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Preface

I have been teaching courses on experimental techniques in nuclear and particle
physics to master students in physics and in engineering for many years. This book
grew out of the lecture notes I made for these students. The physics and engineering
students have rather different expectations of what such a course should be like. I
hope that I have nevertheless managed to write a book that can satisfy the needs
of these different target audiences. The lectures themselves, of course, need to be
adapted to the needs of each group of students. An engineering student will not ques-
tion a statement like “the velocity of the electrons in atoms is ≈1% of the velocity
of light”, a physics student will. Regarding units, I have written factors h and c
explicitly in all equations throughout the book. For physics students it would be
preferable to use the convention that is common in physics and omit these constants
in the equations, but that would probably be confusing for the engineering students.

Physics students tend to be more interested in theoretical physics courses.
However, physics is an experimental science and physics students should under-
stand how experiments work, and be able to make experiments work. As a post doc,
I have never designed any electronics board, but many times I have had to find out
why the board I have given did not do what it was supposed to do and fix the prob-
lem. This is an essential skill any experimental physicist should have. I hope this
book will help the students in acquiring this skill and provide her or him with a suf-
ficient basic knowledge on nuclear and particle detection techniques such that she
or he is able to read, and understand, the scientific literature in this field.

Brussels, Belgium Stefaan Tavernier
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Chapter 1
Introduction

1.1 Documentation

The present textbook is an introduction to measurement techniques in nuclear and
particle physics and to particle accelerators. This subject is a part of the standard cur-
riculum in Physics, Nuclear Engineering and Medical Physics. The course should
preferably be taken together with a more theoretically oriented course on nuclear
physics or particle physics. References [1–3] are a few of the many good hand-
books providing this. However, the book can be used as a stand-alone textbook on
the experimental aspects of nuclear and particle physics. The only pre-requisite is
the general mathematics and physics background that is required for all students in
Physics and Engineering.

The emphasis in this textbook is on the principles of operation and the basic
characteristics of measurement systems and accelerators. For a more detailed and
complete description of measurement procedures, the readers should consult, for
example reference [4], ‘A Handbook of Radioactivity Measurements Procedures’.
Such books, however, assume that the reader already has a basic knowledge of the
principles of particle measurement, and this is what the present textbook aims to
provide.

For preparing these lectures, and lecture notes, I have used material from many
different sources, and no attempt is made to give complete references. I found the
following books particularly useful:

– ‘Radiation Detection and Measurement’ by Glen Knoll [5]. This is a reference
book about nuclear measurement techniques. It contains extensive references to
the original literature and a wealth of useful information.

– ‘Review of Particle Physics’ by Amsler [6]. This document is oriented towards
particle physics, but several parts of it are also very useful for researchers active
in the field of nuclear science. In particular, the tables with numerical values are
very convenient and useful. Moreover, this document is freely downloadable from
the Web. Mainly the section ‘Constants, Units, Atomic and Nuclear Properties‘,
is of interest to students. Several parts of this last document are reproduced as
annexes at the end of these lecture notes.

1S. Tavernier, Experimental Techniques in Nuclear and Particle Physics,
DOI 10.1007/978-3-642-00829-0_1, C© Springer-Verlag Berlin Heidelberg 2010



2 1 Introduction

– ‘Principles of Charged Particle Acceleration’ by Stanley Humphries (Ref. [10]
in Chap. 3) and ‘An Introduction to Particle Accelerators’ by Edmund Wilson
(Ref. [3] in Chap. 3). Both books contain an excellent introduction to particle
accelerators.

– ‘Techniques for Nuclear and Particle Physics Experiments’ by W.R. Leo [7].

Data on properties of isotopes and nuclear reactions can be found the National
Nuclear Data Centre tables [8]. Other useful information can be found in the
Physical Reference Data from the National Institute of Standards and Technology
(NIST) [9] and in Kaye and Laby Tables of Physical and Chemical Constants [10].
These three documents are also freely downloadable from the Web.

At the end of each chapter there is a list of other material used in preparing that
chapter, followed by a few references.

1.2 Units and Physical Constants

In nuclear and particle physics it is common to use units that are somewhat different
from those that are standard elsewhere. The charge is expressed in number of proton
charges, 1 proton charge = 1.602×10−19 C, and the electron has the same charge as
the proton, but of opposite sign. Energy is usually expressed in ‘electron-volt’. One
electron-volt (eV) is the energy that a proton or electron acquires if it goes through
a potential difference of 1 V and hence 1 eV = 1.602×10−19 J. To avoid using large
numbers, one often uses

1 keV = 103 eV
1 MeV = 106 eV
1 GeV = 109 eV
1 TeV = 1012 eV

A mass is expressed in kg, but in nuclear and particle physics, it is common to
express the mass as the equivalent energy using the well-known relation E = mc2.
The mass of a proton is 1.672×10−27 kg, but I will usually write that the mass of a
proton is 938.272 MeV/c2. This simply means that mprotonc2 = 938.272 MeV. In this
relation, c represents the speed of light in vacuum, c = 299 792 458 m s−1. Similarly,
for the momentum P, the quantity cP has the dimension ‘energy’, and I will mention
the momentum in units of MeV/c. In the physics literature, it is common practice to
omit factors c and � in the equations, but in these lecture notes, I will always write
these factors explicitly.

The mass of atoms and isotopes is usually expressed in ‘unified atomic mass
units’. By definition this unit is 1/12th of the mass of a 12C atom. One unified atomic
mass unit equals 931.494 MeV/c2 or 1.660×10−27 kg.

For X-rays and gamma rays, there are a few simple and important relations:

E = hν = �ω, and λν= c
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In these equations, ν = frequency, λ = wavelength; ω = 2πν is the angular
frequency and h is the Planck constant. The reduced Planck constant � is also often
used:

�= h

2π
= 1.05410−34Js

In nuclear and particle physics, the quantity hc or �c often enters into the
calculations. In convenient units, these quantities are given by

�c = 197.610−15MeV.m
hc = 1.242 eV .μm

The fine structure constant, α, and the classical electron radius, often enter into
theoretical calculations. These quantities are given by

fine structure constant: α = e2

4π�cε0
≈ 1

137.035

classical electron radius: r0 = e2

m0c24πε0
= 2.81810−15m,

where m0 is the electron mass; m0c2 = 511 keV.
The fine structure constant is the squared charge of the electron combined with

some other fundamental constants so as to give a dimensionless number. The
fact that this number is much smaller than unity somehow says in an absolute,
dimension-independent way that the charge of the electron is small. The name
‘classical electron radius’ is misleading, because it has nothing to do with the true
dimension of the electron. The true dimension of the electron is not known but it is
certainly smaller than 10−18 m.

Annex 1 lists most of the numerical constants that are useful in the contexts of
nuclear and particle physics.

1.3 Special Relativity

Whenever objects travel at a speed that is a significant fraction of the speed of light,
it is necessary to use relativistic formulas for kinetic variables such as speed, energy
and momentum. This is the case if the kinetic energy of a particle is a sizeable
fraction of, or larger than, the rest energy mc2. In nuclear physics, alpha particles
and nuclear fragments are always slow compared to the speed of light, and non-
relativistic equations are often sufficient. However, most of the time electrons have
a velocity close to the speed of light, and it is essential to use the correct relativistic
equations. In high-energy particle accelerators, all the particles move at a velocity
close to the velocity of light, and relativistic equations must be used. I have therefore
added a section to remind the reader of the main elements of special relativity.
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Fig. 1.1 The observer S′
moves with a velocity ‘v’
relative to the observer S.
Each observer has his own
reference system, {x, y, z}
and {x′, y′, z′}

Consider the situation illustrated in Fig. 1.1, two observers, S and S′ are moving
with a velocity ‘v’ relative to each other. In non-relativistic physics, the relation
between the position coordinates x, y, and z and the time coordinate t of an object
located at point ‘A’, as seen by the two observers, is given by

⎧
⎪⎪⎨

⎪⎪⎩

x′ = x − νt
y′ = y
z′ = z
t′ = t

In non-relativistic physics, the kinetic energy ‘Ekinetic’ and the momentum ‘P’ of
a particle of mass ‘m’ with a velocity ‘v’ is given by

Ekinetic = 1

2
mν2 P = mν

In special relativity theory, the above transformation relations are replaced by the
Lorentz transformation:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x′ = x − ν.t
√

1 − (ν/c)2

y′ = y
z′ = z

t′ = t − ν.x/c2
√

1 − (ν/c)2

The Lorentz transformation can be written in a more elegant way with the help
of the parameters β and γ as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′ = γ (x − βct) β = ν

c
y′ = y

z′ = z γ = 1
√

1 − (ν/c)2

ct′ = γ (ct − βx)
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An essential property of the Lorentz transformation is that it guarantees that the
speed of light is the same for all observers. This transformation has a number of
surprising consequences: one is that the time is no longer an absolute time, but
depends on the observer.

The total energy E and the momentum P {E, Pxc, Pyc, Pzc} of any object obey
the same Lorentz transformation as the time and position coordinates {ct, x, y, z}.
We therefore have

⎧
⎪⎪⎨

⎪⎪⎩

P′
xc = γ (Pxc − βE)

P′
yc = Pyc

P′
zc = Pzc

E′ = γ (E − βPxc)

An important consequence of the Lorentz transformation for the energy and the
momentum is the relation

m2
0c4 = E2 − �P2c2 (1.1)

In Eq. 1.1, �P2 stands for P2
x + P2

y + P2
z . This equation shows, among other things,

that the energy of a particle at rest is E = m0c2.
To obtain the correct relativistic expressions for the energy and the momentum of

a particle as a function of its velocity, let us consider a particle at rest in the system
S. The energy and the momentum of this particle are given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Pxc = 0

Pxc = 0

Pxc = 0

E = m0c2

Consider the frame S′ moving relative to S with a velocity v in the opposite direction
of the x-axis. The energy and the momentum of this particle in S′ are given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Pxc = βγ m0c2

Pxc = 0

Pxc = 0

E = γ m0c2

Clearly the particle is moving with velocity v in the system S′. We conclude that the
energy and the momentum of a particle with velocity v are given by
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p = βγ m0c2

E = γ m0c2

For relativistic particles the dependence of the kinetic energy and the momentum
on the velocity is therefore is given by

E = Ekinetic + m0c2 = m0c2
√

1 − (ν/c)2
(1.2)

P = νm0c2
√

1 − (ν/c)2
(1.3)

From Eq. (1.2), we immediately derive the relation between the velocity ‘v’ of
the particle and its kinetic energy:

ν

c
=
√

1 −
(

m0c2

Ekinetic + m0c2

)2

(1.4)

Using the above equation one finds that the velocity of an electron with a kinetic
energy of 1 MeV is 95% of the speed of light, while the velocity of a proton with a
kinetic energy of 1 MeV is only 5% of the speed of light.

From Eq. (1.1), we obtain the correct relativistic relations between kinetic energy
and momentum:

Ekin =
√

P2c2 + m2
0c4 − m0c2 (1.5)

Pc =
√

2m0c2Ekin + E2
kin (1.6)

If the energy of the particle is much larger than its rest mass energy, these
equations, to a good approximation, simplify to Ekinetic ≈ E ≈ Pc.

Another important consequence of the Lorentz transformation is that the duration
of time intervals is no longer the same for all observers. Consider an object at rest
and located at the origin in reference system S. Suppose the object is emitting a light
flash at time t1 and another light flash at time t2. The time difference between these
two light flashes as seen in the system S is t1 – t2. In the system S′, this time interval
is given by

t′2 − t′1 = t2 − t1
√

1 − ν2/c2
= γ (t2 − t1)

The same time interval is longer in the system S′. This is completely general. All
events happening with an object in motion will be slower than that with the same
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object at rest. In particular, the decay time of object travelling at a larger velocity
will be longer by a factor γ than the decay time for the same object at rest.

1.4 Probability and Statistics

Radioactive decays, or interactions created at particle accelerators, are statistical
phenomena. There are a few concepts borrowed from probability and statistics that
we will use again and again during these lectures. Therefore, I have added a brief
paragraph to remind the students of the most important of these concepts. Many
more concepts of probability and statistics are essential tools in the analysis of
experimental data in nuclear and particle physics. However, these concepts are not
used in the present lecture notes and are therefore not mentioned here. Reference
[11] is one of many good textbooks on this subject. The sections on probability and
statistics in reference [6] also contain very useful methods for the statistical analysis
of data.

Gaussian distribution. Consider a continuous statistical variable x with probabil-
ity density function f(x). The quantity f(a)dx represents the probability that x takes a
value between a and (a + dx).

The Gaussian or normal probability density function is given by

f (x) = 1√
2π σ

exp

(

− (x − μ)2

2σ 2

)

(1.7)

The Gaussian distribution, Eq. (1.7), has the following properties:

(1)

+∞∫

−∞
f (x)dx = 1

(2) The average value of x, often written as <x> or as x̄, is given by

x̄ =< x >=
+∞∫

−∞
xf (x)dx = μ

(3) For a statistical variable x, with probability density function f(x), the dispersion
or root-mean-square (r.m.s.) deviation, usually written as σ , is given by

σ 2 =
〈
(x − x̄)2

〉
=
∫

(x − x̄)2 f (x) dx

For a Gaussian distribution, the r.m.s. dispersion is the parameter σ occurring in
Eq. (1.7). Equation (1.7) therefore represents a Gaussian distribution with average
value μ and dispersion σ .
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Fig. 1.2 Gaussian or normal
distribution. FWHM stands
for ‘full width at half
maximum’. The probability
that the value of x is within
one standard deviation σ. of
the average value is 68% and
the probability that x is within
two standard deviations is
95%

A Gaussian distribution has the well-known bell shape shown in Fig. 1.2. The
width of such a distribution is often characterised by its ‘full width at half maxi-
mum’, usually abbreviated as FWHM. From the probability density distribution Eq.
(1.7), one immediately finds that the FWHM of a Gaussian distribution is related to
the dispersion σ by FWHM = σ

√
8 ln 2 = 2.355 σ .

Assume that we have a large number of statistical variables xi, with arbitrary
probability density functions fi(xi). Consider the new variable y defined as

y =
∑

i

xi

It can be shown that, under very general conditions, and regardless of what the
distributions fi(xi) are, the probability distribution of y is a Gaussian distribution.
This is the central limit theorem, and it explains why Gaussian distributions are so
common in many experimental situations. Imagine that you are measuring some
physical quantity. The value you measure will not be the true value because the
measurement will be affected by a measurement error. Usually, there are a large
number of different effects, all adding up to the measurement error. It is, therefore,
not surprising that a measurement error often has a Gaussian distribution.

Poisson distribution. Let us now consider a statistical variable n that can only
take integer values. P(k) represents the probability to observe the value n = k.

For a Poisson distribution these probabilities P(n) are given by

P(n) = λn

n! e−λ

It is easy to show that the Poisson distribution has the following properties:

(1) P(0) = e−λ

(2)
∑

n=0,∞
P(n) = 1
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(3) < n >=
∑

n=0,∞
nP(n) = λ

(4) The dispersion or r.m.s., usually written as σ , is given by

σ 2 =< (n− < n > )2 >=
∑

n=1,∞
(n− < n > )2P(n) = λ

It can also be shown that, for large values of λ, the Poisson distribution
approaches a Gaussian distribution. This approximation is very good as soon as λ is
larger than a few 10! Therefore, the FWHM of a Poisson distribution as a function
of the average value λ is given byFWHM = 2.355

√
λ.

The number of occurrences of a particular event A will have a Poisson distribu-
tion if

– a large number of primary events, or primary situations, can give rise to the occur-
rence of A, and each of these primary events has only a small chance to give rise
to the occurrence of A and

– there is no correlation between the primary events.

Assume that we have some amount of radioactive material and are observing the
decay of this material. Let us further assume that the half-life of the material is long
compared to the duration of the observation. This is clearly a situation where the
above conditions are met. The probability that the decay of one particular atom is
observed is very small, but there are a large number of atoms, and all have a small,
but finite, probability to give rise to an observed decay. In addition, the decays are
independent of one another. In this case, the observed number of decays will have a
Poisson distribution.

Dispersion of a sum of two statistical variables. Let x and y be two statistical
variables. Consider the statistical variable z = x + y. Then, we have the following
important relations

z̄ = x̄ + ȳ

σ 2
z = σ 2

x + σ 2
y

These relations hold for any probability distributions for the variables x and y.

1.5 The Structure of Matter at the Microscopic Scale

All matter is made up of atoms, and atoms have a size of the order of 10−10 m.
We have known for about a hundred years that atoms are composed of a nucleus
surrounded by a cloud of electrons. To the best of our knowledge, the electrons are
truly elementary particles. If they have a dimension at all, that dimension is less than
10−18 m. However, the nucleus is a complex object. The dimension of the nucleus is
of the order of 10−15 m. It is composed of protons and neutrons. These protons and
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neutrons, in turn, are composed of quarks. To the best of our knowledge, the quarks
are also truly elementary particles. If they have a dimension at all, that dimension is
less than 10−18 m.

In ordinary matter there are two types of quarks, called up-quarks and down-
quarks. A proton is made of two up-quarks and one down-quark, and a neutron is
made of two down-quarks and one up-quark. The quarks have a charge that is a
fraction of the proton charge: up-quarks have a charge of +2/3, down-quarks have
a charge of −1/3. Hence all ordinary matter is made of three basic components:
electrons, up-quarks and down-quarks. This very simple picture is not sufficient
to describe the reality. First, there is a very enigmatic particle called the neutrino.
It is electrically neutral and has a very small probability to interact. Furthermore,
for all these particles there are corresponding antiparticles. Finally, this basic set of
four components (up-quark, down-quark, electron and electron neutrino) is repeated
two times with heavier versions of each particle. There is the electron and two
heavy electrons, namely the muon and the tau-lepton. The muon has a mass of
105.65 MeV/c2, about 200 times larger than the electron, and the tau-lepton has
a mass of 1,777 MeV/c2, about two times the mass of a proton! If I say that a muon
is a heavy electron, this means that a muon is in all respects the same as the electron
except for its mass. The muon decays with a lifetime of 2.2 μs into an electron and
two neutrinos. The fact that muon decays does not make it less fundamental than
the electron; the muon decays because this is energetically possible.

The forces between those elementary particles are

– gravitational force
– electromagnetic force
– weak force and
– strong colour force.

The gravitational force and the electromagnetic force are quite familiar from
observations in the macroscopic world, while the weak force and the strong colour
force only manifest themselves at the subatomic scale. This is because the last two
forces are short-range forces.

The gravitational force is the overwhelming force at the macroscopic scale, but at
the nuclear scale it is essentially unobservable. The ratio of the gravitational force to
the electromagnetic force between an electron and a proton is 10+40! At the atomic
or nuclear scale, one can safely ignore the gravitational force.

The interaction between the fundamental components of matter is well described
by the equations of relativistic quantum field theory. Mathematically, these equa-
tions are very complex, but one can get an intuitive feeling of what is going on
by thinking of an interaction between particles as being due to the exchange of
quanta of force. A collision between two charged particles, say two electrons, can
be seen as due to the exchange of a quantum of electromagnetic force, as illustrated
in Fig. 1.3.

This quantum of electromagnetic force is a virtual photon. It is not a real particle
and can exist only for a very short time. Unlike a real photon, the mass of a virtual
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Fig. 1.3 A collision between
two electrons is due to the
exchange of one or more
virtual photons. A photon can
be seen as a quantum of
electromagnetic force

Fig. 1.4 Example of electromagnetic interactions of charged particles. In these diagrams the direc-
tion of time is from left to right. An arrow pointing against the direction of time, i.e. to the left,
represents an antiparticle. (a) An electron and a positron annihilate each other and materialise again
as a quark-anti-quark pair. (b) An electron and a positron annihilate each other into two gamma
rays

photon can be different from zero and can even be negative. However, in quantum
field theory there are a number of other possible processes. Figure 1.4(a) shows a
process where an electron and an anti-electron (called a positron) meet and annihi-
late into a virtual photon. This cannot be a real, massless, photon because that would
violate energy and momentum conservation laws. This virtual photon can materi-
alise in any charged particle–antiparticle pairs. Figure 1.4(b) shows the annihilation
of an electron–positron pair into two gamma rays. In this process, the photons are
real particles, but the electron connecting the two gamma mission points is a vir-
tual electron. The charge of a particle describes the strength of its coupling to the
electromagnetic field. Photons couple only to charged particles. Photons themselves
carry no charge and are massless.

In these few examples we see that the distinction between a ‘particle’ and a
‘force’ is disappearing at the subatomic level. The electromagnetic force mani-
fests itself as quanta, called photons, while a particle, such as an electron manifests
force-like or wave-like behaviour.

The most prominent force at the nuclear scale is the strong colour force. This
force is also described by equations that are very similar to those describing the
electromagnetic interaction. The force quanta of this strong force are ‘gluons’, and
similar to photons these are massless particles. There are several very important dif-
ferences between the strong colour force and the electromagnetic force. The strong
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colour charges, the equivalent of the electrical charge for the strong force, appear in
three kinds. These three charges were whimsically called ‘red’, ‘green’ and ‘blue’,
and the force is therefore called the colour force. Only quarks have a colour charge
and therefore only quarks feel the strong force. The antiparticles of quarks, called
anti-quarks, have charges ‘anti-red’, ‘anti-green’ and ‘anti-blue’, and these charges
are different from ‘red’, ‘green’ and ‘blue’. Unlike the electromagnetic force, where
the quanta of electromagnetic force carry no charge, gluons themselves have a
colour charge. It can be shown that all these give rise to a force between colour-
charged objects that does not decrease with distance. It takes an infinite amount of
energy to separate two quarks!

As a result, all particles with colour are permanently locked up in colour-neutral
systems. Quarks or gluons cannot exist as free particles. Only colour-neutral com-
binations of quarks can exist. Just as an electron and a positron together have a total
charge zero, a quark and its anti-quark too have a total colour charge zero, and a
suitable colour-combination of a quark and its anti-quark can form a colour-neutral
system.

It is possible to show that the only possible combinations of quarks that are
colour-neutral are a quark and an anti-quark, three quarks or three anti-quarks. Of
course, all combinations or multiples of these can also be colour-neutral. The only
quark combinations that exist in nature are a combination of a quark and an anti-
quark, of three quarks or of three anti-quarks! All particles that are composed of
quarks are called hadrons. A very large number of different hadrons exist. However,
most of these are extremely short-lived and have a lifetime of only ≈10−23 s. This
lifetime is so short that such particles cannot travel a macroscopic distance before
they decay. Even at a very high energy, the maximum distance they will travel is less
than the size of an atom. Therefore, such particles can never be observed directly.
Their existence is inferred from the observation of their decay products. A few
hadrons have a much longer lifetime, in the range 10−8 to 10−16 s. This lifetime
is also very short, but at a velocity close to the velocity of light, these particles can
travel distances in the range from microns to hundreds of meters. Table 1.1 lists
some among the most common hadrons with a long lifetime, together with their
main properties.

The most familiar quark–anti-quark combination is the π meson. It exists as
a π+ (up-quark + anti-down-quark) and π− (down-quark + anti-up-quark) or as
π0 (up-quark + anti-up-quark and down-quark + anti-down-quark). All the particles
consisting of a quark and an anti-quark are called mesons. The combinations of
three quarks and three anti-quarks are called baryons and anti-baryons, respectively.

The most familiar combinations of three quarks are the protons and neutrons,
but many more exist. Protons and neutrons, and more generally all hadrons, are
colour-neutral systems; therefore, there is no strong force between these particles
except at very short distances. This is similar to the electromagnetic force between
neutral atoms or molecules. There is no electromagnetic force between two neutral
atoms except at very short distances. However, between two neutral molecules that
are touching, there is a force called the van der Waals force. It is an electromagnetic
force. Similarly, between two nucleons that are some distance apart there is no force.
As they come closer together, first there is a force that is attractive, and as they come
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Table 1.1 Some hadrons and their main properties. In this table the antiparticle of particle x is
written as x̄

Name Quark content Lifetime [s] Mass × c2 [MeV] Main decay modes

π+ {u, d̄} 2.6 10−8 139.6 μ+ νμ

π– {d, ū} 2.6 10−8 139.6 μ– ν̄μ

π0 {u, ū}, {d, d̄} 1.2 10−17 135.0 2 γ

K+ {u, s̄} 1.2 10−8 473.7 (μ+ νμ), (2π), (3π)
K− {s, ū} 1.2 10−8 473.7 (μ− , ν̄μ), (2π), (3π)
Ko

l {s d̄}, {d s̄} 5.2 10−8 497.7 3 π

K0
s {s, d̄}, {d, s̄ } 8.9 10−11 497.7 2 π

proton {u, u, d} >1032 year 938.3
neutron {d, d, u} 898 939.6 p e ν̄e

�0 {d, s, u} 2.63 10−10 1115.7 (n π0), (p π–)
p̄ {ū, ū, d̄} >1032 year 938.3
n̄ {d̄, d̄, ū} 898 939.6 p̄ e+νe

�̄0 {d̄, s̄, ū} 2.63 10−10 1115.7 (n̄ π0), (p̄ π+)

even closer the force becomes strongly repulsive. Thus, protons, neutrons and all
other hadrons appear to have a size, and that size is about 10−15 m.

Another force that is observed at the subatomic scale is the ‘weak force’. This
force causes many decay processes in hadrons and nuclei. Mathematically, it is also
described by equations that are similar to the electromagnetic force. The main dif-
ference comes from the fact that the quanta of the weak force are massive objects:
the W+, W– and the Z bosons. They have a mass that is approximately 90 times the
proton mass.

All elementary particles have a weak charge. Figure 1.5(a) and (b) illustrate a few
reactions that are mediated by the weak force. Figure 1.5(b) represents the ‘decay’
of a down-quark into an up-quark, an electron and a neutrino. This reaction can
never be observed since there are no free quarks, but this is the process that explains
the neutron decay (see Fig. 1.5(c)). This process can be understood as follows: the
down-quark in the neutron emits a virtual, charged, W− boson. The charge needs
to be conserved, and that is possible if the down-quark (charge = −1/3) changes
into an up-quark (charge = +2/3). The mass of a W boson is 90 times the pro-
ton or neutron mass, so this process seems impossible. Remember though that in
quantum mechanics a process that is energetically impossible is nevertheless pos-
sible, provided this unphysical state lasts only a short time. This is the well-known
‘tunnelling effect’. A particle can cross an energy barrier that it does not have
enough energy to cross, provided the barrier is very thin, so the particle is not long
in the unphysical state of negative energy.

The uncertainty of the energy and the duration of this state are related by
� ≤ �E�t. If the uncertainty of the energy needs to be 90 times the proton mass,
then the distance the virtual W boson can travel is given by
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Fig. 1.5 Examples of some
reactions mediated by the
exchange of quanta of the
weak force. (a) Annihilation
of a down-quark and an
anti-up-quark into an electron
and an anti-neutrino. (b)
‘Decay’ of a down-quark into
an up-quark, an electron and
an anti-neutrino. (c) The
phenomena depicted in (a)
and (b) cannot exist as such
because free quarks cannot
exist. However, the decay of a
neutron into a proton, an
electron and a neutrino is due
to the process (b)

c�t ≈ �c

90 GeV
≈ 10−18m

Hence, the process illustrated in Fig. 1.5(c) is possible, provided it all happens
in a distance of the order of 10−18 m. The ‘weak force’ is not really weak, it has a
short range!

The complete list of all fundamental building blocks of nature is given in
Table 1.2, and the quanta corresponding to the fundamental forces of nature are
listed in Table 1.3. These tables summarise all that is presently known about the
fundamental building blocks of nature and about the fundamental forces. There are
three ‘up-quark like’ quarks: the up-quark, the c-quark and the t-quark; there are
three ‘down-quark like’ quarks: the down-quark, the s-quark and the b-quark; there
are three leptons: the electron, the muon and the τ-lepton and there are three neutri-
nos: the electron neutrino, the muon neutrino and the τ-neutrino. The force quanta

Table 1.2 Fundamental building blocks in nature. All these particles have spin = 1/2. For each of
these particles there is a corresponding antiparticle

Particle Electric charge Colour charge Weak charge

Up-quark, c-quark, t-quark 2/3 Yes Yes
Down-quark, s-quark, b-quark −1/3 Yes Yes
Electron, muon, τ-lepton −1 No Yes
Neutrino (νe, νμ, ντ) 0 No Yes
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Table 1.3 Quanta
corresponding to the
fundamental forces in nature.
All these quanta have a
spin = 1

Name Mass [GeV/c2] Electric charge Colour charge

Photon 0 No No
W+, W− 80.4 Yes No
Z 91.2 No No
Gluon 0 No Yes

are the photon, the W- and Z-boson and the gluons. However, many of these parti-
cles cannot be observed as real particles. The quarks and gluons are permanently
locked in colour-neutral systems such as protons and neutrons, and the W- and
Z-bosons are so short-lived that they can never be observed directly. Only their
decay products can be observed. Only the proton, the neutron in a nucleus, the elec-
tron and the neutrino are stable. The neutrinos interact so weakly with other particles
that they are largely decoupled from the world we observe. Hence, ordinary matter
only consists of protons, neutrons and electrons. All the other particles only exist if
they have been created in some very high-energy collision. Soon after their creation
the particles decay into one of the few stable particles. Such particles have also been
created in huge numbers in the beginning of the Universe.

Table 1.4 lists the particles that are stable, or at last can exist long enough to travel
truly macroscopic distances. For all these particles, except the photons and some
neutral mesons, there are corresponding antiparticles. For the rest of the present
lecture we will only consider the particles listed in Table 1.4.

At this point it should be explained that quantum mechanics implies that explor-
ing small dimensions needs high energies. The study of the structure of matter at the
subatomic scale requires the use of high-energy probes, and in reactions between
small objects, particles of high energy are produced. Indeed, in quantum mechanics
a wave is associated with every particle, and the wavelength λ is given by

λ = h

P
= hc

Pc
= 1237[MeV]10−15[m]

Pc
(1.8)

If the momentum Pc of a particle is 1237 MeV, the corresponding wavelength
is 10−15 m. To probe the structure of objects much smaller than 10−15 m, we need

Table 1.4 List of the most common directly observable particles

Particle Mass Lifetime Charge Main interactions

Electron 0.511 MeV Stable −1 Electromagnetic
Muon 105.7 MeV 2.2 10−6 s −1 Electromagnetic
Hadron see Table 1.1 see Table 1.1 0, +1, −1 Strong
Photon 0 Stable 0 Electromagnetic
Nuclei 1–240 times Many stable 1–92 Strong

the proton mass
Neutrino < ≈2 eV Stable 0 Weak
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particles with energy much larger than 1237 MeV. If the energy of an object is much
larger than its mass, then energy E and momentum Pc become the same.

If a particle is enclosed in a one-dimensional box of dimensions ‘a’, the energy
levels of this particle are given by

En = n2π2(�c)2

2mc2a2
(1.9)

The above result is found by solving the Schrödinger’s equation in the very sim-
ple case of an infinitely deep potential well with vertical slopes. We see that the
spacing between the energy levels in a small object will be very large. Qualitatively
this remains true whatever potential confines objects to a small volume. In atoms,
the energy levels of the electrons are in the range 1 eV to a few keV. In nuclei, the
energy levels spacing is in the range 10 keV to 10 MeV. The energy level differences
in hadrons are of the order of 1 GeV.

If the particles we regard as fundamental today, quarks, electrons etc., are in fact
composed of some as yet unknown more fundamental objects, we know that the
corresponding size has a scale smaller than 10−18 m. Therefore, the corresponding
energy levels and particle masses are expected to be of the order of 1 TeV or larger.
If this is the case, the particles we know today are only the lowest energy levels of
these objects, and a whole spectrum of particles that are much more massive than
the particles we know today, exists.

All these explain why it needs very high-energy accelerators to study very small
particles. It is the motivation for the vast worldwide effort to build very high-energy
particle accelerators.

1.6 Nuclei and Nuclear Decay

All the familiar matter surrounding us is made up of atoms. The atoms are made up
of a nucleus containing most of the mass, and of electrons. The nucleus is a bound
state of protons and neutrons held together by the strong nuclear force. Neutrons
and protons are collectively referred to as ‘nucleons’. The charge of the nucleus is
equal to the number of protons. The mass of the nucleus is about 1% smaller than
the sum of the masses of the constituent neutrons and protons. The difference is
due to the binding energy of the nucleus. Figure 1.6 shows the binding energy per
nucleon for all stable elements. Notice that the binding energy per nucleon increases
with the mass of the nucleus, reaches a maximum for iron and nickel and then
decreases again. The helium nucleus is unusual: it has an exceptionally large binding
energy.

Like the electron structure of the atom, the nucleus also has a number of discrete
energy levels. The energy difference between the nuclear energy levels is typically
of the order of 1 MeV, and the transitions between such states give rise to particles
with energies in the 1 MeV range.
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Fig. 1.6 Binding energy per nucleus for all stable isotopes

The charge of the nucleus determines the chemical properties of the atom. The
presence of neutrons in the nucleus is essential to make the nucleus stable. A
nucleus needs an approximately equal number of protons and neutrons to be sta-
ble. High-mass nuclei need more neutrons than protons to be stable. Nuclei of the
same charge but with a different number of neutrons are called isotopes. Only a few
of all the possible isotopes are stable. For example iron has four stable isotopes:
54
26Fe, 56

26Fe, 57
26Fe, 58

26Fe. The notation N
Z A stands for a nucleus A containing Z protons

and in total N nucleons. The indication of the number of protons in the nucleus
is redundant since the element symbol already gives the charge of the nucleus;
this number is therefore often omitted. Besides the stable isotopes, there are many
unstable isotopes with a larger or a smaller number of neutrons. These decay in one
or more steps until a stable configuration is reached.

1.6.1 The Beta Decay

An unstable nucleus can sometimes reach a lower energy state by changing a proton
into a neutron or vice versa. To conserve the charge in this transformation pro-
cess, an electron or a positron must be emitted. The corresponding reactions on free
protons or neutrons are

n → p + e− + ν̄e

p → n + e+ + νe

The symbols νe and ν̄e stand for the electron neutrino and the electron anti-
neutrino, respectively. These reactions are mediated by the exchange of W bosons
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as illustrated in Fig. 1.3. Because the decay is mediated by the weak force, the cor-
responding lifetime can be quite long. On free particles, only the decay of neutrons
to protons is possible since the mass of the protons is less than the mass of the neu-
trons. Inside a nucleus, each of the two reactions is possible if the mass of the new
nucleus plus the mass of the electron or positron is smaller than the mass of the
original nucleus. Written as the decay of a nucleus the process is

N
Z A → N

Z+1A + e− + ν̄e

N
Z A → N

Z−1A + e+ + νe

In nuclear physics these decays are called β− and β+ decays. The neutrino or anti-
neutrino produced in the β decay is almost never observed, but it takes away part of
the energy liberated in the reaction. The mass difference between the initial nucleus
and the sum of the masses of the final-state particles appears as kinetic energy of
the particles in the final state. The energy corresponding to this mass difference is
usually denoted by Q. The mass of the nucleon in the final state is much larger
than the mass of the electron or the neutrino and also much larger than the mass
difference. As a result the kinetic energy of the final-state nucleus is very small,
usually only a few keV. To first approximation all the energy is shared between
the electron and the neutrino only. For a proof of this statement see the solution to
Exercise 7. Since there are three particles in the final state the momenta of the final
state particles are not determined uniquely. The electron and the neutrino can have a
kinetic energy varying between zero and the maximum allowed energy. The mass of
the neutrino is extremely small, less than 2 eV; therefore the maximum energy of the
electron is equal to the energy Q. In tables with nuclear decays, the corresponding
maximum energy of the electron is usually listed as Emax.

1.6.2 The Alpha Decay

A very heavy nucleus has another possibility to reach a more stable configuration. It
can just fall apart into two lighter nuclei. This will be energetically favourable since
for very heavy nuclei the binding energy per nucleon decreases with increasing mass
of the nucleus. For a few very high mass isotopes this can happen by splitting the
nucleus into two more or less equal parts. For nearly all other isotopes this always
happens through the emission of a helium nucleus, also called alpha particle. The
corresponding reaction is

N
Z A → N−4

Z−2 A + α

Because the transition is mediated by the strong force, the long decay time of
some alpha emitters is surprising. The explanation is that the decay requires the
alpha particle to tunnel through a potential barrier of the nucleus. If the final-
state nucleus in the alpha emission is in a well-defined nuclear level, energy and
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momentum conservation fixes the kinetic energy of the alpha particle. Of course a
given isotope can decay by alpha emission to several distinct nuclear levels, and the
corresponding alpha particles have different energies.

1.6.3 The Gamma Decay

After a β− or a β+ decay, or after alpha particle emission, the nucleus is often not in
its ground state, but in some excited nuclear state. Transitions between the excited
levels and the ground state can give rise to the emission of gamma rays. Most tran-
sitions giving rise to the emission of a gamma ray are extremely fast. However, for
some transitions the direct decay mechanism is forbidden, and the corresponding
decay is much slower. A nucleus that is trapped in one of these metastable states is
called an isomer, and this is denoted by a letter m after the mass number, e.g. 60mCo.

1.6.4 Electron Capture and Internal Conversion

A nucleus also has a number of other possibilities to decay. There is a finite prob-
ability that an electron from the cloud of electrons surrounding the atom is present
inside the nucleus. Consider a β+ decay. The nucleus can reach the same nuclear
final state and conserve the charge by capturing an orbital electron of the atom in
the reaction

p + e− → n + νe

This process is called ‘electron capture’. This reaction occurs mainly in heavy nuclei
where the nucleus is larger and the electron orbits are smaller. In most cases the
captured electron is the K-shell electron, but L-shell electron capture also occurs.
After the electron capture the empty level left in the electronic structure of the atom
is filled by an outer electron, and the excess energy is liberated by the emission of
an X-ray or by the emission of an Auger electron. The relative importance of β+

decay and electron capture also depends on the difference in energy between the
two nuclear levels. If this difference is less than 511 keV, the β+ decay is impossible
and only electron capture occurs.

Another process involving the orbital electrons is the ‘internal conversion’. It is
a different decay mechanism for transitions that usually emit gamma rays. In this
process the nuclear excitation energy is directly transferred to the atomic electron
rather than to a gamma ray. Unlike the electron produced in a β− decay, the elec-
tron produced by the internal conversion process always has the same energy. The
electron that is most likely to be involved in the internal conversion process is the
K-shell electron, but the electrons in other orbitals may also receive the conversion
energy. An isotope decaying by the internal conversion process will therefore exhibit
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a group of electron energies, the differences in energy being equal to the differences
in the binding energies between the electronic orbitals.

1.6.5 The Radioactive Decay Law

The probability that a nucleus decays in some small time interval dt is given by

P = λ dt

where λ is a constant characteristic of the decay. The important fact is that this prob-
ability is independent of how long the nucleus is already waiting to decay. Assume
there are N0 nuclei at time t = 0, and let us denote the number of nuclei at any time
after t = 0 by N(t). We have

dN(t)

dt
= −N(t) λdt

The solution of this differential equation with the boundary condition
N(0) = N0 is

N(t) = N0 e−λt

The normalised probability density function for the observation of a decay after a
time t is

f (t) = λe−λtdt

The average decay time of the isotope is given by

τ = 〈t〉 =
∞∫

0

t λe−λt dt = 1

λ

The decay law can therefore be written as

N(t) = N0 e− t
τ

In nuclear physics it is customary to characterise a decay by its ‘half-life’ T1/2,
rather than by the average decay time τ . The half-life is defined as the time it takes
for half of the original nuclei to decay. We therefore have

1
2 = e− T1/2

τ

T1/2 = τ ln 2
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Until now we have only considered the decay of one isotope into a stable final
state. In many cases the decay process under consideration is part of a chain of
decays, and the number of each type of isotope increases because new isotopes are
added by the decay of some parent isotope and decreases because of its own decay.
In that case one should consider the abundance of all the isotopes involved in the
chain and a much more complicated expression is obtained.

1.6.6 The Nuclear Level Diagram

A very useful tool for understanding the nuclear decay mechanism is the nuclear
level diagram illustrated in Fig. 1.7. In this diagram the x-direction represents the
charge of a nucleus, and the y-direction the energy of the nuclear levels. A given
isotope has a fixed number of protons and neutrons. The different energy levels
of this isotope are represented as short horizontal lines in the level diagram. The
gamma emission process and the electron conversion process correspond to a tran-
sition between two levels that are situated one above the other in the level diagram,
and this emission is represented by a vertical arrow pointing downwards. A β−
or a β+ decay is represented by arrows pointing in the down-right or down-left
direction.

Annex 6 lists a number of isotopes with decay modes that make them useful as
radioactive sources for a variety of applications in nuclear and particle physics. For
the nuclei undergoing a β+ decay, the positron comes to rest after a short range in
matter and annihilates with an electron into two gamma rays of 511 keV emitted
back to back.

Fig. 1.7 Nuclear level diagram for the 137Cs decay. The numbers to the side of the level (e.g. 3/2+)
represent the spin parity of the level. The number above the line representing the level is the energy
in MeV relative to the ground state. The numbers next to the symbol β− represent the end point
energy of the electron and the fractional probability of the transition. There are two competing
processes for the transition from the excited 137Ba level to the ground state. About 90% of the
transitions give rise to a gamma of 662 keV, while about 10% proceed through internal conversion.
Therefore only 85% of the 137Cs decays give rise to a gamma ray of 662 keV
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1.7 Exercises

1. Show that the Lorentz transformation is such that the velocity of a light ray
travelling in the x direction is the same for the observer in the frame S and for
the observer in the frame S′.

2. What is the mean free path before decay for a charged pion with a kinetic energy
of 1 GeV?

3. Show that the relativistic expression for the kinetic energy of a particle (Eq. 1.2)
reduces to the non-relativistic expressions if the velocity of the particle is small
compared to the velocity of light.

4. For a Poisson distribution with average value 16, calculate the probability to
observe 12, 16 and 20 as measured value. Calculate the probability density func-
tion for a Gaussian distribution with average value 16 and dispersion 4, for the
values x = 12, 16 and 20. Compare the results.

5. Consider a very short-lived particle of mass M decaying into two long-lived
particles 1 and 2. Assume you can measure accurately the energies and momenta
of the two long-lived particles. How will you calculate the mass of the short-lived
particle from the known energies and momenta of the two long-lived objects?

6. Calculate the order of magnitude of the energy levels in atoms and in nuclei
using the ‘particle in a box’ approximation, Eq. (1.9). Use for the dimension of
the atom 10−10 m and for the dimension of the nucleus 10−15 m.

7. Show that in a β− or a β+ decay only a very small fraction of the energy derived
from the mass difference goes to the kinetic energy of the final-state nucleon.
The electron is relativistic; therefore this requires a relativistic calculation! Hint:
the 3-body problem can be reduced to a 2-body problem by considering the
electron–neutrino system as one object with a mass of a few MeV.
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Chapter 2
Interactions of Particles in Matter

The aim of this chapter is to introduce the reader to the different ways subatomic
particles interact with matter. For a more in depth discussion of the subject, for refe-
rences to the original literature, and for a derivation of many of the formula quoted in
this chapter, see Ref. [4]. Reference [6, 9] of Chap. 1 are useful web resources con-
taining extensive numerical data on the interactions of subatomic particles in matter.

2.1 Cross Section and Mean Free Path

If one of the particles in Table 1.4 travels in any piece of material, it will have a
certain probability to interact with the nuclei or with the electrons present in that
material. In a very thin slice of matter, this probability is obviously proportional
to the thickness of the slice and to the number of potential target particles per unit
volume in the material. Furthermore, it will depend on the nature of the interaction.
That intrinsic part of the probability is expressed with the help of the quantity ‘cross
section’. The cross section is the convenient quantity to discuss the interactions of
particles in matter. If a particle crosses perpendicularly through an infinitesimally
thin slice of matter, the probability to interact and the cross section σ are related by
Eq. (2.1). This equation is the definition of the cross section and it is illustrated in
Fig. 2.1.

dW = dx N σ (2.1)

In this equation, dW is the probability to undergo an interaction of a certain type,
dx is the thickness of a very thin section of the material and N is the number of
scattering centres per unit volume. The cross section has the dimensions of a surface.
In nuclear and particle physics, the commonly used units for the cross section are the
barn and cm2, with 1 barn = 10−24 cm2. It is easy to see that, in classical mechanics,
the cross section for the collision of a point particle with a hard sphere is just be the
surface of a section through the middle of the sphere. This explains the name ‘cross
section’.

If a beam of particles enters a slab of material, the number of affected particles in
the beam will increase due to the collisions of these beam particles with the nuclei

23S. Tavernier, Experimental Techniques in Nuclear and Particle Physics,
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N scatter centres
per unit volume

dx

particle trajectory

Fig. 2.1 Figure illustrating
the definition of the cross
section

or electrons present in the material. To describe this mathematically, let us define
P(x) as the probability that a particle has interacted after travelling a distance x in
the medium. Obviously, we have P(0) = 0. From the definition of the cross section
(Eq. 2.1), we know that P(x + �x) and P(x) are related by

P(x + �x) = P(x) + [1 − P(x)] Nσ �x

P(x + �x) − P(x)

�x
= [1 − P(x)] Nσ

In this expression �x represents some small distance in the x direction. Taking
the limit �x → 0, we obtain that P(x) satisfies the following differential equation:

dP(x)

dx
= [1 − P(x)] Nσ

d[1 − P(x)]

dx
= −[1 − P(x)] Nσ

The solution of this differential equation, with the boundary condition
[1 – P(0)] = 1, is

[1 − P(x)] = e−xNσ

The probability density function for the interaction of a particle after a travelling
distance x in the medium is given by

W(x) = [1 − P(x)] Nσ = e−xNσ Nσ

Therefore, the mean free path λ of a particle before the first collision is given by

λ =
∞∫

0

W(x) x dx =
∞∫

0

e−xNσ xNσ dx

= 1

Nσ

∞∫

0

e−x x dx = 1

Nσ
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If the material contains two different types of scattering centres, X and Y, the above
discussion generalises to

λ = 1

Nxσx + Nyσy

and

1

λ
= 1

λX
+ 1

λY

λX = 1

NX σX
; λY = 1

NY σY

(2.2)

NX and NY are the number of scattering centres of each type per unit volume.
If we consider collisions on the nuclei of atoms, N represents the number of atoms

per unit volume. The relative atomic weight Ar of an element is defined as the aver-
age weight of the atoms divided by 1/12th of the weight of carbon. ‘Ar’ gram of an
element contains NA scattering centres, where NA is the number of Avogadro. One
gram of the material contains NA/Ar atoms, and one cubic metre contains ρNA/Ar
atoms. We thus have

N = ρ NA

Ar

A particle can have different ways to interact. For example a proton can scatter
elastically from a nucleus, or it can scatter and bring the nucleus in an excited state.
The cross section corresponding to a particular type of interaction is called a partial
cross section, and the sum of all partial cross sections is the total cross section.
One can also consider the partial cross section where the proton is scattered in a
particular direction. This is called a differential cross section and this is usually
written as dσ/d�, where d� = sin θdθdϕ. The total cross section is then given by

σtot =
∫

dσ

d�
d�

2.2 Energy Loss of a Charged Particle due to Its Interaction
with the Electrons

When a charged particle penetrates in matter, it will interact with the electrons and
nuclei present in the material through the electromagnetic force. If the charged parti-
cle is a proton, an alpha particle or any other charged hadron (discussed in Chap. 1),
it can also undergo a nuclear interaction and this will be discussed in Sect. 2.5. In
the present section we ignore this possibility. If the particle has 1 MeV or more
as energy, as is typical in nuclear phenomena, the energy is large compared to the
binding energy of the electrons in the atom. To a first approximation, matter can be
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seen as a mixture of free electrons and nuclei at rest. The charged particle will feel
the electromagnetic fields of the electrons and the nuclei and in this way undergo
elastic collisions with these objects.

The interactions with the electrons and with the nuclei present in matter will
give rise to very different effects. Let us assume for the sake of definiteness that the
charged particle is a proton. If the proton collides with a nucleus, it will transfer
some of its energy to the nucleus and its direction will be changed. The pro-
ton is much lighter than most nuclei and the collision with a nucleus will cause
little energy loss. It is easy to show, using non-relativistic kinematics and energy–
momentum conservation, that the maximum energy transfer in the elastic collision
of a proton of mass ‘m’ with nucleus of mass ‘M’ is given by (see Sect. 7.3, Eq. 7.1):

�Emax = 1

2
mv2
(

4 mM

(m + M)2

)

If the mass of the proton m is much smaller than the mass of the nucleus M, we
therefore have

�Emax ≈ 1

2
mv2
(

4
m

M

)
(m << M)

In the limit that the mass of the nucleus goes to infinity, no energy transfer is
possible.

In a collision with a nucleus the proton will lose little energy, but its direction can
be changed completely; it can even bounce backwards. In collisions with electrons,
on the other hand, a large amount of energy can be transferred to the electrons, but
the direction of the proton can only be slightly changed. Indeed, there is a maximum
possible kinematical angle of deviation in such collisions. It needs a relativistic cal-
culation to derive this angle. As a result, most of the energy loss of the proton is due
to the collisions with the electrons, and most of the change of direction is due to the
collisions with the nuclei.

A proton, and more generally any charged particle, penetrating in matter leaves
behind a trail of excited atoms and free electrons that have acquired some energy in
the collision. The energy distribution of these electrons is

dn

dE
∝ 1

E2

Most of these electrons have only received a very small amount of energy.
However, some of the electrons acquire sufficient energy to travel macroscopic
distances in matter. These high-energy electrons are sometimes called δ-electrons.
These have sufficient energy themselves to excite or ionise atoms in the medium.
This type of energy loss due to the interaction of the charged particle with elec-
trons is often referred to as ‘energy loss due to ionisation’. This is strictly speaking
not correct since many atoms are only brought to an excites state, not ionised.
Figure 2.2 illustrates the passage of a charged particle in matter and shows some
of the ionisation electrons.
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electrons

Charged
particle

Fig. 2.2 A charged particle penetrates in matter. It loses energy by transferring a small amount
of energy to each of a large number of electrons along its trajectory. Some of these electrons
have enough energy to travel a macroscopic distance, and also cause further ionisation along their
trajectory

When discussing the biological effects of radiation the term ‘Linear Energy
Transfer’ (LET) is often used to refer to the energy loss of charged particles. The
linear energy transfer is defined as the amount of energy transferred, per unit track
length, to the immediate vicinity of the trajectory of the charged particle. For heavy-
and low-velocity particles, the energy loss per unit track length and the LET are
the same. For light and fast particles, however, the two quantities differ consider-
ably. Part of the energy loss of an electron of several MeV is used to eject energetic
δ-electrons from the atoms in the medium. These energetic electrons do not deposit
their energy in the immediate vicinity of the track and therefore do not contribute to
the LET.

The energy loss of a high-energy charged particle in matter due to its interactions
with the electrons present in the matter is given by the Bethe-Bloch equation:

dE

dx
= ρ

Znucl

Ar
(0.307 MeVcm2/g)

Z2

β2

[
1

2
ln

(
2mec2β2γ 2Tmax

I2

)

− β2 − δ(β)

2

]

(2.3)

See for example Ref. [4] for the derivation of this equation. The symbols used in the
above equation are defined below:

dE/dx = energy loss of particle per unit length
Z = charge of the particle divided by the proton charge
c = velocity of light
βγ = relativistic parameters as defined in Sect. 1.3
ρ = density of the material
Znucl = dimensionless charge of the nuclei
Ar = relative atomic weight
I = mean excitation energy in eV. Parameter usually determined experimentally.

It is typically around (10 eV times Znucl)
Tmax = maximum energy transfer to the electron. For all incoming particles

except the electron itself this is to a good approximation given by ≈2 mec2

β2γ2. For electrons Tmax is the energy of the incoming electron.
δβ = density-dependent term that attenuates the logarithmic rise of the cross

section at very high energy. See (Ref. [6] in Chap. 1) for a discussion of this
term.
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Fig. 2.3 Energy loss in air
vs. the kinetic energy for
some charged particles.
Figure calculated using
Eq. (2.3)

For the purpose of a qualitative discussion the Bethe–Bloch equation can be
approximated as

dE

dx
≈ ρ (2 MeVcm2/g)

Z2

β2
(2.4)

If the density is expressed in g/cm3, the energy loss is in units MeV/cm. In the
literature, the term ‘energy loss’ sometimes refers to the loss divided by the density.
In the latter case, the energy loss has the units MeV cm2/g. For electrons with energy
of more than 100 keV, the velocity is close to the velocity of light (β≈1), and the
energy loss is about 2 MeV/cm multiplied by the density of the medium.

For all particles, the energy loss decreases with increasing energy and eventually
reaches a constant, energy-independent value. That value is approximately the same
for all particles of unit charge (see Fig. 2.3).

For alpha particles the velocity is usually much less than the velocity of light, and
the energy loss is much larger. However, the Bethe–Bloch equation is valid only if
the velocity of the particle is much larger than the velocity of the electrons in the
atoms, and for alpha particles, this condition is usually not satisfied. The velocity of
electrons in atomic orbits is of the order of 1% of the velocity of light. For particle
velocities that are small compared to the typical electron velocities in the atoms,
the energy loss increases with the energy and reaches a maximum when the particle
velocity is equal to the typical electron velocity. After this maximum, the energy
loss decreases according to the Bethe–Bloch equation. This behaviour is illustrated
in Figs. 2.4 and 2.13.

Since particles lose energy when travelling in a medium, they will eventually
have lost all their kinetic energy and come to rest. The distance travelled by the
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Fig. 2.4 Energy loss of alpha
particles divided by the
density as a function of the
alpha particle energy in
different materials. Figure
adapted from [1]

particles is referred to as the range. As the particle penetrates in the medium, its
energy loss per unit length will change. The energy loss of a particle as a function of
its distance of penetration is illustrated in Fig. 2.5. The energy loss increases towards
the end of the range. Close to the end it reaches a maximum and then abruptly drops
to zero. This maximum of the energy loss of charged particles close to the end of
their range is referred to in the literature as the ‘Bragg peak’, and the variation
of the energy loss with the residual energy as the ‘Bragg curve’. However, all the
particles with a given kinetic energy do not have exactly the same range. This is
due to the statistical nature of the energy loss process. There are fluctuations on the
range called range straggling.

Fig. 2.5 Energy loss of a
proton of 300 MeV along its
trajectory in water. The
energy loss increases towards
the end of the range, reaches a
maximum and rather abruptly
drops to zero just before the
particle stops. The data for
this figure were obtained
from Ref. [9] in Chap. 1
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Fig. 2.6 Range of protons
and alpha particles in silicon
as a function of their kinetic
energy. The data for this
figure were obtained from
Ref. [9] in Chap. 1

Heavy nuclear fragments produced by nuclear fission are also energetic charged
particles but behave somewhat differently from alpha particles. Nuclear fragments
tend to pick up electrons as they travel in the medium. Therefore they behave as
particles with a charge that is smaller than the charge of the fragment itself. As
they slow down, the fragments pick up more and more electrons, and the energy
loss decreases rather than increases. For alpha particles, this electron pick-up only
occurs at the very end of the range.

Fig. 2.7 Range–energy plot
for alpha particles in dry air at
20◦C and standard pressure.
The data for this figure were
obtained from Ref. [9] in
Chap. 1
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LET = 1

ρ

dE

dx

Figures 2.6 and 2.7 illustrate the range of particles in air and silicon.

2.3 Other Electromagnetic Interactions of Charged Particles

Multiple scattering. The collisions of charged particles with the nuclei will cause
the charged particle to change direction. This is illustrated in Fig. 2.8. Such erratic
changes in the direction of a particle along its trajectory is called direction straggling
or multiple scattering. For small angles of deviation, this change in angle is more
or less Gaussian and the root mean square (r.m.s.) direction deviation of a particle
traversing a thickness L of material is given by

√ 〈 �2 〉 = Z

Pcβ
(20 MeV)

√
L

X0

1

X0
≈ 4α r2

0
ρNA

Ar
Znucl(1 + Znucl) ln

(
183

3
√

Znucl

) (2.5)

In this equation X0 represents the radiation length. This is a quantity that charac-
terises how charged particles or gamma rays interact in a material. It depends on
the density and the charge of the nucleus. The simple analytical expression for the
radiation length given in Eq. (2.5) is only an approximation. A more exact but much
more complicated expression is given in (Ref. [6] in Chap. 1).

The definitions of the symbols used in the multiple scattering formula and in
the expression for the radiation length are given below. The other symbols have the
same meaning as in Eq. (2.3).

� = scattering angle relative to the incoming particle in radians
P = momentum of the incoming particle
X0 = radiation length of the material
NA = Avogadro’s number
α = fine structure constant (α ≈ 1/137 )
r0 = classical electron radius (2.82 10−15 m)

Notice that .� represents the angle in space. The symbol �p represents the angle
projected on a plane containing the direction of the incoming particle. These two
quantities are related by

√〈
�2

p

〉
= 1√

2

√〈
�2
〉

Table 2.1 lists the radiation length for some common materials.
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Fig. 2.8 A charged particle
traversing a slice of matter
will change direction due to
multiple scattering on atomic
nuclei

Table 2.1 Radiation length X0 for some common materials

Material Radiation length X0

Air 304 m
Water 36 cm
Shielding concrete 10.7 cm
Nylon 36.7 cm
Aluminium (Al) 8.9 cm
Silicon (Si) 9.36 cm
Iron (Fe) 1.76 cm
Lead (Pb) 0.56 cm
Uranium (U) 0.32 cm

At nuclear energies, the momentum of the particles is of the order of Pc≈1 MeV,
and particles will, on average, scatter over a very large angle in one radiation length.
After one radiation length the information about the original direction is essentially
lost. However, alpha particles or protons of a few MeV have a range that is only a
very small fraction of the radiation length. Hence, they will stop before they have
scattered over a large angle. Electrons, on the other hand, can penetrate to a sig-
nificant depth in the material, and electrons will therefore be strongly affected by
multiple scattering. Figure 2.9 shows typical trajectories for an electron, a proton
and an alpha particle of 10 MeV in silicon.

The path of an electron in matter can be several centimetres, but the distance
travelled according to a straight line is usually much shorter than the actual length of
the trajectory. Electrons do not have a well-defined range. The number of electrons

Fig. 2.9 A typical trajectory
for an electron, a proton and
an alpha particle of 10 MeV
in silicon. The electron
trajectory is drawn on a scale
10 times smaller than the
trajectory of the proton and
the alpha particle
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that can penetrate through a slice of material will decrease more or less linearly with
the thickness of the slice of material.

Cherenkov effect. The Cherenkov effect is a light emission effect that occurs
whenever a charged particle travels in a medium faster than the speed of light in that
medium. In a medium with optical index of refraction ‘n’, the velocity of light is c/n.
Typical values for the refractive index in liquids or solids are around 1.5, and the
velocity of light in these materials is about 66% the speed of light. The Cherenkov
effect is somewhat similar to the bow wave that accompanies a speedboat in water,
or the ‘supersonic bang’ of a plane going at a speed faster than the speed of sound.

This effect is illustrated in Fig. 2.10. This phenomenon is easily understood by
following the Huygens’ principle used to explain optical and acoustical phenomena.
If a charged particle travels in a medium, the electric field of the charged particle
will polarise the medium. After the particle has passed, the medium returns to its
original unpolarised state. This change of polarisation condition in the medium rep-
resents an electromagnetic perturbation that will propagate in space at the speed of
light. The left-hand side of Fig. 2.10 shows the case where the particle travels at a
speed lower than the speed of light in the medium. The small electromagnetic per-
turbations caused by the polarisation and depolarisation of the medium propagate
faster than the particles. At any point in space far away from the particle’s trajec-
tory, these perturbations arrive randomly and annihilate each other. The right-hand
side of Fig. 2.10 shows the case where the particle travels at a speed faster than the
speed of light in the medium. The small electromagnetic perturbations caused by the
polarisation and depolarisation of the medium propagate less rapidly than the parti-
cles. All the elementary perturbations unite together in one wavefront. The phases
between all these elementary perturbations are not randomly distributed. They add
up together to produce a finite perturbation. This perturbation represents a wave

Fig. 2.10 (Left) A particle is travelling at a speed lower than the speed of light in the medium.
(Right) A particle is travelling at a speed greater than the speed of light in the medium
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travelling in the direction fixed by the speed of the particle and the speed of light in
the medium.

From the geometry of the problem, we can easily derive the value of the angle
between the particle and the wave. To find this angle, consider the right-angled tri-
angle shown in the left-hand side of Fig. 2.10. Two sides of this triangle are of length
ct/n and vt, respectively. We therefore have

cos (θc) = (c/n)t

ν t
= c

nν
(2.6)

The Cherenkov effect thus consists of the emission of optical photons in the
direction given by Eq. (2.6). A similar situation prevails when an airplane is flying
at supersonic speed. It is accompanied by a loud acoustical ‘bang’ that propagates
in a direction given by a similar equation.

The intensity of the Cherenkov effect can be calculated from first principles by
solving the Maxwell equations with the proper boundary conditions. The result of
this calculation is

d2E

d�ω.dx
= �ω

Z2α

�c

[

1 − c2

n2ν2

]

ν >
c

n
d2E

d�ω.dx
= 0 ν <

c

n

In the above equation, the notation is as follows:

Z = charge of the particle in units ‘proton charge’
E = energy emitted in the form of optical photons
n = optical refractive index
c = velocity of light in vacuum
v = velocity of the particle
�ω = energy of the emitted photon
α = fine structure constant (1/137)
�c = numerical constant of value 197 10−9 eV m

Dividing Eq. (2.7) by �ω gives the number of Cherenkov photons produced per-
photon-energy interval and per-unit-length. A high-energy electron produces about
220 photons/cm in water (n = 1.33) and about 30/m in air, in the visible part of the
spectrum.

From Eq. (1.4), we derive that a charged particle will emit Cherenkov radiation
if the kinetic energy exceeds the threshold value given by

Ethreshold = mc2

⎛

⎝

√

n2

n2 − 1
− 1

⎞

⎠ (2.8)

The threshold for the Cherenkov effect of electrons in water is 264 keV. For
protons the threshold is 486 MeV. At nuclear energies, only electrons can acquire
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Fig. 2.11 (A) Energy spectrum of sunlight above the atmosphere, (B) Energy spectrum of sun-
light at sea level with the Sun at its zenith. (C) Energy spectrum of Cherenkov emission. Figure
reproduced from [1], with permission

a speed that exceeds the speed of light in a medium, and therefore emit Cherenkov
radiation.

Comparing the energy spectrum of Cherenkov light with the spectrum of solar
light, we see that the Cherenkov radiation contains more energy in the blue part of
the spectrum; therefore, Cherenkov radiation appears as blue light (see Fig. 2.11).
Cherenkov radiation is causing the characteristic blue glow in the water surrounding
the core of a water pool reactor, as illustrated in Fig. 2.12.

The Cherenkov effect only represents a small loss of energy compared to the
energy loss due to ionisation considered before. It is nevertheless an interesting
effect because it depends only on the velocity of the particle. If one knows the energy
or the momentum of a particle by other means, measuring the Cherenkov effect
allows knowing the mass, and therefore the nature of that particle.

Transition radiation. This is a weak effect somewhat similar to the Cherenkov
effect. It is also due to the polarisation of the medium by the charged particle. It
depends on the plasma frequency in the material. The plasma frequency is usually
expressed as a quantity with dimension energy, and it is given by the equation

�ωp =
√

4πNer3
0mec2/α

In this equation Ne is the number of electrons per unit volume in the material, r0
the classical electron radius and α the fine structure constant. The plasma frequency
�ωp is about 30 eV for materials with density 1.
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Fig. 2.12 The Cherenkov effect is causing the blue glow in the water surrounding the core
of a water pool reactor (here the OPAL reactor, Australian Nuclear Science and Technology
Organisation). Gamma rays originating from the reactor core convert to electron–positron pairs
in the water. Many of these electrons or positrons travel at speeds exceeding the speed of light
in water and thus produce Cherenkov radiation. Photograph courtesy of the Australian Nuclear
Science and Technology Organisation

Whenever a particle of charge Z traverses a boundary between vacuum and some
material, a small amount of energy is emitted as energetic photons. The power spec-
trum of these photons is logarithmically divergent at low energy and decreases
rapidly for �ω >γ �ωp, where γ is the relativistic γ factor of the particle. About
half of the energy is emitted in the form of photons with energy in the range
γ �ωp/10 to γ �ωp. The typical energy of the emitted photons is given by

Etypical = γ �ωp/4

The average number Nγ of photons with energy larger than γ �ωp/10 is

Nγ ≈ 0.8 α Z2 ≈ 0.59%Z2

The total energy emitted by this effect when a charged particle traverses a boundary
between vacuum and a medium is given by

E = α Z2 γ �ωp/3

We see that the probability to emit energetic transition radiation photons, and the
total amount of energy emitted by this effect, is indeed quite small. But if a charged
particle penetrates through a stack with a large number of thin foils, or through mate-
rial with a foam-like structure, there can be a large number of transitions, and the
effect becomes significant. All the above equations are valid only if the thickness of
the foils, and the thickness of the gaps between the foils, is larger than a ‘formation
length’ given by γ c/ωp. For γ = 1,000 this ‘formation length’ is about 10 μm.
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The energy emitted is proportional to γ, and for particles with γ = 1,000 the
energy of the photons is in the soft X-ray region. This effect is interesting because it
can be used for the identification of particles. It is most useful for the identification
of electrons.

Also for thin foils the total amount of energy radiated by the transition radiation
effect is much smaller than the amount of energy emitted by the bremsstrahlung
effect discussed below. But the bremsstrahlung power spectrum is almost constant
up to the energy of the radiating particle, and therefore much harder. In the range of
the typical transition radiation energy, the number of photons emitted by transition
radiations is much larger than the number of photons emitted by bremsstrahlung.

Bremsstrahlung. Any charged particle undergoing acceleration will emit elec-
tromagnetic radiation. If a high-energy charged particle deviates from its trajectory
due to a collision with a nucleus, this collision is necessarily accompanied by elec-
tromagnetic radiation. The emission is strongly peaked in the direction of flight of
the charged particles.

The intensity of the radiation emitted can be calculated from first principles using
quantum electrodynamics. In the case of particles other than electrons or positrons
this emission is negligible, except at very high energy. For electrons or positrons,
the amount of radiation emitted is also governed by the quantity ‘radiation length’
X0 introduced in Eq. (2.3). The average energy loss due to bremsstrahlung by an
electron of energy E, in a thickness of matter dx, is given by

dE

dx
= − E

X0
(2.9)

In a thin foil the photons have a 1/E energy spectrum, and photons with energy
of up to the total energy of the charged particle do occur. The power spectrum of the
radiation is therefore a constant extending up to the energy of the radiating particle.
For very high energy (E > 1 TeV) this power spectrum becomes peaked towards
high energy. The emission of photons is a stochastic process, Eq. (2.9) giving only
the average energy radiated.

We notice that the energy loss due to bremsstrahlung is proportional to the energy
of the charged particle. For electrons, the energy loss due to bremsstrahlung exceeds
the energy loss due to ionisation above some critical energy Ec. This critical energy
depends on the nuclear charge of the atoms in the medium and is approximately
given by Ec = [800 MeV]/(Z + 1.2). For a particle of mass M, other than an electron,
bremsstrahlung is suppressed by a factor (melectron/M)2. Therefore, for all particles
other than electrons or positrons, bremsstrahlung is negligible at energies below
1 TeV.

The average energy of an electron that is losing energy according to Eq. (2.8) is
given by

E(x) = E0 e
− x

X0



38 2 Interactions of Particles in Matter

In the above equation, x represents the distance travelled in the medium. In one
radiation length, an electron of more than 10 MeV loses about half of its energy in
the form of bremsstrahlung.

Overview of the electromagnetic interactions of charged particles. The electro-
magnetic interactions of charged particles with a kinetic energy in the range 100 keV
to a few 10 MeV are summarised below.

Electrons: Electrons lose energy by exciting and ionising atoms along their tra-
jectory. Per centimetre, electrons will lose about 2 MeV multiplied by the density.
Electrons typically travel several centimetres before losing all their energy. The tra-
jectories of electrons are erratically twisted due to multiple scattering. They will
also lose a significant fraction of their energy by bremsstrahlung, particularly at
higher energies. If the energy exceeds 264 keV, electrons show Cherenkov radiation
in water.

Positrons: Positrons behave in exactly the same way as electrons except that, after
coming to rest, a positron will annihilate with electrons that are always present. This
annihilation gives rise to a pair of back-to-back gamma rays of 511 keV.

Alpha particles: The energy loss of alpha particles is much larger than that of
electrons. It is of the order of 1000 MeV/cm times the density of the medium. As a
result, alpha particles travel only tens of microns in solids and a few centimetres in
gases. The trajectory of alpha particles is approximately straight.

Protons: Protons ionise much more than electrons but less than alpha parti-
cles. The range in solids is of the order of 1 mm. The trajectory of protons is
approximately straight .

Nuclear fragments: Nuclear fragments show extremely high ionisation, and
therefore the range of such nuclear fragments is typically only a few microns long.

For charged particles with a much larger energy than 10 MeV, the range before
the particles have lost all their energy will be much greater. The energy loss will be
of the order of 2 MeV/cm times the density of the medium for Z = 1 particles. A
particle of 1 GeV will travel several metres in a solid before it has lost all its energy
in excitation and ionisation of the atoms on its trajectory.

The energy loss of muons as a function of the momentum is illustrated in
Fig. 2.13. The plot covers the whole range, from Ekinetic ≈1 eV to 100 TeV.
Remember that, if the energy of the particle is much larger than the mass, the energy
and the momentum become the same. Since a muon is immune to the strong colour
force, it will almost never undergo a nuclear interaction. A high-energy muon can
travel several kilometres in solid matter before losing all its energy. If the energy
of the muon is above 1 TeV ( 1012 eV) it will lose most of its energy through
bremsstrahlung. If the energy is between a few 100 MeV and 1 TeV, it will lose
energy at a rate of ≈2 MeV/cm times the density of the medium.

Around P ≈1 MeV/c, the velocity of the muon becomes comparable to the veloc-
ity of electrons in atoms, and the Bethe–Bloch equation no longer holds. Starting
from zero momentum, the energy loss will first increase, reach a maximum around
P = 1 MeV/c, and then decrease again.
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Fig. 2.13 Energy loss of a muon in copper between 100 keV and 100 TeV. Figure reproduced
from Ref. [6] in Chap. 1, with permission

2.4 Interactions of X-Rays and Gamma Rays in Matter

X-rays and gamma rays are both high-energy photons. In the energy range
1–100 keV, these photons are usually called X-rays and above 100 keV they are
usually called gamma rays. Some authors use the term ‘gamma rays’ to refer to any
photon of nuclear origin, regardless of its energy. In these notes, I often use the term
‘gamma ray’ for any photon of energy larger than 1 keV. In the next few sections,
the interactions of gamma rays with matter are discussed.

Photoelectric effect. If a charged particle penetrates in matter, it will interact with
all electrons and nuclei on its trajectory. The energy and momentum exchanged in
most of these interactions are very small, but together, these give rise to the dif-
ferent processes discussed in the previous chapter. When a photon penetrates in
matter, nothing happens until the photon undergoes one interaction on one single
atom. Gamma rays can interact with matter in many different ways, but the only
three interaction mechanisms that are important for nuclear measurements are the
photoelectric effect, the Compton effect and the electron–positron pair creation.

In the photoelectric absorption process, a photon undergoes an interaction with
an atom and the photon completely disappears. The energy of the photon is used
to increase the energy of one of the electrons in the atom. This electron can either
be raised to a higher level within the atom or can become a free photoelectron. If
the energy of gamma rays is sufficiently large, the electron most likely to inter-
vene in the photoelectric effect is the most tightly bound or K-shell electron. The
photoelectron then appears with an energy given by
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Ekinetic = �ω − Ebinding

In this equation, ‘Ebinding’ represents the binding energy of the electron. In addition
to a photoelectron, the interaction also creates a vacancy in one of the energy levels
of the atom. This vacancy is quickly filled through rearrangement of the electrons;
the excess energy being emitted as one or more X-rays. These X-rays are usually
absorbed close to the original site of the interaction through photoelectric absorption
involving less tightly bound electrons. Sometimes the excess energy is dissipated as
an Auger electron instead of X-rays. In the Auger process, an electron from the
outer shell falls into the deep vacancy, and another electron from the outer shell is
expelled from the atom and takes up the excess energy.

The photoelectric effect is the dominant mode of interaction of the gamma rays
of energy less than 100 keV. The energy dependence of the cross section is very
approximately given by

σ ≈ Const
Zn

E3.5
γ

In this equation, Z represents the charge of the nucleus and E the energy of the X-
ray. The coefficient ‘n’ varies between 4 and 5 over the energy range of interest. The
photoelectric cross section is a steeply decreasing function of energy (see Fig. 2.17).
Every time the photon energy crosses the threshold corresponding to the binding
energy of a deeper layer of electrons, the cross section suddenly increases. Such
jumps in the cross section are clearly visible in Figs. 2.17 and 2.18.

Compton scattering. Compton scattering is the elastic collision between a photon
and an electron. This process is illustrated in Fig. 2.14. This is a process that can
only be understood from the point of view of quantum mechanics.

A photon is a particle with energy �ω. From Eq. (1.1), we know that the photon
has an impulse momentum �ω/c. Energy and momentum conservation constrain the
energy and the direction of the final state photon. Using energy and momentum
conservation, it is straightforward to show that the following relation holds (see
Exercise 2):

�ω′ = �ω
(

1 + �ω

mec2 (1 − cos θ)

) (2.10)

Fig. 2.14 Illustration of
Compton scattering and
definition of the scattering
angle θ
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By using straightforward energy conservation, we ignore the fact that the electrons
are not free particles but are bound in the atoms, and this will cause deviations from
the simple expression above.

The value of the Compton scattering cross section for photon collisions on free
electrons can only be derived from a true relativistic and quantum mechanical cal-
culation. It is known as the Nishina–Klein formula (see Ref. [4] and references
therein).

dσ

d�
= r2

0

2

(
�ω′

�ω

)2 (
�ω

�ω′ + �ω′

�ω
− sin2 θ

)

(2.11)

Equation (2.11) gives the differential cross section for the Compton scattering
into a solid angle dΩ . Integration over all angles gives the total cross section σ .
The result of the integration is given in Ref. [4]. For energies either much larger or
much smaller than the electron mass, a simple and compact expression for the total
cross section is obtained.

σ = 8π

3
r2

0 �ω << mec2

σ = r2
0 π

mec2

�ω

[

ln

(
2�ω

mec2

)

+ 1

2

]

�ω >> mec2

In these formulas, r0 represents the classical electron radius introduced in Sect.
1.2. We see that for photon energies below the mass of the electron, the Compton
cross section is independent of energy, and for photon energies above the electron
mass, the cross section decreases as (energy)−1.

The Nishina–Klein formula only applies to scattering of gamma rays from free
electrons. If the photon energy is much larger than the binding energy of electrons
in atoms, the effects due to this binding are small.

If the gamma energy is small, there is a large probability that the recoil electron
remains bound in the atom after the collision. The atom as a whole takes up the
energy and the momentum transferred to the electron. In this case the interaction is
called coherent Compton scattering or Rayleigh scattering. If the Compton interac-
tion ejects the electron from the atom, the interaction is called incoherent Compton
scattering.

The angular distribution of Compton scattering described by Eq. (2.11) is illus-
trated in Fig. 2.15. For photon energies much below the electron mass, the scattering
is rather isotropic and back-scattering is about as likely as scattering in the forward
direction. If the photon energy is much larger than the electron mass, the scattering
is peaked into the forward direction.

Pair production. If the energy of the photon is at least two times larger than the
mass of an electron, the energy of the photon can be used to create an electron and
positron pair. This process is illustrated in Fig. 2.16. However, this reaction is not
possible in empty space. In fact, energy and momentum cannot be conserved in this
process. To see this, just imagine that the reaction gamma → electron + positron
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Fig. 2.15 A polar plot of the
cross section for Compton
scattering. The curves show
the magnitude of the
differential cross section as a
function of the scattering
angle for different values of
the incident photon energy.
Figure calculated with Eq.
(2.11).

could take place. In that case it would be possible to go to the centre of mass sys-
tem of the final state electron–positron pair. In that system, the sum of the impulse
moments of the electron and the positron is zero. Therefore, the original gamma ray
should have zero momentum. This is impossible. However, if the reaction gamma
→ electron + positron happens in the strong electric field of the nucleus, the nucleus
can take up momentum, and in this way the energy and momentum can be conserved
and the reaction becomes possible.

The cross section for pair production is given in Ref. [4]. It rises quickly from
the threshold value of 2 me to a constant value at high energy, as is illustrated in
Fig. 2.17. The high-energy limit of the cross section is given by

σ = 7

9
4αr2

0 Znucl (Znucl + 1) ln

(
183

3
√

Znucl

)

The expression above reminds us of the quantity ‘radiation length’ X0 introduced
in Sect. 2.3. From the above expression of the cross section it immediately fol-
lows that, if a beam of high-energy photons penetrates in a medium, the number of
unconverted gamma rays will decrease according to

Fig. 2.16 An
electron–positron pair can
only be created if a certain
amount of momentum can be
exchanged with the nucleus
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Fig. 2.17 Photon total cross
sections as a function of
energy in carbon and lead,
showing the contributions of
different processes: σ p.e =
Atomic photoelectric effect
(electron ejection, photon
absorption); σRayleigh =
Coherent scattering (Rayleigh
scattering/atom neither
ionised nor excited); σCompton
= Incoherent scattering
(Compton scattering off an
electron); knuc = Pair
production, nuclear field;
ke = Pair production, electron
field; σ g.d.r = Photonuclear
interactions, most notably the
Giant Dipole Resonance.
Figure reproduced from
Ref. [6] in Chap. 1, with
permission

e
− 7 dx

9 X0

Therefore, in one radiation length, a high-energy gamma ray has a 54% chance
of converting into an electron–positron pair.

Overview of the interactions of gamma rays. It is convenient to consider three
energy ranges when discussing gamma interactions:

– In the range 1–100 keV, the interactions are dominated by the photoelectric effect.
The mean free path in water varies from about one micron at 1 keV to several
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centimetres at 100 keV. The cross section strongly depends on the charge of the
nucleus.

– In the range 100 keV–1 MeV, the Compton scattering process dominates the cross
section. The mean free path rises slowly and is about 10 cm in water at 500 keV.

– At energies above 1 MeV, the pair creation process dominates the cross section.
The mean free path of gamma rays of very high energy is equal to (9/7) times the
radiation length.

If a beam of photons with intensity I0 enters matter, the intensity I(x) will satisfy
the following equation (see Sect. 2.1):

dI(x)

dx
= −I(x)Nσ

The cross section σ is the sum of the cross section for the photoelectric effect,
the Compton effect and the pair creation effect. It is customary to write this in terms
of the linear attenuation coefficient μ defined as μ = Nσ . Obviously, the total lin-
ear attenuation coefficient is the sum of the linear attenuation coefficients for the
photoelectric effect, the Compton effect and the pair creation effect

dI(x)

dx
= −I(x)μ

The intensity of the unscattered beam and the photon mean free path are therefore
given by

I(x) = I0 e−xμ, λ = 1

μ

One should be aware of the fact that the Compton scattering does not remove the
photons. They just lose some energy and change direction. In the literature, and in
particular in numerical tables, the following quantities are often used.

μ

ρ
: photon mass attenuation coefficient

ρ

μ
= λρ: photon mass attenuation length

Figure 2.18 shows the photon mass attenuation length of several materials as a
function of the photon energy.

Gamma rays with energies much above 1 MeV will cause electromagnetic show-
ers. On average in about one radiation length the original gamma ray gives rise to
an electron–positron pair. This electron and positron will create a large number of
secondary gamma rays by bremsstrahlung. In one radiation length, an electron or a
positron will radiate about half of its energy in this way. Many of these secondary
gamma rays will again create electron–positron pairs, and these will again undergo
bremsstrahlung and so on. If the energy of the initial gamma ray is large enough,
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Fig. 2.18 The photon mass attenuation length λρ = 1/(μ/ρ) for various elemental absorbers as
a function of photon energy. The intensity I remaining after traversal of thickness t (in mass/unit
area) is given by I = I0 exp(−t/λ). The accuracy is a few percent. For a chemical compound or
mixture, 1/λeff ≈ �elements wZ/λZ, where wZ is the proportion by weight of the element with atomic
number Z. Figure reproduced from Ref. [6] in Chap. 1, with permission

the number of particles in the shower will grow exponentially. But at each step the
average energy of the particles in the shower decreases, and fewer of the secondary
gamma rays have sufficient energy to produce electron–positron pairs. The number
of the particles in the shower will reach a maximum and start decreasing; eventually
all electrons, positrons and gamma rays are absorbed or stopped.

2.5 Interactions of Particles in Matter due to the Strong Force

A proton or a neutron has an apparent size of slightly more than 10−13 cm, and the
cross section for the collision on another proton or a neutron is therefore expected
to be ≈4×10−26 cm2. A nucleus with atomic number A has a diameter that is (A)1/3

times the proton diameter and a geometrical cross section that is (A)2/3 times that
of a proton. The cross section for the interaction of a proton on a nucleus of atomic
number A is therefore expected to be

σ ≈ 4 × 10−26 (A)2/3 cm2

The mean free path for protons in material with atomic number A is therefore

λ = 1

Nσ
≈ A1/3

ρ

1

NA 4 × 10−26
≈ A1/3

ρ
35 g/cm2
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In this last equation, NA = 6.022×1023 represents the Avogadro number, and we
used the fact that the number of scattering centres per unit volume N is given by N =
ρ(NA/A). The mean free path for protons calculated above is sometimes called the
‘hadronic interaction length’. The calculation above gives a value for the numerical
coefficient slightly larger than 35 g/cm2. The value 35 g/cm2 is by convention taken
in the definition of the hadronic interaction length.

However, this very simplistic argument cannot be correct. Quantum mechanics
is essential for the understanding of phenomena at this dimension scale. Indeed, in
quantum mechanics a wave is associated with every particle, and the wavelength is
given by λ = h/P. If this wavelength is small compared to the size of the nucleus,
we should indeed expect the simplistic conclusion above to be a fair approxima-
tion. However, a proton with a kinetic energy of 10 MeV has a momentum cP =
137 MeV, and the quantum mechanical wavelength associated with such a proton
is ≈10×10−15 m (remember hc = 2 π

.
.197 × 10−15 MeV m). This is compara-

ble to or larger than the size of a nucleus, and quantum mechanics is expected to
be very important. At energies above ≈1 GeV, the wavelength associated with the
proton becomes small compared to the size of a nucleus, and the simplistic result
is, indeed, more or less correct. Particles with a kinetic energy above ≈1 GeV are
usually referred to as ‘high-energy particles’.

At nuclear energies, the proton–nucleus cross section will deviate substantially
from the result derived above because of the effects of quantum mechanics. In
addition, at low energy the electrostatic repulsion between the positive proton and
the positive charge of the nucleus will prevent the proton and the nucleus from
approaching each other sufficiently for a nuclear interaction to occur. This elec-
trostatic repulsion strongly suppresses nuclear interactions at energies below a few
100 keV (see Exercise 3). The effect of this electrostatic repulsion is negligible if
the energy of the proton is much larger than 100 keV.

At high energy all hadrons, on average, undergo a nuclear interaction after a dis-
tance approximately equal to the hadronic interaction length. This mean free path is
in the range 10–100 cm in solids. A very high-energy proton will lose a few MeV
per cm due to ionisation in a solid, and the range of the proton due to the energy loss
will be larger than the hadronic interaction length. The proton will most of the time
undergo a nuclear interaction before it has lost all its energy in ionisation. In such
a nuclear interaction the target nucleus will be broken up. The nuclear fragments
produced in this way are usually very unstable, and return to a stable condition
in several steps. One particular case that needs to be mentioned is the collision of a
high-energy proton with a very heavy nucleus. A very heavy nucleus has many more
neutrons than protons. For example, lead has 82 protons and ≈125 neutrons. Nuclei
with atomic charge up to about 20 have approximately equal numbers of protons
and neutrons. For larger atomic charges, the neutron excess slowly increases with
increasing nuclear mass. If a very heavy nucleus is broken up in a collision with
a high-energy proton, the fragments will quickly expel their excess neutrons and a
large number of secondary neutrons are produced. A proton of 1 GeV will, on aver-
age, produce ≈25 neutrons in a heavy target such as lead. This process of neutrons
production is called spallation, and it is an efficient way to produce neutrons.
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In addition to breaking up the nucleus, the high-energy protons will also undergo
a violent collision with one or more protons or neutrons in the nucleus. In this col-
lision a number of additional hadrons is produced. At a few GeV of energy, only a
handful of secondary hadrons are produced, and this number increases slowly with
energy. Typically 90% of the secondary particles produced are pions, with approxi-
mately equal numbers of π+, π− and π0. Also other hadrons can be produced, but
the probability of production decreases rapidly with increasing mass. If the energy of
the primary proton is large enough, these pions and other hadrons will also have suf-
ficient energy to produce further nuclear interactions, and an avalanche of hadrons
is produced.

Photonuclear interactions. The term photonuclear interaction refers to the
strong interaction of a gamma ray with a nucleus. It may come as a surprise that
gamma rays can undergo strong interactions, since it is the very nature of gamma
rays to be insensitive to the strong force. The explanation is that the strong inter-
actions of gamma rays are an indirect effect. Indeed, a gamma ray in matter will
create particle–antiparticle pairs for any elementary charged particle that exists. As
for the case of the production of electron–positron pairs, this reaction is impossible
because of energy and momentum conservation. However, if the produced parti-
cles only need to live a short time and exchange some energy and momentum with
a nucleus, these reactions become possible. One can see strong interactions of a
gamma ray as first the production of a quark–antiquark pair, and subsequently the
interaction of this virtual quark pair with the nuclei in matter. The quark–antiquark
pair is sensitive to the strong colour force and interacts with matter in the same
way as any other hadron. The strong interactions of gamma rays are very simi-
lar to the strong interactions of any other hadron, except that the cross sections
are a factor ≈100 lower. Below about 1 GeV, the cross section shows strong reso-
nant behaviour. Above about 1 GeV, the cross section is fairly energy independent.
Below 10 MeV, the photonuclear cross sections are extremely small because of the
mismatch between the energy needed to create the virtual quark–antiquark pair and
the energy available in the gamma rays.

Neutron interactions. Similar to the photon, the neutron lacks an electric charge,
and therefore it is not subject to Coulomb interactions with electrons and nuclei in
matter. A neutron will penetrate in matter until it undergoes a strong interaction with
a nucleus. Because of the marked difference in the behaviour of the neutrons, it is
customary to refer to neutrons as ‘high-energy neutrons’, ‘fast neutrons’ and ‘slow
neutrons’, depending on their energy.

High-energy neutron means a neutron with energy larger than 1 GeV. As far
as strong interactions are concerned, a high-energy neutron will behave in a very
similar way as a high-energy proton, and the mean free path is of the order of the
hadronic interaction length.

The neutrons produced in a nuclear reactor typically have between 100 keV and
10 MeV of energy. These are called fast neutrons. At these energies, the neutron–
nucleus cross sections are often very different from the cross sections at higher
energies. In addition, neutron–nucleus cross sections show a very strong energy
dependence. Many neutron interactions are characterised by resonances, i.e. the
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cross section for a certain type of interaction shows a pronounced peak at a particular
energy. At the resonance, the cross section can be many orders of magnitude larger
than at slightly higher or lower energy. This is illustrated in Fig. 3.1 showing the
energy dependence of the neutron capture cross section in uranium and plutonium.

For fast neutrons, the most probable way of interacting is by elastic scattering
on the nuclei of the medium. The energy loss of neutrons is mainly due to elastic
scattering, but neutrons can also interact in other ways with nuclei:

(1) Inelastic scattering: the nucleus is left in an excited state, which later decays
by gamma emission or some other forms of radiation. This process will only
become significant for neutrons with more than 1 MeV of energy.

(2) Radiative neutron capture: the nucleus absorbs the neutron and finds itself in an
excited state, which decays by gamma emission.

(3) Neutron capture followed by emission of a charged particle or followed by
fission.

Fast neutrons will undergo elastic collisions and lose their kinetic energy until
the energy is equal to the thermal energy of surrounding matter. The thermal energy
is equal to 3/2 kT, with kT≈25 meV at room temperature. In the hot environment of
a nuclear reactor, thermal energy will, of course, correspond to the temperature in
the reactor core.

‘Slow neutrons’ usually refers to neutrons with energy less than 0.5 eV.
For slow neutrons the most probable interactions are elastic scattering and neu-

tron capture. The elastic scattering will reduce the energy of slow neutrons further

Fig. 2.19 Fission cross section of 235U and 239Pu as a function of energy. Both cross sections
become very large at thermal energies. The cross sections show characteristic resonance peaks at
certain energies. The data for this figure were obtained from Ref. [8] in Chap. 1
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until they have on average the thermal energy (3/2 kT). For many isotopes the cap-
ture cross section is inversely proportional to the speed of the neutron, and becomes
very large for thermal neutrons. This is, for example, the case for 235U and 239Pu as
illustrated in Fig. 2.19.

2.6 Neutrino Interactions

Figure 2.20 shows the different ways electron neutrinos can interact in matter. In
this figure, the interactions are shown as interactions on protons and neutrons; the
underlying quark diagrams can be found in analogy with Fig. 1.5. These reactions
can occur on free neutrons and protons, or on neutrons and protons bound in nuclei.
It is straightforward to find the list of possible reactions by requiring conservation
of the electric charge at the vertices, and by requiring that an electron neutrino can
only turn into an electron, and an electron anti-neutrino can only turn into a positron.
Similar diagrams can be drawn for muon neutrinos and for τ-neutrinos. The only
difference is that the muon neutrino gives rise to a muon, and a τ-neutrino to a τ-
lepton. In addition, neutrinos and anti-neutrinos can also scatter on the electrons
present in matter. The reactions mediated by the exchange of W-bosons are called
‘charged current’ interactions, and the reactions mediated by the exchange of Z-
bosons are called neutral current interactions.

The probability that a neutrino will interact with matter is extremely small. A
neutrino has no electric charge and is not sensitive to strong interactions; it is only
sensitive to weak interactions. A neutrino penetrating in matter will only interact
when it comes within a distance of 10−18 m of one of the quarks present in the
neutrons or protons inside the nuclei. Forgetting quantum mechanics, we would
be tempted to say that the cross section for neutrino collisions in matter is of
the order of 10−36 m2, and the corresponding mean free path in matter is of the

Fig. 2.20 Diagrams for the possible interactions of electron neutrinos in matter. Similar diagrams
exist for muon neutrinos and τ-neutrinos. These diagrams are not proper quantum field theory
diagrams and the arrows represent the direction of motion of the particles
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order of several 1000 km. This argument is completely wrong, because it is essen-
tial to use quantum mechanics and the correct description of neutrino interactions.
However, also when all this is taken into account, neutrinos indeed have a very small
probability of interacting.

At high energy, all neutrino cross sections are of similar magnitude and increase
linearly with the energy of the neutrino. For neutrinos of ≈1011 GeV the cross
section is close to the naive expectation above, but the cross section continues to
rise for higher energy. At this extremely high energy, the cross section is no longer
increasing linearly with the energy of the neutrino.

The daughter nuclei produced in a fission reaction are neutron rich and undergo
several β− decay processes before becoming stable. In a β− decay a neutron in the
nucleus becomes a proton through the reaction

n → p + anti-neutrino + electron

In a nuclear reactor, on average about six anti-neutrinos are produced per fission.
Because of the nuclear effects, the energy spectrum of the anti-neutrinos is not the
same as the energy spectrum from the decay of a free neutron. The energy spectrum
extends from zero to ≈8 MeV, and the average energy is ≈1.5 MeV. The instant
energy released in the fission of one 235U isotope is 187 MeV, neutrino energy not
included. An additional 9 MeV is carried away by the neutrinos. The total elec-
tron anti-neutrino flux near a nuclear reactor of 3 GW thermal power is therefore
≈1.5×1021 per s. The exact number of anti-neutrinos and their energy spectrum
depends on the relative importance of the different fissile isotopes in the reactor.

These anti-neutrinos can be observed through the inverse reaction shown in
Fig. 2.20(a)

anti-neutrino + p → neutron + positron (2.12)

On a free proton this reaction is only possible if the energy of the anti-neutrino
exceeds 1.804 MeV, because the mass of a neutron plus the mass of a positron is
larger than the mass of a proton by this amount. Well above the energy threshold the
cross section increases linearly with the neutrino energy Eυ , and is given by

σ = 6.7 × 10−42 × Eυ [MeV] cm2.

For anti-neutrinos produced in a nuclear reactor, the cross section for reac-
tion (2.12) on free protons is smaller because the energy is only just above the
threshold. On average, for anti-neutrinos produced in a reactor, the cross section
is σ≈10−43 cm2. The mean free path of such anti-neutrinos in normal solid matter
is therefore of the order of one light year! Nevertheless, at a distance of ≈25 m
from the core of a 3 GW reactor there will be about 500 such anti-neutrino inter-
actions/hour in 1 m3 of water. It is therefore quite possible to observe neutrino
interactions. The difficulty is in distinguishing the anti-neutrino interactions from
the much more abundant events caused by several other processes such as cosmic
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rays and natural radioactivity in the detector or in the surrounding materials. The
observation of reaction (2.12) at the Savannah river nuclear reactor by Reines and
Cowan in 1959 [3] provided the first direct evidence for the existence of the neu-
trino. Such detectors could be used to monitor the fissile isotope inventory in a
reactor core. Reaction (2.12) can also occur on a proton bound in a nucleus. In
that case, the positron is expelled from the nucleus and the charge of the nucleus is
lowered by one unit. The new nucleus thus formed is usually unstable.

The Sun produces energy by the fusion of hydrogen into helium. This requires
the conversion of protons into neutrons in the reaction:

proton → neutron + positron + electron neutrino.

This reaction cannot occur if the neutron remains a free particle. However, if the
neutron becomes part of a helium nucleus, the reaction is indeed possible. The Sun
is therefore a source of electron neutrinos, not anti-neutrinos. The neutrinos from
the Sun have also been observed. Because the neutrino flux from the Sun is much
smaller than the neutrino flux close to a nuclear reactor, detecting these neutrinos
requires very large detectors and a very careful control of the backgrounds.

High-energy particle accelerators also are intense sources of neutrinos. With
accelerators not only electron neutrinos, but also muon neutrinos and τ neutrinos
can be produced.

There is a subtle quantum mechanical effect causing the different flavours of
neutrinos to change as a function of the distance travelled. For example an electron
neutrino, after travelling some distance, can become a muon neutrino and later can
again become an electron neutrino. This phenomenon is called neutrino oscillations.
The effect is related to the mass of the neutrinos. A discussion of this effect is beyond
the scope of the present book.

2.7 Illustrations of the Interactions of Particles

Several of the effects discussed in the present chapter can be illustrated with the
help of bubble chamber pictures. A bubble chamber is an instrument that allows
visualising the trajectory of charged particles. This technique has been extensively
used until approximately 1980 for studying the properties of subatomic particles at
high energies. The principle is as follows. A liquid is brought to a temperature above
its boiling point by a sudden drop of pressure with the help of a mechanical piston.
The superheated liquid immediately begins to boil and the bubbles preferentially
form at points where the temperature is slightly higher. Bubbles will therefore form
along the tracks of charged particles because energy is deposited along the track,
and this energy is causing local heating of the liquid. The bubbles will eventually
grow to quite large dimensions, but after a few milliseconds the bubbles will only
be a few tenth of a millimetre in diameter. If a picture is taken a few milliseconds
after the passage of the track, the trajectories of charged particles become visible
as a trail of small bubbles. In a bubble chamber, there usually is a magnetic field
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Fig. 2.21 (Top) A neutrino coming from the left interacts in the Gargamelle Bubble chamber
filled with freon and produces two hadrons and a high-energy electron. The electron gives rise
to an electromagnetic shower. (Bottom) Nine protons of 24 GeV enter the 30 cm hydrogen bubble
chamber of CERN from the left. Two of the incoming protons interact with a hydrogen nucleus and
produce secondary particles. The tightly spiralling tracks are electrons ejected from the hydrogen
atoms by a high-energy particle. Images copyright CERN

perpendicular to the plane of the picture, and therefore all tracks bend clockwise to
counter-clockwise depending on the charge.

The lower image in Fig. 2.21 shows a picture obtained with a bubble chamber
filled with liquid hydrogen at a temperature of about 27 K. In liquid hydrogen the
radiation length is ≈9 m and the hadronic interaction length is ≈6 m. The picture
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shows a beam of protons with 24 GeV of energy entering the chamber from the
left. Two of the protons collide with a hydrogen nucleus and produce a number of
secondary particles, mostly pions. Because of the long radiation length in hydrogen,
the tracks have very little multiple scattering and the trajectories are therefore nearly
circles. Because of the energy loss, the curvature of the circles becomes smaller as
the particle proceeds in the liquid. On the picture we notice several tracks originating
on a high-energy track and completely curled up. These are electrons ejected for
an atom by the high-energy track. The electron loses its energy and the radius of
curvature becomes smaller and smaller until the electron stops

The upper image in Fig. 2.20 is a picture obtained with a bubble chamber filled
with liquid freon. Freon is a general name for carbon-fluor compounds; in this case
the freon used was CF3Br. In this type of freon the radiation length is about 30 cm.
The image corresponds to about 2 m in real space. In this picture a neutrino is
coming from the left and interacting with a nucleus close to the left edge of the pic-
ture. In this interaction two hadrons are produced and one high-energy electron. The
electron gives rise to a shower of electron–positron pairs and secondary gamma rays.
Because of the much shorter radiation length compared to hydrogen, the tracks show
much more multiple scattering in freon than in hydrogen. Therefore, the electron
trajectories are erratically twisted and only vaguely resemble spirals.

2.8 Exercises

(1) Calculate the approximate mean free path of a high-energy neutron in dry air.
Air is 80% 14N and 20% 16O by volume.

(2) Derive equation (2.10) using energy–momentum conservation.
(3) Consider two protons with the same kinetic energy and travelling on a head-on

collision trajectory. The protons repel each other by the Coulomb force. At the
point of closest approach the distance between protons is 2×10−10 m. What is
the energy of each of these protons?

(4) Derive the expression for the threshold energy for the Cherenkov effect (Eq.
2.8) starting from E = γ m0c2 .

(5) The diameter of atoms is of the order of the Bohr radius and is given by a =
4πε0�

mee2
. Use the Heisenberg uncertainty relation to argue that the velocity of the

electrons in atoms is of the order v ≈ cα, where α is the fine structure constant.

α = e2

4π �c ε0
≈ 1

137
.
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Chapter 3
Natural and Man-Made Sources of Radiation

3.1 Natural Sources of Radiation

In 1895, Henri Becquerel discovered that some uranium salts emit penetrating radia-
tion that can be made visible with ordinary photographic emulsions. This discovery
was the beginning of nuclear science. Today we know that most natural radioactiv-
ity is due to a few very long-lived unstable isotopes that were formed 4.5 × 109

years ago. At that time the Earth was formed, and presumably, a very large num-
ber of different radioactive isotopes were produced. Those with a shorter half-life
have all decayed and only those with a very long half-life still exist today. The iso-
topes contributing most to the natural radioactivity are uranium-235, uranium-238
and thorium-237. The half-life of each of these isotopes is listed in Table 3.1. After a
long decay chain with a succession of alpha and beta emissions, these isotopes even-
tually decay to one of the stable isotopes of lead. There are many other isotopes with
a very long lifetime occurring naturally; the most important of these is potassium-
40. Several short-lived isotopes also occur naturally; these are either decay products
of long-lived isotopes or are produced by cosmic rays. It is worth mentioning radon
(222Rn), which is an alpha emitter with a half-life of 3.8 days. This isotope is pro-
duced in the decay of uranium. Although in general it is very rare, it can occasionally
be found in high concentrations inside buildings or in thermal springs and can rep-
resent a health hazard. Some degree of radioactivity is present in all materials. The
amount of activity present in natural materials varies by orders of magnitude. A
value of up to 74,000 Bq/kg is usually considered “not radioactive”.

Table 3.1 Some naturally occurring radioactive isotopes

Isotope Half-life [years]

Thorium-232 1.405 × 1010

Uranium-235 7.04 × 108

Uranium-238 4.468 × 109

Potassium-40 1.25 × 109

Carbon-14 5715

55S. Tavernier, Experimental Techniques in Nuclear and Particle Physics,
DOI 10.1007/978-3-642-00829-0_3, C© Springer-Verlag Berlin Heidelberg 2010
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The best known example of the cosmogenesis is carbon-14. This isotope is
constantly produced in the atmosphere by cosmic rays and is therefore present in
approximately constant concentration in air. Any living organism takes its carbon
from the air, either directly or indirectly. Any living biological material therefore
contains the same fraction of 14C. After the organism has died, it no longer absorbs
carbon from the air and the fraction of 14C starts to decrease. Measuring the 14C con-
centration is, therefore, a very powerful method for dating archaeological samples.

Besides these naturally occurring radioactive isotopes, there are many artificial
radioactive isotopes. These are produced in nuclear reactors or with particle acceler-
ators. Often the production of such isotopes is an undesirable side effect, but some
of these radioactive isotopes have useful applications and are made on purpose.
Annexe 6 lists some commonly used radioactive isotopes.

Another important natural source of radiation are the ‘cosmic rays’. In 1912,
Victor Hess carried electrometers (see Sect. 4.1) to an altitude of 5300 m in a bal-
loon flight. He found that the ionisation rate increased approximately four-fold over
the rate at ground level. He concluded that this was caused by radiation from outer
space. Today we know that this radiation primarily consists of positively charged
nuclei. Of the primary charged particles in cosmic rays, ≈90% are protons, ≈9%
are helium nuclei and ≈1% are electrons. This radiation spans an enormous energy
range, from ≈1 GeV [109 eV] up to ≈1020 eV. The flux of primary cosmic ray
particles decreases approximately like E−2.7. The flux for particles with energy
exceeding 1017 eV is ≈1/(km2 h).

The Sun is an intense source of energetic particles, but the energy of these parti-
cles rarely exceeds ≈1 GeV. These particles are accelerated in plasma waves in the
corona of the Sun and the intensity fluctuates considerably depending on the solar
activity. Occasionally, there are bursts of activity, and the intensity of the radiation
increases by several orders of magnitude during the bursts. The Earth’s atmosphere
will completely stop any radiation with energy less than 1 GeV and this radiation is
therefore harmless for people living on the surface of the Earth, as most of us do.
This stream of particles is deflected by the Earth’s magnetic field towards the poles,
where it causes eerie phenomena such as the Northern Lights.

The term ‘cosmic rays’ usually only refers to particles with a primary energy
above 1 GeV. The Earth’s atmosphere corresponds to about 10 times the hadronic
interaction length and 30 times the radiation length. A high-energy particle coming
from outer space will always interact somewhere at high altitude in the atmosphere.
In the collision, a large number of secondary particles will be produced, mainly
protons, neutrons and pions. This is illustrated in Fig. 3.1. The secondary protons
and neutrons will again interact, producing new secondary particles of lower energy
and so on. Eventually, the energy is so low that particles are stopped by ionisa-
tion of the air molecules. The result is that protons and neutrons very rarely reach
the Earth’s surface. However, charged pions have a lifetime of 2.6 × 10−8 s. The
average distance travelled by a high-energy pion before it decays is given by
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Fig. 3.1 Artist’s view of the interaction of a very high high-energy cosmic ray in the upper
atmosphere and the subsequent production of secondary particles. Most of the time only muons,
neutrinos and some low-energy gamma rays will reach the surface of the Earth. For the sake of
clarity, the distance travelled by neutral pions is shown much larger than reality
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Eπ

mπ

c 2.6 10−8 s = Eπ

mπ

7.8 m .

The symbols Eπ , mπ and c stand for the energy and mass of the pion and the
velocity of light. The pions are sensitive to the strong colour force, but high in the
atmosphere the mean free path before a nuclear interaction for a pion is several
kilometers; therefore, most of the pions will have decayed before they can interact.
A pion decays into a muon and a neutrino as indicated below:

π+ → μ+ + vμ

π− → μ− + v̄μ

The neutrino is almost unobservable. A muon has an electric charge and is there-
fore easily observable. However, a muon is insensitive to the strong colour force; a
muon will almost never undergo a nuclear interaction. The muon will lose energy
according to the Bethe–Bloch equation discussed in Sect. 2.2. In travelling from
the upper atmosphere down to the surface of the Earth, it will lose about 2 GeV.
Many of the muons have more than 2 GeV of energy and can, therefore, reach the
surface of the Earth. The muon has a lifetime of 2.2 × 10−6 s and decays into an
electron and two neutrinos. However, the average energy of muons at sea level is
about 4 GeV and the mean free path before decay of a muon with this energy is
about 25 km. Many of the muons produced high in the atmosphere will therefore
reach the surface of the Earth.

In the interaction of primary cosmic rays, neutral pions are also produced. Such
neutral pions will decay in 8.4 × 10−17 s into two gamma rays. This lifetime is
so short that a neutral pion will only travel a microscopic distance before decay-
ing. At high energy, a gamma ray will initiate an avalanche consisting of a large
number of electrons, positrons and secondary gamma rays. On average in about
one radiation length the original gamma ray gives rise to an electron–positron pair.
This electron and positron will create a large number of secondary gamma rays by
bremsstrahlung. In one radiation length, an electron or a positron will radiate about
half of its energy in this way. Many of these secondary gamma rays will again cre-
ate electron–positron pairs and these will again undergo bremsstrahlung and so on.
If the energy of the initial gamma ray is large enough, the number of particles in
the shower will grow exponentially. However, at each step the average energy of
the particles in the shower decreases, and fewer of the secondary gamma rays have
sufficient energy to produce electron–positron pairs. After a few radiation lengths,
the number of the particles in the shower reaches a maximum and thereafter starts
to decrease. Eventually, all electrons, positrons and gamma rays are absorbed or
stopped.

Because of these cosmic rays, everywhere on the Earth’s surface there is a con-
stant flux of muons. The intensity of this flux is of the order of 1/(cm2·min). The
energy spectrum of cosmic ray muons is shown in Fig. 3.2. These muons typically
have a few GeV of energy, but the spectrum extends beyond 100,000 GeV. In addi-
tion to the muons, we will also see the end of the electromagnetic shower caused
by gamma rays from neutral pion decay or by primary electrons. This will give
electrons and gamma rays with energy rarely exceeding a few 10 MeV.
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Fig. 3.2 Momentum spectrum at sea level of muons produced in cosmic rays. For energies above
1 GeV, the energy and the momentum of a muon are almost the same when expressed in GeV and
GeV/c, respectively. Notice that this plot shows the muon flux multiplied by the muon momentum
to the power of 2.7; the curve therefore peaks at a much larger value than the actual muon momen-
tum spectrum. The angle indicated in the figure is the angle of the muon relative to the vertical
direction. Figure by courtesy of the particle data group [6] in Chap. 1

The origin of cosmic rays is not known with any certainty. It is widely believed
that most cosmic rays have been accelerated in the plasma shock waves caused
by supernova explosions in our galaxy. There are indications that the cosmic rays
with energy above 1014 eV are of extragalactic origin, possibly accelerated in the
extremely intense electromagnetic fields that are known to exist near massive black
holes.

The radiation dose from cosmic rays is small for people living on the surface
of the Earth. At an altitude of 10 km, cosmic radiation is much more intense and
reaches an average of 5 μSv/h. This is negligible for an occasional traveller, but is of
some concern for airline crews. Astronauts in low orbits are at moderate risk because
the magnetic field of the Earth shields out most cosmic rays. Outside low Earth orbit,
this radiation is much more intense, it is an important concern for astronauts and it
represents a major obstacle to future long-term human exploration of the Moon or
Mars.

3.2 Units of Radiation and Radiation Protection

Much of this section is reproduced from the ‘Review of Particle Physics’, Ref. [6]
in Chap. 1. The International Commission on Radiation Units and Measurements
(ICRU) recommends the use of SI units. We also mention CGS units, and some
other non-SI units, because these units are still widely used.

• Unit of activity: The amount of radioactivity present in a sample can be charac-
terised by the number of radioactive decays per second. The corresponding unit
is the becquerel (Bq); the corresponding non-SI unit is the curie (Ci):
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1 Bq = 1 disintegration s−1 = 1/(3.7 × 1010)Ci

• Unit of absorbed dose: The amount of radiation absorbed in a sample can be
characterised by the amount of energy deposited by the radiation in the sample.
The corresponding unit is the gray (Gy); the corresponding non-SI unit is the
‘rad’:

1 Gy = 1 joule kg−1 = 6.24 × 1012 MeV kg−1 = 100 rad

• Unit of exposure: This unit is somewhat obsolete, but it continues to appear on
many measuring instruments. It is a measure of the photon fluence at a certain
point in space integrated over time, in terms of ion charge pairs produced by
secondary electrons in a small volume of air around the point. The name of the
unit simply is ‘unit of exposure’; the corresponding non-SI unit is roentgen (R).
One ‘unit of exposure’ creates 1 Coulomb of ionisation charges in one kilogram
of air.

1 R = 1 esu cm−3in air = 2.58 × 10−4‘unit of exposure’

Implicit in the definition is the assumption that the small test volume is embed-
ded in a sufficiently large and uniformly irradiated volume, and that the number
of secondary electrons entering the volume equals the number of secondary
electrons leaving the volume, i.e. there is charged particle equilibrium.

• Unit of equivalent dose: The amount of biological damage caused by ionising
radiation in a sample depends on the type of radiation and on the amount of
energy deposited by the radiation in the sample. The corresponding unit is the
sievert (Sv), the corresponding non-SI unit is ‘rem’ (roentgen equivalent for
man). The conversion factor is 1 Sv = 100 rem. The equivalent dose HT in an
organ T is equal to the absorbed dose in the organ in gray, times the radiation
weighting factor ωR, formerly called the quality factor Q. The equivalent dose
expresses the long-term risks, primarily cancer and leukaemia, from low-level
chronic exposure. It depends on the type and energy of the radiation as indicated
in Table 3.2 [1]:

Table 3.2 Radiation weighting factors

Radiation ωR

X- and γ-rays, all energies 1
Electrons and muons, all energies 1
Neutrons, energy < 10 keV 5
Neutrons, energy 10 keV–100 keV 10
Neutrons, energy > 100 keV–2 MeV 20
Neutrons, energy 2 keV–20 MeV 10
Neutrons, energy > 20 MeV 5
Protons (other than recoils) > 2 MeV 5
Alphas, fission fragments, and heavy nuclei 20
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Table 3.3 Tissue weighting factors ωT

Tissue or organ ωT

Gonads 0.20
Colon 0.12
Bone marrow 0.12
Lung 0.12
Stomach 0.12
Chest 0.05
Liver 0.05
Thyroid gland 0.05
Oesophagus 0.05
Skin 0.01
Bone surface 0.01
Adrenals, brain, small intestine, kidney
Muscle, pancreas, spleen, thymus, uterus

0.05

• Effective dose: The amount of biological damage an irradiated person suffers is
called the ‘effective dose’ E. This is the sum of the equivalent doses in each tissue
HT, weighted by the tissue weighting factors ωT of the organs and tissues in the
body that are considered to be the most sensitive [1]:

E =
∑

T

ωT × HT

The tissue weighting factors are listed in Table 3.3.
• Radiation levels [2]: The natural annual background radiation dose, summed over

all sources, in most world areas, amounts to a whole-body equivalent dose rate
in the range 0.4–4 mSv/year. The world average is 2.5 mSv/year. It can reach
up to 50 mSv/year in certain areas. The most important component, ≈ 2 mSv,
comes from the inhaled natural radioactivity, mostly radon and radon daughters.
The average quoted is for a typical house but varies considerably. It can be more
than two orders of magnitude higher in poorly ventilated mines. It is only 0.1–
0.2 mSv/year in open areas. The US average is ≈3.6 mSv/year. In Europe it varies
from 2 mSv/year in the UK to 7.5 mSv/year in Finland.

Table 3.4 gives some typical average values for the different contributions to
the annual background doses received by an average person. The average contri-
bution from medical interventions has increased in recent years and is probably
underestimated in this table.

• Cosmic ray background in counters: At sea level a detector for charged tracks will
count: < 1 min−1 cm−2 counts due to cosmic rays penetrating in the detector.
Most of the counts are due to muons, the rest is due to low-energy electron or
positron tracks caused by gamma interactions.

• Dose from external gamma emitting sources: The dose rate in air from a gamma
point source of ‘C’ Curies emitting one photon of energy E MeV, with energy
0.07<E<4 MeV, per disintegration, at a distance of 30 cm is about 6×C×E rem/h,
or 60×C×E mSv/h. The uncertainty on this number is ≈20%. The dose rate from
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Table 3.4 Typical average values for the contribution of different sources to the radiation dose for
an average person

Natural external gamma radiation 19%
Natural internal radiation 17%
222Rn (radon, alpha emitter 3.8 d) 32%
220Rn (radon, alpha emitter 55 s, also called thoron) 5%
Medical 10.1%
Fallout nuclear explosions 0.5%
Professional 0.4%
Nuclear waste 0.1%
Other 0.5%

a point source decreases approximately proportional to 1/r2 as a function of the
distance r. The dose rate in air from a semi-infinite uniform photon source of
specific activity C (in μCi/g) and gamma energy E (in MeV) is about 1.07×C×E
rem/h or 10.7×C×E mSv/h.

• Recommended limits to exposure of radiation workers (whole-body dose):

EU&Switzerland: 20 mSv year−1

US: 50 mSv year−1

• Lethal dose: The whole-body dose from penetrating ionising radiation resulting
in 50% mortality in 30 days (assuming no medical treatment) is 2.5–4.5 Gy. For
this number it is assumed that the dose is measured internally on body longitudi-
nal centre-line. The surface dose varies due to variable body attenuation and may
be a strong function of energy.

• Cancer induction by low-LET radiation: The probability to induce cancer, on
average, is about 5% per Sv. [1]

3.3 Electrostatic Accelerators

Most of the radiation we use is not natural but made by artificial means. Nuclear
reactors produce a huge amount of radioactive material, but this subject is not
discussed in these lecture notes. We will only discuss the production of high-energy
particles with accelerators. The book ‘An Introduction to Particle Accelerators’ by
Edmund J. N. Wilson [3] contains an excellent introduction to the physics of particle
accelerators. A more advanced discussion of accelerator technology can be found in
[4–9].

The most straightforward way to accelerate charged particles is by using an elec-
trostatic potential difference. A particle with a charge Z = 1 travelling a potential
difference of X volts receives a kinetic energy of X eV. All that is needed is a
high-voltage power supply and a source of charged particles.

The only charged particles that are easily available are electrons and nuclei
including protons. Any material heated to a high temperature under vacuum will
copiously emit electrons. The hot filament is covered with a suitable substance with
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low work function (usually alkali oxides) to increase the electron yield. There are
many different designs of ion sources, but essentially they are all based on causing a
glow discharge in a low-pressure gas. The pressure is typically 0.01 mbar. The glow
discharge is a plasma, i.e. a state of matter where most atoms are ionised. There is
usually a hot filament producing electrons and a magnetic field. The electrons spiral
in the magnetic field and ionise the gas, helping the plasma formation. The beam of
positive ions radiates from the plasma chamber through one or more small holes.

If a particle only needs to be accelerated to a few 100 keV, standard commercial
high-voltage power supplies can be used. To obtain a much higher energy, spe-
cial devices are necessary. There are basically two methods to generate the very
high potential difference that is needed to accelerate a particle to high energy. This
gives rise to two different types of accelerator; the Cockcroft–Walton and the Van
de Graaff. These are discussed below. The first successful particle accelerator was
built by Cockcroft and Walton and was used in 1932 to create the first example of
transmutation of elements using an accelerator.

The Cockcroft–Walton accelerator. The layout of a Cockcroft–Walton acceler-
ator is illustrated in Fig. 3.3. The high voltage is generated with the circuit shown
on the right-hand side of the figure. This type of circuit is commonly used in many
applications that need a high DC voltage source. It uses a voltage multiplier ladder
network of capacitors and diodes to generate a high voltage. The principle is as fol-
lows: A moderately high-voltage transformer creates an alternate voltage at one end
of the secondary winding, the other end being connected to ground. The capacitor
transmits this voltage to point A by capacitive coupling. At first the voltage at point
A will also oscillate between +V and −V, but every time this point is at a voltage
below zero, a current will flow through the diode, charging the point A to a positive
voltage oscillating between 0 V and +2 V. The diode between point A and point B
will then cause the charging of point B to the potential +2 V. The same scheme can
then be repeated many times to reach higher and higher voltages, but eventually the

Fig. 3.3 Working principle of a Cockcroft–Walton accelerator
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problems associated with very large electrostatic potentials will also limit this type
of accelerator to ≈10 MV.

Until recently a Cockcroft–Walton accelerating structure was often used as the
first acceleration step in the high-energy accelerators that will be discussed in the
next sections. Today this method is abandoned in favour of RF quadrupole acceler-
ation structures. Only the first ≈100,000 V of acceleration is usually still obtained
with an electrostatic voltage difference.

The Van de Graaff accelerator. A completely different approach to reach a high
voltage is used in the Van de Graaff accelerator. This device looks like a 19th century
electrostatic instrument, but it is still used today for accelerating ions. The working
principle of a Van de Graaff accelerator is schematically shown in Fig. 3.4. The
high-voltage electrode is a hollow sphere. A circular rubber band runs continuously
between the high-voltage electrode and the low-voltage side of the accelerator. A
high-voltage power supply of a few 10 kV at the low-voltage side of the accelerator
provides the positive charge. The electric charges are generated by field emission at
the tip of fine needles and sprayed on the rubber belt. The belt transports the charges
mechanically to the high-voltage electrode. Inside this high-voltage electrode,
the charges are collected by reverse field emission. The charge collection is done
inside the hollow electrode, where the potential is constant, regardless of how large
the potential of this electrode is. The ion source is inside the high-voltage elec-
trode. The ions are accelerated in high vacuum inside a straight tube connecting the

Fig. 3.4 (a) Schematic representation of a Van de Graaff accelerator. (b) Practical realisation of
a Van de Graaff accelerator. The accelerator is usually placed horizontally and is contained in a
pressure vessel to reduce the dimensions of the system
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high-voltage electrode to the target area outside the accelerator. In the tube there are
field-shaping electrodes ensuring that the electric field lines guide the ions towards
the target. In modern Van de Graaff accelerators, to avoid sparking between the
high-voltage electrode and any other metal object at ground potential, the complete
accelerator is in a pressure vessel filled with a suitable gas such as freon or SF6.
However, also with such precautions, high static potentials in excess of 1 million
volts are an enormous technical challenge. A voltage of 10 million volts will cause
sparking over a distance of the order of 10 m in air at atmospheric pressure; the
exact value depends on the shape of the electrodes. These technical problems with
very high voltages limit the maximum energy that can be reached with electrostatic
accelerators to about 25 MeV.

An interesting variant on this instrument is the ‘Tandem Van de Graaff’ accelera-
tor. This instrument takes advantage of the tendency of protons to form negative ions
by capturing two electrons. The high-voltage electrode is brought to a large positive
potential. A negative hydrogen ion source is outside the detector at zero potential,
and the negative ion is accelerated towards the centre of the Van de Graaff. There
the negative ion is stripped of its two electrons by letting it pass through a thin metal
foil, and the resulting positive ion is accelerated a second time by the same poten-
tial difference. This machine allows doubling of the energy of the protons, and it
also has the advantage that the delicate proton source is easily accessible outside the
accelerator structure.

3.4 Cyclotrons

The difficulties with very high voltages led Rolf Wideröe in 1928 to propose accel-
erating particles by using a lower voltage difference several times. The principle is
illustrated in Fig. 3.5. A beam of particles passes through a succession of metallic
tubes. The voltage difference between the tubes is changed while the particles are
inside the tube, in such a way that the particles always see an accelerating field on
passing from one tube to the next. Several accelerators using this principle were
actually built, but the highest radio frequency (RF) that could be made in the 1930s
was ≈10 Mz. With this frequency, the linear accelerator becomes impractically long.
Today, frequencies in the GHz range are possible and thus make this a practical
proposal. Such linear accelerators will be discussed later.

Fig. 3.5 The linear accelerator proposed by Rolf Wideröe consists of a series of tubes alternatively
connected to the two poles of an alternating high-voltage power supply. The particles travel inside
the tube. The length of the tubes is adjusted such that the particles always see an accelerating field
when passing from one tube to the next
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Fig. 3.6 Schematic
representation of a cyclotron.
The distance between the
pole pieces of the magnet is
shown larger than reality to
allow seeing what is inside

To obtain a more compact accelerator, in 1930 Lawrence proposed bending the
particles into a circular path with a magnetic field. In this way the same electrodes
can accelerate the particles several times. The idea is illustrated in Fig. 3.6. The
essential components of a cyclotron are a homogeneous and parallel magnetic field
that forces the particles to travel in circles and an accelerating cavity in the shape of
a pillbox cut into two halves. The two electrodes are called ‘Dee’s’ because of their
shape.

A large and alternating electric potential difference is applied on the two
D-shaped electrodes. The particles emanating from the ion source in the centre are
accelerated by the field in the gap between the two D-shaped electrodes. The mag-
netic field bends the charged particles back towards the gap. If the frequency is right,
the field will have reversed when the particles pass the gap a second time and the
particles receive a second acceleration. This is repeated again and again. The energy
of the particles increases and so does the radius of the particle trajectory. Eventually,
the radius becomes too large and the particles leave the cyclotron with a high energy.

When a charged particle is travelling in a plane perpendicular to a magnetic field,
the particle will travel in a circular orbit. The radius of the orbit is found by requiring
the centrifugal force and the Lorentz force to be equal. Using MKSA units we have

M
v2

r
= Ze �v × �B = Ze v B

The notations used are

M : mass of the particle
r : radius of the trajectory of the particle
v : velocity of the particle
e : charge of the proton
Ze: charge of the particle
B : magnetic induction

The equation above is only correct in the non-relativistic limit. To make it
relativistic we need to make the substitution
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M ⇒ Mγ = M
√

1 − (v/c)2
= M

Ekinetic + Mc2

Mc2

We therefore obtain a very simple relation between the momentum P of the
particle, the magnetic induction B and the radius of curvature of the trajectory r.

P = Mνγ = Ze B r

In convenient units this relation is written as

{Pc} [GeV] = 0.29979 · Z · B[tesla] · r[m] (3.1)

The rotation frequency of the charged particles is therefore given by

f = v

2πr
= ZeB

2πMγ

In convenient units this relation is written as

f [MHz] = 14.3
Z B[tesla]

γ {Mc2}[GeV]
(3.2)

It follows from Eq. (3.2) that the frequency is independent of the energy of the
particle as long as the particle remains non-relativistic and therefore γ ≈ 1. With a
field of about 1 tesla, the frequency needed is of the order of 10 MHz for protons.
Note that in the 1930s a large RF field with this frequency was feasible.

In the simplest version of the cyclotron, there is a dipole magnet with a soft iron
core. The pole faces are flat and parallel and create a constant and parallel magnetic
field. In between the pole faces there are two accelerating electrodes, and the RF
field has a constant frequency given by Eq. (3.2).

The cyclotron just described will certainly accelerate particles, but we would
expect that only very few particles will be accelerated. Only particles that start off
travelling exactly in the mid-plane between the two magnet poles will eventually
reach the exit port. If the particle has a small momentum component parallel to
the magnetic field, it will soon hit one of the D-shaped electrodes. The more turns
the particles make, the more severe this limitation becomes. What is required is a
mechanism to force the particles back towards the mid-plane of the accelerator.

We need to study more closely the geometry of the magnetic field to understand
how this is achieved. The field in the dipole will not be exactly constant and parallel.
In the centre, the field will have the maximum value and it will decrease slowly from
the centre towards the edge of the poles. As a result, the magnetic field lines cannot
be exactly parallel, but must have a shape as shown in Fig. 3.7. To prove this let
us consider the Maxwell equations in the integral form. The loop integral over the
loop shown in Fig. 3.7 must be zero, since there is no current inside this loop. We
therefore can write
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Fig. 3.7 The shape of the
magnetic field lines in the gap
between the pole pieces
results in a focusing effect on
the particles being accelerated
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∫

4

�H d�l = 0

The four parts of the integral represent the line integrals over the four sides of
the loop. Because of the overall symmetry, the line integral over part four is equal
to zero and we have

∫

|H1| l1 +
∫

�H2�l2 −
∫

|H3| l3 = 0

If the field in the centre is larger than at the edge we have |H1|>|H3|. If follows
that

∫

�H2�l2 < 0

This shows that the field lines must be bending outward as shown in Fig. 3.7.
This shape of the field will have a focusing effect. This is made clear on the left-

hand side of Fig. 3.7. The Lorentz force is always perpendicular to the magnetic field
lines, while the centrifugal force always points radially outwards. In the mid-plane
of the magnet, both forces exactly compensate, but away from the mid-plane, a small
component towards mid-plane remains. To a good approximation, this restoring
force is proportional to the distance of the particle from the mid-plane. The particles
will have a harmonic oscillation in the vertical direction around the mid-plane.

Also the radial trajectory of the particles in the plane should be stable around the
nominal trajectory. It can be shown that the condition for radial stability is

dBz

dr
≤ 0

For the proof of this statement, I refer the reader to [10]. In the simple geometry
we are discussing, this condition is also satisfied. It is remarkable that a simple
dipole with flat pole pieces has exactly the magnetic field that is needed to have
stable particle acceleration conditions.

However, there remains one problem. If the field is radially decreasing, the rota-
tion frequency is no longer constant. At a small radius, we should have a slightly



3.4 Cyclotrons 69

Fig. 3.8 Phase of the
particles relative to the RF
phase in a cyclotron with
planar pole faces

larger RF frequency than at a large radius. If the particles are only making a small
number of turns, we can get away with taking an average value for the RF frequency.
Assume a particle starts its journey exactly in phase with the RF field as shown in
Fig. 3.8. In the beginning, the particle will travel too fast and it will gradually be
more and more early relative to the maximum of RF phase. However, at the same
time, its trajectory will have a larger radius and the mismatch between the rota-
tion frequency and the RF frequency will decrease. If the number of turns is not
very large, the particle will reach the point where the rotation frequency and RF
frequency are equal before it is completely out of phase. From this point on, the
particle will be too slow and will start lagging behind relative to the maximum of
the RF phase. If the number of turns is not very large, the particle will reach the exit
before it is too much out of phase. If the cyclotron should only accelerate particles
to a modest energy, this method is possible, and early cyclotrons worked in exactly
this way.

As the energy increases, more turns are necessary and the method described
above can no longer be used. Moreover, as the energy increases, the relativistic
correction to the frequency in Eq. (3.2) can no longer be neglected. It is no longer
possible to have a constant RF frequency.

The most straightforward solution is to follow one particular bunch of particles
from the source to the ejection and adjust the frequency throughout as the particles
are accelerated. A cyclotron using this principle is called a synchro-cyclotron.

Many years ago high-energy cyclotrons worked in the way just described. The
drawback is that only a small fraction of the ions produced at the source is
accelerated. The higher the energy, the more severe this effect becomes.

For this reason, most cyclotrons today have a very different focusing mecha-
nism using a much more complicated magnetic field shape, namely, focusing with
azimuthally varying fields.

In this design, the magnet is subdivided into azimuthal sectors with alternatively
larger and smaller values for the magnetic field, as shown in Fig. 3.9. In this figure,
darker sectors represent large values of the field and lighter sectors smaller values of
the field. In this field geometry, the particles no longer travel in circles, but according
to a trajectory as shown in the figure. The particle, therefore, acquires a periodically
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Fig. 3.9 (a) In a cyclotron using focusing with azimuthally varying fields, there are alternating
sectors with smaller and larger value of the field. The trajectory of a particle is no longer a circle
but has a shape as shown by the solid black line in the figure. (b) The magnetic poles are not
flat but have hills and valleys. The field develops an azimuthal component. (c) A positive particle
travels to the right, the magnetic field points upwards. At the edge of the high-field region, the
field acquires an azimuthal component. Above the mid-plane of the magnet the direction of this
azimuthal component is as shown in the figure. The radial component of the velocity and the
azimuthal component of the field provide a force pushing the particle back to the mid-plane of the
magnet

varying radial component of the velocity. The magnetic field lines acquire a vari-
able azimuthal component, as shown in Fig. 3.9(b). At the edge of the high-field
section, the combination of the radial component of the velocity and the azimuthal
component of the field together cause a force that pushes the particles back to the
mid-plane of the magnet. This force is focusing both when the particles enter and
leave a high-field sector.

In addition, the sectors are also given a spiralling shape as shown in Fig. 3.10. It is
possible to show that this will further enhance the focusing effect on the beam. The
focusing effect obtained with this azimuthal variation of the field is strong enough
to compensate the defocusing effect due to a magnetic field that slightly increases
with the radius. In this way, it is possible to make an isochronous cyclotron, i.e. a
cyclotron where the rotation frequency of the particles remains constant during the
acceleration cycle. With an isochronous cyclotron, a much larger beam current can
be achieved. Figures 3.11 and 3.12 show examples of cyclotrons.

For the extraction of the beam, one can use electrostatic fields, but often one
prefers to accelerate H– ions and remove the electrons with a thin metal foil to
convert these ions into protons. The magnetic field deflects the positive proton in
the opposite direction from the negative H– ion and therefore immediately ejects it
from the magnet.
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Fig. 3.10 Pole pieces of the
GANIL injector cyclotron.
The hills and valleys creating
the azimuthally varying fields
are given a spiralling shape to
further enhance the focusing
effect. Photograph by
courtesy of Eric Baron [11]

Fig. 3.11 (Top) The first
successful cyclotron was built
by Lawrence and Livingston
in 1932. It measured 13 cm in
diameter and accelerated
protons to 80 keV. Figure by
courtesy of the Lawrence
Berkeley National laboratory.
(Bottom) Modern isochronous
cyclotron for proton therapy
producing protons beams of
up to 230 MeV. The external
diameter of the magnet is
434 cm. Figure by courtesy of
IBA
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Fig. 3.12 One of the most powerful cyclotrons in the world today is at the Paul Scherrer Institute
in Switzerland near Zurich. The PSI 590 MeV ring cyclotron for high-intensity proton beams
started its operation in 1974. It is based on a design proposed by Hans Alexander Willax [12] in
1963. Originally designed for 100 microampere, it now produces beam intensities of 2 mA, with
a further increase in preparation. The 20-fold increase became possible by replacing the original
injector (a one solid pole cyclotron) with a new separate sector cyclotron and by increasing the
RF power for acceleration. The main parameters of the machine are given in Table 3.5. Figure by
courtesy of the Paul Scherrer Institute, Switzerland

Table 3.5 Main parameters of the cyclotron at PSI Switzerland

Injection energy 72 MeV
Extraction energy 590 MeV
Extraction momentum 1.2 Gev/c
Energy spread (FWHM) ca. 0.2%
Beam current 2 mA DC
Accelerator frequency 50.63 MHz
Time between pulses 19.75 ns
Bunch width ca. 0.3 ns
Extraction losses ca. 0.03%

3.5 The Quest for the Highest Energy, Synchrotrons
and Colliders

The maximum energy that can be reached with a cyclotron is limited by Eqs. (3.1)
and (1.1). For a given magnet, there is a maximum radius the trajectory of the par-
ticles can have and therefore a maximum momentum and a maximum energy. To
reach higher energies, one must either increase the magnetic field or increase the
diameter of the magnet. Therefore, we will first discuss what magnetic fields can be
achieved.

Most large magnets used in accelerators are electromagnets. The magnetic
induction B in a solenoid, in MKSA units, is given by
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B[tesla] = μ0 μr I[A]
N

L[m]

The notations are

N : total number of windings of the solenoid
μ0 : magnetic permeability of vacuum (μ0 = 4π × 10−7)
μr : relative magnetic permeability of the core
I : current in the windings
L : length of the solenoid

The shape of a magnet for a cyclotron is not a simple solenoid, but the maximum
field that can be reached in the gap between two pole pieces is given by a similar
equation. Note that throughout this book, the term ‘magnetic field’, will usually
mean the magnetic induction B. If no ferromagnetic core is used, the maximum field
that can be reached is limited by the amount of heat produced in the coils. Even with
forced water-cooling, it is difficult to reach a magnetic field larger than ≈ 0.1 tesla.
All magnets in accelerators therefore use a ferromagnetic yoke such that, for the
same current, the field is increased by the relative magnetic permeability of the
yoke material. The values of μr for some commonly used ferromagnetic materials
are shown in Fig. 3.13. Soft iron has μr > 1000 and allows much larger fields to be
reached. However, in this case, the maximum field that can be reached is limited by
the saturation of the ferromagnetic material. All ferromagnetic materials saturate at

Fig. 3.13 Magnetic
induction B versus μ0H in a
solenoid with a ferromagnetic
core. The quantity μ0H is the
magnetic induction that
would exist in the solenoid in
the absence of a
ferromagnetic core. Armco
and ST-35 are types of soft
steel similar to the types of
steel commonly used in
magnets. Anhyster, often
called mu-metal, is a
nickel–iron alloy with
extremely high values for μ
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≈2 tesla, setting an upper limit of about 2 tesla to the field that can be reached with
conventional (i.e. non-superconducting) magnets.

Superconducting magnets can reach higher fields, because almost no heat is gen-
erated in the coils; therefore, there is also no need for a ferromagnetic yoke. In this
case the maximum field is limited by the properties of the superconducting material.
Indeed, the magnetic field destroys the superconductive property of the supercon-
ducting wires. With presently used niobium-based superconductors ≈20 tesla is the
upper limit for the magnetic induction that can be reached. Practical considerations
limit the field to values well below this number.

When accelerating protons in a cyclotron with a conventional magnet with a
diameter of 2 m, the maximum energy that can be achieved is ≈100 MeV (see
Exercise 1). To achieve higher energies, the diameter of the magnet needs to be
increased and the cost of the magnet will increase faster than the energy! A different
approach is necessary. The solution is the synchrotron and we now discuss this type
of accelerator.

Figure 3.14 shows the layout of a synchrotron. In a synchrotron, the particles
have a fixed trajectory. The beam pipe has the shape of a torus and all around this
ring there are bending magnets to keep the particles on the circular track. The par-
ticles must already have a minimum energy before they can be accelerated in a
synchrotron. If a bunch of particles is injected into the synchrotron, these particles
will circulate inside the torus. The magnetic field, the curvature of the track and
the particle energy must obey equations (3.1) and (1.1). If the bending magnets are
designed such as to have a magnetic field that slightly decreases with increasing
radius, the trajectory of the particles will be stable, as we have shown when dis-
cussing the cyclotron. The bunch of particles can remain stored in this stable orbit
for a very long time. To be used as an accelerator, the synchrotron also needs an RF
cavity. An RF cavity is a large enclosure, usually made of copper, with a precise
shape. In the box a standing electromagnetic wave is generated. The geometry of
the RF cavity is such that this standing electromagnetic wave will have an oscillat-
ing electric field pointing either parallel or anti-parallel to the direction of the beam.

Fig. 3.14 Schematic
representation of a simple
synchrotron with weak
focusing. The inclination of
the pole pieces of the dipole
magnet is exaggerated for
better visibility on the
drawing
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When the beam passes through the RF cavity, the particle will either be accelerated
or be decelerated, depending on its phase relative to the RF field. RF cavities will
be discussed further in Sect. 3.6 on linear accelerators.

For the sake of argument, I will now assume that the stored particles are electrons
of several 100 MeV. In this case, the energy and the momentum of the electrons are,
to a very good approximation, related by E = Pc, and the velocity is very close
to the velocity of light. The revolution frequency is determined by the length of
the trajectory divided by the speed of the particle. The frequency of the RF cavity
should be equal to, or a multiple of, the revolution frequency of the particles.

Figure 3.15 shows the field experienced by an electron passing through the RF
cavity. Consider an electron passing exactly through the centre of the beam pipe.

This electron has the nominal trajectory and it will have the same phase relative
to the RF field every time it passes the RF cavity. Consider now an electron with the
nominal trajectory passing through the cavity with a phase as indicated by the arrow
‘stable point’. This electron is neither accelerated not decelerated and it can continue
to turn for a long time. Consider now an electron with the nominal trajectory passing
through the cavity with the phase indicated by the arrow ‘particle is accelerated’.
This electron will acquire energy each time it passes through the RF cavity. The
radius of curvature will become larger and the trajectory will become longer. It will
need longer to make one full turn and each time it passes the RF cavity somewhat
later. It will move in the direction of the ‘stable point’ and continue in that direction
beyond the ‘stable point’. There the electron will experience a decelerating electric
field. It will lose energy and as a result the trajectory will become shorter and it will
need less time to make a complete revolution. The electron will again move in the
direction of the ‘stable point’.

The result is that the energy of the electron will be making oscillations around
the ‘stable point’. All electrons will converge to this point and will therefore become
grouped in bunches. The number of bunches is equal to the ratio of the RF frequency
over the particle revolution frequency.

To turn the machine just described into an accelerator, all that is necessary is
to increase the magnetic field in the bending magnets very slowly. If the magnetic
field is slightly increased, the trajectory of the particles is shorter and the particles
come early relative to the ‘stable point’ and will again experience an accelerating

Fig. 3.15 Phase of the
particle relative to the RF
phase in a synchrotron
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field. The electrons acquire more energy and a new equilibrium is reached, but this
time with a slightly higher energy for the electrons. We can again slightly increase
the field, the electrons will again acquire a higher energy, and so on. This can be
continued until the maximum magnetic field in the bending magnets is reached.

To use a synchrotron as a particle accelerator, one must first turn the field in the
bending magnets to some low value and inject a bunch of particles at the energy
corresponding to the value of the field. It is not possible to make this field much
lower that ≈0.1 tesla, because then it becomes impossible to accurately control the
field parameters. After injection, the field is increased slowly to the maximum value
possible. The beam is then ejected to the target area. The acceleration cycle can be
quite long, e.g. it is 12 s for the CERN SPS synchrotron with a maximum energy of
450 GeV.

So far, we have been considering the acceleration of high-energy electrons. These
electrons move at a speed very close to the speed of light, such that the revolution
time of a particle with the nominal trajectory will always be the same, regardless
of the energy. The frequency of the RF cavity is constant. However, protons of the
same energy will have a speed that is lower and the speed will change with energy.
As a result, for protons it is necessary to slightly change the frequency of the RF
cavity during the acceleration cycle.

The synchrotron we have just described is a ‘weak focusing’ synchrotron, and
such machines have been used in the past. Modern synchrotrons, however, use a
different focusing system called ‘strong focusing’. Strong focusing is based on the
use of quadrupole magnets such as shown in Fig. 3.16. A quadrupole magnet has
four poles that are alternatively of north and south magnetic type. The beam passes
through the magnet perpendicularly to the plane of the drawing and the centre of
the beam passes through the centre of the magnet. From the geometry it is clear

Fig. 3.16 (a) Schematic representation of a quadrupole magnet. The dark area represents the soft
iron yoke of the magnet. The direction of the current in the windings is such that the poles are alter-
natively of the south and north type. The lines with arrows are magnetic field lines. (b) Quadrupole
magnets in a beam transport line. Photograph by courtesy of IBA
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that the magnetic field in the centre is zero. A few magnetic field lines are drawn in
Fig. 3.16. Let us assume that a beam of protons is passing through the quadrupole
magnet shown in Fig. 3.16 from the front to the back. From simple inspection of
the direction of the field lines, we see that the Lorentz force on the beam particles is
focusing in the horizontal plane and defocusing in the vertical plane. With a correct
shape of the pole pieces of the magnet, the magnetic field will increase linearly with
distance from the centre. A quadrupole magnet system will therefore behave like
an optical lens for the particle beam, except that it will be focusing in one plane
and defocusing in the other plane. We now have to recall a well-known property
of optical lenses. Two optical lenses, one focusing and one defocusing, will behave
like a focusing lens, regardless of the order of the two lenses. More generally, if we
have two lenses with focal length f1 and f2, separated by a distance d, this system
of lenses behaves like a single lens with focal length F given by

1

F
= 1

f1
+ 1

f2
− d

f1f2

A positive value for f means a focusing lens and a negative value a defocus-
ing lens. A doublet of two lenses with equal focal length, one focusing and one
defocusing, will behave like a focusing lens with focal length given by

F = f 2

d

To obtain a system that will focus the beam both in the horizontal and vertical
direction, we only need to use two identical quadrupoles with reversed magnetic
fields. The focusing effect of a doublet in both planes is not symmetric, because
the two effective lenses will seem to be displaced by a distance 2f relative to one
another. Therefore, it is often preferable to use triplets of quadrupoles. In such a
triplet, we have lenses with focal lengths (2f, −f, 2f) in one plane and (−2f, f, −2f)
in the other plane. It is straightforward to show that such a triplet will also behave
like a focusing lens in both planes. For triplets the optical properties of the two
planes are much more similar.

All very high-energy accelerators in use today are synchrotrons. The layout of
these machines is similar to what is shown in Fig. 3.14, except that there are many
more bending magnets and sets of quadrupole lenses are added between the bend-
ing magnets. The advantage of using quadrupoles is that a much stronger focusing
effect on the beam is obtained. This will result in a larger particle flux and/or
a smaller beam pipe diameter and therefore smaller magnets. This type of syn-
chrotron is therefore called a ‘strong focusing synchrotron’. As an example of a
synchrotron, the properties of the Super Proton Synchrotron (SPS) of the inter-
national research centre CERN are listed in Table 3.6. This accelerator is entirely
installed in an underground tunnel near the city of Geneva, Switzerland. This accel-
erator was completed in 1976 and will certainly still be used for many years. All the
magnets are conventional magnets. Figure 3.17 shows a view of the inside of the
tunnel housing the accelerator.
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Table 3.6 Main properties of the CERN Super Proton Synchrotron

Ring diameter 2.2 km
Revolution time 23 μs
Maximum proton energy 450 GeV
Number of bending magnets 744
Number of quadrupoles 316
RF cavities 4 of 20 m, f = 199.4 to 200.2 MHz
Intensity 1013 protons per cycle
Acceleration 3 MeV/turn
Injection energy 10 GeV
Duration of one cycle 12 s

Fig. 3.17 Inside the tunnel
housing the Super Proton
Synchrotron (SPS) in CERN.
The blue blocks are
quadrupoles and the red
blocks are bending magnets.
All magnets are conventional
ferromagnets. Photograph
copyright CERN

Proton synchrotrons are the highest energy accelerators available in the world.
The energy is limited by the maximum magnetic field obtainable in the magnets and
the diameter.

Such high-energy accelerators are mainly used for fundamental research. The
aim is to study interactions between elementary particles such as protons on pro-
tons or electrons on positrons at the highest possible energy. The energy that really
matters is the energy in the centre of mass system.

Consider a beam of particles with mass mb and energy Eb colliding with particles
of mass mt at rest. For any particle, the quantity E2 − �P2c2 is an invariant. If we
consider a system of two particles, the quantity

(E1 + E2)2 − (�P1 + �P2)2c2

is also an invariant. Evaluating the quantity in the centre of mass frame we see that
this invariant is simply the square of the centre of mass energy. We therefore have
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(Eb + mtc2)2 − P2
bc2 = E2

cm

Ecm =
√

(Eb − mtc2)2 − P2
bc2

For a very high energy accelerator the beam energy is much larger than the mass
of the beam and target particles, and the centre of mass energy can be written as

Ecm ≈ Eb

√

2mtc2

Eb

We see that the centre of mass energy is smaller than the beam energy by a large
factor. The importance of the effect increases with the energy. It is much better to
use two beams of particles colliding head on. In that case, the laboratory system is
also the centre of mass system and all the energy is useful.

A particle accelerator arranged in such a way as to allow studying head-on col-
lisions between two beams of particles is called a ‘collider’. One could build two
accelerators and let them send two particle beams against one another. A better way
is as follows: We have already seen that a synchrotron accelerator can store particle
beams. In addition, particles and their anti-particles have the same mass but oppo-
site charge and these can circulate in the opposite direction in the same machine.
If we have two stored beams, the particle bunches will meet each other at a num-
ber of points along the circular orbit. How many events will we observe when two
beams meet each other? Let us assume that the bunch of particles has the shape of
a cylinder with length l and section s. Let us further assume that the particle density
all over this volume is constant and that the two bunches meet head-on. The total
number of particles in the bunches are n1 and n2. Using the definition of the cross
section (Eq. 2.1) and assuming there is only one particle in bunch 2, we have

dW = n1

s l
σ l = n1

s
σ

If there are n2 particles in bunch 2, the number of interactions that will be
observed is

n1 n2

s
σ

To have a large number of events there must be as many particles as possible in
each beam and the transverse dimensions of the beam should be as small as possible.

If the beams meet with a frequency f, the number of interactions per second will
be given by

f
n1n2

s
σ = Lσ

The quantity L = f n1n2
s is called the luminosity.

Of course, the density of particles in the beam is not a constant over the volume
of the beam, but rather has a Gaussian shape with standard deviation σ h and σ v
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Table 3.7 Main parameters of the LHC accelerator and collider

Start date 2009
Circumference 26659 m
Maximum beam energy 7 TeV
Luminosity 1034 cm−2 s−1

Number of bending magnets/ring 1232
Maximum field in bending magnets 8.3 tesla
Length bending magnets 14.3 m
Number of quadrupoles 482 (2 in 1) + 24 (1 in 1)
Time between collisions 24.95 ns
Bunch radius 16.6 μm
Bunch length 7.55 cm
Injection energy 450 GeV
RF frequency 400.8 MHz
Particles per bunch 1.15 × 1011

Number of bunches/ring 2808

in the horizontal and the vertical directions. It is straightforward to show that the
expression for the luminosity in this case becomes

L = f
n1n2

4πσhσv

As an illustration we give the main parameters of the new Large Hadron Collider
(LHC) now being finalised in CERN. It will be the largest energy accelerator in the
world and is due to start operation at the end of 2009. This machine is designed to
study proton–proton collisions. Collisions of Pb on Pb ions will also be possible.
LHC has two interleaved accelerators that cross the beams under a small angle in
eight points along the rings. The accelerators are synchrotrons that will first accel-
erate the beam to 7 TeV and then store the beams to let the protons interact in the
crossing points. The parameters of the LHC accelerator and collider are summarised
in Table 3.7.

3.6 Linear Accelerators

Circular machines such as cyclotrons and synchrotrons have been very successful,
but linear accelerators have not been abandoned. There are many reasons for this.
In 1928 when Wideröe first proposed linear accelerators, the technology did not
allow the production of very high frequency, high power electromagnetic fields.
This technology was developed in the 1940s and 1950s, mainly for the use in radar
systems. Today linear accelerators can be much shorter than what was possible in
1930. Moreover, cyclotrons are not well suited for the acceleration of electrons.
The reason is the γ factor in Eq. (3.2). For electrons, this effect is very important
and the only possible solution is using the cyclotron as a synchrocyclotron, but this
results in a strong reduction of the beam intensity. As a result, linear accelerators
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are the preferred solution for accelerating electrons up to a few 10 MeV. The syn-
chrotron is well suited for accelerating electrons up to a few GeV. However, at much
higher energy the ‘synchrotron radiation’ makes it more and more difficult to use
circular accelerators for the acceleration of electrons or positrons. The phenomenon
‘synchrotron radiation’ is briefly discussed below.

Any charged particle undergoing acceleration will emit electromagnetic radia-
tion. If a charged particle is travelling in a circular orbit in a magnetic field, it
is being accelerated in the direction perpendicular to its direction of motion and
the particle will emit electromagnetic radiation. The energy radiated per turn by a
particle of mass m, unit charge, energy E, and velocity v is given by

�E

turn
= 4π

3

α �c

r
(v/c)3

(
E

mc2

)4

Notice the effect is proportional to (E/mc2)4, therefore synchrotron radiation is
usually negligible for all particles except electrons and positrons.

For electrons this equation can be written in convenient units as

�E

turn
[MeV] = 0.0885

E4[GeV]

r[m]
(3.3)

The electromagnetic radiation is emitted with a broad spectrum with a maximum
around

hω[keV] ≈ E3[GeV]

r[m]
(3.4)

We can see that the amount of energy radiated becomes quite large if the energy
of the electron exceeds 1 GeV. This equation makes it clear that it is impossible to
accelerate an electron to very high energy in a circular accelerator!

The accelerating structures in synchrotrons or linear accelerators consist of one or
more resonant radio frequency cavities. In a synchrotron, the magnetic field bends
the beam such that the particles pass many times through the same accelerating
element. In a linear accelerator, the beam passes the same structure only once and
one usually needs a large number of RF cavities.

We will now briefly discuss the main properties of such resonant RF cavi-
ties. Electromagnetic waves can be induced inside any conducting box. We are all
familiar with this phenomenon, because a microwave oven is nothing else that a
conducting box in which electromagnetic waves are induced. For the purpose of
particle acceleration, we are mainly interested in resonant waves in cylindrical cav-
ities, and we will discuss this case in more detail. Consider a box with walls made
of conductive material. Any electromagnetic wave in this cavity should satisfy the
Maxwell equations in vacuum with the boundary condition that, at the surface of the
cavity, the electric field component parallel to the surface must vanish. The general
solution of the Maxwell equations in a cavity is rather lengthy and we will only con-
sider the most important solution for the purpose of particle acceleration. For this
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application, we naturally consider a resonating cavity with the shape of a cylinder
with length ‘L’ and radius ‘R0’. Because of the cylindrical geometry we will use
cylindrical coordinates, ‘z’ denoting the direction along the axis of the cylinder, ‘r’
the distance to the axis of the cylinder and ‘θ ’ the angle in the plane perpendicular
to the axis of the cylinder. The Maxwell equations are

�∇ • �D = ρ

�∇ × �H − ∂ �D
∂t

= �J
�∇ • �B = 0

�∇ × �E + ∂ �B
∂t

= 0

Using the well-known vector relation

�∇ × ( �∇ × �A) = �∇( �∇�A) − �∇2�A

it is straightforward to show that the electric field should satisfy the following
differential equation

�∇2 �E − 1

c2

∂2 �E
∂t2

= 0 with c = 1√
ε0μ0

(3.5)

We are looking for solutions of Eq. (3.5) satisfying the following conditions:

(1) Stationary solutions (also called standing wave solutions), i.e. solutions where
the electric field can be written as a product of a spatial and a temporal function

�E(z, r, θ ,t) = �f (z, r, θ ) × g(t)

(2) Solutions where the electric field has no longitudinal or azimuthal variation
(3) Solutions satisfying the boundary condition that the component of the electric

field parallel to the surface of the cavity vanishes

From these conditions it immediately follows that only the component of the field
in the z-direction is different from zero and that the function f(z, r, θ ) is a function of
‘r’ only. Using the first condition, Eq. (3.5) can be written as the sum of two terms,
one term depending only on ‘r’ and one term depending only on ‘t’.

∇2f (r)

f (r)
= 1

c2

∂2 g

∂t2

g(t)

This equation can only be satisfied if both terms are equal to the same constant.
As it will turn out, this constant must be negative in order to obtain a stationary
solution and therefore the constant is written as ‘–k2’. Writing the Laplace operator
in cylindrical coordinates we obtain the following two equations
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∇2f (r, θ , z) = 1

r

∂f

∂r
+ ∂2f

∂r2
+ 1

r2

∂2f

∂θ2
+ ∂2f

∂z2

⎧
⎪⎨

⎪⎩

∂2g

∂t2
+ c2 k2 g(t) = 0

∂2f

∂r2
+ 1

r

∂f

∂r
+ k2 f (r) = 0

The solution for the first equation is given by: g(t) = A exp(iωt) with ω = kc.
The second equation is an equation of the Bessel type with α = 0 and the solution
is a linear combination of the zero-order Bessel functions J0(kr) and Y0(kr). The Y0
term is eliminated by the requirement that the electric field has to have a finite value
on the axis. A solution for the electric field satisfying Eq. (3.5) and satisfying the
three conditions therefore exists and is given by

⎧
⎨

⎩

Ezn(r, t) = E0n J0 (knr) exp (iωt)
Er = 0
Eθ = 0

The constant k is not a free parameter, but is constrained by the requirement that
the electric field must vanish on the surface of the cylinder mantel, i.e. J0(k R0) = 0.
There is one possible value of k for each zero of the Bessel function, and this is
indicated by the index n. If the first zero of the Bessel function coincides with the
wall of the cylinder, we obtain the condition k1× R0 = 2.405. The other values of
kn are given by

k2 × R0 = 5.520.
k3 × R0 = 8.654.
k4 × R0 = 11.792.
etc.

The magnetic induction B obeys a similar equation as the electric field, and the
solution to this equation can be derived from the fourth Maxwell equation. This
gives

⎧
⎨

⎩

Bz = 0
Br = 0
Bθn = ( − i/c)E0n J1(knr) exp (iωt)

Together with the conditions k1 R0 = 2.405 and ω = kc this completes the solu-
tion of the problem. The shape of the corresponding electric and magnetic fields is
illustrated in Fig. 3.18. This mode of oscillation is referred to in the literature as
the TM010 mode. Here TM stands for ‘transverse magnetic’. Clearly it should be
understood that the true fields are the real parts of the expressions above. For the
TM010 mode, the frequency of the oscillation is given by
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Fig. 3.18 (a) Geometry of the electric and magnetic field for the TM010 mode standing wave in a
cylindrical cavity. The electric field is oriented in the axial direction and the magnetic field circles
around the axis. (b) Dependence of the electric and magnetic fields on the radius r for the TM010
mode

f = 2.405
c

2π R0

The symbol R0 stands for the radius of the cylinder and c is the velocity of light.
The length of the cylinder does not enter in the equations. However, if this RF cavity
is to be used for accelerating particles, the length is constrained by the condition that
the particle should only see an accelerating field while passing through the cavity.
The time spent inside the cavity must be less than, or equal to, 1/2 period of the
oscillation. For a particle of velocity ‘v’, we therefore have

L ≤ v

2f
= πR0

2.405

v

c

A numerical example is instructive. If the frequency of the RF cavity is 200 GHz,
the diameter of the cylinder is 115 cm. For accelerating particles that travel at almost
the speed of light, the length of the cavity should be less than or equal to 75 cm.
These dimensions scale inversely proportional to the frequency.

In its simplest geometry a linear accelerator hence consists of a series of aligned
RF cavities as shown in Fig. 3.19. If each cavity has the maximum allowable length,
the phase difference between two successive cavities must be equal to π . In the
accelerating structure we must create a stationary wave with a phase difference of π

between any two successive cavities. Sometimes one prefers to use shorter cavities

Fig. 3.19 Very schematic
representation of a
standing-wave linear
accelerator structure
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and in that case the phase difference between two successive cavities is less than π .
This corresponds to an RF wave travelling along the structure.

A very important consideration in accelerating structures is the heat dissipation.
Let us again consider a cylindrical cavity. The energy content and the heat dissipa-
tion of a stationary wave inside this cavity can be calculated as follows: The energy
present in the electromagnetic wave is switching back and forth between the electric
and the magnetic fields. When the electric field reaches its maximum, the magnetic
field is zero and vice versa. The calculation of the energy content of the electromag-
netic field ‘U’ is therefore reduced to a volume integral over the electric field at its
maximum value

U = ∫ ∫ ∫
volume

ε0 E2
max

2
dv

U = L
R0∫

0
(ε0[E0 J0(kr)]2/2) 2πr dr

U = (πR2
0L) (εE2

0/2) J2
1(2.405)

The heat dissipation is due to Ohmic heating caused by the currents in the walls of
the cavity. These currents can be found by considering the second Maxwell equation
in the integral form over the loop shown as a dotted line in Fig. 3.20.

∮

�Hd�l =
∫∫ (

�j + ∂ �D
∂t

)

ds

The line integral of the magnetic field for the part of the loop inside the metal
is zero, because the magnetic field has no time to penetrate in the metal. Also the
surface integral of the derivative of the dielectric displacement D over the whole sur-
face of the loop is zero, because the tangential component of the electric field is zero.
Therefore, the magnitude of the current in the metal is equal to the magnetic field
component parallel to the surface and the orientation of the current is perpendicu-
lar to this magnetic field. Consider an infinitesimal surface element dxdy as shown

Fig. 3.20 The tangential
component of the magnetic
field on the surface of the
cavity is related to the current
inside the cavity wall. (A)
The loop integral over the
dotted line gives a relation
between the magnetic field
and the surface current in the
wall, (B) Surface element of
the cavity wall
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on Fig. 3.20(B). The current flowing through the surface element dxdy is given by
J = Hdx and is flowing in the y direction. This current will be restricted to a thin
layer of thickness δ by the skin effect. The skin depth δ depends on the frequency
f and on the resistivity of material. If ρ is the resistivity of the wall of the cavity, the
resistance ‘R’ of the surface element dxdy is given by

R = ρ
dy

δ dx

The power dissipation in this surface element is given by

dW = RJ2 = ρ
dy

δ dx
(H dx)2 = ρ

δ
H2 dxdy

The total power dissipation in the walls of the cylinder is therefore given by

W = ρ

δ

∫∫

H2 ds

The magnetic field is proportional to sin(ωt) and only the time averaged power
dissipation matters. Since we have

1

2π

2π∫

0

sin2 (ωt) dt = 1

2

This time averaged power dissipation is given by

W = ρ

2δμ2
0

∫∫

B2
max ds

The integral is to be taken over the total surface of the cylinder.
For a numerical example, consider again the cylindrical cavity oscillating at

200 MHz and with a length of 75 cm; the total power dissipation for a maximum
electric field of 1 MV/m is ≈ 20 kW! To find this result we used that the resistivity
of copper is ρ = 1.7 10−8 �m and that the skin depth of copper is given by

δ = 66 mm√
f

Notice that the power dissipation is increasing proportionally to the square of the
electric field. Notice also that the power dissipation per unit length of the accelerator
is decreasing inversely proportional to the square root of the frequency.

The Q value of an oscillator is the energy content of the system divided by the
energy dissipated in one half oscillation. This quantity is a measure of how accu-
rately the oscillation frequency is determined. In our example the energy content of
the field is ≈ 1 J; therefore Q = 1.6 × 10−4.
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The above calculation underlines the importance of the power dissipation in
accelerating cavities. The maximum field that can be maintained in a cavity is ulti-
mately limited by the extraction of electrons from the metal walls. This phenomenon
depends on the surface smoothness and the practical limit is about 100 MV/m. At
such fields the power dissipation is enormous, of the order of 300 MW per meter!
It is clear that it is impossible to operate cavities continuously at this value of the
accelerating field.

As an example we will describe the structure of SLAC 2-mile linear accelerator.
This accelerator is located near San Francisco, California, and it is the largest linear
electron accelerator in the world today. The accelerating structures in this accel-
erator are of the travelling wave type and consist of a series of coupled oscillating
cavities that support travelling waves. This structure is illustrated in Fig. 3.21. Inside
each of the cavities there is an oscillating electromagnetic field with a geometry sim-
ilar to what we discussed before. The oscillations in each cavity are coupled and the
distance between the discs and the diameter of the iris adjusts the degree of coupling.
This coupling determines the phase velocity along the structure.

The accelerating structure is made of pure copper and each element is about 3 m
long. A high frequency wave from a high power klystron is injected at one end.
The phase velocity equals the speed of the electrons, so that all the electrons stay
in phase with the electric field in the cavities as they travel along the structure.
The wave is attenuated because of resistive losses in the copper. After 3 m, the
amplitude is reduced so much that it is not useful to make the structure any longer.
The remaining energy is absorbed in a dump. The average accelerating electric field
in the structure is ≈15 MeV/m.

The main properties of SLAC accelerator are listed in Table 3.8. The heat dissi-
pation in the structure is of the order of 1 MW/m. It is clear that the amount of heat
produced is so large that it is impossible to use the accelerator continuously. The
accelerator therefore produces beam pulses lasting 2.5 μs with a repetition rate of
360 Hz.

Iris-loaded waveguides cannot be used for accelerating particles with a velocity
much below the speed of light. If the particles travel at a few percent of the speed of
light, each cavity becomes much shorter than its diameter, and it becomes difficult
to avoid exciting other modes than the T010 mode in the structure. A possible way to

Fig. 3.21 (a) Geometry of the accelerating structure in an electron accelerator of the travelling
wave type. (b) Cut away view of a section of the ‘SLAC National Accelerator Laboratory’ electron
accelerator showing the internal structure
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Table 3.8 Main properties of the SLAC linear accelerator

Length 3100 m
Structure Iris-loaded wave guide
Outer diameter wave guide 10.5 cm
Diameter iris 1.9 cm
Number of accelerating sections 960
Number of klystrons 245
Peak power per klystron 24 MW
Operating frequency 2.856 GHz
Maximum pulse rate 360 pulses/s
Pulse duration 2.5 μs
Average electron beam current 30 μA
Maximum energy 50 GeV

accelerate slow ions is the structure shown in Fig. 3.22(a). In this geometry, there are
a number of cavities, and around the beam there are drift tubes shielding the beam
from the electric field when it has the wrong orientation. In such an accelerator
the length of the drift tubes must vary to stay in step with the changing velocity
of the particle. The shape of each cavity must therefore change in such a way that
all the cavities oscillate at the same frequency. If the oscillations in the cavities are
all in phase, the wall separating two successive cavities carries zero net current. This
wall can therefore be omitted, leaving only bars to support the drift tubes. This is
called an ‘Alvarez structure’, and it is shown in Fig. 3.22(b). In a linear accelerator
with an Alvarez structure, a standing electromagnetic wave in a large conductive
tube is created, with drift tubes in the centre containing the beam. Figure 3.23 shows
the inside of an accelerating structure of the Alvarez type.

This type of linear accelerator is often used as an injector for large proton
synchrotron accelerators. The linear accelerator will typically receive a beam of
≈1 MeV from an RF quadrupole accelerator, and it will accelerate the beam to a
few 100 MeV. After this the energy is sufficient for the beam to be injected into

Fig. 3.22 (a) Hypothetical
structure for a linear
accelerator for non-relativistic
ions. (b) Alvarez structure for
a linear accelerator for ions
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Fig. 3.23 This linear accelerator of the Alvarez type was used as an injector for the CERN acceler-
ator complex. It accelerated protons from 520 keV to 50 MeV. It is no longer in operation. Similar
devices are part of the standard layout of a modern synchrotron. It forms the next acceleration step
after the RF quadrupole and is used to bring the protons from ≈1 MeV to ≈50 MeV. Photograph
copyright CERN

a synchrotron. The RF cavities in Super Proton Synchrotrons also have a similar
geometry.

The most important recent advance in linear accelerator technology is the
development of superconducting accelerating cavities. Figure 3.24 shows such a
superconductive cavity working at 1.3 GHz. It consists of nine sub-cavities and in
each sub-cavity a standing wave with a field geometry similar to what is shown in
Fig. 3.18 is generated. There is a phase difference of 180◦ between any two succes-
sive cavities. If the centre-to-centre distance between two successive sub-cavities
equals the distance travelled by a particle in one half period of the oscillation, a
particle experiencing a maximum accelerating field in sub-cavity one, will again be
in phase with the field in the next sub-cavity two, and so on. Accelerating fields of
35 MeV/m have been achieved in such structures.

Fig. 3.24 Superconductive
accelerating cavity in
niobium for the acceleration
of electrons. Niobium is
superconductive at the
temperature of liquid helium.
This resonator was designed
for the TESLA test facility.
Photograph from [13], with
permission
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3.7 Secondary Beams

So far we have only considered accelerators producing beams of electrons, protons
or nuclei. These are the only charged particles that are easily available. However,
often one is interested in other particles.

Positrons or gamma rays are produced in large numbers whenever an electron
beam penetrates any piece of target material. If the electrons have more than 10 MeV
of energy, they will produce a large number of gamma rays by bremsstrahlung.
These gamma rays have a 1/E spectrum, but the photons with a very low energy
are absorbed in the target. Most of the gamma rays are going in the direction of
the initial electron beam. The higher the energy, the better the collimation in the
forward direction. The gamma rays, in turn, will produce electron–positron pairs by
the pair creation process. If the target has a thickness of a few tenths of a radiation
length, the beam spot in the target will be a copious source of both gamma rays and
positrons.

A magnet placed behind the target will remove the electrons and positrons, leav-
ing only the gamma beam (see Fig. 3.25). This is the standard method for the
production of gamma beams. This gamma beam will have a broad energy spec-
trum. By using suitable absorbers one can somewhat reduce the bandwidth of this
spectrum.

This setup can also serve as a source of positrons. Positrons can be accelerated
by any of the methods that can be used for accelerating electrons. However, there
is a problem. Any accelerator has a very limited acceptance in energy and direc-
tion of the particles it will accelerate. The positrons produced in the target have
a broad energy spectrum. In electron accelerators, the electron source produces
large amounts of electrons coming from the same point and all with about the same
energy, i.e. almost zero energy. The result is that the number of positrons available
for acceleration is many orders of magnitude smaller than the number of electrons
and can only produce fairly low-intensity positron beams. To increase the intensity

Fig. 3.25 Principle of the
production of secondary
gamma ray beams or
positrons beams
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of the positrons, the particles are often kept in a storage ring. This is basically a syn-
chrotron, but optimised for storing particles rather than for accelerating particles.
Immediately after injection, the positrons fill the complete phase space of position
and momentum that the storage ring will accept. The positron will oscillate around
their equilibrium trajectory; the amplitude of the oscillations being determined by
the aperture of the magnets and the diameter of the beam pipe. However, positrons
emit significant amounts of synchrotron radiation and this emission is equivalent
to some sort of friction; therefore, with time the amplitude of these oscillations is
damped, and the positrons all converge to the equilibrium trajectory. Because of the
stochastic nature of the synchrotron radiation, the particles will not all end up in the
equilibrium trajectory; there will remain some spread in position and momentum.
If a second bunch of positrons is injected in the storage ring, they will at first have
a different trajectory from those already stored, but with time they will converge to
the same equilibrium trajectory. In this way one can accumulate a large number of
positrons in one bunch and eventually have a positron bunch with the same intensity
as that possible for electron bunches. Such a storage ring for positrons is often called
a damping ring.

It is also possible to produce anti-protons by a method very similar to the one
just described. If a proton beam of well above 10 GeV interacts with a target, a
very large number of secondary particles will be produced. About 90% of these
particles will be pions, the rest will be a collection of other hadrons; heavier hadrons
being less abundant than lighter ones. Among these there will also be some anti-
protons. With the help of magnets we can now select those anti-protons with an
energy and direction interval that the next accelerator will accept. However, the
number of anti-protons produced is very small and their energy is spread over a
large range. Very few of these anti-protons will be accepted by the storage ring or
the accelerator. Because of the absence of synchrotron radiation, there is no natural
damping mechanism for anti-protons. There are methods to reduce the oscillations
of such stored anti-protons, but discussion of these is beyond the scope of the present
lecture notes.

It is also possible to produce beams with unstable particles such as pions, but
because of their short lifetime it is impossible to store these particles in a stor-
age ring. The intensity of such beams will therefore be many orders of magnitude
lower than the intensity of proton beams. The principle of the production of sec-
ondary pion beams is illustrated in Fig. 3.26. To produce a beam of pions, a primary
beam of protons is allowed to hit a solid target. A large number of secondary par-
ticles, mostly pions, are produced. With the help of bending magnets, collimators
and quadrupoles, pions in a certain energy range are selected. To obtain a beam
of muons, one starts from a beam of pions and keeps the pions with the help of
quadrupoles in a sufficiently long decay tunnel. A pion decays in a muon and a
muon–neutrino with an average decay path equal to 7.8 m multiplied by the rela-
tivistic gamma factor of the pion, γ = E/m. Depending on the energy of the primary
proton, it can require several 100 m before most of the pions have decayed. At the
end of the decay tunnel, the beam is sent into a dump to remove the remaining pions.
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Fig. 3.26 Secondary beams of pions, muons and neutrinos can be made with the help of a primary
proton beam

After about 10 hadronic interaction lengths, all of the pions have undergone interac-
tions and the secondary hadrons have been absorbed, thus a beam containing only
muons emerges from the dump.

To make a neutrino beam, the same set-up is used but with a much more massive
dump. A sufficiently massive dump will not only stop all the pions but also all the
muons. After such a massive dump only neutrinos are left.

All these secondary beams are available in the CERN accelerator complex shown
in Fig. 3.27. In this accelerator complex, an RF-quadrupole accelerating section
delivers protons of 750 keV. These protons are injected into a linear accelerator of
the Alvarez type that brings the energy to 50 MeV. The protons are subsequently
injected into a first synchrotron, the PS-booster that accelerates them to 1.4 GeV.
A second synchrotron, called the PS, increases the energy further to 13.1 GeV. The
Super Proton Synchrotron (SPS) accelerates the protons to 450 GeV. This last accel-
erator injects the protons into the (LHC) Large Hadron Collider, where the protons
are finally accelerated to 7 TeV.

The PS and SPS each provide a wide variety of secondary beams for particle
physics experiments. One neutrino beam is sent in the direction of the Gran Sasso
laboratory at 730 km distance, where these neutrinos are detected.
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Fig. 3.27 The CERN accelerator complex provides protons up to 7 TeV and also provides a wide
variety of other particle beams. Figure copyright CERN

3.8 Applications of Accelerators

The initial motivation for developing particle accelerators was to probe the structure
of matter at the subatomic scale. However, these machines have found numerous
applications in many other fields.

Accelerators are widely used for the implantation of ions in the semiconductor
industry or for hardening steel objects such as ball bearings or cutting tools. Ions
of tungsten, chromium, tantalum, nitrogen and boron, among others, are used for
this purpose. This application usually only requires accelerating particles to a few
100 keV and electrostatic acceleration is the most economic approach.

When particles with a larger energy are required, it is more appropriate to use
one of the methods for particle acceleration described in the previous sections.

Accelerators for medical applications. One important use of accelerators is as
sources of X-rays and gamma rays. This is achieved by accelerating electrons and
letting them interact with a target. The X-rays and gamma rays are produced in
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the target by bremsstrahlung and by photoelectric effect followed by the emission
of X-rays. The energy of the electrons, the target thickness and the target material
together determine the spectrum of the gamma rays. Worldwide, many thousands
of electron accelerators are in use in hospitals for gamma radiation therapy. The
energy of these accelerators varies typically from 4 to 25 MeV. In radiation therapy,
one needs an arrangement where the beam can come from all directions on a circle
around the patient. By rotating the beam one ensures that a maximum of radiation
dose is delivered at the position of the tumour and a lower dose is delivered to the
surrounding tissue.

Figure 3.28(a) shows the general layout of an electron accelerator for this appli-
cation. If the beam energy is not very large, the accelerator has a modest size and
it is possible to rotate it around the patient with a rotating gantry as shown on
Fig. 3.28(b). If the energy of the electrons is larger, the accelerator is very bulky.
It is better to have the accelerator in a fixed position on the rotation axis of the
gantry and steer the beam with magnets fixed on the gantry as shown in Fig. 3.28(c).
Figure 3.29 shows an example of an accelerating cavity used in this type of electron
accelerators. Very similar accelerators are used for the purpose of sterilisation of
food or other materials.

Another approach to radiation therapy is the use of protons or light ions such as
carbon. The motivation of this method comes from the property of protons or heavy
ions to have an increase of the energy loss by ionisation towards the end to the
trajectory. In this case there is also no radiation damage behind the irradiated area.
One therefore obtains a distribution of the radiation dose as shown on Fig. 3.30.
This is particularly important if the area to be irradiated is close to a vital organ.
The range of the hadrons in tissue should be up to about 30 cm, and this requires
220 MeV and 5280 MeV for protons and carbon ions, respectively. This energy can
be reached either with a cyclotron or with a synchrotron, and systems of either type
are in use in several places. Figure 3.11 shows a cyclotron for used proton therapy.
The limited integrated beam flux obtainable with a synchrotron is not a problem in
this application because only a small beam flux is needed. Figure 3.31 shows the
layout of a typical synchrotron for radiation therapy. Typically a synchrotron for
hadron therapy consists of an ion source and an electrostatic potential that bring
the protons to 80 keV. Next there is an RF-quadrupole accelerating structure and
a drift tube linac that brings the protons to a few 10 MeV. After this point, the
protons can be injected in the synchrotron to be accelerated to their final energy.
One acceleration cycle takes 2 s and is followed by a slow extraction of the beam
in a time that can be up to 10 s. The number of protons accelerated in one cycle is
≈1010, the number of carbon ions is ≈109.

One of the most expensive components in such a treatment system is the massive
gantry needed to bend the beam such that the patient can be irradiated from all
directions. This requires heavy magnets that are rotating around the patient.

Another important medical application of accelerators is the production of iso-
topes for Positron Emission Tomography (PET). This medical imaging modality
will be discussed in Chap. 6. To apply this imaging method, one needs to pro-
duce short-lived positron-emitting isotopes such as 18F or 11C with decay times of
109.7 min and 20 min, respectively. Because of the short lifetime of these isotopes
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Fig. 3.28 Equipment for gamma radiation therapy. (a) Layout of the electron accelerator and
target. (b) The electron accelerator is mounted on the rotating gantry. (c) If a higher energy is
need the electron accelerator is mounted on the rotating gantry. (c) If a higher energy is need the
electron accelerator is too large and is mounted on the axis of the gantry. In this case a beam
transport system with magnets brings the electrons to the target. Figure by courtesy of IAEA
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Fig. 3.29 Cutaway view of a
standing wave accelerating
waveguide for a 6 MV
electron linac. The
accelerating cavities are on
the central axis; the coupling
cavities are offside. The
electron gun is on the left, the
target on the right, both
permanently embedded.
Photograph by courtesy of
IAEA

the cyclotron has to be near to the hospital. The energy needed for the production of
isotopes is typically in the range 8–40 MeV and a cyclotron is perfectly suited for
this application. Worldwide several 100 cyclotrons are being used for the production
of isotopes for nuclear medicine.

Fig. 3.30 Comparison of the
dose delivered by protons and
gamma rays in tissue
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Fig. 3.31 Layout of the synchrotron for hadron therapy for the MedAustron project in Austria.
Image courtesy of FOTEC Company, Viktor Kaplanstrasse 2, A-2700 Wiener Neustadt

Accelerators for nuclear power stations. A potentially very important appli-
cation of proton accelerators is as ‘drivers’ for nuclear fission reactors in ADS
(Accelerator Driven Systems). In a nuclear power station using this approach, the
reactor core is sub-critical, i.e. not enough neutrons are produced by the fission
process to keep a steady chain reaction going. A spallation source provides the
additional neutrons to sustain the nuclear chain reaction. Figure 3.32 shows that
the optimal proton energy for this application is about 1 GeV. At this energy about
25 neutrons are produced for each proton incident on a heavy target such as lead.

Fig. 3.32 Number of
neutrons produced by a
proton in a lead target divided
by the proton energy in GeV.
The data for this figure are
obtained from [15]
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The total power in the beam is therefore 10 MW or more. The advantages of this
approach are the following

– The reactor is subcritical; as soon as the accelerator is switched of it will stop
immediately. This will give an additional safety margin to the reactor.

– Different fuel compositions can be used compared to a conventional reactor. In
particular spent fuel from reactors could be used, or thorium. Thorium is about
three times more abundant in the world than uranium and consists of 100% of
232Thorium. This isotope itself cannot sustain a nuclear chain reaction, but it can
absorb neutrons and form the fissile isotope 233U.

– The most attractive aspect of ADS is that the energy spectrum of the neutrons in
such a reactor is different from the neutron spectrum in a conventional reactor,
and as a result a large fraction of the very long-lived isotopes in the reactor will be
converted to short lived ones. ADS systems built for the sole purpose of ‘nuclear
waste transmutation’ are being considered.
For this kind of application, the average beam intensity needed is 10 mA or more,

which excludes the use of synchrotrons and probably also the use of cyclotrons.
The only proven accelerator technology allowing to reach the energy and beam
intensity needed for ADS is the linear accelerator. The advantage of linear accel-
erators over cyclotrons is due to the fact that in a linear accelerator it is possible
to obtain a strong focussing effect with the help of quadrupole magnets and this in
turn allows obtaining much higher beam intensities. The much weaker focussing
effect in a cyclotron limits the beam intensity that can be reached. However, the
accelerating gradient that can be achieved in room temperature linear acceleration
cavities is limited to about 1 MeV/m if we want to keep the power dissipation in the
cavity walls at an acceptable level. Such a linear accelerator therefore will be more
than 1 km long and will be too expensive. A possible solution is the use of super-
conducting linear accelerator structures as shown in Fig. 3.24. Such accelerating
structures are used successfully in high-energy electron synchrotrons, such as syn-
chrotron radiation sources. For particles travelling at a velocity close to the speed
of light, average accelerating gradients of 25 MeV/m and conversion efficiencies
of electrical power to beam energy as high as 50% have been routinely achieved.
The theoretical limits for the accelerating gradient that can be reached with niobium
cavities are 55 MeV/m, 44 MeV/m and 37 MeV/m for particles with β = v/c, of
1, 0.65, and 0.5, respectively. A value of β = 0.5 corresponds to a proton energy
of 145 MeV. At lower energy it is necessary to have a different geometry for the
accelerating cells, and it is more difficult to obtain large accelerating gradients. This
fact, and the need to have a very reliable accelerator, probably limits the accelerating
gradients that can be used to values well below 25 MeV/m. A considerable research
effort is under way to design superconductive accelerators for ADS.

Circular accelerators such as fixed field alternating gradient (FFAG) accelerators
are also being considered for ADS. This type of accelerator would be more compact
and therefore possibly less expensive than linear accelerators. Demonstrating the
feasibility of this approach to ADS is also an active field in accelerator research
today. This type of accelerator will probably need a proton source followed by
a RF-quadrupole accelerating structure and linear accelerator of the Alvarez type
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accelerating the protons to about 50 MeV. The protons will then be injected in two
(or more) circular fixed field machines in succession.

Synchrotron radiation sources: Synchrotron radiation is a major problem when
trying to accelerate electrons to the highest possible energy, but the phenomenon
is very interesting in its own right. It allows making very intense beams of electro-
magnetic radiation. The radiation is tuneable in frequency from the visible region to
the X-ray region, by choosing the energy of the beam and the strength of the bend-
ing magnet. The emission is concentrated in a narrow cone with an opening angle
given by ≈me/E in the direction of motion of the electron. The radiation is also
polarised.

The first synchrotron radiation sources were initially built as electron syn-
chrotrons for research in high-energy physics, later converted to synchrotron
radiation sources and these used the synchrotron radiation emitted from the bend-
ing magnets. The synchrotron is used as an accelerator and as a storage device. The
beam is accelerated to the desired energy and kept in orbit for a long time. The life-
time of the electron beam in such a storage ring is several 10 h. The energy radiated
by synchrotron radiation is compensated by the RF cavities.

Current third-generation synchrotron radiation sources typically have several
insertion devices called wigglers or undulators. In an undulator the straight sections
in the storage ring are used for inserting periodic magnetic structures composed of
many magnets that form a repeating row of magnetic fields with alternating direc-
tion. Instead of a single bend, many tens or hundreds of ‘wiggles’ with a fixed period
add up and multiply the total intensity that is seen at the end of the straight section.
In such a structure stimulated emission can occur. It can therefore work as a free
electron laser.

There are more than 50 electron accelerators in the world dedicated for the use
as synchrotron radiation sources.

3.9 Outlook

There are two parameters determining what future accelerators will be possible:
the maximum magnetic field that can be achieved and the maximum accelerating
gradient that can be achieved.

Regarding magnetic fields, only modest progress is to be expected in the coming
decades. With the currently used type of superconductors, 20 tesla is the upper limit
for the field that can be achieved. New high temperature superconductors could
possibly one day reach a field of 30 tesla, but experience shows that progress in
superconductive magnets is very slow.

Regarding accelerating gradients, the situation is very different. It is well known
that the electric field in lasers is many orders of magnitude larger than the maximum
field that can now be reached in cavities. However, nobody has been able to come up
with a realistic proposal on how to use these fields for the purpose of accelerating
particles. The electric fields in plasma waves are also very large and this seems a
realistic approach to particle acceleration. In a recent experiment, electrons were
accelerated to 1 GeV in a plasma wave over a length of only 4 cm. The idea is
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Fig. 3.33 Particle
acceleration based on plasma
waves. An igniter laser pulse
forms a ‘wire’ of plasma in a
plume of hydrogen gas; a
heater pulse expands the wire
to a plasma channel; the drive
pulse accelerates bunches of
electrons inside the channel
to nearly uniform high
energy. Figure by courtesy of
Berkeley Lawrence Lab [16]

illustrated in Fig. 3.33. The plasma, and the plasma wave, are caused by a powerful
laser pulse in a low-pressure gas.

It is possible that electron accelerators based on this principle will replace con-
ventional linear accelerators as the source of electrons reaching a few 10 MeV of
energy. Such machines could be operational by the year 2020.

A somewhat similar idea is the plasma wake field accelerator. In this approach,
a high intensity low-energy electron beam excites the plasma. This beam causes a
strong wake field that can be used for accelerating particles. A high-intensity low-
energy electron beam could, in this way, give rise to a low-intensity high-energy
beam of electrons or other charged particles.

For the future of very high-energy accelerators for basic research, there are two
approaches: proton colliders, such as the present LHC machine and electron linear
accelerators used for studying electron–positron collisions. It is very unlikely that
a proton–proton collider of higher energy than the present LHC accelerator will be
built in the near future, if ever.

The international scientific community agrees that the next high-energy accel-
erator to be built should be the International Linear Collider (ILC). This machine
will be based on the use of superconductive accelerator cavities similar to the one
shown in Fig. 3.24. The accelerating field will be 31.5 MeV/m. The main parame-
ters of the ILC are summarised in Table 3.9. Such a machine could optimistically be
operational by 2019. ILC will allow the study of electron–positron collisions with
a centre of mass energy of 500 GeV. This seems modest compared to the LHC, but
a proton is composed of quarks, it is not an elementary object. What matters is the
energy in the quark–quark collision and this energy is only about 1.2 TeV at LHC.
The interpretation of events observed in proton–proton collisions is also much more
difficult than the interpretation of electron–positron collisions.

A much more ambitious proposal is the CLIC project [18], see Table 3.10. It
aims at building an electron–positron collider that could reach a total centre of
mass energy of 3 TeV. The two accelerators and associated equipment could fit in
a site 38 km long. Figure 3.34 shows the layout of the CLIC collider and Table 3.9
summarises its main properties.



3.9 Outlook 101

Table 3.9 Main parameters of the International Linear Collider

Type Electron–positron collider

Centre of mass energy 205 + 250 GeV
Luminosity 2 × 1034 cm−2 s−1

Accelerating gradient 31.5 MeV/m
Cavities Superconducting, standing wave
Frequency 1.3 GHz
Repetition rate 5 Hz
Pulse duration 1 ms
Beam current in pulse 9 mA
Energy of damping rings 5 GeV
Circumference of damping rings 6.7 km
Length of each linac line 11 km
Total site length 31 km
Total power consumption 230 MW

Table 3.10 Main parameters of CLIC (Compact Linear Collider)

Type Electron–positron collider

Centre of mass energy 1500 + 1500 GeV
Design Luminosity 80 × 1033 cm−2s−1

Linac repetition rate 100 Hz
Total 2 linac length 38 km
RF frequency 30 GHz
No. of particles/bunch 0.4 × 1010

No. of bunches/pulse 154
Bunch train length 102 ns
Accelerating gradient 150 MeV/m

Fig. 3.34 Overall layout of the (Compact Linear Collider) CLIC. Figure from [17], copyright
CERN
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The size of the budgets involved makes it clear that this will, in the end, be a
political decision. Many different options are possible. It is difficult to be certain
what the outcome will be, but it remains very likely that, if a new very high-energy
accelerator is built one day in next 30 years, it will be a linear electron–positron
collider.

3.10 Exercises

1. Assume a linear accelerator as shown in Fig. 3.5 and an alternating voltage
source of 10 MHz. Assume that we want to use it to accelerate electrons. After
a few steps, the electrons will have a velocity close to the velocity of light. How
long should each of the tubes be to accelerate each electron further?

2. Assume that you have a cyclotron with a magnet of 1.5 tesla field. The useful
diameter of the magnet is 2 m. What is the maximum energy you can reach for
protons with this machine?

3. Show that in a cyclotron the distance between the successive orbits becomes
smaller as the energy of the particles becomes larger.

4. Show that the equation for the radius of curvature of the track of a charged
particle in a magnetic field: P = Ze B r, can be rewritten as Eq. (3.1).

5. Assume that to drive a nuclear reactor one needs a beam of protons with an
energy of 1 GeV with a beam current of 20 mA. Assume that the accelerator has
an efficiency for converting electrical energy to beam energy of 33%. How much
electrical power will this accelerator use?

6. What is the speed of the train that has the same kinetic energy as the energy
stored in one of the proton beams of LHC. A typical train weighs 400 metric
tons.

7. Assume that we accelerate protons and make them collide with protons at rest.
What should be the energy of the proton beam to produce the same centre of
mass energy as the LHC collider.

8. In the SPS proton synchrotron, the frequency of the RF cavities at the maximum
energy of 450 GeV is 200.2 MHz. How much should the frequency be at the
injection energy of 10 GeV?

9. Assume a synchrotron for electrons with a beam energy of 1 GeV. What is the
power dissipated by synchrotron radiation? Assume that the bending magnets
have a field of 2 tesla that the number of particles stored is 1012 and that 33% of
the circumference is occupied by the bending magnets. The rest of the circum-
ference has quadrupoles and straight sections. Neglect the power dissipated in
the quadrupoles.

References

1. IRCP publication 103, Recommendations of the International Commission on Radiological
Protection, Elsevier (2008).

2. E. Pochin, Nuclear radiation: risks and benefits, Clarendon Press, Oxford, (1983).



References 103

3. E.J.N. Wilson, An introduction to particle accelerators, Oxford University press (2001).
4. P.J. Bryant and K. Johnsen, The principles of circular accelerators and storage rings,

Cambridge UniversityPress (1993).
5. D.A. Edwards and M.J. Syphers, An introduction to the physics of high energy accelerators,

John Wiley& sons, Inc. (1993).
6. H. Wiedemann, Particle accelerator physics, Springer-Verlag, Berlin, (1993).
7. M. Reiser, Theory and design of charged particles beams, John Wiley& Sons (1994).
8. A. Chao and M. Tigner, Handbook of accelerator physics and engineering, World Scientific

(1998).
9. K. Wille, The physics of particle accelerators: an introduction, Oxford University Press

(2000).
10. S. Humphries, Jr, Principles of particle accelerators, John Wiley & Sons; (1986), Also

downloadable from http://www.fieldp.com/cpa/cpafull.pdf
11. Panorama des accélérateurs et de leurs utilisations, Eric Baron, Ecole IN2P3 « De la Physique

au Détecteur » , Bénodet 15–22 (novembre 2006).
12. H.A. Willax, Proposal for a 500 MeV Isochronous Cyclotron with Ring Magnet, Proc. Int.

Conf on Cyclotrons, Geneva 1963, CERN Rep 63–19, pp. 386–397.
13. D. Proch, Superconducting cavities for accelerators, Rep. Prog. Phys. 61, 431–482 (1998).
14. E.B. Podgorsak, Technical Editor. Radiation oncology physics: handbook for teachers and

students, International Atomic Energy Agency, Vienna (2005).
15. A.N. Didenko, A.A. Glazkov, A.D. Koljaskin, G.L. Horasanov, V.E. Kalantarov, Conception

of secure atomic energy plant with subcritical reactor and 100 MeV proton accelerator, Paper
presented at the accelerator conference, CERN (1996).

16. Berkely Lab Research News, Laser Wakefield Acceleration: Channeling the Best Beams Ever
(September 29, 2004).

17. A 3 TeV e+ e− Linear Collider Based on Clic Technology, Proton Synchrotron Division,
CERN 2000–008, (28 July 2000).

18. Extensive information of high-energy electron accelerators and the CLIC project can be found
on http://clic-study.web.cern.ch/CLIC-Study/.



Chapter 4
Detectors Based on Ionisation in Gases

4.1 Introduction to Detectors for Subatomic Particles

Charged subatomic particles can be detected by their electromagnetic interactions
with matter. Neutral subatomic particles can only be detected if they first undergo
an interaction. The charged particles produced in the interaction reveal that a neutral
particle was present.

Today there are three main methods for detecting charged subatomic particles
that are important in nuclear science or in high-energy physics: detection based on
gas ionisation, detection based on semiconductors and detection based on scintilla-
tion. All these methods are based on the detection of electron ionisation or electron
excitation produced by the coulomb interaction of the charged particle with the
medium.

Many years ago, there were several other useful detection methods, such as bub-
ble chambers and cloud chambers, but these have all become obsolete because
these methods did not allow advantage to be taken of the dramatic improvements
in electronics.

One significant exception to this is the nuclear emulsion. A nuclear emulsion
is essentially the same as a common black-and-white photographic emulsion. The
very first observations of subatomic particles and ionising radiation were, in fact,
made with photographic emulsions. In 1895, Wilhelm Conrad Roentgen discovered
X-rays by observing that images could be obtained from the bones in a human
body, by using what is now called a cathode ray tube and a photographic emul-
sion. One year later, Henri Becquerel observed that certain uranium salts emit a kind
of penetrating radiation that can be detected with photographic emulsions. Ordinary
photographic film consists of silver halide grains (mainly silver bromide) suspended
in a gelatine matrix and supported with a backing of glass or cellulose acetate film.
The action of ionising radiation in the emulsion is similar to that of visible light:
some of the grains become sensitive through the excitation of electrons in the silver
halide crystal. In the subsequent development process, the sensitive grains become
metallic silver and are visible as black grains. The silver grains in emulsions can
be made quite small, less than 1 μm, so that images of excellent resolution can be
recorded. This excellent resolution is one of the main reasons why nuclear emulsions
have not yet been abandoned as a detection technique.

105S. Tavernier, Experimental Techniques in Nuclear and Particle Physics,
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Nuclear emulsions can be used for observing a radiation flux impinging on
the emulsion, and the higher the radiation flux the darker the emulsion. This is
the basis of the use of emulsions as film badge dosimeters. A long time ago,
nuclear emulsions were also used to make X-ray images for medical applica-
tions, i.e. for clinical radiography. This method has long been abandoned because
the probability of the X-ray interacting in the emulsion is small, typically only
a few percent, resulting in the need of a large dose to obtain good images. For
this application, emulsions have been replaced by methods that will briefly be
described in Chap. 6. However, emulsions are still used for making X-ray images
of objects, for example in non-destructive material testing, where dose is usually
not important and advantage can be taken of the excellent spatial resolution of
emulsions.

A limitation of the use of emulsions in radiography or in dosimetry is the limited
dynamic range, i.e. the range in dose the emulsion can record. At higher or lower
doses, the only information the emulsion provides is that the dose was above or
below the range of sensitivity. Typically, emulsions have a dynamic range of ≈100.

Another application of emulsions is as a method to make trajectories of charged
particles visible. If a charged particle travels in an emulsion, the silver halide crys-
tals along its trajectory will become sensitive and after development the track of the
particle becomes visible under a microscope. For a long time this was a very impor-
tant method for the study of nuclear interactions. It is still used today, but only in
cases where one wants to observe very short tracks that are difficult to observe by
other methods. Figure 4.1 illustrates how emulsions can be used to observe tracks
of subatomic particles.

If a charged particle penetrates in a medium, many atoms along the trajectory
of the particle are ionised. If the medium is a gas, an electric field of the order of
a few 100 V/cm will be sufficient to collect the charges and, in this way, detect
the presence of charged particles. In a solid, it is usually not possible to collect

Fig. 4.1 Alpha particles
shoot out from a speck of
uranium salt on the surface of
a nuclear emulsion. The area
shown corresponds
approximately to 0.3 ×
0.2 mm2. Figure from
[1]./Science Photo Library
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Fig. 4.2 The gold leaf electroscope was one of the earliest instruments used in studying subatomic
particles. It consists basically of a box with a window, or of a glass bottle. A metal rod, which passes
through an insulating collar in the top of the box, has two thin sheets of gold foil attached. When
the rod is electrically charged the two gold leaves acquire the same charge and repel each other. If
the air in the box is ionised by radiation, the charge on the gold leaves leaks away to the walls of
the box and the leaves collapse together

the charges. This is because in a solid there are always a very large number of
traps that will capture the charges and prevent the collection. Only for a small
number of carefully engineered materials, such as silicon and germanium, is it
possible for charges to move freely over distances of several millimetres with neg-
ligible loss. Semiconductor detectors are discussed in Chap. 5. In liquefied noble
gases, it is also possible to collect the ionisation charges. This is because the noble
gases have a very low affinity for electrons and the electrons move freely under
the influence of an electric field if the material is extremely pure. This has a num-
ber of important applications in high-energy physics and this is briefly discussed in
Sect. 6.6.

Observation of ionisation in gases is also one of the oldest ways of observing
ionising radiation. In the very beginning of nuclear science, this was done with the
help of an instrument called an electroscope (see Fig. 4.2).

Today the use of ionisation in gases is one of the common methods used to detect
the presence of high-energy subatomic particles. This is the subject of the rest of this
chapter.

4.2 Ionisation and Charge Transport in Gases

Before we proceed with a discussion of detectors based on gas ionisation, it is useful
to briefly review the main physical phenomena associated with the creation and the
transport of charges in a gas. See Ref. [7] for a more in depth review of the subject.

When a charged particle travels in a gaseous medium, the coulomb interaction
between this charged particle and the gas atoms will cause excitation or ionisation
of the gas molecules. If the gas molecule is ionised, a free electron and a positive ion
are produced. The ionisation energy for most gases is between 10 and 20 eV (see
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Table 4.1 Energy loss characteristics in some commonly used gases. Energy loss, the number
of electron–ion pairs and the number of primary electrons is for charged particles at minimum
ionisation

Gas

Ionisation
potential
[eV]

Mean energy
/electron–ion
pair ‘W’ [eV]

Energy loss
[keV/cm]

Number of
electron–ion
pairs [cm−1]

Number of
primary
electrons
[cm−1]

Ar 15.7 25.0 2.53 106 25
Xe 12.1 22 6.87 312 41
He 24.5 41.6 0.345 8.3 5
H2 15.6 36.4 0.32 8.8 5.2
N2 15.5 34.8 1.96 56.3 10
Air 33.8 2.02 59.8
O2 12.5 30.2 2.26 74.8 22
CH4 12.6 30 1.61 54 37
C2H6 11.5 26 2.91 112 48
Isobutane/i-C4H10 10.6 26 5.67 220 90
CO2 13.8 34 3.35 100 35

Table 4.1), but the average energy needed to produce an electron–ion pair is typically
about two times larger. This is because the energy transferred to the electron is
usually larger than what is needed to ionise the atom, and part of this kinetic energy
will dissipate as heat. If this electron has acquired sufficient energy, it will itself
cause further ionisation of gas molecules. Each primary electron will typically give
rise to 3 electron–ion pairs.

If a charged track travels a fixed distance in a gas, the amount of energy deposited
fluctuates from one event to the next. This is partly due to the fluctuation on the
number of primary electrons ejected from the gas molecules and partly due to the
fluctuation on the amount of energy received by each electron. This will give rise
to a distribution of the number of charges produced that is wider than what can be
expected for a Poisson distribution.

In the presence of an electric field, the electrons and ions created by the radia-
tion are accelerated towards the anode and cathode, respectively. This acceleration
is interrupted by collisions with the gas molecules. In these collisions, the elec-
trons and ions will completely change direction. The collision resets the average
drift velocity of the electron or ion in the direction of the field back to zero. After
the collision, the charges will again be accelerated in the direction of the electric
field. At the microscopic scale the movement is quite chaotic, but at the macro-
scopic level it appears as if the charges drift with constant velocity in the direction
of the electric field and as if a diffusion component is superimposed on the oth-
erwise uniform drift velocity. The cross section for the collision of ions with gas
molecules is determined by the dimensions of the molecules involved and these
cross sections are therefore of the order of a few 10−15 cm2. The corresponding
mean free path of the atoms or ions is about 100 nm. Moreover, these cross sec-
tions are independent of the kinetic energy of the ion. For the electric fields of
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interest the drift velocity is always much smaller than the thermal velocity of the
particle. We can therefore derive an approximate expression for this drift velocity as
follows.

The average thermal kinetic energy of the molecules, or ions, in a gas is 3kT/2.
The average thermal velocity vt of an ion is therefore given by

Ekinetic = 1
2 M ν2

t = (3/2) kT

νt =
√

3kT

M
In this equation k is the Boltzmann constant, T the absolute temperature and M

the mass of the molecule or ion. Applying this equation to nitrogen gas molecules,
we find that the thermal velocity is ≈500 m/s. If λ represents the mean free path of
the ion, the average time between two collisions is given by

�t = λ

νt

If there is an electric field, the ion will be accelerated in the direction of the
electric field. The acceleration is given by

a = eE

M

The average velocity of the ion in the direction of the field is therefore given by

νd = a

2
�t = eE

2 M

λ

νt
= eλ√

12kT M
E (4.1)

We see that the drift velocity is proportional to the electric field and it is therefore
useful to introduce the mobility ‘μ’ defined by

ν(E) = μE

Applying Eq. (4.1), we find that the drift velocity of charged nitrogen molecules
in an electric field of 1000 V/cm is 34 m/s if we assume a mean free path of 100 nm.
This is indeed much smaller than the thermal velocity of the molecules. The ion
mobilities of a few ions are listed in Table 4.2.

For electrons, the drift velocity is not proportional to the electric field and
the mobility therefore becomes a function of the electric field. This difference in
behaviour is due to the fact that the cross section for collisions of the electrons on
gas molecules is strongly dependent on the kinetic energy of the electrons, as is
illustrated in Fig. 4.3. Moreover, electron–molecule cross sections are, on average,
much smaller than ion–molecule cross sections. Figure 4.4 shows the drift velocity
of electrons in an electric field, for a few gases of interest. Electron drift velocities
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Table 4.2 Ion mobility in a few gases. Data taken from Refs. [6] in Chap. 1 and [2]

Gas Ion Mobility [cm2 V−1 s−1]

Ar Ar+ 1.54
He He+ 10.4
CO2 CO2

+ 1.09
Ar CH4

+ 1.87
Ar C2H6

+ 2.06
Ar iC4H10

+ 2.15
Ar CO2

+ 1.72

are typically of the order of a few cm/μs for an electric field of 1 keV/cm. This is
about 10,000 times faster than the typical ion drift velocities.

While drifting in an electric field, the electrons and ions can be involved in a
number of interactions with the gas molecules of the medium:

– Several gases, e.g. oxygen, are strongly electronegative. This means that electrons
will become attached to oxygen atoms and form a negative ion. After capture, the
negative oxygen ion displays similar drift behaviour as positive ions.

– During a collision between different molecules, one charged and one neutral, the
molecule with the largest ionisation energy will tend to capture the electron from
another molecule, where the electron is less tightly bound. As a result the charge
can be transferred from one molecule to another.

– Electrons and positive ions, or positive and negative ions can also recombine their
charges to produce neutral atoms.

Fig. 4.3 Electron–argon cross section in argon gas as a function of the kinetic energy of the
electron. The data for this figure were obtained from [2]
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Fig. 4.4 Drift velocity of
electrons as a function of the
electric field in several gases.
Figure from [3], copyright
CERN

Diffusion causes the drifting charges to deviate from the direction given by the
electric field. If the diffusion is perpendicular to the motion of the particle, this is
called lateral diffusion. However, the diffusion will also cause some particles to
move slightly faster or slower than others. This is called longitudinal diffusion. If a
group of particles is created at the same moment in one point in the gas, the electric
field will cause these particles to drift in the direction of the field. After some time
these particles will no longer be at one point but will be spread over a certain volume.
Since this dispersion is due to a large number of uncorrelated random collisions
along the track, the positions of the particle will have a Gaussian distribution, and
the dispersion is proportional to the square root of the drift distance. It can be shown
[7] that this dispersion is related to the diffusion constant D by the relation

σx = √(2D/νd)l

In this equation σ x represents the dispersion of the projected distance on some
direction x, νd represents the drift velocity, and l the path length of the particle.

If the electric field is increased, at some point the moving charges in the gas can
acquire sufficient energy to ionise other atoms. In this way, the number of charges
will increase. The mean free path of the electrons is much larger than the mean free
path of ions; therefore, electrons can acquire a much larger energy than the ions, and
electrons will start multiplying at a lower value of the electric field than the ions. As
is discussed in Sect. 4.4, this charge multiplication effect is exploited to amplify the
very small signals that are produced by ionisation in gases.

4.3 Ionisation Chambers

The amount of ionisation in a gas volume is a measure of the amount of radiation
present. This provides a commonly used method to measure gamma ray exposure.
The SI unit of X-ray or gamma ray exposure is defined as the amount of radiation
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Fig. 4.5 Schematic representation of an ionisation chamber. (b) Current–voltage diagram in an
ionisation chamber. A voltage of a few 100 V/cm is usually sufficient to collect all the charges

producing one coulomb of charge per kilogram of air at standard temperature and
pressure.

An ionisation chamber to measure gamma ray exposure is a very simple device
and is illustrated schematically in Fig. 4.5. A certain volume of air is enclosed
between two electrodes and a voltage difference of several 100 V is applied on
these electrodes. If the voltage is too low, the electrostatic force on the charges is
not sufficient to overcome the random thermal movement of the gas molecules, and
we have incomplete collection of the ionisation in the gas. In addition, the charges
have to be collected fast enough so that recombination of the charges remains negli-
gible. A moderate field of the order of a few 100 V/cm is usually sufficient to obtain
full charge collection. Increasing the voltage over the electrodes further will not lead
to an increase in the collected current. If the voltage over the electrodes is increased
to a value much larger than 1000 V/cm, at some point amplification of the charges
will occur and the current will again increase. In that case, the amount of charge col-
lected is no longer equal to the ionisation produced by the gamma rays. The voltage
at which charge multiplication will occur depends strongly on the geometry of the
ionisation chamber. In practice, it is fairly easy to find a working voltage where the
charges are collected and no charge amplification occurs.

Implied in the definition of gamma ray exposure is the assumption that the sam-
ple air volume is taken in a sufficiently large volume of air. Sufficiently large here
means large compared to the typical trajectories of the electrons produced by the
gamma rays. These trajectories can be up to several metres long! Ideally, one should
therefore make the gas enclosure and the electrodes sufficiently thin such as to pro-
duce a negligible perturbation of the radiation present. In a practical measurement
set-up, the ionisation chamber and the electrodes are unavoidably made of some
suitable solid material. This material will perturb the measurement because, on the
one hand, it shields the gas in the ionisation chamber from electrons produced out-
side the sample air volume, and on the other hand, it adds electrons produced by
interactions of the gamma rays in the walls of the ionisation chamber. This pertur-
bation will be minimised if the walls are made of ‘air equivalent material’, i.e. of
material with approximately the same atomic charge as nitrogen and oxygen. The
electrodes should therefore preferably be made of aluminium and the detector walls
of plastic.
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Fig. 4.6 Cross-sectional view of an ionisation chamber with guard rings. The leakage current
between the guard ring and the ground is not included in the measured ionisation current. The very
small ionisation currents can be measured with a large series resistor and an electrometer to record
the voltage over the resistor

The currents that need to be measured with ionisation chambers are usually
extremely small. If we assume that there are 1000 electron tracks per second in
the gas volume and that each track is 2 cm long. The corresponding current in the
ionisation chamber will be 18 × 10−15 A. This is an extremely small current, and
without adequate precautions, the leakage current in the system will be much larger
that the ionisation currents one wants to measure. The solution that is universally
adopted is the use of guard rings. The principle of guard rings is schematically illus-
trated in Fig. 4.6. The measurement electrode is completely surrounded by another
electrode called the guard ring. This guard ring is at the same voltage as the mea-
surement electrode. Because there is no voltage difference between the high-voltage
electrode and the guard ring there is no leakage current.

The method used for the measurement of the small ionisation currents is illus-
trated in Fig. 4.6. The ionisation current causes a voltage difference over a resistor,
and this voltage difference is measured with a sensitive voltmeter (DC electrometer).
The values of the resistors used are typically between 10+9 � and 10+12 �.

Battery-operated portable ionisation chambers are commonly used as radiation-
monitoring instruments to measure gamma ray exposure. Figure 4.14 shows some
commercially available systems. Because the walls of these detectors can never be
made exactly equivalent to air, each instrument has to be calibrated for its sensitivity
as a function of the gamma ray energy.

When an ionisation chamber is used to measure gamma ray exposure, the total
charge pulse corresponding to one electron trajectory of a few centimetres long
corresponds to only a few 100 electron charges. However, an ionisation chamber
can also be used to measure the concentration of air-borne alpha emitters. An alpha
particle of 3.38 MeV will produce about 100,000 electron–ion pairs in air. This is
still a very small electrical pulse, but large enough to be observed with suitable low
noise electronics.

It is always better to count individual pulses rather than measuring just a total cur-
rent. The example at hand illustrates this. If one were to use the current to measure
the number of alpha emitters present in a gas, it would be impossible to distin-
guish the current caused by the alpha particles from the current caused by electrons
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Fig. 4.7 Under the influence
of the electric field an
electron and a positive ion
drift towards the electrodes
delimiting the volume of an
ionisation chamber. These
two electrodes form a parallel
plate capacitor

produced by gamma rays. If the individual pulses are observed, it is possible to dis-
tinguish the two types of events because of the very large difference in amplitude
between the corresponding pulses. Another advantage of counting pulses is that this
method is much less sensitive to changes in the collection efficiency of the charges,
either variations over the volume of the detector or variations with time. On the other
hand, counting pulses needs a more elaborated electronics and becomes impossible
if the rate of events exceeds a few 10 MHz.

To understand the time development of the electrical pulse caused by ionisa-
tion in a gas, let us consider a detector consisting of two parallel plates enclosing
a gas volume. These two plates form a capacitor with a capacitance denoted by C.
A potential difference V0 between the plates causes a constant and parallel electric
field between them (see Fig. 4.7). Let us assume that one electron–ion pair forms in
the gas. Under the influence of the electric field the electron and the positive ion will
drift towards the anode and cathode, respectively. After a certain time the electron
and the positive ion will have reached their electrodes, and if the plates are not per-
manently connected to an external voltage source, the voltage difference over plates
changes by

dV0 = −e

C
(4.2)

In this equation ‘–e’ represents the charge of the electron.
The drift of the electron and the ion in the gas to their respective electrodes

is equivalent to a current source connected between the two plates and injecting
a charge ‘–e’ and ‘e’ in the anode and cathode, respectively. However, it is not
immediately obvious at what moment exactly this charge appears on the electrodes.
Energy conservation will help us in answering this question.

In the interest of clarity let us only consider the motion of the electron. If the
electron has only travelled a fraction of the distance between the plates, it will have
crossed a potential difference �V and the energy it received in doing so, e�V, has
been dissipated as heat in the gas. Because of energy conservation, this energy must
have been supplied by the energy stored in the capacitor 1/2CV0

2. The voltage over
the capacitor has therefore changed by dV0 and we have the relation:
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d( 1
2 CV2

0 ) = V0CdV0 = −e�V

dV0 = −e�V

CV0

The motion of the charge –e has injected an apparent charge in the electrode
given by

�Q = −e�V

V0

The motion of a particle with charge ‘–e’ in the detector is therefore equivalent
to a current source injecting a current in the anode given by the Eq. (4.3):

i = dQ

dt
= −e

V0

dV

dt
= −e

V0

dV

ds

ds

dt
(4.3)

In this equation, s represents the trajectory of the electron. Notice that, if a current
‘i’ is injected on the anode, necessarily a current ‘–i’ is injected on the cathode. One
is therefore free to choose either of the electrodes to read the signal. In fact, we can
use both signals and this is often used in detectors.

We have seen in the above example that the signal in a detector is caused by
the motion of the charges between the electrodes. This is completely general and
applies to all detector types and all detector geometries. In the simple case, where the
detector only has two electrodes, the signal can be found using energy conservation
as we have done here. Later in this book we will see many examples of detectors
where there are more than two electrodes. In that case, we need to use the Shockley–
Ramo theorem to find the signal induced in one particular electrode. Assume that
there are many electrodes in the detector and we want to know the current injected in
one of these electrodes by the motion of a charge somewhere in the space between
the electrodes. The Shockley–Ramo theorem [4, 5] states that the current injected in
this electrode is also given by Eq. (4.3), but using the weighting potential field for
this electrode in calculating dV/ds, not the true potential field in the detector. The
weighting potential field is the potential field obtained when all other electrodes are
set at zero potential and only the electrode under consideration is at the potential V0.
If there are only two electrodes, the weighting potential field is the same as the true
potential field in the detector. If there are more than two electrodes, the weighting
potential field is, in general, different from the true potential field in the detector. In
the calculation of the current, the trajectory ‘s’ used in Eq. (4.3) must of course be
the true trajectory caused by the real potentials used when operating the detector.

The time development of the electrical pulse caused by one electron–ion pair
produced in the electric field of an ionisation chamber with parallel plate electrodes
is shown in Fig. 4.8. The electron travels much faster than the positive ion and there-
fore reaches the anode in a short time. The movement of the positive ion is much
slower and the signal induced by the positive ion lasts much longer. The current
pulse therefore also consists of two parts, one fast part corresponding to the electron
movement and one slow part corresponding to the movement of the positive ions.
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Fig. 4.8 Time development of the signal caused by the motion of the electron and the ion in a
parallel plate ionisation chamber. In the interest of clarity, the figure is drawn as if the electron drift
velocity were only ten times faster than the ion drift velocity. In reality, the difference in velocity
is much larger. The top figure shows the change of voltage over the plates caused by the motion
of the charges if the plates are disconnected from the power supply. The bottom figure shows the
apparent current caused by this motion of the charges

The voltage difference caused by the creation of one electron–ion pair in a detec-
tor with a capacitance of 10 pF (a typical value) is 1.6 × 10−8 V. This is a very
small signal and is not observable. An alpha particle of 3 MeV will give a signal
of 15 × 10−4 V. This is still very small but is observable with suitable low noise
electronics.

If a high-energy electron causes the ionisation in the detector, the signal will typ-
ically only be of the order of 100 electron charges and such a signal is unobservable
using purely electronic methods. One therefore needs to use gas amplification as
described in the next section.

4.4 Counters with Gas Amplification

The electrical signals produced by charged particles in a gas are often too small to
be observable. In 1928, Geiger and Müller invented a detector that takes advantage
of the phenomenon of charge amplification in gas to obtain much larger electrical
signals. Counters based on the same principle are still in common use today. These
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Fig. 4.9 A Geiger tube or a
proportional tube is a
conductive cylinder with a
thin wire in its centre. The
dotted line shows an
imaginary cylinder used in
calculating the electric field
in the tube

counters are now usually of a type called ‘proportional counters’; the difference
between a proportional counter and a Geiger counter will be explained later.

A proportional counter or a Geiger counter consists of a metal tube of radius R
with a thin metallic wire of radius ‘r’ in its centre (see Fig. 4.9). The central wire is
brought to a large positive voltage, i.e. it is used as an anode, while the tube itself is
at ground potential and is used as a cathode.

The electric field in the counter can be found by applying the Maxwell equations
in the integral form over an imaginary cylindrical volume of radius ρ shown as a
dotted line in Fig. 4.9.

∫

surface

�D.�ds =
∫

volume

q.dν

We assume the cylinder to be a finite section taken out of a very long cylinder.
The electric field over the flanges at both ends therefore points radially outwards
from the central wire and does not contribute to the surface integral. We therefore
have

εE(ρ)2πρL = Q

E(ρ) = Q
2πεL

1
ρ

(4.4)

Equation (4.4) gives the expression for the electric field as a function of the elec-
tric charge present on the central anode wire. In practice, this wire is charged by
connecting it to a voltage power supply. We therefore need to calculate this charge
on the wire as a function of the externally applied voltage V0. This is the same
as calculating the capacitance of the system. The electric field in the cylinder is
given by

E = −dV

dρ
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Integrating this equation along a line pointing radially outwards from ‘r’ to R,
we obtain

V(R) − V(r) = −
R∫

r

E(ρ)dρ

The outer cylinder is at ground potential, therefore V(R) = 0 and the central wire
is connected to the external powers supply, hence V(r) = V0. We hence have

V0 =
R∫

r

E(ρ)dρ = Q

2πεL
ln

(
R

r

)

By definition, the capacitance of a system is given by Q/V. Therefore, the
capacitance C of the proportional tube is given by

C = Q

V0
= 2πεL

ln (R/r)
(4.5)

Eliminating Q from Eqs. (4.4) and (4.5), we readily find the expression for the
electric field in the cylinder:

E(ρ) = V0

ρ ln (R/r)

We see that the electric field in the tube varies inversely proportional to the dis-
tance to the centre of the tube. For a central wire with a radius of 10 μm and a power
supply of only 1000 V, the electric field close to the central wire is 1.5 × 107 V/m.
This is sufficient to cause electron multiplication.

Let us assume that a charged particle produces a number of electron–ion pairs in
the gas inside the tube. Under the influence of the electric field, the electrons and the
ions move towards the anode and cathode, respectively. As an electron comes closer
to the anode, the electric field increases, and in the last few 10 μm, very close to the
anode wire, the field is sufficiently strong to give rise to charge multiplication. This
means that the electrons acquire enough energy that they can ionise other atoms and
create additional free electrons. In this avalanche, the number of electrons increases
exponentially. Because of charge diffusion, the electron avalanche spreads more or
less evenly around the anode wire.

A large number of electrons and an equal number of positive ions are formed.
These electrons move much faster than the positive ions; therefore, the electrons
reach the anode in about 1 ns and leave the positive ions behind. The ions move
slowly towards the cathode. In doing so, the ions do not cause any charge multipli-
cation, because the onset of charge multiplication for ions is at much larger electric
fields than for electrons. The ions need several 100 μs to reach the cathode; the
exact value depends on the dimensions of the system and on the gas filling of the
tube. This is illustrated in Fig. 4.10.
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Fig. 4.10 Development of an electron avalanche in a proportional tube. An electron formed some-
where in the gas volume drifts towards the positive anode wire. In the intense electric field close
to the anode, the electrons multiply. Because of diffusion, the avalanche more or less evenly sur-
rounds the anode wire. The electrons created in the avalanche reach the anode in less than 1 ns.
The positive ions drift slowly outwards towards the cathode

Pulse shape in counters with gas amplification. Let us first imagine that the
charged particle has created only one electron–ion pair in the gas. The signal caused
by this single electron–ion pair is negligible compared to the signal produced by the
many electrons and ions produced in the avalanche. The electrons in the avalanche
reach the anode wire in less than 1 ns, but these electrons only travel a few 10 μm,
and therefore the fraction of the total potential difference travelled by the electrons
is very small. As a result, the contribution of the electron motion to the total signal
is, at most, a few percent. Most of the potential difference is travelled by the ions,
and therefore the motion of the ions causes the largest part of the electrical pulse.

Let us consider a proportional tube with a signal readout as shown in Fig. 4.11(a).
We assume that the current is measured with an ideal current meter with zero
impedance. We, furthermore, suppose leakage currents are negligible. As long as
no ionisation is produced in the gas, there is no current. If one electron–ion pair
forms, the electron will quickly drift to the anode wire. Close to the anode wire this
electron will give rise to the formation of an electrons’ avalanche and the number of
charges is multiplied by a large factor. The motion of the positive ions determines
the evolution of the signal. In the beginning, the ions are in a very large electric field,
and both the velocity of these ions and the potential gradient are large. Therefore, in
the beginning, the induced signal current is large. As the ions move away from the
anode, the change in potential slows down and the current decreases. Eventually all
the ions reach the cathode and the current stops.

A more realistic electrical readout scheme is shown in Fig. 4.11(b). The capaci-
tance Ca, shown in dotted lines, represents the capacitance of the anode wire itself.
The external resistor Re and the external capacitance Ce represent external compo-
nents. The triangle to the right of Fig. 4.11(b) represents an amplifier. This amplifier
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Fig. 4.11 (a) Idealised electrical circuit for the readout of a proportional tube. The anode current
I is read with an ideal current meter with zero internal resistance. (b) Realistic electrical circuit for
the readout of a proportional tube. The capacitance of the anode wire Ca and the input impedance
RI of the amplifier are drawn as dotted lines to show that these are not actual components in the
circuit. These are only drawn as a reminder that the anode wire has a certain capacitance and that
the amplifier has a certain input impedance. (c) Pulse shape of a proportional tube for different
values of the shaping time τ = Ca RI. (d) Simplified equivalent circuit allowing to derive the shape
of the output pulse
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has an input impedance represented by the resistor RI, also shown in dotted lines in
the figure.

The value of the external resistor, Re, should satisfy the condition Re >> RI. This
condition guarantees that most of the signal goes to the amplifier instead of going
to the voltage power supply. Indeed, a voltage power supply has negligible internal
impedance. The external resistor Re decouples the anode wire from the power supply
for short pulses. This means that a short pulse will develop as if the anode were
not connected to the external power supply. After the arrival of a pulse, the anode
potential will slowly return to its nominal value V0 with a time constant given by
Re Ca. Obviously, this time constant should be large compared to the duration of
the pulse. On the other hand, the resistor cannot be too large because at high rates,
the voltage of the anode wire will not be restored to its normal value before the
next pulse arrives, resulting in a drop of the average level of the anode voltage. This
will introduce a rate dependence of the gain of the proportional tube. In practice,
the value of the external resistor Re will be a compromise between these conflicting
requirements. The external capacitor Ce is necessary to isolate the amplifier from the
high voltage of the anode wire. The value of this capacitor is not critical; the only
condition is that Ce >> Ca. This will ensure that the charge is effectively transferred
to the amplifier instead of staying on the capacitor formed by the anode wire.

Finding the exact output signal that will be produced by the circuit shown in
Fig. 4.11(b) is rather involved and the tools allowing to do so will only be introduced
in Chap. 8. However, if the capacitance Ce and the resistor Re are sufficiently large,
to a good approximation these components can be ignored and the circuit becomes
equivalent to the much simpler circuit shown in Fig. 4.11(d). The current source in
Fig. 4.11(d) delivers a current equal to the current signal shown in Fig. 4.11(a). The
shape of the output pulse is completely determined by the shape of the current pulse
and the value of the time constant τ = CaRI . Figure 4.11(c) shows the influence
of the value of this time constant on the output pulse of the proportional tube. If
the time constant τ is much longer than the duration of the current pulse, the total
current pulse is integrated and the signal amplitude is large. After the pulse, the
voltage returns to zero with a time constant τ . The result is a pulse that is extremely
long, leading to a severe limitation of the maximum pulse rate the detector can
handle. If this time constant τ is made shorter, this will lead to pulses that are much
shorter, but are also much smaller. If the time constant τ is made short compared to
the physical formation time of the pulse, the output is directly proportional to the
current. Depending on the application, different values for this time constant will be
used. One often chooses a time constant τ of the order of 100 ns.

When using a time constant much shorter than this, one will see the individual
avalanches caused by the individual electrons arriving at the anode wire. Indeed,
these individual electrons will not arrive at the same time on the anode, giving rise
to a pulse as shown in Fig. 4.12.

We have seen that the motion of the relatively slow ions causes the pulse in a
proportional tube. As a result the rise time of the pulse is not very fast and the time
resolution that can be achieved is not very good. A time resolution of a few 10 ns
(r.m.s.) is typical.
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Fig. 4.12 Signal of a proportional tube as it would be seen if a very short shaping time were used.
In this case, the individual pulses caused by each individual electron are visible

Pulse amplitude and amplitude fluctuations. Charge multiplication occurs if
the electron acquires sufficient energy between two collisions with gas molecules to
ionise one of these molecules. The probability that an electron creates an additional
electron in an infinitesimal path length dx is αdx and the quantity α is called the
‘first Townsend coefficient’. If n(x) represents the number of charges as a function
of the distance travelled by an electron in a constant electric field, we have

dn(x)

dx
= n(x) α

The number of charges increases exponentially

n(x) = n0 eαx

More generally, if the particle moves in a non-uniform electric field, the first
Townsend coefficient becomes a function of x and the expression for the gas gain
generalises to

n(x) = n0 e
∫

α(x)dx

This equation is only valid for moderate values of the gas gain. If the gas gain
becomes too large, the space charge represented by the cloud of charges modifies
the electric field and therefore the value of the first Townsend coefficient. If the gas
gain exceeds the value of about 108, the simple mechanism described breaks down
and the charge multiplication ends in a discharge. This is called the Raether limit.

Until now we have only considered the average gain in an avalanche. The charge
multiplication is a stochastic process, and obviously all primary electrons will not
be multiplied by exactly the same gas gain factor. It can be shown that, if all electron
multiplication is only dependent on the local electric field strength in the absence of
an avalanche, and for large values of the multiplication, the number of electrons in
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an avalanche produced by one primary electron has an exponential distribution.

P(n) = 1

〈n〉e−n/〈n〉

This expression is a fair approximation of the amplitude distribution for moderate
values of the gas gain. However, the primary signal in a gas amplification detector
consists of many electrons, and the fluctuations on the pulse height in the total pulse
is often dominated by the fluctuation on this primary number of electrons.

Gas mixtures: The gas mixture used in a proportional tube is very important. The
gas should not contain any electronegative component. An electronegative molecule
tends to form negative ions by capturing the electrons. The result is that the positive
and the negative charge carriers are both ions and gas multiplication will only begin
at much larger voltages. Moreover, as soon as there is charge amplification, both the
positive and the negative ions give rise to multiplication resulting in an avalanche
that never stops growing, ending in a discharge. Since oxygen is electronegative, air
is not a good working gas for proportional tubes.

An obvious choice for the gas filling of a proportional tube is a noble gas. A
noble gas certainly is not electronegative; moreover noble gases can easily be puri-
fied avoiding impurities that give rise to complications. Finally, a noble gas has the
advantage that the collisions of the electrons with the gas atoms are elastic below
the ionisation threshold. Since noble gas molecules are single atoms, there are no
rotation or vibration states that can absorb the electron energy during the collisions.
As a result, avalanche multiplication occurs at a lower voltage in a noble gas than in
other gases. Of all the noble gases, argon is the least expensive, therefore nearly all
proportional tubes use a gas filling based on argon. However, with pure argon the
gain of a proportional tube is limited to a few times 100. This is due to the follow-
ing mechanisms. The ionisation potential of argon is 11.6 eV, while the ionisation
potential of all metals is less than 11.6 eV. The ionisation potential of copper, for
example, is 7.7 eV. Therefore, electron–ion recombination, or exited argon atoms,
will give rise to VUV photons that will be able to extract electrons from the cath-
ode. If the average number of such secondary electrons is larger than one, each
avalanche will, on average, give rise to more than one new avalanche. The num-
ber of avalanches will grow exponentially until the tube is filled throughout with
avalanches, and the voltage drops to a very low value due to the large current drawn
by all these avalanches.

Another reason why pure argon is not suitable as a fill gas is the fact that the argon
ions arriving at the cathode will form neutral argon atoms by extracting an electron
from this cathode and can dissipate the energy liberated in doing so by extracting
an additional electron from the cathode. Again, if for one avalanche the average
number of electrons extracted from the cathode is larger than one, the number of
avalanches keeps increasing until breakdown occurs.

To prevent these phenomena from occurring, a small amount (typically 10%)
of a polyatomic gas is added. This is called a quenching gas and several poly-
atomic gases can be used for this purpose. Isobutane (C4H10) or methane (CH4)
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is often used as quenching gas. Since these polyatomic gases have many rotation
and vibration degrees of freedom, they will readily absorb these UV photons with-
out being ionised. Moreover, in the collisions between the argon ions and quenching
gas molecules, the charge will be transferred from the argon atom to the quenching
gas molecule because the binding energy of the electron is lower in the quenching
gas. When the charged quenching gas molecule arrives at the cathode, the likeli-
hood of extracting an electron is much smaller, because this molecule has many
other ways of dissipating the extra energy. In a gas mixture consisting of argon and
≈10% of a suitable quenching gas, stable operation with electron multiplication of
106 is possible.

The choice of gas mixture is very important if the detector has to work at a
high count rate for a long time. The avalanche produces a large number of excited
molecules and in this way initiates complex chemical reactions. In particular, the
quenching gas, usually a gas containing carbon, participates in the formation of
more complex molecules. These complex molecules are deposited on the electrodes
in the proportional tube and, in particular, on the anode. This forms a thin insu-
lating layer on the surface of anode wires, and this prevents the normal operation
of the proportional tube. Finding a gas mixture that minimises these problems is
largely done empirically. It is found that not only the gas mixture, but also all other
materials used in the construction of the detector have a very strong influence on
the ageing effect. Trace amounts of impurities in the gas or in other construction
materials can have a dramatic effect on the ageing properties of a wire chamber.
With correct choice of materials and proper care, it is found that a wire chamber
can cope with a total accumulated charge of more than 1 coulomb/cm of anode
wire. This means that with a gas gain of 104, and a rate of 104/s minimum ion-
ising tracks per mm of anode wire, the chamber will work for 10 years without
problems.

Figure 4.13 shows the signal amplitude in a proportional tube as a function of the
externally applied voltage. In this plot, it was assumed that the primary charged par-
ticles produce 100 electron–ion pairs in the gas. The following operational regimes
of the chamber can be distinguished.

Ionisation chamber: at a voltage of a few 100 V, the device works as an ionisation
chamber. All the charges are collected but there is no charge amplification. The
amplitude of the pulse is therefore only 100 electron charges.

Proportional regime: As the voltage is increased, charge multiplication sets in.
The charge amplification increases more or less exponentially with the voltage. As
long as the gain is less than about 105, each electron arriving at the anode receives
the same amplification, regardless of how many electrons there are in total. In this
case, the amplitude of the output pulse is proportional to the amount of primary
ionisation in the gas. The names ‘proportional regime’ and ‘proportional counter’
refer to this property of the counter.

Non-proportional regime: As the voltage is increased further, the gain becomes
very large and the proportionality property no longer holds. This is because the
first electrons arriving at the anode undergo a very large amplification. After the
electrons from this first avalanche have reached the anode, they leave behind a large
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Fig. 4.13 Number of electrons in the signal caused by one minimum ionising particle in a counter
with gas amplification. The different operating regimes of the counter as a function of the anode
voltage V0 are shown

number of positive ions that drift slowly towards the cathode. These positive ions
will weaken the field close to the anode wire. Therefore, the electrons arriving later
see a smaller field and are amplified less than the first electron.

The Geiger regime: If the voltage is increased further, at some point the Geiger
regime is reached. A stable Geiger regime is only reached for suitable gas mixtures.

In this regime, the avalanche extends laterally along the anode wire and eventu-
ally fills the whole tube. The extension of the avalanche is due to UV photons formed
in the process of avalanche multiplication. These UV photons will ionise molecules
some distance away from the original avalanche, inducing further avalanches.
Eventually, the anode wire is surrounded along its full length with avalanches.

The avalanche formation stops because the space charge of all these positive ions
left behind reduces the electric field close to the wire to a point where there is no
more avalanche formation. The voltage drop over the external resistor in series with
the voltage power supply also contributes to stopping the avalanche multiplication
process.

In the Geiger regime, the pulses are very large and can be several volts. The
drawback is that the counter has a very large dead time because one must wait
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Fig. 4.14 Some commercial
radiation monitoring devices
based on ionisation in gas.
Photograph by courtesy of
IAEA, from Ref. [14] in
Chap. 3

until all the positive ions have been evacuated, and this typically needs several 100
μs. In the proportional regime, the number of charges in each avalanche is much
smaller and a new event at the same point is possible before all the charges have
been evacuated. Moreover, the avalanche is localised at one point along the wire.
The rest of the length of the wire is not affected at all and is ready to accept new
events. The count rate achievable in proportional tubes is therefore about 107 pulses
per meter of wire, several orders of magnitude larger than what can be achieved with
a Geiger counter.

Figure 4.14 shows a few, commercially available, gas based counters.

4.5 Applications of Counters with Gas Amplification

Detectors for subatomic particles based on gas amplification have found many appli-
cations. The main application is as a device for localising trajectories of high-energy
charged particles, i.e. as ‘tracking’ detectors. However, proportional tubes also make
excellent detectors for thermal neutrons, for low-energy X-rays and for beta elec-
trons. In the present section, I will discuss the use of proportional tubes and detectors
derived from them, such as multi-wire proportional chambers or drift chambers,
as tracker detectors and as X-ray detectors. The discussion of their use as neutron
detectors is deferred to Chap. 7.

Gas amplification-based detectors are usually relatively simple devices and there-
fore tend to be inexpensive. In particular, if a large detector area is needed, the lower
cost of gas amplification systems makes this often the preferred solution. In a pro-
portional tube, the signal is generated by the slow motion of the ions, the signal
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therefore has a slow rise-time and a long duration. This results in poor time reso-
lution and large dead times. A number of different gas amplification-based devices
have been developed to overcome these limitations, and these are briefly discussed
in Sect. 4.6.

4.5.1 Proportional Counters for X-Ray Detection

Proportional counters are not very suitable for the detection of high-energy gamma
rays, since the probability for the gamma ray to interact in the gas of the counter is
small. The main sensitivity to high-energy gamma rays comes from interactions of
the gamma rays in the walls of the detector. The interaction probability of X-rays
in argon drops to a very low value above 20 keV. With krypton or xenon, sizeable
detection efficiencies up to100 keV can be obtained. This is illustrated in Fig. 4.15.

For X-rays of the order of 10 keV, the photoelectron can be fully contained in the
gas and the counter signal will be proportional to the energy of the X-ray. The energy
resolution that can be obtained depends on the number of primary electron–ion pairs
formed. However, the fluctuations on this number are not well described by Poisson
statistics. The fact that the total energy used to create electron–ion pairs must equal
the energy of the gamma reduces the fluctuations. It is customary to express this
with the help of an empirical factor called the ‘Fano factor’. For a Poisson distri-
bution we have F = 1. The r.m.s. dispersion σ on the number of charges can be
written as

Fig. 4.15 Probability to
absorb X-rays in 5 cm of
argon gas, krypton gas and
xenon gas at standard
temperature and pressure.
The data for this figure were
obtained from [9] in
Chapter 1
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σ = √
F n =

√
F E

W

where n is the number or electrons produced in the gas and W is the energy needed
to produce one electron–ion pair given in Table 4.1. The relative energy resolution,
expressed as ‘full width at half maximum’ (FWHM) is therefore given by

FWHM = 2 × 2.35
σ

E
= 2 × 2.35

√
FW

E

In deriving this expression we have used that the ‘full width at half maximum’
for a Gauss distribution is 2.35σ . The Fano factor F in gases is typically about
0.1. On the other hand, each electron is not amplified by the same amount. These
fluctuations in gain degrade the energy resolution by about a factor of 2. This
is the excess noise factor and this effect will be discussed more extensively in
Sect. 6.4.

The energy resolution of X-rays of 5.89 keV in argon is about 11% FWHM.

4.5.2 Gas Counters for the Tracking of High-Energy
Charged Particles

In high-energy physics experiments, one often wants to measure the direction and
the energy of all the particles produced in a collision. In nearly all experiments,
there is a magnetic field and the momentum of the charged particles can be obtained
from the curvature of the trajectory. Determining the trajectory of charged parti-
cles is called tracking. This requires the measurement of the space coordinates of a
sufficient number of points along the track. Measuring three points is sufficient to
determine the trajectory, but there are usually many tracks in the same event, and
with only three points per track it is impossible to know which points belong to the
same track. For this reason one usually needs to measure many more points along
each track.

The momentum resolution of the particle is related to the position resolution
on the points along the track. In the simplest case, where only three equidistant
points are measured along the trajectory, this momentum resolution is obtained as
follows. Let P denote the projection of the momentum on the plane perpendicular
to the magnetic field. If the multiple scattering and energy loss are negligible, the
trajectory of the particle projected on this plane is a circle. The radius R and the
momentum P are related by Eq. (3.1), Pc = 0.3 Z B R, where Pc is expressed in
GeV, R in meter, B in tesla and Z in proton charges. The sagitta ‘s’ is related to the
length of the track ‘L’and the curvature ‘R’ by (see Fig. 4.16(a)):

s = (1 − cos θ )R ≈ θ2

2
R ≈ L2

8R
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Fig. 4.16 (a) Relation between the curvature and the sagitta for an arc segment. (b) Effect of the
presence of scattering material in the middle of the track. Full line, unscattered track, dotted line,
scattered track

We therefore have

σ {s}
s

= σ {R}
R

= σ {P}
P

σ {P}
P

= 8σ {s} Pc

0.3 Z B L2

In the case of only three equidistant points along the trajectory, the error on the
sagitta is related to the error on the position measurement of the points σ by

σ {s} =
√

σ 2 + σ 2

2
=
√

3

2
σ

The momentum resolution due to the measurement error on the space points is
therefore given by

[
σ {P}

P

]

SP
= 8

√
3

2

{Pc}[GeV]

0.3 Z B[tesla] L2[m]
σ

It can be shown that, if there are N equidistant points along the trajectory, this
expression generalises to (see [6])

[
σ {P}

P

]

SP
=
√

720(N − 1)3

(N − 2)N(N + 1)(N + 2)

{Pc}[GeV]

0.3 Z B[tesla] L2[m]
σ
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As expected, the momentum resolution improves as 1/
√

N for large values of N.
The effect of multiple scattering is not always negligible. If only three equidistant

points are measured along the track, an expression for the error on the momentum
due to multiple scattering is obtained as follows. As a first step let us assume that
all the scattering material is concentrated in the middle of the track. At this middle
point the direction of the track is changed by an angle given by Eq. (2.5). We are
only concerned about the angle projected on the plane perpendicular to the magnetic
field and this projection gives rise to the additional factor 1/

√
2 in the expression

below.

√
〈
θp
〉2 = 1√

2

Z

βPc
(0.02 GeV)

√
L

X0

In this equation Pc is the momentum in units GeV, L is the total thickness of
scattering material in the tracker and X0 the radiation length of this material. If we
assume that the scattering material is all concentrated in the middle of the track, the
r.m.s distribution on the sagitta, caused by the presence of this scattering material,
is given by (see Fig. 4.16(b)):

[σ {s}]MS = L

4

√
〈
θp
〉2

If the scattering material is not in the middle of the track but at a distance xL from
one end, the dispersion σ{s} will depend on the value of x. From the geometry of the
problem, one easily finds that the r.m.s on the sagitta caused by multiple scattering
is given by

[σ {s}]MS = L
4

√
〈
θp
〉2

f (x)
f (x) = 2x 0 < x < 0.5

f (x) = 2(1 − x) 0.5 > x > 1

If the scattering material is evenly distributed along the track, the total r.m.s.
squared is the sum of the squares of the contributions of all sections along the track,
and we have

[σ {s}]MS = L

4

√
〈
θp
〉2

√
√
√
√
√

1∫

0

(f (x))2 dx = L

4
√

3

√
〈
θp
〉2

The contribution of the multiple scattering to the momentum resolution is hence
given by

[
σ {P}

P

]

MS
=
√

2

3

0.02

0.3

1

L[m]B[tesla] β

√
L

X0
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The above derivation rests on the assumption that only three equidistant points
were measured along the track. However, it can be shown that the error due to mul-
tiple scattering is almost independent of the number of points measured along the
track [6]. In real detectors usually the scattering material does not consist of only one
type of material, moreover this material is usually not distributed homogeneously
over the total length of the track. The generalisation of the above expression to this
more general case is straightforward.

The total error on the momentum of a particle is the square root of the sum
of the squares of the multiple scattering and the space point measurement error
contributions. Notice that the error due to multiple scattering is independent of the
momentum, while the error due to the position measurement is proportional to the
momentum of the track.

Detectors based on gas amplification can be used to determine the trajectories
of charged particles. The most straightforward way to obtain position information
with proportional tubes is by using a multi-wire proportional chamber (MWPC).
This detector consists of two conductive cathodes planes with a series of anode
wires stretched in the middle between the cathode planes (see Fig. 4.17). The dis-
tance between the anode wires is typically 2 mm. The corresponding electric field
configuration is shown in Fig. 4.18. A charged particle traversing the counter per-
pendicularly to the detector plane leaves a trail of ionisation behind in the gas. The
electrons drift along the electric field lines to the nearest anode wires. The electric
field geometry close to the anode wires is very similar to the field in a proportional
tube and each individual anode wire behaves as a proportional counter. Consider
an avalanche produced near one particular anode wire. This avalanche will induce
a negative signal on this particular wire, and a positive signal on the neighbouring
wires. This positive signal on the neighbouring wires compensates the negative sig-
nal on the same wires caused by capacitive coupling between the wires. As a result,
a strong signal is only induced on the wire where the avalanche is formed. Each
wire is, therefore, working as an independent counter. If each wire is equipped with
its own readout electronics, the MWPC behaves as a counter giving the position in
one direction. Each anode wire can handle a rate of up to 105 Hz/mm.

For perpendicular incident tracks, the position resolution depends on the wire
spacing �. If we assume that the MWPC always gives the position of the wire

Fig. 4.17 Schematic representation of a multi-wire proportional chamber (MWPC). The cathode
planes are at ground potential and the anode wires are at a large positive voltage, typically 3000 V.
Each anode wire is equipped with its own amplifier and readout electronics. If a charged particle
crosses perpendicularly to the plane of the detector, the wire nearest to the crossing point will have
a signal
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Fig. 4.18 Electric field
geometry in a multi-wire
proportional chamber. Figure
from Ref. [6] in Chap. 1, with
permission

closest to the track, the r.m.s. position resolution is σ = �√
12

(see Exercise 1).
However, the spatial resolution depends on the readout electronics. If this electronics
only lists the wires with a signal above some fixed threshold, the spatial resolution
will be worse. If the electronics provides the amplitude for all the wires near to the
trajectory, it is possible to calculate the centre of gravity of the signals and the spatial
resolution can be significantly better than �√

12
.

Since a simple wire chamber as described above gives only one position coordi-
nate, two superimposed chambers with crossed wire planes are needed to know both
coordinates. This approach runs into trouble at high rates because, if several parti-
cles pass the two wire chambers at the same moment, it is impossible to know which
x-coordinate is associated with which y-coordinate. To remove this ambiguity, more
MWPC planes have to be added with the wires oriented in different directions. This
is illustrated in Fig. 4.19. Another possible solution is to equip each wire with read-
out electronics on both sides and get an approximate position along the wire from
the ratios of the signals at both ends. This method is called charge division and relies
on the resistance of the wire itself.

A MWPC, in addition to the negative signals on the anodes, also has positive
signals on the cathodes. The sum of all the induced negative signals equals the sum

Fig. 4.19 (a) Two superimposed MWPC chambers with perpendicular anode wires allow the
determination of the x and y coordinates of the particle track; (b) with two simultaneous parti-
cle tracks there are ambiguities regarding the exact position; (c) adding more MWPC planes under
different angles allows resolving these ambiguities
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Fig. 4.20 A drift chamber is
a tube with a section as shown
in this figure. The position of
the track is derived from the
time the charges need to drift
to the anode. Typical voltages
are anode +2000 V, cathode
0 V and field shaping
electrodes, −1000 V,
−2000 V and−3000 V

of all the induced positive signals. If, for the cathode plane we take a printed cir-
cuit board with a strip pattern orientated perpendicularly to the anode wires, one
chamber can give the two coordinates of a track. In this case, the cathode signals
are spread over several cathode strips, and a more elaborate electronics reading the
amplitude of the signals on the strips is needed to obtain a good spatial resolution.

If the event rate in the detectors is not very large, the cost of the electronics can
be considerably reduced by using a drift chamber. The principle of a drift chamber
is illustrated in Fig. 4.20. Assume that a charged particle traverses the detector as
indicated in the figure. A number of field shaping electrodes create an electric field
pushing the electrons towards the anode wires. Close to the anode wires the field is
similar to the field in a proportional tube and each electron creates an avalanche. If
the time when the particle passed through the chamber is known, we can derive the
distance between the trajectory of the particle and the anode from the time difference
between the passage of the particle and the arrival of the corresponding anode pulse.

A few examples of applications of wire chambers are given below.
In high-energy physics collider experiments, beams of particles are made to col-

lide at a given point in a beam pipe. A large number of particles are produced in each
collision and the corresponding tracks radiate outwards from the collision point. One
needs to observe all the particles emerging from the interaction point and deter-
mine the trajectories of these particles with the best possible accuracy. If there is
a magnetic field, the momentum of the charged particles can be obtained from the
curvature of the track. In e+ e− colliders, the rates are not very high and therefore
this is often done with a large drift chamber called a time projection chamber (TPC).
To explain the principle of a TPC, it is easier to consider first a simple TPC box as
illustrated in Fig. 4.21(a). Assume we have a box with dimensions of the order of
1 m and we want to reconstruct the trajectories of all charged particles in this box.
The box is filled with a typical wire chamber gas such as argon with 10% of isobu-
tane. At the bottom of the box we have a plane of anode wires. The plane opposite
the anode wires is brought to a large negative potential that will create a uniform
electric field pushing all the electrons produced in the active volume towards the
anode plane. In order to have a uniform electric field in the box, the sidewalls are
covered with electrodes at intermediate potentials between the top and the bottom
of the box. As the electrons reach the anode wires, the avalanches induce signals on
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Fig. 4.21 (a) The principle
of a TPC is explained with
the help of this imaginary
TPC box-shaped detector.
The position of a charged
track in the volume is
obtained from the drifty time
(z-coordinate) and from the
signals induced in the cathode
pads close to the anode wires
(x and y coordinate). (b) Most
TPC detectors are used at
electron colliders. The TPC is
a cylindrical detector
surrounding the interaction
region. The two halves of the
cylinder form two
independent detector
chambers with the wire
planes and readout pad planes
forming the end flanges of the
cylinder. Typical dimensions
are given

the cathode pads next to them. If the cathode pads are equipped with amplifiers and
readout electronics, we can reconstruct the trajectories of all charges particles in the
volume of the box. The z-coordinate is given by the drift time and the pad identifies
the x- and y-coordinates.

In a collider experiment, owing to the overall geometry, the TPC should be a
cylinder surrounding the beam pipe as shown in Fig. 4.21(b). The plane in the mid-
dle of the cylinder, just at the point of the collision, is an electrode brought to a large
positive voltage. This plane divides the detector in two identical half chambers. At
both ends of the cylinder there are planes of anode wires in the shape of a spider’s
web. Outside of these anode wires we have planes with pads. Besides the cylindrical
shape, a TPC works in the same way as the TPC box described before.

In hadron colliders, such as the recently built LHC accelerator at CERN, the
particle flux is too high to use conventional wire chambers. Only in the muon detec-
tion part, after a considerable amount of shielding material, is the particle flux low
enough to use MWPC or drift chambers. In the CMS experiment, the muon detec-
tion in the barrel part uses layers of drift chambers similar to the ones described in
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Fig. 4.22 The multiple scattering on the trajectories of cosmic ray muons can be used to detect
the presence of a massive piece of lead shielding inside a lorry

Fig. 4.20 and in the end caps, where the rates are larger, it uses MWPCs with cath-
ode strip readout. The muon system also has resistive plate chambers. The principle
of this type of gas detector will be explained later in this section.

4.5.3 Applications of Gas Counters in Homeland Security

A completely different example of the use of wire chambers in charged particle
tracking is the installation that is planned for use in several major US ports and that
is illustrated in Fig. 4.22. The aim of the equipment is to prevent terrorists from
smuggling a nuclear warhead into the US. A nuclear warhead can easily be detected
by the emission of gamma rays in the MeV range. To prevent the detection of these,
the terrorists could place the warhead in a massive lead box with a wall thickness
of 5 cm or more. This would, indeed, stop most of the gamma rays and therefore
would avoid detection. However, such a massive lead shield would reveal itself by
the multiple scattering it would cause for cosmic ray muons. A complete lorry can
be placed between several large detector planes made from drift tubes, each several
metres long. The position along the wire is obtained from charge division. With
this system, in 1 min a sufficient number of muons to detect the presence of such a
massive lead shield can be observed and measured.

4.6 Recent Developments in Counters Based on Gas
Amplification

An MWPC is a relatively simple and robust detector. It is most useful in a situation
in which charged particle tracks have to be detected and localised over a large area.
Its inherent limitations are due to the wire spacing and the ion mobility. It is difficult
to build wire planes with a wire spacing of less than 1 mm. This limit is due, in part,
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to the practical difficulty of constructing wire planes with smaller wire spacing and
also due to the electrostatic repulsive forces between the wires. These forces push
the wires above and below the plane and make the chamber unstable. This problem
can only be avoided by using short wires, which removes much of the advantages
of the MWPC. The low mobility of the positive ions results in a long rise-time
for the pulses and in the build-up of an ion cloud around the wires. This, in turn,
results in a poor time resolution and limits the maximal count rate to approximately
104 mm−1s−1.

To overcome these limitations, a number of variants of the standard MWPC or
drift chamber have been developed. These devices take advantage of techniques to
produce micro-patterns that have been developed over the last decades, mainly for
the microelectronics industry. A few of these detectors are discussed below.

4.6.1 Micro-strip Gas Counters (MSGC)

A Micro-Strip Gas Counter (MSGC) is an ionisation chamber, where the anodes
and cathodes consist of thin metallic electrodes deposited on an insulating substrate,
usually a glass plate. Very narrow (≈7 μm) anode strips alternate with wider cathode
strips (≈100 μm), making a periodic structure with a pitch of typically 200 μm (see
Fig. 4.23). The anodes are at a positive potential relative to the neighbouring cathode
strips.

The construction of such a fine electrode pattern is only possible by using pho-
tolithography, a technique commonly used to make masks for integrated circuits.

Fig. 4.23 Geometry and typical operating voltages of a Micro-Strip Gas Counter ( MSGC). (a)
The plane with the anodes and cathodes forms one wall of the gas gap; the other wall is a plane with
a fully conductive surface. Both planes together create an electric field that pushes the electrons
towards the cathode plane. The gas gap is typically 2 mm wide. Typical trajectories of electrons
and positive ions are shown. (b) Structure of the plane with the anodes and cathodes. Typically, the
anode strips are 7 μm wide, the cathode strips 100 μm wide and the periodicity of the structure is
200 μm
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Using this technique, it is possible to produce very fine strip structures with dimen-
sions in the micrometer range. The electrode geometry of a MSGC is illustrated in
Fig. 4.23(b).

Some of the charges produced in the avalanche close to the anode will reach the
surface of the insulating substrate; the surface of this substrate will become charged
and this will modify the geometry of the electric field. To prevent the accumulation
of positive charges on the surface of the insulator, a proper choice for the resis-
tivity of the substrate is essential. This can be achieved either by using low-bulk
resistivity glass, or by using a low-surface resistivity obtained by ion implantation
or by applying diamond-like coatings. Typically, the value of the resistivity is 1015

or 1016�/square. Lower values must be avoided because this would give rise to an
unacceptably large dark current in the detector. The surface resistivity of normal
glass is of the order of 1018�/square or more.

The MSGC has several advantages over the MWPC. Owing to the short ion path
between the anode strip and the neighbouring cathode strips, the time needed for
evacuating the cloud of positive ions is considerably shorter. This results in a shorter
rise-time of the pulses and in better count rate performance. Counting rates at least
two orders of magnitude higher than those of a standard MWPC can be achieved.
The position resolution depends, among other things, on the pitch of the structure,
which in a MSGC is typically 5–10 times smaller than in a MWPC. A space resolu-
tion of 30 μm has been achieved with a structure with 200 μm pitch. Furthermore,
in an MSGC, the periodicity of the structure can be maintained with very high accu-
racy over the entire detector surface, resulting in an identical distribution of the
electric field lines and hence a homogeneous gas amplification. This means that
the energy resolution of an MSGC when used as an X-ray detector will be very
good.

One of the main limitations of the MSGC, compared to a MWPC, is the small
value for maximum gas gain that can be achieved. This is due to the presence of
a strong electric field parallel to the substrate surface. The highest gain that can
be achieved is a few 103. This is at the limit of what is required to detect the sig-
nals from minimum ionising particles. To overcome this limitation, other geometries
such as the MICROMEGAS and the GEM have been proposed. These detectors are
now discussed.

4.6.2 GEM and MICROMEGAS Counters

GEM stands for ‘gas electron multiplier’. In this structure, a completely differ-
ent geometry is chosen to try and overcome the limitations of the proportional
chambers. Figure 4.24(a) shows the structure of a GEM and typical values for the
dimensions. The essential element of the GEM detector is a thin, self-supporting
three-layer mesh consisting of a thin (50 μm) insulating polyimide (Kapton)
foil, metal clad on both sides and with a regular pattern of small holes in it
(see Fig. 4.24(b)). Typical dimensions are: holes of 70 μm diameter and a 120 μm
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Fig. 4.24 (a) Schematic representation of a GEM detector with typical values for the electric field
and dimensions. Electrons are liberated along the track of the charged particle and drift toward the
GEM holes. Inside the holes, there is a large electric field multiplying the number of electrons.
(b) Details of electric field lines (solid) and equipotential surfaces (dashed) in the region of the
GEM holes. Electron transparencies are typically 100%. Most positive ions produced in the high-
field region within a hole drift back to the GEM’s top side. Figure from Ref. [6] in Chap. 1, with
permission

pitch. Such a mesh can be made by conventional photolithographic methods used to
produce multilayer PCBs. When applying a voltage across the metal sheets on both
sides of the mesh, a very high electric field is generated in the centre of the channels
(40 kV/cm is achieved with 200 V voltage difference) as shown in Fig. 4.24(b). A
GEM counter has a conversion gas gap, a few mm thick, where the charged track
ionises the gas. Over this conversion gap there is a voltage difference pushing the
electrons towards the GEM foil. The top electrode typically is a thin metallised
Mylar sheet. Electrons produced by ionisation in the gas-filled conversion gap drift
into the channels and multiply in the high field present inside the channels. The
electrons leave the channel and drift further towards a collecting electrode.

The ions produced during the avalanche tend to follow the field lines and are
thus channelled towards the metal-clad top surface of the GEM. A stable and uni-
form amplification of over 2000 has been achieved with one GEM-electrode. This
amplification is rather low, but it is possible to use several GEM foils with a small
gap between them, resulting in an amplification that can exceed 106. Sometimes one
GEM foil is combined with a MSGC counter.

A MICROMEGAS also has a conversion gap similar to a GEM counter, but a dif-
ferent structure is used for the amplification. It consists of the following components
(typical dimensions are given):

– anode strips on a printed circuit or similar substrate, with a width of 100 μm and
a pitch of 200 μm. The accuracy needed for this structure is much less than that
required for an MSGC. Standard commercial PCB production techniques can be
used.
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– quartz fibres, or other spacers, with a thickness of 100 μm glued on top of the
anode strips and defining the amplification gap. These spacers are necessary
because of the electrostatic attraction between the mesh and the anodes.

– the micromesh: a metallic grid with 3 μm thickness, 17 μm openings and a pitch
of 25 μm. It is made of nickel using the electroforming technique. Precision is
better than 1 μm and the transparency is 45%.

– 3 mm thick gas-filled conversion gap.
– a drift electrode to create a field pushing the electrons created by an ionising

particle towards the micromesh.
– as gas filling a typical proportional tube gases such as Ar+10% isobutane are used.

The working principle of a MICROMEGAS detector is as follows: ionisation
electrons created in the conversion gap drift towards the mesh and are transferred
through the micromesh to the amplification gap. In this gap between the mesh and
the anode strips, there is a large electric field of the order of 10 kV/cm and this
is sufficient to cause electron multiplication. Notice that in this amplification gap
we have a parallel and uniform electric field, hence the amplification takes place
over the full length of the gap, not only close to the anode strips. The anode strips
collect the electron cloud, while the positive ions drift in the opposite direction
and are collected by the micromesh. However, with this electric field geometry,
the average electrons drift over an important fraction of the potential difference,
therefore the electron contribution to the signal formation is much larger than with
a proportional tube. Owing to this and because of the much shorter drift time of the
positive ions, the signal of the MICROMEGAS is much faster than the signal of
an MWPC.

An important feature of the MICROMEGAS is the fact that the micromesh is
almost transparent to the electrons coming from the conversion gap and stops most
of the positive ions coming from the amplification gap. It can be shown that these
transparencies depend mainly on the ratio of the field strengths in the amplification
and in the conversion gap. Under typical operating conditions, this ratio is large;
hence, almost all electrons are transmitted from the conversion gap to the ampli-
fication gap, while only a small fraction of the positive ions is transmitted from
the amplification gap to the conversion gap. Charging of the substrate between the
anode strips will have little effect on the operation of the detector. A gain of 105 can
be achieved in a MICROMEGAS chamber.

4.6.3 Resistive Plate Chambers

Another, and very different, type of detector based on the amplification in gases
is the resistive plate chamber or RPC. This detector consists of a gas gap between
two planar surfaces and a large voltage of 7–12 kV between the plates. The sur-
faces are resistive but the back side of the plates is made slightly conductive. If
a charged particle traverses the gas gap an avalanche will form at this point. The
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avalanche will remain localised because the resistivity is very high and the volt-
age drops immediately to a very low value, preventing further development of the
avalanche.

The plates are made of high resistivity (109–1013 �cm) material, usually glass,
phenol formaldehyde resin (Bakelite) or melamine laminate plates. The backside
of the plates is made slightly conductive with a suitable coating to give it a surface
resistivity of the order of 105 �/square. The unit �/square is the usual unit to express
surface conductivity. It is the resistivity between two conducting lines on the surface
if the distance between the lines is equal to the length of the lines. It is easy to see
that this resistivity is independent of the dimension of the square. The unit �/square
is somewhat confusing because the actual dimension of the quantity simply is Ohms.

A typical layout for an RPC is shown in Fig. 4.25(a). To make sure that the gap
between the plates remains the same over the whole surface of the detector there are
spacers between the plates approximately every 10 cm. Without spacers the electro-
static attraction between the plates would cause the plates to come closer together
in the middle. The signal readout is via the metallic pickup strips separated by a
thin insolating foil from the slightly conductive coating. The coupling is through

Fig. 4.25 (a) Typical
structure of a resistive plate
chamber (RPC). Figure from
Ref. [6] in Chap. 1, with
permission. (b) Equivalent
electric circuit representing
the readout of an RPC
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the capacitance formed by the pickup strip and the semi-conductive coating and is
schematically represented in Fig. 4.25(b).

RPC chambers typically have a surface of the order of 1 m2 and are relatively
inexpensive. They produce large signals, up to 300 mV, and allow good timing accu-
racy. The rate is limited by the time it takes to recharge the plates at the point where
the discharge occurred. This time is quite long, of the order of 1 ms depending on
the gain used, but this dead time is limited to the area of less than 1 cm2 around the
discharge point. The rest of the detector remains fully sensitive.

4.7 Exercises

1. Consider an MWPC with wire spacing �. Assume that for perpendicular tracks
the signal is always on the nearest wire. Show that the r.m.s. position resolution
obtainable with such a detector is given by σ = �√

12
.

2. You suspect that the gas in a cave is heavily contaminated by radon [222
86Rn]

gas. To determine the radon contamination you measure the current caused by
the radon in an ionisation chamber containing one litre of air from the cave. You
measure 0.1 pA. How much radiation expressed in pico Curie (pCi) per litre is
there in the air of the cave? How many radon atoms per litre are there in the air
of the cave?
Radon has a half-life of 3.8 days and decays into alpha particles of 5.6 MeV
nearly 100% of the time. To simplify the calculation, ignore the fact that
radon decay products will also be present and will significantly contribute to
the current. Also ignore the fact that often the alpha particle will hit the wall
of the ionisation chamber and therefore will not use all its energy to ionise
the air.

3. A GEM detector has a conversion gap of 2 mm. The gas filling is 90% Ar and
10% CH4. Cosmic ray muons are falling perpendicularly on this detector. What
is the probability that a muon will be go undetected because there is no primary
ionisation event in the conversion gap?

4. Calculate the mobility of nitrogen ions in nitrogen gas assuming that the cross
section for the collision is 3.7 × 10−15 cm2.
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Chapter 5
Detectors Based on Ionisation
in Semiconductor Materials

Semiconductor detectors are based on the detection of electron–hole pairs created
in a semiconductor material by ionising radiation. Compared to gas-based detectors,
an advantage of semiconductors is that the amount of energy needed to produce one
pair of free charge carriers is about a factor 10 less. Another important difference is
that the density of a semiconductor is typically 1000 larger than the density of a gas.
The primary charge signal is therefore larger than in gas-based detectors. In semi-
conductors, however, it is much more difficult to obtain charge multiplication. All
semiconductor detectors in use today are without any built-in charge amplification
mechanism. As a result, the signals in semiconductor detectors are very small and
extremely good low-noise electronics is essential.

Semiconductor detectors are expensive, because extremely pure starting mate-
rial is required and only small detectors can be made. The most commonly used
detector materials are germanium and silicon. Due to recent technological advances,
cadmium–telluride and cadmium–zinc–telluride have now also been improved to the
point where these materials have become useful as particle detectors.

References [1, 2, 3, 4] provide a more in-depth discussion of semiconductor
radiation detectors, semiconductor devices and the fundamentals of semiconductors.

5.1 Introduction to Semiconductors

In this section, we briefly review some properties of semiconductors that are rele-
vant to their use as detectors for ionising radiation. We always mention silicon, but
similar considerations apply to germanium and other semiconductors.

The electronic configuration of silicon is the configuration of neon, plus two
electrons in the 3s level and two electrons in the 3p level. These four valence elec-
trons are involved in the chemical bonding of silicon. In a silicon crystal, all these
electrons are shared between the atoms, i.e. the electrons are not bound to one par-
ticular atom and travel freely in the crystal. Each silicon atom forms four covalent
bonds with four neighbouring silicon atoms. These four neighbours are located at
the corners of a regular tetrahedron surrounding the atom. This gives rise to a lattice
with the same structure as diamond. A silicon crystal therefore is not isotropic and
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properties such as electron drift velocity will depend on the orientation of the move-
ment relative to the lattice structure. These non-equivalent directions are designated
by the Miller indices, e.g. (1,1,1), (1,0,0) etc. We refer the reader to the literature on
solid state physics, for example [3], for the meaning of this notation.

In a crystal, the energy levels of individual atoms form so-called ‘bands’ with
closely spaced energy levels. In between the allowed energy bands there are forbid-
den energy regions called ‘band gaps’. An electron can never be in a stationary state
with an energy corresponding to the band gap. The different energy levels inside a
band are distinguished by the wave number k. The quantity p∗ = k� is sometimes
referred to as the ‘quasi momentum’, because it shares some properties with the
momentum of a free particle. This analogy, however, should be used with caution.
The relation between the electron energy and the wave number in the different bands
is illustrated in Fig. 5.1. This diagram is called the electronic band structure, and it
is obtained by solving the Schrödinger equation for the lattice. Let us assume that
all the levels in the first and the second band are filled with electrons and that nearly
all the levels in the third band are empty. In this case, the bands will be labelled core
band, valence band and conduction band as indicated in Fig. 5.1.

In the conduction band there is one value of p0
∗ = k�, where the energy is

minimum and around this minimum the energy can be parametrised as

E = Ec + (p∗ − p0
∗)2/2me

∗.

Unlike the situation shown in Fig. 5.1, in silicon the minimum of the conduction
band does not occur at the same k-value as the maximum of the valence band. If
there are any electrons present in the conduction band, these electrons will sink to
the bottom of the band. These electrons will behave as almost free negative particles
with effective mass me

∗. If any electrons are present in this band, they can move
around freely, and for this reason this band is called the conduction band. If there is
an electric field, these electrons will give rise to a net electric current.

Fig. 5.1 Electronic band
structure for a
one-dimensional lattice. If all
the levels in the first and the
second band are filled with
electrons, these are called the
core and the valence band.
The first empty band is called
the conduction band
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Nearly all the levels in the valence band are occupied by an electron. If all the
levels are occupied by an electron, there is no net electric current. If any electrons are
missing, these vacancies are called holes. The holes rise to the top of the band. Near
the top of the band the energy of the levels around the maximum can be parametrised
as E = Ev − (p∗ − p0

∗)2/2mh
∗. It can be shown that the vacancies near the top of

the band behave as almost free positive particles with effective mass mh
∗. If there is

an electric field present, these holes will also give rise to a net electric current.
In silicon, the four valence electrons form the valence band. The next higher

electron energy level in silicon forms the conduction band. In between these two
bands there is a band gap. The width of the energy gap between the valence
band and the conduction band is the most important fact in determining the elec-
trical properties of the material. If this energy gap is significantly larger than
1 eV, the material is an insulator. In a metal there is no energy gap between the
two bands and the material is a conductor. If this energy gap is of the order of
1 eV, the material is a semiconductor. These different possibilities are illustrated in
Fig. 5.2.

At absolute zero temperature all levels below a critical value EF, called the Fermi
energy, are occupied by electrons and all levels above the Fermi energy are empty.
At any temperature different from zero, and in the condition of thermal equilibrium,
the probability f(E) that a particular energy level is occupied by an electron is given
by the Fermi–Dirac distribution

f (E) = 1

e
E−EF

kT + 1
(5.1)

In this equation, T represents the absolute temperature and k the Boltzmann con-
stant. The electron state where the energy of the electron is equal to EF has 50%
chance of being occupied by an electron. All the states with energy larger than the
EF have a probability of being occupied less than 50%, and all the states with energy
smaller than EF have a probability of being occupied larger than 50%. In insulators
or semiconductors the Fermi energy is situated in the band gap. Except at absolute
zero temperature there are always some electrons present in the conduction band and

Fig. 5.2 Energy band structure of conductors, insulators and semiconductors. The vertical axis
represents the electron energy, the horizontal axis the position in the lattice
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some unoccupied levels, or holes, in the valence band. In an insulator, the band gap
is large and the probability of having electrons in the valence band or holes in the
conduction band is extremely small. The conductivity caused by such electrons or
holes is negligible. In semiconductor materials, the band gap energy is much smaller,
and this probability is no longer negligible. This conductivity is much smaller, how-
ever, than the typical conductivity of true conductors such as metals, hence the name
semiconductors.

The density of the electrons in the conduction band of a semiconductor is given
by

dn(E)

dE
= ρ(E) f (E) (5.2)

where ρ(E) represents the density of electron states. Close to the bottom of the
conduction band, this density of states is similar to the density of states of free
particles enclosed in a cubic potential well. This last density is derived in Exercise
6 and is given by

ρ(E) dE = 4π

(
2me

h2

)3/2 √
E dE

The density of states for electrons near the bottom of the conduction band is
given by the same equation but with the energy replaced by (E – Ec), where Ec is
the energy of the bottom of the conduction band and the electron mass replaced by
the effective electron mass ‘me

∗’ in the lattice.
The number of electrons per unit volume in the conduction band ne is hence given

by

ne = ∫ ρ(E) f (E) dE

= 4π
(

2m∗
e

h2

)3/2 ∞∫

Ec

√
(E − Ec) 1

e
E−EF

kT +1
dE

= 4π
(

2m∗
e

h2

)3/2
e− EC−EF

kT (kT)3/2
∞∫

0

√
x e−x dx

= 4π
(

2m∗
e

h2

)3/2
(kT)3/2

√
π

2 e− EC−EF
kT

Similarly, the density of hole states near the top of the valence band is given by
the same equation but with the energy replaced by (Ev – E), where Ev is the energy
of the top of the valence band and the electron mass replaced by the effective hole
mass in the lattice. In silicon, the effective electron mass and the effective hole mass
are not very different from the true electron mass. This is not always the case for
other semiconductors. The probability to have a hole in the valence band is given by
1 – f(E), where f(E) is the Fermi–Dirac distribution given by Eq. (5.1). The number
of holes per unit volume in the valence band nh is therefore given by

nh = 4π

(
2m∗

h

h2

)3/2

(kT)3/2
√

π

2
e− EF−EV

kT
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In very pure semiconductor materials the Fermi energy is halfway between the top
of the valence band and the bottom of the conduction band. The density of electrons
in the conduction band ne and the density of holes in the valence band nh are equal.
This carrier density is called the intrinsic carrier density ni and is proportional to

ni ∝ T3/2 e

(

−
Eg

2kT

)

(5.3)

where Eg is the width of the band gap between the conduction and the valence band.
Equation (5.3) shows that the conductivity in semiconductors will strongly increase
with the temperature. In metals the conductivity is less dependent on the temperature
and tends to decrease with temperature.

It is important to realise that the relation ni = ne = nh only holds for extremely
pure and defect free materials. Let us now assume that the silicon contains trace
amounts of phosphorus. Phosphorus is the next element after silicon in the peri-
odic table and hence it has three 3p electrons. The additional 3p electron occupies
an energy level that corresponds to the conduction band in silicon. Because of the
higher nuclear charge Z of the phosphorus atoms, the energy of this level is a lit-
tle lower than the corresponding level of silicon. If a silicon atom in the crystal
is replaced by a phosphorus atom, this will create a localised level just below the
conduction band and the 3p electron will occupy this level. The same holds for a
number of other elements with the same electron structure as phosphorus, such as
arsenic or antimony. The energy difference between these levels and the conduction
band is very small and due to thermal agitation these electrons will jump to the con-
duction band and move freely around in the lattice, leaving the 3p phosphorus level
empty most of the time. In a state of thermal equilibrium, the Fermi–Dirac Eq. (5.1)
still describes the electron distribution, but the Fermi energy is now no longer in the
middle of the band gap but much closer to the conduction band.

Similarly, if the silicon contains trace amounts of trivalent materials such as gal-
lium, boron or indium, there will be empty acceptor levels just above the valence
band, and these will give rise to holes in the valence band. In this case the Fermi
level is close to the valence band. We see that trace amounts of impurities will
strongly influence the concentration of electrons and holes in the crystal and hence
the electrical properties of the material.

In the presence of impurities, the densities of electrons and holes in thermody-
namical equilibrium are given by

ne ∝ T3/2 e− Ec−EF
kT

nh ∝ T3/2 e− EF−Ev
kT

√
nenh = ni ∝ T3/2 e− Eg

2kT

If we call Ei the intrinsic energy level, i.e. the energy of the middle of the band gap,
these equations can be written as
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ne = ni e+ EF−Ei
kT ; nh = ni e+ Ei−EF

kT

If a pure sample of silicon is doped with a small concentration of electron donor
atoms, the material is called n-type silicon. Similarly, if a silicon crystal is doped
with an electron acceptor atoms, the material is called p-type silicon.

Consider a piece of n-type silicon. The position of the Fermi level is deter-
mined by the condition that the total charge in the crystal is zero. Therefore, the
total number of electrons in the conduction band equals the number of holes in the
valence band plus the number of empty donor levels. Usually, the number of holes
in the valence band and the number of electrons left in the donor levels is negligible
compared to the number of electrons in the valence band and we can write

ne ≈ ND ≈ ni e+ EF−Ei
kT

EF − Ei = kT ln ND
ni

The position of the Fermi level moves closer to the conduction band as the den-
sity of donors gets larger. Similarly, for p-type silicon, the position of the Fermi
level moves closer to the valence band as the density of acceptor levels is larger. If
both types of dopant are present, the dopant with the largest density determines the
position of the Fermi level.

The electrons and holes in the crystal will move under the influence of an elec-
tric field. In the same way as charges in gases, the electrons or holes will constantly
collide with ‘obstacles’ in the lattice and in each collision completely change direc-
tion. The time between collisions is of the order of 10−12 s. The thermal velocity
of the electrons and holes is much larger than the drift velocity. At the macroscopic
level, the drift of the electrons and holes under the influence of an electric field will
look like a smooth process, but at the microscopic level the motion of the charge
carriers will be completely chaotic. In analogy with the motion of charges in gases,
the dependence of the electron velocity on the electric field is written as ve =μeE,
where E is the electric field and ve and μe are the electron velocity and the elec-
tron mobility, respectively. The corresponding quantities for holes are defined in the
same way.

The electron and hole velocities are illustrated in Fig. 5.3. Notice that the veloc-
ities of electrons and holes are similar and that these are comparable to the electron
velocities in gases. Notice also that, unlike the situation in gases, the drift velocity
of electrons is only somewhat larger than the drift velocity of holes. This reflects the
fact that the collision cross sections for electrons and holes are only slightly differ-
ent. Because of this, it is much more difficult to achieve stable charge multiplication
by the avalanche formation mechanism in semiconductors than in gases.

Table 5.1 lists some relevant physical properties of silicon and germanium.
Notice the difference in radiation length and the difference in band gap energy.

To illustrate how trace impurities will strongly influence the electrical properties
of a semiconductor, let us consider a cuboid of semiconductor material with a metal
contact on two opposing surfaces (see Fig. 5.4).



5.1 Introduction to Semiconductors 149

Fig. 5.3 Electron and hole drift velocities in silicon as a function of the electric field. The velocity
shown here is the velocity in a plane parallel to the crystallographic <111> direction. The different
curves correspond to different values of the temperature in degrees Kelvin. Figure from [5], © 1975
IEEE

From the definition of the resistivity ρ we have, where R is the resistance of this
block

R = t
Aρ

i = V
R = A. V

t. ρ

On the other hand, the current in this block is related to the velocity of the
electrons and holes by

i = e A(ne ve + nh vh)

Table 5.1 Some physical properties of silicon and germanium. Unless otherwise noted, data for
silicon are at room temperature and data for germanium at 77 K

Physical property Si Ge

Atomic number Z 14 32
Atomic weight A 28.1 72.6
Density [g/cm2] 2.33 5.32
Radiation length [mm] 93.6 23
Dielectric constant (relative) 12 16
Energy gap [eV)] 1.115 0.72
Intrinsic carrier density at 300 K [cm−3] 1.5×1010 2.4×1013

Intrinsic resistivity at 300 K [� cm] 230,000 47
Electron mobility [cm2 V−1 s−1] 1350 36,000
Hole mobility at [cm2 V−1 s−1] 480 42,000
Energy/e–h pair [eV] 3.62 2.96
Fano factor ≈0.1 ≈0.1
Energy loss min. ionising particles [MeV/cm] 3.87 7.29
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Fig. 5.4 To measure the
resistivity of bulk silicon, a
parallelepipedal block of
silicon is equipped on two
opposing surfaces with ohmic
metal contacts

Using

ve = μeE = μe
V

t

We therefore have

ρ = 1

e(neμe + nhμh)
(5.4)

Often the number of charge carriers of one type is much larger than the number of
charge carriers of the other type. In that case the resistivity of the material is entirely
determined by charge carrier density of the majority charge carriers. The intrinsic
carrier density and the mobilities of the charges in silicon are given in Table 5.1.
From these data, one can readily calculate that the resistivity of intrinsic silicon is
230,000 � cm. A donor concentration as low as 0.2 ppb (2 donor atoms in 1010

silicon atoms) will reduce this bulk resistivity to 463 �cm.
This example shows that, when trying to collect the ionisation current in silicon,

we will always draw a fairly large current. As is shown in Chap. 8, this gives rise to
a large noise. To avoid this current we take advantage of the property of semicon-
ductors to form diodes. If the diode is polarised in the reverse bias mode, a strong
reduction of the dark current is obtained.

5.2 The Semiconductor Junction as a Detector

The operation of nearly all present-day electronic devices is based on the forma-
tion of n–p semiconductor junctions. The same principle is the basis of the use of
semiconductors as detectors for ionising radiation.

An n–p junction is schematically represented in Fig. 5.5. In this junction, a
region of n-type silicon is in contact with a region of p-type silicon. This should
not be realised by pressing together two pieces of silicon, since the crystalline lat-
tice should be continuous over the junction region. Both the n-type region and the
p-type region are electrically neutral. However, in the n-type region there are many
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Fig. 5.5 (a) Schematic diagram of a n–p junction, (b) diagram of electron energy levels showing
the creation of a contact potential V0, (c) charge density, (d) electric field intensity

free electrons in the conduction band and almost no holes in the valence band, while
in the p-type region there are many free holes in the valence band and almost no
electrons in the conduction band. Owing to the thermal agitation, these charges will
diffuse to the adjacent region of the other type, creating an excess of negative charge
in the p-region and an excess of positive charge in the n-region. These charges will
build up a potential difference and therefore an electric field over the junction region.
This diffusion process will stop when the electric field generated is sufficiently large
to prevent any further build-up of a charge difference. At this point the Fermi levels
in the n-type silicon and in the p-type silicon are at the same level. In this con-
tact area, the number of free charge carriers will be strongly reduced because free
charges are removed by the electric field. This region with a reduced number of
charge carriers is called the depletion region. This field will push any charges cre-
ated in this region to the n-type side or the p-type side. Any charges created outside
the depletion region will not be collected, but will simply recombine until thermal
equilibrium is again reached.

It should be mentioned that this potential difference between the two sides of the
silicon will not be observed as a potential difference between the two metal contacts
applied to the two sides of the device. This is because at each metal–silicon contact
there is also a contact potential and this will compensate the potential difference
caused by the diffusion. Under condition of thermal equilibrium the Fermi levels in
the silicon and in both metal contacts must be the same and therefore both metal
parts must be at the same potential.

The structure represented in Fig. 5.5 will function as a diode. Let us assume we
have made, so-called, ohmic metal contacts on the n-type and p-type silicon side.
Such contacts only add or remove the majority charge carriers of each side and have
a negligible resistance. Ohmic contacts will be discussed further at the end of this
section. If, using these external metal contacts, we reduce the potential difference
between the two sides, the majority charge carriers will again be able to flow to
the other side and a current related to the concentration of majority charge carriers
will flow. If, using these external metal contacts, we increase the potential difference
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Fig. 5.6 (a) Profile of dopant
concentration in an n–p
junction. (b) Idealised profile
of the dopant concentration in
an n–p junction diode, as
used in the calculation

between the two sides, the majority charges will not be able to flow to the other side,
and the current will be related to the concentration of minority charge carriers. That
is, we have a large current if the junction is forward biased and a small current if the
junction is reverse biased. As a result, the junction behaves as a diode. A diode is an
electrical device that allows a large current to flow in one direction and only a small
current in the other direction.

In practice, an n–p junction is usually made by starting from a homogeneous
block of, say, n-type silicon. A dopant is diffused in the material from one side by
exposing the silicon to a vapour of the dopant material, creating a region of p-type
silicon with a finite depth. The resulting dopant concentrations in the junction are
represented in Fig. 5.6(a).

Below we want to derive some essential properties of p–n junctions when used
as detectors for ionising radiation. To derive these results we use a simplified
model of such a p–n junction. We model the dopant concentration by assum-
ing a concentration that is constant both in the n-type silicon and in the p-type
silicon. This situation is illustrated by Fig. 5.6(b). For the calculation, we will
furthermore assume the depletion layer is completely devoid of free charge car-
riers. The charge density in the depletion layer is eNd and −eNa in the n-type

Fig. 5.7 Shape of the electric
field over the junction
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and p-type region, respectively, and Na >> Nd. Outside the depletion layer, the
number of free electrons and holes exactly compensates the positive or nega-
tive space charge caused by the dopant atoms and, because of the presence of
free charges, the electric field must be zero. The widths of the two parts of the
depletion region are written as xn and xp, with x = 0 taken to be at the border
between the two types of silicon. Applying the Maxwell equation,

∫
D dv = ∫ q dv,

over a pillbox-shaped volume containing the junction, one can see that the total
charge in the junction should be zero, therefore we have Nd.xn = Na.xp, and hence
xn >> xd.

The electric potential in a piece of silicon with a junction can be described by a
Poisson equation. In this equation, ρ(x) represents the charge density and e is the
dielectric constant of the medium.

d2 V

dx2
= −ρ(x)

ε

The diode can be seen as made up of four regions with different charge densi-
ties. In each region, the charge density is constant and it is therefore quite easy to
solve the Poisson equation in each region separately. At the boundary between the
regions, the potential and the electric field should be continuous. The four regions
are

Region1, V1(x): −∞ < x < −xp ρ = 0
Region2, V2(x): −xp < x < 0 ρ = −eNa

Region3, V3(x): 0 < x < xn ρ = eNd

Region4, V4(x): xn < x < ∞ ρ = 0

In the equations above e represents a positive number equal in magnitude to one
electron charge. In region 1 and 4, there are free charge carriers and there is no
electric field. We therefore have

dV1

dx
= 0, ⇒ V1(x) = constant

dV4

dx
= 0, ⇒ V4(x) = constant

The potential V3(x) is found by solving the Poisson equation in region 3, i.e. for
0<x<xn.

d2V3

dx2
= −eNd

ε∫
d2V3

dx2
dx = dV3

dx
= −eNd

ε
. x + C1

∫
dV3

dx
dx = V3(x) = −eNd

ε

x2

2
+ x. C1 + C2

Using the continuity condition at the boundary between region 3 and region 4,
we have
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dV3

dx
= 0 for x = xn, and therefore C1 = eNd

ε
. xn

V3(x) = eNd
ε

(
− x2

2 + x. xn

)
+ C2

By a similar calculation we find for the potential V2(x) in region 2:

V2(x) = eNa

ε

(
x2

2
+ x. xp

)

+ C′
2 for − xp < x < 0

Using the continuity condition at x = 0, we have V2(0) = V3(0) and hence
C2 = C′

2. The potential difference V0 over the junction is therefore given by

V0 = V4 − V1 = V3(xn) − V2(− xp) = eNd

ε

x2
n

2
+ eNa

ε

x2
p

2
≈ eNd

ε

x2
n

2

In our example where Na>>Nd, we have xn>>xp and the thickness d of the deple-
tion layer is to a good approximation d ≈ xn. We see that the depletion region
extends entirely towards the low dopant concentration region of the silicon. The
thickness of the depletion layer depends on the smaller of the two dopant concen-
trations, in our example Nd. We obtain the following three useful relations:
Thickness of the depletion layer:

d =
√

2εV0

eN
(5.5)

In this and the following equations N represents the smaller of the two dopant
concentrations. The capacitance of a parallel plate capacitor is given by

C = εA

d

where ‘A’ represents the area and d the distance between the plates. We therefore
have the following expression for the capacitance per unit area in a junction diode:

C

A
= ε

d
=
√

εeN

2V0

The capacitance of the junction is important because it represents an important
source of noise (see Chap. 8). Capacitances well below 1 pF/mm2 can be obtained.

From our calculation, it also follows that the electric field in the depletion layer
has a triangular shape as shown in Fig. 5.7. The field reaches its maximum value
Emax at the boundary between the two types of silicon. We therefore have the fol-
lowing expression for the value of the electric field at the point where it reaches its
maximum value:
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Emax = 2V0

d
= d eN

ε
(5.6)

Equation (5.5) relates the thickness of the depletion layer to the voltage difference
over the junction and to the dopant concentration of the part of the junction with the
smallest dopant concentration. The thickness of the depletion layer is important,
because in a junction only the charges induced in the depletion layer are collected.
The smallest dopant concentration that can be used is essentially determined by the
purity of the starting silicon material. The purer the silicon, the lower the dopant
concentration that can be used. Modern n-type high purity silicon typically has a
resistivity of 20,000 � cm. From Eq. (5.4) we find that this corresponds to a donor
concentration of 2.3×1011/cm3.

If no external voltage is applied, the potential difference over the depletion layer
is of the order of 0.7 V and the corresponding thickness of the depletion layer is
about 64 μm. To increase this thickness one can apply a reverse bias voltage over
the diode. However, as the reverse bias voltage is increased, the maximum field over
the junction also increases, and at some point this field is so strong that electrons
and holes acquire sufficient energy to produce further electron–hole pairs, i.e. we
have charge amplification. If the reverse bias voltage is increased further, eventually
breakdown will occur.

From Eq. (5.6) we obtain a relation between the maximum thickness of the
depletion layer and the breakdown voltage

dmax = ε Ebreakdown

e N

This equation shows that the maximum thickness of the depletion layer is
inversely proportional to the dopant concentration. The smallest dopant concentra-
tion that can be used depends on the amount of impurities in the starting material.
A thick depletion layer is only possible if extremely pure materials are used. The
breakdown voltage is about 16,000 V/mm in high resistivity n-type silicon, allowing
a depletion layer of up to10 mm to be obtained in silicon. In germanium, a depletion
layer of up to 10 cm can be achieved.

To have a useful radiation detector it is essential that all the metal contacts on
the silicon are realised in such a way as to have a negligible resistance. These are
called ohmic contacts. Figure 5.8 shows how this is realised in the case of a metal
contact on n-type silicon. Over the contact layer between the metal and the silicon
there is a potential difference equal to the difference in the work functions between
the two materials. The work function is the energy needed to move an electron from
a point inside the material at the Fermi level, to a point outside the material. A
region of space charges and a depletion region in the silicon are associated with this
potential difference. In a metal, the region with non-zero space charge is extremely
thin. If the concentration of donors is large in the contact region of the silicon, the
total depletion region is very thin and the electrons can tunnel through this potential
barrier. Such a thin layer of heavily doped n-type or p-type silicon is denoted as n+ or
p+ layers in the literature. Ohmic contacts allow the current to pass in both directions
with a resistance that is small compared to the bulk resistance of the silicon.
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Fig. 5.8 Energy levels in a
metal contact on a piece of
n-type silicon. The notation
e� designates the work
function. Figure (a) shows the
levels in the absence of
contact between the materials.
Figure (b) shows the situation
when there is contact

5.3 Silicon Semiconductor Detectors

Because of its rather long radiation length (93.6 mm), silicon is mainly used as a
detector for charged particles. It can be used to track minimum ionising particles,
and it is an almost ideal detector for alpha particles. The range of alpha particles of
nuclear origin never exceeds 1 mm in silicon, and the amount of ionisation collected
is therefore proportional to the energy of the alpha particle. In order to accurately
measure the energy of the alpha particles it is important that the dead layer on the
entrance side of the particle in the silicon is as thin as feasible. The amount of energy
lost in this dead layer depends on the angle of penetration of the alpha particle and
this will degrade the energy resolution. Usually, surface barrier detectors are used
for alpha particle detection because this allows to obtain a very thin dead layer. In
this type of detector, the junction is formed between the metal and the silicon. The
resulting depletion layer behaves very much in the same way as discussed earlier.
The metal contact also needs to be kept as thin as possible. Instead of using gas
phase diffusion, ion implantation is often used as a method for achieving carefully
controlled dopant layers. In ion implantation the surface of the silicon is exposed to
a beam of ions produced by an accelerator. With this technique, entrance windows
as thin as 34 nm of silicon equivalent can be achieved.

Figure 5.9 shows the energy spectrum of alpha particles recorded with a surface
barrier detector. The energy resolution that can be achieved with this type of detector
can be derived as follows. Let N be the number of electron–hole pairs created by the
alpha particle. The energy of the alpha particle is proportional to the number of
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Fig. 5.9 Alpha particle
spectrum of 234U recorded by
a high-resolution surface
barrier detector. Figure from
[6] by courtesy of ORTEC

electron–hole pairs created: E[eV] = 3.62N. The r.m.s. deviation of the measured
energy is given by

σ {E} = 3.62
√

NF = √
3.62 E F

As before, the Fano factor ‘F’ is due to the fact that energy conservation reduces
the fluctuations on the number of charges produced to be less than what it would
be for a Poisson distribution. The energy resolution, expressed as full width at half
maximum (FWHM) is therefore given by

FWHM[eV] = 2.35
√

3.62 F E[eV]

The experimentally measured energy resolution is somewhat larger than what is
predicted by the formula above. For example, for an alpha particle of 5.5 MeV, the
formula predicts an energy resolution of 3.7 keV, but only about 10 keV is achieved
in the best detectors. The main reason for this discrepancy is the energy loss of alpha
particles due to elastic collisions with silicon nuclei. The recoil nuclei in these colli-
sions are usually too slow to produce any ionisation as silicon and the corresponding
energy is lost.

Silicon detectors are also commonly used to localise charged particle trajectories.
If the particles are minimum ionising particles, about 30,000 electron–hole pairs are
produced in a silicon slice of only 300 μm thick. That is a small signal but sufficient
to be detected by modern low-noise electronics. To provide particle localisation,
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Fig. 5.10 Schematic
representation of the structure
of a silicon strip detector

the electrode on one side of the silicon is subdivided into strips and each strip is
connected to an amplifier (see Figs. 5.10 and 5.11). The distance between the strips
is typically 200 μm. A detector of 300 μm thick needs a few 100 V to become fully
depleted. Standard silicon wafers are round disks of silicon 5 or 8 inches (12.5 or
20 cm) in diameter. The largest detector that can be made is about 14 × 14 cm2. To
reduce the number of readout channels, often some kind of interpolation between
the strips is used. If all the channels are equipped with electronics reading out the
amplitude of the signals on all the strips, a position resolution of a few 10 μm can
be achieved. The charges are collected in about 10 ns, making this indeed a very fast
device.

Figure 5.12 shows a silicon strip detector with a readout allowing both the x-
and the y-coordinate to be determined with the same detector. Silicon strip detec-
tors are fast detectors since the charge is typically collected in 10 ns, but the small
signal-to-noise ratio makes it difficult to obtain very good timing measurements with
silicon.

Silicon strip detectors are prone to leakage currents, both in the bulk and on the
surface, and particular care is needed to obtain reliable devices. These detectors are
also sensitive to radiation damage.

Fig. 5.11 Charged particle
tracking detector used in the
CMS experiment. The
detector consists of two
wafers of silicon put side to
side. Four amplifying chips
with 512 amplifying channels
each are visible in the top-left
side of the picture. Each
silicon wafer has strips as
shown in Fig. 5.10, with a
pitch of 180 μm. The r.m.s.
spatial resolution is ≈25 μm.
Photograph copyright CERN
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Fig. 5.12 To obtain the two
coordinates x and y from one
slice of silicon the detector
can be equipped with mutual
perpendicular strips on both
sides of the silicon. In this
example a resistor network
was used to reduce the
number of electronics
channels

5.4 Germanium Semiconductor Detectors

The long radiation length of silicon (94 mm) and the fact that it is difficult to pro-
duce a depletion layer of much more than a few mm, makes silicon unattractive for
gamma detection. Germanium has a radiation length of 23 mm, making it much
more suitable for this purpose. Furthermore, modern germanium detectors are made
from high purity germanium containing less than 1010 impurity atoms per cubic
centimetre, making it possible to reach a depletion thickness of several centimetres.
High purity germanium is grown in cylinder-shaped ingots. To achieve maximum
use of the expensive material, germanium detectors are usually made in a cylindrical
geometry as shown in Fig. 5.13(a) and Fig. 5.14.

Fig. 5.13 (a) Germanium
detectors usually have a
coaxial geometry to make
optimal use of the expensive
germanium material grown in
cylindrical boules. (b) To
suppress the leakage current
the germanium detector must
be used at liquid nitrogen
temperature. It is often
directly mounted on a Dewar
as shown
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Fig. 5.14 Germanium ingot
and Ge detector elements.
Figure by courtesy of
CANBERRA – an AREVA
company

Germanium has a band gap of 0.7 eV, giving rise to a large bulk leakage current
caused by thermal electron–hole pair creation in the depletion region. This current
gives rise to an unacceptable noise and therefore germanium detectors must be used
at reduced temperature, usually liquid nitrogen (77.2 K). The typical geometry of a
liquid nitrogen-cooled germanium detector is shown in Fig. 5.13(b).

Before modern high-purity germanium was available, it was common to rely on
compensated germanium, which was obtained using the lithium drift method. These
detectors must always (i.e. also when not in use) be maintained at liquid nitrogen
temperature to maintain the proper compensation.

Germanium makes a very good detector for gamma rays because of its excellent
energy resolution as is discussed below. For X-rays of the order of 10 keV, silicon is
more appropriate. However, germanium detectors are very expensive and need to be
cooled at liquid nitrogen temperatures for proper operation. Moreover, because the
signal formation depends on the drift of the charges over rather long distances, the
detector is not very fast. For all these reasons, it is often preferable to use scintillators
as is discussed in Chap. 6.

The energy resolution of a germanium detector depends on the fluctuations on
the number of charges. The number of charges produced by a gamma ray of energy
E is given by

N = E[eV]

2.96

The r.m.s. dispersion on this number is given by
√

NF where F again represents
the Fano factor. The FWHM energy resolution is therefore given by
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FWHM[eV] = 2.35 . 2.96

√
E

2.96
F = 2.35

√
2.96 E[eV] F

And the energy resolution FWHM in percent of the total energy is given by

FWHM[%] = 235

√
2.96F

E[eV]

For a gamma ray of 1.33 MeV, the above formula predicts an energy resolution of
1.33 eV. In practice, such a good energy resolution is never obtained. The difference
is explained by incomplete charge collection.

5.5 Other Semiconductor Detector Materials

Silicon and germanium are by far the most commonly used materials in semicon-
ductor detectors. However, there are several reasons to look for other materials.
The properties of germanium make this an excellent material for making X-ray and
gamma ray detectors, but the need to use the detector at the temperature of liquid
nitrogen is a major complication. Moreover, detector grade germanium is expensive
and the nuclear charge Z of germanium is only 32. Materials with a larger nuclear
charge have a shorter radiation length and have a ratio of the photoelectric cross sec-
tion over the Compton cross section that is larger. These are very desirable properties
for a detector material used for detecting gamma rays.

Silicon is a good material for the tracking of charge particles, but the band gap in
silicon is smaller than one would like and this causes a significant dark current and
therefore a significant noise, when operating the detector at room temperature. A
material with a somewhat larger band gap would be preferable. Moreover silicon is
prone to radiation damage and possibly materials that perform better in this respect
can be found. Furthermore, the good performance of silicon is only obtained with
silicon monocrystals and these are limited in size to 5 or 8 inch. Materials that can
be deposited in thin layers on large surfaces are needed in certain applications.

Table 5.2 lists a few materials that are being considered as alternatives to silicon
or germanium. For all these materials the mean free path of the charge carri-
ers before they are trapped, and therefore charge collection efficiency, is much
lower than in silicon or germanium. This results in a significant reduction of the
performance of the detector.

Of all the materials listed in Table 5.2 only CdTe (CT) and CdZnTe (CZT), and to
less an extend HgI, have found significant applications as alternatives to germanium.
CdTe suffers from the ‘polarisation’ of the detector material. This ‘polarisation’
is a change in the material caused by the previous interactions of gamma rays in
the detector. This causes the detector response to become time dependent and rate
dependent, a very undesirable property. The addition of a small amount of zinc
reduces the dislocation density in CdTe and improves the performance. The concen-
tration of zinc in CZT commonly used varies between 4 and 20%. CZT is less prone
to polarisation and has a larger intrinsic resistivity than CdTe.
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Fig. 5.15 Typical pulse height spectrum taken with a 5×5×2 mm CZT detector. Data taken at
21◦C and with a bias voltage of 150 V over 2 mm. Figure from [8], with permission

The production technology of CT and (CZT) has been improving steadily over
the years. However, it remains difficult to produce large monocrystals and the mate-
rials suffer from poor hole collection efficiency. As a result of the hole trapping
the pulse height spectra develop important ‘tails’, below the photopeak as shown in
Fig. 5.15. These tails are due to ionisation events close to the anode. For these events
the holes produced have to travel a long distance to the cathode. Since the holes are
trapped before reaching the cathode, the signal is correspondingly reduced.

A number of ways have been proposed to overcome this problem. Because of the
difference in drift velocity of electrons and holes, the pulse shape varies with the
position of the gamma interaction relative to the readout electrodes. It is therefore
possible to derive a correction for the pulse height based on the pulse shape. A
different approach for reducing the sensitivity to hole trapping was developed by
Luke [7]. It uses two different but coplanar anodes in such a way that the signal
only depends on the movement of the electrons. This can be achieved by replacing
the planar anode electrode by a set of fine parallel strips. The strips are connected
alternatively to two different amplifiers, forming therefore two independent readout
electrodes. One set of strips, hereafter called anode A, is brought at a slightly larger
positive potential than the other set of strips, hereafter called anode B. In this way
the electrons only collect on anode A. The motion of the charges at a large distance
from the plane of strips induces the same signal on both anodes. The motion of
the electrons close to the strips induces most of the signal on anode A only. The
difference between the signals on both anodes, A and B, therefore only depends on
the motion of the electrons in the last few 100 microns close to the anode.
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Diamond is considered as an alternative to silicon for tracking in high-energy
physics because of its good radiation hardness. Diamond of course is not a
semiconductor, but the properties of diamond detectors are somewhat similar to
the properties of semiconductor detectors. Its discussion is therefore included here.
The radiation hardness of diamond is reported in the literature as an order of mag-
nitude better than silicon. Detectors using true diamonds have been tried, but these
are limited to very small sizes for obvious reasons. Most diamond detectors use syn-
thetic ‘diamond-like layers’ obtained by chemical vapour deposition, referred to in
the literature as CVD diamond. The band gap in diamond is larger than in semicon-
ductor devices and the detectors made with CVD diamonds do not need a junction
to suppress the leakage current. It is sufficient to use metal contacts on both sides
of the diamond and apply an electric field. Because of the large band gap, diamond
detectors can be used at elevated temperature.

Amorphous selenium (a-Se) is a good candidate for replacing silicon in applica-
tions where one would like a larger detector area than what can be obtained with
silicon monocrystals. An example of such an application is the direct conversion X-
ray detector for medical imaging. The simple band gap model used throughout this
chapter does not really apply to amorphous selenium. For a number of reasons, the
amorphous selenium layer in such X-ray detectors has to be operated at very high
electric fields (up to 10 V per micron). An important issue in the use of amorphous
selenium is the minimisation of dark current. Reference [9] contains an extensive
discussion of the use of selenium as a detector for X-ray imaging.

5.6 Exercises

1. Calculate the dopant concentration in n-type silicon with a resistivity of
2000 � cm.

2. For a silicon strip detector made starting from n-type silicon with a resistivity of
2000 � cm, calculate the voltage to fully deplete a silicon microstrip detector of
300 μm thickness.

3. Derive an expression for the energy resolution (FWHM and in %) of silicon as
an X-ray detector at room temperature. How much will the energy resolution be
for X-rays of 50 keV?

4. You deposit a very thin layer of 241 Am with an activity of 2 MBq on a surface
barrier alpha particle detector. This isotope emits alpha particles, see annex 6
for the characteristics of the emission. Calculate the magnitude of the pulses in
number of electrons and the current in the detector.

5. Calculate the number of charges produced in a silicon strip detector of 500 μm
thick by a minimum ionising particle.

6. Calculate the density of states for an electron enclosed in an infinitely deep
and cubic potential well. Use the expression below for the energy levels of
the electron in such a potential well. The numbers n1, n2 and n3 are positive
integers.
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E = p2

2m
= π2(hc)2

a22mc2
(n2

1 + n2
2 + n2

3)

7. Calculate the potential difference over a p–n junction if the dopant concen-
trations in the n-type silicon and the p-type silicon are ND = 1012/cm3 and
NA = 1016 cm3, respectively.
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Chapter 6
Detectors Based on Scintillation

6.1 Introduction to Scintillators

When ionising radiation interacts with matter it will excite or ionise a large number
of molecules. When these molecules return to the ground state, this will sometimes
give rise to the emission of photons in the visible or near to the visible energy range.
This phenomenon has as scientific name ‘radioluminescence’, but it is more com-
monly called scintillation. Observation of the scintillation process was one of the
first techniques used for the detection of ionising radiation. Rutherford used zinc
sulphide scintillating crystals in his famous scattering experiment that showed that
all the positive charge in atoms was concentrated in the nucleus. Today the use of
scintillators is still one of the main methods for radiation detection.

Many transparent materials will produce some small amount of scintillation light
when hit by a high-energy particle or a high-energy photon, but usually this light
signal is very weak. In a few materials, the conversion of the excitation energy into
light is more efficient, and such materials are called scintillators. If the light emis-
sion continues for a long time after the excitation, i.e. much longer than 1 ms, this
phenomenon is called phosphorescence rather than scintillation and the correspond-
ing material is called a phosphor. Phosphors are often in the form of a thin layer of
powder applied on a substrate. A different but related phenomenon is ‘photolumi-
nescence’. This is the emission of visible or near to visible light under stimulation by
light of a shorter wavelength. Photoluminescent materials are also often called phos-
phors, but sometimes these materials are also called wavelength shifters or fluors.

Scintillation and the Cherenkov effect both are light emission effects, but the
physical mechanism is completely different. Cherenkov light is only produced when
the velocity of the particle is larger than the velocity of light in the medium. Also
for particles travelling at a speed close to the speed of light, the intensity of the
Cherenkov light emission is typically a factor 100 lower than the light output of a
good scintillator.

When an ionising particle interacts in matter it produces a number of free charges.
In a gas, applying a modest electric field over the gas gap is sufficient to collect
these charges. In a solid, it is very difficult to collect the charges. Only in very
few materials, such as silicon or germanium, is it possible to obtain efficient charge
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collection. In a scintillator, the problem is avoided because the charges have only
to travel to the nearest luminescence centre, often only a few atoms away. At the
luminescence centre, the electrons give rise to photons. If the material is transparent,
the light signal can then easily be extracted.

A scintillator should have the following properties to be useful as a detector for
ionising radiation

– the material should be transparent at the wavelength of the emitted scintillation
light

– the efficiency of light production should be large
– the light pulses should be as short as possible and there should be little or no

delayed light emission
– the amount of light emitted should be proportional to the energy deposited by the

ionising particle
– the refractive index of the material should be close to 1.5 so that light can easily

be extracted from the scintillator.

Other desirable properties of the material are that it should be chemically and
mechanically stable, not too difficult to produce and not too expensive.

Scintillating materials broadly speaking fall into two classes: organic and inor-
ganic scintillators. The physics of the scintillation mechanism, the properties and the
applications of both types of scintillating materials are very different. Both types
of materials are discussed in this chapter. From the application point of view the
important difference is that organic scintillators contain, for the most part, atoms
with a small atomic charge Z, and have therefore a long radiation length. Inorganic
scintillators are interesting, mainly because many of them contain a large fraction
of atoms with a high atomic charge Z and therefore these materials have a short
radiation length. Because of this difference in radiation length, inorganic scintilla-
tors are mainly used for X- and gamma-ray detection, while organic scintillators are
mainly used for charged particle tracking. Another important application of organic
scintillators is as detectors for ‘fast neutrons’, i.e. for neutrons with energy between
≈10 keV and 10 MeV. This application depends on the elastic scattering of neutrons
on the hydrogen nuclei in the scintillator and is discussed in Chap. 7.

Scintillation also occurs in some inorganic gases such as nitrogen and in some
inorganic liquids such as liquid xenon. The nitrogen in air emits a green glow
when excited by energetic charged particles. This phenomenon causes the Northern
Lights when the stream of charged particles emitted by the Sun enters the Earth’s
atmosphere near the poles.

6.2 Organic Scintillators

Three types of organic scintillators exist: organic crystals, organic liquids and
plastic scintillators. Organic crystals such as anthracene and stilbene are efficient
scintillators but, compared to plastic scintillators, they are expensive and difficult to
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use. Therefore these materials have fallen in disuse and will not be discussed further
in these lecture notes.

Organic liquid scintillators are obtained by dissolving an organic scintillator in
an appropriate solvent. Often a wavelength shifter is added to improve the trans-
parency of the liquid for the scintillation light or to obtain a better match between
the spectral sensitivity of the scintillator and the photodetector. Liquid scintillators
are less expensive than other scintillators and are therefore used when the appli-
cation requires a large volume of scintillator. It is also used to count radioactive
material that can easily be dissolved in the liquid. This technique is used for count-
ing low beta activity as for example when counting 14C for determining the age of
archaeological samples.

The most widely used class of organic scintillators are the plastic scintillators.
A plastic scintillator is made from a suitable polymerisable liquid, usually a liquid
containing aromatic rings. Examples of such scintillating liquids are styrene and
vinyltoluene. The base material in the plastic will scintillate in the UV, but the mean
free path of the scintillation photons is only a few millimetres; therefore, a wave-
length shifter, or fluor, needs to be added to the material. The fluor will absorb the
primary UV scintillation light and emit it at a somewhat longer wavelength. At this
longer wavelength the average mean free path of the photons is much larger. The
concentration of the fluor in the scintillator is typically 1%. Sometimes, a second
fluor is added at the ≈0.01% level to shift the emission to even longer wavelengths.

Plastic scintillators are often used because they are easily produced and can be
shaped into whatever shape is required. In particular, they can be produced as large
thin sheets or as fibres. A large number of different plastic scintillators are com-
mercially available. Table 6.1 lists the main properties of one particular product,
Kowaglass SCSN-32; these data are fairly typical of what can be achieved with
plastic scintillators. An overview of the different organic scintillators available can
be found in [5] in Chap. 1.

The main application of organic scintillators is as detectors for charged parti-
cles. Because of the short decay time of the scintillator, this detector can provide
good timing information. To obtain position information the scintillator needs to
be divided into narrow strips and each strip connected to a photodetector; for
this purpose, fibres made from scintillating materials are often used. These fibres

Table 6.1 Properties of the plastic scintillator Kowaglass SCSN-32

Plastic type Polystyrene-based scintillator

Light yield 8,000 photons/MeV, i.e. ≈16,000
photons/cm for minimum ionising particles

Decay time 3.6 ns
Emission wavelength 423 nm
Light attenuation length at 423 nm 250 cm
Optical refractive index 1.58
Density 1.08
Radiation length 30 cm
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are aligned in a plane and all bundled on a suitable photodetector that allows
identification of the fibres with a signal.

The typical geometry of a plastic scintillator used for detecting charged par-
ticles is shown in Fig. 6.1(a). The setup contains a sheet of scintillating plastic,
a light guide and a photodetector. In many applications, one wants to read large
sheets of plastic scintillator. Because of cost and for other reasons the sensitive area
of the photodetector is usually much smaller than the area of the scintillator. One
needs to make sure that a sufficient fraction of the scintillation photons arrives on
the photodetector. The sheet of scintillator itself behaves as light guide and chan-
nels the light towards the four edges, using the effect of total internal reflection.
Typically, each edge will receive about 10% of the scintillation light produced. A
carefully shaped light guide brings the light from the edge of the scintillator to the
photodetector using total internal reflection. The light guide is made of transpar-
ent plastic, usually polymethyl methacrylate (commonly called Plexiglas, Lucite or
acrylic glass). The photodetector is usually a photomultiplier tube. It can be shown
that the light guide will transmit light with good efficiency if the surface of the light
guide in contact with the scintillator is the same as the surface of the light guide
in contact with the photomultiplier. If the surface is smaller at the photodetector,
the amount of light arriving at the photodetector is reduced in the ratio of these
surfaces. This is a particular case of a general theorem in physics known as the
Liouville theorem.

Because of this, the light collection efficiency can be very low if a large sheet of
scintillating material is read by a small photodetector. A different approach to light
collection is therefore often used and this method is shown in Fig. 6.1(b). In this
method, a piece of transparent polymethyl methacrylate doped with a wavelength
shifter is held against one edge of the scintillator. It is important that there is no
optical contact between the scintillator and the wavelength shifter. The scintillation
light is absorbed in the wavelength shifter and re-emitted at a longer wavelength.

Fig. 6.1 (a) Plastic
scintillator assembly as
detector for charged particles
with light guide readout. (b)
Same with wavelength shifter
readout
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The direction of the photons emitted by the wavelength shifter is uncorrelated with
the direction of the incoming scintillation light and again about 10% of this light
is collected at each of the edges. If large sheets of scintillator are read with small
photodetectors, this method of light collection is more efficient than the first method
described.

6.3 Inorganic Scintillators

Inorganic scintillators are usually ionic crystals. The physical mechanism generat-
ing the light in an inorganic scintillator can best be explained with the help of the
band model of a solid introduced in Chap. 6 and illustrated in Fig. 6.2. In this fig-
ure, the vertical axis represents the energy of the electron and the horizontal axis
represents the position in the lattice along to one axis. The crystal has a valence
band width, to first approximation, all energy levels occupied by one electron and
a conduction band width to, first approximation, none of the energy levels occu-
pied by an electron. Between the valence band and the conduction band there is an
energy interval where there are no electron energy levels; an electron can never be
in a stationary state with an energy corresponding to a point in this interval. If the
ionic crystal is transparent to visible light, the band gap must be larger than ≈3 eV.
In the simplest version of the model there is no way a crystal can emit light at a
wavelength where the crystal is transparent. To make light emission possible we
need luminescence centres that have localised levels in the crystal. Such localised
levels can be intrinsically present in the material, but for the efficient scintillators
these localised levels are provided by suitable dopant atoms introduced at the per-
cent level in the host material. For the sake of definiteness, we will consider the case
of a commonly used scintillator LSO. Similar considerations apply to other scintil-
lators. Lutetium ortho-oxysilicate Lu2SiO5 (LSO) doped with cerium is an efficient

Fig. 6.2 Schematic
representation of the electron
structure in an LSO
scintillator with a cerium 3+

luminescence centre
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scintillator. Neutral cerium has the electron configuration of xenon plus one electron
in the 4f level, one electron in the 5d level and two electrons in the 6s level. When
used as a dopant, cerium replaces lutetium in the lattice and will usually be in the
Ce3+ ionisation state, hence only the 5d level is occupied by one electron. Inside
an LSO host lattice the 4f and 5d levels are located near the bottom and the top of
the band gap, respectively. The degeneracy of the 4f level is broken by spin-orbit
coupling and the electron can have two possible energy values. The degeneracy of
the 5d level is broken by the anisotropy of the host matrix and we have five possible
values for the energy corresponding to the five possible values of the third compo-
nent of the orbital angular momentum Lz. The Ce3+ ion therefore creates localised
energy levels in the crystal as indicated in Fig. 6.2.

If a high-energy X-ray or one gamma ray interacts in the crystal, it will extract
a deeply bound electron and raise it to an energy level in the valence band, or more
often, to a significantly larger energy level. The electron will lose its extra energy
by exciting further electrons and lifting them from the valence band or one of the
deeper bands to the conduction band. Electrons from the outer bands fill the holes
that are left in the core bands and the excess energy is again used to bring more
electrons from the valence band to the conduction band. The net result is that one
X-ray, or one gamma ray, produces a large number of holes in the conduction band
and the same number of electrons in the valence band. These electrons sink to the
bottom of the conduction band and the holes rise to the top of the valence band. All
these happen in a very short time, in about 10−12 s. The minimum energy needed
to create one electron–hole pair is equal to the band gap energy Eg, but unavoidably
some of the energy of the initial X-ray or gamma ray ends up being converted into
phonons, i.e. thermal energy in the crystal. At the end of the cascade of events, the
number of electron–hole pairs created is given by

Ne−h = Eγ

b Eg

In this equation, Eγ is the energy of the X-ray or the gamma ray and the param-
eter b has a value that depends on the nature of the host matrix. For crystals of
interest, this number is typically ≈2.

To have an efficient scintillator, the electrons and the holes should reach the
cerium luminescence centres. This migration of the charges is the least understood
part of the scintillation process. Indeed, the band model where electrons and holes
move freely in the lattice is a gross oversimplification. There are always imperfec-
tions in the crystals and these imperfections form traps that can capture the free
charges and prevent them from reaching the luminescence centre. Many of these
traps are shallow traps that correspond to a small binding energy. If the temperature
is sufficiently high, the thermal energy will be sufficient to liberate the charge from
the trap. The retention time will strongly depend on the temperature. If the electrons
and holes are sufficiently free to move around, a hole will first ionise the cerium
atom and form a Ce4+ and subsequently an electron is trapped in the 5d level. These
capture processes are efficient if the lowest 4f level and the highest 5d level are
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close to the valence band and conduction band, respectively. This energy difference
should be of the order of the energy of thermal agitations.

The electron captured by the 5d levels, quickly sinks to the lowest 5d level. The
energy distance from this level to the 4f level is about 3 eV and this transition cannot
happen by thermal agitation. The 5d → 4f transition is an allowed dipole transition
and is therefore rather fast. In the case of cerium, this transition has a lifetime of the
order of 40 ns, with the exact value depending on the host matrix.

The above model of the luminescence mechanism in inorganic scintillators
obviously is incomplete. Indeed, it would seem that the light emitted by one lumi-
nescence centre will be absorbed by the other Ce3+ atoms in the crystal; hence, the
crystal will not be transparent to its own scintillation light. The mechanism that
avoids the above problem is called the ‘Stokes shift’ and it is explained in Fig. 6.3.
When the electron of the Ce3+ final state is in the 4f state or in the 5d state, the spa-
tial distribution of the charges is different. Therefore, the neighbouring ions have a
different equilibrium position depending on the energy level of the electron.

For simplicity, I assume that the configuration of the ions round the luminescence
centre can be described by a one-dimensional configuration coordinate as indicated
in Fig. 6.3. Obviously, the configuration needs to be described by several variables,
but with this simplification it is easier to explain the mechanism of the Stokes shift.
Assume that the electron is in the 4f level. The lattice around the luminescence
centre will find itself in the equilibrium position and this is the position where the
energy of the electron takes the lowest value. If the electron absorbs a photon that
rises it to the 5d level, at first the lattice remains in the geometry that corresponds
to the electron in the 4f level. After the transition, the lattice relaxes and takes the
geometry corresponding to the electron in the 5d level. This new geometry corre-
sponds also to the minimum for the electron energy. If the electron jumps back to
the ground level 4f, the energy of the emitted photon will be smaller than the energy
used in the transition 4f → 5d. The energy difference between the absorbed pho-
ton and the emitted photon is called the Stokes shift. The corresponding absorption
and the emission spectra of the crystal in function of the wavelength of the light are
shown in Fig. 6.3(b). The distance between the edge of the absorption band and the
maximum of the emission is the Stokes shift. Because of the thermal fluctuations in

Fig. 6.3 The Stokes effect
allows a luminescence centre
to have emission at a longer
wavelength than the
absorption. (a) The energy of
the 4f and 5d levels depends
on the configuration of the
lattice around the
luminescence centre. (b)
Emission and absorption
spectra for the electron
transitions represented in (a)
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the crystal, the absorption peak is not very narrow and the band edge is not a sharp
cut. Indeed, due to the thermal agitations, the configurations of the ions surrounding
the luminescence centre are constantly fluctuating around the equilibrium position.
The Stokes shift should be sufficiently large if the scintillator is to be transparent to
its own scintillation light.

From the model described above it follows that the maximum number of photons,
Nmax, a scintillator can produce is given by

Nmax = Eγ

b Eg

Let us take as an example the scintillator CsI:Tl. In this scintillator, thallium
(Tl+) dopants play the role of luminescence centres. The band gap in CsI is 6.2 eV
and we predict, taking b = 2, a maximum light yield of 80,000 photons/MeV.
Experimentally it is found that CsI:Tl scintillator produces about 60,000 scintil-
lation photons/MeV. We conclude that both the transport of the electron–hole pairs
to the luminescence centres and the efficiency of the luminescence centre in CsI:Tl
are rather high at room temperature.

The decay time of a scintillator is determined by the lifetime of the excited level
in the luminescence centre. This lifetime also depends on the host lattice, but this
is not a very large effect. All cerium-doped scintillators have a decay time of the
order of 40 ns. The probability to have a transition 5d → 4f is independent of how
long the electrons are already in this level, we therefore expect an exponential decay
of the scintillation light. In practice, the scintillation light emission often deviates
significantly from a simple exponential decay. As an example, Fig. 6.4 shows the
decay spectrum of CsI:Tl. In a logarithmic plot, we clearly see two exponential
decay components. There are two possible explanations for this behaviour. There
can be more than one type of luminescence centre in the crystal. These can be two
truly different kinds of dopant atoms, but it can also be the same type of dopant
sitting in a different lattice environment. The dopant atom can for example sit next
to another lattice defect and this can completely change the decay characteristics of
the luminescence centre. Another possible explanation is that the transport of the
charges to the luminescence centre is hindered by the presence of traps. If either the
electron or the holes are trapped in a defect that retains these charges with a lifetime
much larger than the decay time of the luminescence centre, we will obtain a slow
component in the decay spectrum as shown in Fig. 6.4. Traps with a rise time much
shorter than the luminescence centre will affect the rising edge of the scintillation
signal. Instead of a very sharp rising edge, we will see a much slower increase to the
maximum value.

The scintillation properties of inorganic scintillators tend to have a strong depen-
dence on the temperature. This is illustrated in Fig. 6.5. For many materials
the light output first increases with temperature, reaches a maximum and then
decreases again. For BGO, the maximum is reached at a temperature below 100 K;
therefore, only the decreasing part of the curve is seen. This behaviour can be
understood as follows. At low temperature the light yield is low because there
will always be shallow traps that capture the electrons or the holes and prevent the
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Fig. 6.4 Logarithmic plot of
the scintillation light intensity
as a function of the time after
the gamma interaction for
CsI:Tl scintillation. If the
light intensity decreases
exponentially, this will show
up as straight line in this plot.
In this example, there are two
components in the decay
spectrum

Fig. 6.5 Evolution of the
light yield of some
scintillators as a function of
temperature. Figure adapted
from [1], with permission

charges from reaching the luminescence centre. With rising temperature, these traps
are no longer able to retain the charges and the light yield increases. If the tempera-
ture increases further, we have the phenomenon called thermal quenching. This can
be understood with the help of Fig. 6.3(a). The energy distance between the 4f and
5d levels depends on the configuration of the host matrix around the luminescence
centre. This configuration is not constant due to the permanent thermal motion of
the ions around the luminescence centre. At some values of the configuration coor-
dinate the distance between the two energy levels becomes small and the electron
can jump to the lower level without emission of an optical photon, but by interacting
with the phonons in the lattice. This is a non-radiative transition. As the temperature
increases, the probability of this happening increases and the light yield decreases.

Inorganic scintillators are mainly used as detectors for gamma rays, usually with
the aim of measuring the energy of the gamma ray. A linear relation between the
light yield and the energy of the gamma ray is, therefore, a desirable property of
a scintillator. For many scintillators there are significant deviations from this linear
relation as is illustrated in Fig. 6.6. When a gamma ray interacts in a scintillator
crystal there are a large number of different ways to deposit its energy. It can deposit
all its energy in one photoelectron, but it can also undergo one or more Compton
interactions before losing all its energy in a final photoelectric effect. If the response
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Fig. 6.6 Ratio of the light
yield over the gamma energy
for a few commonly used
scintillators. The curves are
normalised such that this ratio
is unity if the energy of the
gamma ray is 1000 keV.
Figure from [2], © 1994
IEEE

of the scintillator is not linear, this will result in a light output of the scintillator that
depends on the particular history of each gamma ray. This will degrade the energy
resolution. This effect seriously limits the energy resolution that can be achieved
with a scintillator for energies of the order of 1 MeV and less. At energies well
above 1 MeV, these effects tend to become less important.

The response of a scintillator also tends to depend strongly on the energy
loss density of the charged particles. Many scintillators have a strongly reduced
sensitivity to energy deposited by alpha particles. The light yield for the same energy
deposition by an alpha particle is usually several times smaller than for electrons.

Table 6.2 lists some commonly used inorganic scintillators. Each application has
a different set of requirements for a scintillator. In some cases, a fast decay time is

Table 6.2 Properties of some commonly used inorganic scintillators

Name∗ Density
Emission λ

[nm]
Light yield
[photons/MeV]

Decay time .τ
[ns]

Radiation
length [cm]

NaI:Tl 3.67 410 40,000 230 2.59
BGO 7.14 480 4000 300 1.12
BaF2(fast) 4.88 215 1500 <1 2.05
BaF2(slow) 4.88 310 10,000 700 2.05
CsI:Tl 4.51 565 65,000 600 1.68
CsF 4.11 390 2000 3
PbWO4 8.28 480 200 10 0.89
LSO:Ce 7.4 420 28,000 40 1.14
LuAP:Ce 8.3 360 10,000 18
GSO:Ce 6.71 440 7500 60 1.38
LuPO4 6.6 360 13,000 24
YAP:Ce 5.37 370 16,000 25 2.7
LaBr:Ce 5.3 360 60,000 35 2.13

∗The short names for the scintillators stand for the following chemical compounds: BGO =
Bi4Ge3O12, GSO = Gd2SiO5, LSO = Lu2SiO5, LuAP = LuAlO3, YAP = YAlO3
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essential, in others a large light yield and in still other applications a short radiation
length is the most desired property. What is the best scintillator depends on the
application.

6.4 Photodetectors

Scintillators would not be very useful as detectors for subatomic particles without
some device to convert the light signal into an electrical signal. Such a device is
called a photodetector. Photomultiplier tubes were invented more than 70 years ago,
but are still the most commonly used photodetector for reading out scintillators. This
is due to the fact that the light pulses obtained from scintillators are usually very
weak, often less than a few 100 photons. A photomultiplier has a very large internal
gain, therefore even a few photons are sufficient to obtain a detectable signal. An
amplifier can also be used for amplifying weak signals, but as will be shown in
Chap. 8, amplifiers always have noise and this noise is amplified together with the
signal one wants to observe. Electrical signals that are too small are therefore not
observable. In recent years, several new types of photodetectors with internal gain
have been developed. Some of these are quite promising and could possibly one day
replace photomultiplier tubes. These devices are briefly discussed at the end of this
section.

The photomultiplier tube. The first photomultiplier tube was produced by
Zworykin in 1936. Modern photomultiplier tubes have much improved perfor-
mance, but the basic principle of operation is still the same. For a more in dept
review of photomultipliers and their use, See [11, 12, 13]. A photomultiplier tube
is a vacuum tube, usually made of glass or at least with a glass window and with
a photocathode and a number of metal dynodes inside the vacuum. The structure
of a photomultiplier tube is schematically represented in Fig. 6.7(a). A photo-
cathode is a thin layer of a compound that will emit electrons when absorbing
photons with a wavelength in the visible or near to the visible region. The pho-
tocathode can be deposited on a metal electrode inside the tube, but more often the

Fig. 6.7 (a) Schematic
representation of a
photomultiplier tube and its
electrode geometry. (b)
Voltage divider to supply the
proper potential to the
cathode and the dynodes
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photocathode is deposited on the inside of the window of the photomultiplier tube.
The photocathode is at some large negative potential, typically –2000 V. The dyn-
odes are kept at potentials between –2000 V and 0 V, decreasing from –2000 V to
0 V in steps of typically 150 V. These voltages are nearly always obtained with a
passive resistor chain as shown in Fig. 6.7(b). The last electrode, called the anode, is
at ground potential. Sometimes one uses a different electrical layout with the cath-
ode at ground potential and the anode at +2000 V. If a photon hits the photocathode,
an electron is ejected from its surface. This electron will be attracted by the first
dynode because this dynode is at a positive potential relative to the cathode and it
will reach the surface of this dynode with a kinetic energy equal to the potential dif-
ference between the cathode and this first dynode. This kinetic energy is sufficient to
extract several new electrons from this dynode. These few electrons, in turn, will be
attracted by the next dynode and there again the number is multiplied. Of course, this
multiplication process is efficient only if the shape of the dynodes is carefully opti-
mised to provide efficient collection of the secondary electrons produced. The shape
shown in Fig. 6.7 is only for illustration purposes and would not make an efficient
photomultiplier tube. Figure 6.11 shows some more realistic dynode geometries.
The electron multiplication step can be repeated many times, resulting in a very
large total multiplication of the number of electrons, reaching 106 or more. At some
point the total number of electrons in the cloud is so large that the electric field
is strongly affected by the corresponding space charge and the structure no longer
multiplies. The number of electrons in each pulse can reach up to 1010 before seri-
ous problems due to space charge occur. The electrical output signal is taken from
the anode, where all the electrons eventually arrive. The total transit time of an elec-
tron from the cathode to the anode is typically 20 ns, depending on the size of the
tube. If the tube is optimised for timing, the complete electron cloud caused by one
photoelectron will arrive on the cathode in a time interval of about 10 ns.

The first important step affecting the performance by the photomultiplier tube is
the conversion of the photon into a photoelectron by the photoelectric effect in the
cathode. The probability for a photon to give rise to a photoelectron is called the
quantum efficiency.

Many materials display the photoelectric effect for UV photons, and usually the
corresponding quantum efficiency is small. However, some semiconductor materials
have a large quantum efficiency for photoemission in the visible region. A thin (a
few 10 nm) layer of such a material is deposited by vacuum evaporation on the
inside face of the photomultiplier tube window. The quantum efficiencies that can
be obtained are shown in Fig. 6.8. The largest quantum efficiencies are obtained with
K2CsSb (bialkali photo-cathodes) and are 25−30% around 400 nm. Unfortunately,
this high efficiency is obtained by choosing materials that very easily emit electrons
from the conduction band. As a result, electrons will also be emitted in the absence
of any illumination. These materials produce between 102 and 104 thermal electrons
per square centimetre at room temperature in the absence of any light stimulation.
This dark current increases rapidly with temperature and can be a serious problem
in certain applications. It should be mentioned that optical quality glass has a cut-
off around 300 nm. Fused silica windows have a good light transmission down to
180 nm, but such PMTs are much more expensive.
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Fig. 6.8 Quantum efficiencies for a few photocathode materials as a function of the photon
wavelength. Figure by courtesy of Hamamatsu

The probability for producing a secondary electron on the dynode also depends
strongly on the nature of the surface of this dynode. Gallium phosphide (GaP)
heavily doped with p-type material such as zinc is particularly effective. Up to 25
secondary electrons can be produced by an electron with a kinetic energy of 200 eV.
This number of secondary electrons is more or less Poisson distributed. If the mul-
tiplication factor on one dynode is d and assuming all dynodes to have the same
multiplication factor, the total gain is dN, where N is the number of dynodes. The
relative variance on the number of electrons produced (ne) by one primary photo-
electron can be shown to be given by (σ /ne)2 = 1/(d − 1) [11]. If a photomultiplier
tube is illuminated with a weak light signal corresponding to only a few photo-
electrons, a pulse height spectrum as shown in Fig. 6.9 is obtained. The first peak
corresponds to events with one photoelectron, the second peak to events with two

Fig. 6.9 Pulse height
spectrum obtained with a
photomultiplier tube where
the gain of the first dynode is
large. In this example, the
tube is illuminated with light
pulses in such a way that the
average number of
photoelectrons per pulse is
between one and two
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Fig. 6.10 (a) Collection of single channel photomultiplier tubes of various diameter. The largest
tube in this image has a diameter of 20 cm. (b) Multi-anode PMT from Hamamatsu with 8 × 8
independent small PMTs in one single vacuum enclosure. The tube measures 25 × 25 mm2

photoelectrons, etc. The peak corresponding to four photoelectrons is just visible.
Photomultiplier tubes come in many shapes and sizes. Figures 6.10 and 6.11

show a number of photomultiplier tubes and a few typical dynode geometries.

Fig. 6.11 (a) Internal structure of the 56AVP photomultiplier tube. To the left some other com-
monly used dynode structures in photomultiplier tube are shown: (b) linear focussing, (c) Venetian
blind, (d) foils
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In some applications, position information is highly desirable; therefore, position-
sensitive photomultiplier tubes were developed. These are essentially of two types:
multi-anode PMTs and true position-sensitive PMTs. In a multi-anode PMT, there
are simply a large number of identical and independent amplifying structures, form-
ing a collection of independent small PMTs inside one single vacuum enclosure,
each PMT with its own readout anode, see Fig. 6.10(b). In a position-sensitive
PMT, there are fewer anodes and the position is derived from a suitable ratio on
the amplitudes of these anodes.

The photomultiplier tube is a very efficient instrument for observing and measur-
ing weak and fast light pulses such as the light pulses caused by ionising radiation in
a scintillator. However, there are a number of caveats when working with PMTs:

– A PMT has an important dark current. In addition to the thermal dark current
consisting of single electron pulses, there is also after-pulsing, i.e. pulses coming
a fixed time after a true pulse. These after-pulses are caused by residual gas atoms
in the tube. After being ionised these atoms can drift back towards the cathode
and extract a large number of electrons at the same time. Unlike the thermal dark
current pulses that are single electrons pulses, these after-pulses correspond to
many primary photoelectrons and can easily be confused with true signal pulses.
This problem tends to increase as the tube ages but is also present in new tubes.

– PMTs, and particularly the larger ones, are extremely sensitive to magnetic fields.
Even the Earth’s magnetic field is sufficient to seriously affect the operation of a
large photomultiplier tube. Because of this, photomultiplier tubes are usually sur-
rounded by μ-metal cylinders working as a shield against magnetic fields. These
shields are sufficient to protect against the Earth’s magnetic field, but not against
larger magnetic fields.

– A PMT should never be exposed to daylight when under high voltage. Also when
not under high voltage, the photocathode should never be exposed to very intense
light such as direct sunlight.

– When used at large gain and with fast pulses, the response of a photomultiplier
tube becomes non-linear. This non-linear behaviour can have two causes: (a) too
much current is drawn from some of the dynodes and their potential changes and
(b) space charge effects. The potential of the dynodes can be stabilised by suitable
design of the voltage divider. In Fig. 6.7(b), there are capacitors between the last
three dynodes that will stabilise the potentials of these dynode to minimise this
effect.

Silicon-based photodetectors. Another photodetector widely used in many appli-
cations is the silicon photodiode. In this detector, light is converted into electron–
hole pairs in the depletion region. The mean free path of optical photons in silicon
varies from 0.1 μm at 400 nm to 5 μm at 700 nm. The light must be able to reach
the depletion region; hence, one of the electrodes, usually the p side, has to be as
thin as possible and transparent to light. Silicon diodes are not expensive if the
detector area is small, are insensitive to magnetic fields and have excellent quantum
efficiency: around 60% at 400 nm, increasing to 80% at 800 nm. However, silicon
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diodes have no internal gain, and when used for the readout of scintillators give sig-
nals too small for most applications. Figure 6.12(a) shows the internal structure of a
PIN photodiode.

An avalanche photodiode (APD) is a silicon photodiode with internal gain. To
make an avalanche photodiode one must change the doping profile in a diode as
illustrated in Fig. 6.12. In a reach-through type APD we first have a low field region,
where the photons convert into electron–hole pairs, followed by a high field region,
where the field is sufficient to cause electron multiplication. The drawback of this
layout is that the large dark current in the drift region is also multiplied. If we make
the drift region very thin, the dark current is reduced but the detector capacitance
is increased. This is solved in the reverse type APD, where we have a drift region
behind the application region to decrease the capacitance.

The structure of an APD is conceptually quite straightforward but, in practice, it
is very difficult to realise. The reason is that for stable avalanche multiplication, it
is essential that only one type of charges is multiplied, the other type being merely
collected. In silicon, the difference between the mobility of electrons and holes is
small and the field necessary to start electron multiplication is very close to the field
where hole multiplication starts. In order to make a good APD, it is essential to be

Fig. 6.12 (a) Structure of a PIN silicon photodiode. (b)+(c) Reach-through avalanche photodiode.
(d)+(e) Reverse type avalanche photodiode. Figures (b) through (e) adapted from [3]
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Fig. 6.13 Principle of operation of a silicon PMT. Each square cell in the figure on the left
corresponds to a small diode and its quenching circuit. Figure courtesy of SENSL

able to control the fields, and hence the purity of the material and the doping profiles,
extremely well. Manufacturing techniques allowing this have only recently become
available. In practice, APDs can only be used at a gain of the order of 100 and can
only be made in small sizes. Moreover, APDs tend to be expensive, certainly if a
large photosensitive surface is required.

A very interesting recent development is the so-called silicon PMT (SiPMT), also
called ‘pixellised photodetector’ (PPD), illustrated in Fig. 6.13. This device makes
it possible to obtain a gain of 106 with silicon photodiodes. The idea is to subdivide
the sensitive area of the photodetector in a large number of very small micro-pixels,
typically measuring 50 × 50 μm2. Each pixel works as a separate avalanche photo-
diode, but unlike in a normal APD, the electric field over the amplification region is
made very large. As a result, the pixel-counter goes into discharge mode as soon as
one electron–hole pair is formed.

A resistor between the micro-pixel and the power supply quenches the discharge.
The separation between the individual pixels must guarantee that the discharge does
not spread to the neighbouring pixels. The complete detector response remains lin-
ear with the light signal as long as only a small fraction of micro-pixels produce
a signal. The quantum efficiency of a silicon PMT will certainly be less than what
can be achieved with a PIN diode or an APD because of the unavoidable dead area
between the micro-pixels. If the cross-talk between the pixels remains low, this type
of detector will have an excess noise factor close to one. These devices are still under
active development, but it seems likely that pure solid-state photodetectors with a
gain of 106 and with a quantum efficiency similar to that which can be achieved
with a photomultiplier tube will soon be available commercially.

The hybrid photomultiplier tube. Another interesting recent development is the
hybrid photomultiplier tube. This photodetector owes its name to the fact that it
combines ideas borrowed from photomultiplier tubes with silicon photodetectors.
The hybrid photomultiplier tube is illustrated in Fig. 6.14. It consists of a vacuum
tube with a photocathode. In the vacuum, facing the photocathode there is a silicon
diode with a geometry very similar to that of a PIN diode. Between the cathode and
the diode a very large voltage difference is applied. Any photoelectron produced



184 6 Detectors Based on Scintillation

Fig. 6.14 Hybrid
photodetector. (a) Principle of
a hybrid photodetector. (b)
Components and complete
device. Image by courtesy of
PHOTONIS Netherlands B.V

at the photocathode will be accelerated towards the diode and reach it with a large
kinetic energy equal to the voltage difference. This energetic electron will create a
number of electron–hole pairs equal to the kinetic energy divided by 3.62 eV. This
kind of photodetector is good for determining the number of photoelectrons in any
given pulse. Another advantage of this structure compared to a normal photomulti-
plier tube is that the silicon diode can easily be divided into a large number of pixels
of arbitrary shape.

The drawback of hybrid photodetectors is that a large gain can only be achieved
by using a very high voltage. To reach a gain of 10,000 it is necessary to apply
36,200 V. That is possible, but it is a significant technical complication and it makes
the system both complicated to use and expensive.

The excess noise factor. In a photodetector with internal gain, the interactions of
optical photons produce charges, and for each charge, the internal gain mechanism
multiplies the number of charges. The number of primary charges in a photodetector
is well described by the Poisson distribution law. However, all the charges are not
multiplied by the same gain factor and this is an additional source of fluctuations
in the output signal. The total signal S is given by the sum of a random number of
terms and each term is itself a random variable

S =
1...n∑

i

xi

In this expression, xi is a random variable describing the charge signal produced
by one primary charge and the integer n is a random variable with a Poisson distri-
bution of average value N, describing the number of primary charges. The quantity
<x> is the internal gain factor of the photodetector. The following relations hold (see
Exercise 3, Chap. 8):

〈S〉 = N 〈x〉

σ 2{S} = N
〈
x2
〉
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This can also be written as

σ 2{S} = N
(
σ 2{x} + 〈x〉2

)

= N 〈x〉2
[

1 + σ 2{x}
〈x〉2

]

We see that the variance of the output signal is exactly the variance that would be
expected if the signal were only affected by Poisson fluctuations (N〈x〉2), multiplied
by a factor independent of N. This factor is called the excess noise factor, and is
usually denoted as F. It is unity if all the charges receive exactly the same multipli-
cation. If the charge multiplication gives rise to an exponential distribution, F = 2.
The noise equivalent number of photoelectrons, that is the number of photoelectrons
that would give the same noise if all photoelectrons received the same gain, is given
by N/F.

In comparing the merits of different photodetectors, the quantum efficiency
divided by the excess noise factor is therefore the relevant quantity. The excess
noise factor for photomultiplier tubes is in the range 1.2–2, depending mainly on
the gain of the dynodes.

For APDs, the charge distribution of an avalanche produced by one primary
charge is exponential at low gain. This is similar to the avalanche produced in a
wire chamber. The excess noise factor is therefore ≈2 at moderate gain of less than
100. At higher gain the excess noise factor increases considerably. This is connected
to the fact that in APDs both the electrons and the holes can contribute to the charge
multiplication. SiPMs are still very new, but are expected to have a small excess
noise factor. For hybrid photodetectors F ≈ 1.

6.5 Using Scintillators in the Nuclear Energy Range

The most important application of inorganic scintillators is as detectors for X-rays
or gamma rays. The present section is devoted to the discussion of a number of
issues related to the use of scintillators in the nuclear energy range.

If one wants to check for the presence of some radioactive material, observing the
characteristic gamma emission is often a good way of doing so. For this application,
it is desirable to have a large detection efficiency for the gamma rays, accurate deter-
mination of the energy of the gamma rays and the ability to identify gamma rays,
also in the presence of many other gamma rays of similar energy. In other words,
one needs to measure the best possible energy spectrum of the gamma radiation
present.

All scintillators in Table 6.2 have a radiation length between 0.9 cm (e.g. BGO)
and 2.6 cm (e.g. NaI). For gamma rays of more than 1 MeV, the mean free path is
of the order of the radiation length. The piece of scintillator should hence be a few
radiation lengths thick in order to have good detection efficiency. At energies much
above 1 MeV, the scintillator should be much larger and this case is discussed in
Sect. 6.6.
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A gamma ray detector consists of a piece of scintillator material, a photodetec-
tor, usually a photomultiplier tube, and readout electronics. The readout system will
register a pulse height spectrum and if all the gamma rays deposit all their energy
in the scintillator, we will see a peak at the corresponding position. To collect as
much light as possible, the scintillator is wrapped in some white reflecting material
and a photodetector is pressed against one of its sides. Between the photodetec-
tor and the scintillator, it is usual to add a thin layer of transparent grease with a
refractive index close to the refractive index of glass. This grease will make optical
contact between the scintillator and the photomultiplier window. This consider-
ably improves the collection of the scintillation light because it avoids the internal
reflection in the scintillator side facing the photodetector. For a good light collec-
tion efficiency the sensitive area of the photodetector should be sufficiently large.
If the scintillator is a cube, and if the photodetector covers one complete face of
the cube, the light collection efficiency will typically be ≈50%. Figure 6.15 shows
some commercial PMT–scintillator assemblies.

Assume that we have a piece of LSO scintillator measuring 5 × 5 × 5 cm3, with
one face covered with a 2-inch photomultiplier tube with a photocathode quantum
efficiency of 25%. For a 1 MeV gamma ray completely absorbed in the scintilla-
tor we expect 3750 photoelectrons in the pulse. The photomultiplier tube behaves
like a current source with a capacitance in parallel (see Fig. 6.16). The capacitance
shown in this figure represents the capacitance between anode and ground and this
capacitance is typically of the order of 10 pF. The product Ca.Zi gives the time con-
stant of the readout and this time constant should be short compared to the decay
time of the scintillator. In our example, this gives the condition Zi < 1000 �. Often
the signal is read directly with a 50 � cable. Assuming PMT gain is 105, the output
pulse will peak at 75 mV (see Exercise 1). This pulse amplitude is large enough to
be comfortably visible above the noise in any modern electronic readout system.

Fig. 6.15 Figure showing a
few commercial
scintillator–PMT assemblies.
Photograph courtesy of
Saint-Gobain crystals
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Fig. 6.16 Schematic
representation of the readout
of a photomultiplier tube. The
PMT anode behaves as a
current source with a
capacitance Ca. The readout
amplifier has an input
impedance Zi

To be able to determine the energy of each peak accurately and to be able to
separate nearby peaks, it is essential that the width of each peak is as narrow as pos-
sible. Obviously this requires a light yield of the scintillator, and a light collection
efficiency, that are homogeneous over the volume of the scintillator. Assuming a
Poisson distribution with average Ne for the number of photoelectrons, the relative
energy resolution FWHM of the scintillator will be given by

resolution FWHM[%] = Rlightyield = 100 × 2.35√
Ne

(6.1)

In our example of an LSO scintillator, we therefore expect an energy resolution
of 3.8%.

However, also under optimal conditions, it turns out that the energy resolution is
much worse than Eq. (6.1) predicts. This is mainly due to the non-linear response
of the scintillator to the energy deposited. The resolution of a scintillator is well
described by the quadratic sum of an intrinsic, energy-independent term and a light
yield dependent term given by Eq. (6.1).

R2 = R2
intrinsic + R2

lightyield

Table 6.3 gives the intrinsic energy resolutions for a few scintillator materials. At
energies much above a few MeV, this equation no longer holds and this case will be
considered in Sect. 6.6.

Table 6.3 Intrinsic resolutions for some scintillator materials

Scintillator material Intrinsic resolution Rintrinsic

BGO 4.2 ± 0.6%
CsI:Tl 5.9 ± 0.3%
LSO:Ce 6.6 ± 0.4%
YAP:Ce 1.0 ± 1.0%
LaBr:Ce <1.0%
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Fig. 6.17 (a) Pulse height
spectrum recorded with a
LSO crystal measuring 3 × 3
× 10 mm3 and a 137Cs
source. This source emits
gamma rays of 662 keV. The
photopeak, the Compton band
and the backscatter peak are
clearly visible on this plot.
The spectrum is cut at
≈80 keV by the trigger
threshold of the recording
electronics; (b)+(c)
explanation of the different
structures visible in the pulse
height spectrum (a)

If we irradiate a scintillator with a gamma ray beam with all gamma rays of the
same energy, we not only obtain a peak corresponding to this energy, but also several
other bands and peaks as shown in Fig. 6.17. In addition to the photopeak, i.e. the
peak corresponding to events where all the energy is deposited in the scintillator,
we also have a band corresponding to events where the gamma ray has undergone
Compton scattering in the scintillator and where the scattered gamma ray escapes
from the crystal. The shape of the Compton band can be obtained from Eqs. (2.10)
and (2.11). The energy left in the scintillator is the energy of the recoil electron in
the Compton interaction. This is simply the initial gamma energy minus the energy
of the scattered photon. The maximum energy in the Compton band is obtained
using Eq. (2.10), taking θ = 180◦

maximum energy compton band = –hω − –hω′(θ = 180◦) = –hω
2–hω

2–hω + mec2
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In Fig. 6.17, we also notice a peak at the energy of about 180 keV. The explana-
tion of this peak is as follows. When this histogram was recorded, a 137Cs source
was used, and the source was next to the scintillator, on the opposite side of the
PMT. Some of the 662 keV gamma rays emitted by the caesium source undergo
Compton backscattering in the window of the PMT and the scintillator records the
backscattered gamma rays. One can check that the value of this peak corresponds to
the energy of backscattered gamma rays at 662 keV (184 keV).

Another spurious peak commonly encountered in gamma detection is the ‘escape
peak’, see Fig. 6.18. The escape peak is caused by the following phenomenon. If a
gamma ray interacts in a scintillator by photoelectric effect, the most probable elec-
tron to be involved in the interaction is the most deeply bound or K-shell electron.
An outer electron quickly fills the vacancy thus left in the electron structure of the
atom and the corresponding energy is emitted as an X-ray with an energy equal to
the binding energy of this K-shell electron. Most of the time the scintillator immedi-
ately absorbs this X-ray, but sometimes, it can escape from the crystal. In the latter
case, the total energy deposited in the crystal is the energy of the gamma ray minus
the energy of the X-ray. These events will show up in the pulse height spectrum as
second peak below the photoelectric peak.

Finally, gamma rays interacting in any other material present near the measure-
ment setup can cause additional spurious peaks. If the primary gamma rays have a
larger energy than 1.022 MeV, these gamma rays will create electron–positron pairs
anywhere in the material surrounding the scintillator detector. When the positron
annihilates, it gives rise to two gamma rays of 511 keV and these can also give
rise to a peak in the pulse height spectrum. X-rays can also result from nuclear
interactions of the gamma rays in the surrounding material.

All these spurious peaks can make the interpretation of a gamma ray pulse
height spectrum quite complicated, certainly if gamma rays from several energies

Fig. 6.18 Escape peak: a gamma ray interacts in the scintillator and ejects a K-shell electron from
one of the atoms. If the resulting K-shell X-ray escapes from the scintillator, this gives rise to a
peak corresponding to the total energy minus the energy of the X-ray. In NaI, the energy of these
X-rays is 49.1 keV
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Fig. 6.19 Response of a cylindrical NaI:Tl crystal measuring 7.62 × 7.62 cm exposed to mono-
energetic gamma rays of different energies between 335 keV and 2.75 MeV. Figure adapted
from [4]

are present at the same time. This is illustrated in Fig. 6.19, which shows the
pulse height spectrum for mono-energetic gamma rays in a NaI:Tl scintillator. An
obvious way to avoid, or at least strongly suppress, most of these spurious peaks
and bands is to use a well counter, i.e. a setup where the gamma source is com-
pletely surrounded by the scintillator. However, it is not always possible to put the
source in a well counter, for example because the source is too large, its location is
unknown, etc.

This section ends with a comparison of different methods commonly used for
X-ray and gamma-ray detection. Proportional tubes with a gas filling containing
mainly argon can be used to detect X-rays, but are limited to energies below 20 keV.
With a gas filling containing mainly xenon, a reasonable detection efficiency can be
obtained up to an energy of 100 keV. However, also for these low-energy X-rays
it will take several centimetres of gas to have the same stopping power that can be
achieved with only 100 μm of scintillator or germanium detector. At energies above
100 keV, only germanium detectors or scintillators have a sufficiently large stopping
power to be useful for detecting gamma rays.

Comparing the energy resolution obtainable with scintillators with the energy
resolution of germanium scintillators discussed in Chap. 5, we see that the energy
resolution of germanium is at least a factor 10 better than even the best scintillator.
This is illustrated in Fig. 6.20 showing the same gamma radiation field observed
with a NaI:Tl scintillator and with a germanium detector. It may therefore seem that
germanium detectors will nearly always be preferred over scintillators for gamma
detection, but this is not at all the case. Germanium detectors are expensive and
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Fig. 6.20 Gamma radiation pulse height spectrum of 110mAg recorded with a germanium detector
and with a NaI:Tl scintillator. Energies of the peaks are labelled in keV. Figure from [5], ©1970
IEEE

need to be cooled to the temperature of liquid nitrogen, which is a major complica-
tion. Moreover, germanium detectors are relatively slow since the signal formation
requires the electrons to drift over the full length of the collection gap. Germanium
detectors, therefore, cannot be used if either good time determination or large count
rate is needed.
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6.6 Applications of Scintillators in High-Energy Physics

An important type of detector for particles of high energy is the calorimeter. This
type of detector measures the energy of a particle by totally absorbing the shower
produced by this particle in a block of material. The energy of the particle is pro-
portional to the amount of ionisation produced in the material. Calorimeters often
use scintillators to measure the amount of ionisation. For an in-depth discussion of
calorimeters, we refer the reader to [6, 7].

Electromagnetic calorimeters. Electromagnetic calorimeters are detectors for
measuring the energy and the position of high-energy gamma rays or high-energy
electrons and positrons. For the purpose of this discussion, high-energy means
energy larger than 1 GeV. A gamma ray with this energy interacting in matter will
initiate an avalanche consisting of a large number of electrons, positrons and sec-
ondary gamma rays. On average in about one radiation length the original gamma
ray gives rise to an electron–positron pair. This electron and positron will cre-
ate a large number of secondary gamma rays by bremsstrahlung. In one radiation
length, an electron or a positron will radiate about half of its energy in this way.
Many of these secondary gamma rays will again create electron–positrons pairs
and these will again undergo bremsstrahlung, and so on. If the energy of the initial
gamma ray is large enough, the number of particles in the shower will grow expo-
nentially. However, at each step the average energy of the particles in the shower
decreases and fewer of the secondary gamma rays have sufficient energy to pro-
duce electron–positron pairs. Moreover, below the critical energy, the electrons and
positrons will lose more energy in ionisation than in bremsstrahlung and the pro-
duction of additional gamma rays becomes less efficient. After a certain number of
radiation lengths, the number of particles in the shower reaches a maximum and
thereafter starts decreasing. Eventually, all electrons and positrons will have lost all
their energy in ionisation and come to rest and all the gamma rays will be absorbed
by photoelectric effect. The positrons will annihilate with electrons in two 511 keV
gamma rays and these will also be absorbed.

The development of a shower is a complex process and only a detailed Monte
Carlo simulation can provide a reliable quantitative description. Nevertheless, the
following simple model gives a reasonable qualitative description of the shower
development. The model assumes that in one radiation length a gamma ray will con-
vert into one electron–positron pair and ignores the fluctuations on the conversion
distance. The model furthermore assumes that in one radiation length an electron or
a positron will emit one gamma ray with more energy than two times the electron
mass. The model ignores the statistical fluctuations on the number of gamma rays
and also ignores that the average number of such gamma rays depends on the energy
of the electrons. This model of shower development is illustrated in Fig. 6.21(a). In
this model, the total number of particles, i.e. the number of electrons, positrons and
gamma rays with E > 2me, will increase with the depth in the material D as

N = 2D/X0
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Fig. 6.21 (a) A very simple
model for the development of
an electromagnetic shower.
(b) Typical geometry of a
detector element in an
electromagnetic calorimeter
using inorganic scintillators

The number of particles in the shower will increase exponentially until the aver-
age energy of the electrons becomes equal to the critical energy. At this point the
shower has the maximum number of particles. We thus have

Nmax = E

Ec
= 2Dmax/X0

Dmax = X0

ln 2
ln

E

Ec

After this maximum, the number of particles in the shower decreases exponen-
tially and the attenuation length of the number of particles is again of the order of the
radiation length. Since the number of the particles in the shower increases exponen-
tially with the energy of the incoming gamma ray, the length needed to fully absorb
all the particles will also increase like ln(E/Ec). Experimentally, it is found that for
a gamma ray of 10 GeV the number of particles in the shower reaches a maximum
after about six radiation lengths and it takes a total of ≈25 radiation lengths of heavy
material to absorb 99% of the shower energy.

The lateral, or sideways, development of the shower is mainly due to the multiple
scattering of the electrons and positrons and scales with the ‘Molière radius’. The
quantity Molière radius has the dimension of a length and it is characteristic for the
medium in which the shower develops. Its value is close to [14 g/cm2]/density for
most materials. In electromagnetic showers, 90 and 95% of the energy is deposited
within one and two Molière radii, respectively.

If a gamma ray enters a sufficiently large block of scintillator material, all the
energy of the initial particle is deposited as ionisation in the material. The total
amount of ionisation is therefore proportional to the energy of the particle and
the amount of scintillation light produced will also be proportional to the energy
of the initial gamma ray. It should be mentioned that a high-energy electron or a
high-energy positron will initiate a shower that looks exactly the same as a shower
initiated by a high-energy gamma ray. The presence or absence of the incoming
charged particle track at the starting point of the shower is the only difference
between an electron-initiated shower and a gamma-initiated shower.
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An electromagnetic calorimeter using inorganic scintillators typically has a large
number of blocks of inorganic scintillator material with a geometry similar to what
is shown in Fig. 6.21(b). The length of each scintillator block is typically equal to
25 radiation lengths. The width of each block is chosen to be less than the lateral
extent of the shower to allow accurate determination of the centre of the shower, and
therefore the impact point of the gamma ray.

The energy resolution attainable with an electromagnetic calorimeter is usu-
ally expressed as r.m.s. energy resolution, and its energy dependence can be
parameterised as

σ {E}
E

=
√

a2

E[GeV]
+ b2 (6.2)

In this equation, E[GeV] represents the energy of the initial gamma ray expressed in
GeV. For a homogeneous crystal calorimeter the coefficients ‘a’ and ‘b’ are typically
0.02–0.03 and 0.005–0.01, respectively. The first term is the statistical term. One of
the effects entering here is the fluctuation on the number of optical photons detected.
The energy resolution due to the fluctuation on the number of detected photons is
given by

σ {E}
E

= 1
√

Np.e
=
√

1/ε

E[GeV]

where ε is the number of photoelectrons detected per GeV. However, there are sev-
eral other effects contributing to the statistical term, e.g. leakage of a small fraction
of the shower, photonuclear interactions in the shower, absorption of part of the
shower in the dead material between two blocks of scintillating material.

The second term has to do with non-uniformities in the different components
of the detector. Careful calibration is essential to keep this term small. To obtain
the desired energy resolution, it is also essential that the signals from all the blocks
containing parts of the same shower are added together.

Until now we have been considering electromagnetic calorimeters based on the
use of large blocks of inorganic scintillating materials. Such detectors show excel-
lent performance but are expensive. To reduce the cost one often uses sampling
calorimeters. In a sampling calorimeter, different materials perform the function of
absorbing the shower and the function of measuring the energy deposited. Such a
sampling calorimeter typically is made from a large number of layers of some heavy
material, usually lead, interleaved with active layers measuring the amount of ioni-
sation present, often plastic scintillator sheets. In sampling calorimeters typically a
few percent of the energy in the shower is actually sampled. As can be expected, the
energy resolution that is obtained with a sampling calorimeter is significantly worse
than what can be achieved with a homogeneous calorimeter. A crude estimate of
the achievable energy resolution can be obtained as follows. Assume a sampling
calorimeter where the thickness of the active layers is a small fraction of a radiation
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length and the thickness of the absorbers is of the order of one radiation length.
In such a sampling calorimeter, one is essentially counting the number of charged
tracks in each sample layer. The simple model of shower development discussed
before, suggest that the number of tracks reaches a sharp maximum at the point of
the maximum of the shower. The error on the number of charged tracks is there-
fore dominated by the error on the number of charged tracks at the maximum of the
shower Nmax = E/Ec. The error on the energy resolution of the sampling calorimeter
is therefore approximately given by

σ {E}
E

≈
√

1

Nmax
≈
√

Ec

E

For electromagnetic calorimeters where a few percent of the shower is sampled,
the statistical term in Eq. (6.2) is typically ≈0.1.

For sampling the number of charges in a sampling calorimeter any method for
measuring the amount of ionisation can be used. Sampling calorimeters have been
built with scintillators, with gas ionisation chambers and with silicon detectors.
A popular type of electromagnetic calorimeter uses liquid ionisation chambers for
sampling the ionisation. The basic principle of operation of a liquid-filled ionisation
chamber is the same as for a gas-filled ionisation chamber. The ionising charged
particles produce electron-ion pairs in the liquid and the charges drift towards the
electrodes under the influence of the applied electric field. In principle, many liq-
uids could be used for this purpose, but in practice it turns out extremely difficult to
obtain a liquid that is sufficiently pure to allow efficient charge collection. Liquefied
noble gases, such as argon, krypton and xenon can more easily be purified than other
liquids, because the chemical properties of such atoms are very different from the
chemical properties of the impurities and because these gases are used at cryogenic
temperatures, where most impurities just freeze out. Among the noble gases, argon
has by far the lowest cost and is therefore the preferred choice. Electron drift veloc-
ities in liquid noble gases are a few 105 cm/s at fields of interest, while positive ion
velocities are only of the order of a few cm/s. Except if the detector were to be used
at a rate of only a few Hz, the short signal integration time implies that only the
electron signal will be seen.

As an example of a homogeneous electromagnetic calorimeter, I will briefly
describe the electromagnetic calorimeter of the CMS detector. CMS is one of the
very large detectors that were installed at the Large Hadron Collider of CERN in
2008. The main characteristics of the LHC accelerator were already presented in
Sect. 3.5. Figure 6.22 shows a very schematic layout of the CMS detector. A detailed
description of the CMS detector can be found in [8].

In the collision of high-energy protons, a large number of secondary particles
is produced. The aim of the CMS detector is to observe as many of these parti-
cles as possible and determine their direction and their energy. The electromagnetic
calorimeter of CMS is located inside a large cylindrical magnet just outside of the
detector for charged particles (tracker). It is designed to measure the energy and
the position of electrons, positrons and gamma rays. The layout of the device is
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Fig. 6.22 Cut away view of the CMS detector. The beam pipe runs along the central axis of the
apparatus. Starting from the centre the particles see the central detector that identifies charged
particle tracks, the electromagnetic calorimeter, the hadronic calorimeter and the superconductive
magnet coil. Outside the magnet coil is the muon detector. Figure copyright CERN

schematically represented in Fig. 6.23. The electromagnetic calorimeter uses blocks
of lead tungstate scintillator (PWO) 230 mm long and measuring 22 × 22 mm2

at the front side and 26 × 26 cm2 at the backside. The scintillator blocks in the
endcaps are slightly larger. A length of 230 mm of PWO corresponds to 26 radi-
ation lengths. A total of ≈80,000 such blocks of scintillator are arranged around

Fig. 6.23 Electromagnetic calorimeter of the CMS experiment. This figure shows one quarter of
the detector. The beam–beam interaction point is in the lower left corner of the figure. The detector
consists of ≈80,000 blocks of BGO scintillator pointing towards the interaction point
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the interaction point with the blocks always pointing with the long axis towards the
interaction point. In fact, there is a small angle between the axis of the crystals and
the line pointing towards the interaction point in order to prevent gamma rays from
escaping detection by passing in the narrow gaps between adjacent crystals.

In CMS, PWO is chosen as a scintillator because of its short radiation length and
short decay time. This scintillator has a rather low light yield, but at this high energy
light yield is far less important than at lower energy. The scintillator blocks are long
enough to fully contain the electromagnetic shower in the longitudinal direction,
but the showers are wider than the blocks. Part of the shower will leak to the neigh-
bouring blocks and it is necessary to sum the energy deposited in a 3 × 3 array of
neighbouring blocks to get the correct value for total energy of the gamma ray. The
spreading of the light over several blocks allows the determination the position of
the gamma ray to a precision much better than the size of the blocks. In CMS, this
accuracy is about 1 mm r.m.s. The light of the scintillator is read by avalanche pho-
todiodes because the calorimeter is inside a strong magnetic field of 4 tesla, and this
large field precludes the use of photomultiplier tubes. For the CMS electromagnetic
calorimeter, the coefficients in the energy resolution formula (Eq. 6.2) are a = 3%
and b = 0.5%.

Hadronic calorimeters. For detecting neutral hadrons one uses a device some-
what similar to the electromagnetic calorimeter just discussed. A hadron interacting
in a block of material will undergo strong interactions with the nuclei in the material
and in the collision produce a number of secondary hadrons, mainly protons, neu-
trons and π -mesons. Positively charged pions, negatively charged pions and neutral
pions are produced roughly in equal numbers. The neutral pions decay after a few
micrometer into two gamma rays. The other secondary hadrons will again interact,
producing more protons, neutrons and π -mesons and so on. The phenomenon is
similar to the electromagnetic avalanche induced by a high-energy gamma ray, with
a few important differences, though.

For all heavy materials, the hadronic interaction length is much longer than
the radiation length. The concept of hadronic interaction length was introduced in
Sect. 2.5. For iron, copper and tungsten, the hadronic interaction length is 16.8, 15
and 9.6 cm, respectively, to be compared with 1.76, 1.43 and 0.35 cm, respectively,
for the radiation length. To fully absorb most of the hadronic shower produced by a
particle of 100 GeV, about 8–10 hadronic interaction lengths are needed. A hadronic
calorimeter made entirely of inorganic scintillator such as PWO would need a ≈1.5
metre thick layer of scintillator and would be prohibitively expensive. A more cost-
effective solution must be used and the hadron calorimeters are always sampling
calorimeters with sheets of plastic scintillators as active material. To extract the light
from the scintillator, wavelength shifting rods or wavelength shifting fibres are uni-
versally used. This readout method avoids the limitation imposed by the Liouville
theorem as discussed in Sect. 6.2. The energy resolution that can be obtained with a
hadronic calorimeter is typically given by

σ {E}
E

≈ 0.6√
E[GeV]
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Notice that the energy resolution of a hadronic calorimeter is much worse than
the energy resolution of an electromagnetic calorimeter. There are several rea-
sons for this. First, a hadronic calorimeter is always a sampling calorimeter. A
very important additional cause of degradation of the performance of a hadronic
calorimeter has to do with the different response of the hadron calorimeter to the
hadronic part of the shower and to the electromagnetic part of the shower. The rea-
son for this difference is that of the order of 50% of the energy of the hadrons goes
into breaking up the nuclei and into the energy of nuclear fragments. The energy
used for breaking up the nuclei is lost, and the kinetic energy of the nuclear frag-
ments is converted very inefficiently into scintillation light, such that this energy is
also largely lost. The excited nuclei decay with a time constant that is large com-
pared to the integration time of the signal, and this energy is therefore also lost.
In the first interaction of the shower typically one third of the energy goes into
the creation of neutral pions and these decay instantly into gamma rays and in this
way give rise to electromagnetic showers. In all the subsequent hadronic interac-
tions, additional neutral pions are produced, therefore the electromagnetic fraction
increases with energy. This fraction varies from ≈30% at 10 GeV to ≈60% at 1 TeV.
Moreover, this electromagnetic fraction is subject to large fluctuations and together
with the different response of the calorimeter to the two components in the shower
this degrades the energy resolution. This, in fact, is the main effect limiting the
energy resolution of hadron calorimeters. A significant improvement in the resolu-
tion of hadronic calorimeters will only be possible with a much more sophisticated
design that corrects for these effects.

Cosmic air showers. A somewhat different use of the scintillation effect is the
observation of cosmic air showers. If a very high-energy cosmic ray enters the atmo-
sphere, it will initiate an avalanche of secondary particles. These particles produce
light by Cherenkov effect and by scintillation of the nitrogen in the air. For ener-
gies of ≈1014 eV and above the scintillation light produced in such air showers
is sufficient to observe the light on a moonless night with a clear sky. A detector
for high-energy cosmic air showers essentially consists of a parabolic mirror and a
suitable photodetector. The optical quality of the mirror does not need to be compa-
rable of what is needed for optical astronomy. The only function of the mirrors is to
collect more light.

6.7 Applications of Scintillators in Medicine

Scintillators in radiology. Inorganic scintillators are also used extensively in X-ray
imaging and in nuclear medicine. Imaging the inside of the human body with
X-rays, called radiology, is the oldest medical imaging technique. X-ray imaging
is based on the different absorption of X-rays in different body tissues. Figure 6.24
shows the linear attenuation coefficient in water and bone. The absorption in the soft
tissues of the body is similar to the absorption in water.

We see that below 20 keV the mean free path of X-rays is less than 1 cm and
therefore no useful images can be made with such X-rays, except when imaging
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Fig. 6.24 Linear attenuation
coefficient for water, bone
and CsI scintillator. The data
for this figure were obtained
from [9] in Chap. 1

small organs such as teeth. As the energy increases, the body becomes more trans-
parent to X-rays, but the contrast also decreases. The useful energy range for
medical X-ray imaging is therefore ≈20–80 keV.

In Fig. 6.24, we also show the linear attenuation coefficient for the inorganic
scintillator CsI. It can be seen that in the region of interest, ≈150 μm of scintillator
will stop about half of all X-rays.

Many years ago X-ray images were made using the direct interaction of X-rays
in ordinary photographic emulsions, but the detection efficiency of the photographic
film for X-rays is low and results in a correspondingly larger dose to the patient.
Today, this method is still used in material testing where the dose is less important.
It allows a better spatial resolution in the image than any other image recording
method.

Until recently, most radiological imaging was done with the film-screen method.
In this technique, a layer of scintillating powder, typically 300 μm thick, is applied
on a plastic support. Such a layer of scintillator is usually called a phosphor. A
photographic emulsion is applied against the phosphor screen. This photographic
emulsion simply records the scintillation light produced by the X-rays in the
phosphor screen. After development, the film contains the image. The scintillator
materials used in this application are often different from the scintillators discussed
previously since speed is not important here. A scintillator often used for this pur-
pose is Gd2O2S:Tb and 10 photons/keV X-ray energy will reach the photographic
emulsion. The film and screen assembly used in the film-screen method is illustrated
in Fig. 6.25.

The film-screen method is more and more being replaced by a technique mar-
keted under the name ‘computed radiography’. ‘Storage phosphor screen’ would be
a more appropriate name. A storage phosphor screen looks similar to the screens



200 6 Detectors Based on Scintillation

Fig. 6.25 Illustration of the
film-screen method for X-ray
imaging

used in the film screen method, but it uses a different type of phosphor that has
the capability of ‘remembering’ the X-ray image. The physical principle behind the
image storing property is explained in Fig. 6.26.

The most commonly used scintillator in storage phosphor screens is BaFBr doped
with europium 2+ ions. In this scintillator, the Eu2+ ion has 4f and 5d energy levels
in the band gap of the host material. It acts as luminescence centre and emits at
390 nm with a decay time of ≈1 μs. By suitable preparation of the material, it
is possible to create many vacancies of the negative ion (fluor or bromine) in the
BaFBr host lattice. Such vacancies act as electron traps and are called F-centres.
The binding energy of the electrons in these traps is typically in the optical region;
therefore, the presence of such traps will tend to colour the material. The name
F-centre derives from ‘farbe-zentrum’ the German name for ‘colour centre’. This
phenomenon causes many coloration effects in natural minerals.

In BaFBr, the binding energy of the electrons in the F-centre is ≈2 eV. If any
X-ray interacts in the BaFBr:Eu2+, it will create a large number of electron–hole
pairs. However, most of these electrons will never reach the luminescence centre
because they are trapped in the F-centre. At room temperature electrons can remain
trapped almost indefinitely. If one later illuminates the phosphor plate with photons
of ≈2 eV (≈630 nm), the electrons will be liberated from the F-centres, reach the
Eu2+ luminescence centres and emit scintillation light at 390 nm.

If a point on the surface of the storage phosphor screen is stimulated with light at
630 nm, the amount of light emitted at 390 nm will be proportional to the number of

Fig. 6.26 Band structure in a
BaFBr:Eu2+ storage phosphor
screen. The F-centres are
electron traps with a binding
energy of about 2 eV
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Fig. 6.27 Principle of a
readout device for storage
phosphor screens. The laser
beam scans a line of the
phosphor plate and a bundle
of fibres guides the light to
the photomultiplier tube. The
phosphor plate itself moves in
the direction perpendicular to
the laser scan line

electrons trapped in F-centres at this point. This signal is proportional to the X-ray
dose received at this point during the recording of the image.

The method to retrieve the stored image from a storage phosphor screen is illus-
trated in Fig. 6.27. A small light spot from a laser scans the surface of the X-ray
storage phosphor image plate. An oscillating mirror causes the light spot to travel
back and forth along a line. Optical fibres aligned along the line travelled by the light
spot collect the photo-stimulated luminescence light emitted at 390 nm. These opti-
cal fibres guide the light to a photomultiplier tube. The stimulation light (630 nm) is
stopped by means of an appropriate optical filter placed between the bundle of light
guides and the photomultiplier. The scintillation light at 390 nm is not stopped by
this filter and recorded by the photomultiplier tube. To scan the complete area of the
plate, this plate is moving in a direction perpendicular to the laser line.

The main advantage of storage screens over the conventional film screen method
is the larger dynamic range. In the film screen method, the image is recorded as
variations in density (blackness), of the film. All irradiation levels above a certain
value are black and can no longer be differentiated by the human eye, while all
levels of irradiation below a certain level are seen as white and are also no longer
differentiated. The dynamic range of this recording technique is limited to about
a factor 100. With storage phosphor screens, the image is recorded electronically
and a dynamic range of up to 10,000 is possible. When the image is printed on a
film for inspection by a radiologist, the image processing software can adjust the
density levels such that the information remains visible, also in the parts that would
otherwise be too dark or too light.

It is expected that in the future the storage films will be replaced by a new tech-
nique called ‘digital radiography’ (DR). In DR, the X-ray image is recorded with
the help of a phosphor layer in direct contact with a flat panel detector having a
large number of small silicon photodetector pixels and with the circuitry allowing
the readout of these pixels. The main difficulty in this technique is that for radiogra-
phy it is necessary to have detectors that can record an image of 40 × 40 cm2. The
largest sizes of silicon monocrystals that are available have only 8 inch in diameter.
The photodetectors pixels and readout circuitry must therefore be made in amor-
phous silicon. Amorphous silicon can be deposited by Chemical Vapour Deposition
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technique over large areas. This technique is aggressively being developed for the
production of low-cost solar cells. Such amorphous silicon is less suitable for mak-
ing electronic components than monocrystalline silicon, but the technology has now
been improved to the point where suitable large panels with silicon photodetectors
and the associated readout circuitry can be made.

One of the limitations of this technique, and of all other techniques using phos-
phor screens to convert the X-rays to light, is the spreading of the light in the
phosphor layer. The light from an infinitely narrow X-ray beam will spread by
diffusion in the phosphor layer and form a light spot with a diameter of the order
of the thickness of the phosphor layer. It is therefore necessary to make a compro-
mise between the detection efficiency and the spatial resolution. A peculiar property
of CsI:Tl scintillator allows to overcome this limitation. Indeed CsI can be vapour
deposited in a way as to form a layer of small microcolumns or needles. These nee-
dles behave like light guides channelling the light to the photodetector, and in this
way strongly reduce the lateral spread of the light. Figure 6.28 shows micrographs
of such a CsI layer.

An even more ambitious road towards DR is the so-called direct conversion X-ray
imaging. In this approach, one is not using a phosphor for converting the X-ray
energy to light, but directly records the ionisation left in some suitable material.
Silicon cannot be used for this, because the stopping power is too low. The main
difficulty is the fact that one needs to cover a surface of the order of 40 × 40 cm2.
With monocrystals such as Ga, this surface must be made from smaller detectors,
and one has to deal with artefacts at the edges between the detectors. Selenium
can be deposited as amorphous selenium over large surfaces and seems the most
promising material to realise this kind of X-ray imaging detectors.

All presently used detectors in radiology integrate the signal because the event
rate is too large to allow counting individual X-rays. However, counting individual
X-rays would have the major advantage that it would be possible to select X-rays

Fig. 6.28 Scanning Electron Microscope micrographs of microcolumnar CsI:Tl, Eu scintillator
(cesium iodide with two added dopants, thallium and Europium) layer grown by vapour deposition.
Left figure: seen from the side, Right figure: seen from above. Photographs courtesy of RMD [10]
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in certain energy windows. Developing systems that count individual X-rays and
therefore would really deserve the name ‘digital’ are presently an active research
field.

Scintillators in positron emission tomography. Another important medical
application of scintillators is as gamma detectors in scintigraphy and in positron
emission tomography (PET). Positron emission tomography is one of the powerful
medical imaging techniques of nuclear medicine. In PET, a physiologically relevant
compound is labelled with a positron-emitting isotope. The term ‘labelled’ means
that a normally stable atom in the molecule is replaced by a radioactive isotope of
the same element. The chemical properties of the labelled compound are identical to
the properties of the natural one and this labelled compound will take part in all pro-
cesses in the body exactly in the same way as the natural compound. At some point
the radioactive isotope emits a positron and this positron has a kinetic energy of a
few 100 keV. At this energy the range of the positron in the living tissue is usually
less than 1 mm. After coming to rest, the positron annihilates into two nearly back-
to-back gamma rays of 511 keV. The mean free path of gamma rays of 511 keV
in the human body is about 10 cm. In many cases, the two gamma rays will leave
the body without undergoing scattering, i.e. with their original direction unchanged.
A PET scanner basically is a detector for gamma rays of 511 keV surrounding the
patient. If two 511 keV gamma rays are detected at the same time, we assume that
these come from the same annihilation event and we know that the annihilation and
therefore the molecule containing the radioactive isotope was somewhere on the
line joining the two detection points. From the observation of a large number of
such annihilations it is possible to reconstruct the three-dimensional distribution in
space of the annihilation events. That is the same as the three-dimensional distribu-
tion in space of the labelled molecules. PET is therefore a non-invasive technique
that allows following the evolution of the labelled compound in the body. The value
of PET lies in the very high sensitivity of this technique. Extremely small amounts
of labelled compound are sufficient to obtain the desired information.

Modern PET scanners nearly all use scintillators in combination with photomul-
tiplier tubes for the readout of the scintillation light. Table 6.4 lists some scintillators

Table 6.4 Scintillators for positron emission tomography

Material (∗) Density

Att. length
[mm] at
511 keV

Photo-
fraction [%]
at 511 keV

Light yield
[ph/MeV]

Decay time
[ns]

Emission
[nm]

BGO 7.1 10.4 40 9000 300 480
LSO 7.4 11.4 32 26,000 40 420
GSO 6.7 14.1 25 8000 60 440
LuAP 8.3 10.5 30 11,000 18 365
LPS 6.2 14.1 29 20,000 30 380
LaBr3 5.07 22.3 13.1 70,000 16 380

(∗) BGO = Bi4Ge3O12; LSO = Lu2SiO5:Ce; GSO = Gd2SiO5:Ce; LuAP = LuAlO3:Ce; LPS =
Lu2Si2O7:Ce
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that are used in PET. The most important properties of a scintillator to be used in
a PET scanner are that it must allow for a good time resolution, have a large stop-
ping power and a good energy resolution. The time resolution is important because
this ensures that the two gamma rays really come from the same annihilation event
rather than from two unrelated annihilation events. The stopping power is important
because this ensures a large detection efficiency and therefore that a large fraction
of the annihilation events will be observed. The stopping power depends on the
mean free path for gamma rays of 511 keV in the scintillator material and on the
photofraction. The photofraction is the ratio of the cross section for photoelectric
absorption over the total gamma interaction cross section. The mean free path of the
gamma rays of 511 keV in tissue is about 10 cm. The Compton scattering cross sec-
tion in living tissue is much larger than the photoelectric cross section. Therefore, a
very large fraction of the positron annihilations are followed by the scattering of one,
or both, of the 511 keV gamma rays in the body of the patient. If such events are
detected, but not recognised as scatter events, the corresponding erroneous infor-
mation is included in the image. Energy resolution of the scintillator is important
because it allows rejecting such scatter events.

In its simplest geometry a PET scanner consists of rings of scintillator blocks
each equipped with its photodetector surrounding the patient, as shown in Fig. 6.29.
If one of the 511 keV gamma rays interacts in one of the scintillator blocks, the
position accuracy on this interaction point is equal to the size of the block. One
therefore is lead to use a large number of small scintillation blocks, each equipped
with its own photodetector. Some PET systems indeed use this scheme. However,
to reduce the cost, most commercial PET scanners use a system where one uses less

Fig. 6.29 Figure illustrating
the principle of a PET
scanner. The white lines
represent the directions of
flight of the gamma rays
originating from a few
annihilation events. These
gamma rays interact in the
scintillator blocks. If two
gamma rays interact
simultaneously in two
scintillator blocks, one
assumes a positron
annihilation occurred
somewhere along the line
joining the centres of the two
blocks of scintillating
material
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Fig. 6.30 Illustration of the
principle of a block detector
allowing to read a large
number of small crystals with
fewer photodetectors

photodetectors than crystals. A possible realisation of this detection method is illus-
trated in Fig. 6.30. In this design, groves are cut in a large piece of scintillator such
that it is divided in 64 individual crystals and this block of scintillator is in contact
with only four photomultiplier tubes. Notice that the groves cut in the scintillator
do not go all the way to the bottom of the block. In this way, the light can spread
over the four photomultiplier tubes with the distribution of the light depending on
the position of the crystal where the gamma ray interacted. From the values for the
ratios of the PM signal amplitudes, X and Y defined in Fig. 6.30, the crystal where
the gamma ray interacted, can be identified. Notice that relation between values of
(X-Y) and the crystal is not linear. The mapping between the values of (X-Y) and the
crystal where the gamma ray interacted must be determined experimentally.

The most commonly used positron-emitting isotopes in PET are listed in
Table 6.5. It can be seen that all these isotopes have a short lifetime. This is a
desirable property, because in this way the activity naturally disappears from the
body of the patient after the examination. However, because of this short lifetime,
it is necessary to produce the isotope and incorporate it into a molecule of interest
in a very short time, just before the examination. For carbon, nitrogen and oxygen,
a cyclotron and chemical synthesis equipment at the hospital is necessary. For 18F
a site within a few hours driving of the hospital is possible. Figure 6.31 shows an
example of a commercial PET scanner.

Figure 6.32 illustrates the power of PET by showing PET scans of the brain for
normal healthy volunteers. These subjects were injected with fluoro-desoxy-glucose
(FDG). This is glucose where one oxygen atom was replaced by 18F. The compound

Table 6.5 Most commonly used isotopes in PET

Isotope Half-life [min] Max e+ energy [keV]

11C 20.4 960
13N 9.96 1190
15O 2.05 1720
18F 110. 625
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Fig. 6.31 The Siemens
ECAT EXACT HR clinical
PET scanner. It contains
25′088 LSO crystals
measuring 5.9 × 2.9 ×
30 mm2and arranged in a
15 cm long cylinder
surrounding the patient. This
ring of detectors is hidden in
the square box shown behind
the patient’s bed.
Photography courtesy of
Siemens

is metabolically very similar to normal glucose. The glucose concentrates in areas
where there is increased metabolic activity in the brain and this in turn shows up
as an increased amount of radioactivity. The right-hand side of the figure shows
four scans where the subject was given different kinds of auditory stimulation. With
only verbal stimuli (a Sherlock Holmes story), the left-hand side of the brain appears
more active; with non-verbal stimuli (a Brandenburg concerto) there is more activity
in the right-hand side.

Fig. 6.32 PET scans for normal volunteers that have been injected with FDG. The different
images correspond to different conditions as indicated. The colour indicates the amount of activity
observed in a particular part of the brain. In decreasing order of activity the colour code is: red,
yellow, green, blue, dark blue. Figure from [9], Copyright John Wiley & Sons, Inc., 1984,
reproduced with permission
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In the presently used commercial PET scanners the accuracy on the time dif-
ference between the two gamma rays is a few nanoseconds. This is sufficient for
random coincidence rejection. However, if this timing accuracy could be improved
to a value significantly better than 1 ns, it would be possible to use the timing infor-
mation to localise the annihilation point along the line of flight of the two gamma
rays. This information could be used to reduce the statistical noise in the image.
Such systems are presently actively being developed.

6.8 Exercises

1. Assume that a detector for gamma rays consisting of LSO scintillator and a
photomultiplier tube. The signal is taken from the anode of the PMT with a
50 � coax cable and brought to an oscilloscope. The input impedance of the
oscilloscope is 50 � and the gain of the PMT is 105. What will be the sig-
nal amplitude when observing gamma rays of 1 MeV? Note: assume a light
collection efficiency 50% and a photocathode quantum efficiency of 25%.

2. Consider a source emitting gamma rays of 511 keV. Calculate the energy where
you expect the backscatter peak in the pulse height spectrum.

3. Consider a CsI:Tl scintillator. What fraction of the energy lost due to the
interactions with the electrons in the material is converted to scintillation light?

4. Consider a PIN diode with a quantum efficiency of Eff = 60%. Assume that it
is exposed to a light flux of 1 μW at a wavelength of 565 nm. What will be the
photocurrent?

5. Consider a PET scanner with a solid angle covering around it centre point of
� = 10%. Assume that the detection efficiency for a gamma ray of 511 keV and
within the solid angle is Eff = 20%. Assume that you place a point source in
its centre with an activity of 1 mCi. What will be the single count rate and the
coincidence count rate?

6. In several photodetectors, the charge multiplication gives rise to an exponential
pulse height distribution for single primary charges. Show that in this case the
excess noise factor equals 2.
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Chapter 7
Neutron Detection

A neutron has no electric charge and therefore leaves no trace in matter except
when it undergoes a nuclear interaction. All detection of neutrons is therefore based
on letting the neutron interact and observing the charged reaction products. The
detection of high-energy neutrons was discussed in Sect. 6.6. The present chapter
deals with the detection of neutrons at nuclear energies, i.e. neutrons with a kinetic
energy less than a few 10 MeV. Because the neutron interaction cross sections in
most materials are very strongly dependent on the energy, different methods are
used for neutrons of different energies. In many applications, the neutrons have to
be detected in the presence of a large gamma ray background. The issue therefore
often is distinguishing the neutrons from the gamma rays.

The present chapter is for a large part based on [1] in Chap. 1 where a more
extensive discussion of the subject can be found.

7.1 Slow Neutron Detection

The term ‘slow neutrons’ refers to neutrons with a kinetic energy of less than 0.5 eV.
In this energy range, a very important reaction is the neutron capture. Some isotopes
have very large neutron absorption cross sections and all slow neutron detection
will be based on using one of these isotopes. The most important isotopes for this
purpose are

Boron-10. The neutron absorption reaction is

10
5 B + 1

0n → 7
3Li + 4

2α Q = 2.792 MeV

10
5 B + 1

0n → 7
3Li∗ + 4

2α Q = 2.310 MeV

The symbol Q stands for the difference in mass between the particles in the
initial and the final state and therefore for the total energy liberated in the reac-
tion. The exited state 7Li∗ decays with emission of a gamma ray with a lifetime
of ≈10−3 s. Usually, this gamma ray escapes unobserved from the detector. For
thermal neutrons, the second reaction has a branching fraction of 96%.

209S. Tavernier, Experimental Techniques in Nuclear and Particle Physics,
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Energy-momentum conservation applied to the reaction above requires

ELi + Eα = Q
mLiνLi = mανα

From this we readily get

ELi = mα

mα + mLi
Q = 0.84 MeV

Eα = mLi

mα + mLi
Q = 1.47 MeV

Two final state objects, the 7Li∗ nucleus and the alpha particle, are almost exactly
back-to-back. The cross section for this reaction as a function of energy is shown in
Fig. 7.1. The natural abundance of 10B is 19.9%.

Lithium-6. The neutron absorption reaction is

6
3Li + 1

0n → 3
1H + 4

2α Q = 4.78 MeV

The cross section for this reaction is also given in Fig. 7.1. The natural abundance
of 6Li is 7.4% and lithium is available in an isotopically enriched form.

Helium-3. The neutron absorption reaction is

3
2He + 1

0n → 3
1H + 1

1p Q = 0.764 MeV

The natural abundance of 3He is extremely low; only 0.000137% of all naturally
occurring helium is 3He! Commercial 3He is made in nuclear reactions. The neutron
absorption cross section of 3He is shown in Fig. 7.1.

Fig. 7.1 Neutron capture cross sections versus neutron energy for 10B, 6Li and 3He. The data for
this figure were obtained from [8] in Chap. 1
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Gadolinium-157. The isotope 157Gd has a very large capture cross section for
thermal neutrons: 255,000 barns! The natural abundance of 156Gd is 15.7%. There
are several final states containing gamma rays and conversion electrons. A 72 keV
conversion electron is present in 39% of the neutron capture events and neutron
detection is usually based on the observation of this final state electron. The gadolin-
ium reaction will not allow easy discrimination between neutrons and gamma rays,
since an electron from a gamma interaction will not easily be distinguished from
the conversion electron. Gadolinium can only be used when gamma rejection is less
important.

Uranium and plutonium. The fission cross sections of 233U, 235U and 239Pu
are large for slow neutrons (see Fig. 2.19). These reactions can therefore be used
for slow neutron detection. The Q value in these reactions is always very large,
typically 200 MeV, allowing easy discrimination between gamma rays and neutrons.
However, these nuclei are all alpha emitters and this can give rise to pulses that
may be confused with neutron capture events. One needs to rely on pulse height
discrimination to distinguish the neutron events from alpha emissions.

Proportional tubes using one of the above neutron capture reactions are com-
monly used for slow neutron detection. Either a gas containing 10B or 3He can be
used, or a tube lined with 10B or with one of the fissile isotopes 233U, 235U or 239Pu.
These counters will also be sensitive to gamma rays, because the gamma rays will
interact in the walls of the tube and produce electrons in the active gas volume.
Such an electron will deposit about 2 keV/cm of gas and therefore a gamma ray will
almost never deposit more than a few 10 keV in the counter. The neutron capture
cross sections considered above give rise to very ionising alpha particles or nuclei
and the range of these in the counter gas is of the order of centimetres. One or both
of the fragments will usually deposit all their energy in the gas. If individual pulse
heights are recorded, these detectors are therefore very efficient in discriminating
between neutrons and gamma rays. This is illustrated in Fig. 7.2.

Only BF3 or 3He are used as active chamber gas in the proportional tubes. 3He
with ≈5% of quenching gas is a good working gas in a proportional counter. The
detector will also work well at a pressure of several bar. Increasing the pressure is

Fig. 7.2 Gamma interactions
and neutron interactions in a
proportional counter filled
with 3He or BF3. A neutron
interaction gives rise to two
very ionising tracks, while a
gamma ray will usually
interact in the walls of the
detector and give rise to a
minimum ionising track
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often used to increase the neutron detection efficiency. The mean free path of ther-
mal neutrons in 3He at one atmosphere is 7.3 cm (see Exercise 2). However, the
lower Q value compared to boron makes distinguishing neutron interactions from
gamma interactions more difficult with 3He. Moreover, 3He is expensive; commer-
cial 3He is made in nuclear reactions and its price was approximately 200 C/litre of
gas at standard temperature and pressure in 2008.

BF3 is not a very good working gas for a proportional counter, probably because
BF3 is slightly electronegative. Often tubes filled with BF3 are used at reduced
pressure where the operating conditions are more stable. BF3-filled proportional
tubes are also prone to ageing. Furthermore, this gas is very toxic and is also cor-
rosive. However, the high Q value of this reaction helps in distinguishing neutron
interactions from gamma interactions.

If the diameter of the tube is very large compared to the typical range of the
reaction products in the gas, nearly all the interactions give rise to the same pulse
height. In this case, the pulse height spectrum in 3He shows one clear peak and
BF3 it shows two peaks corresponding to the two reaction channels. The range of
the reaction products in the gas is of the order of centimetres and the proportional
tubes are usually only a few centimetres in diameter. As a result, one of the reaction
products will often hit the wall of the tube before it reaches the end of its range.
The result is a pulse height spectrum showing a broad shoulder below the total
absorption peak as illustrated in Fig. 7.3. This reduces the ability to discriminate
between gamma rays and neutrons.

An alternative approach is to line the inner walls of the proportional tube with a
suitable neutron-sensitive material. In this case, any proportional chamber gas, such
as argon–isobutane can be used. For lining the inner wall of the detector, 10B is often
used. Obviously, the layer of 10B should be very thin (about 1 mg/cm2), otherwise
the reaction products will be absorbed in the 10B layer itself and not enter into the
active gas of the counter. As a result, the detection efficiency for neutrons of this type
of detector is only of the order of 1%, much lower than what can be achieved with a
neutron-sensitive gas. The pulse height spectrum obtained with such a chamber will

Fig. 7.3 Pulse height spectrum in a proportional tube filled with BF3 exposed to a neutron flux.
The step structure is due to one of the reaction products hitting the wall of the tube before it reaches
the end of its range. The figure to the right shows a neutron interaction in a proportional tube where
the reaction is fully contained in the active gas of the chamber. Such an event would be in the total
absorption peak at the right of the pulse height spectrum
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be more or less flat from zero to a maximum value corresponding to1.47 MeV. This
is the maximum energy the alpha particle can deposit in the gas. Because of this
flat pulse height spectrum, this type of detectors is less efficient in discriminating
between neutrons and gamma rays.

One of the big limitations of proportional counters used as neutron detectors
is the slow rise-time of the pulse and the concomitant poor time resolution. This
rise-time is often several microseconds. A good time resolution is essential in some
applications, for example for ‘time of flight measurements’.

When a good time resolution is important, neutron-sensitive scintillators are pre-
ferred. A commonly used neutron-sensitive scintillator is LiI doped with ≈1% of
europium. The lithium provides the neutron sensitivity. This scintillator material is
somewhat similar to NaI:Tl. It has a light yield of about 14,000 photons/MeV and
a decay time of 300 ns. LiI is also very hygroscopic. Other scintillator materials
that are often used are a scintillator made from fusing B2O3 and ZnS and a plastic
scintillator based on boron-loaded plastic. Such boron-loaded plastic scintillators
are commercially available with 5% of boron content and with a light yield that is
75% of a typical plastic scintillator.

7.2 Neutron Detectors for Nuclear Reactors

In nuclear reactors, most of the power is generated through fission induced by slow
neutrons. It is therefore important for the reactor control to measure the slow neu-
tron flux in the reactor. It is customary to distinguish between ‘in-core’ detectors
and ‘out-of-core’ detectors. Particularly, in-core detectors must work at very high
neutron fluxes, at very high temperature and need to be very small.

For reactor monitoring, gas-filled detectors are almost always used because of
the low gamma sensitivity and the good radiation hardness of this type of detector.

In Sect. 7.1, we have considered proportional counters working in the pulse-
readout mode. The big advantage of the pulse-readout mode is that it allows a very
good rejection of the gamma rays based on pulse height. However, at event rates
exceeding ≈106 counts/s, it becomes very difficult to use the pulse-readout mode.
In addition, at very large fluxes it is impossible to use detectors with gas ampli-
fication, because the space charge due to the positive ions in the tube becomes
so large that it introduces strong non-linear effects. The only possibility is to use
gas chambers working in the ionisation mode and measuring the ionisation current;
therefore, the detector becomes much more sensitive to gamma radiation. Some
gamma rejections can be obtained by measuring the fluctuations on the detector
current. This is the ‘Campbell technique’ and is discussed in Sect. 8.6. Another way
to correct for the gamma background is by using two identical ionisation chambers,
one detector lined with a neutron-sensitive layer and a second identical detector but
without a neutron-sensitive layer. The two chambers have the same sensitivity to
gamma rays. The difference between the ionisation currents in both detectors gives
the neutron-induced signal.
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Fig. 7.4 Typical neutron flux
ranges seen by in-core and
out-of-core neutron detectors
in nuclear reactors. The unit
in this figure is number of
neutrons per cm2 and per
second

In pressurised water reactors (PWR), the routine monitoring of the neutron flux
is usually done with ‘out-of-core’ detectors. In addition, there are usually in-core
detectors for fuel management. The out-of-core detectors measure neutron fluxes
in the range 0–1010 neutrons/cm2/s. In boiling water reactors, there are usually in-
core detectors. These work in the range 104–1014 neutrons/cm2/s. There are usually
different detectors for the start-up of the reactors, for monitoring during full power
operation and for the intermediate regime. The neutron flux ranges for these differ-
ent detectors are illustrated in Fig. 7.4. In the start-up regime the neutron fluxes are
low, but the gamma fluxes are relatively high and good gamma rejection is essential.
Detectors working in pulse readout mode are normally used. At full power the neu-
tron fluxes are always very large and only detectors working in the current readout
mode can be used. The gamma flux in the core of a reactor working at full power is
typically 108 R/h (R stands for roentgen, see Sect. 3.2).

A typical in-core neutron detector for a boiling water reactor is the fission cham-
ber shown in Fig. 7.5. A small cylindrical gas volume is filled with argon at a
pressure of several atmospheres. The walls of the chamber are lined with highly

Fig. 7.5 A typical in-core
fission chamber used in BWR
neutron flux monitoring
systems
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enriched 235U3O8. One difficulty with these devices is the burn-up of the neutron-
sensitive material. One year of operation will typically correspond to an integrated
neutron flux of 1.7 1021 and a reduction of the signal by as much as a factor of
two has been reported when simple lining with 235U3O8 is used. One method for
reducing the effects of burn-up in fission chambers is to combine fertile and fissile
material in the neutron-sensitive lining of the detector. In this case, the fertile iso-
tope will gradually be converted in fissile nuclei and compensate for the burn-up of
the original fissile material. For this, mixtures of 238U and 239Pu or mixtures of 234U
and 235U are used.

Fission chambers that have been exposed for a long time (several days) to a high
neutron flux show a memory effect due to the build-up of fission products within
the chamber. Immediately after exposure, a residual current of ≈0.1% of the full
current is observed. This goes to 10–5 after 10 days.

Another detector that is widely used for reactor monitoring is the so-called ‘self-
powered detector’. These devices are based on the use of a material with a relatively
large cross section for neutron capture followed by a subsequent beta decay. The
detector measures the current caused by the beta emissions over a very thin isolat-
ing gap. The insulating material in the gap usually consists of magnesium oxide or
of aluminium oxide. No voltage is needed to collect charges and this explains the
name ‘self-powered detector’. Figure 7.6 shows very schematically the geometry
of this kind of detector. For the emitter, vanadium or rhodium are commonly used.
Table 7.1 summarises some of the important properties of these materials when used
as emitter in self-powered detectors. The somewhat lower cross section of vanadium
turns out to be an advantage because it reduces the burn-up of the detector. Because

Fig. 7.6 Schematic representation of a self-powered neutron detector for in-core neutron flux
monitoring

Table 7.1 Emitter materials commonly used in self-powered detectors

Emitter
material

Isotope of
interest and
abundance

Activation
cross section
[barn]

Half-life of
induced beta
activity

Beta endpoint
energy

Neutron
sensitivity[

A

n/cm2 · s

]

Vanadium 51
23V(99.75%) 4.9 225 s 2.47 MeV 5 × 10−23

Rhodium 103
45 Rh(100%) 139 44 s 2.44 MeV 1 × 10−21

11 265 s
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of the decay time of the beta emissions, it takes several times this half-life before
the detector signal fully reflects a change in neutron flux.

One of the primary disadvantages of self-powered detectors based on beta emis-
sion is this slow response time. To avoid this, sometimes, other types of self-powered
detectors are used. These are based on prompt gamma emission that follows neu-
tron capture in certain materials. Cobalt and cadmium emitters are often used for
this purpose, but this type of detector tends to be less sensitive to neutrons and more
sensitive to gamma rays.

7.3 Fast Neutron Detection

The detectors for slow neutrons discussed in Sects. 7.1 and 7.2 rely on the very
large cross section for slow neutron capture by certain isotopes. Without the addi-
tion of a moderator, these detectors are not well suited for detecting fast neutrons.
The elastic cross section for fast neutrons is large in several materials. Detecting the
recoil nucleus in elastic scattering is therefore a good method for detecting fast neu-
trons and this forms the basis for a wide variety of neutron detectors. Most detectors
for fast neutrons are based either on using neutron moderation or on using elastic
scattering. These two classes of neutron detectors are discussed below.

7.3.1 Detectors for Fast Neutrons Based on Moderation

For several isotopes, the neutron capture cross sections for slow neutrons are several
orders of magnitude larger than typical cross sections for fast neutrons. It is therefore
possible to build efficient detectors for fast neutrons that are based on first slowing
down the neutrons and then detecting them. Several useful detectors are based on
this principle.

The spherical neutron dosimeter, sometimes called Bonner counter, is one of
these. This instrument consists of a small detector for slow neutrons, surrounded by
a sphere of moderator material, usually polyethylene or paraffin. The slow neutron
detector is either a LiI scintillator or a small 3He counter. The moderator sphere is
typically 10–12 inch in diameter, while the LiI scintillator is only a few millimetres
in size.

If a low-energy neutron enters the detector, it will quickly slow down and subse-
quently it has a good chance of being absorbed somewhere in the moderator before
it can reach the LiI scintillator. As the energy of the neutron increases, the detec-
tion efficiency increases, because the neutron has a greater chance to reach the LiI
scintillator before it is absorbed in the moderator. As the energy is increased further,
the detection efficiency decreases again since the neutron has less chance to be fully
thermalised in the moderator. The result is a neutron detection efficiency that first
increases with energy, reaches a maximum and then decreases again. The interest in
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Fig. 7.7 Fuji Electric
NSN10014 neutron
dosimeter. The detector
consists of a 3He proportional
counter in a polyethylene
sphere. It can be used for
neutrons with energy between
0.025 eV and 8 MeV. Figure
courtesy of Fuji Electric

this type of detector stems from the fact that the energy dependence of the detection
efficiency mimics the energy dependence of the dose equivalent for biological dam-
age delivered per neutron between 0 and ≈10 MeV. The similarity of the two energy
dependences is purely accidental, but allows very useful neutron dosimeters to be
made. For a detector consisting of a 12-inch sphere of polyethylene and a 4-mm
LiI scintillator, the sensitivity is 3000 counts/mrem. The advantage of using a 3He
counter instead of a LiI scintillator is the reduced sensitivity to gamma rays. With a
more elaborate design of the absorber sphere, it is possible to extend the sensitivity
to neutrons with energy larger than 10 MeV. Neutron dosimeters based on this prin-
ciple are available from several companies. Figure 7.7 shows an example of such a
commercial neutron dosimeter.

Often a counter with a detection efficiency independent of the neutron energy is
required. It turns out that this can be achieved by using a cylindrical geometry with a
slow neutron detector in the axis and a cylinder of moderator material around it. This
type of counter is often called a ‘long counter’ because of its shape. For the slow
neutron detection, usually a 3He proportional tube is used. Some additional holes
and neutron absorbers are often needed to obtain a satisfactory energy response.
Figure 7.8 shows an example of a simple long counter.

This detector has the desired response only if the neutrons are coming from a
point situated on axis and to the right-hand side in the figure. The detection effi-
ciency of a long counter as shown in Fig. 7.8 is only ≈0.25%, but a more elaborate
design with several parallel 3He detectors allows this to be increased considerably
while maintaining the flat energy response.

The long counter can also provide some indication of the neutron energy spec-
trum if the 3He counter records the longitudinal position of the neutron interaction.
Figure 7.9 shows the longitudinal distribution of the neutron absorption point in a
long counter exposed to neutrons of various energies. If this counter is exposed to
neutron radiation of unknown energy spectrum, it is possible to derive the energy
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Fig. 7.8 Typical long counter. If this type of detector is exposed to a flux of neutrons coming from
the right-hand side, its sensitivity is independent of the energy of the neutron for neutron energies
of up to a few 10 MeV

Fig. 7.9 Calculated depth distribution of the neutron absorption point for the neutrons of different
energy in a long counter. In this example, we assumed a cylindrical moderator of 30 cm diameter
and having a first part with 40 cm of polycarbonate followed by 60 cm polyethylene. The dis-
tributions for different neutron energies are normalised such as to all have the same height. The
normalisation factors are indicated in the figure. Figure from [1], with permission

spectrum of these neutrons by fitting the shape of the observed interaction depth
distribution to a superposition of response curves of neutrons with different energies.

7.3.2 Detectors Based on the Observation of the Recoil Nuclei

When detecting fast neutrons, one often wants to detect the energy of these neu-
trons. This is called neutron spectroscopy. The long counter discussed previously
gives some limited spectroscopic information, but for this purpose usually detectors
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Fig. 7.10 Total elastic cross section for neutrons on hydrogen, deuterium and carbon. The energy
dependence of the cross section on carbon between 2 and 10 MeV is extremely complex and is
only represented in a very approximate way in the figure. The data for this figure were obtained
from [4] in Chap. 1

depending on the observation of the recoil nucleus in elastic scattering are used.
The most important target nucleus is hydrogen, because in neutron elastic scattering
on hydrogen, the recoil nucleus can receive up to the total energy of the incoming
neutron. Moreover, the elastic scattering cross section of neutrons on hydrogen is
large and well known. The cross sections for elastic collisions of neutrons on a few
relevant light nuclei are given in Fig. 7.10.

Let us assume that we have neutrons of a given energy interacting in a hydrogen-
rich scintillator material. The pulse height spectrum of the scintillator will be equal
to the energy spectrum of the recoil protons. The recoil protons have an energy
spectrum that depends on the neutron energy. If we have neutrons with an unknown
energy spectrum, it is possible to derive the neutron energy spectrum by fitting the
shape of the observed pulse height spectrum of the scintillator to a superposition of
response curves of the counter to neutrons of different energies.

If a neutron scatters on a target nucleus A, the direction and the energy of the
scattered target nucleus are related by energy and momentum conservation. We are
considering here neutrons with energy of at most a few 10 MeV. Since the rest mass
of a neutron is 939.56 MeV, a non-relativistic approximation is sufficient. We leave
it as an exercise for the student to show that we have the following relation (see
Exercise 4)

Erecoil = Eneutron
4mAmn

(mA + mn)
2

cos2 θ (7.1)
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Fig. 7.11 Definition of the scattering angle in the centre-of-mass system and in the laboratory
system. The symbol ϕ denotes the polar angle of the nucleus A around the direction of the incoming
neutron

In this equation the notations are as follows:

Erecoil = energy of the recoil nucleus
Eneutron = energy of the neutron

mA = mass of nucleus A
mn = mass of neutron
θ = angle of the recoil nucleus relative to the direction of the incoming

neutron in the laboratory frame. See Fig. 7.11 for a definition of the
angles.

Furthermore, the scattering angle in the centre-of-mass frame � and the scatter-
ing angle in the laboratory frame .θ are related by (see Exercise 5)

cos θ =
√

1 − cos �

2
(7.2)

Therefore, the relation between the recoil energy and the scattering angle � in
the centre-of-mass frame is given by

Erecoil = Eneutron
2mAmn

(mA + mn)
2

[1 − cos �] (7.3)

Consider the case of a head-on collision between a neutron and a target
nucleus A. In the centre-of-mass frame, the nucleus A bounces back in the direction
it came from without changing its energy. In the centre-of-mass frame the angle is
� =180◦. In the laboratory frame, the nucleus A continues in the direction of the
neutron and the angle of the scattered nucleus A is θ = 0◦. In this case, the energy
of the recoil nucleus A is maximum and is given by

Erecoil−max = Eneutron
4mAmn

(mA + mn)
2
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If the collision in the centre-of-mass system is at small angle �, the angle in the
laboratory frame is θ ≈ 90◦. In this case, the energy of the recoil nucleus is small
and in the limit �→ 0, this energy goes to zero.

The energy spectrum of the recoil nuclei depends on the angular distribution
of the neutron scattering. Let us define σ (�) as the differential cross section for
elastic scattering of the neutron into the solid angle dΩ , with dΩ = dcos �dϕ and
P(cos�) as the probability density function for elastic scattering under an angle �,
both quantities being defined in the centre-of-mass frame. Let us furthermore use
the symbol σ t to denote the total elastic cross section. Because of the symmetry of
the problem, the cross section σ (�) does not depend on the azimuthal angle ϕ, but
only on the polar angle �. Therefore we can write:

P(cos �) d cos � =
(∫

σ (�)

σt
dϕ

)

d cos � = 2π
σ (�)

σt
d cos �

If we define P(Er) as the probability distribution of the recoil energy Er, we have

P(Er) = P(cos �)

∣
∣
∣
∣
d cos �

dEr

∣
∣
∣
∣

And therefore, using Eq. (7.3)

P(Er) dEr = 2π

Eneutron

σ (�)

σt

(mA + mn)2

2mAmn
dEr

There is no simple way to find the angular distribution for elastic scattering. For
many nuclei, this distribution is peaked in the forward and backward direction.

In the case of hydrogen, and for the energies considered here, the elastic cross
section is almost isotropic in the cm frame, i.e. σ (�) = σ t/(4π ). The recoil energy
spectrum therefore is simply a constant between 0 and the maximum value! The
maximum value is the neutron energy itself. See Fig. 7.12. Assume that we have a
mono-energetic beam of neutrons with energy En and with a flux �(En). The total
number of counts in the spectrum will be proportional to Φ(En) σ t(En). The number

Fig. 7.12 Pulse height distribution of a scintillator exposed to a neutron beam with a mixture of
neutron energies. The value of F(E0) is the sum of all recoil distributions for neutrons with an
energy larger than E0
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of counts in the pulse height spectrum F(E), in the interval (E, E+�E) will be given
by

F(E)�E = �E

En
�(En) σ (En) if En > E

F(E)�E = 0 if En < En

For a beam of neutrons with spectrum �(En), the pulse height will be propor-
tional to

F(E) =
∞∫

E

�(E′)σ (E′)
E′ dE′

There is therefore a simple relation between the neutron flux and the derivative
of the pulse height spectrum

dF(E)

d(E)
= −�(E)

σ (E)

E

For measuring the recoil spectrum, plastic scintillators are normally used. Several
plastic scintillators contain only hydrogen and carbon and are very well suited for
this purpose. The neutron energy spectrum is directly related to the derivative of the
pulse height spectrum! However, this simple relation can only be an approximation
due to the following reasons:

– the plastic scintillator also contains other elements, at least also carbon, and elastic
neutron scattering on carbon should be included in the analysis; moreover, other
reactions besides elastic scattering are possible on carbon

– the recoil track sometimes is not fully contained in the scintillator; to minimise
this effect one needs to use a large piece of scintillator material

– scattered neutrons can interact a second time in the scintillator; to minimise this
effect one needs to use a very small piece of scintillator material

– the response of the scintillator is not linear for very ionising particles, such as the
recoil protons

– the scintillator has a finite, i.e. less than perfect, energy resolution
– there usually is background due to gamma rays
– the need for an electronics threshold to cut the noise

All these factors make it non-trivial to obtain a reliable neutron energy spectrum
from the pulse height spectrum observed with a scintillator. An exhaustive discus-
sion of the solution to these problems is beyond the scope of the present text. Besides
plastic scintillators, proportional tubes filled with some gas with low atomic charge
Z are also used in the same way for neutron spectroscopy.
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Fig. 7.13 (a) Schematic representation of a proton recoil telescope (b) Characteristic pulses in a
capture-gated spectrometer (c) Schematic representation of a capture-gated neutron spectrometer

It is also possible to measure the neutron energy spectrum by directly measur-
ing the scattering angle and the energy of the scattered nucleus and get the neutron
energy on an event-by-event basis using Eq. (7.1). This avoids many of the diffi-
culties discussed above, but can only be used if there is a well-collimated neutron
beam. Such a proton recoil telescope is shown in Fig. 7.13(a). Neutrons are inci-
dent on a thin target foil, usually some organic polymer. The energy of the recoil
proton is measured in two detectors, a thin detector measures the energy loss dE/dx
and a second thick detector measures the total energy of the recoil proton. Selecting
on the ratio of the pulse heights in these two detectors allows recoil particles other
than protons to be eliminated and also eliminates some other background. Often
these two detectors are at an angle relative to the neutron beam in order to avoid
interactions of the neutrons directly in the detectors. Gas detectors, semiconductor
detectors and scintillators can all be used for this purpose.

The setup is in a vacuum to prevent the recoil proton from losing too much
energy in the gas. The biggest drawback of this type of detector is the low-detection
probability for neutrons, typically ≈10−5.

Another neutron spectrometer is the ‘capture-gated neutron spectrometer’,
described below. The principle of this type of detector is illustrated in Fig. 7.13(b).
A large volume (>1 litre) of boron-loaded plastic scintillator or a boron-loaded
liquid scintillator is exposed to the neutron beam. If a neutron enters the scintil-
lator, it will slow down by elastic collisions with the hydrogen or other light atoms
present in the scintillator. It will slow down in a number of steps and in each step
it will lose some of its energy. All these elastic collisions happen in a short time,
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typically in 50 ns. The light pulses generated in each of these elastic collisions
all add up to one single pulse. After having lost all its energy, the neutron will
be very slow and will continue to wander around in the scintillator until a boron
atom absorbs it. The time before such an absorption takes place can be quite long,
several 10 μs. In the absorption by a 10B nucleus, the final 7Li nucleus and the
alpha particle together have a kinetic energy of 2.31 MeV and the corresponding
energy is always absorbed in the scintillator. Such a neutron capture event will,
therefore, have a characteristic signature consisting of a first pulse of energy pro-
portional to the kinetic energy of the neutron followed within ≈20 μs by a second
pulse with a characteristic amplitude. If the total event rate in the detector is suf-
ficiently low, the chance association of two unrelated pulses faking a good event
will be low. The big advantage of a capture-gated neutron spectrometer compared
to a proton recoil spectrometer is that its detection efficiency can be of the order
of ≈10% and that it does not require the neutron to come from a well-defined
direction.

7.4 Exercises

1. Consider the neutron absorption reaction below, assume thermal neutrons.

3
2He + 1

0n → 3
1H + 1

1p Q = 0.764 MeV

Use energy and momentum conservation to derive the expression giving the
kinetic energy for two final state particles and calculate value of these for the
reaction above.

2. A commonly used detector for thermal neutrons is a proportional tube filled with
3He gas. Calculate the mean free path of the neutrons in the gas if this gas is at a
pressure of 5 atmospheres. If the tube has an inner diameter of 4 cm, what is the
probability that a thermal neutron going through its centre will be detected?

3. Calculate the fractional decrease in sensitivity of a self-powered detector
with rhodium emitter after exposure during 6 months to a flux of 3 × 1013

neutrons/cm2/s.
4. Derive equation (7.1).
5. Derive equation (7.2).
6. Consider a proportional tube filled with 3He and used as a slow neutron detector.

The gas gain of the tube is 1000 and the capacitance of the anode wire is 100 pF.
What will be the amplitude of a neutron pulse [in mV] be if the integration time
of the pulse is very long?

Reference

1. Y. Tanimura, J. Saegusa, M. Yoshizawa, and M. Yoshida, Design of a single moderator-type
neutron spectrometer with enhanced energy resolution in the energy range from a few to
100 keV, Nucl. Inst. Meth. A547, 592–600 (2005).



Chapter 8
Electronics for Particle Detectors

8.1 Introduction

In the previous chapters, we have seen that the detection of ionising radiation in the
end nearly always comes down to detecting some small electrical signal. Dealing
with such small signals is one of the main challenges in designing detectors for
nuclear physics and particle physics. Photomultiplier tubes and gas amplification
detectors such as Geiger tubes are often used because of their built-in signal ampli-
fication mechanism and therefore larger electrical pulses. However, in many detector
types there is no such built-in amplification mechanism.

In the present chapter, we will explain the basics of nuclear electronics and dis-
cuss the main sources of noise. In Sect. 8.2, we will briefly discuss some important
concepts of signal theory. These concepts will be needed throughout the rest of the
chapter. I do assume that the reader has at least a basic knowledge of general elec-
tronics and circuit theory. In particular, I assume that she or he is familiar with the
concept of complex impedance.

A detector in nuclear electronics is always some device with a large resistance.
The interaction of ionising radiation induces a small electrical current. From the
electrical point of view, a detector is a current source with a large internal resistance
and a small capacitance. This is illustrated in Fig. 8.1. Also, in the absence of any
ionising radiation there is a small current, which is called the dark current or leakage
current depending on the physical mechanism causing it.

There are basically two different modes for measuring nuclear detector signals:
current mode and pulse mode. In the current mode, one simply measures the total
current of the detector and ignores the pulse nature of the signal. This is simple,
but does not allow advantage to be taken of the timing and amplitude informa-
tion that is present in the signal. In the pulse mode, one observes and counts the
individual pulses generated by the particles. The pulse mode always gives superior
performance but cannot be used if the rate is too large.

In many detectors the amplitude of the pulses is proportional to the initial charge
signal and the arrival time of the pulse is some fixed time after the physical event.
By using appropriate thresholds, one can select and count only those pulses that
one wants to count. Often the ‘good events’ are characterised by some specific
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Fig. 8.1 In the electric
circuit the detector behaves
like a current source with a
capacitance and an internal
resistance. The two
intersecting circles represent
a current source

signal amplitude or by the simultaneous presence of two (or more) signals in dif-
ferent detectors. Sometimes also the ‘good events’ are characterised by the absence
of some other signal. Finally, in the pulse mode, one can register a pulse height
spectrum and such a spectrum contains a large amount of useful information.

The basic principle of pulse counting is illustrated in Fig. 8.2. The electronics has
a threshold that should be well above the noise present in the signal. If the signal is
less than the threshold, the output of the circuit is ‘zero’. As soon as the signal level
exceeds the threshold, the output of the circuit is ‘one’. The words ‘zero’ and ‘one’
should not be understood as meaning actually zero volt and one volt, but rather as
voltage levels that have the meaning ‘zero’ and ‘one’. The number of events can

Fig. 8.2 A discrimination
circuit has an analog input
signal and a digital output
signal. If the input signal
exceeds some fixed threshold,
a digital output signal is
generated
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now be obtained with some simple counting circuit. In this process, one should
be aware that the setup could be inefficient. It means that sometimes a real event
in the detector does not produce a pulse that is large enough to produce a signal
exceeding the threshold, or a suitable signal was produced, but the electronics did
not recognise the pulse because it was arriving at the same time as some other event.
This last effect is referred to as dead time.

To obtain a pulse height spectrum the electronics will search for the maximum
of the signal in some pre-defined window around the pulse and the value of this
maximum is digitised and sent to a computer. The computer stores the values for
the maxima of a large number of pulses and displays the result as a histogram.

To see if an event occurred simultaneously with some other event, the electron-
ics will look for the simultaneus presence of two logical signals within some time
window as is illustrated in Fig. 8.3. In coincidence counting, one should be aware of
the possibility to have random coincidences. These are occurences of a concidence
caused by two unrelated events arriving by chance at the same time. It is easy to see
that the rate of random coincidences between two signals is proportinal to the rate
of each type of signal times the duration of the coincidence window.

dNrandom

dt
= dN1

dt

dN2

dt
�t

Fig. 8.3 A coincidence
circuit has two digital input
channels and one digital
output channel. If the two
input signals have some
overlap in time, the two
signals are said to be in
coincidence and a digital
output signal is generated



228 8 Electronics for Particle Detectors

The main challenge in detector electronics is distinguishing the small signals
from the noise. In detector systems, noise is any random signal that is not due to
the physical process one intends to measure. If the noise is only present at the end
of the electronics readout chain it is not a problem. One only needs to amplify until
the signal is larger than the noise. However, if the noise is already present at the
front-end part, at the level of the detector itself, amplification does not help since
the noise is also amplified.

There are many possible causes of noise. Some of these can be reduced to arbi-
trarily low levels by careful design of the measurement system. A good example of
such reducible noise is the pick-up noise. Some of the ubiquitous electromagnetic
radiation can be captured by the front-end part of the measuring device, is amplified
and is present as noise in the output signal. This noise can be due to external devices
unrelated to the measuring system being used, but is often caused by the electronics
of the detector itself. The digital part of the electronics and the readout computer are
often sources of noise. Some level of pick-up noise is nearly always present in the
measurement systems. One of the main technical difficulties in designing nuclear
electronics is keeping the pick-up noise under control. The main method by which
to achieve this is by enclosing the detector in a Faraday cage. A Faraday cage is
simply a box made out of a good conductor, usually copper. A Faraday cage is
very effective in suppressing pick-up noise. However, there are always lines enter-
ing the Faraday cage, for example, power lines or signal output lines, and particular
care must be taken to avoid noise from entering the cage with such lines. Some
commonly used methods to achieve this are illustrated in Fig. 8.4.

Consider the high-voltage input line shown in Fig. 8.4. One can think of the
noise as an unwanted pulse travelling on this line. The problem with pick-up noise
is usually with high-frequency signals and we therefore assume that we need to
suppress high-frequency signals. If no protective measures are taken, a noise signal
on the high-voltage line will arrive on the electronics board. Stray capacitances on
the electronics board will inject a small fraction of this noise pulse into the input of
the amplifier. In Fig. 8.4, we show how this can be avoided. If the high-voltage line
is connected to the Faraday cage by a large capacitance, the amplitude of the noise
pulse is attenuated in the ratio of the impedances. With a proper choice of the values
of R and C, this strongly suppresses the noise.

Fig. 8.4 Some methods commonly used for preventing the noise from entering a Faraday cage
through signal cables or power supply lines
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Noise attenuation =

∣
∣
∣
∣
∣
∣
∣
∣

1

jωC

R + 1

jωC

∣
∣
∣
∣
∣
∣
∣
∣

≈ 1

ωRC
.

Noise can also enter the Faraday cage through the signal output lines. One of the
many possible ways to avoid this problem is illustrated in Fig. 8.4. In this solution,
we use a differential output line. This means the signal and its opposite are sent on
the two different lines. These two signals then go through two self-inductances that
are wound together with the windings in the same direction. Because the currents
in the differential line are always opposite, these coupled self-inductances have no
effect on the signal. But any pick-up noise is the same on both lines, so for the
noise this is seen as a real self-inductance with a large impedance. If we connect
one side of the self-inductance to ground with a resistor that is not too large, we
again attenuate any noise signal entering the Faraday cage. Usually the noise filters
are not connected to the wall of the Faraday cage as shown on Fig. 8.4, but to the
ground plane of the electronics board. This ground plane itself is connected to the
Faraday cage by a low-impedance connection.

Other sources of noise can never be completely eliminated. It is necessary to
understand these sources of noise and to minimise their influence on the measure-
ment. The main sources of irreducible noise are the thermal noise of the resistors
and the shot noise. The main task in designing nuclear electronics is optimising the
signal-to-noise ratio and making the correct compromises for this. The designer of
the detectors must also understand the implications of this to find the best detector
for the problem at hand. Sections 8.4, 8.5 and 8.6 are devoted to a study of these
noise effects. The discussion here follows the presentation of this subject in [1, 2].

Before we go into a more detailed analysis, I want to point out the basic rea-
son why electronic amplification is always accompanied by noise. Consider the
amplifier schematically represented in Fig. 8.5.

The detector generates some small current and with the capacitance of the detec-
tor this determines the voltage seen at the input of the amplifier. This voltage
modulates the resistance of an amplifying device (usually a transistor) and this
change in resistance changes the current in the output circuit and gives an output

Fig. 8.5 Schematic
representation of a detector
and its amplifier
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voltage over the load resistor. As we will show later, a resistor always has noise
for fundamental physical reasons; therefore, this amplifier unavoidably introduces
noise. We need to optimise things in such a way as to minimise the effect of this
noise. It is immediately clear from the above that the capacitance of the detector
should be kept small. The signal-to-noise ratio does not degrade inversely propor-
tional to the capacitance as the above argument seems to suggest, but rather inversely
proportional to the square root of the capacitance. The reason for this will become
clear later.

8.2 Impulse Response and Transfer Function

To present a quantitative discussion of the electronic noise, we need some elements
of signal theory and in particular the concepts of impulse response and transfer func-
tion. These concepts are introduced in the present section. Any amplifier, and more
generally any electronic circuit, has an input impedance and an output impedance,
as illustrated in Fig. 8.6.

This means that, if the input of the amplifier is part of some electronic circuit,
it will behave as impedance Zin. Similarly, if the output of the amplifier is part of
some electronic circuit, it will behave as an impedance Zout and a current or voltage
source. Note that these impedances are in general complex, frequency-dependent,
functions.

We now need to introduce the concept of ‘linear circuit’ and discuss the main
properties of such circuits.

Definition of a linear circuit (see Fig. 8.7)
If Vout1 is the output signal corresponding to the input signal Vin1
If Vout2 is the output signal corresponding to the input signal Vin2

Fig. 8.6 The input of an
amplifier behaves as an
impedance and the output as a
voltage source with an
impedance in series

Fig. 8.7 A linear circuit has
an input and an output line. It
is linear if the signals satisfy
the properties listed in the
text
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A circuit is linear if and only if the following property holds:
For any two arbitrary input signals Vin1 and Vin2, to the input signal (Vin1 + Vin2),

corresponds the output signal (Vout1 + Vout2).
Linear circuits are important, because they have simple mathematical properties.

Most circuits used are therefore linear circuits. Any network of resistances, capac-
itances and self-inductances is a linear circuit. However, not all commonly used
circuits are linear, for example a circuit with a diode is not a linear circuit.

Of course, a linear circuit is only linear in a certain range of signal amplitudes.
For example, it could be linear only for positive signals of less than 5 V. However,
if we make sure we only use the circuit in the linear range, we can safely apply all
the results that are valid for linear circuits.

We now need to introduce the important concepts of ‘impulse response’ and
‘transfer function’.

Impulse response. The impulse response h(t) is the response of a system to a
delta function like input pulse.

Vin(t) = δ(t) Vout(t) = h(t)

Transfer function. The transfer function H(ω) is the Fourier transform of the
impulse response.

H(ω) = 1√
2π

∫

e−jωt h(t) dt

An amplifier, and more generally any electronic measurement system, deforms
the input signal. If a delta function like voltage pulse is applied at the input of the
system, the output pulse is not a delta function, but is a pulse with a finite width and
usually is amplified or attenuated.

In this chapter, we follow the usual convention that ‘j’ is used to denote the
complex number ‘i’. In our notation, we hence have j2 = −1. The conventions used
in this text for the Fourier transform are made clear by the equations below:

h(t) = 1√
2π

∫

e+jωtH(ω)dω

H(ω) = 1√
2π

∫

e−jωt h(t)dt

With this notation, the well-known properties of the delta function are written as

δ(t) = 1

2π

∫

ejωtdω f (a) =
∫

f (t)δ(t − a) dt

And the inverse Fourier transform of the delta function is

1√
2π

= 1√
2π

∫

e−jωtδ(t) dt

It is now easy to prove the following properties of the impulse response and the
transfer function for linear circuits.
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(1) From the fact that h(t) is real, it immediately follows that H(ω) = H∗(−ω)
(2) The transfer function H(ω) for ω = 0 equals the integral of the impulse response

H(0) = 1√
2π

+∞∫

−∞
h(t) dt

(3) A perfect circuit without distortion and unit gain has H(ω) = 1√
2π

. Obviously,

no amplifier is perfect up to infinite frequency and above some value of the
frequency the absolute value of H(ω) will drop to zero.

(4) If a pulse Vin(t) with Fourier transform Vin(ω) is applied to the input of a linear
circuit, the Fourier transform of the output is given by

Vout(ω) = √
2π Vin(ω) H(ω)

(5) For an arbitrary input signal, the output signal in the time domain can be
obtained as follows

Vin(t) =
+∞∫

−∞
Vin(t′)δ(t′ − t) dt′

Because the circuit is linear, the output signal is given by

Vout(t) = gain

+∞∫

−∞
Vin(t′) h(t − t′) dt′

There is a small difficulty here in that δ(t′ – t) = δ(t – t′). But the two expressions

+∞∫

−∞
Vin(t′)h(t′ − t)dt′ and

+∞∫

−∞
Vin(t′)h(t − t′)dt′

are not the same. The impulse response h(t) must be zero for all values t<0,
otherwise there would be an output signal for an input signal that has not yet
arrived. If we use the first integral, the output signal at time t depends on the
part of the input signal coming after the time t. This makes no sense, therefore
the second possibility should be used.

Properties 4 and 5 allow us to obtain the response of the system to an arbitrary
input function from the knowledge of the impulse response and the transfer
function.

(6) If a sine wave Vin(t) = sin(ωt) is applied at the input of the system, the output
is given by (see Exercise 1):

Vout(t) = √
2π |H(ω)| sin (ωt + φ(ω))
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In this expression |H(ω)| and φ(ω) are the modulus and the phase of the transfer
function

H(ω) = |H(ω)| ejφ(ω)

This result gives us an intuitive feeling of what the transfer function is. If a
sine wave is applied at the input of a circuit, the output is also a sine wave, but
the amplitude is proportional to |H(ω)| and the phase of the output sine wave
relative to the input sine wave is given by φ(ω).

(7) An ideal voltage amplifier, or operational amplifier, is an amplifier with infinite
input impedance and zero output impedance. It is often represented by a triangle
(see Fig. 8.8). If an electronic circuit is composed of two parts coupled by an
operational amplifier, the transfer function of the complete system is given by

H(ω) = √
2π H1(ω) H2(ω)

This property is very useful when designing complex circuits. Indeed, an elec-
tronic circuit is often made up of a number of elementary sub-circuits connected
by operational amplifiers.

Fig. 8.8 A shaping circuit
often consistss of a
succession of shaping
networks connected by
amplifiers

(8) Detectors in nuclear electronics are current sources. We therefore need to know
the response of a system to a delta function like current pulse. This is the ‘cur-
rent impulse response’ ĥ(t). Similarly, the Fourier transform of the ‘current
impulse response’ is the ‘current transfer function’ Ĥ(ω). Where necessary we
will use a ‘ˆ’ on top of the symbol h(t) or H(ω) to distinguish the two different
kinds of impulse response and transfer functions.

Assume a system with an input impedance Zin(ω); if delta function like cur-
rent pulse is applied at the input, the Fourier transform of the input voltage is
given by

Vin(ω) = Zin(ω) I(ω) = Zin(ω)
1√
2π

Using property 4, we immediately get the following relation between the
‘transfer function’ and the ‘current transfer function’ (see Fig. 8.9).

Ĥ(ω) = H(ω) Zin(ω)
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Fig. 8.9 Response of the
system to a delta function like
current pulse

and therefore

Vout(t) = 1√
2π

∫

ejωt H (ω) Zin (ω) dω

In the important case where the input impedance is a real and frequency inde-
pendent constant Z, we have Ĥ(ω) = Z H(ω) and ĥ(t) = Z h(t) and the
difference between the two kinds of transfer function is only a difference in
gain. If we consider normalised impulse responses or transfer functions, the
two types of function therefore become identical.

(9) The Parseval identity is a relation between any function f(t) and its Fourier
transform H(ω)

+∞∫

−∞
|h(t)|2 dt =

+∞∫

−∞
|H(ω)|2 dω

From this identity we immediately obtain two useful properties of the transfer
function

+∞∫

0

|H(ω)|2dω = 1

2

+∞∫

−∞
h2(t)dt

∞∫

0

ω2|H(ω)|2dω = 1

2

+∞∫

−∞

(
dh(t)

dt

)2

dt

The second equation is derived using Parseval’s identity and the fact that the
Fourier transform of the derivative of h(t) is given by jωH(ω).

We will now illustrate the power of these methods with two simple examples.
These examples correspond to very simple and commonly used circuits.

The integrator or low pass filter. The circuit shown in Fig. 8.10(a) is a low-
pass filter. You should imagine that this circuit is connected on the left-hand side to
a voltage source, hence to a circuit with zero impedance. In practice, this voltage
source will usually be an amplifier. You should also imagine that the output voltage
is measured with an ideal voltage meter, hence with a circuit with infinite input
impedance.

Use Ohm’s law written in the frequency domain: V(ω) = Z(ω) I(ω). To calculate
the impedance of a circuit, use the familiar rules to combine resistors in series or in
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Fig. 8.10 Two very simple circuits that are commonly used

parallel, but for any self-inductance L, consider it to be a complex impedance = jωL

and for any capacitance C, consider it to be a complex impedance
1

jωC
. In this way

we readily find

Vin(ω) =
[

R + 1

jωC

]

I(ω)

A second application of Ohm’s law gives a relation between the Fourier
transforms of the input and output voltages.

Vout(ω) = I(ω)
1

jωC
= Vin(ω)
[

R + 1

jωC

]
1

jωC
= Vin(ω)

1

1 + jωRC

If the input voltage is a delta function like voltage pulse, Vin(ω)= 1√
2π

and from

the definition of the transfer function we immediately find

H(ω) = 1√
2π

1

1 + jωRC

Taking the Fourier transform of the above transfer function, one finds for the
impulse response

⎧
⎨

⎩

h(t) = 1

RC
e

t
RC t ≥ 0

h(t) = 0 t < 0

The actual calculation of the Fourier transform is rather involved, but this
result can be found in any handbook with tables of Fourier transforms. In addi-
tion, it is not necessary to go through the Fourier transform calculation. The same
result can be obtained quite simply by approximating the delta function by a
square pulse with �V × �t = 1. Taking the limit for �t → 0, one readily
obtains the result above. Indeed, the voltage pulse of amplitude �V and dura-
tion �t first charges the capacitor and immediately after the pulse the voltage
over the capacitance is 1/RC. This voltage decays, because the voltage source at
the input side has zero output impedance. This decay is exponential with decay
constant RC.
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To obtain the response of the low-pass filter to an arbitrary and time-dependent
input voltage, we use property (5) of the transfer functions

Vout(t) =
+∞∫

−∞
Vin(t′)h(t − t′)dt′

Vout(t) =
t∫

−∞
Vin(t′)e− t−t′

RC

RC
dt′

For a more intuitive derivation of this last result, consider the situation illustrated
in Fig. 8.11. The input pulse can be seen as a sum of square pulses of duration �t
and amplitude Vin(t′). The output pulse corresponding to each of these input pulses
is just the impulse response with a weight [Vin(t′) �t]. The total output at some point
in time t is just the sum of all the preceding small pulses. In the limit �t → 0, this
sum becomes an integral and we recover the result above.

If the duration of the pulse is short compared to the time constant RC, we have

Vout(t) = 1

RC

t∫

−∞
Vin(t′) dt′

This explains the name integrator.
The differentiator or high-pass filter. The differentiator or high-pass filter is

illustrated in Fig. 8.10(b). Repeating the same calculation as above for the high-pass
filter, one finds

H(ω) = 1√
2π

jωRC

1 + jωRC
= 1√

2π

(

1 − 1

1 + jωRC

)

Fig. 8.11 This figure
illustrates the relation
between the input voltage and
the output voltage for an
integrator circuit. The input
signal can be seen as a sum of
short square pulses, each
causing the impulse response
as an output signal. The total
output signal is the sum of all
prior input pulses
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Notice that this transfer function simply is the constant
1√
2π

minus the transfer

function of the low-pass filter. Therefore, its Fourier transform is readily obtained
from the previous calculation. It is a delta function minus the impulse response of
the low-pass filter. The impulse response of a high-pass filter is therefore given by

⎧
⎨

⎩

h(t) = δ(t) − 1

RC
e− t

RC t > 0

h(t) = δ(t) t < 0

Fig. 8.12 Impulse response and transfer function for a low-pass filter and a high-pass filter
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And the response to a voltage pulse is given by

Vout(t) = Vin(t) − 1

RC

t∫

−∞
Vin(t′)e− t−t′

RC dt′

If the time constant RC is much shorter than the duration of the pulse, only the
values of Vin(t′) in the vicinity of t′ = t contribute to the integral and we can use a
Taylor expansion of the function Vin(t′) around t′ = t, using as expansion parameter
(t′ – t).

Vout(t) = Vin(t) − 1

RC

t∫

−∞
.

[

Vin(t) + dVin(t)

dt
(t′ − t) + ...

]

e− t−t′
RC dt′

With the following change of variables: u = t − t′

RC
, this becomes:

Vout(t) = Vin(t) − Vin(t)

∞∫

0

e−u du + dVin(t)

dt
RC

∞∫

0

ue−u du + . . .

Vout(t) ≈ RC
dVin(t)

dt

This explains the name ‘differentiator’. Figure 8.12 shows the impulse response
and the transfer function for the low-pass filter and the high-pass filter.

8.3 Amplifiers for Particle Detectors

An amplifier contains a number of components arranged in such a way as to amplify
a voltage at its input. Basically an amplifier contains a succession of circuits similar
to the one shown in Fig. 8.13.

A bare amplifier would be almost useless. Its gain would be extremely sensitive
to variations in the supply voltage and the temperature. In order to stabilise the

Fig. 8.13 A transistor is the
basic element in an amplifier
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Fig. 8.14 In a voltage
amplifier, the feedback
resistances R1 and R2
stabilise the gain

amplifier, it is necessary to have a feedback mechanism. A typical amplifier with
feedback is illustrated in Fig. 8.14.

In this figure, the triangle represents an amplifier without feedback. It has a large
gain, a high-input impedance and a low-output impedance. It has two inputs and it
amplifies the difference between the two voltages at these inputs. Usually one input
is connected to the ground and the other input receives the signal to be amplified.
Notice the symbols ‘+’ and ‘−’ (minus) at the two inputs. These indicate that the
amplifier is used in a reversing mode when connected as shown in Fig. 8.14. A pos-
itive input signal will give rise to a negative output signal. Therefore, this amplifier
has negative feedback.

If the input impedance of the open loop amplifier is very large compared to R1
and R2, the current flowing through these two resistances must be the same.

⎧
⎪⎨

⎪⎩

I = Vin − Va

R1
= Va − Vout

R2

Vout = −GVa

(8.1)

For the time being, we assume that G is a real and positive number.
Eliminating Va and I from Eq. (8.1), we find

Vout = R2 Vin
[

R1 + (R1 + R2)

G

]

Vout ≈ −R2

R1
Vin if

R2

R1
<< G

Eliminating Va and Vout, we find

Vin = I

(

R1 + R2

G + 1

)

Vin = I R1 if
R2

R1
= G

These equations show that if the open loop gain is large compared to the ratio
R2/R1, the gain of the amplifier with feedback is simply given by the ratio of the
two resistances and that the input impedance is equal to R1. The amplifier with
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feedback is very stable and its gain is hardly influenced by moderate changes in the
supply voltage or the temperature.

However, the amplifier just described is not a useful amplifier for nuclear elec-
tronics. The main problem is the presence of resistances connected to input. As will
be shown later in this chapter, such resistances give rise to noise and should be
avoided. In addition, the gain is in general a complex function of ω. Moreover, this
amplifier is well adapted for amplifying voltage signals and we are looking for an
amplifier to be connected to a pulsed current source.

A possible way to avoid the problem of the resistor is to use a capacitor as the
feedback element. However, at each pulse this capacitor will charge up and quickly
the circuit will be out of the linear range. This needs a mechanism to reset the
amplifier after each pulse. Special resetting mechanisms are sometimes used in very
low-noise amplifier designs, thus completely avoiding the use of a feedback resis-
tance. The most commonly used method for resetting the capacitor is to have a
feedback resistor in parallel with the feedback capacitor as shown in Fig. 8.15. The
resistor can have a very large value because it only needs to reset the capacitor after
each pulse. This is called a charge-integrating amplifier.

Because of the presence of a capacitor, we need to use the Fourier transforms
of the currents and voltages to calculate the gain and the input impedance for the
amplifier shown in Fig. 8.15. We also need to take into account the fact that the
naked amplifier itself also has a transfer function and this transfer function depends
on the frequency and has a frequency-dependent phase. The constant open loop gain
in the previous calculation has therefore to be replaced by a complex and frequency-
dependent gain G(ω). The gain of a realistic amplifier can often be approximated by

G(ω) = G0

1 + j
ω

ωk

(8.2)

For frequencies below ωk, the gain is real and constant. Around ω = ωk the phase
turns by 90◦ and above ωk the gain decreases like 1/ω. For the charge-integrating
amplifier, we do a similar calculation as we did for the voltage amplifier shown in
Fig. 8.14, but now working with the Fourier transforms of the voltages and currents.

Fig. 8.15 (a) A charge-integrating amplifier. (b) Output of a charge-integrating amplifier if the
input is a series of short current pulses
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As before, we assume that the absolute value of the gain and the input impedance
of the naked amplifier, are very large. We have the following two equations

⎧
⎨

⎩

Vout(ω) = −G(ω)Vin(ω)

Vin(ω) − Vout(ω) =
[

1

Rf
+ jωCf

]−1

. Iin(ω)
(8.3)

Eliminating Vin from the two equations above gives

Vout(ω) = − G(ω)

G(ω) + 1
.

Rf

1 + jωCf Rf
. Iin(ω) ≈ − Rf

1 + jωCf Rf
Iin(ω)

The last equation gives us the relation between the output voltage and the input

current. If the input current is a delta pulse, Iin(ω) = 1√
2π

, then the resulting output

voltage is given by

Vout = Ĥ(ω) = −Rf√
2π

1

1 + jωCf Rf

We notice that the current transfer function for a charge-integrating amplifier is
the same as the transfer function of a low-pass filter multiplied by a factor -Rf ! The
response of a charge-integrating amplifier to a delta function like current pulse is
therefore given by

⎧
⎨

⎩

h(t) = − 1

Cf
e
− t

Rf Cf t ≥ 0

h(t) = 0 t < 0

A charge-integrating amplifier will behave as an amplifier with a ‘current to volt-
age gain’ at low frequency equal to Rf. Its response to a current pulse will be a sharp
rising edge at the moment the pulse arrives, followed by an exponential decay with
time constant RfCf.

The input impedance of the charge-integrating amplifier is obtained by eliminat-
ing Vout from the two equations (8.3):

Vin(ω) = 1

G(ω) + 1

Rf

1 + jωCf Rf
. Iin(ω) ≈ 1

G(ω)

Rf

1 + jωCf Rf
. Iin(ω)
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Using this result together with Eq. (8.2), we get

Zin(ω) = Vin(ω)

Iin(ω)
= Rf

G0

(

1 + j
ω

ωk

)

(
1 + jωRf Cf

)

Zin(ω) = Rf

G0

(

1 + j
ω

ωk

)
(
1 − jωRf Cf

)

(1 + ω2R2
f C2

f )

Zin(ω) = Rf

G0

(

1 + j
ω

ωk
− jωRf Cf + ω2

ωk
Rf Cf

)

(1 + ω2R2
f C2

f )

For low frequencies this impedance is a real number; it behaves like a pure
resistor. However, as the frequency increases the impedance becomes self-like or
capacity-like, depending on the value of the parameters. If we choose the value of
the feedback capacitance and feedback resistor such that Rf Cf = (1/ωk), the two
imaginary parts cancel and the impedance becomes a real number for all values of
ω. In fact, this condition assures that the feedback is negative for all frequencies and
is a necessary condition for the system to be stable. With this condition the input
impedance of the system simply becomes

Zin(ω) = Rf

G0

The input impedance is a real and frequency independent constant. Moreover,
this impedance will not be very large. These are highly desirable properties for an
amplifier for particle detection. The input impedance of the amplifier must be large
compared to the internal impedance of the detector itself.

In Sect. 8.5, we will show that the feedback resistance is a source of noise. In
order to minimise this noise it is essential that the feedback resistance is as large
as possible. On the other hand, the feedback capacitance cannot be made arbitrarily
small. It should always be sufficiently large compared to any stray capacitances
that are unavoidably present in the system. In practice, it is difficult to have this
capacitance less than about 1 pF. The result is that RfCf must be large if we want to
have low noise. Typically, this time constant will be several 100 μs.

The output pulses of the amplifier shown in Fig. 8.15 are very long pulses and this
will severely limit the count rate capability of the counter. We need a way to make
the output pulses short while keeping the product RfCf large. This can be achieved
with a shaping stage after the charge-integrating amplifier as shown in Fig. 8.16.
The total transfer function of this amplifier is simply given by the product of the
transfer functions of a charge-integrating amplifier and the transfer functions of a
high-pass and a low-pass filter.
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Fig. 8.16 Charge-integrating amplifier with CR–RC shaping

Ĥ(ω) = −Rf√
2π

1

1 + jωRf Cf

jωR2C2

1 + jωR2C2

1

1 + jωR3C3

If we chose the values of the different capacitances and resistances such that

τ = C2R2 = C3R3 and τ<<τf = Cf Rf

Omitting the factor ‘–Rf’, this transfer function can be written as

Ĥ(ω) = 1√
2π

1

1 + jωτf

jωτ

(1 + jωτ )2
(8.4)

Taking the Fourier transform of the above expression (as can be obtained with
some calculations starting from a table of Fourier transforms, see Exercise 2) one
gets

⎧
⎨

⎩

ĥ(t) = − 1

τ (τf − τ )2

[
(τ 2 + t(τf − τ )) e−t/τ − τ 2e−t/tf

]
t ≥ 0

ĥ(t) = 0 t < 0

If τ << τ f and for values of t of the order of τ , we have

ĥ(t) ≈ t

ττf
e−t/τ

The output pulses of this amplifier are shown in Fig. 8.17(a). We have indeed
managed to keep the feedback resistor Rf large, while at the same time producing
short output pulses. This RC−CR shaping is often used because of its simplicity. Its
biggest drawback is the long negative tail after the main pulse. At high rates this can
cause a baseline shift. In particular, if one wants to use this circuit for measuring
pulse heights, it is totally unacceptable because it will broaden all peaks and in this
way ruin the energy resolution.



244 8 Electronics for Particle Detectors

Fig. 8.17 (a) Impulse response of a charge-integrating amplifier with a simple CR−RC shaping
stage. The impulse response in this figure was multiplied by τ f /τ , such that the integral over the
positive part of the function approximately equals one. (b) Output pulse of a charge-integrating
amplifier with pole zero cancellation for a delta function like input pulse

From the expression of the Fourier transform, one can see that this undershoot

is caused by the factor

(
1

1 + jωτf

)

in the transfer function. This introduces a pole

close to ω = 0. If we find a way to cancel this factor, the undershoot will be removed.
This can be achieved with a somewhat more complicated amplifier design and is
referred to in the literature as ‘pole zero cancellation’. Figure 8.18 shows a charge-
integrating amplifier with ‘pole zero cancellation’ and a simple shaping stage. The
total transfer function of this amplifier is again simply the product of the contribu-
tions of the three parts. With proper choice of the values for the components, the

pole in the factor
Rf

1 + jω Cf Rf
is exactly cancelled by the factor (1 + jω R0C1). In

this way, the undershoot is removed. The last factor represents the shaping circuit.
With this particular choice of the shaping stage and with a proper choice of the
values of the components, the resulting transfer function can be written as

Ĥ(ω) = 1

1 + jωτ
.

1

1 + (5
/

3)jωτ − ω2τ 2

The Fourier transform of this last expression is shown in Fig. 8.17(b). This
last figure was obtained with a numerical Fourier transform and the program
Mathematica.

Many different shaping circuits can be used and this is only one particular exam-
ple. A popular shaping circuit is the CR−(RC)4 shaping. This is a CR circuit
followed by 4 RC circuits connected through amplifiers. This produces a nearly
Gaussian output pulse with a time structure given by

Vout(t) ∝
( t

τ

)4
e−t/τ
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Fig. 8.18 (a) Charge-integrating amplifier with pole zero cancellation and a shaping stage. This
figure shows one among many possibilities for the shaping stage. The transfer function for this
amplifier is the product of the three parts shown in (a), (b), (c). With the proper choice of
components the pole zero will be cancelled

The results obtained above are valid provided the open loop gain is well repre-
sented by Eq. (8.2). Obviously, above some large angular frequency, ωmax, the gain
will drop faster than expression (8.2) and the results above no longer apply. In par-
ticular, it is not possible to make the output pulse shorter than ≈ 2π/ωmax, therefore
limiting the maximum rate the amplifier can handle.

The amplifier we have just described is very well suited for measuring weak
and fast electrical pulses. It has a small and real input impedance and the feedback
resistor can be chosen very large, minimising the noise.
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8.4 The Thermal Noise of a Resistor

Any piece of matter is made up of electrons and nuclei. These charges are constantly
in motion owing to the thermal agitation. It is obvious that these motions will induce
small voltage and current fluctuations in any piece of material and in particular in
any resistor.

A priori we do not know what these noise signals will look like, but the Norton
and Thevenin theorems tell us what the electrical equivalent of the noise sources
will be like. The Thevenin theorem states that any two-terminal network of resistors
and voltage sources is equivalent to a single resistor in series with a single ideal
voltage source. The Norton theorem states that it is also equivalent to a single resis-
tor in parallel with ideal current source. An ideal voltage source has zero internal
resistance and an ideal current source has infinite internal resistance. Obviously, the
value of the resistor is the same and the current and voltage sources are related by
V = RI.

From the Thevenin and Norton theorems, we expect that the thermal noise will
be equivalent to a small current source or a small voltage source in parallel or in
series with the resistor as indicated in Fig. 8.19. The average value of these voltages
or currents will be zero, but at any particular instant in time we expect to measure
a small but non-zero value of the voltage or current. The mean square deviation
(r.m.s.) will be different from zero.

〈
V2

noise

〉
�= 0;

〈
I2
noise

〉
�= 0

As usual the square brackets 〈x〉 denote the average of x. From the central limit
theorem, we also know that these fluctuations will have a Gaussian distribution.

The voltage noise or current noise is completely characterised by its mean square
deviation. The first important point to be made is that this noise does not depend on
the nature of the resistor, it only depends on the value of the resistance. To see this
consider a thought experiment illustrated in Fig. 8.20.

Two resistors with the same value of the resistance but made from different mate-
rials are connected as shown in Fig. 8.20. Each resistor is enclosed in a thermally
isolated box. Assume that for a moment the resistor in the left box has noise char-
acterised by a given

〈
I2
noise

〉 �= 0 and the resistor in the right box has no noise. The
current generator in the left box will induce equal currents in the two resistances
and in this way induce heat in each resistor. The energy to produce this heat is

Fig. 8.19 Equivalent
networks for the thermal
noise in a resistor. The two
diagrams above will be
equivalent if Vnoise = R Inoise
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Fig. 8.20 The second law of
thermodynamics requires that
the thermal noise of all
resistors with the same value
of the resistance, is same

extracted from the left box by the noise current generator so, with time, the left
box will become cold and the right box will become hot. This situation would be
in total contradiction to the second law of thermodynamics. The only way out is to
assume that both resistors have exactly the same noise. Following the same argu-

ment but considering two different resistors, one readily finds that
〈
I2
noise

〉 ∝ 1

R
and

〈
V2

noise

〉 ∝ R.
We are now only left with the task of finding the proportionality constant. If there

is one particular resistor for which we can calculate the thermal noise, we have
solved the problem. There is indeed such a device, namely the ideal transmission
line. We will show that an ideal transmission line will behave like a purely ohmic
resistor with a resistance equal to its characteristic impedance. Moreover, we will
show that it is possible to calculate the thermal noise in a transmission line.

A transmission line is a very important concept in fast electronics. We tend to
think of a connecting wire in an electronics circuit as something that has negligible
capacitance and negligible self-inductance and where any voltage applied at one end
of the wire is immediately present at the other end. As faster and faster signals are
used, this assumption becomes less and less valid. A practical rule of thumb is the
following: we can think of connecting lines in an electronics circuit in the conven-
tional way as long as the length of the wires is less than 2% of the rise time of the
signal multiplied by the speed of light. In nuclear detectors, electronics pulses as
short as 10 ns are common. For such pulses the maximum allowable wire length is
6 cm! If any longer wires are used the behaviour of the circuit will be totally unpre-
dictable. To transport a signal over a longer distance one needs to use a transmission
line!

Transmission lines come in many variants, but as far as nuclear electronics is
concerned the most common form of a transmission line is the shielded coaxial
cable. A coaxial cable is shown schematically in Fig. 8.21.

This geometry serves the following purposes: the braided shield protects the
inner conductor carrying the signal from any pick-up noise and the structure of the
wire makes it behave as a transmission line.

For the purpose of the present argument we will consider an ideal transmission
line with a capacitance per unit length C and a self-inductance per unit length of
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Fig. 8.21 A typical coaxial cable. The braided shield is made from tightly woven fine wires such
as to allow the cable to remain flexible

Fig. 8.22 A transmission
line can be seen as a
succession of identical
infinitesimal networks like
the ones shown here

L. Capacitance and self-inductance are constant along the line. Figure 8.22 shows
a transmission line represented as a set of discrete components. An ideal transmis-
sion line has negligible ohmic resistance in the conductors and no leakage currents.
While leakage currents are usually indeed negligible, the resistance of the wire is
usually not negligible. This resistance causes an attenuation of the signal. The exact
value of this attenuation depends on the details of the structure of the line, but an
attenuation length of the order of 100 m is typical at a frequency of ≈100 MHz. An
ideal transmission line without resistance does not exist. It is nevertheless useful for
the purpose of the present argument.

A transmission line can be viewed as a succession of a large number of sections
of length �x, each with a capacitance C�x and a self-inductance L�x. In the limit
�x → 0 this will behave like a real transmission line.

Consider one small section of the line with length �x. A capacitor and a self-
inductance in the time domain is described by a first order differential equation.
Over this section the change in voltage and the change in current are given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�V = −L�x
dI

dt

�I = −C�x
dV

dt

Taking the limit for �x → 0, we obtain the following two differential equations
for an ideal transmission line.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dV(x,t)

dx
= −L

dI(x,t)

dt

dI(x,t)

dx
= −C

dV(x,t)

dt
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These equations hold at any point along the line. From these two first order
equations we obtain the following two second order equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d2 V(x,t)

dx2
= LC

d2 V(x,t)

dt2

d2I(x,t)

dx2
= LC

d2I(x,t)

dt2

The current and the voltage at each point along the line satisfy the string equation!
One readily verifies that any function of the variable (x − t/

√
LC) or of the vari-

able (x+t/
√

LC) is a solution to the string equation. The most general solution takes
the form

V(x,t) = f1

(

x − t√
LC

)

+ f2

(

x + t√
LC

)

I(x,t) =
√

C

L
f1

(

x − t√
LC

)

−
√

C

L
f2

(

x + t√
LC

)

In these equations f1 and f2 are arbitrary functions of one variable. This solution

represents a sum of two waves travelling at a velocity v0 = 1√
L.C

, one wave trav-

elling towards increasing values of x, the other wave travelling towards deceasing
values of x. The actual shape of these waves will be determined by the boundary
conditions. If we apply a variable voltage to one end of the line, this signal will
travel along the line with a velocity v0. If only one wave is present, the current and
the voltage at any point along the line are related by

V =
√

L

C
I.

This will also apply at the end of the line. Hence, if we apply a voltage V at the
end of the line, we will induce a current in the line given by the equation above;
therefore, the line will behave as a resistor with resistance equal to the characteristic
impedance of the line

Z0 =
√

L

C
.

This is a remarkable result because this impedance is a real number; this
impedance is purely ohmic! Of course this is only true if the only wave present in
the transmission line is the wave travelling away from the measurement point. After
some time this wave will reach the other end of the line and be reflected back. When
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this reflected wave reaches the measurement point the relation no longer holds. Only
an infinitely long transmission line will behave like a true resistor.

Because of the arguments at the beginning of this section, the thermal noise of
the line will be the same as the thermal noise of a resistor with the same value of
the resistance. But for this unusual resistor it is possible to calculate the thermal
fluctuations! The voltage V(x,t) and the current I(x,t) satisfy the string equation. A
string in thermal equilibrium with its surroundings will vibrate at all the stationary
vibration modes of this string. Assume a transmission line with length D and with
open ends. These stationary solutions are of the form f(x).g(t) and the boundary
conditions are that the current at the beginning and the end of the line should be
zero: I(x = 0,t) = I(x = D,t) = 0.

We now look for stationary solutions of the form:
V(x,t) = V′(x) · V"(t)
I(x,t) = I′(x) · I"(t)
The stationary solutions can be found to be (see Exercise 6):

⎧
⎪⎪⎨

⎪⎪⎩

In(x,t) = In sin
(nπx

D

)
sin
(nπv0t

D
+ ϕn

)

Vn(x,t) = In Z0 cos
(nπx

D

)
cos
(nπv0t

D
+ ϕn

)
n = 1, ..∞

These are the well-known stationary vibration modes of the string, In and ϕn are
arbitrary constants to be determined by the boundary conditions. Figure 8.23 shows
the solutions for n = 1, 2 and 3.

The energy contained in a wave of wave number n is given by

En = 1

2

D∫

0

(CV2 + LI2) dx = I2
n

4
DL

This relation allows us to express the amplitude of the wave as a function of the
energy of the wave. The voltage that will be observed at the end of the transmission
line is given by

V(x = 0) =
∑

n

Vn =
∑

n

√
4En

DC
cos
(nπv0t

D
+ ϕn

)

The average of this voltage is zero and the average square voltage is obtained by
averaging these elementary noise waves over the amplitudes and over time. Let us
first consider the time averaging only

Fig. 8.23 The fundamental frequency and the first two harmonics of a vibrating string. The value
of the current in an ideal transmission line with open ends follows the same pattern
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〈
V2(x = 0)

〉
= 1

T

+T/2∫

−T/2

V2(x = 0) dt = 1

T

+T/2∫

−T/2

∑

n

∑

n′
VnVn′ dt

The integral is to be taken in the limit that T goes to infinity. In calculating this
time average, all the terms where n is different from n′ vanish. To see this just
remember that cos(ω1t)cos(ω2t) = cos[(ω1 + ω2)t] + cos[(ω1 − ω2)t]. The sum
reduces to

〈
V2(x = 0)

〉 = 1

T

+T/2∫

−T/2

∑

n

V2
n dt

=
∑

n

4En

DC

1

T

+T/2∫

−T/2

cos2
(nπν0t

D
+ ϕn

)
dt

Using cos2 (x) = 1

2
[1 + cos (2x)] this becomes

〈
V2(x = 0)

〉
=
∑

n

2En

DC

If the transmission line is in thermal equilibrium with its surroundings, each
mode of vibration will be present with a random amplitude and a random phase.
According to the equipartition theorem, each quadratic term in the Hamiltonian con-
tributes kT/2 to the energy of the system. The Hamiltonian per unit volume for the

electromagnetic wave is given by
1

4π
(E2 + B2). Therefore, each mode of vibration

will acquire an average energy <En> = kT, where k is the Boltzmann constant and
T is the absolute temperature. The average noise voltage that will be observed at the
end of the line is therefore given by

〈
V2(x = 0)

〉
=
∑

n

2kT

DC

The sum runs over all frequencies that are present in the system, each contribut-
ing the same amount to the total noise.

We can now calculate the noise contribution of all the waves with angular fre-

quency in the interval (ω, ω + dω). Since ω = nπv0

D
, the number of waves in the

interval dω is given by dn = D

πvo
dω; this noise contribution is given by

〈
V2(x = 0)

〉
= 2

π
kTZ0 dω

Notice that the length of the line D has disappeared from the equation and this
equation also applies for an infinitely long transmission line. However, this noise
is observed by an instrument that is characterised by a transfer function H(ω) and
from property 6 of the transfer functions we know that the observer sees, for each
wave with angular frequency ω, an amplitude

√
2π |H(ω)|.
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Hence the total ‘observed’ noise, integrated over all frequencies is given by

〈
V2

noise

〉
= 4kTZ0

+∞∫

0

|H(ω)|2 dω

At the end of the open transmission line we will measure a noise voltage given
by the formula above. We can hence conclude that for any resistor the noise voltage
and the noise current are characterised by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈
V2

noise

〉 = 4kTR
+∞∫

0
|H(ω)|2 dω (8.5)

〈
I2
noise

〉 = 4kT

R

+∞∫

0
|H(ω)|2 dω. (8.6)

In this equation k is the Boltzmann constant and T is the absolute temperature.
Equations (8.5) and (8.6) are in fact integrals over the current impulse response, but
this distinction is usually not made in the literature, and will also not be made here.

Equations (8.5) and (8.6) should be understood as follows. The voltage over a
resistor has a fluctuating value. If this voltage is measured at random moments,
every time a different value will be obtained. Since this noise originates from a large
number of random fluctuations, the voltages will have a Gaussian distribution. The
average of this distribution is zero and the expression above represents the variance
of this distribution. The square root of this quantity is the standard deviation (or
r.m.s.) of the current or voltage noise. This situation is illustrated in Fig. 8.24.

Each frequency interval contributes in the same way to the noise. This is so-
called ‘white noise’. If the measurement system has a unit gain up to a maximum
frequency, fmax, and then has a sharp cutoff, we have

+∞∫

0

|H(ω)|2dω = fmax = Band width of the circuit

Fig. 8.24 Pulse samples
taken at random times have a
Gaussian amplitude
distribution. The r.m.s. of this
distribution is a measure of
the noise present in the
system
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The mean square noise is proportional to the bandwidth and hence the r.m.s.
noise is proportional to the square root of the bandwidth.

Let us illustrate this with a numerical example: at room temperature (≈293 K)
4kT = 1.62 × 10−20[V2/(Hz.�)]. The thermal noise of a 1 M� resistor at room
temperature measured with a voltmeter with a bandwidth of 100 MHz has an r.m.s.
voltage noise of 1.27 mV. Assume a detector with a fairly typical capacitance of 30
pF. It needs about 2 × 105 electron charges to produce a voltage of 1 mV over this
detector. This example makes it abundantly clear that the thermal noise is going to
be an essential consideration in nuclear electronics.

Using property 9 of the transfer functions we can also write the noise as a
function of the impulse response in the time domain:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

〈
V2

noise

〉 = 2kTR

+∞∫

−∞
h(t)2 dt

〈
I2
noise

〉 = 2kT

R

+∞∫

−∞
h(t)2 dt

Equation (8.5) seems to imply that, as the value of the resistor goes to infinity,
the voltage noise over this resistor will also go to infinity. While this is strictly
speaking correct, one will never measure an infinite noise voltage because the input
impedance of the measuring device will always have some large but finite value. If
Rinp denotes the value of the input impedance of the voltage meter, the measured
voltage will be given by

√〈
V2

noise

〉

measured =
√〈

V2
noise

〉 Rinp

R + Rinp
= Rinp

R + Rinp

√
√
√
√
√4kTR

+∞∫

0

|H(ω)|2 dω

Taking now the limit R to infinity, one sees that the measured noise voltage
goes to zero. Similarly, if one measures the noise current over a zero resistance,
the measured value will be zero.

8.5 Resistor and Transistor Noise in Amplifiers

Any resistor in the detector readout electronics contributes to the noise, but obvi-
ously, the resistors in the front-end part, close to the detector itself, will make the
biggest contribution to the noise. We have already seen in previous sections that
there are at least two unavoidable resistances in the front-end part of the readout
electronics. First, there is the resistance of the detector itself and there is the feed-
back resistance. This feedback resistance is connected on one side to the input of
the amplifier and on the other side to the output of the amplifier. Since the amplifier
has a low output impedance, from the noise point of view, this is the same as a resis-
tor between the input and the ground. In both cases this behaves as a resistor that
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is in parallel with the detector itself. These are collectively referred to as a parallel
resistor. Below we shall study what the noise effect of such a parallel resistor will
be. We also consider the effect of a resistor between the detector and the input of
the amplifier. There are often technical reasons to have such a resistor. Such a series
resistor has a different noise effect, as will become clear below. Finally, we dis-
cuss the noise contribution stemming from the resistance of the front-end transistor
itself.

8.5.1 Noise Contribution of a Parallel Resistor or a Series Resistor

Consider a charge amplifier with a resistor in parallel to the detector element, as
illustrated in Fig. 8.25. The amplifier has a real and frequency independent input
impedance and this impedance is small compared to the internal resistance of the
detector. We also consider the output signal normalised to unit gain. Therefore, it
is not necessary to distinguish the current and voltage impulse response or transfer
functions. The parallel resistor Rp will generate a noise current given by

〈
I2
noise

〉
= 4kT

Rp

+∞∫

0

|H(ω)|2 dω

What matters is how the noise generated by the resistor compares to the detec-
tor signal. The detector is a current source and the signal has a certain amount of
charge, usually expressed as a certain number of electrons. If we assume that this
charge signal is generated in a short time, the response of the amplifier to a sig-
nal is equal to the impulse response. The noise is usually expressed by the quantity
‘equivalent noise charge’ (ENC), which is defined as a hypothetical charge produced
in the detector that gives a peak output response equal to the r.m.s. of the noise. The
concept of ‘equivalent noise charge’ is illustrated in Fig. 8.27.

If the current impulse response of the amplifier to a unit current pulse is given by
h(t), the response to a charge Q is given by Qh(t) and the maximum value reached
by this pulse is given by Qhmax(t). From the definition of ENC we therefore have

Fig. 8.25 A charge-integrating amplifier with a resistor in parallel with the detector
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(ENCp hmax)2 = 〈I2
noise

〉

ENC2
p = 4kT

Rp

1

h2
max

∞∫

0

|H(ω)|2 dω

This equation is not elegant since it mixes quantities in the time domain and
quantities in the frequency domain. Using property 9 of the transfer functions this
can be written as

ENC2
p = 4kT

Rp

1

2h2
max

∞∫

−∞
[h(t)]2 dt

The equivalent noise charge is usually expressed as a number of electron charges,
rather than as a number of Coulombs.

Let us now consider the effect of a resistor Rs between the detector and the
amplifier. Such a resistor is in series with the detector. The noise current source
associated with this resistor is not equivalent to a noise source in parallel with the
detector and therefore cannot be compared directly with a detector signal. We should
calculate the noise spectrum of an imaginary current source in parallel with the
detector, which will generate exactly the same noise currents as the noise of the
series resistance Rs.

For this calculation, it is convenient to start from the representation of the noise
of the resistor Rs as a noise voltage source in series with the resistor as shown in
Fig. 8.26. Consider the circuit loop formed by the detector, the resistor Rs and the
input of the amplifier. In any realistic set-up, the impedance of the detector capac-
itance will by far be the largest impedance in the loop. At this point we have to
remember that the noise voltage of the resistor is due to a sum of a large num-
ber of elementary noise voltage signals. In the frequency interval (ω, ω+dω), the
elementary noise voltage signals are given by

Vnoise(t) = √
2a sin (ωt + ϕ)

Fig. 8.26 A
charge-integrating amplifier
with a resistor in series with
the detector
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Fig. 8.27 Output signal of
the amplifier with noise. The
output pulse corresponding to
a charge pulse equal to one
ENC is also shown

In this expression ‘a’ is a real and positive number representing the amplitude
for a particular elementary noise wave. The phase ϕ has a random probability dis-
tribution with each value of the phase being equally likely. The amplitudes ‘a’ also
have a probability distribution, but we do not need to know this distribution. We
only need to require that this distribution is such that the Eq. (8.5) is satisfied. This
means that the probability distribution of ‘a’ has to satisfy the condition

〈
V2

noise

〉
=
〈
a2
〉
= 4kTRs

dω

2π

Each of these elementary noise waves will cause an elementary noise current
in the detector. The noise current generated by each elementary noise signal is
given by

Inoise = ω Cd

√
2a sin (ωt + ϕ + π/2)

In calculating the average square noise current the phase factor π /2 is unimpor-
tant, since all values of the phase are equally likely. The series resistor therefore
induces a noise current identical to the current induced by a current source in par-
allel with the detector and with an average square noise current given below. As
before we have to remember that this sine wave will be observed by some electron-
ics characterised y a transfer function H(ω) and that therefore the amplitude of the
wave is multiplied by

√
2ω |H(ω|

〈I2
noise〉 = C2

d 4kT Rs

∞∫

0

ω2 |H(ω)|2 dω

The equivalent noise charge caused by a series resistor is therefore given by

(ENCseries hmax)2 = C2
d 4kT Rs

∞∫

0

ω2 |H(ω)|2 dω

ENC2
series = 4kT

h2
max

C2
d Rs

∞∫

0

ω2 |H(ω)|2 dω

This equation is not elegant since it mixes quantities in the time domain and
quantities in the frequency domain. Using property 9 of the transfer functions this
can be written as
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ENC2
series = 4kT

2h2
max

C2
d Rs

+∞∫

−∞

(
dh(t)

dt

)2

dt

The expressions for the ENC of a series resistor and a parallel resistor are usually
written in a slightly different way

ENC2 = 4kT

Rp
τa1 + 4kT C2

d Rs
a2

τ

a1 = 1

2τ ĥ2
max

+∞∫

−∞
h2(t) dt

a2 = τ

2ĥ2
max

+∞∫

−∞

(
dh

dt

)2

dt

(8.7)

The symbol τ represents the risetime of the output signal. It is easy to see that the
quantities a1 and a2 are dimensionless numbers. Moreover, for any realistic shaping
function, these coefficients are of order unity. This is illustrated in the Table 8.1
showing the value of these coefficients for a few simple shaping functions.

Equation (8.7) is the commonly used expression for the noise of an amplifier.
These equations make it clear that any parallel resistor should be as large as possible.
Here we see the reason why the impedance of the feedback resistor should be large.
The equations also tell us that any series resistor, if present at all, should be as small
as possible. The serial resistor and the parallel resistor in this expression are, in
fact, the combined effect of a number of different resistors at different places in the
circuit. Below we show that, for example, the first transistor of the amplifier has a
noise effect as if it was a resistor in series with the detector.

It is instructive to look at a numerical example. Consider a detector with a capac-
itance of 30 pF and a series resistor of 1 k�. Assume, furthermore, a risetime of
100 ns and a feedback resistor of 100 M�. In this calculation, we take the coeffi-
cients a1 = a2 = 1. The equivalent noise charge caused by this feedback resistor
is 25 electrons and the equivalent noise charge caused by the series resistor is 55
electrons.

Table 8.1 Value of the coefficients a1 and a2 for some typical shaping functions

Shaping a1 a2

1

a

t

a
e
− 1

a 0.93 0.92

1

a

( t

a

)4
e
− 1

a 0.45 1.0

Equilateral triangle 0.33 1.0
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For the sake of definiteness let us assume that the amplifier has a bandwidth of
10 MHz. One can consider that we have 107 independent noise amplitude samples
per second. (This is not quite exact but close enough for the sake of the argument.)
If no true signal is present, the samples contain only noise and this noise has a
Gaussian distribution with average value zero and an r.m.s. equal to 1 ENC. A sam-
ple from a Gaussian distribution has 15% chance of exceeding the average value by
one standard deviation. If we use a discriminator set at a threshold corresponding to
1 ENC, it will be triggered almost 106 times per second. A signal of 1 ENC will be
completely lost in the noise. If we set a threshold corresponding to 6 ENC charges,
the probability that a noise fluctuation produces such an event is about 10−7. Hence
the noise will fake a true signal pulse about once per second. As a rule of thumb,
we can say that true events should have a charge of at least about 10 ENC to be
comfortably visible above the noise.

8.5.2 Noise Due to the First Transistor

We now turn to the calculation of the noise of the amplifier itself. The front-end
part of a typical low-noise amplifier is shown in Fig. 8.28. The conducting channel
in the first transistor is a resistor, and the value of this resistor is modulated by the
input voltage of the amplifier. This resistor will give rise to noise. This first transistor
is very often a ‘field effect transistor’ (FET). The reasons for this and the relative
merits of FET transistors compared to bipolar transistors will become clear later.
For the time being, let us consider the case of an FET transistor.

The internal structure of an FET transistor is shown in Fig. 8.29(a). The two
regions of n-type silicon are called the source and the drain. There is a gate electrode
separated from the surface of the p-type silicon by a thin silicon oxide insolating
layer. If no voltage is present on the gate, no current will flow between the source
and the drain because there is always an n–p junction preventing this current flow.
If the gate is brought at a positive voltage of a few volts, the electric field will open
up a conducting channel between the source and the drain and a current will flow.
The intensity of the current will depend on the gate voltage. The transconductance
of the FET is defined as

gm(Vg) = dId

dVg

In this equation, Vg and Id are the gate voltage and the source-to-drain current,
respectively. The FET behaves like a resistor in the source-to-drain channel. Notice
that the source-to-drain resistor, Rsd, in the transistor does not behave like a normal
resistor and we will use the expression ‘effective noise resistance’ for it. There is
also a small capacitance Ct between the gate and the source. This capacitance is
in parallel with the detector capacitance and therefore should be added to it. This
transistor capacitance may seem a minor complication, but it will turn out that this
capacitance plays an essential role in determining the noise and we have therefore
included it explicitly in our calculations.
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The resistor Rsd will cause an average square noise current in the source-to-drain
channel given by

〈
I2
noise

〉
= 4kT

Rsd

∞∫

0

|H(ω)|2 dω (8.8)

To find the ENC, we need to calculate what hypothetical noise source in parallel
with the detector will cause a current in the source-to-drain channel identical to Eq.
(8.8). The noise will be due to an apparent noise voltage at the gate given by

〈V2
g 〉 = 4kT

g2
mRsd

+∞∫

0

|H(ω)|2 dω

Following the same argument as used when calculating the noise due to a series
resistor, we conclude that this gate voltage corresponds to an apparent noise current
source in parallel with the detector and with a noise current given by

〈
I2
noise

〉
= (Cd + Ct)

2 4kT

g2
mRsd

∞∫

0

ω2 |H(ω)|2 dω (8.9)

The noise caused by the resistance of the source-to-drain channel is therefore
equivalent to an apparent noise current source in parallel with the detector with a
noise spectrum given by Eq. (8.9). The corresponding equivalent noise charge is
therefore

ENC2 = 4kT

Rsd

(Cd + Ct)2

g2
m

1

h2
max

∞∫

0

ω2|H(ω)|2dω

ENC2 = 4kT

Rsd

(Cd + Ct)2

g2
m

a2

τ

We see that this noise depends on the temperature and the shaping time exactly
in the same way as if it were a resistor in series.

The structure of an FET is shown in Fig. 8.28. It is a narrow strip that can be
made arbitrarily long. Obviously, the transconductance of the FET is proportional
to the length of this strip. It therefore seems that we can make this noise as small
as we wish by making the strip sufficiently long and therefore the transconductance
sufficiently large. It is indeed possible to make the transconductance very large, but
in doing so we will also make the capacitance Ct very large. The FET capacitance
Ct is proportional to the transconductance as will be shown below.
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Fig. 8.28 First transistor in a detector for nuclear electronics. The capacitance Ct in this figure rep-
resents the capacitance of the transistor itself. The noise of the source-to-drain channel is equivalent
to noise source in parallel with the detector

Consider the volume indicated by the box in Fig. 8.29(b).
Applying Maxwell’s equation to this volume we can write

∫

Dds =
∫

ρdv = 0

The surface integral over the electric field is zero, therefore the total charge inside
this volume must be zero. We can only change the number of charges in the con-
duction channel of the FET by changing the number of charges in the gate and we
have

dQchannel = dQgate = CtdVg

But the source-to-drain current is related to the number of charges in the
conduction channel and the transit time of these charges by

Id = Qchannel

ttransit

Fig. 8.29 (a) Physical layout
of an FET transistor, (b)
Highly schematic
representation of the same
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Therefore, any change in the source-to-drain current is caused by a change in the
number of charges in the channel and we have

dId = dQgate

ttransit
= Ct dVg

ttransit

We therefore have the following relation between the transconductance gm, the
capacitance Ct and the transit time of the charges through the FET channel ttransit:

dId

dVg
= gm = Ct

ttransit

Furthermore, it is possible to show that (see Sect. 7.2.4 in [2] in Chap. 5)

Rds = 3

2
.

1

gm

We can now express gm and Rsd as a function of the FET capacitance Cf and
insert this into the expression for the ENC above

ENC2 = 8

3
kT

(Cd + Ct)
2

Ct
ttransit

a2

τ

This noise is minimised if we choose the transconductance of the FET such that
Ct = Cd. That can be done by taking an FET with an FET strip of the correct length.

For such an optimised FET the noise can hence be written as

ENC2 = 8

3
4kTCd a2

ttransit

τ
(8.10)

The above equation represents the noise due to the front-end FET transistor in the
amplifier. This equation only holds if this transistor is matched to the capacitance
of the detector. In this equation τ represents the rise time of the pulse and ttransit
the transit time of the charges through the FET channel. This transit time is of the
order of 0.25 ns in typical modern FET transistors. We see from the above equation
that for an optimised amplifier design the noise is proportional to the square root of
the detector capacitance. While the noise caused by real resistances in the system
can, in principle, be made arbitrarily small, the noise caused by the FET itself is
unavoidable. Equation (8.10), therefore, represents a true lowest possible value for
the noise.

A numerical example is instructive: assume a detector with a capacitance of 10
pF, a rise time of the signal of 250 ns and a FET with a transit time of 0.25 ns. From
the equation above we have ENCFET = 126 electrons. This is a true lower limit on
the noise that can be reached. Carefully designed amplifiers can reach a noise level
that is close to this theoretical lower limit, but more often the noise will be several
times larger. This means that a signal should be at least several thousand electrons
in order to be visible.
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The noise expression above only holds if for each value of the detector capac-
itance one uses the input FET that is matched to this capacitance. For a given
amplifier, the noise will be independent of the detector capacitance if it is lower
than the FET capacitance and increase proportionally with the detector capacitance
if it is larger than the transistor capacitance.

8.6 Shot Noise

An electrical current is a flow of discrete electric charges and not a smooth flow.
Therefore any current is unavoidably affected by fluctuations associated with the
random arrival of these charges. This noise is called shot noise.

For the sake of definiteness let us consider a simple vacuum photodiode. It con-
sists of an evacuated glass tube with a photocathode on one side of the glass and an
electrode facing the photocathode on the other side. A potential difference between
the photocathode and the electrode ensures collection of the photoelectrons by the
electrode (see Fig. 8.30(a)). If a light source illuminates the photocathode, we will
measure a photocurrent. Because of the nature of this set-up, it is obvious that these
electrons will be emitted randomly with a Poisson frequency distribution.

We furthermore assume that the signal produced by each electron is a square
pulse of duration �t and amplitude i = Q/�t, where Q is the charge of the electron.
If a weak light source illuminates the photocathode the photocurrent signal will look
like the signal in Fig. 8.30(b). If at any instant in time we measure the current, we
will observe a current equal to ni.(Q/�t), where ni is an integer number. In other
words, we always see an integer number of electrons. This integer will be equal to
all the electrons that arrived within a given time window of duration �t. This ni is a

Fig. 8.30 A vacuum
photodiode (a) and its
photocurrent (b)
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random variable with average value <ni>. At any instant in time we have

I = ni
Q

�t

The time averaged values of I and n are therefore related by

〈I〉 = 〈ni〉 Q

�t

And the r.m.s. dispersions on the current I and the number of electrons ni are
related by

〈
(I − 〈I〉)2

〉
=
〈
(ni − 〈ni〉)2

〉 ( Q

�t

)2

The random variable ni has a Poisson distribution, hence the r.m.s. dispersion of
this variable equals to the square root of its average value

〈
(I − 〈I〉)2

〉
= 〈ni〉

(
Q

�t

)2

= 〈I〉 �t

Q

(
Q

�t

)2

= 〈I〉 Q

�t

This can be seen as a noise current Inoise with average value zero, superimposed
on steady current <I>. The r.m.s. noise current due to shot noise is therefore given
by

〈
I2
noise

〉
= 〈I〉 Q

�t

We have derived an expression for the noise current in the special case where the
pulse corresponding to one electron is a square pulse. To generalise this result to an
arbitrary impulse response h(t) we will use a theorem about random sums of random
variables. It can be found in a good textbook on statistics. See also Exercise 3.

Theorem: Be xi a number of independent random variables, all with the same

probability distribution. Consider the random variable S =
1...n∑

i
xi, where the integer

n is itself a random variable with a Poisson distribution with average value λ. The
following relations hold:

〈S〉 = λ 〈xi〉
σ 2{S} = 〈(S − 〈S〉)2〉 = λ

〈
x2

i

〉

Consider a time interval T long compared to the shaping time of the pulse.
Assume that there is one, and only one, charge in this time interval as is illustrated
in Fig. 8.31. The impulse response corresponding to the arrival of this charge is
Q ĥ(t) with

∫
ĥ(t) = 1.
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Fig. 8.31 Response of the
system to one electron

We have for the average current <I> and for the average square current <I2> the
following relations:

〈I〉 = Q

T

∫

h(t)dt = Q

T

〈
I2
〉 = Q2

T

∫

h2(t)dt

If there are on average λ charges in the time interval T and if the number of
charges has a Poisson distribution, we thus have according to the above theorem:

〈I〉 = λ
Q

T

〈
(I − 〈I〉 )2

〉 = λ
Q2

T

∫

h2(t)dt

= 〈I〉 Q
∫

h2(t) dt

Therefore the apparent noise current is given by

〈
I2
noise

〉
=
〈
(I − 〈I〉 )2

〉
= 〈I〉 Q

∫

h2(t) dt

As before, this can be written as an integral over the transfer function:

〈
I2
noise

〉
= 2 〈I〉 Q

∞∫

0

|H(ω)|2 dω

Shot noise is also white noise! One verifies that the above expression reduces to
the result derived previously in the particular case of a square shaping function.

Following the same arguments as before, we conclude that the ENC for shot noise
is given by

ENC2 = 2IQ
1

hmax

+∞∫
−∞

h2(t)dt

ENC2 = 2IQτa1

(8.11)

where a1 is given by Eq. (8.7).



8.6 Shot Noise 265

Equation (8.11) does not apply to the resistive current in a normal resistor. The
derivation assumes that the shaping time is large compared to the physical formation
time of the pulse and for a normal resistor this assumption is usually not satisfied.
Indeed, the formation time of the pulse due to one electron is the time it takes for
the electron to travel from one electrode to the other and this time is very long
in a normal resistor. The speed of electrons in a resistor is of the order of metres
per hour! In addition, the assumption that the number of individual electrons has a
Poisson distribution is not valid.

Any detector itself contributes to the noise in two ways: by the shot noise associ-
ated with the current through the detector and by the thermal noise of its resistance.
The shot noise will increase with the current through the detector; therefore, with
increasing voltage over the detector at some point, the shot noise will exceed the
thermal noise. This happens when the shot noise associated with the current through
a detector (Eq. 8.11) exceeds the thermal noise associated with the resistance of the
detector (1st term in Eq. 8.7), therefore when

2IQ τ a1 >
4kT

R
τa1

IR >
2kT

Q
≈ 50 mV

The quantity I.R is the voltage over the detector. Therefore the shot noise will be
larger than the thermal noise if the voltage over the detector is larger than 50 mV.

The voltage over nuclear detectors is always much larger than 50 mV. Therefore,
the dominant noise contribution is the shot noise caused by the dark current, rather
than the thermal noise due to the resistance of the detector.

In the derivation above we have assumed that the charge quanta were equal to
one electron charge. Often the detector has an internal multiplication mechanism
and the charges arrive in multiples of the electron charge. In that case the charge
Q to be used in the expression for the shot noise is not the electron charge but the
electron charge multiplied by the multiplication factor. If all primary events have
the same multiplication factor, all one needs to do is to use the correct charge Q in
the above formula. However, often the multiplication factor varies from one event
to the next. This gives rise to an additional noise called the excess noise, and is
represented by a factor that is usually denoted by F. The concept of excess noise
factor was introduced in Sect. 6.4. In this case the expression for the ENC becomes:

ENC2 = 2IQτFa1

Shot noise will usually be regarded as something undesirable. However, the shot
noise can be used to measure physical quantities and this technique is referred to
in the literature as the Campbell measuring mode, after the person who developed
it. This technique can for example be used when measuring the neutron flux with a
proportional tube in the presence of a strong gamma ray background. In this case,
the detector signal consists of small pulses of amplitude ‘q’ caused by gamma rays
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and of large pulses of amplitude ‘Q’ caused by neutrons with Q>>q. If the pulse
rate is not too high one can reject the gamma ray pulses using a discriminator at a
sufficiently high threshold such as to reject all the gamma ray-induced pulses. If the
event rate is very high this is no longer possible. This situation is often encountered
when measuring neutron fluxes at nuclear reactors.

The total current Itotal of the detector is the sum of the current induced by the
neutrons In and the current induced by the gamma rays Iγ . Therefore

In = Itotal – Iγ

The measured total current has to be corrected for a poorly known gamma ray-
induced current. This gamma ray-induced current is sometimes much larger than
the neutron-induced current, making the measurement essentially impossible.

If we measure the current noise rather than the current itself we are much less
sensitive to the gamma ray-induced current. Indeed, this current noise is given by

〈
I2
noise

〉
= (Iγ q + InQ)2

+∞∫

0

|Ĥ(ω)|2 dω

From this we can derive the following expression for the neutron-induced
current:

In = 〈I2
noise〉

2Q
+∞∫

0

∣
∣
∣Ĥ(ω)

∣
∣
∣
2

dω)

−
(

Iγ
q

Q

)

We still need to correct for the gamma-induced current Iγ , but this correction is
suppressed by a large factor q/Q and we are much less sensitive to any uncertainty
in this gamma ray-induced current.

8.7 Summary and Conclusions

In a carefully optimised detector system the two largest noise sources are the shot
noise due to the dark current of the detector and the thermal noise associated with
the first transistor in the amplifier. Considering only those two terms the ENC can
be written as

ENC2 ≥ a2
8

3
4kTCd

ttransit

τ
+ a1 2eIdτ

There is always some additional noise due to other imperfections in the amplifier
or other parts of the electronics, therefore this equation is written as an inequality.

The shot noise is due to the dark current of the detector itself. It increases pro-
portionally to the square root of the shaping time. The noise associated with the first



8.7 Summary and Conclusions 267

Fig. 8.32 Typical values for the different contributions to the noise in an amplifier for particle
detection. The solid lines represent the noise caused by the first transistor for different values of
the capacitance of the detector. A number of other contributions to the noise are also shown. Figure
from [1]

transistor decreases inversely proportional to the shaping time and increases propor-
tionally to the square root of the detector capacitance. At a high rate one needs a
short shaping time and this last term dominates the noise.

Figure 8.32 gives an overview of the different noise contributions in a detector
as a function of the shaping time. The solid lines in this figure give the noise con-
tribution from the first transistor in the amplifier for different values of the detector
capacitance. The detector capacitance is, of course, related to the size of the detector.
For detectors in nuclear and particle physics the capacitance ranges from well below
1 pF in some pixel detectors to several μF for calorimeters used in high-energy
physics experiments.

Figure 8.32 also shows the shot noise of a hypothetical detector with a dark cur-
rent of 1 nA. The shot noise associated with the FET leakage current is also shown.
This leakage current has the same shot noise effect as the dark current in the detec-
tor. We also show the noise caused by the base current of the bipolar transistor, in
case one uses a bipolar transistor instead of a FET. The plot makes it clear why it
is usually preferable to use a FET. The shot noise associated with an FET is orders
of magnitude smaller than the shot noise of a bipolar transistor. However, if the
detector capacitance is very large, or the shaping time very short, other noise con-
tributions become dominant and it is preferable to use a bipolar transistor because
this is simpler and has a number of other advantages.

If the shaping time is of the order of 1 ms or longer, other noise sources become
important. One important type of noise is the 1/f or flicker noise. The term ‘1/f’
stands for ‘one over the frequency’ and this type of noise can have many causes. In
an amplifier both capacitances and the resistors contribute to the 1/f noise.
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A capacitance without dielectric is noiseless, but practical capacitances have a
dielectric medium between the plates. The polarisation in this dielectric is not a
purely smooth process and the effect is the induction of some 1/f noise. Resistors
also suffer from fluctuations in resistance, generating an additional noise propor-
tional to the current flowing through them. The magnitude of this noise depends
on details of the construction of the resistors, but it always has an 1/f frequency
spectrum. Typical values are [μV per decade of frequency and per volt over the
resistance]

carbon composition 0.01 – 3.0
carbon film 0.05 – 0.3
metal film 0.02 – 0.2
wire wound 0.01 – 0.2

In nuclear and particle physics one is rarely interested in a shaping time that is
longer than 1 ms, hence these other noise sources are of little concern.

8.8 Exercises

(1) Derive property 6 of the transfer function in Sect. 8.2.
(2) Calculate the Fourier transform of Eq. (8.4).
(3) Prove the following theorem.

Be xi a number of independent random variables, all with the same probability
distribution. Consider the random variable

R =
1...n∑

i

xi,

where the integer n is itself a random variable with a Poisson distribution with
average value l. The following relations hold:

〈R〉 = λ 〈xi〉
σ 2{R} = 〈(R − 〈R〉)2〉 = λ

〈
x2

i

〉

(4) Assume that you are measuring the noise voltage of a resistor using a digital
oscilloscope with an input impedance of 10 M� and a bandwidth of 400 MHz.
For what value of the resistor will you measure the largest value for the noise.
How much will this maximum noise be in mV?

(5) Consider a silicon strip detector where each strip has a capacitance of 20 pF and
a dark current of 20 nA. The rise time of the pulse is 30 ns. Give an under limit
for the noise. Take the shape coefficients a1 = a2 = 1.

(6) Prove that the stationary solutions for a transmission line of length D are given
by the following equations
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⎧
⎪⎪⎨

⎪⎪⎩

In(x, t) = In sin
(nπx

D

)
sin
(nπv0t

D
+ ϕn

)

Vn(x, t) = InZ0 cos
(nπx

D

)
cos
(nπv0t

D
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)
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Solutions to Exercises

Chapter 1

1. Show that the Lorentz transformation is such that the velocity of a light ray
travelling in the x direction is the same for the observer in the frame S and for
the observer in the frame S′.

Solution: Consider a light ray travelling in the x direction. If the light ray
connects two space–time points {t1, x1} and {t2, x2}, we have

c = x2 − x1

t2 − t1

The speed of light observed in the frame S′ will be

c′ = x′
2 − x′

1

t′2 − t′1
= c

γ ((x2 − x1) − βc(t2 − t1))

γ (c(t2 − t1) − β(x2 − x1))

= c

[
x2 − x1

t2 − t2
− βc

]

[

c − β
x2 − x1

t2 − t2

] = c

2. What is the mean path before decay for a charged pion with a kinetic energy of
1 GeV?

Solution: The pion has a lifetime 2.6 × 10–8 s and a mass of 139.6 MeV. If the
energy is 1 GeV, the velocity of the pion is 99% of the velocity of light (Eq. 1.4).

The mean path before decay is

= 0.99 c γ τ

= 0.99 c
1000 + 139.6

139.6
2.6 10−8 = 63 m
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3. Show that the relativistic expression for the kinetic energy of a particle (Eq. 1.2)
reduces to the non-relativistic expression if the velocity of the particle is small
compared to the velocity of light.

Solution:

E = Ekinetic + m0c2 = m0c2
√

1 − (v/c)2

≈ m0c2

(1 − 1/2(v/c)2)
≈ m0c2(1 + 1/2(v/c)2)

= m0c2 + 1

2
m0v2

4. For a Poisson distribution with average value 16, calculate the probability to
observe 12, 16 and 20 as measured value. Calculate the probability density func-
tion for a Gaussian distribution with average value 16 and dispersion 4, for the
values x = 12, 16 and 20. Compare the results.

Solution: For a Poisson distribution P(12) = 0.0829, P(16) = 0.1024, P(20) =
0.0418

For a Gaussian distribution, f(12) = 0.0605, f(16) = 0.0997, f(20) = 0.0605
5. Consider a very short-lived particle of mass M decaying into two long-lived par-

ticles 1 and 2. Assume you can measure accurately the energies and momenta of
the two long-lived particles. How will you calculate the mass of the short-lived
particle from the known energies and momenta of the two long-lived objects?

Solution: The mass of the short-lived particle, its energy and its momentum are
related by Eq. (1.1). The energy and momentum of the particle are equal to the
sums of the energy and sums of the momenta of the decay products, therefore

M2c4 = (E1 + E2)2 − c2(�P1 + �P2)2

6. Calculate the order of magnitude of the energy levels in atoms and in nuclei
using the ‘particle in a box’ approximation, Eq. (1.9). Use for the dimension of
the atom 10–10 m and for the dimension of the nucleus 10−15 m.

Solution: Atomic energy levels: ≈40 eV; nuclear energy levels: ≈400 MeV.
7 . Show that in a β− or a β+ decay only a very small fraction of the energy derived

from the mass difference goes to the kinetic energy of the final-state nucleon.
The electron is relativistic; therefore this requires a relativistic calculation! Hint:
the 3-body problem can be reduced to a 2-body problem by considering the
electron–neutrino system as one object with a mass of a few MeV.

Solution. Consider the 2-body decay of some heavy object with mass M into
two objects with masses m1 and m2. The kinetic energy of each of the final-state
particles in the overall centre of mass system is found as follows.
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Consider two particles with energy and momentum four vectors p1 and p2.
The symbol pi stands for the four-vector {Ei,c�pi}. The energy E appearing in this
expression is the total energy E, i.e. the rest energy mc2 plus the kinetic energy.
The four-vector product (p1.p2) is defined as

(p1.p2) =
[
E1E2 − c2 �p1 �p2

]

A four-vector product is a Lorentz invariant; this quantity can be evaluated in
any reference frame, and the result is the same. Consider now the quantity

(p1.p2)

m1c2

This is a Lorentz invariant. Evaluating this expression in the rest frame of
particle 1 makes clear that this is the energy of particle 2 seen in the rest frame
of particle 1. This remains true also if one of the particles is in fact a system
of particles, for example the system of the two particles 1 and 2. The energy of
particle 2, seen in the overall centre of mass frame of the particles 1 and 2 is
therefore

E∗
2 = (p1 + p2).p2

(p1 + p2)2

We have the following relations:

(p1 + p2)
2 = M2c4

(p1.p2) = 1

2

[
(p1 + p2)

2 − (p1)
2 − (p2)

2
]

= M2c4 − m2
1c4 − m2

2c4

And therefore finally

E∗
2 = M2c4 + m2

2c4 − m2
1c4

2Mc2

Let us now apply the above relation to the decay

N∗ → N + e− + ν̄e + Q

The symbol Q represents the energy liberated in the reaction. Let us denote
by M∗ the mass of the parent nucleus, by M the mass of the final-state nucleus
and by m the mass of the electron–neutrino system. The kinetic energy of the
nucleus in the final state is given by
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Ekin = M∗2c4 + M2c4 − m2c4

2M∗c2
− Mc2

= M∗2c4 + M2c4 − m2c4 − 2M∗c2Mc2

2M∗c2

= (M∗ − M)2 c4 − m2c4

2M∗c2

=
(
mc2 + Q

)2 − m2c4

2M∗c2

= Q
[2mc2 + Q]

2M∗c2

The value of the quantities Q and mc2 is a few MeV, while the value of M∗c2

is a few GeV. Therefore the kinetic energy of the final-state nucleon is only of
the order of 0.1% of the energy liberated in the reaction Q. The rest of the kinetic
energy is given to the electron and the neutrino.

Chapter 2

1. Calculate the approximate mean free path of a high-energy neutron in dry air.
Air is 80% 14N and 20% 16O by volume.

Solution: Obtain the density for N2 (A = 14) and O2 (A = 16) from the gas
constant: one mole = 22.4 l at standard temperature and pressure. One finds for
the partial densities of nitrogen and oxygen gas: ρN = 1.0 × 10−3 g/cm3; ρO =
0.286 × 10−3 g/cm3.

Use the expression for the hadronic interaction length in Sect. 2.5, to find the
mean free path: λN = 843 m; λO = 3083 m. Use Eq. (2.2) to find the total mean
free path in air. The result is 662 m.

2. Derive Eq. (2.10) using energy momentum conservation.

Solution: A photon has energy E = �ω. Because of Eq. (1.1), it has a momentum
P = �ω/c. If the outgoing electron has energy Eout and momentum Pout and
we use ϕ for the angle between the outgoing electron and the direction of the
incoming photon, energy and momentum conservation is written as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mc2 + �ω = Eout + �ω′
�ω

c
= Pout cos ϕ + �ω′

c
cos θ

0 = Pout sin ϕ + �ω′

c
sin θ

Furthermore Eq. (1.1) gives a relation between energy Eout and momentum
Pout. We hence have four equations and need to eliminate three variables, Eout,
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Pout and ϕ. This is easily done if we rewrite slightly the energy and momentum
conservation equations as

⎧
⎨

⎩

(mc2 + �ω − �ω′)2 = E2
out

(�ω − �ω′ cos θ )2 = c2P2
out cos2 ϕ

(�ω′ cos θ )2 = c2P2
out sin2 ϕ

We thus find

m2c4 = (mc2 + �ω − �ω′)2 − (�ω − �ω′ cos θ )2 − (�ω′ sin θ )2

m2c4 = m2c4 + 2mc2(�ω − �ω′) + 2�ω�ω′( cos θ − 1)

And this gives directly the desired result

�ω′ = �ω
(

1 + �ω

mec2 (1 − cos θ)

)

3. Consider two protons with the same kinetic energy and travelling on a head-on
collision trajectory. The protons repel each other by the Coulomb force. At the
point of closest approach the distance between the protons is 2 × 10−10 m. What
is the energy of each of these protons?

Solution: The force between the two protons is given by

F = e2

16π r2 ε0
.

In this equation, r represents the distance of one proton to the centre of mass
point, i.e. half of the distance between the two protons. The energy lost by a
proton coming from infinity and arriving at a distance R from the centre of mass
point is given by

−
R∫

∞
eF dr = e2

16π ε0 R

If this energy loss is equal to the kinetic energy of the proton, this equation
gives the distance of closest approach of the particle, and we have

e2

16π ε0 Rclosed
= Ekinetic.

The numerical values for the constants in this equation can be found in annex
1. If we take the distance of closed approach = 10−15 m, we find Ekinetic =
360 MeV.
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4. Derive the expression for the threshold energy for the Cherenkov effect (Eq. 2.8),
starting from E = γ m0c2.

Solution:

E = Ekin + m0c2 = m0c2
√

1 − (v/c)2

At the Cherenkov threshold v/c = 1/n, therefore

Ekin = m0c2
√

1 − (1/n)2
− m0c2

= m0c2

⎛

⎝

√

n2

n2 − 1
− 1

⎞

⎠

5. The diameter of atoms is of the order of the Bohr radius and is given by

a = 4πε0�

mee2
.

Use the Heisenberg uncertainty relation to argue that the velocity of the elec-
trons in atoms is of the order v ≈ cα, where α is the fine structure constant.

α = e2

4π �c ε0
≈ 1

137

Solution:

�px�x ≈ �

v = �px

me
= �

mea
= cα

Chapter 3

1. Assume a linear accelerator as shown in Fig. 3.5 and an alternating voltage
source of 10 MHz. Assume we want to use it to accelerate electrons. After a
few steps, the electrons will have a velocity close to the velocity of light. How
long should each of the tubes be to accelerate each electron further?

Solution:

c

2f
= 15m
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2. Assume you have a cyclotron with a magnet of 1.5 Tesla field. The useful diame-
ter of the magnet is 2 m. What is the maximum energy you can reach for protons
with this machine?

Solution: The mass of a proton is mc2 = 938 MeV. From Eq. (3.1), the maximum
momentum the proton can have is Pc = 448.5 MeV. The maximum energy is
given by Eq. (1.5): E = 102 MeV.

3. Show that in a cyclotron the distance between the successive orbits becomes
smaller as the energy of the particles becomes larger.

Solution: With each revolution the kinetic energy increases by the same amount.
Differentiating Eq. (1.1), we get the relation between the step in energy and the
step in momentum

c�P cP = �Ekinetic(Ekinetic + mc2)

c�P = �Ekinetic
(Ekinetic + mc2)

cP

c�P = �Ekinetic

√
m2c4 + P2c2

cP

c�P = �Ekinetic

√

1 + m2c4

(cP)2

�r = c�P

cZeB
= �Ekinetic

c Ze B

√

1 + m2c4

(c Ze Br)2

This equation clearly shows that identical steps in energy will correspond to
smaller steps in radius as the energy or momentum of the particle increases.

4. Show that the equation for the radius of curvature of the track of a charged
particle in a magnetic field: P = Ze B r, can be rewritten as Eq. (3.1).

Solution: cP = Ze B r c. If e is expressed in coulomb, B in tesla and r in meter,
we obtain cP in joule. To obtain the quantity Pc in eV, divide the expression by
the charge of one electron

{cP}[eV] = Z B[tesla] r[m] c[m/s] = 2.9979 × 108Z B[tesla] r[m].

5. Assume that to drive a nuclear reactor one needs a beam of protons with an
energy of 1 GeV and a beam current of 20 mA. Assume that the accelerator has
an efficiency for converting electrical energy to beam energy of 33%. How much
electrical power will this accelerator use?

Solution. If ‘e’ is the charge of a proton, ‘I’ the beam current and ‘E’ the
beam energy, the number of protons per second in the beam is given by
I[A]/e[coulomb].

The energy of one proton of E[eV] expressed in joule is = e[coulomb] E[eV]



278 Solutions to Exercises

The power in the beam in watt is hence I[A].E[eV] or 20 MW.
With an efficiency of 33% the electrical power consumption of the accelerator

is 60 MW.
6. What is the speed of a train that has the same kinetic energy as the energy stored

in one of the proton beams of the LHC accelerator. A typical train weighs 400
metric tons.

Solution: There are 3 × 1014 protons in one of the beams of LHC. The total
energy Etot in the beam therefore is 33.6 × 107 joule.

The speed of the train with kinetic energy Etot is given by

v[m/s] =
√

2Etot

m[kg]

This gives 40 m/s or ≈150 km/h for the speed of the train.
7. Assume we accelerate protons and make them collide with protons at rest. What

should be the energy of the proton beam to produce the same centre of mass
energy as is achieved in collisions at the LHC collider.

Solution: The beam energy of the proton producing the same centre of mass
energy in a fixed target collision is given by

Ebeam = E2
CM

2 mpc2

For a centre of mass energy of 14 TeV this gives 2.6 × 1016 eV
8. In the SPS proton synchrotron, the frequency of the RF cavities at the maximum

energy of 450 GeV is 200.2 MHz. How much should the frequency be at the
injection energy of 10 GeV?

Solution: The nominal trajectories of the particles should be the same at both
energies. We therefore have

f = v

L
= c
√

1 − (mc2/E)2

L

where v and E are the velocity of the protons and L the length of the trajectory.
The frequencies at 10 and 450 GeV are hence related by.

f 10 = f450
v10

v450
= f450

√

1 − (mc2/10
)2

√

1 − (mc2/450
)2

The result is f10 = 199.3 MHz.
9. Assume a synchrotron for electrons with a beam energy of 1 GeV. What is the

power dissipated by synchrotron radiation? Assume that the bending magnets



Solutions to Exercises 279

have a field of 2 tesla, that the number of particles stored is 1012, and that 33%
of the circumference is occupied by the bending magnets. The rest of the cir-
cumference has quadrupoles and straight sections. Neglect the power dissipated
in the quadrupoles.

Solution: Use Eq. (4.2) to find the radius of the beam trajectory in the bending
magnets (r = 1.66 m). The circumference of the cyclotron is therefore ≈30 m
and the rotation frequency ≈107. The total power dissipated is the power per turn
(Eq. 3.3) times the rotation frequency times the number of electrons in the ring.
The result is 8 × 104 Watt.

Chapter 4

1. Consider an MWPC with wire spacing �. Assume that for perpendicular tracks
the biggest signal is always on the nearest wire. Show that the r.m.s. position

resolution obtainable with such a detector is given by σ = �√
12

Solution: The r.m.s. measurement error σ is given by

σ 2 =
∫

(xmeasured − x)2 f (x) dx

In this expression x represents the true position of the track, f(x) the probabil-
ity density function for the true position x and xmeasured represents the measured
value of the position. In this case, the measured position is the position of the
wire nearest to the true position. Let us first consider the particular case where
the true position is within a distance �/2 of a particular wire at position P. In this
case the integral becomes

σ 2 = ∫ (P − x)2f (x) dx
{

f (x) = 1

�
P − �/2 < x < P + �/2

f (x) = 0 all other values of x

.

The r.m.s. position error is hence given by

σ 2 =
P+�/2∫

P−�/2

(P − x)2 f (x) dx = �2

12

Since the true position is always within a distance �/2 of one of the wires this
result holds for any value of the true position of the track.

2. You suspect that the gas in a cave is heavily contaminated by radon [222
86Rn]

gas. To determine the radon contamination, you measure the current caused by
the radon in an ionisation chamber containing one litre of air from the cave. You
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measure 0.1 pA. How much radiation expressed in pico Curie (pCi) per litre is
there in the air of the cave? How many radon atoms per litre are there in the air
of the cave?

Radon has a half-life of 3.8 days and decays into alpha particles of 5.6 MeV
nearly 100% of the time. To simplify the calculation, ignore the fact that radon
decay products will also be present and will significantly contribute to the cur-
rent. Also ignore the fact that often the alpha particle will hit the wall of the
ionisation chamber and therefore will not use all its energy to ionise the air.

Solution: The average energy needed to produce one electron–ion pair in air is
33.8 eV. (see Table 4.1). The current produced if there is one alpha particle per
second therefore is 2.65 × 10−14 A. The number of alpha particles per second
corresponding to 0.1 pA therefore is 3.77 This corresponds to an activity of ≈100
pCi. The decay time constant for alpha emission by radon is τ = T1/2/ln2 = 5.48
days.

The number on radon atoms in one litre is 3.77 × τ [s] = 1.88 × 106.
3. A GEM detector has a conversion gap of 2 mm. The gas filling is 90% Ar and

10% CH4. Cosmic ray muons are falling perpendicularly on this detector. What
is the probability that a muon will be go undetected because there is no primary
ionisation event in the conversion gap?

Solution: The number of primary ionisation events in this gas mixture is the
weighted average of the number of primary ionisations of the two components.
In this case the number of primary ionisations per cm is therefore 26.2/cm. The
average number of primary ionisation events in two mm is hence 5.2. The num-
ber of primary ionisation events has a Poisson statistics. The probability to have
nothing is e−5.2 = 0.005.

4. Calculate the mobility of nitrogen ions in nitrogen gas assuming that the cross
section for the collision is 3.7 × 10−15 cm2.

Solution: The mean free path is λ = 1/Nσ . The number of nitrogen
molecules/cm2 is found from the fact that one mole of gas has a volume of 22.4 l.
The mean fee path therefore is ≈100 nm. The mobility is obtained from Eq. (4.1).
Remember to express all quantities in MKSA units. The result is 3.4 cm2V−1s−1.

Chapter 5

1. Calculate the dopant concentration in n-type silicon with a resistivity of 2000 �

cm.

Solution: In n-type silicon, the number of electrons is much larger than the num-
ber of holes and the number electrons per unit volume is equal to the donor
concentration Nd. Equation (5.4) can therefore be written as

Nd = 1

e ρ μe
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If in this equation e is expressed in coulomb (e = 1.6 × 10−19 coulomb), ρ

in �cm and the mobility μe in cm2/Vs (μe = 1350 cm2/Vs , see Table 5.1), we
obtain Nd = 2.3 × 1012 cm−3

2. For a silicon strip detector made starting from n-type silicon with a resistivity of
2000 �cm, calculate the voltage to fully deplete a silicon microstrip detector of
300 μm thickness.

Solution: From Eq. (5.5), we get the voltage needed to obtain a given depletion
layer

V0 = d2 e Nd

2ε0εr
= d2

ρμe2ε0 εr

In this equation, ε0 is the permittivity (also called dielectric constant) in vac-
uum ε0, see annex 1 ‘Physical constants’ and εr is the dielectric constant of sili-
con (εr = 12, see Table 5.1). The dopant concentration is calculated in Exercise
1. Note that if we take ε0 in MKSA units, the dopant concentration should be
expressed as atoms/m3 and the thickness d should be in meter. The result is
V0 = 156 V.

3. Derive an expression for the energy resolution (FWHM and in %) of silicon as
an X-ray detector at room temperature. How much will the energy resolution be
for X-rays of 50 keV?

Solution: The number of e–h pairs produced by the X-ray is ne = E[eV]/3.62.
If the number e–h pairs were Poisson distributed, the r.m.s dispersion on the

measured number of charges would be σ = √
ne. Because the total energy

needed to produce the e–h pairs is a large fraction of the energy of the X-ray,
this is not a Poisson distribution and the dispersion is given by σ = √

F ne

where F is the Fano factor (see Table 5.1). The signal is proportional to ne and
the variance on the signal is proportional to σ = √

F ne. The relative resolution
is given by

=
√

Fne

ne
=
√

F

ne

We need to multiply this by 2.35 to express the resolution as ‘Full Width at
Half Maximum’ and to multiply it by 100 to express it in %.

The result is therefore

resolution FWHM[%] = 235

√
F 3.62

E[eV]

For an X-ray of 50 keV this gives 0.63%.
4. You deposit a very thin layer of 241 Am with an activity of 2 MBq on a surface

barrier alpha particle detector. This isotope emits alpha particles, see annex 6
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for the characteristics of the emission. Calculate the magnitude of the pulses in
number of electrons and the current in the detector.

Solution: The charge in each pulse is ≈5,480,000/3.62 = 1,513,000 electrons.
The current is the charge of each pulse times the electron charge, times the num-
ber of decays (2,000,000/s) divided by 2 since only half of the alpha particle are
emitted in the right direction to penetrate into the detector. The result is 240 nA.

5. Calculate the number of charges produced in a silicon strip detector of 500 μm
thick by a minimum ionising particle.

Solution: Use the value for the energy loss and the mean energy per electron–ion
pair from Table 5.1. The result is 53,453 electrons

6. Calculate the density of states for an electron enclosed in an infinitely deep and
cubic potential well. Use the expression below for the energy levels of the elec-
tron in such a potential well. The numbers n1, n2 and n3 are positive integers.

E = p2

2m
= π2 (�c)2

a2 2mc2
(n2

1 + n2
2 + n2

3)

Solution: The energy levels of an electron enclosed in an infinitely deep potential
well in one dimension can be found by solving the Schrödinger equation. This
problem is solved in any good textbook on quantum mechanics. Here we only
give a simple and heuristic derivation of the result.

A wave is associated with every electron and the corresponding wavelength
is given by

λ = h

p

The energy eigenstates of the electron correspond to the values of the
momentum such that the associated wavelength satisfies

nλ/2 = a

where n is a positive integer and a the dimension of the well. We therefore have
the following relations

p = π �

a
n

E = p2

2m
= π2 (�c)2

a2 2mc2
n2

In the three-dimensional well this becomes

E = p2

2m
= π2 (�c)2

a2 2mc2
(n2

1 + n2
2 + n2

3)
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The energy eigenstates of the electron are given by the positive integer values
of the quantum numbers n1, n2 and n3. To derive the number of electron states in
the infinitesimal energy interval {E, E+dE}, we slightly rewrite this as

R2 = (n2
1 + n2

2 + n2
3) with R2 = E

a2 2mc2

π2 (�c)2

Each electron state corresponds to a point of a regular grid in a three-
dimensional Euclidian space. The probability to have an electron state in the
infinitesimal energy interval {E, E+dE} is equal to the volume of one octant of
the skin of a sphere with radius R and with thickness dR, divided by the number
of points per unit volume. Since the number of points per unit volume is equal to
one, the probability to have one electron state in the interval is simply given by.

ρ(R) dR = 1

8
4π R2dR

To obtain the probability density of states per unit volume in the variable E
rather than in the variable R, we only need to make a change of variables and
divide by a3.

ρ(E) = 4π

(
2m

h2

)3/2 √
E dE

In this last result we have multiplied the density of states by a factor two to
take into account the fact that an electron can have two spin states.

7. Calculate the potential difference over a p–n junction if the dopant concentrations
in the n-type silicon and the p-type silicon are ND = 1012/cm3 and NA = 1016

cm3, respectively.

Solution: The potential difference over the junction equals the difference in the
Fermi levels between the two parts. In the silicon we have

n − type EF − Ei = kT ln
ND

ni

p − type Ei − EF = kT ln
NA

ni

And therefore the potential difference is

(EF)n − (EF)p = kT ln
ND NA

n2
i

= 0.025 ln
1012 × 1016

1.51010 × 1.51010
= 0.44 V
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Chapter 6

1. Assume a detector for gamma rays consisting of LSO scintillator and a photo-
multiplier tube. The signal is taken from the anode of the PMT with a 50 � coax
cable and brought to an oscilloscope. The input impedance of the oscilloscope is
50 � and the gain of the PMT is 105. What will be the signal amplitude when
observing gamma rays of 1 MeV? Note: assume a light collection efficiency 50%
and a photocathode quantum efficiency of 25%.

Solution: From Table 6.2, obtain the light yield and decay time of LSO: 28,000
photons/MeV and 40 ns. The total charge in the pulse is Qt = 5.6 × 10−11

coulomb.
The current pulse generated by the PMT is given by

i(t) = Qt
1

τ
e−t/τ

The peak value of the current pulse is i = Qt/τ and the peak voltage

Vmax = 50Qt/τ = 70mV.

2. Consider a source emitting gamma rays of 511 keV. Calculate the energy where
you expect the backscatter peak in the pulse height spectrum.

Solution: Using Eq. (2.10), we calculate the energy of the scattered photon for θ

= 180◦. This gives 511/3 = 170 keV.
3. Consider a CsI:Tl scintillator. What fraction of the energy lost due to the

interactions with the electrons in the material is converted to scintillation light?

Solution: The CsI:Tl emits 65,000 scintillation photons per MeV of energy lost.
The wavelength of the scintillation light is λ = 565 nm. The energy of each
photon is

E = hc

λ
= 1.242[eV μm]

0.565
= 2.19 eV

The total energy in the scintillation light is 143,000 eV or 14.3% of the energy
lost in ionising and exciting electrons.

4. Consider a PIN diode with a quantum efficiency of Eff = 60%. Assume it is
exposed to a light flux one μW at a wavelength of 565 nm. What will be the
photocurrent?

Solution: The energy of a photon of 565 nm is Eλ = 2.19 eV (see Exercise 3).
The number of photons per second is

P[W]

Eλ[Joule]
= P[W]

eEλ [eV]
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The current is

I = P[W]

e Eλ[eV]
e Eff = 2.710−7 A

5. Consider a PET scanner with a solid angle covering around its centre point of �

= 10%. Assume the detection efficiency for a gamma ray of 511 keV and within
the solid angle is Eff = 20%. Assume you place a point source in its centre with
an activity of 1 mCi. What will be the single count rate and the coincidence count
rate?

Solution: An activity of 1 mCi is the same as 37 × 106 Bq.

Single rate = 37 × 106 × 2 × � × Eff = 1.48 106 Hz
Coincidence rate = 37 × 106 × � × Eff 2 = 1.48 105 Hz

6. In several photodetectors the charge multiplication gives rise to an exponential
pulse height distribution for single primary charges. Show that in this case the
excess noise factor equals 2.

Solution: The pulse height distribution is f(x)

f (x) = ae−ax

〈x〉 =
∫

x f (x) dx = 1/a

〈
x2
〉
=
∫

x2 f (x) dx = 2/a2

σ 2{x} =
〈
x2
〉
− 〈x〉2 = 1/a2

F =
[

1 + σ 2{x}
〈x〉2

]

= 2

Chapter 7

1. Consider the neutron absorption reaction below, assume thermal neutrons.

3
2He+1

0n → 3
1H+1

1p Q = 0.764 MeV

Use energy and momentum conservation to derive the expression giving the
kinetic energy for the two final state particles and calculate the value of these for
the reaction above.

Solution: In this case the centre-of-mass frame and the laboratory frame are the
same. The two final state particles have energy, momentum and mass denoted by
Ei, Pi and mi, i = 1.2. Energy and momentum conservation requires
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{
E1 + E2 = Q
P1 = P2

using P2 = 2 mE, this becomes

{
E1 + E2 = Q

2m1E1 = 2m2E2

and we readily find

E1 = m2Q

(m1 + m2)

In the numerical calculation use 938 MeV/c2 and 2809 MeV/c2 for the mass
of the proton and the tritium. The energy of the proton and tritium are therefore
191 keV and 573 keV, respectively.

2. A commonly used detector for thermal neutrons is a proportional tube filled with
3He gas. Calculate the mean free path of the neutrons in the gas if this gas is at a
pressure of 5 atmospheres. If the tube has an inner diameter of 4 cm, what is the
probability that a thermal neutron going through its centre will be detected?

Solution: One mole of gas at standard temperature and pressure has a volume of
22.4 l. The mean free path (m.f.p.) of a neutron is given by (see Chap. 2, Sect.
2.6) mfp = 1/(Nσ ); N = number of scatter centres/cm3; σ = cross section. In the
calculation below, I use cm as unit of length. N can be found knowing that 22.4 l
of gas at atmospheric pressure contains 6.022 × 1023 atoms of He3. Therefore
at 5 atmosphere there are N = 1.344 × 1020 atoms/cm3. The cross section for
the absorption of thermal neutrons in He3 is found on Fig. 8.1: σ = 5000 barn =
5 × 10−21 cm2 .We therefore have m.f.p. = 1.49 cm. The probability to interact
in 4 cm is

Prob =
4∫

0

1

mfp
e
− l

mfp dl = 1 − e
− 4.0

1.49 = 0.93

3. Calculate the fractional decrease in sensitivity of a self-powered detector with
rhodium emitter, after exposure during 6 months to a flux of 3 × 1013

neutrons/cm2/s.

Solution: The exact geometry of the rhodium is unimportant as long as the thick-
ness of the rhodium is small compared to the mean free path of the neutrons.
We therefore consider a small square of rhodium with surface S and thickness
dl. The number of rhodium atoms per unit volume is denoted as N and the total
neutron flux as �. The probability for a neutron to interact is P = Nσdl. The
number of rhodium atoms lost is therefore
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�N = N σ dl �

and the relative change in sensitivity of the detector is

fractional change = �N

NSdl
= σ �

S
= σ

�

S �T
�T

The numerical calculation gives for the relative change = 0.072. The amount
of rhodium lost is of course decreasing exponentially, but because only a small
fraction is lost we can use a linear approximation.

4. Derive Eq. (7.1) in Sect. 7.3.2.

Solution: Figure 7.11 shows the geometry of the problem. In this calculation,
we can use non-relativistic kinematics; therefore, 2mE = P2. We consider the
collision in the laboratory frame and use un-primed symbols for the quantities
before the collision and primed symbols for the quantities after the collision.
Furthermore, we use φ to denote the scattering angle of the scattered proton and
the Subscript A refers to the target nucleus. Energy and momentum conservation
requires

⎧
⎨

⎩

En = E′
n + E′

A
Pn = P′

A cos θ + P′
n cos φ

0 = P′
A sin θ + P′

n sin φ

To eliminate the variable φ, isolate the term containing the variable φ in the
2nd and 3rd equation, square and add.

{
En = E′

n + E′
A

P2
n − 2PnP′

A cos θ + (P′
A)2 = (P′

n)2

Replace P2 everywhere by 2mE and eliminate E′
n using the first equation.

After some reshuffling of the terms we get the desired result. E′
A is the recoil

energy of the target nucleus.

E′
A = Erecoil = En

4mAmn

(mA + mn)2 cos2 θ

5. Derive Eq. (7.2) in Sect. 7.3.2.

Solution: Figure 7.11 shows the geometry of the problem. To obtain the rela-
tion between the scattering angle in the laboratory frame θ and in the centre
of mass frame �, we notice that in the centre of mass frame (CM frame), the
velocity of the nucleon A, both before and after the collision, is equal to the
velocity of the centre of mass system in the laboratory frame vcm, The momen-
tum of the recoil nucleus in the CM frame is therefore ma vcm, Furthermore, the
perpendicular component of the momentum of the recoil nucleon is the same
in both frames. The symbol vn denotes the velocity of the initial neutron in the
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laboratory frame and P′
A the momentum of the nucleus A in the laboratory frame

after the collision.
The value of vcm is found by requiring that the momenta of the neutron and

the nucleus A before collision are the same in the CM frame.

mn(vn − vcm) = mavcm

vcm = mnvn

(mA + mn)

The perpendicular momentum component of the recoil nucleus is found
starting from Eq. (7.1) and using Erecoil = (P′

A)2/2mA.

P′
A sin θ = vn

2mAmn

(mA + mn)
cos θ sin θ

The quantity sin� is given by the ratio of the perpendicular component of the
momentum of the target nucleus A divided by the total momentum and we get

sin (�) = 2 cos θ sin θ

We rewrite this last equation as

4 cos4 θ − 4 cos2 θ + (1 − cos2 �) = 0

This is a quadratic equation in cos2θ . Solving this equation we get

cos2 θ = 1 ± cos �

2

Simple inspection shows that the solution with the minus sign is the correct one.
6. Consider a proportional tube filled with 3He and used as a slow neutron detector.

The gas gain of the tube is 1000 and the capacitance of the anode wire is 100 pF.
What will the amplitude of a neutron pulse [in mV] be if the integration time of
the pulse is very long?

Solution: The average ionisation energy in He is 41.6 eV, see Table 4.1. The total
charge collected on the anode is Q = 764,000 × 1000/41.6.

The voltage is Q/C = 29 mV.

Chapter 8

1. Derive property 6 of the transfer function in Sect. 8.2

Solution:

Vin(t) = sin (ω0t) = e+jω0t − e−jω0t

2j
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Vout(t) =
+∞∫

−∞
sin
(
ω0t′
)

h
(
t − t′

)
dt

=
+∞∫

−∞
{e+jω0t′ − e−jω0t′

2j

1√
2π

∫

e+jω(t−t′)H(ω)dω } dt′

There are two terms and we will make the calculation in detail for the first
term

first term = 1

2j
√

2π

∫

{e+jω0t′
∫

ejω(t−t′)H(ω) dω} dt′

=
√

2π

2j

∫

{ 1

2π

∫

ej(ω0−ω)t′ dt′} ejωt H(ω) dω

We recognise the delta function in the expression between {} brackets, and
the results is

first term =
√

2π

2j
ejω0t H(ω0)

After a similar calculation for the second term we obtain

Vout(t) =
√

2π

2j
{ejω0t H(ω0) − e−jω0t H( − ω0)}

Writing H(ω0) as H(ω0) = |H(ω0)| ejϕ(ω0)

Vout(t) =
√

2π

2j
|H(ω0)| {ej(ω0t+ϕ) − e−j(ω0t+ϕ)}

Vout(t) = √
2π |H(ω0)| sin [ω0t + ϕ(ω0)]

2. Calculate the Fourier transform of Eq. (8.4)

H(ω) = 1√
2π

1

1 + jωτf

jωτ

(1 + jωτ )2

Solution: In a table with commonly used Fourier transforms, we find

F(ω) = 1√
2π

1

1 + jωτ
f (t) = 1

τ
e−t/τ t ≥ 0; f (t) = 0 otherwise

F(ω) = 1√
2π

1

(1 + jωτ )2
f (t) = 1

τ 2
e−t/τ t ≥ 0; f (t) = 0 otherwise

We first decompose the expression given in Eq. (8.4) in a sum of pole terms

√
2π H(ω) = 1

1 + jωτf

jωτ

(1 + jωτ )2

= A

1 + jωτf
+ B

1 + jωτ
+ C

(1 + jωτ )2
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The constants A, B and C are obtained by bringing all terms to a common
denominator and requiring the coefficients of the same powers of jω to be equal

A = − τf τ

(τf − τ )2
; B = τ 2

(τf − τ )2
; C = τf τ − τ 2

(τf − τ )2

Together with the Fourier transforms found in the tables this immediately
gives the desired result

⎧
⎨

⎩

ĥ(t) = − 1

τ (τf − τ )2

[
(τ 2 + t(τf − τ ))e−t/τ − τ 2e−t/tf

]
t ≥ 0

ĥ(t) = 0 t < 0

3. Prove the following theorem.
Let xi be a number of independent random variables, all with the same proba-

bility distribution. Consider the random variable R =
1...n∑

i
xi, where the integer n

is itself a random variable with a Poisson distribution with average value λ. The
following relations hold:

〈R〉 = λ 〈x〉
σ 2{R} = λ

〈
x2
〉

Solution: Consider any random variable x. Its mean value <x>, mean square value
<x2> and dispersion σ{x}are related by

σ 2{x} =
〈
x2
〉
− <x>2 .

Consider the statistical variable SN defined as the sum on N independent ran-
dom variables xi, all with the same probability distribution. The average value
and an average square value of the variable SN are given by

SN =
1...N∑

i

xi

〈SN〉 =
1...N∑

i

〈x〉 = N 〈x〉

〈
(SN)2

〉
=
〈(

1...N∑

i

xi

)⎛

⎝
1...N∑

j

xj

⎞

⎠

〉

=
〈

1...N∑

i

x2
i +

1...N∑

i �=j

xixj

〉

= N
〈
x2
〉
+ N(N − 1) 〈x〉2
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Consider the statistical variable R defined as the sum of n independent random
variables xi, all with the same probability distribution and where n itself is a
random variable and Pk is the probability that n = k. The average value and an
average square value of the variable R are given by

〈R〉 =
0...∞∑

n

Pn 〈Sn〉

= 〈x〉
0...∞∑

n

nPn

= 〈x〉 〈n〉
〈
R2
〉 =

0...∞∑

n

Pn

〈
(Sn)

2
〉

= 〈x2
〉

0...∞∑

n

nPn +
〈
x2
〉2 0...∞∑

n

n(n − 1) Pn

= 〈x2
〉 〈n〉 + 〈x〉2 [

〈
n2
〉− 〈n〉 ]

The dispersion of the variable R is therefore given by

σ 2{R} = 〈R2
〉− 〈R〉2 = 〈x2

〉 〈n〉 + 〈x〉2 (〈n2
〉− 〈n〉 − 〈n〉2)

For a Poisson distribution we have

σ {n} = 〈n2
〉− 〈n〉2 = 〈n〉

The dispersion of R therefore reduces to

σ 2{R} = 〈n〉 〈x2
〉

4. Assume you are measuring the noise voltage of a resistor using a digital oscil-
loscope with an input impedance of 10 M� and a bandwidth of 400 MHz. For
what value of the resistor will you measure the largest value for the noise. How
much will this maximum noise be in mV?

Solution: The square of the noise is proportional to

R2
inpR

(R + Rinp)

The value where this expression reaches its maximum is given by the condi-
tion that the derivative to R equals zero. Therefore the maximum is reached for
R = Rinp.

The square root of the average noise squared is 5.7 mV



292 Solutions to Exercises

5. Consider a silicon strip detector where each strip has a capacitance of 20 pF and
a dark current of 20 nA. The rise-time of the pulse is 30 ns. Give an under limit
for the noise. Take the shape coefficients a1 = a2 = 1.

Solution: The contribution from the front end FET is given by Eq. (8.10). Take
0.25 ns for the charge transit time in the FET. Divide the value of ENC by the
charge of one electron to obtain the result in number or electrons. The result
is 527 electrons. The contribution of the dark current to the noise is given by
Eq. (8.11). The result is ≈62 electrons. Combine the two noise contributions
quadratically.

The total noise is therefore at least ≈530 electrons.
6. Prove that the stationary solutions for a transmission line of length D are given

by the following equations

⎧
⎨

⎩

In(x,t) = In sin
(nπx

D

)
sin
(nπv0t

D
+ ϕn

)

Vn(x,t) = InZ0 cos
(nπx

D

)
cos
(nπv0t

D
+ ϕn

) n = 1,..∞

Solution: The equations of the transmission line are:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d2 V(x,t)

dx2
= LC

d2 V(x,t)

dt2

d2I(x,t)

dx2
= LC

d2I(x,t)

dt2

(1)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dV(x,t)

dx
= −L

dI(x,t)

dt

dI(x,t)

dx
= −C

dV(x,t)

dt

(2)

The velocity of the line v0 and the characteristic impedance Z0 are given by

v0 = 1√
LC

Z0 =
√

L

C

The stationary solutions are of the form

V(x,t) = V ′(x).V ′′(t) (3)

I(x,t) = I′(x).I′′(t) (4)

Let us substitute expression 4 in Eq. (1). This gives an equation where we can
separate the variables and the two parts must be equal to a constant. Solutions
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satisfying the boundary conditions can only be obtained if this constant is
negative, and we therefore write this constant as −k2.

1

I′(x)

d2I′(x)

dx2
= LC

1

I′′(t)
d2I′′(t)

dt2
= −k2

This is equivalent to the two following equations

d2I′

dx2
= −k2I′(x)

d2I′′

dt2
= −k2 1

LC
I′′(t) = −k2v2

0I′′(t)

The most general solution to these equations is (using the convention
j2 = −1)

I′′(t) = Ae+jkv0t + A′e−jkv0t

I′(x) = Be+jkx + B′e−jkx

Imposing the boundary condition I(x,t) = 0 for x = 0, we have
B = −B′, and the second equation is written as

I′(x) = jB sin kx

The boundary condition I(x,t) = 0 for x = D gives

k = nπ/D, where n is an integer

The most general solution satisfying these boundary conditions hence is

I(x,t) = jB sin
(nπ

D
t
) [(

A + A′) cos
(nπ

D
ν0t
)

+ j
(
A − A′) sin

(nπ

D
ν0t
)]

The function I(x,t) must be real, therefore

jB(A + A′) = K1
−B(A − A′) = K2

where K1 and K2 are arbitrary real constants.
The most general solution satisfying all conditions therefore is

I(x,t) = sin
(nπx

D

) [
K1 cos

(nπ

D
v0t
)

+ K2 sin
(nπ

D
v0t
)]

It is always possible to write the constants K1 and K2 as
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{
K1 = K sin ϕ

K2 = K cos ϕ
⇒
⎧
⎨

⎩

K2 = K2
1 + K2

2

tgϕ = K1

K2

The solution can hence be written as

I(x,t) = K sin
(nπ

D
x
) [

sin ϕ cos
(nπ

D
v0t
)

+ cos ϕ sin
(nπ

D
v0t
)]

I(x,t) = K sin
(nπ

D
x
)

sin
(nπ

D
v0t + ϕ

)

The expression for the potential in the transmission line is obtained from

dV

dx
= −L

dI

dt
dV

dx
= −LK sin

(nπ

D
x
) (nπ

D
v0

)
cos
(nπ

D
v0t + ϕ

)

V(x,t) = ∫ dV

dx
dx = −LKv0 cos

(nπ

D
v0t + ϕ

) ∫
sin
(nπ

D
x
) nπ

D
dx

= KZ0 cos
(nπ

D
v0t + ϕ

)
cos
(nπ

D
x
)

We omitted the integration constant because for any system the potential is
only meaningful up to an arbitrary constant.
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* See Sect. 3.2.
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Index

A
Acceptor, 147–148
ADS, 97–99
Alpha particle, 3, 18–19, 25, 28–30, 32, 38,

106, 113, 116, 156–157, 176, 210–211,
213, 224

Alvarez structure, 88–89
Amorphous selenium, 164, 202
Analog signal, 226
Anthracene, 168
Avalanche photodiode (APD), 182–183, 197

B
Backscatter peak, 188
BaFBr:Eu2+, 200
Band gap, 144–148, 160–161, 164, 171–172,

174, 200
Becquerel, H., 55, 105
Becquerel (unit), 59
Bending magnet, 74–78, 80, 91, 99
Bethe–Bloch equation, 27–28, 38, 58
BF3, 211–212
Bialkali photo-cathode, 178
Block detector, 205
Boltzmann constant, 109, 145, 251
Boron-10, 209
Boron, 93, 147, 209, 212–213, 224
Bragg peak, 29
Breakdown, 123, 155
Bremsstrahlung, 37–38, 44, 58, 90, 94, 192
Bubble chamber, 51–53, 105

C
Campbell mode, 213, 265
Capture-gated neutron spectrometer, 223–224
Carbon-14, 55–56
Cerium, 172–174
Charge integration, 240–245, 254–255
Cherenkov effect, 33–36, 167, 198, 276

Classical electron radius, 3, 31, 35, 41
CLIC (Compact Linear Collider), 101–102
CMS, 134, 158, 195–196
Cockcroft–Walton, 63–64
Coherent compton scattering, 41
Coincidence, 207, 227
Collider, 72–80, 92, 100–102, 133–134, 195
Colour force, 10–12, 38, 47, 58
Compton band, 188–189
Compton scattering, 40–44, 188, 204
Computed radiography, 199
Conduction band, 144–148, 151, 171–173, 178
Cosmic air showers, 198
Cosmic ray, 50–51, 55–59, 61, 135, 198
Cosmogenesis, 56
Critical energy, 37, 193
Cross section, 23–25, 27, 40–50, 79, 108–109,

113, 148, 161, 204, 209–211, 215–216,
219, 221

CR–RC shaping, 243–244
CsI:Tl, 174–176, 187, 202
CT (CdTe), 161–162
Curie, 59
CVD diamond (chemical vapour deposition),

164, 201
Cyclotron, 65–74, 80, 96, 98, 205
CZT (CdZnTe), 161

D
Delta electrons, 26
Density of states, 146
Depletion layer, 152–156, 159
Diamond, 137, 143, 162, 164
Differentiator, 236, 238
Diffusion, 108, 111, 118–119, 151, 156, 202
Digital radiography (DR), 201–202
Digital signal, 226–227
Discrimination, 211, 226
Dispersion, 7–9, 111, 127, 130, 160, 263

303



304 Index

Donor, 148, 150, 155–156
Drift chamber, 126, 133–135
Drift velocity, 108–109, 116, 144, 148, 163
Dynamic range, 106, 201
Dynode, 177–181, 185

E
Electromagnetic calorimeter, 192–198
Electrometer, 56, 113–114
Electronegative, 110, 123, 212
Electron-Volt, 2
Electroscope, 107
Electrostatic accelerator, 62–65
Emulsion, 55, 105–106, 199
ENC (equivalent noise charge), 254–259, 261,

264–266
Energy loss, 25–31, 35, 37–39, 46, 48, 94, 108,

128, 149, 157, 176, 223, 275
Equipartition theorem, 251
Escape peak, 189
Excess noise factor, 128, 183–185, 265

F
Fano factor, 127, 149, 157, 160
Faraday cage, 228–229
Fast neutron, 47–48, 168, 216–224
F-centre, 200
FDG (fluoro-desoxy-glucose), 205
Feedback, 239–240, 242–243, 253, 257
Fermi–Dirac distribution, 145, 147
Fermi level, 147–148, 151, 155
FET transistor, 258, 260–261
Film screen method, 199–201
Fine structure constant, 3, 31, 34–35
First Townsend coefficient, 122–123
Flicker noise, 267
Fluor, 53, 167, 169, 200
FWHM (full width at half maximum), 8–9, 72,

128, 157, 160–161, 187

G
Gadolinium-157, 211
Gallium, 147
Gallium phosphide, 179
Gargamelle bubble chamber, 52
Gaussian distribution, 7–9, 246, 252, 258
Gd2O2S:Tb, 199
Geiger counter, 117, 126
GEM (gas electron multiplier), 137–139
Germanium, 107, 143, 148, 155, 159–161,

167, 190–191
Gluon, 11–12, 15
Gray, 60
Guard ring, 113

H
Hadron, 12–13, 15–16, 25, 46–47, 52–53, 56,

80, 91–92, 94, 134, 198
Hadronic calorimeter, 196, 198
Hadronic interaction length, 46–47, 52, 56, 92,

197
Hadron therapy, 94, 97
Helium-3, 210
High pass filter, 236–237
Homogeneous calorimeter, 194
Hybrid photomultiplier tube, 183

I
Impulse response, 230–238, 244, 252–254, 263
In-core detectors, 213
Indium, 147
Ingot, 159–160
Inorganic scintillator, 168, 171–177, 185,

193–194, 198–199
Integrator, 234–236
Intrinsic resistivity, 149, 161–162
Intrinsic resolution, 187
Ionisation chamber, 111–116, 124, 136, 195,

213
Isochronous cyclotron, 70–71

J
Junction, 150–156, 164, 258, 283

K
Klystron, 87

L
Lawrence, 66, 71, 100
LET, 27
Lethal dose, 62
LHC (Large Hadron Collider), 80, 92,

100–102, 134, 195
LiI scintillator, 216
Linear accelerator, 65, 75, 92, 98–100
Linear circuit, 230–232
Liouville theorem, 170, 197
Liquid filled ionisation chamber, 195
Lithium-6, 210
Long counter, 217–218
Lorentz transformation, 4–6
Low pass filter, 234–236, 238, 241
LSO:Ce, 176, 187
Luminescence centre, 168, 171–175, 200
Luminosity, 79–80
Lutetium ortho-oxysilicate, 171

M
Mass attenuation coefficient, 44
Mass attenuation length, 44–45
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Mean free path, 23–25, 43, 45–47, 49–50, 58,
108, 111, 161, 169, 181, 185, 198, 203, 212

π-meson, 12, 197
Meson, 12, 15, 197
MICROMEGAS, 137–139
Mobility, 109–110, 135, 148–149, 162, 182
Moliere radius, 193
MSGC (micro strip gas counter), 136–138
Multiple scattering, 31–33, 38, 53, 128,

130–131, 135, 193
Muon, 10, 14–15, 38, 49, 51, 57–59, 61,

91–92, 134–135, 196
MWPC (multi wire proportional chamber),

131, 134–137, 139, 141

N
Neutrino, 10, 13–15, 17–18, 49–53, 57–58,

91–92
Neutron capture, 48–49, 209–211, 215–216
Neutron dosimeter, 216–217
Nishina–Klein equation, 41
Normal distribution, 8
Northern Lights, 56, 168
n-type silicon, 148, 150–152, 155–156
Nuclear emulsion, 105–106
Nuclear fragments, 3, 30, 38, 46, 198

O
Ohmic contact, 155
One over 1/ f noise, 267
Organic scintillator, 168–171
Out-of core detectors, 213–214

P
Pair production, 41–43
Parallel resistor, 254–258
Parseval identity, 234
PET (positron emission tomography), 94,

203–207
Phosphor, 167, 199–202
Phosphorescence, 167
Phosphorus, 147
Photocathode, 177–179, 181, 183, 262
Photodiode, 181–182, 197, 262
Photoelectric effect, 39–40, 43, 94, 175, 178,

192
Photoluminescence, 167
Photomultiplier tube, 170, 177–181, 183–187,

197, 201, 203–204, 225
Photon mass attenuation coefficient, 44
Photon mass attenuation length, 44–45
Photonuclear interaction, 43, 47, 194
Photopeak, 163, 188–189
Pick-up noise, 228–229, 247

Pion, 47, 53, 56–58, 91–92, 197
Pixellised photodetector, 183
Planck constant, 3
Plasma frequency, 35
Plastic scintillators, 168–170, 194, 213,

222–223
Plutonium, 48, 211
Poisson distribution, 8–9, 108, 127, 157, 184,

263–265
Pole zero cancellation, 244–245
Positron, 11–12, 17–18, 21, 36–39, 41–42, 44,

47, 50–51, 58, 78, 81, 90–91, 94, 100–102,
189, 192–193, 203–205

Positron emission tomography, 94, 203–204
Proportional counter, 117, 124, 127–128, 131,

211–213, 217
p-type silicon, 148, 150–152, 155, 258
Pulse shape, 119–120, 163
PWO, 196–197

Q
Quadrupole, 64, 76–78, 80, 88, 91–92, 98
Quantum efficiency, 178, 181, 183, 186
Quark, 10–16, 47, 49, 101
Quenching, 123–124, 175, 183, 211

R
Rad, 60
Radiation length, 31–32, 37–38, 42–44, 52–53,

56, 58, 90, 130, 148, 156, 159, 161–162,
168–169, 176–177, 185, 192–193, 195, 197

Radiation therapy, 94
Radioluminescence, 167
Raether limit, 122
Random coincidence, 207
Range straggling, 29
Rayleigh scattering, 41, 43–44
Reach through APD, 182–183
Rem, 60–62
Resonance, 43–44, 48
Reverse type APD, 182
RF cavity, 74–75, 84
Rhodium, 215–216
Roëntgen, 60, 105, 214
Root-mean-square deviation, 7
RPC (resistive plate chamber), 135, 139–141

S
Sampling calorimeter, 194, 198
Secondary beams, 90–93
Self-powered detectors, 215–216
Semiconductor, 93, 105, 107, 143–165, 178,

223
Series resistor, 113, 254–259
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Shockley–Ramo theorem, 115
Shot noise, 229, 262–266
Sievert, 60
Silicon, 30–32, 107, 143–161, 164, 167,

181–184, 195, 201–202, 258
Silicon PM, 183
SiPM (so-called silicon PM), 183
SLAC accelerator, 87
Slow neutron, 47–48, 209–213, 216–217
Spallation, 46, 97
Special relativity, 3–7
SPS (Super Proton Synchrotron), 76–78, 92
Stilbene, 168–169
Stokes shift, 173–174
Storage phosphor screen, 199–200
Straggling, 29
String equation, 249–250
Strong focusing, 76–77
Superconducting cavity, 74, 89, 98, 100
Surface conductivity, 140
Synchro-cyclotron, 69
Synchrotron, 72–80, 88, 91–92, 94, 98–99
Synchrotron radiation, 81, 91, 99

T
Tandem Van de Graaff, 65
Thermal neutrons, 49, 126, 209, 211–212

Thermal noise, 229, 246–253, 265–266
Townsend, 122–123
TPC (time projection chamber), 133–134
Transconductance, 258–259, 261
Transfer function, 231–238, 240–243, 245,

251, 253, 255, 264
Transition radiation, 36
Transmission line, 247–251

U
Unit of exposure, 60
Uranium, 32, 48, 55, 98, 105–106, 211

V
Valence band, 144–148, 151, 171–173
Vanadium, 215–216
Van de Graaff, 63–65
van der Waals force, 12
Voltage amplifier, 233, 239–240

W
Wake field acceleration, 100
W-boson, 13, 49
Weak focusing, 74, 76
Weak force, 10, 13–14, 18
Wideröe, R., 65, 80
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