logarithm of the square. However, log spectral distance

which describes the difference between the logarithms of the two signals instead,

has been applied to measure the perceptual distortion of speech processing [67].

It indicates that the logarithmic difference could be a criterion to quickly evaluate

the perceptual difference. Therefore, the absolute logarithmic error is directly

evaluated in the decibel scale as

𝑒𝑆(𝑓(𝑘)) = ♣20𝑙𝑜𝑔10
♣𝑆(𝑓(𝑘))♣
♣𝑆(𝑓(𝑘))♣ ♣, 𝑘 = 1, 2, ...,𝐾 (2.42)

where 𝑆 and 𝑆 are the Fourier transform of the original and reconstructed signals,

𝐾 is the number of the frequency bins. With adding A-weighting to account for

human hearing as in[20] and taking the average over the whole frequency range,

𝑒𝑟𝑒𝑐 is derived for the error estimation of the reconstructed signal:

𝑒𝑟𝑒𝑐 =
1

𝐾

𝐾
∑︁

𝑘=1

(𝑒𝑆(𝑓(𝑘)) + 𝑤𝐴(𝑘)). (2.43)

𝑒𝑟𝑒𝑐 is the measure used as the measure in this study to assess the perceptual

difference between the reconstructed and original signals, or simply put, the

reconstruction error. The small 𝑒𝑟𝑒𝑐 is, the more similar the reconstructed signal

as the original signal, and the larger the reconstruction error is. Listening

tests would be preferable to measure human perception more straightforwardly.

However, the aforementioned measure is advantageous to quickly estimate errors

in terms of various parameters. Listening tests could be included for future

work to obtain more precise comparison from humans, and the results could also

provide a correlation between subjective and objective measures.

2.6. Summary

In this chapter, the fundamentals of moving sound sources, delay and sum

beamforming (DSB) and compressive beamforming (CB), spectral analysis and

synthesis and evaluation criteria for localization and signal reconstruction have

been introduced. DSB and CB are modified for moving sound sources. For

DSB, the recorded signals are de-Dopplerized to be provided as the inputs. For

CB, TDTFs form the sensing matrix to solve the ℓ1-norm problem. Spectral
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analysis and synthesis are subsequently introduced to further parameterize the

reconstructed time-domain signals in the frequency domain. Last but not the

least, the evaluation criteria are proposed for the assessment of localization and

reconstruction of tonal and broadband signals.

A block diagram of the methodologies of this thesis is shown in Fig. 2.8.

Array Recording

Beamforming

Spiral array

Random array

Pass‐by
Measurement

(Real World)

Output Signal

DSB

CB
Reconstruction

Validation

Virtual Sound 
Sources

Auralization

(Virtual World)

Propagation 
Model

Reproduction

Source speedSteering window SNR

MismatchRegularization 
parameter Distance

Parameter study

Localization

Figure 2.8.: The methodology block diagram for the localization and signal
reconstruction of moving sound sources. The gray blocks are not
conducted in this thesis, but they are the other two key components
to be combined with the proposed source modeling to auralize
moving sound sources.
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3

Microphone arrays

To perform beamforming algorithms, microphone arrays are critical since pa-

rameters such as resolution and frequency range are determined by the array

configuration. For compressive beamforming (CB), particular requirements should

be fulfilled through controlling the array configuration. This chapter introduces

several types of microphone arrays and their characteristics, and the design of

arrays which will be applied in the following simulations and measurements.

3.1. Regular arrays

The regular array consists of regularly-spaced microphones, e.g. uniformly linear,

cross and grid arrays [68, 69]. An example of a uniform linear array can be

found in Fig. 3.1, which shows a vertical linear array with uniform deployment

of microphones in sound fields with plane and spherical sound waves. Due to

the periodic structure, grating lobes with the same magnitude as the main lobes

occur. The side lobes deteriorate the localization ability of the array [27].

A preliminary pass-by measurement with a uniform linear 24-microphone array

was applied on two pass-by trains in Appendix B [70]. The resolution of the

applied linear array is limited at low frequencies. The Doppler effect was in-

cluded in the recordings which were directly applied as input signals in delay

and sum beamforming (DSB). De-Dopplerization could not be used due to the

vertical structure of the array, resulting in the loss of ability to steer horizontally.

Horizontal linear arrays can be used if the vertical resolution is of no interest.

Therefore, in order to eliminate the Doppler effect and increase the spatial reso-

lution, two-dimensional (2D) arrays are necessary for the localization and signal

reconstruction of moving sound sources.
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Figure 3.1.: Linear microphone array recording for the plane and spherical
waves.

Fig. 3.2 illustrates two 2D regular configurations: grid and cross arrays. Like the

regular linear array, ghost images caused by grating lobes at frequencies above

the maximum frequency of the array are unavoidable. The occurrence of grating

lobes due to the periodic distances between microphones is the main limitation

of the regular array [38].
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(a) Grid array (b) Cross array

Figure 3.2.: Examples of 2D regular microphone arrays. (a). Grid array; (b).
Cross array.

3.2. Irregular arrays

Irregular arrays outperform the regular arrays because they overcome the limita-

tion due to grating lobes [71]. It is necessary to apply appropriate configuration

design schemes to avoid designing by numerous trials.

3.2.1. Spiral arrays

The spiral array, containing logarithmic and Archimedean spirals, is a simple

irregular configuration which can be designed by only several parameters [38].

The spiral array shows a high concentration of microphones in the center and a

gradual increase in microphone distance towards the end of the array aperture.

The larger diameter guarantees better spatial resolution, and a higher maximum

frequency can be exploited because of the small minimum microphone distance.

Compared to regular arrays, spiral arrays have the advantages of decreasing MSL

and avoiding grating lobes [38]. The microphone position [𝑥, 𝑦] on the logarithmic

and Archimedean spiral apertures can be calculated as

[𝑥, 𝑦] = [𝑎𝑒𝑏𝜃𝑐𝑜𝑠(𝜃), 𝑎𝑒𝑏𝜃𝑠𝑖𝑛(𝜃)], (3.1)

and
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[𝑥, 𝑦] = [(𝑎+ 𝑏𝜃)𝑐𝑜𝑠(𝜃), (𝑎+ 𝑏𝜃)𝑠𝑖𝑛(𝜃)], (3.2)

where 𝑎, 𝑏 are constant values and 𝜃 is the angle of circular rotation.

3.2.2. Sparse arrays

If the linear configuration is still taken into consideration, sparse arrays can

be created by several criteria, e.g. nunredundant array by Vertatschitsch et.

al. [72], coprime array [73] and sparse array [74]. To extend the arrays to 2D,

the sparse array [74] and separable array [75, 76, 77] based on the nunredundant

configuration have also been studied.

Spiral arrays of identical resolution provide lower side lobe levels than separable

arrays. The merit of the above mentioned grid-like sparse arrays is the ability to

employ the kronecker array transform (KAT) [78, 75] to accelerate deconvolution,

which is able to reduce the sidelobe levels considerably [79, 31]. A separable array

is designed and compared with the spiral array in section 3.2.1 in Appendix C [80].

3.2.3. Random arrays

Apart from the irregular arrays mentioned above, random arrays are another

commonly used type of irregular arrays. They are especially suitable for CB due

to their fulfillment of the incoherence requirement [53]. A scheme of designing

pseudorandom arrays is developed in the next section.

A random array is known as an array with randomized positions of microphones.

In this way, periodicity is avoided and grating lobes are constrained [81]. However,

the difficulty of how to determine the randomized microphone positions on the

aperture still remains [68]. Therefore, it is necessary to optimize the array

configuration according to different requirements.

3.3. Array design

In this thesis, spiral and random arrays are utilized for DSB and CB, respectively.

The spiral array can achieve good resolution for DSB, and the random configura-
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tion is a prerequisite for assuring an incoherent sensing matrix for the sake of

CB. Due to the limitation of resources and practical constrains, the number of

microphones in this thesis is limited to 32.

3.3.1. Spiral array design

In this thesis, an Archimedean spiral array with 32 microphones is designed. The

array has six arms, four of which are equipped with five microphones while the

other two hold six microphones. The array is 0.43 m high and 0.5 m wide. The

minimum frequency with a steering angle of 30° is around 800 Hz according to

𝑓𝑚𝑖𝑛 ≡ 𝑐/𝐷 [38], where 𝑐 is the speed of sound and 𝐷 [m] is the size of the array

aperture. Fig. 3.3 illustrates the configuration of the array [77].

-0.3 -0.2 -0.1 0 0.1 0.2
-0.3

-0.2

-0.1

0

0.1

0.2

Figure 3.3.: The designed spiral microphone array. The “✥” represents the
position of a microphone and the “×” represents the origin of the
array. The unit of the axes is meter.

The basic parameters and the configuration are given in Tab. 3.1.
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N D [m]) d [m] L [m]
Resolution [m]

f [kHz] Steering angle [°]
3 30

32 0.5 0.04-0.06 1.5 0.64

Table 3.1.: Several parameters of the spiral array setup. 𝑁 is the number of
microphones, 𝐷 is the array diameter (length), 𝑑 is the microphone
spacing and 𝐿 is the distance between the array and the near-side
surface of the train.

3.3.2. Pseudorandom array design

As mentioned in the introduction chapter, the columns of the sensing matrix

H should be incoherent to utilize CB. A random array is able to guarantee

incoherence in the sensing matrix [53], and the RIP should be satisfied [54].

Gaumond et al. [82] proposed statistical restricted isometry property (StRIP) to

help design sparse arrays. However, since DSB is also used as a comparison to

CB, its performance should also be taken into account. Allowing for DSB with

the same array also reduces the possible array configurations with meeting the

requirements of CB. Gerstoft et al. introduced convex optimization to enhance

the performance of beam patterns of 2D random arrays [83]. Good resolution

and minimal maximum sidelobe level (MSL) were also used as criteria to design

planar random arrays [81, 84, 85]. A framework for the design and optimization

of 2D pseudorandom microphone arrays which benefits both CB and DSB by

considering RIP and beam patterns is proposed next.

Design concept

If the positions of microphones on an array aperture are randomized, it would

probably lead to the microphones clumping in a small area, and thus reducing

the spatial resolution [81]. This would also increase the coherence of the sensing

matrix because of very similar 𝑅(𝑡) of the closely localized microphones. Therefore,

it is necessary to introduce restrictions to the randomization in the design of

random microphone arrays, which leads to pseudorandom microphone arrays.

According to Kook et al. [81], segmenting an array aperture into units can

guarantee that the microphones are well distributed on the array aperture to

avoid clumping. Therefore, a baseline filter method is introduced to ensure the
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scattered distribution of the microphones [84]. Here, the baseline is defined as

the distance between two arbitrary microphones in the microphone array [81].

The unit partition is able to deliver good localization performance for DSB. In

this sense, the resolution and MSL are chosen as two of the design criteria.

Recalling Eq. 2.18, RIP in the current work is written as

(1 ⊗ Ó𝑝) ‖S‖2
2 ⊘ ‖HS‖2

2 ⊘ (1 + Ó𝑝) ‖S‖2
2 . (3.3)

The resolution, MSL and RIP are the criteria to optimize the design of pseu-

dorandom microphone arrays. Fig. 3.4 exhibits the proposed framework. The

details are elaborated in the following contents.

Unit partition

The array aperture is discretized into 32 units, each containing a single microphone.

According to Zheng et al. [84], each unit has eight possible positions, as illustrated

in Fig. 3.5. In this figure, 𝑑 represents the minimum distance between two

microphones, and each microphone is 𝑑/2 spaced with the edges of the unit.

For a regular partition, it is possible that four microphones in four adjacent units

locating on the corners are positioned next to each other, which is shown in

Fig. 3.6(a). This distribution is not as scattered as the irregular unit partition

in Fig. 3.6(b). Thus, the irregular unit partition is adopted for the further

procedures.

Baseline Ąlter

To design an array with 𝑀 microphones, the number of all possible arrays

generated following the idea of unit partition is 8𝑀 . This is still a huge number,

and thus further constrains need to be considered to reduce the number of trials.

The maximum number of possible baselines is 𝑀 × (𝑀 ⊗1)/2 [84]. The definition

of the baseline vector is defined as: a vector points from one microphone to

another. Hence, the maximum number of baseline vectors is 𝑀 × (𝑀 ⊗ 1). So

all the possible baseline vectors can be analyzed within a coordinate system that
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Array aperture

Unit partition

Randomization

Baseline 

filter

Yes

No

RIP

Yes

No

Resolution MSL

Pseudo-random array

Figure 3.4.: A flow chart of the framework for designing and optimizing pseu-
dorandom microphone arrays.

4d

2d

d/2

d/2

Figure 3.5.: A unit with eight possible microphone positions (“★”).
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(b)

(a)

Figure 3.6.: Exemplary schemes of regular and irregular partitions based on
four units. (a) is the regular unit partition and (b) is the irreg-
ular unit partition. The “★” represents the potential position
of a microphone, and the “✥” represents the real position of a
microphone.

is created by possible baseline vectors and it is shown in Fig. 3.7 [84]. The initial

points of the vectors are on the coordinate origin.

Define a square whose side length equals to 𝑏 = 2𝑑. If the array dimension is

𝐻 ×𝐿, the total possible number of squares 𝑁𝑠𝑞 = 𝑚𝑎𝑥(𝐻/𝑏, 𝐿/𝑏) ⊗ 1. Similarly

and sequentially, the side length of the 𝑖th (𝑖 = 1, 2, ..., 𝑁𝑠𝑞) square 𝑆(𝑖) is 𝑖× 𝑏,

and 𝑁𝑏(𝑖) and 𝑁𝑏𝑣(𝑖) represent the number of baselines and baseline vectors,

respectively.

𝐾𝑏𝑣(𝑖) is the number of baseline vectors which have no intersection points with

each other, and Fig. 3.8 gives an example of how to assign baseline vectors from

array aperture to a square 𝐾𝑏𝑣. Here, 𝑁𝑏𝑣(1) = 12 and 𝐾𝑏𝑣 = 4 because there

are only four baseline vectors (on the two opposite sides of the square) which do

not have intersection points.

According to [84], the baseline filter is described by following equations:

𝑁𝑏𝑣(1) ⊘ 4, 𝑤ℎ𝑒𝑛𝑀 ⊘ 20,

𝐾𝑏𝑣(1) ⊘ 4, 𝑤ℎ𝑒𝑛𝑀 > 20,
(3.4)
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Figure 3.7.: Baseline vectors and squares.

d

2d

Figure 3.8.: An example of the calculation of 𝐾1. In the left figure, the blue
arrows are the vectors on the sides, and the red arrows are the
vectors on the diagonals. The four circles on the corners are
microphones; the baseline vectors are allocated in the first square
as indicated in the right figure.
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𝐾𝑏𝑣(2) ⊙
⎭

14, 𝑀 ⊙ 14,

𝑀, 𝑀 < 14,
(3.5)

𝐾𝑏𝑣(𝑁𝑠𝑞) ⊙ 4. (3.6)

Eq. 3.4 limits that there are at most two pairs of microphones located close to

each other in the first (smallest) square. Eq. 3.5 assures that the microphones

are distributed as scattered and uniformly as possible in order to improve the

ability to suppress the sidelobe levels for DSB, and increase the incoherence of

the sensing matrix for CB. Eq. 3.6 guarantees a bigger aperture which can deliver

better resolution.

Pseudorandom array optimization

The arrays are designed on an aperture of 1.8 m × 1.8 m with 32 microphones.

The array aperture could be larger to extend the frequency range to lower

frequencies. However, large arrays are difficult to achieve due to practical reasons,

e.g. construction and transportation difficulties. The locations of all microphones

in every unit are randomized. Only if the configuration meets the requirement of

the baseline filter method [84], can it be saved as a a possible array configuration.

Following this rule, 1000 array configurations were generated. RIP was then

tested and 50 arrays meeting the requirement remain. The resolutions of the 30◇

steering angle and MSLs of the 50 arrays are given in Fig. 3.9.

It can be observed that the resolution does not differ significantly along the

simulations. Nevertheless, some of the MSLs deviate more than 10 dB. For DSB,

high resolution and a low MSL are desired, but the two parameters are opposed

with each other. Finally, the array with 19 dB MSL and 14◇ resolution with a 30◇

steering angle is selected as the optimized pseudorandom array. Fig. 3.10 shows

the optimal array configuration among those being investigated. The aperture is

partitioned into irregular units.
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Figure 3.9.: The MSLs and resolutions of the 50 filtered arrays after the baseline
filter and RIP test.

1.8 m

1.8 m

Figure 3.10.: The configuration of the optimized array with the scheme of irreg-
ular unit partition. The potential positions of the microphones are
indicated by the “★”, and the real positions of the microphones
are represented by the “✥”.
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3.4. Array construction

The designed arrays were constructed by the workshop at the Institute of Technical

Acoustics (ITA), RWTH Aachen University.

3.4.1. Spiral array construction

The microphone positions were first marked on a hard board. 32 holes were

drilled on the board such that the Sennheiser KE4-211-2 microphones could be

inserted into the holes and held tightly. The threads twined around the capsules

with proper force for clamping, and the ends of the threads were tied to the

aluminum frame 3.11. The threads were glued and dried to be stiffer. After the

thread nest totally dried, the hard board was removed. This way of constructing

the array is quick, but it is only suitable for one configuration. Besides, the

threads are easily tilted due to the weight of the cables.

Figure 3.11.: The spiral microphone array used in the measurement.
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3.4.2. Pseudorandom array construction

The final design of the pseudorandom array is illustrated in Fig. 3.12. The array

setup contains two layers with the array aperture on the front. 0.01 m × 0.01 m

grids are formed by horizontal and vertical threads, thus allowing for plugging

in microphones in arbitrary positions. On the back layer there are threads with

coarser grids to hold the cables of the microphones. The two-layer setup is more

stable for in-situ measurements.

0.01 m

Figure 3.12.: The optimized pseudorandom microphone array. The area in the
red square in the front layer is the array aperture. The spacing
between the horizontal/vertical grids is 0.01 m.

The idea of meshing the array plane into 0.01 m grids with threads allows for

arbitrary configurations within the size of 1.8 m × 1.8 m. However, the calculated

positions of microphones have a high probability to not coincide with the positions

of the real thread grids. It is thus necessary to recalculate the performance of the

designed array with the real microphone positions. The nearest grid to plug in

each microphone is found on the structure, and the comparison of the designed

and real positions are given in Fig. 3.14. The deviations of MSL and resolution

at 2 kHz are calculated. No change in resolution is found and the MSL only

deviates by 0.1 dB. This implies that the beam pattern does not vary a lot due to

the repositioning. According to the RIP test, the repositioned array still satisfies
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3.4. Array construction

Figure 3.13.: A side view of the optimized pseudorandom microphone array.

the requirement of the RIP. Therefore, the repositioning of the designed array

slightly influences the usage of DSB but has no impact on CB.

0 0.5 1 1.5 2
0

0.5

1

1.5

2 real

design

Figure 3.14.: The designed and real positions of the microphones of the pseu-
dorandom array.
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3.4.3. Microphones

The microphones used in this research are Sennheiser KE4-211-2. When the

microphones are positioned in-situ, it should be confirmed that the front ends are

on the same plane. During the outdoor measurement, wind shields are attached

to the front end of the microphones to reduce the influence of the wind.

Although the structure of the pseudorandom array is stronger than the spiral

array, the weight of the cables from the microphones still tilts the array aperture

and thus causes uncertainties.

3.5. Summary

In this chapter, different microphone array configurations have been introduced.

They can be classified in terms of dimension and regularity. A spiral array has

been designed for DSB. An optimized pseudorandom array has been designed

using unit partition, baseline filter, RIP test. The final selection accounts for

good performance of DSB in terms of resolution and MSL. With the determined

configurations, the spiral and pseudorandom arrays are constructed for the use

in the following measurements.
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4

Delay and sum beamforming

Chapter. 2 introduced the source model using the modified DSB for moving

sources. The performance and capability of localization and signal reconstruction

need to be investigated. Parameters such as the types of the input signals, source

speed, parameters in beamforming (array geometry, time/spatial window, viewing

window position etc.) can influence the performance of the model. This chapter

will elaborate the evaluation of the model in several aspects by localizing and

reconstructing a moving periodic sound source.

4.1. Simulation initialization

4.1.1. Steering window

When beamforming is applied to localize sound sources, the microphone array

scans the plane by steering its angle, which is accomplished by introducing

corresponding time delays to the microphones.

The viewing window [29], which is the product of the steering widow length and

source speed, is defined as the gray area between the dashed lines in Fig. 4.1. Each

grid point is processed within the viewing window. The time a grid point traveling

within the window is 𝑡𝑤𝑖𝑛. To distinguish the spatial and temporal windows,

the spatial window will be mentioned as viewing window and the corresponding

temporal window 𝑡𝑤𝑖𝑛 as steering window. The signal of each grid point will be

utilized for source localization and signal reconstruction. 𝑡𝑤𝑖𝑛 determines the

spectral resolution. The spatial resolution depends on frequency [38], as well

as the viewing window length [36]. Large viewing window enlarges the steering

∗Most of the results presented in this chapter have been published in [6].
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CHAPTER 4. Delay and sum beamforming

scope of the array and thus potentially worsens the spatial resolution, which has

an impact on the localization accuracy.

Confining the viewing window between the two dashed lines, all grid points are

processed after passing by this window. After all the grid points pass through

the viewing window, the beamforming output signal is calculated at each grid

point. For localization, the output signals are analyzed in 1/3 octave bands to

study the localization error and detect sound sources on the moving plane. The

source position is determined according to the results at the 1/3 octave bands of

higher frequencies where localization is more accurate. With knowing the focus

point representing the source position, the beamforming output calculated at

this point is assumed as the source signal which will be discussed in the following

subsection.

Microphone array

y

z

x

Reconstruction plane
Viewing window

Figure 4.1.: The schematic of DSB applied on reconstructing moving sound
sources. A microphone array is set away from the moving trajectory
of a moving plane, which carries sound sources. The gray area
between the two dashed lines represent the viewing window.

4.1.2. Source detection

In Chapter. 2 it was mentioned that the interpolated signal 𝑝(𝑡) is used instead of

𝑝(𝑡) during calculation. Recalling 𝑡𝑒 = 𝑡⊗ 𝑅(𝑡𝑒)
𝑐

, in this thesis 𝑡𝑒 = 𝑡⊗ 𝑅𝑒(𝑡𝑒)
𝑐

, it
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4.1. Simulation initialization

can be seen that the interpolation can only be proceeded with the knowledge of

𝑅𝑒(𝑡𝑒), which depends on the locations of the source and receiver. It contradicts

to the purpose of obtaining the source location.

Therefore, the strategy to proceed the calculation is as follows. At 𝑡1, the grid

points on the vertical line 𝐿1 as indicated by the solid dots in Fig. 4.2 form a

group, and they are only processed when they pass by the viewing window, which

is the spatial area between the two dashed lines [29]. The length of the viewing

window is the product of the steering time window 𝑡𝑤𝑖𝑛 and the source speed

𝑣. In each vertical line 𝐿𝑛, every grid point will be assumed as the source and

thus there will be a set of interpolated received signals for all the 32 microphones.

Subsequently, CB is applied on each point on 𝐿𝑛 with the interpolated signals.

The calculation continues point-wise on every point and vertical line, until all

the points have been calculated. Fig. 4.2 exhibits the processing first at [𝑡1, 𝐿1],

then at [𝑡2, 𝐿2]. All the CB outputs are of the same length, 𝑡𝑤𝑖𝑛. Finally, a

two-dimension matrix with the root mean square (RMS) values of the amplitudes

of CB output signals are derived. Large RMS values are detected as potential

sound sources, with the corresponding CB outputs as the reconstructed signals.

4.1.3. Zero-padding for harmonic signals

Most sounds generated by moving vehicles can be decomposed into deterministic

and stochastic components. Spectral modeling synthesis (SMS) is an efficient

approach to implement the decomposition [63]. The deterministic component

can be represented by a sum of tones, and the stochastic component can be

represented by filtered white noise. This way simplifies the sound representation

and enables the parameterization and prediction of unknown sounds.

In this thesis, the main focus is on the deterministic component. A periodic signal

is applied to test the performance of the model in a large frequency range. For a

focus point, the recorded signals according to the emission time the point travels

in the viewing window are cropped and rectangular window functions are applied.

Zeros are added to the beamforming output signal before transforming the signal

to the frequency domain using fast Fourier transform (FFT). The zero-padded

signal is 1 second with the sampling rate of 44100 Hz. The magnitude of a

particular tone after zero padding can be compensated by the ratio of the padded

length and the original length (Equation 4.1).
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y

x

y

x

Moving direction

(a). t1

(b). t2

L1... L2Ln...

L1... L2Ln...

Viewing window

Figure 4.2.: The source detection procedure. The figure is the two-dimension
view of Fig. 4.1 when looking in the ⊗𝑧 direction. The viewing
window is the product of the time steering window 𝑡𝑤𝑖𝑛 and the
source speed 𝑣, and all grid points are only processed when they
pass by the viewing window. The solid dots represent the grid
points on a vertical line on the reconstruction plane. The arrows
point to the positions of the grid points at the end of the spatial
window. The grid points are piecewise processes from [𝑡1, 𝐿1] to
[𝑡𝑛, 𝐿𝑛].
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4.1. Simulation initialization

𝐴𝑜𝑟𝑖 =
𝑁𝑧𝑝

𝑁𝑜𝑟𝑖
×𝐴𝑧𝑝, (4.1)

where 𝐴𝑜𝑟𝑖 and 𝑁𝑜𝑟𝑖 are the magnitude and the length of the original signal, and

𝐴𝑧𝑝 and 𝑁𝑧𝑝 are the magnitude and the length of the zero-padded signal. The

level can be calculated as 𝐿 = 20𝑙𝑜𝑔(𝐴) with number 1 as the reference sound

pressure.

4.1.4. Simulation setup

The simulation of pass-by measurements is implemented following Eq. 2.10.

Reflections are neglected since it can be described by an image source and thus

can be constricted by steering the array to the real source. Other propagation

effects are also not included to simplify the model.

A moving plane with sound sources recorded by a stationary microphone array is

simulated. The moving trajectory of the plane is in the x-direction with its center

on the axis. The plane (5 m × 1.5 m) is meshed into 10 cm-grids. The spacing

between grid points is smaller than the distance a grid point travels during 𝑡𝑤𝑖𝑛

to avoid omitting any potential sound sources between grid points.

Three virtual sound sources, S1, S2 and S3 are placed on the plane and move

simultaneously. S1 is in the middle of the plane, and S2 and S3 are located with

the offsets of [-1 m, -0.55 m ,0 m] and [1 m, -0.55 m ,0 m] referring to S1. The

initial position of S1 is [⊗ 𝑡𝑟𝑢𝑛𝑣
2

m, 0 m, 0 m], where 𝑡𝑟𝑢𝑛 is the time duration

of the plane’s movement in the simulation. A periodic signal is regarded as the

target source signal to be reconstructed. The frequencies in the signal range

from 1 kHz to 8 kHz with 500 Hz step. This periodic signal is attached to S1.

Meanwhile, a white Gaussian noise 𝑛(𝑡) is added to S1 as well. The spectrum of

the periodic signal with 𝑛(𝑡) added is shown in Fig. 4.3. Interference noise sources

with the same sound power as 𝑛(𝑡) are attached to S2 and S3, respectively. The

sampling rate is 44.1 kHz in the following simulations and experimental analysis.

The simulation of microphone recordings of moving sound sources is according to

Eq. 2.10. The MATLAB codes can be found in Appendix A.

The array to be used here is the spiral array designed in Section 3.2.1. The array

origin is at [0 m, 0 m, -1.5 m]. The sketch of the simulation setup is shown in

Fig. 4.4.
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Figure 4.3.: The spectrum of the periodic signal attached to S1 with adding
white Gaussian noise 𝑛(𝑡).

The entire simulation was repeated 1000 times to test the repeatability and no

deviation was reported.

Microphone 

array

O

y

z

x

Moving plane

L = 1.5 m

Array 

origin

S1

S2 S3

Figure 4.4.: Sketch of the simulation of a moving plane with three sound sources
measured by the spiral microphone array.
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4.2. Model evaluation

There are several parts in the calculation of the model that can lead to errors.

First of all, spline interpolations are applied during the simulation of the pass-by

sound source recording and de-Dopplerization. In addition, although zeros are

added to the steered signal, the reconstructed signal still suffers from wrong

frequency reconstruction, and hence also wrong amplitude reconstruction. It

correlates to the length of the steering window.

Furthermore, the properties of the microphone array also play a significant role

in the error estimation. The length of the viewing window in Fig. 4.1 is the

product of the steering window and the source speed. The larger the viewing

window becomes, the larger the steering angle of the array gets, thus enlarging

the beam width and worsening the spatial resolution.

The following evaluation will be focused on quantitatively analyzing the errors in

terms of several parameters. In terms of the localization error, the results are

reported at six 1/3 octave bands, i.e. 1 kHz, 2 kHz, 2.5 kHz, 4 kHz, 5 kHz and 8

kHz.

4.2.1. Steering position

In [31], reconstruction at different steering positions was discussed. The results

showed that steering the array to 0◇ can achieve better reconstruction of the

signal, including localization, the reconstruction of frequency and amplitude,

compared to -26◇ and 26◇. For the 0◇ case, the origin of the coordinate system 𝑂

overlaps with the center of the viewing window, as depicted in Fig. 4.1. In this

chapter, the discussion of the viewing window is extended to another two cases,

placing the origin 𝑂 either to the left or right boundary of the viewing window,

leading to two additional steering positions, which can be mentioned as left and

right windows (Fig. 4.5).

Note that the “moving” microphone and the source are assumed stationary

when the source is on the 𝑦-axis, as mentioned in Chapter. 2 that in this case

𝑅0 = 𝑚𝑖𝑛(𝑅(𝑡)).

In the following simulations, the length of the steering window is 1024 samples,

and the speed of the moving plane is 20 m/s. The simulation results are shown
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Figure 4.5.: Three positions of the viewing window: middle, left and right. The
gray area represents the viewing window.

in Fig. 4.6. Regarding localization, no error in the y direction is detected. Hence

Fig. 4.6(a) only shows the error in the x direction in 1/3 octave bands with center

frequencies from 1 kHz to 8 kHz. As can be seen, localization errors appear at

the 1/3 octave bands withe center frequencies of 1 kHz, 1.25 kHz, 1.5 kHz and

2.5 kHz. The large errors at 1.25 kHz are due to the low energy in this band since

no tone of S1 is included. As the localization ability increases with increasing the

frequency and three tones are included in the bands of 5 kHz, 6.3 kHz and 8 kHz,

no error is detected in this frequency range. Therefore, the localization result of

the band of 5 kHz is selected as the position of S1 in the following contents, and

the beamforming output signal at this position is considered as the reconstructed

signal.

For the frequency percent error in Fig. 4.6(b), all the errors are equal or smaller

than 0.04%. Also, no obvious trend is observed with increasing the frequency.

Nevertheless, the middle position delivers more stable results as it produces

more zero errors and a lower upper limit around 0.03%. As for Fig. 4.6(c) with

level errors, the error range is between 0 dB and around 2 dB. A slight but

fluctuating increase as the frequency increases is illustrated. It appears that in

Fig. 4.6(b) and Fig. 4.6(c), the left viewing window provides more fluctuating

errors, including errors close to 2 dB at 7 kHz and 8 kHz in Fig. 4.6(c).

4.2.2. Steering window length vs. source speed

As the steering window length and source speed influence the frequency and

spatial resolution, this section takes the two parameters into account for the error

analysis. A middle steering position as shown in Fig. 4.1 is applied with varying
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Figure 4.6.: The error of localization, frequency and level with varying the
position of the viewing window. a). Localization errors in the 𝑥
direction; b). Frequency percent errors; c). Level errors.

window lengths of 256, 512, 1024, 2048, 4096 samples, while varying the source

speeds from 20 m/s to 120 m/s with a step of 20 m/s.

As no localization error is detected at the 1/3 octave bands with center frequencies

higher than 4 kHz, Fig. 4.7 shows the mean localization errors (in x and y direction,

respectively) of the five bands with one single tone, i.e. with center frequencies

of 1 kHz, 1.6 kHz, 2 kHz, 2.5 kHz and 4 kHz. In the x direction, no obvious

correlation between 𝑒𝑥 and window length or speed is observed, except for the

error increase of the 4096-sample window with increasing the speed from 80 m/s

to 120 m/s. The errors can be explained by discussing several factors. Low

frequency and large viewing window length as discussed in Section 4.1.1, errors

introduced by de-Dopplerization [36] could decrease the localization accuracy.

Additionally, spectral leakage exists in the calculation at every focus point, leading

to energy at the frequency bin of the source leaking to other frequency bins. It

could also result in localization error since the focus point with the highest energy

is considered as the source. Therefore, the four factors together can explain the

localization errors in Fig. 4.7. Only for large speed and large steering window

length, the viewing window length becomes the dominant influencing factor since

the localization error in the x direction is positively correlated with it.
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Figure 4.7.: The mean localization errors at 𝑥 and 𝑦 directions versus source
speed for various windows with 256, 512, 1024, 2048, 4096 samples.

Fig. 4.8 shows the error bars of the reconstructed frequencies and levels versus

source speed with various window lengths. In general, as can be seen, the

maximum errors can reach 0.35% for frequency reconstruction and over 7 dB for

level reconstruction. Furthermore, the mean and minimum errors of any single

error bar are close to each other, which indicates that large errors are rare in the

reconstructed tones in the periodic signal.

For the frequency reconstruction, the frequency error increases as the window

length decreases and the source speed increases. Although zero padding adds

more frequency bins, it is not able to increase the frequency resolution. A larger

window length delivers better frequency resolution, thus allowing for better

accuracy of frequency reconstruction. In addition, increasing the source speed

introduces more errors to de-Dopplerization [36], thus leading to larger frequency

errors.

For the level reconstruction, the mean error curves of the four small windows

are almost flat over all the speeds, whereas the mean error of the window with

4096 samples remains quite similar for the speed from 20 m/s to 60 m/s while

increase as speed increases from 80 m/s. Taking a look back at Fig. 4.7, it can

be concluded that large localization error delivers large level error. The errors

56



4.2. Model evaluation

20 40 60 80 100 120

Speed (m/s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

20 40 60 80 100 120

Speed (m/s)

0

1

2

3

4

5

6

7

8

256

512

1024

2048

4096

Figure 4.8.: The mean reconstructed frequency percent errors and level errors
versus source speed for various window lengths. The marker in
the middle of each error bar represents the mean error, the upper
horizontal line represents the maximum error and the lower line
represents the minimum error.

are influenced by the frequency resolution and spectral leakage, as well as errors

from de-Dopplerization. It is uncertain how the factors vary along with the

window length in terms of level error. Therefore, the level errors in Fig. 4.8

are not in correlated relationship with the window length and source speed.

Only when the speed and the window length are comparatively large, e.g. 4096-

sample window, the viewing window length becomes positively correlated with

the localization error as it leads to the failure of assuring the spatial resolution

and large errors from de-Dopplerization. In this sense, the varying tendency of

the level reconstruction errors is similar as that of the localization errors in terms

of speed and window length.

Most of road and track vehicles’ speed is confined to lower than 100 m/s (about

360 km/h). In this speed range, Fig. 4.8 illustrates that the mean percent errors

of the frequency reconstructions are below 0.1%, and level errors below 2 dB.

Upper bounds above JNDF indicate that some of the frequency reconstructions

can be perceived differently from the original signals. Similarly, although most of

the mean level errors are below 1 dB, many upper bounds are still large, some of

them above 4 dB. Therefore, it is not a trivial task to select the parameters in the
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model. Considerations must be taken in terms of different application scenarios.

Take the window size of 256 samples as an example and how the error changes as

a function of frequency with five various source speeds can be found in Fig. 4.9.

Peaks can be observed in the frequency error curves. The combination of poor

frequency resolution, spectral leakage and errors caused by de-Dopplerization

might contribute to the unexpected deviations. However, the overall frequency

errors for all the frequencies are lower than 0.2%, except for those at 5 kHz. As

for the level reconstruction, almost all the errors are below or at least around

1 dB. Therefore, the model is able to regenerate the given periodic signal with

the reconstruction deviations of frequency and level below the JNDF and JNDL

for most of the cases with respect to the frequencies of tones and source speeds.

However, large biased signal reconstruction could also occur, for instance, in the

cases where the upper bounds of the error bars appear in Fig. 4.8. It is thus

necessary to conduct a detailed parametric study to optimize the parameters and

reduce reconstruction errors.
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Figure 4.9.: The frequency percent errors and level errors versus source speed
for various frequencies.
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4.3. Application on a moving loudspeaker

4.3.1. Measurement setup

A pass-by measurement of a car using the spiral microphone array was conducted

on the Proving Ground of Institute for Automotive Engineering , RWTH Aachen

University. The proving ground has a 400 m long test track with an acoustical

part which was built referring to ISO 10844/94 [86]. The array was 1.5 m away

from the moving trajectory of the near-side surface of the car. A loudspeaker was

installed and sealed on the back window frame. Referring the front-bottom point

of the near-side plane of the car as [0 m,0 m], the loudspeaker was approximately

located at [3.1 m, 1.2 m]. The loudspeaker played the periodic signal which

was used in the simulation in order to validate the model. For all the pass-by

measurements, the car was instructed to run on a straight line with constant

speeds, i.e. 30 km/h, 50 km/h, 80 km/h and 100 km/h with two repetitions.

A set of photoelectric sensors were placed between the trajectory and the array.

The sender was placed on the other side of the car’s trajectory. The emitted

infrared light could be subsequently received by the receiver sensor (can be seen

in Fig. 4.10) with the absence of obstacles. A switch of receiving the light at the

Figure 4.10.: Setup of the pass-by measurement. The spiral microphone array
and the photoelectric sensor were set 1.5 meter from the near-side
surface of the car.

sensor would generate an impulse in the sensor’s recording channel. Two impulses

were excited due to the car approaching and leaving. The receiver sensor was

connected to the same preamplifier with the microphones and thus synchronized.

The pass-by time of the car is [𝑇𝐴𝑝𝑟., 𝑇𝐿𝑒𝑎.]. Note that [𝑇𝐴𝑝𝑟., 𝑇𝐿𝑒𝑎.] is in terms

59



CHAPTER 4. Delay and sum beamforming

of the emission time. Following what was shown in Fig. 4.2 in Section. 4.1.2

and taking the near-side surface of the car as the reconstruction plane Ω), the

loudspeaker can be localized and its signal emitted during passing by the steering

window can be reconstructed.

Besides, the car’s speed can also be derived from the division of the car length and

the pass-by time recorded by the sensor. Fig. 4.10 shows the pass-by measurement

setup. The temperature 𝜃 during the measurement was around 21.9°C, thus the

sound speed is 344.3 m/s.

4.3.2. Measurement results

The reconstruction plane is divided into grids with 5 cm × 5 cm resolution. The

localization results at four selected 1/3 octave bands with center frequencies of 2

kHz, 2.5 kHz, 4 kHz and 5 kHz are shown in Fig. 4.11. The speed of the car was

50 km/h. It is clear that the resolution increases with increasing the frequency.

Therefore, the localization of the loudspeaker also differs between frequencies.

To simplify the validation, the loudspeaker is considered as a point source. The

loudspeaker localization is sought in the six 1/3 octave band as mentioned before

in each measurement with different speeds.

Since the energy of the beamforming output is the benchmark to identify if

the array is steered to the real source, the location with the largest output

energy is determined as the correct location for each measurement. As a result,

the location of the loudspeaker is between [3.06 m, 1.17 m, 0 m] and [3.12 m,

1.20 m, 0 m]. With the determined locations, the signal of the loudspeaker is

reconstructed and compared with the reference signal which was measured in the

hemi-anechoic chamber. Two window lengths are selected: 256 and 1024 samples.

The corresponding frequency percent errors and level errors are illustrated in

Fig. 4.12 and Fig. 4.13.

With the determined locations, the signal of the loudspeaker is reconstructed and

compared with the reference signal which was measured in the hemi-anechoic

chamber. Two window lengths are selected: 256 and 1024 samples. The corre-

sponding frequency percent errors and level errors are illustrated in Fig. 4.12 and

Fig. 4.13.

For the 256-sample window, the frequency percent errors at 1 kHz and 2 kHz

are much larger than those at other frequencies. The limited sample number
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Figure 4.11.: Localization results on the near-side surface of the car at the
speed of 50 km/h. The center frequency of the 1/3 octave band
in each figure is: (a). 2 kHz; (b). 2.5 kHz; (c). 4 kHz; (d). 5 kHz.
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lead to wrong localization especially at lower frequencies. The errors of level

reconstruction are all below 4 dB.
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Figure 4.12.: The frequency percent errors and level errors of the reconstructed
tones of the periodic signal versus source speed for various fre-
quencies with window length of 256 samples.

For the window with 1024 samples, the frequency reconstruction is much less

biased than the window stated above as the frequency resolution is increased.

Additionally, it is apparent that the percent error increases as the speed increases.

The level reconstruction is comparable to that of the 256-sample window. The

maximum error is around 4 dB. Therefore, the 1024-sample window would be

preferable to choose for auralization to achieve a more similar hearing perception

as the original reference signal.

Compared to simulation, the results of the measurements have more deviations

according to some uncertainties. First of all, biased microphone positioning

existed in the measurements. The car’s trajectory could also not exactly follow

the desired track. Those factors lead to wrong calculation of delays and thus

increase errors. Furthermore, the uncertain acoustic center of the loudspeaker,

reflections, wind etc. could all bias the results.
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Figure 4.13.: The frequency percent errors and level errors of the reconstructed
tones of the periodic signal versus source speed for various fre-
quencies with window length of 1024 samples.

4.4. Summary

This chapter explores the reconstruction of a moving periodic signal based on

DSB using the spiral array. The simulation results are evaluated by studying

the reconstruction errors of localization, frequency and level by varying the

parameters included in the model, i.e. steering position, steering window length

and source speed. The steering window and the source speed have significant

influence on the localization and reconstruction accuracy of the model. The middle

position of the steering window performs better than the left and right positions

according to the accuracy analysis of localization and signal reconstruction. In

addition, the localization accuracy could be degraded by large windows and low

frequencies, spectral leakage and errors caused by de-Dopplerization. For signal

reconstruction, the frequency reconstruction has negative correlation with the

window length and source speed. The error of level reconstruction shows similar

varying tendency as the localization error in the 𝑥 direction. It does not vary

along with the window length and source speed, except that in the case of the

largest window with 4096 samples, the errors appear to positively correlate with

the two parameters at higher speeds. Various window lengths are necessary to be
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CHAPTER 4. Delay and sum beamforming

applied in terms of various source speeds to deliver more accurate results. The

combination of limited frequency and spatial resolution, spectral leakage and

errors caused by de-Dopplerization would result in unexpected deviations, such

as the frequency errors at 5 kHz in Fig. 4.9.
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5

Compressive beamforming

The source model has been tested by DSB by conducting error analysis and model

evaluation on a moving periodic sound source. This chapter extends to model

moving sources by applying CB by using the pseudorandom microphone array.

An engine signal is attached to the moving sound source to test the broadband

performance of the model. Several parameters are selected to evaluate the model

through error analysis. The results of DSB are also given to compare with CB.

Finally, a pass-by loudspeaker with the same engine signal was measured to

validate the model.

5.1. Simulation setup

Two moving sound sources (S1 and S2) are simulated by Eq. 2.14 and Eq. 2.18.

Note that the equations are denoted in continuous time, but discrete time is

required in digital processing. Thus the calculated signals on the right-hand side

of Eq. 2.14 are interpolated and resampled in terms of uniformly spaced time

stamps to obtain 𝑝(𝑡) to simulate real recordings. S1 and S2 fixed in a plane

which moves in the ⊗𝑧 direction at 20 m/s. The pseudorandom microphone

array is placed 5 m away from the moving trajectory that is parallel with the

array aperture. The moving plane is regarded as the reconstruction plane Ω, on

which the beamforming calculations are conducted. Ω is meshed into grids and

the distance between two grid points is 0.1 m. Each grid point is scanned as

a potential sound source’s position. S1 is on the origin of Ω, and S2 is 0.5 m

located above S1 on the same vertical line. S1 and the origin of the array are

both on the 𝑥𝑧 plane in the coordinate system. A sketch of the simulation can

be found in Fig. 5.2. A 6 s recording of engine noise and a 6 s periodic signal are

attached to S1 and S2, respectively. The periodic signal consists of a fundamental

tone of 500 Hz and all its harmonics up to 8 kHz (with a random deviation on
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CHAPTER 5. Compressive beamforming

each harmonic of up to ∘50 Hz), plus a 200 Hz tone. The spectra of S1 and S2

are shown in Fig. 5.1.
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Figure 5.1.: The spectra of the two sound source signals S1 and S2.
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Figure 5.2.: The sketch of the simulation.

The duration of S1 and S2, and the moving time of Ω is 6 s. The starting and

stop positions of Ω are symmetric in terms of the origin 𝑂 of the 𝑥 axis. S1

is the target source to be localized and reconstructed and S2 is regarded as

an interference source. A wide frequency range of signal reconstruction can be

studied by virtue of the broadband engine noise.
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5.2. Model evaluation

The simulation of microphone recordings of moving sound sources is according to

Eq. 2.10. The MATLAB codes can be found in Appendix A. The source detection

follows the procedures proposed in Section. 4.1.2.

5.2. Model evaluation

The proposed method using CB is evaluated by means of errors regarding lo-

calization and signal reconstruction. Regularization parameter, window length,

SNR and mismatch are selected for the error analysis. Errors using DSB are also

given to compare with CB.

5.2.1. Regularization parameter vs. window length

It is critical to select the regularization parameter as it determines the tradeoff

between the fit of the solution to the original data versus the sparsity prior [44].

The selection of the regularization parameter still remains a difficult question, and

trials through simulations were conducted to find out the optimal solution [44, 48].

It was suggested that a low noise level could be employed for the selection of

regularization parameter to guarantee capturing all nonzero elements [47]. It

was also pointed out that the regularization parameters in the constrained and

unconstrained forms are related [44]. Therefore, the regularization parameter

Ñ in the Dantzig Selector [87, 45] is used as the search basis. Ñ = 𝜖𝑁à, where

𝜖 =
√

2 log𝑁 (𝑁 is the number of the microphones) and à is the standard

deviation of the noise. Simulations are conducted in the neighborhood of Ñ to

search for a good choice of the regularization parameter Ú in the unconstrained

form in Eq. (2.30).

The errors of varying Ú from 0.5Ñ to 2Ñ are studied. Additionally, the length

of a steering window determines the spatial and spectral resolution, which has

been discussed for DSB in Chapter. 4. Thus the regularization parameter and

the window length are jointly investigated. The errors of localization and signal

reconstruction are compared in Fig. 5.3(a) with SNR = 30 dB. Similar performance

between DSB and CB can be observed except for some large variations for the

windows with 32, 64 and 256 samples. For CB, most of the errors in terms of

various Ú achieve similar results. For the 64- and 256-sample window, no error is

detected from the localization and signal reconstruction.
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Now the SNR is decreased to 5 dB, a value more prone to be found in real

measurement situations. The errors are shown in Fig. 5.3(b). 𝑒𝑙𝑜𝑐 and 𝑒𝑟𝑒𝑐

become larger with decreasing the SNR as expected, and the localization results

of DSB and CB are still quite similar. Nevertheless, DSB and CB can be clearly

distinguished in terms of signal reconstruction. For all the Ú selected, the 𝑒𝑟𝑒𝑐 of

CB are all below those of DSB, and each Ú delivers a separate curve. The level

difference could be quite large, e.g. around 6 dB for the case of 64-sample window

with Ú = 0.5Ñ and Ú = 1.75Ñ. The range of SNR is then extended to [15 dB, -5

dB] to have a better understanding of the influence of SNR (Fig. 5.4, Ú = 0.75Ñ).

It can be seen that the reconstruction error increases as SNR decreases, and

gradually CB outperforms DSB.

In Eq. 2.23, the reconstructed signal 𝑠(𝑡) from DSB also contains noise, the

incrementation of which would lead to increasing error in 𝑠(𝑡). On the contrary,

CB takes noise into account during the calculation as shown from Eq. 2.27 to

Eq. 2.29. Thus CB outperforms DSB for signal reconstruction with the presence

of strong noise, i.e. SNR = 5 dB in this study. It can be expected that both

algorithms would perform similarly with the presence of slight noise (SNR = 30

dB), as in Fig. 5.3(a). However, the localization ability of CB shows no clear

advantage over DSB in the current situation. The distance between Ω and the

microphones is large compared to the microphone distances, which would result

in potential coherence in the TDTF and cause errors. It could degrade the

localization ability of CB leading to errors and similar performance with DSB, as

well as the signal reconstruction errors. Another possible reason for the similarity

between DSB and CB in localization could be that only two sound sources

are considered. CB would outperform DSB with the presence of many sources

according to literature. The literature has been mainly focused on stationary

sources, based on which CB delivers better localization. Whereas in the current

study, moving instead of stationary sources have been addressed, and CB is found

not advantageous over DSB in terms of localization. However, localization will

not be further discussed due to the aim of signal reconstruction, not localization.

Another finding is that 𝑒𝑙𝑜𝑐 is not correlated with 𝑒𝑟𝑒𝑐 according to the trend of

the error curves.

The lowest 𝑒𝑟𝑒𝑐 with the window length of 32 samples and Ú = 1.75Ñ can be

selected for signal reconstruction. However, the corresponding 𝑒𝑙𝑜𝑐 reaches over

0.5 m in this sense, which would lead to perceptional difference in auralization.

Additionally, this window length is too limited to extract the characteristics of

the source signal, e.g. low frequency information. It is thus necessary to select

parameters according to both localization and signal reconstruction.
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Figure 5.3.: The errors of localization and signal reconstruction versus window
length for various regularization parameter Ú with (a) SNR = 30
dB and (b) SNR = 5 dB using DSB and CB. The value of 64
samples with CB Ú = 2 is 174.5 dB, which is out of the range of of
the 𝑦-axis and not shown in the figure.

69



CHAPTER 5. Compressive beamforming

-5 0 5 10 15

SNR [dB]

0

0.05

0.1

0.15

0.2

0.25

0.3

e
lo

c [
m

]

DSB

CB

-5 0 5 10 15

SNR [dB]

0

5

10

15

20

25

30

35

40

e
re

c [
d

B
]

DSB

CB

Figure 5.4.: The errors of localization and signal reconstruction versus SNR
(Window length: 256 samples, Ú = 0.75Ñ).

5.2.2. Source speed vs. window length

The length of the viewing window, 𝑡𝑤𝑖𝑛 × 𝑣, determines the spatial extent, which

would have an impact on localization using DSB [29]. Similarly, the combination

of varying window length and source speed as in Section. 4 is investigated.

To attempt to a clearer illustration, a shaded area between the maximum and

minimum 𝑒𝑟𝑒𝑐 with various source speeds, 20 m/s to 120 m/s with a step of 20

m/s, along the window length axis is given instead of an individual curve of each

speed. In Fig. 5.5, the shaded areas of DSB and CB are given. Very large 𝑒𝑚𝑎𝑔

up to above 100 dB can be observed at the windows with 32 and 64 samples. As

the window length grows, the CB errors are reduced significantly and are located

below the DSB errors for the window length larger than 128 samples. Moreover,

the error deviation difference between different speeds decreases with increasing

the window length. The ℓ2-norm of the source signal s in Eq. 2.30 would not be

sufficient to represent the energy at the grid point on the reconstruction plane if

the window is too short, because the samples might be small values in this short

window. Therefore this analysis implies that a larger window length is preferable

if CB is to be applied.
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Figure 5.5.: The shaded areas represent the range of 𝑒𝑟𝑒𝑐 with varying source
speeds from 20 m/s to 120 m/s with a step of 20 m/s along the
window length axis using DSB and CB, respectively.

5.2.3. Mismatch

Mismatch emerges when a sound source is between two grid points. In the DSB

case, wrong delays would be introduced to the calculations and basis mismatch in

the sensing matrix would occur in CB [47]. In this context, neither beamforming

method is able to correctly localize the source. The sensitivity of compressive

sensing to DFT basis mismatch was studied by Chi et al. [88]. For the application

of sound source localization using CB, the basis mismatch was analyzed and

several wrong localization results were presented [48].

S1 is placed from 0.01 m to 0.09 m away from the origin of Ω in the 𝑦 direction with

0.02 m step to create mismatch ∆ ∈ [0.01 m, 0.09 m]. SNR = 5 dB, Ú = 1.75Ñ

and the window length is 256 samples. The error results are exhibited in Fig. 5.6.

𝑒𝑙𝑜𝑐 using DSB and CB are identical, whereas the signal reconstruction using CB

creates lower error than using DSB, the variation is around 5 dB. This is in line

with the results from the previous section, that CB is more reliable than DSB

under the given SNR if the parameters are selected properly. However, compared

to the matched case, CB also yields larger 𝑒𝑟𝑒𝑐 due to mismatch compared to the

matching cases.
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Figure 5.6.: The errors of localization and signal reconstruction versus mismatch
∆ (Window length: 256 samples, SNR = 5 dB).

5.2.4. Distance

The positions of microphones have been randomized and optimized to reduce the

coherence of the sensing matrix. Recalling Eq. 2.15, large 𝑅(𝑡) would increase

the similarity between TDTFs in the sensing matrix, which could reduce the

coherence. Together with the microphone position, the distance 𝐿 between the

source trajectory and array plane should also be considered with respect to the

coherence.

Fig. 5.7 shows the drop of 𝑒𝑟𝑒𝑐 with decreasing 𝐿 until 2 m, and the curve of CB

is below that of DSB. When 𝐿 =1 m, 𝑒𝑟𝑒𝑐 of CB rises and goes beyond DSB.

This could be due to the regularization parameter Ú. As 𝐿 decreases the sensing

matrix changes as well. Ú was selected with 𝐿 = 5 m, and it indicates that when

𝐿 reaches 1 m Ú is supposed to be reselected to balance the residual ♣♣p ⊗ Hs♣♣
and the sparsity of s.

However, in on-site measurements of pass-by vehicles, it is not always viable

to place the microphone array close to the vehicle trajectory. First of all, the

turbulence between the car and air would introduce more noise to the microphones.

Additionally, the risk exists that the array aperture would fall towards the car.
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5.3. Application on a moving loudspeaker

It is thus necessary to keep the array distant from the trajectory. Note that in

the safe distance range, CB outperforms DSB in signal reconstruction.
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Figure 5.7.: The signal reconstruction error versus distance 𝐿 (Window length:
256 samples, SNR = 5 dB).

5.3. Application on a moving loudspeaker

5.3.1. Measurement setup

The measurements were again performed on the Proving Ground of Institute for

Automotive Engineering, RWTH Aachen University. This time the array was

placed 5 m away from the moving trajectory of the near-side surface of the car

to keep a safe distance. The loudspeaker was on the same position as in the

measurements in Chapter. 4. During the measurements, the speeds were 20 km/h,

30 km/h, 50 km/h, 80 km/h and 100 km/h with two repetitions, respectively.

Fig. 5.8 shows the pass-by measurement setup.

The same engine noise signal as in the simulations was played during the pass-by

measurements. A sweep signal was added and played before the engine signal.

The impulse response of the sweep signal could indicate the delay in the recording

channels in terms of the playback channel and thus synchronize the recording
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Receiver sensor LoudspeakerMicrophone array

Figure 5.8.: The pass-by measurement of a car with a loudspeaker installed.

and playback, in order to extract the original signal from the playback channel

according to the pass-by time [𝑇𝐴𝑝𝑟., 𝑇𝐿𝑒𝑎.]. The reference signal, from which the

original signal was extracted, was recorded in an anechoic chamber.

The regularization parameter Ú = 1.75Ñ, and a steering window of 256 samples

are applied.

5.3.2. Synchronization

To compare and evaluate the signal reconstruction, a reference signal is required.

For the comparison in Chapter. 4, since the signal used is simply periodic, the

original signal extracted from any time interval with identical length from the

measured reference signal is the same. However, in the case of broadband engine

noise, although it is considered as time-invariant, variations still exist between

the original signals extracted from different small time intervals.

In the pass-by measurement, the loudspeaker and microphones were in two

separate systems which were not synchronized. Therefore, in the following

measurements, a sweep sound was first played by the loudspeaker to synchronize

the recording channels of the microphones and the playback channels of the

loudspeaker. After the sweep was played and recorded, the car drove away and

had 20 s time to accelerate to a desired speed, as indicated in ig. 5.9(a). The
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5.3. Application on a moving loudspeaker

equalized engine signals were subsequently played by the two channels of the

loudspeaker. The playback signal is shown in Fig. 5.9(a). The channels of the

photoelectric sensor and microphones were connected to RME OctaMic XTC,

with a delay of 19 samples (Fig. 5.9(b) and (c)). The delay is then compensated.

With deconvolution, the impulse response of the sweep can be localized in the

recording channels as 𝑡𝐼𝑅 (Fig. 5.9(a)). From Fig. 5.9(b), the car pass-by time

duration can be identified from the peaks and the duration is noted as 𝑇𝑐. Here

the reference point for pass-by is the photoelectric sensor which was aligned with

the array origin. The first peak indicates the car’s first pass-by after playing

the sweep and before playing the engine noise. Note that the playback was 𝑇𝐷

delayed after the recordings started. The loudspeaker’s location can be calculated

through CB, so that time 𝑡𝐿 the loudspeaker in front of the array origin can be

found (Fig. 5.9(b)). Although the photoelectric sensor was synchronized with the

microphones, the time it recorded was the emission time from the loudspeaker.

Nevertheless, the recording and playback channels can be synchronized with

the detection of 𝑡𝐼𝑅. The temporal distance between the first sample of the

engine noise signal and when the loudspeaker is in front of the array origin yields

𝑇1 = 𝑡𝐿 ⊗ 𝑡𝐼𝑅 ⊗ 1.5 ⊗ 20. Finally, the time stamp when the loudspeaker was in

front of the array origin in the time axis of the reference signal is denoted as

𝑡′𝐿 = 𝑇1 + 𝐿/𝑐, where 𝐿 = 5 m is the distance between the loudspeaker and the

microphone (Fig. 5.9(d)). The reference signal was measured in a hemi-anechoic

chamber, where the microphone was placed on the ground to prevent the ground

reflection.

With 𝑡′𝐿 and the steering window length 𝑡𝑤𝑖𝑛, the original signal with the length

[𝑡′𝐿, 𝑡
′
𝐿 + 𝑡𝑤𝑖𝑛] can be extracted from the reference signal. Furthermore, the input

signals for DSB and CB can also be obtained accordingly. The recording software

is ITA-Toolbox, an open source MATLAB toolbox for acoustic measurements

and signal processing [89].

5.3.3. Measurement results

The localization results of the loudspeaker in terms of various speeds are shown

in Fig. 5.10. [𝑥′, 𝑦′] are the coordinates with the front bottom of Ω as the origin

of the local coordinate system. The dashed lines are the approximated 𝑥′ and

𝑦′ positions of the geometrical center of the loudspeaker surface. However, it is

uncertain if the geometrical center matches the acoustic center. An interesting

observation is that CB is slightly more accurate in localizing the loudspeaker,
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Figure 5.9.: Synchronization procedure between the playback and recording
tracks during the pass-by measurements.

which was not implied in the simulations. However, it could result from the

measurement uncertainties. The car could have not exactly followed the indicated

line on the ground, especially at higher speeds. This uncertainty could also explain

the large variations in the 𝑦′ direction in Fig. 5.10. Moreover, uncertainties also

exist in the measured positions, e.g. positions of the microphones, photoelectric

sensors and loudspeaker, which can introduce errors into the results.

Take the first 50 km/h run as an example, the 𝑒𝑟𝑒𝑐 of DSB and CB are 4.4 dB

and 3.5 dB, respectively. The errors are comparable with those in the simulations

(e.g. Fig. 5.7 with 𝐿 = 5 m, while 𝑒𝑟𝑒𝑐 of DSB in the measurements is even lower

than in the simulation). However, the values might not be accurate since the

aforementioned uncertainties could lead to incorrect distances and thus wrong

time interval for the extraction of the original signal, on the basis of which 𝑒𝑟𝑒𝑐

is computed. To inspect the possible 𝑒𝑟𝑒𝑐 variations caused by uncertain time

intervals, the calculated time interval is shifted from -256 to 256 samples, leading

to 512 different extracted original signals. Fig. 5.11 shows the 𝑒𝑟𝑒𝑐 in terms of

the sample shift, demonstrating that the 𝑒𝑟𝑒𝑐 bias ranges from 0 dB to 10 dB

(for CB is around 0 - 9 dB).

Increasing the window length can reduce the 𝑒𝑟𝑒𝑐 bias in terms of sample shift, but
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5.3. Application on a moving loudspeaker

it would be too computationally costly for CB. Especially in the measurement with

unknown sound sources, a fine meshed reconstruction plane is desired and should

be scanned completely. Requiring large computational resources is a limitation

of CB. Nevertheless, the 𝑒𝑟𝑒𝑐 curve of CB is overall slightly below the DSB curve,

which is in line with the simulations. Moreover, it also supports that CB is more

robust under basis mismatch caused by the measurement uncertainties.

20 20 30 50 50 80 80 100 100
0

2

4

x
' [

m
]

DSB

CB

20 20 30 50 50 80 80 100 100

Car speed [km/h]

0.8

1

1.2

1.4

y
' [

m
]

DSB

CB

Figure 5.10.: Localization in 𝑥′ and 𝑦′ direction of the loudspeaker versus car
speed with 0.1 m spaced grids. The dashed lines in the upper
and bottom plots represent 3.2 m and 1.2 m, respectively. Here,
[𝑥′, 𝑦′] are the coordinates with the front bottom of Ω as the
origin of the local coordinate system.
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Figure 5.11.: The signal reconstruction error 𝑒𝑟𝑒𝑐 of DSB and CB in terms of
sample shift of the time interval, which is used to extract the
original signal.

5.4. Summary

CB is applied to model a moving engine signal using the pseudorandom micro-

phone array. The parametric study and measurement application indicate that

CB outperforms DSB in terms of signal reconstruction under noisy situations

and basis mismatch, while under ideal noise condition, e.g. SNR = 30 dB, the

two algorithms are quite similar. Additionally, the performance of CB varies in

terms of the window length and distance 𝐿 between the array and source moving

trajectory. The reconstruction error increases with increasing 𝐿. CB shows more

stable performance with larger window lengths for various source speeds. The

256-sample window is selected to provide better spectral resolution while not

increasing 𝑒𝑟𝑒𝑐. However, the window length is still limited to deliver robust signal

reconstruction due to the uncertainties in the measurements. Larger window

length will increase computational burden, which implies the limitation of CB.

For localization, CB and DSB are quite similar in this study. Potential coherence

in the sensing matrix due to large distance 𝐿 and small number of sources could

explain the localization similarity of the two algorithms. Nevertheless, for the

purpose of signal reconstruction, CB has been demonstrated to be advantageous

by means of simulations with various parameters and measurements.
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6
Array measurement-based model for

auralization

The main focus of this thesis is to model moving sound sources based on pass-by

measurements by microphone arrays for auralization. In the previous chapters,

the research has been conducted on array design and beamforming for localization

and signal reconstruction for known moving sources. This chapter introduces a

framework on synthesizing the moving sources (here two moving cars) for the

auralization implementation in VR environments. First, pass-by measurements on

two cars are presented with the designed pseudorandom array. Subsequently, the

beamforming outputs are parameterized to represent the reconstructed signals,

and parameter prediction is also introduced. Finally, how to incorporate the

model in the VR system is introduced to provide dynamic moving sources for

various scenarios.

6.1. Pass-by measurements

The model of moving sources utilizes the data from array-based pass-by mea-

surements for the localization and signal reconstruction of moving sources. The

pass-by measurements are considered as the data origin, as well as validation

data for the synthesized source signals and future pass-by auralizations, as shown

in the most right-hand box in Fig. 2.8.

Two cars were measured under the same measurement conditions in Chapter. 5

(Fig. 6.1). Both cars passed by the microphone array with constant speeds,

ranging from 20 km/h to 120 km/h with 10 km/h step, with 5 m distance

between the array and car trajectory. Each pass-by measurement for one specific

speed was conducted two to three times to compensate for any potential failure

that might happen in a singular measurement.
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CHAPTER 6. Array measurement-based model for auralization

(a) Car01 pass-by measurement. (b) Car02 pass-by measurement.

Figure 6.1.: Car pass-by measurements with the pseudorandom microphone
array.

6.2. Localization

In the following contents, the middle steering window is applied with 256 samples.

For the calculations using CB, Ú = 0.75Ñ. Two ways of mapping the source

distribution are introduced as follows.

6.2.1. RMS map

Although a vehicle can be represented by a single equivalent point sound

source [57], multiple sound sources are still desired to provide a more holis-

tic representation of the main sound sources and thus deliver more realistic

auralization. Therefore, the root mean square (RMS) values of each beamforming

output calculated at each focus point on the reconstruction plane are used to

detect the main sound sources of the pass-by cars.

For Car01 pass-by at 100 km/h, the localization maps using CB and DSB are

shown in Fig. 6.2. As the emitted sound is mainly from the lower part of the car

and due to the large computational cost using CB, only this part is processed. In

the map of DSB, no clear sound source can be detected, while in the map of CB,

four potential sources are given in the black circles in the top figure. Note that

the advantage of CB over DSB in localization was not implied in the simulations

in Chapter. 5, but similar observations can be found in the measurement results.

Two remarkable sound sources can be identified in the front and back proximities
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6.2. Localization

Figure 6.2.: The RMS localization maps using CB and DSB of Car01 pass-by
at 100 km/h. The unit of the 𝑥 and 𝑦 axes is meter [m]. The black
circles in the CB map represent potential sound sources.

of the front tire, and one slightly weaker source in the back of the rear tire.

In addition, a possible sound source on the top of the car surface can also be

observed, which could indicate the engine noise.

In this case, CB provides a clearer localization map than DSB. However, as

the two maps are calculated in terms of the RMS values of the beamforming

outputs, only the average energy distribution from the reconstruction plane is

shown. Therefore, the resolution is not as high as the localization results using

DSB reported in the literature, e.g. [32, 90] for cars or [33] for trains, which

illustrated the localization results in frequency bands. In the following section,

the localization is also be shown in frequency bands, i.e. 1/3 octave bands.

For Car02, Fig. 6.3 shows the localization maps using CB and DSB at the pass-by

speed of 90 km/h. Similarly as Car01, CB outperforms DSB in localization with

the RMS values. The results show that the noise emitted from the rear tire is

located in the front, while only one potential source from the front tire is detected

between the tire and car body. The circle on the top again implies the sound

emitted from the engine.

The localization results shown by the RMS values are able to describe a rough

source distribution on the car, whereas details are missing. However, the focus
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CHAPTER 6. Array measurement-based model for auralization

Figure 6.3.: The RMS localization maps using CB and DSB of Car02 pass-by
at 90 km/h. The unit of the 𝑥 and 𝑦 axes is meter [m]. The black
circles in the CB map represent potential sound sources.

of this thesis is not only on localization, but also on signal reconstruction. The

detected sources can be regarded as equivalent sound sources. Using RMS values

saves the computational cost and produces fewer sound sources compared with

localization in frequency bands, wherein the source position could be frequency

dependent [32]. Although objective evaluation criteria are able to take human

hearing perception into account, listening tests are still required to evaluate the

modeled moving sources and auralizations.

If the equivalent source method using RMS performs similar compared to the

1/3-octave-band method to be discussed later, the former method would be more

beneficial due to the lower demand for calculation.

6.2.2. Third-octave-band map

Fig. 6.4 shows the localization maps of Car01 in 1/3 octave bands, i.e. 630 Hz,

800 Hz, 1 kHz, 1.25 kHz, 1.6 kHz, 2 kHz, 2.5 kHz and 4 kHz. As can be seen from

the color bars, the energy decreases as the frequency increases, which indicates

low-frequency sound dominates. It can be seen that the source locations are

frequency dependent.
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6.2. Localization

(a) 630 Hz (b) 800 Hz

(c) 1 kHz (d) 1.25 kHz

(e) 1.6 kHz (f) 2 kHz

(g) 2.5 kHz (h) 4 kHz

Figure 6.4.: The localization maps in 1/3 octave bands using CB and DSB of
Car01 pass-by at 100 km/h. The unit of the 𝑥 and 𝑦 axes is meter
[m].
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The localization results in 1/3 octave bands of Car02 pass-by at 90 km/h are

given in Fig. 6.5. A sound source can be assumed at 2.8 m right on the ground

according to Fig. 6.5(a), Fig. 6.5(f) and Fig. 6.5(h). This could be due to wind

turbulence caused by the interaction between part of the car and the air. However,

artificial effect caused by the algorithms could also explain this potential source.

Additionally, the tires are still the main sound sources, and the locations are

frequency dependent. For Car02, the engine noise is not as dominant as that for

Car01 since no indication of source is shown in the engine area in Fig. 6.5.

6.3. Source synthesis

With the localization information, the beamforming outputs calculated at the

focus points are regarded as the reconstructed signals of the corresponding sources.

Parameters can be extracted from the reconstructed signals for signal synthesis

and parameter prediction.

6.3.1. Spectral analysis

Equivalent sources

According to the localization maps in terms of the RMS values and Fig. 6.2, four

sound sources are localized and shown as what the black circles indicate. The CB

output signals of the four localized positions are extracted and given in Fig. 6.6.

The RMS map delivers an average energy distribution which shows equivalent

sound sources. The equivalent sources may not reflect the real locations, leading

to further study on the localization results in terms of 1/3 octave bands.

Multiple frequency-dependent sources

As the energy decays with increasing the frequency, only the bands with center

frequencies from 630 Hz to 4 kHz are included to determine the source positions

while neglecting higher frequencies. Fig. 6.7 shows the procedure of searching

sound sources through the frequency bands. The indices of the localized sources

of each band are given in Tab. 6.1.
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6.3. Source synthesis

(a) 630 Hz (b) 800 Hz

(c) 1 kHz (d) 1.25 kHz

(e) 1.6 kHz (f) 2 kHz

(g) 2.5 kHz (h) 4 kHz

Figure 6.5.: The localization maps in 1/3 octave bands using CB and DSB of
Car02 pass-by at 90 km/h. The unit of the 𝑥 and 𝑦 axes is meter
[m].
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(b) S2.
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(d) S4.

Figure 6.6.: Spectra of the CB outputs according to the positions of the four
localized sound sources in terms of the localization maps in 1/3
octave bands.

From Tab. 6.1 it can be found out that some sources are broadband due to their

repetitive occurrences in various bands, e.g. the coordinates of (7 1) and (10 1),

which indicate the sources from the front tire. For the rear tire it is clearer since

only one source position is detected from all the frequency bands. Additionally,

all the other sources are in the frontal part of the car, mainly around the front

tire and engine part.

Fig. 6.8 illustrates the localized sound sources according to the results of the 1/3

octave bands with center frequencies from 630 Hz to 4 kHz and the spectra of the

corresponding beamforming outputs, i.e. the reconstructed signals of the sources.

However, for auralization, arbitrary lengths of signals are desired to provide

dynamic virtual scenarios with flexibilities, which makes the 256-sample signals

(sampling rate 44100 Hz) not sufficient. Another concern is that a short-time

signal lacks of spectral information, which can result in inappropriate spectral

analysis and synthesis. Therefore, the signal length needs to be extended to fulfill

the requirement. Moreover, the reconstructed signals can only represent the

scenarios where the measurements take place, but not unknown scenarios. For

instance, there is no knowledge about the localization and signal reconstruction
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6.3. Source synthesis

of unknown speeds which are not included in the measurements, e.g. pass-by

at 130 km/h or larger speeds. To overcome the restrictions mentioned above,

parameters need to be extrapolated from the reconstructed signals and proper

prediction methods need to be adopted to predict unknown scenarios.

630 Hz

800 Hz

1 kHz

1.25 kHz

1.6 kHz

2 kHz

2.5 kHz

Figure 6.7.: The localized source positions in the localization maps in 1/3 octave
bands. The red circles represent potential sound sources (Car01).
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0.63 0.8 1 1.25 1.6 2 2.5 3.15 4

(7 2) (10 1) (10 1) (7 1) (9 6) (6 4) (7 6) (7 8) (7 3)
(7 10) (40 1) (10 1) (15 3) (40 1) (40 1) (11 1) (40 1)

(7 8) (11 1) (40 1)

Table 6.1.: The source indices in each 1/3 octave band in the local coordinate
system (Car01). The numbers in the first row are the center fre-
quencies of the bands (unit: kHz), and the second row shows the
coordinate indices of the localized sources (The left bottom point
on the reconstruction plane is the origin of the local coordinate
system).

Figure 6.8.: The localized source positions according to the localization maps in
1/3 octave bands and the spectra of the corresponding reconstructed
signals.
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6.3. Source synthesis

6.3.2. Parameterization

The tire noise gradually dominates as the speed increases. The previous examples

showed no clear localization of the engine noise. On the one hand, the speed

selected is large so that the engine noise was lower than the tire noise; on the

other hand, the window length was small so it can also lead to the omission of

weaker sound sources, especially at low frequencies. According to Fig. 4.8 in

Chapter. 4, more accurate results can be yielded at lower speeds with larger

window lengths. Therefore, a larger window size (8192 samples) and lower speed

(30 km/h) is selected for the analysis of Car01.

In the localization map of the 1/3 octave band with the center frequency of 1.6

kHz (Fig. 6.9), the dark color area which implies the engine noise source can

be found on the left top. After extracting the DSB output signal and applying

the peak detection method [63], the spectrum with detected peaks is shown

in Fig. 6.10. The detected frequencies are, 64.6 Hz, 123.8 Hz and 236.9 Hz,

respectively, which can be the order frequencies of the engine. Higher order

frequency components are unable to be detected from the spectrum. In this sense,

following the idea of Pieren et al. [16], the higher order tones can be synthesized

based on the detected tones (Another reference is [19], which applies the proposed

method of Pieren et al and synthesized car engine noise).

Following the SMS method [63], the residual and envelope of the residual are

calculated, as shown in Fig. 6.11.

For tire noise, since no tonal components are detected, the envelope from the

reconstructed signal can be directly extracted without spectral subtraction.

6.3.3. Spectral synthesis

With SMS, a reconstructed signal can be decomposed into tonal and broadband

components. For the tonal component, the parameters for signal synthesis consists

of the amplitude 𝐴, frequency 𝑓 and phase 𝜃 (if necessary), and FFT coefficients

(in the case Fourier transform is used as the time-frequency transformation) are

the synthesis parameters for the broadband component. White noise is filtered

with the envelopes of the residuals, which are as the filters during the synthesis

procedure.
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Figure 6.9.: The localization map of the 1/3 octave band with center frequency
of 1.6 kHz. Window length: 8192 samples, car speed: 30 km/h.
The black circle indicates the potential engine noise source.
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Figure 6.10.: The three detected peaks shown on the spectrum of the beam-
forming output spectrum in terms of the localization result in
Fig. 6.9. Window length: 8192 samples, car speed: 30 km/h.
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Figure 6.11.: The residual and residual envelope of the detected engine noise.

6.3.4. Parameter prediction

As mentioned in the introduction, auralization would be not sufficient if only

the measured scenarios are applied. Take the source speed as an example for

parameter prediction, as the pass-by measurements are not able to cover all

speeds, it is necessary to investigate prediction methods to predict the synthesis

parameters of under the conditions of unknown speeds.

A model to predict the tonal component of the engine noise in terms of the

car speed can be found in Pieren et al. [16]. The model can be used to predict

the tonal parameters based on the extracted parameters from the reconstructed

signals. For the broadband component, the relationship between the level of

the broadband component and the speed can be predicted. However, how the

spectral envelope varies in terms of the speed still remains an open question.

Non-linear prediction models could be investigated for the prediction of the FFT

coefficients. Although the directivity may be not relevant in the source modeling,

in large scale auralization, e.g. long motion trajectory, the directivity becomes

more significant to deliver realistic acoustic perception [91, 7, 10].

91



CHAPTER 6. Array measurement-based model for auralization

BF output

Engine Tire

Tonal:
A, f, θ 

Broadband:

FFT 
coefficients

Broadband:

FFT 
coefficients

Prediction

Tonal:
A, f, θ 

Broadband:
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Broadband:
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Figure 6.12.: Parameter prediction based on the parameters extracted from
the beamforming outputs, i.e. the reconstructed signals from a
car. The tonal component from the engine can be synthesized
and predicted by the amplitude 𝐴, frequency 𝑓 and phase 𝜃,
and the broadband components from the engine and tire can be
synthesized and predicted by the FFT coefficients.
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6.4. Incorporation in virtual reality systems

The signal, position and directivity are the three main characteristics of the source

modeling for auralization in VR [25]. In addition, the speed, motion orientation,

acceleration etc. are parameters that should also be taken into consideration

when auralizing moving sources in VR. This thesis aims at obtaining the signal

and position as in the main characteristics, including the parameters of speed

and motion orientation of the moving sound source. However, the directivity

pattern which is important, yet often forgotten [92], is not discussed. As the

chosen steering window length is small and the source speed is not very large,

the directivity pattern varies little during the motion of the source and thus is

considered as constant.

6.4.1. Directivity

To incorporate the directivity in the source model in the VR system, existing

directivity patterns and measurements can be adopted. The directivity of a point

source can be decomposed into horizontal and vertical directivities [93]. For a

car, the directivity of tire or engine noise source is delivered as

𝐷(𝑓, 𝜃, å) = 𝐷𝐻(𝑓, 𝜃) +𝐷𝐻(𝑓, å) (6.1)

where 𝜃 is the horizontal angle as in Fig. 2.1, å is the vertical angle, 𝑓 is the

frequency and 𝐷𝐻 is the horizontal directivity. 𝐷𝐻 is expressed in terms of the

height of the source. At the height of 0.01m,

𝐷𝐻(𝜃) =

∮︁

0, f < 1250Hz

(⊗3 + 5♣ cos(𝜃)♣)
√︀

cos(å), f ⊙ 1600Hz
(6.2)

𝐷𝐻(𝜃) = (1.546(Þ/2 ⊗ 𝜃)). (6.3)

At the height of 0.75m,
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𝐷𝐻(𝜃) = (1.546(Þ/2⊗𝜃)3 ⊗1.425(Þ/2⊗𝜃)2 +0.22/Þ/2⊗𝜃+0.6)
√︀

𝑐𝑜𝑠(å). (6.4)

The directivity can also be obtained by measurements. The directivity measure-

ment of railway noise sources has been proposed by Zhang [94]. However, the

directivity of the noise source caused by the source motion, is still difficult to

measure. In their work only empirical models are given. Directivity measurement

requires a spatially extended microphone distribution to cover a large range of

angles. This requirement constrains the microphone arrays proposed in this thesis

to conduct the measurements.

6.4.2. Virtual Acoustics

To achieve auralization in VR, a complete source model should be combined

with proper propagation models and reproduction techniques. The real-time VR

platform, Virtual Acoustics (VA) [95], recently launched by the Institute of Tech-

nical Acoustics (ITA), RWTH Aachen University can incorporate the parameters

of the sources, propagation models, and create dynamic and interactive sound

scenes [96], including moving sources. The platform allows real-time interactions

between the users and moving sources by controlling the input parameters. In

addition, VA can also be jointly used with the visual VR system [97].

Therefore, for the further research based on the model proposed in this thesis,

e.g. pass-by auralizations to validate the signal reconstruction through listening

tests can be performed in the VA platform. Auralizing moving vehicles in urban

environments can be achieved by combining with the visual part for the purpose

of noise management and urban planning.

6.5. Summary

This chapter provides a framework on modeling moving sound sources based on

array measurements for the auralization in VR. Two pass-by cars were measured

with the pseudorandom array. Equivalent and frequency-dependent sources are

identified from the RMS and 1/3-octave-band localization maps, respectively.

With the array steering the localized positions, the signals are reconstructed
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from the beamforming outputs which potentially represent the sound sources on

the cars. However, it is not clear how much difference the auralizations would

have in terms of the localization and signal reconstruction from the RMS and

1/3-octave-band localization maps. Parameterization is subsequently conducted

and parameters representing the tonal and broadband components are extracted.

With the parameters, the source signals can be synthesized. The parameters

would also benefit obtaining parameters of unknown measurement scenarios.

Combining with directivities, a complete model for moving sound sources will be

established. In this thesis, parameter prediction, signal synthesis and directivity

are briefly introduced but not elaborately studied. In the end, VA is introduced

as a moving source auralization platform for future research.
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7

Conclusion and outlook

In this thesis, a model of moving sound sources has been developed based on

microphone array measurements. The model extracts the spatial locations and

signals for the purpose of auralizing moving sources. Two beamforming algorithms,

i.e. DSB and CB, are considered as the main algorithms in the model. The

following contents are addressed in this work:

• A spiral and a pseudorandom microphone array are designed for DSB and

CB, not only for localization, but also for signal reconstruction;

• DSB and CB are applied for localization and extended for signal recon-

struction to model moving sound sources;

• guidelines for using the array measurement-based model are investigated,

and a framework of using this model for auralization is provided.

The thesis consists of four main parts. First of all, microphone arrays are briefly

introduced and a spiral and a pseudorandom array are designed for DSB and

CB in Chapter. 3. In Chapter. 4, DSB is applied to localize and reconstruct

a moving periodic sound source. Furthermore, a broadband signal, a moving

engine signal is localized and reconstructed using CB in Chapter. 5. In the two

chapters, parameters in the model are discussed. Finally, a synthesis framework

of the measurement-based model is exploited in Chapter. 6.

In Chapter. 3, the design of a spiral array and a pseudorandom array is employed.

A spiral array is designed for DSB. A pseudorandom array is designed to meet

the RIP requirement of CB, and to assure the localization performance of DSB

as well by constraining resolution and MSL. The array configuration with 19 dB

MSL and 15° resolution at 30° steering angle is finally determined as the optimal

configuration for the sake of both CB and DSB. The two arrays are subsequently
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constructed and applied in on-site measurements.

With the two designed arrays, moving sound sources are modeled in terms of

localization and signal reconstruction using DSB and CB. In Chapter. 4, DSB is

modified for moving sources, the localization and signal reconstruction results are

evaluated by studying the errors of localization, frequency and level by varying the

parameters included in the model, i.e. steering position, steering window length

and source speed. The middle position of the steering window is adopted in this

thesis due to its lower errors than the left and right windows. It is found that the

steering window and the source speed have significant influence on the localization

and reconstruction accuracy of the model. Additionally, the localization accuracy

could be degraded by large windows and low frequencies, spectral leakage and

errors caused by de-Dopplerization. For signal reconstruction, the frequency

reconstruction has negative correlation with the window length and source speed.

The level errors show similar varying tendency as the localization errors in the

𝑥 direction. Moreover, the errors appear to positively correlate with the source

speed and window length at higher speeds. Various window lengths are necessary

to be applied in terms of various source speeds to deliver more accurate results.

The combination of limited frequency and spatial resolution, spectral leakage and

errors caused by de-Dopplerization would result in unexpected deviations. This

reason also holds for the errors using CB in Chapter. 5. The application of the

model using DSB on a pass-by loudspeaker shows the capability of localization,

and acceptable deviations of signal reconstruction in terms of frequencies and

levels of the periodic signal.

A broadband engine signal which consists of periodic and broadband components

is explored using CB. The results are shown together with the results using DSB

in Chapter. 5. For localization, CB and DSB are quite similar in this study.

Potential coherence in the sensing matrix due to large distance 𝐿 and small

number of sources could explain the localization similarity of the two algorithms.

Moreover, the parametric study and measurement application indicate that CB

outperforms DSB in terms of signal reconstruction under noisy situations (SNR

= 5 dB) and basis mismatch, while under ideal noise condition, e.g. SNR=

30 dB, the two algorithms are quite similar. In addition, the performance of

CB varies in terms of the window length and distance 𝐿 between the array and

source moving trajectory. The reconstruction error increases with increasing

𝐿. With larger window lengths, CB shows more stable performance in terms

of various source speeds. The 256-sample window is selected to provide better

spectral resolution while not increasing 𝑒𝑟𝑒𝑐. However, the window length is still

limited to deliver robust signal reconstruction due to the uncertainties in the

98



measurements. In the measurements, although uncertainties influence the results,

CB still outperforms DSB regarding signal reconstruction. Larger window length

will increase computational burden, which implies the limitation of CB.

Finally, a framework of the array measurement-based synthesis for auralization

is proposed in Chapter. 6. The model using DSB and CB is applied on two

pass-by cars. Equivalent and frequency-dependent sources are identified from the

RMS and 1/3-octave-band localization maps. The signals extracted according

to the localized sources are parameterized in tonal and broadband components

following the idea of SMS [63]. Parameters from the decomposed components,

i.e. level (amplitude) 𝐴, frequency 𝑓 and phase 𝜃 (if necessary) for the tonal

component and FFT coefficients for the residual can be used for signal synthesis,

and more importantly, for the prediction of the parameters in the scenarios that

are not included in the pass-by measurements. Combining with the directivity

information of the sources, the source modeling is complete for auralization.

However, covering the signal synthesis, prediction and directivity achievement

would exceed the scope and time schedule of this thesis. Therefore, only the ideas

are included under the framework, and no elaborated investigation is performed.

The proposed model is capable to provide the locations and signals of moving

sound sources, more specifically, a moving periodic signal and an engine signal.

Therefore, the conclusions are drawn on the basis of the two given cases. More

various signals need to be investigated with the proposed model. In addition, the

model is insufficient to synthesize impulsive sounds, e.g. squeal and rattling sounds

from trains. An impulsive sound can be reconstructed separately by adjusting the

steering window length according to the impulsive time duration, and extracting

the time-domain impulsive signal just from the beamforming output. Since the

occurrence of the impulsive sound is intermittent, the localization and signal

reconstruction might be degraded due to large steering angle if the sound does

not happen right in front of the array.

Furthermore, CB is more promising to provide more accurate localization ac-

cording to the stable source research [44, 45, 46, 47, 48]. However, in this thesis,

the localization abilities of the two algorithms are quite similar. Only in the

measurements, CB is more advantageous than DSB. Further work on increasing

the localization ability of CB which might have a positive influence on the signal

reconstruction is necessary. For example, designing arrays which are able to

provide less-coherent sensing matrices, and higher order sparsity needs to be

exploited for identifying multiple moving sound sources.
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Moreover, more efficient objective evaluation methods are required to better

map human perception, e.g. psychoacoustic parameters [14]. The measure 𝑒𝑟𝑒𝑐

proposed in this study is advantageous to quickly evaluate the reconstructed

signals. However, although 𝑒𝑟𝑒𝑐 accounts for human perception, listening tests are

still desired to acquire more straightforward and accurate perceptual differences

between the reconstructed and original signals.

Last but not least, combining with proper propagation models and reproduction

techniques, pass-by auralizations can be created to compare with real-scenarios

to help validate and improve the proposed model.

100



Acknowledgments

First of all, I would like to thank Prof. Michael Vorländer for letting me in his

group and doing research in acoustics, which is so different from other subjects

for the opportunity not only to see our research, but more importantly to listen

to it. He has been inspiring, helping and guiding me through the PhD years with

his wisdom of being a scholar and a person. I also appreciate Prof. Peter Jax’s

will to be my second supervisor.

My gratitude goes to Prof. Diemer de Vries, the former guest professor at ITA.

Without him, I wouldn’t be in this institute. His help and responsibility for me

during my first years gave me so much inspiration and motivation.

I would like to thank Karin Charlier for showing up every time when I encountered

any kind of trouble in life and at work. Thanks to Uwe Schlömer and colleagues

from the mechanical workshop for realizing the microphone arrays with the

delicate work, and to Rolf Kaldenbach and Norbert Konkol from the electronic

workshop for all their contributions to my measurements.

Special thanks go to Dr. Gottfried Behler for many fruitful talks regarding

research and measurements. He is full of practical ideas to transform theoretical

design to feasible plans. I am thankful for him and his car for working on

the tedious outdoor pass-by measurements in hot summer days. The passion,

enthusiasm and knowledge from Dr. Frank Wefers had been leading me to the

right direction in the first two years. I would like to express my gratitude for

Johannes Klein and Marco Berzborn for the talks on my measurements. Thanks

to Dr. Markus Müller-Trapet for his MATLAB codes to get me familiar with

beamforming more quickly, and the VR-crew: Lukas Aspöck, Jens Mecking,

Michael Kohnen, Jonas Stienen and Muhammad Imran.

My ITA memory wouldn’t be complete without sharing the years’ time with

others. Special thanks go to Dr. Noam Shabtai as my officemate and friend from

101



CHAPTER 7. Conclusion and outlook

my first days at ITA. His humor and jokes made a wonderful atmosphere in the

office. Thanks go to Dr. Wanglin Lin, Margret Engel, Dr. Samira Mohamady,

Rob Opdam, Dr. Ellen Peng and Dr. Shuai Lyu for all those fun we had after

work. I would like to thank my students, namely Yan Li, Wenhuan Duan, Long

Chen, Xinshuo Gu for contributing to this work.

Thank every ITA colleague for being my voluntary German teachers. Their

patience and willingness helped improve my German skill a lot. Thanks also go

to other colleagues, Dr. Martin Guski, Ingo Witew, Dr. Martin Pollow, Rhoddy

Viveros, Florian Pausch, Mark Müller-Giebeler, Dr. Ramona Bomhardt and

Josefa oberem.

I would like to thank my parents for all the support through the years, letting

me be the person I wanted to be. Last but above all, I would like to thank my

beloved wife, Bo Zhang, for the lasting love, confidence and belief in me. She is

always the person behind me and backs me up by any means.

102



A
Virtual recordings of moving sound

sources

In the measurement with microphones, the microphones are usually connected to

the same sound card and thus synchronized. Therefore, the recording length of

every microphone is the same. In the MATLAB code below, zeros are added to

the calculated recorded signals to make all the recordings with same length. In

addition to recording moving sound sources, the case of stationary sound source

is also accounted for.

function [ sig_R_final ] = rec_movingSrc ( sig_S , pos_s ,

pos_r)

% REC_MOVINGSRC Simulates the microphone recordings of

moving sound sources

% This function can return recorded signals of

microphones from multi

% moving sound sources

%

% Syntax : out = rec_movingSrc ( sig_S , pos_s , pos_r)

% sig_S: source signals

% pos_s: initial positions of the sources

% pos_r: positions of microphones

% c: speed of sound

% v_s: source speed

% ori: moving orientation of the sources

% fs: sampling rate

% tRun: motion time (= sound emission time)

% Reference <Theoretical Acoustics >

% (11.2: Source emission from moving sources )
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CHAPTER A. Virtual recordings of moving sound sources

global c v_s ori fs tRun

[L,nS] = size(sig_S);

[~,nR] = size(pos_r);

timeResolution = 1/fs;

M = v_s/c;

if L/fs < tRun

error('Source signal not long enough for the input

run time.');

end

if norm( sourceOrientation ) ~= 1

error('Source orientation should be normalized .');

end

if v_s < 0

error('The speed of source cannot be minus!');

elseif v_s > 0

speedVector = ori * v_s;

runSample = ceil(fs * tRun); % ceil: to

the upper integer

sampVect_e = 1: runSample ;

tVect_e = ( sampVect_e - 1) ' * timeResolution ;

distSRAll = zeros(nR ,nS , runSample );

cosTheta = zeros(nR ,nS , runSample );

for iR = 1:nR

sumSig_r {iR} = [];

sumTemp = [];

for iS = 1:nS

if iR == 1

% calculate only once. sources are not

dependent on receivers

sourcePositionAll {iS} = repmat (pos_s (:,

iS) ,[1, runSample ])...

+ repmat ( speedVector ,[1, runSample ]) .*

repmat (tVect_e ' ,[3 ,1]);

end

% distSRAll is R in the book

distSRAll (iR ,iS ,:) = sqrt(sum ((

sourcePositionAll {iS} ...
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- repmat (pos_r (:,iR) ,[1, runSample ])).^2)

);

vect_r2s = repmat (pos_r (:,iR) ,[1, runSample ])

- ...

sourcePositionAll {iS};

cosTheta (iR ,iS ,:) = vect_r2s ' * ori...

./ norm( vect_r2s );

sig_r_unEq {iR ,iS} = ...

1/4/ pi./ squeeze ( distSRAll (iR ,iS ,:)) ./

(1 - M * ...

squeeze ( cosTheta (iR ,iS ,:))).^2 ...

.* (sig_S (:,iS));

% interpolation in reception time. Convert

signals from unequal

% time interval to equal

tTrans {iR ,iS} = squeeze ( distSRAll (iR ,iS ,:))

./ c;

tVect_r_unEq {iR ,iS} = tVect_e + tTrans {iR ,iS

};

tVect_r_Eq {iR ,iS} = ...

( tVect_r_unEq {iR ,iS }(1): timeResolution :

...

tVect_r_unEq {iR ,iS}( end)) ';

sig_r_Eq {iR ,iS} = ...

interp1 ( tVect_r_unEq {iR ,iS},...

sig_r_unEq {iR ,iS},...

tVect_r_Eq {iR ,iS},'spline ');

% complete the signal in global time with

zero paddings before

% the first sample arrives at the receiver

tTrans_1Samp (iR ,iS) = distSRAll (iR ,iS ,1)/c;

nZrs(iR ,iS) = ceil( tTrans_1Samp (iR ,iS) * fs)

;

sig_r_zrs {iR ,iS} = ...

[zeros(nZrs(iR ,iS) ,1); sig_r_Eq {iR ,iS }];

len_sig_r_zrs (iR ,iS) = ...

numel( sig_r_zrs {iR ,iS});

% compensate all signals into same length in

one microphone

if nS == 1
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sumTemp = sig_r_zrs {iR ,iS};

else

if iS == 1

sumTemp = sig_r_zrs {iR ,iS};

else

if len_sig_r_zrs (iR ,iS) >= length (

sumTemp )

lengthDiff = len_sig_r_zrs (iR ,iS) -

length ( sumTemp );

sumTemp = sig_r_zrs {iR ,iS} + [ sumTemp ;

zeros(lengthDiff ,1) ];

else

lengthDiff = length ( sumTemp ) -

len_sig_r_zrs (iR ,iS);

sumTemp = sumTemp + [ sig_r_zrs {iR ,iS};

zeros(lengthDiff ,1) ];

end

end

end

end

sumSig_r {iR} = sumTemp ;

lengthReceiver (iR) = numel( sumSig_r {iR});

end

maxLengthReceiver = max( lengthReceiver );

% compensate signals in all microphones with same

length

for iR = 1:nR

lengthDiffReceiver = maxLengthReceiver -

lengthReceiver (iR);

sig_R_final (:,iR) = [ sumSig_r {iR};...

zeros( lengthDiffReceiver ,1) ];

end

% v_s = 0

else

for iR = 1:nR

distSR (iR ,:) = sqrt(sum (( pos_r (:,iR) - pos_s)

.^2));

t_trans (iR ,:) = distSR (iR ,:)/c;

samp_trans (iR ,:) = round( t_trans (iR ,:)*fs);
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for iS = 1:nS

sig_R_tShift {iR ,iS} = [zeros( samp_trans (iR ,

iS) ,1);sig_S (:,iS)];

sig_R_tShift_1r {iR ,iS} = sig_R_tShift {iR ,iS}

/ distSR (iR ,iS);

% sum all source signals at iR

if iS == 1

sumTemp = sig_R_tShift_1r {iR ,iS};

else

if length ( sig_R_tShift_1r {iR ,iS}) >=

length ( sumTemp )

sumTemp = sig_R_tShift_1r {iR ,iS} +

...

[ sumTemp ;zeros (( length (

sig_R_tShift_1r {iR ,iS})...

- length ( sumTemp )) ,1)];

else

sumTemp = ...

[ sig_R_tShift_1r {iR ,iS}; zeros ((

length ( sumTemp )...

-length ( sig_R_tShift_1r {iR ,iS}))

,1)] + sumTemp ;

end

end

end

sig_R{iR} = sumTemp ;

len_sig_R (iR) = length (sig_R{iR});

end

% compensate signals in all microphones with same

length

maxLength = max( len_sig_R );

for iR = 1:nR

len_diff = maxLength - len_sig_R (iR);

sig_R_final (:,iR) = [sig_R{iR}; zeros(len_diff ,1)

];

end

end

end
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B

Measurements of pass-by trains

Most results of this preliminary study were published in [70].

B.1. Array performance

A uniform linear array with 24 microphones was used to localize the pass-by

trains.

The array beam patterns at 2 kHz with two different weighting are shown in

Fig. B.1. It can be seen that using the Chebyshev spatial weighting increases the

beamwidth but lowers the maximum side lobe level.

Figure B.1.: Beam patterns of the linear array with uniform and Chebyshev
weightings.
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The Rayleigh resolution, which is related to 𝐵𝑊𝑁𝑁 can be calculated by [98]:

𝑅(𝜃) = 1.22
𝐿

𝐷
Ú

1

𝑐𝑜𝑠3(𝜃)
(B.1)

where L is the distance from the array center to near-side surface of the train, D

is the array diameter, 𝜃 is the steering angle between the incident wave direction

and the main response axis (MRA) of the array, and Ú is the wavelength. The

resolution indicates that if two sound sources are within the range, they cannot

be distinguished with each other. For instance, the resolution of this array at 2

kHz, 3.2 m distance, with no steering is 0.36 m (6◇, steering angle equals zero).

As stated before, the weighting 𝑤𝑛 is important to array performance. If uniform

weighting is used, the resolution can reach the best when the noise at each

microphone is assumed as spatially uncorrelated. Therefore the resolution and

the sidelobe level reduction are reciprocal with each other. If the Chebyshev

weighting is applied, the 𝑀𝑆𝐿 increases by 9 dB to 18 dB and at the same time

half 𝐵𝑊𝑁𝑁 increases from 3◇ to 9◇ (0.5 m, steering angle equals zero) at 2 kHz

compared to the uniform weighting. Taking Chebyshev weighting as an example

of the nonuniform weightings is because it increases the beamwidth with the least

value and the 𝑀𝑆𝐿 with only around 1 dB less than the others.

B.2. Measurement setup

Several parameters of the measurements are given in Tab. B.1. Two types of

regional trains, RE9 and RB20, in North Rhine-Westphalia, Germany were

measured at the speeds of 150 km/h and 91 km/h. A video camera was used to

synchronize the position of the trains and the recordings for later processing.

N D (m) d (m) L (m) H (m)

24 1.84 0.08 3.2 2.64

Table B.1.: Several parameters in the array setup. 𝑁 is the number of mi-
crophones, 𝐷 is the array diameter (length), 𝑑 is the microphone
spacing, 𝐿 is the distance between the array and the near-side
surface of the train and 𝐻 is the height of the array (from the top
microphone to the ground).
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B.2. Measurement setup

The setup of the measurement is sketched in Fig. B.2. The on-site measurement

is shown in Fig. B.3.

Figure B.2.: Front view of the on-site train pass-by measurement setup.

Figure B.3.: The setup of the train pass-by measurements.
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CHAPTER B. Measurements of pass-by trains

B.3. Localization results

The recorded signals at the microphones are extracted according to different grid

points and then processed by DSB. Fig. B.4 shows the processing on a line of

vertical grid points. This procedure repeats to calculate all the grid points on

the plane (This procedure is the same as in Fig. 4.2).

Microphone array

Reconstruction plane

Figure B.4.: The sketch of the processing procedure. The red square on the
reconstruction plane consists of a line of vertical grid points to be
reconstructed. The red square on the audio signal represents the
extracted signal of a microphone in terms of a grid point in the
red square on the reconstruction plane.

Uniform weighting is applied at the frequencies below 2.5 kHz, while for higher

frequencies Chebyshev weighting is used. It assures higher resolution at lower

frequencies and larger restriction of MSL at higher frequencies. Fig. B.5 presents

the localization results of RE9 at different 1/3 octave bands. It can be seen that

the rolling noise generated by the wheel rail contact is one of the main sound

sources. As the frequency increases, the aerodynamic noise gradually increases,
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B.3. Localization results

mainly from the pantograph, the gaps between coaches and the facilities outside

of the train above the roof. Nevertheless, the rolling noise is dominant in a wide

frequency range.

Figure B.5.: The localization results of the RE9 train of in 1/3 octave bands.

Fig. B.6 shows the localization results of RB20 at 1/3 octave bands. The

distribution of the noise sources is similar as RE9. Differently, fewer outer

facilities lead to less noise contribution from them.

Figure B.6.: The localization results of the RB20 train in 1/3 octave bands.
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CHAPTER B. Measurements of pass-by trains

The resolution of the linear array is limited at low frequencies, e.g. 500 Hz in the

two cases above. In addition, the vertical array has no horizontal resolution which

disables the array to track the moving sound source to eliminate the Doppler

effect. It results in inaccurate localization. Therefore, two-dimension arrays

and de-Dopplerization are necessary to address the localization of moving sound

sources, and the subsequent signal reconstruction.
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C

Separable arrays

To accelerate the beamforming and deconvolution [99] process using kronecker

array transform (KAT), separable array geometry is necessary. To achieve

comparable results, the resolutions of the spiral and separable arrays should be

similar, and the microphone numbers remain the same. Therefore, the diameter

of the separable array is set to 0.3 m, half of the size of the spiral array. Non-

redundant array [72] is able to keep higher resolution capability using a small

number of microphones compared to a larger uniform array. In this research, 6

microphones are aligned linearly, with the microphone spacing set to 0.02 m, 0.07

m, 0.12 m, 0.26 m and 0.3 m. Extending the linear non-redundant array to two-

dimensional, a 6×6 array is obtained. After eliminating microphones in the four

corners of the array aperture, the reduced number of the microphones remains

identical with the spiral array. The configuration is shown in Fig. C.1. Fig. C.2

provides the beam patterns of the spiral, the 6 × 6 separable and the reduced

6 × 6 separable arrays at 3 kHz. First of all, after removing the microphones

in the corners, the beam pattern has no significant change. Second, the spiral

and reduced separable arrays share similar beam width, and so is the resolution.

The sidelobe levels of the separable arrays are almost 10 dB higher than that of

spiral array. Nevertheless, the sidelobes are not relevant by applying appropriate

deconvolution methods since the sidelobes can be significantly constrained.

A plane (1.5 m × 5 m) moves in the x-direction, together with two point sources

at the speed of 40 m/s. Two point sources are placed on the plane with 2 m

spacing. The microphone array is set at 1.5 m away from the moving direction.

The array origin is on the 𝑧-axis. The plane is meshed into grids, with 5 cm

spacing between each other. Each grid represents a potential sound source, so

that the array can steer its angle to “scan” the plane to search for the sources.

The left source consists of a 2 kHz tone and noise, and the right source signal

contains the same noise as in the left one. In both cases, additive white Gaussian

noise (AWGN) with SNR = 20 dB is added. The sound pressure RMS of the
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-0.3 -0.2 -0.1 0 0.1 0.2
-0.3

-0.2

-0.1

0

0.1

0.2

Figure C.1.: The separable array. The “✥” represents the position of a micro-
phone and the “×” represents the origin of the array. The unit of
the axes is meter.

Figure C.2.: The beam patterns of the spiral, the 6 × 6 separable and the
reduced 6 × 6 separable arrays.
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tone and noise are both 1 Pa. The good localization ability of the deconvolution

method using spiral and separable arrays has been confirmed to be comparable

[13]. Therefore, only the color map generated by DSB id shown.

Fig. C.3 shows the localization results using the spiral and separable arrays. As

what mentioned before, the separable array delivers larger slidelobe levels. Both

arrays are able to localize the left periodic source at 2 kHz. With the arrays

(a) Spiral array (b) Separable array

Figure C.3.: The localization results of the spiral and separable arrays in the
1/3 octave band with 2 kHz center frequency. The × represents
the source position.

steering to the left source, the periodic signal is reconstructed (Fig. C.4). The

similar spectra indicate that with accurate localization results, the two arrays

deliver similar signal reconstruction.
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(a) Spiral array (b) Separable array

Figure C.4.: The signal reconstruction results of the spiral and separable arrays
in the 1/3 octave band with 2 kHz center frequency.

118



Acronyms

AWGN additive white Gaussian noise

CB compressive beamforming

CS compressive sensing

CWT continuous wavelet transform

CroPaC cross pattern coherence

DSB delay and sum beamforming

FFT fast Fourier transform

FT Fourier transform

ITA Institute of Technical Acoustics

LCMV linear constrained minimum variance

JNDF Just-noticeable difference in frequency

JNDL Just-noticeable difference in level

KAT kronecker array transform

MPDR minimum power distortionless response

MRA main response axis

MUSIC multiple signal classification

MVDR minimum variance distortionless response

MSL maximum sidelobe level

RIP restricted isometry property

RMS root mean square

SMS spectral modeling synthesis

SNR signal-to-noise ratio

SPL sound pressure level

SR sparse recover

STFT short-time Fourier transform

StRIP statistical restricted isometry property

TDTF time-domain transfer function

VA Virtual Acoustics

VR Virtual reality

WT wavelet transform
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λογος
Logos Verlag BerlinISBN 978-3-8325-4759-2

ISSN 2512-6008

When auralizing moving sound sources in Virtual Reality (VR) environments,

the two main input parameters are the location and radiated signal of the

source. An array measurement-based model is developed to characterize

moving sound sources regarding the two parameters in this thesis. This

model utilizes beamforming, i.e. delay and sum beamforming (DSB) and

compressive beamforming (CB) to obtain the locations and signals of mov-

ing sound sources. A spiral and a pseudorandom microphone array are

designed for DSB and CB, respectively, to yield good localization ability and

meet the requirement of CB. DSB and CB are further extended to localize

moving sound sources, and the reconstructed signals from the beamforming

outputs are investigated to obtain the source signals. Moreover, localization

and signal reconstruction are evaluated through varying parameters in the

beamforming procedures. The parameter studies show guidelines of pa-

rameter selection based on the given situations in this thesis for modeling

moving source using beamforming. Both algorithms are able to reconstruct

the moving signals in the given scenarios. Although CB outperforms DSB

in terms of signal reconstruction under particular conditions, the localiza-

tion abilities of the two algorithms are quite similar. The practicability of the

model has been applied on pass-by measurements of a moving loudspeaker

using the designed arrays, and the results can match the conclusions drawn

above from simulations. Finally, a framework on how to apply the model for

moving source auralization is proposed.
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