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Preface

System identification is concerned with estimating models of dynamical systems
based on observed input and output signals. The term was coined in 1953 by Lotfi
Zadeh, but various approaches had of course been suggested before that. One can
distinguish twomajor routes in the development of system identification: (1) A statis-
tical route relying on parameter estimation techniques such asMaximum Likelihood
and (2) a realization route, based on techniques to realize (linear) dynamical systems
from input/output descriptions, such as impulse responses. The literature on this in
the past 70 years is extensive and impressive.

Mathematically, system identification is an inverse problem and may suffer from
numerical instability. The Russian researcher Tikhonov suggested in the 1940s a
general way to curb the number of solutions for inverse problems which he called
regularization. A simple regularization method applied to linear regression became
known as ridge regression. Regularized system identification was for a long time
used as a term for ridge regression.

Around 2000 other ideas were put forward for achieving regularization. They
had links to general function estimation with mathematical foundations in Repro-
ducing Kernel Hilbert Spaces (RKHS) and kernel techniques. This resulted in
intense research and extensive publications in the past 25 years. Regularized system
identification has become also known as the kernel approach to identification.

It is the purpose of this book to give a comprehensive overview of this develop-
ment. A flow diagram of the book’s chapters is given in Fig. 1. It starts with the core
of the regularization idea: To accept some bias in the estimates to achieve a smaller
variance error and a better overall Mean Square Error (MSE) of the model. This is
illustrated with the Stein effect discussed in Chap. 1.

Traditional System identification (the statistical route) is surveyed in Chap. 2.
An archetypical model structure is the linear regression and Chap. 3 explains how
regularization is handled in such models, while the Bayesian interpretation of this is
given in Chap. 4. The linear regression perspective is lifted to general linear models
of dynamical systems in Chap. 5.
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viii Preface

Fig. 1 Chapter DependenciesThefirst two chapters are introductory. They review the bias-variance
trade-off, discussing the James–Stein estimator, and the classical approach to linear system identi-
fication. Regularized kernel-based approaches to linear system identification in finite-dimensional
spaces are developed inChaps. 3–5.The reader candirectly skip toChap. 9where such techniques are
illustrated via numerical experiments and real-world cases. A different flow to reach the final chapter
moves along Chaps. 6–8 where regularization in reproducing kernel Hilbert spaces is described.
These parts of the book address estimation of infinite-dimensional (discrete- or continuous-time)
linear models and nonlinear system identification

With this, the basic techniques of practical regularization for linear models have
been outlined and the readers may continue directly to Chap. 9 for numerical
experiments and practical applications.

Chapters 6 and 7 lift the mathematical foundation of regularization with a treat-
ment of how the techniques fit into the framework of RKHS, while Chap. 8 deals
with applications to nonlinear models.

Sections marked with the symbol � contain quite technical material which can be
skipped without interrupting the reading. Proofs of some of the theorems contained
in the book are gathered in the Appendix present at the end of each chapter.

Padova, Italy
Shenzhen, China
Padova, Italy
Pavia, Italy
Linköping, Sweden
July 2021

Gianluigi Pillonetto
Tianshi Chen

Alessandro Chiuso
Giuseppe De Nicolao

Lennart Ljung



Acknowledgements

Many researchers have worked with authors of this book, as is clear from the list
of references. Their support and ideas have been instrumental for our results and
the contents of this book. We thank them all. We also acknowledge the financial
support given to us by the Thousand Youth Talents Plan of China, the Natural
Science Foundation of China (NSFC) under contract No. 61773329, the Shenzhen
Science and Technology Innovation Council under contract No. Ji-20170189 and
the Chinese University of Hong Kong, Shenzhen, under contract No. PF. 01.000249
and No. 2014.0003.23, the Department of Information Engineering, University of
Padova (Italy), University of Pavia (Italy), University of Linköping (Sweden), the
long time support by the Swedish research council (VR) and an advanced grant from
the European Research Council (ERC).

ix



Contents

1 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Stein Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The James–Stein Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Extensions of the James–Stein Estimator � . . . . . . . . . . . . 5

1.2 Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Further Topics and Advanced Reading . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Appendix: Proof of Theorem 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Classical System Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1 The State-of-the-Art Identification Setup . . . . . . . . . . . . . . . . . . . . . . 17
2.2 M : Model Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Linear Time-Invariant Models . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1.1 The McMillan Degree . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1.2 Black-Box Models . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1.3 Grey-Box Models . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1.4 Continuous-Time Models . . . . . . . . . . . . . . . . . . . 24

2.2.2 Nonlinear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 I : Identification Methods—Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 A Maximum Likelihood (ML) View . . . . . . . . . . . . . . . . . . 25
2.4 Asymptotic Properties of the Estimated Models . . . . . . . . . . . . . . . . 26

2.4.1 Bias and Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Properties of the PEM Estimate as N → ∞ . . . . . . . . . . . 26
2.4.3 Trade-Off Between Bias and Variance . . . . . . . . . . . . . . . . 28

2.5 X : Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 V : Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6.1 Falsifying Models: Residual Analysis . . . . . . . . . . . . . . . . . 29
2.6.2 Comparing Different Models . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6.3 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

xi



xii Contents

3 Regularization of Linear Regression Models . . . . . . . . . . . . . . . . . . . . . . 33
3.1 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 The Least Squares Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Fundamentals of the Least Squares Method . . . . . . . . . . . . 35
3.2.1.1 Normal Equations and LS Estimate . . . . . . . . . . . 35
3.2.1.2 Matrix Formulation . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Mean Squared Error and Model Order Selection . . . . . . . . 37
3.2.2.1 Bias, Variance, and Mean Squared Error

of the LS Estimate . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2.2 Model Order Selection . . . . . . . . . . . . . . . . . . . . . 37

3.3 Ill-Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 Ill-Conditioned Least Squares Problems . . . . . . . . . . . . . . . 42

3.3.1.1 Singular Value Decomposition . . . . . . . . . . . . . . . 42
3.3.1.2 Condition Number . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1.3 Ill-Conditioned Matrix and LS Problem . . . . . . . 43
3.3.1.4 LS Estimate Exploiting the SVD of Φ . . . . . . . . 45

3.3.2 Ill-Conditioning in System Identification . . . . . . . . . . . . . . 47
3.4 Regularized Least Squares with Quadratic Penalties . . . . . . . . . . . . 50

3.4.1 Making an Ill-Conditioned LS Problem Well
Conditioned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.1.1 Mean Squared Error . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.2 Equivalent Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . 53
3.4.2.1 Regularization Design: The Optimal

Regularizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5 Regularization Tuning for Quadratic Penalties . . . . . . . . . . . . . . . . . 58

3.5.1 Mean Squared Error and Expected Validation Error . . . . . 58
3.5.1.1 Minimizing the MSE . . . . . . . . . . . . . . . . . . . . . . . 58
3.5.1.2 Minimizing the EVE . . . . . . . . . . . . . . . . . . . . . . . 59

3.5.2 Efficient Sample Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5.2.1 Hold Out Cross-Validation . . . . . . . . . . . . . . . . . . 61
3.5.2.2 k-Fold Cross-Validation . . . . . . . . . . . . . . . . . . . . 61
3.5.2.3 Predicted Residual Error Sum of Squares

and Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5.3 Expected In-Sample Validation Error . . . . . . . . . . . . . . . . . 63

3.5.3.1 Expectation of the Sum of Squared
Residuals, Optimism and Degrees
of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.3.2 An Unbiased Estimator of the Expected
In-Sample Validation Error . . . . . . . . . . . . . . . . . . 66

3.5.3.3 Excess Degrees of Freedom* . . . . . . . . . . . . . . . . 67
3.6 Regularized Least Squares with Other Types

of Regularizers � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.6.1 �1-Norm Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6.1.1 Computation of Sparse Solutions . . . . . . . . . . . . . 70



Contents xiii

3.6.1.2 LASSO Using an Orthogonal Regression
Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6.1.3 LASSO Using a Generic Regression
Matrix: Geometric Interpretation . . . . . . . . . . . . . 71

3.6.1.4 Sparsity Inducing Regularizers Beyond
the �1-Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.6.1.5 Presence of Outliers and Robust
Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6.1.6 An Equivalence Between �1-Norm
Regularization and Huber Estimation . . . . . . . . . 77

3.6.2 Nuclear Norm Regularization . . . . . . . . . . . . . . . . . . . . . . . . 78
3.6.2.1 Nuclear Norm Regularization for Matrix

Rank Minimization . . . . . . . . . . . . . . . . . . . . . . . . 78
3.6.2.2 Application in Covariance Matrix

Estimation with Low-Rank Structure . . . . . . . . . 80
3.6.2.3 Vector Case: �1-Norm Regularization . . . . . . . . . 81

3.7 Further Topics and Advanced Reading . . . . . . . . . . . . . . . . . . . . . . . . 82
3.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.8.1 Fundamentals of Linear Algebra . . . . . . . . . . . . . . . . . . . . . 82
3.8.1.1 QR Factorization and Singular Value

Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.8.1.2 Vector and Matrix Norms . . . . . . . . . . . . . . . . . . . 83
3.8.1.3 Matrix Inversion Lemma, Based on [49] . . . . . . 85

3.8.2 Proof of Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.8.3 Derivation of Predicted Residual Error Sum

of Squares (PRESS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.8.4 Proof of Theorem 3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.8.5 A Variant of the Expected In-Sample Validation

Error and Its Unbiased Estimator . . . . . . . . . . . . . . . . . . . . . 89
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4 Bayesian Interpretation of Regularization . . . . . . . . . . . . . . . . . . . . . . . . 95
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2 Incorporating Prior Knowledge via Bayesian Estimation . . . . . . . . 97

4.2.1 Multivariate Gaussian Variables . . . . . . . . . . . . . . . . . . . . . . 99
4.2.2 The Gaussian Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2.3 The Linear Gaussian Model . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2.4 Hierarchical Bayes: Hyperparameters . . . . . . . . . . . . . . . . . 104

4.3 Bayesian Interpretation of the James–Stein Estimator . . . . . . . . . . . 105
4.4 Full and Empirical Bayes Approaches . . . . . . . . . . . . . . . . . . . . . . . . 107
4.5 Improper Priors and the Bias Space . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.6 Maximum Entropy Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.7 Model Approximation via Optimal Projection � . . . . . . . . . . . . . . . . 114
4.8 Equivalent Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.9 Bayesian Function Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



xiv Contents

4.10 Markov Chain Monte Carlo Estimation . . . . . . . . . . . . . . . . . . . . . . . 125
4.11 Model Selection Using Bayes Factors . . . . . . . . . . . . . . . . . . . . . . . . 127
4.12 Further Topics and Advanced Reading . . . . . . . . . . . . . . . . . . . . . . . . 129
4.13 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.13.1 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.13.2 Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.13.3 Proof of Lemma 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.13.4 Proof of Theorem 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.13.5 Proof of Theorem 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.13.6 Proof of Proposition 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.13.7 Proof of Theorem 4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5 Regularization for Linear System Identification . . . . . . . . . . . . . . . . . . . 135
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.2 MSE and Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.3 Optimal Regularization for FIR Models . . . . . . . . . . . . . . . . . . . . . . . 141
5.4 Bayesian Formulation and BIBO Stability . . . . . . . . . . . . . . . . . . . . 143
5.5 Smoothness and Contractivity: Time-

and Frequency-Domain Interpretations . . . . . . . . . . . . . . . . . . . . . . . 145
5.5.1 Maximum Entropy Priors for Smoothness

and Stability: From Splines to Dynamical Systems . . . . . . 148
5.6 Regularization and Basis Expansion � . . . . . . . . . . . . . . . . . . . . . . . . 155
5.7 Hankel Nuclear Norm Regularization . . . . . . . . . . . . . . . . . . . . . . . . 159
5.8 Historical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.8.1 The Distributed Lag Estimator: Prior Means
and Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.8.2 Frequency-Domain Smoothing and Stability . . . . . . . . . . . 165
5.8.3 Exponential Stability and Stochastic Embedding . . . . . . . 166

5.9 Further Topics and Advanced Reading . . . . . . . . . . . . . . . . . . . . . . . . 168
5.10 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.10.1 Optimal Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
5.10.2 Proof of Lemma 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.10.3 Proof of Theorem 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.10.4 Proof of Corollary 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.10.5 Proof of Lemma 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.10.6 Proof of Theorem 5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.10.7 Proof of Lemma 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.10.8 Forward Representations of Stable-Splines

Kernels � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177



Contents xv

6 Regularization in Reproducing Kernel Hilbert Spaces . . . . . . . . . . . . . 181
6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.2 Reproducing Kernel Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.2.1 Reproducing Kernel Hilbert Spaces Induced
by Operations on Kernels � . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.3 Spectral Representations of Reproducing Kernel Hilbert
Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.3.1 More General Spectral Representation � . . . . . . . . . . . . . . . 195

6.4 Kernel-Based Regularized Estimation . . . . . . . . . . . . . . . . . . . . . . . . 196
6.4.1 Regularization in Reproducing Kernel Hilbert

Spaces and the Representer Theorem . . . . . . . . . . . . . . . . . 196
6.4.2 Representer Theorem Using Linear and Bounded

Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
6.5 Regularization Networks and Support Vector Machines . . . . . . . . . 200

6.5.1 Regularization Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
6.5.2 Robust Regression via Huber Loss � . . . . . . . . . . . . . . . . . . 202
6.5.3 Support Vector Regression � . . . . . . . . . . . . . . . . . . . . . . . . . 202
6.5.4 Support Vector Classification � . . . . . . . . . . . . . . . . . . . . . . 204

6.6 Kernels Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
6.6.1 Linear Kernels, Regularized Linear Regression

and System Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
6.6.1.1 Infinite-Dimensional Extensions � . . . . . . . . . . . . 206

6.6.2 Kernels Given by a Finite Number of Basis
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

6.6.3 Feature Map and Feature Space � . . . . . . . . . . . . . . . . . . . . 208
6.6.4 Polynomial Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
6.6.5 Translation Invariant and Radial Basis Kernels . . . . . . . . . 210
6.6.6 Spline Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
6.6.7 The Bias Space and the Spline Estimator . . . . . . . . . . . . . . 212

6.7 Asymptotic Properties � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.7.1 The Regression Function/Optimal Predictor . . . . . . . . . . . 215
6.7.2 Regularization Networks: Statistical Consistency . . . . . . . 216
6.7.3 Connection with Statistical Learning Theory . . . . . . . . . . . 218

6.8 Further Topics and Advanced Reading . . . . . . . . . . . . . . . . . . . . . . . . 222
6.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

6.9.1 Fundamentals of Functional Analysis . . . . . . . . . . . . . . . . . 223
6.9.2 Proof of Theorem 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
6.9.3 Proof of Theorem 6.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
6.9.4 Proof of Theorem 6.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
6.9.5 Proofs of Theorems 6.15 and 6.16 . . . . . . . . . . . . . . . . . . . . 235
6.9.6 Proof of Theorem 6.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242



xvi Contents

7 Regularization in Reproducing Kernel Hilbert Spaces
for Linear System Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
7.1 Regularized Linear System Identification in Reproducing

Kernel Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
7.1.1 Discrete-Time Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

7.1.1.1 FIR Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
7.1.1.2 IIR Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

7.1.2 Continuous-Time Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
7.1.3 More General Use of the Representer Theorem

for Linear System Identification � . . . . . . . . . . . . . . . . . . . . 258
7.1.4 Connection with Bayesian Estimation of Gaussian

Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
7.1.5 A Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

7.2 Kernel Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
7.2.1 Marginal Likelihood Maximization . . . . . . . . . . . . . . . . . . . 266

7.2.1.1 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . 267
7.2.2 Stein’s Unbiased Risk Estimator . . . . . . . . . . . . . . . . . . . . . 271
7.2.3 Generalized Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . 272

7.3 Theory of Stable Reproducing Kernel Hilbert Spaces . . . . . . . . . . . 274
7.3.1 Kernel Stability: Necessary and Sufficient

Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
7.3.2 Inclusions of Reproducing Kernel Hilbert Spaces

in More General Lebesque Spaces � . . . . . . . . . . . . . . . . . . 278
7.4 Further Insights into Stable Reproducing Kernel Hilbert

Spaces � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
7.4.1 Inclusions Between Notable Kernel Classes . . . . . . . . . . . . 279
7.4.2 Spectral Decomposition of Stable Kernels . . . . . . . . . . . . . 280
7.4.3 Mercer Representations of Stable Reproducing

Kernel Hilbert Spaces and of Regularized
Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

7.4.4 Necessary and Sufficient Stability Condition Using
Kernel Eigenvectors and Eigenvalues . . . . . . . . . . . . . . . . . 284

7.5 Minimax Properties of the Stable Spline Estimator � . . . . . . . . . . . . 286
7.5.1 Data Generator and Minimax Optimality . . . . . . . . . . . . . . 287
7.5.2 Stable Spline Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
7.5.3 Bounds on the Estimation Error and Minimax

Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
7.6 Further Topics and Advanced Reading . . . . . . . . . . . . . . . . . . . . . . . . 292
7.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

7.7.1 Derivation of the First-Order Stable Spline Norm . . . . . . . 296
7.7.2 Proof of Proposition 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
7.7.3 Proof of Theorem 7.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
7.7.4 Proof of Theorem 7.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
7.7.5 Proof of Theorem 7.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307



Contents xvii

8 Regularization for Nonlinear System Identification . . . . . . . . . . . . . . . . 313
8.1 Nonlinear System Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
8.2 Kernel-Based Nonlinear System Identification . . . . . . . . . . . . . . . . . 314

8.2.1 Connection with Bayesian Estimation of Gaussian
Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

8.2.2 Kernel Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
8.3 Kernels for Nonlinear System Identification . . . . . . . . . . . . . . . . . . . 319

8.3.1 A Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
8.3.2 Limitations of the Gaussian and Polynomial Kernel . . . . . 323
8.3.3 Nonlinear Stable Spline Kernel . . . . . . . . . . . . . . . . . . . . . . 326
8.3.4 Numerical Example Revisited: Use of the Nonlinear

Stable Spline Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
8.4 Explicit Regularization of Volterra Models . . . . . . . . . . . . . . . . . . . . 331
8.5 Other Examples of Regularization in Nonlinear System

Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
8.5.1 Neural Networks and Deep Learning Models . . . . . . . . . . 334
8.5.2 Static Nonlinearities and Gaussian Process (GP) . . . . . . . . 335
8.5.3 Block-Oriented Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
8.5.4 Hybrid Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
8.5.5 Sparsity and Variable Selection . . . . . . . . . . . . . . . . . . . . . . 338

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

9 Numerical Experiments and Real World Cases . . . . . . . . . . . . . . . . . . . . 343
9.1 Identification of Discrete-Time Output Error Models . . . . . . . . . . . 343

9.1.1 Monte Carlo Studies with a Fixed Output Error
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

9.1.2 Monte Carlo Studies with Different Output Error
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
9.1.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

9.1.3 Real Data: A Robot Arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
9.1.4 Real Data: A Hairdryer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

9.2 Identification of ARMAX Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
9.2.1 Monte Carlo Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
9.2.2 Real Data: Temperature Prediction . . . . . . . . . . . . . . . . . . . 358

9.3 Multi-task Learning and Population Approaches � . . . . . . . . . . . . . 360
9.3.1 Kernel-Based Multi-task Learning . . . . . . . . . . . . . . . . . . . . 362
9.3.2 Numerical Example: Real Pharmacokinetic Data . . . . . . . 364

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371



Abbreviations and Notation

Notation

log Natural logarithm
N The set of natural numbers
R

n The n-dimensional Euclidean space with n ∈ N

R
+ The set of nonnegative real numbers

minθ l(θ) The problemofminimizing the objective l(θ)with
respect to θ

argminθ l(θ) The value of θ that minimizes l(θ)
∂l(θ)

∂θ
The gradient of the function l(θ) with respect to θ

∂2l(θ)

∂θ∂θ
The Hessian matrix of the function l(θ) with
respect to θ

X The experimental conditions under which the data
are generated

D The data
DT Training/identification data set
N Number of training/identification data
Dtest Test data set
Ntest Number of test data
M The Model Structure and its parameters θ

M (θ) A particular model corresponding to a particular
parameter θ

I The identification method
V The validation process
u(t) The input at time t
y(t) The measurement output at time t
y
∧

(t) One-step-ahead output predictor at instant t
Z t−1 Past input–output data up to instant t − 1

xix



xx Abbreviations and Notation

Y ∈ R
N The vector collecting all the measurements in the

single-output case
yi The i-th element of Y , i = 1, · · · , N
yν Output for validation
utest Test input
ytest Test output
Φ ∈ RN×n The regression matrix
φi ∈ R

n The i-th n-dimensional regressor, i = 1, · · · , N
φν Regressor for validation
e(t) The noise at time t
ei ∈ R The i-th measurement noise, i = 1, · · · , N
σ 2 The variance of the measurement noise ei

E ∈ R
N The measurement noise vector

g(t) The impulse response at time t
θ ∈ R

n A deterministic or stochastic parameter vector
θ0 The true value of the deterministic parameter θ

θ
∧

N PEM estimate as a function of the data set size N

θ
∧LS

The least squares estimate

θ
∧J S

The James–Stein estimate
MSE(θ

∧

, θ0) or MSE
θ
∧ the mean square matrix of an estimator θ

∧

of θ0

q The time shift operator, e.g., qu(t) = u(t + 1)
G(q, θ) A transfer function model
G0(q) The true transfer function
G(eiω, θ) The frequency response of the model
H(q, θ) A transfer function for the noise model
H0 The true noise function
Hk The Hankel matrix of the impulse response
� The loss function norm
κ(�) The variance coefficient for a loss function � in

the fitting criterion
‖θ‖0 �0-norm of θ

‖θ‖1 �1-norm of θ

‖θ‖2 �2-norm of θ or the Euclidean norm
A(i, :) The i-th row of a matrix A with i ∈ N

A(:, j) The j-th column of a matrix A with j ∈ N

AT The transpose of a matrix A
A � B A − B is a positive semidefinite matrix
A−1 The inverse of a full-rank square matrix A
In ∈ R

n×n The n-dimensional identity matrix
λi (A) The i-th eigenvalue of a matrix A
σ1 ≥ σ2 ≥ · · · σn of a matrix A the singular values of a matrix A
σmax and σmin of a matrix A the largest and smallest singular value

of a matrix A



Abbreviations and Notation xxi

cond(A) The condition number of a matrix A with respect
to the Euclidean norm and defined as cond(A) =
σmax/σmin

diag(a) The n ×n diagonal matrix with diagonal elements
equal to the vector a ∈ R

n

A+ The Moore–Penrose pseudoinverse of a matrix A
trace(A) The trace of a matrix A
rank(A) The rank of a matrix A
‖A‖ A general norm of a matrix
‖A‖F The Frobenius norm of a matrix A
‖A‖∗ The nuclear norm of a matrix A

θ
∧R

The regularized least squares estimate

Y
∧

= Φθ
∧R

The predicted output of θ
∧R

H The hat matrix of θ
∧R

linking Y to Y
∧

, i.e., Y
∧

= HY

dof(θ
∧R

) The equivalent degrees of freedom of θ
∧R

γ The regularization parameter
γ M L Maximum marginal likelihood estimate of γ

η The hyperparameter vector
P Inverse of a full-rank regularization matrix or of a

full-rank kernel matrix if a kernel has been defined
g0(t) The true impulse response evaluated at instant t
g
∧

(t) Impulse response estimate evaluated at instant t
p(·) Probability density function
h(p) Differential entropy of the probability density

function p
Pr(A) Probability of the event A
E (X) The mathematical expectation of a random vari-

able X
Var(·) Variance matrix
std(·) Standard deviation
Cov(X, Y ) The covariance matrix of two random vectors X

and Y
μθ The mean of θ

Σθ The covariance of θ

θ |Y The random vector θ conditional on Y
Σθ |Y The posterior covariance of θ conditional on Y
θB The Bayes estimate of θ , i.e., the mean of θ |Y
θMAP The maximum a posteriori estimate of θ , i.e., the

value that maximizes the posterior of θ |Y
X ∼ N (m, �) X ∈ R

n is an n-dimensional Gaussian (normal)
randomvectorwithmeanm and covariancematrix
Σ

χ2
n Chi-square variable with n degrees of freedom



xxii Abbreviations and Notation

Γ (g1, g2) Gamma probability density functions of parame-
ters g1, g2

B12 Bayes factor related to the models M 1 and M 2

〈 f, g〉 Inner product between functions f and g
‖ f ‖ Norm of the function f
X The domain of a function whose elements x are

called input locations
K Positive semidefinite kernel defined overX ×X
Kx Kernel section centred at x defined over X
H An RKHS
‖ f ‖H The RKHS norm of a function f ∈ H
〈 f, g〉H The inner product between two functions

f, g ∈ H
�1 The space of absolutely summable sequences
�2 The space of squared summable sequences
�∞ The space of bounded sequences
L μ

1 The space of absolutely summable functions on
X equipped with the measure μ (often set to the
classical Lebesque measure)

L μ
2 The space of squared summable functions on X

equipped with the measure μ (often set to the
classical Lebesque measure)

L∞ Space of essentially bounded functions
C Space of continuous functions
‖ f ‖∞ Sup-norm of the function f
δi j Kronecker delta
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Chapter 1
Bias

Abstract Adopting a quadratic loss, the performance of an estimator can be mea-
sured in terms of its mean squared error which decomposes into a variance and a
bias component. This introductory chapter contains two linear regression examples
which describe the importance of designing estimators able to well balance these two
components. The first example will deal with estimation of the means of indepen-
dent Gaussians. We will review the classical least squares approach which, at first
sight, could appear the most appropriate solution to the problem. Remarkably, we
will instead see that this unbiased approach can be dominated by a particular biased
estimator, the so-called James–Stein estimator. Within this book, this represents the
first example of regularized least squares, an estimator which will play a key role in
subsequent chapters. The second example will deal with a classical system identifi-
cation problem: impulse response estimation. A simple numerical experiment will
showhow the variance of least squares can be too large, hence leading to unacceptable
system reconstructions. The use of an approach, known as ridge regression, will give
first simple intuitions on the usefulness of regularization in the system identification
scenario.

1.1 The Stein Effect

Consider the following “basic” statistical problem. Starting from the realizations of
N independent Gaussian random variables yi ∼ N (θi , σ

2), our aim is to reconstruct
themeans θi , contained in the vector θ seen as a deterministic but unknown parameter
vector.1 The estimation performance will be measured in terms of mean squared
error (MSE). In particular, let E and ‖ · ‖ denote expectation and Euclidean norm,
respectively. Then, given an estimator θ̂ of an N -dimensional vector θ with i th

1 In future chapters, θ0 will be used to denote the true value of the deterministic vector that has gen-
erated the data, distinguishing it from the vector which parametrizes the model. In this introductory
chapter, θ is instead used in both the cases to maintain the notation as simple as possible.
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2 1 Bias

component θi , one has

MSEθ̂ = E ‖θ̂ − θ‖2

=
N∑

i=1

E (θ̂i − E θ̂i )
2

︸ ︷︷ ︸
Variance

+
N∑

i=1

(θi − E θ̂i )
2

︸ ︷︷ ︸
Bias2

, (1.1)

where in the last passage we have decomposed the error into two components. The
first one is the variance of the estimatorwhile the difference between themean and the
true parameter values measures the bias. If the mean coincides with θ , the estimator
is said to be unbiased. The total error thus has two contributions: the variance and
the (squared) bias.

Note that the mean estimation problem introduced above is a simple instance
of linear Gaussian regression. In fact, letting IN be the N × N identity matrix, the
measurements model is

Y = θ + E, E ∼ N (0, σ 2 IN ), (1.2)

where Y is the N -dimensional (column) vector with i th component yi . The most
popular strategy to recover θ from data is least squares which also corresponds to
maximum likelihood in this Gaussian scenario. The solution minimizes

‖Y − θ‖2

and is then given by
θ̂ LS = Y.

Apparently, the obtained estimator is the most reasonable one. A first intuitive argu-
ment supporting it is the fact that the random variables {y j } j �=i seem unable to carry
any information on θi , since all the noises ei are independent. Hence, the natural esti-
mate of θi appears indeed its noisy observation yi . This estimator is also unbiased:
for any θ we have

E
(
θ̂ LS

)
= E (Y ) = θ.

Hence, from (1.1) we see that the MSE coincides with its variance, which is constant
over θ and given by

MSELS = E ‖θ̂ LS − θ‖2 = Nσ 2.

According to Markov’s theorem θ̂ LS is also efficient. This means that its variance
is equal to the Cramér–Rao limit: no unbiased estimate can be better than the least
squares estimate, e.g., see [9, 17].
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1.1.1 The James–Stein Estimator

By introducing somebias in the inferenceprocess, it is easy to obtain estimatorswhich
dominate strictly least squares (in the MSE sense) over certain parameter regions.
The most trivial example is the constant estimator θ̂ = a. Its variance is null, so that
its MSE reduces to the bias component ‖θ − a‖2. Hence, even if the behaviour of
θ̂ is unacceptable in most of the parameter space, this estimator outperforms least
squares in the region

{θ s.t. ‖θ − a‖2 < Nσ 2}.

Note a feature common to least squares and the constant estimator. Both of them
do not attempt to trade bias and variance, they just set to zero one of the two MSE
components in (1.1). An alternative route is the design of estimators which try to
balance bias and variance. Rather surprisingly, we will now see that this strategy can
dominate θ̂ LS over the entire parameter space.

The first criticisms about least squares were introduced by Stein in the ’50s [23]
and can be so summarized. A good mean estimator θ̂ should also lead to a good
estimate of the Euclidean norm of θ . Thus, one should have

‖θ̂‖ ≈ ‖θ‖.

But, if we consider the “natural” estimator θ̂ LS = Y , in view of the independence of
the errors ei , one obtains

E ‖Y‖2 = Nσ 2 + ‖θ‖2.

This shows that the least squares estimator tends to overestimate ‖θ‖. It thus seems
desirable to correct θ̂ LS by shrinking the estimate towards the origin, e.g., adopting
estimators of the form θ̂ LS(1 − r), where r is a positive scalar. The most famous
example is the James–Stein estimator [15]where r is determined fromdata as follows:

r = (N − 2)σ 2

‖Y‖2 ,

hence leading to

θ̂ J S = Y − (N − 2)σ 2

‖Y‖2 Y.

Note that, even if all the components of Y are mutually independent, θ̂ J S exploits
all of them to estimate each θi . The surprising outcome is that θ̂ J S outperforms θ̂ LS

over all the parameter space, as illustrated in the next theorem.

Theorem 1.1 (James–Stein’sMSE, based on [15]) Consider N Gaussian and inde-
pendent random variables yi ∼ N (θi , σ

2). Let also θ̂ J S denote the James–Stein
estimator of the means, i.e.,
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Fig. 1.1 Estimation of themean θ ∈ R
10 of a Gaussian with covariance equal to the identity matrix.

The plot displays themean squared error of least squares (MSELS ) and of the James–Stein estimator
(MSEJS), including its bias-variance decomposition, as a function of θ1 with θ = [θ1 0 . . . 0]

θ̂ J S = Y − (N − 2)σ 2

‖Y‖2 Y.

Then, if N ≥ 3, the MSE of θ̂ J S satisfies

MSEJS < Nσ 2 ∀θ.

We say that an estimator dominates another estimator if for all the θ its MSE is
not larger and for some θ it is smaller. In statistics an estimator is then said to be
admissible if no other estimator exists that dominates it in terms of MSE. The above
theorem then shows that the least squares estimator of the mean of a multivariate
Gaussian is not admissible if the dimension exceeds two. The reason is that, even
when the Gaussians are independent, the global MSE can be reduced uniformly by
adding some bias to the estimate. This is also graphically illustrated in Fig. 1.1 where
MSEJS , along with its decomposition, is plotted as a function of the component θ1
of the ten-dimensional vector θ = [θ1 0 . . . 0] (noise variance is equal to one). One
can see that MSEJS < MSELS since the bias introduced by θ̂ J S is compensated by
a greater reduction in the variance of the estimate. Note however that James–Stein
improves the overall MSE and not the individual errors affecting the θi . This aspect
can be important in certain applications where it is not desirable to trade a higher
individual MSE for a smaller overall MSE.
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It is easy to check that the James–Stein estimator admits the following interesting
reformulation:

θ̂ J S = argmin
θ

‖Y − θ‖2 + γ ‖θ‖2

= Y
1

1 + γ
,

(1.3)

where the positive scalar γ is determined from data as follows:

γ = (N − 2)σ 2

‖Y‖2 − (N − 2)σ 2
. (1.4)

Equation (1.3) thus reveals that θ̂ J S is a particular version of regularized least squares,
an estimator which will play a central role in this book. In particular, the objective
in (1.3) contains two contrasting terms. The first one, ‖Y − θ‖2, is a quadratic loss
which measures the adherence to experimental data. The second one, ‖θ‖2, is a
regularizer which shrinks the estimate towards the origin by penalizing the energy of
the solution. The role of the regularization parameter γ is then to balance these two
components via a simple scalar adjustment. Equation (1.4) shows that James–Stein’s
strategy is to set its value to the inverse of an estimate of the signal-to-noise ratio.

1.1.2 Extensions of the James–Stein Estimator �

Wehave seen that the James–Stein estimator corrects each component of θ̂ LS shifting
it towards the origin. This implies that the MSE improvement will be better when
the components of θ are close to zero. Actually, there is nothing special in the origin.
If the true θ is expected to be close to a ∈ R

N , one can modify the original θ̂ J S as
follows:

θ̂ J S = Y − (N − 2)σ 2

‖Y − a‖2 (Y − a) .

The result is an estimator which still dominates least squares, with the origin’s role
now played by a. The estimator thus concentrates the MSE improvement around a.

Now, let us consider a non-orthonormal scenariowhereGaussian linear regression
now amounts to estimating θ from the N measurements

yi = diθi + ei ei ∼ N (0, 1),

with all the noises ei mutually independent. The least squares (maximum likelihood)
estimator is now

θ̂ LS
i = yi

di
, i = 1, . . . , N ,

and its MSE is the sum of the variances of θ̂ LS
i , i.e.,
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MSELS =
N∑

i=1

1

d2
i

.

Note that the MSE can be large when just one of the di is small. In this case, the
problem is said to be ill-conditioned: even a moderate measurement error can lead
to a large reconstruction error.

Also in this non-orthonormal scenario, it is possible to design estimators whose
MSE is uniformly smaller than MSELS . The number of possible choices is huge,
depending on which region of the parameter space one wants to concentrate the
improvement. There is however an important limitation shared by all of Stein-type
estimators: in general they are not much effective against ill-conditioning. This is
illustrated in the following example. It illustrates an estimatorwhose negative features
are well representative of some drawbacks of Stein’s estimation in non-orthogonal
settings.

Example 1.2 (A generalization of James–Stein) Consider the estimator θ̂ whose i th
component is given by

θ̂i =
[
1 − N − 2

S
d2
i

]
yi
di

, i = 1, . . . , N , (1.5)

where

S =
N∑

i=1

d2
i y

2
i .

It is now shown that θ̂ is a generalization of James–Stein able to outperform least
squares over the entire parameter space. In fact, defining

hi (Y ) = −d2
i

N − 2

S
yi ,

after simple computations we obtain

MSEθ̂ =
N∑

i=1

1

d2
i

+ E

[
2

N∑

i=1

(yi − diθi )hi (Y )

d2
i

+
N∑

i=1

h2i (Y )

d2
i

]

=
N∑

i=1

1

d2
i

+ E

[
2

N∑

i=1

1

d2
i

∂hi (Y )

∂yi
+

N∑

i=1

h2i (Y )

d2
i

]
,

where the last equality comes from Lemma1.1 reported in Sect. 1.4. Since

∂hi (Y )

∂yi
= −d2

i

N − 2

S
+ d4

i

N − 2

S2
2y2i ,
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one has

E

[
2

N∑

i=1

1

d2
i

∂hi (Y )

∂yi
+

N∑

i=1

h2i (Y )

d2
i

]

= E

[
−2(N − 2)N

S
+ 2(N − 2)

S2

N∑

i=1

2d2
i y

2
i + (N − 2)2

S2

N∑

i=1

d2
i y

2
i

]

= −E
(N − 2)2

S
< 0

which implies
MSEθ̂ < MSEθ̂ LS ∀θ.

However, assume that the problem is ill-conditioned. Then, if one di is small and the
values of di are quite spread, we could well have d2

i /S ≈ 0. Hence, (1.5) essentially
reduces to

θ̂i =
[
1 − N − 2

S
d2
i

]
yi
di

≈ yi
di

,

which is the least squares estimate of θi . This means that the signal components
mostly influenced by the noise, i.e., associated with small di , are not regularized.
Thus, in presence of ill-conditioning, θ̂ will likely return an estimate affected by
large errors. �

1.2 Ridge Regression

Consider now one of the fundamental problems in system identification. The task
is to estimate the impulse response g0 of a discrete-time, linear and causal dynamic
system, starting from noisy output data. The measurements model is

y(t) =
∞∑

k=1

g0k u(t − k) + e(t), t = 1, . . . , N , (1.6)

where t denotes time, the sampling interval is one time unit for simplicity, the g0k
indicate the impulse response coefficients, u(t) is the known system input while e(t)
is the noise.

To determine the impulse response from input–output measurements, one of the
main questions is how to parametrize the unknown g0. The classical approach, which
will be also reviewed in the next chapter, introduces a collection of impulse response
models g(θ), each parametrized by a different vector θ . In particular, here we will
adopt an FIRmodel of orderm, i.e., gk(θ) = θk for k = 1, . . . ,m and zero elsewhere.
This permits to reformulate (1.6) as a linear regression: we stack all the elements
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y(t) and e(t) to form the vectors Y and E and obtain the model

Y = Φθ + E

with the regression matrix Φ ∈ R
N×m given by

Φ =
⎛

⎜⎝
u(0) u(−1) u(−2) . . . u(−m + 1)
u(1) u(0) u(−1) . . . u(−m)

. . .

u(N − 1) u(N − 2) u(N − 3) . . . u(N − m)

⎞

⎟⎠ .

We can now use least squares to estimate θ . Assuming ΦTΦ of full rank, we obtain

θ̂ LS = argminθ ‖Y − Φθ‖2 (1.7a)

= (ΦTΦ)−1ΦT Y. (1.7b)

Note that the impulse response estimate is function of the FIR order which corre-
sponds to the dimension m of θ . The choice of m is a trade-off between bias (a large
m is needed to describe slowly decaying impulse responses without too much error)
and variance (large m requires estimation of many parameters leading to large vari-
ance). This can be illustrated with a numerical experiment. The unknown impulse
response g0 is defined by the following rational transfer function:

(z + 1)2

z(z − 0.8)(z − 0.7)
,

which, in practice, is equal to zero after less than 50 samples (g0 is the red line in
Fig. 1.3).We estimate the system from 1000 outputs corrupted bywhite andGaussian
noises e(t) of variance equal to the variance of the noiseless output divided by 50, see
Fig. 1.2 (bottom panel). Data come from the system initially at rest and then fed at
t = 0with white noise low-pass filtered by z/(z − 0.99), see Fig. 1.2 (top panel). The
reconstruction error is very large if we try to estimate g0 withm = 50: linear models
are easy to estimate but the drawback is that high-order FIR may suffer from high
variance. Hence, it is important to select a model order which well balances bias and
variance. To do that one needs to try different values ofm then using some validation
procedures to determine the “optimal” one. In this case, since the true g0 is known,
we can obtain the best value by selecting that m ∈ [1, . . . , 50] which minimizes the
MSE. This is an example of oracle-based procedure not implementable in practice:
the optimal order is selected exploiting the knowledge of the true system. We obtain
m = 18 which corresponds to MSELS = 70.7 and leads to the impulse response
estimate displayed in Fig. 1.3. Even if the data set size is large and the signal-to-noise
ratio is good, the estimate is far from satisfactory. The reason is that the low-pass
input has poor excitation and leads to an ill-conditioned problem. This means that
the condition number of the regression matrix Φ is large so that also a small output
error can produce a large reconstruction error.
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Fig. 1.4 MSE of ridge
regression and its
bias-variance decomposition
as a function of the
regularization parameter
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An alternative to the classical paradigm, where different model structures are
introduced, is the following straightforward generalization of (1.3), known as ridge
regression [13, 14]:

θ̂ R = argminθ ‖Y − Φθ‖2 + γ ‖θ‖2 (1.8a)

= (ΦTΦ + γ Im)−1ΦT Y, (1.8b)

where we set m = 50 to solve our problem. Letting A = (ΦTΦ + γ Im)−1ΦT , it is
easy to derive the MSE decomposition associated with θ̂ R :

MSER = σ 2Trace(AAT )︸ ︷︷ ︸
Variance

+‖θ − AΦθ‖2︸ ︷︷ ︸
Bias2

. (1.9)

Figure1.4 displaysMSER for the particular system identification problem at hand
as a function of the regularization parameter. Note that γ plays the role of the model
order in the classical scenario but can be tuned in a continuous manner to reach a
good bias-variance trade-off. It is also interesting to see its influence on the variance
and bias components. The variance is a decreasing function of the regularization
parameter. Hence, its maximum is reached for γ = 0 where θ̂ R reduces to the least
squares estimator θ̂ LS given by (1.7) with m = 50. Instead, the bias increases with
γ . At the limit, for γ → ∞, the penalty ‖θ‖2 is so overweighted that θ̂ R becomes
the constant estimator centred on the origin (it returns all null impulse response
coefficients).

In Fig. 1.5, we finally display the ridge regularized estimate with γ set to the value
minimizing the error and leading to MSER = 16.8. It is evident that ridge regression
provides a much better bias-variance trade-off than selecting the FIR order.
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Fig. 1.5 True impulse
response g0 (thick red line)
and ridge regularized
estimate
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1.3 Further Topics and Advanced Reading

Stein’s intuition on the development of an estimator able to dominate least squares in
terms of global MSE can be found in [23], while the specific shape of θ̂ J S has been
obtained in [15]. From then, a large variety of different estimators outperforming
least squares, also under different losses, have been designed. It has been proved that
there exists estimators which dominate James–Stein, even if the MSE improvement
is not large, as described in [12, 16, 25]. Extensions and applications can be found
in [5, 6, 11, 22, 24, 26]. A James–Stein version of the Kalman filter is derived in
[18]. For interesting discussions on the limitations of Stein-type estimators in facing
ill-conditioning see [8] but also [19] for new outcomes with better numerical stability
properties. Other developments are reported in [7] where generalizations of Stein’s
lemma are also described.

The paper [10] describes connections between James–Stein estimation and the so-
called empirical Bayes approaches which will be treated later on in this book. The
interplay between Stein-type estimators and the Bayes approach is also discussed in
[2]. Here, one can also find an estimator which dominates least squares concentrating
the MSE improvement in an ellipsoid that can be chosen by the user in the parameter
space. This approach is deeply connected with robust Bayesian estimation concepts,
e.g., see [1, 3].

The term ridge regression has been popularized by the works [13, 14]. This
approach, introduced to guard against ill-conditioning and numerical instability, is
an example of Tikhonov regularization for ill-posed problems. Among the first clas-
sical works on regularization and inverse problems, it is worth already citing [4, 20,
27–29]. A recent survey on the use of regularization for system identification can be
instead found in [21]. The literature on this topic is huge and other relevant works
will be cited in the next chapters.
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1.4 Appendix: Proof of Theorem 1.1

To discuss the properties of the James–Stein estimator, first it is useful to introduce
a result which is a simplified version of Lemma3.2 reported in Chap.3, known as
Stein’s lemma.

Lemma 1.1 (Stein’s lemma, based on [24]) Consider N Gaussian and indepen-
dent random variables yi ∼ N (θi , σ

2). For i = 1, . . . , n, let also h : RN → R be

a differentiable function such that E
∣∣∣ ∂h(Y )

∂yi

∣∣∣ < ∞. Then, it holds that

E (yi − θi )h(Y ) = σ 2E
∂h(Y )

∂yi
.

Proof During the proof,weuseE j �=i to denote the expectation conditional on {y j } j �=i .
Also, abusing notation, h(x) with x ∈ R indicates the function h with i th argument
set to x while the other arguments are set to y j j �= i .

Note that, in viewof the independence assumptions, each yi conditional on {y j } j �=i

is still Gaussian with mean θi and variance σ 2. Then, using integration by parts, one
has

E j �=i

(
∂h(Y )

∂yi

)
=

∫ +∞

−∞
∂h(x)

∂x

exp(−(x − θi )
2/(2σ 2))√

2πσ
dx

=
[
h(x)

exp(−(x − θi )
2/(2σ 2))√

2πσ

]+∞

−∞

+
∫ +∞

−∞
(x − θi )

σ 2
h(x)

exp(−(x − θi )
2/(2σ 2))√

2πσ
dx

=
∫ +∞

−∞
(x − θi )

σ 2
h(x)

exp(−(x − θi )
2/(2σ 2))√

2πσ
dx

= E j �=i ((yi − θi )h(Y ))

σ 2
.

Note that the penultimate equality exploits the fact that h(x) exp(−(x − θi )
2/(2σ 2))

must be infinitesimal as x → ∞, otherwise the assumption E
∣∣∣ ∂h(Y )

∂yi

∣∣∣ < ∞ would

not hold. Using the above result, we obtain

E ((yi − θi )h(Y )) = E
[
E j �=i ((yi − θi )h(Y ))

]

= σ 2E

[
E j �=i

(
∂h(Y )

∂yi

)]

= σ 2E
∂h(Y )

∂yi

and this completes the proof. �
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We now show that the MSE of the James–Stein estimator is uniformly smaller
than the MSE of least squares. One has

MSEJS = E
(
‖θ − θ̂ J S(Y )‖2

)

= E

(
‖θ − Y + (N − 2)σ 2

‖Y‖2 Y‖2
)

= E

(
‖θ − Y‖2 + (N − 2)2σ 4

‖Y‖4 ‖Y‖2 + 2(θ − Y )T Y
(N − 2)σ 2

‖Y‖2
)

= Nσ 2 + E

(
(N − 2)2σ 4

‖Y‖2 + 2(θ − Y )T Y
(N − 2)σ 2

‖Y‖2
)

.

As for the last term inside the expectation, exploiting Stein’s lemma with

hi (Y ) = yi
‖Y‖2 ,

∂hi (Y )

∂yi
= 1

‖Y‖2 − 2
y2i

‖Y‖4 ,

one has

E

(
(θ − Y )T Y

‖Y‖2
)

= E

(
N∑

i=1

(θi − yi )hi (Y )

)

= −σ 2E

(
N∑

i=1

(
1

‖Y‖2 − 2
y2i

‖Y‖4
))

= −σ 2E

(
N − 2

‖Y‖2
)

.

Using this equality in the MSE expression, we finally obtain

MSEJS = Nσ 2 + E

(
(N − 2)2σ 4

‖Y‖2 − 2
(N − 2)2σ 4

‖Y‖2
)

= Nσ 2 − (N − 2)2σ 4E

(
1

‖Y‖2
)

< Nσ 2.
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Chapter 2
Classical System Identification

Abstract System identification as a field has been around since the 1950s with
roots from statistical theory. A substantial body of concepts, theory, algorithms and
experience has been developed since then. Indeed, there is a very extensive literature
on the subject, with many text books, like [5, 8, 12]. Some main points of this
“classical” field are summarized in this chapter, just pointing to the basic structure of
the problem area. The problem centres around fourmain pillars: (1) the observed data
from the system, (2) a parametrized set of candidate models, “the Model structure”,
(3) an estimation method that fits the model parameters to the observed data and (4)
a validation process that helps taking decisions about the choice of model structure.
The crucial choice is that of the model structure. The archetypical choice for linear
models is theARXmodel, a linear difference equation between the system’s input and
output signals. This is a universal approximator for linear systems—for sufficiently
high orders of the equations, arbitrarily good descriptions of the system are obtained.
For a “good”model, proper choices of structural parameters, like the equation orders,
are required. An essential part of the classical theory deals with asymptotic quality
measures, bias and variance, that aim at giving the best mean square error between
the model and the true system. Some of this theory is reviewed in this chapter for
estimation methods of the maximum likelihood character.

2.1 The State-of-the-Art Identification Setup

System Identification is characterized by five basic concepts:

• X: the experimental conditions under which the data is generated;
• D : the data;
• M : the model structure and its parameters θ ;
• I : the identification method by which a parameter value θ̂ in the model structure
M (θ) is determined based on the data D ;

• V : the validation process that generates confidence in the identified model.

© The Author(s) 2022
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Fig. 2.1 The identification
work loop

See Fig. 2.1. It is typically an iterative process to navigate to a model that passes
through the validation test (“is not falsified”), involving revisions of the necessary
choices. For several of the steps in this loophelpful support tools havebeendeveloped.
It is however not quite possible or desirable to fully automate the choices, since
subjective perspectives related to the intended use of the model are very important.

2.2 M : Model Structures

A model structure M is set of a parametrized models that describe the relations
between the inputs u and outputs y of the system. The parameters are denoted by θ

so a particular model will be denoted by M (θ). The set of models then is

M = {M (θ)|θ ∈ DM }. (2.1)

The models may be expressed and formalized in many different ways. The most
common model is linear and time-invariant linear (LTI), but possible models include
both nonlinear and time-varying cases, so a list of actually used concrete model will
be both very long and diverse.

It is useful to take the general view that a model gives a rule to predict (one-
step-ahead) the output at time t , i.e., y(t) (a p-dimensional column vector), based
on observations of previous input–output data up to time t − 1 (denoted by Zt−1 =
{y(t − 1), u(t − 1), y(t − 2), u(t − 2), . . .}). Here u(t) is the input at time t and we
assume here that the data are collected in discrete time and denote for simplicity the
samples as enumerated by t .

The predicted output will then be

ŷ(t |θ) = g(t, θ, Zt−1) (2.2)
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for a certain function g of past data. This covers a very wide variety of model descrip-
tions, sometimes in a somewhat abstract way. The descriptions become much more
explicit when we specialize to linear models.

A note on “inputs” All measurable disturbances that affect y should be included
among the inputs u to the system, even if they cannot be manipulated as control
inputs. In some cases, the system may entirely lack measurable inputs, so the model
(2.2) then just describes how future outputs can be predicted from past ones. Such
models are called time series, and correspond to systems that are driven by unob-
servable disturbances. Most of the techniques described in this book apply also to
such models.

A note on disturbancesA complete model involves both a description of the input–
output relations and a description of how various disturbance or noise sources affect
themeasurements. The noise description is essential both to understand the quality of
the model predictions and the model uncertainty. Proper control design also requires
a picture of the disturbances in the system.

2.2.1 Linear Time-Invariant Models

For linear time-invariant (LTI) systems, a general model structure is given by the
transfer function G from input u to output y and with an additive disturbance—or
noise—v(t):

y(t) = G(q, θ)u(t) + v(t). (2.3a)

This model is in discrete time and q denotes the shift operator qy(t) = y(t + 1).
The sampling interval is set to one time unit. The expansion of G(q, θ) in the inverse
(backwards) shift operator gives the impulse response of the system:

G(q, θ)u(t) =
∞∑

k=1

gk(θ)q−ku(t) =
∞∑

k=1

gk(θ)u(t − k). (2.3b)

The discrete-time Fourier transform (or the z-transform of the impulse response,
evaluated in z = eiω) gives the frequency response of the system:

G(eiω, θ) =
∞∑

k=1

gk(θ)e−ikω. (2.3c)

The function G describes how an input sinusoid shifts phase and amplitude when it
passes through the system.
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The additive noise term v can be described as white noise e(t), filtered through
another transfer function H :

v(t) = H(q, θ)e(t) (2.3d)

E e2(t) = σ 2 (2.3e)

E e(t)eT (k) = 0 if k �= t (2.3f)

(E denotes mathematical expectation).
This noise characterization is quite versatile and with a suitable choice of H it

can describe a disturbance with a quite arbitrary spectrum. It is useful to normalize
(2.3d) by making H monic:

H(q, θ) = 1 + h1(θ)q−1 + · · · . (2.3g)

To think in terms of the general model description (2.2) with the predictor as a
unifying model concept, assuming H to be inversely stable [5, Sect. 3.2] it is useful
to rewrite (2.3) as

H−1(q, θ)y(t) = H−1(q, θ)G(q, θ)u(t) + e(t)

y(t) = [1 − H−1(q, θ)]y(t) + H−1(q, θ)Gu(t) + e(t) =
y(t) = G(q, θ)u(t) + [1 − H−1(q, θ)][y(t) − G(q, θ)u(t)] + e(t).

Note that the expansion of H−1 starts with “1”, so the first term starts with h̃1q−1

so there is a delay in y. That means that the right-hand side is known at time t − 1
except for the term e(t), which is unpredictable at time t − 1 and must be estimated
with its mean 0. All this means that the predictor for (2.3) (the conditional mean of
y(t) given past data) is

ŷ(t |θ) = G(q, θ)u(t) + [1 − H−1(q, θ)][y(t) − G(q, θ)u(t)]. (2.4)

It is easy to interpret the first term as a simulation using the input u, adjusted with a
prediction of the additive disturbance v(t) at time t , based on past values of v. The
predictor is thus an easy reformulation of the basic transfer functions G and H . The
question now is how to parametrize these.

2.2.1.1 The McMillan Degree

Given just the sequence of impulse responses gk , with k = 1, 2, . . ., onemay consider
different ways of representing the system in a more compact form, like rational
transfer functions or state-space models, to be considered below. A quite useful
concept is then the McMillan degree:
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From a given impulse response sequence, gk (that could be p × m matrices that
describe a system with m inputs and p outputs) form the Hankel matrix

Hk =

⎡

⎢⎢⎣

g1 g2 g3 · · · gk
g2 g3 g4 · · · gk+1

· · · · · · · · · · · · · · ·
gk gk+1 gk+2 · · · g2k−1

⎤

⎥⎥⎦ . (2.5)

Then as k increases, the McMillan degree n of the impulse response is the maximal
rank of Hk :

n = max
k

rank Hk . (2.6)

This means that the impulse response can be generated from an nth-order state-space
model, but not from any lower-order model.

2.2.1.2 Black-Box Models

A black-box model uses no physical insight or interpretation, but is just a general
and flexible parameterization. It is natural to let G and H be rational in the shift
operator:

G(q, θ) = B(q)

F(q)
; H(q, θ) = C(q)

D(q)
(2.7a)

B(q) = b1q
−1 + b2q

−2 + . . . bnbq
−nb (2.7b)

F(q) = 1 + f1q
−1 + . . . + fn f q

−n f , (2.7c)

with then C and D monic like F , i.e., start with a “1”, and the vector collecting all
the coefficients

θ = [b1, b2, . . . , fn f ]. (2.7d)

Common black-box structures of this kind are FIR (finite impulse responsemodel,
F = C = D = 1), ARMAX (autoregressive moving average with exogenous input,
F = D), and BJ (Box–Jenkins, all four polynomials different).

A Very Common Case: The ARX Model
A very common case is that F = D = A and C = 1 which gives the ARX model
(autoregressive with exogenous input):
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y(t) = A−1(q)B(q)u(t) + A−1(q)e(t) or (2.8a)

A(q)y(t) = B(q)u(t) + e(t) or (2.8b)

y(t) + a1y(t − 1) + . . . + ana y(t − na) (2.8c)

= b1u(t − 1) + . . . + bnbu(t − nb). (2.8d)

This means that the expression for the predictor (2.4) becomes very simple:

ŷ(t |θ) = ϕT (t)θ (2.9)

ϕT (t) = [−y(t − 1) −y(t − 2) . . . −y(t − na) u(t − 1) . . . u(t − nb)
]

(2.10)

θT = [
a1 a2 . . . ana b1 b2 . . . bnb

]
. (2.11)

In statistics, such a model is known as a linear regression.
We note that as na and nb increase to infinity the predictor (2.9) may approximate

any linear model predictor (2.4). This points to a very important general approxima-
tion property of ARX models:

Theorem 2.1 (based on [6]) Suppose a true linear system is given by

y(t) = G0(q)u(t) + H0(q)e(t), (2.12)

where G0(q) and H−1
0 (q) are stable filters,

G0(q) =
∞∑

k=1

gk(q
−k)

H−1
0 (q) =

∞∑

k=1

h̃k(q
−k)

d(n) =
∞∑

k=n

|gk | + |h̃K |

and e is a sequence of independent zero-mean randomvariableswith bounded fourth-
order moments.

Consider an ARX model (2.8) with orders na, nb = n, estimated from N obser-
vations. Assume that the order n depends on the number of data as n(N ), and
tends to infinity such that n(N )5/N → 0. Assume also that the system is such that
d(n(N ))

√
N → 0as N → ∞. Then theARXmodel estimates Ân(N )(q)and B̂n(N )(q)

of order n(N ) obey

B̂n(N )(q)

Ân(N )(q)
→ G0(q),

1

Ân(N )(q)
→ H0(q) as N → ∞. (2.13)

Intuitively, the above result follows from the fact that the true predictor for the system
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ŷ(t |θ) = (1 − H−1
0 )y(t) + H−1

0 G0u(t) =
∞∑

k=1

h̃k y(t − k) + g̃ku(t − k)

is stable. Hence, it can be truncated at any n with arbitrary accuracy, and the truncated
sum is the predictor of an nth-order ARX model.

This is quite a useful result saying that ARX models can approximate any linear
system, if the orders are sufficiently large. ARX models are easy to estimate. The
estimates are calculated by linear least squares (LS) techniques, which are convex
and numerically robust. Estimating a high-order ARX model, possibly followed by
some model order reduction, could thus be an alternative to the numerically more
demanding general PEM criterion minimization (2.22) introduced later on. This has
been extensively used, e.g., by [14, 15]. The only drawback with high-order ARX
models is that they may suffer from high variance.

2.2.1.3 Grey-Box Models

If some physical facts are known about the system, these could be incorporated in
the model structure. Such a model that is based on physical insights and has a built-in
behaviour that mimics known physics is known as a Grey-Box Model. For example,
it could that for an airplane whose motion equations are known from Newton’s laws,
but certain parameters are unknown, like the aerodynamical derivatives. Then it is
natural to build a continuous-time state-spacemodel from known physical equations:

ẋ(t) = A(θ)x(t) + B(θ)u(t)

y(t) = C(θ)x(t) + D(θ)u(t) + v(t).
(2.14)

Here θ are simply some entries of the matrices A, B,C, D, corresponding to
unknown physical parameters, while the other matrix entries signify known physical
behaviour. This model can be sampled with well-known sampling formulas (obeying
the input inter-sample properties, zero-order hold or first-order hold) to give

x(t + 1) = F (θ)x(t) + G (θ)u(t)

y(t) = C(θ)x(t) + D(θ)u(t) + w(t).
(2.15)

The model (2.15) has the transfer function from u to y

G(q, θ) = C(θ)[q I − F (θ)]−1G (θ) + D(θ) (2.16)

so we have achieved a particular parameterization of the general linear model (2.3).
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2.2.1.4 Continuous-Time Models

The general model description (2.2) describes how the predictions evolve in discrete
time. But in many cases we are interested in continuous-time (CT) models, like mod-
els for physical interpretation and simulation. But CT model estimation is contained
in the described framework, as the linear state-space model (2.14) illustrates.

2.2.2 Nonlinear Models

A nonlinear model is a relation (2.2), where the function g is nonlinear in the input–
output data Z . There is a rich variation in how to specify the function gmore explicitly.
A quite general way is the nonlinear state-space equation, which is a counterpart to
(2.15):

x(t + 1) = f (x(t), u(t), v(t), θ)

y(t) = h(x(t), e(t), θ),
(2.17)

where v and e are white noises.

2.3 I : Identification Methods—Criteria

The goal of identification is to match the model to the data. Here the basic techniques
for such matching will be discussed. Suppose we have collected a data record in the
time domain

DT = {u(1), y(1), . . . , u(N ), y(N )} (2.18)

which will be called in this book identification set or training set, with N being its
size. A natural way to evaluate a model is to see how well it is able to predict the
measured output since the model is in essence a predictor. It is thus quite natural to
form the prediction errors for (2.2):

ε(t, θ) = y(t) − ŷ(t |θ). (2.19)

The “size” of this error can be measured by some scalar norm:

�(ε(t, θ)) (2.20)

and the performance of the predictor over the whole data record DT is given by
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VN (θ) =
N∑

t=1

�(ε(t, θ)). (2.21)

A natural parameter estimate is the value that minimizes this prediction fit:

θ̂N = argminθ∈DM
VN (θ). (2.22)

This is the Prediction Error Method (PEM) and it is applicable to general model
structures. See, e.g., [5] or [7] for more details.

The PEM approach can be embedded in a statistical setting. TheMLmethodology
below offers a systematic framework to do so.

2.3.1 A Maximum Likelihood (ML) View

If the system innovations e have a probability density function (pdf) f (x), then
the criterion function (2.21) with �(x) = − log f (x) will be the logarithm of the
Likelihood function. See Lemma 5.1 in [5]. More specifically, let the system have p
outputs, and let the innovations be Gaussian with zero mean and covariance matrix
Λ, so that

y(t) = ŷ(t |θ0) + e(t), e(t) ∈ N (0,Λ) (2.23)

for the θ0 that generated the data. Then it follows that the negative logarithm of the
likelihood function for estimating θ from y is

LN (θ) = 1

2
[VN (θ) + N log detΛ + Np log 2π ], (2.24)

where VN (θ) is defined by (2.21), with

�(ε(t, θ)) = εT (t, θ)Λ−1ε(t, θ). (2.25)

That means that the maximum likelihood model estimate (MLE) for known Λ is
obtained by minimizing VN (θ). If Λ is not known, it can be included among the
parameters and estimated, ([5], p. 218), which results in a criterion

DN (θ) = det
N∑

t=1

ε(t, θ)εT (t, θ) (2.26)

to be minimized.
A Bayesian interpretation of (2.22) as well as a regularized version will be given

in Chap. 4.
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2.4 Asymptotic Properties of the Estimated Models

As we have seen in the first chapter, bias and variance play important roles in estima-
tion problems. We will here give a short account of how these concepts are treated
in classical system identification.

2.4.1 Bias and Variance

The observations, certainly of the output from the system, are affected by noise and
disturbances. That means that the estimated model parameters (2.22) also will be
affected by disturbances. These disturbances are typically described as stochastic
processes, which makes the estimate θ̂N a random variable. This has a certain prob-
ability density function, which could be complicated to compute. Often the analysis
is restricted to its mean and variance only. The difference between the mean and a
true description of the system measures the bias of the model. If the mean coincides
with the true system, the estimate is said to be unbiased. As already pointed out in
(1.1), the total error in a model thus has two contributions: the bias and the variance.

2.4.2 Properties of the PEM Estimate as N → ∞

Except in simple special cases it is quite difficult to compute the pdf of the estimate
θ̂N . However, its asymptotic properties as N → ∞ are easier to establish. The basic
results can be summarized as follows (see [5, Chaps. 8 and 9] for a more complete
treatment):

• Limit model:

θ̂N → θ∗ = argmin

[
lim
N→∞

1

N
VN (θ) ≈ E �(ε(t, θ))

]
. (2.27)

Here E denotes mathematical expectation. So the estimate will converge to the
best possible model, in the sense that it gives the smallest average prediction error.

• Asymptotic covariance matrix for scalar output models:
In case the prediction errors e(t) = ε(t, θ∗) for the limit model are approximately
white, the covariance matrix of the parameters is asymptotically given by

Covθ̂N ∼ κ(�)

N

[
Cov

d

dθ
ŷ(t |θ)

]−1

. (2.28)

That means that the covariance matrix of the parameter estimate is given by the
inverse covariance matrix of the gradient of the predictor w.r.t. the parameters.
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Here (prime denoting derivatives)

κ(�) = E [�′(e(t))]2
E �′′(e(t)]2 . (2.29)

Note that

κ(�) = σ 2 = E e2(t) if �(e) = e2/2.

If the model structure contains the true system, it can be shown that this covariance
matrix is the smallest that can be achieved by any unbiased estimate, in case the
norm � is chosen as the logarithm of the pdf of e. That is, it fulfils the the Cramér–
Rao inequality, [2]. These results are valid for quite general model structures.

• Results for LTI models:
Now, specialize to linear models (2.3) and assume that the true system is described
by

y(t) = G0(q)u(t) + H0(q)e(t), (2.30)

which could be general transfer functions, possibly much more complicated than
the model. Then

–

θ∗ = argminθ

∫ π

−π

|G(eiω, θ) − G0(e
iω)|2 Φu(ω)

|H(eiω, θ)|2 dω. (2.31)

That is, the frequency function of the limiting model will approximate the true
frequency function as well as possible in a frequency norm given by the input
spectrum Φu and the noise model.

– For a linear black-boxmodel, the covariance of the estimated frequency function
is

CovG(eiω, θ̂N ) ∼ n

N

Φv(ω)

Φu(ω)
as n, N → ∞, (2.32)

where n is the model order and Φv is the noise spectrum σ 2|H0(eiω)|2. The
variance of the estimated frequency function at a given frequency is thus, for
a high-order model, proportional to the noise-to-signal ratio at that frequency.
That is a natural and intuitive result.
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2.4.3 Trade-Off Between Bias and Variance

The quality of the model depends on the quality of the measured data and the flexi-
bility of the chosen model structure (2.1). A more flexible model structure typically
has smaller bias, since it is easier to come closer to the true system. At the same
time, it will have a higher variance: with higher flexibility it is easier to be fooled by
disturbances and this may lead to data overfitting. So the trade-off between bias and
variance to reach a small total error is a choice of balanced flexibility of the model
structure.

As the model gets more flexible, the fit to the estimation data in (2.22), given
by VN (θ̂N ), will always improve. To account for the variance contribution, it is thus
necessary to modify this fit to assess the total quality of the model. A much used
technique for this is Akaike’s criterion (AIC), [1],

θ̂N = argmin
M ,θ∈DM

2LN (θ) + 2dimθ, (2.33)

where LN is the negative log likelihood function. The minimization also takes place
over a family of model structures with different number of parameters (dim θ ).

For Gaussian innovations e with unknown and estimated variance, the criterion
AIC takes the form

θ̂N = argmin
M ,θ∈DM

[
log det

[
1

N

N∑

t=1

ε(t, θ)εT (t, θ)

]
+ 2

m

N

]
AIC (2.34)

with m = dimθ and after normalization and omission of model-independent quanti-
ties.

There is also a small-sample version, described in [4] and known in the literature
as corrected Akaike’s criterion (AICc), defined by

θ̂N = argminθ

[
log det

[
1

N

N∑

t=1

ε(t, θ)εT (t, θ)

]
+ 2

m

(N − m − 1)

]
, AICc.

(2.35)

Another variant places a larger penalty on the model flexibility:

θ̂N = argminθ

[
log det

[
1

N

N∑

t=1

ε(t, θ)εT (t, θ)

]
+ log(N )

m

N

]
, BIC, MDL.

(2.36)

This is known as Bayesian information criterion (BIC) or Rissanen’s Minimum
Description Length (MDL) criterion, see, e.g., [10, 11] and [5, pp. 505–507].

Section2.6 contains further aspects on the choice of model structure.
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2.5 X: Experiment Design

Experiment design involves all questions that concern the collection of estimation
data, such as selecting which signals to measure, which sampling rate to use, and
also the design of the input including possible feedback configurations.

The theory of experiment design primarily relies upon analysis of how the asymp-
totic parameter covariance matrix (2.28) depends on the design variables: so the
essence of experiment design can be symbolized as

min
X

trace{C[Eψ(t)ψT (t)]−1},

where ψ is the gradient of the prediction w.r.t. the parameters and the matrix C is
used to weight variables reflecting the intended use of the model.

For linear systems, the input design is often expressed as selecting the spectrum
(frequency contents) of u.

This leads to the following recipe: let the input’s power be concentrated to fre-
quency regions where a good model fit is essential, and where disturbances are
dominating.

Themeasurement setup, like if band limited inputs are used to estimate continuous-
time models and how the experiment equipment is instrumented with band-pass fil-
ters, e.g., see [8, Sects. 13.2–3], also belongs to the important experiment design
questions.

2.6 V : Model Validation

Model validation is about obtaining a model that, at least for the time being, can be
accepted. It amounts to examining and scrutinizing the model to check if it can be
used for its purpose. These methods are of course problem dependent and contain
several subjective elements, Therefore, no conclusive procedure for validation can
be given. A few useful techniques will be listed here. Basically it is a matter of trying
to falsify a model under the conditions it will be used for and also to gain confidence
in its ability to reproduce new data from the system.

2.6.1 Falsifying Models: Residual Analysis

An estimated model is never a correct description of a true system. In that sense, a
model cannot be “validated”, i.e., proved to be correct. Instead it is instructive to try
and falsify it, i.e., confront it with facts that may contradict its correctness. A good
principle is to look for the simplest unfalsified model, see, e.g., [9].
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Residual analysis is the leading technique for falsifying models: the residuals
or one-step-ahead prediction errors ε̂(t) = ε(t, θ̂N ) = y(t) − ŷ(t |θ̂N ) should ideally
not contain any traces of past inputs or past residuals. If they did, it means that the
predictions are not ideal. So, it is natural to test the correlation functions

r̂ε̂,u(k) = 1

N

N∑

t=1

ε̂(t + k)u(t) (2.37)

r̂ε̂(k) = 1

N

N∑

t=1

ε̂(t + k)ε̂(t) (2.38)

and check that they are not larger than certain thresholds. Here N is the length of the
data record and k typically ranges over a fraction of the interval [−N , N ]. See, e.g.,
[5, Sect. 16.6] for more details.

2.6.2 Comparing Different Models

When several models have been estimated it is a question to choose the “best one”.
Then, models that employ more parameters naturally show a better fit to the data,
and it is necessary to outweigh that. The model selection criteria AIC (2.34) and
BIC (2.36) are examples of how such decisions can be taken. They can be extended
to regular hypothesis tests where more complex models are accepted or rejected at
various test levels, see, e.g., [5, Sect. 16.4].

Making comparisons in the frequency domain is a very useful complement for
domain experts used to think in terms of natural frequencies, natural damping, etc.

2.6.3 Cross-Validation

Cross-validation (CV) is an important statistical concept that loosely means that the
model performance is tested on a data set (validation data) other than the estimation
data. There is an extensive literature on cross-validation, e.g., [13] and many ways
to split up available data into estimation and validation parts have been suggested.
The goal is to obtain an estimate of the prediction capability of future data of the
model in correspondence with different choices of θ . Parameter selection is thus
performed by optimizing the estimated prediction score. Hold out validation is the
simplest form of CV: the available data are split in two parts, where one of them
(estimation set) is used to estimate the model, and the other one (validation set) is
used to assess the prediction capability. By ensuring independence of the model fit
from the validation data, the estimate of the prediction performance is approximately
unbiased. Formodels that do not require estimation of initial states, like FIR andARX
models, CV can be applied efficiently in more sophisticated ways by splitting the
data into more portions, as described in [3].
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Chapter 3
Regularization of Linear Regression
Models

Abstract Linear regression models are widely used in statistics, machine learning
and system identification. They allow to face many important problems, are easy to
fit and enjoy simple analytical properties. The simplest method to fit linear regression
models is least squares whose systematic treatment is available in many textbooks,
e.g., [35, Chap. 4], [12]. Linear regression models can be fitted also in different
way and a class of methods that we will consider in this chapter is the so-called
regularized least squares. It is an extension of least squares which minimizes the
sum of the square loss function and a regularization term. This latter can take various
forms, leading to several variants which have been applied extensively in theory as
well as in practical applications. In this chapter, we will focus on these methods and
introduce their fundamentals. In the first part of the appendix to this chapter, we also
report some basic results of linear algebra useful for the reading.

3.1 Linear Regression

Regression theory is concerned with modelling relationships among variables. It is
used for predicting one dependent variable based on the information provided by one
or more independent variables. In linear regression, the relationship among variables
is given by linear functions. To illustrate this, we start from the function estimation
problem because it is intuitive and easy to understand.

The aimof function estimation is to reconstruct a function g : R
n → Rwith n ∈ N

from a collection of N measured values of g(x) and x which we denote, respectively,
by yi and xi for i = 1, . . . , N . For generic values of x , the estimate ĝ should give a
good prediction ĝ(x) of g(x). The variables x and g(x) are often called the input and
the output variable or simply the input and the output, respectively. The collection of
measured values of x and g(x), given by the couples {xi , yi }, is called the data set or
also the training set. In practical applications, the measurement yi is often not precise
and subject to some disturbance, i.e., for a given input xi there is often discrepancy
between g(xi ) and its measured value yi . To describe this phenomenon, it is natural
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to introduce a disturbance variable e ∈ R and assume that, for any given x ∈ R
n , the

measured value of g(x) is

y = g(x) + e. (3.1)

Hence, y is themeasured output and g(x) is the noise-free or true output.Accordingly,
the training data {xi , yi }Ni=1 are collected as follows:

yi = g(xi ) + ei , i = 1, . . . , N . (3.2)

We are interested in linear regression models for estimation of g. For illustration, an
example is now introduced.

Example 3.1 (Polynomial regression) We consider g : [0, 1] → R and assume that
such function is smooth. Then, g can be well approximated by polynomials with
a certain order. In this case, a linear regression model for the function estimation
problem takes the following form:

yi = θ1 +
n∑

k=2

θk x
k−1
i + ei , i = 1, . . . , N , (3.3)

where θk ∈ R for k = 1, . . . , n. Defining

φ(xi ) = [ 1 xi . . . xn−1
i ]T , θ = [ θ1 θ2 . . . θn ]T , (3.4)

where, for a real-valued matrix A, the notation AT denotes its matrix transpose, we
rewrite (3.3) as

yi = φ(xi )
T θ + ei , i = 1, . . . , N (3.5)

obtaining a more compact expression. �

Although (3.5) is derived from Example 3.1, it is the general linear regression
model studied in the theory of regression. For convenience, we remove the depen-
dence of φ(xi ) on xi and simply write φ(xi ) as φi , when the context is clear. In
addition, all the vectors are column vectors. Then, model (3.5) becomes

yi = φT
i θ + ei , i = 1, . . . , N , yi ∈ R, φi ∈ R

n, θ ∈ R
n, ei ∈ R. (3.6)

In what follows, we will focus on (3.6) and introduce the linear regression problem,
the methods of least squares and regularized least squares. We will call yi ∈ R the
measured output, φi ∈ R

n the regressor, θ ∈ R
n the model parameter, n the model

order, and ei the measurement noise.
Before proceeding, it should be noted that the choice of the model order n is a

critical problem in practical applications. The rule of thumb is to set n to a large



3.1 Linear Regression 35

enough value such that g can be represented by the proposed model structure. In sys-
tem identification, this corresponds to introducing a model structure flexible enough
to contain the true system. Consider, e.g., Example 3.1 again and assume that the
function g is actually a polynomial of order 5. Clearly, if the dimension of θ does
not satisfy n ≥ 6, then x5 cannot be represented and some model bias will affect the
estimation process. However, the order n should not be chosen larger than necessary,
because this can increase the variance of themodel estimate. This problem is actually
the same as model selection complexity in the classical system identification and is
connected with the bias-variance trade-off illustrated in the first two chapters and
also discussed in more detail shortly.

Also in light of the above discussion, we often assume that the model order n is
either large enough for g to be adequately represented by the proposed model or even
that a true model parameter that has generated the data exists, denoted by θ0 ∈ R

n .
Hence, we can formulate linear regression as the problem of obtaining an estimate
θ̂ such that, given a new regressor φ ∈ R

n , the prediction φT θ̂ is close to φT θ0.

3.2 The Least Squares Method

There are many methods to estimate θ in the linear regression model (3.6). In this
section, we consider the least squares (LS) method.

3.2.1 Fundamentals of the Least Squares Method

Given the data yi , φi for i = 1, . . . , N , one way to estimate θ is to minimize the least
squares (LS) criterion:

θ̂LS = argmin
θ

l(θ), l(θ) =
N∑

i=1

(yi − φT
i θ)2, (3.7)

where l(θ) is the LS criterion and θ̂LS is the LS estimate of θ . Then, the predicted
output ŷ for the value of φT θ0 with φ ∈ R

n is obtained as

ŷ = φT θ̂LS. (3.8)

3.2.1.1 Normal Equations and LS Estimate

The LS estimate θ̂LS given by (3.7) has a closed-form expression. To see this, note
that the first- and second-order derivatives of l(θ) with respect to θ are
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∂l(θ)

∂θ
= 2

N∑

i=1

φiφ
T
i θ − 2

N∑

i=1

φi yi ,
∂2l(θ)

∂θ∂θ
= 2

N∑

i=1

φiφ
T
i � 0, (3.9)

where A � 0means that A is a positive semidefinite matrix. Then all θ̂LS that satisfy

[
N∑

i=1

φiφ
T
i

]
θ̂LS =

N∑

i=1

φi yi (3.10)

are global minima of l(θ). The set of Eqs. (3.10) is known as the normal equations.
For the time being, we assume that

∑N
i=1 φiφ

T
i is full rank.1 Then

θ̂LS =

[
N∑

i=1

φiφ
T
i

]−1 N∑

i=1

φi yi . (3.11)

3.2.1.2 Matrix Formulation

It is often convenient to rewrite the LS method in matrix form. To this goal, let

Y =

⎡

⎢⎢⎢⎣

y1
y2
...

yN

⎤

⎥⎥⎥⎦ , Φ =

⎡

⎢⎢⎢⎣

φT
1

φT
2
...

φT
N

⎤

⎥⎥⎥⎦ , E =

⎡

⎢⎢⎢⎣

e1
e2
...

eN

⎤

⎥⎥⎥⎦ . (3.12)

We can then rewrite (3.6) with the θ0 that generated the data, the LS criterion (3.7),
the normal Eqs. (3.10) and the LS estimate (3.11) in matrix form, respectively:

Y = Φθ0 + E (3.13)

θ̂LS = argmin
θ

l(θ), l(θ) = ‖Y − Φθ‖22 (3.14)

ΦTΦθ̂LS = ΦT Y (3.15)

θ̂LS = (ΦTΦ)−1ΦT Y, (3.16)

where ‖ · ‖2 is the Euclidean norm, i.e., the 2-norm, and Φ is called the regression
matrix.

1 Recall that the column rank (resp., the row rank) of a matrix is the dimension of the space spanned
by the columns (resp., the rows) of the matrix. It is a fundamental result in linear algebra that the
column rank and the row rank of a matrix are always equal and this number is called the rank of
the matrix. A matrix is said to be full rank if its rank is equal to the lesser of the number of rows
and columns and a matrix is said to be rank deficient otherwise.
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3.2.2 Mean Squared Error and Model Order Selection

3.2.2.1 Bias, Variance, and Mean Squared Error of the LS Estimate

We study the linear regression problem in a probabilistic framework, assuming that
data are generated according to (3.13) and that

the measurement noises ei , for i = 1, . . . , N , are i.i.d. with mean 0 and variance σ2.

(3.17)

Due to this assumption, the LS estimator θ̂LS, as well as any estimator of θ dependent
on the data, becomes random variables. Then, it is interesting to study the statistical
properties of θ̂LS, such as the bias, variance and mean squared error (MSE).

All the expectations reported below are computed with respect to the noises ei
with the regressors φi assumed to be deterministic. Simple calculations lead to

E (θ̂LS) = θ0 (3.18a)

θ̂LS
bias = E (θ̂LS) − θ0 = 0 (3.18b)

Cov(θ̂LS, θ̂LS) = E [(θ̂LS − E (θ̂LS))(θ̂LS − E (θ̂LS))T ] = σ 2(ΦTΦ)−1 (3.18c)

MSE(θ̂LS, θ0) = E [(θ̂LS − θ0)(θ̂
LS − θ0)

T ]
= Cov(θ̂LS, θ̂LS) + θ̂LS

bias(θ̂
LS
bias)

T

= σ 2(ΦTΦ)−1, (3.18d)

where Cov(θ̂LS, θ̂LS) is the covariance matrix of θ̂LS and MSE(θ̂LS, θ0) is the MSE
matrix of θ̂LS function of the true model parameter θ0.

3.2.2.2 Model Order Selection

The issue of model order selection is essentially the same as that of model complex-
ity selection in the classical system identification scenario. Therefore, the techniques
introduced in Sect. 2.4.3 can be used to choose themodel order n, e.g., Akaike’s infor-
mation criterion (AIC) [1], the Bayesian Information criterion (BIC) or Minimum
Description Length (MDL) approach [25, 39].

The quality of the LS estimate θ̂LS depends on the adopted model order n.
In practical applications, model complexity is in general unknown and needs to
be determined from data. As the model order n gets larger, the fit to the data
‖Y − Φθ̂LS‖22 in (3.14) will become smaller, but the variances along the diagonal of
the MSE matrix (3.18d) of θ̂LS will become larger at the same time. When assessing
the quality of θ̂LS, one way to account for the increasing variance is to introduce
criteria that suitably modify the plain data fit. AIC and BIC are techniques following
this idea and can be used for model order selection. More specifically, besides (3.17),
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further assuming that the errors are independent and Gaussian, i.e.,

ei ∼ N (0, σ 2), i = 1, . . . , N (3.19)

with known noise variance σ 2, we obtain

AIC: θ̂LS = argmin
θ∈Rn

1
N

‖Y − Φθ‖22 + 2σ 2 n

N
, (3.20)

BIC or MDL: θ̂LS = argmin
θ∈Rn

1
N

‖Y − Φθ‖22 + log(N )σ 2 n

N
, (3.21)

where the minimization also takes place over a family of model structures with
different dimension n of θ .

Another way is to estimate the prediction capability of the model on some unseen
data which are not used for model estimation. As briefly seen in Sect. 2.6.3, cross-
validation (CV) exploits this idea and is among the most widely used techniques for
model selection. Recall that hold out CV is the simplest form of CVwith data divided
into two parts. One part is used to estimate the model with different model orders
and the other part is used to assess the prediction capability of each model through
the prediction score ‖Yv − Φvθ̂

LS‖22. Here, Yv, Φv are the validation data which are
different from those used to derive θ̂LS. The model order giving the best prediction
score will be chosen.

The noise variance σ 2 of the measurement noises ei plays an important role in
statistical modelling, e.g., in the assessment of the variance of θ̂LS and in the model
order selection using, e.g., AIC (3.20) or BIC (3.21). In practical applications, the
noise variance σ 2 is in general unknown and needs to be estimated from the data
Y and Φ. It can be estimated in different ways based on the maximum likelihood
estimation (MLE) method or the statistical property of θ̂LS.

Under (3.17) and the Gaussian assumption (3.19), theML estimate of σ 2, as given
in [25, p. 506], is

σ̂ 2,ML =
1
N

‖Y − Φθ̂LS‖22. (3.22)

Using only assumption (3.17), an unbiased estimator of σ 2, as given in [25, p. 554],
turns out

σ̂ 2 =
1

N − n
‖Y − Φθ̂LS‖22. (3.23)

AIC and BIC were reported, respectively, in (3.20) and (3.21) assuming known noise
variance. When σ 2 is unknown, the use of theML estimate (3.22) leads to the widely
used AIC and BIC for Gaussian innovations, e.g., [25, pp. 506–507]:
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Fig. 3.1 Polynomial regression: the function g(x) (blue curve) and the data {xi , yi }40i=1 (red circles)

AIC: θ̂LS = argmin
θ∈Rn

log
(
1
N

‖Y − Φθ‖22
)

+ 2
n

N
, (3.24)

BIC or MDL: θ̂LS = argmin
θ∈Rn

log
(
1
N

‖Y − Φθ‖22
)

+ log(N )
n

N
. (3.25)

Example 3.2 (Polynomial regression using LS and discrete model order selection)
We apply the LS method and the model order selection techniques to polynomial
regression as sketched in Example 3.1. Let the function g be

g(x) = sin2(x)(1 − x2), x ∈ [0, 1]. (3.26)

Then, we generate the data as follows:

yi = sin2(xi )(1 − x2i ) + ei , i = 1, . . . , 40, (3.27)

where x1 = 0, x40 = 1, the x2, . . . , x39 are evenly spaced points between x1 and
x40, and the noises ei are i.i.d. Gaussian distributed with zero mean and standard
deviation 0.034. The function g and the generated data are shown in Fig. 3.1.

The function g is smooth and can bewell approximated by polynomials. However,
it is unclear which order should be chosen. Hence, we test the values n = 1, . . . , 15
and, for each order n, we form the regressor (3.4), the linears regression model (3.13)
and derive the LS estimate θ̂LS. As shown in Fig. 3.2, as the order n increases the
data fit ‖Y − Φθ̂LS‖22 keeps decreasing.
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Fig. 3.2 Polynomial regression: profile of the LS data fit as a function of the discrete model
order n

For model order selection, we use AIC (3.24), BIC (3.25) and hold out CV with
xi , yi , i = 1, 3, . . . , 39 for estimation and xi , yi , i = 2, 4, . . . , 40 for validation.
Figure3.3 plots the values of AIC (3.24), BIC (3.25) and the prediction score of
hold out CV. The order n selected by AIC and BIC are the same and equal to 3while
that selected by hold out CV is 7.

To evaluate the performance of models of different complexity, we compute the
fit measure

F = 100

⎛

⎝1 −
[∑40

k=1 |g(xk) − ĝ(xk)|2∑40
k=1 |g(xk) − ḡ0|2

]1/2
⎞

⎠ , ḡ0 =
1
40

40∑

k=1

g(xk). (3.28)

Note thatF = 100means a perfect agreement between g(x) and the corresponding
estimate. Themodel fits forn = 1, . . . , 15 are shown inFig. 3.4: the ordern = 3gives
the best prediction. Figure3.5 plots the estimates of g(x) for n = 3, 7, 15 over the
xi , i = 1, . . . , 40. Overfitting occurs when n = 15, indicating that the corresponding
model is too flexible and fooled by the noise. �
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Fig. 3.3 Polynomial regression: model order selection with n = 1, . . . , 15 using LS. The blue
curve, the red curve and the yellow curve show the values of AIC (3.24), BIC (3.25) and the
prediction score of hold out CV, respectively
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Fig. 3.4 Polynomial regression: profile of the model fit (3.28) as a function of the order n using
LS. The most accurate estimate is obtained with model order equal to 3 which corresponds to a
second-order polynomial
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Fig. 3.5 Polynomial regression: true function (blue line) and LS estimates obtained using three
different model orders given by n = 3, 7 and 15

3.3 Ill-Conditioning

3.3.1 Ill-Conditioned Least Squares Problems

When Φ ∈ R
N×n with N ≥ n is rank deficient, i.e., rank(Φ) < n, or “close” to

rank deficient, the corresponding LS problem is said to be ill-conditioned. Examples
were already encountered in Sect. 1.1.2 to discuss some limitations of the James–
Stein estimators and in Sect. 1.2 in the context of FIR models. There are different
ways to handle ill-conditioned LS problems. Below, we show how to calculate θ̂LS

more accurately by using the singular value decomposition (SVD).

3.3.1.1 Singular Value Decomposition

SVD is a fundamental matrix decomposition. Any matrix Φ ∈ R
N×n , with N ≥ n

to simplify the exposition, can be decomposed as follows:

Φ = UΛV T , (3.29)

where Λ is a rectangular diagonal matrix with nonnegative diagonal entries σi ,
i = 1, . . . , n and U ∈ R

N×N and V ∈ R
n×n are orthogonal matrices, i.e., such that

UTU = UUT = IN and V T V = VV T = In . The factorization (3.29) is called the
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singular value decomposition of Φ and the σi are called the singular values of Φ.
Without loss of generality, they can be assumed to be ordered according to their
magnitude:

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Since ΦTΦ = VΛTΛV T = V D2V T , where D is a square diagonal matrix whose
diagonal entries are the σi , it follows that

σi =
√

λi (ΦTΦ), i = 1, . . . , n, (3.30)

where λi (A) denotes the i th eigenvalue of the matrix A.

3.3.1.2 Condition Number

The condition number of a matrix is a measure of how “close” is the matrix to rank
deficient. When Φ is an invertible square matrix, it is denoted by cond(Φ) below
and defined as

cond(Φ) = ‖Φ−1‖‖Φ‖, (3.31)

where ‖ · ‖ is a matrix norm, with the convention that cond(Φ) = ∞ for singular Φ.
For a generic Φ ∈ R

N×n , with SVD in the form (3.29), its condition number with
respect to the 2-norm ‖ · ‖2 is defined as

cond(Φ) =
σmax

σmin
, (3.32)

where σmax = σ1 and σmin = σn are the largest and smallest singular values of Φ,
respectively. If we use the 2-norm ‖ · ‖2 in (3.31), then (3.31) coincides with (3.32).
Hereafter, the condition number of a matrix will be defined by (3.32).

3.3.1.3 Ill-Conditioned Matrix and LS Problem

The condition number of a matrix is important since it can be used to measure the
sensitivity of theLS estimate to perturbations in the data. Tobe specific, letΦ ∈ R

N×n

be full rank and let δY denote a small componentwise perturbation in Y . The solution
of the perturbed LS criterion becomes

θ̃LS
2 = argmin

θ

‖(Y + δY ) − Φθ‖22. (3.33)

Then, it can be shown, e.g., [17, Chap. 5], [10, Chap. 3], that
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‖θ̃LS
2 − θ̂LS

2 ‖2
‖θ̂LS

2 ‖2
≤ cond(Φ)ε + O

(
ε2
)
, ε =

‖δY‖2
‖Y‖2 . (3.34)

So, the relative error bound depends on cond(Φ): the larger cond(Φ), the larger the
relative error. One can thus say that the matrix Φ (and the LS problem) with a small
condition number is well conditioned, while the matrixΦ (and the LS problem) with
a large condition number is ill-conditioned. The condition number enters also more
complex bounds on the relative error due to perturbations on the matrix Φ [10, 17].

Example 3.3 (Effect of ill-conditioning on LS) Consider the linear regression model
(3.13). Let

Φ =
1
2

[
1 1

1 + 10−8 1 − 10−8

]
, Y =

[
1
1

]
. (3.35)

The two singular values of Φ are σmax = 1 and σmin = 5 × 10−9, implying that
cond(Φ) = 2 × 108. Thus, Φ and the LS problem (3.14) are ill-conditioned.

Using the normal Eq. (3.15), we obtain the LS estimate θ̂LS
1 in closed form:

θ̂LS
1 = (ΦTΦ)−1ΦT Y = Φ−1Y =

[
1
1

]
. (3.36)

Now, suppose that there is a small perturbation δY in Y

δY =
[
0.01
0

]
. (3.37)

Solving the normal Eq. (3.15) with Y replaced by Y + δY now gives

θ̂LS
2 =

[
1.01 − 106

1.01 + 106

]
. (3.38)

So, when the LS problem (3.14) is ill-conditioned, a small perturbation in Y could
cause a significant change in the LS estimate derived by solving the normal Eq. (3.15)
directly. �

Example 3.4 (Polynomial regression: ill-conditioned LS Problem) We revisit the
polynomial regression Examples (3.26) and (3.27) stressing the dependence of the
condition number on the polynomial complexity. In particular, Fig. 3.6 shows that
the ill-conditioning of the regression matrix Φ constructed according to (3.4) and
(3.12) augments as the dimension n increases. This further points out the importance
of a careful selection of the discrete model order to control the estimator’s variance
when using LS. �
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Fig. 3.6 Polynomial regression: profile of the base 10 logarithm of the condition number of Φ as
a function of the order n

3.3.1.4 LS Estimate Exploiting the SVD of Φ

In order to obtain more accurate LS estimates for ill-conditioned problems, one can
use the SVD of Φ. Given Φ ∈ R

N×n with N ≥ n, we consider two cases:

• Φ is rank deficient, i.e., rank(Φ) < n.
• Φ is full rank but has a very large condition number, i.e., rank(Φ) = n but cond(Φ)

is very large.

For the rank-deficient case, we assume without loss of generality that rank(Φ) =
m < n. In this case, the LS problem does not have a unique solution. To get a special
solution, we have to impose extra conditions on the solutions of the LS problem.

Let the singular value decomposition of Φ be

Φ = UΛV T =
[
U1 U2

] [Λ1 0
0 0

] [
V1 V2

]T
, (3.39)

where Λ1 ∈ R
m×m is diagonal and positive definite while U1 ∈ R

N×m and V1 ∈
R

n×m .
We now perform a change of coordinates in both the output and parameter space

Ỹ = UTY =
[
UT

1 Y
UT

2 Y

]
=
[
Ỹ1
Ỹ1

]
, θ̃ = V T θ =

[
V T
1 θ

V T
2 θ

]
=
[

θ̃1

θ̃1

]
.
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Note that both Ỹ1 and θ̃1 are m-dimensional vectors. In the new coordinates, the
residual vector is

UT (Y − Φθ) = Ỹ − Λθ̃ =
[
Ỹ1 − Λ1θ̃1

Ỹ2

]
.

The LS criterion can be rewritten as

‖Y − Φθ‖2 = (Y − Φθ)TUUT (Y − Φθ) = ‖Ỹ − Λθ̃‖2 = ‖Ỹ1 − Λ1θ̃1‖2 + ‖Ỹ2‖2

and is minimized by

θ̃LS =
[

θ̃LS
1

θ̃LS
2

]
=
[

Λ−1Ỹ1
θ̃2

]
, (3.40)

where θ̃2 ∈ R
n−m is an arbitrary vector. To get the minimum norm solution, one can

set θ̃2 = 0 that, turning back to the original coordinates, yields

θ̂LS = V θ̃LS = V1Λ
−1
1 UT

1 Y. (3.41)

Interestingly, for the rank-deficient case, the special solution (3.41) relates to the
Moore–Penrose pseudoinverse of Φ, defined as

Φ+ = VΣ+UT =
[
V1 V2

] [Λ−1
1 0
0 0

] [
U1 U2

]T = V1Σ
−1
1 UT

1 .

So, given a matrix Σ , its pseudoinverse Σ+ is obtained by replacing all the nonzero
diagonal entries by their reciprocal and transposing the resulting matrix. When
rank(Φ) = n, the pseudoinverse returns the usual (unique) LS solution

Φ+ =
(
ΦTΦ

)−1
ΦT .

It follows that the minimum norm solution among the general solutions of the LS
problem (3.14) can be always written as

θ̂LS = Φ+Y.

For the rank-deficient case, due to roundoff errors, Φ may have some very small
computed singular values other than them singular values contained in Λ1 in (3.39).
The situation is similar to the case whereΦ is full rank but with a very large condition
number. Note also that the rank of Φ needs to be known beforehand to compute the
SVD of Φ. However, numerical determination of the rank of a matrix is nontrivial
(and out of scope of this book). Here, we just mention a simple way to deal with
these issues by using the so-called truncated SVD.
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Consider the SVD (3.39) and, without loss of generality, assume

Λ = diag(σ1, σ2, . . . , σn) with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Now set σ̂i = σi if σi > tol and σ̂i = 0 otherwise. Then

Φ̂ = UΛ̂V T , (3.42)

where Λ̂ ∈ R
N×n is diagonal with entries σ̂1, σ̂2, . . . , σ̂n , is called the truncated SVD

of Φ. So, the truncated SVD (3.42) can be used to handle the case where Φ has full
rank but large condition number: for a given tol, it suffices to replace Φ with Φ̂ and
then to compute the LS estimate of θ by means of Φ̂+Y .

Example 3.5 (Truncated SVD) We revisit Example 3.3 by making use of the trun-
cated SVD of Φ. We take the user-supplied measure of uncertainty tol to be 1e-7.
Then the LS estimate θ̂LS

3 computed by (3.41) with Y replaced by Y + δY becomes

θ̂LS
3 = Φ̂+(Y + δY ) =

[
1.0050
1.0049

]
. (3.43)

One can thus see that the estimate is now very close to [1 1]T which was the one
obtained in absence of the perturbation δY . �

3.3.2 Ill-Conditioning in System Identification

In Sect. 1.2 we have illustrated an ill-conditioned system identification problem.
Below, we will see that the difficulty was due to the fact that low-pass filtered inputs
may induce regression matrices with large cond(Φ).

Consider the FIR model of order n:

y(t) =
n∑

k=1

gku(t − k) + e(t), t = 1, . . . , N , (3.44)

which can be written in the form (3.13) as follows:
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Y = Φθ0 + E

Y =

⎡

⎢⎢⎢⎣

y(1)
y(2)

...

y(N )

⎤

⎥⎥⎥⎦ , Φ =

⎡

⎢⎢⎢⎣

u(0) u(−1) · · · u(1 − n)

u(1) u(2) · · · u(2 − n)
...

... · · · ...

u(N − 1) u(N − 2) · · · u(N − n)

⎤

⎥⎥⎥⎦ ,

θ0 =

⎡

⎢⎢⎢⎣

g1
g2
...

gn

⎤

⎥⎥⎥⎦ , E =

⎡

⎢⎢⎢⎣

e1
e2
...

eN

⎤

⎥⎥⎥⎦ .

(3.45)

Then we have

ΦTΦ =

⎡

⎢⎢⎢⎣

∑N−1
t=0 u(t)2

∑N−1
t=0 u(t)u(t − 1) . . .

∑N−1
t=0 u(t)u(t − n + 1)∑N−1

t=0 u(t)u(t − 1)
∑N−2

t=−1 u(t)2 . . .
∑N−2

t=−1 u(t)u(t − n + 2)
.
.
.

.

.

. . . .
.
.
.∑N−1

t=0 u(t)u(t − n + 1)
∑N−n

t=−n+1 u(t)u(t + n − 2) . . .
∑N−n

t=−n+1 u(t)2

⎤

⎥⎥⎥⎦ .

(3.46)

Since cond(ΦTΦ) = (cond(Φ))2, we study cond(ΦTΦ) in what follows. In addi-
tion, while so far we have assumed deterministic regressors, now we work in a more
structured probabilistic framework where the system input is a stochastic process.
This implies that Φ is a random matrix. In particular, u(t) is filtered white noise,
with the filter assumed to be stable and given by

H(q) =
∞∑

k=0

h(k)q−k . (3.47a)

Hence,

u(t) =
∞∑

k=0

h(k)v(t − k) = H(q)v(t), (3.47b)

where v(t) is zero-mean white noise of variance σ 2 with bounded fourth moments. It
comes that u(t) is a zero-mean stationary stochastic process with covariance function
ku(t, s) = E [u(t)u(s)] = Ru(t − s) with Ru(τ ) defined as follows:

E [u(t)u(t − τ)] =
∞∑

k=0

∞∑

l=0

h(k)h(l)E [v(t − k)v(t − τ − l)]

=
∞∑

k=0

h(k)h(k − τ) � Ru(τ ).
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From the ergodic theory, e.g., [25, Theorem 3.4], it also follows that

1
N

N∑

t=1

u(t)u(t − τ) → Ru(τ ), N → ∞, a.s. (3.48)

From (3.46) and (3.48), one obtains the following almost sure convergence:

1
N

ΦTΦ →

⎡

⎢⎢⎢⎣

Ru(0) Ru(1) · · · Ru(n − 1)
Ru(1) Ru(0) · · · Ru(n − 2)

...
... · · · ...

Ru(n − 1) Ru(n − 2) · · · Ru(0)

⎤

⎥⎥⎥⎦ , N → ∞, a.s. (3.49)

So, limN→∞ 1
N ΦTΦ is the covariance matrix of

[
u(1) . . . u(n)

]T
whose condition

number thus provides insights on the ill-conditioning affecting the system identifi-
cation problem.

Since the covariance matrix is real and symmetric, its condition number is the
ratio between the largest and the smallest of its eigenvalues. An important result of
O. Toeplitz, e.g., [44], [20, Chap. 5], says that as n → ∞, the eigenvalues of the
covariance matrix of the infinite-dimensional vector

[
u(1) u(2) . . .

]T
coincide with

the set of values assumed by the power spectrum of u(t), which is given by

Ψu(ω) =
+∞∑

τ=−∞
Ru(τ )e−iωτ . (3.50)

Hence, considering also that Ψu(−ω) = Ψu(ω), one has

cond

(
lim
n→∞ lim

N→∞
1
N

ΦTΦ

)
=

maxω∈[0,π] Ψu(ω)

minω∈[0,π] Ψu(ω)
. (3.51)

In addition, since u(t) is a filtered white noise (3.47) and H(q) is stable, one also
has [see, e.g., [25, p. 37] for details]:

Ψu(ω) = σ 2|H(eiω)|2, (3.52)

where H(eiω) is the frequency function of the filter H(q), i.e.,

H(eiω) =
∞∑

k=0

h(k)e−iωk . (3.53)

Finally, combining the results (3.49)–(3.53) yields



50 3 Regularization of Linear Regression Models

cond

(
lim
n→∞ lim

N→∞
1
N

ΦTΦ

)
=

maxω∈[0,π] |H(eiω)|2
minω∈[0,π] |H(eiω)|2 . (3.54)

When themaximumof |H(eiω)| is significantly larger than theminimumof |H(eiω)|,
the matrix limn→∞ limN→∞ 1

N ΦTΦ could be very ill-conditioned. For instance, if
we consider the stable filter

H(q) =
1

(1 − aq−1)2
, 0 ≤ a < 1, (3.55)

then one has

maxω∈[0,π] |H(eiω)|2
minω∈[0,π] |H(eiω)|2 =

(1 + a)4

(1 − a)4
. (3.56)

As a varies from 0.01 to 0.99, input power is more concentrated at low frequencies
and the ill-conditioning affecting the system identification problem augments. In
fact, the above quantity increases from about 1 to 1.6 × 109.

3.4 Regularized Least Squares with Quadratic Penalties

One way to handle ill-conditioning is to use regularized least squares (ReLS). Such
method will play a special role in this book to control overfitting by encoding prior
knowledge. First insights on these aspects are provided below.

ReLS adds a regularization term J (θ) into the LS criterion (3.14), yielding the
following problem:

θ̂R = argmin
θ

‖Y − Φθ‖22 + γ J (θ), (3.57)

where γ ≥ 0 is often called the regularization parameter. It has to balance the adher-
ence to the data ‖Y − Φθ‖22 and the penalty J (θ). There are many choices for the
regularization term which can be connected with the prior knowledge on the true
model parameter θ0 that needs to be estimated.

In this section, we consider regularization terms J (θ) which are quadratic func-
tions of θ . The resulting estimator will be denoted by ReLS-Q in this chapter. In
particular, we let J (θ) = θT P−1θ so that the ReLS criterion (3.57) becomes

θ̂R = argmin
θ

‖Y − Φθ‖22 + γ θT P−1θ (3.58a)

= (ΦTΦ + γ P−1)−1ΦT Y (3.58b)

= PΦT (ΦPΦT + γ IN )−1Y (3.58c)

= (PΦTΦ + γ In)
−1PΦT Y, (3.58d)
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where P ∈ R
n×n is a positive semidefinite matrix, here assumed invertible, often

called the regularization matrix, and In is the n-dimensional identity matrix.2

Remark 3.1 The regularization matrix P could be singular. In this case, (3.58a) is
not well defined but, with a suitable arrangement, we can use the Moore–Penrose
pseudoinverse P+ instead of P−1. In particular, let the SVD of P be

P =
[
U1 U2

] [ΛP 0
0 0

] [
U1 U2

]T
,

where ΛP is a diagonal matrix with the positive singular values of P as diagonal
elements andU =

[
U1 U2

]
is an orthogonal matrix withU1 having the same number

of columns as that of ΛP . Recall also that P+ = U1Λ
−1
P U1. In order to find how

(3.58a) should be modified for singular P , let us consider

Pε =
[
U1 U2

] [ΛP 0
0 ε I

] [
U1 U2

]T
, ε > 0.

By replacing P with Pε in (3.58a), we obtain

θ̂R = argmin
θ

‖Y − Φθ‖22 + γ θTU1Λ
−1
P UT

1 θ + γ

ε
θTU2U

T
2 θ. (3.59)

Ifwe let ε → 0, it follows that the parameter vectormust satisfyUT
2 θ = 0. Therefore,

we may conveniently associate to a singular P the modified regularization problem

θ̂R = argmin
θ

‖Y − Φθ‖22 + γ θT P+θ (3.60a)

subj. to UT
2 θ = 0. (3.60b)

If P−1 is replaced by P+, it is easy to verify that (3.58c) or (3.58d) is still the optimal
solution of (3.60). Instead, this does not hold for (3.58b). For convenience, we will
use (3.58a) in the sequel and refer to (3.60) for its rigorous meaning.

3.4.1 Making an Ill-Conditioned LS Problem Well
Conditioned

The ReLS-Q can make the ill-conditioned LS problem well conditioned. Consider
ridge regression which, as discussed in Sect. 1.2, corresponds to setting P = In ,
hence obtaining

2 The step from (3.58c) to (3.58d) follows from the matrix equality A(I j + BA)−1 = (Ik +
AB)−1A which holds for every A ∈ R

k× j and B ∈ R
j×k .
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θ̂R = argmin
θ

‖Y − Φθ‖22 + γ ‖θ‖22 (3.61a)

= (ΦTΦ + γ In)
−1ΦT Y. (3.61b)

The parameter γ directly affects the condition number of (ΦTΦ + γ In) whose
inverse defines the regularized estimate. In fact, the positive definite square matrix
(ΦTΦ + γ In) has eigenvalues (coincident with its singular values) equal to σ 2

i + γ .
Therefore,

cond(ΦTΦ + γ In) =
σ 2
1 + γ

σ 2
n + γ

which can be adjusted by tuning the regularization parameter γ . This means that
regularization can make the LS problem well conditioned even when Φ is rank
deficient: if the smallest singular value is null one has

cond(ΦTΦ + γ In) =
σ 2
1 + γ

γ
.

3.4.1.1 Mean Squared Error

Simple calculations of expectations with respect to the errors ei , with the regressors
φi assumed to be deterministic, lead to

E (θ̂R) = (ΦTΦ + γ P−1)−1ΦTΦθ0 (3.62a)

θ̂Rbias = E (θ̂R) − θ0 = −(ΦTΦ + γ P−1)−1γ P−1θ0 (3.62b)

Cov(θ̂R, θ̂R) = E [(θ̂R − E (θ̂R))(θ̂R − E (θ̂R))T ]
= (ΦTΦ + γ P−1)−1σ2ΦTΦ(ΦTΦ + γ P−1)−1 (3.62c)

MSE(θ̂R, θ0) = E (θ̂R − θ0)(θ̂R − θ0)T

= Cov(θ̂R, θ̂R) + θ̂Rbias(θ̂
R
bias)

T

= (ΦTΦ + γ P−1)−1(σ2ΦTΦ + γ 2P−1θ0θT0 P−1)(ΦTΦ + γ P−1)−1,

(3.62d)

where Cov(θ̂R, θ̂R) is the covariance matrix of θ̂R and MSE(θ̂R, θ0) is the MSE
matrix of θ̂R function of the true model parameter θ0. Expression (3.62) shows
clearly regularization’s influence on the statistical properties of θ̂R:

• when γ = 0, i.e., there is no regularization, θ̂R reduces to θ̂LS and MSE(θ̂R, θ0)

reduces to σ 2(ΦTΦ)−1;
• when γ > 0, the regularized estimator θ̂R is biased and the MSE matrix of

θ̂R is decomposed into two components: the bias θ̂R
bias(θ̂

R
bias)

T and the variance
Cov(θ̂R, θ̂R). By a suitable choice of the regularization matrix P and the regular-
ization parameter γ , the variance of θ̂R can be made “smaller” and, if the resulting
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increase in the bias is moderate, an MSE matrix “smaller” than that associated to
LS can be obtained.

3.4.2 Equivalent Degrees of Freedom

For a given regularization matrix P , we have seen (also deriving the structure of the
MSE) that the regularization parameter γ controls the influence of the regularization:
asγ varies from0 to∞, the influence of the regularization θT P−1θ becomes stronger.
In particular, when γ = 0 there is no regularization and θ̂R reduces to θ̂LS. When
γ = ∞ the regularization term γ θT P−1θ overwhelms the data fit ‖Y − Φθ‖22 and
one has θ̂R = 0.

Often, it is more convenient to exploit a normalized measure of the influence of
the regularization instead of considering directly the value of γ . For this goal, we
introduce the so-called influence or hat matrix:

H = ΦPΦT (ΦPΦT + γ IN )−1. (3.63)

Such matrix is important since it connects the measured output Y with the predicted
output Ŷ = Φθ̂R, i.e., one has

Ŷ = Φθ̂R = HY. (3.64)

It is also important since its trace is indeed a normalized measure of the influence of
the regularization. To see this, let A = ΦPΦT and consider its SVD

A = UDUT ,

where UUT = I and D is a diagonal matrix with nonnegative entries d2
i . Then,

H = UDUT (UDUT + γ INUUT )−1 = UD(D + γ IN )−1UT .

Since U is orthogonal, one has trace(UMUT ) = trace(M), so that

trace(H) = trace(D(D + γ IN )−1) =
n∑

i=1

d2
i

d2
i + γ

.

The above equation implies that trace(H) is a monotonically decreasing function of
γ . It attains its maximum at γ = 0 and infimum as γ → ∞. In particular, for γ = 0
one has θ̂R = θ̂LS and the hat matrix H becomes H = Φ(ΦTΦ)−1ΦT , implying
that trace(H) = n if Φ is full rank. For γ → ∞ one instead has trace(H) → 0.
Therefore, it holds that 0 < trace(H) ≤ n. Hence, since n is the dimension of θ , i.e.,
the number of parameters in the linear regression model, trace(H) can be seen as the
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Fig. 3.7 Polynomial regression: true function g(x) (blue line) and ridge regression estimates
obtained with 16 different values of the regularization parameter

counterpart of the number of parameters to be estimated in the LS context. In other
words, in the regularized framework trace(H) plays the role of the model order. It
thus becomes natural to call it the equivalent degrees of freedom for the ReLS-Q
estimate θ̂R, e.g., [21, Sect. 7.6], [4, p. 559]:

dof(θ̂R) = trace(H). (3.65)

The notation dof(γ ) will be also used in the book in place of dof(θ̂R) to stress the
dependence of the equivalent degrees of freedom on the regularization parameter.

Example 3.6 (Polynomial regression: ridge regression) As shown in Fig. 3.6, the
regression matrix Φ built in the polynomial regression Example (3.26) and (3.27)
is ill-conditioned for large n. Here, we consider the case n = 16 (corresponding to
a polynomial order 15) which leads to cond(Φ) = 1.49 × 1011. To illustrate how
ridge regression (3.61) can face the ill-conditioning, let γ = γi , i = 1, . . . , 16, with
γ1 = 0.01 and γ16 = 0.31 and γ2, . . . , γ15 evenly spaced between γ1 and γ16. For
each γi , we then compute the corresponding ridge regression estimate (3.61) and plot
the 16 estimates ĝ(x) = φ(x)T θ̂R in Fig. 3.7. The fits (3.28) are shown in Fig. 3.8
as a function of γ . One can see that γ = 0.11 gives the best performance obtaining
a fit around 89%. Interestingly, such fit is larger than the best result obtained by
LS through optimal tuning of the discrete model order, see Fig. 3.4. The base 10
logarithm of the condition number of ΦTΦ + γ In , as a function of γ , is displayed
in Fig. 3.9. One can see that the matrix is much better conditioned now. Figure3.10
plots the equivalent degrees of freedom of θ̂R. Even if n = 16, the actual model
complexity in terms of equivalent degrees of freedom is much smaller, around 4 for



3.4 Regularized Least Squares with Quadratic Penalties 55

0 0.05 0.1 0.15 0.2 0.25 0.3
84.5

85

85.5

86

86.5

87

87.5

88

88.5

89
Model fit

Fig. 3.8 Polynomial regression: profile of the ridge regression fit (3.28) as a function of γ . Large
fit values are associated to estimates close to the true function
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Fig. 3.9 Polynomial regression: profile of the base 10 logarithm of the condition number of
ΦTΦ + γ In as a function of γ
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Fig. 3.10 Polynomial regression: profile of the equivalent degrees of freedom (3.65) as a function
of γ using ridge regression

the tested values of γ . Finally, the estimates of any component of θ obtained using
the different values of γ are shown in Fig. 3.11.

�

3.4.2.1 Regularization Design: The Optimal Regularizer

A natural question is how to design a regularization matrix P and select γ to obtain
a “good” model estimate. From a “classic” or “frequentist” point of view, rational
choices are those thatmake theMSEmatrix (3.62d) small in some sense, as discussed
below. For our purposes, it is useful to rewrite the MSE matrix (3.62d) as follows:

MSE(θ̂R, θ0) = σ 2

(
PΦTΦ

γ
+ In

)−1 (
PΦTΦP

γ 2
+ θ0θ

T
0

σ 2

)(
ΦTΦP

γ
+ In

)−1

.

(3.66)

Then, it is useful to first introduce the following lemma.

Lemma 3.1 (based on [9]) Consider the matrix

M(Q) =(QR + I )−1(QRQ + Z)(RQ + I )−1,

where Q, R and Z are positive semidefinite matrices. Then for all Q
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Fig. 3.11 Polynomial regression: profile of the estimates of each component forming the ridge
regression estimate (3.61). For each value k = 0, . . . , 15 on the x-axis the plot reports the estimates
of the coefficient of the monomial xk obtained by using different values of the regularization
parameter γ

M(Z) 	 M(Q), (3.67)

which means that M(Q) − M(Z) is positive semidefinite.

The proof consists of straightforward calculations and can be found in Sect. 3.8.2.
Using (3.66) and Lemma 3.1, the question which P and γ give the best MSE of

θ̂R has a clear answer: the equation σ 2P = γ θ0θ
T
0 needs to be satisfied. Thus, the

following result holds.

Proposition 3.1 (Optimal regularization for a given θ0, based on [9]) Letting γ =
σ 2, the regularization matrix

P = θ0θ
T
0 (3.68)

minimizes the MSE matrix (3.66) in the sense of (3.67).

Note that the MSE matrix (3.66) is linear in θ0θ
T
0 . This means that if we compute

θ̂R with the same P for a collection of true systems θ0, the average MSE over
that collection will be given by (3.66) with θ0θ

T
0 replaced by its average over the

collection. In particular, if θ0 is a random vector with E (θ0θ
T
0 ) = Π , we obtain the

following result.
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Proposition 3.2 (Optimal regularization for a random system θ0,based on [9])Con-
sider (3.62d) with γ = σ 2. Then, the best average (expected) MSE for a random true
system θ0 with E (θ0θ

T
0 ) = Π is obtained by the regularization matrix P = Π .

Propositions 3.1 and 3.2 thus give a somewhat preliminary answer to our design
problem. Since the best regularization matrix P = θ0θ

T
0 depends on the true system

θ0, such formula cannot be used in practice. Nevertheless, it suggests to choose a
regularizationmatrixwhichmimics the behaviour of θ0θT

0 . Using prior knowledge on
the true system θ0, this can be done by postulating a parametrized family of matrices
P(η) with η ∈ Γ ⊂ R

m , where η is the so-called hyperparameter vector, Γ is the
set where η can vary andm is the dimension of η. Thus, the choice of a parametrized
regularization matrix is similar to model structure selection in system identification.
The nature of the optimal regularizer suggests also to set

γ = σ 2. (3.69)

However, the noise variance σ 2 is in general unknown and needs to be estimated
from the data. One can adopt equations (3.22) or (3.23). Another option is to include
σ 2 in η and then estimate it together with the other hyperparameters.

3.5 Regularization Tuning for Quadratic Penalties

3.5.1 Mean Squared Error and Expected Validation Error

Now, assume that a parametrized family of regularization matrices P(η) has been
defined. The vector η is in general unknown and has to be tuned by using the available
measurements. TheReLS-Q estimate θ̂R(η) in (3.58) depends on η and the estimation
strategy depends on the measure used to quantify its quality. We will consider the
following two criteria:

• minimizing the MSE;
• minimizing the expected validation error (EVE).

3.5.1.1 Minimizing the MSE

Still adopting a “classic” or “frequentist” point of view, a rational choice of η is one
that makes the MSE matrix (3.62d) small in some sense. For ease of estimation, a
scalar measure is often exploited. In [25, Chap. 12], it is suggested to use a weighting
matrix Q and trace(MSE(θ̂R(η), θ0)Q) as a quality measure of θ̂R(η), where Q
reflects the intended use of the model θ̂R(η). Then an estimate of η, say η̂, is obtained
as follows:
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η̂ = argmin
η∈Γ

trace(MSE(θ̂R(η), θ0)Q). (3.70)

Note that (3.70) depends on the true system θ0 that is unknown and thus cannot be
used. In practice, we need to first find a “good” estimate, say θ̂ , of the true system θ0
and then to replace θ0 in (3.70) with θ̂ . Then, hopefully, a “good” estimate is given
by

η̂ = argmin
η∈Γ

trace(MSE(θ̂R(η), θ̂ )Q). (3.71)

Different choices of θ̂ and Q lead to different estimators (3.71). Examples are
obtained setting θ̂ to the LS estimate or to the ridge regression estimate of θ0, while
the choice Q = In is often used. In any case, the major difficulty underlying the idea
of “minimizing the MSE” for hyperparameters tuning lies in whether or not θ̂ is a
“good” estimate of θ0, which is actually our fundamental problem.

3.5.1.2 Minimizing the EVE

An alternative quality measure of θ̂R(η) is related to model prediction capability
on independent validation data and is characterized by the expected validation error
(EVE).

To define it, we need to introduce the training/estimation data and the validation
data. The training data is used for estimating the model and is contained in the set
DT. The validation data are used to assess model prediction capability and are in the
set DV.

Now, let θ̂R(η) denote a general ReLS-Q estimate parametrized by the vector η

and obtained using only the training data DT. Let yv ∈ R, φv ∈ R
n be a validation

sample pair. These objects could both be random, e.g., yv can be affected by noise
and the regressor could be defined by a stochastic system input. The validation error
EVEDT(η) is then given by

EVEDT(η) = E [(yv − φT
v θ̂R(η))2|DT]. (3.72)

In the above equation, the expectation E is computed w.r.t. the joint distribution of
yv and φv conditioned on the training data DT. If φv ∈ R

n is deterministic and, as
usual, yv is affected by a noise independent by those entering the training set, the
mean is taken just w.r.t. such noise, with DT which influences only θ̂R. In any case,
the result is a function of the training set. Now, we can see DT as random and then
the EVE is

EVE(η) � E [EVEDT(η)], (3.73)
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where the expectation E is over the training set. Note that the final result is function
of the true θ0 which determines the probability distributions of the training and val-
idation data.

The EVE(η) measures the prediction capability of the model θ̂R(η) before seeing
any training or validation data: the smaller the EVE(η), the better the expected model
prediction capability. Therefore, it is natural to estimate η as follows:

η̂ = argmin
η∈Γ

EVE(η). (3.74)

However, as said, the above objective depends on the unknown vector θ0 so that esti-
mation of θ is not possible in practice. The problem is analogous to that encountered
when trying to tune η by minimizing the MSE

Remark 3.2 Interestingly, the idea of “minimizing the MSE” and the idea of “min-
imizing the EVE” are connected. To see this, we assume for simplicity that the
regressors φi , i = 1, . . . , N in the training data and φv in the validation data are
deterministic. Then it can be shown that

EVE(η) = E [(yv − φT
v θ̂R(η))2] = σ 2 + φT

v MSE(θ̂R(η), θ0)φv, (3.75)

where the expectation E is over everything that is random, and MSE(θ̂R(η), θ0) is
the MSE matrix of θ̂R(η) defined in (3.62d). Clearly, (3.75) shows that minimizing
EVE(η) with respect to η is equivalent to minimizing trace(MSE(θ̂R(η), θ0)Q) with
respect to η when Q = φvφ

T
v .

To overcome the fact that the EVE depends on the unknown θ0, we could first
find a “good” estimate of EVE(η) using the available data and then determine the
hyperparameter vector by minimizing it. There are two ways to achieve this goal:
by efficient sample reuse of the data and by considering the in-sample EVE instead.
More details will be provided in the next two subsections.

3.5.2 Efficient Sample Reuse

One way to estimate EVE(η) by exploiting efficient sample reuse includes cross-
validation (CV) [41] and its variants already mentioned in Sects. 2.6.3 and 3.2.2
when discussing model order selection.
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3.5.2.1 Hold Out Cross-Validation

The simplest CV is the so-called hold out CV (HOCV), which is widely used to
select the model order for the classical PEM/ML. The HOCV can also be used to
estimate the hyperparameter η ∈ Γ for the ReLS-Q method.

The idea of hold out CV is to first split the given data into two parts: the training
data DT and the validation data DV. The prediction capability is measured in terms
of the validation error. The model that gives the smallest validation error will be
selected. More specifically, the HOCV takes the following three steps:

(1) Split the given data into two parts: DT and DV.
(2) Estimate the model θ̂R(η) based on DT for different values of η ∈ Γ .
(3) Calculate the validation error for θ̂R(η) over the validation data Dv:

CV(η) =
∑

(yv,φv)∈Dv

(yv − φT
v θ̂R(η))2,

where the summation is over all pairs of (yv, φv) in the validation dataDv. Then,
select the value of η that minimizes CV(η):

η̂ = argmin
η∈Γ

CV(η). (3.76)

It is also possible to change the role of the training and validation sets in order to
perform a second validation step: the model is estimated on the previous validation
set and the validation error is computed on the previous training set. Finally, the final
validation error is obtained by averaging the two validation errors.

3.5.2.2 k-Fold Cross-Validation

The HOCV with swapped sets is a special case of the more general k-fold CV with
k = 2, e.g., [24]. If the data set size is small, the HOCVmay perform poorly. In fact,
the training data may not be sufficiently rich to build good models and a validation
set of small size may give a too uncertain validation error. In this case, the k-fold CV
with k > 2 could be used.

The idea of k-fold CV is to first split the data into k parts of equal size. For
every η ∈ Γ , the following procedure is repeated k times. At the i th run with i =
1, 2, . . . , k:

(1) Retain the i th part as the validation dataDV,i , and use the remaining k − 1 parts
as the training data DT,−i .

(2) Estimate θ̂R(η) based on the training dataDT,−i and then calculate the validation
error over the validation data DV,i
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CV−i (η) =
∑

(yv,φv)∈DV,i

(yv − φT
v θ̂R(η))2,

where the summation is over all pairs of (yv, φv) in the validation data DV,i .

Finally, the k validation errors CV−i (η) so obtained are summed to obtain the fol-
lowing total validation error for η:

CV(η) =
k∑

i=1

CV−i (η),

and the estimate of η is finally given by

η̂ = argmin
η∈Γ

CV(η). (3.77)

3.5.2.3 Predicted Residual Error Sum of Squares and Variants

The computation of the k-fold CV is often expensive and an exception is the leave-
one-out CV (LOOCV) where the validation set includes only one validation pair.
When the square loss function is used, the total validation error admits a closed-form
expression and the LOOCV is also known as the predicted residual error sum of
squares (PRESS), e.g., [2].

First, recall the linear regression model (3.13) and the corresponding data yi ∈ R

and φi ∈ R
n for i = 1, . . . , N . Then the ReLS-Q estimate is

θ̂R = argmin
θ

||Y − Φθ ||2 + σ 2θT P−1(η)θ

=
(
ΦTΦ + σ 2P−1(η)

)−1
ΦT Y (3.78)

=

(
N∑

i=1

φiφ
T
i + σ 2P−1(η)

)−1 N∑

i=1

, φi yi ,

where we have set γ = σ 2 following (3.69). For the kth measured output yk , the
corresponding predicted output ŷk and residual rk are, respectively,

ŷk = φT
k

(
N∑

i=1

φiφ
T
i + σ 2P−1(η)

)−1 N∑

i=1

φi yi , (3.79a)

rk = yk − ŷk . (3.79b)

Then, PRESS selects the value of η ∈ Γ that minimizes the sum of squares of the
validation errors. One can prove that this corresponds to the following problem:
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PRESS: η̂ = argmin
η∈Γ

N∑

k=1

r2k
(1 − φT

k M
−1φk)2

, (3.80)

where rk are defined by (3.79) while

M =
N∑

i=1

φiφ
T
i + σ 2P−1(η). (3.81)

The derivation of (3.80) can be found in Sect. 3.8.3. It is worth noting that the denom-
inator in (3.80) is strictly related to the diagonal entries of the hat matrix H defined
in (3.63). In fact,

φT
k M

−1φk = Hkk

so that

PRESS: η̂ = argmin
η∈Γ

N∑

k=1

r2k
(1 − Hkk)2

.

Hence, interestingly, one can conclude that PRESS evaluation requires to compute
just the ReLS-Q estimate exploiting the full data set (instead of solving N problems,
one for each missing measurement in the training set).

One method that is closely related with PRESS is the so-called generalized cross-
validation (GCV), e.g., [18]. GCV is obtained by replacing in (3.80) the factors Hkk

by their average, i.e., trace(H)/N :

GCV: η̂ = argmin
η∈Γ

1
(1 − trace(H)/N )2

N∑

k=1

r2k . (3.82)

Recalling (3.65), the term trace(H) defines the degrees of freedom of θ̂R. Hence,
the GCV criterion can be rewritten as follows:

GCV: η̂ = argmin
η∈Γ

1
(1 − dof(θR)/N )2

N∑

k=1

r2k .

3.5.3 Expected In-Sample Validation Error

In the definition of the validation error EVEDT (3.72), reported for convenience also
below

EVEDT(η) = E [(yv − φT
v θ̂R(η))2|DT],
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we assumed that the conditional expectation E is over the independent validation
sample pair yv ∈ R,φv ∈ R

n , which are drawn randomly from their joint distribution.
The computation of the validation error (3.72) could become easier if independent
validation sample pairs yv ∈ R, φv ∈ R

n are generated in a particular way.
For linear regression problems, it is convenient to assume that the same determin-

istic regressors φi , i = 1, 2, . . . , N , are used for generating both the training data
and the validation data. To be specific, still using θ0 to denote the true parameter
vector, we recall from (3.6), that the training output samples are

yi = φT
i θ0 + ei , i = 1, . . . , N . (3.83)

In this case, the training set is

DT = {(yi , φi ) | yi ∈ R, φi ∈ R
n satisfying (3.83), i = 1, . . . , N }. (3.84)

Using the same regressors φi , consider a set of validation output samples yv,i as
follows:

yv,i = φT
i θ0 + ev,i , i = 1, . . . , N , (3.85)

where θ0 is the true parameter vector, with the noises ei and ev,i assumed identically
and independently distributed. The validation error is now denoted by EVEinDT

(η),
computed as follows:

EVEinDT
(η) =

1
N

N∑

i=1

E [(yv,i − φT
i θ̂R(η))2|DT], (3.86)

and called in-sample validation error [21, p. 228]. Note that, similarly to what dis-
cussed after (3.72), the expectationE in (3.86) is computedw.r.t. the joint distribution
of the couples yv,i , φi conditioned on the training dataDT. Thus, the result is function
of the training set. As done in (3.73), we can remove such dependence by computing
the expected in-sample validation error as

EVEin(η) = E [EVEinDT
(η)], (3.87)

with expectation taken over the joint distribution of the training data. In what follows,
we will see how to build an unbiased estimator of EVEin(η) using the training data
(3.84), and how to exploit it for hyperparameters tuning.

3.5.3.1 Expectation of the Sum of Squared Residuals, Optimism
and Degrees of Freedom

To estimate EVEin(η), consider the sum of squared residuals
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err(η)DT =
1
N

N∑

i=1

(yi − φT
i θ̂R(η))2, (3.88)

which is function only of the training set. Its expectation w.r.t. the training
data (3.84) is

err(η) = E

(
1
N

N∑

i=1

(yi − φT
i θ̂R(η))2

)
. (3.89)

One expects EVEin(η) to be not smaller than err(η) because this latter quantity
exploits the same data to fit the model and to assess the error. This intuition is indeed
true as shown in the following theorem whose proof is in Sect. 3.8.4.

Theorem 3.7 Consider the linear regression model (3.13) with the training data
(3.84), the validation data (3.85) and the ReLS-Q estimate (3.58). Then it holds that

err(η) ≤ EVEin(η). (3.90)

Theorem 3.7 shows that the expectation of the sum of squares of the residuals is
an overly optimistic estimator of the expected in-sample validation error EVEin(η).
The difference between EVEin(η) and err(η) is called the optimism in statistics. In
particular, one has, see, e.g., [21, p. 229]:

EVEin(η) = err(η) + optimism(η), (3.91)

where rewriting (3.83) as

Y = Φθ0 + E, (3.92)

and defining the output prediction as

Ŷ (η) = Φθ̂R(η),

it holds that

optimism(η) = 2
1
N

trace(Cov(Y, Ŷ (η))) ≥ 0. (3.93)

Combining arguments contained in the proof of Theorem 3.7 reported in the
appendix to this chapter, see, in particular, (3.164), with the definition of equivalent
degrees of freedom in (3.65), one obtains that

trace(Cov(Y, Ŷ (η))) = σ 2dof(θ̂R(η)). (3.94)
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This thus reveals the deep connection between the optimism and the equivalent
degrees of freedom.

3.5.3.2 An Unbiased Estimator of the Expected In-Sample Validation
Error

Exploiting (3.94), we can now rewrite (3.91) as

EVEin(η) = err(η) + 2σ 2 dof(θ̂
R(η))

N
. (3.95)

Interestingly, on the left-hand side of (3.95), EVEin(η), by definition (3.87), is the
mean of a random variable which depends on both the training data (3.84) and
the validation data (3.85). Instead, on the right-hand side of (3.95), err(η) is the
expectation of a random variable which depends only on the training data. Hence,
an unbiased estimator ÊVEin(η) of EVEin(η) is obtained just replacing err(η) with
err(η)DT reported in (3.88). One thus obtains

ÊVEin(η) = err(η)DT + 2σ 2 dof(θ̂
R(η))

N

=
1
N

‖Y − Φθ̂R(η)‖22 + 2σ 2 dof(θ̂
R(η))

N
. (3.96)

So, after observing the training data (3.84), the hyperparameter η can be estimated
as follows:

η̂ = argmin
η∈Γ

1
N

‖Y − Φθ̂R(η)‖22 + 2σ 2 dof(θ̂
R(η))

N
. (3.97)

The hyperparameter estimation criterion (3.97) has different names in statistics: it
is known as the CP statistics, e.g., [27] and Stein’s unbiased risk estimator (SURE),
e.g., [40].

Interestingly, as it will be clear from the proof of Theorem 3.7, the above formula
(3.97) still provides an unbiased prediction risk estimator also if we replace Φθ0 in
(3.92) with a generic vector μ s.t. Y = μ + E . Hence, one does not need to assume
the existence of the true θ0 and of a regression matrix which describes the linear
input–output relation. A variant of the expected in-sample validation error is also
discussed in Sect. 3.8.5.
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3.5.3.3 Excess Degrees of Freedom*

In the previous subsection, we have discussed how to construct an unbiased esti-
mator of the expected in-sample validation error, see (3.96), and how to use it for
hyperparameters tuning, see (3.97). Irrespective of the particular method adopted
for hyperparameter estimation, the estimate η̂ of η depends on the data Y , with the
regressionmatrixΦ here assumed deterministic and known.We stress this bywriting

η̂ = η̂(Y ).

Accordingly, the ReLS-Q estimate (3.58) with η replaced by η̂(Y ) becomes

θ̂R(η̂(Y )) = (ΦTΦ + σ 2P−1(η̂(Y )))−1ΦT Y. (3.98)

Since η̂ is a random vector, to design a true unbiased estimator of the expected in-
sample validation error of θ̂R(η̂(Y )) one should not use (3.96) since it assumes the
hyperparameter η constant.

In what follows, we will derive an unbiased estimator of the expected in-sample
validation error of θ̂R(η̂(Y )). Such an estimator will thus be able to account also for
the price of estimating model complexity (the degrees of freedom) from data. To this
goal, we need the following version of Stein’s Lemma [40], a simplified version of
which was already introduced in Chap.1.

Lemma 3.2 (Stein’s Lemma, adapted from [40]) Consider the following additive
measurement model:

x = μ + ε, x, μ, ε ∈ R
p,

where μ is an unknown constant vector and ε ∼ N (0,Σ). Let μ̂(x) be an estimator
of μ based on the data x such that Cov(μ̂(x), x) and E (

∂μ̂(x)
∂x ) exist. Then

Cov(μ̂(x), x) = E

(
∂μ̂(x)

∂x

)
Σ.

Let

Yv =

⎡

⎢⎢⎢⎣

yv,1
yv,2
...

yv,N

⎤

⎥⎥⎥⎦ , Ev =

⎡

⎢⎢⎢⎣

ev,1
ev,2
...

ev,N

⎤

⎥⎥⎥⎦ , (3.99)

so that (3.85) can be rewritten as

Yv = Φθ0 + Ev. (3.100)
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Now, let us consider the measurements model (3.92) and the validation data
(3.100), assuming also that

E ∼ N (0, σ 2 IN ), Ev ∼ N (0, σ 2 IN ). (3.101)

Then, using the correspondences

x = Y, μ = Φθ0, μ̂(x) = Φθ̂R(η̂(Y )), x̃ = Yv, ε = V, ε̃ = Ev,Σ = σ 2 IN

f (Y, η̂) = Φθ̂R(η̂(Y )) = Φ(ΦTΦ + σ 2P−1(η̂(Y )))−1ΦT Y,

together with (3.161) in the appendix to this chapter, one can prove that

E

[
1
N
E [‖Yv − Φθ̂R(η̂(Y ))‖22|DT]

]

︸ ︷︷ ︸
EVEin(η)

−E

[
1
N

‖Y − Φθ̂R(η̂(Y ))‖22
]

︸ ︷︷ ︸
err(η)

= 2
1
N

trace(Cov(Y, Φθ̂R(η̂(Y )))).

Using Stein’s Lemma, one has

Cov(Y, Φθ̂R(η̂(Y )) = σ2E [d f (Y, η̂)

dY
]

= σ2E [∂ f (Y, η̂)

∂Y
] + σ2E [∂ f (Y, η̂)

∂η̂

∂η̂

∂Y
]

= σ2E [Φ(ΦTΦ + σ2P−1(η̂(Y )))−1ΦT ] + σ2E [∂ f (Y, η̂)

∂η̂

∂η̂

∂Y
].

Therefore, it holds that

EVEin = err(η) + 2σ 2 1
N
E [trace(ΦP(η̂(Y )))ΦT (ΦP(η̂(Y )))ΦT + σ 2 IN )−1)]

+ 2σ 2 1
N

trace(E [∂ f (Y, η̂)

∂η̂

∂η̂

∂Y
])

= err(η) + 2σ 2 dof(θ̂
R(η̂(Y ))

N
+ 2σ 2 1

N
trace(E [∂ f (Y, η̂)

∂η̂

∂η̂

∂Y
]). (3.102)

If η̂ = η̂(Y ) were independent of Y , the above objective would coincide with the
SURE score reported in (3.97). The difference is instead the presence of the term
2σ 2 1

N trace(E [ ∂ f (Y,η̂)

∂η̂

∂η̂

∂Y ]). It represents the extra optimism induced by the estima-
tion of η and is due to the randomness of the data Y entering the hyperparameter esti-
mator. The term trace(E [ ∂ f (Y,η̂)

∂η̂

∂η̂

∂Y ]) is called the excess degrees of freedom [33] and
denoted by

exdof(θ̂R(η̂(Y )) = trace(E [∂ f (Y, η̂)

∂η̂

∂η̂

∂Y
]). (3.103)
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From (3.102), we readily obtain an unbiased estimator of EVEin as follows:

ÊVEin = err(η)DT + 2σ 2 dof(θ̂
R(η̂(Y ))

N
+ 2σ 2

̂exdof(Ŷ (η̂))

N

=
1
N

‖Y − Φθ̂R(η̂(Y ))‖22 + 2σ 2 dof(θ̂
R(η̂(Y ))

N

+ 2σ 2 1
N

trace(
∂ f (Y, η̂)

∂η̂

∂η̂

∂Y
), (3.104)

where ̂exdof(Ŷ (η̂)) is an unbiased estimator of exdof(Ŷ (η̂)). As discussed in [33],
(3.104) can be used to compare different regularized estimators also in terms of the
different complexity of the hyperparameters tuning strategies that they adopt.

3.6 Regularized Least Squares with Other Types
of Regularizers �

The general ReLS criterion assumes the following form

θ̂R = argmin
θ

‖Y − Φθ‖22 + γ J (θ).

The different choices of the regularization term J (θ) depend on the prior knowledge
regarding θ0. Having discussed the quadratic penalty, wewill now consider two other
important choices for J (θ) given by the �1- or nuclear norm.

3.6.1 �1-Norm Regularization

ReLS with �1-norm regularization leads to

θ̂R = argmin
θ

‖Y − Φθ‖22 + γ ‖θ‖1, (3.105)

where ‖θ‖1 represents the �1-norm of θ , i.e., ‖θ‖1 =
∑n

i=1 |θi | with θi being the i th
element of θ . The problem (3.105) is also known as the least absolute shrinkage and
selection operator (LASSO) [42] and is equivalently defined as follows:

argmin
θ

‖Y − Φθ‖22, subj. to ‖θ‖1 ≤ β, (3.106)

where β ≥ 0 is a tuning parameter connected with γ that controls the sparsity of θ .
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3.6.1.1 Computation of Sparse Solutions

LASSO (3.105) has been widely used for finding sparse solutions. In signal process-
ing, such problem has wide applications in compressive sensing for finding sparse
signal representations from redundant dictionaries. In machine learning and statis-
tics, the problem has also been applied extensively for variable selection where the
aim is to select a subset of relevant variables to use in model construction.

Recall that a vector θ ∈ R
n is said to be sparse if ‖θ‖0 � n, where ‖θ‖0 is the �0

norm of θ which counts the number of nonzero elements of θ . For linear regression
models, sparse estimation requires to find a sparse θ able to well fit the data, i.e.,
such that ‖Y − Φθ‖22 is small. More formally, the problem is defined as follows:

min
θ

‖θ‖0, subj. to ‖Y − Φθ‖22 ≤ ε, (3.107)

whereY ∈ R
N , θ ∈ R

n withn > N ,Φ ∈ R
N×n assumedof full rank, i.e., rank(Φ) =

N , and ε ≥ 0 is a tuning parameter that controls the data fit.
The problem (3.107) is known to be NP-hard, e.g., [31]. It is combinatorial

and finding its solution requires an exhaustive search. Hence, one needs approxi-
mated methods. The most popular technique relies on a convex relaxation of (3.107)
obtained by replacing the �0-norm with the �1-norm:

min
θ

‖θ‖1, subj. to ‖Y − Φθ‖22 ≤ ε. (3.108)

By using themethod of Languagemultipliers, it can be shown that the convex relation
(3.108) is equivalent to LASSO (3.105).

A natural question is whether or not the solution of LASSO (3.105) can be sparse.
The answer is affirmative. For illustration, we first show this feature when the regres-
sion matrix Φ is orthogonal and assuming N = n.

3.6.1.2 LASSO Using an Orthogonal Regression Matrix

Let us consider (3.105) with orthogonal regression matrix Φ, i.e., ΦTΦ = ΦΦT =
In . Then (3.105) is rearranged as follows:

θ̂R = argmin
θ

‖(ΦTΦ)−1ΦT (Y − Φθ)‖22 + γ ‖θ‖1
= argmin

θ

‖θ̂LS − θ‖22 + γ ‖θ‖1

= argmin
θ

n∑

i=1

(θ̂LS
i − θi )

2 + γ |θi |, (3.109)

where θ̂LS
i is the i th element of θ̂LS.
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To derive the optimal solution θ̂R, we first recall the definition of subderivative
and subdifferential of a convex function f : X → R with X being an open interval.
The subderivative of a convex function f : X → R at a point x0 in the open interval
X is a real number a such that

f (x) − f (x0) ≥ a(x − x0)

for all x in X . It can be shown that there exist b and c with b ≤ c such that the set
of subderivatives at x0 for a convex function is a nonempty closed interval [b, c],
where b and c are the one-sided limits defined as follows:

b = lim
x→x−

0

f (x) − f (x0)

x − x0
, c = lim

x→x+
0

f (x) − f (x0)

x − x0
.

The closed interval [b, c] is called the subdifferential of f (x) at the point x0.
Then, considering (3.109), θ̂R is an optimal solution if

−2(θ̂LS
i − θ̂R

i ) + γ ∂|θ̂R
i | = 0, i = 1, 2, . . . , n, (3.110)

where θ̂R
i is the i th element of θ̂R and ∂|θ̂R

i | represents the subdifferential of |θ̂R
i |

which is equal to

∂|θ̂R
i | =

{ {sign(θ̂R
i )} θ̂R

i �= 0
[−1, 1] θ̂R

i = 0
, i = 1, 2, . . . , n. (3.111)

Using (3.110) and (3.111), we obtain the following explicit solution of LASSO for
orthogonal Φ:

θ̂R
i = sign(θ̂LS

i )min
{
0, |θ̂LS

i | − γ

2

}
, i = 1, 2, . . . , n. (3.112)

From (3.112) one can see that the solution of LASSOwill be sparse if many absolute
values of the elements of θ̂LS are smaller than γ /2. So, γ can be used to tune the
sparsity of θ . It can also be seen that the nonzero elements of the solution of LASSO
are biased and that, compared with the LS solution, they are shrunk towards zero
(translated towards zero by a constant factor γ /2).

3.6.1.3 LASSO Using a Generic Regression Matrix: Geometric
Interpretation

For a generic non-orthogonal Φ, LASSO in general has no explicit solutions. To
understand why it can still induce sparse solutions, we can use the geometric inter-
pretation of LASSO in the form of (3.106) with θ ∈ R

2. In Fig. 3.12, one can see
that for the first case coloured in blue (resp., the third case coloured in brown), if
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Fig. 3.12 Geometric interpretation of the solution of LASSO in the form (3.106) with non-
orthogonal Φ and θ = [θ1 θ2]T ∈ R

2. First, the large grey square represents the constraint
‖θ‖1 ≤ β. Then, three cases are considered here and coloured in blue, red and brown, respectively.
For each case, the tiny square represents the least squares estimate θ̂LS, the elliptical contours rep-
resent the level curves of ‖Y − Φθ‖22 centred at θ̂LS and the cross represents the solution of LASSO
(3.106). For the first case coloured in blue, the cross happens at the top corner of the large grey
square and implies that the θ1-element of the solution of LASSO (3.106) is zero. For the second
case coloured in red, the cross and the tiny square coincide and imply that the least square estimate
θ̂LS is also the solution of LASSO (3.106) whose two components are both nonzero. For the third
case coloured in brown, the cross happens at the right corner of the large grey square and implies
that the θ2-element of the solution of LASSO (3.106) is zero

the elliptical contour is rotated slightly about the axis perpendicular to the paper and
through the blue (resp., brown) cross, the optimal solution of (3.106) will still have
a zero θ1-element (resp., θ2-element). This explains why LASSO can often induce
sparse solutions with a suitable choice of the regularization parameter.

Finally, since the cost function of LASSO (3.105) is a convex function of θ , many
standard convex optimization software packages are available to obtain numerical
solutions of LASSO very efficiently, such as YALMIP [26], CVX [19], CVXOPT [3],
CVXPY [11].

Example 3.7 (Polynomial regression-LASSO) We revisit the polynomial regression
Examples (3.26) and (3.27) with LASSO (3.105). In particular, we set the model
order to n = 16, with the regression matrix Φ built according to (3.4) and (3.12).
Moreover, we let γ = γi , i = 1, . . . , 16with γ1 = 0.01, γ16 = 0.31 and γ2, . . . , γ15
evenly spaced between γ1 and γ16. For each γ = γi , we compute the corresponding
solution of the LASSO (3.105). In particular, the estimates ĝ(x) = φ(x)T θ̂R for
x = xi , with i = 1, . . . , 40, are plotted in Fig. 3.13.
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Fig. 3.13 Polynomial regression: true function g(x) (blue) andLASSOestimates (thin) for different
values of the regularization parameter γ

The model fits (3.28) obtained for different γ are shown in Fig. 3.14. One can see
that γ = 0.15 gives the best result.

Finally, the LASSO estimates of the components of θ obtained using the different
values of γ are shown in Fig. 3.15. It is evident that the LASSO estimate (3.105)
is sparse. Comparing it with the ridge regression estimates reported in Fig. 3.11,
one can conclude that LASSO may give a simpler model, i.e., depending only on a
limited number of components of θ . �

3.6.1.4 Sparsity Inducing Regularizers Beyond the �1-Norm

We have seen that the �1-norm plays a key role for sparse estimation. However,
as shown in [34], there are many other sparsity inducing regularizers. Let l be any
concave and nondecreasing function on [0, ∞), three examples being reported in
the top panel of Fig. 3.16. Then, other penalties which promote sparsity assume the
form J (θ) =

∑n
i=1 l(θ

2
i ) and are given by

l(η) = η
p
2 , p ∈ (0, 2)

η = θ2
i

=⇒ J (θ) =
n∑

i=1

|θi |p, p ∈ (0, 2),

l(η) = log(|η| 1
2 + ε), ε > 0

η = θ2
i

=⇒ J (θ) =
n∑

i=1

log(|θi | + ε).

(3.113)
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Fig. 3.14 Polynomial regression: profile of the model fit (3.28) obtained by LASSO as a function
of the regularization parameter γ
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Fig. 3.15 Polynomial regression: profile of the estimates of each component forming the
LASSO estimate (3.105). For each value k = 0, . . . , 15 on the x-axis the plot reports the estimates
of the coefficient of the monomial xk obtained by using different values of the regularization param-
eter γ
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Fig. 3.16 The top panel
shows profiles of l(θi ) given
by θ0.05

i , log(θ0.5
i + 1) and

θ0.5
i with θi ranging over

[0, 1]. The bottom panel
displays profiles of sparsity
inducing penalties l(θ2

i )

given by |θi |0.1,
log(|θi | + 1) and |θi | with θi
ranging over [−1, 1]
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Some of them are displayed in the bottom panel of Fig. 3.16. The use of nonconvex
penalties may increase the sparsity in the solution but the drawback is that optimiza-
tion problems possibly exposed to local minima must be handled.

3.6.1.5 Presence of Outliers and Robust Regression

In practical applications, it may happen that the measurement outputs yi so far
described by the model
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yi = φT
i θ0 + ei , i = 1, . . . , N

may be contaminated by outliers which represent unexpected noisemodel deviations.
They can be due to the failure of some sensors or to mistakes in the setting of the
experiment. In this case, data can actually be generated by the following system:

yi = φT
i θ0 + ei + v0,i , i = 1, . . . , N , (3.114)

where the ei form a white noise with mean zero and variance σ 2 while the v0,i

represents the outliers which are assumed to be zero most of time. Hence, the vector

V0 =
[
v0,1 v0,2 . . . v0,N

]T

is assumed to be sparse.
When data come from (3.114), straightforward application of the LS method may

lead to a poor estimate θ̂LS of θ0. For illustration, let us consider an extreme case by
assuming v0,i = 0 for i = 1, 2, . . . , N − 1 while the |φT

i θ0 + ei | for i = 1, . . . , N
are all negligible compared to |v0,N |. LS leads to

θ̂LS = argmin
θ

N∑

i=1

(yi − φT
i θ)2

= argmin
θ

N−1∑

i=1

(φT
i θ0 + ei − φT

i θ)2

+ (φT
Nθ0 + eN + v0,N − φT

Nθ)2.

The first N − 1 terms in the above cost function are the same encountered in absence
of outliers while the last term is different due to v0,N . The |φT

i θ0 + ei |, i = 1, . . . , N
are negligible compared to |v0,N |, a phenomenon then further amplified by the
quadratic criterion here adopted. To make the last term as small as possible, θ̂LS

will mainly tend to fit only v0,N . Hence, the terms φT
i θ0 + ei which carry infor-

mation on the true system will be little regarded. This will lead to a poor estimate
of θ0.

Many robust regression methods are available hinging on loss functions less sen-
sitive to outliers than the square loss. An example is Huber estimation

θ̂Huber = argmin
θ

N∑

i=1

lHuber(yi − φT
i θ) (3.115)

where the Huber loss function lHuber is defined as follows:

lHuber(x) =
{

x2 |x | <
γ

2
γ |x | − 1

4
γ 2 |x | ≥ γ

2

. (3.116)
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In (3.116), the parameter γ > 0 is a tuning parameter whose role will become clear
shortly. The Huber loss function (3.116) is less sensitive to outliers because it grows
linearly for |x | ≥ γ /2. Note that a limit case of theHuber loss is the �1-norm obtained
with γ which tends to zero.

3.6.1.6 An Equivalence Between �1-Norm Regularization and Huber
Estimation

Let

ỹi = yi − φT
i θ, i = 1, 2, . . . , N ,

Ỹ =
[
ỹ1 ỹ2 . . . ỹN

]T
.

Consider the �1-norm regularization given by

argmin
θ,V0

N∑

i=1

(yi − φT
i θ − v0,i )

2 + γ |v0,i | (3.117)

whose peculiarity is to require joint optimization w.r.t. the parameter vector θ and
the outliers v0,i contained in V0. Interestingly, (3.117) is actually equivalent to Huber
estimation (3.115), i.e., they have the same optimal solution. To show this, one needs
just to prove that

N∑

i=1

lHuber(yi − φT
i θ) = min

V
‖Ỹ − V0‖22 + γ ‖V0‖1. (3.118)

The right-hand side of (3.118) corresponds to LASSO (3.105) with an orthogonal
regression matrix given by the identity. It thus follows from (3.112) that the compo-
nents of the optimal solution V̂ R

0 admit the following closed-form expression:

v̂R0,i = sign(ỹi )min
{
0, |ỹi | − γ

2

}
, i = 1, 2, . . . , N . (3.119)

Now we replace V0 in the cost function of the right-hand side of (3.118) with V̂ R
0

and it is straightforward to check that the following identify holds:

N∑

i=1

lHuber(yi − φT
i θ) = ‖Ỹ − V̂ R

0 ‖22 + γ ‖V̂ R
0 ‖1. (3.120)

Therefore, (3.117) is indeed equivalent to the Huber estimation (3.115).



78 3 Regularization of Linear Regression Models

3.6.2 Nuclear Norm Regularization

So far the output Y , the parameter θ and the noise E in (3.13) have been assumed to
be vectors. In what follows, we allow them to be matrices and consider the following
linear regression model:

Y = Φθ0 + E, Y ∈ R
N×m, Φ ∈ R

N×n, θ0 ∈ R
n×m, E ∈ R

N×m . (3.121)

The ReLS with nuclear norm regularization takes the following form:

θ̂R = argmin
θ

‖Y − Φθ‖2F + γ ‖h(θ)‖∗, (3.122)

where ‖ · ‖F is the Frobenius norm of a matrix, h(θ) is a matrix that is affine in θ and
‖h(θ)‖∗ is the nuclear norm of the matrix h(θ), see also Sect. 3.8.1, the appendix to
this chapter, for a brief review of matrix and vector norms.

3.6.2.1 Nuclear Norm Regularization for Matrix Rank Minimization

Matrix rank minimization problems (RMP) are a class of optimization problems that
involve minimizing the rank of a matrix subject to convex constraints. They are often
encountered in signal processing, image processing and statistics. For example, a
typical statistical problem is to obtain a low-rank covariance matrix able to describe
some available data and/or consistent with some prior assumptions. Formally, the
RMP is defined as follows:

RMP:
min
X

rank(X)

subj. to X ∈ C ⊂ R
n×m,

(3.123)

with X belonging to a convex set C while rank(X) describes the order (complexity)
of the underlying model.

In general, the RMP (3.123) is NP-hard and thus there is need for approximated
methods. Several heuristic methods have been proposed, such as the nuclear norm
heuristic [14] and the log-det heuristic [15]. In particular, for a convex set C the
convex envelope of a function f : C → R is defined as the largest convex function
g such that g(x) ≤ f (x) for every x ∈ C, e.g., [22]. For a nonconvex f , solving

min
x∈C

f (x) (3.124)

may be difficult. In this case, if it is possible to derive the convex envelope g of f ,
then

min
x∈C

g(x) (3.125)
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turns out a convex approximation of (3.124) and, in particular, the minimum of
(3.125) can represent a lower bound of that of (3.124). Moreover, if necessary, the
minimizing argument of (3.125) can be chosen as the initial point for a more com-
plicated nonconvex local search aiming to solve (3.124).

As shown in Theorem 1 of [13, Chap. 5], the convex envelope of the rank function
rank(X) with X ∈ C = {X |‖X‖2 ≤ 1, X ∈ R

n×m} is the nuclear norm of X , i.e.,
‖X‖∗. As a result, the nuclear norm heuristic to solve the RMP (3.123) is obtained
by replacing the rank of X with the nuclear norm of X , i.e.,

Nuclear norm heuristic:
min
X

‖X‖∗

subj. to X ∈ C ⊂ R
n×m .

(3.126)

Without loss of generality, we assume that X ∈ C = {X | ‖X‖2 ≤ M, X ∈ R
n×m}

for some M > 0. Then, from the definition of the convex envelope, for X ∈ C we
have

∥∥∥∥
X

M

∥∥∥∥∗
≤ rank

(
X

M

)
=⇒ 1

M
‖X‖∗ ≤ rank(X).

In addition

1
M

‖X copt‖∗ ≤ rank(Xopt) ≤ rank(X copt), (3.127)

where Xopt and X copt denote the optimal solution of the RMP (3.123) and that of the
nuclear norm heuristic (3.126), respectively. The inequalities in (3.127) thus provide
an upper and lower bound for the optimal solution of the RMP (3.123).

As shown in [13, Chap. 5], the nuclear norm heuristic (3.126) can be equivalently
formulated as a semidefinite program (SDP):

min
X,Y,Z

trace Y + trace Z

subj. to
[

Y X
XT Z

]
≥ 0, X ∈ C,

(3.128)

where Y ∈ R
n×n, Z ∈ R

m×m and both Y and Z are symmetric. The SDP problem
(3.128) can be solved by interior point methods. For this purpose, some convex
optimization software packages which can be used include YALMIP [26], CVX [19],
CVXOPT [3] and CVXPY [11].
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3.6.2.2 Application in Covariance Matrix Estimation with Low-Rank
Structure

Now we go back to the linear regression model (3.121) and the ReLS with nuclear
norm regularization (3.122). Consider the problem of covariance matrix estimation
with low-rank structure, e.g., [38]. In particular, in (3.121), we take N = m = n, let
Y be a sample covariance matrix, Φ = In , and θ0 be a positive semidefinite matrix
which has low-rank structure. Moreover, in (3.122), we take h(θ) = θ . We can then
obtain a matrix estimate θ̂R with low-rank structure using ReLS with nuclear norm
regularization as follows:

θ̂R = argmin
θ

‖Y − θ‖2F + γ ‖θ‖∗, (3.129)

for a suitable choice of γ > 0. An example is reported below.

Example 3.8 (Covariance matrix estimation problem) First, we construct a block-
diagonal rank-deficient covariancematrix θ0 that has 4 blocks denoted by Ai ∈ R

ni×ni

with n1 = 20, n2 = 10, n3 = 5 and n4 = 15. Using blkdiag to represent a block-
diagonal matrix, one thus has θ0 = blkdiag(A1, A2, A3, A4). Each Ai is generated
by summing up vi, j vTi, j , j = 1, . . . , ni − 2, where the vi, j are ni -dimensional vectors
with components independent and uniformly distributed on [−1, 1]. It comes that
rank(θ0) = 42 since the rank of each i th block is ni − 2. Then we draw 20000
samples xi from the Gaussian distribution N (0, θ0). The available measurements
are zi = xi + ei where the ei are independent and distributed as N (0, 0.6). Using
the zi we calculate the sample covariance Y as follows:

Y =
1

20000

20000∑

i=1

(zi − z̄)(zi − z̄)T , z̄ =
1

20000

20000∑

i=1

zi . (3.130)

We solve the ReLS problem (3.129) with the data Y defined above and γ in the set
{0.1411, 0.1414, 0.1419, 0.1423, 0.1427}, obtaining different estimates θ̂R of the
covariance matrix.

The top panel of Fig. 3.17 shows the base 10 logarithm of the 50 estimated
singular values. Each profile is obtained with a different regularization parameter.
Such results show that, seeing the tiny singular values as null, a suitable value of the
regularization parameter, like γ = 0.1427, leads to rank(θ̂R) = 42. Note in fact that
the green curve, which is associated to such γ , has a jump towards zero when passing
from 42 to 43 on the x-axis. The influence of the nuclear norm regularization is also
visible in the bottom panel which shows the profile of the relative error of θ̂R as a
function of γ . When γ is small, e.g., γ = 0.1411, the influence is invisible, θ̂R is
almost the same as the sample covariance Y and rank(θ̂R) = 50. When γ becomes
larger, the regularization influence becomes more visible, making θ̂R closer to the
true covariance θ0. �
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Fig. 3.17 Covariance
estimation with low-rank
structure. Panel a shows the
base 10 logarithm of the 50
singular values of the
estimated covariance matrix
θ̂R with different values of
γ . Panel b shows the profile
of the relative error of the
estimated covariance matrix
θ̂R as a function of γ
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3.6.2.3 Vector Case: �1-Norm Regularization

The nuclear normheuristic and inequalities (3.127) also justify the use of the �1-norm
regularization (3.108) for the problem of finding sparse solutions (3.107).

For the vector case, i.e., θ ∈ R
n×m withm = 1, we can take X andC in the previous

section to be X = θ and C = {θ ∈ R
n|‖Y − Φθ‖22 ≤ ε}. Then it is easy to see that

the �1-norm is the convex envelope of the �0-norm for ‖θ‖∞ ≤ 1, i.e.,

‖θ‖1 ≤ ‖θ‖0, for ‖θ‖∞ ≤ 1.

Then, the RMP (3.123) and the nuclear norm heuristic (3.126) become the problem of
finding sparse solutions (3.107) and the �1-norm regularization (3.108), respectively.
Similar towhat is done to obtain (3.127),we assume that‖θ‖∞ ≤ M for someM > 0.
If ‖θ‖∞ ≤ M , one has
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1
M

‖θ copt‖1 ≤ ‖θopt‖0 ≤ ‖θ copt‖0, (3.131)

where θopt and θ copt denote the optimal solution of the problem of finding sparse
solution (3.107) and that of the �1-norm regularization (3.108), respectively. Similar
to thematrix case, (3.131) provides an upper and lower bound for the optimal solution
of the sparse estimation problem (3.107).

3.7 Further Topics and Advanced Reading

The systematic treatment of the regression theory is available inmany textbooks, e.g.,
[12, 35]. The noise variance estimation is a critical issue in practical applications and
has been discussed in details in [48]. When the regression matrix is ill-conditioned,
it is important to make sure that the least squares estimate is calculated in an accu-
rate and efficient way, e.g., [10, 17]. Moreover, for the regularized least squares in
quadratic form, the regularization matrix could also be ill-conditioned. In this case,
extra care is required in the calculation of both the regularized least squares esti-
mate and the hyperparameter estimates, e.g., [8]. For given data, the quality of a
model depends on the control of its complexity, which can be described by different
measures in different contexts, e.g., the model order and the equivalent degrees of
freedom. A good exposition of model complexity and its selection can be found in
[21]. It is worth to mention that the degrees of freedom for LASSO have also been
defined and discussed in [43, 51]. In practical applications, there are two key issues
for the regularized least squares with quadratic regularization: the design of the reg-
ularization matrix and the estimation of the hyperparameter. While the latter issue
has been discussed extensively in the literature, e.g., [21, 36, 46, 47], there are much
fewer results on the former issue in the context of system identification, as discussed
in [7]. The asymptotic properties of some widely used hyperparameter estimators,
such as the maximummarginal likelihood estimator, Stein’s unbiased risk estimator,
generalized cross-validation, etc., have been reported in [29, 30]. LASSO and its
variants have been extremely popular in practical applications, as described in [16,
28, 32, 50]. The nuclear norm heuristic to solve matrix rank minimization problems
has wide applications in practical applications, see, e.g., [5, 6, 14, 15, 37]. Beyond
the Huber loss function [23], the square loss function can be replaced also by other
convex functions like the Vapnik loss function [45] as discussed later on in Chap. 6.

3.8 Appendix

3.8.1 Fundamentals of Linear Algebra

In this section, we review some fundamentals of linear algebra used in this chapter.
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3.8.1.1 QR Factorization and Singular Value Decomposition

We begin with giving the definitions of QR factorization and SVD, which are very
important decompositions used for many purposes other than solving LS problems.

For any Φ ∈ R
N×n with N ≥ n, Φ can be decomposed as follows:

Φ = QR, (3.132)

where Q ∈ R
N×N is orthogonal, i.e., QT Q = QQT = IN , and R ∈ R

N×n is upper
triangular. Further assume that Φ has full rank. Then Φ can be decomposed as
follows:

Φ = Q1R1 (3.133)

where Q1 = Q(:, 1 : n) and R1 = R(1 : n, 1 : n) with Q(:, 1 : n) being the matrix
consisting of the first n columns of Q and R(1 : n, 1 : n) being the matrix consisting
of the first n rows and n columns of R. The factorizations (3.132) and (3.133) are
called the full and thin QR factorization, respectively. In particular, when R1 has
positive diagonal entries, the thin QR factorization (3.133) is unique.

We start providing the “economy size” definition of the SVD. For any Φ ∈ R
N×n

with N ≥ n, Φ can be decomposed as follows:

Φ = UΛV T , (3.134)

where U ∈ R
N×n satisfies UTU = IN , Λ = diag(σ1, σ2, . . . , σn) with σ1 ≥ σ2 ≥

· · · ≥ σn ≥ 0, and V ∈ R
n×n is orthogonal. The factorization (3.134) is called the

singular value decomposition (SVD) of Φ and the σi , i = 1, . . . , n are called the
singular values of Φ.

The SVD admits also the “full size” formulation, as given in (3.29). One has
that (3.134) still holds but U is an orthogonal N × N matrix and Λ is a rectangular
N × n diagonal matrix, while V is still an orthogonal n × n matrix. In this second
formulation, V andU can be associated to orthonormal change of coordinates in the
domain and codomain of Φ such that, in the new coordinates, the linear operator is
diagonal.

3.8.1.2 Vector and Matrix Norms

Important vector norms are the �1, �2 and �∞ norms. For a given vector θ ∈ R
n , they

are denoted by ‖θ‖1, ‖θ‖2 and ‖θ‖∞, respectively, and are defined as follows:

‖θ‖1 =
n∑

i=1

|θi |, (3.135)
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‖θ‖2 =

√√√√
n∑

i=1

θ2
i , (3.136)

‖θ‖∞ = max{|θ1|, |θ2|, . . . , |θn|}, (3.137)

where the �2 norm is also known as the Euclidean norm.
Important matrix norms are the nuclear norm, the Frobenius norm and the spectral

norm. For a given matrix Φ ∈ R
N×n with N ≥ n, these three matrix norms are

denoted by ‖Φ‖∗, ‖Φ‖F and ‖Φ‖2, respectively, and are defined as follows:

‖Φ‖∗ =
n∑

i=1

σi (Φ), (3.138)

‖Φ‖F =

√√√√
N∑

i=1

n∑

j=1

Φ2
i, j =

√√√√
n∑

i=1

σ 2
i (Φ), (3.139)

‖Φ‖2 = σmax(Φ), (3.140)

where σi (Φ) represents the i th largest singular value of Φ, σmax(Φ) = σ1(Φ) and
Φi, j is the (i, j)th element of Φ.

Now, we report some properties of the vector and matrix norms. The i th largest
singular value of Φ is equal to the square root of the i th largest eigenvalue of ΦTΦ,
or equivalently ΦΦT . If Φ is square and positive semidefinite, then the nuclear
norm of Φ is equal to the trace of Φ, i.e., ‖Φ‖∗ = trace(Φ). For matrices A, B ∈
R

N×n , we can define the inner product onR
N×n × R

N×n as 〈A, B〉 = trace(AT B) =∑N
i=1

∑n
j=1 Ai, j Bi, j . So the Frobenius norm is the norm associated with this inner

product. The spectral norm is defined as the induced 2-norm, i.e., for Φ ∈ R
N×n ,

‖Φ‖2 = maximize
θ �=0

‖Φθ‖2
‖θ‖2 = maximize‖θ‖2=1

‖Φθ‖2. (3.141)

To show that (3.141) is equal to (3.140), note thatmax‖θ‖2=1 ‖Φθ‖2 is equivalent to
max‖θ‖22=1 ‖Φθ‖22, which is further equivalent to

max
θ

‖Φθ‖22 + λ(1 − ‖θ‖22) = max
θ

θTΦTΦθ + λ(1 − θT θ), (3.142)

where λ is the Lagrange multiplier. Checking the optimality condition of (3.142)
yields that the optimal solution will satisfy

ΦTΦθ − λθ = 0, θT θ = 1.

The above equation implies that λ is an eigenvalue of ΦTΦ, and moreover,
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θTΦTΦθ = λθT θ = λ. (3.143)

As a result, we have

max‖θ‖2=1
‖Φθ‖2 = ( max

‖θ‖22=1
θTΦTΦθ)

1
2 = ( max

‖θ‖22=1
λ)

1
2 = (λmax)

1
2 ,

where λmax is the largest eigenvalue of ΦTΦ that is equal to σ 2
max(Φ). Thus (3.141)

is indeed equal to (3.140).
The aforementioned three matrix norms, the nuclear norm, the Frobenius norm

and the spectral norm, can be seen as natural extensions of the three vector norms: the
�1, �2 and �∞ norms,, respectively. In particular, if we construct an n-dimensional
vector with the n singular values of Φ as its elements, then the three matrix norms
‖Φ‖∗, ‖Φ‖F and ‖Φ‖2 correspond to the �1, �2 and �∞ norms of the constructed
vector, respectively. Moreover, for any given norm ‖ · ‖ on R

N×n , there exists a dual
norm ‖ · ‖d of ‖ · ‖ defined as

‖A‖d = sup{trace(AT B)|B ∈ R
N×n, ‖B‖ ≤ 1}. (3.144)

For the vector norms, the dual norm of the �1 norm is the �∞ norm and the dual
norm of the �2 norm is the �2 norm. The properties for the vector norms extend to
the matrix norms we have defined: the dual norm of the nuclear norm is the spectral
norm, see, e.g., [37], and the dual norm of the Frobenius norm is itself.

3.8.1.3 Matrix Inversion Lemma, Based on [49]

Thematrix inversion lemma is also knownasSherman–Morrison–Woodbury formula
and refers to the following identity:

(A +UCV )−1 = A−1 − A−1U (C−1 + V A−1U )−1V A−1, (3.145)

where A and C are square n × n and m × m matrices.

3.8.2 Proof of Lemma 3.1

DefineW = −(QR + In)−1 andW0 = −(Z R + In)−1. Then (3.67) can be rewritten
as

W (QRQ + Z)WT ≥ W0(Z RZ + Z)WT
0 . (3.146)

Note that
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In + W = −WQR, In + W0 = −W0Z R (3.147)

thus (3.67) can be further rewritten as

(In + W )R−1(In + W )T + WZWT

≥ (In + W0)R
−1(In + W0)

T + W0ZW
T
0 . (3.148)

In the following, we show that

(In + W )R−1(In + W )T + WZWT

− (In + W0)R
−1(In + W0)

T − W0ZW
T
0

= (W − W0)(R
−1 + Z)(W − W0)

T . (3.149)

Simple calculation shows that (3.149) is equivalent to

(In + W0)R
−1WT + WR−1(In + WT

0 )

− (I + W0)R
−1WT

0 − W0R
−1(In + WT

0 )

= 2W0ZW
T
0 − W0ZW

T − WZWT
0 . (3.150)

It follows from the second equation of (3.147) that

(In + W0)R
−1 = −W0Z . (3.151)

Now inserting (3.151) into the left-hand side of (3.150) shows that (3.150) and
thus (3.149) holds. Moreover, since (W − W0)(R−1 + Z)(W − W0)

T in (3.149) is
positive semidefinite, Eq. (3.148) holds as well, which in turn implies (3.67) holds.
This completes the proof.

3.8.3 Derivation of Predicted Residual Error Sum of Squares
(PRESS)

For the case when the kth measured output yk , k = 1, . . . , N , is not used, the corre-
sponding ReLS-Q estimate becomes

θ̂R
−k =

⎛

⎝
N∑

i=1,i �=k

φiφ
T
i + σ 2P−1(η)

⎞

⎠
−1

N∑

i=1,i �=k

φi yi . (3.152)

For the kth measured output yk , k = 1, . . . , N , the corresponding predicted output
ŷ−k and validation error r−k are
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ŷ−k = φT
k

⎛

⎝
N∑

i=1,i �=k

φiφ
T
i + σ 2P−1(η)

⎞

⎠
−1

N∑

i=1,i �=k

φi yi , (3.153a)

r−k = yk − ŷ−k . (3.153b)

With M defined in (3.81) and by Woodbury matrix identity, e.g., [10, 17], we
have

⎛

⎝
N∑

i=1,i �=k

φiφ
T
i + σ 2P−1(η)

⎞

⎠
−1

= (M − φkφ
T
k )−1

= M−1 − M−1φkφ
T
k M

−1

−1 + φx
k T M−1φk

. (3.154)

Then we have

r−k = yk − φT
k M

−1
N∑

i=1,i �=k

φi yi + φT
k

M−1φkφ
T
k M

−1

−1 + φT
k M

−1φk

N∑

i=1,i �=k

φi yi

= rk + φT
k M

−1φk yk + φT
k

M−1φkφ
T
k M

−1

−1 + φT
k M

−1φk

N∑

i=1,i �=k

φi yi

= rk + φT
k M

−1φk

⎛

⎝yk + φT
k M

−1

−1 + φT
k M

−1φk

N∑

i=1,i �=k

φi yi

⎞

⎠

= rk + φT
k M

−1φk

−1 + φT
k M

−1φk

×
⎛

⎝−yk + φT
k M

−1φk yk + φT
k M

−1
N∑

i=1,i �=k

φi yi

⎞

⎠

= rk − φT
k M

−1φk

−1 + φT
k M

−1φk
rk

= rk
1

1 − φT
k M

−1φk
,

(3.155)

which shows that r−k is actually obtained by scaling rk with a factor 1/(1 −
φT
k M

−1φk). Accordingly, we have the sum of squares of the validation errors

N∑

k=1

r2−k =
N∑

k=1

r2k
(1 − φT

k M
−1φk)2

. (3.156)

Then the PRESS (3.80) is obtained by minimizing (3.156) with respect to η ∈ Γ .
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3.8.4 Proof of Theorem 3.7

Using (3.92) and (3.100), it is easy to see that proving (3.90) is equivalent to show
that

E

[
1
N

‖Y − Φθ̂R(η)‖22
]

︸ ︷︷ ︸
err(η)

≤ E

[
1
N
E [‖Yv − Φθ̂R(η)‖22|DT]

]

︸ ︷︷ ︸
EVEin(η)

(3.157)

and to prove the above inequality we need the following lemma.

Lemma 3.3 Consider the following additive measurement model:

x = μ + ε, x, μ, ε ∈ R
p, (3.158)

where μ is an unknown constant vector and ε is a random variable with zero-mean
and covariance matrix E (εεT ) = Σ . Let μ̂(x) be an estimator of μ based on the
data x and let x̃ be new data generated from

x̃ = μ + ε̃, x̃ ∈ R
p, (3.159)

where ε̃ is a random variable uncorrelated with ε and has zero-mean and covariance
matrix E (ε̃ε̃T ) = Σ . Then it holds that

E (‖x̃ − μ̂(x)‖22) = E (‖μ − μ̂(x)‖22) + trace(Σ) (3.160)

= E (‖x − μ̂(x)‖22) + 2 trace(Cov(μ̂(x), x)), (3.161)

where the expectation is over both ε and ε̃.

Proof Firstly, we consider (3.160). We have

E (‖x̃ − μ̂(x)‖22) = E (‖x̃ − μ + μ − μ̂(x)‖22)
= E (‖μ − μ̂(x)‖22) + E (‖x̃ − μ‖22) + 2E [(x̃ − μ)T (μ − μ̂(x))]
= E (‖μ − μ̂(x)‖22) + E (‖ε̃‖22),

which shows that (3.160) is true.
Secondly, we consider (3.161). Similarly, we have

E (‖x̃ − μ̂(x)‖22) = E (‖x̃ − x + x − μ̂(x)‖22)
= E (‖x − μ̂(x)‖22) + E (‖x̃ − x‖22) + 2E [(x̃ − x)T (x − μ̂(x))]
= E (‖x − μ̂(x)‖22) + E (‖ε̃ − ε‖22) + 2E [(ε̃ − ε)T (ε + μ − μ̂(x))]
= E (‖x − μ̂(x)‖22) + 2 trace(Σ) − 2E [εT (ε + μ − μ̂(x))]
= E (‖x − μ̂(x)‖22) + 2E [εT μ̂(x)],
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which implies that (3.161) is true. �
Now we prove (3.157) by applying Lemma 3.3. Let

x = Y, μ = Φθ0, μ̂(x) = Φθ̂R, x̃ = Yv, ε = E, ε̃ = Etest,Σ = σ 2 IN , (3.162)

and then it follows from (3.161) that

E

[
1
N
E [‖Yv − Φθ̂R(η)‖22|DT]

]

︸ ︷︷ ︸
EVEin(η)

−E

[
1
N

‖Y − Φθ̂R(η)‖22
]

︸ ︷︷ ︸
err(η)

= 2
1
N

trace(Cov(Y, Φθ̂R(η))). (3.163)

Next we show that the right-hand side of (3.163) is nonnegative. For the ReLS-
Q problem (3.58a) with the ReLS-Q estimate (3.58b), the predicted output Ŷ (η)

of Y is
Ŷ (η) = Φθ̂R(η) = ΦPΦT (ΦPΦT + σ 2 IN )−1Y.

Then we have

Cov(Y, Φθ̂R(η)) = Cov(Y, Ŷ (η))

= E (Y − E (Y ))(Ŷ − E (Ŷ (η)))T

= E (Y − E (Y ))(Y − E (Y ))TΦPΦT (ΦPΦT + σ 2 IN )−1

= σ 2ΦPΦT (ΦPΦT + σ 2 IN )−1 = σ 2H, (3.164)

where H is the hat matrix defined in (3.63). One has

trace(Cov(Y, Φθ̂R(η))) = σ 2 trace(H) ≥ 0.

Therefore, the right-hand side of (3.163) is nonnegative and thus (3.90) holds true
completing the proof of Theorem 3.7.

3.8.5 A Variant of the Expected In-Sample Validation Error
and Its Unbiased Estimator

It is possible to derive variants of the expected in-sample validation error and its
unbiased estimator by modifying (3.92) and (3.100).

Assume that Φ is full rank, i.e., rank(Φ) = n. Then, multiplying both sides of
(3.92) and (3.100) with (ΦTΦ)−1ΦT yields

(ΦTΦ)−1ΦT Y = θ0 + (ΦTΦ)−1ΦT E, (3.165)

(ΦTΦ)−1ΦT Yv = θ0 + (ΦTΦ)−1ΦT Ev, (3.166)
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which will be our new “true system” and new “validation data”, respectively.
Different from (3.162), we now take

x = (ΦTΦ)−1ΦT Y, μ = θ0, μ̂(x) = θ̂R(η), x̃ = (ΦTΦ)−1ΦT Yv,

ε = (ΦTΦ)−1ΦT E, ε̃ = (ΦTΦ)−1ΦT Ev,Σ = σ 2(ΦTΦ)−1. (3.167)

Note that θ̂LS = (ΦTΦ)−1ΦT Y and then it follows from (3.160) and (3.161) that

E (‖(ΦTΦ)−1ΦT Yv − θ̂R(η)‖22) = E (‖θ̂R(η) − θ0‖22) + σ 2 trace((ΦTΦ)−1)

= E (‖θ̂LS − θ̂R(η)‖22) + 2 trace(Cov(θ̂R(η), θ̂LS)).

From the above two equations, we have

E (‖θ̂R(η) − θ0‖22) = E (‖θ̂LS − θ̂R(η)‖22)
+ 2 trace(Cov(θ̂R(η), θ̂LS)) − σ 2 trace((ΦTΦ)−1).

Further note that

θ̂R(η) = (ΦTΦ + σ 2P−1(η))−1ΦT Y = (ΦTΦ + σ 2P−1(η))−1ΦTΦθ̂LS,

Cov(θ̂LS, θ̂LS) = σ 2(ΦTΦ)−1,

then we have

E (‖θ̂R(η) − θ0‖22) =E (‖θ̂LS − θ̂R(η)‖22)
+ 2σ 2 trace((ΦTΦ + σ 2P−1(η))−1 − 0.5(ΦTΦ)−1).

(3.168)

Note that E (‖θ̂R(η) − θ0‖22) is equal to trace(MSE(θ̂R(η), θ0)), then we denote it
by mseη and we readily obtain an unbiased estimator of mseη as follows:

m̂seη = ‖θ̂LS − θ̂R(η)‖22 + 2σ 2 trace((ΦTΦ + σ 2P−1(η))−1 − 0.5(ΦTΦ)−1).

(3.169)

Now given the training data (3.84), the corresponding estimate m̂seη of mseη can
be used to estimate the hyperparameter η: we should take the value of η ∈ Γ that
minimizes (3.169), i.e.,

η̂ = argmin
η∈Γ

‖θ̂LS − θ̂R(η)‖22 + 2σ 2 trace((ΦTΦ + σ 2P−1(η))−1 − 0.5(ΦTΦ)−1).

(3.170)
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The criterion (3.170) is known as the SURE of the expected in-sample validation
error for the true system (3.165) and the validation data (3.166), e.g., [33, 40].
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Chapter 4
Bayesian Interpretation
of Regularization

Abstract In the previous chapter, it has been shown that the regularization approach
is particularly useful when information contained in the data is not sufficient to
obtain a precise estimate of the unknown parameter vector and standard methods,
such as least squares, yield poor solutions. The fact itself that an estimate is regarded
as poor suggests the existence of some form of prior knowledge on the degree of
acceptability of candidate solutions. It is this knowledge that guides the choice of
the regularization penalty that is added as a corrective term to the usual sum of
squared residuals. In the previous chapters, this design process has been described
in a deterministic setting where only the measurement noises are random. In this
chapter, we will see that an alternative formalization of prior information is obtained
if a subjective/Bayesian estimation paradigm is adopted. The major difference is
that the parameters, rather than being regarded as deterministic, are now treated
as a random vector. This stochastic setting permits the definition of new powerful
tools for both priors selection, e.g., through the maximum entropy principle, and for
regularization parameters tuning, e.g., through the empirical Bayes approach and its
connection with the concept of equivalent degrees of freedom.

4.1 Preliminaries

We have seen that the regularization approach can be used to effectively solve esti-
mation problems that are otherwise ill-conditioned. In particular, a penalty is added
as a corrective term to the usual sum of squared residuals. In this way, between two
candidate solutions achieving the same squared loss, the regularizer is chosen such
as to penalize candidate solutions that depart from our prior knowledge on some
features of the unknown parameter vector.

It is worth noting that the regularization approach lies within a frequentist
paradigm in which the observed data, affected by noise, are random variables, but
the unknown parameter vector is deterministic in nature. For linear-in-parameter
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models, regularization yields an estimate that, though biased, may be preferable to
the unbiased least squares estimate in view of the smaller variance. In particular,
the tuning of the regularization parameter aims at an advantageous solution of the
bias-variance dilemma. By trading an excessive variance for some bias, a smaller
mean squared error may be achieved, as exemplified by the James–Stein estimator.
An alternative formalization of prior information is obtained if a subjective/Bayesian
estimation paradigm is adopted. The major difference is that the parameters, rather
than being regarded as deterministic, are now treated as a random vector.

In order to introduce the Bayesian paradigm, it can be useful to start with a simple
example in which the parameters do depend on the result of a random experiment.
Consider a metabolism model for which the parameter vector θ can take only two
possible values, θh and θd , associated with healthy and diabetic patients, respectively.
The model specifies p(Y |θ), where Y are observations collected from a randomly
chosen patient with 90% probability of being healthy and 10% probability of being
diabetic. In this simple case, model identification amounts to deciding between θh
and θd . It is also clear that θ is a discrete random variable with p(θ = θh) = 0.9
and p(θ = θd) = 0.1. These probabilities summarize the prior information about the
unknown parameter, before any observation is collected. Once the data Y become
available, the Bayes formula can be used to compute the posterior probability

p(θh |Y ) = p(Y |θh)p(θh)
p(Y )

= p(Y |θh)p(θh)
p(Y |θh)p(θh) + p(Y |θd)p(θd) . (4.1)

Of course, p(θd |Y ) = 1 − p(θh |Y ). In particular, if the data Y are consistent with
diabetes symptoms, it may well happen that p(θd |Y ) > 0.5, in which case θ = θd
would be taken as the final estimate.

In the previous example, the prior probability distribution assigned to θ reflects a
real experiment that is the random choice of a patient from a populationwhere 90%of
subjects are healthy, which implies a prejudice in favour of θ = θh . In other words,
the prior distribution ranks the candidate parameters according to the available a
priori knowledge. If we look at the numerator of (4.1), we see that it combines a
priori information with the data through the product of the prior probability p(θh)
and the likelihood p(Y |θh). In the example, the population was a binary one (either
healthy or diabetic), but we can imagine more complex populations allowing for
several countable or even uncountable possible values of θ .

In the actual Bayesian paradigm a further step is made: the parameters θ are
assigned a prior probability p(θh), even if there does not exist an underlying experi-
ment that draws the model from a population of possible models. According to the
subjective definition of probability, p(θ = θ̄ ) represents the (subjective) degree of
belief that θ is going to take the value θ̄ . In particular, in analogy with the regulariza-
tion penalty, it is possible to rank the possible values of θ , assigning a low probabil-
ity to values whose occurrence is deemed unlikely. In our context, the intrinsically
subjective nature of the prior probability, a controversial issue in the confrontation
between the frequentist and Bayesian paradigms, is specular to the subjective choice
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of the regularization penalty: rather than expressing the preference for some solu-
tions through the choice of a proper penalty, the preference is formulated by means
a prior distribution.

As shown in the following, many formulas and results can be indifferently derived
adopting either the regularization or the Bayesian paradigm. However, the Bayesian
approach has its pros. In particular, the tuning of the regularization parameter, rather
than being addressed on an ad hoc basis, can be formulated as a statistical estimation
problem. Moreover, the Bayesian paradigm offers a very natural way to asses uncer-
tainty intervals, whereas the regularization paradigm has a harder time assessing the
amount of bias in the estimate. Among the cons, one may mention the need for a
deeper probabilistic background in order to gain a full comprehension of all aspects.

Throughout the chapter we will mainly focus on the linear Gaussian case, but
the approach is more general and some hints at generalizations will be provided. In
addition, we will use θ to denote the stochastic vector that has generated the data,
in contrast with the deterministic θ0 used in the classical setting discussed in the
previous chapter.

4.2 Incorporating Prior Knowledge via Bayesian
Estimation

We consider the problem of estimating a parameter vector θ ∈ R
n , based on the

observation vector Y ∈ R
N . The two ingredients of Bayesian estimation are the

prior distribution of θ , also known by short as prior, and the conditional distribution
of Y given θ . As already observed, the basic assumption is that the parameter vector
θ is not completely unknown, but rather some prior knowledge is available that
is formulated in terms of subjective probability, specified as a probability density
function:

p(θ) : Rn �→ R.

The density function p(θ) is chosen by the user so as to assign a low probability to
values whose occurrence is deemed unlikely. For instance, if θ is a scalar parameter
whose value is believed to lie more or less around 30, hardly smaller than 20 and
hardly larger than 40, this prior knowledge can be embedded in a Gaussian density
with E θ = μθ = 30 and standard deviation σθ = 5:

θ ∼ N (30, 25).

In fact, under this distribution, p (|θ − μθ | > 2σθ ) = p (|θ − 30| > 10) < 0.05.
Although not impossible, it is considered unlikely that values of θ too distant from
30 are going to occur. A natural question is how and when our prior knowledge is
sufficient to specify a distribution. This crucial issue calls for the notion and role of
hyperparameters, see Sect. 4.2.4, and for the possible use of the maximum entropy
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principle as a way to obtain an entire probability distribution from partial knowledge
relative to its moments, see Sect. 4.6.

The second ingredient is the conditional distribution of Y given θ that, when
considered as a function of θ , is also known as likelihood:

L(θ |Y ) = p(Y |θ) = p(Y, θ)

p(θ)
,

where p(Y, θ) is the joint probability distribution of the random vectors Y and θ . The
likelihood is usually obtained from some mathematical model of the data. Consider,
for instance, the simple model

Yi = θ
√
i + ei , i = 1, . . . , N ,

where ei ∼ N (0, σ 2) are independent and identically distributed measurement
errors, with known variance σ 2. Conditional on θ , i.e., assuming that θ is known, Yi
is Gaussian with

E [Yi |θ ] = θ
√
i, Var (Yi |θ) = σ 2

so that, in view of independence, the likelihood is

L(θ |Y ) = p(Y |θ) =
N∏

i=1

p(Yi |θ), p(Yi |θ) = N (θ
√
i, σ 2).

When both the prior distribution p(θ) and the likelihood p(Y |θ) have been spec-
ified, the Bayes formula yields the posterior distribution

p(θ |Y ) = p(Y |θ)p(θ)

p(Y )
.

We have seen that all our prior knowledge was embedded in the prior. In a similar
way, all the knowledge obtained by the combination of prior informationwith the new
informationbrought by the observations is nowembedded in the posterior distribution
p(θ |Y ), denoted by short as posterior.

Although all the relevant information is encapsulated within the posterior, a point
estimate is often required for practical or communication purposes. The Maximum
A Posteriori (MAP) estimate is the value that maximizes the posterior:

θMAP = argmax
θ

p(Y |θ). (4.2)

Its interpretation is simple, as it represents the most likely value, once the prior
knowledge has been updated taking into account the observations. Alternatively, the
mean squared error
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MSE(θ̂) = E

[(
θ̂ − θ

)2 |Y
]

can be used as a criterion to select the point estimate θ̂ . Above, E (·|Y ) denotes the
expected value taken with respect to the posterior distribution p(θ |Y ). The following
classical result from estimation theory (whose proof is in Sect. 4.13.1) then holds.

Theorem 4.1 The minimizer of the MSE

θB = argmin
θ̂

MSE(θ̂)

is known as Bayes estimate and can be shown to be equal to the conditional mean:

θB = E [θ |Y ] .

A third point estimate is the conditional median used especially in view of its
statistical robustness when the posterior is obtained numerically via stochastic sim-
ulation algorithms, see Sect. 4.10.

When, in addition to a point estimate, an assessment of the uncertainty is needed,
it can be derived from the posterior through the computation of a properly defined
credible region Cγ ∈ R

n such that

Pr(θ ∈ Cγ |Y ) = γ. (4.3)

For example, Cγ could be taken as the smallest region such that (4.3) holds, a choice
that goes under the name of highest posterior density region.

4.2.1 Multivariate Gaussian Variables

In this subsection, some basic properties and definitions of multivariate Gaussian
variables are recalled. This review is instrumental to the derivation of the Bayesian
estimator when observations and parameters are jointly Gaussian, see Sect. 4.2.2. In
turn, this will pave theway to the analysis of the linearmodel under additiveGaussian
measurement errors, see Sect. 4.2.3.

A random vector Z = [Z1 . . . Zm]T is said to be distributed according to a non-
degenerate m-variate Gaussian distribution if its joint probability density function is
of the type

p(z1, . . . , zm) = 1√
(2π)m det V

exp− 1
2 (z−μ)T V−1(z−μ), (4.4)

where V is a symmetric positive definite matrix and μ is some vector in Rm .
It can be shown that

E (Z) = μ, Var (Z) = V .
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Then, the notation
Z ∼ N (μ, V )

(already used before in the scalar case) indicates that Z is a multivariate Gaussian
(Normal) random vector with mean μ and variance matrix V .

Property 4.1 If Z ∼ N (μ, V ) and Y = AZ, where A ∈ R
n×m, n ≤ m, is a full-

rank deterministic matrix, then

Y ∼ N (Aμ, AV AT ).

In particular, it follows that the marginal distributions of the entries of Z are
Gaussian:

Zi ∼ N (μi , Vii ).

Property 4.2 Assuming Z ∼ N (μ, V ), let X = [Z1 . . . Zn]T , Y = [Zn+1 . . . Zm]T ,
where 1 ≤ n < m, and partition μ and V accordingly:

μ =
[

μX

μY

]
,

[
VXX VXY

VY X VYY

]
.

Then, p(X |Y = y) is a multivariate Gaussian density function with

E (X |Y = y) = μX + VXY V
−1
YY (y − μY )

Var(X |Y = y) = VXX − VXY V
−1
YY VY X

and we can write

(X |Y = y) ∼ N
(
μX + VXY V

−1
YY (y − μY ), VXX − VXY V

−1
YY VY X

)
,

where X |Y = y stands for the random vector X conditional on Y = y.

4.2.2 The Gaussian Case

Let us consider the case in which the observation vector Y ∈ R
N and the unknown

vector θ ∈ R
n are jointly Gaussian:

[
θ

Y

]
∼ N

([
μθ

μY

]
,

[
Σθ ΣθY

ΣY θ ΣY

])
, ΣY > 0. (4.5)

The key idea behind Bayesian estimation is referring to the posterior distribution of
θ given Y as representative of the state of knowledge about the unknown vector. It
follows from Property 4.2 that such posterior is Gaussian as well:
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θ |Y ∼ N
(
μθ + ΣθYΣ−1

Y (Y − μY ),Σθ − ΣθYΣ−1
Y ΣY θ

)
. (4.6)

In view of Gaussianity, θMAP coincides with the conditional expectation E (θ |Y ):

θB = θMAP = E (θ |Y ) = μθ + ΣθYΣ−1
Y (Y − μY ). (4.7)

The reliability of the estimate can be assessed by the posterior variance

Σθ |Y = Var(θ |Y ) = Σθ − ΣθYΣ−1
Y ΣY θ

based on which the so-called credible intervals can be derived as explained below.
The posterior variance of θi is the i-th diagonal entry of the posterior covariance

matrix:
σ 2

θi |Y = [
Σθ |Y

]
i i .

Observing that θi |Y ∼ N (θB
i , σ 2

θi |Y ), it follows that

Pr
(
θB
i − 1.96σθi |Y ≤ θi ≤ θB

i − 1.96σθi |Y |Y ) = 0.95 (4.8)

so that [θB
i − 1.96σθi |Y , θB

i + 1.96σθi |Y ] is the 95%-credible interval for the parameter
θi , given the observation vector Y . If two or more parameters are jointly considered,
the notion of credible region can be obtained in a similar way. In the Gaussian case,
such regions are suitable (hyper)-ellipsoids centred in θB.

4.2.3 The Linear Gaussian Model

The Bayesian approach can be applied to the estimation of the standard linear model
in matrix form

Y = Φθ + E, E ∼ N (0,ΣE ), ΣE > 0 (4.9)

in which Y ∈ R
N and the parameter vector θ is no more regarded as a deterministic

quantity, but as a random vector independent of E . In particular, we assume that some
prior information is available which is embedded in a Gaussian prior distribution

θ ∼ N (μθ ,Σθ), Σθ > 0.

Since Y is the linear combination of the jointly Gaussian vectors θ and E , the vec-
tors Y and θ are jointly Gaussian as well. Hereafter, positive definiteness of Σθ

is assumed if not stated otherwise. The singular case, see Remark 4.1, amounts to
assuming perfect knowledge of some linear combination of the unknown parameters
or, equivalently, to constrain the estimated vector θ to belong to a prescribed sub-
space. The ability to incorporate this type of constraint is not unique to the Bayesian
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approach. In the context of the deterministic regularization, an example is given by
the optimal regularization matrix P = θ0θ

T
0 , derived in Sect. 3.4.2.1.

In order to obtain the Bayes estimate according to (4.7), we need to compute
μY = E (Y ), ΣθY = Cov(θ,Y ), and ΣY = Var(Y ):

μY = E (Y ) = Φμθ

Var(Y ) = Var(Φθ) + Var(E) = ΦΣθΦ
T + ΣE

Cov(θ,Y ) = Cov(θ,Φθ) + Cov(θ, E) = ΣθΦ
T .

Then, we can apply (4.7) to obtain

θB = μθ + ΣθΦ
T (ΦΣθΦ

T + ΣE )−1(Y − Φμθ) (4.10)

Var(θ |Y ) = Σθ − ΣθΦ
T (ΦΣθΦ

T + ΣE )−1ΦΣθ. (4.11)

The proofs of the following two classical results are reported in Sects. 4.13.2 and
4.13.3.

Theorem 4.2 (Orthogonality property)

E
[
(θB − θ)Y T

] = 0. (4.12)

The following lemma, whose proof is in Sect. 4.13.3, is useful in order to obtain
an alternative expression that proves more convenient, especially when n � N .

Lemma 4.1 It holds that

ΣθΦ
T (ΦΣθΦ

T + ΣE )−1 = (ΦTΣ−1
E Φ + Σ−1

θ )−1ΦTΣ−1
E .

By applying the previous lemma, the alternative expression of the Bayes estimate is
obtained

θB = (ΦTΣ−1
E Φ + Σ−1

θ )−1(ΦTΣ−1
E Y + Σ−1

θ μθ ) (4.13)

Var(θ |Y ) = (ΦTΣ−1
E Φ + Σ−1

θ )−1. (4.14)

As already noted, the Bayes estimate coincides with θMAP, the maximum of the
posterior density:

p(θ |Y ) ∝ p(Y |θ)p(θ).

Recall that, in view of the assumed linear model (4.9),

Y |θ ∼ N (Φθ,ΣE )

and note that
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log p(θ) = c1 − 1

2
(θ − μθ)

TΣ−1
θ (θ − μθ) (4.15)

log p(Y |θ) = c2 − 1

2
(Y − Φθ)TΣ−1

E (Y − Φθ), (4.16)

where c1 and c2 are constantswe are not concernedwith. Therefore, themaximization
of the posterior density can be written as

θMAP = argmax
θ

log p(Y |θ) + log p(θ)

= argmax
θ

(Y − Φθ)TΣ−1
E (Y − Φθ) + (θ − μθ)

TΣ−1
θ (θ − μθ)

whose solution is easily shown to be given by (4.13). This shows that, underGaussian-
ity assumptions, the Bayes estimate of the linear model can be seen as a regularized
least squares estimator with quadratic regularization term (ReLS-Q), see Sect. 3.4.
In particular, if

ΣE = σ 2 IN , μθ = 0, (4.17)

the Bayes and MAP estimators,

θB = θMAP = argmin
θ

‖Y − Φθ‖2 + θT P−1θ, (4.18)

coincide with the ReLS estimator with regularization matrix P = Σθ/σ
2. Under the

further assumption Σθ = λIn , the MAP estimator coincides with a ridge regression
estimator with γ = σ 2/λ.

Remark 4.1 WhenΣθ = P , where P = PT ≥ 0 is singular, one can still use (4.10)
to obtain the Bayes estimate, while (4.13) and the quadratic problem (4.18) are no
more valid due to the nonexistence ofΣ−1

θ . Nevertheless, by replicating the derivation
in Remark 3.1, it is still possible to interpret the Bayes estimate as the solution of a
constrained quadratic problem. In particular, under (4.17), we have that

θB = argminθ ‖Y − Φθ‖22 + θT P+θ (4.19)

subj. to UT
2 θ = 0, (4.20)

where U2 was defined in Remark 3.1, as part of the singular value decomposition of
P . The result can be interpreted as follows. A singular variance matrix means that
we have perfect knowledge on some linear combination of the parameter vector. In
particular,

Var
[
UT

2 θ
] = UT

2 Var (θ)U2

= UT
2

[
U1 U2

] [
ΛP 0
0 0

] [
U1 U2

]T
U2 = 0,
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where, with reference to the SVD of P , we have exploited the fact that UT
2 U1 = 0.

As a consequence,
Pr(UT

2 θ = U2μθ) = 1,

thus justifying the presence of the equality constraints in the quadratic problem
(4.19)–(4.20), where μθ = 0 is assumed. Recalling the orthogonality of U1 and U2,
we have thatUT

2 θ = 0 implies that θ ∈ Range(U1) = Range(P). Therefore, the con-
strained quadratic problem (4.19)–(4.20) can also be equivalently reformulated as

θ B = argmin
θ ∈ Range(P)

‖Y − Φθ‖2 + θT P+θ. (4.21)

One can also assess that the solution of this problem can be written as

θB = PΦT (ΦPΦT + ΣE )+Y,

an expression which does not require invertibility of any matrix.
In conclusion, the Bayes estimate always exists and is unique. In any case, it can

be written as (4.7) with Σ−1
Y replaced by its pseudoinverse.

The Bayesian interpretation of deterministic regularization can be exploited to
obtain a guideline for the selection of the regularization matrix. The simplest case is
when some statistics, e.g., based on samples coming from past problems, is available
for the parameter vector θ . Then, the Bayesian interpretation suggests to select the
covariance matrix of θ , divided by the error variance σ 2, as regularization matrix. If
examples from the past are not available, one may rely on prior knowledge, telling
that some entries of θ have smaller variance than others or that some correlation
exists between the entries.

4.2.4 Hierarchical Bayes: Hyperparameters

In the cases in which prior information on the parameters is not sufficient to specify
a prior, it is common to resort to hierarchical Bayesian models. Instead of fixing the
prior, a family of priors is considered, parametrized by one ormore hyperparameters.
As an example, consider the case in which prior knowledge could be formalized in
terms of zero-mean independent and equally distributed parameters whose absolute
value is not too large. In absence of more precise information on their size, we could
adopt the following prior:

θ ∼ N (0, λIN ),

where the scalar λ, called hyperparameter, enters the game as a further unknown
quantity. More in general, the prior distribution p(θ |α) may depend on a hyperpa-
rameter vector α. One may also want to consider a hyperparameter vector β entering
the definition of the likelihood p(Y |θ, β). The most common example is when the
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measurement variance σ 2 is not known and is therefore treated as a hyperparameter.
In the following, the vector of all hyperparameters will be denoted by

η = [
αTβT

]T
.

For a given η, we will denote by θMAP(η) and θB(η) the corresponding MAP and
Bayes estimates:

θMAP(η) = argmax
θ

p(θ |Y, η) (4.22)

θB(η) = E (θ |Y, η) =
∫

θp(θ |Y, η)dθ, (4.23)

where

p(θ |Y, η) = p(Y |θ, β)p(θ |α)∫
p(Y |θ, β)p(θ |α)dθ

. (4.24)

4.3 Bayesian Interpretation of the James–Stein Estimator

In this section, we show that the James–Stein estimator can be seen as a particular
Bayesian estimator. As seen, in Eq. (1.2), the measurements model is

Y = θ + E, E ∼ N (0, σ 2 IN ). (4.25)

In a Bayesian setting, the parameter vector is regarded as a random vector, whose
distribution reflects our state of knowledge. In particular, we assume

θ ∼ N (0, λIN ), (4.26)

where λ plays the role of hyperparameter. It follows that θ and Y are zero-mean
jointly Gaussian variables with

ΣθY = E (θY T ) = E (θθT ) = λIN , ΣY = E (YY T ) = (λ + σ 2)IN . (4.27)

According to (4.7), the Bayes estimate is given by the conditional expectation

E (θ |Y ) = ΣθYΣ−1
Y Y = λ

λ + σ 2
Y = (

1 − rBayes
)
Y, (4.28)

where

rBayes = σ 2

λ + σ 2
. (4.29)
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It is apparent that the estimator (4.28) has the same structure as James–Stein’s one,
with r replaced by rBayes.

Since Y and θ are jointly Gaussian, E (θ |Y ) = θMAP, where

θMAP = argmin
θ

‖Y − θ‖2
σ 2

+ ‖θ‖2
λ

= argmin
θ

‖Y − θ‖2 + σ 2

λ
‖θ‖2

which highlights the fact that E (θ |Y ) is the solution of a regularized least squares
problem, controlled by the regularization parameter σ 2/λ.

If the variances λ and σ 2 could be assigned on the basis of prior knowledge, the
similarity would be only formal. Let us make a step forward, considering the case in
which the variance σ 2 is given, while λ is estimated from the data. The basic idea is
that the hyperparameter λ could be tuned based on the observed vector Y and plugged
into (4.29) to obtain an estimate of rBayes. Alternatively, one may focus directly on
finding a sensible estimate of rBayes. In this respect, we are going to show that Stein’s
r is an unbiased estimate of rBayes under the Gaussian model (4.25) and (4.26) [6].
For this purpose, we will exploit a property of the inverse chi-square variable.

Definition 4.1 (chi-square random variable) The sum of the squares of n standard
Gaussian independent random variables is a nonnegative valued random variable
known as chi-square variable with n degrees of freedom:

χ2
n =

n∑

i=1

X2
i , Xi ∼ N (0, 1).

Its mean and expectation are

E
(
χ2
n

) = n, Var
(
χ2
n

) = 2n.

The inverse of a chi-square variable is called inverse chi-square. For n > 2, its mean
is

E

[
1

χ2
n

]
= 1

n − 2
. (4.30)

Now, assume N > 2 and observe that

‖Y‖2
λ + σ 2

=
∑n

i Y
2
i

λ + σ 2
∼ χ2

N .

Recalling that the expectation of the inverse chi-square is equal to 1/(N − 2), we
have that

E

[
λ + σ 2

‖Y‖2
]

= E

[
1

χ2
N

]
= 1

(N − 2)
.

Therefore,
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E (r) = E

[
(N − 2)σ 2

‖Y‖2
]

= σ 2

λ + σ 2
= rBayes .

This means that James–Stein’s shrinking coefficient r can be seen as an unbiased
estimator of the shrinking coefficient rBayes appearing in the formula of the posterior
expectation.

The example is instructive under several respects. First, it shows that, under suit-
able probabilistic assumptions, the typical structure of regularized estimators can be
justified through Bayesian arguments. The second point has to do with the tuning of
the regularization parameters. In the empirical Bayes approach, see Sect. 4.4, there
is a preliminary step in which a point estimate of hyperparameters is obtained by
standard estimation methods. Then, this point estimate is plugged into the expres-
sion of the Bayesian estimator. Although a full Bayesian approach would call for the
joint estimation of parameters and hyperparameters, the two-step empirical Bayes
approach not only conjugates simplicity and effectiveness but provides a probabilistic
underpinning to regularized identification methods.

4.4 Full and Empirical Bayes Approaches

When the prior, and possibly the likelihood, include hyperparameters, Bayesian esti-
mation becomes more complex and gives rise to alternative approaches. In principle,
we want to obtain the posterior distribution

p(θ |Y ) = p(Y |θ)p(θ)

p(Y )
.

However, if a hierarchical Bayesian model is adopted, we do not know p(θ), but only
p(θ |η). At the cost of assigning a prior p(η) also to the hyperparameters, the prior
p(θ) can be obtained by marginalization of the joint probability density:

p(θ) =
∫

p(θ, η)dη =
∫

p(θ |η)p(η)dη.

In general, this integral has to be computed numerically, e.g., by Monte Carlo meth-
ods. This leads to full Bayesian methods that compute the desired p(θ |Y ) regarding
both parameters and hyperparameters as random variables. Some remarks on these
methods will be given in Sect. 4.10.

The justification for a simpler computational scheme stems from the following
reformulation of the posterior:

p(θ |Y ) =
∫

p(θ, η|Y )dη =
∫

p(θ |η,Y )p(η|Y )dη. (4.31)



108 4 Bayesian Interpretation of Regularization

Observe that
p(η|Y ) ∝ p(Y |η)p(η), (4.32)

where L(η|Y ) = p(Y |η) is the likelihood of the hyperparameter vector η. It is also
called marginal likelihood because it is obtained from the marginalization with
respect to θ of the joint density p(Y, θ |η):

L(η|Y ) =
∫

p(Y, θ |η)dθ =
∫

p(Y |θ, η)p(θ |η)dθ. (4.33)

If data are sufficiently informative, the marginal likelihood has good chances to
be unimodal and sharply peaked in a neighbourhood of the maximum likelihood
estimate

ηML = argmax
η

p(Y |η).

When this happens and p(η) is rather uninformative (as it should be), from (4.32) it
follows that p(η|Y ) is peaked as well. Then, as long as the properties of p(θ |η,Y )

do not change rapidly with η near ηML, the integral (4.31) can be approximated as

p(θ |Y ) � p(θ |ηML,Y ) = p(Y |θ, ηML)p(θ |ηML)

p(Y |ηML)
.

In practice, this suggests to compute the posterior using the prior p∗(θ) = p(θ |ηML)

associated with the maximum likelihood estimate of hyperparameters. More in gen-
eral, Empirical Bayes (EB) methods adopt a two-stage scheme. In the first step, a
point estimate η∗ is computed which is then kept fixed in the second step, when the
posterior of the parameters is obtained, based on the prior p∗(θ) = p(θ |η∗).

Among the advantages of the approach one may mention its simplicity, especially
when there are few hyperparameters and the posterior p(θ |Y, ηML) is easily obtained
as in the jointly Gaussian case. Moreover, the tuning of η admits an intuitive inter-
pretation as the counterpart of model order selection in classic parametric estimation
methods. Themain drawback is that the EBmethod fails to propagate the uncertainty
of the point estimate η∗.

Under the linear Gaussian model (4.9), the integral (4.33) admits a closed-form
solution. In fact, since

Y ∼ N (Φμθ(η),Σ(η)), Σ(η) = ΦΣθ(η)ΦT + ΣE (η),

we have

log L(η|Y ) = −1

2
log(2π det(Σ)) − 1

2
(Y − Φμθ)

TΣ−1(Y − Φμθ), (4.34)

where in the right-hand side dependence on η has been omitted for simplicity.
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Therefore, application of Empirical Bayes estimation to the linear model (4.9)
would consist of the following two steps:
Step 1:

η∗ = ηML = argmax
η

L(η|Y ).

Step 2: Let μθ = μθ(η
∗), ΣE = Σ(η∗), Σθ = Σθ(η

∗) and compute the posterior
expectation according to Sect. 4.2.3.

When the likelihood and the prior are such that integral (4.33) cannot be com-
puted explicitly, an approximation is needed. In particular, one can resort to the
Laplace approximation, which is based on a second-order Taylor expansion of
log p(Y, θ |η) around θMAP(η) defined in (4.22), from which an integrable approxi-
mation of p(Y, θ |η) appearing in (4.33) is obtained. Note, however, that the Laplace
approximation has to be recalculated for each evaluation of L(η|Y ) occurring during
the iterative computation of ηML.

4.5 Improper Priors and the Bias Space

The use of priors is most useful whenever the data alone are not sufficient to provide
reliable parameter estimates but there exists some a priori knowledge that can be
exploited. It may happen that for some parameters the introduction of a prior is not
possible or not desirable, because their estimation can be satisfactorily performed
anyway, given the information in the data. This can be accounted for by assuming
that such parameters have improper priors.

In order to deal with the case where p parameters θ P ∈ R
p have a proper prior

and the remaining n − p parameters θ I ∈ R
n−p have an improper prior, consider the

following model:

Y = Φθ + E, Φ = [
Ω Ψ

]
, θ =

[
θ P

θ I

]
(4.35)

θ ∼ N (0,Σθ ), E ∼ N (0, σ 2 IN ) (4.36)

Σθ =
[

Σ 0
0 aIn−p

]
, Σ > 0. (4.37)

The (asymptotically) improper prior for θ I is obtained by letting a → ∞ so that θ I

has infinite variance, i.e., its density is flat. This amounts to complete lack of prior
knowledge for the last n − p entries of the parameter vector θ that, for simplicity, is
assumed to be zero mean. The use of improper priors in a Bayesian setting has the
same effect as the introduction of abias space in a deterministic regularization setting.
Within such a subspace, parameters are immune from regularization, a feature that
could be useful to apply regularization only where needed without causing undesired
distortions. The following theorem, whose proof is in Sect. 4.13.4, is analogous to
a result obtained in [22] to obtain a Bayesian interpretation of smoothing splines. It
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illustrates the asymptotic behaviour of posterior means and variances as a goes to
infinity.

Theorem 4.3 (adapted from [22]) If rank(Φ) = n and rank(Ω) = n − p, then

lim
a→∞E (θ I |Y ) = (Ψ T M−1Ψ )−1Ψ T M−1Y

lim
a→∞E (θ P |Y ) = ΣΩT M−1(In − Ψ (Ψ T M−1Ψ )−1Ψ T M−1)Y

M = ΩΣΩT + σ 2 IN

lim
a→∞Var (θ |Y ) = σ 2

(
ΦTΦ + σ 2

[
0 0
0 Σ−1

])−1

.

An interesting benefit of improper priors is the possibility of reducing the number
of hyperparameters by treating some of them as unknowns whose prior is improper.
Letting the symbol 1n×1 denotes a column vector of ones, assume, for example,
that θ ∼ N (μ1n×1,Σθ), i.e., all the scalar entries of θ share the same prior mean
μ. In most cases, very little is known about μ that could be therefore regarded
as a hyperparameter to be tuned by marginal likelihood maximization. It can be
then treated as a deterministically known variable, according to the Empirical Bayes
approach, see Sect. 4.4. By this choice, however, the hyperparameter is fixed to its
point estimate and its uncertainty is not propagated, implying that the uncertainty of
θB will be underestimated if assessed by (4.14).

Alternatively, μ can be treated as a further random parameter. For this purpose,
define θ̃ = θ − μ and consider the model

θ̄ =
[

θ̃

μ

]
, Σθ̄ =

[
Σθ 0
0 a

]

Y = Φ̄θ̄ + E, Φ̄ = [
Φ Φ1n×1

]

θ̄ ∼ N (0,Σθ̄ ), E ∼ N (0, σ 2 IN ).

This formulation decreases the number of hyperparameters, without introducing
prejudices (provided we let a → ∞). More importantly, it is now possible to assess
the joint uncertainty of the estimates of μ and θ̃ through the posterior variance
Var(θ̄ |Y ).

4.6 Maximum Entropy Priors

A major appeal of the Bayesian paradigm lies in its ability to provide a rational
foundation to regularization: one starts from prior knowledge and then proceeds
with its formalization in terms of a probabilistic prior, from which the regularization
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penalty is finally derived. However, there is a stumbling block in the way, because
the available prior knowledge is often too vague to avoid arbitrariness in the choice
of the prior distribution. As a matter of fact, the derivation of systematic approaches
for the selection of prior distributions is a classic topic of Bayesian estimation theory.
In this section, the approach based on entropy maximization is briefly reviewed.

The starting point is the observation that, even when prior information is absent
or very limited, there are candidate distributions that are obviously preferable, due to
symmetry arguments. Assume, for instance, that candidate values for a scalar param-
eter θ are known to belong to a finite set {θi , i = 1, . . .m} and no further information
is available. Then, the only reasonable prior distribution will be p(θ = θi ) = 1/m. In
fact, assigning unequal probabilities would create an unjustified asymmetry, given
that our prior information does not make any distinction between the m possible
values of the parameter.

The case of a continuous-valued parameter θ taking values in a finite interval
[a, b] can be addressed in a similar way. In this case, a reasonable prior distribution
is the uniform one:

p(θ) =
{ 1

b−a , a ≤ θ ≤ b
0, elsewhere

.

In both examples, we might say the chosen distributions are those that reflect the
maximum ignorance about the unknown parameter.

The next step is to formalize this notion of maximum ignorance in contexts where
some partial information about θ is available. This can be done by means of the
notion of entropy of a probability distribution. For a discrete distribution p(·) taking
values p(θi ) on a numerable set {θi }, the entropy H is defined as

H(p) = −
∑

i

p(θi ) log p(θi ).

Note that the minimum possible entropy H(p) = 0 occurs when the probability
is concentrated at a unique value θ̄ . This is the case of a maximally informative
distribution such that p(θ = θ̄ ) = 1. Conversely, if the set {θi } has cardinality m,
the maximum value H(p) = log(m) is achieved in correspondence of the uniform
distribution p(θ = θi ) = 1/m,∀i . In other words, the larger the entropy, the less
information is conveyed by the distribution.

For continuous-valued random variables, the notion of differential entropy h(p)
is introduced:

h(p) = −
∫

Dθ

p(θ) log p(θ)dθ,

where Dθ denotes the support of the distribution. Note that, among distributions
with finite support, the maximum possible (differential) entropy is achieved by the
uniform distribution.

The principle ofMaximum Entropy (MaxEnt) states that the admissible distribu-
tionwith largest entropy is the one that best represents the current state of knowledge.
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The admissible distributions are those that satisfy a set of constraints, chosen so as
to incorporate all the available prior knowledge. For instance, if the prior knowledge
amounts to knowing that θ ∈ [a, b], the prior suggested by the MaxEnt principle is
the uniform distribution. Other types of constraints are typically expressed as expec-
tations of functions of the parameters θ . In particular, consider a random variable θ ,
subject to known values ηi of m expectations

E [gi (θ)] =
∫

gi (θ)p(θ)dθ = ηi , i = . . . ,m. (4.38)

Then, we have the following useful result.

Theorem 4.4 (General form of maximum entropy distributions, based on [12])
Among all the distributions satisfying (4.38), the maximum entropy one is of expo-
nential type

p(θ) = A exp(−λ1g1(θ) − . . . − λmgm(θ)), (4.39)

where λi are m constants determined from (4.38) and A is such that

A
∫ +∞

−∞
exp(−λ1g1(θ) − . . . − λmgm(θ))dθ = 1. (4.40)

Example 4.5 (MaxEnt prior from information on expected absolute value)Assume
that prior knowledge is summarized by the expectation E |θ | = η. Then, the MaxEnt
prior is the solution of the constrained optimization problem

max
p

h(p) s.t. E |θ | = η.

Obviously, m = 1 and g1(θ) = |θ |. In view of (4.39) and (4.40), p(θ) is a Laplace
distribution:

p(θ) = 0.5λe−λ|θ |.

The value of λ is found by imposing the constraint on the expectation:

∫ +∞

−∞
0.5|θ |λe−λ|θ |dθ = η.

Since the constraint on the expectation is satisfied for λ = 1/η, the following Laplace
distribution is eventually obtained:

p(θ) = e− |θ |
η

2η
.

Therefore, starting from a very partial information, such as a guess on the expected
absolute value of the parameter, it is possible to completely specify a prior distribu-
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tion that: (i) is coherent with the prior knowledge and (ii) does not introduces undue
assumptions because it is the least informative one, so far as entropy is taken as a
measure of informativeness. One could object that it is scarcely realistic to assume
prior knowledge of the expected absolute value of θ . However, if we adopt the empir-
ical Bayes framework, the objection is circumvented by the possibility of treating η

as a hyperparameter that will be estimated from data.
Therefore, prior knowledge may just tell that the expectation of |θ | is finite,

without specifying a value for this expectation. The MaxEnt principle then suggests
the functional form of the prior that incorporates a hyperparameter η, whose tuning,
e.g., by marginal likelihood maximization, see Sect. 4.4, will be the first step of the
actual estimation algorithm. As it will be seen in the following, this particular prior
is associated with the Bayesian interpretation of the regularization penalty employed
by the so-called Lasso estimator that has been already introduced in a deterministic
regularization setting in Sect. 3.6.1.1. �

For our purposes, of particular interest are MaxEnt priors satisfying constraints
on the second-order moments. In the scalar case, we have the following classical
result, e.g., see [19].

Proposition 4.1 (based on [12]) Let θ be a zero-mean random variable with known
variance E θ2 = λ. Then, the MaxEnt distribution is normal:

θ ∼ N (0, λ).

Also in this case, the necessity of specifyingλ is not an issue, because the unknown
variance can be regarded as a hyperparameter and tuned by marginal likelihood
maximization. In other words, if the only prior knowledge is that θ has a finite,
yet unknown, variance, the MaxEnt principle suggests the use of a normal prior
parametrized by its variance.

When θ is a vector, amultivariate priormight be derived according to the following
proposition.

Proposition 4.2 (based on [12]) Let θ be a zero-mean n-dimensional random vec-
tor whose entries have known variances E θ2

i = λi , i = 1, . . . , n. Then, the MaxEnt
distribution is a multivariate normal with diagonal covariance matrix:

θ ∼ N (0,Σθ), Σθ = diag{λi }.

The importance of this result is twofold. First, also in the multivariate case, the
least informative distribution under second moment constraints is of normal type.
Moreover, if the covariances are unknown, it is seen that the MaxEnt principle yields
independent distributions.

A shortcoming of themaximumentropy approach is that the resulting distributions
are not invariant with respect to reparametrizations of the unknown vector. To make
an example, we have already seen that the maximum entropy distribution of θ in a
finite interval [1, 2] is uniform. On the other hand, if the reparametrization ψ = 1/θ
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is adopted and the MaxEnt approach is applied to ψ , the resulting prior will be a
uniform distribution for ψ in [0.5,1], which corresponds to

p(θ) =
{

2
θ2 , 1 ≤ θ ≤ 2
0, elsewhere,

which is obviously different from a uniform distribution. A possible way to limit
arbitrariness is to specify that, before applying the MaxEnt principle, one should
first identify the “object of interest”. Indeed, choosing either θ or 1/θ as object of
interest is going to yield different MaxEnt priors.

4.7 Model Approximation via Optimal Projection �

Approximate low-ordermodels are commonly used evenwhen there is awareness that
the real data are generated by a more complex model. Motivations may range from
their use for control design purposes to better interpretability of the phenomena under
investigation. Unfortunately, under model misspecification, several nice properties
enjoyed by standard estimators are no more valid. In particular, a naive application
of the least squares may provide far less than satisfactory results. In this section, it is
shown that, within the Bayesian framework, the search for an optimal approximate
model can be given a rigorous formulation that admits a projection-based solution.

We assume that the data Y are distributed according to (4.9), which summarizes
our state of knowledge. However, rather than resorting to Bayesian estimation of
the vector θ , an approximate model, typically of low order, is searched for. For
instance, if θi were the samples of an impulse response, one might be interested in
approximating them by a parametric model:

θ � g(ζ ), g(ζ ) = [
g1(ζ ) · · · gn(ζ )

]T
,

where ζ = [
ζ1 · · · ζq

]T
is the unknown parameter vector. For example, in order to

approximate the sequence θi by means of a single exponential function, it suffices to
let q = 2 and

gi (ζ ) = ζ1e
ζ2i ,

where ζ1 is the amplitude and ζ2 is the rate coefficient of the exponential.
A very natural estimator is the least squares one:

ζ LS = argmin
ζ

‖Y − Φg(ζ )‖2.

Note that ζ LS coincideswith themaximum likelihood estimate if the followingmodel
is assumed:

Y = Φg(ζ ) + E, E ∼ N (0, σ 2 IN ).
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In the present context, however, no claim ismade that reality conforms to our approx-
imatemodel. It maywell be that the true θ , beingmore complex than its parsimonious
parametric model g(ζ ), is better represented by themodel (4.9). Nevertheless, we are
interested in finding the best approximation of θ within a set P = {g(ζ )|ζ ∈ R

q , }
of parametric approximations.

Under model (4.9), the optimal approximate model g∗ can be defined as the one
that minimizes the mean squared error E ‖θ − g‖2. For a generic model g = g(ζ ),
parametrized by the vector ζ ∈ R

q , q ≤ n, we have that

g∗ = g(ζ ∗), ζ ∗ := argmin
ζ

E
[‖θ − g(ζ )‖2|Y ]

, (4.41)

where the conditional expectation is taken with reference to the probability measure
specified by (4.9). The following theorem, whose proof is in Sect. 4.13.5, was first
derived in the context of linear system identification [20]. It shows that the optimal
approximation is the projection of the Bayes estimate θB onto the set P .

Theorem 4.6 (Optimal approximation, based on [20]) Assume that (4.9) holds.
Then,

ζ ∗ = argmin
ζ

‖θB − g(ζ )‖2. (4.42)

In view of the last theorem, the best approximation g(ζ ) ∈ P can be computed by
a two-step procedure. First, the Bayes estimate θB is obtained and in the second step
the optimal g(ζ ∗) is calculated as the solution of the least squares problem (4.42).

An interesting question is whether the obtained approximation is still optimal if
the goal is minimizing the error, not with respect to θ , but with respect to the noiseless
outputΦθ . In other words, the goal is finding go that minimizes ‖Φθ − Φgo)‖2. This
can be done by introducing a weighted norm in the cost function:

go = g(ζ o), ζ o := argmin
ζ

E
[‖θ − g(ζ )‖2W

∣∣Y
]
, (4.43)

where ‖x‖2W stands for xTWx . In particular, if W = ΦTΦ, then

‖θ − g(ζ )‖2W = ‖Φθ − Φg(ζ )‖2.

By extending the proof of Theorem 4.6 to the case of a weighted norm, the following
projection result is obtained.

Theorem 4.7 (Optimal weighted approximation, based on [20]) Assume that (4.9)
holds. Then,

ζ o = argmin
ζ

‖θB − g(ζ )‖2W . (4.44)

The consequence is that different approximations go are obtained depending on
their prospective use. If the scope is just approximating θ , then W = In , but, if the
scope is predicting the outputs, then W = ΦTΦ and a different result is obtained.
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4.8 Equivalent Degrees of Freedom

In this section, the Bayesian estimation problem for the linear model is analysed
by means of a diagonalization approach. The purpose is twofold: (i) the equivalent
degrees of freedom of the Bayesian estimator are introduced together with their
relationship with suitable weighted squared sums of residuals and squared sums of
estimated parameters; (ii) it is shown thatηML, theMLestimate of the hyperparameter
vector, satisfies meaningful conditions involving the degrees of freedom. Finally, the
obtained results are applied to the tuning of the regularization parameter, defined
as the ratio between scaling factors for the noise variance ΣE and the parameter
variance Σθ . For the sake of simplicity, in this section, we assume μθ = 0.

Let us consider the case when the hyperparameters are just two scaling factors
for the covariance matrices ΣE and Σθ , that is,

Σθ = λK , λ > 0 (4.45)

ΣE = σ 2Ψ, σ 2 > 0 (4.46)

η = [
λ σ 2

]T
, (4.47)

where K and Ψ are known definite positive matrices. In such a case, it is immediate
to see that the Bayes estimate

θB =
(

ΦTΨ −1Φ + σ 2

λ
K−1

)−1

ΦTΨ −1Y

depends only on the ratio γ = σ 2/λ, which behaves as a deterministic regularization
parameter. This means that only the ratio between the scaling factors is relevant to
the computation of a point estimate, although both of them are needed to compute the
posterior variance (4.14). When Ψ = IN and K = In , the above estimator provides
a Bayesian interpretation to the classical ridge regression estimator. In particular, γ
can be interpreted as a noise-to-signal ratio and its tuning reformulated as a statistical
estimation problem.

Given a positive definite symmetric matrix S, let S1/2 = (
S1/2

)T
be its symmetric

square root, i.e., S1/2S1/2 = S. Now, consider the singular value decomposition

Ψ −1/2ΦK 1/2 = UDV T ,

where U and V are square matrices such that UTU = IN and V T V = In and
D ∈ R

N×n is a diagonal matrix with diagonal entries {di }, i = 1, . . . , n, see (3.134).
Moreover, define

Ȳ = UTΨ −1/2Y

Ē = UTΨ −1/2E

θ̄ = V T K−1/2θ.
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Observe that

E
(
Ē Ē T

) = UTΨ −1/2E EETΨ −1/2U = σ 2UTU = σ 2 IN .

Analogously, E
(
θ̄ θ̄T

) = λIn . Moreover,

Ȳ = UTΨ −1/2(Φθ + E) = UTΨ −1/2ΦK 1/2VV T K−1/2θ + Ē

= UTUDV T V θ̄ + Ē = Dθ̄ + Ē .

In view of these properties, it follows that the original Bayesian estimation prob-
lem admits the following diagonal reformulation:

Ȳ = Dθ̄ + Ē, Ē ∼ N (0, σ 2 IN ), θ̄ ∼ N (0, λIn), (4.48)

where Ē and θ̄ are independent of each other.
In view of statistical independence, we have N independent scalar models:

ȳi = di θ̄i + v̄i , i = 1, . . . , n

ȳi = v̄i , i = n + 1, . . . , N ,

where v̄i ∼ N (0, σ 2), i = 1, . . . , N , and θ̄i ∼ N (0, λ), i = 1, . . . , n.
By (4.11), it is straightforward to see that the Bayes estimates are

θ̄B
i = λdi ȳi

σ 2 + λd2
i

= di ȳi
γ + d2

i

, i = 1, . . . , n

or, in matrix form,
θ̄B = (DT D + γ In)

−1DT Ȳ .

Let the residuals be defined as ε̄i = ȳi − d̄i θ̄B
i , i = 1, . . . , N , where

d̄i =
{
di , 1 ≤ i ≤ n
0, n + 1 ≤ i ≤ N

. (4.49)

Then, we have

ε̄i = yi − d̄2
i ȳi

γ + d̄2
i

= γ ȳi
γ + d̄2

i

(4.50)

E ε̄2i = γ 2E ȳ2i
(γ + d̄2

i )
2

= γ 2(d̄2
i λ + σ 2)

(γ + d̄2
i )

2
= σ 2γ

γ + d̄2
i

= σ 2

(
1 − d̄2

i

γ + d̄2
i

)
(4.51)

or, in matrix form,
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ε̄ = γ (DT D + γ IN )−1Ȳ , E ‖ε̄‖2 = σ 2
(
N − trace(D(DT D + γ IN )−1DT )

)
.

(4.52)
It is worth noting that the above relationships do not hold for a generic regulariza-

tion parameter γ , but only when γ = σ 2/λ. In the remaining part, we present some
results that were first derived in the context of Bayesian deconvolution in [5]. The
proof of the following proposition is in Sect. 4.13.6.

Proposition 4.3 (based on [5]) For a given hyperparameter vector η, let WRSS
denote the following weighted squared sum of residuals:

WRSS = (Y − ΦθB)TΨ −1(Y − ΦθB),

where θB = E [θ |Y, η]. Then,

E (WRSS) = σ 2(N − trace(H(γ ))),

where
H(γ ) = Φ(ΦTΨ −1Φ + γ K−1)−1ΦTΨ −1

is the so-called hat matrix.

As already noted, see (3.64), when ΣE = σ 2 IN , the predicted output Ŷ = ΦθB

and the measured output Y are related through the hat matrix:

Ŷ = H(γ )Y.

In order to better understand the link between the hat matrix and the degrees of
freedom, just consider the standard linear model Y = Φθ + E, θ ∈ R

n , and the cor-
responding LS estimate θLS = (ΦTΦ)−1ΦT Y . The predicted output is Ŷ = HLSY ,
where HLS = Φ(ΦTΦ)−1ΦT enjoys the property trace(HLS) = n.

It is this analogy that justifies the introduction of equivalent degrees of freedom
which we already encountered in (3.65) as a function of the regularized estimate θR

described in the deterministic context. Its definition, here derived starting from the
stochastic context, is reported below stressing its dependence on the regularization
parameter γ .

Definition 4.2 (equivalent degrees of freedom) The quantity

dof(γ ) = trace(H(γ )), 0 ≤ dof(γ ) ≤ n (4.53)

is called equivalent degrees of freedom.

In view of (4.52),

dof(γ ) =
n∑

i=1

d2
i

d2
i + γ
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so that dof(γ ) is a monotonically decreasing function of γ with 0 ≤ dof(γ ) ≤ n.
The equivalent degrees of freedom provide an easily understandable measure of the
flexibility of estimator: for instance, if they are approximately equal to three, the
Bayesian estimator has a flexibility comparable to a model with three parameters.
For linear-in-parameter models estimated by ordinary or weighted least squares, the
degrees of freedom coincide with the rank of the regressor matrix and, therefore,
they can take only integer values. The equivalent degrees of freedom of the Bayesian
estimator, conversely, are a nonnegative real number controlled by γ .

The next theorem establishes a connection between the degrees of freedom and
the ML estimate

ηML =
[
λML

(
σ 2

)ML
]T

of the hyperparameter vector. Accordingly, we define

γML =
(
σ 2

)ML

λML
.

Moreover, we introduce the following weighted squared sum of estimated parame-
ters:

WPSS = (θB)T K−1θB = ∥∥θ̄B
∥∥2 =

n∑

i=1

d2
i ȳ

2
i

(γ + d2
i )

2
. (4.54)

The proof of the following result is in Sect. 4.13.7.

Theorem 4.8 (based on [5]) Assume that model (4.9) holds where Σθ and ΣE

are as in (4.46)–(4.47). Then, the ML estimates of the hyperparameters satisfy the
following necessary conditions:

WRSS = (
σ 2

)ML (
N − dof(γML)

)
(4.55)

WPSS = λMLdof(γML). (4.56)

By taking the ratio between (4.55) and (4.56), the following proposition is
obtained.

Proposition 4.4 (based on [5]) If λML and
(
σ 2

)ML
are nonnull and finite, then

γML = dof(γML)

N − dof(γML)

WRSS

WPSS
. (4.57)

This last corollary can be used as a simple and practical tuning procedure as it requires
just a line search on the scalar γ . Of course, (4.57) relies on the necessary conditions
of Theorem 4.8, so that one has to check if the solution corresponds to a maximum
of the likelihood function.
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4.9 Bayesian Function Reconstruction

In this section, the Bayesian estimation approach is illustrated through its application
to the reconstruction of an unknown function from noisy samples. The observations
will be generated by adding pseudorandom noise to a known function g(x), so that
the performances of alternative estimators can be directly assessed by comparison
with the ground truth. The selected g(x) is the same function (3.26) used in the
previous chapter in order to illustrate polynomial regression:

g(x) = (sin(x))2(1 − x2), x ∈ [0, 1]. (4.58)

Also the noise model is the same:

yi = g(xi ) + ei , i = 1, . . . , N . (4.59)

We let N = 40, x1 = 0, x40 = 1, and x2, . . . , x39 are evenly spaced points between
x1 and x40. Finally, ei , i = 1, . . . , 40, are i.i.d. Gaussian distributed with mean zero
and standard deviation 0.034.

The problem of estimating θi = g(ti ), i.e., the samples of the unknown function,
is a particular case of the linear Gaussian model (4.9) with Φ = IN , that is,

Y = θ + E, E ∼ N (0, σ 2 IN ). (4.60)

SinceΦ is square, in this case, the number n of unknowns coincides with the number
N of observations.

The noisy data and the true function are displayed in the top left panel of Fig. 4.1.
It is assumed that the available prior knowledge regards the “regularity” of g(·) and
the knowledge that g(0) = 0. A possible probabilistic translation of this qualitative
knowledge is assuming that θi is a so-called random walk:

θi = θi−1 + wi , i = 1, . . . , N , θ0 = 0,

where wi ∼ N (0, λ) are independent random variables. In fact, under the random
walk model, the first difference

θi − θi−1 = wi

has a finite variance, equal to λ. Hence, if we approximate the derivative of g(·) by
the first difference θi − θi−1, this approximation is less than 1.96

√
λwith probability

0.95, which guarantees that the profile of the function cannot vary too quickly. Note
that, due to the qualitative nature of the prior knowledge, the precise value of λ is
unknown, so that it has to be treated as a hyperparameter. Conversely, it is assumed
that the true value of σ 2 is known. Summarizing, we have
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Fig. 4.1 Function reconstruction example. Top left: noisy data and true function. Top right, bottom
left and bottom right: Residual sum of squares, i.e., the sum of the squared differences between
the function values and their estimates, degrees of freedom and marginal loglikelihood against
the hyperparameter λ. The oracle denotes the value that minimizes RSS while ML indicates the
maximizer of the marginal likelihood

θi =
i∑

j=1

w j , i = 1, . . . , N

or, in matrix form,

θ = Fw, F =

⎡

⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1

⎤

⎥⎥⎥⎥⎥⎦
, w =

⎡

⎢⎢⎢⎢⎢⎣

w1

w2

w3
...

wN

⎤

⎥⎥⎥⎥⎥⎦
.
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Observing that Var(w) = λIN , the prior variance of the parameter vector is

Σθ = λFFT = λ

⎡

⎢⎢⎢⎣

1 1 . . . 1
1 2 . . . 2
...

...
...

...

1 2 . . . N

⎤

⎥⎥⎥⎦ .

For a given λ, the Bayes estimate θB is obtained according to (4.10) and can be
written as

θB = Σθ

(
Σθ + σ 2 IN

)−1
Y.

The corresponding equivalent degrees of freedom, obtained by (4.53), are now
thought as a (monotonically nondecreasing) function of λ, i.e.,

dof(λ) = trace H(λ), H(λ) = Σθ

(
Σθ + σ 2 IN

)−1
, Σθ = λFFT .

In the bottom left panel of Fig. 4.1, the degrees of freedom are plotted against λ.
For small values of λ they are close to zero and get closer to N = 40 as λ goes to
infinity. It is a rather general feature that the function dof(λ) is better visualized on
a semilog scale. In order to tune the regularization parameter λ, one can resort to the
maximization of the marginal loglikelihood:

λML = argmax
λ

{
−1

2
log(2π det(Σ)) − 1

2
Y TΣ−1Y

}

Σ = Σθ + σ 2 IN = λFFT + σ 2 IN .

It turns out thatλML = 4.92e − 4, the corresponding degrees of freedombeing 12.17.
For the sake of comparison, λ = 6.61e − 4 is the best possible value, i.e., the one
provided by an oracle that exploits the knowledge of the true function in order
to minimize the sum of the squared reconstruction errors. This latter quantity is
function of λ and here denoted by RSS(λ). As seen in the top right panel of Fig. 4.1,
marginal likelihood maximization achieves RSS = 9.80e − 2, not much worse than
RSS = 9.71e − 2 achieved by the oracle, whose associated degrees of freedom are
13.88. Therefore, in this specific case, the marginal likelihood criterion somehow
underestimates the complexity of the model.

In Fig. 4.2, the estimates obtained in correspondence of six different values of
λ are displayed. It is apparent that for λ = 1e − 6 and λ = 1e − 5 the estimated
function is overregularized, while overfitting occurs for λ = 1e − 1 and λ = 1e − 2.
The two bottom panels display the oracle and ML estimates, the former exhibiting a
slightly more regular profile.

Finally, observing that in our case ΣθY = Σθ , we have

Σθ |Y = Var(θ |Y ) = Σθ − ΣθΣ
−1
Y Σθ
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Fig. 4.2 Function reconstruction example. The panels display the Bayes estimates ĝ(x) corre-
sponding to six different values of the hyperparameter λ, including the one provided by the oracle
and the maximum likelihood one
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Fig. 4.3 Function reconstruction example. True function and Empirical Bayes estimate ĝ(x) based
on λML together with its 95% Bayesian credible intervals

and we can compute the 95% Bayesian credible intervals, according to (4.8). As it
can be seen from Fig. 4.3, the credible limits successfully capture the uncertainty, as
demonstrated by the fact that the true function lies within the limits.

This simple example has shown that Bayesian estimation can be effectively
employed in order to reconstruct an unknown function without need of assuming
a specific parametric structure, e.g., polynomial or other. The key idea is the use
of a smoothness prior, expressed through the assumed prior distribution of the first
differences of the function. The associated variance λ is treated as a hyperparameter
that can be tuned via marginal likelihood maximization. Altogether, this is a flexi-
ble Empirical Bayes scheme that can be employed as a general-purpose black-box
estimator.

Of interest is also the fact that the considered function could have been the impulse
response of a dynamical system. In this respect, the example highlights also the limits
of the approach.Afirst issue, easily fixable, has to dowith the insufficient smoothness
of the estimate. As seen in Fig. 4.3, the true function is significantly smoother than
its estimate. As a matter of fact, it is not difficult to increase the regularity of the
Bayes estimate: for instance, it suffices to assume that the samples θi = g(xi ) are an
integrated random walk:
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θi = θi−1 + ξi

ξi = ξi−1 + wi ,

where wi ∼ N (0, λ) are again independent and identically distributed. This prior
distribution is going to yield smoother profiles. Rather interestingly, the obtained
estimate can be seen as the discrete-time counterpart of cubic smoothing splines, a
method widely used for the nonparametric reconstruction of unknown functions.

A more serious issue regards extrapolation properties of the estimate that are in
turn connected with the type of asymptotic decay shown by stable impulse responses.
As it can be seen from Fig. 4.3, oscillations and credible intervals do not tend to
dampen as x increases.While it would be easy to compute the Bayes estimate also for
values far beyond the observation window, the result would be disappointing. Indeed,
coherently with the diffusive nature of random walks, the width of the credible band
would diverge, which is unnecessarily conservative when a stable impulse response
is reconstructed. It appears that the task of identifying impulse responses calls for
prior distributions that are specifically suited to the their features, especially the
asymptotic ones. The development of these prior distributions, or equivalently the
design of suitable regularization penalties, will be a central topic of the subsequent
chapters.

4.10 Markov Chain Monte Carlo Estimation

As already mentioned in Sect. 4.4, in the full Bayesian approach the estimate

p(θ |Y ) =
∫

p(θ, η|Y )dη =
∫

p(θ |η,Y )p(η|Y )dη

requires amarginalizationwith respect to the hyperparameter vectorη. In general, this
integral cannot be computed analytically. Nevertheless it can be computed numer-
ically by means of Markov Chain Monte Carlo (MCMC) methods that generate
pseudorandom samples drawn from the joint posterior density p(θ, η|Y ). The Gibbs
sampling (GS) algorithm is the most straightforward and popular MCMC method.
Its goal is to simulate a realization of a Markov chain, whose samples, though not
independent of each other, form an ergodic process whose stationary distribution
coincides with the desired posterior. Hence, provided that the burn-in phase is dis-
carded, the posterior distribution is approximated by the histogram of the samples.
In order to generate the samples, at each step a random extraction is made from a
proposal distribution. In the Gibbs sampler, the proposal distribution is the so-called
full conditional, that is, the probability of a given element of the parameter vector
given the data and the current values of all other elements.

For the linear Gaussian model (4.9), a Gibbs sampler may be implemented as
follows:



126 4 Bayesian Interpretation of Regularization

1. Select initializations η0, θ0, and let k = 0.
2. Draw a sample η(k+1) from the full conditional distribution p(η|θ(k),Y ).
3. Draw a sample θ(k+1) from the full conditional distribution p(θ |η(k+1),Y ).
4. If k = kmax , end, else k = k + 1 and go to step 2.

This stochastic simulation algorithm generates a Markov chain whose stationary
distribution coincides with p(θ, η|Y ). Therefore, though correlated, the generated
samples {θ(k), η(k)} can be used to estimate the (joint and marginal) posterior dis-
tributions and also the posterior expectations via the proper sample averages. For
example,

1

N

N∑

k=1

θ(k) � E (θ |Y ).

The choice of the prior distributions p(θ |η) and p(η|Y ) has a critical influence on the
efficiency of the scheme. The priors are called conjugate, when for each parameter
the prior and the full conditional belong to the same distribution family. This implies
that the same random variable generators can be used throughout the simulation.

Considermodel (4.9), whereΣE is known andΣθ = λK , withλ unknown.Below,
we describe a Gibbs sampling scheme for obtaining the posterior distributions of θ

and η = λ. For θ , the prior is θ |λ ∼ N (0, λK ). A conjugate prior for λ is the inverse
Gamma distribution:

1

λ
∼ Γ (g1, g2), g1, g2 > 0.

In other words, it is assumed that 1/λ is distributed as a Gamma random variable, so
that

p

(
1

λ

)
∝

(
1

λ

)g1−1

e−(
g2
λ ).

With this choice of the prior, the full conditional of 1/λ will be distributed as a
suitable Gamma variable, ∀k. More precisely, it can be shown that, if

p
(
θ̄ |λ) ∼ N (0, λIN ), p

(
1

λ

)
∼ Γ (g1, g2)

then

p

(
1

λ

∣∣∣∣θ̄
)

∼ Γ

(
g1 + N

2
, g2 +

∥∥θ̄
∥∥2

2

)
. (4.61)

Recall that the mean and variance of the Gamma random variable are g1/g2 and
g1/g22 , respectively. For the prior to be as uninformative as possible, we let g1 and g2
decrease to zero. Under these assumptions, the Gibbs sampler unfolds as follows:

1. Initialize λ and θ , e.g., using the empirical Bayes estimates

λ(0) = λML , θ0 = θB = E (θ |λML ,Y )
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and let k = 0.
2. Draw a sample 1/λ(k+1) from the full conditional distribution

p

(
1

λ

∣∣∣∣θ
(k),Y

)
= p

(
1

λ

∣∣∣∣θ
(k)

)
= Γ

(
N

2
,
θ (k)T K−1θ(k)

2

)
. (4.62)

3. Draw a sample θ(k+1) from the full conditional distribution

p
(
θ
∣∣λ(k+1),Y

) = N
(
E (θ |λ(k+1),Y ),Var(θ |λ(k+1),Y )

)

whose mean and variance are obtained according to (4.10) or (4.13).
4. If k = kmax , end, else k = k + 1 and go to step 2.

Above, the expression of the full conditional (4.62) is a direct consequence of the
conjugacy property (4.61), as it can be seen by letting θ̄ = K−1/2θ(k), where K−1/2

is a symmetric matrix such that K−1/2K−1/2 = K−1.
When there are other hyperparameters to tune, e.g., the noise variance σ 2, the

MCMC scheme can be properly extended. Provided that they exist, conjugate priors
ensure an efficient sampling from the proposal distributions that generate the random
samples, although a variety of MCMC schemes are available that deal with non-
conjugate priors at the cost of an increased computational effort.

The main advantage of MCMC methods is that they implement the full Bayesian
framework that is only approximated by the empirical Bayes scheme. In particular,
MCMC methods do not neglect the hyperparameter uncertainty which is correctly
propagated to the parameter estimate. However, as already discussed in Sect. 4.4, if
data are informative enough to ensure a precise estimate of the hyperparameters, the
difference between MCMC and empirical Bayes estimates (and associated credible
regions) may be of minor importance.

4.11 Model Selection Using Bayes Factors

As discussed in Sect. 2.6.2, one fundamental issue is the selection of the “best”model
inside a class of postulated structures. In the classical setting, this can be performed
using criteria like AIC (2.34) and BIC (2.36) or adopting a cross-validation strategy.
We will now see that the Bayesian approach provides a powerful alternative based
on the concept of posterior model probability.

Let M i be a model structure parametrized by the vector xi . In the system iden-
tification scenario discussed in Chap. 2, the structures could be ARMAX models of
different complexity. Hence, each xi would correspond to the θ i parametrizing (2.1)
and containing the coefficients of rational transfer functions of different orders. If
little knowledge on them were available, poorly informative prior densities could be
assigned. Another example concerns the function estimation problem illustrated in
Sect. 4.9. Here, xi could contain the samples θ i of the unknown function g modelled
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as a stochastic process. Then, the different structures could represent different covari-
ances of g defined by a random walk or an integrated random walk. Each covariance
would then depend on an unknown hyperparameter vector ηi containing the variance
of the random walk increments and possibly also of the measurement noise. So, in
this case, one would have xi = [θ i ηi ]. Here, ηi is a random vector with flat priors
typically assigned to the variances to include just nonnegativity information.

Now, suppose that we are given m competitive structures M i . An important
conceptual step is to interpret even them as (discrete) random variables, each having
probability Pr(M i ) before seeing the data Y . The selection of the best model has
then a natural answer: one should select the structure having the largest posterior
probability Pr(M i |Y ). Using Bayes rule, one has

Pr(M i |Y ) =
∫
p(Y |M i , xi )dxi Pr(M i )

p(Y )
.

A typical choice is to think of the structures as equiprobable, so that Pr(M i ) = 1/m
for any i . Then, one can select theM i maximizing the so-called Bayesian evidence
given by

p(Y |M i ) =
∫

p(Y |M i , xi )dxi .

Note that this corresponds to the marginal likelihood where all the parameter uncer-
tainty connected with the i-th structure has been integrated out. Given two structures
M 1 and M 2, the Bayes factor is also defined as follows:

B12 = p(Y |M 1)

p(Y |M 2)
.

Hence, large values of B12 indicate that data strongly supportM 1 as opposed toM 2.
For the computation of the Bayesian evidence, the same numerical considerations

reported at the end of Sect. 4.4 then hold. In particular, when the evidence cannot be
computed explicitly, approximations are needed given by the Laplace approximation.
Also the BIC criterion is often adopted. In particular, in the function estimation
problem one can integrate out θ . Then, one can evaluate the complexity of the model
using the marginal likelihood optimized w.r.t. the hyperparameters ηi , then adding a
term which penalizes the dimension of the hyperparameter vector. This will be also
discussed later on in Sect. 7.2.1.1.

MCMC can be also used to compute the evidence by simulating from posterior
distributions and using the harmonic mean of the likelihood values, see Sect. 4.3 in
[14]. A more powerful and complex approach employs MCMC techniques able to
jump between models of different dimensions, an approach known in the literature
as reversible jump Markov chain Monte Carlo computation [10].
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4.12 Further Topics and Advanced Reading

There is an extensive literature debating on the interpretation of probability as a quan-
tification of personal belief and it would be impossible to give a satisfactory account
of all the contributions. The reader interested in studyingmotivations and foundations
of subjective probabilitymay refer to [4, 16]. One of themerits of Bayesian probabil-
ity is its efficacy in addressing ill-posed and ill-conditioned problems, including also
a wide class of statistical learning problems. The connection between deterministic
regularization andBayesian estimation has been pointed out by several authors in dif-
ferent contexts. Two examples related to spline approximation and neural networks
are given by [8, 15].

The choice and tuning of the priors is undoubtedly the crux of any Bayesian
approach. It is not a surprise that the tuning of hyperparameters via the Empirical
Bayes approach emerged early as a practical and effective way to deploy Bayesian
methods in real-world contexts, see [6] for its use in the study of the James–Stein esti-
mator. Since the 1980s, thanks to the advent of Markov chain Monte Carlo methods,
full Bayesian approaches have become a viable alternative, motivating reflections on
the pros and cons of the two approaches, see, for instance, [17]. In particular, the
connection between Stein’s Unbiased Risk Estimator (SURE), equivalent degrees
of freedom and the robustness of marginal likelihood hyperparameter tuning has
been investigated by [1, 21]. The choice of the prior distributions is somehow more
controversial. In the present chapter, we exposed the principles of the maximum
entropy approach, mainly following [12], but other approaches have been advocated
for finding non-informative priors. A requirement could be invariance with respect
to change of coordinates, enjoyed, for instance, by Jeffreys’ prior [13].

It not unusual to have parameters that should be left immune from regularization.
In the Bayesian approach, this corresponds to the absence of prior information,
usually expressed through an infinite variance prior. Although the case could be
treated by assigning large variances to some parameters, it is numericallymore robust
useful to use the exact formulas. Their derivation by a limit argument followed [22].

The idea of deriving approximated parametric models by a suitable projection of
the Bayes estimate conforms to Hjalmarsson’s advice “always first model as well as
possible” [11]. The projection result has been derived in [23] for Gaussian processes
and subsequently extended to general distributions in [20].

The equivalent degrees of freedom of a regularized estimator have been studied in
the context of smoothing by additive [2] and spline models [3, 9], while a discussion
specialized to the case of Bayesian estimation can be found in [5, 17].

Starting by the seminal paper [7], the use of stochastic simulation for computing
posterior distributions according to a full Bayesian paradigm has gained a wider
and wider adoption, especially when there exist conjugate priors that allow efficient
sampling schemes. In particular, this is possible for the linear model discussed in
this chapter, whose MCMC estimation is discussed in [18].
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4.13 Appendix

4.13.1 Proof of Theorem 4.1

For simplicity, the proof is given in the scalar parameter case. We have that

dMSE(θ̂)

d θ̂
= d

d θ̂

∫ +∞

−∞
(θ̂ − θ)2p(θ |Y )dθ

= 2θ̂
∫ +∞

−∞
p(θ |Y )dθ − 2

∫ +∞

−∞
θp(θ |Y )dθ

= 2
(
θ̂ − E [θ |Y ]

)
.

Moreover,
d2MSE(θ̂)

d θ̂2
= 2

∫ +∞

−∞
p(θ |Y )dθ = 2 > 0.

Therefore, θB = E [θ |Y ] minimizes MSE(θ̂).

4.13.2 Proof of Theorem 4.2

Let X = θB − θ denote the estimation error. Recalling that E [Y − Φμθ ] =
E [E] = 0, from (4.10) it follows that E X = 0. Note also that X and Y are jointly
Gaussian and

Cov(X,Y ) = E [X (Y − E Y )T ] = E [XY T ] − E XE Y T = E [XY T ].

Now, using (4.7), we have

E [XY T ] = E
[
(θB − θ)Y T

]

= ΣθYΣ−1
Y E

[
(Y − μY )Y T

] − E
[
(θ − μθ)Y T

]

= ΣθYΣ−1
Y (E

[
(YY T

] − μYμT
Y ) − E

[
θY T

] − μθμ
T
Y

= ΣθYΣ−1
Y ΣY − ΣθY = 0.

4.13.3 Proof of Lemma 4.1

By applying the matrix inversion lemma (3.145) and proceeding with simple matrix
manipulations,
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ΣθΦ
T (ΣE + ΦΣθΦ

T )−1 = ΣθΦ
T (Σ−1

E − Σ−1
E Φ(ΦTΣ−1

E Φ + Σ−1
θ )−1ΦTΣ−1

E )

= ΣθΦ
TΣ−1

E − ΣθΦ
TΣ−1

E Φ(ΦTΣ−1
E Φ + Σ−1

θ )−1ΦTΣ−1
E

= Σθ(I − ΦTΣ−1
E Φ(ΦTΣ−1

E Φ + Σ−1
θ )−1)ΦTΣ−1

E

= Σθ(Φ
TΣ−1

E Φ + Σ−1
θ − ΦTΣ−1

E Φ)(ΦTΣ−1
E Φ + Σ−1

θ )−1ΦTΣ−1
E

= (ΦTΣ−1
E Φ + Σ−1

θ )−1ΦTΣ−1
E .

4.13.4 Proof of Theorem 4.3

In view of (4.13), the conditional variance is

Var(θ |Y ) =
(

ΦTΦ

σ 2
+ Σ−1

θ

)−1

= σ 2

(
ΦTΦ + σ 2

[
a−1 In−p 0

0 Σ−1.

])−1

.

In view of (4.7)

E (θ |Y ) = ΣθΦ
T (ΦΣθΦ

T + σ 2 In)
−1Y =

[
ΣΩT

aΨ T

]
(aΨ Ψ T + M)−1Y.

By replicating the passages of Lemma 4.1

aΨ (aΨ Ψ T + M)−1 =
(

Ψ T M−1Ψ + In−p

a

)−1

Ψ T M−1.

Moreover, by applying the matrix inversion lemma, see (3.145),

(aΨ Ψ T + M)−1 = M−1 − M−1Ψ

(
Ψ T M−1Ψ + In−p

a

)−1

Ψ T M−1

= M−1 − M−1Ψ (Ψ T M−1Ψ )−1
(
In−p + 1

a
(Ψ T M−1Ψ )−1

)−1

Ψ T M−1.

Then, letting a → ∞ complete the proof. Observe that all the inverse matrices
appearing in the proof exist due to the full-rank assumptions made on Φ and Ψ .

4.13.5 Proof of Theorem 4.6

The expectation in (4.41) can be rewritten as
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E
[∥∥θ − θB + θB − g(ζ )

∥∥2
∣∣∣Y

]

= E
[∥∥θ − θB

∥∥2 + 2
(
θ − θB)T (

θB − g(ζ )
) + ∥∥θB − g(ζ )

∥∥2
∣∣∣Y

]

= E
[∥∥θ − θB

∥∥2
∣∣∣Y

]
+ E

∥∥θB − g(ζ )
∥∥2

.

The proof follows by observing that in the last equation the first term does not depend
on ζ . In the last passage, we have exploited the fact that θB|Y is deterministic and
equal to E (θ |Y ).

4.13.6 Proof of Proposition 4.3

First observe that

WRSS = ‖ε̄‖2 =
N∑

i=1

γ 2 ȳ2i
(γ + d̄2

i )
2
. (4.63)

Hence, in view of (4.52)

EWRSS = σ 2
(
N − trace(D(DT D + γ IN )−1DT )

)
.

On the other hand, by simple matrix manipulations, it turns out that

UTΨ −1/2HΨ 1/2U = D(DT D + γ IN )−1DT .

Finally, recalling that trace(AB) = trace(BA),

trace(UTΨ −1/2HΨ 1/2U ) = trace(Ψ 1/2UUTΨ −1/2H) = trace(H)

thus proving the thesis.

4.13.7 Proof of Theorem 4.8

Without loss of generality, the proof refers to the diagonalized Bayesian estimation
problem (4.48). The marginal loglikelihood function is

N∑

i=1

log(d̄2
i λ + σ 2) +

N∑

i=1

ȳ2i
d̄2
i λ + σ 2

+ κ,

where κ denotes a constant we are not concerned with. By equating to zero the partial
derivatives with respect to σ 2 and λ we obtain
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N∑

i=1

1

d̄2
i λ + σ 2

−
N∑

i=1

ȳ2i
(d̄2

i λ + σ 2)2
= 0

n∑

i=1

d2
i

d2
i λ + σ 2

−
n∑

i=1

d2
i ȳ

2
i

(d2
i λ + σ 2)2

= 0.

In view of (4.54) and (4.63),

σ 2 (N − dof(γ )) − WRSS = 0

λdof(γ ) − WPSS = 0,

which concludes the proof.
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Chapter 5
Regularization for Linear System
Identification

Abstract Regularization has been intensively used in statistics and numerical anal-
ysis to stabilize the solution of ill-posed inverse problems. Its use in System Identi-
fication, instead, has been less systematic until very recently. This chapter provides
an overview of the main motivations for using regularization in system identifica-
tion from a “classical” (Mean Square Error) statistical perspective, also discussing
how structural properties of dynamical models such as stability can be controlled via
regularization. A Bayesian perspective is also provided, and the language of max-
imum entropy priors is exploited to connect different form of regularization with
time-domain and frequency-domain properties of dynamical systems. Some numeri-
cal examples illustrate the role of hyper parameters in controlling model complexity,
for instance, quantified by the notion of Degrees of Freedom. A brief outlook on
more advanced topics such as the connection with (orthogonal) basis expansion,
McMillan degree, Hankel norms is also provided. The chapter is concluded with an
historical overview on the early developments of the use of regularization in System
Identification.

5.1 Preliminaries

As we have discussed in the preceding chapters, system identification can be framed
as an inverse problem which aims at finding a dynamical model M from a set of
measured input output “training” dataDT := {u(t), y(t)}t=1,...,N . The field of inverse
problems [5] has motivated the development of, and is pervaded by, regularization
techniques; as such it is evident that regularization could and should play a major
role also in the system identification arena.

On the contrary, we believe it is fair to say that regularization has not had a per-
vasive impact in system identification until very recently. To introduce its use in this
field, we will refer to linear models M = {M (θ)|θ ∈ DM } introduced in Chap.2,
Eq. (2.1). Note that this notation not only includes classical parametric structures,
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such as ARX, ARMAX, Box–Jenkins models but also so-called nonparametric ones
where the “parameter” θ may be infinite dimensional, e.g., containing all the impulse
response coefficients of the filtersWy(q) andWu(q)which characterize the predictor

ŷ(t |θ) = Wy(q)y(t) + Wu(q)u(t). (5.1)

The transfer functions Wy(q) and Wu(q) are related to the input–output model

y(t) = G(q, θ)u(t) + H(q, θ)e(t)

by the relation

Wy(q) := [1 − H−1(q, θ)] Wu(q) := H−1(q, θ)G(q, θ), (5.2)

see also (2.4).
For simplicity here, we consider the single-output case y(t) ∈ R. In the prediction

error framework described in Chap.2, the model fit is typically measured by the
negative log likelihood

VN (θ) = −2log p(DT |θ) = −2
N∑

t=1

log(p(y(t) − ŷ(t |θ))),

which in the Gaussian case is, up to constants, proportional to the sum of squared
prediction errors

VN (θ) ∝
N∑

t=1

(y(t) − ŷ(t |θ))2.

As discussed in Chap. 3, regularization can be added to make the inverse problem of
estimating the modelM (θ) from data well-posed, and therefore regularized estima-
tors θ̂R of the form

θ̂R := arg min
θ

WN (θ) = arg min
θ

VN (θ) + Jγ (θ) (5.3)

are considered. This framework has been extensively discussed in the previous
chapter in the context of linear regression under the squared loss VN (θ) =
‖Y − Φθ‖22, see e.g., Eq. (3.57).

The function Jγ (θ) is usually referred to as the penalty function, and possibly
depends on some (hyper-)parameter γ . In the simplest case Jγ (θ) takes the multi-
plicative form

Jγ (θ) := γ J (θ)

and γ acts a scaling factor which controls the “amount” of regularization. The most
famous example is the so-called ridge regression problem, in which a quadratic loss
VN (θ) is used and J (θ) := ‖θ‖2 so that (see also (3.61a)):
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θ̂ R := arg min
θ

‖Y − Φθ‖22 + γ ‖θ‖2 = (
ΦTΦ + γ I

)−1
ΦT Y.

However, ridge regression has not had a significant impact in the context of System
Identification, i.e., when the vector θ contains the impulse response coefficients of a
(linear) dynamical system. To understand why, it is important to discuss the choice
of Jγ (θ). We will see that it plays a fundamental role and strongly influences the
properties of the estimator θ̂R . In particular, wewill see how Jγ (θ) should be designed
to encode properties of dynamical systems such as BIBO stability, smoothness in
time domain and frequency domain, oscillatory behaviour and so on; this is a form
of “inductive bias” well known and studied in the machine learning community, see
e.g., [61].

As argued in Chap.4, regularization can be given a Bayesian interpretation. In
fact, introducing a probabilistic prior on model parameters θ of the form

pγ (θ) ∝ e− Jγ (θ)

2 (5.4)

and the Likelihood function:

p(DT |θ) ∝ e− VN (θ)

2 (5.5)

the maximum a posteriori (MAP) estimator of θ (see (4.2)), becomes

θ̂MAP := arg maxθ p(θ |DT ) (5.6)

= arg maxθ p(DT |θ)pγ (θ) (5.7)

= arg maxθ log
[
p(DT |θ)pγ (θ)

]
(5.8)

= arg minθ − log
[
p(DT |θ)

]− log
[
pγ (θ)

]
(5.9)

= arg minθ VN (θ) + Jγ (θ) (5.10)

= θ̂R . (5.11)

Inwhat follows, wewill therefore use interchangeably the “regularization” frame-
work, and thus think of Jγ (θ) as a penalty function, or the “Bayesian” framework,
and thus think of pγ (θ) as a prior (with some caution in the infinite-dimensional
case).

5.2 MSE and Regularization

The final goal of modelling is to perform some task, e.g., prediction or control, on
future unseen data. As such the estimated model quality should be measured having
the objective in mind. For simplicity, we will consider a prediction task, referring
the reader to the literature discussed in Sect. 5.9 for extensions. To this purpose, in
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addition to the training data DT , let us introduce testing data:

Dtest := {utest (t), ytest (t)}t=1,...,Ntest .

A model M̂ := M (θ̂) estimated using the training data DT should then predict
well testing data Dtest . In particular, let ŷ(t |θ̂ ) be the output prediction at instant t
constructed using the estimated model. Then, we can measure the performance of
M̂ using theMean Squared Error (MSE) on output (Y ) prediction and assuming that
data are generated by some “true”, yet unknown parameter vector θ0. This is defined
as

MSEY (M̂ , θo) = E

⎛

⎝ 1

Ntest

Ntest∑

t=1

(ytest (t) − ŷtest (t |θ̂ ))2

⎞

⎠ = E
(
ytest (t) − ŷtest (t |θ̂ )

)2
,

(5.12)
where, for simplicity, we have assumed stationary statistics for the couples utest (t),
ytest (t) in the last passage. In this section, we will argue that using regularization
in estimating θ̂ can indeed help in obtaining a small MSEY (M̂ , θ0). Let us first
assume that data are generated by an unknown “true” linear time-invariant (LTI)
causal model:

y(t) =
∞∑

k=1

gku(t − k) + e(t), (5.13)

where the “true” “parameter” θ0 = [g1, g2, g3, . . . , gn, . . .] is an infinite sequence in
�1, i.e.,

∞∑

k=1

|gk | < ∞.

We now consider the model class M (θ) of Finite Impulse Response (FIR) Output
Error (OE) models

y(t) =
n∑

k=1

θku(t − k) + e(t), (5.14)

where the parameter vector θ ∈ R
n contains the coefficients of an nth-order finite

impulse response model. Under the assumption that the input process is unit variance
white noise, independent of the measurement noise, and defining

ĝk :=
{

θ̂k k = 1, . . . , n
0 otherwise

the MSE (5.12) has the expression
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MSEY (M̂ , θ0) = E (ytest (t) − ŷtest (t |θ̂ ))2

= E
(∑∞

k=1(gk − ĝk)utest (t − k) + e(t)
)2

=
∞∑

k=1

E (gk − ĝk)
2

︸ ︷︷ ︸
E ‖g−ĝ‖2

+σ 2

=
∞∑

k=1

E (ĝk − E [ĝk])2
︸ ︷︷ ︸

Variance

+
∞∑

k=1

(gk − E [ĝk])2
︸ ︷︷ ︸

Bias2

+σ 2

=
n∑

k=1

E (θ̂k − E [θ̂k])2
︸ ︷︷ ︸

Variance

+
n∑

k=1

(gk − E [θ̂k])2 +
∞∑

k=n+1

g2k

︸ ︷︷ ︸
Bias2

+σ 2.

(5.15)
This is nothing but the usual bias-variance trade-off discussed in Chap.1: the model
(θ in this case) has to be rich enough (i.e., n large) to capture the “true” data generating
mechanism (low bias) but also simple enough (i.e., n small) to be estimated using
the available data with low variability (low variance). The squared loss

E ‖g − ĝ‖2 =
∞∑

k=1

E (gk − ĝk)
2

present on the right-hand side of (5.15), after the third equality, is called a compound
loss on the (possibly infinite) vector θ [60, 63] and defines the MSE.

Considering compound losses of this type allows us to connect with the discussion
made in Chap.1 on Stein’s effect. To simplify exposition, let us assume that the
identification input is a discrete impulse u(t) = δ(t) so that we can think of y(t) as
direct noisy measurements of all the (nonzero) impulse response coefficients

y(t) = gt + e(t) t = 1, . . . , n. (5.16)

Defining Y := [y(1), . . . , y(n)]T and E := [e(1), . . . , e(n)]T the measurement
model (5.16) can be written in vector form

Y = θ + E, E ∼ N (0, σ 2 In). (5.17)

As we have seen in Chap.1, the least squares estimator θ̂LS for model (5.17)
is dominated (for n > 2) by the James–Stein estimator discussed in Sect. 1.1.1. As
argued in Chap.1, the James–Stein estimator (1.3) is a special case of a regularized
estimator (5.3) where Jγ (θ) = γ ‖θ‖2 and γ takes the data-dependent form (1.4)

γ = (n − 2)σ 2

‖y‖2 − (n − 2)σ 2
.
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Following this route, the James–Stein estimator favours “small” parameters values
(the regularization term Jγ (θ) = γ ‖θ‖2 penalises large ‖θ‖) and therefore it is to be
expected that the gap w.r.t. the least square estimator is larger under these circum-
stances; this has been illustrated in Fig. 1.1.

As pointed out in Sect. 1.1.2, there is actually nothing special in having chosen
the origin as a reference. In fact, the penalty term can be replaced with Jγ (θ) =
γ ‖θ − a‖2 for any a ∈ R

n yielding to estimators which always dominate least
squares provided γ is chosen as

(n − 2)σ 2

‖y − a‖2 − (n − 2)σ 2
.

This teaches us that under certain circumstances it is possible to steer the estimators,
using a suitable penalty functional, towards certain regions of the parameter space
(or more generally model space); most importantly, this can be done without any loss
(actually with a gain) for any possible occurrence of the “true” yet unknown system.
However the reader should remind that this only holds for the compound loss (5.15)
and should not be seen as panacea. For instance, James–Stein estimatorsmay provide
only marginal improvements over Least Squares in situations where the signal-to-
noise ratio is highly non-uniform over parameter space, a situation often encountered
in system identification when input signals are not white and poor excitation may be
present, e.g., in certain frequency bands. This has been illustrated in Example 1.2.

Therefore, as a take home message from Chap.1 and the discussion above, we
should remind that regularization has potential to offer, yet its use in system identi-
fication is not straightforward. The main reasons are as follows:

1. Often one cannot restrict to Output Error models (i.e., also noise models should
be included) and the input process is neither impulsive nor white. Thus, the MSE
(5.12) takes a different form than (5.15). This calls for extensions of James–Stein
estimators to weighted losses and non-orthogonal design; to some extent this has
been pursued in the statistics literature, the reader is referred to [4, 9, 43, 64] and
references therein. See also [13, Sect. 6].

2. While James–Stein estimators have been builtwith the purpose of showing that the
least squares estimator is not admissible (see Sect. 1.1.1, for a formal definition),
it may not necessarily be our primary goal to dominate least squares (or another
estimator) uniformly over parameter space. In order to cure the ill-conditioning
phenomenon widely discussed in Chap.3, it could be advantageous to tailor reg-
ularization to certain “dynamical-system” oriented properties, thus gaining a lot
in certain regions of the model space, while possibly incurring in minor losses in
other regions which are very unlikely.

The latter is one of the main goals of this book, i.e., to provide the reader with a
thorough understanding of the role of regularization in estimating dynamical systems
so as to optimally design regularization methods depending on the intended use of
the model. In the remaining part of the chapter, we will first introduce the concept
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of “optimal” prior and derive its expression. We will then connect the structure
of the optimal prior to the notion of BIBO stability for linear dynamical systems
and also its link with smoothness in time and frequency domains. Connection with
the Bayesian setting will also be provided. The chapter will be concluded with an
historical overview of how the use of regularization in the context of estimation
of dynamical systems has evolved, illustrating also the role played by time- and
frequency-domain smoothness.

5.3 Optimal Regularization for FIR Models

Let us consider the problem of estimating the impulse response {θk}k=1,...,n of the
FIR model (5.14) using data {y(t)}t=1,...,N . The FIR model can be compactly written
as

Y = Φθ + E, (5.18)

where Y := [y(1), . . . , y(N )]T , E := [e(1), . . . , e(N )]T and Φ contains the input
samples, which are assumed to be available for all times needed to avoid issues
related to the initial condition. Then, we will still use θ0 to denote the “true” value
that has generated the data.

We now consider the class of regularized estimators

θ̂ R := arg min
θ∈Rn

‖Y − Φθ‖2 + σ 2θT P−1θ

parametrized by the regularization matrix P = PT > 0. As shown in Chap.3, see
Eq. (3.60), the generalized ridge regression estimator θ̂ R can be extended also to the
case P is singular so that we can assume P = PT � 0. As a matter of fact, in the
Bayesian framework introduced in Chap.4, θ R can be also interpreted as the MAP
estimator

θ̂MAP := argmax p(θ |Y )

obtained under the assumption that the noise E is Gaussian, zero mean and variance
σ 2 I and that θ is independent of E , zero-mean Gaussian with (possibly singular)
variance P = PT � 0 (the singular case was described in (4.19)).

In this section, to emphasize the dependence of the estimator θ̂ R on P = PT � 0,
we will use the notation

θ̂ P := θ̂R = θ̂MAP .

Our objective now is to study the performance of the estimator θ̂ P , in terms of
MSE, as a function of P = PT � 0, under the assumption that Y has been generated
by a “true model” of the form (5.18) with a deterministic and unknown parameter
θ0. Thus, the only source of “randomness” is the noise vector E and the system input
which is seen as a stochastic process (independent of E) in this section.
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We consider a test experiment with a new input utest (t), independent of the input
u(t) used for identification; for convenience of notation, we define the lagged test
input vector

φtest (t) := [utest (t), . . . , utest (t − n + 1)]T

so that under (5.14) the test output is given by

ytest (t) = φT
test (t)θ0 + etest (t).

Let us also define the covariance matrix

Wu = Var {φtest (t)} = E φtest (t)φ
T
test (t)

(note that stationary assumptions are present here, in fact Wu does not depend on
time t) and the MSE matrix

Mθ0(P) := E (θ0 − θ̂ P)(θ0 − θ̂ P)T .

If we now consider the outputmean squared errorMSEY (M̂ , θ0) in (5.12) computed
for the model M̂ , we obtain

MSEY (M̂ , θo) = E
(
ytest (t) − ŷtest (t |θ̂ P)

)2

= E
[
φT
test (t)θ0 + etest − φT

test (t)θ̂
P
]2

= E
[
(θ0 − θ̂ P)Tφtest (t)φT

test (t)(θ0 − θ̂ P)T
]

+ σ 2

= Tr{E (θ0 − θ̂ P)(θ0 − θ̂ P)TE φtest (t)φT
test (t)} + σ 2

= Tr{Mθ0(P)Wu} + σ 2,

(5.19)

where in the second to last equation, we have used that the test inputs and noises are
assumed to be independent of the training inputs and noise in the identification data
used for estimating θ̂ P .

A direct consequence of this fact is that, given two prior covariance matrices P
and P∗, if Mθ0(P) � Mθ0(P

∗), then

MSEY (θ̂ P , θ0) ≥ MSEY (θ̂ P∗
, θ0) ∀Wu,

i.e., estimator θ P∗
outperforms θ P in terms of output prediction for any possible

choice of the test input covariance Wu . Thus, if the modelling purpose is output
prediction, it is of interest to minimize, w.r.t. all possible P = PT � 0, the matrix
Mθ0(P), i.e., to find

P∗ := argmin
P=PT �0

Mθ0(P), (5.20)



5.3 Optimal Regularization for FIR Models 143

so that θ̂ P∗
outperforms any other θ̂P in terms of output error (5.15) for any choice of

the (test) input covariance Wu . Under the assumption that the true model generating
the data is an FIR model of length n with impulse response

gk =
{

θ0,k k ≤ n
0 k > n,

the solution P∗ of theminimization problem in (5.20) has been derived in Proposition
3.1, and takes the form

P∗ = θ0θ
T
0 , (5.21)

where θ0 is the “true” impulse response of the data-generating mechanism (5.14).
An alternative proof of the optimal solution (5.21) to problem (5.20) can be found
in Sect. 5.10.1. Since P∗ depends on the unknown true system, this result is not of
practical interest; however, if we think of the FIR model (5.14) as the approximation
of a BIBO stable infinite impulse response model

y(t) =
∞∑

k=1

θ0,ku(t − k) + e(t), (5.22)

the impulse response θ0 should have finite �1 norm ‖θ0‖1, i.e.,

‖θ0‖1 :=
∞∑

k=1

|θ0,k | < ∞, (5.23)

and therefore θ0,k should decay as a function of the index k. As a result, the entries
[P∗]i j = θ0,iθ0, j of optimal kernel decay as functions of the row and column indexes
i and j . In Bayesian terms, it is thus expected that also the elements [P]i j of any
“good” candidate prior variance should do the same. As we will see later in this
chapter, recent forms of regularization for system identification include a decay rate
condition on the elements [P]i j , so as to guarantee that the estimated system is
BIBO stable. Therefore, we will often refer to conditions on the decay rate of P
as “stability conditions”. While condition (5.23) is obviously satisfied when θ is a
finite dimensional vector, this loose connection between decay rate of the kernel
and stability needs to be tightened. We will see in the next section that this can be
properly formulated in a Bayesian framework.

5.4 Bayesian Formulation and BIBO Stability

In the previous section, we have considered only FIR models which are reasonable
approximations of any BIBO LTI system in most practical scenarios. However, it
is of interest to formulate the estimation of LTI BIBO stable systems in full gen-
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erality, without assuming the impulse response to be of finite support. This entails
working with infinite dimensional impulse responses {θk}k∈N. In this chapter, we
first consider the Bayesian framework, while regularization in infinite-dimensional
Hilbert spaces will be addressed in Chap. 6. To start with, we model the unknown
impulse response {θk}k∈N as a stochastic process indexed over time k; this is the
straightforward extension to the infinite-dimensional case of (5.18) where θ was a
finite-dimensional random vector. In this context, it is of interest to introduce the
concept of “stable” priors:

Definition 5.1 (Stable priors) A prior on {θk}k∈N is said to be stable if realizations
are sequences almost surely in �1, i.e.,

∞∑

k=1

|θk | < ∞ a.s.

In most of this book, mostly for computational reasons, we will also assume
that {θk}k∈N be Gaussian (i.e., that any finite collection of random variables {θk}k∈I ,
I = {i1, . . . , i�}, ik ∈ N, � ∈ N are jointly Gaussian). This is formalized in the fol-
lowing assumption.

Assumption 5.1 Under the Bayesian framework, we assume {θk}k∈N to be a Gaus-
sian stochastic process with mean {mk}k∈N and covariance function K (t, s), t, s ∈ N.

�

It is an interesting fact that, under additional assumptions on the mean and covari-
ance functions, the prior is stable according to Definition 5.1, as formalized in the
following lemma whose proof is in Sect. 5.10.2.

Lemma 5.1 Under Assumption 5.1 and if the following additional conditions hold

∞∑

k=1

|mk | = M�1 < ∞
∞∑

k=1

K (k, k)1/2 = K�1 < ∞, (5.24)

then the prior is stable as per Definition 5.1, i.e.,

∞∑

k=1

|θk | < ∞ a.s.

In most of this book, we will also make the assumption that the a priori mean mt

is identically zero, and thus only the condition on the covariance K (t, s) should be
checked to ensure stability. We will now discuss different form of prior covariances
K encountered in the literature.
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5.5 Smoothness and Contractivity: Time- and
Frequency-Domain Interpretations

As seen in Sect. 5.3, the optimal regularizer should mimic the “true” impulse
response, which is clearly unfeasible since the impulse response is unknown. How-
ever, as already discussed in Sect. 5.4, we can use the prior to encode qualitative
behaviour of impulse responses of BIBO stable linear systems. In particular we have
seen in Lemma 5.1 that a certain decay condition on the prior mean and covariance
guarantees the description of only (almost surely) BIBO stable linear systems. The
simplest example of such a prior model is the following.

Example 5.2 (Diagonal (DI) prior) Assume the prior mean to be zero mt = 0,
∀t ∈ N and the covariance function to be diagonal with exponentially decaying
entries

K (t, s) = λαtδ(t − s) t, s ∈ N λ > 0, 0 ≤ α < 1.

The parameters λ (scale factor) and α (decay rate) are treated as hyperparameters to
be estimated from data, using e.g., marginal likelihood maximization, as described
in Sect. 4.4. It is worth observing that the assumptions of Lemma 5.1 are satisfied,
indeed

∑

t∈N
|mt | = 0

∑

t∈N
K (t, t)1/2 =

∑

t∈N

√
λαt/2 = √

λ

√
α

1 − √
α

< ∞

and hence this is a stable prior.
�

It is interesting to observe that a decay rate condition on the impulse response coef-
ficients is equivalent to assuming a smoothness condition in the frequency domain.
To see this, let us introduce the frequency response function

G(e jω) :=
∞∑

k=1

θke
− jωk .

The L2-norm of the first derivative dG(e jω)

dω
can be considered

∥∥∥∥
dG(e jω)

dω

∥∥∥∥
2

:= 1

2π

∫ 2π

0

∣∣∣∣
dG(e jω)

dω

∣∣∣∣
2

dω

which using Parseval’s theorem can be expressed in time domain

∥∥∥∥
dG(e jω)

dω

∥∥∥∥
2

=
∞∑

k=1

k2|θk |2. (5.25)
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Fig. 5.1 Sample realizations from the diagonal kernel prior forα = 0.4 (top) andα = 0.8 (bottom).
Impulse response is on the left, frequency response (magnitude only) on the right

Computing higher-order derivatives, and using again Parseval’s theorem, the L2-
norm of the mth-order derivative is given by

∥∥∥∥
d(m)G(e jω)

dω(m)

∥∥∥∥
2

=
∞∑

k=1

k2m |θk |2. (5.26)

Hence, the condition that the {θk} decay rapidly (and possibly exponentially as postu-
lated by theDiagonal kernel) with k, implies a bound on the L2 norm of themth-order
derivatives, i.e., smoothness in the frequency domain of the model.

As illustrated in Fig. 5.1, smoothness in the frequency domain decreases when α

increases. However, under this prior, the impulse response coefficients are modelled
as independent (yet not identically distributed) random variables. Thus no smooth-
ness in the time domain is included, as for instance, is typically performedwith priors
based on random walk, which are the discrete-time counterpart of spline models as
discussed in Sect. 4.9. A prior model that, in addition to stability, also includes a
smoothness condition in the time domain, is the so-called TC-kernel:

Example 5.3 (Tuned-Correlated (TC) prior) Assume the priormean is zeromt = 0,
∀t ∈ N and the covariance function takes the form

K (t, s) = λαmax(t,s) t, s ∈ N λ > 0, 0 ≤ α < 1.

As in the previous example, the parameters λ (scale factor) and α (decay rate) are
treated as hyperparameters to be estimated from data, using e.g., marginal likelihood
maximization. It is worth observing that also in this case the assumptions of Lemma
5.1 are satisfied, indeed

∑

t∈N
|mt | = 0 < ∞

∑

t∈N
K (t, t)1/2 =

∑

t∈N

√
λαt/2 = √

λ

√
α

1 − √
α

< ∞
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Fig. 5.3 30 sample
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and hence this is a stable prior. In addition, the TC prior now introduces correlation
between impulse response coefficients, e.g., one has

E θtθs = λαt ∀t ≥ s.

So, the correlation is different from zero and exponentially decays to zero. �
Figure5.2 shows two typical realizations from the TC prior, both in time domain

and frequency domain, for α = 0.4 (top) and α = 0.8 (bottom), while Fig. 5.3 shows
30 sample realizations from the DI (top) and TC (bottom) priors, respectively.

Example 5.4 (Importance of stable priors) In order to illustrate the advantage of
using stable priors, we now consider a simple example of identification of an output
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error model. In particular, we consider a system of the form

y(t) =
∞∑

k=1

gku(t − k) + e(t),

where themeasured input u(t) and the noise e(t) are realizations fromwhiteGaussian
noise with zero mean and unit variance. The impulse response is

gk =
{(

k
2

)2
e− k

4 k ≥ 1
0 k < 1

.

For the purpose of identification, we assume the input is available at all time instances
needed. For illustration purposes, the impulse response has been truncated at k = 50,
since it is in practice zero for k > 50. We also assume that output measurements
y(t) are available for t = 1, . . . , 35. The hyperparameters are all estimated using
marginal likelihood maximization, see Sect. 4.4. The results are shown in Fig. 5.4.
The reconstruction error is measured using the percentage root mean square (RMS)
error: √∑∞

k=1(gk − ĝk)2∑∞
k=1 g

2
k

× 100%. (5.27)

As illustrated in Fig. 5.4, it is apparent that the results obtained by using the stable
priors, see panels (b) and (c), outperform those returned by the spline (random walk)
prior, see panel a, that does not include the stability constraint. The best relative error
is obtained by the TC priors (10%) and goes up to as much as 33% for the spline
priors. It can also be observed that while for stable priors (b) and (c) confidence
intervals shrink as time index k grows, the same does not hold for the spline prior.
The same behaviour had been observed in Sect. 4.9, see Fig. 4.1. �

In the next section, a class of stable priors, which includes TC as a special case,
will be derived following a first-principle maximum entropy framework.

5.5.1 Maximum Entropy Priors for Smoothness and
Stability: From Splines to Dynamical Systems

The class of Stable Spline priors introduced in the paper [49] extends smoothness
priors ideas used in splines models introduced in Sect. 4.9, embedding exponential
decay conditions on the impulse response prior. They ultimately lead to estimated
models which are BIBO stable with probability 1.

In this section, wewill introduce a simple construction of these stable spline priors
in discrete time. In particular, we will exploit a very natural axiomatic derivation in
the maximum entropy framework introduced in Chap.4. For the sake of illustration,
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Fig. 5.4 Panels a–c: impulse response reconstruction (blue) and true (red) with 95% Bayesian
confidence intervals (dashed). Panel d is the relative RMS error (5.27) on impulse response recon-
struction as a function of the scale factor λ. For DI and TC priors for each scale factor, the optimal
decay rate α is estimated using marginal likelihood. The star denotes the performance obtained
using the scale factor selected using marginal likelihood optimization. It is remarkable that the rel-
ative error achieved by maximizing the marginal likelihood is close to the minimum achievable by
an oracle who would have access to the true impulse response and thus could minimize the relative
RMS error

we will only consider the so-called stable spline prior of order one (also known as the
TC prior, see Example 5.3) and its extension known as DC prior. Possible extensions
will be discussed, but not developed in full detail.

The most natural construction, inspired by smoothing spline ideas, is based on
the following two observations:

1. Stability: the variance of θk should decay “sufficiently fast” (see Lemma 5.1),
possibly exponentially, with the lag k. Assuming a zero-mean process, this can
be expressed using a condition on second-order moments of the form:

E
[
θ2
k

] = λSα
k k = 1, . . . , n 0 < α < 1. (5.28)
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For reasons that will become clear later on, imposing equality (as done above)
rather than inequality constraints is convenient.

2. Smoothness: the difference between adjacent coefficients should be constrained,
e.g., as measured by the relative variance,

E
[
(θk−1 − θk)

2
]

E
[
θ2
k−1

] = λR k = 2, . . . , n. (5.29)

Using the stability constraint and redefining the constant λR , condition (5.29) can
be rewritten as

E
[
(θk−1 − θk)

2] = λRαk−1 k = 2, . . . , n. (5.30)

The following theorem (whose proof is reported in Sect. 5.10.3) derives the class
ofmaximumentropy priors under the constraints (5.28) and (5.29).Next, inCorollary
5.1 (whose proof is in Sect. 5.10.4), we will see that for special choices of λS and λR

the well-known TC and DC priors [10, 52] are obtained.

Theorem 5.5 Let {θk}k=1,...,n be a zero mean, absolutely continuous random vector
with density pθ (θ), that satisfies the following constraints (with 0 < α < 1):

E
[
θ2
k

] = λSα
k k = 1, . . . , n

E
[
(θk−1 − θk)

2
] = λRαk−1 k = 2, . . . , n

(5.31)

with λS ∈ R and λR ∈ R such that

λS(1 − √
α)2 < λR < λS(1 + √

α)2. (5.32)

Then, the solution pθ,ME (θ) of the maximum entropy problem

pθ,ME := arg max
p(·) s.t. (5.31)

−E log(pθ (θ)) (5.33)

has the following form:
pθ,ME (θ) = Ce− 1

2 θT Σ−1θ , (5.34)

where the matrix Σ−1 has the band structure:

Σ−1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ 0 . . . . . . 0
∗ ∗ ∗ 0 . . . 0
0 ∗ ∗ ∗ 0 . . .
... . . .

. . .
. . .

. . . . . .

0 . . . 0 ∗ ∗ ∗
0 . . . . . . 0 ∗ ∗

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.
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The maximum entropy process admits the backward representation

θk−1 = aBθk + wk wk ∼ N (0, σ 2
k ) k ∈ {1, . . . , n}

with

aB = λS(1 + α) − λR

2λSα
, (5.35)

σ 2
k = λSα

k−1(1 − a2Bα), (5.36)

and terminal condition
E θ2

n = λSα
n. (5.37)

Last, the autocovariance of θk satisfies the relation:

E θkθh = λSa
|k−h|
B αmax{k,h}. (5.38)

Corollary 5.1 Under the conditions of Theorem 5.5 and defining

ρ := aB
√

α = λS(1 + α) − λR

2λS
√

α
, (5.39)

the maximum entropy model in Theorem 5.5 corresponds to the so-called DC-kernel
[10], i.e.,

E θkθh = λSρ
|k−h|α

k+h
2 . (5.40)

In particular, for λR = λS(1 − α), this reduces to the so-called TC kernel [10] with

E θkθh = λSα
max{k,h}, (5.41)

while for λR = λS(1 + α), we obtain the covariance of the “diagonal” kernel

E θkθh =
{

λSα
P k = h

0 k �= h
. (5.42)

Remark 5.1 In themaximumentropykernel derived inTheorem5.5,which includes
DC, TC and DI as special cases as stressed in Corollary 5.1, the constant λS plays
only the role of a scale factor while α is a “decay rate”. Therefore, by fixing λS = 1
and α = 0.8 we can study the behaviour as the “regularity” constant λR varies in
the interval λS(1 − √

α)2 = λR,min ≤ λR ≤ λR,max = λS(1 + √
α)2. This is entirely

equivalent to studying the behaviour of the kernel as a function of the ratio λR/λS .
We thus consider a grid of 9 possible values λR,min = λR,1 < λR,2 < · · · < λR,9 =
λR,max . Then, Fig. 5.5 plots 5 sample realizations for each of these values with panel
(i) corresponding to the value λR,i . In particular, λR,4 = λS(1 − α) corresponds to
the TC kernel and λR,6 = λS(1 + α) induces the DI kernel. For each realization
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Fig. 5.5 Sample realizations (solid) and best (least squares) exponential fit as a function of the
kernel parameters. In all figures α = 0.8 and λS = 1. The regularity parameter λR varies, from

its minimum value λR,min = λS(1 − √
α)

2  0.011 in panel (1) to the maximum value λR,max =
λS(1 + √

α)
2  3.589 in panel (9). Panel (4), with λR = 0.2, corresponds to the TC kernel; panel

(6) with λR = 2.6 to the DI kernel

from the prior (solid line) also its best single-exponential fit is shown in order to
highlight the “overall” decay rate which can be thought of as an envelope of the
curves. In panel (1), with λR taking the smallest possible value, hence imposing the
“maximum” amount of regularity, all realizations are pure exponentials. In panel (9),
with λR taking its maximum value, all realizations are pure damped oscillations. In
fact, in both cases, it can be checked that the corresponding kernel is singular.

Degrees of Freedom of the DC Kernels
Theorem 5.5 provides a class of kernels Kη parametrized by the hyperparameter
vector η := [λS, λR, α]. In Fig. 5.5, we have illustrated how realizations from the
prior change as a function of the regularity parameter λR having fixed λS = 1 (or
equivalently as a function of the ratio λR/λS). As discussed in Chap.4, choosing the
prior is equivalent to describing the model class. In the linear system identification
context, this then defines a penalty function on impulse responses. A way to measure
the “size” of the model class is to use the concept of equivalent degrees of freedom,
introduced in the Bayesian context in Sect. 4.8. Unfortunately, the degrees of free-
dom are defined in terms of the output predictor sensitivity and they thus require to
specify not only the model class but also the experimental conditions under which
the model is estimated. Only in limiting cases (such as improper prior on finitely
and linearly parametrized model classes), degrees of freedom become independent
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of the experiment and coincide with the number of parameters. In this section, we
thus consider the prototypical setup in Eq. (5.18):

Y = Φθ0 + E Y ∈ R
N , N = 1000, θ0 ∈ R

n. (5.43)

We recall that the matrixΦ is an Hankel matrix built with the input samples {u(t)} so
that Φθ0 implements the convolution of u with θ0. The input {u(t)} is now assumed
to be a zero-mean unit variance white noise. We also assume the noise {e(t)} is zero-
mean unit variance white noise. We consider two scenarios in which the order of the
system (length n of θ0) is assumed to be either n = 30 or n = 100. Exploiting the
derivation in Chap.4 (see Definition 4.2 and Proposition 4.3), the degrees of freedom
dof(η), as a function of the hyperparameter vector η, are given by

dof(η) = trace
(
Φ(ΦTΦ + K−1

η )−1ΦT
)
.

Assuming also here that λS = 1, we study how dof(η) varies as a function of λR

for three different values of α (0.6, 0.8, and 0.95). The behaviour is illustrated in
Fig. 5.6 where it is apparent that the maximum is achieved for the DI kernel, and the
minimum (a bit smaller than 1) is attained at the extremum points, where the kernel
has rank exactly equal to 1. It is interesting to observe the intertwining between
the value of α (that controls the decay rate) and the length of the FIR model n. As
the coefficient vector θ0 changes from length n = 30 (left) to n = 100 (right) the
effective “size” of the model doesn’t change much for α = 0.6 and α = 0.8, while
it does increase when α = 0.95. This confirms the fact that the kernel, for α fixed,
effectively controls the model complexity so that the estimator becomes insensitive
to the chosen length, provided n is “big enough” w.r.t. α. In particular n = 15 would
be sufficient for α = 0.6, n = 30 for α = 0.8 while for α = 0.95 the effective size
is about n = 100.

Extension to Smoothness Conditions on Filtered Versions �

So far, we limited our attention to so-called “first-order” stable splines, which are
derived imposing conditions on “first-order” differences, leading to first-order, i.e.,
AR(1), realizations. Of course these constructions can be generalized by replacing
(5.31) with a higher-order constraint of the form

E ‖θk‖2 ≤ λSα
k

E ‖θk −∑p
i=1 aiθk+i‖2 ≤ λRαk .

(5.44)

While the first constraint is a “standard” stability condition, the second constraint can
be interpreted as a filtered frequency domain smoothness condition. In fact, defin-
ing the filter F(q) := 1 −∑p

i=1 aiq
i , let us denote with θ F

k the sequence obtained
filtering θk with F(q). The condition
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Fig. 5.6 Effective degrees of freedom of the DC kernel as a function of λR (λS = 1) for model
(5.43); n = 30 (left), n = 100 (right). From top to bottom: α = 0.6, α = 0.8 and α = 0.95
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E ‖θ F
k ‖2 = E ‖θk −

p∑

i=1

aiθk+i‖2 ≤ λRαk

implies that θ F
k should decay “fast” enough (in mean square) and thus

E
∞∑

k=0

k2m‖θ F
k ‖2

should be small for any integer m. As a consequence, if

G(e jω) :=
∞∑

k=1

θke
− jωk,

using Parseval’s theorem,

E

∫ 2π

0

∥∥∥∥F(e jω)
d(m)G(e jω)

dω(m)

∥∥∥∥
2

dω

should be small as well, implying that θk should concentrate most of his energy
(variance) in frequency bands where the (absolute value of the) filter F(e jω) is
small.

We regard developments of this type, in principle, as a straightforward extension
of the basic ideas discussed in this chapter to obtain DC kernels. In particular, the
choice of the coefficients a in (5.44) is a design issue, which can be guided by prior
knowledge on the candidate models, and its underlying principles and ideas are the
same as those illustrated above. There are however additional complications due to
the richer structure of the constraints, which might entail non-trivial issues to derive
an analytic expression of the kernel.

5.6 Regularization and Basis Expansion �

The �2 (ridge regression) regularized estimators that have been discussed in this
chapter can also be framed in the context of basis expansion using the so-called
Karhunen–Loève decomposition of the random process θ . For the sake of exposition,
we will now consider the finite-dimensional case, i.e., we will study FIR models
of length n of the form (5.14). Extension to the infinite-dimensional case will be
discussed in the framework of Reproducing Kernel Hilbert Spaces illustrated in
Chap.6.Under this finite-dimensional assumption,we consider the covariancematrix
K ∈ R

n×n whose entries satisfy [K](t,s) := K (t, s) = cov(θt , θs). The matrixK can
be written in terms of its spectral decomposition (Singular Value Decomposition) in
the form:
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K = USUT =
n∑

i=1

ξi ui u
T
i ui ∈ R

n ‖ui‖ = 1 ui ⊥ u j ∀i �= j, (5.45)

where
U := [u1, . . . , un] S := diag{ξ1, . . . , ξn}.

The set of vectors ui ∈ R
n provides an orthonormal basis of Rn so that any impulse

response θ ∈ R
n can be written using the orthonormal basis expansion

θ =
n∑

i=1

uiβi βi :=< θ, ui >, (5.46)

where the coefficients βi =< θ, ui >= uT
i θ are therefore zero-mean random vectors

with covariances
E βiβ j = E uT

i θθT u j = uT
i Ku j = ξiδi j .

Clearly, the argument above can be reversed. Namely, starting from (a possibly
orthonormal) basis ui , i = 1, . . . , n the random basis expansion

θ =
n∑

i=1

uiβi , βi ∼ N (0, ξi ) (β1, . . . , βn) independent (5.47)

induces a probability description of the candidate θ ’s which turns out to be zeromean
and with covariance matrix as in (5.45). This interpretation provides a clear link
between “standard” models described in terms of basis expansions, regularization
and the Bayesian view.

Remark 5.2 (Low-Rank Kernel Approximation) The spectral decomposition of the
kernel (5.45) suggests also that, when some singular values ξi are “very small”, it
can be easily approximated by a low-rank matrix

K =
n∑

i=1

ξi ui u
T
i 

n̂∑

i=1

ξi ui u
T
i n̂ ≤ n.

This is equivalent to approximating the ξi below a certain thresholdwith zero singular
values. This threshold can be chosen by a standard SVD-truncation criterion, e.g.,
neglecting singular values below a certain fraction of the largest singular value ξ1,
i.e., that satisfy

ξi <
ξ1

R
.

In Fig. 5.7, the value R = 20 has been chosen to plot themost relevant eigenfunctions.
Low-rank kernel approximation can also be exploited to reduce the computational
burden in computing the solutions.
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Fig. 5.7 First n̂ eigenfunctions of the DC kernel. To enhance clarity, n is chosen for each com-
bination of the parameters so that n̂ = argmaxi i s.t. σ 2

i > σ 2
1 /20 (see Remark 5.2). In all fig-

ures, α = 0.8 and λS = 1. The regularity parameter λR varies, from its minimum value λR,min =
λS(1 − √

α)
2  0.011 in panel (1) to themaximumvalue λR,max = λS(1 + √

α)
2  3.589 in panel

(9). Panel (4), with λR = 0.2, corresponds to the TC kernel; panel (6) with λR = 2.6 to the DI kernel

Figure5.7 shows the eigenfunctions of the DC kernel for different choices of the
hyperparameters. As already studied in the previous section, the “complexity” of the
kernel, measured e.g., by the degrees of freedom as illustrated in Fig. 5.6, varies as
the hyperparameters change. In the context of basis expansions, this is clear from
Fig. 5.8 where the singular values of the kernel, i.e., the variances of the basis
expansion coefficients βi , introduced in (5.47), vary as the hyperparameters change.
For instance when λR = λR,min , see panel (1), and λR = λR,max , see panel (9), the
kernel has rank 1. Instead the singular values decay slower for the DI kernel, see
panel (5), that also has the largest number of degrees of freedom, see Fig. (5.6).

Even if this section is devoted to finite impulse response models (i.e., n finite,
and therefore BIBO stable systems), it still makes sense to discuss what happens
to the coefficients θn when n becomes “large” and its relation with BIBO stability.
In Lemma 5.1, we have seen that a sufficient conditions for a.s. BIBO stability of
realizations from the Gaussian prior, is that the diagonal elements of K satisfy the
summability condition
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Fig. 5.8 First 10 singular values of the DC kernel. In all figures, α = 0.8 and λS = 1. The regu-

larity parameter λR varies, from its minimum value λR,min = λS(1 − √
α)

2  0.011 in panel (1)

to the maximum value λR,max = λS(1 + √
α)

2  3.589 in panel (9). Panel (4), with λR = 0.2,
corresponds to the TC kernel; panel (6) with λR = 2.6 to the DI kernel

∞∑

t=1

K (t, t)1/2 < ∞

which requires a “sufficiently fast” decay rate of the diagonal K (t, t). A quite natural
question concerns how the behaviour of K (t, t) reflects on the basis vectors ui . The
following lemma, whose proof is in Sect. 5.10.5, gives the answer.

Lemma 5.2 The basis vectors ui introduced in (5.45), whose tth elements are
denoted by uit , satisfy the inequality

|uit | ≤ 1

ξi
C[K]1/2t,t , C :=

n∑

t=1

[K]t,t . (5.48)

Condition (5.48) holds also in the infinite dimensional case, i.e., as n → ∞, provided
K (t, s) admits the spectral decomposition
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K (t, s) =
∞∑

i=1

ξi uit uis,

where the ui are orthonormal sequences in �2 and the condition
∑∞

t=1 K (t, t) =
C < ∞ is satisfied.

While this result is essentially trivial for n finite, it becomes important when
n → ∞, since it provides a condition on the tail behaviour of the eigenvectors (eigen-
functions). For instance, if the diagonal entries (variances) of the kernel K (t, t) decay
exponentially fast as a function of t , also the uit do so. The decay of the eigenfunctions
can be visually inspected in Fig. 5.7.

5.7 Hankel Nuclear Norm Regularization

As discussed above, regularization can be used to enforce smoothness and stability
of impulse responses. Yet this is just one way, and possibly not the most common in
the field of dynamical systems, to control the “complexity” of model classes.

For instance, in the parametric approach to system identification, the complex-
ity can be measured by the dimension of a minimal state-space realization of the
unknown system. For ease of exposition, let us now only consider the single-input
single-output output error case (i.e., H(z) = 1). In this case, the number of free
parameters is 2n + 1 where n is the degree of the denominator of the transfer func-
tion Gθ (z), that also equals the dimension n of a minimal state-space realization of
Gθ (z) which is called the McMillan degree of G(z, θ), as seen in Sect. 2.2.1.1. To
fix notation, let us introduce a minimal state-space realization of G(z, θ)

xt+1 = Axt + But xt ∈ R
n,

yt = Cxt
(5.49)

which is such thatG(z, θ) = C(z I − A)−1B. If {g(k, θ)}k∈N is the impulse response
sequence, parametrized by θ , then one has g(k, θ) = CAk−1B ∀k > 0.

It is well known from realization theory that the McMillan degree has a close
connection with the so-calledHankelmatrix formed with the impulse response coef-
ficients, i.e.,

Hr,c(θ) :=

⎡

⎢⎢⎢⎣

g(1, θ) g(2, θ) g(3, θ) . . . g(c, θ)

g(2, θ) g(3, θ) g(4, θ) . . . g(c + 1, θ)
...

. . .
. . .

. . .
...

g(r, θ) g(r + 1, θ) g(r + 2, θ) . . . g(r + c − 1, θ)

⎤

⎥⎥⎥⎦ (5.50)

with r block rows and c block columns. The following lemma holds.
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Lemma 5.3 (based on [65]) The linear time-invariant systemwith impulse response
{g(k, θ)}k∈N admits a minimal state-space realization of order n (i.e., has McMillan
degree equal to n) if and only if, for some choice of r, c the following holds:

n = rank{Hr,c(θ)} = rank{Hr+ j,c+i (θ)} ∀ i, j ∈ N. (5.51)

In practice, only a finite number of impulse response (Markov) parameters g(k, θ),
k = 1, . . . , p is available and the problem of finding a state-space model of the form
(5.49) such that g(k, θ) = CAk−1B ∀ k = 1, . . . , p, is known as partial realization
problem.

This shows that, indeed, a notion of “complexity” can be attached to the dimension
n of a minimal state-space realization (5.49); therefore the rank of the Hankel matrix
Hc,r (θ) can be considered as a candidate for performing regularization. This leads
to the choice of a penalty given by

JH ,γ (θ) := γ rank{Hr,c(θ)} (5.52)

for suitable values of the integers c, r . Unfortunately, similarly to what happens
for the 0 quasi-norm ‖x‖0 (defined as the number of non-zero entries in the
vector x) discussed in Sect. 3.6.2.1, the rank functional is not convex; as a result
solving optimization problems involving penalties of the form (5.52) is problematic.
The very same issue arise in a variety of rank-constrained optimization problems.

As seen in Chap.3, to overcome this limitations, inspired by work on �1 reg-
ularization, researchers have suggested to use the nuclear norm ‖A‖∗ of a matrix
A ∈ R

m×n defined as

‖A‖∗ := trace
(√

AT A
)

=
∑

i

σi (A), (5.53)

where σi (A) denotes the i th singular value of the matrix A, as a surrogate for the
rank of the matrix A. The nuclear norm is also known as Ky–Fan n-norm or trace
norm. This choice is motivated by the following lemma.

Lemma 5.4 (based on [20]) Given a matrix A ∈ R
m×n the nuclear norm of A is

the convex envelope of the rank function on the set A := {A ∈ R
m×n, ‖A‖ ≤ 1}.

These considerations have led to a whole class of regularization methods which
build upon the nuclear norm of the Hankel matrix

JH ,γ (θ) := γ ‖Hr,c(θ)‖∗

as a possible regularizer. Also several extensions have been considered, including
weighted versions of the form

JH ,γ (θ) := γ ‖WrHr,c(θ)Wc‖∗
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whereWc andWr are, respectively, “column” and “row” weightings. These latter can
be possibly adapted iteratively, in the framework of iteratively reweighted methods
such as those commonly used in conjunction with �1 and/or �2 reweighted schemes,
see e.g., [72].

The Hankel norm regularizer can also be studied from a Bayesian perspective,
considering the prior

pH ,γ (θ) ∝ exp
(−γ ‖Hr,c(θ)‖∗

) ∝ exp

(
−γ

∑

i

σi (Hr,c(θ))

)
. (5.54)

To gain some intuition on the structure of this prior, let g(k, θ) = θk and consider the
following modified prior which penalizes the nuclear norm of the squared Hankel
matrix, i.e.,

p̃H ,γ (θ) ∝ exp
(−γ ‖Hr,c(θ)Hr,c(θ)T ‖∗

) ∝ exp

(
−γ

∑

i

σi (Hr,c(θ)Hr,c(θ)T )

)
.

(5.55)
The reason for introducing p̃ is twofold. The first is related to the fact that the
prior (5.55) is equivalent to assuming that the entries θk of the impulse response are
independent zero mean Gaussians, as formalized in the following proposition.

Proposition 5.1 (based on [53]) Let p̃H ,γ (θ) be as in (5.55) and let θ ∈ R
m ∼

p̃H ,γ (θ), where Hp,p(θ) is its p × p Hankel matrix (with m = 2p − 1). Then the
θk’s are zero mean, independent and Gaussian. In particular:

θk ∼
⎧
⎨

⎩
N

(
0, 1

2γ k

)
if 1 � k � m+1

2

N
(
0, 1

2γ (m−k+1)

)
if m+1

2 < k � m
. (5.56)

As illustrated in Fig. 5.9, from (5.56) one sees that the variance of θk is not decaying
with the lag k, and hence the prior p̃H ,γ (θ) does not induce a BIBO stable hypothesis
space.

Second, the prior p̃H ,γ (θ) can be used as a proposal distribution for an MCMC
scheme, as introduced in Sect. 4.10, to sample from the Hankel prior pH ,γ (θ) in
(5.54) with g(k, θ) = θk . Samples from pH ,γ (θ) can then be used to approximate
the variances Var{θk} and the correlations Corr{θP , θh}. These are shown in Fig. 5.9.
In particular, the solid line in the left panel shows Var{θk} as a function of k, while
the right panel Corr{θP , θk+h} as a function of h for k fixed to 50. It is clear that,
even though under pH ,γ (θ) the θk’s are not Gaussian, the variances resemble those
of p̃H ,γ (θ) (left panel, dashed line) as and also their correlations resemble those
of independent variables. For the sake of comparison, the left panel plots also the
profiles of the impulse response coefficients’ variances using the TC prior for two
different decay rates (dashdot lines).
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Fig. 5.9 Prior induced by the Hankel Nuclear Norm: the impulse response coefficients are
contained in the vector θ ∈ R

79, modelled as a random vector with probability density function
pH ,γ (θ) ∝ exp(−‖H40,40(θ)‖∗). Left: variances of the impulse response coefficients θk recon-
structed by MCMC (solid line) and approximated using the prior (5.56) (dashed line). The figure
also displays the variances of θk when θ is a Gaussian random vector with stable spline (TC) covari-
ance (5.41) for two different values of α (dashdot lines). All the profiles are rescaled so that they
share the same initial value. Right: 40th row of the matrix containing the correlation coefficients
returned by the MATLAB command corrcoef(M) where each column of the 79×106 matrix M
contains oneMCMC realization of θ under the Hankel prior pH ,γ (θ). The adoptedMCMC scheme
was a random walk Metropolis with increments proportional to the variances (5.56) divided by a
factor equal to 4

These observations suggest that, while the nuclear norm regularization (prior)
accounts for system-theoretic notions of model complexity as defined by theMcMil-
lan degree, it fails to include decay rate and smoothness constraints. One would
expect, therefore, that Hankel regularization alone may not give satisfactory results
as it is not able to properly bound the candidate set of models. It turns out that
the maximum entropy framework discussed in Sect. 5.5.1 can be used to build prior
distribution which account for stability, smoothness as well as “complexity”. The
following theorem (whose proof is given in Sect. 5.10.6) gives the structure of the
MaxEnt prior under a simple “TC”-like condition on the stability-smoothness con-
straint.

Theorem 5.6 Let {θP}k=1,...,m be a zero mean, absolutely continuous random vector
with density pθ (θ), which satisfies the following constraints:

E
[
θ2
m

] ≤ σ 2αm−1

E
[
(θk−1 − θk)

2
] ≤ σ 2αk−2(1 − α) k = 2, . . . ,m

E ‖Hr,c(θ)‖∗ ≤ h.

(5.57)
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Then, the solution pθ,MEH (θ) of the maximum entropy problem

pθ,MEH := arg max
p(·) s.t. (5.31)

−E log(pθ (θ)) (5.58)

has the following form:

pθ,MEH (θ) ∝ e−μH ‖H r,c(θ)‖∗

[
m∏

k=2

e− 1
2 μk−1(θk−1−θP )2

]
e− 1

2 μmθ2
m , (5.59)

where the Lagrange multipliers μH , μ1, . . . , μm are determined so that the con-
straints (5.57) are satisfied.1

Hankel nuclear norm discussed in this chapter is only one possible way to favour
“simple” (in the sense of having small McMillan degree) models. Indeed, it is by
no means trivial to use priors of the form (5.59), that involve nuclear norm terms,
in conjunction with marginal likelihood optimization to estimate hyperparameters.
Several variations are possible and, indeed, matricial reweighting schemes such as
those used in [55] can be used in a Bayesian context, leading to iteratively reweighted
schemes that remind of �1/�2 reweighting [72].

5.8 Historical Overview

The framework discussed in this chapter has indeed a long history that can be traced
back, by and large outside the control community, until the early ’70s of the last
century. In this section, we will review these developments and point to similarities
and differences with the theory developed in this chapter.

5.8.1 The Distributed Lag Estimator: Prior Means
and Smoothing

To the best of our knowledge Bayesian methods for estimating dynamical systems
have first been advocated in the early ’70s in the econometrics literature for FIR
models of the form (5.14), which were referred to as distributed lag models. The
length n of the FIR model was actually left unspecified, and possibly let going to
infinity.

In particular, [40, 62] were the first to talk about (and apply) Bayesianmethods for
system identification, arguing that “rigid parametric” structures may be inadequate,

1 Using the complementary slackness conditions it follows that a multiplier may be nonzero only
if the corresponding inequality in (5.57) holds with an equality sign.
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extending arguments which can be found in [66] for “static” linear regression models
to the “dynamical” systems scenario. In the paper [40], having in mind that modes
of linear time-invariant systems have an exponentially decaying behaviour of the
type αt , it was suggested to describe the unknown impulse response θ with a process
having an exponentially decaying prior mean

{mt }t∈N mt := λαt |α| < 1. (5.60)

Other possible response patterns had been considered, such as the hump, composed of
the response build-up, the maximum and its decay, see [40] for details and alternative
patterns. The covariance function K (t, s) in [40] was taken so that the ratio

std(θt )

mt

remains constant over time t . This was called the “proportionality principle”. and
can be achieved with the choice

K (t, s) = cov(θt , θs) := vwtsα
t+s−2 |wts | ≤ 1 (5.61)

so that the normalized standard deviation

std(θt )

mt
=

√
K (t, t)

mt
=
√
vwtsα2t−2

λαt
=
√
vwtsα−2

c

is indeed constant if wts is so. This would imply that prior credible intervals have
constant relative size w.r.t. their means, see p. 1065 of [40].

The choice (5.61) left the coefficients wts unspecified and, indeed in [40], it was
emphasized that “the selection of the values of the set of wi j still remains a relatively
difficult task”; one suggestion, inspired by work on smoothing [34], has been to take

wi j = w|i− j | 0 < w < 1 (5.62)

leading to
Ki j = vαi+ j−2w|i− j |, (5.63)

which is exactly the DC kernel introduced in Corollary 5.1. It is also interesting to
observe that [40] already suggested the use of marginal likelihood to choose the most
suitable prior distribution in the class.

Of course, postulating a prior mean m introduces in the estimation procedures
a remarkable prejudice and requires quite accurate knowledge on the expected θ .
The paper [62], inspired by “smoothing priors” arguments, suggested instead that
the prior mean should be zero, and only smoothness conditions on the lags should
be enforced; this leads to a zero mean prior, i.e., c = 0 in (5.60), with a dth degree
smoothing covariance. For instance, for d = 2, the prior model can be expressed in
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Fig. 5.10 50 realizations
form Shiller’s prior (with
penalty on initial condition
and first difference). It is
clear from the picture that the
realizations are smooth, as
expected, but certainly do not
resemble impulse responses
of (stable) linear systems

0 20 40 60 80 100
-2000

-1500

-1000

-500

0

500

1000

1500
Realizations from Shiller prior

terms of the second-order differences:

β :=

⎡

⎢⎢⎢⎢⎣

1 −2 1 0 . . . 0

0 1 −2
. . .

... 0
...

...
. . .

. . .
. . .

...

0 . . . . . . 1 −2 1

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
:=S

θ = Sθ

postulating E ββT = SE θθT ST = I .
It is clear fromFig. 5.10 that this prior guarantees smoothness in time domain (and

therefore low-pass behaviour in frequency domain) but no guarantee on stability.

5.8.2 Frequency-Domain Smoothing and Stability

The “time-domain” smoothing discussed in the previous section has been criticized
by Akaike [1] who posed the question whether time-domain smoothness conditions
would “be the most natural ones”. Akaike suggested that instead smoothness should
be enforced in the frequency domain, i.e., considering the frequency response

G(e jω) :=
n∑

k=1

θke
− jωk .

To this purpose, the L2-norm of the first derivative dG(e jω)

dω
can be considered and we

have already seen in (5.25) that one obtains
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∥∥∥∥
dG(e jω)

dω

∥∥∥∥
2

=
n∑

k=1

k2|θk |2. (5.64)

Discouraging large
∥∥∥ dG(e jω)

dω

∥∥∥
2
can thus be obtained using the right-hand side of

(5.64) as a penalty, which can be written in the form:

p(γ, θ) := θT K−1
γ θ,

where

Kγ := 1

γ
diag

{
1,

1

4
,
1

9
, . . . ,

1

n2

}
. (5.65)

This is of course equivalent to assuming that the impulse response vector θ has a
zero-mean normal prior with covariance Kγ .

Unfortunately, in the limit n → ∞, the covariance function (5.65) does not meet
the (more stringent) sufficient conditions of Lemma 5.1; of course rather straightfor-
ward extensions include setting penalties on higher-order derivatives, which would
result in a faster decay rate of the diagonal elements of (5.65). This is a manifestation
of the well-known link between regularity in the frequency domain and decay rate
of the impulse response already discussed in Sect. 5.5.

5.8.3 Exponential Stability and Stochastic Embedding

More recently, Gaussian priors for dynamical systems have been considered in the
control literature; in particular, a zero-mean Gaussian prior with diagonal and expo-
nentially decaying covariance

E θθT = Kρ,α := α diag
{
1, ρ, ρ2, . . . , ρn−1

}
(5.66)

has been proposed in the so-called “stochastic embedding” framework [25, 26]. Let
us now briefly introduce the problem: consider an Output Error model of the form

y(t) =
∞∑

k=1

gk(θ)u(t − k) + e(t),

where gk(θ), θ ∈ R
n is a parametric description of the unknown impulse response

{gk}k=1,...,∞ in the model classMn(θ). Let θ̂ be some parametric estimator of θ , e.g.,
the PEM estimator

θ̂ = arg min
θ

N∑

k=1

‖y(t) − G(z, θ)u(t)‖2. (5.67)
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Let now

Ĝ(z) := G(z, θ̂ ) =
∞∑

k=1

gk(θ̂)z−k

be the corresponding estimator of the transfer function G(z, θ) = ∑∞
k=1 gk(θ)z−k .

In the Model Error Modelling framework, it is assumed that the “true” transfer
function G(z) is only partially captured by the chosen model class Mn(θ) so that

G(z) = G(z, θ0) + G̃(z) G(z, θ0) ∈ Mn(θ) (5.68)

and G̃(z) represents a model error. The purpose of Model Error Modelling is to
obtain a statistical description of the model error, say

G̃(z) := G(z) − Ĝ(z)

which may be used, for instance, to estimate the model order, e.g., the dimension n
of the parameter vector θ . This can be achieved by minimizing an estimate of the
MSE

E ‖G(z) − G(z, η̂)‖2

while accounting for the model error model G̃(z), see e.g., Eqs. (89)–(92) in [26].
The model error G̃(z) is estimated in [26] starting from the least squares resid-

uals vθ̂ (t) := y(t) − G(z, θ̂ )u(t) which, under assumption (5.68), is expected to be
described by the model

v(t) = G̃(z)u(t) + e(t).

It is remarkable that [26] propose to estimate the parameters α and ρ that characterize
the covariance (5.66) resorting to marginal likelihood maximization

(α̂, ρ̂) := arg max
α,ρ

∫
p(Vη̂|g̃)p(g̃|α, ρ) dg̃, (5.69)

where Vη̂ := [vη̂(1), . . . , vη̂(N )]. It is also interesting to observe that the exponential
decay of the covariance sequence (5.66) implies a smoothness condition in the fre-
quency response function similar in spirit to that advocated in [1]. This is formalized
in the following result whose proof is in Sect. 5.10.7.

Lemma 5.5 Let {gk,α}k=0,...,∞ be a zero-mean Gaussian process with covariance
(5.66) and let

Gα(e jω) :=
∞∑

k=0

gk,αe
− jkω ω ∈ [0, 2π)

be its Fourier transform. Then the Lipschitz-like condition
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E [‖Gα(e jω1) − Gα(e jω2)‖2] ≤ c
1−α

(ω1 − ω2)
2 |α| < 1 (5.70)

holds.

5.9 Further Topics and Advanced Reading

Section1.3 already reported a list of topics and readings on inverse problems, Stein
estimators and their link with the Empirical Bayes framework.

The use of regularization and Bayesian priors can be probably dated back to
the paper [71] were smoothing ideas have been advocated for a denoising problem
in the field of Actuarial Science. See also the much later reference [34]. The later
developments are essentially impossible to survey in this short section and we refer
the reader to [66] for an early overview on the use of Bayes priors in the context of
linear regression; the interested reader may also consult [22, 31, 32, 42, 59] where
generalized ridge regression has been proposed to stabilize ill-conditioned inverse
problems.

To the best of our knowledge, [40, 62] have been the first to use these ideas in
the context of dynamical systems, named “distributed-lag” models in these early
references. This work has been subsequently taken up by Akaike [1] and later on
by Kitagawa and Gersh in a series of papers, see e.g., [35, 36], which culminated
in the well-known book [37]. The seminal papers by Leamer and Shiller have also
been continued by the econometrics community, starting with the work by Doan,
Litterman and Sims, see e.g., [18] for an overview and further references. This has
lead to the so-called “Minnesota prior”, which has been discussed quite extensively
in the econometrics literature; several variations and extensions are found, see for
instance [23, 41].

The econometrics literature has since then studiedBayesian procedures for system
identification rather intensively, mostly under the acronym Bayesian VARs; the main
driving motivation was that of handling high-dimensional time series (i.e., p large,
called cross-sectional dimension in the econometrics literature) with possibly many
explicative variables (m large), see for instance [2, 17, 23, 38].

The problem of tuning the regularization parameters (or equivalently the hyper-
parameters describing the prior in a Bayesian setting) has received relatively little
attention in the econometrics literature: [40] already suggested the use of Empirical
Bayes procedure, while [2, 18] propose tuning the hyperparameters using out-of-
sample and in-sample errors, respectively. The paper [38] and the most recent work
[23] adopt again an Empirical Bayes approach using the marginal likelihood; [23]
claims the superiority of this approach w.r.t. previous “ad-hoc” techniques [2, 18].

Despite this long history, the use of Bayesian priors for system identification
has only gained popularity in relatively recent times, e.g., see the survey [52]. We
believe it is fair to say that reason for this is to be attributed to the fact that muchmore
efforts have been recently devoted to developing prior models tailored to estimating
dynamical system. In the remaining part of the book, these issues will be dealt with
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in some details. The reader is referred to [10, 11, 49, 50, 55] for various classes of
prior models and to [6, 7, 12, 55] for more details onMaximum Entropy derivations.
Extensions include prior models to estimate sparse models for high-dimensional
time series [14, 74] as well as classes of priors for nonlinear dynamical models [51],
that will be thoroughly discussed in Chap. 8. In particular, the techniques described
in this chapter can be also used to identify the so-called dynamic networks that
consist of a large set of interconnected dynamic systems. Modelling such complex
physical systems is important in several fields of science and engineering, including
also biomedicine and neuroscience [27, 30, 46, 56]. Estimation is difficult since
they are often large scale and the network topology is typically unknown [14, 44,
67]. One typically postulates the existence of many connections and then has to
understand from data which are really active. Since in real physical systems often
only a small fraction of links is reallyworking, the estimation process needs to exploit
sparsity regularizers as those introduced in Chap.3 and their stochastic interpretation
like the Bayesian Lasso [47]. In the context of linear dynamic networks, where
modules are defined by impulse responses, many approaches have been recently
designed e.g., relying on local multi-input single-output (MISO) models [16, 19,
45]. Contributions based on variational Bayesian inference and/or nonparametric
regularization, deeply connected with the techniques discussed in this book, are
in [14, 33, 58, 73]. Methods to infer the full network dynamics using (structured)
multiple-inputmultiple-output (MIMO)models can be found instead in [21, 69],with
estimates consistency analyzed in [57]. A contribution based on the combination of
the stable spline kernel and the so-called horseshoe sparsity prior [8, 54, 68] has
been developed in [48]. See also [3, 24, 29, 70] for insights on identifiability issues
and [28] where compressed sensing is exploited.

5.10 Appendix

5.10.1 Optimal Kernel

Theorem 5.7 The solution P∗ of problem (5.20) is given by

P∗ = θ0θ
T
0 , (5.71)

where θ is the “true” impulse response of the data-generating mechanism (5.14).

Proof The proof will proceed as follows: let us denote with θ̂ P∗
the estimator

obtained with P as in (5.71). Consider the error

θ̃ P := θ̂ P − θ0

which can be written as
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θ̃ P = θ̂ P − θ0

= θ̂ P∗
θ0 + θ̂ P − θ̂ P∗

= θ̃ P∗ +
(
θ̂P − θ̂ P∗

)
.

We shall show that the following orthogonality property holds:

E θ̃ P∗ (
θ̂P − θ̂ P∗)T = 0 (5.72)

so that

E θ̃ P (̃θ P)T = E θ̃ P∗
(θ̃ P∗

)T + E
(
θ̂P − θ̂ P∗) (

θ̂P − θ̂ P∗)T
(5.73)

and therefore:

Mθ (P) − Mθ (P∗) = E θ̃ P (θ̃ P )T − E θ̃ P∗
((θ̃ P∗

)T = E
(
θ̂P − θ̂ P∗) (

θ̂P − θ̂ P∗)T � 0

which will prove the claim that P∗ = θ0θ
T
0 is the optimal solution to (5.20).

It now just remains to show that (5.72) holds. To do so, let us rewrite (4.7) assuming
null μθ and using the matrix inversion lemma as (3.145):

θ̂ P = (
σ 2 I + PΦTΦ

)−1
PΦT Y

= (
σ 2 I + PΦTΦ

)−1
PΦT (Φθ0 + E)

= (
σ 2 I + PΦTΦ

)−1 [(
PΦTΦ + σ 2 I − σ 2 I

)
θ0 + PΦT E

]

= θ0 − (
σ 2 I + PΦTΦ

)−1 [
σ 2θ0 − PΦT E

]
.

Therefore, the error θ̃ P := θ0 − θ̂ P can be written in the form:

θ̃ P = (
σ 2 I + PΦTΦ

)−1

︸ ︷︷ ︸
:=WP

[
σ 2θ0 − PΦT E

] = WP
[
σ 2θ0 − PΦT E

]
. (5.74)

Now, using (5.74), we have:

θ̂ P∗ − θ̂P = θ̃P − θ̃ P∗ = σ 2 (WP − WP∗) θ0 + (WP∗ P − WP P) ΦT E .

Now, let us compute

E
(
θ̂ P∗ − θ̂P

)
(θ̃ P∗

)T = σ 4 (WP − WP∗ ) θθT WT
P∗ − σ 2 (WP∗ P − WPK ) ΦTΦP∗WT

P∗

= σ 2
[
σ 2 (WP − WP∗ ) − (WP∗ P∗ − WP P) ΦTΦ

]
P∗WT

P∗
.

(5.75)
If we now use the identity

WP
(
σ 2 I + PΦTΦ

) = I ⇒ σ 2WP = I − WP PΦTΦ
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we obtain
σ 2 (WP − WP∗) = (

WP∗ P∗ − WP P
)
ΦTΦ

so that, using (5.75),

E
(
θ̂ P∗ − θ̂P

)
(θ̃ P∗

)T = 0

which proves (5.72) and thus the theorem. �

5.10.2 Proof of Lemma 5.1

Consider the following upper bound on the probability that the �1 norm of θ be larger
than a given threshold T�1 :

P

[ ∞∑

t=1

|θt | ≥ T�1

]
≤ 1

T�1

E
∞∑

t=1

|θt | = 1

T�1

∞∑

t=1

E |θt | ≤ 1

T�1

∞∑

t=1

(
mt +√

2/πK (t, t)1/2
)

where we have used the equality E |X | = σ
√
2/π for X ∼ N (0, σ 2). Using the

hypothesis (5.24) we have that

P

[ ∞∑

t=1

|θt | ≥ T�1

]
≤ M�1 + K�1

√
2/π

T�1

and therefore

P

[ ∞∑

t=1

|θt | < T�1

]
≥ 1 − M�1 + K�1

√
2/π

T�1

.

Taking the limit as T�1 → +∞ we have

P

[ ∞∑

t=1

|θt | < +∞
]

= 1

which concludes the proof.

5.10.3 Proof of Theorem 5.5

The proof is based on the fact that the Maximum Entropy distribution p(θ) under
constrains E fk(θ) = Fk and E gk(θ) = Gk has the “Gibbs” structure, i.e., it is the
exponential of a weighted sum of the constraint functionals (see e.g., [15]):
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p(θ) ∝ e−∑i μi fi (θ)+γi gi (θ).

In our case, we have fk(θ) = θ2
k and gk(θ) = (θk−1 − θk)

2, and therefore themax-ent
solution has the form

pθ,ME (θ) = Ce− 1
2 (μ1θ

2
1 +∑n

k=2 μkθ
2
k +γk (θk−1−θk )

2). (5.76)

Using awell-known result in graphicalmodels (see e.g., Lauritzen [39]), the variables
θk and {θk+2, . . . , θn} are conditionally independent given θk+1 (because θk+1 is the
only neighbour of θP in the graph representing p(θk, θk+1, . . . , θn) (or equivalently
θk+1 separates θk from θk+2, θk+3, . . . , θn).

In our case, this conditional independence implies that the best linear estimator
θ̂k−1 of θk−1 given θk, θk+1, . . . , θn depends only θP (i.e., θ̂k−1 = aB,kθk) so that the
vector θ admits the f2 representation:

θk−1 = aB,kθk + wk (5.77)

with wk := θk−1 − θ̂k−1 = θk−1 − aB,kθk zero mean and uncorrelated of θk,

θk+1, . . . , θn . Let us define σ 2
k := Ew2

k . In order to express aB,k and σ 2
k as a function

of λR, λS, α, we exploit the constraints (5.31) and the dynamical model (5.77). In
particular we have

λSα
k−1 = E θ2

k−1= a2B,kE θ2
P + σ 2

k
= a2B,kλSα

P + σ 2
k

(5.78)

λRαk−1 = E (θk−1 − θk)
2

= E ((aB,k − 1)θ2
k + wk)

2

= E (aB,k − 1)2θ2
k + Ew2

k= (aB,k − 1)2λSα
k + σ 2

k

. (5.79)

Substracting (5.78) from (5.79) we obtain

(λS − λR)αk−1 = a2B,kλSα
P − (aB,k − 1)2λSα

k = (2aB,k − 1)λSα
k

which implies that

aB,k = λS(1 + α) − λR

2λSα
=: aB

that is independent of k, thus denoted with aB as in (5.35). From (5.79) we also have
that

2 We prefer here to work with backward representations since, as we will see, with this choice we
will have aB,k = aB , independent of k. Forward representations are discussed in Sect. 5.10.8.
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σ 2
k = λRαk−1 − (aB − 1)2λSα

k = (λR − (aB − 1)2λSα)αk−1 = (1 − a2Bα)λSα
k−1

where the last equality follows after a fewmanipulations and proves (5.36). Replacing

aB − 1 = λS(1 − α) − λR

2λSα

in the previous equation we have:

σ 2
k =

[
λR −

(
λS(1 − α) − λR

2λSα

)2

λSα

]
αk−1.

Of course σ 2
k , and thus the right hand side, should be positive (for simplicity we

exclude the singular case σ 2
k = 0):

λR −
(

λS(1 − α) − λR

2λSα

)2

λSα = 4λRλSα − (λS(1 − α) − λR)2

4λSα
> 0

which in turn is equivalent to

4λRλSα − (λS(1 − α) − λR)2 > 0.

This happens if and only if

λ2
R − 2λRλS(1 + α) + (1 − α)2λ2

S < 0.

This is a degree two polynomial in λR with two positive roots

λR,i = λS(1 + α) ±
√

λ2
S(1 + α)2 + λ2

S(1 − α)2 = λS(1 + α ± 2
√

α) i = 1, 2

and therefore our problem is feasible if and only if

λR,min = λR,1 = λS(1 + α − 2
√

α) < λR < λS(1 + α + 2
√

α) = λR,2 = λR,max

thus proving (5.32). Now it remains to prove that (5.76) takes the form (5.34). First
let us observe that the exponent of (5.76) is a quadratic form in θ , and therefore
(5.76) can be written in the form

pθ,ME (θ) = Ce− 1
2 θT Φθ .

Last, since in (5.76) only products of the form θkθh for h ∈ [k − 1, k, k + 1] appear,
the matrix Φ = ΦT has the following band structure:
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Φ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ 0 . . . . . . 0
∗ ∗ ∗ 0 . . . 0
0 ∗ ∗ ∗ 0 . . .
... . . .

. . .
. . .

. . . . . .

0 . . . 0 ∗ ∗ ∗
0 . . . . . . 0 ∗ ∗

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

In addition, for pθ,ME (θ) to be a density, Φ needs to be positive semidefinite (oth-
erwise there would be directions in which the density grows indefinitely). Since θ

admits the backward AR representation (5.77) with Ew2
k = σ 2

k > 0, the covariance
matrix Σ = E θθT is positive definite and thus Φ = Σ−1. To compute the autoco-
variance function E θhθk we consider the following cases: if k = h we have

E θhθh = λSα
h .

If k > h we have
E θhθk = aBE θh+1θk

and iterating the relation we find

E θhθk = ak−h
B E θkθk = λSa

k−h
B αk .

Analogously, if h > k we have

E θhθk = ah−k
B E θhθh = λSa

h−k
B αh .

Combining the three cases we obtain

E θkθh = λSa
|k−h|
B αmax{k,h}

proving (5.38).

5.10.4 Proof of Corollary 5.1

Using the definition (5.39) in Eq. (5.38) we obtain:

E θkθh = λSa
|k−h|
B αmax{k,h} = λS

ρ|k−h|

α
|k−h|
2

αmax{k,h} = λSρ
|k−h|α

k+h
2 .

In addition, if the matching condition λR = λS(1 − α) is satisfied, then from (5.35)
aB = 1 and from (5.39) ρ = √

α; substituting in (5.40) we obtain
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E θkθh = λSρ
|k−h|α

k+h
2 = λSα

max{k,h}

i.e., the covariance sequence of the well known TC kernel.

5.10.5 Proof of Lemma 5.2

The proof of this lemma is a simple application of Schwartz inequality. In particular
we have:

|uit | = 1
ξi
|∑n

s=1[K]t,suis | ≤ ∑n
s=1

√[K]t,t
√[K]s,s |uis |

≤ 1
ξi

√[K]t,t ∑n
s=1

√[K]s,s |uis | ≤ 1
ξi
K (t, t)1/2

n∑

s=1

√[K]s,s
︸ ︷︷ ︸

=C<∞

n∑

s=1

|uis |2
︸ ︷︷ ︸

=1

,

where the last inequality follows from the fact that uit has 2-norm equal to 1 for
all i . The same condition clearly holds also in the infinite dimensional case, i.e., as
n → ∞ if K (t, s) admits the spectral decomposition

K (t, s) =
∞∑

i=1

ξi uit uis

and the condition
∑

t K (t, t) = C < ∞ holds. In particular this latter condition holds
true if the more stringent condition

∑
t K

1/2(t, t) < ∞ in Lemma 5.1 is satisfied.

5.10.6 Proof of Theorem 5.6

The proof follows from fact that the Maximum Entropy distribution p(x) under
constrains E fi (x) ≤ γi has the “Gibbs” structure, i.e., it is the exponential of a
weighted sum of the constraint functionals (see e.g., [15]):

p(x) ∝ e−∑i μi fi (x).

5.10.7 Proof of Lemma 5.5

Since {gk,α}k=0,...,∞ is zeromean, then clearly alsoGα(e jω) is so, i.e.,EGα(e jω) = 0.
If we now consider the difference
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Gα(e jω1) − Gα(e jω2) =
∞∑

k=0

gk,α
[
e− jkω1 − e− jkω2

]
,

taking the expected value of the squared norm, and using the fact the E gk,αgk,α =
cαkδk−h , we have

E ‖Gα(e jω1) − Gα(e jω2)‖2 =
∞∑

k=0

cαk‖e− jkω1 − e− jkω2‖2.

Now, using

‖e− jkω1 − e− jkω2‖2 = 2 (1 − cos(ω1 − ω2)) ≤ (ω1 − ω2)
2

and the expression for the sum of the geometric series αk the thesis follows.

5.10.8 Forward Representations of Stable-Splines Kernels �

A major drawback of the backward construction is that it is not straightforward to
extend it to an infinite interval, i.e., to let n → ∞ in order to consider infinitely
long impulse response models {θk}k∈N. However this difficulty can be circumvented
exploiting the “forward” representation of (5.77), which turns out to be again a time
varying AR(1) model.3 Theorem 5.8 derives the forward AR(1) representation of the
maximum entropy process found in Theorem 5.5.

Theorem 5.8 The maximum entropy solution to (5.33) found in Theorem 5.5 admits
the forward AR(1) representation

θk+1 = aFθk + wk k ≥ 0 (5.80)

with zero-mean initial condition such that E θ2
0 = λS, and where

aF = ρα1/2 = aBα (5.81)

and wk is a sequence of zero mean variables, uncorrelated with the initial condition
θ0 and such that

Ewkwh =
{
σ 2
F,k k = h
0 k �= h

(5.82)

with σ 2
F,k = λSα

k+1(1 − ρ2).

3 There are several ways to see this: perhaps the simplest is to recall that the inverse covariance
matrix of an AR(1) process has a band (tridiagonal) structure, which implies that forward and
backward models share the same conditional dependence structure.
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Proof First of all let us observe that, if θk admits an AR(1) forward representation
of the form (5.80) (with wk that satisfies (5.82)), aF should satisfy the relation

aF = E θk+1θk
(
E θ2

k

)−1
.

Using the expression (5.38), we obtain:

E θk+1θk
(
E θ2

k

)−1 = λSaBαk+1
(
λSα

k
)−1 = aBα

and recalling that ρ = aBα1/2 we also obtain

aF = aBα = ρα1/2.

In addition, denoting σ 2
F,k := Ew2

k ,

E θ2
k+1 = a2FE θ2

k + σ 2
F,k

must hold. Therefore,

σ 2
F,k = E θ2

k+1 − a2FE θ2
k = λSα

k+1 − ρ2ααk = λSα
k+1(1 − ρ2).

It also straightforward to verify that, if θk is generated by (5.80), then

E θk+τ θk = aτ
FE θ2

k = aτ
FλSα

k = λSa
τ
Bαk+τ τ > 0

which is exactly of the form

E θhθk = λSa
|h−k|
B αmax(k,h)

provided h = k + τ , τ > 0. This concludes the proof. �
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Chapter 6
Regularization in Reproducing Kernel
Hilbert Spaces

Abstract Methods for obtaining a function g in a relationship y = g(x) from
observed samples of y and x are the building blocks for black-box estimation. The
classical parametric approach discussed in the previous chapters uses a function
model that depends on a finite-dimensional vector, like, e.g., a polynomial model.
We have seen that an important issue is themodel order choice. This chapter describes
some regularization approaches which permit to reconcile flexibility of the model
class with well-posedness of the solution exploiting an alternative paradigm to tra-
ditional parametric estimation. Instead of constraining the unknown function to a
specific parametric structure, the function will be searched over a possibly infinite-
dimensional functional space. Overfitting and ill-posedness are circumvented by
using reproducing kernel Hilbert spaces as hypothesis spaces and related norms as
regularizers. Such kernel-based approaches thus permit to cast all the regularized esti-
mators based on quadratic penalties encountered in the previous chapters as special
cases of a more general theory.

6.1 Preliminaries

Techniques for reconstructing a function g in a functional relationship y = g(x)
from observed samples of y and x are the fundamental building blocks for black-box
estimation. As already seen in Chap. 3 when treating linear regression, given a finite
set of pairs (xi , yi ) the aim is to determine a function g having a good prediction
capability, i.e., for a new pair (x, y) we would like the prediction g(x) close to y
(e.g., in the MSE sense).

The classical parametric approach discussed in Chap. 3 uses a model gθ that
depends on a finite-dimensional vector θ. A very simple example is a polynomial
model, treated in Example 3.1, given, e.g., by gθ(x) = θ1 + θ2x + θ3x2 whose coef-
ficients θi can be estimated by fitting the data via least squares. In this parametric
scenario, we have seen that an important issue is the model order choice. In fact, the
least squares objective improves as the dimension of θ increases, eventually leading
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to data interpolation. But overparametrized models, as a rule, perform poorly when
used to predict future output data, even if benign overfitting may sometimes happen,
as e.g., described in the context of deep networks [17, 55, 75]. Another drawback
related to overparameterization is that the problemmay become ill-posed in the sense
of Hadamard, i.e., the solution may be non-unique, or ill-conditioned. This means
that the estimate may be highly sensitive even to small perturbations of the outputs
yi as, e.g., illustrated in Fig. 1.3 of Sect. 1.2.

This chapter describes some regularization approaches which permit to recon-
cile flexibility of the model class with well-posedness of the solution exploiting an
alternative paradigm to traditional parametric estimation. Instead of constraining the
unknown function to a specific parametric structure, gwill be searchedover a possibly
infinite-dimensional functional space. Overfitting and ill-posedness is circumvented
byusing reproducing kernelHilbert spaces (RKHSs) as hypothesis spaces and related
norms as regularizers. Such norms generalize the quadratic penalties seen in Chap.
3. In this scenario, the estimator is completely defined by a positive definite kernel
which has to encode the expected function properties, e.g., the smoothness level.
Furthermore we will see that, even when the model class is infinite dimensional, the
function estimate turns out a finite linear combination of basis functions computable
from the kernel. The estimator also enjoys strong asymptotic properties, permitting
(under reasonable assumptions on data generation) to achieve the optimal predictor
as the data set size grows to infinity.

The kernel-based approaches described in the following sections thus permit to
cast all the regularized estimators based on quadratic penalties encountered in the
previous chapters as special cases of amore general theory. In addition, RKHS theory
paves the way to the development of other powerful techniques, e.g., for estimation
of an infinite number of impulse response coefficients (IIR models estimation), for
continuous-time linear system identification and also for nonlinear system identifi-
cation.

The reader not familiar with functional analysis finds in the first part of the
appendix of this chapter a brief overview on the basic results used in the next sec-
tions, like, e.g., the concept of linear and bounded functional which is key to define
a RKHS.

6.2 Reproducing Kernel Hilbert Spaces

In what follows, we use X to indicate domains of functions. In machine learning,
this set is often referred to as the input space with its generic element x ∈ X called
input location. Sometimes, X is assumed to be a compact metric space, e.g., one
can think of X as a closed and bounded set in the familiar space R

m equipped
with the Euclidean norm. In what follows, all the functions are real valued, so that
f : X → R.



6.2 Reproducing Kernel Hilbert Spaces 183

Reproducing kernel Hilbert spacesWe now introduce a class of Hilbert spacesH
which play a fundamental role as hypothesis spaces for function estimation problems.
Our goal is to estimate maps which permit to make predictions over the whole X .
Thus, a basic requirement is to search for the predictor in a space containing functions
which are well-defined pointwise for any x ∈ X . In particular, we assume that all
the pointwise evaluators g → g(x) are linear and bounded overH . This means that
∀x ∈ X there exists Cx < ∞ such that

|g(x)| ≤ Cx‖g‖H , ∀g ∈ H . (6.1)

The above condition is stronger than requiring g(x) < ∞ ∀x since Cx can depend
on x but not on g. This property already leads to the function spaces of interest. The
following definitions are taken from [13].

Definition 6.1 (RKHS, based on [13]) A reproducing kernel Hilbert space (RKHS)
over a non-empty set X is a Hilbert space of functions g : X → R such that (6.1)
holds.

As suggested by the name itself, RKHSs are related to the concept of positive
definite kernel [13, 20], a particular function defined overX × X . In the literature
it is also called positive semidefinite kernel, hence in what follows positive definite
kernel and positive semidefinite kernel will define the same mathematical object.
This is also specified in the next definition.

Definition 6.2 (Positive definite kernel, Mercer kernel and kernel section, based on
[13]) Let X denote a non-empty set. A symmetric function K : X × X → R is
called positive definite kernel or positive semidefinite kernel if, for any finite natural
number p, it holds

p∑

i=1

p∑

j=1

aia j K (xi , x j ) ≥ 0, ∀(xk, ak) ∈ (X ,R) , k = 1, . . . , p.

If strict inequality holds for any set of p distinct input locations xk , i.e.,

p∑

i=1

p∑

j=1

aia j K (xi , x j ) > 0,

then the kernel is strictly positive definite.
IfX is a metric space and the positive definite kernel is also continuous, then K

is said to be a Mercer kernel.
Finally, given a kernel K , the kernel section Kx centred at x is the function

X → R defined by
Kx (y) = K (x, y) ∀y ∈ X .
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Hence, in the sense given above, a positive definite kernel “contains” matrices which
are all at least positive semidefinite.

We are now in a position to state a fundamental theorem from [13] here specialized
to Mercer kernels which lead to RKHSs containing continuous functions (the proof
is reported in Sect. 6.9.2).

Theorem 6.1 (RKHSs induced by Mercer kernels, based on [13]) LetX be a com-
pact metric space and let K : X × X → R be a Mercer kernel. Then, there exists
a unique (up to isometries) Hilbert space H of functions, called RKHS associated
to K , such that

1. all the kernel sections belong to H , i.e.,

Kx ∈ H ∀x ∈ X ; (6.2)

2. the so-called reproducing property holds, i.e.,

〈Kx , g〉H = g(x) ∀(x, g) ∈ (X ,H ) . (6.3)

In addition, H is contained in the space C of continuous functions.

Remark 6.1 Note that the spaceH characterized in Theorem 6.1 is indeed a RKHS
according to Definition 6.1. In fact, for any input location x the kernel section Kx

belongs to the space and, according to the reproducing property, represents the evalu-
ation functional at x . Then, Theorem 6.27 (Riesz representation theorem), reported in
the appendix to this chapter, permits the conclusion that all the pointwise evaluators
over H are linear and bounded.

While Theorem 6.1 establishes a link betweenMercer kernels (which enjoy conti-
nuity properties) and RKHSs, it is possible also to state a one-to-one correspondence
with the entire class of positive definite kernels (not necessarily continuous). In par-
ticular, the following result holds.

Theorem 6.2 (Moore–Aronszajn, based on [13])LetX be any non-empty set. Then,
to every RKHS H there corresponds a unique positive definite kernel K such that
the reproducing property (6.3) holds. Conversely, given a positive definite kernel K ,
there exists a unique RKHS of real-valued functions defined overX where (6.2) and
(6.3) hold.

The proof can be quite easily obtained using Theorem 6.27 (Riesz representation
theorem) and arguments similar to those contained in the proof of Theorem 6.1.

Further notes and RKHSs examples Thus, a RKHS H can be defined just by
specifying a kernel K , also called the reproducing kernel of H . In particular, any
RKHS is generated by the kernel sections.More specifically, let S = span({Kx }x∈X )

and define the following norm in S
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‖ f ‖2H =
p∑

i=1

p∑

j=1

ci c j K (xi , x j ), (6.4)

where

f (·) =
p∑

i=1

ci Kxi (·).

Then, one has

H = S ∪ {all the limits w.r.t. ‖ · ‖H of Cauchy sequences contained in S} .

Summarizing, one has

• all the kernel sections Kx (·) belong to the RKHS H induced by K ;
• H contains also all the finite linear combinations of kernel sections along with
some particular infinite sums, convergent w.r.t. the norm (6.4);

• every f ∈ H is thus a linear combination of a possibly infinite number of kernel
sections.

Assume for instance K (x1, x2) = exp
(−‖x1 − x2‖2

)
, which is the so-called

Gaussian kernel. Then, all the functions in the corresponding RKHS are sums,
or limits of sums, of functions proportional to Gaussians. As further elucidated later
on, this means that every function ofH inherits properties such as smoothness and
integrability of the kernel, e.g., we have seen in Theorem 6.1 that kernel continu-
ity implies H ⊂ C . This fact has an important consequence on modelling: instead
of specifying a whole set of basis functions, it suffices to choose a single positive
definite kernel that encodes the desired properties of the function to be synthesized.

Example 6.3 (Norm in a two-dimensional RKHS) We introduce a very simple
RKHS to illustrate how the kernel K can be seen as a similarity function that estab-
lishes the norm (complexity) of a function by comparing function values at different
input locations.

When X has finite cardinality m, the functions are evaluated just on a finite
number of input locations. Hence, each function f is in one-to-one correspondence
with the m-dimensional vector

f =

⎛

⎜⎜⎜⎝

f (1)
f (2)
...

f (m)

⎞

⎟⎟⎟⎠ .

In addition, any kernel is in one-to-one correspondence with one symmetric positive
semidefinite matrix K ∈ R

m×m with (i, j)-entry Ki j = K (i, j). Finally, the kernel
sections can be seen as the columns of K.
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Assume, e.g., m = 2 with X = {1, 2}. Then, the functions can be seen as two-
dimensional vectors and any kernel K is in one-to-one correspondence with one
symmetric positive semidefinite matrix K ∈ R

2×2. The RKHS H associated to K
is finite-dimensional being spanned just by the two kernel sections K1(·) and K2(·)
which can be seen as the two columns of K. Hence, the functions f in H are in
one-to-one correspondence with the vectors

f =
(

f (1)
f (2)

)
= Kc, c ∈ R

2.

If K is full rank, H covers the whole R2 and from (6.4) we have

‖ f ‖2H = cTKc = fTK−1f .

For the sake of simplicity, assume also that K11 = K22 = 1 so that it must hold
−1 < K12 < 1. Then, considering, e.g., the function f (i) = i , one has

‖ f ‖2H = [1 2] K−1 [1 2]T

= 5 − 4K12

1 − K2
12

, −1 < K12 < 1.

Figure6.1 displays ‖ f ‖2H as a function of K12. One can see that the norm diverges
as |K12| approaches 1.

If, e.g., K12 = 1 the kernel function becomes constant overX × X . Hence, the
twokernel sections K1(·) and K2(·) coincide, being constantwith K1(i) = K2(i) = 1
for i = 1, 2. This means that K12 = 1 induces a space H containing only constant
functions.1 This explains why the norm (complexity) of f becomes large if K12 is
close to 1: the space becomes less and less “tolerant” of functions with f (1) = f (2).

Letting now f (1) = 1 and f (2) = a, the joint effect ofK12 and a is explained by
the formula

‖ f ‖2H = [1 a] K−1 [1 a]T

= (a − K12)
2

1 − K2
12

+ 1, −1 < K12 < 1.

Note that, thinking now of K12 as fixed, the function with minimal RKHS norm
(complexity) is obtained with a = K12 and has a norm equal to one. �

Example 6.4 (L μ
2 and �2) LetX = R and consider the classical Lebesgue space

of square summable functions with μ equal to the Lebesgue measure. Recall that this
is a Hilbert space whose elements are equivalence classes of functions measurable

1 One can then also easily check that the case K12 = −1 instead induces a RKHS containing only
functions satisfying f (1) = − f (2).
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Fig. 6.1 The figure plots
‖ f ‖2H , with f (i) = i and
i ∈ {1, 2}, as a function of
the kernel value K (1, 2),
having set
K (1, 1) = K (2, 2) = 1
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w.r.t. Lebesgue: any group of functions which differ only on a set of null measure
(e.g., containing only a countable number of input locations) identifies the same
vector. Hence, L μ

2 cannot be a RKHS since pointwise evaluation is not even well
defined.

Let instead X = N (the set of natural numbers) and define the identity kernel

K (i, j) = δi j , (i, j) ∈ N × N, (6.5)

where δi j is theKronecker delta. Clearly, K is symmetric and positive definite accord-
ing to Definition 6.2 (it can be associated with an identity matrix of infinite size).
Hence, it induces unique RKHS H that contains all the finite combinations of the
kernel sections. In particular, any finite sum can be written as f (·) = ∑m

i=1 fi Ki (·),
where some of the fi may be null, and corresponds to a sequence with a finite number
of non null components. To obtain the entireH , we need also to add all the Cauchy
sequences limits w.r.t. the norm (6.4) given by

‖ f ‖2H =
∥∥∥∥∥

m∑

i=1

fi Ki (·)
∥∥∥∥∥

2

H

=
m∑

i=1

m∑

j=1

fi f j K (i, j) =
m∑

i=1

f 2i ,

which coincides with the classical Euclidean norm of [ f1 . . . fm]. This allows us to
conclude that the associated RKHS is the classical space �2 of square summable
sequences.

As a finale note, Definition 6.1 easily confirms that �2 is a RKHS. In fact, for
every f = [ f1 f2 . . .] ∈ �2 one has
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| fi | ≤
√∑

i

f 2i = ‖ f ‖2 ∀i,

and, recalling (6.1), this shows that all the evaluation functionals f → fi with i ∈ N

are bounded. �

Example 6.5 (Sobolev space and the first-order spline kernel)While in the previous
example we have seen that L μ

2 is not a RKHS, consider now the space obtained by
integrating the functions in this space. In particular, let X = [0, 1], set μ to the
Lebesgue measure and consider

H =
{
f | f (x) =

∫ x

0
h(y)dy with h ∈ L μ

2

}
.

One thus has that any f in H satisfies f (0) = 0 and is absolutely continuous: its
derivative h = ḟ is defined almost everywhere and is Lebesgue integrable.

With the inner product given by

〈 f, g〉H = 〈 ḟ , ġ〉L μ
2
,

it is easy to see that H is a Hilbert space. In fact, L μ
2 is Hilbert and we have

established a one-to-one correspondence between functions in H and L μ
2 which

preserves inner product. Such H is an example of Sobolev space [2] since the
complexity of a function is measured by the energy of its derivative:

‖ f ‖2H =
∫ 1

0
ḟ 2(x)dx .

Now, given x ∈ [0, 1], let χx (·) be the indicator function of the set [0, x]. Then, one
has

| f (x)| =
∣∣∣∣
∫ x

0
ḟ (a)da

∣∣∣∣ = ∣∣〈χx , ḟ 〉L μ
2

∣∣

≤ ‖ ḟ ‖L μ
2

= ‖ f ‖H ,

where we have used the Cauchy–Schwarz inequality. Hence, H is also a RKHS
since all the evaluations functionals are bounded. We now prove that its reproducing
kernel is the so-called first-order (linear) spline kernel given by

K (x, y) = min(x, y). (6.6)

In fact, every kernel section belongs to H , being piecewise linear with K̇x = χx .
Furthermore, (6.6) satisfies the reproducing property since
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Fig. 6.2 Linear and cubic spline kernel with kernel sections Kxi (x) for xi = 0.1, 0.2, . . . , 1
(bottom)

〈 f, Kx 〉H = 〈 ḟ ,χx 〉L μ
2

=
∫ x

0
ḟ (y)dy = f (x).

The linear spline kernel and some of its sections are displayed in the top panels of
Fig. 6.2. �

6.2.1 Reproducing Kernel Hilbert Spaces Induced
by Operations on Kernels �

We report some classical results about RKHSs induced by operations on kernels
which can be derived from [13]. The first theorem characterizes the RKHS induced
by the sum or product of two kernels.
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Theorem 6.6 (RKHS induced by sum or product of two kernels, based on [13]) Let
K and G be two positive definite kernels over the same domainX × X , associated
to the RKHSs H and G , respectively.

The sum K + G, where

[K + G](x, y) = K (x, y) + G(x, y),

is the reproducing kernel of the RKHS R containing functions

f = h + g, (h, g) ∈ H × G

with
‖ f ‖2R = min

h∈H ,g∈G
‖h‖2H + ‖g‖2G s.t. f = h + g.

The product KG, where

[KG](x, y) = K (x, y)G(x, y)

is instead the reproducing kernel of the RKHS R containing functions

f = hg, (h, g) ∈ H × G

with
‖ f ‖2R = min

h∈H ,g∈G
‖h‖2H ‖g‖2G s.t. f = hg.

The second theorem instead provides the connection between two RKHSs, with
the second one obtained from the first one by sampling its kernel.

Theorem 6.7 (RKHS induced by kernel sampling, based on [13]) Let H be the
RKHS induced by the kernel K : X × X → R. Let Y ⊂ X and denote with R
the RKHS of functions overY induced by the restriction of the kernel K onY × Y .
Then, the functions inR correspond to the functions inH sampled on Y . One also
has

‖ f ‖2R = min
g∈H

‖g‖2H s.t. gY = f, (6.7)

where gY is g sampled on Y .

The following theorem lists some operations which permit to build kernels (and
hence RKHSs) from simple building blocks.

Theorem 6.8 (Building kernels fromkernels, based on [13])Let K1 and K2 two pos-
itive definite kernels overX × X and K3 a positive definite kernel over Rm × R

m.
Let also P an m × m symmetric positive semidefinite matrix andP(x) a polynomial
with positive coefficients. Then, the following functions are positive definite kernels
over X × X :
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• K (x, y) = K1(x, y) + K2(x, y) (see also Theorem 6.6).
• K (x, y) = aK1(x, y), a ≥ 0.
• K (x, y) = K1(x, y)K2(x, y) (see also Theorem 6.6).
• K (x, y) = f (x) f (y), f : X → R.
• K (x, y) = K3( f (x), f (y)), f : X → R

m.
• K (x, y) = xT Py, X = R

m.
• K (x, y) = P(K1(x, y)).
• K (x, y) = exp(K1(x, y)).

6.3 Spectral Representations of Reproducing Kernel
Hilbert Spaces

In the previous section we have seen that any RKHS is generated by its kernel
sections. We now discuss another representation obtainable when the kernel can be
diagonalized as follows

K (x, y) =
∑

i∈I
ζiρi (x)ρi (y), ζi > 0 ∀i, (6.8)

where the set I is countable. This will lead to new insights on the nature of the
RKHSs, generalizing to the infinite-dimensional case the connection between regu-
larization and basis expansion reported in Sect. 5.6.

A simple situation holds when the input space has finite cardinality, e.g., X =
{x1 . . . xm}. Under this assumption, any positive definite kernel is in one-to-one cor-
respondence with the m × m matrix K whose (i, j)-entry is K (xi , x j ). The repre-
sentation (6.8) then follows from the spectral theorem applied toK. In fact, if ζi and
vi are, respectively, the eigenvalues and the orthonormal (column) eigenvectors of
K, (6.8) can be written as

K =
m∑

i=1

ζi vi v
T
i ,

where the functions ρi (·) have become the vectors vi . One generalization of this
result is described below.

Let LK be the linear operator defined by the positive definite kernel K as follows:

LK [ f ](·) =
∫

X
K (·, x) f (x)dμ(x). (6.9)

We also assume that μ is a σ-finite and nondegenerate Borel measure onX . Essen-
tially this means thatX is the countable union ofmeasurable sets with finitemeasure
and that μ “covers” entirelyX . The reader can, e.g., considerX ⊂ R

m and think of
μ as the Lebesque measure or any probability measure with μ(A) > 0 for any non-
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empty open set A ⊂ X . The next classical result goes under the name of Mercer
theorem whose formulations trace back to [60].

Theorem 6.9 (Mercer theorem, based on [60]) Let X be a compact metric space
equipped with a nondegenerate and σ-finite Borel measure μ and let K be a Mercer
kernel onX × X . Then, there exists a complete orthonormal basis ofL μ

2 given by
a countable number of continuous functions {ρi }i∈I satisfying

LK [ρi ] = ζiρi , i ∈ I , ζ1 ≥ ζ2 ≥ · · · ≥ 0, (6.10)

with ζi > 0 ∀i if K is strictly positive and limi→∞ ζi = 0 if the number of eigenvalues
is infinite.

One also has
K (x, y) =

∑

i∈I
ζiρi (x)ρi (y), (6.11)

where the convergence of the series is absolute and uniform onX × X .

The following result characterizes a RKHS through the eigenfunctions of LK .
The proof is reported in Sect. 6.9.3.

Theorem 6.10 (RKHS defined by an orthonormal basis of L μ
2 ) Under the same

assumption of Theorem 6.9, if the ρi and ζi satisfy (6.10), with also ζi > 0 ∀i , one
has

H =
{
f
∣∣∣ f (x) =

∑

i∈I
ciρi (x) s.t.

∑

i∈I

c2i
ζi

< ∞,

}
. (6.12)

In addition, if
f =

∑

i∈I
aiρi , g =

∑

i∈I
biρi ,

one has

〈 f, g〉H =
∑

i∈I

aibi
ζi

, (6.13)

so that

‖ f ‖2H =
∑

i∈I

a2i
ζi

. (6.14)

Hence, it also comes that {√ζiρi }i∈I is an orthonormal basis ofH .

The representation (6.12) is not unique since the spectral maps, i.e., the functions
that associate a kernel with a decomposition of the type (6.8), are not unique. They
depend on the chosen measure μ even if they lead to the same RKHS.

Theorem 6.10 thus shows that any kernel admitting an expansion (6.11) coming
from the Mercer theorem induces a separable RKHS, i.e., having a countable basis
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given by the ρi . Later on, Theorem 6.13 will show that such result holds under much
milder assumptions. In fact, the representation (6.12) can be obtained starting from
any diagonalized kernel (6.8) involving generic functions ρi , e.g., not necessarily
independent of each other. One can also remove the compactness hypothesis on the
input space, e.g., letting X be the entire Rm .

Remark 6.2 (Relationship betweenH and L μ
2 ) Theorem 6.10 points out an inter-

esting connection betweenH andL μ
2 . Since the functions ρi form an orthonormal

basis inL μ
2 , one has

f ∈ L μ
2 ⇐⇒ f =

∑

i∈I
ciρi with

∑

i∈I
c2i < ∞ (6.15)

while (6.12) shows that

f ∈ H ⇐⇒ f =
∑

i∈I
ciρi with

∑

i∈I

c2i
ζi

< ∞. (6.16)

If ζi > 0 ∀i , one has the set inclusionH ⊂ L μ
2 since the functions in the RKHS,

must satisfy a more stringent condition on the expansion coefficients decay (the ζi
decay to zero).
In addition, let L1/2

K denote the operator defined as the square root of LK , i.e., for
any f ∈ L μ

2 with f = ∑
i∈I ciρi , one has

L1/2
K [ f ] =

∑

i∈I

√
ζi ciρi . (6.17)

This is a smoothing operator: the function L1/2
K [ f ] is more regular than f since the

expansion coefficients
√

ζi ci decrease to zero faster than the ci . In view of (6.15)
and (6.16), we obtain

H =
{
L1/2
K [ f ] | f ∈ L μ

2

}
, (6.18)

which shows that the RKHS can be thought of as the output of the linear system L1/2
K

fed with the space L μ
2 , i.e.,H = L1/2

K L μ
2 .

Example 6.11 (Spline kernel expansion) In Example 6.5, we have seen that the
space of functions on the unit interval satisfying f (0) = 0 and

∫ 1
0 ḟ 2(x)dx < ∞

is the RKHS associated to the first-order spline kernel min(x, y). We now derive a
representation of the type (6.12) for this space setting μ to the Lebesgue measure.
For this purpose, consider the system

∫ 1

0
min(x, y)ρ(y)dy = ζρ(x).
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The above equation is equivalent to

∫ x

0
yρ(y)dy + x

∫ 1

x
ρ(y)dy = ζρ(x),

which implies ρ(0) = 0. Taking the derivative w.r.t. x we also obtain

∫ 1

x
ρ(y)dy = ζρ̇(x)

that implies ρ̇(1) = 0. Differentiating again w.r.t. x gives

−ρ(x) = ζρ̈(x),

whose general solution is

ρ(x) = a sin(x/
√

ζ) + b cos(x/
√

ζ), a, b ∈ R.

The boundary conditions ρ(0) = ρ̇(1) = 0 imply b = 0 and lead to the following
possible eigenvalues:

ζi = 1

(iπ − π/2)2
, i = 1, 2, . . . .

The orthonormality condition also implies a = √
2 so that we obtain

ρi (x) = √
2 sin

(
iπx − πx

2

)
, i = 1, 2, . . . .

This provides the formulation (6.12) of the Sobolev spaceH . Figure6.3 plots three
eigenfunctions (left panel) and the first 100 eigenvalues ζi (right panel). It is evident
that the larger i the larger is the high-frequency content of ρi and the RKHS norm
of such basis function. In fact, a large value of i corresponds to a small eigenvalue
ζi and one has ‖ρi‖2H = 1/ζi . �

Example 6.12 (Translation invariant kernels and Fourier expansion) A translation
invariant kernel depends only on the difference of its two arguments. Hence, there
exists h : X → R such that K (x, y) = h(x − y). Assume that X = [0, 2π] and
that h can be extended to a continuous, symmetric and periodic function over R.
Then, it can be expanded in terms of the following uniformly convergent Fourier
series

h(x) =
∞∑

i=0

ζi cos(i x),
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where ζ0 accounts for the constant component and we assume ζi > 0 ∀i . We thus
obtain the kernel expansion

K (x, y) = ζ0 +
∞∑

i=1

ζi cos(i x) cos(iy) +
∞∑

i=1

ζi sin(i x) sin(iy),

in terms of functions which are all orthogonal in L μ
2 . Hence, these kernels induce

RKHSs generated by the Fourier basis, with different inner products determined
by ζi . �

6.3.1 More General Spectral Representation �

Now, assume that the kernel K is available in the form K (x, y) = ∑
i∈I ζiρi (x)ρi (y)

with ζi > 0 ∀i , but with functions ρi not necessarily orthonormal.More generally, we
do not even require that they are independent, e.g., ρ1 could be a linear combination
of ρ2 and ρ3. The following result shows that the RKHS associated to K is still
generated by the ρi , but the relationship of the expansion coefficients with ‖ · ‖H is
more involved than in the previous case.

Theorem 6.13 (RKHS induced by a diagonalized kernel) Let H be the RKHS
induced by K (x, y) = ∑

i∈I ζiρi (x)ρi (y) with ζi > 0 ∀i and the setI countable.
Then, H is separable and admits the representation

H =
{
f
∣∣∣ f (x) =

∑

i∈I
ciρi (x) s.t.

∑

i∈I

c2i
ζi

< ∞
}

(6.19)
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and one has

‖ f ‖2H = min{ci }
∑

i∈I

c2i
ζi

s.t. f =
∑

i∈I
ciρi . (6.20)

The proof is reported in Sect. 6.9.4 while an application example is given below.

Example 6.14 Let

K (x, y) = 2 sin2(x) sin2(y) + 2 cos2(x) cos2(y) + 1.

Using Theorem 6.13, we obtain that the RKHS H associated to K is spanned
by sin2(x), cos2(x) and the constant function. Now, let f (x) = 1 and consider the
problem of computing ‖ f ‖2H . To have a correspondence with (6.8) we can, e.g., fix
the notation

ρ1(x) = sin2(x), ρ2(x) = cos2(x), ρ3(x) = 1

and
ζ1 = 2, ζ2 = 2, ζ3 = 1.

Since the functions ρi are not independent, many different representation for
f (x) = 1 can be found. In particular, one has

1 = cρ1(x) + cρ2(x) + (1 − c)ρ3(x) ∀c ∈ R,

so that

‖ f ‖2H = min
c

c2

2
+ c2

2
+ (1 − c)2 = min

c
2c2 − 2c + 1 = 1

2

with the minimum 1/2 obtained at c = 1/2. Hence, according to the norm of H ,
the “minimum energy” representation of f (x) = 1 is 1/2(ρ1(x) + ρ2(x) + ρ3(x)).

�

6.4 Kernel-Based Regularized Estimation

6.4.1 Regularization in Reproducing Kernel Hilbert Spaces
and the Representer Theorem

A powerful approach to reconstruct a function g : X → R from sparse data
{xi , yi }Ni=1 consists of minimizing a suitable functional over a RKHS. An important
generalization of the estimators based on quadratic penalties, denoted by ReLS-Q in
Chap. 3, is defined by
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ĝ = argmin
f ∈H

N∑

i=1

Vi (yi , f (xi )) + γ‖ f ‖2H . (6.21)

In (6.21), Vi are loss functions measuring the distance between yi and f (xi ). They
can take only positive values and are assumed convex w.r.t. their second argument
f (xi ). As an example, when the quadratic loss is adopted for any i , one obtains

Vi (yi , f (xi )) = (yi − f (xi ))
2.

Then, the norm ‖ · ‖H defines the regularizer, e.g., given by the energy of the first-
order derivative

‖ f ‖2H =
∫ 1

0
ḟ 2(x)dx,

which corresponds to the spline norm introduced inExample 6.5. Finally, the positive
scalarγ is the regularizationparameter (already encountered in the previous chapters)
which has to balance adherence to experimental data and function regularity. Indeed,
the idea underlying (6.21) is that the predictor ĝ should be able to describe the data
without being too complex according to the RKHS norm. In particular, the scope of
the regularizer is to restore the well-posedness of the problem, making the solution
depend continuously on the data. It should also include our available information on
the unknown function, e.g., the expected smoothness level.

The importance of the RKHSs in the context of regularization methods stems
from the following central result, whose first formulation can be found in [52]. It
shows that the solutions of the class of variational problems (6.21) admit a finite-
dimensional representation, independently of the dimension of H . The proof of an
extended version of this result can be found in Sect. 6.9.5.

Theorem 6.15 (Representer theorem, adapted from [104])LetH be aRKHS. Then,
all the solutions of (6.21) admit the following expression

ĝ =
N∑

i=1

ci Kxi , (6.22)

where the ci are suitable scalar expansion coefficients.

Thus, as in the traditional linear parametric approach, the optimal function is a
linear combination of basis functions. However, a fundamental difference is that
their number is now equal to the number of data pairs, and is thus not fixed a priori.
In fact, the functions appearing in the expression of the minimizer ĝ are just the
kernel sections Kxi centred on the input data. The representer theorem also conveys
the message that, using estimators of the form (6.21), it is not possible to recover
arbitrarily complex functions from a finite amount of data. The solution is always
confined to a subspace with dimension equal to the data set size.
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Now, let K ∈ R
N×N be the positive semidefinite matrix (called kernel matrix, or

Gram matrix) such that Ki j = K (xi , x j ). The i th row of K is denoted by ki . Using
this notation, if g = ∑N

i=1 ci Kxi then

g(xi ) = ki c and ‖g‖2H = cTKc, (6.23)

where c = [c1, . . . , cN ]T and the second equality derives from the reproducing prop-
erty or, equivalently, from (6.4).

Using the representer theorem, we can plug the expression (6.22) of the optimal
ĝ into the objective (6.21). Then, exploiting (6.23), the variational problem (6.21)
boils down to

min
c∈RN

N∑

i=1

Vi (yi ,ki c) + γcTKc. (6.24)

The regularization problem (6.21) has been thus reduced to a finite-dimensional
optimizationproblemwhoseorder N does not dependon thedimensionof the original
space H . In addition, since each loss function Vi has been assumed convex, the
objective (6.24) is convex overall. How to compute the expansion coefficients now
depends on the specific choice of the Vi , as discussed in the next section.

Remark 6.3 (Kernel trick and implicit basis functions encoding) Assume that the
kernel admits the expansion K (x, y) = ∑∞

i=1 ζiρi (x)ρi (y), ζi > 0. Then, as dis-
cussed in Sect. 6.3, any function inH has the representation

f =
∞∑

i=1

aiρi with ‖ f ‖2H =
∞∑

j=1

a2j
ζ j

.

Problem (6.21) can then be rewritten using the infinite-dimensional vector a =
[a1 a2 . . .] as unknown:

â = argmin
a

N∑

i=1

Vi

⎛

⎝yi ,
∞∑

j=1

a jρ j (xi )

⎞

⎠ + γ

∞∑

j=1

a2j
ζ j

,

and an equivalent representation of (6.22) becomes ĝ = ∑∞
i=1 âiρi . In comparison

to this reformulation the use of the kernel and of the representer theorem subsumes
modelling and computational advantages. In fact, through K one needs neither to
choose the number of basis functions to be used (the kernel can already include in an
implicit way an infinite number of basis functions) nor to store any basis function in
memory (the representer theorem reduces inference to solving a finite-dimensional
optimization problem based on the kernel matrix K). These features are related to
what is called the kernel trick in the machine learning literature.
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6.4.2 Representer Theorem Using Linear and Bounded
Functionals

A more general version of the representer theorem obtained in [52] can be obtained
by replacing f (xi ) with Li [ f ], where Li is linear and bounded. In the first part of
the following result H is just required to be Hilbert. In Sect. 6.9.5 we will see how
Theorem 6.16 can be further generalized.

Theorem 6.16 (Representer theorem with functionals Li , adapted from [104]) Let
H be a Hilbert space and consider the optimization problem

ĝ = argmin
f ∈H

N∑

i=1

Vi (yi , Li [ f ]) + γ‖ f ‖2H , (6.25)

where each Li : H → R is linear and bounded. Then, all the solutions of (6.25)
admit the following expression

ĝ =
N∑

i=1

ciηi , (6.26)

where the ci are suitable scalar expansion coefficients and each ηi ∈ H is the
representer of Li , i.e., for any i and f ∈ H :

Li [ f ] = 〈 f, ηi 〉H . (6.27)

In particular, ifH is a RKHS with kernel K , each basis function is given by

ηi (x) = Li [K (·, x)]. (6.28)

The existence of ηi satisfying (6.27) is ensured by the Riesz representation theorem
(Theorem 6.27). One can also prove that in a RKHS a linear functional L is linear
and bounded if and only if the function f obtained by applying L to the kernel, i.e.,
f (x) = L[K (x, ·)] ∀x , belongs to the RKHS.
Note also that Theorem 6.15 is indeed a special case of the last result. In fact, let

H be a RKHS and Li [ f ] = f (xi ) ∀i . Then, each Li is linear and bounded and each
ηi becomes the kernel section Kxi according to the reproducing property.

Example 6.17 (Solution using the quadratic loss) Let us adopt a quadratic loss in
(6.25), i.e., Vi (yi , Li [ f ]) = (yi − Li [ f ])2. This makes the objective strictly convex
so that a unique solution exists. To find it, plugging (6.26) in (6.25) and using also
(6.28), the following quadratic problem is obtained

‖Y − Oc‖2 + γcT Oc (6.29)
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where Y = [y1, . . . , yN ]T , ‖ · ‖ is the Euclidean norm, while the N × N matrix O
has i, j entry given by

Oi j = 〈ηi , η j 〉H = Li [L j [K ]]. (6.30)

The minimizer ĉ of (6.29) is unique if O is full rank. Otherwise, all the solutions
lead to the same function estimate in view of the (already mentioned) strict convexity
of (6.25). In particular, one can always use as optimal expansion coefficients the
components of the vector

ĉ = (O + γ IN )−1Y. (6.31)

In Sect. 6.5.1 this result will be further discussed in the context of the so-called
regularization networks, where one comes back to assume Li [ f ] = f (xi ). �

6.5 Regularization Networks and Support Vector Machines

The choice of the loss Vi in (6.21) yields regularization algorithms with different
properties. We will illustrate four different cases below.

6.5.1 Regularization Networks

Let us consider the quadratic loss function Vi (yi , f (xi )) = r2i , with the residual ri
defined by ri = yi − f (xi ). Such a loss, also depicted in Fig. 6.4 (top left panel),
leads to the problem

ĝ = argmin
f ∈H

N∑

i=1

(yi − f (xi ))
2 + γ‖ f ‖2H , (6.32)

which is a generalization of the regularized least squares problem encountered in the
previous chapters. In particular, it extends the estimator (3.58a) based on quadratic
penalty called ReLS-Q in Chap. 3. The estimator (6.32) is known in the literature as
regularization network [71] or also kernel ridge regression. The strict convexity of
the objective (6.32) ensures that the minimizer ĝ not only exists but is also unique
(this issue is further discussed in the remark at the end of this subsection).

To find the solution, we can follow the same arguments developed in Example
6.17, just specializing the result to the case Li [ f ] = f (xi ). We will see that the
matrix O has just to be replaced by the kernel matrix K.

As previously done, let Y = [y1, . . . , yN ]T and use ‖ · ‖ to indicate the Euclidean
norm. Then, the corresponding regularization problem (6.24) becomes
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min
c∈RN

‖Y − Kc‖2 + γcTKc, (6.33)

which is a finite-dimensional ReLS-Q. After simple calculations, one of the optimal
solutions2 is found to be

ĉ = (K + γ IN )−1 Y, (6.34)

where IN is the N × N identity matrix. The estimate from the regularization network
is thus available in closed form, given by ĝ = ∑N

i=1 ĉi Kxi with the optimal coefficient
vector ĉ solving a linear system of equations.

Remark 6.4 (Regularization network as projection) An interpretation of the reg-
ularization network can be also given in terms of a projection. In particular, let R

2 Similarly to what discussed in Example 6.17, if K is not full rank, the solution of (6.33) is not
unique. In fact, theminimizers are the sumof (6.34) and the null space of the kernelmatrix. However,
all of them lead to the same function estimate ĝ.
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be the Hilbert space RN × H (any element is a couple containing a vector v and a
function f ) with norm defined, for any v ∈ R

N and f ∈ H , by

‖(v, f )‖2R = ‖v‖2 + γ‖ f ‖2H , γ > 0, ‖ · ‖ = Euclidean norm.

Let also S be the (closed) subspace given by all the couples (v, f ) satisfying the
constraint v = [ f (x1) . . . f (xN )]. Then, if g = (Y, 0) where 0 here denotes the null
function inH , the projection of g onto S is

gS = argmin
h∈S

‖g − h‖2R

= argmin
({ f (xi )}Ni=1, f ), f ∈H

N∑

i=1

(yi − f (xi ))
2 + γ‖ f ‖2H .

It is now immediate to conclude that gS corresponds to ([ĝ(x1) . . . ĝ(xn)], ĝ) where
ĝ is indeed the minimizer (6.32), which must thus be unique in view of Theorem
6.25 (Projection theorem). Note that this interpretation can be extended to all the
variational problems (6.21) containing losses defined by a norm induced by an inner
product in RN .

6.5.2 Robust Regression via Huber Loss �

As described in Sect. 3.6.1, a shortcoming of the quadratic loss is its sensitivity to
outliers because the influence of large residuals ri grows quadratically. In presence
of outliers, one would better use a loss function that grows linearly. These issues
have been widely studied in the field of robust statistics [51], where loss functions
such as the Huber’s have been introduced. Recalling (3.115), one has

Vi (yi , f (xi )) =
{

r2i
2 , |ri | ≤ δ
δ
(|ri | − δ

2

)
, |ri | > δ

,

where we still have ri = yi − f (xi ). The Huber loss function with δ = 1 is shown in
Fig. 6.4 (top right panel). Notice that it grows linearly and is thus robust to outliers.
When δ → +∞, one recovers the quadratic loss. On the other hand, we also have
limδ→0+ Vi (r)/δ = |ri | that is the absolute value loss.

6.5.3 Support Vector Regression �

Sometimes, it is desirable to neglect prediction errors, as long as they are below a
certain threshold. This can be achieved, e.g., using the Vapnik’s ε-insensitive loss
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given, for ri = yi − f (xi ), by

Vi (yi , f (xi )) = |ri |ε =
{
0, |ri | ≤ ε
|ri | − ε, |ri | > ε

.

The Vapnik loss with ε = 0.5 is shown in Fig. 6.4 (bottom left panel). Notice that it
has a null plateau in the interval [−ε, ε] so that any predictor closer than ε to yi is seen
as a perfect interpolant. The loss then grows linearly, thus ensuring robustness. The
regularization problem (6.21) associated with the ε-insensitive loss function turns
out

ĝ = argmin
f ∈H

N∑

i=1

|yi − f (xi )|ε + γ‖ f ‖2H , (6.35)

and is called Support Vector Regression (SVR), see, e.g., [37]. The SVR solution,
given by ĝ = ∑N

i=1 ĉi Kxi according to the representer theorem, is characterized by
sparsity in ĉ, i.e., some components ĉi are set to zero. This feature is briefly discussed
below.

In the SVR case, obtaining the optimal coefficient vector ĉ by (6.24) is not trivial
since the loss | · |ε is not differentiable everywhere. This difficulty can be circum-
vented by replacing (6.24) with the following equivalent problem obtained consid-
ering two additional N -dimensional parameter vectors ξ and ξ∗:

min
c,ξ,ξ∗

N∑

i=1

(ξi + ξ∗
i ) + γcTKc, (6.36)

subject to the constraints

yi − ki c ≤ ε + ξi , i = 1, . . . , N ,

ki c − yi ≤ ε + ξ∗
i , i = 1, . . . , N ,

ξi , ξ
∗
i ≥ 0, i = 1, . . . , N .

To see that its minimizer contains the optimal solution ĉ of (6.24), it suffices noticing
that (6.36) assigns a linear penalty only when |yi − ki c| > ε.

Problem (6.36) is quadratic subject to linear inequality constraints, hence it is
solvable by standard optimization approaches like interior point methods [64, 108].
Calculating the Karush–Kuhn–Tucker conditions, it is possible to show that the
condition |yi − ki ĉ| < ε implies ĉi = 0. Indexes i for which ĉi = 0 instead identify
the set of input locations xi called support vectors.
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6.5.4 Support Vector Classification �

The three losses illustrated above were originally proposed for regression problems,
with the output y real valued. When the outputs can assume only two values, e.g.,
1 and −1, a classification problem arises. Here, the scope of the predictor is just to
separate two classes. This problem can be seen as a special case of regression. In
particular, even if the output space is binary, consider prediction functions f : X →
R and assume that the input xi is associated to the class 1 if f (xi ) ≥ 0 and to the class
−1 if f (xi ) < 0. Let the margin on an example (xi , yi ) be mi = yi f (xi ). Then, we
will see that the value ofmi is a measure of how well we are classifying the available
data. One can thus try to maximize the margin but still searching for a function not
too complex according to the RKHS norm. In particular, we can exploit (6.21) with
a loss that depends on the margin as described below.

The most natural classification loss is the 0 − 1 loss defined for any i by

Vi (yi , f (xi )) =
{
0, mi > 0
1, mi ≤ 0

, mi = yi f (xi ),

and depicted in Fig. 6.4 (bottom right panel, dashed line). Adopting it, the first com-
ponent of the objective in (6.21) returns the number of misclassifications. However,
the 0 − 1 loss is not convex and leads to an optimization problem of combinatorial
nature.

An alternative is the so-called hinge loss [98] defined by

Vi (yi , f (xi )) = |1 − yi f (xi )|+ =
{
0, m > 1
1 − m, m ≤ 1

, m = yi f (xi ),

which thus provides a linear penalty when m < 1. Figure6.4 (bottom right panel,
solid line) illustrates that it is a convex upper bound on the 0 − 1 loss. The problem
associated with the hinge loss turns out

ĝ = argmin
f ∈H

N∑

i=1

|1 − yi f (xi )|+ + γ‖ f ‖2H , (6.37)

and is called support vector classification (SVC).
Like in the SVR case, obtaining the optimal coefficient vector by (6.37) is not

trivial since the hinge loss is not differentiable. But one can still resort to an equivalent
problem, now obtained considering just an additional parameter vector ξ:

min
c,ξ

N∑

i=1

ξi + γcTKc, (6.38)

subject to the constraints



6.5 Regularization Networks and Support Vector Machines 205

yi (ki c) ≥ 1 − ξi , i = 1, . . . , N ,

ξi ≥ 0, i = 1, . . . , N .

As in the SVR case, the optimal solution ĉ is sparse and indexes i for which ĉi = 0
define the support vectors xi .

6.6 Kernels Examples

The reproducing kernel characterizes the hypothesis space H . Together with the
loss function, it also completely defines the key estimator (6.21) which exploits the
RKHS norm as regularizer. The choice of K has thus a crucial impact on the ability
of predicting future output data. Some important RKHSs are discussed below.

6.6.1 Linear Kernels, Regularized Linear Regression
and System Identification

Wenow show that the regularization network (6.32) generalizes the ReLS-Q problem
introduced in Chap. 3 which adopts quadratic penalties. The link is provided by the
concept of linear kernel.

We start assuming that the input space is X = R
m . Hence, any input location x

corresponds to anm-dimensional (column) vector. If P ∈ R
m×m denotes a symmetric

and positive semidefinite matrix, a linear kernel is defined as follows

K (y, x) = yT Px, (x, y) ∈ R
m × R

m .

All the kernel sections are linear functions. Hence, their span defines a finite-
dimensional (closed) subspace of linear functions that, in view of Theorem 6.1 (and
subsequent discussion) coincides with the whole H . Hence, the RKHS induced by
the linear kernel is simply a space of linear functions and, for any g ∈ H , there
exists a ∈ R

m such that
g(x) = aT Px = Ka(x).

If P is full rank, letting θ := Pa, we also have

||g||2H = ||Ka||2H = 〈Ka, Ka〉H
= K (a, a) = aT Pa

= θT P−1θ.

Now, let us use such H in the regularization network (6.32). Without using the
representer theorem, we can plug the representation g(x) = θT x in the regularization



206 6 Regularization in Reproducing Kernel Hilbert Spaces

problem to obtain ĝ(x) = θ̂T x where

θ̂ = argmin
θ∈Rm

‖Y − Φθ‖2 + γθT P−1θ, (6.39)

with the i th row of the regression matrix Φ equal to xTi . One can see that (6.39)
coincides with ReLS-Q, with the regularization matrix P which defines the linear
kernel K and, in turn, the penalty term θT P−1θ.

We now derive the connection with linear system identification in discrete time.
The data set consists of the output measurements {yi }Ni=1, collected on the time
instants {ti }Ni=1, and of the system input u. We can form each input location using
past input values as follows

xi = [uti−1 uti−2 . . . uti−m]T , (6.40)

wherem is the FIR order and an input delay of one unit has been assumed. Then, if Y
collects the noisy outputs, θ̂ becomes the impulse response estimate. This establishes
a correspondence between regularized FIR estimation and regularization in RKHS
induced by linear kernels.

6.6.1.1 Infinite-Dimensional Extensions �

In place of X = R
m , let now X ⊂ R

∞, i.e., the input space contains sequences.
We can interpret any input location as an infinite-dimensional column vector and use
ordinary notation of algebra to handle infinite-dimensional objects. For instance, if
x, y ∈ X then xT y = 〈x, y〉2 where 〈·, ·〉2 is the inner product in �2. Assume we are
given a symmetric and infinite-dimensional matrix P such that the linear kernel

K (y, x) = yT Px

is well defined over a subset ofR∞ × R
∞. For example, if P is absolutely summable,

i.e.,
∑

i j |Pi j | < ∞, the kernel is well defined for any input location x ∈ X with
X = �∞. The kernel section centred on x is the infinite-dimensional column vector
Px . Following arguments similar to those seen in the finite-dimensional case, one can
conclude that the RKHS associated to such K contains linear functions of the form
g(x) = aT Px with a ∈ X . Roughly speaking, the regularization network (6.32)
relying on such hypothesis space is the limit of Problem (6.39) for m → ∞. To
compute the solution, in this case it is necessary to resort to the representer theorem
(6.22). One obtains

ĝ(x) =
N∑

i=1

ĉi Kxi (x) = θ̂T x

where ĉ is defined by (6.34) and
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θ̂ :=
N∑

i=1

ĉi Pxi .

The link with linear system identification follows the same reasoning previously
developed but xi now contains an infinite number of past input values, i.e.,

xi = [uti−1 uti−2 uti−3 . . .]T .

With this correspondence, the regularization network now implements regularized
IIR estimation and θ̂ contains the impulse response coefficients estimates. In fact,
note that the nature of xi makes the value ĝ(xi ) the convolution between the system
input u and θ̂ evaluated at ti (with one unit input delay).

In a more sophisticated scenario, in place of sequences, the input spaceX could
contain functions. For instance,X ⊂ Pc wherePc is the space of piecewise con-
tinuous functions on R

+. Thus, each input location corresponds to a continuous
function x : R+ → R. Given a suitable symmetric function P : R+ × R

+ → R, a
linear kernel is now defined by

K (y, x) =
∫

R+×R+
y(t)P(t, τ )x(τ )dtdτ .

The corresponding RKHS thus contains linear functionals: any f ∈ H maps x
(which is a function) into R. The solution of the regularization network (6.32)
equipped with such hypothesis space is

ĝ(x) =
N∑

i=1

ĉi Kxi (x) =
∫

R+
θ̂(τ )x(τ )dτ ,

where ĉ is still defined by (6.34) and

θ̂(τ ) :=
N∑

i=1

ĉi

∫

R+
P(τ , t)xi (t)dt.

The connection with linear system identification is obtained by defining

xi (t) = u(ti − t), t ≥ 0

(if the input u(t) is continuous for t ≥ 0 and causal, the functions xi (t) is piecewise
continuous, making necessary the assumption X ⊂ Pc). In this way, each g ∈
H represents a different linear system. Furthermore, the regularization network
(6.32) implements regularized system identification in continuous time and θ̂ is the
continuous-time impulse response estimate. The class of kernels which include the
BIBO stability constraint will be discussed in the next chapter.
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6.6.2 Kernels Given by a Finite Number of Basis Functions

Assume we are given an input spaceX and m independent functions ρi : X → R.
Then, we define

K (x, y) =
m∑

i=1

ρi (x)ρi (y).

It is easy to verify that K is a positive definite kernel. Recalling Theorem 6.13,
the associated RKHS coincides with the m-dimensional space spanned by the basis
functions ρi . Each function in H has the representation g(x) = ∑m

i=1 θiρi (x) and,
in view of (6.20) and the independence of the basis functions, one has

‖g‖2H =
m∑

i=1

θ2i .

Consider now the regularization network (6.32) equippedwith such hypothesis space.
The solution can be computed without using the representer theorem by plugging in
(6.32) the expression of g as a function of θ. Letting Φ ∈ R

N×m with Φi j = ρ j (xi ),
we obtain ĝ = ∑m

i=1 θ̂iρi with

θ̂ = arg min
θ∈Rm

‖Y − Φθ‖2 + γ‖θ‖2. (6.41)

The solution (6.41) coincides with the ridge regression estimate introduced in
Sect. 1.2.

6.6.3 Feature Map and Feature Space �

Let F be a space endowed with an inner product, and assume that a representation
of the form

K (x, y) = 〈φ(x),φ(y)〉F , φ : X → F , (6.42)

is available. Then, it follows immediately that K is a positive definite kernel. In this
context, φ is called a feature map, andF the feature space. For instance, to have the
connection with the kernel discussed in the previous subsection, we can think of φ
as a vector containing m functions. It is defined for any x by

φ(x) =

⎛

⎜⎜⎜⎝

ρ1(x)
ρ2(x)

...

ρm(x)

⎞

⎟⎟⎟⎠
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so that F = R
m with the Euclidean inner product. Then, we obtain

K (x, y) = 〈φ(x),φ(y)〉2 = φT (x)φ(y) =
m∑

i=1

ρi (x)ρi (y).

Now, given any positive definite kernel K , Theorem 6.2 (Moore–Aronszajn theorem)
implies the existence of at least one featuremap, namely, theRKHSmapφH : X →
H such that

φH (x) = Kx ,

where the representation (6.42) follows immediately from the reproducing property.
These arguments show that K is a positive definite kernel iff there exists at least one
Hilbert space F and a map φ : X → F such that K (x, y) = 〈φ(x),φ(y)〉F .

Feature maps and feature spaces are not unique since, by introducing any linear
isometry I : H → F , one can obtain a representation in a different space:

K (x, y) = 〈φH (x),φH (y)〉H = 〈I ◦ φH (x), I ◦ φH (y)〉F .

Now, assume that the kernel admits the decomposition (6.8), i.e.,

K (x, y) =
∞∑

i=1

ζiρi (x)ρi (y)

with ζi > 0 ∀i . Then, a spectral feature map of K is

φμ : X → �2

with
φμ(x) = {√ζiρi (x)}∞i=1, x ∈ X .

In fact, we have

〈φμ(x),φμ(y)〉2 =
∞∑

i=1

ζiρi (x)ρi (y) = K (x, y).

It is worth also pointing out the role of the feature map within the estimation sce-
nario. In many applications, linear functions are not models powerful enough. Ker-
nels define more expressive spaces by (implicitly) mapping the data into a high-
dimensional feature space where linear machines can be applied. Then, the use of
the estimator (6.21) does not require to know any feature map associated to K : the
representer theorem shows that the only information needed to compute the estimate
is the kernel matrix, as also discussed in Remark 6.3.
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6.6.4 Polynomial Kernels

Another example of kernel is the (inhomogeneous) polynomial kernel [70]. For
x, y ∈ R

m , it is defined by

K (x, y) = (〈x, y〉2 + c)p , p ∈ N, c ≥ 0,

with 〈·, ·〉2 to denote the classical Euclidean inner product. As an example, assume
c = 1 andm = p = 2with x = [xa xb] and y = [ya yb]. Then, one obtains the kernel
expansion

K (x, y) = 1 + x2a y
2
a + x2b y

2
b + 2xaxb ya yb + 2xa ya + 2xb yb,

of the type (6.8) with the ρi (xa, xb) given by all the monomials of degree up to 2,
i.e., the 6 functions

1, x2a , x2b , xaxb, xa, xb.

More in general, if c > 0, the polynomial kernel induces a
(m+p

p

)
-dimensional RKHS

spanned by all possiblemonomials up to the pth degree. The number of basis function
is thus finite but exponential in p. This simple example is in some sense opposite to
that described in Sect. 6.6.2. It shows how a kernel can be used to define implicitly
a rich class of basis functions.

6.6.5 Translation Invariant and Radial Basis Kernels

A kernel is said translation invariant if there exists h : X → R such that K (x, y) =
h(x − y). This class has been already encountered inExample 6.12where its relation-
ship with the Fourier basis (in the case of one-dimensional input space) is illustrated.
A general characterization is given below, see also [80].

Theorem 6.18 (Bochner, based on [23]) A positive definite kernel K over X =
R

d is continuous and of the form K (x, y) = h(x − y) if and only if there exists a
probability measure μ and a positive scalar η such that:

K (x, y) = η

∫

X
cos (〈z, x − y〉2) dμ(z).

Translation invariant kernels include also the class of radial basis kernels (RBF)
of the form K (x, y) = h(‖x − y‖)where ‖ · ‖ is the Euclidean norm [85]. A notable
example is the so-called Gaussian kernel:

K (x, y) = exp

(
−‖x − y‖2

ρ

)
, ρ > 0, (6.43)
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where ρ denotes the kernel width. This kernel is often used to model functions
expected to be somewhat regular. Note however that ρ has an important role in
tuning the smoothness level. A low value makes the kernel close to diagonal so that
a low norm can be assigned also to rapidly changing functions. On the other hand, as
ρ approaches zero, only functions close to be constant are given a low penalty. This
is the same phenomenon illustrated in Fig. 6.1.

Another widely adopted kernel, which induces spaces of functions less regular
than the Gaussian one, is the Laplacian kernel which uses the Euclidean norm in
place of the squared Euclidean norm:

K (x, y) = exp

(
−‖x − y‖

ρ

)
, ρ > 0. (6.44)

Differently from the kernels described in the first part of Sect. 6.6.1, as well as in
Sects. 6.6.2 and 6.6.4, the RKHS associated with any non-constant RBF kernel is
infinite dimensional (it cannot be spanned by a finite number of basis functions). The
associated RKHS can be shown to be dense in the space of all continuous functions
defined on a compact subset X ⊂ R

m . This means that every continuous function
can be represented in this space with the desired accuracy as measured by the sup-
norm supx∈X | f (x)|. This property is called universality. This does not imply that the
RKHS induced by a universal kernel includes any continuous function. For instance,
the Gaussian kernel is universal but it has been proved that it does not contain any
polynomial, including the constant function [69].

6.6.6 Spline Kernels

To simplify the exposition, letX = [0, 1] and let also g( j) denote the j th derivative
of g, with g(0) := g. Intuitively, in many circumstances an effective regularizer is
obtained by penalizing the energy of the pth derivative of g, i.e., employing

∫ 1

0

(
g(p)(x)

)2
dx .

An interesting question is whether this penalty term can be cast in the RKHS theory.
For p = 1, a positive answer has been given by Example 6.5. Actually, the answer
is positive for any integer p. In fact, consider the Sobolev space of functions g
whose first p − 1 derivatives are absolutely continuous and satisfy g( j)(0) = 0 for
j = 0, . . . , p − 1. The same arguments developed in Example 6.5 when p = 1 can
be easily generalized to prove that this is a RKHS H with norm

‖g‖2H =
∫ 1

0

(
g(p)(x)

)2
dx .
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The corresponding kernel is the pth-order spline kernel

K (x, y) =
∫ 1

0
Gp(x, u)Gp(y, u)du, (6.45)

where Gp is the so-called Green’s function given by

Gp(x, u) = (x − u)
p−1
+

(p − 1)! , (u)+ =
{
u if u ≥ 0
0 otherwise

. (6.46)

Note that the Laplace transform of Gp(·, 0) is 1/s p. Hence, the Green’s function is
connected with the impulse response of a p-fold integrator. When p = 1, we recover
the linear spline kernel of Example 6.5:

K (x, y) = min{x, y} (6.47)

whereas p = 2 leads to the popular cubic spline kernel [104]:

K (x, y) = xymin{x, y}
2

− (min{x, y})3
6

. (6.48)

The linear and the cubic spline kernel are displayed in Fig. 6.2.
We can use the spline hypothesis space in the regularization problem (6.21). Then,

from the representer theorem one obtains that the estimate ĝ is a pth-order smoothing
spline with derivatives continuous exactly up to order 2p − 2 (the order’s choice is
thus related to the expected function smoothness). This can be seen also from the
kernels sections plotted in Fig. 6.2 for p equal to 1 and 2. For p = 2 the (finite) sum
of kernel sections provides the well-known cubic smoothing splines, i.e., piecewise
third-order polynomials.

Spline functions enjoy many numerical properties originally studied in the inter-
polation scenario. In particular, piecewise polynomials circumvent Runge’s phe-
nomenon (large oscillations affecting the reconstructed function) which, e.g., arises
when high-order polynomials are employed [81]. Fit convergence rates are discussed,
e.g., in [3, 14].

6.6.7 The Bias Space and the Spline Estimator

Bias space As discussed in Sect. 4.5, in a Bayesian setting, in some cases it can be
useful to enrich H with a low-dimensional parametric part, known in the literature
as bias space. The bias space typically consists of linear combinations of functions
{φk}mk=1. For instance, if the unknown function exhibits a linear trend, one may
let m = 2 and φ1(x) = 1,φ2(x) = x . Then, one can assume that g is sum of two
functions, one in H and the other one in the bias space. In this way, the function
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space becomes H + span{φ1, . . . ,φm}. Using a quadratic loss, the regularization
problem is given by

( f̂ , θ̂) = argmin
f ∈H ,
θ∈Rm

N∑

i=1

(
yi − f (xi ) −

m∑

k=1

θkφk(xi )

)2

+ γ‖ f ‖2H , (6.49)

and the overall function estimate turns out ĝ = f̂ + ∑m
k=1 θ̂kφk . Note that the expan-

sion coefficients in θ are not subject to any penalty term but a low value form avoids
overfitting. The solution can be computed exploiting an extended version of the
representer theorem. In particular, it holds that

ĝ =
N∑

i=1

ĉi Kxi +
m∑

k=1

θ̂kφk, (6.50)

where, assuming that Φ ∈ R
N×m is full column rank and Φi j = φ j (xi ),

θ̂ = (
ΦT A−1Φ

)−1
ΦT A−1Y (6.51a)

ĉ = A−1
(
Y − Φθ̂

)
(6.51b)

A = K + γ IN . (6.51c)

Remark 6.5 (Extended version of the representer theorem) The correctness of for-
mulas (6.51a–6.51c) can be easily verified as follows. Fix θ to the optimizer θ̂ in the
objective present in the rhs of (6.49). Then, we can use the representer theorem with
Y replaced by Y − Φθ̂ to obtain f̂ = ∑N

i=1 ĉi Kxi with

ĉ = A−1
(
Y − Φθ̂

)

with A indeed given by (6.51c). This proves (6.51b). Using the definition of A this
also implies

Y − Kĉ = Φθ̂ + γĉ.

Now, if we fix f to f̂ , the optimizer θ̂ is just the least squares estimate of θ with Y
replaced by Y − Kĉ. Hence, we obtain

θ̂ = (
ΦTΦ

)−1
ΦT (Y − Kĉ).

Using Y − Kĉ = Φθ̂ + γĉ in the expression for θ̂, we obtain
(
ΦTΦ

)−1
ΦT ĉ = 0.

Multiplying the lhs and rhs of (6.51b) by
(
ΦTΦ

)−1
ΦT and using this last equality,

(6.51a) is finally obtained.
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The spline estimator The bias space is useful, e.g., when spline kernels are adopted.
In fact, the spline space of order p contains functions all satisfying the constraints
g( j)(0) = 0 for j = 0, . . . , p − 1. Then, to cope with nonzero initial conditions, one
can enrich such RKHS with polynomials up to order p − 1. The enriched space is
H ⊕ span{1, x, . . . , x p−1},with⊕denoting a direct sum, and enjoys the universality
property mentioned at the end of Sect. 6.6.5. The resulting spline estimator becomes
a notable example of (6.49): it solves

min
f ∈H ,
θ∈Rp

N∑

i=1

(
yi − f (xi ) −

p∑

k=1

θk x
k−1
i

)2

+ γ

∫ 1

0

(
f (p)(x)

)2
dx, (6.52)

whose explicit solution is given by (6.50) setting φk(x) = xk−1 and Φi j = x j−1
i .

We consider a simple numerical example to illustrate the estimator (6.52) and the
impact of different choices of γ on its performance. The task is the reconstruction of
the function g(x) = esin(10x), with x ∈ [0, 1], from 100 direct samples corrupted by
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Fig. 6.5 Cubic spline estimator (6.52) with three different values of the regularization parameter:
truth (red thick line), noisy data (◦) and estimate (black solid line)
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white and Gaussian noise with standard deviation 0.3. The estimates coming from
(6.52) with p = 2 and three different values of γ are displayed in the three panels
of Fig. 6.5. The cubic spline estimate plotted in the top left panel is affected by
oversmoothing: the too large value of γ overweights the norm of f in the objective
(6.52), introducing a large bias. Hence, the model is too rigid, unable to describe the
data. The top right panel displays the opposite situation obtained adopting a too low
value for γ which overweights the loss function in (6.52). This leads to a high variance
estimator: the model is overly flexible and overfits the measurements. Finally, the
estimate in the bottom panel of Fig. 6.5 is obtained using the regularization parameter
optimal in the MSE sense. The good trade-off between bias and variance leads to an
estimate close to truth. As already pointed out in the previous chapters, the choice of
γ can thus be interpreted as the counterpart of model order selection in the classical
parametric paradigm.

6.7 Asymptotic Properties �

6.7.1 The Regression Function/Optimal Predictor

In what follows, we use μ to indicate a probability measure on the input space X .
For simplicity, we assume that it admits a probability density function (pdf) denoted
by px . The input locations xi are now seen as random quantities and px models
the stochastic mechanism through which they are drawn from X . For instance, in
the system identification scenario treated in Sect. 6.6.1, each input location contains
system input values, e.g., see (6.40). If we assume that the input is a stationary
stochastic process, all the xi indeed follow the same pdf px .

Let also Y indicate the output space. Then, pyx denotes the joint pdf onX × Y
which factorizes into py|x (y|x)px (x). Here, py|x is the pdf of the output y conditional
on a particular realization x .

Let us now introduce some important quantities function ofX ,Y and pyx . Given
a function f , the least squares error associated to f is defined by

Err( f ) = E (y − f (x))2 =
∫

X ×Y
(y − f (x))2pyx (y, x)dxdy. (6.53)

The following result, also discussed in [33], characterizes the minimizer of Err( f )
and has connections with Theorem 4.1.

Theorem 6.19 (The regression function, based on [33])We have

fρ = argmin
f

Err( f ),

where fρ is the so-called regression function defined by
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fρ(x) =
∫

Y
ypy|x (y|x)dy, x ∈ X . (6.54)

One can see that the regression function does not depend on the marginal density
px but only on the conditional py|x . For any given x , it corresponds to the posterior
mean (Bayes estimate) of the output y conditional on x . The proof of this fact is
easily obtained by first using the following decomposition

Err( f ) =
∫

X ×Y
(y − fρ(x) + fρ(x) − f (x))2pyx (y, x)dxdy

= E ( fρ(x) − f (x))2 + E (y − fρ(x))
2

+ 2
∫

X
( fρ(x) − f (x))

(∫

Y
(y − fρ(x))py|x (y|x)dy

)

︸ ︷︷ ︸
0

px (x)dx

= E ( fρ(x) − f (x))2 + E (y − fρ(x))
2,

and then noticing that the very last term is independent of f .
Theorem 6.19 shows that fρ is the best output predictor in the sense that it min-

imizes the expected quadratic loss (MSE) on a new output drawn from pyx . Now,
we will consider a scenario where py|x (and possibly also px ) is unknown and only
N samples {xi , yi }Ni=1 from pyx are available. We will study the asymptotic proper-
ties (N growing to infinity) of the regularized approaches previously described. The
regularization network case is treated in the following subsection.

6.7.2 Regularization Networks: Statistical Consistency

Consider the following regularization network

ĝN = argmin
f ∈H

∑N
i=1(yi − f (xi ))2

N
+ γ‖ f ‖2H , (6.55)

which coincides with (6.32) except for the introduction of the scale factor 1/N in
the quadratic loss. We have also stressed the dependence of the estimate on the data
set size N . Our goal is to assess whether ĝN converges to fρ as N → ∞ using the
norm ‖ · ‖L μ

2
defined by the pdf px as follows

‖ f ‖2L μ
2

=
∫

X
f 2(x)px (x)dx .

First, details on the data generation process are provided.
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Data generation assumptions The probability measure μ on X is assumed to be
Borel non degenerate. As already recalled, this means that realizations from px can
cover entirelyX , without holes. This happens, e.g., when px (x) > 0 ∀x ∈ X . The
stochastic processes xi and yi are jointly stationary, with joint pdf pyx .

The study is not limited to the i.i.d. case. This is important, e.g., in system identifi-
cation where, as visible in (6.40), input locations contain past input values shifted in
time, hence introducing correlation among the xi . Let a, b indicate two integers with
a ≤ b. Then, M b

a denotes the σ-algebra generated by (xa, ya), . . . , (xb, yb). The
process (x, y) is said to satisfy a strong mixing condition if there exists a sequence
of real numbers ψm such that, ∀k,m ≥ 1, one has

|P(A ∩ B) − P(A)P(B)| ≤ ψi ∀A ∈ M k
1 , B ∈ M∞

k+i

with
lim
i→∞ ψi = 0.

Intuitively, if a, b represent different time instants, this means that the random vari-
ables tend to become independent as their temporal distance increases.

Assumption 6.20 (Data generation and strong mixing condition) The probability
measure μ on the input space (having pdf px ) is nondegenerate. In addition, the
random variables xi and yi form two jointly stationary stochastic processes, with
finite moments up to the third order and satisfy a strong mixing condition. Finally,
denoting with ψi the mixing coefficients, one has

∞∑

i=1

(|ψi |1/3
)

< ∞.

Consistency Result
The following theorem, whose proof is in Sect. 6.9.6, illustrates the convergence in
probability of (6.55) to the best output predictor.

Theorem 6.21 (Statistical consistency of the regularization networks) LetH be a
RKHS of functions f : X → R induced by the Mercer kernel K , withX a compact
metric space. Assume that fρ ∈ H and that Assumption 6.20 holds. In addition, let

γ ∝ 1

Nα
, (6.56)

where α is any scalar in (0, 1
2 ). Then, as N goes to infinity, one has

‖ĝN − fρ‖L μ
2

−→p 0, (6.57)

where −→p denotes convergence in probability.
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The meaning of (6.56) is the following one. The regularizer ‖ · ‖2H in (6.55)
restores thewell-posedness of the problemby introducing some bias in the estimation
process. Intuitively, to have consistency, the amount of regularization should decay
to zero as N goes to ∞, but not too rapidly in order to keep the variance term under
control. This can be obtained making the regularization parameter γ go to zero with
the rate suggested by (6.56).

6.7.3 Connection with Statistical Learning Theory

We now discuss the class of estimators (6.21) within the framework of statistical
learning theory.

Learning problem Let us consider the problem of learning from examples as defined
in statistical learning. The starting point is that described in Sect. 6.7.1. There is an
unknown probabilistic relationship between the variables x and y described by the
joint pdf pyx on X × Y . We are given examples {xi , yi }Ni=1 of this relationship,
called training data, which are independently drawn from pyx . The aim of the
learning process is to obtain an estimator ĝN (a map from the training set to a space
of functions) able to predict the output y given any x ∈ X .

Generalization and consistency In the statistical learning scenario, the two funda-
mental properties of an estimator are generalization and consistency. To introduce
them, first we introduce a loss function V (y, f (x)), called risk functional. Then,
the mean error associated to a function f is the expected risk given by

I ( f ) =
∫

X ×Y
V (y, f (x))pyx (y, x)dxdy. (6.58)

Note that, in the quadratic loss case, the expected risk coincides with the error already
introduced in (6.53). Given a function f , the empirical risk is instead defined by

IN ( f ) = 1

N

N∑

i=1

V (yi , f (xi )). (6.59)

Then, we introduce a class of functions forming the hypothesis space F where the
predictor is searched for. The ideal predictor, also called the target function, is given
by3

f0 = argmin
f ∈F

I ( f ). (6.60)

3 Here, and also when introducing empirical risk minimization (ERM), we assume that all the
introduced minimizers exist. If this does not hold true, all the concepts remain valid by resorting to
the concept of almost minimizers and almost ERM, with I ( f0) := inf f ∈F I ( f ).
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In general, even when a quadratic loss is chosen, f0 does not coincide with the
regression function fρ introduced in (6.54) since F could not contain fρ.

The concepts of generalization and consistency trace back to [97, 99–101]. Below,
recall that ĝN is stochastic since it is function of the training set which contains the
random variables {xi , yi }Ni=1.

Definition 6.3 (Generalization and consistency, based on [102]) The estimator ĝN
(uniformly) generalizes if ∀ε > 0:

lim
N→∞ sup

pyx
P
{|IN (ĝN ) − I (ĝN )| > ε

} = 0. (6.61)

The estimator is instead (universally) consistent if ∀ε > 0:

lim
N→∞ sup

pyx
P
{
I (ĝN ) > I ( f0) + ε

} = 0. (6.62)

From (6.61), one can see that generalization implies that the performance on the
training set (the empirical error) must converge to the “true” performance on future
outputs (the expected error). The presence of the suppyx is then to indicate that this
property must hold uniformly w.r.t. all the possible stochastic mechanisms which
generate the data. Consistency, as defined in (6.62), instead requires the expected
error of ĝN to converge to the expected error achieved by the best predictor in F .
Note that the reconstruction of f0 is not required. The goal is that ĝN be able tomimic
the prediction performance of f0 asymptotically. Key issues in statistical learning
theory are the understanding of the conditions on ĝN , the function class F and the
loss V which ensure such properties.

Empirical Risk Minimization
The most natural technique to determine f0 from data is the empirical risk minimiza-
tion (ERM) approach where the empirical risk is optimized:

ĝN = argmin
f ∈F

IN ( f ) = argmin
f ∈F

1

N

N∑

i=1

V (yi , f (xi )). (6.63)

The study of ERMhas provided a full characterization of the necessary and sufficient
conditions for its generalization and consistency. To introduce them, we first need to
provide further details on the data generation assumptions.

Assumption 6.22 (Data generation assumptions) It holds that

• the {xi , yi }Ni=1 are i.i.d. and each couple has joint pdf pyx ;
• the input space X is a compact set in the Euclidean space;
• y ∈ Y almost surely with Y a bounded real set;
• the class of functions F is bounded, e.g., under the sup-norm;
• A ≤ V (y, f (x)) ≤ B, for f ∈ F , y ∈ Y , with A, B finite and independent of f
and y. �
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Note that, if the first four points hold true, in practice any loss function of interest,
such as quadratic, Huber or Vapnik, satisfies the last requirement.

We now introduce the concept of Vγ-dimension [5]. It is a complexity measure
which extends the concept ofVapnik–Chervonenkis (VC) dimension originally intro-
duced for the indicator functions.

Definition 6.4 (Vγ-dimension, based on [5]) Let Assumption 6.22 hold. The Vγ-
dimension ofV inF , i.e., of the setV (y, f (x)), f ∈ F , is defined as themaximum
number h of vectors (x1, y1), . . . , (xh, yh) that can be separated in all 2h possible
way using rules

Class 1: if V (yi , f (xi )) ≥ s + γ,

Class 0: if V (yi , f (xi )) ≤ s − γ

for f ∈ F and some s ≥ 0. If, for any h, it is possible to find h pairs (x1, y1), . . . ,
(xh, yh) that can be separated in all the 2h possible ways, the Vγ-dimension of V in
F is infinite.

So, the Vγ-dimension is infinite if, for any data set size, one can always find a
function f and a set of points which can be separated by f in any possible way.
Note that the required margin to distinguish the classes increases as γ augments.
This means that the Vγ-dimension is a monotonically decreasing function of γ.

The following definition deals with the uniform, distribution-free convergence of
empirical means to expectations for classes of real-valued functions. It is related to
the so-called uniform laws of large numbers.

Definition 6.5 (UniformGlivenko Cantelli class, based on [5])LetG denote a space
of functionsZ → R, whereR is a bounded real set, and let pz denote a generic pdf
on Z . Then, G is said to be a Uniform Glivenko Cantelli (uGC) class4 if

∀ε > 0 lim
N→∞ sup

pz
P

{
sup
g∈G

∣∣∣∣∣
1

N

N∑

i=1

g(zi ) −
∫

X
g(z)pz(z)dz

∣∣∣∣∣ > ε

}
= 0.

It turns out that, under the ERM framework, generalization and consistency are
equivalent concepts. Moreover, the finiteness of the Vγ-dimension coincides with the
concept of uGC class relative to the adopted losses and turns out the necessary and
sufficient condition for generalization and consistency [5]. This is formalized below.

Theorem 6.23 (ERM and Vγ-dimension, based on [5]) Let Assumption 6.22 hold.
The following facts are then equivalent:

• ERM (uniformly) generalizes.

4 Sometimes, the class defined by (6.5) in terms of convergence in probability is called weak uGC
while almost sure convergence leads to a strong uGC. However, it can be proved that, if Assumption
6.22 holds true and the function class is the composition of the losses with F , the two concepts
become equivalent.
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• ERM is (uniformly) consistent.
• The Vγ-dimension of V inF is finite for any γ > 0.
• The class of functions V (y, f (x)) with f ∈ F is uGC.

In the last point regarding the uGC class, one can follow Definition 6.5 using the
correspondences Z = X × Y , z = (x, y), pz = pyx and R = [A, B].

Connection with Regularization in RKHS
The connection between statistical learning theory and the class of kernel-based
estimators (6.21) is obtained using as function space F a ball Br in a RKHS H ,
i.e.,

F = Br :=
{
f ∈ H | ‖ f ‖H ≤ r

}
. (6.64)

The ERM method (6.63) becomes

ĝN = argmin
f

1

N

N∑

i=1

V (yi , f (xi )) s.t. ‖ f ‖H ≤ r, (6.65)

which is an inequality constrained optimization problem. Exploiting the Lagrangian
theory, we can find a positive scalar γ, function of r and of the data set size N , which
makes (6.65) equivalent to

ĝN = argmin
f ∈H

1

N

N∑

i=1

V (yi , f (xi )) + γ
(‖ f ‖2H − r2

)
,

which, apart from constants, coincides with (6.21). The question now is whether
(6.65) is consistent in the sense of the statistical learning theory. The answer is
positive. In fact, under Assumption 6.22, it can be proved that the class of functions
V inF is uGC ifF is uGC. In addition, one sufficient (but not necessary) condition
for F to be uGC is that F be a compact set in the space of continuous functions.
The following important result then holds.

Theorem 6.24 (Generalization and consistency of the kernel-based approaches,
based on [33, 65]) Let H be any RKHS induced by a Mercer kernel containing
functions f : X → R, with X a compact metric space. Then, for any r , the ball
Br is compact in the space of continuous functions equipped with the sup-norm. It
then comes thatBr is uGC and, if Assumption 6.22 holds, the regularized estimator
(6.65) generalizes and is consistent.

Theorem 6.24 thus shows that kernel-based approaches permit to exploit flexible
infinite-dimensional models with the guarantee that the best prediction performance
(achievable inside the chosen class) will be asymptotically reached.
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6.8 Further Topics and Advanced Reading

Basic functional analysis principles can be found, e.g., in [59, 79, 112]. The concept
of RKHS was developed in 1950 in the seminal works [13, 20]. Classical books on
the subject are [6, 82, 84]. RKHSs have been introduced within the machine learning
community in [46, 47] leading, in conjunction with Tikhonov regularization theory
[21, 96], to the development of many powerful kernel-based algorithms [42, 86].

Extensions of the theory to vector-valued RKHSs is described in [62]. This is
connected to the so-called multi-task learning problem [18, 29] which deals with
the simultaneous reconstruction of several functions. Here, the key point is that
measurements taken on a function (task) may be informative w.r.t. the other ones,
see [16, 40, 68, 95] for illustrations of the advantages of this approach. Multi-task
learning will be illustrated in Chap. 9 using also a numerical example based on real
pharmacokinetics data.

Mercer theorem dates back to [60] which discusses also the connection with inte-
gral equations, see also the book [50]. Extensions of the theorem to non compact
domains are discussed in [94]. The first version of the representer theorem appears
in [52]. It has been then subject of many generalizations which can be found in [11,
36, 83, 103, 110]. Recent works have also extended the classical formulation to the
context of vector-valued functions (multi-task learning and collaborative filtering),
matrix regularization problems (with penalty given by spectral functions of matri-
ces), matricizations of tensors, see, e.g., [1, 7, 12, 54, 87]. These different types of
representer theorems are cast in a general framework in [10].

The term regularization network traces back to [71] where it is illustrated that a
particular regularized scheme is equal to a radial basis function network. Support
vector regression and classification were introduced in [24, 31, 37, 98], see also the
classical book [102]. Robust statistics are described in [51].

The term “kernel trick” was used in [83] while interpretation of kernels as inner
products in a feature space was first described in [4]. Sobolev spaces are illustrated,
e.g., in [2] while classical works on smoothing splines are [32, 104]. The important
spline interpolation properties are described in [3, 14, 22].

Polynomial kernels were used for the first time in [70] while an application to
Wiener system identification can be found in [44], as also discussed later on inChap. 8
devoted to nonlinear system identification. An explicit (spectral) characterization of
the RKHS induced by the Gaussian kernel can be found in [91, 92], while the more
general case of radial basis kernels is treated in [85]. The concept of universal kernel
is discussed, e.g., in [61, 90].

The strong mixing condition is discussed, e.g., in [107] and [34].
The convergence proof for the regularization network relies upon the integral

operator approach described in [88] in an i.i.d. setting and its extension to the
dependent case developed in [66] in the Wiener system identification context. For
other works on statistical consistency and learning rates of regularized least squares
in RKHS see, e.g., [48, 93, 105, 109, 111].
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Statistical learning theory and the concepts of generalization and consistency, in
connection with the uniform law of large numbers, date back to the works of Vapnik
and Chervonenkis [97, 99–101]. Other related works on convergence of empirical
processes are [38, 39, 73]. The concept of Vγ dimension and its equivalence with
the Glivenko–Cantelli class is proved in [5], see also [41] for links with RKHS.
Relationships between the concept of stability of estimates (continuous dependence
on the data) and generalization/consistency can be found in [63, 72], see also [26]
for previous work on this subject. Numerical computation of the regularized esti-
mate (6.21) is discussed in the literature studying the relationship between machine
learning and convex optimization [19, 25, 77]. In the regularization network case
(quadratic loss), if the data set size N is large, plain application of a solver with
computational cost O(N 3) can be highly inefficient. Then, one can use approximate
representations of the kernel function [15, 53], based, e.g., on the Nyström method
or greedy strategies [89, 106, 113]. One can also exploit the Mercer theorem by just
using an mth-order approximation of K given by

∑m
i=1 ζiρi (x)ρi (y). The solution

obtained with this kernel may provide accurate approximations also when m � N ,
see [28, 43, 67, 114, 115]. Training of kernel machines can be also accelerated by
using randomized low-dimensional feature spaces [74], see also [78] for insights on
learning rates.

In the case of generic convex loss (different from the quadratic), one problem is
that the objective is not differentiable everywhere. In this circumstance, the powerful
interior point (IP) methods [64, 108] can be employedwhich applies dampedNewton
iterations to a relaxed version of the Karush–Kuhn–Tucker (KKT) equations for
the objective [27]. A statistical and computational framework that allows their broad
application to the problem (6.21) for a wide class of piecewise linear quadratic losses
can be found in [8, 9]. In practice, IP methods exhibit a relatively fast convergence
behaviour. However, as in the quadratic case, a difficulty can arise if N is very large,
i.e., it may not be possible to store the entire kernel matrix in memory and this
fact can hinder the application of second-order optimization techniques such as the
(damped) Newton method. A way to circumvent this problem is given by the so-
called decomposition methods where a subset of the coefficients ci , called working
set, is selected, and the associated low-dimensional sub-problem is solved. In this
way, only the corresponding entries of the output kernel matrix need to be loaded
into the memory, e.g., see [30, 56–58]. An extreme case of decomposition method is
coordinate descent, where the working set contains only one coefficient [35, 45, 49].

6.9 Appendix

6.9.1 Fundamentals of Functional Analysis

We gather some basic functional analysis definitions and results.
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Vector Spaces
We will assume that the reader is familiar with the concept of real vector space V
(the field is given by the real numbers). Here, we just recall that this is a set whose
elements are called vectors. The space is closed w.r.t. two operations, called addition
and scalar multiplication, which satisfy the usual algebraic properties. This means
that any linear and finite combination of vectors still falls in V .When the vector space
contains functions g : X → R, for any f, g ∈ V and α ∈ R the two operations are
defined as follows:

f + g = h where h(x) = f (x) + g(x) ∀x ∈ X

and
α f = h where h(x) = α f (x) ∀x ∈ X .

Inner Products and Norms
An inner product on V is the function

〈·, ·〉 : V × V → R

which is

1. linear in the first argument

〈αv + βy, z〉 = α〈v, z〉 + β〈y, z〉, v, y, z ∈ V α,β ∈ R;

2. symmetric (and so also linear in the second argument)

〈v, y〉 = 〈y, v〉;

3. positive, in the sense that
〈v, v〉 ≥ 0 ∀v

with
〈v, v〉 = 0 ⇐⇒ v = 0,

where in the r.h.s. 0 denotes the null vector.

Recall also that a norm on V is the nonnegative function

‖ · ‖ : V → R
+

which satisfies

1. absolute homogeneity

‖αv‖ = |α|‖v‖, v ∈ V α ∈ R;
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2. the triangle inequality
‖v + y‖ ≤ ‖v‖ + ‖y‖;

3. null vector condition
‖v‖ = 0 ⇐⇒ v = 0.

The norm induced by the inner product 〈·, ·〉 is given by

‖v‖2 = 〈v, v〉,

and it is easy to check that this function indeed satisfies all the three norm axioms
listed above. One also has the Cauchy–Schwarz inequality

|〈v, y〉| ≤ ‖v‖‖y‖.

Finally, recall that both 〈·, x〉 with x ∈ V and ‖ · ‖ are examples of continuous func-
tionals V → R, i.e., if lim j→∞ ‖v − v j‖ = 0, then

lim
j→∞ ‖v j‖ = ‖v‖, lim

j→∞〈v j , x〉 = 〈v, x〉 ∀x ∈ V .

Hilbert and Banach Spaces
A Hilbert space H is a vector space equipped with an inner product 〈·, ·〉 which is
complete w.r.t. to the norm ‖ · ‖ induced by such inner product. This means that,
given any Cauchy sequence, i.e., a sequence of vectors {g j }∞j=1 such that

lim
m,n→∞ ‖gm − gn‖ = 0,

there exists g ∈ H such that

lim
j→∞ ‖g − g j‖ = 0.

In other words, every Cauchy sequence is convergent. Examples of Hilbert spaces
used in this book are

• the classical Euclidean space R
m of vectors a = [a1 . . . am] equipped with the

classical Euclidean inner product

〈a, b〉2 =
m∑

i=1

aibi

sometimes denoted just by 〈·, ·〉 in the book;
• the space �2 of squared summable real sequences a = [a1 a2 . . .], i.e., such that
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∞∑

i=1

a2i < ∞,

equipped with the inner product

〈a, b〉2 =
∞∑

i=1

aibi ;

• the classical Lebesgue spaceL2 of functions (where the measure μ is here omitted
to simplify notation) g : X → Rwhich are squared summable w.r.t. the measure
μ, i.e., such that ∫

X
g2(x)dμ(x) < ∞,

equipped with the inner product still denoted by 〈·, ·〉2 but now given by

〈g, f 〉2 =
∫

X
g(x) f (x)dμ(x).

The spaces reported above are also instances of metric spaces where, for every
couple of vectors f, g, there is a notion of distance defined by ‖ f − g‖. Other metric
spaces are the Banach spaces. They are normed vector spaces complete w.r.t. the
metric induced by their norm. Hence, every Hilbert space is a Banach space but the
converse is not true: this happens when ‖ · ‖ does not derive from an inner product.
Examples of Banach spaces (whose norm does not derive from an inner product) are

• the space �1 of absolutely summable real sequences a = [a1 a2 . . .], i.e., such that
∞∑

i=1

|ai | < ∞,

equipped with the norm

‖a‖1 =
∞∑

i=1

|ai |;

• the Lebesgue space L1 of functions g : X → R absolutely integrable w.r.t. the
measure μ, i.e., such that

∫

X
|g(x)|dμ(x) < ∞,

equipped with the norm

‖g‖1 =
∫

X
|g(x)|dμ(x);
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• the space �∞ of bounded real sequences a = [a1 a2 . . .], i.e., such that

sup
i

|ai | < ∞,

equipped with the norm
‖a‖∞ = sup

i
|ai |;

• the space C of continuous functions g : X → R. where X is a compact set
typically in Rm , equipped with the sup-norm (also called uniform norm)

‖g‖∞ = max
x∈X

|g(x)|;

• the Lebesgue spaceL∞ of functions g : X → R which are essentially bounded
w.r.t. the measure μ, i.e., for any g there exists M such that

|g(x)| ≤ M almost everywhere inX w.r.t. the measure μ,

equipped with the norm

‖g‖∞ = inf {M | |g(x)| ≤ M almost everywhere inX w.r.t. the measure μ} .

An infinite-dimensional Hilbert (or Banach) space is said to be separable if it
admits a countable basis {ρ j }∞j=1, i.e., for any g in the space we can find scalars c j
such that

lim
j→∞

∥∥∥g −
∞∑

j=1

c jρ j

∥∥∥ = 0.

When such vectors {ρ j } satisfy also the conditions

‖ρ j‖ = 1 ∀ j, 〈ρ j , ρi 〉 = 0 j = i,

then the basis is said to be orthonormal.

Subspaces, Projections and Compact Sets
A subset S of the vector space V is said to be a subspace if S is itself a vector space
with the same addition and multiplication operations defined in V . The symbol

span({ρ j } j∈A)

denotes the subspace containing all the finite linear combinations of vectors taken
from the (possibly uncountable) family {ρ j } j∈A.

Given a subspace (or simply a set) S contained in a Hilbert (or Banach) space, we
define
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S̄ = S ∪ {all the limits of Cauchy sequences built using vectors in S} .

Then, S is said to be closed if
S̄ = S.

The orthogonal to a subspace S of a Hilbert space is denoted by S⊥ and defined by

S⊥ = {g | 〈g, f 〉 = 0 ∀ f ∈ S} .

It is easy to prove that S⊥ is always a closed subspace.
The following fundamental theorem holds.

Theorem 6.25 (Projection theorem) Let S be a closed subspace of a Hilbert space
with norm ‖ · ‖H . Then, one has

• any g ∈ H has a unique decomposition

g = gS + gS⊥ , gS ∈ S, gS⊥ ∈ S⊥;

• gS is the projection of g onto S, i.e.,

gS = argmin
f ∈S

‖g − f ‖H ;

• it holds that
‖g‖2H = ‖gS‖2H + ‖gS⊥‖2H .

A set A contained in a Hilbert (or Banach) space with norm ‖ · ‖ is said to be
compact if, given any sequence {g j } of vectors all contained in A, it is possible to
extract a subsequence {gk j } convergent in A, i.e., there exists g ∈ A such that

lim
j→∞ ‖g − gk j ‖ = 0.

When the space is finite-dimensional, a set is compact iff it is closed and bounded.

Linear and Bounded Functionals
Given a Hilbert space H with norm ‖ · ‖H , a functional L : H → R is said to be
bounded (or, equivalently, continuous) if there exists a positive scalar C such that

|L[g]| ≤ C‖g‖H , ∀g ∈ H . (6.66)

The following classical theorem holds.

Theorem 6.26 (Closed graph theorem) LetH be aHilbert (or Banach) space. Then
L : H → R is linear and bounded if and only if the graph of L, i.e.,
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Gr(L) = {( f, L[ f ]) with f ∈ H } ,

is a closed set in the product spaceH × R. This means that if { fi }+∞
i=1 is a sequence

converging to f ∈ H and {L[ fi ]}+∞
i=1 converges to y ∈ R, then L[ f ] = y.

This other fundamental theorem asserts that every linear and bounded functional
over H is in one-to-one correspondence with a vector inH .

Theorem 6.27 (Riesz representation theorem, based on [76]) Let H be a Hilbert
space and let L : H → R. Then L is linear and bounded if and only there is a
unique f ∈ H such that

L[g] = 〈g, f 〉H , ∀g ∈ H . (6.67)

6.9.2 Proof of Theorem 6.1

First, we derive two lemmas which are instrumental to the main proof.

Lemma 6.1 Let
S = span({Kx }x∈X ).

If there exists a Hilbert space H satisfying conditions (6.2) and (6.3), then H is
the closure of S, i.e., H = S̄.

Proof It comes from condition (6.2) that S̄ is a closed subspace which must belong
to H . Theorem 6.25 (Projection theorem) then ensures that any function f ∈ H
can be written as

f = f S̄ + f S̄⊥ , f S̄ ∈ S̄, f S̄⊥ ∈ S̄⊥.

As for the component f S̄⊥ , using condition (6.3) (reproducing property) we obtain

f S̄⊥(x) = 〈 f S̄⊥ , Kx 〉H = 0, ∀x .

In fact, every kernel section belongs to S and is thus orthogonal to every function in
S̄⊥. Hence, f S̄⊥ is the null vector and this concludes the proof. �

Lemma 6.2 Let S = span({Kx }x∈X ) and define

‖ f ‖2H =
m∑

i=1

m∑

j=1

ci c j K (xi , x j ), (6.68)

where f is a generic element in S, hence admitting representation
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f (·) =
m∑

i=1

ci Kxi (·).

Then, ‖ · ‖H is a well-defined norm in S.

Proof The reader can easily check that absolute homogeneity and the triangle
inequality are satisfied by ‖ · ‖H . We only need to prove the null vector condition,
i.e., that for every f ∈ S one has

‖ f ‖H = 0 ⇐⇒ f = 0.

Now, assume that ‖ f ‖H = 0 where f (·) = ∑m
i=1 ci Kxi (·). While the coefficients

{ci }mi=1 and the input locations {xi }mi=1 are fixed and define f , let also cm+1 and
xm+1 be an arbitrary scalar and input location, respectively. Define K ∈ R

m×m and
K+ ∈ R

m+1×m+1 two matrices with (i, j)-entry given by K (xi , x j ). Let also c =
[c1 . . . cm]T and c+ = [c1 . . . cm cm+1]T . Note thatKc is the vector which contains
the values of f on the input locations {xi }mi=1.

Since K is positive definite, it holds that

cT+K+c+ ≥ 0 ∀ (cm+1, xm+1) ∈ (R × X ).

In addition, since by assumption

‖ f ‖2H = cTKc = 0,

it comes that the components of the vectorKc, which are the values of f on {xi }mi=1,
are all null. Now, we show that f (x) = 0 holds everywhere, also on the generic input
location xm+1 ∈ X . In fact, after simple calculations, one obtains

cT+K+c+ = cTKc + 2

[
m∑

i=1

ci K (xi , xm+1)

]
cm+1 + K (xm+1, xm+1)c

2
m+1

= 2

[
m∑

i=1

ci K (xi , xm+1)

]
cm+1 + K (xm+1, xm+1)c

2
m+1

= 2 f (xm+1)cm+1 + K (xm+1, xm+1)c
2
m+1.

Now, assume that f (xm+1) > 0. Then, since the last term on the r.h.s. is infinitesimal
of order two w.r.t. cm+1 we can find a negative value for cm+1 sufficiently close to
zero such that cT+K+c+ < 0 which contradicts the fact that K is positive definite.
If f (xm+1) < 0 we can instead find a positive value for cm+1 sufficiently close to
zero such that cT+K+c+ < 0, which is still a contradiction. Hence, we must have
f (xm+1) = 0. Since xm+1 was arbitrary, we conclude that f must be the null function.

�
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WenowproveTheorem6.1. Let S = span({Kx }x∈X ) and, for any f, g ∈ S having
representations

f (·) =
m∑

i=1

ci Kxi (·), g(·) =
p∑

i=1

di Kyi (·)

define

〈 f, g〉H =
m∑

i=1

p∑

j=1

cid j K (xi , y j ).

By Lemma 6.2, it is immediate to check that 〈·, ·〉H is a well-defined inner product
on S. Then, we now show that the desired Hilbert space is H = S̄, where S̄ is the
completion of S w.r.t. the norm induced by 〈·, ·〉H .

Condition (6.2) is trivially satisfied since, by construction, all the kernel sections
belong toH .

As for the condition (6.3), we start checking that it holds over S. Introducing the
couple of functions in S given by

f (·) =
m∑

i=1

ci Kxi (·), g(·) = Kx (·),

we have

〈 f, Kx 〉H = 〈 f, g〉H =
m∑

i=1

ci K (xi , x) = f (x),

showing that the reproducing property holds in S. Let us now consider the completion
of S. To this aim, let { f j } be a Cauchy sequence with f j ∈ S ∀ j . We have

| fi (x) − f j (x)| = |〈 fi − f j , Kx 〉H |
≤ ‖ fi − f j‖H ‖Kx‖H ,

where we have used first the reproducing property (since it holds in S) and then the
Cauchy–Schwarz inequality. We have

‖Kx‖H = |√〈Kx , Kx 〉H | = √
K (x, x) ≤ q < +∞,

where the scalar q independent of x exists because the kernel K is continuous over
the compact X × X . Combining the last two inequalities leads to

| fi (x) − f j (x)| ≤ sup
x∈X

| fi (x) − f j (x)| ≤ q‖ fi − f j‖H , (6.69)

which shows that the convergence inH implies also uniform convergence. In other
words, if f j → f inH w.r.t. ‖ · ‖H , then f j → f also in the spaceC of continuous
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functions w.r.t. the sup-norm ‖ · ‖∞. Since S ⊂ C and C is Banach, all the functions
in the completion of S are continuous, i.e.,H ⊂ C . Furthermore, if f j → f inH ,
one has that for any x ∈ X

lim
j→∞〈 f j , Kx 〉H = 〈 f, Kx 〉H ,

by the continuity of the inner product. But we also have

lim
j→∞〈 f j , Kx 〉H = lim

j→∞ f j (x) = f (x),

since f j ∈ S ∀ j , the reproducing property holds in S and convergence in H
implies uniform (and, hence, pointwise) convergence. This shows that 〈 f, Kx 〉H =
f (x) ∀ f ∈ H , i.e., the reproducing property holds over all the space H .
The last point is the unicity ofH . For the sake of contradiction, assume that there

exists another Hilbert space G which satisfies conditions (6.2) and (6.3). By Lemma
6.1, we must have G = S̄ where the completion of S is w.r.t. the norm ‖ · ‖G deriving
from the inner product 〈·, ·〉G . Condition (6.3) holds both inH and in G , so that we
have

〈Kx , Ks〉H = K (x, s) = 〈Kx , Ks〉G , ∀(x, s) ∈ X × X .

Since the functions in S are finite linear combinations of kernel sections, by the
linearity of the inner product, the above equality allows to conclude that

〈 f, g〉H = 〈 f, g〉G , ∀( f, g) ∈ S × S.

Such an equality, together with the uniqueness of limits, implies that the completion
of S w.r.t. ‖ · ‖H coincides with the completion w.r.t. ‖ · ‖G . Hence, H and G are
the same Hilbert space and this completes the proof.

6.9.3 Proof of Theorem 6.10

It is not difficult to see that (6.12) with the inner product (6.13) is a Hilbert space. In
addition, using the Mercer theorem, in particular the expansion (6.11), from (6.13)
one has

‖Kx‖2H = ‖
∑

i∈I
ζiρi (x)ρi (·)‖2H

=
∑

i∈I

ζ2i ρ
2
i (x)

ζi
= K (x, x) < ∞,
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and, for any f = ∑
i∈I aiρi , it also holds that

〈Kx , f 〉H = 〈
∑

i∈I
ζiρi (x)ρi (·),

∑

i∈I
aiρi (·)〉H

=
∑

i∈I

ζiρi (x)ai
ζi

= f (x).

This shows that every kernel section belongs to H and the reproducing property
holds. Theorem 6.1 then ensures that H is indeed the RKHS associated to K .

6.9.4 Proof of Theorem 6.13

First, letH be the RKHS induced by K (x, y) = ζρ(x)ρ(y). Any RKHS is spanned
by its kernel sections, hence in this caseH is the one-dimensional subspace gener-
ated by ρ. By the reproducing property it holds that

‖Kx‖2H = K (x, x) = ζρ2(x).

In addition, one has

‖Kx‖2H = ‖ζρ(x)ρ‖2H = ζ2ρ2(x)‖ρ‖2H ,

so that

‖ρ‖2H = 1

ζ
.

Now, consider the kernel of interest K (x, y) = ∑∞
i=1 ζiρi (x)ρi (y) associated with

H . Define K j (x, y) = ζ jρ j (x)ρ j (y). with ‖ · ‖H j to denote the norm induced by
K j . From the discussion above it holds that

‖ρ j‖2H j
= 1

ζ j
. (6.70)

Think of K (x, y) = ∑∞
i=1 ζiρi (x)ρi (y) as the sum of K j (x, y) and K− j (x, y) =∑∞

k = j ζkρk(x)ρk(y). Then, using Theorem 6.6 and (6.70), one has

‖ρ j‖2H = min
c j ,h

c2j
ζ j

+ ‖h‖2H− j
s.t. ρ j = c jρ j + h, c j ∈ R, h ∈ H− j

whereH− j is theRKHS inducedby K− j . Evaluating theobjective at (c j = 1, h = 0),
one obtains
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‖ρ j‖2H ≤ 1

ζ j
,

and this shows that ρ j ∈ H ∀ j .
Now we prove that the functions ρ j generate all the RKHS H induced by K .

Using Theorem 6.25 (Projection theorem), it comes that for any f ∈ H we have

f = g + h with g ∈ G, h ∈ G⊥

where G indicates the closure in H of the subspace generated by all the ρk . Using
the reproducing property, one obtains

h(x) = < h(·), K (x, ·) >H

= < h(·),
∞∑

k=1

ζkρk(x)ρk(·) >H

=
∞∑

k=1

ζkρk(x) < h(·), ρk(·) >H = 0 ∀x,

where the last equality exploits the relation h ⊥ ρk ∀k. This completes the first part
of the proof.

As for the RKHS norm characterization, first letH ∞
j be the RKHS induced by the

kernel
∑∞

k= j Kk with h j to denote a generic element of H ∞
j . Then, given f ∈ H ,

using Theorem 6.6 in an iterative fashion, we obtain

‖ f ‖2H = min
c1,h2

c21
ζ1

+ ‖h2‖2H ∞
2

s.t. f = c1ρ1 + h2

= min
c1,c2,h3

c21
ζ1

+ c22
ζ2

+ ‖h3‖2H ∞
3

s.t. f = c1ρ1 + c2ρ2 + h3

...

= min
c1,...,cn−1,hn

n−1∑

k=1

c2k
ζk

+ ‖hn‖2H ∞
n

s.t. f =
n−1∑

i=1

ciρi + hn.

In particular, every equality above is obtained thinking of the kernel
∑∞

k= j Kk as
the sum of K j and

∑∞
k= j+1 Kk . Then, h j can be decomposed into two parts, i.e.,

h j = c jρ j + h j+1,with‖ρ j‖2H j
= 1/ζ j where, as before,‖ · ‖H j denotes the norm in

the one-dimensional RKHS induced by K j . Now, let ĉ1, . . . , ĉn−1, ĥn be theminimiz-
ers of the last objective (theminimizer can be assumed uniquewithout loss of general-
ity, just to simplify the exposition) and note that ‖ĥn‖H ∞

n
must go to zero as n → ∞.

Then, it comes that the sequence ĉ1, ĉ2, . . . characterizing the norm ‖ f ‖2H is
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indeed min{ck }
∑∞

k=1
c2k
ζk

with the {ck} subject to the constraints limn→∞ ‖ f −∑n
k=1 ckρk‖H = 0.

6.9.5 Proofs of Theorems 6.15 and 6.16

We prove the following more general result that embraces as special cases Theorems
6.15 and 6.16.

Theorem 6.28 Let H be a Hilbert space. Consider the optimization problem

min
f ∈H

Φ(L1[ f ], . . . , LN [ f ], ‖ f ‖H ) (6.71)

and assume that

• problem (6.71) admits at least one solution;
• each Li : H → R is linear and bounded;
• the objective Φ is strictly increasing w.r.t. its last argument.

Then, all the solutions of (6.71) admit the following expression

ĝ =
N∑

i=1

ciηi , (6.72)

where the ci are suitable scalar expansion coefficients and each ηi ∈ H is the
representer of Li , i.e.,

Li [ f ] = 〈 f, ηi 〉H , ∀ f ∈ H , i = 1, . . . , N .

In particular, ifH is a RKHS with kernel K , each basis function is given by

ηi (x) = Li [K (·, x)].

To prove the above result, let ĝ be a solution of (6.71) and denote with S the
(closed) subspace spanned by the N representers ηi of the functionals Li , i.e.,

S = span{η1, . . . , ηN }.

Exploiting Theorem 6.25 (Projection theorem), we can write

ĝ = ĝS + ĝS⊥ , ĝS ∈ S, ĝS⊥ ∈ S⊥.
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For the sake of contradiction, assume that ĝS⊥ is different from the null function.
Then, we have

Φ(L1[ĝ], . . . , Ln [ĝ], ‖ĝ‖H ) = Φ(〈η1, ĝ〉H , . . . , 〈ηN , ĝ〉H , ‖ĝ‖H )

= Φ(〈η1, ĝS + ĝS⊥ 〉H , . . . , 〈ηN , ĝS + ĝS⊥ 〉H ,

√
‖ĝS‖2H + ‖ĝS⊥‖2H )

= Φ(〈η1, ĝS〉H , . . . , 〈ηN , ĝS〉H ,

√
‖ĝS‖2H + ‖ĝS⊥‖2H )

< Φ(〈η1, ĝS〉H , . . . , 〈ηN , ĝS〉H , ‖ĝS‖H ),

where the last equality exploits the fact that each ηi is orthogonal to all the functions
in S⊥ while the inequality exploits the assumption that Φ is strictly increasing w.r.t.
its last argument. This contradicts the optimality of ĝ and implies that ĝS⊥ must be
the null function, hence concluding the first part of the proof.

Finally, to prove (6.28) note that, ifH is a RKHS, one has

ηi (x) = 〈ηi , Kx 〉H = Li [K (·, x)],

where the first equality comes from the reproducing property, while the second one
derives from the fact that ηi is the representer of Li .

6.9.6 Proof of Theorem 6.21

Preliminary Lemmas
The first lemma, whose proof can be found in [34], states a bound on the correlation
between two random variables assuming values in a Hilbert space.

Lemma 6.3 (based on [34]) Let a and b be zero-mean random variables measurable
with respect to the σ-algebrasM1 andM2 and with values in the Hilbert spaceH
having inner product 〈·, ·〉H . Then, it holds that

|E [〈a, b〉H ]| ≤ 15 3

√
ψ(M1,M2)E ‖a‖3H E ‖b‖3H , (6.73)

where all the expectations above are assumed to exist and

ψ(M1,M2) = sup
A∈M 1,B∈M 2

|P(A ∩ B) − P(A)P(B)|.

As for the second lemma, first it is useful to introduce the following integral
operator:

LK [ f ](·) =
∫

X
K (·, x) f (x)px (x)dx .
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Since the assumptions underlying Theorem (6.9) (Mercer Theorem) hold true, there
exists a complete orthonormal basis of L μ

2 , denoted by {ρi }i∈I , which satisfies

LK [ρi ] = ζiρi , i ∈ I , ζ1 ≥ ζ2 ≥ .

To simplify exposition, hereby we assume ζi > 0 ∀i . Then, for r > 0, we define the
operators L−r

K and Lr
K as follows

Lr
K [ f ] =

∑

i∈I
ζri ciρi (6.74)

L−r
K [ f ] =

∑

i∈I

ci
ζri

ρi . (6.75)

The function L−r
K [ f ] is less regular than f since its expansion coefficients go to zero

more slowly. Instead, Lr
K is a smoothing operator since ζri ci goes to zero faster than

ci as i goes to infinity. When r = 1/2 we recover the operator L1/2
K already defined

in (6.17) which satisfies H = L1/2
K L μ

2 . The following lemma holds.

Lemma 6.4 If L−r
K fρ ∈ L μ

2 for some 0 < r ≤ 1, letting

f̂ = arg min
f ∈H

‖ f − fρ‖2L μ
2

+ γ‖ f ‖2H , (6.76)

one has
‖ f̂ − fρ‖L μ

2
≤ γ r‖L−r

K fρ‖L μ
2
. (6.77)

Proof Byassumption, there exists g ∈ L μ
2 , say g = ∑

i∈I diρi , such that fρ = Lr
K g

so that fρ = ∑
i∈I ζri diρi . Now, we characterize the solution f̂ of (6.76) using

f = ∑
i∈I ciρi and optimizing w.r.t. the ci . The objective becomes

∑

i∈I
(ci − ζri di )

2 + γ
∑

i∈I

c2i
ζi

,

and setting the partial derivatives w.r.t. each ci to zero, we obtain

f̂ =
∑

i∈I
ĉiρi , ĉi = ζr+1

i di
ζi + γ

. (6.78)

This implies

f̂ − fρ = −
∑

i∈I

γ

ζi + γ
ζri diρi .
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If 0 < r ≤ 1, it follows that

‖ f̂ − fρ‖L μ
2

=
{
∑

i∈I

(
γ

ζi + γ
ζri di

)2
}1/2

= γ r

{
∑

i∈I

(
γ

ζi + γ

)2(1−r) ( ζi

ζi + γ

)2r

d2
i

}1/2

≤ γ r
∑

i∈I

(
γ

ζi + γ

)(1−r) ( ζi

ζi + γ

)r

|di |

≤ γ r

{
∑

i∈I
d2
i

}1/2

= γ r‖g‖L μ
2

= γ r‖L−r
K fρ‖L μ

2

and this proves (6.77). �

In the proof of the third lemma reported below, the notation Sx : H → R
N indi-

cates the sampling operator defined by Sx f = [ f (x1) . . . f (xN )]. In addition, STx
denotes its adjoint, i.e., for any c ∈ R

N , it satisfies

〈 f, STx c〉H = 〈Sx f, c〉 =
N∑

i=1

ci f (xi ) = 〈 f,
N∑

i=1

ci Kxi 〉H ,

where 〈·, ·〉 is the Euclidean inner product. Hence, one has

STx c =
N∑

i=1

ci Kxi ∀ c ∈ R
N .

Lemma 6.5 Define

ηi (·) =
[
yi − f̂ (xi )

]
K (xi , ·) (6.79)

with f̂ defined by (6.76). Then, if ĝN is given by (6.55), one has

‖ĝN − f̂ ‖H ≤ 1

γ

∥∥∥∥∥
1

N

N∑

i=1

(ηi − E [ηi ])
∥∥∥∥∥
H

.

Proof First, it is useful to derive two useful equalities involving f̂ and ĝN . The first
one is

γ f̂ = LK ( f̂ρ − f̂ ) = E ηi . (6.80)
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The last equality in (6.80) follows from the definition of Lk and ηi . The first equality
can be obtained using the representation fρ = ∑

i∈I diρi , then following the same
passages contained in the first part of the previous lemma’s proof to obtain

f̂ =
∑

i∈I

ζi

ζi + γ
diρi , fρ − f̂ =

∑

i∈I

γ

ζi + γ
diρi .

The second result consists of the following alternative expression for ĝN :

ĝN =
(
STx Sx
N

+ γ I

)−1
STx
N

Y, (6.81)

where I denotes the identity operator. To prove it, we will use the equality ĝN =
STx (K + Nγ IN )−1 Y which derives from the representer theorem and also the fact
that, for any vector c ∈ R

N , it holds that Sx STx c = Kc withK the kernel matrix built
using [x1 . . . xN ]. Then, we have

(
STx Sx
N

+ γ I

)
ĝN = STx

N

(
K (K + Nγ IN )−1 + Nγ (K + Nγ IN )−1

)
Y

= STx
N

Y.

Now, it is also useful to obtain a bound on the inverse of the operator STx Sx
N + γ I .

Assume that v ∈ H and let u satisfy

(
STx Sx
N

+ γ I

)
u = v.

We take inner products on both sides with u and use the equality 〈Sx STx u, u〉H =
〈Sxu, Sxu〉 to obtain

1

N
〈Sxu, Sxu〉 + γ‖u‖2H = 〈v, u〉H ≤ ‖v‖H ‖u‖H .

One has

λx := inf
f ∈H

‖Sx f ‖√
N‖ f ‖H

=⇒ (
λ2
x + γ

) ‖u‖2H ≤ ‖v‖H ‖u‖H .

Thus, we have shown that

(
STx Sx
N

+ γ I

)
u = v =⇒ ‖u‖H ≤ ‖v‖H

λ2
x + γ

≤ 1

γ
‖v‖H , ∀v ∈ H . (6.82)
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Now, it comes from (6.81) that

ĝN − f̂ =
(
STx Sx
N

+ γ I

)−1
(
STx Y

N
− STx Sx f̂

N
− γ f̂

)
.

Exploiting the equalities

STx Y

N
− STx Sx f̂

N
= 1

N

N∑

i=1

ηi , γ f̂ = E ηi ,

which derive from (6.79) and (6.80), respectively, we obtain

ĝN − f̂ =
(
STx Sx
N

+ γ I

)−1
1

N

N∑

i=1

(ηi − E [ηi ]) .

The use of (6.82) then completes the proof. �

Proof of Statistical Consistency
Let f̂ be defined by (6.76), i.e.,

f̂ = arg min
f ∈H

‖ f − fρ‖2L μ
2

+ γ‖ f ‖2H .

Then, consider the following error decomposition

‖ĝN − fρ‖L μ
2

≤ ‖ f̂ − fρ‖L μ
2

+ ‖ĝN − f̂ ‖L μ
2
. (6.83)

The first term ‖ f̂ − fρ‖L μ
2
on the r.h.s. is not stochastic. The assumption fρ ∈ H

ensures that ‖L−r
K fρ‖L μ

2
< ∞ for 0 ≤ r ≤ 1/2. It thus comes from Lemma 6.4 that,

at least for 0 < r ≤ 1/2, it holds that

‖ f̂ − fρ‖L μ
2

≤ γ r‖L−r
K fρ‖L μ

2
< ∞. (6.84)

Now, consider the second term ‖ĝN − f̂ ‖L μ
2
. Since the input space (the function

domain) is compact, and recalling also (6.69), there exists a constant A such that

‖ĝN − f̂ ‖L μ
2

≤ A‖ĝN − f̂ ‖H . (6.85)

To obtain a bound for the r.h.s. involving the RKHS norm, consider the stochastic
function

ηi (·) =
[
yi − f̂ (xi )

]
K (xi , ·),

already introduced in (6.79). Using the reproducing property, one has
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‖ηi‖2H =
[
yi − f̂ (xi )

]2
K (xi , xi ). (6.86)

The function f̂ belongs to H and is thus continuous on the compact X . In
addition, the kernel K is continuous on the compactX × X and the process {xi , yi }
has finite moments up to the third order by assumption. Hence, there exists a constant
B independent of i such that

E
[‖ηi‖kH

] ≤ B, k = 1, 2, 3. (6.87)

We can now come back to ‖ĝN − f̂ ‖H . From Lemma 6.5, ∀γ > 0 it holds that

‖ĝN − f̂ ‖H ≤ 1

γ

∥∥∥∥∥
1

N

N∑

i=1

(ηi − E [ηi ])
∥∥∥∥∥
H

. (6.88)

Now, using first Jensen’s inequality and then (6.87), (6.88), Assumption 6.20 and
(6.73) in Lemma 6.3 (with a and b replaced by ηi − E [ηi ] and η j − E [η j ]) one
obtains constants C and D such that

(
E

[∥∥∥∥∥
1

N

N∑

i=1

(ηi − E [ηi ])
∥∥∥∥∥
H

])2

≤ E

⎡

⎣
∥∥∥∥∥
1

N

N∑

i=1

(ηi − E [ηi ])
∥∥∥∥∥

2

H

⎤

⎦

≤ 15

N 2

N∑

i=1

N∑

j=1

3
√|ψ|i− j ||

(
E [‖η − E [η]‖3H ]) 2

3

≤ C

N

(
E [(‖η‖H + ‖E [η]‖H )3]) 2

3 ≤ D

N
,

where η replaces ηi or η j when the expectation is independent of i and j . This latter
result, combined with (6.85) and (6.88), leads to the existence of a constant E such
that

E ‖ĝN − f̂ ‖L μ
2

≤ AE ‖ĝN − f̂ ‖H ≤ E

γ
√
N

(6.89)

that, combined with (6.83) and (6.84), implies that for any 0 < r ≤ 1/2

E ‖ĝN − fρ‖L μ
2

≤ γ r‖L−r
K fρ‖L μ

2
+ E

γ
√
N

. (6.90)

Hence, when γ is chosen according to (6.56), E ‖ĝN − fρ‖L μ
2
converges to zero as

N grows to ∞. Using the Markov inequality, (6.57) is finally obtained.
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Chapter 7
Regularization in Reproducing Kernel
Hilbert Spaces for Linear System
Identification

Abstract In the previous parts of the book,we have studied how to handle linear sys-
tem identification by using regularized least squares (ReLS) with finite-dimensional
structures given, e.g., by finite impulse response (FIR) models. In this chapter, we
cast this approach in the RKHS framework developed in the previous chapter. We
show that ReLS with quadratic penalties can be reformulated as a function estima-
tion problem in the finite-dimensional RKHS induced by the regularization matrix.
This leads to a new paradigm for linear system identification that provides also new
insights and regularization tools to handle infinite-dimensional problems, involving,
e.g., IIR and continuous-time models. For all this class of problems, we will see that
the representer theorem ensures that the regularized impulse response is a linear and
finite combination of basis functions given by the convolution between the system
input and the kernel sections. We then consider the issue of kernel estimation and
introduce several tuning methods that have close connections with those related to
the regularization matrix discussed in Chap.3. Finally, we introduce the notion of
stable kernels, that induce RKHSs containing only absolutely summable impulse
responses and study minimax properties of regularized impulse response estimation.

7.1 Regularized Linear System Identification
in Reproducing Kernel Hilbert Spaces

7.1.1 Discrete-Time Case

We will consider linear discrete-time systems in the form of the so-called output
error (OE) models. Data are generated according to the relationship

y(t) = G0(q)u(t) + e(t), t = 1, . . . , N , (7.1)
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where y(t), u(t) and e(t) ∈ R are the system output, the known system input and the
noise at time instant t ∈ N, respectively. In addition, G0(q) is the “true” system that
has to be identified from the input–output sampleswithq being the time shift operator,
i.e., qu(t) = u(t + 1). Here, and also in all the remaining parts of the chapter, we
assume that e is white noise (all its components are mutually uncorrelated).

In Chap.2, we have seen that there exist different ways to parametrize G0(q). In
what follows, we will start our discussions exploiting the simplest impulse response
descriptions given by FIR models and then we will consider more general infinite-
dimensional models also in continuous time. We will see that there is a common way
to estimate them through regularization in the RKHS framework and the representer
theorem.

7.1.1.1 FIR Case

The FIR case corresponds to

y(t) = G(q, θ)u(t) + e(t)

=
m∑

k=1

gku(t − k) + e(t), θ = [g1, . . . , gm]T , (7.2)

where m is the FIR order, g1, . . . , gm are the FIR coefficients and θ is the unknown
vector that collects them. Model (7.2) can be rewritten in vector form as follows:

Y = Φθ + E, (7.3)

where
Y = [y(1) . . . y(N )]T , E = [e(1) . . . e(N )]T

and
Φ = [ϕ(1) . . . ϕ(N )]T

with
ϕT (t) = [u(t − 1) . . . u(t − m)].

Instead of describing FIR model estimation directly in the regularized RKHS
framework, let us first recall the ReLSmethodwith quadratic penalty term introduced
in Chap.3. It gives the estimate of θ by solving the following problem:
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θ̂ = argmin
N∑

t=1

(y(t) −
m∑

k=1

gku(t − k))2 + γ θT P−1θ (7.4a)

= argmin
θ

‖Y − Φθ‖2 + γ θT P−1θ (7.4b)

= (ΦTΦ + γ P−1)−1ΦT Y (7.4c)

= PΦT (ΦPΦT + γ IN )−1Y, (7.4d)

where the regularization matrix P ∈ R
m×m is positive semidefinite, assumed invert-

ible for simplicity. The regularization parameter γ is a positive scalar that, as already
seen, has to balance adherence to experimental data and strength of regularization.

Now we show that (7.4) can be reformulated as a function estimation problem
with regularization in the RKHS framework. For this aim, we will see that the key
is to use the m × m matrix P to define the kernel over the domain {1, 2, . . . ,m} ×
{1, 2, . . . ,m}. This in turn will define a RKHS of functions g : {1, 2, . . . ,m} → R.
Such functions are connected with the components gi of the m-dimensional vector
θ by the relation g(i) = gi . So, the functional view is obtained replacing the vector
θ with the function that maps i into the i th component of θ .

Let us define a positive semidefinite kernel K : X × X → R as follows:

K (i, j) = Pi j , i, j ∈ X = {1, 2, . . . ,m}, (7.5)

where Pi j is the (i, j)th entry of the regularization matrix P . It is obvious that K
is positive semidefinite because P is positive semidefinite. Its kernel sections will
be denoted by Ki with i = 1, . . . ,m and are the columns of P seen as functions
mapping X into R.

Now, using theMoore–Aronszajn Theorem, illustrated in Theorem6.2, the kernel
K reported in (7.5) defines a unique RKHSH such that 〈Ki , g〉H = g(i), ∀(i, g) ∈
(X ,H ). This is the function space where we will search for the estimate of the FIR
coefficients. According to the discussion following Theorem6.2, since there are just
m kernel sections Ki associated to the m columns of P , for any impulse response
candidate g ∈ H , there exist m scalars a j such that

g(i) =
m∑

j=1

a j K (i, j) = P(i, :)a (7.6)

where P(i, :) is the i th row of P . Since g(i) is the i th component of θ , one has

θ = Pa.

By the reproducing property, we also have



250 7 Regularization in Reproducing Kernel Hilbert Spaces …

‖g‖2H = 〈
m∑

j=1

a j K j ,

m∑

l=1

al Kl〉H =
m∑

j=1

m∑

l=1

a jal K ( j, l)

=
m∑

j=1

m∑

l=1

a jal Pjl = aT Pa

and this implies
‖g‖2H = θT P−1θ.

As a result, the ReLS method (7.4) can be reformulated as follows:

ĝ = argmin
g∈H

N∑

t=1

(y(t) −
m∑

k=1

g(k)u(t − k))2 + γ ‖g‖2H (7.7)

which is a regularized function estimation problem in the RKHS H .
In view of the equivalence between (7.4) and (7.7), the FIR function estimate

ĝ has the closed-form expression given by (7.4d). The correspondence is estab-
lished by ĝ(i) = θ̂i . We will show later that such closed-form expression can be
derived/interpreted by exploiting the representer theorem.

Remark 7.1 � Besides (7.7), there is also an alternative way to reformulate the
ReLSmethod (7.4) as a function estimation problemwith regularization in the RKHS
framework. This has been sketched in the discussions on linear kernels in Sect. 6.6.1.
The difference lies in the choice of the function to be estimated and the choice of the
corresponding kernel. In particular, in this chapter, we have obtained (7.7) choosing
the function and the corresponding kernel to be the FIR g and (7.5), respectively. In
contrast, in Sect. 6.6.1, the RKHS is defined by the kernel

K (x, y) = xT Py, x, y ∈ X = R
m (7.8)

and contains the linear functions xT θ , where the input locations x incapsulate m
past input values. So, using (7.8), the corresponding RKHS does not contain impulse
responses but functions that represent directly linear systems mapping regressors
(built with input values) into outputs.

7.1.1.2 IIR Case

The infinite impulse response (IIR) case corresponds to

y(t) = G(q, θ)u(t) + e(t) =
∞∑

k=1

gku(t − k) + e(t), t = 1, . . . , N (7.9)
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where θ = [g1, . . . , g∞]T . So, model order m is set to ∞ and we have to handle
infinite-dimensional objects. To face the intrinsic ill-posedness of the estimation
problem, one could think to introduce an infinite-dimensional regularization matrix
P . But the penalty θT P−1θ , adopted in (7.4) for the FIR case, would turn out to be
undefined. So, the RKHS setting is needed to define regularized IIR estimates. The
first step is to choose a positive semidefinite kernel K : N × N → R. Then, let H
be the RKHS associated with K and g ∈ H be the IIR function with g(k) = gk for
k ∈ N. Finally, the estimate is given by

ĝ = argmin
g∈H

N∑

t=1

(y(t) −
∞∑

k=1

g(k)u(t − k))2 + γ ‖g‖2H . (7.10)

One may wonder whether it is possible to obtain a closed-form expression of the IIR
estimate ĝ as in the FIR case. The answer is positive and given by the following
representer theorem. It derives from Theorem6.16 reported in the previous chapter
applied to the case of quadratic loss functions, as discussed in Example6.17, that
allows to recover the expansion coefficients of the estimate just solving a linear
system of equations, see (6.29) and (6.31). Before stating in a formal way the result,
it is useful to point out the following two facts:

• in the dynamic systems context treated in this chapter any functional Li present in
Theorem6.16 is now applied to discrete-time impulse responses g which lives in
the RKHS H . Hence, it represents the discrete-time convolution with the input,
i.e., Li maps g ∈ H into the system output evaluated at the time instant t = i ;

• from the discussion after Theorem6.16, recall also that a linear functional L is
linear and bounded in H if and only if the function f , defined for any x by
f (x) = L[K (x, )̇], belongs to H . Hence, the condition (7.11) reported below is
equivalent to assume that the system input defines linear and bounded functionals
over the RKHS induced by K .

Theorem 7.1 (Representer theorem for discrete-time linear system identification,
based on [73, 90]). Consider the function estimation problem (7.10). Assume that
H is the RKHS induced by a positive semidefinite kernel K : N × N → R and that,
for t = 1, . . . , N, the functions ηt defined by

ηt (i) =
∞∑

k=1

K (i, k)u(t − k), i ∈ N (7.11)

are all well defined inH . Then, the solution of (7.10) is

ĝ(i) =
N∑

t=1

ĉtηt (i), i ∈ N, (7.12)

where ĉt is the tth entry of the vector
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ĉ = (O + γ IN )−1Y (7.13)

with Y = [y(1), . . . y(N )]T and with the (t, s)th entry of O given by

Ots =
∞∑

i=1

∞∑

k=1

K (i, k)u(t − k)u(s − i), t, s = 1, . . . , N . (7.14)

Theorem7.1 discloses an important feature of regularized impulse response esti-
mation in RKHS. The function estimate ĝ has a finite dimensional representation
that does not depend on the dimension of the RKHS H induced by the kernel but
only on the data set size N .

Example 7.2 (Stable spline kernel for IIR estimation) To estimate high-order FIR
models, in the previous chapters, we have introduced some regularization matrices
related to the DC, TC and stable spline kernels, see (5.40) and (5.41). Consider now
the TC kernel, also called first-order stable spline, with support extended to N × N,
i.e.,

K (i, j) = αmax (i, j), 0 < α < 1, (i, j) ∈ N. (7.15)

This kernel induces a RKHS that contains IIR models and can be conveniently
adopted in the estimator (7.10). An interesting question is to derive the structure of
the induced regularizer ‖g‖2H . One could connect K with the matrix P entering
(7.4a) but its inverse is undefined since now P is infinite dimensional. To derive the
stable spline norm, it is instead necessary to resort to functional analysis arguments.
In particular, in Sect. 7.7.1, it is proved that

‖g‖2H =
∞∑

t=1

(gt+1 − gt)
2

(1 − α)αt
, (7.16)

an expression that well reveals how the kernel (7.15) includes information on smooth
exponential decay. When used in (7.10), the resulting IIR estimate balances the data
fit (sum of squared residuals) and the energy of the impulse response increments
weighted by coefficients that increase exponentially with time t and thus enforce
stability.

Let us now consider a simple application of the representer theorem. Assume
that the system input is a causal step of unit amplitude, i.e., u(t) = 1 for t ≥ 0 and
u(t) = 0 otherwise. The functions (7.11) are given by

ηt (i) =
∞∑

k=1

K (i, k)u(t − k), i ∈ N.

For instance, the first three basis functions are
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η1(i) =
∞∑

k=1

K (i, k)u(1 − k) = αmax (i,1)

η2(i) =
∞∑

k=1

K (i, k)u(2 − k) = αmax (i,1) + αmax (i,2)

η3(i) =
∞∑

k=1

K (i, k)u(3 − k) = αmax (i,1) + αmax (i,2) + αmax (i,3)

and, in general, one has

ηt (i) =
t∑

k=1

αmax (i,k).

Hence, any ηt is a well-defined function in the RKHS induced by K , being the sum
of the first t kernel sections. Then, according to Theorem7.1, we conclude that the
IIR estimate returned by (7.10) is spanned by the functions {ηt }Nt=1 with coefficients
then computable from (7.13). �

Although Theorem7.1 is stated for the IIR case (7.10), the same result also holds
for the FIR case (7.7). The only difference is that the series in (7.11) and (7.14)
have to be replaced by finite sums up to the FIR order m. Then, interestingly, one
can interpret the regularized FIR estimate (7.4d) in a different way exploiting the
representer theorem perspective. In particular, one finds O = ΦPΦT while the basis
functions {ηt }Nt=1 are in one-to-one correspondence with the N columns of PΦT ,
each of dimension m.

7.1.2 Continuous-Time Case

Now, we consider linear continuous-time systems still focusing on the output error
(OE) model structure. The system outputs are collected over N time instants ti .
Hence, the measurements model is

y(ti ) =
∫ ∞

0

g0(τ )u(ti − τ)dτ + e(ti ), i = 1, . . . , N , (7.17)

where y(t), u(t) and e(t) are the system output, the known input and the noise at
time instant t ∈ R

+, respectively, while g0(t), t ∈ R
+ is the “true” system impulse

response.
Similarly to what done in the previous section, we will study how to determine

fromafinite set of input–output data a regularized estimate of the impulse response g0

in the RKHS framework. The first step is to choose a positive semidefinite kernel K :
R

+ × R
+ → R. It induces theRKHSH containing the impulse response candidates

g ∈ H . Then, the linear model can be estimated by solving the following function
estimation problem:
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ĝ = argmin
g∈H

N∑

i=1

(
y(ti ) −

∫ ∞

0

g(τ )u(ti − τ)dτ
)2 + γ ‖g‖2H . (7.18)

The closed-form expression of the impulse response estimate ĝ is given by the
following representer theorem that again derives from Theorem6.16 and the same
discussion reported beforeTheorem7.1.Note just that nowany functional Li entering
Theorem6.16 is applied to continuous-time impulse responses g in the RKHS H .
Hence, it represents the continuous-time convolution with the input, i.e., Li maps
g ∈ H into the system output evaluated at the time instant ti .

Theorem 7.3 (Representer theorem for continuous-time linear system identifica-
tion, based on [73, 90]) Consider the function estimation problem (7.18). Assume
that H is the RKHS induced by a positive semidefinite kernel K : R

+ × R
+ → R

and that, for i = 1, . . . , N, the functions ηi defined by

ηi (s) =
∫ ∞

0

K (s, τ )u(ti − τ)dτ, s ∈ R
+ (7.19)

are all well defined inH . Then, the solution of (7.18) is

ĝ(s) =
N∑

i=1

ĉiηi (s), s ∈ R
+ (7.20)

where ĉi is the i th entry of the vector

ĉ = (O + γ IN )−1Y (7.21)

with Y = [y(t1), . . . y(tN )]T and the (i, j)th entry of O given by

Oi j =
∫ ∞

0

∫ ∞

0

K (τ, s)u(ti − s)u(t j − τ)dsdτ, i, j = 1, . . . , N . (7.22)

Example 7.4 (Stable spline kernel for continuous-time system identification) In
Example6.5, we introduced the first-order spline kernelmin(x, y) on [0, 1] × [0, 1].
It describes a RKHS of continuous functions f on the unit interval that satisfy
f (0) = 0 whose squared norm is the energy of the first-order derivative, i.e.,

∫ 1

0

(
ḟ (x)

)2
dx . (7.23)

To describe stable impulse responses g, we instead need a kernel defined over the
positive real axisR

+ that induces the constraint g(+∞) = 0. A simple way to obtain
this is to exploit the composition of the spline kernel with an exponential change of
coordinates mapping R

+ into [0, 1]. The resulting kernel is called (continuous-time)
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Fig. 7.1 First-order (top left) and second-order (bottom left) stable spline kernel with some kernel
sections (right panels) obtained with β = 0.5 and centred on 0, 0.5, 1, . . . , 10 (bottom)

first-order stable spline kernel. It is given by

K (s, t) = min(e−βs, e−βt ) = e−β max(s,t), s, t ∈ R
+, (7.24)

where β > 0 regulates the change of coordinates and, hence, the impulse responses
decay rate. So, β can be seen as a kernel parameter related to the dominant pole of
the system.

It is interesting to note the similarity between the kernel (7.15) and the first-order
stable spline kernel (7.24). By letting α = exp(−β), the sampled version of the first-
order stable spline kernel (7.24) corresponds exactly to the TC kernel (7.15). Top
panel of Fig. 7.1 plots (7.24) and also some kernel sections: they are all continuous
and exponentially decaying to zero. Such kernel inherits also the universality property
of the splines. In fact, its kernel sections can approximate any continuous impulse
response on all the compact subsets of R

+.
The relationship with splines permits also to easily achieve one spectral decompo-

sition of (7.24). In particular, in Example6.11, we obtained the following expansion
of the spline kernel:
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min(x, y) =
+∞∑

i=1

ζiρi (x)ρi (y)

with

ρi (x) =
√
2 sin

(
iπx − πx

2

)
, ζi =

1
(iπ − π/2)2

,

where all the ρi are mutually orthogonal on [0, 1] w.r.t. the Lebesque measure. In
view of the simple connection between spline and stable spline kernels given by
exponential time transformations, one easily obtains that the first-order stable spline
kernel can be diagonalized as follows:

e−β max(s,t) =
∞∑

i=1

ζiφi (s)φi (t) (7.25)

with

φi (t) = ρi (e
−βt ), ζi =

1
(iπ − π/2)2

, (7.26)

where the φi are now orthogonal on [0,+∞) w.r.t. the measure μ of density βe−βt .
In Fig. 6.3, we reported the eigenfunctions ρi with i = 1, 2, 8 and the eigenvalues ζi
for the first-order spline kernel (6.47). For comparison, we now show in Fig. 7.2 the
corresponding eigenfunctions φi of the first-order stable spline kernel (7.24) with
β = 1 and also the ζi . While the eigenvalues are the same, differently from the ρi

the eigenfunctions φi now decay exponentially to zero.
Having obtained one spectral decomposition of (7.24), we can now exploit

Theorem6.10 to obtain the following representation of the RKHS induced by the
first-order stable spline kernel:
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Fig. 7.2 Expansion of the continuous-time first-order stable spline kernel e−β max(x,y) with β = 1:
eigenfunctions ρi (x) for i = 1, 2, 8 (left panel) and eigenvalues ζi (right)
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H =
{
g | g(t) =

∞∑

i=1

ciφi (t), t ≥ 0,
∞∑

i=1

c2i
ζi

< ∞
}
, (7.27)

and the squared norm of g turns out to be

‖g‖2H =
∞∑

i=1

c2i
ζi

. (7.28)

Now we will exploit the above results to obtain a more useful expression for ‖g‖2H .
The deep connection between spline and stable spline kernel implies that these two
spaces are isometrically isomorphic, i.e., there is an one-to-one correspondence that
preserves inner products. In fact, we can associate to any stable spline function g(t) in
H the spline function f (t) in the space induced by (6.47) such that g(t) = f (e−βt ).
So, g(t) =

∑∞
i=1 ciφi (t) implies f (t) =

∑∞
i=1 ciρi (t) and the two functions have

indeed the same norm
∑∞

i=1
c2i
ζi
. Now, using (7.23) and (7.28), we obtain

‖g‖2H =
∫ 1

0

(
ḟ (t)

)2
dt =

∫ +∞

0

(ġ(t))2
eβt

β
dt. (7.29)

This expression gives insights into the nature of the stable spline space. Compared
to the classical Sobolev space induced by the first-order spline kernel, the norm
penalizes the energy of the first-order derivative of g with a weight proportional
to eβt . Such norm thus enforces all the function in H to be continuous impulse
responses decaying to zero at least exponentially. Note also that (7.29) really seems
the continuous-time counterpart of the norm (7.16) associated to the discrete-time
stable spline kernel.

Let us see now how to generalize the kernel (7.24). In Sect. 6.6.6 of the previous
chapter, we have introduced the general class of spline kernels. Here, we started our
discussion using the first-order (linear) spline kernelmin(x, y) but we have seen that
higher-order models can be useful to reconstruct smoother functions, an important
example being the second-order (cubic) spline kernel (6.48). Applying exponential
time transformations to the splines, the class of the so-called stable spline kernels is
obtained. For instance, from (6.48), one obtains the second-order stable spline kernel

e−β(s+t+max(s,t))

2
− e−3β max(s,t)

6
. (7.30)

The bottom panels of Fig. 7.1 plots (7.30) and also some kernel sections: they expo-
nentially decay to zero and are more regular than those associated to (7.24). �
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7.1.3 More General Use of the Representer Theorem for
Linear System Identification �

Theorems7.1 and 7.3 are special cases of the more general representer theorem
involving function estimation from sparse and noisy data. It was reported as The-
orem6.16 in the previous chapter. Let us briefly recall it. Its starting point was the
optimization problem

ĝ = argmin
g∈H

N∑

i=1

Vi (yi , Li [g]) + γ ‖g‖2H , (7.31)

where Vi is a loss function, e.g., the quadratic loss adopted in this chapter, and each
functional Li : H → R is linear and bounded. Then, all the solutions of (7.31) are
given by

ĝ =
N∑

i=1

ciηi , (7.32)

where each ηi ∈ H is the representer of Li given by

ηi (t) = Li [K (·, t)]. (7.33)

How to compute the expansion coefficients ci will then depend on the nature of the
Vi , as described in Sect. 6.5.

The estimator (7.31) can be exploited for linear system identification thinking
of g as an impulse response, using e.g., a stable spline kernel to define H . The
linear functional Li is then defined by a convolution and returns the system noiseless
outputs at instant ti . In particular, in discrete-time one has

Li [g] =
∞∑

k=1

g(k)u(ti − k), ti = 1, . . . , N (7.34)

while in continuous time, it holds that

Li [g] =
∫ ∞

0

g(τ )u(ti − τ)dτ. (7.35)

When quadratic losses are used, (7.31) becomes the regularization network
described in Sect. 6.5.1 whose expansions coefficients are available in closed form.
One has ĉ = (O + γ IN )−1Y with the (t, s)-entry of the matrix O given by Ots =
Ls[Lt [K ]], as given by (7.14) in discrete time and by (7.22) in continuous time. The
use of losses Vi different from quadratic then opens the way also to the definition of
many new algorithms for impulse response estimation. For example, the use of the
Vapnik’s ε-insensitive loss described in Sect. 6.5.3 leads to support vector regression
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Fig. 7.3 Discrete-time
Laguerre functions of order
j = 1, 2, 8 obtained with
α = 0.99 (samples are
linearly interpolated)
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for linear system identification. Beyond promoting sparsity in the coefficients ci , it
also makes the estimator robust against outliers since penalties on large residuals
grows linearly. Outliers can be tackled also by adopting the �1 or Huber loss, see
Sect. 6.5.2. A general system identification framework that includes all the convex
piecewise linear quadratic losses and penalties is, e.g., described in [2].

Interestingly, the estimator (7.31) can be conveniently adopted for linear sys-
tem identification also giving g a different meaning from an impulse response. For
instance, in system identification there are important IIR models that use Laguerre
functions see e.g., [91, 92] whose z-transform is

√
1 − α2

z − α

(1 − αz

z − α

) j−1

, j = 1, 2, . . . .

They form an orthonormal basis in �2 and some of them are displayed in Fig. 7.3.
Another option is given by the Kautz basis functions that allow also to include

information on the presence of system resonances [46]. Using φi to denote such basis
functions, the impulse response model can be written as

f (t) =
∞∑

i=1

giφi (t).

A problem is how to determine the coefficients gi from data. Classical approaches
use truncated expansions f =

∑d
i=1 giφi , with model order d estimated using, e.g.,

Akaike’s criterion, as discussed in Sect. 2.4.3, and then determine the gi by least
squares. An interesting alternative is to let d = +∞ and to think that the gi define
the function g such that g(i) = gi . One can then estimate the coefficients through
(7.31) adopting a kernel, like TC and stable spline, that includes information on the
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expansion coefficients’ decay to zero. Working in discrete time, the functionals Li

entering (7.31) are in this case defined by

Li [g] =
∞∑

j=1

g j

∞∑

k=1

φ j (k)u(ti − k),

while in continuous time, one has

Li [g] =
∞∑

j=1

g j

∫ ∞

0

φ j (τ )u(ti − τ)dτ.

7.1.4 Connection with Bayesian Estimation of Gaussian
Processes

Similarly towhat discussed in the finite-dimensional setting in Sect. 4.9, also themore
general regularization in RKHS can be given a probabilistic interpretation in terms
of Bayesian estimation. In this paradigm, the different loss functions correspond to
alternative statistical models for the observation noise, while the kernel represents
the covariance of the unknown random signal, assumed independent of the noise. In
particular, when the loss is quadratic, all the involved distributions are Gaussian.

We now discuss the connection under the linear system identification perspective
where the “true” impulse response g0 is seen as the random signal to estimate.
Consider the measurements model

y(ti ) = Li [g0] + e(ti ), i = 1, . . . , N , (7.36)

where Li is a linear functional of the true impulse response g0 defined by convolution
with the system input evaluated at ti . One has

Li [g0] =
∞∑

k=1

g0(k)u(ti − k)

in discrete time and

Li [g0] =
∫ ∞

0

g0(τ )u(ti − τ)dτ

in continuous time. So, the impulse response estimators discussed in this chapter can
be compactly written as

ĝ = argmin
g∈H

N∑

i=1

(y(ti ) − Li [g])2 + γ ‖g‖2H , (7.37)
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where the RKHS H contains functions g : X → R with X = N in discrete time
and X = R

+ in continuous time.
The following result (whose simple proof is in Sect. 7.7.2) shows that, under

Gaussian assumptions on the impulse response and the noise, (7.37) provides the
minimum variance estimate of g0 given the measurements Y = [y(t1), . . . , y(tN )]T .
Proposition 7.1 Let the following assumptions hold:

• the impulse response g0 is a zero-mean Gaussian process on X . Its covariance
function is defined by

E (g0(t)g0(s)) = λK (t, s),

where λ is a positive scalar and K is a kernel;
• the e(t) are mutually independent zero-mean Gaussian random variables with
variance σ 2. Moreover, they are independent of g0.

Let H be the RKHS induced by K , set γ = σ 2/λ and define

ĝ = arg min
g∈H

(
N∑

i=1

(y(ti ) − Li [g])2 + γ ‖g‖2H
)

.

Then, ĝ is the minimum variance estimator of g0 given Y , i.e.,

E [g0(t)|Y ] = ĝ(t) ∀t ∈ X .

Remark 7.2 The connection between regularization in RKHS and estimation of
Gaussian processes was first pointed out in [51] in the context of spline regression,
using quadratic losses, see also [41, 83, 90]. The connection also holds for a wide
class of losses Vi also different from quadratic. For instance, in this statistical frame-
work, using the absolute value loss corresponds to Laplacian noise assumptions. The
statistical interpretation of an ε-insensitive loss in terms of Gaussians with mean
and variance given by suitable random variables can be found in [79], see also [40,
67]. For all this kind of noise models, and many others, it can be shown that the
RKHS estimate ĝ includes all the possible finite-dimensional maximum a posteriori
estimates of g0, see [3] for details.

Remark 7.3 The relation between RKHSs and Gaussian stochastic processes, or
more general Gaussian random fields, is stated by Proposition7.1 in terms of min-
imum variance estimators. In particular, since the representer theorem ensures that
such estimator is sum of a finite number of basis functions belonging toH , it turns
out that ĝ belongs to the RKHS induced by the covariance of g0 with probability
one. Now, one may also wonder what happens a priori, before seeing the data. In
other words, the question is whether realizations of a zero-mean Gaussian process of
covariance K fall in the RKHS induced by K . If the kernel K is associated with an
infinite-dimensional H , the answer is negative with probability one, as graphically
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Fig. 7.4 The largest space contains all the realizations of a zero-mean Gaussian process of covari-
ance K . The smallest space is the RKHSH induced by K , assumed here infinite dimensional. The
probability that realizations of f fall in the RKHS is zero. Instead, when the assumptions underly-
ing the representer theorem hold, the realizations of the minimum variance estimator E [ f |Y ] are
contained in H with probability one

illustrated in Fig. 7.4. While deep discussions can be found in [9, 34, 59, 68], here
we give just a hint on this fact. Assume that the kernel admits the decomposition

K (s, t) =
M∑

i=1

ζiφi (s)φi (t)

inducing an M-dimensional RKHS H . Let the deterministic functions φi be inde-
pendent. Then, we know from Theorem6.13 that, if f (t) =

∑M
i=1 aiφi (t), then

‖ f ‖2H =
M∑

i=1

a2i
ζi

.

Now, think of K as a covariance and let ai be zero-mean Gaussian and independent
random variables of variance ζi , i.e.,

ai ∼ N (0, ζi ).

Then, the so-called Karhunen–Loève expansion of the Gaussian random field f ∼
N (0, K ), also discussed in Sect. 5.6 to connect regularization and basis expansion
in finite dimension, is given by

f (t) =
M∑

i=1

aiφi (t)

with M possibly infinite and convergence in quadratic mean. The RKHS norm of f
is now a random variable and, since the ai are mutually independent with E a2i = ζi ,
one has
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E ‖ f ‖2H = E
M∑

i=1

a2i
ζi

=
M∑

i=1

E a2i
ζi

= M.

So, if the RKHS is infinite dimensional, one has M = ∞ and the expected (squared)
RKHS norm of the process f diverges to infinity.

7.1.5 A Numerical Example

Our goal now is to illustrate the influence of the choice of the kernel on the quality of
the impulse response estimate using also the Bayesian interpretation of regulariza-
tion. The example is a simple linear discrete time system in the form of (7.1). Using
the z-transform, its transfer function is

y(t) =
1

z(z − 0.85)
u(t) + e(t), t = 1, . . . , 20. (7.38)

The system’s impulse response is reported in Fig. 7.5. The disturbances e(t) are
independent and Gaussian random variables with mean zero and variance 0.052. For
ease of visualization, we let the input u(t) be an impulsive signal, i.e., u(0) = 1 and
u(t) = 0 elsewhere. Thus, the impulse response have to be estimated from 20 direct
and noisy impulse response measurements.

We consider a Monte Carlo simulation of 200 runs. At any run, the outputs are
obtained by generating mutually independent measurement noises. One data set is
shown in Fig. 7.5. For each of the 200 data sets, we use the regularized IIR estimator
(7.10). For what regards K : N × N → R,, we will compare the performance of
three kernels: the Gaussian (6.43), the cubic spline (6.48) and the stable spline (7.15)
defined, respectively, by

exp
(

− (i − j)2

ρ

)
,

i j min{i, j}
2

− (min{i, j})3
6

, αmax(i, j).

Recall that the Gaussian and the cubic spline kernel are the most used in machine
learning to include information on smoothness. The cubic spline estimator could be
also complemented with a bias space given, e.g., by a linear function, as described
in Sect. 6.6.7. However, one would obtain results very similar to those described in
what follows.

To adopt the estimator (7.10), we need to find a suitable value for the regularization
parameter γ and also for the unknownkernel parameters, i.e., the kernelwidthρ in the
Gaussian kernel and the stability parameter α for stable spline. As already done, e.g.,
in Sect. 1.2 for ridge regression, an oracle-based procedure is adopted to optimally
balance bias and variance. The unknown parameters are achieved by maximizing the
measure of fit defined as follows:
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Fig. 7.5 The true impulse
response (thick line) and one
out of the 200 data sets (◦)
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g0k , (7.39)

where computation is restricted only to the first 50 samples where, in practice, the
impulse response is different fromzero. This tuning procedure is ideal since it exploits
the true function g0. It is useful here since it excludes the uncertainty brought by the
kernel tuning procedure and will fully reveal the influence of the kernel choice on
the quality of the impulse response estimate.

The impulse response estimates obtained by the cubic spline, the Gaussian and
the stable spline kernel are reported in Fig. 7.6.When the cubic spline kernel (6.48) is
chosen, the impulse response estimates diverge as time goes. This result can be also
given aBayesian interpretationwhere (6.48) becomes the covariance of the stochastic
process g0. Specifically, the cubic spline kernel models the impulse response as
double integration of white noise. So, impulse responses coefficients are correlated
but the prior variance increases in time. For stable systems, variability is instead
expected to decay to zero as t progresses.When the Gaussian kernel (6.43) is chosen,
quality of the impulse response estimates much improves, but many of them exhibit
oscillations and the variance of the impulse response estimator is still large. Bayesian
arguments here show that the Gaussian kernel models g0 as a stationary stochastic
process. Smoothness information is encoded but not the fact that that one expects
the prior variance to decay to zero. Finally, the impulse response estimates returned
by the stable spline kernel (7.15) are all very close to the truth. These outcomes
are similar to those described, e.g., in Example5.4 in Sect. 5.5. In particular, even
if this example is rather simple, it shows clearly that a straightforward application
of standard kernels from machine learning and smoothing splines literature may
give unsatisfactory results. Inclusion of dynamic systems features in the regularizer,
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Fig. 7.6 True impulse
response (thick line) and 200
impulse response estimates
obtained using the cubic
spline kernel (6.48) (top
panel), the Gaussian kernel
(6.43) (middle) and the
stable spline kernel (bottom).
The unknown parameters are
estimated by an oracle that
maximizes the fit (7.39) for
each data set
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like smooth exponential decay, greatly enhances the quality of the impulse response
estimates.

7.2 Kernel Tuning

As we have seen in the previous parts of the book, the kernels depend on some
unknown parameters, the so-called hyperparameters. They can, e.g., include scale
factors, the kernel width of the Gaussian kernel or the impulse response’s decay
rate in the TC and stable spline kernels. In real-world applications, the oracle-based
procedure used in the previous section cannot be used. The kernels need instead
to be tuned from data. Such procedure is referred to as hyperparameter estimation
and is the counterpart of model order selection in the classical paradigm of sys-
tem identification. It determines model complexity within the new paradigm where
system identification is seen as regularized function estimation in RKHSs. This cal-
ibration step will thus have a major impact on model’s performance, e.g., in terms of
predictive capability on new data. Due to the connection with the ReLS methods in
quadratic form, the tuningmethods introduced in Chaps. 3 and 4 can be easily applied
also in the RKHS framework. In particular, let K (η) denote a kernel, where η is the
hyperparameter vector belonging to the set Γ . Such vector could also include other
parameters not present in the kernel, e.g., the noise variance σ 2. Some calibration
methods to estimate η from data are then reported below.

7.2.1 Marginal Likelihood Maximization

The first approach we describe is marginal likelihood maximization (MLM), also
called the empirical Bayes method in Sect. 4.4. MLM relies on the Bayesian inter-
pretation of function estimation in RKHS discussed in Sect. 7.1.4. Under the same
assumptions stated in Proposition7.1, η can be estimated by maximum likelihood

η̂ = argmax
η∈Γ

p(Y |η), (7.40)

with p(Y |η) obtained by integrating out g0 from the joint density p(Y |g0)p(g0|η),
i.e.,

p(Y |η) =
∫

p(Y |g0)p(g0|η)dg0. (7.41)

The probability density p(Y |η) is the marginal likelihood and, hence, (7.40) is called
the MLM method.



7.2 Kernel Tuning 267

Computation of (7.41) is especially simple in our case since our measurements
model is linear and Gaussian. In fact, in the Bayesian interpretation of regularized
linear system identification in RKHS, the impulse response g0 is a zero-mean Gaus-
sian process with covariance λK , where λ is a positive scale factor. The impulse
response is also assumed independent of the noises e(t) which are white and Gaus-
sian of variance σ 2. Recall also the definition of the matrix O , now possibly function
of η, reported in (7.14) for the discrete-time case, i.e., whenX = N, and in (7.22) for
the continuous-time case, i.e., when X = R

+. The matrix λO(η) plays an impor-
tant role in the MLM method since it corresponds to the covariance matrix of the
noise-free output vector [L1[g0], . . . , LN [g0]]T and is thus often called the output
kernel matrix. Then, as also discussed in Sect. 7.7.2, it comes that the vector Y turns
out to be Gaussian with zero mean, i.e.,

Y ∼ N (0, Z(η)),

where the covariance matrix Z(η) is given by

Z(η) = λO + σ 2 IN

with IN the N × N identity matrix. Here, the vector η could, e.g., contain both λ and
σ 2. One then obtains that the empirical Bayes estimate of η in (7.40) becomes

η̂ = argmin
η∈Γ

Y T Z(η)−1Y + log det(Z(η)), (7.42)

where the objective is proportional to the minus log of the marginal likelihood.
As discussed in Chap. 4, the MLM method includes the Occam’s razor principle,

i.e., unnecessarily complex models are automatically penalized, see e.g., [83]. In
particular, the Occam’s factor arises thanks to the marginalization and it manifests
itself in the term log det(Z(η)) in (7.42). A simple example can be obtained thinking
of the behaviour of the objective for different values of the kernel scale factorλ.When
λ increases, the model becomes more complex since, under a stochastic viewpoint,
the prior variance of the impulse response g0 increases. In fact, the term Y T Z(η)−1Y ,
related to the data fit, decreases since the inverse of Z(η) tends to the null matrix
(the model has infinite variance and can describe any kind of data). But the Occam’s
factor increases since det(Z(η)) grows to infinity. In this way, η̂ will balance data fit
and model complexity.

7.2.1.1 Numerical Example

To illustrate the effectiveness of MLM, we revisit the example reported in Sect. 1.2.
The problem is to reconstruct the impulse response reported in Fig. 7.7 (red line)
from the 1000 input–output data displayed in Fig. 1.2. System input is low pass and
this makes estimation hard due to ill-conditioning.
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Fig. 7.7 True impulse
response (red thick line) and
impulse response estimates
obtained by ridge regression
with hyperparameters
estimated by an oracle that
optimizes the fit (top panel),
and by the stable spline
kernels of order 1 (middle)
and 2 (bottom) with
hyperparameters estimated
by marginal likelihood
maximization
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We will adopt three kernels. Using δ to denote the Kronecker delta, the value
K (i, j) is defined, respectively, by

δi j , αmax(i, j),
αi+ j+max(i, j)

2
− α3max(i, j)

6
.

The first choice corresponds to ridge regression with the regularizer given by the sum
of squared impulse response coefficients. The other two are thefirst- and second-order
stable spline kernel reported in (7.15) and in (7.30), respectively. More specifically,
the last kernel corresponds to the discrete-time version of (7.30) with α = e−β .

In Fig. 1.5, we reported the ridge regularized estimate with γ chosen by an oracle
to maximize the fit. To ease comparison with other approaches, such a figure is also
reproduced in the top panel of Fig. 7.7. The reconstruction is not satisfactory since
the regularizer does not include information on smoothness and decay. In fact, the
Bayesian interpretation reveals that ridge regression describes the impulse response
as realization of white noise, a poor model for stable dynamic systems. This also
explains the presence of oscillations in the reconstructed profile.

The middle and bottom panel report the estimates obtained by the stable spline
kernelswith the noise variance and the hyperparameters γ, α tuned fromdata through
MLM. Even if no oracle is used, the quality of the impulse response reconstruction
greatly increases. This is also confirmed by a Monte Carlo study where 200 data
sets are obtained using the same kind of input but generating new independent noise
realizations. MATLAB boxplots of the 200 fits for all the three estimators are in
Fig. 7.8. Here, the median is given by the central mark while the box edges are the
25th and 75th percentiles. Then, the whiskers extend to the most extreme fits not
seen as outliers. Finally, the outliers are plotted individually. Average fits are 73.7%
for ridge, 83.9% for first-order and 90.2% for second-order stable spline.

In this example, one can see that it is preferable to use the second-order stable
spline kernel. This is easily explained by the fact that the true impulse response is
quite regular so that increasing our expected smoothness improves the performance.

Fig. 7.8 Boxplot of the fits
over the 200 data sets
achieved by ridge regression
with oracle (left) and by the
stable spline kernels of order
1 (middle) and 2 (right) with
hyperparameters estimated
via marginal likelihood
maximization
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Interestingly, the selection between different kernels, like first- and second-order
stable spline, can be also automatically performed by MLM, so addressing the prob-
lem of model comparison described in Sect. 2.6.2. In fact, let s denote an additional
hyperparameter that may assume only value 0 or 1. Then, we can consider the com-
bined kernel

sαmax(i, j) + (1 − s)
(αi+ j+max(i, j)

2
− α3max(i, j)

6

)

and optimize the hyperparameters s, α and γ by MLM. Clearly, the role of s is to
select one of the two kernels, e.g., if the estimate ŝ is 0, then the impulse response
estimate will be given by a second-order stable spline. Applying this procedure to our
problem, one finds that the second-order stable spline kernel is selected 177 times
out of the 200 Monte Carlo runs. Obtained fits are shown in Fig. 7.9, their mean is
88.8%.

Remark 7.4 Kernel choice via MLM has also connections with selection through
the concept of Bayesian model probability discussed in Sect. 4.11, see also [50]. In
fact, assume we are given different competitive kernels (covariances) K i and, for a
while, assume also that all the hyperparameter vectors ηi are known. We can then
interpret each kernel as a differentmodel.We can also assign a priori probabilities that
data have been generated by the i th covariance K i , hence thinking of any model as a
random variable itself. If all the kernels are given the same probability, the marginal
likelihood computed using K i becomes proportional to the posterior probability of
the i th model. This permits to exploit the marginal likelihood to select the “best”
kernel-based estimate among those generated by the K i . When hyperparameters are
unknown, the marginal likelihoods can be evaluated with each ηi set to its estimate
η̂i . In this case, care is needed since maximized likelihoods define model posterior
probabilities that do not account for hyperparameters uncertainty. For example, if
the dimensions of ηi change with i , the risk is to select a kernel that have many
parameters and overfits. This problem can be mitigated, e.g., by adopting the criteria
described in Sect. 2.4.3, e.g., using BIC, we compute

Fig. 7.9 Boxplot of the fits
over the 200 data sets
achieved by a stable spline
estimator where, beyond
hyperparameters, also the
kernel order (1 or 2) is
estimated by marginal
likelihood maximization

SS+ML (1st- or 2nd-order chosen by ML)
65

70

75

80

85

90

95

100



7.2 Kernel Tuning 271

î = argmin
i

−2 log p(Y |η̂i ) + (dim ηi ) log N ,

where N is the number of available output measurements and dim ηi is the num-
ber of hyperparameters contained in the i th model. Note that, when using stable
spline kernels as in the above example, the BIC penalty is irrelevant since the first-
and the second-order stable spline estimator contain the same number of unknown
hyperparameters.

7.2.2 Stein’s Unbiased Risk Estimator

The secondmethod is the Stein’s unbiased risk estimator (SURE) method introduced
in Sect. 3.5.3.2. The idea of SURE is to minimize an unbiased estimator of the risk,
which is the expected in-sample validation error of the model estimate. In what
follows, g0 is no more stochastic as in the previous subsection but corresponds to a
deterministic impulse response. Identification data are given by

y(ti ) = Li [g0] + e(ti ), i = 1, . . . , N ,

where the e(ti ) are independent, with zero mean and known variance σ 2, and each
Li is the linear functional defined by convolutions with the system input evaluated
at ti . One thus has Li [g0] =∑∞

k=1 g
0(k)u(ti − k) in discrete time, where the ti

assume integer values, and Li [g0] =
∫∞
0 g0(τ )u(ti − τ)dτ in continuous time. The

N independent validation output samples yv(ti ) are then defined by using the same
input that generates the identification data but an independent copy of the noises,
i.e.,

yv(ti ) = Li [g0] + ev(ti ), i = 1, . . . , N . (7.43)

So, all the 2N random variables ev(ti ) and e(ti ) are mutually independent, with zero
mean and noise variance σ 2. Consider the impulse response estimator

ĝ = arg min
g∈H

(
N∑

i=1

(y(ti ) − Li [g])2 + γ ‖g‖2H
)

as a function of the hyperparameter vector η. The predictions of the yv(ti ) are then
given by Li [ĝ] and also depend on η. The expected in-sample validation error of the
model estimate ĝ is then given by the mean prediction error

EVEin(η) =
1
N

N∑

i=1

E (yv(ti ) − Li [ĝ])2, (7.44)
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where the expectation E is over the random noises ev(ti ) and e(ti ). Note that the result
not only depends on η but also on the unknown (deterministic) impulse response g0.
So, we cannot compute the prediction error. However, it is possible to derive an unbi-
ased estimate of it. To obtain this, let Ŷ (η) be the (column) vector with components
Li [ĝ]. The output kernel matrix O(η), already introduced to describe marginal like-
lihood maximization, then gives the connection between the vector Y containing the
measured outputs y(ti ) and the predictions. In fact, using the representer theorem to
obtain ĝ, and hence the Li [ĝ], one obtains

Ŷ (η) = O(η)(O(η) + γ IN )−1Y. (7.45)

Following the same line of discussion developed in Sect. 3.5.3.2 to obtain (3.96), we
can derive the following unbiased estimator of (7.44):

ÊVEin(η) =
1
N

‖Y − Ŷ (η)‖2 + 2σ 2 dof(η)

N
, (7.46)

where dof(η) are the degrees of the freedom of Ŷ (η) given by

dof(η) = trace(O(η)(O(η) + γ IN )−1) (7.47)

that vary from N to 0 as γ increases from 0 to ∞.
Note that (7.46) is function only of the N outputmeasurements y(ti ). Thus, we can

then estimate the hyperparameter η by minimizing the unbiased estimator ÊVEin(η)

of EVEin(η) to achieve

η̂ = argmin
η∈Γ

1
N

‖Y − Ŷ (η)‖2 + 2σ 2 dof(η)

N
. (7.48)

The above formula has the same form of the AIC criterion (2.33) computed assuming
Gaussian noise of known variance σ 2 except that the dimension m of the model
parameter θ is now replaced by the degrees of freedom dof(η).

7.2.3 Generalized Cross-Validation

The third approach is the generalized cross-validation (GCV) method. As discussed
in Sects. 2.6.3 and 3.5.2.3, cross-validation (CV) is a classical way to estimate the
expected validation error by efficient reuse of the data and GCV is closely related
with the N -fold CV with quadratic losses. To describe it in the RKHS framework,
let ĝk be the solution of the following function estimation problem:
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ĝk = argmin
g∈H

N∑

i=1,i =k

(y(ti ) − Li [g])2 + γ ‖g‖2H . (7.49)

So, ĝk is the function estimate when the kth datum y(tk) is left out. As also described,
e.g., in [90, Chap. 4], the following relation between the prediction error of ĝ and
the prediction error of ĝk holds:

y(tk) − Lk[ĝk] = y(tk) − Lk[ĝ]
1 − Hkk(η)

, (7.50)

where Hkk(η) is the (k, k)th element of the influence matrix

H(η) = O(η)(O(η) + γ IN )−1.

Therefore, the validation error of the N -fold CV with quadratic loss function is

N∑

k=1

(
y(tk) − Lk[ĝk]

)2
=

N∑

k=1

(
y(tk) − Lk[ĝ]
1 − Hkk(η)

)2

. (7.51)

Minimizing the above equation as a criterion to estimate the hyperparameter η leads
to the predicted residual sums of squares (PRESS) method

η̂ = argmin
η∈Γ

N∑

k=1

(
y(tk) − Lk[ĝ]
1 − Hkk(η)

)2

. (7.52)

The above criterion coincides with that derived in (3.80) working in the finite-
dimensional setting.

GCV is a variant of (7.52) obtained by replacing each Hkk(η), k = 1, . . . , N , in
(7.52) with their average. One obtains

η̂ = argmin
η∈Γ

N∑

k=1

(
y(tk) − Lk[ĝ]

1 − trace(H(η))/N

)2

. (7.53)

In view of (7.45), one has
Ŷ (η) = H(η)Y.

and, from (7.47) one can see that trace(H(η)) corresponds to the degrees of freedom
dof(η), i.e.,

trace(H(η)) = dof(η).

So, the GCV (7.53) can be rewritten as follows:
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η̂ = argmin
η∈Γ

‖Y − Ŷ (η)‖2
(1 − dof(η)/N )2

. (7.54)

This corresponds to the criterion (3.82) obtained in the finite-dimensional setting.
Differently from SURE, a practical advantage of PRESS and GCV is that they do
not require knowledge (or preliminary estimation) of the noise variance σ 2.

7.3 Theory of Stable Reproducing Kernel Hilbert Spaces

In the numerical experiments reported in this chapter, we have seen that regularized
IIR models based, e.g., on TC and stable splines provide much better estimates of
stable linear dynamic systems than other popular machine learning choices like the
Gaussian kernel. The reading key was the inclusion in the identification process of
information on the decay rate of the impulse response. This motivates the study of
the class of the so-called stable kernels that enforces the stability constraint on the
induced RKHS.

7.3.1 Kernel Stability: Necessary and Sufficient Conditions

The necessary and sufficient condition for a linear system to be bounded-input–
bounded-output (BIBO) stable is that its impulse response g ∈ �1 for the discrete-
time case and g ∈ L1 for the continuous-time case. Here, �1 is the space of absolutely
summable sequences, while L1 contains the absolutely summable functions on R

+
(equipped with the classical Lebesque measure), i.e.,

∞∑

k=1

|gk | < ∞ ∀g ∈ �1 and
∫ ∞

0

|g(x)|dx < ∞ ∀g ∈ L 1. (7.55)

Therefore, for regularized identification of stable systems the impulse response
should be searched within a RKHS that is a subspace of �1 in discrete time and
a subspace ofL1 in continuous time. This naturally leads to the following definition
of stable kernels.

Definition 7.1 (Stable kernel, based on [32, 73]) Let K : X × X → R be a pos-
itive semidefinite kernel andH : X → R be the RKHS induced by K . Then, K is
said to be stable if

• H ⊂ �1 for the discrete-time case where X = N;
• H ⊂ L1 for the continuous-time case where X = R

+.

If a kernel K is not stable, it is also said to be unstable. Accordingly, the RKHSH
is said to be stable or unstable if K is stable or unstable.

Assigned a kernel, the question is now how to assess its stability. For this purpose,
a direct use of the above definition is often challenging since it can be difficult to



7.3 Theory of Stable Reproducing Kernel Hilbert Spaces 275

understand which functions belong to the associated RKHS. Stability conditions
directly on K would be instead desirable. One first observation is that, since H
contains all kernel sections according to Theorem6.2, all of them must be stable. In
discrete time, this means K (i, ·) ∈ �1 for all i . However, this condition is necessary
but not sufficient for stability, a fact which is not so surprising since we have seen in
Sect. 6.2 thatH contains also all the Cauchy limits of linear combinations of kernel
sections. For instance, in Example6.4,we have seen that the identity kernel K (i, j) =
δi j , connectedwith ridge regression but here defined over allN × N, induces �2. Such
space is not contained in �1. So, the identity kernel is not stable even if each kernel
section is stable since it contains only one non-null element.

The following fundamental result can be found in a more general form in [16] and
gives the desired charactherization of kernel stability. Maybe not surprisingly, we
will see that the key test spaces are �∞, that contains bounded sequences in discrete
time, and L∞, that contains essentially bounded functions in continuous time. The
proof is reported in Sect. 7.7.3.

Theorem 7.5 (Necessary and sufficient condition for kernel stability, based on [16,
32, 73]) Let K : X × X → R be a positive semidefinite kernel with X = N or
X = R

+. Then,
• one has

H ⊂ �1 ⇐⇒
∞∑

s=1

∣∣∣∣∣

∞∑

t=1

K (s, t)lt

∣∣∣∣∣ < ∞, ∀ l ∈ �∞ (7.56)

for the discrete-time case where X = N;
• one has

H ⊂ L1 ⇐⇒
∫ ∞

0

∣∣∣∣
∫ ∞

0

K (s, t)l(t)dt

∣∣∣∣ ds < ∞, ∀ l ∈ L∞ (7.57)

for the continuous-time case where X = R
+.

Figure7.10 illustrates themeaning of Theorem7.5 by resorting to a simple system
theory argument. In particular, a kernel can be seen as an acausal linear time-varying
system. In discrete time it induces the following input–output relationship

yi =
∞∑

j=1

Ki ( j)u j , i = 1, 2, . . . , (7.58)

where Ki ( j) = K (i, j), while ui and yi denote the system input and output at
instant i . Then, the RKHS induced by K is stable iff system (7.58) maps every
bounded input {ui }∞i=1 into a summable output {yi }∞i=1. Abusing notation, we can
also see K as an infinite-dimensional matrix with i, j-entry given by Ki ( j) with u
and y infinite-dimensional column vectors. Then, using ordinary algebra notation to
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Fig. 7.10 System theoretic interpretation ofRKHSstability. Thekernel K is associated to an acausal
linear system. In discrete time, the input–output relationship is given by yi =

∑∞
j=1 Ki ( j)u j . Then,

K is stable iff every bounded input u is mapped into a summable output y

handle these objects, the input–output relationship becomes y = Ku and the stability
condition is

H ⊆ �1 ⇐⇒ Ku ∈ �1 ∀u ∈ �∞.

In Theorem7.5, it is immediate to see that including the constraint−1 ≤ lt ≤ 1 ∀t
on the test functions does not have any influence on the stability test. With this
constraint, one has

∣∣∣∣∣

∞∑

t=1

K (s, t)lt

∣∣∣∣∣ ≤
∞∑

t=1

|K (s, t)| and

∣∣∣∣
∫ ∞

0

K (s, t)l(t)dt

∣∣∣∣ ≤
∫ ∞

0

|K (s, t)|dt.

The following result is then an immediate corollary of Theorem7.5 obtained
exploiting the above inequalities. It states that absolute summability is a sufficient
condition for a kernel to be stable.

Corollary 7.1 (based on [16, 32, 73]) Let K : X × X → R be a positive semidef-
inite kernel withX = N or X = R

+. Then,

• one has

H ⊂ �1⇐=
∞∑

s=1

∞∑

t=1

|K (s, t)| < ∞ (7.59)

for the discrete-time case where X = N;
• one has

H ⊂ L1⇐=
∫ ∞

0

∫ ∞

0

|K (s, t)|dtds < ∞ (7.60)

for the continuous-time case where X = R
+.

Finally, consider the class of nonnegative-valued kernels K +, i.e., satisfying
K (s, t) ≥ 0 ∀s, t . If a kernel is stable, using as test function l(t) = 1 ∀t , one must
have ∣∣∣∣∣

∞∑

t=1

K +(s, t)lt

∣∣∣∣∣ =
∞∑

t=1

K +(s, t) < ∞
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in discrete time, and

∣∣∣∣
∫ ∞

0

K +(s, t)l(t)dt

∣∣∣∣ =
∫ ∞

0

K +(s, t)dt < ∞

in continuous time. So, for nonnegative-valued kernels, stability implies (absolute)
summability of the kernel. But, since we have seen in Corollary7.1 that absolute
summability implies stability, the following result holds.

Corollary 7.2 (based on [16, 32, 73])Let K + : X × X → Rbeapositive semidef-
inite and nonnegative-valued kernel with X = N or X = R

+. Then,

• one has

H ⊂ �1 ⇐⇒
∞∑

s=1

∞∑

t=1

K +(s, t) < ∞ (7.61)

for the discrete-time case where X = N;
• one has

H ⊂ L1 ⇐⇒
∫ ∞

0

∫ ∞

0

K +(s, t)dtds < ∞ (7.62)

for the continuous-time case where X = R
+.

As an example, we can now show that the Gaussian kernel (6.43) defined e.g.,
over R

+ × R
+ is not stable. In fact, it is nonnegative valued and one has

∫ ∞

0

∫ ∞

0

exp
(−(s − t)2/ρ

)
dsdt = ∞ ∀ρ.

The same holds for the spline kernels (6.45) extended to R
+ × R

+ and also for
translation invariant kernels introduced in Example6.12, as e.g., proved in [32] using
the Schoenberg representation theorem. Hence, all of these models are not suited for
stable impulse response estimation.

Remark 7.5 Any unstable kernel can be made stable simply by truncation. More
specifically, let K : X × X → R be an unstable kernel withX = N orX = R

+.
Then by setting K (s, t) = 0 for s, t > T for any given T ∈ X , a stable kernel is
obtained. Care should be however taken when a FIR model is obtained through
this operation. In fact, consider e.g., the use of cubic spline or Gaussian kernel in
the estimation problem depicted in Fig. 7.6 setting T equal to 20 or 50. Also after
truncation, such models would not give good performance: the undue oscillations
affecting the estimates in the top and middle panel of Fig. 7.6 would still be present.
The reason is that these two kernels do not encode the information that the variability
of the impulse response decreases as time progresses, as also already discussed using
the Bayesian interpretation of regularization.
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7.3.2 Inclusions of Reproducing Kernel Hilbert Spaces
in More General Lebesque Spaces �

Wenowdiscuss the conditions for aRKHS to be contained in the spacesL μ
p equipped

with a generic measure μ. The following analysis will then include both the space
L1 (considered before with the Lebesque measure) and �1 as special cases obtained
with p = 1. First, we need the following definition.

Definition 7.2 (based on [16]) Let 1 ≤ p ≤ ∞ and q = p
p−1

with the convention
p

p−1
= ∞ if p = 1 and p

p−1
= 1 if p = ∞. Moreover, let K : X × X → R be a

positive semidefinite kernel. Then, the kernel K is said to be q-bounded if

1. the kernel section Ks ∈ L μ
p for almost all s ∈ X , i.e., for every s ∈ X except

on a set of null measure w.r.t. μ;
2. the function

∫∞
0 K (s, t)l(t)dμ(t) ∈ L μ

p , ∀l ∈ L μ
q .

The following theorem then gives the necessary and sufficient condition for the
q-boundedness of a kernel and is a special case of Proposition 4.2 in [16].

Theorem 7.6 (based on [16]) Let K : X × X → R be a positive semidefinite ker-
nel with H the induced RKHS. Then, H is a subspace of L μ

p if and only if K is
q-bounded, i.e.,

H ⊂ L μ
p ⇐⇒ K is q-bounded.

Theorem7.6 permits thus to see if a RKHS is contained in L μ
p by checking the

properties of the kernel. Interestingly, setting p = 1, that implies q = ∞, andμ e.g.,
to the Lebesque measure one can see that the concept of stable and ∞-bounded
kernel are equivalent. Theorem7.5 is then a special case of Theorem7.6.

7.4 Further Insights into Stable Reproducing Kernel
Hilbert Spaces �

In this section, we provide some additional insights into the structure of the stable
kernels and associated RKHSs. The analysis is focused on the discrete-time case
where the kernel K can be seen as an infinite-dimensional matrix with the (i, j)-
entries denoted by Ki j . Thus, the function domain is the set of natural numbers N

and the RKHS contains discrete-time impulse responses of causal systems.
As discussed after (7.58) to comment Fig. 7.10, the kernel K can be also asso-

ciated with an acausal linear time-varying system, often called kernel operator in
the literature. It maps the infinite-dimensional input (sequence) u into the infinite-
dimensional output Ku whose i th component is

∑∞
j=1 Ki ju j . Two important kernel

operators will be considered. The first one maps �∞ into �1 and is key for kernel
stability as pointed out in Theorem7.5. The second one maps �2 into �2 itself and
will be important to discuss spectral decompositions of stable kernels.
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7.4.1 Inclusions Between Notable Kernel Classes

To state some relationships between stable kernels and other fundamental classes,
we start introducing some sets of RKHSs. Define

• the setSs that contains all the stable RKHSs;
• the set S1 with all the RKHSs induced by absolutely summable kernels, i.e.,
satisfying ∑

i j

|Ki j | < +∞;

• the setS f t of RKHSs induced by finite-trace kernels, i.e., satisfying

∑

i

Kii < +∞;

• the setS2 associated to squared summable kernels, i.e., satisfying

∑

i j

K 2
i j < +∞.

One has then the following result from [8] (see Sect. 7.7.4 for some details on its
proof).

Theorem 7.7 (based on [8]) It holds that

S1 ⊂ Ss ⊂ S f t ⊂ S2. (7.63)

Figure7.11 gives a graphical description of Theorem7.7 in terms of inclusions of
kernels classes. Its meaning is further discussed below.

In Corollary7.1, we have seen that absolute summability is a sufficient condition
for kernel stability. The result S1 ⊂ Ss shows also that such inclusion is strict.
Hence, one cannot conclude that a kernel is unstable from the sole failure of absolute
summability.

The fact thatSs ⊂ S f t means that the set of finite-trace kernels contains the stable
class. This inclusion is strict, hence the trace analysis can be used only to show that
a given RKHS is not contained in �1. There are however interesting consequences
of this fact. Consider all the RKHSs induced by translation invariant kernels

Ki j = h(i − j),

where h satisfies the positive semidefinite constraints. The trace of these kernels is∑
i Kii =

∑
i h(0) and it always diverges unless h is the null function. So, all the

translation invariant kernels are unstable (as already mentioned after Corollary7.2).
Other instability results become also immediately available. For instance, all the
kernels with diagonal elements satisfying Kii ∝ i−δ are unstable if δ ≤ 1.
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Fig. 7.11 Inclusion properties of some important kernel classes

Finally, the strict inclusion S f t ⊂ S2 shows that the finite-trace test is more
powerful than a check of kernel squared summability.

7.4.2 Spectral Decomposition of Stable Kernels

As discussed in Sect. 6.6.3 and in Remark6.3, kernels can define spaces rich of
functions by (implicitly) mapping the space of the regressors into high-dimensional
feature spaces where linear estimators can be used. This allows to reduce nonlinear
algorithms even without knowing explicitly the feature map, i.e., without the exact
knowledge of which functions are encoded in the kernel. In particular, in Sect. 6.3,
we have seen that if the kernel admits the spectral representation

K (x, y) =
∞∑

i=1

ζiρi (x)ρi (y), (7.64)

then the ρi (x) are the basis functions that span the RKHS induced by K . For
instance, the basis functions ρ1(x) = 1, ρ2(x) = x, ρ3(x) = x2, . . . describe poly-
nomial models which are, e.g., included up to a certain degree in the polynomial
kernel discussed in Sect. 6.6.4. Now, we will see that stable kernels always admit
an expansion of the type (7.64) with the ρi forming a basis of �2. The number of ζi
different from zero then corresponds to the dimension of the induced RKHS.

Formally, it is now necessary to consider the operator induced by a stable kernel K
as a map from �2 into �2 itself. Again, it is useful to see K as an infinite-dimensional
matrix so that we can think of Kv as the result of the kernel operator applied to
v ∈ �2. An operator is said to be compact if it maps any bounded sequence {vi }
into a sequence {Kvi } from which a convergent subsequence can be extracted [85,
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95]. From Theorem7.7, we know that any stable kernel K is finite trace and, hence,
squared summable. This fact ensures the compactness of the kernel operator, as
discussed in [8] and stated below.

Theorem 7.8 (based on [8]) Any operator induced by a stable kernel is self-adjoint,
positive semidefinite and compact as a map from �2 into �2 itself.

This result allows us to exploit the spectral theorem [35] to obtain an expansion
of K . Now, recall that spectral decompositions were discussed in Sect. 6.3 where the
Mercer’s theoremwas also reported.Mercer’s theoremderivations exploit the spectral
theorem and, as, e.g., in Theorem6.9, they typically assume that the kernel domain
is compact, see also [86] for discussions and extensions. Indeed, first formulations
consider continuous kernels on compact domains (proving also uniform convergence
of the expansion). However, the spectral theorem does not require the domain to be
compact and,when applied to discrete-timekernels onN × N, it guarantees pointwise
convergence. It thus becomes the natural generalization of the decomposition of a
symmetric matrix in terms of eigenvalues and eigenvectors, initially discussed in the
finite-dimensional setting in Sect. 5.6 to link regularization and basis expansion. This
is summarized in the following proposition that holds in virtue of Theorem7.8.

Proposition 7.2 (Representation of stable kernels, based on [8]) Assume that the
kernel K is stable. Then, there always exists an orthonormal basis of �2 composed
by eigenvectors {ρi } of K with corresponding eigenvalues {ζi }, i.e.,

Kρi = ζiρi , i = 1, 2, . . . .

In addition, the kernel admits the following expansion:

Kxy =
+∞∑

i=1

ζiρi (x)ρi (y), (7.65)

with x, y ∈ N.

While in the next subsection, we will use the above theorem to discuss the repre-
sentation of stable RKHSs, some numerical considerations regarding (7.65) are now
in order. Under an algorithmic viewpoint, many efficient machine learning proce-
dures use truncatedMercer expansions to approximate the kernel, see [42, 52, 75, 93,
96] for discussions on their optimality in a stochastic framework. Applications for
system identification can be found in [15] where it is shown that a relatively small
number of eigenfunctions (w.r.t. the data set size) can well approximate impulse
responses regularized estimates. These works trace back to the so-called Nyström
method where an integral equation is replaced by finite-dimensional approximations
[5, 6]. However, obtaining the Mercer expansion (7.65) in closed form is often hard.
Fortunately, the �2 basis and related eigenvalues of a stable RKHS can be numeri-
cally recovered (with arbitrary precision w.r.t. the �2 norm) through a sequence of
SVDs applied to truncated kernels [8]. Formally, let K (d) denote the d × d positive
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Fig. 7.12 Expansion of the first-order discrete-time stable spline kernel Kxy = αmax(x,y) with
α = 0.99: eigenfunctions ρi (x) orthogonal in �2 for i = 1, 2, 8 (left panel, samples are linearly
interpolated) and eigenvalues ζi (right)

semidefinite matrix obtained by retaining only the first d rows and columns of K .
Let also ρ

(d)
i and ζ

(d)
i be, respectively, the eigenvectors of K (d), seen as elements of

�2 with a tail of zeros, and the eigenvalues returned by the SVD of K (d). Assume,
for simplicity, single multiplicity of each ζi . Then, for any i , as d grows to ∞ one
has

ζ
(d)
i → ζi (7.66a)

‖ρ(d)
i − ρi‖2 → 0, (7.66b)

where ‖ · ‖2 is the �2 norm.
In Fig. 7.12, we show some eigenvectors (left panel) and the first 100 eigen-

values (right) of the stable spline kernel Kxy = αmax (x,y) with α = 0.99. Results
are obtained applying SVDs to truncated kernels of different sizes and monitoring
convergence of eigenvectors and eigenvalues. The final outcome was obtained with
d = 2000.

7.4.3 Mercer Representations of Stable Reproducing Kernel
Hilbert Spaces and of Regularized Estimators

Now we exploit the representations of the RKHSs induced by a diagonalized kernel
as discussed in Theorems6.10 and 6.13 (where compactness of the input space is not
even required). In view of Proposition7.2, assuming for simplicity all the ζi different
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from zero, one obtains that the RKHS associated to a stable K always admits the
representation

H =
{
g =

∞∑

i=1

aiρi s.t.
∞∑

i=1

a2i
ζi

< +∞
}
, (7.67)

where the ρi are the eigenvectors of K forming an orthonormal basis of �2.1 If
g =

∑∞
i=1 aiρi , one also has

‖g‖2H =
∞∑

i=1

a2i
ζi

. (7.68)

The fact that any stable RKHS is generated by an �2 basis gives also a clear
connection with the important impulse response estimators which adopt orthonormal
functions, e.g., the Laguerre functions illustrated in Fig. 7.3 [46, 91, 92]. A classical
approach used in the literature is to introduce the model g =

∑
i aiρi and then to use

linear least squares to determine the expansion coefficients ai . In particular, let Lt [g]
be the system output, i.e., the convolution between the known input and g evaluated
at the time instant t . Then, the impulse response estimate is

ĝ =
d∑

i=1

âiρi (7.69a)

{âi }di=1 = argmin
{ai }di=1

N∑

t=1

(
y(t) − Lt

[
d∑

i=1

aiρi

])2

, (7.69b)

where d determines model complexity and is typically selected using AIC or cross-
validation (CV) as discussed in Chap.2.

In view of (7.67) and (7.68), the regularized estimator (7.10), equipped with a
stable RKHS, is equivalent to

f̂ =
∞∑

i=1

âiρi (7.70a)

{âi }∞i=1 = argmin
{ai }∞i=1

N∑

t=1

(
y(t) − Lt

[ ∞∑

i=1

aiρi

])2

+ γ

∞∑

i=1

a2i
ζi

. (7.70b)

1 In (7.67), we have assumed that all the kernel eigenvalues are strictly positive so thatH is infinite
dimensional. If some ζi is null,H is spanned only by the eigenvectors associated to those non-null.
If only a finite number of ζi is different from zero, K is finite rank and H is finite dimensional.
A notable case is that of the RKHSs induced by truncated kernels, i.e., such that there exists d
such that Kii = 0 ∀i > d. As we have seen, this kind of kernels induce finite-dimensional RKHSs
containing FIR systems of order d.
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This result is connected with the kernel trick discussed in Remark6.3 and shows
that regularized least squares in a stable (infinite-dimensional) RKHS always model
impulse responses using an �2 orthonormal basis, as in the classical works on linear
system identification. But the key difference between (7.69) and (7.70) is that com-
plexity is no more controlled by the model order because d is set to ∞. Complexity
instead depends on the regularization parameter γ (and possibly also on other ker-
nel parameters) that balances the data fit and the penalty term. This latter induces
stability by using the kernel eigenvalues ζi to constrain the decay rate to zero of the
expansion coefficients.

7.4.4 Necessary and Sufficient Stability Condition Using
Kernel Eigenvectors and Eigenvalues

We have seen that a fruitful way to design a regularized estimator for linear system
identification is to introduce a kernel by specifying its entries Ki j . This modelling
technique translates our expected features of an impulse response into kernel prop-
erties, e.g., smooth exponential decay as described by stable spline, TC and DC
kernels. This route exploits the kernel trick, i.e., the basis functions implicit encod-
ing. In some circumstances, it could be useful to build a kernel starting from the
design of eigenfunctions ρi and eigenvalues ζi . A notable example is given by the
(already cited) Laguerre or Kautz functions that belong to the more general class of
Takenaka–Malmquist orthogonal basis functions [46]. They can be useful to describe
oscillatory behavior or presence of fast/slow poles.

Since any stable kernel can be associated with an �2 basis, the following funda-
mental problem then arises. Given an orthonormal basis {ρi } of �2, for example, of the
Takenaka–Malmquist type, which are the conditions on the eigenvalues ζi ensuring
stability of Kxy =

∑+∞
i=1 ζiρi (x)ρi (y)? The answer is in the following result derived

from [8] that reports the necessary and sufficient condition (the proof is given in
Sect. 7.7.5).

Theorem 7.9 (RKHS stability using Mercer expansions, based on [8]) Let H be
the RKHS induced by K with

Kxy =
+∞∑

i=1

ζiρi (x)ρi (y),

where the {ρi } form an orthonormal basis of �2. Let also

U∞ =
{
u ∈ �∞ : |u(i)| = 1, ∀i ≥ 1

}
.

Then, one has
H ⊂ �1 ⇐⇒ sup

u∈U∞

∑

i

ζi 〈ρi , u〉22 < +∞, (7.71)
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where 〈·, ·〉2 is the inner product in �2.

Thus, clearly, there is no stability if one function ρi associated to ζi > 0 doesn’t
belong to �1. In fact, one can choose u containing the signs of the components of
ρi and this leads to 〈ρi , u〉2 = +∞. Nothing is instead required for the eigenvectors
associated to ζi = 0. Theorem7.9 permits also to derive the following sufficient
stability condition.

Corollary 7.3 (based on [8]) Let H be the RKHS induced by the kernel Kxy =∑+∞
i=1 ζiρi (x)ρi (y) with {ρi } an orthonormal basis of �2. Then, it holds that

H ⊂ �1⇐=
∑

i

ζi‖ρi‖21 < +∞. (7.72)

Furthermore, such condition also implies kernel absolute summability and, hence,
it is not necessary for RKHS stability.

It is easy to exploit the stability condition (7.72) to designmodels of stable impulse
responses starting from an �2 basis. Let us reconsider, e.g., Laguerre or Kautz basis
functions {ρi } to build the impulse response model

g =
∞∑

i=1

aiρi .

To exploit (7.70), one has to define stability constraints on the expansion coefficients
ai . This corresponds to define ζi in such a way that the regularizer

∞∑

i=1

a2i
ζi

enforces absolute summability of g. Laguerre and Kautz models belong to the
Takenaka–Malmquist class of functions ρi that all satisfy

‖ρi‖1 ≤ Mi,

with M a constant independent of i [46]. Then, Corollary7.3 ensures that the choice

ζi ∝ i−ν, ν > 2

includes the stability contraint for the entire Takenaka–Malmquist class.
Let us now consider the class of orthonormal basis functions ρi all contained in

a ball of �1. Then, the necessary and sufficient stability condition assumes a form
especially simple as the following result shows.

Corollary 7.4 (based on [8]) Let H be the RKHS induced by the kernel Kxy =∑+∞
i=1 ζiρi (x)ρi (y) with {ρi } an orthonormal basis of �2 and ‖ρi‖1 ≤ M < +∞ if
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Fig. 7.13 Inclusion properties of some important kernel classes in terms of Mercer expansions.
This representation is the dual of that reported in Fig. 7.11 and defines kernel sets through properties
of the kernel eigenvectors ρi , forming an orthonormal basis in �2, and of the corresponding kernel
eigenvalues ζi . The condition

∑
i ζi‖ρi‖21 < ∞ is themost restrictive since it implies kernel absolute

summability. The necessary and sufficient condition for stability is supu∈U ∞
∑

i ζi 〈ρi , u〉22 < ∞.
Finally,

∑
i ζi < ∞ and

∑
i ζ

2
i < ∞ are exactly the conditions for a kernel to be finite trace and

squared summable, respectively

ζi > 0, with M not dependent on i . Then, one has

H ⊂ �1 ⇐⇒
∑

i

ζi < +∞. (7.73)

Finally, Fig. 7.13 illustrates graphically all the stability results here obtained start-
ing from Mercer expansions.

7.5 Minimax Properties of the Stable Spline Estimator �

In this section, we will derive non-asymptotic upper bounds on the MSE of the
regularized IIR estimator (7.10) valid for all the exponentially stable discrete-time
systems whose poles belong to the complex circle of radius ρ. Obtained bounds can
be evaluated before any data is observed. This kind of results give insight into the
so-called sample complexity, i.e., the number of measurements needed to achieve a
certain accuracy on impulse response reconstruction. This is an attractive feature even
if, since the bounds need to hold for all the models falling in a particular class, often
they are quite loose for the particular dynamic system at hand. However, they have a
considerable theoretical value since permit also to assess the quality of (7.10) through
nonparametric minimax concepts. Such setting considers the worst-case inside an
infinite-dimensional class and has been widely studied in nonparametric regression
and density estimation [88]. In particular, obtained bounds will lead to conditions
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which ensure the optimality in order, i.e., the best convergence rate of (7.10) in the
minimax sense. We will derive them by considering system inputs given by white
noises and using the TC/stable spline kernel (7.15) as regularizer. The important
dependence between the convergence rate of (7.10) to the true impulse response, the
stability kernel parameter α and the stability radius ρ will be elucidated.

7.5.1 Data Generator and Minimax Optimality

As in the previous part of the chapter, we use g0 to denote the impulse response of
a discrete-time linear system. The measurements are generated as follows:

y(t) =
∞∑

k=1

g0(k)ut−k + e(t), (7.74)

where g0(k) are the impulse response coefficients. We will always assume g0 as a
deterministic and exponentially stable impulse response, while the input u and the
noise e are stochastic as specified below.

Assumption 7.10 The impulse response g0 belongs to the following set:

S (�, L) =
{
g : |g(k)| ≤ L�k

}
, 0 ≤ ρ < 1. (7.75)

The system input and the noise are discrete-time stochastic processes. One has that
{u(t)}t∈Z are independent and identically distributed (i.i.d.) zero-mean random vari-
ables with

E [u(t)2] = σ 2
u , |u(t)| ≤ Cu < ∞. (7.76)

Finally, {e(t)}t∈Z are independent random variables, independent of {u(t)}t∈Z, with

E [e(t)] = 0, E [e(t)2] ≤ σ 2. (7.77)

The available measurements are

DT = {u(1), . . . , u(N ), y(1), . . . , y(N )}, (7.78)

where N is the data set size.
The quality of an impulse response estimator ĝ function of DT will be measured

by computing the estimation error E ‖g0 − ĝ‖2, where ‖ · ‖2 is the norm in the space
�2 of squared summable sequences. Note that the expectation is taken w.r.t. the
randomness of the system input and the measurement noise. The worst-case error
over the family S of exponentially stable systems reported in (7.75) will be also
considered. In particular, the uniform �2-risk of ĝ is
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sup
g∈S

E ‖g − ĝ‖2.

An estimator g∗ is then said to be minimax if the following equality holds for any
data set size N :

sup
g∈S

E ‖g − g∗‖2 = inf
ĝ

sup
g∈S

E ‖g − ĝ‖2,

meaning that g∗ minimizes the error w.r.t. the worst-case scenario. Building such
kind of estimator is in general really difficult. For this reason, it is often convenient
to consider just the asymptotic behaviour introducing the concept of optimality in
order. Specifically, an estimator ḡ is optimal in order if

sup
g∈S

E ‖g − ḡ‖2 ≤ CN sup
g∈S

E ‖g − g∗‖2

with CN is function of the data set size and satisfies supN CN < ∞ and g∗ is
minimax. In our linear system identification setting, optimality in order thus ensures
that, as N grows to infinity, the convergence rate of ḡ to the true impulse response
g0 cannot be improved by any other system identification procedure in the minimax
sense.

7.5.2 Stable Spline Estimator

As anticipated, our study is focused on the following regularized estimator:

ĝ = argmin
g∈H

N∑

t=1

(y(t) −
∞∑

k=1

g(k)u(t − k))2 + γ ‖g‖2H , (7.79)

equipped with the stable spline kernel

K (i, j) = αmax (i, j), 0 < α < 1, (i, j) ∈ N. (7.80)

For future developments, it is important to control complexity of (7.79) not only by
using the hyperparameters γ and α but also through the dimension d of the following
subspace:

Hd = {g ∈ H s.t. g(d + 1) = g(d + 2) = · · · = 0}

over which optimization of the objective in (7.79) is performed. In particular, we will
consider the estimator

ĝd = arg min
g∈H d

N∑

t=1

(
y(t) −

d∑

k=1

g(k)u(t − k)

)2

+ γ ‖g‖2H , (7.81)
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and will study how N and the choice of γ, α, d influence the estimation error and,
hence, the convergence rate. This will lead to complexity control rules that are a
hybrid of those seen in the classical and in the regularized framework. To obtain
this, first, we rewrite (7.81) in terms of regularized FIR estimation by exploiting the
structure of the stable spline norm (7.16) which shows that

g ∈ Hd =⇒‖g‖2H =
( d−1∑

t=1

(g(t + 1) − g(t))2

(1 − α)αt

)
+ g2(d)

(1 − α)αd
. (7.82)

Let us define the matrix

R =
1

α − α2

⎡

⎢⎢⎢⎢⎢⎣

1 −1 0 0 · · · 0

−1 1 + 1
α

− 1
α

0 · · · 0

0 − 1
α

1
α

+ 1
α2 − 1

α2 · · · 0

0 0
. . .

. . .
. . .

.

.

.

0 0 · · · · · · − 1
αd−2

1
αd−2 + 1

αd−1

⎤

⎥⎥⎥⎥⎥⎦
(7.83)

and the regressors

ϕd(t) =

⎛

⎜⎝
u(t − 1)

...

u(t − d)

⎞

⎟⎠ . (7.84)

Now, one can easily see that the first d components of ĝd in (7.81) are contained in
the vector

argmin
θ

N∑

t=1

(
y(t) − ϕd(t)

T θ
)2 + γ θT Rθ. (7.85)

Hence, we obtain
ĝd = (ĝ(1), . . . , ĝ(d), 0, 0, . . . ) (7.86)

where
⎛

⎜⎝
ĝ(1)

...

ĝ(d)

⎞

⎟⎠ =
(
1
N

N∑

t=1

ϕd(t)ϕ
T
d (t) + γ

N
R

)−1 1
N

N∑

t=1

ϕd(t)y(t). (7.87)

In real applications, one cannot measure the inputs at all the time instants and our
data set DT in (7.78) could contain only the inputs u(1), . . . , u(N ). So, differently
from what postulated in the above equations, in practice the regressors are never
perfectly known. One solution is just to replace with zeros the unknown input values
{u(t)}t<1 entering (7.84). Also under this model misspecification, all the results
introduced in the next sections still hold.
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7.5.3 Bounds on the Estimation Error and Minimax
Properties

The following theorem will report non asymptotic bounds that illustrate the depen-
dence of E ‖g0 − ĝd‖2 on the following three key variables:

• the FIR order d which determines the truncation error;
• the parameter α contained in the matrix R reported in (7.83) that establishes the
exponential decay of the estimated impulse response coefficients;

• the regularization parameter γ which trades-off the penalty defined by R and the
adherence to experimental data.

In addition, it gives conditions on α which ensure optimality in order if some con-
ditions on the stability radius ρ entering (7.75) and on the FIR order d (function of
the data set size N ) are fullfilled. Below, the notation O(1) indicates an absolute
constant, independent of N . Furthermore, given x ∈ R, we use �x� to indicate the
largest integer not larger than x . The following result then holds.

Theorem 7.11 (based on [74]) Let the FIR order d be defined by the following
function of the data set size N:

d∗ =
⌊
ln(N (1 − α)σ 2

u ) − ln(8γ )

ln(1/α)

⌋
, (7.88)

with N large enough to guarantee d∗ ≥ 1.
Then, under Assumption7.10, the estimator (7.81) satisfies

E ‖g − ĝd
∗‖2 (7.89)

≤ O(1)

[
Lρd∗+1

(1 − ρ)

(√
d∗

N
+ 1

)
+ σ

σu

√
d∗

N
+ 4Lγ

1 − α

hd∗

N

]
,

where

hd∗ =

⎧
⎪⎪⎨

⎪⎪⎩

√
d∗ if α = ρ
ρ√

α2−ρ2
if α > ρ

ρ√
ρ2−α2

(
ρ

α

)d∗
if α < ρ

. (7.90)

Furthermore, if the measurement noise is Gaussian and
√

α ≥ ρ, the stable spline
estimator (7.81) is optimal in order.

To illustrate the meaning of Theorem7.11, first is useful to recall a result obtained
in [43] that relies on the Fano’s inequality. It shows that, if a dynamic system is fed
with white input and the measurement noise is Gaussian, the expected �2 error of

any impulse response estimator cannot decay to zero faster than
√

ln N
N in a minimax

sense.
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Theorem 7.12 (based on [43]) Let Assumption7.10 hold and assume also that the
measurement noise is Gaussian. Then, if ĝ is any impulse response estimator built
with DT , for N sufficiently large one has

sup
g∈S (�,L)

E ‖ĝ − g‖2 ≥ O(1)

√
ln N

N
. (7.91)

�

To illustrate the convergence rate of the stable spline estimator, first note that
the FIR dimension d∗ in (7.88) scales logarithmically with N . Apart from irrelevant
constants, one in fact has

d∗ ∼ ln(N )

ln(1/α)
. (7.92)

We now consider the three terms on the r.h.s. of (7.89) with d = d∗. Since
√
d∗

N
∼
√
ln N

N
and ρd∗ ∼ N− ln ρ

lnα , (7.93)

the first two terms decay to zero at least as
√

ln N
N . Regarding the third one, one has

hd∗

N
∼

⎧
⎪⎨

⎪⎩

√
ln N
N if α = ρ
1
N if α > ρ

N− ln ρ

lnα if α < ρ

(7.94)

and this shows that the optimal convergence rate is obtained if α ≥ ρ but the case
α < ρ can be critical. In particular, combining (7.89) with (7.93) and (7.94), the
following considerations arise:

• the convergence rate of the stable spline estimator (7.81) does not depend on γ but
only on the relationship between the kernel parameter α and the stability radius ρ

defining the class of dynamic systems (7.75);
• using Theorem7.12, one can see from (7.94) that if α < ρ the achievement of the
optimal rate is related to the term N− ln ρ

lnα which appears as third term in (7.89).
The key condition is

ln ρ

lnα
≥ 0.5 =⇒√

α ≥ ρ.

This indeed corresponds to what was stated in the final part of Theorem7.11: under
Gaussian noise the stable spline estimator is optimal in order if

√
α is an upper

bound on the stability radius ρ.

Relationships (7.93) and (7.94) clarify also what happens when the kernel includes
a too fast exponential decay rate, i.e., when

√
α < ρ. In this case, the error goes to
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Fig. 7.14 Convergence rate ln ρ/ lnα of the stable spline estimator as a function of
√

α for
√

α < ρ

with ρ in the set {0.7, 0.8, 0.9, 0.95, 0.99}. When
√

α < ρ the estimation error converges to zero as

N− ln ρ
lnα . Instead, if

√
α ≥ ρ the error decays as

√
ln N
N , making the stable spline estimator optimal

in order when the measurement noise is Gaussian

zero as N− ln ρ

lnα , getting worse as
√

α drifts apart ρ. Such phenomenon has a simple
explanation. A too small α enforces the impulse response estimate to decay to zero
also when the true impulse response coefficients are significantly different from zero.
This corresponds to a strong bias: a wrong amount of regularization is introduced
in the estimation process, hence compromising the convergence rate. This is also
graphically illustrated in Fig. 7.14 that plots the convergence rate ln ρ/ lnα as a
function of

√
α for five different values of ρ.

The analysis thus shows how α plays a fundamental role in controlling impulse
response complexity and, hence, in establishing the properties of the regularized
estimator. This is not surprising also in view of the deep connection between the
decay rate and the degrees of freedom of the model. This was illustrated in Fig. 5.6
of Sect. 5.5.1 using the class of DC kernels which includes TC as special case.

7.6 Further Topics and Advanced Reading

The idea to handle linear system identification with regularization methods in the
RKHS framework first appears in [72]. As already mentioned, the representer theo-
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rems introduced in this chapter are special cases of that involving linear and bounded
functionals reported in the previous chapter, seeTheorem6.16.More general versions
of representer theorems with, e.g., more general loss functions and/or regularization
terms can be found in, e.g., [33]. Similarly to the spline smoothing problem studied
in Sect. 6.6.7, it could be useful to enrich the regularized impulse response esti-
mators here described with a parametric component. Of course, the corresponding
regularized estimator will still have a closed-form finite-dimensional representation
that depends on both the number of data N and the number of enriched parametric
components, e.g., see [72, 90].

The stable spline kernel [72] and the diagonal correlated kernel [19] are the first
two kernels introduced in the linear system identification literature. The stability of
a kernel (or equivalently the stability of a RKHS) first appeared in [32, 73]. The
stability of a kernel is equivalent to the ∞-boundedness of the kernel, which is a
special case of the more general q-boundedness with 1 < q ≤ ∞ in [16]. The proof
in [16] for the sufficiency and necessity of the q-boundedness of a kernel is quite
involved and abstract. Theorem7.5 is also discussed in [24], see also [76] where the
stability analysis exploits the output kernel. The optimal kernel that minimizes the
mean squared error was studied in [19, 73]. As already discussed, unfortunately, the
optimal kernel cannot be applied in practice because it depends on the true impulse
response to be estimated.Nevertheless, it offers a guideline to designkernels for linear
system identification and more general function estimation problems. Motivated by
these findings, many stable kernels have been introduced over the years, e.g., [17,
21, 77, 80, 97]. In particular, [17] proposed linear multiple kernels to handle systems
with complicated dynamics, e.g., with distinct time constants and distinct resonant
frequencies, and [77] further extended this idea and proposed “integral” versions of
the stable spline kernels. To design kernels to embed more general prior knowledge,
e.g., the overdamped/underdamped dynamics, common structure, etc., it is natural to
divide the prior knowledge into different types and then develop systematic ways to
design kernels accordingly, see [21, 80, 97]. In particular, the approaches proposed
in [21] are based on machine learning and a system theory perspectives, those in
[80] rely on the maximum entropy principle, and the method proposed in [97] uses
harmonic analysis.

Along with the kernel design, many efforts have also been spent on “kernel anal-
ysis”. In particular, many kernels can be given maximum entropy interpretations
including the stable spline kernel, the diagonal correlated kernel and the more gen-
eral simulation-induced kernel [14, 21, 23]. This can help to understand the prior
knowledge embedded in the model. Many kernels have the Markov property e.g.,
[83]. Examples are the diagonal correlated kernel and some carefully designed sim-
ulation induced kernels [21]. Exploring this property could help to design efficient
implementation. As we have seen, the spectral analysis of kernels is often not avail-
able in closed form, even is it can be numerically recovered, but exceptions include
the stable spline and the diagonal correlated kernel [20, 22, 72].

The hyperparameter tuning problem has been studied for a long time in the context
of function estimation problem from noisy observations, e.g., [83, 90]. The marginal
likelihood maximization method depends on the connection with the Bayesian esti-
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mation of Gaussian processes, whichwas first studied in [51] in spline regression, see
also [41, 83, 90]. More discussions on its relation to Bayesian evidence and Occam’s
razor principle can be found in e.g., [27, 60]. Stein’s unbiased risk estimationmethod
is also known as the Cp statistics [61]. The generalized cross-validation method is
first proposed in [28] and found to be rotation invariant in [44]. The problem can also
be tackled using full Bayes approaches relying on stochastic simulation techniques,
e.g., Markov chain Monte Carlo [1, 39].

In the context of linear system identification, some theoretical results on the hyper-
parameter estimation problem have been derived. In particular, it was shown in [4]
that the marginal likelihood maximization method is consistent for diagonal kernels
in terms of the mean square error and asymptotically minimizes a weighted mean
square error for nondiagonal kernels. In [78], the robustness of the marginal likeli-
hood maximization is analysed with the help of the excess degrees of freedom. It is
further shown in [63, 64, 66] that Stein’s unbiased risk estimation as well as many
cross-validation methods are asymptotically optimal in the sense of mean square
error. In [4, 17, 94], the optimal hyperparameter of the marginal likelihood maxi-
mization is shown to be sparse. By exploring such property it is possible to handle
various structure detection problems in system identification like sparse dynamic
network identification [17, 26]. Full Bayes approaches can be found, e.g., in [69].

As also recalled in the previous chapter, straightforward implementation of the
regularization method in RKHS framework has computational complexity O(N3)

and thus is prohibitive to apply when N is large. Many efficient approximation meth-
ods have been proposed inmachine learning, e.g., [53, 81, 82]. In the context of linear
system identification, there is another practical issue that must be noted in the imple-
mentation: the ill-conditioning possibly arising from the use of stable kernels, which
is unavoidable due to the nature of stability. Hence, extra care has to be taken when
developing efficient implementations. Some approximation methods have been pro-
posed to reduce the computational complexity and avoid numerical computation.
The first one is to truncate the IIR at a suitable finite-order n. Then, computational
complexity becomes O(n3) and one can also use the approach proposed in [18] rely-
ing on some fundamental algebraic techniques and reliable matrix factorizations.
The other one is to truncate the infinite expansion of a kernel at a finite-order l.
Then, computational complexity becomes O(l3), see [15]. See also [36] for efficient
kernel-based regularization implementation using Alternating Direction Method of
Multipliers (ADMM). Another practical issue is the difficulty caused by local min-
ima. For kernels with few number of hyperparameters, e.g., the stable spline kernel
and the diagonal correlated kernel, this difficulty can be well faced using different
starting points or also some grid methods. For systems with complicated dynam-
ics, it is suggested to apply linear multiple kernels [17] since the corresponding
marginal likelihood maximization is a difference of convex programming problem
and a stationary point can be found efficiently using sequential convex optimization
technique, e.g., [48, 87].

We only considered single-input single-output linear systems in the chapter with
white measurement noise. For multiple-input single-output linear systems, it is nat-
ural to use multi-input impulse response models and then assume that the overall
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system has a block diagonal kernel [73]. The regularization method can also be
extended to handle linear systems with colored noise, e.g., ARMAX models. One
can exploit the fact that such systems can be approximated arbitrarily well by finite-
order ARXmodels [57]. The problem thus becomes a special case of multiple-output
single-input systems where the regressors contain also past outputs [71]. This will
be also illustrated in Chap. 9.

In practice, the data could be contaminated by outliers due to a failure in the
measurement or transmission equipment, e.g., [56, Chap. 15]. In the presence of out-
liers, it is suggested to use heavy-tailed distributions instead of the commonly used
Gaussian distribution for the noise in robust statistics, e.g., [49]. For regularization
methods in the RKHS framework, the key difficulty is that the hyperparameter esti-
mation criteria and the regularized estimate may not have closed-form expressions.
Several methods have been proposed to overcome this difficulty. In particular, an
expectation maximization (EM) method was proposed in [10] and further improved
in [55] exploiting a variational expectation method.

Input design is an important issue for classical system identification and many
results have been obtained, e.g., [38, 45, 47, 56]. For regularized system identifica-
tion in RKHS, some results have been reported recently. The first result was given
in [37] where the mutual information between the output and the impulse response
was chosen as the input design criterion. Unfortunately, obtaining the optimal input
involves the solution of a nonconvex optimization problem. Differently from [37],
[65] adopts scalar measures of the Bayesian mean square error as input design crite-
rion, proposing a two-step procedure to find the global optimal input through convex
optimization.

For what concerns the building of uncertainty regions around the dynamic system
estimates, approaches are available which return bounds that, beyond being non-
asymptotic, are also exact, i.e., with the desired inclusion probability. This requires
some assumptions on data generation, like the introduction of prior distributions on
the impulse response.An important example, alreadywidely discussed in this book, is
the use of a Bayesian framework that interprets regularization as Gaussian regression
[83]. The posterior density becomes available in closed form and Bayes intervals can
be easily obtained. Another approach to compute bounds for linear regression is the
sign-perturbed sums (SPS) technique [30]. Following a randomization principle, it
builds guaranteed uncertainty regions for deterministic parametric models in a quasi-
distribution free setup [11, 12]. Recently, there have been notable extensions to the
class of models that SPS can handle. The first line of thought still sees the unknown
parameters as deterministic but introduces regularization, see [29, 70, 89] and also
[31] which is a first attempt to move beyond the strictly parametric nature of SPS. A
second line of thought allows for the exploitation of some form of prior knowledge
at a more fundamental probabilistic level [13, 70].

Finally, the interested readers are referred to the survey [73] for more references,
see also [25, 58].
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7.7 Appendix

7.7.1 Derivation of the First-Order Stable Spline Norm

We will exploit a representation of the RKHS induced by the first-order discrete-
time stable spline kernel given by a linear transformation of the space �2 containing
the squared summable sequences. This has some connections with the relationship
between squared summable function spaces and RKHS discussed in Remark6.2,
even if no spectral decomposition of the kernel will be needed below.

Let H be the RKHS induced by the stable spline kernel (7.15) with elements
denoted by g = {gt}+∞

t=1. We will see that any g ∈ H can be written as

gt =
∞∑

j=1

ψt jw j , w ∈ �2, (7.95)

where the scalars {ψt j } define the linear operator mapping �2 into H . By adopting
notation of ordinary algebra to handle infinite-dimensional objects, one can see g
as an infinite-dimensional column vector. In addition, (7.95) can be rewritten as
g = Ψw, where Ψ is an infinite-dimensional matrix with (t, j)-entry given by ψt j .
We will now obtain the expression of Ψ . Let

Λ = diag{λ1, λ2, λ3, . . . }, λt = αt − αt+1

M = [v1 v2 v3 · · · ], vt =
t∑

j=1

e j

where e j is the infinite-dimensional column vector with all null elements except its
j th entry which is equal to one. Let also

Ψ = MΛ1/2. (7.96)

The inverse Ψ −1 of Ψ acts as follows: given a sequence g, it maps g into

Ψ −1g =

⎡

⎢⎢⎣

1√
α−α2 (g1 − g2)
1√

α2−α3 (g2 − g3)
...

⎤

⎥⎥⎦ . (7.97)

Then, given Ψ in (7.96), we will show that the space

H =
{
Ψw

∣∣∣ w ∈ �2

}
, (7.98)
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with inner product given by

〈 f, g〉H = 〈Ψ −1 f, Ψ −1g〉2, (7.99)

is the RKHS induced by the stable spline kernel. First, it is easy to see that the null
space of Ψ contains only the null vector. Then, since �2 is Hilbert, one obtains that
H is a Hilbert space. We can now exploit Theorem6.2, i.e., the Moore–Aronszajn
theorem, to prove that it is also the desired RKHS. To obtain this, the two conditions
described below have to be checked.

The first condition says that any kernel section must belong to the space H in
(7.98). Thanks to the algebraic view, we can see the stable spline kernel K as an
infinite-dimensional matrix. Hence, the kernel sections are the infinite-dimensional
columns of K and, in particular, we use Kt to indicate the t th column. Now, one has
to assess that ‖Kt‖2H < ∞ ∀t . Note that

Ψ −1Kt =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0√
αt − αt+1√

αt+1 − αt+2

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦
← t th row.

(7.100)

Then, we have

〈Kt , Kt 〉H = 〈Ψ −1Kt , Ψ
−1Kt 〉2

=
+∞∑

j=t

(α j − α j+1) = αt < ∞

and the first condition is so satisfied.
The second condition is the reproducing property, i.e., one has to assess that

〈Kt , g〉H = gt ∀g ∈ H , ∀t.

This holds true since

〈Kt , g〉H = 〈Ψ −1Kt , Ψ
−1g〉2

+∞∑

j=t

(g j − g j+1) = gt ,

showing that the second condition is also satisfied.
Using (7.99), one has
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‖g‖2H = 〈Ψ −1g, Ψ −1g〉2 =
∞∑

t=1

(gt+1 − gt)
2

(1 − α)αt

and this confirms the norm’s structure reported in (7.16).

7.7.2 Proof of Proposition 7.1

We will exploit the results on estimation of Gaussian vectors reported in Sect. 4.2.2.
Let Cov[u, v] denote the covariance matrix of two random vectors u and v, i.e.,

Cov[u, v] := E [(u − E [u])(v − E [v])T ].

First, we consider the distribution of Y . Note that Li [g0] is a linear functional of
the stochastic process g0. Hence, since linear transformations of normal processes
preserve Gaussianity, the noise-free output [L1[g0], . . . , LN [g0]]T is a multivariate
zero-mean Gaussian random vector. Furthermore, since

Cov(Li [g0], L j [g0]) = λLi [L j [K ]],

the covariance matrix of [L1[g0], . . . , LN [g0]]T , apart from the scale factor λ, is
indeed defined by the output kernel matrix O reported in (7.14) for the discrete-
time case, i.e., when X = N, and in (7.22) for the continuous-time case, i.e., when
X = R

+. Now, recall that the e(t), where t = 1, . . . , N , are assumed to be mutually
independently Gaussian distributed with mean zero and variance σ 2. Moreover, they
are also assumed independent of g0. One then obtains that g0 and Y are jointly
Gaussians, with the mean and covariance matrix of Y given by

E (Y ) = 0, Cov(Y,Y ) = λO + σ 2 IN .

Forwhat regards the covariancematrix of g0 andY , the independence assumptions
imply that

Cov(g0(x),Y ) = λ[L1[Kx ], . . . , LN [Kx ]].

Then, using also the correspondence γ = σ 2/λ, we have

E [g0(x)|Y ] = λ[L1[Kx ] . . . LN [Kx ]]
(
λO + σ 2 IN

)−1
Y

= [L1[Kx ] . . . LN [Kx ]] (O + γ IN )−1 Y

=
N∑

t=1

ĉt Lt [Kx ]
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where ĉt is the t th entry of vector ĉ defined in (7.13) for the continuous-time case or
in (7.21) for the discrete-time case. This completes the proof.

7.7.3 Proof of Theorem 7.5

We only consider the proof for the discrete-time case (7.56). The continuous-time
case (7.57) can be proved in a similar way. To prove (7.56), we first need a lemma.

Lemma 7.1 Consider the linear operator LK defined by

LK [l](·) =
∞∑

t=1

K (·, t)lt , (7.101)

where K : N × N → R is a positive semidefinite kernel. Assume that LK satisfies
the following property: for any l ∈ �∞, one has LK [l] ∈ �1. Then, Lk is a continuous
(bounded) linear operator, i.e., there exists a scalar b > 0, independent of l, such
that

‖LK [l]‖1 ≤ b‖l‖∞, ∀l ∈ �∞. (7.102)

Proof First, we show that for any s ∈ N, the kernel section Ks(·) belongs to �1. To
show this, for any s ∈ N, we can define a sequence l ∈ �∞ in the following way:

lt =
{
1 if K (s, t) ≥ 0
−1 otherwise.

Then plugging this l into (7.101) yields LK [l] =∑∞
t=1 |K (s, t)|. Since LK [l] ∈ �1

for every l ∈ �∞, then we obtain

∞∑

t=1

|K (s, t)| < ∞, ∀s ∈ N. (7.103)

Now, for any l, a ∈ �∞, it holds that

|LK [l](s) − LK [a](s)| =
∣∣∣∣∣

∞∑

t=1

K (s, t)(lt − at )

∣∣∣∣∣ ≤ ‖l − a‖∞
∞∑

t=1

|K (s, t)|,
(7.104)

where both ‖l − a‖∞ and
∑∞

t=1 |K (s, t)| are finite for any s ∈ N since l, a ∈ �∞ and
in view of (7.103). Following (7.104), the remaining proof is a simple application of
the closed graph theorem, see Theorem6.26. In fact, let l → a in �∞ and LK [l] → g
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in �1. Then (7.104) shows that LK [l](s) → LK [a](s) for every s ∈ N, implying that
gs = LK [a](s) for every s ∈ N. As a result, the graph (l, LK [l]) is closed and thus
LK is continuous (bounded) by the closed graph theorem. �

Now let us consider (7.56) in Theorem7.5. We first prove the sufficient part, i.e.,

∞∑

s=1

∣∣∣∣∣

∞∑

t=1

K (s, t)lt

∣∣∣∣∣ < ∞, ∀l ∈ �∞ =⇒H ⊂ �1.

We start by introducing some definitions. For any f ∈ H , we let l ∈ �∞ be a
sequence defined by the signs of f , i.e.,

lt =
{
1 if ft ≥ 0
−1 otherwise

and let also ln be a sequence defined by

lnt =
{
lt for t = 1, . . . , n
0 otherwise.

Then we have

n∑

t=1

| ft | =
∞∑

t=1

ft l
n
t =

∞∑

t=1

〈 f (·), lnt Kt (·)〉H ,

where the last identity is due to the reproducing property of K . Moreover, by the
Cauchy–Schwarz inequality, we have

n∑

t=1

| ft | ≤ ‖ f ‖H
∥∥∥∥∥

∞∑

t=1

lnt Kt (·)
∥∥∥∥∥
H

. (7.105)

Now we show that
∥∥∑∞

t=1 l
n
t Kt (·)

∥∥
H

is finite. First, we note that

∥∥∥∥∥

∞∑

t=1

lnt Kt (·)
∥∥∥∥∥

2

H

= 〈
∞∑

s=1

lns Ks(·),
∞∑

t=1

lnt Kt (·)〉H

=
∞∑

s=1

( ∞∑

t=1

lnt K (s, t)

)
lns

≤
∞∑

s=1

∣∣∣∣∣

∞∑

t=1

lnt K (s, t))

∣∣∣∣∣ ‖l
n‖∞,

and then from the linear operator LK defined in (7.101) and its boundedness property
(7.102) proved in Lemma7.1, we obtain
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∥∥∥∥∥

∞∑

t=1

lnt Kt (·)
∥∥∥∥∥

2

H

≤ ‖LK [ln]‖1‖ln‖∞ ≤ b‖ln‖2∞ = b,

wherewe have used the fact that ‖ln‖∞ = 1 for any n ∈ N. Noting the above equation
and (7.105) yields

n∑

t=1

| ft | ≤ ‖ f ‖H
√
b, ∀n ∈ N.

Since f ∈ H and thus ‖ f ‖H is finite,
∑n

t=1 | ft | is bounded above for any n ∈ N.
Further note that the partial sum

∑n
t=1 | ft | is an increasing sequence and bounded

above, therefore by monotone convergence theorem, the limit of
∑n

t=1 | ft |, i.e.,
limn→∞

∑n
t=1 | ft | exists, and is denoted by

∑∞
t=1 | ft |, which shows that f ∈ �1.

Since f was chosen arbitrarily, this implies H ⊂ �1 and thus completes the proof
for the sufficient part.

Now, we prove the necessary part, i.e.,

H ⊂ �1 =⇒
∞∑

s=1

∣∣∣∣∣

∞∑

t=1

lt K (s, t)

∣∣∣∣∣ < ∞ ∀l ∈ �∞.

Again, we start by introducing some definitions. For any f ∈ H and l ∈ �∞, we
define a new sequence l f by letting [l f ]t = lt ft , ∀t ∈ N, where [l f ]t is the t th
entry in the sequence l f . Then we have l f ∈ �1, because l ∈ �∞ and f ∈ �1 due to
H ⊂ �1. Moreover, we define gn(·) =∑n

t=1 lt Kt (·)with n ∈ N. Now we show that
the sequence of functions gn(·) with n ∈ N is a weak Cauchy sequence in H . To
show this, we take without loss of generality m ≤ n and m ∈ N, and then we have

gn(·) − gm(·) =
n∑

t=m+1

lt Kt (·). (7.106)

Moreover, we have

〈gn(·) − gm(·), f (·)〉H = 〈
n∑

t=m+1

lt Kt (·), f (·)〉H =
n∑

t=m+1

lt ft , ∀ f ∈ H .

Since l f ∈ �1, i.e.,
∑∞

t=1 |lt ft | < ∞, the Cauchy criterion ensures that

lim
m,n→∞

n∑

t=m+1

|lt ft | = 0, (7.107)

which implies
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lim
m,n→∞

n∑

t=m+1

lt ft = 0.

Noting the above equation and (7.106) yields that the sequence of functions gn(·) =∑n
t=1 lt Kt (·)with n ∈ N is a weak Cauchy sequence. Recall that every Hilbert space,

beyond being complete, is alsoweakly sequentially complete, which is because every
Hilbert space is reflexive, see Definition 2.5.23 along with Corollaries 2.8.10 and
2.8.11 in [62]. Hence, the sequence of functions gn(·) =∑n

t=1 lt Kt (·) with n ∈ N is
also a weakly convergent sequence, i.e., there exists an h ∈ H such that

lim
n→∞〈gn(·), f (·)〉H = 〈h(·), f (·)〉H , ∀ f ∈ H .

Now, we take f (·) = Ks(·) in the above equation. Using the reproducing property
of K , the left-hand side becomes

lim
n→∞〈gn(·), Ks(·)〉H =

∞∑

t=1

lt K (s, t),

while the right-hand side becomes

〈h(·), Ks(·)〉H = h(s).

This implies that
∞∑

t=1

lt K (s, t) = h(s) ∀s ∈ N.

Finally, note that h ∈ H ⊂ �1, therefore

∞∑

s=1

∣∣∣∣∣

∞∑

t=1

lt K (s, t)

∣∣∣∣∣ < ∞, ∀l ∈ �∞,

which completes also the necessary part and, hence, concludes the proof.

7.7.4 Proof of Theorem 7.7

First, it is useful to set up some notation. Let r be an integer or r = ∞. Then, we
define the set Ur as follows:

Ur := { x ∈ R
r : x(i) = ±1,∀ i = 1, . . . , r }. (7.108)
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Let p be another integer associated with the odd number m = 2p + 1 and with
n = 2m . We also use xi ∈ Um , with i = 1, 2, . . . , n, to indicate distinct vectors
containing exactly m elements ±1 (their ordering is irrelevant). Then, for any n =
23, 25, 27, . . . , the n × m matrix V (n) is given by

V (n) =
[
x1 x2 . . . xn

]T
(7.109)

and its rows contain all the possible permutations of ±1. We now discuss the inclu-
sions stated in the theorem.

The inclusionS1 ⊆ Ss derives fromCorollary7.1 where we have seen that abso-
lute summability is a sufficient condition for kernel stability. The proof of the strict
inclusionS1 ⊂ Ss is not trivial and is reported in [7] where one can find a particular
kernel, function of the matrices V (n) in (7.109), that is stable but non-absolutely
summable.

For what concerns the inclusionSs ⊂ S f t , let Mm denote a positive semidefinite
matrix of sizem × m. Consider also the linear operatorMm : R

m → R
m with domain

and co-domain equipped, respectively, with the �∞ and the �1 norms. Its operator
norm is then given by

‖Mm‖∞,1 := max‖u‖∞=1
‖Mmu‖1 = max

x∈Um

‖Mmx‖1, (7.110)

where the last equality follows from the so-called Bauer’s maximum principle for
convex functions. First, we prove that

trace(Mm) ≤ ‖Mm‖∞,1 ≤ n trace(Mm). (7.111)

For this aim, since V (n)T contains all the vectors in Um as columns, the problem is
equal to evaluating

MmV
(n)T

and to find the column with maximum �1 norm. The �1 norm of each column can be
obtained as the scalar product of the column with a suitable x ∈ Um containing the
signs of the column entries. Hence, the n2 entries of

V (n)MmV
(n)T

surely contain these n �1 norms. Furthermore, the maximum �1 norm which needs
to be found is the maximum of all these n2 entries since xT1 c ≤ xT2 c, ∀x1 ∈ Um if
x2 = sign(c), where the function sign returns, for each entry of c, value 1 if such entry
is larger than zero and -1 otherwise.Also, sinceV (n)MmV (n)T is positive semidefinite,
the maximum is found along its diagonal, i.e.,

‖Mm‖∞,1 = max
i=1,...,n

[V (n)MmV
(n)T ]i i .
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We now note that the trace of V (n)MmV (n)T satisfies

trace[V (n)MmV
(n)T ] ≥ ‖Mm‖∞,1 ≥ 1

n
trace[V (n)MmV

(n)T ].

Finally,

trace[V (n)MmV
(n)T ] = trace[MmV

(n)T V (n)]
= trace[Mm(nIm)] = n trace[Mm]

and this proves (7.111).
Now, think of Mk as the k × k submatrix of the stable kernel represented by

the infinite-dimensional matrix K . We also use LK to denote the associated kernel
operator mapping �∞ into �1. So, it holds that

‖Mk‖∞,1 ≤ ‖LK‖∞,1 < +∞, ∀k = 1, 2, . . . ,

where ‖LK‖∞,1 indicates the operator norm of LK , i.e.,

‖LK‖∞,1 = max
x∈U∞

‖Kx‖1.

Using (7.111), we obtain

trace[Mk] ≤ ‖LK‖∞,1, ∀k = 1, 2, . . .

and, since trace[Mk] is a monotone non-decreasing sequence upper-bounded by
‖LK‖∞,1 < +∞, one also has

∑

i

Kii ≤ ‖LK‖∞,1 < +∞.

This shows that the trace of any stable kernel is finite. Such inclusion is strict as the
following example shows. Let the vector v s.t. v ∈ �2 and v /∈ �1. Consider the kernel

K = vvT .

One has trace(K ) = ‖v‖22 < +∞. If w = sign(v) ∈ �∞ one has Kw = v‖v‖1 and
this implies ‖Kw‖1 = ∞. So, the kernel K has finite trace but is unstable.

The inclusion S f t ⊂ S2 relies on the important relation between nuclear and
Hilbert–Schmidt (HS) operators, e.g., see [35, 54, 84]. In particular, let K be a
kernel, seen as an infinite-dimensional matrix, and let LK be the induced kernel
operator as a map from �2 into �2 itself. Given any orthonormal basis {vi } in �2, the
nuclear norm of LK is
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∞∑

i=1

〈vi , Kvi 〉2, (7.112)

and is independent of the chosen basis. Then, LK is said to be nuclear if (7.112) is
finite. Its (squared) Hilbert–Schmidt (HS) norm is instead

∞∑

i=1

‖Kvi‖22 (7.113)

and is also independent of the chosen basis. Then, LK is said to be HS if (7.113)
is finite. It is also known that any nuclear operator is HS and can be written as the
composition of two HS operators.

For our purposes, we now exploit the fact that any finite-trace kernel induces a
nuclear operator, as shown in [8]. So, one also has that (7.113) is finite and, choosing
as {vi } the canonical basis {ei } of �2 , one obtains

∞∑

i=1

‖Kei‖22 =
∑

i j

K 2
i j < ∞. (7.114)

Such inclusion is also strict as illustrated via the example

K = diag{1, 1/2, 1/3, . . . , 1/k, . . . }.

Finally,S2 is contained in the set of all the positive semidefinite infinite matrices.
Furthermore, the inclusion is strict: this can be seen just considering the example
K = vvT , where v is the infinite-dimensional column vector with all components
equal to 1.

7.7.5 Proof of Theorem 7.9

The notation LK is still used to denote the operator induced by the kernel K and
mapping �∞ into �1. Its operator norm is ‖LK‖∞,1 while (ζi , ρi ) are its eigenvalues
and eigenvectors orthogonal in �2. From Theorem7.5 and Lemma7.1, one has

H ⊂ �1 ⇐⇒ ‖LK‖∞,1 < +∞. (7.115)

Since the function

f (u) := ‖y‖1 =
∑

i

|y(i)| =
∑

i

∣∣∣
∑

h

Kihu(h)

∣∣∣

is convex, the Bauer’s maximum principle ensures that
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‖LK‖∞,1 = sup
u∈U∞

f (u) = sup
u∈U∞

∑

i

∣∣∣
∑

h

Kihu(h)

∣∣∣, (7.116)

where
U∞ =

{
u ∈ �∞ : |u(i)| = 1, ∀i ≥ 1

}
.

Using notation of ordinary algebra to deal with infinite-dimensional matrices, we
can write K = UDUT , where D is diagonal and contains the eigenvalues ζi of K
while the columns of U contain the corresponding eigenvectors ρi . One has

y = Ux, x = DUTu

and, hence,

x =
[
ζ1 < ρ1, u >2 ζ2 < ρ2, u >2 . . .

]T

y = ζ1 < ρ1, u >2 ρ1 + ζ2 < ρ2, u >2 ρ2 + . . . .

Letting s(u) = sign(y), we obtain

h(u) := ‖y‖1 =
∑

h

ζh < ρh, u >2< ρh, s(u) >2 .

Using (7.116), also noticing that f (u) = h(u), this implies

‖LK‖∞,1 = sup
u∈U∞

∑

h

ζh < ρh, u >2< ρh, s(u) >2

= sup
u∈U∞

h(u).

Now, define

g(u) := �h ζh〈ρh, u〉22, A := sup
u∈U∞

∑

h

ζh〈ρh, u〉22 = sup
u∈U∞

g(u).

Exploiting the definition of s(u), one has

h(u) ≥ g(u) =⇒ ‖LK‖∞,1 ≥ A.

On the other hand,
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h(u) =
∑

h

ζh〈ρh, u〉2〈ρh, s(u)〉2

=
∑

h

(√
ζh〈ρh, u〉2

) (√
ζh〈ρh, s(u)〉2

)

≤
√∑

h

ζh〈ρh, u〉22
√∑

h

ζh〈ρh, s(u)〉22

≤ √
g(u)

√
g(s(u))

that implies
‖LK‖∞,1 ≤ A.

So, one has
‖LK‖∞,1 = sup

u∈U∞

∑

h

ζh〈ρh, u〉22

and this concludes the proof in view of (7.115).
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Chapter 8
Regularization for Nonlinear System
Identification

Abstract In this chapter we review some basic ideas for nonlinear system identifica-
tion. This is a complex area with a vast and rich literature. One reason for the richness
is that very many parameterizations of the unknown system have been suggested,
each with various proposed estimation methods. We will first describe with some
details nonparametric techniques based on Reproducing Kernel Hilbert Space the-
ory andGaussian regression. The focuswill be on the use of regularized least squares,
first equipped with the Gaussian or polynomial kernel. Then, we will describe a new
kernel able to account for some features of nonlinear dynamic systems, including
fading memory concepts. Regularized Volterra models will be also discussed. We
will then provide a brief overview on neural and deep networks, hybrid systems
identification, block-oriented models like Wiener and Hammerstein, parametric and
nonparametric variable selection methods.

8.1 Nonlinear System Identification

In Sect. 2.2, Eq. (2.2), a model of a dynamical system was defined as a predictor
function g that maps past input–output data

Zt−1 = {y(t − 1), u(t − 1), y(t − 2), u(t − 2), . . .}

to the next output

ŷ(t |θ) = g(t, θ, Zt−1), (8.1)

where θ is a parameter vector that indexes the model. The predictor could possibly
also be a nonparametric map belonging to some function class. If g is a nonlinear
function of Zt−1 the model is nonlinear and the task to infer it from all the avail-
able measurements contained in the training set DT is the task of Nonlinear System
Identification. This is a complex area with a vast and rich literature. One reason for
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the richness is that very many parameterizations of g have been suggested, each
with various proposed estimation methods, e.g., see the survey [36]. The different
parameterizations allow various degrees of prior knowledge about the system to be
accounted for, which gives grey box models with different shades of grey: see the
section The Palette of Nonlinear Models in [36].

A typical element of nonlinear models is that somewhere in the structure there
can be a static nonlinearity present, ζ(t) = h(η(t)). Dealingwith static nonlinearities
is therefore an essential feature in nonlinear identification. See the sidebar “Static
Nonlinearities” in [36], and Sect. 8.5.2 for some brief remarks.

If no prior physical knowledge is available, we have a black-box model. Then we
need to employ parameterizations for g that are very flexible and can describe any
reasonable function with arbitrary accuracy. A typical choice for this are neural net-
works or deep nets. See Sect. 8.5.1 for some comments. Alternatively one can define
g non-parametrically as belonging to a certain (possibly infinite dimensional) func-
tion class. This leads to kernel methods, like regularization networks, and Gaussian
Process inference, treated in the next section.

Both in the case of grey and black-box models, nonlinear identification is char-
acterized by considerable structural uncertainty. This leads typically to parametric
models with many parameters and regularization will be a natural and useful tool to
handle that. This chapter will discuss typical use of regularization for various tasks
in nonlinear system identification.

8.2 Kernel-Based Nonlinear System Identification

Consider the measurements model

y(ti ) = f 0(xi ) + e(ti ), i = 1, . . . , N , (8.2)

where y(ti ) is the system output at instant ti , corrupted by the noises e(ti ), and f 0 is
the unknown function to reconstruct. The link with nonlinear system identification
is obtained by assuming that the xi contains past input and/or output values, i.e.,

xi = [uti−1 uti−2 . . . uti−mu yti−1 yti−2 . . . yti−my ]. (8.3)

In this way, the function f 0 represents a dynamic system. For the sake of simplicity,
letm = mu = my , wherem will be called the systemmemory in what follows. Then,
if m < ∞ a nonlinear ARX (NARX) model is obtained. A nonlinear FIR (NFIR) is
instead obtained when xi contains only past inputs, i.e.,

xi = [uti−1 uti−2 . . . uti−m]. (8.4)

Now,with these correspondences,we can assume that our nonlinear predictor belongs
to a function class H given by a RKHS. Then, given the N couples {xi , y(ti )}, the
regularization network
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f̂ = argmin
f ∈H

N∑

i=1

(y(ti ) − f (xi ))
2 + γ ‖ f ‖2H (8.5)

implements regularized NARX, with f : R2m → R, or NFIR, with f : Rm → R.
To obtain the estimate f̂ we can now exploit Theorem6.15, i.e., the representer

theorem. Since we focus on quadratic loss functions, the results in Sect. 6.5.1 ensure
that our system estimate f̂ not only exists and is unique but is also available in closed
form. In particular, let Y = [y(t1), . . . , y(tN )]T andK ∈ R

N×N be the kernel matrix
such thatKi j = K (xi , x j ). The nonlinear system estimate is then sum of the N kernel
sections centred on the xi , i.e.,

f̂ =
N∑

i=1

ĉi Kxi (8.6)

with coefficients ĉi contained in the vector

ĉ = (K + γ IN )−1 Y, (8.7)

with IN the N × N identity matrix.
For future developments, in the remaining part of this section it is useful to cast

the connection between regularization in RKHS and Bayesian estimation in this
nonlinear setting. Some strategies for hyperparameters tuning will be also recalled.

8.2.1 Connection with Bayesian Estimation of Gaussian
Random Fields

First, we recall an important result obtained in the linear setting in Sect. 7.1.4. The
starting point was the measurements model

y(ti ) = Li [g0] + e(ti ), i = 1, . . . , N ,

with g0 denoting the system impulse response and Li [g0] representing the convolu-
tion between g0 and the input, evaluated at ti . Proposition7.1 said that, if H is the
RKHS induced by a kernel K , then

ĝ = argmin
g∈H

N∑

i=1

(y(ti ) − Li [g])2 + γ ‖g‖2H

is the minimum variance impulse response estimator when the noise e is white and
Gaussian while g0 is a zero-mean Gaussian process (independent of e) of covariance
proportional to K , i.e.,



316 8 Regularization for Nonlinear System Identification

E (g0(t)g0(s)) ∝ K (t, s).

So, the choice of K ensures that the probability is concentrated on our expected
impulse responses. For instance, in previous chapters we have seen that the TC/stable
spline class describes time-courses that are smooth and exponential decaying with a
level established by some hyperparameters. A very simple approach to understand the
prior ideas introduced in the model is to simulate some curves that will thus represent
some of our candidate impulse responses. As an example, some realizations from
the discrete-time TC kernel (7.15), given by K (i, j) = αmax(i, j) with α = 0.9, are
reported in the left panels of Fig. 8.1.

Consider the nonlinear scenario with measurements model given by (8.2) and
input locations containing past inputs and outputs. The fundamental difference w.r.t.
the linear setting is that the unknown function f 0 now represents directly the nonlin-
ear input–output relationship. The connection with Bayesian estimation is obtained
thinking of f 0 as a nonlinear stochastic surface, in particular a zero-mean Gaussian
random field. This is a generalization of a stochastic process over general domains:
one has that, for any set of input locations {x∗

i }pi=1, the vector [ f 0(x∗
1 ) . . . f 0(x∗

p)]
is jointly Gaussian. In particular, the covariance of such vector is assumed to be
proportional to the kernel matrixK whose (i, j)-entry isKi j = K (x∗

i , x
∗
j ). This cor-

responds to saying that f 0 is a zero-meanGaussian randomfieldwith covariance λK ,
with λ a positive scalar, independent of the white Gaussian noises e(ti ) of variance
σ 2. Then,

f̂ = argmin
f ∈H

N∑

i=1

(y(ti ) − f (xi ))
2 + γ ‖ f ‖2H , γ = σ 2

λ

turns out to be the minimum variance estimator of the nonlinear system f 0. In this
stochastic scenario, our model assumptions can be better understood by simulating
some nonlinear surfaces from the prior. They will represent some of our candidate
nonlinear systems.As an example, some realizations from theGaussian kernel (6.43),
given by K (x, a) = exp(−‖x − a‖2/ρ) with ρ = 1000, are reported in the right
panels of Fig. 8.1. It is apparent that such covariance includes just information on the
smoothness on the input–output map, i.e., the fact that similar inputs should produce
similar system outputs.

8.2.2 Kernel Tuning

As already discussed, e.g., in Sect. 3.5, evenwhen the structure of a kernel is assigned,
the estimator (8.5) typically contains unknown parameters that have to be determined
from data. For example, if the Gaussian kernel exp(−‖x − a‖2/ρ) is adopted the
unknown hyperparameter vector η will contain the regularization parameter γ , the
kernel width ρ and possibly also the system memorym. We now briefly discuss esti-
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Fig. 8.1 Left panels Realizations of a stochastic zero-mean Gaussian process modelling discrete-
time impulse response candidates. They are drawn by using the TC kernel 0.9max(i, j) as covariance.
Right panels Realizations of a zero-mean Gaussian surface (random field) representing nonlinear
systems candidates, in particular NFIR models with memory m = 2 in (8.4). They are drawn by
using the Gaussian kernel exp(−‖x − y‖2/1000) as covariance

mation of η just pointing out some natural connections with the techniques illustrated
in Sect. 7.2 in the linear scenario.

An important observation is that, when a quadratic loss is adopted, even in the
nonlinear setting the estimator (8.5) leads to predictors linear in the data Y . In addi-
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tion, since we assume data generated according to (8.2), direct noisy measurements
of f are available. Hence, the output kernel matrix O used in Sect. 7.2 just reduces
to the kernel matrix K computed over the xi where data are collected. In fact, from
(8.6) and (8.7) one can see that the predictions ŷi , i.e., the estimates of the f 0(xi ),
are the components of Kĉ. So, they are collected in the vector

Ŷ (η) = K(η)(K(η) + γ IN )−1Y. (8.8)

Now, consider techniques like SURE andGCV that see f 0 as a deterministic function
so that the randomness in Y derives only from the output noise. Exploiting the same
line of discussion reported in Sects. 3.5.2 and 3.5.3 (see also Sect. 7.2), from (8.8) we
see that the influence matrix is given by K(η)(K(η) + γ IN )−1. Hence, the degrees
of freedom are

dof(η) = trace(K(η)(K(η) + γ IN )−1). (8.9)

Then, the SURE estimate of η is obtained by minimizing the following unbiased
estimator of the prediction risk

η̂ = argmin
η∈Γ

1

N
‖Y − Ŷ (η)‖2 + 2σ 2 dof(η)

N
(8.10)

while the GCV estimate is

η̂ = argmin
η∈Γ

‖Y − Ŷ (η)‖2
(1 − dof(η)/N )2

, (8.11)

where we have used Γ to denote the optimization domain.
If we instead consider the Bayesian framework discussed in the previous sub-

section, we see f 0 as a zero-mean Gaussian random field of covariance λK , with
λ a positive scale factor, independent of the white Gaussian noise of variance σ 2.
Since y(ti ) = f 0(xi ) + e(ti ), following the same reasonings developed in the finite-
dimensional context in Sect. 4.4, one obtains that the vector Y is zero-meanGaussian,
i.e.,

Y ∼ N (0, Z(η))

with covariance matrix
Z(η) = λK(η) + σ 2 IN .

Above, the vector η could, e.g., contain λ, σ 2,m and also other parameters entering
K . Then, we easily obtain that its marginal likelihood estimate is

η̂ = argmin
η∈Γ

Y T Z(η)−1Y + log det(Z(η)). (8.12)
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8.3 Kernels for Nonlinear System Identification

In the previous sectionwe have cast the kernel-based estimator (8.5) in the framework
of nonlinear system identification. We have also provided its Bayesian interpretation
and recalled how to estimate the hyperparameter vector η when the parametric form
of K is assigned. But the crucial question is now the regularization design. This is
a fundamental issue, initially discussed in Sect. 3.4.2, which in this setting consists
of choosing a kernel structure suited to model nonlinear dynamic systems. Two
interesting options come frommachine learning literature. Thefirst one is the (already
mentioned) Gaussian kernel

K (x, a) = e
−‖x−a‖2

ρ

that can describe input–output relationships just known to be smooth. We have also
seen in Sect. 6.6.5 that this model is infinite dimensional, i.e., its induced RKHS
cannot be spanned by a finite number of basis functions. It is also universal, being
dense in the space of all continuous functions defined on any compact subset of
the regressors’ domain. These appear attractive features when little information on
system dynamics are available.

A second alternative is the polynomial kernel

K (x, a) = (〈x, a〉2 + 1)p , p ∈ N, (8.13)

where 〈·, ·〉2 is the classical Euclidean inner product. In the NFIR case, where the
input locations xi ∈ R

m as given in (8.4), such kernel has a fundamental connection
with theVolterra representations of nonlinear systems, see, e.g., [35]. In fact,we know
from Sect. 6.6.4 that the induced RKHS is not universal but has dimension

(m+p
p

)
and

contains all possible monomials up to the pth degree. Hence, the polynomial kernel
implicitly encodes truncated discrete Volterra series of the desired order. It avoids
curse of dimensionality since the possibly large number coefficients have not to be
computed explicitly thanks to monomials’ encoding. In fact, from (8.7) one can see
that estimation complexity, even if cubic in the number N of output data turns out to
be linear in the system memory m and independent of the degree p of nonlinearity.

8.3.1 A Numerical Example

Wewill consider a numerical example where the Gaussian and the polynomial kernel
are used to estimate a nonlinear dynamic system from input–output data.

Consider the NFIR
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Fig. 8.2 Coefficients g0i
defining the linear part of the
system (8.14). They
represent the impulse
response of a stable linear
system obtained by randomly
generating a rational transfer
function of order 10
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Linear part of the system: impulse response

f 0(xt ) =
(

80∑

i=1

g0i ut−i

)
− ut−2ut−3 − 0.25u2t−4 + 0.25ut−1ut−2 +

+ 0.75u3t−3 + 0.5
(
u2t−1 + ut−1ut−3 + ut−2ut−4

)
(8.14)

with nonlinearities taken from [40] while the coefficients g0i are reported in Fig. 8.2.
The inputs are independent Gaussian random variables of variance 4. The measure-
ments model is that reported in (8.2) with the noise e white and Gaussian of variance
4 and independent of u. Such system is strongly nonlinear: the contribution of the
linear part (defined by the g0i ) to the output variance is around 12% of the overall
variance.

We generate 2000 input–output couples and display them in Fig. 8.3. The first
1000 input–output couples {uk, yk}1000k=1 are the identification data while the other
1000 {uk, yk}2000k=1001 are the test set. They are used to assess the performance of an
estimator in terms of the prediction fit

100

⎛

⎝1 −
[∑2000

k=1001 |yk − ŷk |2∑2000
k=1001 |yk − ȳ|2

] 1
2

⎞

⎠ , ȳ = 1

1000

2000∑

k=1001

yk, (8.15)

where the ŷk are the predictions returned by a certain estimator by assuming null
initial conditions, i.e., computed by using only {uk}2000k=1001 and setting to zero the
inputs falling outside the test set.

First, consider the estimator (8.5) equipped with either the Gaussian or the poly-
nomial kernel with input locations

xi = [uti−1 uti−2 . . . uti−m],
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Fig. 8.3 Input and output data generated by the nonlinear system (8.14). The first 1000 couples
(black line) are used as identification data while the other 1000 (red) are the test set used to assess
the prediction performance of a model

where the systemmemorym is seen as an hyperparameter to be estimated from data.
Specifically, when using the Gaussian kernel

K (x, a) = e
−‖x−a‖2

ρ

the estimator depends on the unknown hyperparameter vector

η = [m γ ρ],

where m is the system memory, γ is the regularization parameter and ρ is the kernel
width. Instead, when using the polynomial kernel

K (x, a) = (〈x, a〉2 + 1)p , p ∈ N,

we have
η = [m γ p],

where, in place of ρ, the third unknown hyperparameter is the polynomial order p.
In both the cases, we estimate η by using an oracle. In particular, assigned a certain
η, the estimator (8.5) determines f̂ by using only the identification data but the
oracle has access to the test set to select that hyperparameter vector that maximizes
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Fig. 8.4 Test set data (red
line), extracted from the last
1000 outputs visible in the
right panel of Fig. 8.3, and
predictions returned by (8.5)
equipped with the Gaussian
kernel (top panel, black) and
the polynomial kernel
(bottom panel, black). The
estimators use the first 1000
input–output couples in
Fig. 8.3 as training data, with
hyperparameter vector η

tuned by an oracle that
maximizes the test set fit
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the prediction fit (8.15). Note that calibration is quite computational expensive. In
fact, one has to introduce a grid to account for the discrete nature of the system
memory m. The polynomial kernel requires also the introduction of another grid for
the polynomial order p.

Figure8.4 reports some test set data (red line) extracted from the last 1000 outputs
displayed in the right panel of Fig. 8.3.When adopting theGaussian kernel, the oracle
chooses m = 4. When using the polynomial kernel it selects m = 6 and sets the
polynomial order to p = 3.The toppanel of Fig. 8.4 shows thepredictions returnedby
the oracle-based Gaussian kernel (black line). The prediction fit is not so large, equal
to 69.6%. The bottom panel instead plots results from the oracle-based polynomial
kernel (black line). The prediction capability increases to 73.5% but does not appear
so satisfactory. Figure8.5 also reports the MATLAB boxplots of 100 prediction fits
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Fig. 8.5 Boxplots of 100
predictions fits (8.15)
obtained after a Monte Carlo
study by the oracle-based
estimators equipped with the
Gaussian and polynomial
kernel

Gaussian+Or  Polynomial+Or
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returned by the two kernel-based estimators after a Monte Carlo study. At any of the
100 runs new realizations of inputs and noises define a new identification and test
set. One can see that, on average, the polynomial kernel performs a bit better than
the Gaussian kernel, but its mean prediction fit is around 72%.

8.3.2 Limitations of the Gaussian and Polynomial Kernel

From (8.14) one can see that the NFIR order is m = 80 while the oracle sets m = 4
and m = 6 when using, respectively, the Gaussian and the polynomial kernel. This
introduces a bias in the estimation process that is clearly visible in the predictions
reported in Fig. 8.4. Let us try to understand the reasons of this phenomenon.

Polynomial kernel First, consider the polynomial kernel. The oracle chooses the cor-
rect polynomial order p = 3 to account for the highest-order term 0.75u3t−3 present
in the system. Such choice however already defines a complexmodel since it includes
all the monomials up to order 3. In particular, with m = 6 and p = 3 the number of
adopted basis functions is

(
m + p

p

)
=

(
6 + 3

3

)
= 84,

that is quite large considering that 1000 outputs are available. If m is increased to 7,
one would implicitly use

(
m + p

p

)
=

(
7 + 3

3

)
= 120

basis functions. In general, values ofm larger than 6 are not acceptable for the oracle:
even a careful tuning of the regularization parameter γ does not permit to have a
good control on the estimator’s variance. This is illustrated in Fig. 8.6 that displays
the best prediction test set fit that can be obtained by the oracle as a function of
the system memory m. The maximum is indeed obtained with m = 6. Instead, the
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Fig. 8.6 Predictions fits by
the oracle-based estimator
equipped with the
polynomial kernel as a
function of system memory
m. The optimal model
dimension is achieved for
m = 6
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valuem = 80 leads to a very small fit, around 25%, because this introduces an overly
complex model with (

m + p

p

)
=

(
80 + 3

3

)
= 91881

monomials.
Another reason that does not allow the polynomial kernel to well control model

variance is the way it regularizes (implicitly) the monomial coefficients. We describe
this point through a simple example. A quadratic polynomial kernel is considered
but similar considerations would still hold by introducing larger degrees. Let p = 2,
x = [ut−1 . . . ut−m] and a = [uτ−1 . . . uτ−m]. Exploiting the multinomial theorem
one obtains

K (x, a) = (

m∑

i=1

ut−i uτ−i + 1)2

=
m∑

i=1

u2t−i u
2
τ−i + 2

m∑

i=2

i−1∑

j=1

(ut−i ut− j )(uτ−i uτ− j ) + 2
m∑

i=1

ut−i uτ−i + 1.

This defines the following diagonalized version of the quadratic polynomial kernel

K (x, a) =
∑

i

ζiρi (x)ρi (a),

where the ρi (x) are all the monomials up to degree 3 contained in the following
vector
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Fig. 8.7 Some realizations from a zero-mean stochastic process with covariance given by a Gaus-
sian kernel (left panel) and by a Gaussian plus linear kernel (right)

{
u2t−m, . . . , u2t−1, ut−mut−m+1, . . . , ut−mut−1, ut−m+1ut−m+2,

. . . , ut−m+1ut−1, . . . , ut−2ut−1, ut−m, . . . , ut−1, 1
}
,

with the corresponding ζi given by

{
1, . . . , 1, 2, . . . , 2, 2, . . . , 2, . . . , 2, 2, . . . , 2, 1

}
.

According to the RKHS theory described in Sect. 6.3, for any f in the RKHS H
induced by such kernel one has

f (x) =
∑

i

ciρi (x), ‖ f ‖2H =
∑

i

c2i
ζi

,

where all the eigenvalues ζi assume value 1 or 2 (most of them are equal to 2).
Hence, one can see that the regularizer ‖ f ‖2H does not incorporate any fading mem-
ory concept typical of dynamic systems. In fact, the two coefficients of themonomials
{u2t−m, u2t−1} or those of the couple {ut−mut−m+1, ut−2ut−1} are assigned the same
penalty. But, similarly to the linear case, one should instead expect that inputs ut−i

have less influence on yt as the positive lag i increases.

Gaussian kernel As in the case of the polynomial model, one of the limitations
of the Gaussian kernel K (x, a) = exp(−‖x − a‖2/ρ) in modelling nonlinear sys-
tems is that it does not include any fading memory concept. Hence, the inputs
{ut−1, ut−2, . . . , ut−m} included in the input location are expected to have the same
influence on yt . This can be appreciated also through the Bayesian interpretation of
regularization, e.g., by inspecting the system realizations generated by the Gaussian
kernel reported in the right panels of Fig. 8.1.



326 8 Regularization for Nonlinear System Identification

0
u

0

1

2

3

4

5

6

y
Gaussian kernel estimate

0-100 -50 50 100 -100 -50 50 100
u

0

1

2

3

4

5

6

y

Gaussian kernel+linear trend

Fig. 8.8 True function (red line), noisy data and regularized estimate returned by (8.5) by using
a Gaussian kernel K (u, a) = exp(−(u − a)2/500) (left panel, black) and a Gaussian plus linear
kernel K (u, a) = exp(−(u − a)2/500) + 10ua (right, black). The regularization parameter γ is
estimated from data via marginal likelihood optimization (8.12)

Still adopting a stochastic viewpoint, another drawback is that the covariance
exp(−‖x − a‖2/ρ) describes stationary processes and this implies that the vari-
ance of f 0(x) does not depend on the input location. This is now illustrated in the
one-dimensional case where x ∈ R and the kernel models a static nonlinear system
f 0(u), i.e., the (noiseless) output y depends only on a single input value u. The
left panel of Fig. 8.7 plots some realizations from exp(−(u − a)2/500). They can
be poor nonlinear system candidates since a nonlinear system, like that reported in
(8.14), often contains also a linear component. For this reason it can be useful to
enrich the model with a linear kernel. Its effect can be appreciated by looking at
the realizations plotted in the right panel of Fig. 8.7 that are now drawn by using
exp(−(u − a)2/500) + ua/400 as covariance.

The fact that the predictive capability of a nonlinear model can much improve
by adding a linear component can be understood also considering Theorem6.15
(representer theorem). Using only a Gaussian kernel, the estimate f̂ of the nonlinear
system returned by (8.5) is the sum of N Gaussian functions centred on the xi . Hence,
in the regions where no data are available, the function f̂ just decays to zero and this
can lead to poor predictions when, e.g., a linear component is present in the system.
This phenomenon is illustrated in the left panel of Fig. 8.8. In this case, the prediction
performance can be greatly enhanced by adding a linear kernel, whose results are
visible in the right panel of the same figure.

8.3.3 Nonlinear Stable Spline Kernel

We will build a kernel K for nonlinear system identification, namely the nonlinear
stable spline kernel, by exploitingwhat has been learnt from the previous example. To
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simplify exposition, we consider the NFIR case but all the ideas here developed can
be immediately extended to NARX models, as discussed at the end of this section.

First, it is useful to define K as the sum of a linear and a nonlinear kernel, i.e.,

K (xi , x j ) = λL x
T
i Px j + λNL K (xi , x j ), (8.16)

where the input locations are here seen as column vectors, i.e.,

xi = [uti−1 uti−2 . . . uti−m]T ,

P ∈ R
m×m is a symmetric positive semidefinite matrix that models the impulse

response of the system’s linear part while K describes the nonlinear dynamics. Note
that the two-scale factors λL and λNL are unknown hyperparameters that balance the
contributions of the linear and nonlinear part to the output.

For what concerns P , such matrix can be defined by resorting to the class of stable
kernels developed in the previous chapters. In particular, using the TC/stable spline
kernel, the (a, b)-entry of P is

Pab = α
max (a,b)
L , 0 ≤ αL < 1, a = 1, . . . ,m, b = 1, . . . ,m, (8.17)

where αL determines the decay rate of the impulse response governing the linear
dynamics.

For what concerns K , we will define it by modifying the classical Gaussian kernel
in order to include fading memory concepts. Following the same ideas underlying
the TC kernel, we include the information that ut−i is expected to have less influence
on yt as i increases by defining

K (xi , x j ) = exp
(

−
m∑

k=1

αk−1
NL

(uti−k − ut j−k)
2

ρ

)
, 0 < αNL ≤ 1. (8.18)

The additional hyperparameter αNL gives the information that past inputs’ influence
decays exponentially to zero. To understand how this kernel models the nonlinear
surface, and how different values of αNL can describe different system features,
we can use the Bayesian interpretation of regularization. In particular, consider an
example with m = 2, so that the components of xi are uti−1 and uti−2, and let the
system f 0 be a zero-mean Gaussian random field with covariance given by (8.18)
with ρ = 1000. IfαNL = 1we recover theGaussian kernel. Hence, before seeing any
data, uti−1 and uti−2 are expected to have the same influence on the system output.
This can be appreciated by drawing some realizations from such random field, e.g.,
see the top panel of Fig. 8.9 (or the right panels of Fig. 8.1).

With αNL very close to zero, the output depends mainly on uti−1, i.e.,

K (xi , x j ) ≈ exp
(

− (uti−1 − ut j−1)
2

ρ

)
.
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This can be appreciated by looking at the realization in the middle panel of Fig. 8.9
obtained with αNL = 0.001. One can see that, for fixed uti−1, changes in uti−2 do
not produce appreciable variations in the function value. If the value of αNL is now
increased, the input value uti−2 starts playing a role. This is visible in the bottom
panel where the realization is now generated by using αNL = 0.1.

The nonlinear stable spline kernel enjoys also an advantage related to computa-
tional issues. Using classical machine learning kernels, like Gaussian or polynomial,
the choice of the dimensionm of the input space is a delicate issue. It requires discrete
tuning, as encountered in classical linear system identification to estimate, e.g., FIR
or ARX order, and this can be computationally expensive. In the case of the poly-
nomial kernel, another discrete parameter is the polynomial order p that requires
an additional grid. By introducing stability/fading memory hyperparameters, one
can instead set m to a large value increasing the flexibility of the estimator. Then,
estimation of αL and αNL from data permits to control the “effective” dimension of
the regressor space in a continuous manner. In light of the continuous nature of the
optimization domain, one needs to solve only one optimization problem, involving,
e.g., SURE (8.10), GCV (8.11) or Empirical Bayes (8.12).

Finally, as already mentioned, the extension to NARX models is very simple. Let
xi = [aT

i bTi ]T with

ai = [uti−1 uti−2 . . . uti−m]T , bi = [yti−1 yti−2 . . . yti−m]T .

Then, the kernel (8.16) can be modified as follows

K (xi , x j ) = λaa
T
i Paa j + λbb

T
i Pbb j + λcKc(ai , a j )Kd(bi , b j ) (8.19)

with the matrices Pa and Pb defined by the TC kernel (8.17), with possibly different
decay rates αL , and the nonlinear kernels Kc and Kd defined by (8.18), with possibly
different decay rates αNL . A possible variation is

K (xi , x j ) = λaa
T
i Paa j + λbb

T
i Pbb j + λcKc(ai , a j ) + λd Kd(bi , b j ), (8.20)

where the nonlinear dynamics are no more product, as in (8.19), but instead sum of
nonlinear functions which depend on either past inputs or past outputs. In fact, recall
from Theorem6.6 that sums and products of kernels induce well-defined RKHSs
containing, respectively, sums and products of functions belonging to the spaces
associated to the single kernels.
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Fig. 8.9 Realizations from a zero-mean Gaussian random field having covariance

exp
(

− 1
1000

(
(uti−1 − ut j−1)

2 + αNL (uti−2 − ut j−2)
2
) )

for three different values of αNL
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Fig. 8.10 Test set data (red
line), extracted from the last
1000 outputs visible in the
right panel of Fig. 8.3, and
predictions (black) returned
by (8.5) equipped with the
nonlinear stable spline kernel
(8.16). The estimator uses
the first 1000 input–output
couples in Fig. 8.3 as training
data, with kernel and
regularization parameters
tuned by marginal likelihood
optimization
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8.3.4 Numerical Example Revisited: Use of the Nonlinear
Stable Spline Kernel

Let us now reconsider the numerical example where the nonlinear system (8.14) is
used to generate the identification and test data reported in Fig. 8.3. Now, we use
the estimator (8.5) equipped with the nonlinear stable spline kernel (8.16). System
memory is set to m = 100. Hence, we let αL and αNL determine from data which
past inputs mostly influence the output due to the linear and nonlinear system part,
respectively. In particular, the hyperparameter vector η = [λL λNL αL αNL ρ] is
estimated viamarginal likelihoodmaximization using the 1000 input–output training
data.

Figure8.10 shows the same test set data (red line) reported in Fig. 8.4 and extracted
from the last 1000 outputs visible in the right panel of Fig. 8.3. The predictions (black
line) returned by the nonlinear stable spline kernel are now very close to truth. The
prediction fit is around 90%. Comparing these results with those in Fig. 8.4, one can
see that the prediction performance is much better than that of the Gaussian and
polynomial kernel. Recall also that these two estimators tune complexity by using
an oracle that is not implementable in practice. Figure8.11 also plots the MATLAB
boxplots of 100 prediction fits returned after a Monte Carlo study of 100 runs by
these two oracle-based estimators, already present in Fig. 8.5, and by nonlinear stable
spline. One can see that the use of a regularizer that accounts for dynamic systems
features largely improves the prediction fits.
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Fig. 8.11 Boxplots of 100
predictions fits. The first two
on the left are obtained by
the oracle-based estimators
equipped with the Gaussian
and polynomial kernel. The
boxplot on the right is
obtained by the nonlinear
stable spline kernel with
hyperparameters estimated
by marginal likelihood
maximization (which
exploits only the
identification data) Gaussian+Or Poly+Or NSS+MargLik
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8.4 Explicit Regularization of Volterra Models

In what follows, we use C(k,m) to indicate the number of ways one can form
the nonnegative integer k as the sum of m nonnegative integers. This is the same
problem as distributing k objects to m groups (some groups may get zero objects).
By combinatorial theory we have

C(k,m) =
(
k + m − 1

m − 1

)
. (8.21)

We adopt the model description (8.2) and seek a simple representation for the model
f (x). For simple notation, assume that f is scalar valued with past inputs only, i.e.,
(my = 0,mu = m) with input location x given by (8.4). A straightforward idea is to
mimic polynomial Taylor expansion

f (x) =
p∑

k=1

gkx
k . (8.22)

This innocent-looking function expansion is in fact a bit more complex than it looks.
The kth power of the m-row vector x is to be interpreted as C-dimensional column
vector with each element being a monomial of them-components x(i) of x with sum
of exponents being k:

α(k)
r = x(1)β(k,1)x(2)β(k,2) · · · x(m)β(k,m) (8.23a)

β(k, p) non negative, such that
m∑

=1

β(k, ) = k (8.23b)

r = 1, 2, . . . ,C(k,m). (8.23c)

In (8.22) gk is to be interpreted as a row vector with C(k,m) elements
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gk = [g(1)
k , . . . , gC(k,m)

k ]. (8.23d)

The response f (x) is thus made of d(p,m) = ∑p
k=1 C(k,m) contributions

(“impulse responses”) from each of the nonlinear combinations of past inputs

α(k)
r = uβ(k,1)

t−1 uβ(k,2)
t−2 · · · uβ(k,m)

t−m (8.23e)

r = 1, . . . ,C(k,m), k = 1, . . . , p. (8.23f)

This expansion of the model (8.22) is the Volterra Model discussed, e.g., by [7, 35].
It has d(p,m) parameters. The reader may recognize this as an explicit treatment
of the polynomial kernel (8.13) which does not exploit any basis functions implicit
encoding and, hence, does not exploit the kernel trick described in Remark6.3. This
has also some connections with the explicit regularization approaches for linear
system identification discussed in Sect. 7.4.4 using, e.g., Laguerre functions.

So, this model has memory length m and polynomial order p. As p → ∞ it
follows that f (x) in (8.22), with possibly the addition of a constant function, can
approximate any (“reasonable”) function arbitrarily well. This universal approxima-
tion property is of course very valuable for black boxmodels and created considerable
interest in Volterra models. However, it is easy to see that the number d(p,m) of
parameters gk increases very rapidly with m and p and that high-order polynomials
in the observed signals may create numerically ill-conditioned calculations. Hence,
Volterra models have not been used so much in practical identification problems,
unless for small values of m and p.

A remedy for the large number of parameters and ill-conditioned numerics is
clearly to use regularization. In [4] it is discussed how to regularize the Volterra
model to make it a practical tool. In short, the idea is the following, illustrated for a
small example with p = 2.

We write the model also adding a scalar g0 which accounts for a constant com-
ponent in the output so that one has

y(t) = g0 + gT1 ϕ(t) + ϕT (t)G2ϕ(t) (8.24a)

ϕT (t) = [u(t1), u(t2) . . . u(tm)] (8.24b)

g1 = θ1 m − dimensional column vector (8.24c)

G2 m × m symmetric matrix, (8.24d)

where the matrix G2 is formed from g(1)
2 g(2)

2 g(3)
2 in the expansion (8.22)–(8.23e).

The regularized estimation can now be formed as the criterion

θ̂R = argmin
θ

‖Y − ΦT
Nθ‖2 + θT Dθ (8.25)

with

θ = [g0, θT
1 , θT

2 ]T (8.26)
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and θ2 is an m(m + 1)/2 dimensional column vector made up from G2, and Y is
the vector of observed outputs y(t) with t = 1, . . . , N . The regression vector ΦN if
formed from the components of ϕ(t) in the obvious way. It is natural to decompose
the regularization matrix accordingly:

D =
⎡

⎣
d0 0 0
0 D1 0
0 0 D2

⎤

⎦ (8.27)

and treat the regularization of the constant term, (d0), the linear term (D1) and the
quadratic term (D2) in (8.24a) separately. As discussed in Chap. 5, a natural choice of
regularizationmatrices is to let them reflect prior information about the corresponding
parameters. That means that d0 can be taken as any suitable scalar. The θ1 vector for
the first-order term describes a regular linear impulse response, and the prior for that
one can be taken as, e.g., the DC kernel reported in (5.40), i.e.,

P1(i, j) = c · e−α|i− j |e−β
(i+ j)
2 . (8.28)

For the second-order model θ2 it is natural to treat the second-order nonlinear term in
theVolterra expansion as a two-dimensional surface, described by two time-indices τ1
and τ2 so that the parameter at τ1, τ2 is the contribution to theVolterra sum from u(t −
τ1) · u(t − τ2). This is illustrated in Fig. 8.12. The prior value of this contribution can
be formed as the product of twokernels built up from responses in a coordinate system
U ,V after an orthonormal coordinate transformation, corresponding to a rotation

Fig. 8.12 Regularization surface for the second-order term in a Regularized Volterra expansion
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of 45◦ of the original τ1, τ2-plane:

P2(i, j) = c2PV (i, j)PU (i, j) (8.29)

PV (i, j) = e−αV ||V i |−|V j ||e−βV
||V i |+|V j ||

2 (8.30)

PU (i, j) = e−αU ||U i |−|U j ||e−βU
||U i |+|U j ||

2 , (8.31)

whereUi and Vi refer to the coordinates in the new system. The corresponding prior
distribution is depicted in Fig. 8.12. As desired, it is smooth and decays to zero in all
directions. The coordinate change is useful to make the surface smooth over critical
border lines.

This regularization was deployed in [36], section “Example 5(a) Black-Box
Volterra Model of the Brain”. Quite useful results were obtained with a regular-
ized model with 594 parameters, thanks to the regularization. An extension for the
regularized Volterra models, based on similar idea, is treated in [41], which also
provides an EM algorithm to estimate the hyperparameters in the regularization
matrices. Another development where the ideas developed in [4] are coupled with
kernels implicit encoding can be found in [8].

8.5 Other Examples of Regularization in Nonlinear System
Identification

8.5.1 Neural Networks and Deep Learning Models

There are many other universal approximators fon nonlinear systems f (x) than
those based on kernels or on the explicit Volterra model (8.22). The most common
ones are various neural network models (NNMs), see, e.g., [12, 23]. They use sim-
ple nonlinearities connected in more or less complex networks. The parameters are
weights in the connections as well as characterizations of the nonlinearities. Like
Volterra models they are capable of approximating any reasonable system arbitrarily
well given sufficiently many parameters. This means that the NNM typically has
many parameters. In simple application there could be hundreds of parameters but
some applications, especially in the so-called deep model applications, could have
tens of thousands of parameters [18], see also [9, 11, 13, 43] for deep NARX and
state-space models. Even if benign overfitting has been sometimes observed also for
overparametrized models [3, 19, 30], in general regularization is a very important
tool also for estimating such model. Hence, many tricks are typically included in the
estimation/minimization schemes.

2, 1 penalties They include the traditional weighted 2 and 1 norm penalties that
we discuss in this book, see, e.g., Sect. 3.6. For example, all estimation algorithms
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in the System Identification Toolbox, [22] are equipped with optional weighted 2-
regularization—also when NNM are estimated.

Early termination It is common to monitor not only the fit to estimation data in
the minimization process, but also how well the current model fits a validation data
set. Then the minimization is terminated when the fit to validation data no longer
improves, even when the estimation criterion value keeps improving. This early
termination technique is in fact equivalent to traditional regularization, as shown
in [38].

Dropout or Dilution A special technique common in (deep) learning with NNM is
to curb the flexibility of the model by ignoring (dropping) randomly chosen nodes in
the network. This is of course a way to control that the model does not become prone
to overfitting and provides regularization of the estimation just as the other methods
in this book, but by a quite different technique. See, e.g., [17, 28] for more details.

8.5.2 Static Nonlinearities and Gaussian Process (GP)

A basic problem in nonlinear system identification is to handle estimation of a static
nonlinear function h(η) from known observations

{ζ(t), η(t), t = 1, . . . , N }, ζ(t) = h(η(t)) + noise.

A general way to do this is to apply Gaussian Process (GP) estimation, [29], see
also Sects. 4.9 and 8.2.1. Then h(η) is seen as a Gaussian stochastic process with
a prior mean (often zero) and a certain prior covariance function K (η1, η2). The
arguments can range both over a discrete and continuous domain. After a number of
observations z = {ζ(t), η(t), t = 1, . . . , N }, the posterior distribution of the process
h p(η|z), can be determined for any η. This is, in short, how the function h can be
estimated. As seen in Sect. 8.2.1, it corresponds to a kernel method with the kernel
determined by the prior covariance function K (η1, η2).

8.5.3 Block-Oriented Models

A very common family of nonlinear dynamic models is obtained by networks of
linear dynamic models G(q) and nonlinear static functions h(x), see Fig. 8.13. The
simplest and most common ones are the Hammerstein Model y(t) = G(h(u(t))
which is obtained by passing the input through a static nonlinearity before it enters the
linear system.Wiener model z = G(u), y(t) = g(z(t)), where the output of a linear
system is subsequently passing through the nonlinearity. The important contribution
[5] has shown that any nonlinear system with fading memory can be approximated
by a Wiener model. See also, e.g., [37] for a survey and [42] for a general approach
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Fig. 8.13 Common
block-oriented models.
Green ovals: static
nonlinearity h. Red blocks:
linear dynamic systems.
From top to bottom: Wiener
model, Hammerstein model,
Hammerstein–Wiener model

to Hammerstein–Wiener identification allowing coloured noise sources both before
and after the nonlinearities (which may be non-invertible).

Traditionally, the nonlinearities have been parametrized, e.g., as piecewise con-
stant or piecewise linear, as polynomials or as neural nets. Recently it has been more
common to work with nonparametric nonlinearities which are typically modelled
by the GP approach, and whole estimation is then treated in a Bayesian setting. For
example, in [21] the linear part of a Wiener model is parametrized by state-space
matrices A, B in an observer canonical form with suitable priors and the output
nonlinearity h(z) is a Gaussian Process with a prior mean = z (“linear output”) and
large and “smooth” prior covariance. To obtain the posterior densities, a particle
Gibbs sampler (PMCMC, Particle Markov Chain Monte Carlo) is employed.

In [32] the same approach is used to model the output nonlinearity, but the linear
part is written as an impulse response, with a prior of the same type as discussed in
Sect. 5.5.1. The whole problem can then be written as

y = ϕ(Φg), (8.32)

where y is the observed output, ϕ is the output static nonlinearity, g is the impulse
response of the linear system andΦ is the Toeplitz matrix formed from the input. The
problem is then to determine the posterior densities p(ϕ|y) and p(g|y) by Bayesian
calculations. In [31] a similar technique is used for estimating Hammerstein models.

8.5.4 Hybrid Models

A common class of nonlinear models are Hybrid models [15, 39]. They change
their properties depending on some regime variable p(t) (which may be formed
from the inputs and outputs themselves) [16]. Think of a collection of linear models
that describe the system behaviour in different parts of the operating space and
automatically shift as the operating point changes. To build a hybrid model involves
two steps: (1) find the collection of relevant different models and (2) determine the
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areas where each model is operative. This is considered as quite a difficult problem,
and approaches from different areas in control theory have been tested. Here we will
comment upon a few ideas that relate to regularized identification.

A basic problem is to decide when a change in system behaviour occurs. This
relates to change detection and signal segmentation. A regularization based method
to segment ARX models was suggested in [25]. The standard way to estimate ARX
models can be described as in Chap. 2:

min
θ

N∑

t=1

‖y(t) − ϕT (t)θ‖2. (8.33)

This gives the average linear model behaviour over the time record t ∈ [1 . . . , N ].
To follow momentary changes over time, we could estimate N models by

min
θ(t),t=1,...,N

N∑

t=1

‖y(t) − ϕT (t)θ(t)‖2. (8.34)

This would give a perfect fit with a pretty useless collection of models. To tell that we
need to bemore selective when accepting newmodels, we can add a 1 regularization
term, discussed in Sect. 3.6, obtaining:

min
θ(t),t=1,...,N

N∑

t=1

‖y(t) − ϕT (t)θ(t)‖2 + γ

N∑

t=2

‖θ(t) − θ(t − 1)‖1. (8.35)

One could also use the norms in p with p > 1 as regularizers but it is crucial that
the penalty is a sum of norms and not a sum of squared norms. Then, adopting a
suitable value for the regularization parameter γ , the penalty favours the terms in
the second sum to be exactly zero and not just small. This will force the number of
different models from (8.35) to be small and thus just flag when essential changes
have taken place.

This idea is taken further in [24] to build hybrid models of PWA (piecewise affine)
character. The starting point is again (8.34), but now the number of models is reduced
by looking at all the raw models:

min
θ(t),t=1,...,N

N∑

t=1

‖y(t) − ϕT (t)θ(t)‖2 + γ

N∑

t=1

N∑

s=1

K (p(t)p(s))‖θ(t) − θ(s)‖.
(8.36)

Here K (p1, p2) is a weighting based on the respective regime variables p. This gives
a number of, say, d submodels, and they can then be associated with values of the
regime variable by a classification step.
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These ideas of segmentation, building a collection of d submodels and associating
them with particular values of time are taken to a further degree of sophistication
in [27]. The idea there is to build hybrid stable spline (HSS) algorithm, based on a
joint use of the TC (stable spline) kernel, see Sect. 5.5.1, for a family of ARXmodels
like (8.34). The classification of the models is built into the algorithm, by letting
the classification parameters be part of the hyperparameters. An MCMC scheme is
employed to handle the nonconvex and combinatorial difficulties of the maximum
likelihood criterion.

8.5.5 Sparsity and Variable Selection

In all estimation problems it is essential to find the regressors xk(t), where k =
1, . . . , d, which are best suited for predicting the goal variable y(t). The variables
xk can be formed from the observations from the system in many different ways.
It is generally desired to find a small collection of regressors, and statistics offers
many tools for this: hypothesis analysis, projection pursuit [14], manifold learn-
ing/dimensionality reduction [10, 26, 34], ANOVA, see, e.g., [20] for applications
to nonlinear system identification.

The problem of variable (regressor) selection can be formulated as follows. Given
a model with n candidate regressors x̃k(t)

y(t) = f (x̃1(t), . . . , x̃n(t)) + e(t) (8.37)

find a subselection or combination of regressors x1(t), . . . , xd(t) that gives the best
model of the system. Note that the NARX model (8.3) is a special case of (8.37)
with xk(t) = [y(t − k), u(t − k)]. In principle one could try out different subsets of
regressors and see how good models (in cross validation) are produced. That would
in most cases mean overwhelmingly many tests.

Instead the 1-norm regularization discussed in Sect. 3.6.1, leading to LASSO in
(3.105), is a very powerful tool for variable selection and sparsity. In what follows
each x̃i (t) is scalar and is the i th component of the n-dimensional vector x(t). Then,
for a linearly parametrized model

y(t) = β1 x̃1(t) + · · · + βn x̃n(t) + e(t), (8.38)

where the best regressors are found by the criterion

min
B

N∑

t=1

‖y(t) − Φ(t)B‖2 + γ ‖B‖1 (8.39)

B = [β1, β2, . . . , βn]T (8.40)

Φ(t) = [x̃1(t), x̃2(t), . . . , x̃n(t)]. (8.41)
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This idea to use 1-norm regularization was extended to the general model (8.37)
in [2]. It is based on the idea to estimate the partial derivatives βk = ∂ f

∂ x̃k
in (8.37)

analogously to (8.39). In particular, the Taylor expansion of f (x(t)) around x0 is

f (x(t)) = f (x0) + (x(t) − x0)T
∂ f

∂ x̃
+ O(‖x(t) − x0‖2). (8.42)

The partial derivative is evaluated at x0 and is a column vector of dimension n with
row k given by the derivative w.r.t. x̃k . As anticipated, denote this by βk . These
parameters can be estimated by least squares with

min
α,B

N∑

t=1

‖y(t) − α − (x(t) − x0)TB‖2 · K (x(t) − x0) + γ ‖B‖1, (8.43)

where α corresponds to f (x0), B is the vector of partial derivatives βk and K is a
kernel that focuses the sum to points x(t) in the vicinity of x0. The ! norm regu-
larization term is added just as in (8.39) to promote zero estimates of the gradients.
This will focus on selecting regressors x̃k that are important for the model.

With the so-called iterative reweighting, [6], the regularization term can be refined
to

γ

n∑

k=1

wk |βk |, (8.44)

where wk = 1/|β̂k | are based on the estimates from (8.43). This refinement is sug-
gested to be included in the algorithm of [2].

Note that this test depends on the chosen point x0. It will be a big task to investigate
“many” such points. In [1] it is instead suggested to estimate the expected values
Exi

∂ f
∂ x̃i

and E ∂ f
∂ x̃i

. This is done using the pdfs for x̃k given by pi (u) and dpi (u)

dxi
which can

be estimated by simple density estimation (involving only a scalar random variable).
A comprehensive study of sparsity and regularization is made in [33]. It works

with a more complex model definition, allowing f : Rn → R to be defined over
several Hilbert spaces. The bottom line is still based on 1-norm regularization of
partial derivatives and the final learning algorithm is given by minimization of a
functional

1

N

N∑

t=1

(yt − f (x(t)))2 + γ

(
2

n∑

i=1

∥∥∥
∂ f

∂ x̃i

∥∥∥
N

+ ν‖ f ‖2H
)

. (8.45)

Here, H can be a RKHS, the penalty on each partial derivative is given by
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∥∥∥
∂ f

∂ x̃i

∥∥∥
N

=
√√√√ 1

N

N∑

t=1

(∂ f (x(t))

∂ x̃i

)
,

γ is the regularization parameter and ν is a small positive number to ensure stability
and strongly convex regularizer.
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Chapter 9
Numerical Experiments and Real World
Cases

Abstract This chapter collects some numerical experiments to test the performance
of kernel-based approaches for discrete-time linear system identification. Using
Monte Carlo simulations, we will compare the performance of kernel-basedmethods
with the classical PEM approaches described in Chap. 2. Simulated and real data are
included, concerning a robotic arm, a hairdryer and a problem of temperature predic-
tion. We conclude the chapter by introducing the so-called multi-task learning where
several functions (tasks) are simultaneously estimated. This problem is significant if
the tasks are related to each other so that measurements taken on a function are infor-
mative with respect to the other ones. A problem involving real pharmacokinetics
data, related to the so-called population approaches, is then illustrated. Results will
be often illustrated by using MATLAB boxplots. As already mentioned in Sect. 7.2,
when commenting Fig. 7.8, the median is given by the central mark while the box
edges are the 25th and 75th percentiles. The whiskers extend to the most extreme
fits not seen as outliers. Then, the outliers are plotted individually.

9.1 Identification of Discrete-Time Output Error Models

In this section, we will consider two numerical experiments with data generated
according to the discrete-time output error (OE) model

y(t) = G0(q)u(t) + e(t),

where G0 is a rational transfer function while e is white Gaussian noise independent
of the known input u. Using simulated data, we will compare the performance of
the classical PEM approach, as described in Chap.2, with some of the regularized
techniques illustrated in this book. In particular, we will adopt regularized high-order
FIR, with impulse response coefficients contained in the m-dimensional (column)
vector θ and the output data in the (column) vector Y = [y(1) . . . y(N )]T . So, letting
the regression matrix Φ ∈ R

N×m be
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Φ =
⎛
⎜⎝

u(0) u(−1) u(−2) . . . u(−m + 1)
u(1) u(0) u(−1) . . . u(−m)

. . .

u(N − 1) u(N − 2) u(N − 3) . . . u(N − m)

⎞
⎟⎠ ,

our estimator is

θ̂ = argmin
θ

‖Y − Φθ‖2 + γ θT P−1θ (9.1a)

= PΦT (ΦPΦT + γ IN )−1Y ; or (9.1b)

= (PΦTΦ + γ Im)−1PΦT Y. (9.1c)

We have already seen in (5.40), (5.41) and (7.30), using MaxEnt arguments and
spline theory, that choices for the regularization matrix P can be the first- or second-
order stable spline kernel, denoted respectively by TC and SS, respectively, or the
DC kernel. They are recalled below specifying also the hyperparameter vector η:

TC Pkj (η) = λαmax(k, j);
λ ≥ 0, 0 ≤ α < 1, η = [λ, α], (9.2)

SS Pkj (η) = λ

(
αk+ j+max(k, j)

2
− α3max(k, j)

6

)

λ ≥ 0, 0 ≤ α < 1, η = [λ, α], (9.3)

DC Pkj (η) = λα(k+ j)/2ρ| j−k|;
λ ≥ 0, 0 ≤ α < 1, |ρ| ≤ 1, η = [λ, α, ρ]. (9.4)

9.1.1 Monte Carlo Studies with a Fixed Output Error Model

In this example the true impulse response is fixed to that reported in Fig. 8.2, obtained
by random generation of a rational transfer function of order 10. It has to be estimated
from 500 input–output couples (collected with system initially at rest). The input is
white noise filtered by the rational transfer function 1/(z − p) where p will vary
over the unit interval during the experiment. Note that p establishes the difficulty
of our system identification problem. Values close to zero make the input similar
to white noise and the output data informative over a wide range of frequencies.
Instead, values of p close to 1 increase the low-pass nature of the input and, hence,
the ill-conditioning. The measurement noise is white and Gaussian with variance
equal to that of the noiseless output divided by 50. Two estimators will be adopted:
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• Oe+Or. Classical PEM approach (2.22) equipped with an oracle. In particular,
our candidate models are rational transfer functions where the order of the two
polynomials is equal and can vary between 1 and 30. For any model order, esti-
mation is performed through nonlinear least squares by solving (2.22) with 	 in
(2.21) set to the quadratic function. The method is implemented in oe.m of the
MATLAB System Identification Toolbox. Then, the oracle chooses the estimate
which maximizes the fit

100

⎛
⎝1 −

[∑100
k=1 |g0k − ĝ(k)|2∑100
k=1 |g0k − ḡ0|2

] 1
2

⎞
⎠ , ḡ0 = 1

100

100∑
k=1

g0k , (9.5)

where g0k are the true impulse response coefficients while ĝ(k) denote their esti-
mates. The estimator is given the information that system initial conditions are
null.

• TC+ML. This is the regularized estimator (9.1), equipped with the kernel TC. The
number of estimated impulse response coefficients is m = 100 and the regression
matrix is built with u(t) = 0 if t < 0. At every run, the noise variance is estimated
by fitting via least squares a low-bias model for the impulse response. Then, the
two kernel hyperparameters are obtained via marginal likelihood optimization, see
(7.42). The method is implemented in impulseest.m of theMATLAB System
Identification Toolbox.

We consider 4 Monte Carlo studies of 300 runs defined by different values of p in
the set {0, 0.9, 0.95, 0.99}. As already mentioned, p = 0 corresponds to white noise
input while p = 0.99 leads to a highly ill-conditioned problem (output data provide
little information at high frequencies). Figure 9.1 reports the boxplots of the 1000
fits returned by Oe+Or and TC+ML for the four different values of p. Even if PEM
exploits anoracle to tune complexity, the performance is (slightly) better thanTC+ML
only when the input is white noise, see also Table 9.1. When p increases, the ill-
conditioning affecting the problem increases and TC+ML outperforms Oe+Or even
if no oracle is used for hyperparameters tuning. This also points out the effectiveness
of marginal likelihood optimization in controlling complexity.

This case study shows that continuous tuning of hyperparameters may be a more
versatile and powerful approach than classical estimation of discrete model orders.
A problem related to PEM here could be also the presence of local minima of the
objective. This is much less critical when adopting kernel-based regularization. In
fact, TC+ML regulates complexity through only two hyperparameters whileOe+Or
has to optimize many more parameters (function of the postulated model order).
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Fig. 9.1 Experiment with a fixed OE-model Boxplots of 300 impulse response fits returned by PEM
with an oracle to tune discrete model order and by TC with continuous hyperparameters estimated
by marginal likelihood optimization. Results are function of the level of ill-conditioning affecting
the problem which increases with p (the input is white Gaussian noise for p = 0 while the other
values define low-pass inputs)

Table 9.1 Experiment with a fixed OE-model Average fit, as a function of p, after 300 Monte
Carlo runs. The value p = 0 corresponds to white noise input and the level of ill-conditioning then
increases as p increases

Oe+Or TC+ML

p = 0 95.8 95.3

p = 0.9 85.2 86.3

p = 0.95 75.3 83.2

p = 0.99 49.9 74.3
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9.1.2 Monte Carlo Studies with Different Output Error
Models

Now we consider two Monte Carlo studies of 1000 runs regarding identification of
several discrete-time output error models. The outputs are still given by

y(t) = G0(q)u(t) + e(t)

with e white Gaussian noise independent of u, but the rational transfer function G0

changes at any run. In fact, a 30th-order single-input single-output continuous-time
system is first randomly generated by the MATLAB command rss.m. It is then
sampled at 3 times of its bandwidth and used if its poles fall within the circle of the
complex plane with centre at the origin and radius 0.99.

With the system at rest, 1000 input–output pairs are generated as follows. At any
run, the system input is unit variance white Gaussian noise filtered by a second-order
rational transfer function generated by the same procedure adopted to obtain G0.
The outputs are corrupted by an additive white Gaussian noise with a SNR (the ratio
between the variance of noiseless output and noise) randomly chosen in [1, 20] at
any run. In the first experiment, the data set

DT = {u(1), y(1), . . . , u(N ), y(N )}

contains the first 200 input–output couples, i.e., N = 200, while in the second exper-
iment all the 1000 couples are used, i.e., N = 1000.

Starting from null initial conditions, at any run we also generate two different
kinds of test sets

Dtest = {unew(1), ynew(1), . . . , unew(M), ynew(M)}, M = 1000.

The first test set is especially challenging since noiseless outputs are generated by
using unit variance white Gaussian noise as input. In the second test set the input
has instead the same statistics of that entering the identification data, hence making
easier its prediction.

The performance of a model characterized by θ̂ , and returning ŷnew(t |θ̂ ) as output
prediction at instant t , is

F (θ̂) = 100

⎛
⎜⎜⎝1 −

√√√√√
∑M

t=1

(
ynew(t) − ŷnew(t |θ̂ )

)2

∑M
t=1 (ynew(t) − ȳnew)2

⎞
⎟⎟⎠ , M = 1000, (9.6)

where ȳnew is the average output in Dtest and ŷnew(t |θ̂ ) are computed assuming
zero initial conditions (otherwise high-order models could have the advantage to
calibrate the initial conditions to fit Dtest ). The prediction fit (9.6) can be obtained
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by the MATLAB command predict(model,data,k,’ini’,’z’) where
model and data denote structures containing the estimated model and the test set
Dtest , respectively.

In what follows, we will use also estimators equipped with an oracle which eval-
uates the fit (9.6) for the test set of interest. Different rational models with orders
between 1 and 30 are tried and the oracle selects the orders that give the best fit. We
are now in a position to introduce the following 6 estimators:

• Oe+Or1. Classical PEM approach (2.22), with quadratic 	 in (2.21), equipped
with an oracle which uses the first test set (white noise input). As said, candidate
models are rational transfer functions whose order can vary between 1 and 30. For
any order, the model is returned by the function oe.m of theMATLAB’s System
Identification Toolbox [14].

• Oe+Or2. The same procedure described above except that the oracle maximizes
the prediction fit using the second test set (test input with statistics equal to those
of the training input).

• Oe+CV. The classical approach now does not use any oracle: model order is
estimated by cross validation by splitting the identification data into two sets with
the first and the last N/2 data contained inDT . The prediction errors are computed
assuming zero initial conditions. The model order minimizing the sum of squared
prediction errors (computed assuming zero initial conditions) is chosen. Finally,
the system estimate is computed using all the data in DT by solving (2.22) with
quadratic loss.

• {TC+ML,SS+ML,DC+ML}. These are three regularized FIR estimators of the
form (9.1) with order 200 and kernels TC (9.2), SS (9.3) and DC (9.4). Marginal
likelihood optimization (7.42) is used to determine the noise variance and the
kernel hyperparameters (2 for SS and TC, 3 for DC). The regularized FIR models
are estimated using the function impulseest.m in the MATLAB’s System
Identification Toolbox [14].

9.1.2.1 Results

The MATLAB boxplots in Fig. 9.2 contain the 1000 fit measures returned by the
estimators during the first experiment with N = 200 (left panels) and the second
experiment with N = 1000 (right panels). Table 9.2 reports the average fit values.

In the top panels of Fig. 9.2 one can see the fits of the first test set. Recall that
Oe+Or1 has access to such data to optimize the prediction capability. Interestingly,
despite this advantage, the performance of all the three regularized approaches is
close that of the oracle while that Oe+CV is not so satisfactory. This is also visible
in the first two rows of Table 9.2.

The bottom panels of Fig. 9.2 show results relative to the second test set which
is used by Oe+Or2 to maximize the prediction fit. Since training and test data are
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Table 9.2 Identification of discrete-time OE-models Average fit, after 1000 Monte Carlo runs, as
a function of the test set type and the identification data set size (N = 200 or N = 1000). Results
in the first and last column come from oracle-based estimators which cannot be implemented in
practice

Oe+Or1 TC SS DC Oe+CV Oe+Or2

1st test set, N = 200 52.7 51.9 48.8 51.1 34.8 −11.9

1st test set, N = 1000 66.2 63.4 58.5 63.1 −20.9 28.2

2nd test set, N = 200 84.8 86.3 85.9 86.8 72.9 87.8

2nd test set, N = 1000 93.2 92.9 91.8 93.1 88.6 94.2

more similar, the prediction capability of Oe+CV improves significantly but the
regularized estimators still outperform the classical approach, see also the last two
rows of Table 9.2.
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Fig. 9.2 Identification of discrete-time OE-models TopBoxplot of the 1000 prediction fits on future
outputs with test input given by white noise. The size of the identification data set is 200 (top left) or
1000 (top right).BottomDifferently from the results in the top panel, input statistics in the estimation
and test data set are the same. The first and last boxplot contained in the four panels contain results
from the estimators Oe+Or1 and Oe+Or2 which cannot be implemented in practice
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Fig. 9.3 Robot arm A portion of the input–output data for the robot arm: the input is the driving
couple (bottom) and the output is the tip of the robot arm (top)

9.1.3 Real Data: A Robot Arm

Consider now the vibrating flexible robot arm described in [27], where two feedfor-
ward controller design methods were compared on trajectory tracking problems. The
input of the robot arm is the driving couple and the output is the acceleration at the tip
of the robot arm. The input–output data contain 40960 data points. They are collected
at a sampling frequency of 500 Hz for 10 periods with each period containing 4096
data points. A portion of the data is shown in Fig. 9.3. The identification problem of
the robot arm was studied in [23, Sect. 11.4.4] with frequency domain methods.

We will build models by both the classical prediction error method and the kernel
method with the DC kernel. Since the true system is unknown, to compare the
performance of different impulse response estimates we divide the data into two
parts: the training and the test set, given by the first 6000 input–output couples and
the reaming ones, respectively. Then, we measure how well the models, built with
the estimation data, predict the test outputs.

For the prediction error method, we estimate nth-order state-space models with-
out disturbance model and with zero initial conditions for n = 1, . . . , 36. This
method is available in MATLAB’s System Identification Toolbox [13] as the com-
mand pem(data,n,’dist’,’no’,’ini’,’z’). The prediction fits com-
puted using (9.6) are shown as a function of n in Fig. 9.4, respectively. An ora-
cle that has access to the test set would select the order n = 18, hence obtain-
ing a prediction fit equal to 79.75%. For the kernel method with the DC ker-
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Fig. 9.4 Robot arm The solid red line is the fit for the prediction error method for different model
order n = 1, . . . , 36. The dash-dot blue line is the prediction fit on the test set for the regularized
method with the DC kernel

nel, we estimate a FIR model of high-order 3000 with hyperparameters tuned
by optimizing the marginal likelihood. When forming the regression matrix, the
unknown input data are set to zero. The prediction fit (9.6) is 83.07% and is
shown as a horizontal solid line in Fig. 9.4. The kernel method with the DC ker-
nel is available in MATLAB’s System Identification Toolbox [14] as the com-
mand impulseest(data,3000,0,opt) where, in the option opt, we set
opt.RegulKernel=’dc’; opt.Advanced.AROrder=0.

The Bode magnitude plot of the models estimated by PEM and the DC kernel
is shown in Fig. 9.5. The empirical frequency function estimate obtained using the
command etfe inMATLAB’s System Identification Toolbox [14] is also displayed.

The measured output and the predicted output over a portion of the test set are
shown in Fig. 9.6. If one has concern that a FIR model of order 3000 is quite large,
then one could reduce such high-order model by projecting it to a low-order state-
space model. Exploiting model order reduction techniques, the fit of a state-space
model of order n = 25 is 79.8%, still better than the best state-space description that
can be obtained by PEM.
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Fig. 9.6 Robot arm A portion of the test set (grey) and the predictions returned by the regularized
method with DC kernel (blue) and the prediction error method (red)
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9.1.4 Real Data: A Hairdryer

The second application is a real laboratory device, whose function is similar to that
of a hairdryer: the air is fanned through a tube and then heated at a mesh of resistor
wires, as described in [13, Sect. 17.3]. The input to the hairdryer is the voltage
over the mesh of resistor wires while the output is the air temperature measured
by a thermocouple. The input–output data contain 1000 data points collected at a
sampling frequency of 12.5 Hz for 80 s. A portion of the data is shown in the top
panel of Fig. 9.7. Since the input–output values move around 5 and 4.9, respectively,
we detrend the measurements in such a way that they move around 0. The estimation
and test set data are then given by the first and the last 500 input–output couples,
respectively.

As in the case of the robot arm, we build models by the classical prediction
error method with an oracle, which maximizes the prediction fit, and the regularized
approach with the DC kernel, with hyperparameters tuned by marginal likelihood
optimization. For the prediction error method, we estimate nth-order state-space
models without disturbancemodel for n = 1, . . . , 36 andwith zero initial conditions.
The fits, as a function of n, are shown in Fig. 9.8. The best result is obtained for order
n = 5 and turns out 88.38%. For the kernel methodwith the DC kernel, we estimate a
FIR model with order 70. When forming the regression matrix, we set the unknown
input data to zero. The prediction fit (9.6) is somewhat close to that achieved by
PEM+Oracle being equal to 88.15%. It is shown as a dash-dot blue line in Fig. 9.8.
The test set and the predicted outputs returned by the two methods are shown in
Fig. 9.9. One can see that the regularized approach has a prediction capability very
close to that of PEM+Oracle.

9.2 Identification of ARMAX Models

In this section we consider the identification of linear systems

y(t) =
{

p∑
i=1

G0i (q)ui (t)

}
+ H0(q)e(t). (9.7)

Differently from the previous cases, beyond the presence of multiple observable
inputs ui , also the noise model is unknown. In fact, the e(t) are white Gaussian noise
of unit variance filtered by a system H0(q) that has to be estimated from data.

First, it is useful to cast the identification of the generalmodel (9.7) in a regularized
context. Without loss of generality, to simplify the exposition, let p = 1 with the
single observable input denoted by u. Exploiting (2.4), given the general linearmodel
(9.7), we can write any predictor as two infinite impulse responses from y and u,
respectively. When using ARX models, we have seen in (2.8) that such infinite
responses specialize to finite responses. One has
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Fig. 9.7 Hairdryer A portion of the input–output data for the hairdryer. The input is the voltage
over the mesh of resistor wires (bottom panel) and the output is the air temperature measured by a
thermocouple (top panel)
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Fig. 9.8 Hairdryer The solid line is the fit for the prediction error method for different model order
n = 1, . . . , 36. The dash-dot line is the fit for the ReLS method with the DC kernel
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Fig. 9.9 Hairdryer The measured output and the predicted output over the test data: the measured
output (grey), the ReLS method with DC kernel (blue) and the prediction error method (red)

y(t) = − a1y(t − 1) − · · · − ana y(t − na) + b1u(t − 1) + · · ·
+ bnbu(t − nb) + e(t) = ϕT

y (t)θa + ϕT
u (t)θb + e(t), (9.8)

where θa = [
a1 . . . ana

]T
, θb = [

b1 . . . bnb
]T

and ϕy(t), ϕu(t) are made up from y
and u in an obvious way. Thus, the ARXmodel is a linear regression model, to which
the same ideas of regularization can be applied. This point is important since we have
seen in Theorem 2.1 that ARX-expressions become arbitrarily good approximators
for general linear systems as the orders na, nb tend to infinity. However, as discussed
in Chap.2, high-order ARX can suffer from large variance. A solution is to set
na = nb = n to a large value and then introduce regularization matrices for the two
impulse responses from y and from u. The P-matrix in (9.1) can be partitioned along
with θa, θb:

P(η1, η2) =
[
Pa(η1) 0

0 Pb(η2)

]
(9.9)

with Pa(η1), Pb(η2) defined, e.g., by any of (9.2)–(9.4). Letting θ = [θT
a θT

b ]T and
building the regression matrix using [ϕT

y (t) ϕT
u (t)] as rows, the estimator (9.1) now

becomes a regularized high-order ARX. The MATLAB code for estimating this
model using, e.g., the DC kernel would be
ao=arxRegulOptions(’RegularizationKernel’,’DC’),
[Lambda,R] = arxRegul(data,na,nb,nk,ao),
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aropt= arxOptions; aropt.Regularization.Lambda = Lambda,
aropt.Regularization.R = R,
m = arx(data,na,nb,nk,aropt).

We can also easily extend this construction tomultiple inputs.Given anygeneric p,
one needs to estimate p + 1 impulse responses with the matrix (9.9) now containing
p + 1 blocks. If there are multiple outputs, one approach is to consider each output
channel as a separate linear regression as in (9.8). The difference is that now also the
other outputs need to be appended as done with the inputs.

9.2.1 Monte Carlo Experiment

One challenging Monte Carlo study of 1000 runs is now considered. Data are gen-
erated at any run by an ARMAX model of order 30 having p observable inputs,
i.e.,

y(t) =
{

p∑
i=1

Bi (q)

A(q)
ui (t)

}
+ C(q)

A(q)
e(t),

with p drawn from a random variable uniformly distributed on {2, 3, 4, 5}. Note that
the system contains p + 1 rational transfer functions. They depend on the polynomi-
als A, Bi and C which are randomly generated at any run by the MATLAB function
drmodel.m. Such function is first called to obtain the common denominator A
and the first numerator B1. The other p calls are used to obtain the numerators of
the remaining rational transfer functions. The system so generated is accepted if the
modulus of its poles is not larger than 0.95. In addition, letting Gi (q) = Bi (q)

A(q)
and

H(q) = C(q)

A(q)
the signal to noise ratio has to satisfy

1 ≤
∑p

i=1 ‖Gi‖22
‖H‖22

≤ 20

where ‖Gi‖2, ‖H‖2 are the 	2 norms of the system impulse responses.
After a transient to mitigate the effect of initial conditions, at any run 300 input–

output couples are collected to form the identification data set DT and other 1000
to define the test set Dtest . In any case, the input is white Gaussian noise of unit
variance.

Differently from the output error models, in the ARMAX case the performance
measure adopted to compare different estimated models depends on the prediction
horizon k. More specifically, let ŷnewk (t |θ̂ ) be the k-step-ahead predictor associated
with an estimated model characterized by θ̂ . For any t , such function predicts k-step-
ahead the test output ynew(t) by using the values of the test input unew up to time
t − 1 and of the test output ynew up to t − k. The prediction difficulty in general
increases as k gets larger. The special case k = 1 corresponds to the one-step-ahead
predictor given by (2.4), while see, e.g., [13, Sect. 3.2] for the expressions of the
generic k-step-ahead impulse responses.
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As done in (9.6) we use ȳnew denote the mean of the outputs inDtest , but now the
prediction fit depends on k, being given by

Fk(θ̂) = 100

⎛
⎜⎜⎝1 −

√√√√√
∑M

t=1

(
ynew(t) − ŷnewk (t |θ̂ )

)2

∑M
t=1 (ynew(t) − ȳnew)2

⎞
⎟⎟⎠ , M = 1000. (9.10)

In this case, we say that an estimator is equipped with an oracle if it can use the
test set to maximize

∑20
k=1 Fk by tuning the complexity of the model estimated using

the identification data. The following estimators are then introduced:

• PEM+Oracle: this is the classical PEM approach (2.22) with quadratic loss
equipped with an oracle. The candidate model structures are ARMAX models
with polynomials all having the same degree up to 30. For any model order, the
MATLAB command pem.m (or armax.m) is used to obtain the system’s esti-
mate. of the MATLAB System Identification Toolbox [14].

• PEM+CV : in place of the oracle,model complexity is estimated by cross validation
splittingDT into two sets containing, respectively, the first and the last 150 input–
output couples. Themodel orderwhichminimizes the sumof the squared one-step-
ahead prediction errors computed with zero initial conditions for the validation
data is selected. The final system’s estimate is returned by (2.22) using all the
identification data.

• {PEM+AICc,PEM+BIC}: this is the classical PEM approach with AIC-type cri-
teria used to tune complexity, as reported in (2.35) and (2.36).

• {TC+ML,SS+ML,DC+ML}: these are the three regularized least squares estima-
tors introduced at the beginning of this section which determine the unknown
coefficients of the multi-input version of the ARX model. After setting the length
of each predictor impulse response to 50, the regularization matrices entering
the multi-input version of (9.9) are defined by TC (9.2) or SS (9.3) or DC (9.4)
kernels. The first 50 input–output pairs inDT are used just as entries of the regres-
sion matrix. For every impulse response, a different scale factor λ and a common
variance decay rate α (and, in the case of DC, a correlation ρ) is adopted. The
hyperparameters are determined via marginal likelihood optimization.

All the system inputs delay are assumed known and their values are provided to all
the estimators described above.

The average of the fits Fk given by (9.10), function of the prediction horizon k,
is reported in Fig. 9.10. Since PEM equipped with Akaike-like criteria return very
small average fits, results achieved by this kind of procedures are not displayed.
The MATLAB boxplots of the 1000 values of F1 and F20 returned by all the
estimators are visible in Fig. 9.11. The average fit of SS+ML is quite close to that
of PEM+Oracle which is in turn outperformed by TC+ML and DC+ML. This is
remarkable also considering that such kernel-based approaches can be used in real
applications while PEM+Oracle relies on an ideal tuning which exploits the test set.
Results returned by PEM equipped with CV are instead unsatisfactory.
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Fig. 9.10 Identification of
ARMAX models Average of
the k-step ahead fits Fk as
defined in (9.10)
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The results outline the importance of regularization, especially in experiments
with relatively small data sets. In this case, only 300 input–output measurements
are available with quite complex systems of order 30. The classical PEM approach
equipped with any model order-selection rule cannot predict the test set better than
the oracle. However, this latter can tune complexity by exploring only a finite set
of given models. Kernel-based approaches can instead balance bias and variance
by continuous tuning of regularization parameters. In this way, better performing
trade-offs may be reached.

9.2.2 Real Data: Temperature Prediction

Now we consider thermodynamic modelling of buildings using some real data taken
from [22]. Eight sensors are placed in two rooms of a small two-floor residential
building of about 80 m2 and 200m3. They are located only on one floor (approx-
imately 40m2). More specifically, temperatures are collected through a wireless
sensor network made of 8 Tmote-Sky nodes produced by Moteiv Inc. The building
was inhabited during the measurement period consisting of 8 days and samples were
taken every 5min. A thermostat controlled the heating systemwith the reference tem-
perature manually set every day depending upon occupancy and other needs. This
makes available a total of 8 temperature profiles displayed in Fig. 9.12. One can see
the high level of collinearity of the signals. This makes the problem ill-conditioned,
complicating the identification process.

We just consider multiple-input single-output (MISO) models. The temperature
from the first node is seen as the output (yi ) and the other 7 temperatures as inputs
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Fig. 9.11 Identification of ARMAX models Boxplots of the 1000 values of F1 (top panel) and
F20 (bottom). Recall that PEM+Oracle uses additional information, having access to the test set
to perform model order selection
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Fig. 9.12 Temperature
prediction The 8 temperature
readings
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(u j
i , j = 1, . . . , 7). Data are divided into 2 parts: those collected at time instants

1, . . . , 1200 form the identification set while those at instants 1201, . . . , 2500 are
used for test purposes. With 5 min sampling times, 1200 instants almost correspond
to 100 h, a rather small time interval. Hence, we assume a “stationary” environment
and normalize the data so as to have zero mean and unit variance before performing
identification. Quality of the k-step-ahead prediction on test data is measured by
(9.10).

Identification has been performed using ARMAX models with an oracle which
has access to the test set. This estimator, called PEM+Or, maximizes

∑48
k=1 Fk which

accounts for the prediction capability up to 4 h ahead. The other estimator is regu-
larized ARX equipped with the TC kernel with a different scale factor λ assigned
to each unknown one-step-ahead predictor impulse response and a common decay
rate α. The length of each impulse response is set to 50 and the hyperparameters
are estimated via marginal likelihood maximization using only the identification
data. This estimator is denoted by TC+ML. Results are reported in Fig. 9.13 (top
panel): the performance of PEM+Or and TC+ML is quite similar. Sample trajecto-
ries of one-hour-ahead test data prediction returned by TC+ML are also reported in
Fig. 9.13 (bottom panel).

9.3 Multi-task Learning and Population Approaches �

In the previous chapters we have studied the problem of reconstructing a real-valued
function from discrete and noisy samples. An extension is the so-called multi-task
learning problem in which several functions (tasks) are simultaneously estimated.
This problem is significant if the tasks are related to each other so that measurements
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Fig. 9.13 Temperature
prediction. Top: the
prediction fits for predictions
up to 4 h for the estimates
obtained by PEM+Or and
TC+ML. Recall that
PEM+Or is not
implementable in practice
since it exploits the
knowledge of the test set to
tune model complexity.
Bottom: one-hour-ahead test
set prediction by TC+ML
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taken on a function are informative with respect to the other ones. An example is
given by a network of linear systems whose impulse responses share some common
features. Here, a relevant problem is the study of anomaly detection in homogenous
populations of dynamic systems [5, 6, 10]. Normally, all of them are supposed to
have the same (possibly unknown) nominal dynamics. However, there can be a subset
of systems that have anomalies (deviations from the mean) and the goal is to detect
them from the data collected in the population. Important applications of multi-
task learning arise also in biomedicine when multiple experiments are performed in
subjects from a population [9]. Similar patterns are observed in individual responses
so thatmeasurements collected in a subject can help reconstructing also the responses
of other individuals. In pharmacokinetics (PK) and pharmacodynamics (PD) the
joint analysis of several individual curves is often exploited and called population
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analysis [24]. One class of adopted models is parametric, e.g., compartmental ones
[7]. The problem can be solved using, e.g., the NONMEM software, which traces
back to the seventies [3, 25], or more sophisticated approaches like BayesianMCMC
algorithms [15, 28].More recently,machine learning/nonparametric approaches have
been proposed for the population analysis of PK/PD data [16, 19, 20].

In the machine learning literature, the term multi-task learning was originally
introduced in [4]. The performance improvement achievable by using a multi-task
approach instead of a single-task one which learns the functions separately has been
then pointed out in [1, 26], see also [2] for a Bayesian treatment. Next, in [8] it has
been proposed a regularized kernel method hinging upon on the theory of vector-
valued Reproducing kernel Hilbert spaces [18]. Developments and applications of
multi-task learning can then be found, e.g., in [11, 12, 17, 21, 29, 30].

9.3.1 Kernel-Based Multi-task Learning

We will now see that multi-task learning can be cast within the RKHS setting devel-
oped in the previous chapters by defining a particular kernel. Just to simplify exposi-
tion, let us assume that there is a common input space X for all the tasks and consider
a set of k functions f i : X �→ R. Assume also that the following ni input–output data
are available for each task i

(x1i , y1i ), (x2i , y2i ), . . . , (xni i , yni i ). (9.11)

Our goal is to jointly estimate all the unknown functions fi starting from these exam-
ples. For this aim, first a kernel can be introduced to include our knowledge on the
single functions (like smoothness) and also on their relationships. This can be done
by defining an enlarged input space

X = X × {1, 2, . . . , k}.

Hence, a generic element ofX is the couple (x, i)where x ∈ X while i ∈ {1, . . . , k}.
The index i thus specifies that the input location belongs to the part of the function
domain connected with the i th function. The information regarding all the tasks
can now be specified by the kernel K : X × X → R which induces a RKHS of
functions f : X → R. In fact, we are just exploiting RKHS theory on function
domains that include both continuous and discrete components. Note that, in practice,
any function f embeds k functions fi .

Regularization in RKHS then allows us to reconstruct the tasks from the data
(9.11) by computing

f̂ = argmin
f∈H

k∑
i=1

ni∑
l=1

Vli (yli , fi (x)) + γ ‖f‖2H . (9.12)
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Under general conditions on the lossesVli , we can then apply the representer theorem,
i.e., Theorem 6.15, to obtain the following expression for the minimizer:

f̂ j (x) =
k∑

i=1

ni∑
l=1

cli K ((x, j), (xli , i)) x ∈ X, j = 1, . . . , k (9.13)

where {cli } are suitable scalars. Adopting quadratic losses which include weights
{σ 2

li }, i.e.,
Vli (a, b) = (a − b)2

σ 2
li

for any a, b ∈ R, a regularization network is obtained and the expansion coefficients
{cli } solve the following linear system of equations

k∑
i=1

ni∑
l=1

[
K ((xli , i), (x jq , q)) + γ σ 2

jqδl jδiq
]
cli = y jq , (9.14)

where q = 1, . . . , k, j = 1, . . . , nq and δi j is the Kronecker delta.

Connection with Bayesian estimation Exploiting the same arguments developed in
Sect. 8.2.1, the following relationship between (9.13), (9.14) andBayesian estimation
of Gaussian random fields is obtained. Let the measurements model be

y ji = fi (x ji ) + e ji (9.15)

where {e ji } are independent Gaussian noises of variances {σ 2
j i }. Define

yi = [y1i . . . yni i ]T , yk = [yT1 . . . yTk ]T .

Assume also that {fi } are zero-mean Gaussian random fields, independent of the
noises, with covariances

Cov
(
fi (x), fq(s)

) = K ((x, i), (s, q)) x, s ∈ X,

where i = 1, . . . , k and q = 1, . . . , k. Then, one obtains that for j = 1, . . . , k, the
minimum variance estimate of f j conditional on yk is defined by (9.13), (9.14) by
setting γ = 1. Furthermore, the posterior variance of f j (x) is

Var
[
f j (x)|yk

] = Var
[
f j (x)

] − Cov
(
f j (x), yk

) (
Var

[
yk

])−1
Cov

(
f j (x), yk

)T
.

(9.16)
In the above formula, in view of the independence assumptions, one has
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Var
[
yk

] =

⎛
⎜⎜⎜⎝

V11 V12 . . . V1k

V21 . . . . . . V2k
... . . . . . . . . .

Vk1 . . . . . . Vkk

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎝

Σ1 0 . . . 0
0 Σ2 . . . 0
0 0 . . . 0
0 0 0 Σk,

⎞
⎟⎟⎠

where each block Viq belongs to R
ni×nq and its (l, j)-entry is given by

Viq(l, j) = K ((xli , i), (x jq , q)),

while Σi = diag{σ 2
1i , . . . , σ

2
ni i

}. In addition

Cov
(
f j (x), yk

) = Cov
(
f j (x), [f1(x11) . . . f1(xn11) . . . fk(x1k) . . . fk(xnkk)]

)

= [K ((x, j), (x11, 1)) . . . K ((x, j), (xn11, 1))

. . . K ((x, j), (x1k, k)) . . . K ((x, j), (xnkk, k))].

Example of multi-task kernel: average plus shift A simple yet useful class of
multi-task kernels is obtained by defining K as follows:

K ((x1, p), (x2, q)) = λK (x1, x2) + δpq λ̃K̃ p(x1, x2) (9.17)

where λ
2
and λ̃2 are two-scale factors that typically need to be estimated from data.

Such kernel describes each function as the sum of an average function f , hereafter
named average task, and an individual shift f̃ j (x) specific for each task. Indeed, if
λ = 0 all the functions would be learnt independently of each other. Instead, when
λ̃ = 0 all the tasks are actually the same. The Bayesian interpretation of multi-task
learning discussed above facilitates also the understanding of this model. In fact,
once the kernel is seen as a covariance, it is easy to see that, for any i and x ∈ X ,
each task decomposes into

fi (x) = f̄(x) + f̃i (x)

where f̄ and {f̃i } are zero-mean independent Gaussian random fields.

9.3.2 Numerical Example: Real Pharmacokinetic Data

Multi-task learning is now illustrated by considering a data set connected with xeno-
biotics administration in 27 human subjects [20]. Such administration can be seen
as the input to a continuous-time linear dynamic system whose (measurable) out-
put is the drug profile in plasma. In any subject, 8 measurements were collected
at 0.5, 1, 1.5, 2, 4, 8, 12, 24 h after a bolus, an input which can be seen as a Dirac
delta. Hence, one has to deal with a particular continuous-time system identification
problem where noisy and direct samples of the impulse response are available.



9.3 Multi-task Learning and Population Approaches � 365

0 5 10 15 20
0

20

40

60

80

100

120

Hours

Xenobiotics concentration

Fig. 9.14 Multi-task learning Xenobiotics concentration data after a bolus in 27 human subjects:
average curve (thick) and individual curves

In this experiment, noises are known to be Gaussian and heteroscedastic, i.e.,
their variances are not constant being given by σ 2

i j = (0.1yi j )2. The 27 experimental
concentration profiles are displayed in Fig. 9.14, together with the average profile.
In light of the number of subjects, such average curve is a reasonable estimate of the
average task f .

The whole data set consists of 216 pairs (xi j , yi j ), for i = 1, . . . , 8 and j =
1, . . . , 27, and is split in an identification (training) and a test set. For what regards
training, a sparse sampling schedule is considered: only 3 measurements per subject
are randomly chosen within the 8 available data. We will adopt the multi-task esti-
mator (9.12) to reconstruct all the continuous-time profiles. In view of the Gaussian
and heteroscedastic nature of the noise, the losses are defined by

Vli (a, b) = (a − b)2

σ 2
i j

.

For what regards the function model, since humans are expected to give similar
responses to the drug, quite close to an average function, the kernel (9.17) is adopted.
In addition, it is known that in these experiments there is a greater variability for small
values of t , followed by an asymptotic decay to zero. This motivates the use of a
stable kernel to model both the average and the shifts. A model suggested in [20] is
a cubic spline kernel under the time-transformation



366 9 Numerical Experiments and Real World Cases

0 5 10 15 20 25
0

20

40

60
Multi-task

j=6

0 5 10 15 20 25
0

20

40

60

j=8

0 5 10 15 20 25
0

20

40

60

j=10

0 5 10 15 20 25
0

20

40

60

j=18

0 5 10 15 20 25

0

20

40

60

Hours

j=21

0 5 10 15 20 25
0

20

40

60
Single-task

j=6

0 5 10 15 20 25
0

20

40

60

j=8

0 5 10 15 20 25
0

20

40

60

j=10

0 5 10 15 20 25
0

20

40

60

j=18

0 5 10 15 20 25

0

20

40

60

Hours

j=21

Fig. 9.15 Multi-task learning Single task (left) and multi-task (right) estimates of some curves
(thick line) with 95% confidence intervals (dashed lines) using only three data (circles) for each of
the 27 subjects. The other five “unobserved” data (asterisks) are also plotted. Dotted line indicates
the estimates obtained by using the full sampling grid
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h(t) = 3

t + 3

which defines (9.17) through the correspondences

K (t, τ ) = K̃ p(t, τ ) = h(t)h(τ )min{h(t), h(τ )}
2

− (min{h(t), h(τ )})3
6

.

One can check that this model induces a stable RKHS by using Corollary 7.2. In fact,
the kernels are nonnegative-valued and the integral of a generic kernel section is

∫ +∞

0

(
h(t)h(τ )min{h(t), h(τ )}

2
− (min{h(t), h(τ )})3

6

)
dτ

= 1

2(t + 3)3

(
(27t + 81) log(

t + 3

3
) + 13.5t + 67.5

)

and this result clearly implies

∫ +∞

0

∫ +∞

0

(
h(t)h(τ )min{h(t), h(τ )}

2
− (min{h(t), h(τ )})3

6

)
dτdt < ∞.

The initial plasma concentration is known to be zero. Hence, a zero variance virtual

measurement in t = 0 was added for all tasks. The hyperparameters λ
2
and λ̃2 were

then estimated via marginal likelihood maximization by exploiting the Bayesian
interpretation of multi-task learning discussed above.
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Fig. 9.16 Multi-task learningBoxplots of the prediction errors (RMSE) obtained by the single-task
approach and by the multi-task approach
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The left and right panels of Fig. 9.15 report results obtained by the single- and
the multi-task approach, respectively, in 5 subjects. One can see the data and the
estimated curves with their 95% confidence intervals obtained using the posterior
variance (9.16). Each panel shows also the estimates obtained by employing the full
sampling grid. It is apparent that the multi-task estimates are closer to these reference
profiles. A good predictive capability with respect to the other five “unobserved” data
is also visible. To better quantify this aspect, let I f and I rj denote the full and reduced
sampling grid in the j th subject. Let also I j = I f

�I rj , whose cardinality is 5. Then,
for each subject, we also define the prediction error as

RMSEMT
j =

√∑
i∈I j (yi j − f̂ j (xi j ))2

5

with the single-task RMSEST
j defined in a similar way. Figure9.16 then reports

the boxplots with the 27 RMSE returned by the single- and multi-task estimates.
The improvement on the prediction performance due to the kernel-based population
approach is evident.
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